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Lectures 1-3

Measure algebras Let (Ω,Σ, µ) be a probability space. Then we have an equivalence relation ∼ on Σ
defined by saying that E ∼ F if µ(E△F ) = 0. Let A be the set of equivalence classes a = E• for E ∈ Σ.
Then we have operations ∪ , ∩ , \ and △ on A defined by saying that

E• ∪ F • = (E ∪ F )•, E• ∩ F • = (E ∩ F )•,

E• \ F • = (E \ F )•, E• △ F • = (E△F )•

for E, F ∈ Σ. These operations behave in the same way as the ordinary Boolean operations ∪, ∩, \ and △,
so that, for instance,

a ∩ (b ∪ c) = (a ∪ b) ∩ (a ∪ c)

for all a, b, c ∈ A. We have a zero 0 = ∅• and a unit 1 = Ω• in A, so that, for instance,

1 \ (a ∪ b) = (1 \ a) ∩ (1 \ b);

A is a Boolean algebra. Next, we have a partial ordering ⊆ on A defined by saying that

a ⊆ b ⇐⇒ a = a ∩ b ⇐⇒ b = a ∪ b ⇐⇒ a \ b = 0,

just like ⊆; for this partial ordering, a ∩ b = inf{a, b} and a ∪ b = sup{a, b} for all a, b ∈ A, and A is a dis-
tributive lattice. For countable infinitary operations, we get a simple correspondence with the corresponding
operations in PΩ:

(
⋃
n∈N

En)
• = supn∈N E

•

n, (
⋂
n∈N

En)
• = infn∈N E

•

n

for all sequences 〈En〉n∈N in Σ. For uncountable infinitary operations, there is a difference. In the probability
spaces of interest in this course, not all families A ⊆ Σ have unions in Σ; but in any measure algebra A

defined from a probability space, every subset of A has a supremum and an infimum in A (counting sup ∅
as 0 and inf ∅ as 1), that is, A is Dedekind complete with greatest and least elements.

On A, we have a ‘measure’ µ̄ defined by saying that µ̄E• = µE for every E ∈ Σ; we have the ordinary
rules

µ̄0 = 0, µ̄(a ∪ b) = µ̄a+ µ̄b if a ∩ b = 0, µ̄1 = 1

of elementary probability theory. In addition we have

µ̄(supA) = supa∈A µ̄a

whenever A ⊆ A is non-empty and upwards-directed, that is, for any a, b ∈ A there is a c ∈ A such that
a ⊆ c and b ⊆ c.

L0-spaces Let (Ω,Σ, µ) be a probability space, and write L
0 for the set of all Σ-measurable real-valued

functions defined on Ω. Then we have an equivalence relation ∼ on L
0 defined by saying that

f ∼ g if f =a.e. g, that is, {ω : f(ω) 6= g(ω)} is negligible.

Let L0 be the set of equivalence classes u = f• for f ∈ L
0. Then we have operations +, × on L0, and a

scalar multiplication, defined by saying that

f• + g• = (f + g)•, αf• = (αf)•, f• × g• = (f × g)•,

for f , g ∈ L
0 and α ∈ R. L0 is a commutative algebra with additive identity 0 = (χ∅)• and multiplicative

identity (χΩ)•. Next, L0 has a partial ordering defined by saying that
1
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f• ≤ g• ⇐⇒ f ≤a.e. g, that is, {ω : g(ω) < f(ω)} is negligible;

this makes L0 a Dedekind complete distributive lattice with

f• ∨ g• = max(f, g)•, f• ∧ g• = min(f, g)•

for f , g ∈ L
0. The familiar algebraic rules apply in L0 as in L

0, e.g.,

u× (v + w) = u× v + u× w, u ≤ v =⇒ u+ w ≤ v + w, u× v ≥ 0 if u, v ≥ 0;

L0 is an f-algebra. We have a map χ : A → L0 defined by saying that χ(E•) = (χE)• for E ∈ Σ.

Mappings on L0 If h : R → R is any Borel measurable function, we have a function h̄ : L0 → L0 defined
by saying that

h̄(f•) = (hf)• for every f ∈ L
0,

where hf here is the composition h◦f : Ω → R. The most important special case is when h(x) = |x| for
x ∈ R, so that h̄(u) = |u| = u ∨ (−u) for u ∈ L0.

Regions in A For u, v ∈ L0, α ∈ R and Borel sets E ⊆ R we can define ‘regions’ [[u > α]], [[u ∈ E]],
[[u = v]] in A by saying that

[[f• > α]] = {ω : f(ω) > α}•, [[f• ∈ E]] = (f−1[E])•,

[[f• = g•]] = {ω : f(ω) = g(ω)}•

when f• = u and g• = v. For some purposes it is helpful to think of a member u of L0 as being defined by
the family 〈[[u > α]]〉α∈R. If A ⊆ L0 is non-empty and v ∈ L0, then v = supA iff [[v > α]] = supu∈A [[u > α]]
for every α ∈ R.

L1 spaces and integration If we write L
1 for the space of measurable integrable functions f : Ω → R,

and L1 = L1
µ̄ for {f• : f ∈ L

1}, we get a linear subspace of L0 which is solid, that is, if u ∈ L1 and |v| ≤ |u|

then v ∈ L1. I will write E = Eµ̄ for the corresponding notion of integration in L1, so that

E(f•) =
∫

Ω
f(ω)µ(dω)

for f ∈ L
1.

Convergence in measure We have a functional θ = θµ̄ : L0 → [0,∞[ defined by setting

θ(u) = E(|u| ∧ χ1) for u ∈ L0,

θ(f•) =
∫

min(|f(ω)|, 1)µ(dω) for f ∈ L
0.

Now

θ(u+ v) ≤ θ(u) + θ(v), θ(αu) ≤ θ(u) if |α| ≤ 1, limα→0 θ(αu) = 0

for all u, v ∈ L0, so we have a metric (u, v) 7→ θ(u− v) on L0 which defines a linear space topology on L0,
not normally locally convex; this is the topology of convergence in measure on L0. Under this metric,
L0 is complete.

If 〈fn〉n∈N is a sequence in L
0 and f ∈ L

0, then f• = limn→∞ f•

n for the topology of convergence in measure
iff every subsequence 〈fnk

〉k∈N of 〈fn〉n∈N has a sub-subsequence 〈fnki
〉i∈N such that f(ω) = limi→∞ fnki

(ω)
for almost every ω ∈ Ω.

σ-subalgebras of Σ, closed subalgebras of A Let (Ω,Σ, µ) be a probability space with measure
algebra A. If T is a σ-subalgebra of Σ, that is,

∅ ∈ T, Ω \ E ∈ T whenever E ∈ T,

⋃
n∈N

En ∈ T whenever 〈En〉n∈N is a sequence in T,

then B = {E• : E ∈ T} is a closed subalgebra of A, that is,
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0 ∈ B, 1 \ a ∈ B whenever a ∈ B,

supA ∈ B for every A ⊆ B.

In this case, (Ω,T, µ↾T) is a probability space, and its measure algebra can be identified with (B, µ̄↾B),
while L0(B) can be identified with

{u : u ∈ L0(A), [[u > α]] ∈ B for every α ∈ R},

and L1(B, µ̄↾B) with L0(B)∩L1(A, µ̄). L0(B) is closed in L0(A) for the topology of convergence in measure.

Lecture 4

Filtrations Let (Ω,Σ, µ) be a probability space. A family 〈Σt〉t≥0 of σ-subalgebras of Σ is a filtration
if Σs ⊆ Σt whenever s ≤ t. Associated with this is the family 〈At〉t≥0 where At = {E• : E ∈ Σt} for t ≥ 0;
this is a ‘filtration of closed subalgebras’.

A filtration 〈At〉t≥0 is right-continuous if At =
⋂
s>t As for every t. If every Σt contains every set of

measure 0, this will be the case iff Σt =
⋂
s>tΣs for every t.

Stopping times If 〈Σt〉t≥0 is a filtration of σ-subalgebras of Σ, a function h : Ω → [0,∞] is a stopping
time if {ω : h(ω) > t} belongs to Σt for every t ≥ 0. In this case, we have a corresponding ‘stopping time’
τ = 〈at〉t≥0 where at = {ω : h(ω) > t}• for every t ≥ 0. The family 〈at〉t≥0 will have the properties

at ∈ At, at = sups>t as for every t ≥ 0.

In this context I will write [[τ > t]] for at.

If t ≥ 0, we have a constant stopping time ť defined by

[[ť > s]] = 1 if s < t, 0 if s ≥ t.

The lattice of stopping times Let T ⊆
∏
t≥0 At be the set of all stopping times associated with a

filtration 〈At〉t≥0. We have a partial ordering on T defined by saying that

σ ≤ τ if [[σ > t]] ⊆ [[τ > t]] for every t ≥ 0.

Under this ordering, T is a Dedekind complete Boolean lattice with lattice operations defined by saying that

[[σ ∨ τ > t]] = [[σ > t]] ∪ [[τ > t]], [[σ ∧ τ > t]] = [[σ > t]] ∩ [[τ > t]]

for t ≥ 0, while if A ⊆ T is not empty,

[[supA > t]] = supτ∈A [[τ > t]]

for all t. T has a least element min T = 0̌ such that [[min T > t]] = 0 for every t, and a greatest element
max T such that [[max T > t]] = 1 for every t.

I will write Tf for the set of finite stopping times τ such that inft≥0 [[τ > t]] = 0, and Tb for the set of
bounded stopping times τ such that [[τ > t]] = 0, that is, τ ≤ ť, for some t ≥ 0.

The algebra associated with a stopping time If τ is a stopping time, write

Aτ = {a : a \ [[τ > t]] ∈ At for every t ≥ 0}.

Then Aτ is a closed subalgebra of A. We have Ať = At for every t, and Aσ ⊆ Aτ if σ ≤ τ . Generally,
Aσ∧τ = Aσ ∩ Aτ for all σ, τ ∈ T .

Regions associated with stopping times If σ, τ are stopping times, set

[[σ < τ ]] = supt≥0 [[τ > t]] \ [[σ > t]],

[[σ = τ ]] = 1 \ ([[σ < τ ]] ∪ [[τ < σ]]).

D.H.Fremlin



4

We find that [[σ < τ ]], [[σ = τ ]], [[τ < σ]] form a partition of unity and all belong to Aσ∧τ .

Stopping-time intervals If σ, τ are stopping times, with σ ≤ τ , write c(σ, τ) for the stopping-time
interval

〈[[τ > t]] \ [[σ > t]]〉t≥0 ∈
∏
t≥0 At.

In this context, it is helpful to think of the product D =
∏
t≥0 At as a Boolean algebra (using coordinate-

by-coordinate definitions of the Boolean operations). If we think of a stopping time τ as neither more nor less
than the family 〈[[τ > t]]〉t≥0, then τ actually becomes an element of D (not arbitrary, because we demand
the property

[[τ > t]] = sups>t [[τ > s]]

for every t ≥ 0), and c(σ, τ) is the Boolean difference τ \ σ, interpreted in D. Note that σ ≤ τ , as defined
above, iff σ ⊆ τ when they are thought of as elements of D. Note also that the expression of a stopping-time
interval e as c(σ, τ) is practically never unique. In fact we have

c(σ, τ) = c(σ′, τ ′) iff [[σ < τ ]] = [[σ′ < τ ′]] ⊆ [[σ = σ′]] ∩ [[τ = τ ′]].

Now suppose that I ⊆ T is a finite sublattice of T . If we interpret I as a subset of D, with greatest
and least elements min I and max I, it generates a finite subalgebra D0 of D. D0, being in itself a finite
Boolean algebra, has (finitely many) ‘atoms’ (minimal non-zero elements), all disjoint, and each element of
D0 is the supremum of the atoms it includes. We can identify these atoms as being either c(min T ,min I),
c(max I,max T ) or of the form c(σ, τ) where σ, τ ∈ I. The latter I will call I-cells.

Lecture 5

Fully adapted processes Suppose that S is a sublattice of T . A fully adapted process with domain
S is a family uuu = 〈uσ〉σ∈S such that

uσ ∈ L0(Aσ), [[σ = τ ]] ⊆ [[uσ = uτ ]]

for all σ, τ ∈ S.

Theorem 1 Suppose that (A, µ̄) is the measure algebra of a complete1 probability space (Ω,Σ, µ), and
that Σt = {E : E ∈ Σ, E• ∈ At} for t ≥ 0. Let 〈Xt〉t≥0 be a family of real-valued random variables on Ω

which is progressively measurable, that is, (s, ω) 7→ Xs(ω) : [0, t]×Ω → R is B([0, t])⊗̂Σt-measurable for
every t ≥ 0, where B([0, t])⊗̂Σt is the σ-algebra of subsets of [0, t]×Ω generated by {[a, b]×E : 0 ≤ a ≤ b ≤ t,
E ∈ Σt}.

(a) For any stopping time h : Ω → [0,∞[, the function Xh = 〈Xh(ω)(ω)〉ω∈Ω is Σh-measurable, where
Σh = {E : E ∈ Σ, E \ {ω : h(ω) > t} ∈ Σt for every t ≥ 0}.

(b) We have a fully adapted process uuu = 〈uτ 〉τ∈Tf
defined by saying that uτ = X•

h whenever h : Ω → [0,∞[
is a stopping time and τ = h• is the corresponding finite stopping time.

The class of fully adapted processes Let S be a sublattice of T and M = M(S) ⊆ (L0)S the set
of fully adapted processes with domain S. Then M is an f -subalgebra of (L0)S (that is, a linear subspace
closed under multiplication and the lattice operations), and h̄(uuu) = 〈h̄(uσ)〉σ∈S ∈M whenever uuu = 〈uσ〉σ∈S

belongs to M and h : R → R is Borel measurable.

Riemann sums Suppose that S is a sublattice of T and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S are fully adapted
processes.

For a stopping-time interval e with endpoints in S, we can define ∆e(uuu, dvvv) by saying that

∆e(uuu, dvvv) = uσ × (vτ − vσ)

1A measure space (Ω, Σ, µ) is complete if F ∈ Σ whenever E ∈ Σ, µE = 0 and F ⊆ E.

Measure Theory
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whenever e = c(σ, τ) where σ ≤ τ in S.

For a finite sublattice I of S, set

SI(uuu, dvvv) =
∑
e is an I-cell ∆e(uuu, dvvv).

The stochastic integral Suppose that S is a sublattice of T and uuu, vvv are fully adapted processes defined
on S. Write I(S) for the set of finite sublattices of S. Then

∫
S
uuu dvvv = limI↑I(S) SI(uuu, dvvv)

if this is defined in L0 for the topology of convergence in measure; that is,
∫
S
uuu dvvv = z iff

for every ǫ > 0 there is a J ∈ I(S) such that θ(z − SI(uuu, dvvv)) ≤ ǫ whenever I ∈ I(S) and J ⊆ I.

Warning! This is not quite the standard stochastic integral. Protter 03 would call it
∫
uuu− dvvv, because

in the Riemann sums we always use the value uσ at the lower end of the interval c(σ, τ).

The deterministic case Consider the case in which A is the trivial Boolean algebra {0, 1} with two
elements (corresponding to the case in which Ω has just one point). In this case, every At has to be equal
to A, the only possible values for a region [[τ > t]] are 0 and 1 (so every stopping time is either a constant
stopping time or max T ), and every member of L0 is of the form αχ1 for some α. So we can identify T with
[0,∞] and L0 with R. Every subset of [0,∞] is a sublattice, and if I = {t0, . . . , tn} where t0 < . . . < tn,
then the I-cells are the intervals [ti, ti+1[ for i < n. So to calculate

∫
[0,∞[

f dg, where f , g : [0,∞[ → R are

real-valued functions, we look at sums of the form
∑n−1
i=0 f(ti)(g(ti+1) − g(ti)).

This looks like a Stieltjes integral of some kind. But it is not the Lebesgue-Stieltjes integral, even if g
is non-decreasing, so that we have an associated Radon measure on R. Consider, for instance, the case in
which

f(x) = g(x) = 0 if x < 1,

= 1 if x ≥ 1.

If we look at a term ∆[s,t[(f, dg) = f(s)(g(t) − g(s)), this will always be zero, because either s < 1 and

f(s) = 0, or s ≥ 1 and g(s) = g(t). So we get
∫
[0,∞[

f dg = 0. But if we look at a measure νg on [0,∞[ to

represent dg, the only candidate is the Dirac measure concentrated at 1, in which case
∫
f dνg = f(1) = 1.

Lecture 6

Basic properties of the integral: Theorem 2 Let S be a sublattice of T .
(a) If uuu, vvv, uuu′, vvv′ are fully adapted processes with domain S, and α ∈ R, then

∫
S
uuu+ uuu′ dvvv =

∫
S
uuu dvvv +

∫
S
uuu′ dvvv,

∫
S
uuu d(vvv + vvv′) =

∫
S
uuu dvvv +

∫
S
uuu dvvv′,

∫
S
(αuuu) dvvv =

∫
S
uuu d(αvvv) = α

∫
S
uuu dvvv

whenever the right-hand sides are defined.
(b) Suppose that uuu, vvv are fully adapted processes with domain S, and τ ∈ S. Set S ∧ τ = {σ ∧ τ : σ ∈

S} = S ∩ [min T , τ ], S ∨ τ = {σ ∨ τ : σ ∈ S} = S ∩ [τ,max T ]. Then
∫
S
uuu dvvv =

∫
S∧τ

uuu dvvv +
∫
S∨τ

uuu dvvv

if either side is defined.
(c) Suppose that uuu, vvv are fully adapted processes with domain S, and that

∫
S
uuu dvvv is defined. Set

zτ =
∫
S∧τ

uuu dvvv for τ ∈ S.
(i) The indefinite integral iivvv(uuu) = 〈zτ 〉τ∈S is a fully adapted process.
(ii) If S 6= ∅, then limτ↓S zτ = 0 and limτ↑S zτ =

∫
S
uuu dvvv.

D.H.Fremlin
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Remark What I am calling iivvv(uuu) would (allowing for a different definition of the integral) be denoted uuu ·vvv
by most authors.

Simple processes Let S be a sublattice of T . A fully adapted process uuu = 〈uσ〉σ∈S is simple, with
breakpoints τ0, . . . , τn and root value u∗, if

τi ∈ S for every i ≤ n, τ0 ≤ . . . ≤ τn,

[[σ < τ0]] ⊆ [[uσ = u∗]], [[τn ≤ σ]] ⊆ [[uσ = uτn
]],

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[uσ = uτi
]] for every i < n

for every σ ∈ S.

In this case, if τ ∈ S and we write S ∧ τ = {σ ∧ τ : σ ∈ S}, then uuu↾S ∧ τ is simple, with breakpoints
τ0 ∧ τ, . . . , τn ∧ τ and root value u∗.

Integrating simple processes Let S be a sublattice of T and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S fully adapted
processes, of which uuu is simple, with breakpoints τ0, . . . , τn and root value u∗. Suppose that v↓ = limσ↓S vσ
and v↑ = limσ↑S vσ are defined in L0. Then

∫
S
uuu dvvv is defined and equal to

u∗ × (vτ0 − v↓) +
∑n−1
i=0 uτi

× (vτi+1
− vτi

) + uτn
× (v↑ − vτn

).

Lecture 7

Near-simple processes A fully adapted process uuu = 〈uσ〉σ∈S is order-bounded if {uσ : σ ∈ S} is
bounded above and below in L0. In this case, write sup |uuu| for supσ∈S |uσ| (taking the supremum in (L0)+,
so that sup |uuu| = 0 if S is empty).

An order-bounded fully adapted process uuu = 〈uσ〉σ∈S is near-simple if for every ǫ > 0 there is a simple
process uuu′ = 〈u′σ〉σ∈S such that θ(sup |uuu− uuu′|) ≤ ǫ.

Integrators: Definitions (a) Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a fully adapted process. The
capped-stake variation set of vvv over S is the set QS(dvvv) of Riemann sums SI(uuu, dvvv) where I ∈ I(S), uuu
is a fully adapted process with domain I and sup |uuu| ≤ χ1.

(b) vvv is an integrator if

QS(dvvv) is topologically bounded in L0, that is, for every ǫ > 0 there is a δ > 0 such that
θ(δz) ≤ ǫ for every z ∈ QS(dvvv),

either S is empty or limσ↓S vσ and limσ↑S vσ are defined in L0.

Remark Actually the second condition here, on the existence of limits at each end of S, is redundant, being
provable from the topological boundedness of Q. But this seems to be deep, and for the elementary theory
it is much easier to carry the extra condition through the arguments.

Theorem 3 Let S be a sublattice of T and uuu, vvv fully adapted processes with domain S. If uuu is near-simple
and vvv is an integrator, then

∫
S
uuu dvvv is defined.

proof Let ǫ > 0. Let δ > 0 be such that θ(δz) ≤ ǫ whenever z ∈ QS(dvvv). Let uuu′ be a simple process such
that θ(sup |uuu − uuu′|) ≤ δǫ; then a = [[sup |uuu− uuu′| ≥ δ]] has measure at most ǫ. It follows that θ(SI(uuu, dvvv) −
SI(uuu

′, dvvv)) ≤ 2ǫ for every I ∈ I(S). PPP Set

www = med(−1,
1

δ
(uuu− uuu′),1).

Then sup |www| ≤ χ1 so SI(www, dvvv) ∈ QS(dvvv) and θ(δSI(www, dvvv)) ≤ ǫ. Now

[[SI(uuu− uuu′ − δwww, dvvv) 6= 0]] ⊆ sup
σ∈I

[[uσ − u′σ 6= δwσ]] = sup
σ∈I

[[|uσ − u′σ| > δ]]

⊆ [[sup |uuu− uuu′| > δ]] ⊆ a,

Measure Theory
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so

θ(SI(uuu, dvvv) − SI(uuu
′, dvvv)) ≤ θ(δSI(www, dvvv)) + θ(SI(uuu− uuu′ − δwww, dvvv)) ≤ 2ǫ. QQQ

We know that w =
∫
S
uuu′ dvvv is defined; let J ∈ I(S) be such that θ(w−SI(uuu′, dvvv)) ≤ ǫ whenever I ∈ I(S)

and I ⊇ J . Then θ(w − SI(uuu, dvvv)) ≤ 3ǫ whenever I ∈ I(S) and I ⊇ J . As ǫ is arbitrary, and L0 is a
complete linear topological space,

∫
S
uuu dvvv = limI↑I(S) SI(uuu, dvvv) is defined.

Proposition Sums and scalar multiples of integrators are integrators.

Càdlàg processes Suppose that S is a sublattice of T which is order-convex, that is, σ ∈ S whenever
τ , τ ′ ∈ S and τ ≤ σ ≤ τ ′, and has a least element. I say that a fully adapted process uuu = 〈uσ〉σ∈S is càdlàg
if

uτ = limσ↓A uσ whenever A ⊆ S is non-empty and downwards-directed and has infimum τ ,
limσ↑A uσ is defined in L0 whenever A ⊆ S is non-empty and upwards-directed and has an

upper bound in S.

Theorem 4 Let S be an order-convex sublattice of T with a least element, and uuu a fully adapted process
with domain S.

(a) If uuu is càdlàg, it is locally near-simple, that is, uuu↾S ∧ τ is near-simple for every τ ∈ S.
(b) Suppose that 〈At〉t≥0 is right-continuous. If uuu is locally near-simple, it is càdlàg.

Theorem 5 Suppose that (A, µ̄) is the measure algebra of a complete probability space (Ω,Σ, µ), that
Σt = {E : E• ∈ At} for every t ≥ 0, that 〈At〉t≥0 is right-continuous, and that 〈Xt〉t≥0 is a progressively
measurable stochastic process with corresponding fully adapted process uuu defined on Tf . If almost every
path t 7→ Xt(ω) : [0,∞[ → R is a càdlàg real function, then uuu is càdlàg.

Remark The ‘usual conditions’ of most authors include the hypothesis that the filtration is right-continuous;
integration is normally over order-convex sublattices with least elements; and processes are normally assumed
to be càdlàg.

Lecture 8

Variations on integration: adapted local interval functions A general feature of ‘gauge integrals’,
such as the stochastic integral described here, is that they suggest variations. We have a structure with
elements

S, I(S), {e : e is an I-cell}

and a formula

∆e(uuu, dvvv) = uσ × (vτ − vσ)

leading naturally to Riemann sums SI(uuu, dvvv) and integrals
∫
S
uuu dvvv. If we replace the difference vτ − vσ by

a more general function ψ(σ, τ), we shall be able to proceed as before provided that we always have

uσ × ψ(σ, τ) = uσ′ × ψ(σ′, τ ′)

whenever c(σ, τ) = c(σ′, τ ′), that is, whenever [[σ < τ ]] = [[σ′ < τ ′]] ⊆ [[σ = σ′]] ∩ [[τ = τ ′]]. For this we shall
need, first,

ψ(σ, τ) = ψ(σ′, τ ′) whenever [[σ < τ ]] = [[σ′ < τ ′]] ⊆ [[σ = σ′]] ∩ [[τ = τ ′]],

and then

[[ψ(σ, τ) 6= 0]] ⊆ [[σ < τ ]].

For a general theory which will be useful in the present context, we need also

ψ(σ, τ) ∈ L0(Aτ ) whenever σ ≤ τ .

D.H.Fremlin
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Such a function ψ, defined on {(σ, τ) : σ ≤ τ in S} for a sublattice S of T , I will call an adapted local
interval function; the associated constructions are

∆e(uuu, dψ) = uσ × ψ(σ, τ), SI(uuu, dψ) =
∑
e is an I-cell ∆e(uuu, dψ),

∫
S
uuu dψ = limI↑I(S) SI(uuu, dψ)

when this is defined.

Examples (a) ψ(σ, τ) = vτ − vσ where vvv is fully adapted.
(b) ψ(σ, τ) = h̄(φ(σ, τ)) for an adapted local interval function φ and a Borel measurable h : R → R.

When ψ(σ, τ) = |vτ − vσ| for a fully adapted process vvv, I will write ∆e(uuu, |dvvv|), etc.
(c) Sums and products of adapted local interval functions.

Bounded variation Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S a fully adapted process. I will say
that vvv is non-negative if vσ ≥ 0 for every σ ∈ S, non-decreasing if vσ ≤ vτ whenever σ, τ ∈ S and
σ ≤ τ , and of bounded variation if it is expressible as the difference of two order-bounded non-negative
non-decreasing fully adapted processes.

Theorem 6 A process of bounded variation is an integrator.

Lecture 9

The identity process It is time I introduced some particular fully adapted processes. In Lecture 4 I
described stopping times τ ∈ Tf as being those for which inft≥0 [[τ > t]] = 0; in terms of the representation
of τ by a stopping time h : Ω → [0,∞], this corresponds to saying that h is finite almost everywhere. So in
fact τ can be represented as h• where h : Ω → [0,∞[ takes only finite values, and can be thought of as an
element of L

0 (of a special kind, as h is non-negative and {ω : h(ω) > t} must belong to Σt for every t ≥ 0).
In this case, we can think of τ as an element of L0. Thus we have a family ιιι = 〈τ〉τ∈Tf

. It is straightforward
to check that ιιι is fully adapted in the sense of Lecture 5; I will call it the identity process.

Brownian motion The most important of all continuous-time stochastic processes is ‘Brownian motion’.
There are many ways of describing this. For definiteness I will take the following formulation from Fremlin

03
2. Let Ω be the set of continuous functions ω : [0,∞[ → R such that ω(0) = 0. For t ≥ 0 set Xt(ω) = ω(t).

Let Σ(0) be the σ-algebra of subsets of Ω generated by these coordinate functionals, and Σ
(0)
t the σ-algebra

generated by {Xs : s ≤ t} for t ≥ 0. Then there is a unique probability measure µ(0) with domain Σ(0) such
that

whenever 0 ≤ s < t, Xt −Xs is normally distributed with expectation 0 and variance t− s, and

is independent of Σ
(0)
s .

Let µ be the completion of µ(0) and set Σt = {E△F : E ∈ Σ
(0)
t , µF = 0} for each t. Then the conditions

of Theorem 1 are satisfied. Let www be the stochastic process defined by the construction there, based on the
measure algebra of µ. I will call www Brownian motion.

The Poisson process The fact that Brownian motion has continuous sample paths gives it a large num-
ber of special properties. ‘Modern’ theories of stochastic calculus, from the 1960s on, have been developed
to deal with discontinuous processes, of which the most important is the ‘Poisson process’. Once again, I
fix on a formulation based on material in Fremlin 03. Let Ω be the set of infinite, locally finite subsets of
]0,∞[. For t ≥ 0, set Xt(ω) = #(ω ∩ [0, t]). Once again, let Σ(0) be the σ-algebra of subsets of Ω generated

by these functionals, and Σ
(0)
t the σ-algebra generated by {Xs : s ≤ t} for t ≥ 0. Then there is a unique

probability measure µ(0) with domain Σ(0) such that

whenever 0 ≤ s < t, Xt−Xs has a Poisson distribution with expectation t−s, and is independent

of Σ
(0)
s .

2Later editions only.

Measure Theory
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Let µ be the completion of µ(0) and set Σt = {E△F : E ∈ Σ
(0)
t , µF = 0} for each t. Then the conditions of

Theorem 1 are satisfied. I will say that the stochastic process vvv defined by the construction there, based on
the measure algebra of µ, is the Poisson process.

Remarks Let vvv be the Poisson process as just described. Note that the sample paths t 7→ Xt(ω) are
càdlàg, so Theorem 5 is applicable, and vvv is càdlàg, therefore locally near-simple. Next, vvv is non-decreasing,
so is a local integrator, that is, vvv↾ domvvv ∧ τ is an integrator for every τ ∈ domvvv. Consequently we shall
have, for instance, an indefinite integral iivvv(vvv) = 〈

∫
[min T ,τ ]

vvv dvvv〉τ∈Tf
defined everywhere on Tf = domvvv.

Even if you work through all the details of all the proofs of the theorems I have given so far, you will find
yourselves singularly lacking in techniques for evaluating particular integrals. If I say that

iivvv(vvv) =
1

2
(vvv2 − vvv),

you have at least a chance of checking this by methods based on the definition I gave of the integral. The
corresponding formula for Brownian motion

iiwww(www) =
1

2
(www2 − ιιι)

where ιιι = 〈τ〉τ∈Tf
is the identity process, seems to be much harder. In fact while we can use Theorem

5 to see that www is locally near-simple, I have not even shown that it is a local integrator, so it is far from
clear that iiwww(www) is defined. For this we need the first really hard theorem of the subject, which I will give
in the next lecture.

Lecture 10

Revision and clarification.

Lecture 11

Conditional expectations If (A, µ̄) is a probability algebra and B is a closed subalgebra of A, (B, µ̄↾B)
is again a probability algebra. The Radon-Nikodým theorem tells us that for every u ∈ L1

µ̄ = L1(A, µ̄) we

have a unique Pu ∈ L1(B, µ̄↾B) = L1
µ̄∩L

0(B) such that E(Pu×χb) = E(u×χb) for every b ∈ B. The map

P : L1
µ̄ → L1

µ̄ is linear, positive (Pu ≥ 0 if u ≥ 0), of norm 1 (‖Pu‖1 = E(|Pu|) ≤ ‖u‖1 for every u ∈ L1
µ̄), a

projection (P 2 = P ), and ‖Pu‖∞ ≤ ‖u‖∞ for every u ∈ L∞(A) (that is, whenever |u| ≤ γχ1 for some γ).

We shall need to know that

—– if u ∈ L0(B), v ∈ L1
µ̄ and u× v ∈ L1

µ̄, then P (u× v) = u× Pv,

—– if v ∈ L1
µ̄, h : R → R is convex and h̄(v) ∈ L1

µ̄, then h̄(Pv) ≤ P (h̄(v)).

So, for instance, if v ∈ L2
µ̄, that is, v2 ∈ L1

µ̄, then Pv ∈ L2
µ̄ and ‖Pv‖2 ≤ ‖v‖2.

Finite martingales Now suppose that A0 ⊆ . . . ⊆ An are closed subalgebras of A. A finite sequence
〈vi〉i≤n in L1

µ̄ is a martingale adapted to 〈Ai〉i≤n if vi ∈ L0(Ai) (that is, vi ∈ L1(Ai, µ̄↾Ai)) for each i ≤ n

and Pivj = vi whenever i ≤ j, where Pi : L1
µ̄ → L1

µ̄ is the conditional expectation associated with Ai.

Theorem 7 Let 〈vi〉i≤n be a martingale adapted to 〈Ai〉i≤n. Suppose that 〈ui〉i<n is such that ui ∈ L0(Ai)

and |ui| ≤ χ1 for i < n. Take M , δ > 0. Setting z =
∑n−1
i=0 ui × (vi+1 − vi),

θ(δz) ≤ δM +
1

M
‖vn‖1.

Doob’s maximal inequality Let 〈vi〉i≤n be a martingale. Setting v̄ = supi≤n |vi|,

µ̄[[v̄ > M ]] ≤
1

M
‖vn‖1

D.H.Fremlin
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for every M > 0.

Lemma 1 Let (A, µ̄) be a probability algebra and 〈vi〉i≤n a martingale in L1
µ̄ adapted to a sequence

〈Ai〉i≤n of closed subalgebras of A. Suppose that M > 0. Then there are a probability algebra (B, ν̄) with
closed subalgebras B0, . . . ,B2n, a martingale 〈wj〉j≤2n adapted to 〈Bj〉j≤2n, and an embedding of A as a
closed subalgebra of B such that

Ai = A ∩ B2i for i ≤ n,

w2i = vi for i ≤ n,

[[|wj | ≥M ]] ⊆ [[|v0| ≥M ]] ∪ supk≤j [[|wk| = M ]] for j ≤ 2n.

Lemma 2 Let (A, µ̄) be a probability algebra and 〈vi〉i≤n a martingale in L1
µ̄ adapted to a sequence

〈Ai〉i≤n of closed subalgebras of A. Suppose that M > 0. Then there are a probability algebra (B, ν̄) with
closed subalgebras C0 ⊆ . . . ⊆ Cn, a martingale 〈v̂i〉i≤n adapted to 〈Ci〉i≤n, and an embedding of A as a
closed subalgebra of B such that

Ai = A ∩ Ci for i ≤ n,

|v̂i| ≤Mχ1 for i ≤ n,

ν̄(supi≤n [[vi 6= v̂i]]) ≤
1

M
‖vn‖1.

proof of theorem from Lemma 2 Regarding the ui as members of L0(Ci) ⊆ L0(B), set

ẑ =
∑n−1
i=0 ui × (v̂i+1 − v̂i).

Then

[[δz 6= δẑ]] = [[ẑ 6= z]] ⊆ supi≤n [[vi 6= v̂i]]

has measure at most
1

M
‖vn‖1, and θ(δz− δẑ) ≤

1

M
‖vn‖1. Next, setting ẑi =

∑n−1
j=0 uj × (v̂j+1 − v̂j) for i ≤ n

(starting from ẑ0 = 0), we see that ẑi ∈ L0(Ci) while ẑi+1 − ẑi = ui × (v̂i+1 − v̂i) so, taking Pi to be the
conditional expectation associated with Ci,

E(ẑi × (ẑi+1 − ẑi)) = E(ẑi × ui × (v̂i+1 − v̂i)) = E(Pi(ẑi × ui × (v̂i+1 − v̂i)))

= E(ẑi × ui × Pi(v̂i+1 − v̂i)) = E(ẑi × ui × (Piv̂i+1 − v̂i)) = 0.

Consequently

‖ẑi+1‖
2
2 = E((ẑi + (ẑi+1 − ẑi))

2) = E(ẑ2
i ) + E((ẑi+1 − ẑi)

2)

= E(ẑ2
i ) + E(u2

i × (v̂i+1 − v̂i)
2)

≤ E(ẑ2
i ) + E((v̂i+1 − v̂i)

2) = E(ẑ2
i ) + E(v̂2

i+1) − E(v̂2
i )

for i ≤ n. It follows that

‖ẑn‖
2
2 ≤ ‖v̂n‖

2
2 − ‖v̂0‖

2
2 ≤M2

and

θ(δẑ) = θ(δẑn) ≤ E(δ|ẑn|) = δ‖ẑn‖1 ≤ δ‖ẑn‖2 ≤ δM .

Putting these together,

θ(δz) ≤ θ(δẑ) + θ(δz − δẑ) ≤ δM +
1

M
‖vn‖1.

proof of Lemma 2 from Lemma 1 Set Ci = B2i, so Ai = A ∩ Ci for each i. Start by taking w′
j =

wj ×χ[[|w0| < M ]]; then 〈w′
j〉j≤2n is a martingale and [[|w′

j | ≥M ]] ⊆ supk≤j [[|w′
k| = M ]] for j ≤ 2n. Now let

〈ŵj〉j≤2n be the stopped martingale which freezes 〈w′
j〉j≤2n at the first time it takes the value ±M , so that

Measure Theory



11

|ŵj | ≤Mχ1 for every j ≤ 2n,

supj≤2n [[ŵj 6= w′
j ]] ⊆ supk≤2n [[|w′

k| ≥M ]].

Set v̂i = ŵ2i for i ≤ n; then 〈v̂i〉i≤n is a martingale adapted to 〈Ci〉i≤n and

sup
i≤n

[[vi 6= v̂i]] ⊆ sup
i≤n

[[w2i 6= w′
2i]] ∪ sup

i≤n
[[w′

2i 6= ŵ2i]]

⊆ [[|w0| ≥M ]] ∪ sup
k≤2n

[[|w′
k| ≥M ]] ⊆ sup

k≤2n
[[|wk| ≥M ]]

has measure at most

1

M
‖w2n‖1 =

1

M
‖vn‖1

by Doob’s maximal inequality.

Lecture 12

Martingale processes Returning to the context developed in Lectures 1-8, let S be a sublattice of T
and vvv = 〈vσ〉σ∈S a fully adapted process. Then vvv is a martingale if

vσ ∈ L1
µ̄ for every σ ∈ S,

vσ = Pσvτ whenever σ ≤ τ in S,

where Pσ : L1
µ̄ → L1

µ̄ is the conditional expectation operator corresponding to the closed subalgebra Aσ.

Proposition Suppose that a vvv is a càdlàg fully adapted process with domain Tb and that vvv↾Ť is a
martingale, where Ť is the lattice of constant stopping times. Then vvv is a martingale.

Corollary The restriction www↾Tb of Brownian motion to the bounded stopping times is a martingale.

Lemma Suppose that I is a non-empty finite sublattice of T .
(a) There are σ0 ≤ . . . ≤ σn in I such that {c(σi, σi+1) : i < n} is the set of I-cells.
(b) If uuu, vvv are fully adapted processes with domains including I,

SI(uuu, dvvv) =
∑n−1
i=0 uσi

× (vσi+1
− vσi

).

Theorem 8 If S is a sublattice of T and vvv = 〈vσ〉σ∈S a martingale, then vvv is a local integrator.

proof (a) Suppose that to begin with that S has a greatest member τ . Of course limσ↑S vσ = vτ is defined.
If 〈σn〉n∈N is any non-increasing sequence in S then limn→∞ vσn

is defined by the reverse martingale theorem;
it follows that v↓ = limσ↓S vσ is defined (because L0 is complete).

(b) Now consider QS(dvvv). Let ǫ > 0. Let M , δ > 0 be such that δM +
1

M
‖vτ‖1 ≤ ǫ. Suppose that

z ∈ QS(dvvv). Then there are a finite sublattice I of S and a fully adapted process uuu = 〈uσ〉σ∈I with domain
I such that |uσ| ≤ χ1 for every σ ∈ I and and z = SI(uuu, dvvv). By the lemma, there are σ0 ≤ . . . σn in I such

that z =
∑n−1
i=0 uσi

× (vσi+1
− vσi

).
Applying Theorem 7 to 〈Aσi

〉i≤n, 〈vσi
〉i≤n and 〈uσi

〉i≤n, we see that

θ(δz) ≤ δM +
1

M
‖vσn

‖1 = δM +
1

M
‖Pσn

vτ‖1 ≤ δM +
1

M
‖vτ‖1 ≤ ǫ,

and this is true for every z ∈ QS(dvvv).

(c) As ǫ is arbitrary, QS(dvvv) is topologically bounded and vvv is an integrator. This was on the assumption
that S had a greatest member. For general lattices S and martingales vvv with domain S, apply this to S ∧ τ
and vvv↾S ∧ τ to see that vvv is a local integrator.

Corollary Brownian motion is a local integrator.

D.H.Fremlin



12

Lecture 13

We are collecting a classification of stochastic processes: so far, I have talked about simple processes, order-
bounded processes, near-simple processes, integrators, càdlàg processes, processes of bounded variation and
martingales, with ‘local’ versions of many of these. Associated with every class is a string of natural questions:
is it closed under addition/scalar multiplication/multiplication/lattice operations/operations uuu 7→ h̄(uuu) (and
for which functions h), restriction to sublattices, restriction to initial segments S ∧ τ? And then we have
the operation of indefinite integration: when can we deduce properties of iivvv(uuu) from properties of vvv and uuu?
Some of these questions are easy, some are hard, some depend on whether the filtration is right-continuous.
I can testify that there are months of innocent enjoyment to be had from them. Here I can mention only a
handful.

The class of simple processes on a given sublattice S is closed under all the operations described, including
(uuu,vvv) 7→ iivvv(uuu); and also under restriction to initial segments, but not restriction to arbitrary sublattices.
Integration you would probably have to think about, the rest are straightforward. After this, things get
trickier. Near-simple processes are closed under the operation uuu 7→ h̄(uuu) for continuous h, but not for general
Borel functions h. If uuu is near-simple and vvv is a near-simple integrator, then iivvv(uuu) is near-simple; the ideas
of the proof of Theorem 3 are essentially sufficient for this. We have a couple of further results of this kind;
the first straightforward and useful, the second really important.

Theorem 9 Let S be a sublattice of T and uuu, vvv fully adapted processes with domain S such that uuu is
near-simple and vvv is of bounded variation. Then iivvv(uuu) is of bounded variation.

proof If ū = sup |uuu| and v̄ =
∫
S
|dvvv|, and e = c(σ, τ) is a stopping-time interval with endpoints in S, then

|∆e(uuu, dvvv)| ≤ ū× ∆e(1, |dvvv|),

|SI(uuu, dvvv)| ≤ ū× SI(1, |dvvv|) ≤ ū×
∫
S∩[min I,max I]

|dvvv|,

∆e(1, |d iivvv(uuu)|) = |
∫
S∩[σ,τ ]

uuu dvvv| ≤ ū×
∫
S∩[σ,τ ]

|dvvv|,

SI(1, |d iivvv(uuu)|) ≤ ū×
∫
S∩[min I,max I]

|dvvv| ≤ ū× v̄,

∫
S
|d iivvv(uuu)| ≤ ū× v̄.

Definitions Let S be a sublattice of T .

(a) A covering ideal of S is a sublattice S ′ of S such that

σ ∧ τ ∈ S ′ whenever σ ∈ S ′ and τ ∈ S,
supσ∈S′ [[σ = τ ]] = 1 for every τ ∈ S.

Remarks In this case, any fully adapted process with domain S ′ has a unique extension to a fully adapted
process with domain S. A process uuu with domain S is a (local) integrator iff uuu↾S ′ is a (local) integrator.
Note that Tb is a covering ideal of Tf .

(b) A fully adapted process uuu with domain S is a local martingale if there is a covering ideal S ′ of S
such that uuu↾S ′ is a martingale.

Remarks Note that I am not talking about restrictions uuu↾S ∧ τ ! Observe that Brownian motion, regarded
as defined on Tb, is a local martingale. Local martingales are local integrators.

Lemma Let S be a sublattice of T and uuu, vvv = 〈vσ〉σ∈S fully adapted processes such that uuu is near-simple,
sup |uuu| ≤ χ1, vvv is a martingale, and vσ ∈ L2

µ̄ for every σ ∈ S. Then iivvv(uuu) is a martingale.

Theorem 10 Suppose that the filtration 〈At〉t≥0 is right-continuous. Let S be an order-convex sublattice
of T with a least element and uuu, vvv fully adapted processes with domain S such that uuu is càdlàg and vvv is a
local martingale. Then iivvv(uuu) is a local martingale.

Measure Theory
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Lecture 14

It is easy to check that sums and scalar multiples of integrators are integrators; the key fact is that

QS(d(vvv +www)) = {SI(uuu, d(vvv +www)) : I ∈ I(S), sup |u| ≤ χ1}

= {SI(uuu, dvvv) + SIF (uuu, dwww) : I ∈ I(S), sup |u| ≤ χ1} ⊆ QS(dvvv) +QS(dwww)

and the linear sum of topologically bounded sets (in any linear topological space) is topologically bounded.
But products vvv ×www are harder. We can get at these through the following theorem.

Theorem 11 Let S be a sublattice of T , vvv = 〈vσ〉σ∈S an integrator, and h : R → R a convex function.
Then h̄(vvv) is an integrator.

proof (a) First note that, because h is continuous,

limσ↓S h̄(vσ) = h̄(limσ↓S vσ)

is defined, and similarly for σ ↑ S.

(b) Write Q for QS(dvvv), Q∗ for QS(dh̄(vvv)). Let g be the right derivative of h, that is, g(x) =

limy↓x
h(y)−h(x)

y−x
for x ∈ R, so that g is non-decreasing and (y − x)g(x) ≤ h(y) − h(x) for all x, y ∈ R.

Consequently

ḡ(vσ) × (vτ − vσ) ≤ h̄(vτ ) − h̄(vσ)

whenever σ ≤ τ in S. Suppose for the time being that |g(x)| ≤M for every x ∈ R.

(c) Check that integrators are always order-bounded (this is not quite trivial), so vvv is order-bounded,
and consequently (because h is bounded on bounded intervals) h̄(vvv) is order-bounded. Set w̄ = sup |h̄(vvv)|.

(d) A0 = [−2w̄, w̄] + MQ, its solid hull A1 = {u : |u| ≤ |v| for some v ∈ A0} and A = A1 + MQ are
topologically bounded. Now Q∗ ⊆ A. PPP Suppose that I ∈ I(S), sup |uuu| ≤ χ1 and z = SI(uuu, dh̄(vvv)). Let
σ0 ≤ . . . ≤ σn ∈ I be such that {c(σi, σi+1) : i < n} is the set of I-cells (see the Lemma in Lecture 12). For
i ≤ n set

wi = h̄(vσi+1
) − h̄(vσ0

) −
∑i−1
j=0 ḡ(vσj

) × (vσj+1
− vσj

) ∈ [−2w̄, 2w̄] +MQ = A0.

We have

wi+1 − wi = h̄(vσi+1
) − h̄(vσi

) − ḡ(vσi
) × (vσi+1

− vσi
) ≥ 0

for each i. Now

z =

n−1∑

i=1

uσi
× (h̄(vσi+1

) − h̄(vσi
))

=

n−1∑

i=1

uσi
× (wi+1 − wi) +

n−1∑

i=1

uσi
× ḡ(vσi

) × (vσi+1
− vσi

).

But

|
∑n−1
i=1 uσi

× (wi+1 − wi)| ≤
∑n−1
i=1 wi+1 − wi = wn ∈ A0,

∑n−1
i=1 uσi

× ḡ(vσi
) × (vσi+1

− vσi
) ∈MQ,

so z ∈ A1 +MQ = A. QQQ

(e) Thus QS(dh̄(vvv)) is topologically bounded and h̄(vvv) is an integrator, at least when its right derivative
is bounded. In general, look at

hK(x) = h(x) if |x| ≤ K,

= h(K) + (K − x)g(K) if x ≥ K,

= h(−K) + (−K − x)g(−K) if x ≤ −K;

D.H.Fremlin
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use (b)-(d) to see that QS(dh̄K(vvv)) is always topologically bounded; and show that QS(dh̄(vvv)) is approxi-
mated in the right way by QS(dh̄K(vvv)), for large K, to be topologically bounded.

Corollary If vvv, www are integrators, then vvv2, vvv×www =
1

2
((vvv+www)2−vvv2−www2) and |vvv| are integrators. Moreover,

if h : R → R is twice continuously differentiable, so that it is the difference of two convex functions, then
h̄(vvv) is an integrator.

Lecture 15

Integrating interval functions In Lecture 8 I briefly mentioned the possibility of integrating with
respect to an ‘adapted local interval function’. I now return to this idea.

Definition Let S be a sublattice of T . An integrating interval function on S is an adapted local interval
function ψ on S such that∫

S
dψ =

∫
S
1 dψ is defined,

QS(dψ) = {SI(uuu, dψ) : I ∈ I(S), sup |uuu| ≤ χ1} is topologically bounded.

Theorem 12 If S is a sublattice of T , uuu is a near-simple process with domain S, and ψ is an integrating
interval function on S, then

∫
S
uuu dψ is defined.

proof As Theorem 3.

Theorem 13 Let S be a sublattice of T , uuu a near-simple process with domain S, and ψ an integrating
interval function on S.

(a) Set vvv = iiψ(uuu), that is, vτ =
∫
S∧τ

uuu dψ for τ ∈ S. Then vvv is an integrator.
(b) Let uuuψ be the interval function defined by saying that (uuuψ)(σ, τ) = uσ×ψ(σ, τ) for σ ≤ τ in S. Then

uuuψ is an integrating interval function.
(c)

∫
S
www dvvv =

∫
S
www d(uuuψ) =

∫
S
www × uuu dψ for any near-simple process www with domain S.

Corollary Let S be a sublattice of T and vvv = 〈vτ 〉τ∈S an integrator. Then QS((dvvv)2) is topologically
bounded.

proof Set ψ(σ, τ) = vτ − vσ for σ ≤ τ in S. If I ∈ I(S) and uuu = 〈uσ〉σ∈I is fully adapted,

uσ × (vτ − vσ)
2 = uσ × (v2

τ − v2
σ) − 2uσ × vσ × (vτ − vσ).

Hence

QS((dvvv)2) ⊆ QS(d(vvv2)) − 2QS(vvvdψ)

is topologically bounded.

Quadratic variation Let S be a sublattice of T and vvv a near-simple integrator with domain S. The
quadratic variation vvv∗ of vvv is vvv2 − v2

↓1 − 2iivvv(vvv), where v↓ = limσ↓S vσ.

Definition Let S be a sublattice of T , and vvv a fully adapted process defined on S. Then we have an
adapted local interval function ψ(σ, τ) = (vτ − vσ)

2 for σ ≤ τ in S. I will write
∫
S
uuu (dvvv)2 for

∫
S
uuu dψ when

this is defined.

Theorem 14 Let S be a sublattice of T and vvv a near-simple integrator with domain S. Then vvv∗ is an
integrator and ∫

S
zzz (dvvv)2 =

∫
S
zzz d(vvv2) − 2

∫
S
zzz × vvv dvvv =

∫
S
zzz dvvv∗

for every near-simple process zzz with domain S.

proof For σ ≤ τ in S,

(vτ − vσ)
2 = (v2

τ − v2
σ) − 2vσ × (vτ − vσ),

Measure Theory
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so

∫

S

zzz (dvvv)2 =

∫

S

zzz d(vvv2) − 2

∫

S

zzz × vvv dvvv

=

∫

S

zzz d(vvv2) − 2

∫

S

zzz d(iivvv(vvv)) =

∫

S

zzz dvvv∗.

Corollary vvv∗ is non-negative and non-decreasing, for any near-simple integrator vvv.

Lecture 16

The original development of stochastic calculus was based on ‘continuous’ processes, that is, processes
with continuous sample paths. In the language I am using here the following concept seems to be a useful
way of focusing on these.

Definitions Let S be a sublattice of T and uuu a fully adapted process with domain S.

(a) If uuu is order-bounded, set

Osclln∗
I(uuu) = supJ∈I(S),J⊇I supe is a J-cell ∆e(1, |duuu|)

for I ∈ I(S).

(b) uuu is jump-free if it is order-bounded and infI∈I(S) θ(Osclln∗
I(uuu)) = 0.

(c) uuu is locally jump-free if uuu↾S ∧ τ is jump-free for every τ ∈ S.

Proposition Let S be a sublattice of T and uuu, vvv jump-free processes with domain S. If α ∈ R and
h : R → R is continuous, then uuu+ vvv, αuuu, uuu× vvv and h̄(uuu) are jump-free.

Proposition A jump-free process is locally jump-free and near-simple.

Theorem 15 Suppose that (A, µ̄) is the measure algebra of a complete probability space (Ω,Σ, µ), that
Σt = {E : E• ∈ At} for every t ≥ 0, that 〈At〉t≥0 is right-continuous, and that 〈Xt〉t≥0 is a progressively
measurable stochastic process with corresponding fully adapted process uuu defined on Tf . If almost every
path t 7→ Xt(ω) : [0,∞[ → R is a continuous real function, then uuu is locally jump-free.

proof (a) Reduce to the case in which every path is continuous. Take τ ∈ Tf and ǫ > 0. For ω ∈ Ω set
h0(ω) = 0 and

hn+1(ω) = inf{t : t > hn(ω), |Xt(ω) − hn(ω)| ≥ ǫ} if hn(ω) is finite

(counting inf ∅ as ∞)

= ∞ if hn(ω) = ∞.

Then every hn : Ω → [0,∞] is a stopping time. If n ∈ N and hn+1(ω) <∞ then

|Xhn+1
(ω) −Xhn

(ω)| = ǫ,

|Xt(ω) −Xs(ω)| ≤ 2ǫ whenever hn(ω) ≤ s ≤ t ≤ hn+1(ω).

Note that limn→∞ hn(ω) = ∞ for every ω.

(b) For n ∈ N let τn ∈ T be the stopping time represented by hn. Then supn∈N τn = max T . Set
an = [[τ > τn]]. Then infn∈N an = 0 so limn→∞ µ̄an = 0 and there is an n such that µ̄an ≤ ǫ.

Note that uuu is càdlàg, therefore locally near-simple, and uuu↾[min T , τ ] is order-bounded; set ū = supσ≤τ |uσ|.
Set I = {τi ∧ τ : i ≤ n}. If J is a finite sublattice of [min T , τ ] including I and e is a J-cell, we can

express e as c(σ, σ′) where either τi ≤ σ ≤ σ′ ≤ τi+1 for some i < n, or τn ∧ τ ≤ σ ≤ σ′ ≤ τ . In the former
case, ∆e(1, |dvvv|) ≤ 2ǫχ1; in the latter, ∆e(1, |dvvv|) ≤ 2ū× χan. So

D.H.Fremlin
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Osclln∗
I(uuu) ≤ 2ǫχ1 + 2ū× χan, θ(Osclln∗

I(uuu)) ≤ 2ǫ+ 2µ̄an ≤ 4ǫ.

As ǫ and τ are arbitrary, uuu is locally jump-free.

Examples The identity process and Brownian motion are locally jump-free, but the Poisson process is
not.

Lecture 17

Itô’s Formula, first form: Theorem 16 Let S be a sublattice of T , vvv = 〈vτ 〉τ∈S a jump-free integrator,
and vvv∗ its quadratic variation. If h : R → R is a twice-differentiable function with continuous second
derivative, then

∫
S
h̄′(vvv) dvvv +

1

2

∫
S
h̄′′(vvv) dvvv∗

is defined and equal to h̄(v↑) − h̄(v↓), where

v↑ = limσ↑S vσ, v↓ = limσ↓S vσ.

proof (a) Being jump-free, vvv is near-simple, so h̄′(vvv) and h̄′(vvv) are near-simple, and vvv∗ is defined; being
non-negative and non-decreasing, vvv∗ is an integrator; so both integrals are defined. Moreover, h̄(vvv) is an
integrator, so

h̄(v↑) − h̄(v↓) = limσ↑S h̄(vσ) − limσ↓S h̄(vσ) =
∫
S
dh̄(vvv).

Finally, QS((dvvv)2) is topologically bounded, by the Corollary in Lecture 15.

(b) Consider first the case in which h′′ is uniformly continuous. Let ǫ > 0. Let η > 0 be such that
θ(ηw) ≤ ǫ for every w ∈ QS((dvvv)2). Then there is a δ > 0 such that |h′′(α) − h′′(β)| ≤ η whenever
|α− β| ≤ 2δ. Now take any such α and β. By Taylor’s theorem with remainder, there is a γ lying between
α and β such that

h(β) = h(α) + (β − α)h′(α) +
1

2
(β − α)2h′′(γ),

so that

|h(β) − h(α) − (β − α)h′(α) −
1

2
(β − α)2h′′(α)| ≤ η(β − α)2.

It follows that if w, w′ ∈ L0 then [[|w′ − w| ≤ δ]] is included in

[[|h̄(w′) − h̄(w) − h̄′(w) × (w′ − w) −
1

2
h̄′′(w) × (w′ − w)2| ≤ η(w′ − w)2]].

Let J ∈ I(S) be such that θ(z) ≤ δǫ, where z = Osclln∗
J(vvv). Then a = [[z ≤ δ]] has measure at least 1− ǫ.

Take any I ∈ I(S) such that I ⊇ J . Now if e = c(σ, σ′) is any I-cell, and we set

ye = ∆e(111, d(h̄(vvv))) − ∆e(h̄(vvv), dvvv) −
1

2
∆e(h̄

′′(vvv), (dvvv)2)

= h̄(vτ ) − h̄(vσ) − h̄′(vσ) × (vτ − vσ) −
1

2
h̄′′(vσ) × (vτ − vσ)

2,

we have

|vτ − vσ| = ∆e(1, |dvvv|) ≤ OscllnI(vvv) ≤ z

and

a ⊆ [[|vτ − vσ| ≤ δ]] ⊆ [[|ye| ≤ η(vτ − vσ)
2]] = [[|ye| ≤ η∆e(1, (dvvv)

2]].

Summing over the I-cells e,

a ⊆ [[|SI(1, dh̄(vvv)) − SI(h̄
′(vvv), dvvv) − SI(h̄

′′(vvv), (dvvv)2)| ≤ ηSI(1, (dvvv)
2)]]

Measure Theory
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and

θ
(
SI(1, dh̄(vvv)) − SI(h̄

′(vvv), dvvv) − SI(h̄
′′(vvv), (dvvv)2)

)
≤ µ̄(1 \ a) + θ̄(ηSI(1, (dvvv)

2)) ≤ 2ǫ

by the choice of η. And this is true whenever I ⊇ J . Accordingly, taking the limit as I ↑ I(S), we have

h̄(v↑) − h̄(v↓) −

∫

S

h̄′(vvv) dvvv −
1

2

∫

S

h̄′′(vvv) dvvv∗

= h̄(v↑) − h̄(v↓) −

∫

S

h̄′(vvv) dvvv −
1

2

∫

S

h̄′′(vvv) (dvvv)2 = 0

as required.

(c) For the general case, in which h need not be uniformly continuous, set v̄ = sup |vvv|. Take ǫ > 0 and
let M ≥ 0 be such that c = [[v̄ ≤M ]] has measure at least 1 − ǫ. Let g : R → R be such that its second
derivative is uniformly continuous and g(x) = h(x) for |x| ≤ M . Then g′(x) = h′(x) and g′′(x) = h′′(x) for
|x| ≤M , so

c ⊆ [[h̄(vσ) = ḡ(vσ)]] ∩ [[h̄′(vσ) = ḡ′(vσ)]] ∩ [[h̄′(vσ) = ḡ′(vσ)]]

for every σ ∈ S; consequently

c ⊆ [[h̄(v↑) = ḡ(v↑)]] ∩ [[h̄(v↓) = ḡ(v↓)]],

c ⊆ [[SI(h̄
′(vvv), dvvv) = SI(ḡ

′(vvv), dvvv)]]

for every I ∈ I(S), and

c ⊆ [[
∫
S
h̄′(vvv) dvvv =

∫
S
ḡ′(vvv) dvvv]].

Similarly

c ⊆ [[
∫
S
h̄′′(vvv) (dvvv)2 =

∫
S
ḡ′′(vvv) (dvvv)2]].

Consequently

θ(h̄(v↑) − ḡ(v↑)) ≤ µ̄(1 \ c) ≤ ǫ

and similarly

θ(h̄(v↓) − ḡ(v↓)) ≤ ǫ,

θ(
∫
S
h̄′(vvv) dvvv −

∫
S
ḡ′(vvv) dvvv) ≤ ǫ,

θ(
∫
S
h̄′′(vvv) (dvvv)2 −

∫
S
ḡ′′(vvv) (dvvv)2) ≤ ǫ.

Since

ḡ(v↑) − ḡ(v↓) −
∫
S
ḡ′(vvv) dvvv −

1

2

∫
S
ḡ′′(vvv) (dvvv)2 = 0,

θ(h̄(v↑) − h̄(v↓) −
∫
S
h̄′(vvv) dvvv −

1

2

∫
S
h̄′′(vvv) (dvvv)2) ≤ 4ǫ;

as ǫ is arbitrary,

h̄(v↑) − h̄(v↓) −
∫
S
h̄′(vvv) dvvv −

1

2

∫
S
h̄′′(vvv) (dvvv)2 = 0,

as required.

Itô’s Formula, second form: Theorem 17 Let k ≥ 1 be an integer, and h : R
k → R a twice-

differentiable function with continuous second derivative. Denote its first partial derivatives by h1, . . . , hk
and its second partial derivatives by h11, . . . , hkk. Let S be a sublattice of T , and vvv1, . . . , vvvk jump-free
integrators with domain S; let uuu be a near-simple fully adapted process with domain S. Write VVV =
(vvv1, . . . , vvvk). Then

D.H.Fremlin
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∫
S
uuu dh̄(VVV ) =

∑k
i=1

∫
S
uuu× h̄i(VVV ) dvvvi +

1

2

∑k
i=1

∑k
j=1

∫
S
uuu× h̄ij(VVV ) d[vvvi

∗vvvj ].

where [vvvi
∗vvvj ] is the covariation

1

2
((vvvi + vvvj)

∗ − vvv∗i − vvv∗j ) = vvvi × vvvj − (vi↓ × vj↓)1 − iivvvi
(vvvj) − iivvvj

(vvvi)

= 〈

∫

S∧τ

dvvvidvvvj〉τ∈S ;

just as in Theorem 14, ∫
S
uuu d[vvv(i) ∗vvvj ] =

∫
S
uuu dvvv(i)dvvv(j)

for every near-simple uuu.

Oops! We don’t know what the quadratic variation of Brownian motion is.

Lecture 18

Definition Let S be a sublattice of T . I will say that a sublattice S ′ of S is separating in S if whenever
τ , τ ′ ∈ S and [[τ < τ ′]] 6= 0, there is a σ ∈ S ′ such that [[τ ≤ σ]] ∩ [[σ < τ ′]] 6= 0.

Example If t ≥ 0, then {š : s ≤ t} is separating in [0̌, ť] ⊆ T .

Theorem 18 Let S be an order-convex sublattice of T with a least element, and uuu, vvv fully adapted
processes such that z =

∫
S
uuu dvvv is defined. Suppose that vvv is càdlàg and uuu is order-bounded. Let S ′ be a

sublattice of S, cofinal with S, which is separating in S. Then
∫
S′
uuu dvvv is defined and equal to z.

Corollary Suppose that t ≥ 0, that uuu, vvv are càdlàg fully adapted processes defined on [0̌, ť] and that
z =

∫
[0̌,ť]

uuu dvvv is defined. Set S ′ = {š : s ≤ t}. Then
∫
S′
uuu dvvv is defined and equal to z.

Remarks Thus we can (in the most important cases) calculate an integral
∫
uuu dvvv directly from the values

uš, vš.
Note however that it is possible for

∫
{š:s≤t}

uuu dvvv to be defined when
∫
[0̌,ť]

uuu dvvv is not.

Corollary If www is Brownian motion, its quadratic variation www∗ is equal to the identity process ιιι on Tf .

proof I show first that w∗
ť

= tχ1 for t ≥ 0. PPP Set S ′ = {š : s ≤ t}. Then S ′ is separating in [0̌, ť]. We have

w∗
ť = w2

ť − 2

∫

[0̌,ť]

www dwww =

∫

[0̌,ť]

d(www2) − 2

∫

[0̌,ť]

www dwww

=

∫

S′

d(www2) − 2

∫

S′

www dwww =

∫

S′

(dwww)2 ≏ SI(1, (dwww)2)

for all sufficiently large I ∈ I(S ′). Expressing I as {š0, . . . , šn} where 0 = s0 ≤ . . . ≤ sn = t,

SI(1, (dwww)2) =
∑n−1
i=0 (wši+1

− wši
)2 =

∑n−1
i=0 (si+1 − si)zi

where z0, . . . , zn−1 are independent and identically distributed and have the χ2(1)-distribution with mean

1 and variance 2. But this means that SI(1, (dwww)2) has mean t and variance 2
∑n−1
i=0 (si+1 − si)

2 ≏ 0 and is
close to tχ1 for the topology of convergence in measure. QQQ

Because www∗ is non-decreasing, w∗
τ = τ for every τ ∈ Tf .

Brownian processes Brownian motion, as I have described it, is attached explicitly to a particular
probability space and filtration. This is inadequate for investigating more complex evolving worlds (e.g., two-
dimensional Brownian motion) in which a simple Brownian process is only part of the structure. Probabilists
since Kolmogorov have generally approached such models in terms of probabilities on product spaces. In the
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measure-algebra context, this leads us to closed subalgebras. If we have a probability algebra (A, µ̄) with
a filtration 〈At〉t≥0 and a closed subalgebra B, we can look at the filtration 〈Bt〉t≥0, where Bt = At ∩ B

for t ≥ 0, and the corresponding lattice TB ⊆ T = TA of stopping times. We find that if τ ≤ τ ′ in TB then
TB ∩ [τ, τ ′] is separating in [τ, τ ′] ⊆ TA, so that if uuu is a càdlàg process and vvv is a càdlàg integrator, both
defined on [τ, τ ′],

∫
TB∩[τ,τ ′]

uuu dvvv will be defined and equal to
∫
[τ,τ ′]

uuu dvvv.

This is most useful when uσ, vσ belong to L0(B) ∩ L0(Aσ) = L0(Bσ) for every σ ∈ TB ∩ [τ, τ ′], as then
we can think of

∫
TB∩[τ,τ ′]

uuu dvvv as an integral in the structure based on (B, µ̄↾B, 〈Bt〉t≥0).

It does not quite follow that vvv↾TB ∩ [τ, τ ′] will be a martingale whenever vvv is a martingale on [τ, τ ′], even
if vτ ′ ∈ L1

µ̄↾B
= L1

µ̄ ∩ L0(B); for this we need B and At to be relatively independent over Bt for every

t, that is, the conditional expectation on At of any z ∈ L1
µ̄ ∩ L0(B) must belong to L0(Bt).

3

I will say that a Brownian process is a càdlàg process vvv, defined on Tf , such that there is a closed
subalgebra B of A, with B and At relatively independent over Bt = B ∩ At for every t, vτ ∈ L0(B) for
every τ ∈ Tf ∩ TB, and

(B, µ̄↾B, 〈Bt〉t≥0, TB, vvv↾TB)

is isomorphic to Brownian motion as described in Lecture 9. In this case, vvv will be jump-free, vvv↾Tb will be
a martingale, and vvv∗ will be ιιι, all these being interpreted in TA.

Lecture 19

Change of law I have been speaking so far as though the ‘law’, or measure, µ̄ was immutable. But if
we look at the structures discussed in the lectures so far, we find that it does not enter directly into most of
the formulae. In setting up the probability algebra (A, µ̄) itself from a probability space (Ω,Σ, µ), the most
important thing was not µ, but the ideal N of negligible sets. The same is true of the space L0. ‘Filtrations’
(and ‘right-continuity’ of filtrations) don’t refer to the measure at all, and so T is describable in terms of
the triple (Ω,Σ,N ), as are fully adapted processes and the Riemann sums of Lecture 5.

When we come to integration, of course, we do need to involve the measure. The notions of L1 = L1
µ̄,

E = Eµ̄ and θ = θµ̄ from Lecture 2 directly involve µ and µ̄. But at this point we have a striking
fact. We can easily find probability measures ν on Ω with domain Σ and null ideal N ; for instance, take
νE =

∫
E
f(ω)µ(dω) where f is any strictly positive function such that

∫
Ω
f(ω)µ(dω) is defined and equal to

1. But if we do this we find that although ν̄ and Eν̄ (derived from integration with respect to ν) may seem
very different from µ̄ and Eµ̄, the functionals θµ̄ and θν̄ are mutually absolutely continuous; that is,

for every ǫ > 0 there is a δ > 0 such that θν̄(u) ≤ ǫ whenever u ∈ L0 and θµ̄(u) ≤ δ,

for every ǫ > 0 there is a δ > 0 such that θµ̄(u) ≤ ǫ whenever u ∈ L0 and θν̄(u) ≤ δ.

But this means that the metrics on L0 defined by θµ̄ and θν̄ are uniformly equivalent, and in particular
θµ̄ and θν̄ give the same topology of convergence in measure. Since integration is defined in Lecture 5 in
terms of limits for this topology, we get exactly the same notion of stochastic integration in the structures
(A, µ̄, 〈At〉t≥0, L

0, θµ̄, T ) and (A, ν̄, 〈At〉t≥0, L
0, θν̄ , T ).

Working through the definitions, we find that ‘simple’ processes (Lecture 6), ‘order-bounded’ processes
(Lecture 7), ‘bounded variation’ (Lecture 8) and ‘separating sublattice’ (Lecture 18) are defined from
(A, 〈At〉t≥0, L

0, T ) alone, and that ‘near-simple’ processes, ‘integrators’ and ‘càdlàg’ processes (Lecture 7),
‘integrating interval functions’ (Lecture 13), ‘jump-free processes’ (Lecture 16) and Itô’s formula (Lecture
17) depend on the topology but not on the measure (because changing θ to a mutually absolutely continous
functional has no effect on the truth of a statement of the form

‘for every ǫ > 0 there is a . . . such that θ(. . . ) ≤ ǫ’).

Similarly, of course, the operation (uuu,vvv) 7→ iivvv(uuu) (Lecture 6) is unaffected by change of law, so ‘quadratic
variation’ (Lecture 13) also is.

Where the measure does intervene essentially is in the notions of ‘conditional expectation’ and ‘martingale’
(Lecture 11). If we change the law, we are surprised if there is a single non-constant martingale which is still

3The definition of ‘relative independence’ is usually expressed rather differently; see Fremlin 03, §458.
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a martingale. But of course many processes cannot possibly be martingales under any law. So the following
result (a version of the Bichteler-Dellacherie theorem) is very striking.

Theorem 19 Let S be a sublattice of T and vvv an integrator with domain S. Then there is a functional
ν̄ : A → [0, 1] such that (A, ν̄) is a probability algebra and whenever ǫ > 0 there are fully adapted processes
v̂vv and vvv′, both with domain S, such that ν̄[[vvv 6= v̂vv + vvv′]] ≤ ǫ, v̂vv is a ν̄-uniformly integrable ν̄-martingale, and
vvv′ is of bounded variation.

Remarks Recall that a set A ⊆ L1 is uniformly integrable if for every ǫ > 0 there is an M ≥ 0 such that
supu∈A E((|u| −Mχ1)+) ≤ ǫ; equivalently, if A is relatively weakly compact.

By [[vvv 6= uuu]] I mean [[sup |vvv − uuu| 6= 0]].

The ucp topology: Definitions Let S be a sublattice of T .

(a) Write Mn-s = Mn-s(S) for the set of near-simple fully adapted processes with domain S. Then Mn-s

is an f -subalgebra of (L0)S closed under the action of continuous functions h : R → R.

(b) For uuu ∈ Mn-s set θ̂S(uuu) = θ(sup |uuu|). Then θ̂S defines a linear space topology on Mn-s for which
uuu 7→ h̄(uuu) is continuous whenever h : R → R is continuous.

I will call this the ucp topology. Note that a change of law does not change Mn-s and changes θ̂S into
an equivalent functional, so does not change the ucp topology.

Theorem 20 Let S be a sublattice of T , and vvv a near-simple integrator with domain S. Then iivvv(uuu) ∈
Mn-s whenever uuu ∈Mn-s = Mn-s(S), and iivvv : Mn-s →Mn-s is continuous for the ucp topology.

Remark This theorem seems to be difficult; my method is, in effect, to prove it for vvv of bounded variation
(which is easy) and for martingales vvv (which involves an elaboration of Theorem 7), and then to quote the
Bichteler-Dellacherie theorem. The result that iivvv : Mn-s → (L0)S is continuous, where (L0)S is given its
product topology, is much easier.

Theorem 21 Let S be a sublattice of T , and vvv a jump-free integrator with domain S. Then iivvv(uuu) is
jump-free for every uuu ∈Mn-s = Mn-s(S).

proof Deal with simple uuu, using the formula in Lecture 6, and then extend by continuity, using Theorem
20.

Remark Recall Theorems 9 and 10; indefinite integration with respect to a process of bounded variation
yields a process of bounded variation, and (under rather more restricted conditions) indefinite integration
with respect to a martingale yields a local martingale.

Corollary Let S be a sublattice of T , and vvv a near-simple jump-free integrator with domain S; then vvv∗

is jump-free.

proof vvv∗ = vvv2 − v2
↓1 − 2iivvv(vvv).

Theorem 22 Let S be a sublattice of T . Suppose that vvv, vvv′, uuu, zzz are near-simple fully adapted processes,
all with domain S, of which vvv and vvv′ are integrators. Set www = iivvv(uuu). Then

∫
S
zzz dwwwdvvv′ =

∫
S
zzz × uuu dvvvdvvv′.

Remarks Compare Theorem 13: this gives
∫
S
zzz dwww =

∫
S
zzz×uuu dvvv. I do not think it is safe just to tack the dvvv′

on the ends of these formulae, because it is not normally the case that zσ× (wτ −wσ) = zσ×uσ× (vτ − vσ).
I think in fact that Theorem 22 demands a deeper look, and my own proof depends on the continuity of the
operators iivvv, iivvv′ , which in turn depends on the Bichteler-Dellacherie theorem.

Corollary Let S be a sublattice of T . Suppose that vvv, vvv′, uuu, uuu′ and zzz are near-simple processes, all
with domain S, of which vvv and vvv′ are integrators. Set www = iivvv(uuu) and www′ = iivvv′(uuu

′). Then
∫
S
zzz dwwwdwww′ =∫

S
zzz × uuu× uuu′ dvvvdvvv′.

proof
∫
S
zzz dwwwdwww′ =

∫
S
zzz × uuu dvvvdwww′ =

∫
S
zzz × uuu× uuu′ dvvvdwww′.
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Corollary Let S be a sublattice of T . Suppose that vvv and uuu are near-simple processes, both with domain
S, of which vvv is an integrator. Set www = iivvv(uuu). Then www∗ = iivvv∗(uuu

2).

proof Taking uuu′ = uuu, vvv′ = vvv and zzz = 1 in the last corollary,

w∗
τ =

∫
S∧τ

(dwww)2 =
∫
S∧τ

uuu2 (dvvv)2.

Lecture 20

Revision and clarification.

Lecture 21

In Lecture 18, I showed how to calculate www∗ = ιιι for Brownian motion www. In effect, this shows that
we cannot ignore terms of the form

∫
. . . (dvvv)2; in the multidimensional Itô’s formula, we have terms∫

. . . dvvvidvvvj =
∫
. . . d[vvvi

∗vvvj ]. The question arises, whether we must expect to have to deal with terms∫
. . . (dvvv)3 or

∫
. . . dvvvidvvvjdvvvk. In Itô’s formula, these seem not to have appeared; is there a reason for this?

Examples (a) Let ιιι be the identity process. Then ιιι∗ = 0. PPP Use the method of Lecture 18. If t > 0
and S ′ = {š : s ≤ t} then

ι∗
ť

=
∫

[0̌,ť]
(dιιι)2 =

∫
S′

(dιιι)2 ≏ SI(1, (dιιι)
2) =

∑n
i=0(si+1 − si)

2χ1 ≤ ǫχ1

if I = {š0, . . . , šn} where 0 = s0 < . . . < sn = t and maxi<n si+1 − si ≤
ǫ

t
. So ι∗

ť
= for every t and ιιι∗ = 0.

(b) Let vvv be the Poisson process. Then vvv∗ = vvv. PPP Take Ω ⊆ P([0,∞[), Σ and µ as in Lecture 9. Set
h0(ω) = 0 and for n ≥ 1 let hn(ω) be the nth point of ω, so that ω = {h1(ω), h2(ω), . . . } and 〈hn(ω)〉n∈N

is strictly increasing and unbounded. The set {ω : hn(ω) > t} = {ω : #(ω ∩ [0, t]) < n} belongs to Σt for
every t, so we have a corresponding stopping time τn = h•

n ∈ Tf ; we have τ0 = 0̌, [[τn < τn+1]] = 1 for every
n, and supn∈N τn = max T . Now [[vσ = n]] = [[τn ≤ σ]] ∩ [[σ < τn+1]] whenever σ ∈ Tf and n ∈ N.

If τn ≤ σ ≤ σ′ ≤ τn+1, then [[vσ′ − vσ ∈ {0, 1}]] = 1, so (vσ′−vσ)
2 = vσ′−vσ. Consequently SI(1, (dvvv)

2) =
SI(1, dvvv) whenever n ∈ N, τ ≤ τn and I is a finite sublattice of [0̌, τ ] containing τ ∧ τi for i ≤ n. Accordingly

v∗τ =
∫

[0̌,τ ]
(dvvv)2 =

∫
[0̌,τ ]

dvvv = vτ

whenever τ ≤ τn. Because supn∈N [[τ ≤ τn]] = 1, v∗τ = vτ whenever τ ∈ Tf .

Remarks Let S be a non-empty sublattice of T and vvv a near-simple integrator.

(a) By the definition of vvv∗,

v2
↑ − v2

↓ = lim
τ↑S

v2
τ − v2

↓ = lim
τ↑S

2

∫

S∧τ

vvv dvvv − v∗τ

= lim
τ↑S

2

∫

S∧τ

vvv dvvv −

∫

S∧τ

dvvv∗ = 2

∫

S

vvv dvvv −

∫

S

dvvv∗

(see (c-ii) of Theorem 3)

= 2

∫

S

vvv dvvv −
1

2

∫

S

(dvvv)2

exactly as declared by Itô’s formula with h(x) = x2.

(b) If σ ≤ τ in T then

(vτ − vσ)
3 = v3

τ − 3v2
σ × (vτ − vσ) − 3vσ(vτ − vσ)

2 − v3
σ,

so, writing (dvvv)3 to represent the adapted local interval function (σ, τ) 7→ (vτ − vσ)
3,
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∫
S
(dvvv)3 = v3

↑ − v3
↓ − 3

∫
S
vvv2 dvvv − 3

∫
S
vvv (dvvv)2;

as with Itô’s formula, we can make the step to∫
S
uuu d(vvv3) = 3

∫
S
uuu× vvv2 dvvv + 3

∫
S
uuu× vvv (dvvv)2 +

∫
S
uuu (dvvv)3

or, setting h(x) = x3,

∫
S
uuu dh̄(vvv) =

∫
S
uuu× h̄′(vvv) dvvv +

1

2

∫
S
uuu× h̄′′(vvv) (dvvv)2 +

1

6

∫
S
uuu× h̄′′′(vvv) (dvvv)3

whenever uuu is a near-simple process with domain S. The reason this works so generally is of course that the
Taylor series

h(y) = h(x) + (y − x)h′(x) +
1

2
(y − x)2h′′(x) +

1

6
(y − x)3h′′′(x)

is exactly valid for all x and y.

We have already seen that with jump-free integrators we can expect to be able to ignore cubic terms
(dvvv)3 (and therefore, we can hope, terms dvvvidvvvjdvvvk). There are important cases in which we can ignore
quadratic terms.

Proposition Let S be a sublattice of T , uuu an order-bounded process, vvv a jump-free process and www a process
of bounded variation, all with domain S. Then

∫
S
uuu dvvvdwww = 0.

proof Take ū = sup |uuu|, w̄ =
∫
S
|dwww| and ǫ > 0. Then there is a δ > 0 such that θ(ū× w̄× z) ≤ ǫ whenever

θ(z) ≤ δ. Let I ∈ I(S) be such that θ(Osclln∗
I(uuu)) ≤ δ. Suppose that J ∈ I(S) and J ⊇ I. If e = c(σ, τ) is

a J-cell, then

|∆e(uuu, dvvvdwww)| = |uσ × (vτ − vσ) × (wτ − wσ)| ≤ ū× Osclln∗
I(vvv) × ∆e(1, |dwww|).

So

|SJ(uuu, dvvvdwww)| ≤ ū× Osclln∗
I(vvv) × SJ(1, |dwww|) ≤ ū× Osclln∗

I(vvv) × w̄

and

θ(SJ(uuu, dvvvdwww)) ≤ θ(ū× w̄ × Osclln∗
I(vvv)) ≤ ǫ.

Corollary Suppose that S is a sublattice of T , vvv is a jump-free integrator and www is a near-simple process
of bounded variation, both with domain S.

(a) [vvv ∗www] = 0.
(b) (vvv +www)∗ = vvv∗ +www∗.

Lecture 22

A stochastic differential equation I suppose we can all solve the equation

dz

dv
= z, z(0) = z0

for a real function z of a real variable v. Can we make sense of this for stochastic processes? A naive view
would start from

zτ−zσ

vτ−vσ

≏ zσ

for σ < τ and τ ≏ σ. The division might be problematic, so perhaps we are better off with

zτ − zσ ≏ zσ × (vτ − vσ), dzzz = zzzdvvv.

Again, it is unclear what sort of approximation we should look for, but if we integrate both sides we get an
equation

zτ − z0̌ =
∫ τ

0̌
zzz dvvv, zzz = z0̌1 + iivvv(zzz)

Measure Theory
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which looks much more manageable.
In the differential form, it is plain that jumps in vvv will give special problems. These are not so evidently

disastrous in the integral form, but Itô’s formula gives us an effective tool for handling jump-free integrators,
so let us start with these.

Theorem 23 Let S be a non-empty sublattice of T . Suppose that vvv is a locally jump-free local integrator,
and uuu a locally near-simple fully adapted process with domain S. Set v↓ = limσ↓S vσ and zzz = exp(vvv− v↓1−
1
2vvv

∗). Then zzz is a locally jump-free local integrator, zzz = 1 + iivvv(zzz) and iizzz(uuu) = iivvv(uuu× zzz).

proof Set www = vvv − v↓1 −
1

2
vvv∗. Then www is a locally jump-free local integrator, so zzz = exp(www) also is. We

have w↓ = v↓ − v↓ −
1

2
v∗↓ = 0 (using (c-ii) of Theorem 3). So z↓ = χ1.

For any τ ∈ S,

zτ − χ1 =
∫
S∧τ

exp(www) dwww +
1

2

∫
S∧τ

exp(www) dwww∗

by Itô’s formula. But www∗ = vvv∗ (see Lecture 21). So

zτ − χ1 =
∫
S∧τ

zzz dvvv −
1

2

∫
S∧τ

zzz dvvv∗ +
1

2

∫
S∧τ

zzz dvvv∗ =
∫
S∧τ

zzz dvvv

for every τ ∈ S, and zzz = 1 + iivvv(zzz).
The extension to iizzz(uuu) = iivvv(uuu× zzz) comes from the version

∫
S∧τ

uuu dexp(www) =
∫
S∧τ

uuu× exp(www) dwww +
1

2

∫
S∧τ

uuu× exp(www) dwww∗

of Itô’s formula.

Corollary Let S be a non-empty sublattice of T . Suppose that vvv is a locally jump-free local integrator,
and z ∈ L0(

⋂
σ∈S Aσ). Set v↓ = limσ↓S vσ and zzz′ = z × exp(vvv − v↓1 − 1

2vvv
∗). Then zzz′ = z1 + iivvv(zzz

′).

proof Taking zzz = exp(vvv − v↓1 − 1
2vvv

∗), we have

z′σ × (vτ − vσ) = z × zσ × (vτ − vσ),

whenever σ ≤ τ in S,

SI(zzz
′, dvvv) = z × SI(zzz, dvvv)

whenever I ∈ I(S), and

z′τ = z × zτ = z × (χ1 +
∫
S∧τ

zzz dvvv) = z +
∫
S∧τ

zzz′ dvvv

for every τ ∈ S.
We need to assume that z ∈ L0(

⋂
σ∈S Aσ) to be sure that zzz′ is a fully adapted process.

Lecture 23

Theorem 24 Suppose that 〈At〉t≥0 is right-continuous. Let S be an order-convex sublattice of T with a
least element, and vvv a jump-free local martingale with domain S. Set zzz = exp(vvv − vminS1 − 1

2vvv
∗). Then zzz

is a local martingale.

proof zzz = 1 + iivvv(zzz), and iivvv(zzz) is a local martingale by Theorem 10.

Corollary If www is Brownian motion, exp(www − 1
2ιιι) is a local martingale.

Theorem 25 In Theorem 24, if supσ∈S E(exp(1
2 (vσ − vminS))) is finite, then zzz is a uniformly integrable

martingale.

Corollary If www is Brownian motion, exp(www − 1
2ιιι)↾Tb is a martingale.

D.H.Fremlin
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Distributions Given u ∈ L0, its distribution is the Radon probability measure νu on R such that
νu(]0, α]) = µ̄[[u ≤ α]] for every α ∈ R; in this case νu(E) = µ̄[[u ∈ E]] for every Borel set E ⊆ R. Similarly,
if u1, . . . , uk ∈ L0, we have the notion of ‘joint distribution’ νU of U = (u1, . . . , uk) defined by saying that
νU (E) = µ̄[[U ∈ E]] for Borel sets E ⊆ R

k. (If ui = f•

i , where fi : Ω → R is measurable for each i, then
[[U ∈ E]] = {ω : (f1(ω), . . . , fk(ω)) ∈ E}•.) If h : R

k → R is a bounded Borel measurable function, then
E(h̄(U)) =

∫
Rk h(x)νU (dx). The characteristic function φνU

of νU or U is now given by

φνU
(y) =

∫

Rk

eiy .xνU (dx) =

∫

Rk

cos(y .x)νU (dx) + i

∫

Rk

sin(y .x)νU (dx)

= E(cos(η1u1 + . . .+ ηkuk)) + iE(sin(η1u1 + . . .+ ηkuk))

for y = (η1, . . . , ηk) ∈ R
k.

νu1
, . . . , νuk

Lecture 24

Lemma Suppose that 〈At〉t≥0 is right-continuous. Let S be an order-convex subset of T with a least
member, and vvv a jump-free local martingale such that vminS = 0 and vvv∗ is an L∞-process. Then

sin(vvv) × exp(1
2vvv

∗), cos(vvv) × exp(1
2vvv

∗)

are martingales.

proof Apply Itô’s formula with h(x, y) = sinx exp(1
2y) to see that

sin(vvv) × exp(1
2vvv

∗) = iivvv(cos(vvv) × exp(1
2vvv

∗))

is a local martingale. If τ ∈ S, the local martingale sin(vvv) × exp(1
2vvv

∗)↾S ∧ τ is uniformly bounded (by

exp(1
2‖v

∗
τ‖∞)) therefore uniformly integrable, and is a martingale; so sin(vvv)×exp(1

2vvv
∗) itself is a martingale.

Similarly,

cos(vvv) × exp(1
2vvv

∗) = 1 − iivvv(sin(vvv) × exp(1
2vvv

∗))

is a martingale.

Lemma Suppose that 〈At〉t≥0 is right-continuous, and σ ≤ τ in T . Let vvv be a jump-free martingale with
domain [σ, τ ] and quadratic variation vvv∗. If vσ = 0 and v∗τ = γχ1 for some γ > 0, then vτ has a normal
distribution with mean 0 and variance γ and is independent of Aσ.

proof

E(sin(vτ )) = E(Pσ(sin(vτ ))) = e−γ/2E(Pσ(sin(vτ ) × exp(1
2v

∗
τ )))

= e−γ/2E(sin(vσ) × exp(1
2v

∗
σ)) = 0,

and similarly

E(cos(vτ )) = e−γ/2E(cos(vσ) × exp(1
2v

∗
σ)) = e−γ/2.

Applying the same argument to the martingale αvvv with quadratic variation α2vvv∗, we see that

E(sin(αvτ )) = 0, E(cos(αvτ )) = e−γα
2/2

for any α ∈ R. So vτ has the same characteristic function α 7→ e−γα
2/2 as the normal distribution with

mean 0 and variance γ, and must have that distribution.
A refinement of the argument shows that vτ is independent of Aσ.

Lemma Suppose that 〈At〉t≥0 is right-continuous. Suppose that τ0 ≤ . . . ≤ τk in T and that vvv is a
jump-free martingale with domain [τ0, τk] and quadratic variation vvv∗. If vτ0 = 0 and v∗τj

= γjχ1 for j ≤ k,
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where 0 = γ0 ≤ γ1 ≤ . . . ≤ γk, then (vτ0 , . . . , vτk
) has a centered Gaussian distribution with covariance

matrix E(vτj
× vτl

) = γmin(j,l) for j, l ≤ k.

Lévy’s characterisation of Brownian motion: Theorem 26 Suppose that 〈At〉t≥0 is right-continuous.
Let vvv be a jump-free martingale defined on Tb such that v0̌ = 0 and v∗

ť
= tχ1 for every t ≥ 0. Then vvv∗ = ιιι

and vvv is a Brownian process as described in Lecture 18.

Time change: Theorem 27 Suppose 〈At〉t≥0 is right-continuous. Let family 〈τ̄t〉t≥0 be a non-decreasing
family in T . Then 〈Bt〉t≥0 = 〈Aτ̄t

〉t≥0 is a filtration. Write Q for the lattice of 〈Bt〉t≥0-stopping times.
(a) We have a lattice homomorphism ρ 7→ σρ : Q → T such that

σť = τ̄t for t ≥ 0, σmaxQ = max T , Bρ = Aσρ
for ρ ∈ Q,

if S ⊆ T is a sublattice and 〈uσ〉σ∈S is a process fully adapted to 〈At〉t≥0, then S ′ = {ρ : σρ ∈
S} is a sublattice of Q and 〈uσρ

〉ρ∈S′ is fully adapted to 〈Bt〉t≥0.

(b) If τ̄t = infs>t τ̄s for every t ≥ 0, then 〈Bt〉t≥0 is right-continuous and σinfD = infρ∈D σρ for every
D ⊆ Q.

Theorem 28 Suppose that 〈At〉t≥0 is right-continuous. Let S be an order-convex sublattice of T with a
least element, and vvv a jump-free martingale defined on S such that vminS = 0 and for every t ≥ 0 there is a
τ ∈ S such that v∗τ ≥ tχ1. Then there is a right-continuous time change 〈τ̄t〉t≥0 such that the corresponding
family 〈vσρ

〉ρ∈S′ is a Brownian process.

Lecture 25

The Black-Scholes model (http://en.wikipedia.org/wiki/Black-Scholes)
Start from a differential equation

duuu = αuuudιιι+ βuuudwww, u0̌ = u

(ιιι being the identity process and www a Brownian process), with (unique) solution

uuu = u1 + αiiιιι(uuu) + βiiwww(uuu) = u1 + iiw̃ww(uuu)

= u× exp(w̃ww − 1
2β

2ιιι)

where w̃ww = αιιι + βwww, so that w̃ww∗ = β2www∗ = β2ιιι (see Lecture 22). We suppose that we have an ‘option’ vvv
in the ‘stock’ uuu whose value at time t is h(x, t) if uuu has value x at that time; so that vvv = h̄(uuu, ιιι). (If vvv
corresponds to a process 〈Vt〉t≥0 and uuu to a process 〈Ut〉t≥0, we are supposing that Vt(ω) = h(Ut(ω), t) for
most pairs (ω, t).) Suppose also that h is twice continuously differentiable. Then we have

vvv = h̄(uuu, ιιι),

vτ − v0̌ =
∫

[0̌,τ ]
h̄1(uuu, ιιι) duuu+

∫
[0̌,τ ]

h̄2(uuu, ιιι) dιιι+
1

2

∫
[0̌,τ ]

h̄11(uuu, ιιι) duuu
∗

by Itô’s formula for two variables (because uuu and ιιι are jump-free local integrators, and ιιι∗ = [ιιι∗uuu] = 0). To

get an expression for the integral
∫
. . . duuu∗, we use the second corollary to Theorem 22 to see that it is

∫
. . .uuu2 dw̃ww∗ = β2

∫
. . .uuu2 dwww∗ = β2

∫
. . .uuu2 dιιι.

So we have

vτ − v0̌ =
∫

[0̌,τ ]
h̄1(uuu, ιιι) duuu+

∫
[0̌,τ ]

(h̄2(uuu, ιιι) dιιι+
1

2
β2uuu2 × h̄11(uuu, ιιι)) dιιι.

Now consider a hedged version of vvv; holding vvv, we hedge by a quantity h̄1(uuu, ιιι) in the stock uuu to give us
a portfolio ṽvv = vvv − iiuuu(h̄1(uuu, ιιι)). This is feasible if we can adjust the hedge at stopping time intervals small
compared with the evolution of uuu, so that

ṽσ′ − ṽσ ≏ vσ′ − vσ − h̄1(uσ, σ) × (uσ′ − uσ)

with an approximation sufficiently close to ensure that
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ṽτ − ṽ0̌ ≏ vτ − v0̌ −

∫

[0̌,τ ]

h̄1(uuu, ιιι) duuu

=

∫

[0̌,τ ]

h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι) dιιι.

But now approximations of the same kind tell us that

ṽσ′ − ṽσ ≏ (h̄2(uσ, σ) +
1

2
β2u2

σ × h̄11(uσ, σ)) × (σ′ − σ).

Since you are choosing the stopping time intervals, the step

(h̄2(uσ, σ) +
1

2
β2u2

σ × h̄11(uσ, σ)) × (σ′ − σ)

is risk-free; at time σ you know just how your gain or loss depend on the time σ′. And so does everyone
else, so (in a perfect market with no hysteresis or arbitrage or transaction costs)

ṽσ′ − ṽσ ≏ ρ(vσ − h̄1(uσ, σ) × uσ) × (σ′ − σ)

where ρ is the interest rate on risk-free investments.
[I ought to pause for a moment here. The argument depends on the notion of ‘hedge’. If h̄1(uσ, σ) is

negative, then a hedge of −h̄1(uσ, σ) corresponds to buying a positive quantity −h̄1(uσ, σ) of stock with the
intention of selling it again very soon. If h̄1(uσ, σ) is positive, then a hedge of −h̄1(uσ, σ) corresponds to
‘selling short’, that is, selling stock you don’t possess, with a promise that you will very soon buy it back at

the price then ruling. This is not an option, it is a contract. From the point of view of your counterparty, it is
just like buying real stock. Of course they have to trust you, but it is part of the theory of ‘perfect markets’
that the agents do trust each other, and (among themselves) lend and borrow at the risk-free rate ρ. There
is a question about who decides the buy-back time σ′, but your counterparty doesn’t mind, because they
will be able to buy replacement stock in the market whenever you ask (remember, you will be paying the
price at the time σ′, and this is a perfect market, so there will always be buyers and sellers at that price).

I must also try to explain why your investment is vσ − h̄1(uσ, σ)× uσ. The vσ is just the current value of
the option you are holding (you are marking-to-market continuously; if this value is different from what you
originally paid for the option, you have already declared your profit or written off your loss, and it’s water
under the bridge, irrelevant to your future decisions). If h̄1(uσ, σ) is negative, you increased your investment
by the amount you just paid for the stock. If it is positive, you hold the cash for the ‘sale’ you made, and
you will separately have invested it in something risk-free, so that the reckoning on the portfolio ṽvv shouldn’t
count it.]

Taking the limit in the usual way,

ṽτ − ṽ0̌ = ρ

∫

[0̌,τ ]

vvv − h̄1(uuu, ιιι) × uuu dιιι

=

∫

[0̌,τ ]

h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι) dιιι,

so that
∫

[0̌,τ ]
h̄2(uuu, ιιι) +

1

2
β2uuu2 × h̄11(uuu, ιιι) + ρuuu× h̄1(uuu, ιιι) − ρh̄(uuu, ιιι) dιιι = 0.

If this is to be true for every τ , or at least for every τ in an order-convex sublattice S containing 0̌, we must
have

h̄2(uσ, σ) +
1

2
β2u2

σ × h̄11(uσ, σ) + ρuσ × h̄1(uσ, σ) − ρh̄(uσ, σ) = 0

for every σ ∈ S, so that for relevant x, y we shall need

h2(x, y) +
1

2
β2x2h11(x, y) + ρxh1(x, y) − ρh(x, y) = 0

or, if you prefer,
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∂h

∂y
+

1

2
β2x2∂2h

∂x2
+ ρx

∂h

∂x
− ρh = 0

which is the Black-Scholes equation.
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