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I give details of some examples and further results relevant to [Frp92]. For notation see [Frp92].
Some of these results have been previously circulated in [Frn91].

1. I claimed ([Frp92], §14) that if the continuum hypothesis is true, then there is an s1-space X ⊆ R such
that X \ Q is not an s1-space. The construction is as follows.

1A Lemma Let 〈Wr〉r∈N be a sequence of perfect subsets of R. Suppose that Wr ∩ Q is dense in
Wr and yr ∈ Wr for each r. Let 〈gmn〉m,n∈N be a double sequence of continuous real-valued functions on
W =

⋃
r∈N

Wr such that limn→∞ gmn(w) = 0 for every m ∈ N, w ∈W . Then there are 〈k(m)〉m∈N, 〈W ′
r〉r∈N

such that
k(m) ∈ N for each m;
yr ∈W ′

r ⊆Wr, W
′
r is perfect, W ′

r ∩ Q is dense in W ′
r for each r;

limm→∞ gm,k(m)(w) = 0 for all w ∈
⋃

r∈N
W ′

r.

proof Given m ∈ N, 〈k(r)〉r<m and a family 〈Fmr〉r<m of finite sets such that Fmr ⊆ Wr for each r < m,
|gj,k(j)(y)| < 2−j for r ≤ j < m, y ∈ Fmr, take k(m) ∈ N such that

|gm,k(m)(y)| < 2−m for all y ∈ {ym} ∪
⋃

r<m Fmr,
and for r ≤ m choose a finite set Fm+1,r ⊆Wr such that

ym ∈ Fm+1,m,
Fm+1,r ⊆ {y : y ∈Wr, |gj,k(j)(y)| < 2−j if r ≤ j ≤ m}

if r ≤ m, and if r < m then
Fmr ⊆ Fm+1,r,
∀ q ∈ Fmr ∃ q′ ∈ Fm+1,r ∩ Q, 0 < |q − q′| ≤ 2−m.

On completing this construction, set
W ′

r =
⋃

m>r Fmr;

then |gm,k(m)|(y) ≤ 2−m whenever m > r, y ∈W ′
r, while yr ∈W ′

r ⊆Wr for each r.

1B Proposition Assume CH. Then there is a set X ⊆ R such that X is an s1-space but X \Q is not an
s1-space.

proof (a) Start by enumerating as 〈(Eξ, 〈g
(ξ)
mn〉m,n∈N)〉ξ<c the family of all pairs (E, 〈gmn〉m,n∈N) such that

E is a Borel subset of R, gmn : E → R is continuous for every m, n ∈ N and limn→∞ gmn(y) = 0 for every
y ∈ E, m ∈ N. Enumerate as 〈Vξ〉ξ<c the family of Gδ subsets of R including Q. Write W for the family of
perfect non-empty subsets W of R such that W ∩ Q is dense in W .

(b) I am to construct inductively 〈Yξ〉ξ<c , 〈Wξ〉ξ<c , 〈〈kξ(m)〉m∈N〉ξ<c such that
(i) 〈Yξ〉ξ<c is an increasing family of countable subsets of R, with Y0 = Q;
(ii) Wξ is a countable subset of W for each ξ, and

⋃
Wξ ⊇

⋃
Wη ⊇ Yη if ξ ≤ η < c;

(iii) if ξ ≤ η < c, W ∈ Wξ, q ∈W ∩ Yξ then there is a W ′ ∈ Wη such that q ∈W ′ ⊆W ;

(iv) if ξ < c and Yξ+1 ⊆ Eξ then limm→∞ g
(ξ)
m,kξ(m)(y) = 0 for every y ∈

⋃
Wξ+1;

(v) Yξ+1 ∩ Vξ \ Q 6= ∅ for every ξ.

(c) construction (i) Start with Y0 = Q, W0 = {[−r, r] : r ∈ N \ {0}}.

(ii) Given Yξ, Wξ choose y ∈
⋃
Wξ ∩ Vξ \ Q.

case 1 If Eξ 6⊇ Yξ ∪
⋃
Wξ choose y′ ∈ (Yξ ∪

⋃
Wξ) \ Eξ; set Yξ+1 = Yξ ∪ {y, y′}, Wξ+1 = Wξ,

kξ(m) = m for every m ∈ N.
case 2 If Eξ ⊇ Yξ ∪

⋃
Wξ set Yξ+1 = Yξ ∪ {y} and use 1A to find a countable Wξ+1 ⊆ W and a

sequence 〈kξ(m)〉m∈N such that

limm→∞ g
(ξ)
m,kξ(m)(y) = 0 for each y ∈

⋃
Wξ+1;

∀ W ∈ Wξ, y ∈W ∩ Yξ+1 ∃ W ′ ∈ Wξ+1, y ∈W ′ ⊆W ;
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every member of Wξ+1 is included in some member of Wξ.

(iii) Given 〈Yξ〉ξ<η, 〈Wξ〉ξ<η where η is a non-zero countable limit ordinal, set Yη =
⋃

ξ<η Yξ. For

ξ < η, W ∈ Wξ, q ∈W ∩ Yξ choose W ′
ξWq as follows. Take a strictly increasing sequence 〈ξn〉n∈N with limit

η and ξ = ξ0. Choose 〈Fn〉n∈N, 〈Kn〉n∈N such that
F0 = {q}, K0 = W ;
Fn+1 ⊆ Kn ∩ Yξ is finite, every member of Fn is within a distance 2−n of some member of Fn+1 ∩Q

other than itself;
Kn+1 is a finite union of members of Wξn+1

, Fn ⊆ Fn+1 ⊆ Kn+1 ⊆ Kn.

Now setting W ′
ξWq =

⋃
n∈N

Fn ⊆
⋂

n∈N
Kn, we see that W ′

ξWq ∈ W, q ∈ W ′
ξWq ⊆ W ∩

⋃
Wξn

for every n.
So taking

Wη = {W ′
ξWq : ξ < η, W ∈ Wξ, q ∈W ∩ Yξ}

the induction will proceed.

(d) On completing the construction, set X =
⋃

ξ<c
Yξ.

(i) To see thatX is an s1-space, let 〈fmn〉m,n∈N be a double sequence in C(X) such that limn→∞ fmn(x) =
0 for every m ∈ N, x ∈ X. For each m, n ∈ N there is a Gδ set Emn ⊇ X such that fmn has a continuous
extension to a function f ′mn : Emn → R. Set

E = {x : x ∈
⋂

m,n∈N
Emn, limn→∞ f ′mn(x) = 0 ∀ m ∈ N}.

Then E is a Borel set, so there is a ξ < c such that

Eξ = E, g
(ξ)
mn = f ′mn↾E ∀ m, n ∈ N.

Now we see that Yξ+1 ⊆ X ⊆ E, so

limm→∞ g
(ξ)
m,kξ(m)(y) = 0 ∀ y ∈

⋃
Wξ+1,

and
limm→∞ fm,kξ(m)(x) = 0 ∀ x ∈ X.

(ii) To see that X \ Q is not an s1-space, let H ⊆ R \ Q be any Kσ set. Then there is a ξ < c such
that Vξ = R \H, so X \Q 6⊆ H. This means that if h : R \Q → NN is any homeomorphism, h[X \Q] is not
included in any Kσ set in NN, that is, is essentially unbounded. So X \ Q is not an s1-space.

1C Remark The space X of 1B has the following property: there is a double sequence 〈fmn〉m,n∈N in
C(X) such that limn→∞ fmn = 0 in C(X) for every m, but whenever J ⊆ N is infinite and 〈k(m)〉m∈N is a
sequence in N, there are x ∈ X, 〈n(m)〉m∈N such that n(m) ≥ k(m) for everym and lim supm→J fm,n(m)(x) 6=
0. To see this, take an enumeration 〈qm〉m∈N of Q and for each m ∈ N choose sequences 〈γmn〉n∈N, 〈δmn〉n∈N

in R \X such that 〈γmn〉n∈N is strictly increasing, 〈δmn〉n∈N is strictly decreasing and both converge to qm.
For m, n ∈ N write

Gmn =
⋃

i≤m]γin, δin[,
and set

fmn(x) = 1 if x ∈ X ∩Gmn \Gm,n+1,

= 0 for other x ∈ X.

Of course every fmn is continuous (because X ∩Gmn \Gmn = ∅) and limn→∞ fmn = 0.
Now suppose that J ⊆ N is infinite and that 〈k(m)〉m∈N is a sequence in N. Then V =

⋂
p∈N

⋃
m∈J\pGm,k(m)

is a Gδ set including Q, so is equal to Vξ for some ξ < c, and there is an x ∈ X ∩ V \Q. For each m ∈ N set
n(m) = min{n : n ≥ k(m), fmn(x) = 1}

if this is defined, k(m) otherwise. For every p ∈ N there is an m ∈ J \p such that x ∈ Gm,k(m); but x ∈ X\Q,
so there is an n ≥ k(m) such that x ∈ Gm,n \ Gm,n+1 and fmn(x) = 1; accordingly fm,n(m)(x) = 1. Thus
lim supm→J fm,n(m)(x) = 1.

2. I claim in [Frp92] that for metrizable X, Σ(B1(C(X))) = Σ(C(X)). My argument proceeds by dealing
(i) with discrete spaces of cardinal b (2D) (ii) with spaces with dense subsets of cardinal less than b (2E).

2A Definition Let α be an ordinal. Say that a quadruple (Z,T, A, z) is α-acceptable if
(i) (Z,T) is a zero-dimensional, compact, sequentially compact Hausdorff space of weight at most b;
(ii) A is a countable subset of Z;
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(iii) z ∈ sα(A,Z) \
⋃

β<α sβ(A,Z);

(iv) there is a family 〈Uξ〉ξ<b of open-and-closed neighbourhoods of z such that
⋂

ξ<b

⋃
η≥ξ Uη is

countable.

2B Lemma For every α < ω1 there is an α-acceptable (Z,T, A, z).

proof Induce on α.

(a) The induction starts with α = 0, Z = A = {z}. For the inductive step to α > 0, let 〈αn〉n∈N be a
sequence of ordinals such that α = limn→∞(αn + 1) = supn∈N(αn + 1). By the inductive hypothesis, there
is for each n an αn-acceptable (Zn,Tn, An, zn); we may choose the Zn in such a way that they are disjoint
from each other and from b + 1 = b ∪ {b}, the ordinal successor of b. For each n ∈ N choose a family
〈Unξ〉ξ<b of open-and-closed neighbourhoods of zn in Zn such that Bn =

⋂
ξ<b

⋃
η≥ξ Unη is countable; now

let 〈Gni〉i∈N be a disjoint cover of Bn \ {zn} by open-and-closed sets in Zn.

(b) As observed in [vD84], Theorem 3.3, there is a family 〈gξ〉ξ<b of strictly increasing functions in NN

such that {n : gξ(n) ≤ gη(n)} is finite whenever η < ξ < b, while for every g ∈ NN there is a ξ < b such that
{n : g(n) < gξ(n)} is infinite.

Set Z =
⋃

n∈N
Zn ∪ (b + 1), z = b ∈ Z, A =

⋃
n∈N

An ⊆ Z. For ξ < b set
Vξ =

⋃
n∈N

(Zn \ Unξ) ∪
⋃
{Gni : n ∈ N, i ≤ gξ(n)} ∪ (ξ + 1).

Let T be the topology on Z generated by⋃
n∈N

Tn ∪ {Vξ : ξ < b} ∪ {Z \ Vξ : ξ < b} ∪ {Z \ Zn : n ∈ N}.
Each Zn is an open-and-closed subset of Z and the topology on Zn induced by T is precisely Tn (because

the Zn are disjoint and Vξ ∩ Zn is always open-and-closed in Zn). The topology on b + 1 induced by T is
the usual order topology of b + 1. Observe also that 〈zn〉n∈N converges to z.

(c) Now for the conditions (i)-(iv) of 2A.

(i) (Z,T) is Hausdorff because (α) each Zn is open-and-closed in Z (β) the topology induced on each
Zn is Hausdorff, by the inductive hypothesis (γ) if η < ξ ≤ b then Vη is an open-and-closed subset of Z
containing η and not containing ξ.

(Z,T) is zero-dimensional because all the Vξ, Zn are open-and-closed for T.
Let F be any ultrafilter on Z. If some Zn belongs to F then F converges to some point of Zn, because

Zn is compact for Tn. If b + 1 ∈ F then F converges to some point of b + 1. Otherwise
⋃

n≤i∈N
Zi ∈ F for

every n ∈ N. If Z \ Vξ ∈ F for every ξ < b, then F → z. Otherwise, let ξ be the least ordinal such that
Vξ ∈ F ; then F → ξ.

Thus every ultrafilter on Z has a limit in Z and (Z,T) is compact.
Let 〈yi〉i∈N be any sequence in Z. If {i : yi ∈ Zn} is infinite for some n ∈ N, then 〈yi〉i∈N has a subsequence

converging to some point of Zn. If {i : yi ∈ b + 1} is infinite, then 〈yi〉i∈N has a subsequence converging to
some point of b+1. If {i : ∃ n, yi = zn} is infinite, then 〈yi〉i∈N has a subsequence converging to some point
of {z} ∪ {zn : n ∈ N}. Otherwise, 〈yi〉i∈N has a subsequence of the form 〈y′i〉i∈N where y′i ∈ Zn(i) \ {zn(i)}
for every i, 〈n(i)〉i∈N being a strictly increasing sequence in N. For each i, take f(i) ∈ N such that

y′i ∈ (Zn(i) \Bn(i)) ∪
⋃

j≤f(i)Gn(i),j ;

let ζ(i) < b be such that
y′i ∈ (Zn(i) \

⋃
η≥ζ(i) Un(i),η) ∪

⋃
j≤f(i)Gn(i),j .

Of course b has uncountable cofinality, so ζ = supi∈N ζ(i) < b; now let ζ ′ ≥ ζ be such that J = {i : f(i) ≤
gζ′(i)} is infinite. Then (because gζ′ is non-decreasing) f(i) ≤ gζ′(n(i)) for each i ∈ J , so that y′i ∈ Vζ′

for every i ∈ J . We can therefore find a least ξ < b such that I = {i : y′i ∈ Vξ} is infinite, and see that
ξ = limi→I y

′
i is the limit of a subsequence of 〈yi〉i∈N.

As 〈yi〉i∈N is arbitrary, (Z,T) is sequentially compact.

(ii) Of course A is countable.

(iii) The discussion of convergent sequences in (i) just above makes it plain that a sequence in Z can
be convergent to z only if it lies eventually in {z} ∪ {zn : n ∈ N}. Now an induction on β shows that if
β < α then ⋃

n∈N
sβ(An, Zn) ⊆ sβ(A,Z) ⊆

⋃
n∈N

sβ(An, Zn) ∪ b,
because {n : zn ∈ sβ(An, Zn)} = {n : αn ≤ β} is finite. Consequently z ∈ sα(A,Z) \

⋃
β<α sβ(A,Z).
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(iv) Finally, observe that ⋂
ξ<b

⋃
η≥ξ(X \ Vη) ⊆ {z} ∪

⋃
n∈N

Bn

is countable.

(d) Thus the induction proceeds and the lemma is proved.

2C Theorem There is a compact, sequentially compact, zero-dimensional Hausdorff space Z, of weight
b, with a countable set A ⊆ Z such that σ(A,Z) = ω1.

proof For each α < ω1 take a quadruple (Zα,Tα, Aα, zα) which is α-acceptable in the sense of 2A-2B. Let
W be the topological product

∏
α<ω1

Zα and for each α let 〈aαn〉n∈N be a sequence running over Aα. Let

f : ω1 → NN be an injective function. For n ∈ N, s ∈ Seq set

zsn(α) = aαn if s ⊆ f(α),

= aα0 otherwise.

Set A = {zsn : s ∈ Seq, n ≤ #(s)} ⊆W . If we set

z∗αn(β) = aαn if β = α,

= aβ0 otherwise,

then z∗αn = limm→∞ zf(α)↾m,n ∈ s1(A,W ). So wα ∈ sω1
(A,W ), where wα(β) = zα if β = α, aβ0 otherwise.

On the other hand, wα /∈ sβ(A,W ) for β < α, because, writing πα for the canonical map from W to Zα, we
have πα[A] ⊆ Aα, so πα[sβ(A,W )] ⊆ sβ(Aα, Zα) does not contain zα = πα(wα).

Thus we have a zero-dimensional compact Hausdorff space W , of weight at most b, and a countable set
A ⊆ W with σ(A,W ) = ω1. Any sequence in A either converges to z∗ = 〈aα0〉α<ω1

or has a subsequence
of the form 〈zsi,ni

〉i∈N where
⋃

i∈N
si ⊆ f(α) for some α. In the latter case, taking a further subsequence

if necessary, we may suppose that either the sequence is constant or that si ⊂ si+1 for each i, so that
limi→∞ zsi,ni

(β) = aβ0 for every β 6= α; now 〈aαni
〉i∈N has a convergent subsequence, so 〈zsi,ni

〉i∈N has a
convergent subsequence.

Now if we set Z = A ⊆W , we see that
Z ⊆ A ∪ {w : w ∈W, #({α : w(α) 6= aα0}) ≤ 1};

but this is sequentially compact, because each Zα is sequentially compact, and (as we have just seen) every
sequence in A has a subsequence convergent to a point of Z. So Z is sequentially compact; but of course
it is still compact, Hausdorff, zero-dimensional and of weight at most b; while σ(A,Z) = σ(A,W ) = ω1, so
that the weight of Z is precisely b, by Proposition 4 of [Frp92].

2D Corollary There is a countable A ⊆ [0, 1]b such that σ(A, [0, 1]b ) = ω1.

proof The space Z of Theorem 2C, being a compact Hausdorff space of weight b, can be embedded into
[0, 1]b ; so that the set A ⊆ Z of 2C is carried onto a countable set A′ ⊆ [0, 1]b with σ(A′, [0, 1]b ) = ω1.

2E Proposition Suppose that X is a topological space which is not an s1-space and has a dense subset
of cardinal less than b. Then Σ(B1(C(X))) = ω1.

proof (a) By Proposition 12 of [Frp92] there is a uniformly bounded double sequence 〈fmn〉m,n∈N in C(X)
such that limn→∞ fmn = 0 for every m ∈ N but 〈fm(i),n(i)〉i→∞ 6→ 0 for any sequences 〈m(i)〉i∈N, 〈n(i)〉i∈N

of which the first is strictly increasing. We may take it that |fmn(x)| ≤ 1 for all m, n and x. Let Q ⊆ X be
a dense subset of cardinal less than b. For each q ∈ Q, m ∈ N let kq(m) ∈ N be such that |fmn(q)| ≤ 2−m

for every n ≥ kq(m). Because #(Q) < b, there is a sequence 〈k(m)〉m∈N such that {m : k(m) < kq(m)} is
finite for every q ∈ Q. Set f ′mn = fm,n+k(m) for m, n ∈ N; then

(i) limn→∞ f ′mn(x) = 0 for every m ∈ N, x ∈ X,
(ii) limm→∞ supn∈N |f ′mn(q)| = 0 for every q ∈ Q,
(iii) for any strictly increasing sequence 〈m(i)〉i∈N, any sequence 〈n(i)〉i∈N there is an x ∈ X such that

〈f ′m(i),n(i)(x)〉i∈N does not converge to 0.

(b) For t = 〈ri〉i<m ∈ Seq write |t| = m, ‖t‖ =
∑

i<m ri; then ‖t‖ < ‖s‖ whenever t < s in Seq. Define
〈gt〉t∈Seq inductively by saying

gt = 0 if |t| ≤ 1,
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gtaiaj = gtai + 2−‖t‖f ′ij
for t ∈ Seq, i ∈ N, j ∈ N. Then we see that |gs(x) − gtai(x)| ≤ 2.2−‖t‖ whenever tai ≤ s in Seq and x ∈ X.
Consequently we have

(i) limi→∞ gtai = gt for every t ∈ Seq;
(ii) if t ∈ Seq, 〈m(i)〉i∈N → ∞, 〈n(i)〉i∈N is any sequence in N, then limi→∞ gtam(i)an(i)(q) = gt(q) for

every q ∈ Q, but there is an x ∈ X such that 〈gtam(i)an(i)(x)〉i∈N does not converge to gt(x);

(iii) if t ∈ Seq, 〈m(i)〉i∈N → ∞, tam(i) < ti in Seq for every i, then limi→∞ gti
(q) = gt(q) for every q ∈ Q,

but there is an x ∈ X such that 〈gti
(x)〉i∈N does not converge to gt(x);

(iv) consequently, under the conditions of (iv), 〈gti
〉i∈N has no limit in C(X), because Q is dense in X.

(c) Finally, as in Theorem 9 of [Frp92], we can find a family 〈δt〉t∈Seq in [0, 1] such that t 7→ et : Seq →
B1(C(X)) is a sequentially regular embedding, where et = 1

3 (gt + δtχX).
So Σ(B1(C(X))) = ω1, by Lemma 8 of [Frp92].

2F Corollary If X is metrizable then Σ(B1(C(X))) = Σ(C(X)).

proof (a) If X = ∅ then Σ(B1(C(X))) = Σ(C(X)) = 0.

(b) If X is a non-empty s1-space then Σ(B1(C(X))) = Σ(C(X)) = 1.

(c) IfX is not an s1-space and has a dense subset of cardinal less than b, then Σ(B1(C(X))) = Σ(C(X)) =
ω1, by 2E.

(d) Let ρ be a metric on X defining its topology. If X is not an s1-space and has no dense subset of
cardinal less than b, then it must have a metrically discrete subset of cardinal b, that is, there are δ > 0
and a family 〈xξ〉ξ<b such that ρ(xξ, xη) ≥ 3δ whenever ξ < η < b. (This is because cf(b) = b > ω; see
[En89], 4.1.15.) Define eξ ∈ C(X) by setting eξ(x) = max(0, 1 − δ−1ρ(x, xξ)) for x ∈ X, ξ < b. Then
we have a map ψ : [0, 1]b → B1(C(X)) defined by setting ψ(g) =

∑
ξ<b

g(ξ)eξ, and this embeds [0, 1]b

as a closed subspace of B1(C(X)); so that Σ(B1(C(X))) ≥ Σ([0, 1]b ) ≥ ω1, by 2D, and we must have
Σ(B1(C(X))) = Σ(C(X)) = ω1.
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