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I give details of some examples and further results relevant to [Frp92]. For notation see [Frp92].
Some of these results have been previously circulated in [Frn91].

1. I claimed ([Frp92], §14) that if the continuum hypothesis is true, then there is an s;-space X C R such
that X \ Q is not an s;-space. The construction is as follows.

1A Lemma Let (W,),cny be a sequence of perfect subsets of R. Suppose that W, N Q is dense in
W, and y, € W, for each r. Let (gmn)m nen be a double sequence of continuous real-valued functions on
W = U, en Wr such that lim,, oo gman(w) = 0 for every m € N, w € W. Then there are (k(m))men, (W,)ren
such that
k(m) € N for each m;
yr € W CW,, W/ is perfect, W) N Q is dense in W) for each r;
limyy, 00 Gm,k(m)(w) = 0 for all w € {J, oy W)

proof Given m € N, (k(7)),<m and a family (Fy,,)r<m of finite sets such that F,,,. C W, for each r < m,
19j,10) (W) <277 for r < j <m, y € Fpy, take k(m) € N such that
|gm,k(m) (y)| <27™ forally € {ym}U Ur<m For,

and for » < m choose a finite set Fj,, 1, C W, such that

Ym € Fm+1,ma )

Frir Sy iy € W, lgjeg ()| <277 ifr < j <m}
if r <m, and if r < m then

Fmr c Fm+1,r7

Vge€Fn 3¢ €l 1, NnQ0<]|g—¢|<27™.

On completing this construction, set
W; = Um>r Fmr;

then g, k(m)|(y) < 27™ whenever m > r, y € W/, while y, € W] C W, for each r.

1B Proposition Assume CH. Then there is a set X C R such that X is an sj-space but X \ Q is not an
s1-space.

proof (a) Start by enumerating as ((E¢, <gy(7§7)1>m7n€N)>§<c the family of all pairs (E, (¢mn)m,nen) such that
E is a Borel subset of R, ¢, : £ — R is continuous for every m, n € N and lim,,— o gmn(y) = 0 for every
y € E, m € N. Enumerate as (Vg)¢<. the family of G5 subsets of R including Q. Write W for the family of
perfect non-empty subsets W of R such that W N Q is dense in W.

(b) T am to construct inductively (Ye)ece, Wede<c, ((ke(m))men)e<c such that
(i) (Ye)e<e is an increasing family of countable subsets of R, with Yy = Q;
ii) Wk is a countable subset of W for each &, and JW: D UW, DY, if E <n< ¢
i) if £ <np <, WeWe, g€ WNYe then there is a W’ € W, such that g € W' C W;
iv) if € < ¢ and Yeqq C E¢ then limp, oo gs?ks (m)(y) =0 for every y € |JWey1;
v) Yer1 N Ve \ Q # 0 for every &.
(c) comnstruction (i) Start with Yy = Q, Wy = {[-r,7] : r € N\ {0} }.
(ii) Given Y, We choose y € JW: NV \ Q.
case 1 If B¢ 2 Ye UUWe choose ' € (Ye UUWre) \ Ee; set Y1 = Ye U{y, v}, Wepr = W,
ke(m) = m for every m € N.

case 2 If E; D Y: U[JWe set Yey1 = Ye U {y} and use 1A to find a countable We1q € W and a
sequence (ke(m))men such that

(
(
(
(

lim,, 0o g(E) (y) = 0 for each y € |UWe41;

m, ke (m)
VW eWe,ye WNYer1 3 W eWepq, ye W CW;
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every member of We1 is included in some member of We.

(iii) Given (Ye)e<n, (We)e<n where 7 is a non-zero countable limit ordinal, set Y; = .., Ye. For
E<n, WeWe, g€ WNYe choose WéWq as follows. Take a strictly increasing sequence (&, )nen with limit
n and £ = &. Choose (F),)nen, (Kn)nen such that

FO:{q}a K0:W7

Fo41 C K, NY¢ is finite, every member of F;, is within a distance 27" of some member of F,, ;1 NQ
other than itself;

K41 is a finite union of members of W, ,,, I, C Fiop1 € Kpy1 € Ky,
Now setting Wiy, = U,en Fn € Npen Kn, We see that Wiy, € W, g € Wy, €W NUW, for every n.
So taking

Wy ={Wiw, :§<n, WeWe, ge WNYe}

the induction will proceed.

(d) On completing the construction, set X = (J._ Ye.

(i) To see that X is an s1-space, let { fin)m nen be a double sequence in C'(X) such that lim,, .o frmn(z) =
0 for every m € N, x € X. For each m, n € N there is a G set F,,, 2 X such that f,,, has a continuous
extension to a function f; . : En, — R. Set
E={z:2 €, neny Emn, impoo fr,(x) =0V m € N}
Then FE is a Borel set, so there is a & < ¢ such that
E¢ = E, giih =
Now we see that Yz11 € X C E, so

Ty, e 655y () = 0 ¥ y € UWern,

EY m,neN.

!
mnr

and
lim,,,— oo fm,k‘g(m) (x) =0VuzelX.

(ii) To see that X \ Q is not an s;-space, let H C R\ Q be any K, set. Then there is a £ < ¢ such
that Ve = R\ H, so X \ Q € H. This means that if 2 : R\ Q — N is any homeomorphism, h[X \ Q)] is not
included in any K, set in NV, that is, is essentially unbounded. So X \ Q is not an s;-space.

1C Remark The space X of 1B has the following property: there is a double sequence {fn)m nen in
C(X) such that lim,, o finn = 0 in C(X) for every m, but whenever J C N is infinite and (k(m))men is a
sequence in N, there are 2 € X, (n(m))men such that n(m) > k(m) for every m and im sup,,, , 7 fim n(m)(®) #
0. To see this, take an enumeration (g,,)men of Q and for each m € N choose sequences (Ymn)neN; (Omn)neN
in R\ X such that (Y, )nen is strictly increasing, (d,,n)nen is strictly decreasing and both converge to ¢p,.
For m, n € N write

Gmn = Uigm]fyina 5171[’

and set

fon(@) =1ifx € X NG \ Grnt1,
= 0 for other x € X.

Of course every fo,, is continuous (because X N Gy \ G = 0) and lim, o0 frnn = 0.
Now suppose that J C Nis infinite and that (k(m)).,en is a sequence in N. Then V' = ﬂpeN UmeJ\p Gk (m)
is a Gy set including Q, so is equal to Vg for some & < ¢, and there is an x € X NV \ Q. For each m € N set
n(m) = min{n : n > k(m), frn(x) =1}
if this is defined, k(m) otherwise. For every p € N there is an m € J\p such that x € G, x(m); but * € X\Q,
so there is an n > k(m) such that © € Gy \ Grung1 and frn(2) = 1; accordingly fr, n(m)(z) = 1. Thus
lim Sup,,_, s fm,n(m) (:17) =1

2. I claim in [Frp92] that for metrizable X, ¥(B;(C(X))) = £(C(X)). My argument proceeds by dealing
(i) with discrete spaces of cardinal b (2D) (ii) with spaces with dense subsets of cardinal less than b (2E).

2A Definition Let « be an ordinal. Say that a quadruple (Z,%, A, z) is a-acceptable if
(i) (Z,%) is a zero-dimensional, compact, sequentially compact Hausdorff space of weight at most b;
(ii) A is a countable subset of Z;



(i) # € 50(4, 2)\ Upen 55(4, 2);
(iv) there is a family (Ug)¢cp of open-and-closed neighbourhoods of z such that (M, U,>¢ Uy is
countable.

2B Lemma For every a < wy there is an a-acceptable (Z,%, A, 2).
proof Induce on a.

(a) The induction starts with o = 0, Z = A = {z}. For the inductive step to o > 0, let (@, )nen be a
sequence of ordinals such that o = lim, (o, + 1) = sup, (@, + 1). By the inductive hypothesis, there
is for each n an ay-acceptable (Z,,,%,,, Ay, z,); we may choose the Z,, in such a way that they are disjoint
from each other and from b+ 1 = b U {b}, the ordinal successor of b. For each n € N choose a family
(Une)e<p of open-and-closed neighbourhoods of z, in Z,, such that B,, = ﬂ£<b Un2€ Uny, is countable; now
let (Gri)ien be a disjoint cover of By, \ {z,} by open-and-closed sets in Z,.

(b) As observed in [vD84], Theorem 3.3, there is a family (g¢)e<p of strictly increasing functions in NY
such that {n : g¢(n) < g,(n)} is finite whenever n < £ < b, while for every g € N there is a £ < b such that
{n: g(n) < ge(n)} is infinite.

Set Z =U,enZnU(b+1),2=b0€Z, A=,cnyAn € Z. For £ < b set

Ve = Upen(Zn \ Une) UU{Gus 11 € N, i < ge(m)} U (€ + 1),
Let ¥ be the topology on Z generated by
UnenTn U{Ve: £ <b}U{Z\ Ve : {<b}U{Z\ Z, :n e N}

Each Z,, is an open-and-closed subset of Z and the topology on Z,, induced by ¥ is precisely ¥,, (because
the Z,, are disjoint and V¢ N Z,, is always open-and-closed in Z,,). The topology on b + 1 induced by % is
the usual order topology of b+ 1. Observe also that (z,),en converges to z.

(¢) Now for the conditions (i)-(iv) of 2A.

neN

(1) (Z,%) is Hausdorft because (a) each Z,, is open-and-closed in Z () the topology induced on each
Z, is Hausdorff, by the inductive hypothesis (v) if n < £ < b then V;, is an open-and-closed subset of Z
containing 7 and not containing €.

(Z,%) is zero-dimensional because all the V¢, Z,, are open-and-closed for .

Let F be any ultrafilter on Z. If some Z,, belongs to F then F converges to some point of Z,,, because
Zy, is compact for T,,. If b +1 € F then F converges to some point of b + 1. Otherwise |J,,.;cy Zi € F for
every n € N. If Z\ Ve € F for every £ < b, then F — z. Otherwise, let { be the least ordinal such that
Ve € F; then F — &.

Thus every ultrafilter on Z has a limit in Z and (Z, %) is compact.

Let (y;);en be any sequence in Z. If {i : y; € Z,} is infinite for some n € N, then (y;);cn has a subsequence
converging to some point of Z,. If {i : y; € b+ 1} is infinite, then (y;);en has a subsequence converging to
some point of b+1. If {i : 3 n, y; = z,} is infinite, then (y;);en has a subsequence converging to some point
of {z} U {2, : n € N}. Otherwise, (y;)ien has a subsequence of the form (yj)sen where y; € Z,;) \ {zn(i)}
for every i, (n(i));en being a strictly increasing sequence in N. For each i, take f(i) € N such that

Yi € (Zn(iy \ Bugiy) YUj< p0) Gni g
let (i) < b be such that
Yi € (Zneiy \ UnZC(i) Un(i),n) U Uij(i) Gni). -
Of course b has uncountable cofinality, so ¢ = sup,;cy (i) < b; now let ¢’ > ¢ be such that J = {i : f(i) <
gc(7)} is infinite. Then (because g¢ is non-decreasing) f(i) < g¢/(n(i)) for each ¢ € J, so that y, € Vi
for every i € J. We can therefore find a least £ < b such that I = {i : y} € V¢} is infinite, and see that
& = lim;_,; y; is the limit of a subsequence of (y;);en.
As (y;)ien is arbitrary, (Z, %) is sequentially compact.

(ii) Of course A is countable.

(iii) The discussion of convergent sequences in (i) just above makes it plain that a sequence in Z can
be convergent to z only if it lies eventually in {z} U {z, : n € N}. Now an induction on § shows that if
B < a then

UnEN Sﬂ(Ana Zn) - Sﬂ(Aa Z) c UneN sﬁ(Ana Zn) Ub,
because {n : z,, € sg(An, Zy)} = {n: a, < B} is finite. Consequently z € sq(4,2) \ Us-,, 55(4, 2).



(iv) Finally, observe that

Ne<o Upse(X\ Vi) € {2} UU, ey Bn
is countable.

(d) Thus the induction proceeds and the lemma is proved.

2C Theorem There is a compact, sequentially compact, zero-dimensional Hausdorff space Z, of weight
b, with a countable set A C Z such that 0(A4, Z) = w;.

proof For each o < w; take a quadruple (Z,, %o, Aa, 2o) Which is a-acceptable in the sense of 2A-2B. Let
W be the topological product Ha<w1 Zq and for each « let (aqn)nen be a sequence running over A,. Let

f :wy — NN be an injective function. For n € N, s € Seq set

Zsn (@) = aqan if s C f(a),

= a0 otherwise.

Set A = {zsn : s € Seq, n < #(s)} CW. If we set

zh o (B) = agn if B =a,

= ago otherwise,

then 2%, = limy, o0 Zf(a)tm,n € 51(A, W). So wa € 54, (A, W), where wq (8) = 24 if 8 = «, agy otherwise.
On the other hand, w, ¢ sg(A4, W) for 8 < a, because, writing 7, for the canonical map from W to Z,, we
have mo[A] C Aq, 50 mo[sp(A, W)] C s(Aqa, Za) does not contain z, = 7y (wy)-

Thus we have a zero-dimensional compact Hausdorff space W, of weight at most b, and a countable set
A C W with 0(A, W) = wy. Any sequence in A either converges to z* = (an0)a<w, Or has a subsequence
of the form (2, n,)ien Where |J;cys: € f(a) for some a. In the latter case, taking a further subsequence
if necessary, we may suppose that either the sequence is constant or that s; C s;y1 for each i, so that
lim; o0 25, n; (8) = ago for every 8 # o; now (aan, )ien has a convergent subsequence, so (zs, n,)ien has a
convergent subsequence.

Now if we set Z = A C W, we see that

ZCAU{w:weW, #({a:w(a) # aao}) < 1};

but this is sequentially compact, because each Z, is sequentially compact, and (as we have just seen) every
sequence in A has a subsequence convergent to a point of Z. So Z is sequentially compact; but of course
it is still compact, Hausdorff, zero-dimensional and of weight at most b; while (4, Z) = (A, W) = wy, so
that the weight of Z is precisely b, by Proposition 4 of [Frp92].

2D Corollary There is a countable A C [0,1]° such that o(4,[0,1]®) = w;.

proof The space Z of Theorem 2C, being a compact Hausdorff space of weight b, can be embedded into
[0,1]° ; so that the set A C Z of 2C is carried onto a countable set A’ C [0,1]® with o(A’,[0,1]°) = w;.

2E Proposition Suppose that X is a topological space which is not an s;-space and has a dense subset
of cardinal less than b. Then X(B1(C(X))) = ws.

proof (a) By Proposition 12 of [Frp92] there is a uniformly bounded double sequence (fyn)m nen in C(X)
such that lim, .. fmn = 0 for every m € N but {fp, () n(i))i—oo 7 0 for any sequences (m(i))ien, (n(i))ien
of which the first is strictly increasing. We may take it that | f,,(z)| < 1 for all m, n and . Let @ C X be
a dense subset of cardinal less than b. For each ¢ € @, m € N let k;(m) € N be such that |f,,(¢)| <27
for every n > kq(m). Because #(Q) < b, there is a sequence (k(m))men such that {m : k(m) < kq(m)} is
finite for every g € Q. Set f;.,, = fm ntk(m) for m, n € N; then

(1) limy,— o0 f},,(x) =0 for every m € N, z € X,

() Lty SuD e ()] = 0 for every g € Q,

(iil) for any strictly increasing sequence (m(i));en, any sequence (n(i));cy there is an € X such that
<f7’n(i),n(i) (2))ien does not converge to 0.

(b) For t = (r;)i<m € Seq write [t| = m, [|t]| =
(g1)teseq inductively by saying

r;; then ||t]] < ||s|| whenever ¢ < s in Seq. Define

<m



Gt~i~j = Gg~i T 27Ht”fi/j

for t € Seq, i € N, j € N. Then we see that |gs(x) — g4~;(x)] < 2.27 I whenever t7i < s in Seq and = € X.
Consequently we have

(1) lim; o0 g¢~; = g4 for every t € Seq;

(ii) if t € Seq, (m(i))ien — 00, (n(i))ien is any sequence in N, then lim; oo Gs~m(i)~n(:) (@) = 9:(q) for
every q € @, but there is an x € X such that (gi~,(i)~n(i)())ien does not converge to g;();

(iil) if ¢t € Seq, (m(i));eny — 00, t"m(i) < t; in Seq for every 4, then lim; . gt,(q) = g+(q) for every q € Q,
but there is an z € X such that (g, (x));en does not converge to g:(x);

(iv) consequently, under the conditions of (iv), (g, )ien has no limit in C'(X), because @ is dense in X.

(c) Finally, as in Theorem 9 of [Frp92], we can find a family (d;)tegeq in [0, 1] such that ¢ +— e; : Seq —
B1(C(X)) is a sequentially regular embedding, where e, = %(g¢ + ;xX).
So X(B1(C(X))) = w1, by Lemma 8 of [Frp92].

2F Corollary If X is metrizable then (B (C(X))) = L(C(X)).
proof (a) If X = ) then X(B1(C(X))) = 2(C(X)) = 0.
(b) If X is a non-empty sj-space then ¥(B1(C(X))) = 2(C(X)) = 1.

(¢) If X is not an s;-space and has a dense subset of cardinal less than b, then ¥(B;(C(X))) = 2(C(X)) =
w1, by 2E.

(d) Let p be a metric on X defining its topology. If X is not an sj-space and has no dense subset of
cardinal less than b, then it must have a metrically discrete subset of cardinal b, that is, there are § > 0
and a family (x¢)ecp such that p(xe,x,) > 30 whenever ¢ < n < b. (This is because cf(b) = b > w; see
[En89], 4.1.15.) Define e € C(X) by setting e¢(z) = max(0,1 — 6~ 'p(z,x¢)) for z € X, £ < b. Then
we have a map 1 : [0,1]® — B1(C(X)) defined by setting (g) = > e<p 9(§)ee, and this embeds [0, 1]°
as a closed subspace of By(C(X)); so that X(B1(C(X))) > £([0,1]°) > wy, by 2D, and we must have
L(B1(C(X))) = Z(C(X)) = wr.
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