Measurability in $C(2^{\kappa})$ and Kunen cardinals

D.H.FREMLIN

University of Essex, Colchester, England

I work through some results from AVILÉS PLEBANEK & RODRÍGUEZ P11.

1 Key lemma

1A Notation Generally I follow FREMLIN 03 and FREMLIN 08. In addition, I use the following.

(a) If $\langle A_i \rangle_{i \in I}$ is a family of sets and Σ_i is an algebra of subsets of A_i for each $i \in I$, then $\bigotimes_{i \in I} \Sigma_i$ will be the algebra of subsets of $\prod_{i \in I} A_i$ generated by sets of the form $\prod_{i \in I} E_i$ where $E_i \in \Sigma_i$ for every $i \in I$ and $\{i : E_i \neq A_i\}$ is finite. $\bigotimes_{i \in I} \Sigma_i$ will be the σ -algebra of subsets of $\prod_{i \in I} A_i$ generated by sets of the form $\prod_{i \in I} E_i$ where $E_i \in \Sigma_i$ for every $i \in I$ and $\{i : E_i \neq A_i\}$ is finite.

Similarly, if A, A' are sets, Σ is an algebra of subsets of A and Σ' is an algebra of subsets of A', $\Sigma \otimes \Sigma'$ will be the algebra of subsets of $A \times A'$ generated by $\{E \times E' : E \in \Sigma, E' \in \Sigma'\}$, and $\Sigma \widehat{\otimes} \Sigma'$ the σ -algebra of subsets of $A \times A'$ generated by $\{E \times E' : E \in \Sigma, E' \in \Sigma'\}$.

(b) If A is a set and \mathcal{E} is a family of subsets of A, I will say that $B, B' \subseteq A$ are \mathcal{E} -separated if there are disjoint $E, E' \in \mathcal{E}$ such that $B \subseteq E$ and $B' \subseteq E'$.

(c) Suppose that A is a set and \mathcal{E} is an algebra of subsets of A.

(i) Two subsets B, B' of A are \mathcal{E} -separated iff there is a member of \mathcal{E} including one of B, B' and disjoint from the other.

(ii) If $\langle B_i \rangle_{i \in I}$ and $\langle B'_j \rangle_{j \in J}$ are finite families of subsets of A such that B_i, B'_j are \mathcal{E} -separated for all $i \in I$ and $j \in J$, then $\bigcup_{i \in I} B_i$ and $\bigcup_{j \in J} B'_j$ are \mathcal{E} -separated. (If $B_i \subseteq E_{ij} \subseteq A \setminus B'_j$ for all i and j, then $\bigcup_{i \in I} B_i \subseteq E \subseteq A \setminus \bigcup_{i \in J} B'_j$ where $E = \bigcup_{i \in I} \bigcap_{j \in J} E_{ij}$.)

(iii) If \mathcal{E} is a σ -algebra of subsets of A and $\langle B_i \rangle_{i \in I}$ and $\langle B'_j \rangle_{j \in J}$ are countable families of subsets of A such that B_i , B'_j are \mathcal{E} -separated for all $i \in I$ and $j \in J$, then $\bigcup_{i \in I} B_i$ and $\bigcup_{i \in J} B'_j$ are \mathcal{E} -separated.

1B Kunen cardinals (a) A **Kunen cardinal** is a cardinal κ such that $\mathcal{P}\kappa \widehat{\otimes} \mathcal{P}\kappa = \mathcal{P}(\kappa \times \kappa)$.

(b) If κ is a Kunen cardinal then every cardinal less than or equal to κ is a Kunen cardinal. If $\langle \kappa_i \rangle_{i \in \mathbb{N}}$ is a sequence of Kunen cardinals, then $\sup_{i \in \mathbb{N}} \kappa_i$ is a Kunen cardinal. (Use 1A(b-iii).) Every cardinal less than or equal to \mathfrak{p} is a Kunen cardinal (KUNEN 68, or FREMLIN 84, 21G); in particular, ω_1 is a Kunen cardinal. A Kunen cardinal is at most \mathfrak{c} . (Consider $\{(\xi, \xi) : \xi < \kappa\} \in \mathcal{P}\kappa \widehat{\otimes} \mathcal{P}\kappa$.)

(c) Note that if $\langle \Gamma_i \rangle_{i \in I}$ is a finite family of sets such that $\#(\Gamma_i)$ is a Kunen cardinal for every $i \in I$, then every subset of $\Theta = \prod_{i \in I} \Gamma_i$ belongs to $\widehat{\bigotimes}_{i \in I} \mathcal{P}\Gamma_i$. (Induce on #(I).)

1C The context (I) Throughout this note, Z will be $\{0,1\}^{\mathbb{N}}$ and X will be $\{0,1\}^{\mathbb{Z}}$. \mathcal{J} will be a family of sets. For $m \geq 1$, T_m will be the family of functions from $\{0,1\}^m$ to \mathcal{J} .

1D The context (II) In the present section, $m \ge 1$ will be a fixed integer, τ a member of T_m , $\langle \Gamma_i \rangle_{i < m}$ a disjoint family of non-empty subsets of Z such that $\#(\Gamma_i)$ is a Kunen cardinal for every i < m, $\Theta = \prod_{i < m} \Gamma_i$, Ω a set, Σ a σ -algebra of subsets of Ω and $\langle W_{\theta} \rangle_{\theta \in \Theta}$ a family of subsets of Ω such that

(*) whenever $x \in X$ and $J, J' \in \mathcal{J}$ are disjoint, the sets

$$\bigcup \{ W_{\theta} : \theta \in \Theta, \, \tau(x\theta) \subseteq J \}, \quad \bigcup \{ W_{\theta} : \theta \in \Theta, \, \tau(x\theta) \subseteq J' \}$$

are Σ -separated.

For $\Phi \subseteq \Theta$, write \tilde{W}_{Φ} for $\bigcup_{\phi \in \Phi} W_{\Phi}$.

 $\mathbf{2}$

1E Lemma Suppose that $\Phi = \prod_{i < m} \Delta_i$ and $\Psi = \prod_{i < m} \Delta'_i$ where, for each i < m, Δ_i and Δ'_i are subsets of Γ_i which are either identical or disjoint. If

(†) whenever $\phi \in \Phi$ and $\psi \in \Psi$ there is an $x \in X$ such that $\tau(x\phi) \cap \tau(x\psi) = \emptyset$, then \tilde{W}_{Φ} and \tilde{W}_{Ψ} are Σ -separated.

proof If any Δ_i or Δ'_i is empty, the result is trivial; so suppose otherwise. Take $\phi_0 \in \Phi$, $\psi_0 \in \Psi$ such that $\phi_0(i) = \psi_0(i)$ whenever i < m is such that $\Delta_i = \Delta'_i$. Let $x \in X$ be such that $\tau(x\phi_0) \cap \tau(x\psi_0) = \emptyset$. Let $y \in X$ be such that

$$y(t) = x(\phi_0(i))$$
 whenever $i < m$ and $t \in \Delta_i$,
= $x(\psi_0(i))$ whenever $i < m$ and $t \in \Delta'_i$.

Then

$$y\phi = x\phi_0 = y\phi_0$$
 for every $\phi \in \Phi$, $y\psi = x\psi_0 = y\psi_0$ for every $\psi \in \Psi$.

Set $J = \tau(x\phi_0), J' = \tau(x\psi_0)$. Then

$$W_{\Phi} \subseteq \bigcup_{\theta \in \Theta, \tau(y\theta) \subseteq J} W_{\theta},$$

$$\bigcup_{\psi \in \Psi} W_{\phi} \subseteq \bigcup_{\theta \in \Theta, \tau(y\theta) \subseteq J'} W_{\theta}$$

As $J \cap J' = \emptyset$, the hypothesis (*) of 1D tells us that these are Σ -separated, as required.

1F Notation (a) Let \mathcal{R} be the family of sets $R \subseteq m$ such that whenever $\sigma_0, \sigma_1 \in \{0,1\}^m$ are such that $\tau(\sigma_0) \cap \tau(\sigma_1) = \emptyset$, there is an $i \in R$ such that $\sigma_0(i) \neq \sigma_1(i)$.

(b) For $R \in \mathcal{R}$ set $\pi_R(\phi) = \phi \upharpoonright R$ for every $\phi \in \Theta$.

(c) If $R_0 \in \mathcal{R}$ and $P_R \subseteq \prod_{i \in R} \Gamma_i$ for $R \in \mathcal{R}$, let $\mathfrak{Q}(\langle P_R \rangle_{R \in \mathcal{R}}, R_0)$ be the family of those sets $Q \subseteq \prod_{i \in R_0} \Gamma_i$ such that

whenever $\Phi, \Psi \subseteq \Theta$ are such that

 $\pi_R[\Phi] \subseteq P_R, \pi_R[\Psi] \cap P_R = \emptyset$ for every $R \in \mathcal{R} \setminus \{R_0\},\$

$$\pi_{R_0}[\Phi] \subseteq Q, \quad \pi_{R_0}[\Psi] \cap Q = \emptyset,$$

then W_{Φ} and W_{Ψ} are Σ -separated.

1G Lemma Suppose that $\Phi, \Psi \subseteq \Theta$ are such that

(†) whenever $\phi \in \Phi$ and $\psi \in \Psi$ there is an $x \in X$ such that $\tau(x\phi) \cap \tau(x\psi) = \emptyset$. Then $\pi_R[\Phi]$ and $\pi_R[\Psi]$ are disjoint for every $R \in \mathcal{R}$.

proof ? Otherwise, there are $\phi \in \Phi$ and $\psi \in \Psi$ such that $\phi \upharpoonright R = \psi \upharpoonright R$. On the other hand, there is supposed to be an $x \in X$ such that $\tau(x\phi)$ and $\tau(x\psi)$ are disjoint. So there ought to be an $i \in R$ such that $x\phi(i) \neq x\psi(i)$, by the definition of \mathcal{R} ; and this is impossible. **X**

1H Lemma Suppose that $R_0 \in \mathcal{R}$ and that $P_R \subseteq \prod_{i \in R} \Gamma_i$ for $R \in \mathcal{R}$. Then $\mathfrak{Q}(\langle P_R \rangle_{R \in \mathcal{R}}, R_0)$ is closed under countable unions and intersections.

proof Let $\langle Q_n \rangle_{n \in \mathbb{N}}$ be a sequence in $\mathfrak{Q} = \mathfrak{Q}(\langle P_R \rangle_{R \in \mathcal{R}}, R_0)$.

(a) Set $Q = \bigcup_{n \in \mathbb{N}} Q_n$, and take $\Phi, \Psi \subseteq \Theta$ such that

 $\pi_R[\Phi] \subseteq P_R, \pi_R[\Psi] \cap P_R = \emptyset$ for every $R \in \mathcal{R} \setminus \{R_0\},\$

$$\pi_{R_0}[\Phi] \subseteq Q, \quad \pi_{R_0}[\Psi] \cap Q = \emptyset.$$

For $n \in \mathbb{N}$, set $\Phi_n = \Phi \cap \pi_{R_0}^{-1}[Q_n]$. Then $\Phi = \bigcup_{n \in \mathbb{N}} \Phi_n$. For each *n* we surely have $\pi_R[\Phi_n] \subseteq P_R, \pi_R[\Psi] \cap P_R = \emptyset$ for every $R \in \mathcal{R} \setminus \{R_0\}$,

$$\pi_{R_0}[\Phi_n] \subseteq Q_n, \quad \pi_{R_0}[\Psi] \cap Q_n = \emptyset,$$

so \tilde{W}_{Φ_n} and \tilde{W}_{Ψ} are Σ -separated; by 1A(c-iii), $\tilde{W}_{\Phi} = \bigcup_{n \in \mathbb{N}} \tilde{W}_{\Phi_n}$ and \tilde{W}_{Ψ} are Σ -separated. As Φ and Ψ are arbitrary, $Q \in \mathfrak{Q}$.

(b) Similarly, if $Q' = \bigcap_{n \in \mathbb{N}} Q_n$, $\Phi, \Psi \subseteq \Theta$ and

 $\pi_R[\Phi] \subseteq P_R, \pi_R[\Psi] \cap P_R = \emptyset$ for every $R \in \mathcal{R} \setminus \{R_0\},\$

$$\pi_{R_0}[\Phi] \subseteq Q', \quad \pi_{R_0}[\Psi] \cap Q' = \emptyset,$$

set $\Psi_n = \Psi \setminus \pi_{R_0}^{-1}[Q_n]$ for each *n*. Then $\Psi = \bigcup_{n \in \mathbb{N}} \Psi_n$,

 $\pi_R[\Phi] \subseteq P_R, \pi_R[\Psi_n] \cap P_R = \emptyset \text{ for every } R \in \mathcal{R} \setminus \{R_0\},\$

$$\pi_{R_0}[\Phi] \subseteq Q_n, \quad \pi_{R_0}[\Psi_n] \cap Q_n = \emptyset,$$

so \tilde{W}_{Φ} and \tilde{W}_{Ψ_n} are Σ -separated; consequently \tilde{W}_{Φ} and $\tilde{W}_{\Psi} = \bigcup_{n \in \mathbb{N}} \tilde{W}_{\Psi_n}$ are Σ -separated. As Φ and Ψ are arbitrary, $Q' \in \mathfrak{Q}$.

1I Lemma Let Φ , $\Psi \subseteq \Theta$ be such that for every $R \in \mathcal{R}$ the sets $\pi_R[\Phi]$, $\pi_R[\Psi] \subseteq \prod_{i \in R} \Gamma_i$ are $\bigotimes_{i \in R} \mathcal{P}\Gamma_i$ -separated. Then \tilde{W}_{Φ} and \tilde{W}_{Ψ} are Σ -separated.

proof (a) For each $R \in \mathcal{R}$ let $Q_R \in \bigotimes_{i \in R} \mathcal{P}\Gamma_i$ be such that $\pi_R[\Phi] \subseteq Q_R$ and $\pi_R[\Psi] \cap Q_R$ is empty; let \mathcal{E}_{Ri} , for $i \in R$, be a finite subalgebra of $\mathcal{P}\Gamma_i$ such that $Q_R \in \bigotimes_{i \in R} \mathcal{E}_{Ri}$. For i < m let \mathcal{E}_i be the finite algebra of subsets of Γ_i generated by $\bigcup \{\mathcal{E}_{Ri} : i \in R \in \mathcal{R}\}$.

(b) If Δ_i , Δ'_i are atoms of \mathcal{E}_i for each i < m, $Q = \prod_{i < m} \Delta_i$ and $Q' = \prod_{i < m} \Delta'_i$, then $\tilde{W}_{\Phi \cap Q}$ and $\tilde{W}_{\Psi \cap Q'}$ are Σ -separated. **P** If either $\Phi \cap Q$ or $\Psi \cap Q'$ is empty, this is trivial. Otherwise, set $R = \{i : \Delta_i = \Delta'_i\}$. **?** If $R \in \mathcal{R}$, then $\pi_R[\Phi]$ and $\pi_R[\Psi]$ both meet $\prod_{i \in R} \Delta_i$, which must be included in an atom of $\bigotimes_{i \in R} \mathcal{E}_{Ri}$, and is therefore either included in Q_R or disjoint from it; but Q_R separates $\pi_R[\Phi]$ from $\pi_R[\Psi]$. **X** There are therefore $\sigma_0, \sigma_1 \in \{0, 1\}^m$ such that $\tau(\sigma_0) \cap \tau(\sigma_1) = \emptyset$ and $\sigma_0(i) = \sigma_1(i)$ for every $i \in R$.

Suppose that $\phi \in Q$ and $\psi \in Q'$. Then $S = \{i : \phi(i) = \psi(i)\}$ is included in R. We can therefore find an $x \in X$ such that $x(\phi(i)) = \sigma_0(i)$ and $x(\psi(i)) = \sigma_1(i)$ for every i < m. So $\tau(x\phi) \cap \tau(x\psi) = \emptyset$. By Lemma 1E, \tilde{W}_Q and $\tilde{W}_{Q'}$ are Σ -separated; a fortiori, $\tilde{W}_{\Phi \cap Q}$ and $\tilde{W}_{\Psi \cap Q'}$ are Σ -separated. **Q**

(c) By 1A(c-ii), \tilde{W}_{Φ} and \tilde{W}_{Ψ} are Σ -separated, as required.

1J Lemma Suppose that $S \subseteq \mathcal{R}$ and that $\Phi, \Psi \subseteq \Theta$ are such that $\pi_R[\Phi] \cap \pi_R[\Psi] = \emptyset$ for every $R \in S$,

 $\pi_R[\Psi] \mapsto \pi_R[\Psi] = \emptyset \text{ for every } R \in \mathcal{S},$

 $\pi_R[\phi]$ and $\pi_R[\Psi]$ are $\bigotimes_{i \in R} \mathcal{P}\Gamma_i$ -separated for every $R \in \mathcal{R} \setminus \mathcal{S}$.

Then \tilde{W}_{Φ} and \tilde{W}_{Ψ} are Σ -separated.

proof Induce on #(S). If $S = \emptyset$, then this is just Lemma 1I. For the inductive step to #(S) = k + 1, given $\Phi, \Psi \subseteq \Theta$ such that

 $\pi_R[\Phi] \cap \pi_R[\Psi] = \emptyset$ for every $R \in \mathcal{S}$,

 $\pi_R[\Phi]$ and $\pi_R[\Psi]$ are $\bigotimes_{i \in R} \mathcal{P}\Gamma_i$ -separated for every $R \in \mathcal{R} \setminus \mathcal{S}$,

then for each $R \in \mathcal{R}$ choose $P_R \subseteq \prod_{i \in R} \Gamma_i$ such that

$$P_R = \pi_R[\Phi]$$
 if $R \in \mathcal{S}$

 $P_R \in \bigotimes_{i \in R} \mathcal{P}\Gamma_i, \pi_R[\Phi] \subseteq P_R \text{ and } \pi_R[\Psi] \cap P_R = \emptyset \text{ if } R \in \mathcal{R} \setminus \mathcal{S}.$

Fix $S \in \mathcal{S}$ and consider $\mathcal{R}' = \mathcal{R} \setminus \{S\}$, $\mathfrak{Q} = \mathfrak{Q}(\langle P_R \rangle_{R \in \mathcal{R}}, S)$ as defined in 1Fc. If $\Delta_i \subseteq \Gamma_i$ for each $i \in S$, then $\prod_{i \in S} \Delta_i \in \mathfrak{Q}$. **P** If $\Phi', \Psi' \subseteq \Theta$ are such that

$$\pi_R[\Phi'] \subseteq P_R, \pi_R[\Psi'] \cap P_R = \emptyset \text{ for every } R \in \mathcal{R} \setminus \{S\},\$$

$$\pi_S[\Phi'] \subseteq \prod_{i \in S} \Delta_i, \quad \pi_S[\Psi'] \cap \prod_{i \in S} \Delta_i = \emptyset,$$

then

 $\pi_R[\Phi'] \cap \pi_R[\Psi'] = \emptyset \text{ for every } R \in \mathcal{R}', \\ \pi_R[\Phi'] \text{ and } \pi_R[\Psi'] \text{ are } \bigotimes_{i \in R} \mathcal{P}\Gamma_i \text{-separated for every } R \in \mathcal{R} \setminus \mathcal{R}'$

4

(because $P_R \in \bigotimes_{i \in R} \mathcal{P}\Gamma_i$ separates $\pi_R[\Phi']$ from $\pi_R[\Psi']$ if $R \in \mathcal{R} \setminus \mathcal{S}$, while $\prod_{i \in S} \Delta_i$ separates $\pi_S[\Phi']$ from $\pi_S[\Psi']$). By the inductive hypothesis, $\bigcup_{\phi \in \Phi'} W_{\phi}$ and $\bigcup_{\psi \in \Psi'} W_{\psi}$ are Σ -separated. As Φ' , Ψ' are arbitrary, $\prod_{i \in S} \Delta_i \in \mathfrak{Q}$. **Q**

Because \mathfrak{Q} is closed under countable unions and intersections (Lemma 1H), and $\#(\Gamma_i)$ is a Kunen cardinal for every *i*, it follows that $\mathfrak{Q} = \mathcal{P}(\prod_{i \in S} \Gamma_i)$ (1Bc). In particular, $Q = \pi_S[\Phi]$ belongs to \mathfrak{Q} . Since

$$\pi_R[\Phi] \subseteq P_R, \, \pi_R[\Psi] \cap P_R = \emptyset \text{ for every } R \in \mathcal{R} \setminus \{S\}$$

 $\pi_S[\Phi] \subseteq Q, \quad \pi_S[\Psi] \cap Q = \emptyset,$

 \tilde{W}_{Φ} and \tilde{W}_{Ψ} are Σ -separated. Thus the induction continues.

1K Lemma Suppose that $\Phi, \Psi \subseteq \Theta$ are such that

(†) whenever $\phi \in \Phi$ and $\psi \in \Psi$, there is an $x \in X$ such that $\tau(x\phi) \cap \tau(x\psi) = \emptyset$.

Then \tilde{W}_{Φ} and \tilde{W}_{Ψ} are Σ -separated.

proof By Lemma 1G, $\pi_R[\Phi] \cap \pi_R[\Psi] = \emptyset$ for every $R \in \mathcal{R}$. So Lemma 1J, with $\mathcal{S} = \mathcal{R}$, tells us that \hat{W}_{Φ} and \tilde{W}_{Ψ} are Σ -separated.

2 Main theorem

2A The context (III) I continue from 1C.

(a) For this section, fix a family $\langle Z_{mi} \rangle_{i < m \in \mathbb{N}}$ of non-empty open-and-closed subsets of Z such that $\langle Z_{mi} \rangle_{i < m}$ is a partition of Z for each $m \ge 1$,

whenever $s, t \in Z$ are distinct, the set $\{(m, i) : i < n \in \mathbb{N}, Z_{mi} \text{ contains both } s \text{ and } t\}$ is finite, for every $m \ge 1$ and $i \le m$, there is a j < m such that $Z_{m+1,i} \subseteq Z_{mj}$.

 Γ will be a subset of Z, meeting Z_{mi} whenever i < m, such that $\#(\Gamma)$ is a Kunen cardinal. For $m \ge 1$ set $\Theta_m = \prod_{i < m} \Gamma \cap Z_{mi}$.

(b) (Y, ρ) will be a separable metric space. C(X; Y) will be the space of continuous functions from X to Y, and C_{Γ} will be

$$\{f: f \in C(X; Y), f \text{ is determined by coordinates in } \Gamma\}$$

$$= \{ f : f \in C(X;Y), f(x) = f(x') \text{ whenever } x \upharpoonright \Gamma = x' \upharpoonright \Gamma \}.$$

I will write \mathfrak{T}_c for the topology on C_{Γ} induced by the compact-open topology of C(X;Y) (ENGELKING 89, §3.4), that is, the topology generated by sets of the form

$$\{f: f \in C_{\Gamma}, f[K] \subseteq H\}$$

where $K \subseteq X$ is compact and $H \subseteq Y$ is open; because X is compact, this is actually the topology of uniform convergence defined by the metric $(f, g) \mapsto \sup_{x \in X} \rho(f(x), g(x))$ (ENGELKING 89, 4.2.17).

 \mathcal{B} will be the Borel σ -algebra of C_{Γ} under \mathfrak{T}_c , while Σ_p will be the σ -algebra of subsets of C_{Γ} generated by sets of the form

$$\{f: f \in C_{\Gamma}, f(x) \in H\}$$

where $x \in X$ and $H \subseteq Y$ is open. Of course $\Sigma_p \subseteq \mathcal{B}$. (The aim of this section is to show that they are equal.)

(c) Let *D* be a countable dense subset of *Y* and *J* the countable family $\{B(y, \delta) : y \in D, \delta \ge 0 \text{ is rational}\}$, where $B(y, \delta) = \{y' : \rho(y', y) \le \delta\}$. As in 1C, $T_m = \mathcal{J}^{\{0,1\}^m}$ for $m \ge 1$. For $m \ge 1$, $\tau \in T_m$ and $\phi \in \Theta_m$ set

$$W_{\tau,\phi} = \{ f : f \in C_{\Gamma}, f(x) \in \tau(x\phi) \text{ for every } x \in X \}$$

2B Lemma If $\epsilon > 0$ and $f \in C_{\Gamma}$, there are $m \ge 1$, $\tau \in T_m$ and $\phi \in \Theta_m$ such that $f \in W_{\tau,\phi}$ and diam $\tau(\sigma) \le \epsilon$ for every $\sigma \in \{0,1\}^m$.

proof Take $\delta \in \mathbb{Q} \cap [0, \epsilon]$. For each $x \in X$, there is a finite set $I_x \subseteq \Gamma$ such that $\rho(f(x'), f(x)) \leq \frac{1}{3}\delta$ whenever $x' \in U_x$, where $U_x = \{x' : x' \in X, x' \mid I_x = x \mid I_x\}$. **P?** Otherwise,

$$L_I = \{x' : x' \in X, x' \upharpoonright I = x \upharpoonright I, \rho(f(x'), f(x)) \ge \frac{1}{3}\delta\}$$

is non-empty for every finite $I \subseteq \Gamma$. Since every L_I is compact and $L_I \subseteq L_{I'}$ when $I \supseteq I'$, there is an $x' \in \bigcap \{L_I : I \in [\Gamma]^{<\omega}\}$; but now $x' \upharpoonright \Gamma = x \upharpoonright \Gamma$ and $f(x') \neq f(x)$. **XQ**

Let $L \subseteq X$ be a finite set such that $\bigcup_{x \in L} U_x = X$. Set $I = \bigcup_{x \in L} I_x$. Let $m \ge 1$ be such that no Z_{mi} , for i < m, contains more than one point of I; let $\phi \in \Theta_m$ be such that $\phi(i) \in I$ whenever i < m and $I \cap Z_{mi}$ is not empty. Observe that $\rho(f(x), f(x') \le \frac{2}{3}\delta$ whenever $x, x' \in X$ and $x\phi = x'\phi$. **P** There is an $x_0 \in L$ such that $x \in U_{x_0}$. Now $I_{x_0} \subseteq I \subseteq \phi[m]$, so $x' | I_{x_0} = x | I_{x_0}$ and $x' \in U_{x_0}$. **Q** Next, there is a $\tau \in T_m$ such that diam $\tau(\sigma) \le \epsilon$ and $f(x) \in \tau(\sigma)$ whenever $\sigma \in \{0, 1\}^m$, $x \in X$ and $x\phi = \sigma$. **P** Given $\sigma \in \{0, 1\}^m$, $\{f(x) : x\phi = \sigma\}$ has diameter at most $\frac{2}{3}\delta$. Take any x such that $x\phi = \sigma$; then there is a $y \in D$ such that $\rho(f(x), y) \le \frac{1}{3}\delta$; set $\tau(\sigma) = B(y, \delta)$. **Q** And $f \in W_{\tau,\phi}$.

2C Proposition Take $m \ge 1$ and $\tau \in T_m$. Then $E^* = \bigcup \{ W_{\tau,\phi} : \phi \in \Theta_m \}$ belongs to Σ_p .

proof (a) For $n \ge 1$ let $X_n \subseteq X$ be

 $\{x : x \in X, x \upharpoonright Z_{ni} \text{ is constant for each } i < n\}.$

Then X_n is finite and each member of X_n is a continuous function from Z to $\{0,1\}$; also $\bigcup_{n\geq 1} X_n$ is dense in X, and $X_n \subseteq X_{n+1}$ for each n. For $n \geq 1$ let Δ_n be a finite subset of Γ meeting $Z_{mi} \cap Z_{nj}$ whenever i < m and j < n and $Z_{mi} \cap Z_{nj} \neq \emptyset$, and set $\Psi_n = \prod_{i < m} (\Delta_n \cap Z_{mi}) \subseteq \Theta_m$. Set

$$A = \bigcap_{n \ge 1} \bigcup_{\psi \in \Psi_n} \bigcap_{x \in X_n} \{ f : f \in C_{\Gamma}, \, f(x) \in \tau(x\psi) \}.$$

Then $A \in \Sigma_p$, because $\tau(\sigma)$ is closed in Y for every $\sigma \in \{0, 1\}^m$.

(b) Suppose that $f \in E_{\tau}^*$. Then there is a $\phi \in \Theta_m$ such that $f \in W_{\tau,\phi}$. If $n \ge 1$, there is a $\psi : m \to \Delta_n$ such that $\psi(i) \in Z_{nj} \cap Z_{mi}$ whenever i < m, j < n and $\phi(i) \in Z_{nj}$; observe that $\psi \in \Psi_n$. If now $x \in X_n$, $x\psi = x\phi$ so $f(x) \in \tau(x\psi)$. Thus $f \in A$. As f is arbitrary, $E_{\tau}^* \subseteq A$.

(c) Now suppose that $f \in A$. For each $n \ge 1$ take $\psi_n \in \Psi_n$ such that $f(x) \in \tau(x\psi_n)$ for every $x \in X_n$. Let \mathcal{F} be a non-principal ultrafilter on \mathbb{N} . Then $\phi(i) = \lim_{i \to \mathcal{F}} \psi_n(i)$ is defined for the topology of Z and belongs to Z_{mi} for each i < m. If $x \in X_l$, where $l \ge 1$, then for any $n \ge l$ we have $x\phi = \lim_{n \to \mathcal{F}} x\psi_n$ because x is continuous; accordingly $\{n : \tau(x\phi) = \tau(x\psi_n)\}$ belongs to \mathcal{F} and $f(x) \in \tau(x\phi)$. Because f is continuous and $\bigcup_{l>1} X_l$ is dense in X, it follows that $f(x) \in \tau(x\phi)$ for every $x \in X$.

Let $\phi' \in \Theta_m$ be such that $\phi'(i) = \phi(i)$ whenever i < m and $\phi(i) \in \Gamma$. If $x \in X$, there is an $x' \in X$ such that

$$\begin{aligned} x'(t) &= x(t) \text{ if } t \in \Gamma, \\ &= x(\phi'(i)) \text{ if } i < m, \, t = \phi(i) \notin \Gamma. \end{aligned}$$

Now, because f is determined by coordinates in Γ ,

$$f(x) = f(x') \in \tau(x'\phi) = \tau(x\phi').$$

As x is arbitrary, $f \in W_{\tau,\phi'} \subseteq E_{\tau}^*$. As f is arbitrary, $A \subseteq E_{\tau}^*$.

(d) So $E_{\tau}^* = A \in \Sigma_p$.

2D Theorem $\Sigma_p = \mathcal{B}$.

proof Take any $G \in \mathfrak{T}_c$.

(a) Fix $m \ge 1$ and $\tau \in T_m$ for the moment. I aim to apply the results of §1. Set $\Gamma_i = \Gamma \cap Z_{mi}$ for each i < m, so that Θ , as defined in 1D, is Θ_m of this section. Set $\Omega = C_{\Gamma}$ and $\Sigma = \Sigma_p$, and for $\theta \in \Theta = \Theta_m$ set $W_{\theta} = W_{\tau,\theta}$.

(i) The family $\langle W_{\theta} \rangle_{\theta \in \Theta_m}$ satisfies (*) of 1D. **P** If $x \in X$ and $J, J' \in \mathcal{J}$ are disjoint, then

$$\bigcup \{ W_{\theta} : \theta \in \Theta, \, \tau(x\theta) \subseteq J \} \subseteq \{ f : f \in C_{\Gamma}, \, f(x) \in J \},\$$

$$\bigcup \{ W_{\theta} : \theta \in \Theta, \, \tau(x\theta) \subseteq J' \} \subseteq \{ f : f \in C_{\Gamma}, \, f(x) \in J' \};$$

since $\{f : f \in C_{\Gamma}, f(x) \in J\}$ and $\{f : f \in C_{\Gamma}, f(x) \in J'\}$ are disjoint members of $\Sigma = \Sigma_p, \bigcup \{W_{\theta} : \theta \in \Theta, \tau(x\theta) \subseteq J\}$ and $\bigcup \{W_{\theta} : \theta \in \Theta, \tau(x\theta) \subseteq J'\}$ are Σ -separated. **Q**

(ii) Set

$$\Phi = \{ \phi : \phi \in \Theta_m, W_\phi \not\subseteq G \}, \quad \Psi = \{ \psi : \psi \in \Theta_m, W_\psi \cap W_\Phi = \emptyset \},\$$

writing $\tilde{W}_{\Phi} = \bigcup_{\phi \in \Phi} W_{\phi}$ as in 1D. Then Φ and Ψ satisfy (†) of Lemma 1K. **P?** If $\phi \in \Phi$, $\psi \in \Psi$ and $\tau(x\phi) \cap \tau(x\psi) \neq \emptyset$ for every $x \in X$, set $I = \phi[m] \cup \psi[m]$ and for each $z \in \{0,1\}^I$ choose $\alpha_z \in \tau(z\phi) \cap \tau(z\psi)$. Set $g(x) = \alpha_{x \uparrow I}$ for $x \in X$; then $g \in C_{\Gamma}$, because $I \subseteq \Gamma$. Also $g \in W_{\phi} \cap W_{\psi}$. But this contradicts the definition of Ψ . **XQ**

(iii) By 1K, \tilde{W}_{Φ} and \tilde{W}_{Ψ} are Σ -separated.

(b) Re-writing this result in the language of the present section, we see that if $m \ge 1, \tau \in T_m$ and we set

$$\Phi_{\tau} = \{ \phi : \phi \in \Theta_m, W_{\phi,\tau} \not\subseteq G \},\$$

 $\Psi_{\tau} = \{ \psi : \psi \in \Theta_m, W_{\psi,\tau} \cap W_{\phi,\tau} = \emptyset \text{ for every } \phi \in \Phi_{\tau} \},\$

then $\bigcup_{\phi \in \Phi_{\tau}} W_{\phi,\tau}$ and $\bigcup_{\psi \in \Psi_{\tau}} W_{\psi,\tau}$ are Σ_p -separated. Let $E_{\tau} \in \Sigma_p$ be such that

$$\bigcup_{\psi \in \Psi_{\tau}} W_{\psi,\tau} \subseteq E_{\tau} \subseteq C_{\Gamma} \setminus \bigcup_{\phi \in \Phi_{\tau}} W_{\phi,\tau}.$$

Because $E_{\tau}^* = \bigcup_{\phi \in \Theta_m} W_{\tau,\phi}$ belongs to Σ_p (2C), we can take it that $E_{\tau} \subseteq E_{\tau}^*$.

(c) Set $E = \bigcup_{m \ge 1, \tau \in T_m} E_{\tau}$; because \mathcal{J} is countable, every T_m is countable and $E \in \Sigma_p$.

(i) $G \subseteq E$. **P** Let $f \in G$. Then there is an $\epsilon > 0$ such that $g \in G$ whenever $g \in C_{\Gamma}$ and $\rho(g(x), f(x)) \leq 2\epsilon$ for every $x \in X$. By Lemma 2B, there are $m \geq 1$, $\tau \in T_m$ and $\psi \in \Theta_m$ such that $f \in W_{\tau,\psi}$ and diam $\tau(\sigma) \leq \epsilon$ for every $\sigma \in \{0,1\}^m$. **?** If $\psi \notin \Psi_{\tau}$, let $\phi \in \Phi_{\tau}$ be such that there is a $g \in W_{\tau,\phi} \cap W_{\tau,\psi}$. There is also an $h \in W_{\tau,\phi} \setminus G$. But for any $x \in X$,

$$f(x) \in \tau(x\psi), g(x) \in \tau(x\psi) \text{ so } \rho(f(x), g(x)) \le \epsilon,$$

$$g(x) \in \tau(x\phi), h(x) \in \tau(x\phi) \text{ so } \rho(g(x), h(x)) \leq \epsilon,$$

and $\rho(h(x), f(x)) \leq 2\epsilon$; as x is arbitrary, $h \in G$, which is absurd. **X**

Thus $\psi \in \Psi_{\tau}$ and

$$f \in W_{\tau,\psi} \subseteq E_{\tau} \subseteq E.$$

As f is arbitrary, $G \subseteq E$. **Q**

(ii) $E \subseteq G$. **P**? Otherwise, there are $m \ge 1, \tau \in T_m$ and $f \in E_\tau \setminus G$. As $E_\tau \subseteq Y_\tau$, there is a $\phi \in \Theta_m$ such that $f \in W_{\tau,\phi}$. But in this case $W_{\tau,\phi} \not\subseteq G, \phi \in \Phi_\tau$ and $f \notin E_\tau$. **XQ**

(c) Thus G = E belongs to Σ_p . As G is arbitrary, $\mathcal{B} \subseteq \Sigma_p$ and $\mathcal{B} = \Sigma_p$.

3 Tidying up

3A Theorem Let K be a compact dyadic space such that its weight w(K) is a Kunen cardinal, and Y a separable metrizable space. On the space C(K;Y) of continuous functions from K to Y, let Σ_p be the σ -algebra generated by sets of the form $\{f : f \in C(K;Y), f(v) \in H\}$ where $v \in K$ and $H \subseteq Y$ is open. Then Σ_p is the Borel σ -algebra of the compact-open topology \mathfrak{T}_c on C(K;Y).

proof (a) If K is finite, $C(K;Y) = Y^K$, the compact-open topology is just the product topology, and the result is elementary, because Y is second-countable. So suppose from now on that K is infinite.

(b) If K is infinite, it is a continuous image of $\{0,1\}^{w(K)}$ (ENGELKING 89, 3.12.12 or FREMLIN 03, 4A2Dd). As w(K) is an infinite Kunen cardinal, it is at most \mathfrak{c} (1Bb), and there is a dense set $\Gamma \subseteq Z$ of cardinal w(K). $\{0,1\}^{\Gamma}$ is homeomorphic to $\{0,1\}^{w(K)}$, so there is a continuous surjection $q:\{0,1\}^{\Gamma} \to K$.

For $x \in X$, set $\pi(x) = x \upharpoonright \Gamma$; then $\pi : X \to \{0, 1\}^{\Gamma}$ and $q\pi : X \to K$ are continuous surjections, so we have an injection $\tilde{\pi} : C(K;Y) \to C(X;Y)$ defined by setting $\tilde{\pi}(f) = fq\pi$ for $f \in C(K;Y)$.

Because π is determined by coordinates in Γ , so is $fq\pi$ for every $f: K \to Y$; accordingly $\tilde{\pi}$ can be thought of as a map from C(K;Y) to C_{Γ} as defined in 2A. Let \mathfrak{T}'_c be the topology on C_{Γ} induced by the compact-open topology of C(X;Y).

Let ρ be a metric on Y defining its topology. Then \mathfrak{T}_c and \mathfrak{T}'_c are defined by the metrics $\tilde{\rho}, \tilde{\rho}'$ where

$$\tilde{\rho}(f_0, f_1) = \sup_{v \in K} \rho(f_0(v), f_1(v)) \text{ for } f_0, f_1 \in C(K; Y),$$

$$\tilde{\rho}'(g_0, g_1) = \sup_{x \in X} \rho(g_0(x), g_1(x)) \text{ for } g_0, g_1 \in C_{\Gamma}.$$

Because $q\pi: X \to K$ is a surjection, $\tilde{\pi}$ is an isometry for $\tilde{\rho}$ and $\tilde{\rho}'$.

Suppose now that $G \subseteq C(K;Y)$ is \mathfrak{T}_c -open. Then $\tilde{\pi}[G]$ is relatively open in the isometric copy $\tilde{\pi}[C(K;Y)] \subseteq C_{\Gamma}$, and there is a \mathfrak{T}'_c -open $G' \subseteq C_{\Gamma}$ such that $\tilde{\pi}[G] = G' \cap \tilde{\pi}[C(K;Y)]$, that is, $G = \tilde{\pi}^{-1}[G']$. By Theorem 2D, G' belongs to the σ -algebra of subsets of C_{Γ} generated by sets of the form $V_{xH} = \{g : g \in C_{\Gamma}, g(x) \in H\}$ where $x \in X$ and $H \subseteq Y$ is open. Consequently $G = \tilde{\pi}^{-1}[G']$ belongs to the σ -algebra of subsets of C(K;Y) generated by $\{\tilde{\pi}^{-1}[V_{xH}] : x \in X, H \subseteq Y \text{ is open}\}$. But $\tilde{\pi}^{-1}[V_{xH}] = \{f : f(q\pi(x)) \in H\}$ belongs to Σ_p whenever $x \in X$ and $H \subseteq Y$ is open, so $G \in \Sigma_p$. As G is arbitrary, \mathfrak{T}_c and \mathcal{B} are included in Σ_p .

On the other hand, of course, $\Sigma_p \subseteq \mathcal{B}$, just as in 2Ab. So $\Sigma_p = \mathcal{B}$, as claimed.

3B Proposition Let κ be a cardinal, $C(\{0,1\}^{\kappa})$ the Banach space of continuous real-valued functions on $\{0,1\}^{\kappa}$, \mathcal{B} the Borel σ -algebra of $C(\{0,1\}^{\kappa})$ for the norm topology, and Σ_p the σ -algebra generated by sets of the form $V_{xH} = \{f : f \in C(\{0,1\}^{\kappa}), f(x) \in H\}$ where $x \in \{0,1\}^{\kappa}$ and $H \subseteq \mathbb{R}$ is open. Then κ is a Kunen cardinal iff $\Sigma_p = \mathcal{B}$.

proof (a) If κ is a Kunen cardinal then $\Sigma_p = \mathcal{B}$ by Theorem 3A.

(b) If κ is not a Kunen cardinal, let Γ_0 , Γ_1 be disjoint subsets of κ of cardinal κ . Let $A \subseteq C(\{0,1\}^{\kappa})$ be the set of continuous $\{0,1\}$ -valued functions; then A is closed and discrete for the norm topology, so every subset of A belongs to \mathcal{B} . For $\xi \in \Gamma_0$, $\eta \in \Gamma_1$ set

$$f_{\xi\eta}(x) = x(\xi)x(\eta)$$

for $x \in \{0,1\}^{\kappa}$. Then $(\xi,\eta) \mapsto f_{\xi\eta} : \Gamma_0 \times \Gamma_1 \to C(\{0,1\}^{\kappa})$ is injective. So any subset of $\Gamma_0 \times \Gamma_1$ is of the form $\{(\xi,\eta) : f_{\xi\eta} \in E\}$ for some $E \in \mathcal{B}$.

On the other hand, if $x \in \{0,1\}^{\kappa}$ and $H \subseteq \mathbb{R}$, then $\{(\xi,\eta) : f_{\xi\eta}(x) \in H\}$ is either $\{(\xi,\eta) : x(\xi) = 1$ and $x(\eta) = 1\}$ or $\{(\xi,\eta) : x(\xi) = 0$ or $x(\eta) = 0\}$ or $\Gamma_0 \times \Gamma_1$ or \emptyset ; in any case, it belongs to $\mathcal{P}\Gamma_0 \otimes \mathcal{P}\Gamma_1$. So if $E \in \Sigma_p, \{(\xi,\eta) : f_{\xi\eta} \in E\} \in \mathcal{P}\Gamma_0 \widehat{\otimes} \mathcal{P}\Gamma_1$.

Since we are supposing that $\mathcal{P}(\kappa \times \kappa) \neq \mathcal{P}\kappa \widehat{\otimes} \mathcal{P}\kappa$, and therefore $\mathcal{P}(\Gamma_0 \times \Gamma_1) \neq \mathcal{P}\Gamma_0 \widehat{\otimes} \mathcal{P}\Gamma_1$, Σ_p cannot be the whole of \mathcal{B} .

References

Avilés A., Plebanek G. & Rodríguez J. [p11] 'Measurability in $C(2^{\kappa})$ and Kunen cardinals', 2011.

Engelking R. [89] General Topology. Heldermann, 1989 (Sigma Series in Pure Mathematics 6).

Fremlin D.H. [84] Consequences of Martin's Axiom. Cambridge U.P., 1984.

Fremlin D.H. [01] Measure Theory, Vol. 2: Broad Foundations. Torres Fremlin, 2001.

Fremlin D.H. [03] Measure Theory, Vol. 4: Topological Measure Spaces. Torres Fremlin, 2003.

Fremlin D.H. [08] Measure Theory, Vol. 5: Set-theoretic Measure Theory. Torres Fremlin, 2008.

Kunen K. [68] Inaccessibility properties of cardinals. PhD thesis, Stanford, 1968.