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Maharam types of amoeba algebras

D.H.Fremlin

University of Essex, Colchester, England

1 Variable-measure amoeba algebras

1A Definitions (see Fremlin 08, §528) Let (A, µ̄) be a measure algebra. I will write P ∗(A, µ̄) for the
set {(a, α) : a ∈ A, µ̄a < α ≤ µ̄1}, ordered by saying that (a, α) ≤ (b, β) if a ⊆ b and β ≤ α.

In this context, I will say that if p = (a, α) then a = ap and α = αp. Note that p, q ∈ P ∗(A, µ̄) are
compatible upwards in P ∗(A, µ̄) iff (ap ∪ aq,min(αp, αq)) ∈ P ∗(A, µ̄), that is, iff µ̄(ap ∪ aq) < min(αp, αq).

P ∗(A, µ̄) will always be given its up-topology (Fremlin 08, 514L); the variable-measure amoeba
algebra AM∗(A, µ̄) (Fremlin 08, 528Ab) is the regular open algebra RO↑(P ∗(A, µ̄)). For p ∈ P ∗(A, µ̄) I

will write Vp = int [p,∞[ ∈ RO↑(P ∗(A, µ̄)).

1B Lemma Let (A, µ̄) be a measure algebra, and P the partially ordered set P ∗(A, µ̄). If (a, α) ∈ P and
C ⊆ A is a non-empty set with supremum a, then V(a,α) = infc∈C V(c,α) in RO↑(P ).

proof Since (c, α) ≤ (a, α), V(a,α) ⊆ V(c,α) for every c ∈ C, and

V(a,α) ⊆ infc∈C V(c,α) =
⋂

c∈C V(c,α)

(Fremlin 08, 514M(d-ii)1). In the other direction, take any p ∈
⋂

c∈C V(c,α). There is a c0 ∈ C; as p and
(c0, α) are compatible upwards, µ̄ap ≤ µ̄(ap ∪ c0) < min(αp, α). Take β such that µ̄ap < β < min(αp, α)
and consider (ap, β). We know that [(ap, β),∞[ ⊆

⋂
c∈C V(c,α). Inducing on #(I), we see that for any finite

I ⊆ C there is a q ≥ (ap, β) such that c ⊆ aq for every c ∈ I. But this means that µ̄(ap ∪ sup I) ≤ β for

every finite I ⊆ C, so µ̄(ap ∪ a) ≤ β and p is compatible upwards with (a, α), that is, p ∈ [(a, α),∞[.

Thus the open set infc∈C V(c,α) is included in [(a, α),∞[ and therefore in its interior V(a,α), and V(a,α) =
infc∈C V(c,α), as claimed.

1C Proposition Let (A, µ̄) be a measure algebra, and e ∈ A; write Ae for the principal ideal generated
by e. Set

P = P ∗(A, µ̄), Pe = {p : p ∈ P , αp ≤ µ̄(ap ∪ e)},

Q = P ∗(Ae, µ̄↾Ae).

Then Pe ∈ RO↑(P ). For p ∈ Pe, set

f(p) = (ap ∩ e, αp − µ̄(ap \ e));

then f is an order-preserving function from Pe to Q. Now we have an order-continuous ring homomorphism
π : RO↑(Q) → RO↑(P ) defined by setting πH = int f−1[H] for every H ∈ RO↑(Q).

proof It is easy to check that Pe is up-open. To see that it is regular, take any p ∈ P \ Pe. Then
p′ = (ap ∪ e, αp) belongs to P , and [p′,∞[ is disjoint from Pe, so p /∈ int Pe. As p is arbitrary, Pe = int Pe is
a regular up-open set.

If p ∈ P , then

µ̄(ap ∩ e) = µ̄ap − µ̄(ap \ e) < αp − µ̄(ap \ e) ≤ µ̄(ap ∪ e) − µ̄(ap \ e) = µ̄e,

so f(p) ∈ Q; it is now easy to see that f : P → Q is order-preserving.
Suppose that Q0 ⊆ Q is up-open and cofinal. Then f−1[Q0] is cofinal with Pe. PPP Take any p ∈ Pe. Then

there is a q ∈ Q0 such that q ≥ f(p), that is, aq ⊇ ap ∩ e and αq ≤ αp − µ̄(ap \ e). In this case,

µ̄(ap ∪ aq) = µ̄aq + µ̄(ap \ e) < αq + µ̄(ap \ e) ≤ αp,

1Later editions only.
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2 1C

so p′ = (ap ∪ aq, αq + µ̄(ap \ e)) belongs to P and p′ ≥ p. Because Pe is up-open, p′ ∈ Pe. Now f(p′) = q, so
p′ ∈ f−1[Q0]. As p is arbitrary, f−1[Q0] is cofinal with Pe. QQQ

If H ∈ RO↑(Q) then int f−1[H] is the same whether we define closure and interior in P or in Pe, because
Pe is a regular up-open set. By Fremlin 08, 514O, the given formula therefore defines an order-continuous
Boolean homomorphism from RO↑(Q) to RO↑(Pe); since RO↑(Pe) is a principal ideal of RO↑(P ), we have
an order-continuous ring homomorphism from RO↑(Q) to RO↑(P ).

1D Proposition Let (A, µ̄) be a semi-finite measure algebra, and E ⊆ A an upwards-directed family
with supremum 1. Set P = P ∗(A, µ̄); for e ∈ E set

Pe = {p : p ∈ P, αp ≤ µ̄(ap ∪ e)}, Qe = P ∗(Ae, µ̄↾Ae);

for e ∈ E and p ∈ Pe set

fe(p) = (ap ∩ e, αp − µ̄(ap \ e));

and for e ∈ E and H ∈ RO↑(Qe) set πeH = int f−1
e [H] ∈ RO↑(P ). Then

⋃
e∈E πe[RO↑(Qe)] τ -generates

RO↑(P ) in the sense of Fremlin 02, 331E.

proof (a) As noted in Proposition 1C, Pe is a regular up open set and fe : Pe → Qe is order-preserving.
The key to the proof is the following fact: if p ∈ P and µ̄ap < α < αp, then there is an e0 ∈ E such that
p′ = (ap, α) belongs to Pe for every e ∈ E such that e ⊇ e0, and

Vp′ ⊆ infe∈E,e⊇e0
πeVfe(p′) ⊆ Vp.

PPP(i) Of course p′ ≥ p. Because αp ≤ µ̄1 = supe∈E µ̄e, there is an e0 ∈ E such that α ≤ µ̄e0, and now
p ∈ Pe whenever e ⊇ e0. Set E0 = {e : e ∈ E, e ⊇ e0}.

(ii) For any e ∈ E0,

[p′,∞[ ⊆ f−1
e [ [fe(p

′),∞[ ] ⊆ f−1
e [Vfe(p′)]

because fe is order-preserving, so that

Vp′ ⊆ πeVfe(p′)

for every e ∈ E0; that is, Vp′ ⊆ infe∈E0
πeVfe(p′).

(iii) On the other side, suppose that

q ∈ infe∈E0
πeVfe(p′) =

⋂
e∈E0

πeVfe(p′)

(Fremlin 08, 514M(d-ii) again). Then for any q′ ≥ q and e ∈ E0,

[q′,∞[ ⊆ [q,∞[ ⊆ f−1
e [Vfe(p′)].

So [q′,∞[ ∩ f−1
e [Vfe(p′)] is non-empty, and there is a q′′ ≥ q′ such that fe(q

′′) ∈ Vfe(p′) ⊆ [fe(p′),∞[. But
this means that fe(q

′′) and fe(p
′), therefore also fe(q

′) and fe(p
′), are compatible upwards in Qe, that is,

µ̄((aq′ ∩ e) ∪ (ap ∩ e)) < min(αq′ − µ̄(aq′ \ e), α − µ̄(ap \ e)).

Since E0, like E, is upwards-directed and has supremum 1, we can take the limit as e increases and get

µ̄(aq′ ∪ ap) ≤ min(αq′ , α);

and this is true whenever q′ ≥ q. In the first instance, this means that µ̄(aq ∪ ap) ≤ β whenever µ̄aq < β ≤ αq;
so in fact µ̄(aq ∪ ap) ≤ µ̄aq and aq ⊇ ap. Next, µ̄aq ≤ α. But it follows that

µ̄(ap ∪ aq) = µ̄aq < min(αp, αq)

and q and p are compatible upwards in P , that is, q ∈ [p,∞[.

As q is arbitrary, the open set infe∈E πeVfe(p′) is included in [p,∞[ and therefore in int [p,∞[ = Vp, as
claimed. QQQ

(b) Let G be the order-closed subalgebra of RO↑(P ) generated by
⋃

e∈E πe[RO↑(Qe)]. Then all the sets
infe∈E0

πeVfe(ap,α) examined in (a) belong to G. So (a) tells us that for every p ∈ P there are a p′ ≥ p
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and a G ∈ G such that Vp′ ⊆ G ⊆ Vp. As {[p,∞[ : p ∈ P} is a base for the topology of P consisting of
non-empty sets, {Vp : p ∈ P} is a π-base of the Boolean algebra RO↑(P ) consisting of non-zero elements,
and G includes a π-base of RO↑(P ); being order-closed, it is the whole of RO↑(P ), as required.

1E Lemma (compare Fremlin 08, 528B2) Let (A, µ̄) be an atomless semi-finite measure algebra. Then
P = P ∗(A, µ̄) is separative upwards, so [p,∞[ ∈ RO↑(P ) for every p ∈ P .

proof Let p, q ∈ P be such that p 6≤ q. If µ̄(ap ∪ aq) ≥ min(αp, αq) then p and q are already incompatible
upwards. So suppose that µ̄(ap ∪ aq) < min(αp, αq). If αp < αq there is a c ⊇ aq such that µ̄c = αp; now
q′ = (c, αq) ≥ q and p and q′ are incompatible upwards. Otherwise, αq ≤ αp and ap 6⊆ aq. As αq ≤ µ̄1, there
is a d disjoint from ap ∪ aq such that µ̄d = αq − µ̄(ap ∪ aq); set c = aq ∪ d. Then

µ̄c < µ̄(ap ∪ c) = αq,

so, just as in (a), (c, αq) ≥ q and p, (c, αq) are incompatible upwards.
By Fremlin 08, 514Me, it follows that [p,∞[ is a regular up-open set for every p ∈ P .

1F Definition (Fremlin 08, 528S3) Let (A, µ̄) be a measure algebra. I will say that a well-spread
basis for A is a non-decreasing sequence 〈Dn〉n∈N of subsets of A such that

(i) setting D =
⋃

n∈N Dn, #(D) ≤ max(ω, c(A), τ(A));
(ii) if a ∈ A, γ ∈ R and µ̄a < γ, there is a set D ⊆

⋃
n∈N Dn such that a ⊆ supD and

µ̄(supD) < γ;
(iii) if n ∈ N and 〈di〉i∈N is a sequence in Dn such that µ̄(supn∈N dn) < ∞, there is an infinite

set J ⊆ N such that d = supi∈J di belongs to Dn;
(iv) whenever n ∈ N, a ∈ A and µ̄a ≤ γ′ < γ < µ̄1, there is a b ∈ A such that a ⊆ b and

γ′ ≤ µ̄b < γ and µ̄(b ∪ d) ≥ γ whenever d ∈ Dn and d 6⊆ a.

1G Lemma (Fremlin 08, 528T4) (a) Let κ be an infinite cardinal, and 〈eξ〉ξ<κ the standard gener-
ating family in Bκ (Fremlin 08, 525A). For n ∈ N let Cn be the set of elements of Bκ expressible as
infξ∈I eξ ∩ infξ∈J(1 \ eξ) where I, J ⊆ κ are disjoint and #(I ∪ J) ≤ n. Then 〈Cn〉n∈N is a well-spread basis
for (Bκ, ν̄κ), with C0 = {1}. Moreover,

(*) for each n ≥ 1, there is a set C ′
n ⊆ Cn, of cardinal κ, such that µ̄c = 2−n for every

c ∈ C ′
n, and whenever a ∈ Bκ \ {1} and I ⊆ C ′

n is infinite, there is a c ∈ I such that
c′ 6⊆ a ∪ c whenever c′ ∈ Cn and c ⊂ c′.

(b) Let (A, µ̄) be a measure algebra and e ∈ A. If 〈Cn〉n∈N is a well-spread basis for (Ae, µ̄↾Ae) and
〈Dn〉n∈N is a well-spread basis for (A1\e, µ̄↾A1\e), then 〈Cn ∪ Dn〉n∈N is a well-spread basis for (A, µ̄).

1H Lemma (compare Fremlin 08, 528U5) Let (A, µ̄) be an atomless semi-finite measure algebra. Let
E, ǫ, 4 and F be such that

E is a partition of unity in A such that Ae is homogeneous and 0 < ǫ ≤ µ̄e < ∞ for every
e ∈ E;

4 is a well-ordering of E such that τ(Ae) ≤ τ(Ae′) whenever e 4 e′ in E;
F is a partition of E such that each member of F is either a singleton or a countable set with

no 4-greatest member.

Set P = P ∗(A, µ̄) and let P0 be

{p : p ∈ P , αp ≤ µ̄(ap ∪ e) whenever {e} ∈ F}.

Then RO↑(P0) has countable Maharam type.

proof (a)(i) For every e ∈ E, (Ae, µ̄↾Ae) is a non-zero atomless homogeneous totally finite measure algebra,
so is isomorphic, up to a scalar multiple of the measure, to (Bκ, ν̄κ) for some infinite cardinal κ (Fremlin

2Later editions only.
3Later editions only.
4Later editions only.
5Later editions only.
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02, 331L). So we can copy the well-spread basis for (Bκ, ν̄κ) described in 1Ga into a well-spread basis
〈Den〉n∈N for (Ae, µ̄↾Ae) such that

#(
⋃

n∈N Den) = τ(Ae),
µ̄d ≥ 2−nµ̄e whenever n ∈ N and d ∈ Den,
De0 = {e},
for each n ≥ 1 there is a set D′

en ⊆ Den, of cardinal τ(Ae), such that µ̄d = 2−nµ̄e for every
d ∈ D′

en, and whenever a ∈ Ae \ {e} and I ⊆ D′
en is infinite, there is a d ∈ I such that d′ 6⊆ a ∪ d

whenever d′ ∈ Den and d′ ⊃ d,
(
⋃

n∈N Den) \ (
⋃

n≥1 D′
en) has cardinal τ(Ae).

(The last item is not mentioned in 1G, but is clearly achievable by thinning the sets D′
en appropriately.)

Note that 〈D′
en〉n≥1 is a disjoint sequence of subsets of Ae for each e, so 〈D′

en〉e∈E,n≥1 is disjoint.

(ii) For e ∈ F ∈ F , set

De =
⋃

n∈N Den \
⋃

n≥1 D′
en, D∗

e =
⋃

e′∈F,e′4e De.

Because F is countable and τ(Ae′) ≤ τ(Ae) whenever e′ 4 e, #(D∗
e) = τ(Ae) = #(D′

en) for every n ≥ 1. We
therefore have a partition 〈Ied〉d∈D∗

e
of

⋃
n≥1 D′

en into countably infinite sets such that Ied ∩ D′
en is infinite

whenever d ∈ D∗
e and n ≥ 1.

Let θ be a limit ordinal such that the set Ω of limit ordinals less than θ has cardinal #(
⋃

e∈E De). (Of
course we can take θ to be either an uncountable cardinal or the ordinal product ω ·ω or 0.) Again because
every member of F is countable, we have an enumeration 〈dξ〉ξ<θ of

⋃
e∈E,n∈N Den such that whenever ξ ∈ Ω

then there are F ∈ F and e ∈ F such that

dξ ∈ De, {dξ+i : i ≥ 1} =
⋃

e′∈F,e′<e Ie′dξ
.

This will mean that whenever ξ ∈ Ω and F ∈ F , e ∈ F are such that dξ ∈ Ae, then {i : dξ+i ∈ D′
e′n} is

infinite whenever e′ ∈ F , e 4 e′ and n ∈ N.

(b)(i) P0 ∈ RO↑(P ). PPP Evidently P0 is up-open. If p ∈ P \P0, that is, there is some e such that {e} ∈ F
and µ̄(ap ∪ e) < αp, set q = (ap ∪ e, αp); then p ≤ q ∈ P , while

µ̄(aq′ ∪ e) = µ̄aq′ < αq′ ≤ αp

whenever q′ ∈ [q,∞[, so [q,∞[ does not meet P0. Accordingly [p,∞[ 6⊆ P 0 and p /∈ intP 0. As p is arbitrary,
P0 = int P 0 ∈ RO↑(P ). QQQ

It follows that RO↑(P0) is the principal ideal of RO↑(P ) generated by P0 (Fremlin 02, 314R(b-ii)6).
Moreover, for p ∈ P0, [p,∞[ is the same whether taken in P or P0, and belongs to RO↑(P ) by 1E above.

(ii) For p ∈ P0 and n ∈ N, set An(p) = {d : d ∈
⋃

e∈E Den, d ⊆ ap}. Of course An(p) ⊆ An(q) whenever
p ≤ q. Also any sequence in An(p) has a subsequence with an upper bound in An(p). PPP Set L = {e : e ∈ E,
µ̄(ap ∩ e) ≥ 2−nǫ}; then L is finite. If e ∈ E \ L and d ∈ Den, then d ⊆ e and

µ̄d ≥ 2−nµ̄e ≥ 2−nǫ > µ̄(ap ∩ e) ≥ µ̄(ap ∩ d),

so d 6⊆ a. Thus An(p) ⊆
⋃

e∈L Den. It follows that if 〈ci〉i∈N is any sequence in An(p), there is an e ∈ L such
that J = {i : ci ∈ Den} is infinite. Now there is an infinite I ⊆ J such that c = supi∈I ci belongs to Den. In
this case, c ⊆ a so c ∈ An(p) is an upper bound of {ci : i ∈ I}. QQQ

It follows that An(p) has only finitely many maximal elements, and any non-decreasing sequence in An(p)
has an upper bound in An(p). Consequently, every member of An(p) is included in a maximal element of
An(p). PPP??? Otherwise, we should be able to find a strictly increasing family 〈cξ〉ξ<ω1

in An(p); but now
there must be a ξ < ω1 such that µ̄cξ = µ̄cξ+1 < γ and cξ = cξ+1. XXXQQQ

Set En(p) = {ξ : dξ is a maximal element of An(p)}, so that En(p) is a finite subset of θ.

(iii) For n ∈ N and γ ∈ R, set

Qnγ = {q : q ∈ P0, αq = γ, An(q) = An(q′) whenever q ≤ q′ ∈ P0}.

Then whenever p ∈ P0, n ∈ N and µ̄ap < γ < αp there is a q ∈ Qnγ such that p ≤ q and An(p) = An(q).
PPP Let L be a finite subset of E including {e : µ̄(ap ∩ e) ≥ 2−n−1ǫ} and such that µ̄(sup L) > γ. Then

6Later editions only.
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〈
⋃

e∈L Dem〉m∈N is a well-spread basis for (Asup L, µ̄↾Asup L). (Induce on #(L), using 1Gb for the inductive
step.) Since

µ̄(ap ∩ supL) < γ − µ̄(ap \ supL) < µ̄(sup L),

there is a a b0 ∈ Asup L, including ap ∩ supL, such that

γ − µ̄(ap \ supL) − 2−n−1ǫ ≤ µ̄b0 < γ − µ̄(ap \ sup L) ≤ µ̄(b0 ∪ d)

whenever d ∈
⋃

e∈L Den and d 6⊆ ap. Then µ̄(b0 ∪ ap) = µ̄b0 + µ̄(a \ supL) < γ, so q = (b0 ∪ ap, γ) belongs to
P0. If q ≤ q′ ∈ P0 and d ∈

⋃
e∈E Den \ An(p), then either e ∈ L and

µ̄(aq′ ∪ d) ≥ µ̄(b0 ∪ d) + µ̄(ap \ supL) ≥ γ > µ̄aq′ ,

or e /∈ L,

µ̄(d \ ap) ≥ µ̄d − µ̄(ap ∩ e) ≥ 2−nµ̄e − 2−n−1ǫ ≥ 2−n−1ǫ

and

µ̄(aq′ ∪ d) ≥ µ̄b0 + µ̄(ap \ supL) + 2−n−1ǫ ≥ γ > µ̄aq′ ;

in either case d 6⊆ aq′ . Thus An(q′) = An(p) = An(q) whenever q ≤ q′ ∈ P0, and q ∈ Qnγ . QQQ

(c)(i) For m, n, i ∈ N, γ ∈ Q and ξ ∈ Ω, set

Qnmiγξ = {q : q ∈ Qnγ , ξ + i ∈ En(q), #(En(q) ∩ ξ) = m},

Gnmiγξ = sup{[b,∞[ : b ∈ Qnmiγξ} ∈ RO↑(P0).

(ii) For any m, n, i ∈ N and γ ∈ Q, 〈Gnmiγξ〉ξ∈Ω is disjoint. PPP Suppose that ξ < η in Ω. If p ∈ Qnmiγξ

and q ∈ Qnmiγη, we see that ξ + i < η, ξ + i ∈ En(p) and

#(En(q) ∩ η) = m = #(En(p) ∩ ξ) < #(En(p) ∩ η).

So En(p) 6= En(q) and An(p) 6= An(q). But both p and q are supposed to belong to Qnγ , so [p,∞[ must be
disjoint from [q,∞[. As q is arbitrary, [p,∞[ ∩ Gnmiγη = ∅; as p is arbitrary, Gnmiγξ ∩ Gnmiγη = ∅. QQQ

(iii) For any ξ ∈ Ω and p ∈ P0, there are m, n, i ∈ N, γ ∈ Q and q ∈ Qnmiγξ such that p ≤ q. PPP Let
e ∈ E be such that dξ ⊆ e; let F be the member of F containing e. If F = {e}, then µ̄(ap ∪ e) ≥ αp > µ̄ap;
set e0 = e, so that e0 ∈ F , e0 < e and ap ∩ e0 6= e0. Otherwise, there are infinitely many members of F
greater than e for the ordering 4, because F has no greatest member, so µ̄(supe′∈F,e′<e e′) = ∞, and there
must be an e0 ∈ F such that e0 < e and ap ∩ e0 6= e0.

Take γ ∈ Q∩]µ̄ap, αp]. Let n ∈ N be such that 2−nµ̄e0 < min(γ−µ̄a, µ̄(e0 \ a)). Then {dξ+i : i ≥ 1} meets
D′

e0n in an infinite set. So there is an i ∈ N such that dξ+i ∈ D′
e0n, µ̄dξ+i = 2−nµ̄e0, and d 6⊆ (ap ∩ e0) ∪ dξ+i

whenever d ∈ De0n and d ⊃ dξ+i. Set p′ = (ap ∪ dξ+i, γ); then p ≤ p′ ∈ P0 and dξ+i is a maximal member of
An(p′). Let q ∈ Qnγ be such that p′ ≤ q and An(q) = An(p′). Then ξ + i ∈ En(q). Set m = #(En(q) ∩ ξ).
Then q ∈ Qnmiγξ and p ≤ q. QQQ

Accordingly q ∈ [p,∞[∩Gnmiγξ. As p is arbitrary,
⋃

m,n,i∈N,γ∈Q Gnmiγξ is dense in P0 and supm,n,i∈N,γ∈Q Gnmiγξ =

P0 in RO↑(P0).

(d)(i) Let G be the order-closed subalgebra of RO↑(P0) generated by {Gnmiγξ : m, n, i ∈ N, γ ∈ Q,
ξ ∈ Ω}. By (c-ii) and (c-iii), the conditions of Fremlin 08, 514F are satisfied, and G has countable Maharam
type.

(ii) If p ∈ P0 and ap ∈
⋃

e∈E,n∈N Den, then [p,∞[ ∈ G. PPP Set

H = sup{Gnmiγξ : m, n, i ∈ N, γ ∈ Q, ξ ∈ Ω and Gnmiγξ ⊆ [p,∞[} ∈ RO↑(P0).

Then H ∈ G and H ⊆ [p,∞[. Suppose that p′ ∈ P0 and p′ ≥ p. Let n ∈ N be such that ap ∈
⋃

e∈E Den.
Take γ ∈ Q∩ ]µ̄ap′ , αp′ ] and set p′′ = (ap′ , γ). Then p ≤ p′ ≤ p′′ and there is a q ∈ Qnγ such that p′′ ≤ q. In
this case, ap ∈ An(q) so there is a maximal d ∈ An(q) including ap; let ξ ∈ Ω, i ∈ N be such that d = dξ+i,
and set m = #(En(q)∩ξ). Then q ∈ Qnmiγξ. On the other hand, for any q′ ∈ Qnmiγξ, ap ⊆ dξ+i ⊆ aq′ , while
αq′ = γ ≤ αp′ ≤ αp, so [q′,∞[ ⊆ [p,∞[; as q′ is arbitrary, Gnmiγξ ⊆ [p,∞[ and Gnmiγξ ⊆ H. Accordingly
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q ∈ H ∩ [p′,∞[. As p′ is arbitrary, H is dense in [p,∞[ and must be the whole of [p,∞[; thus we have
[p,∞[ = H ∈ G. QQQ

(iii) If p ∈ P0 there is a q ∈ P0 such that p ≤ q and [q,∞[ ∈ G. PPP Take γ ∈ Q∩ ]µ̄ap, αp[. Let E0 be a
countable subset of E such that ap ⊆ sup E0 and µ̄(supE0) > γ. Set L = {e : e ∈ E0, ap ⊇ e}. Then E0 \ L
is non-empty, and

∑
e∈E0\L µ̄(ap ∩ e) = µ̄ap − µ̄(sup L) < γ − µ̄(sup L).

We therefore have a family 〈γe〉e∈E0\L such that µ̄(a ∩ e) < γe ≤ µ̄e for every e ∈ E0 \ L and
∑

e∈E0\L γe <

γ − µ̄(sup L). For each e ∈ E0 there is a Be ⊆
⋃

n∈N Den such that a ∩ e ⊆ supBe and µ̄ supBe ≤ γe, by
1F(ii). Set

B = L ∪
⋃

e∈E0\L Be ⊆
⋃

e∈E,n∈N Den

and b = sup B. Then ap ⊆ b and

µ̄b = µ̄(supL) +
∑

e∈E0\L µ̄(supBe) ≤ µ̄(supL) +
∑

e∈E0\L γe < γ,

so q = (b, γ) ∈ P0. On the other hand, Lemma 1B tells us that

[q,∞[ = infd∈B [(d, γ),∞[ ∈ G

as required. QQQ

(iv) As p is arbitrary, G includes a π-base for the Boolean algebra RO↑(P0) and must be the whole of
RO↑(P0). Accordingly

τ(RO↑(P0)) = τ(G) ≤ ω.

This completes the proof.

1I Theorem (compare Fremlin 08, 528V7) Let (A, µ̄) be a semi-finite measure algebra with at most c

atoms. Then AM∗(A, µ̄) has countable Maharam type.

proof Throughout the proof, P will stand for P ∗(A, µ̄).

(a) Suppose that there are a partition E of unity in A and an ǫ > 0 such that Ae is homogeneous and
ǫ ≤ µ̄e < ∞ for every e ∈ E.

(i) Set Ea = {e : e ∈ E, e is an atom}; then #(Ea) ≤ c. Set Ec = E \ Ea. Let 4 be a well-ordering of
Ec such that τ(Ae) ≤ τ(Ae′) whenever e 4 e′ in Ec. Let F0 be a maximal disjoint family of subsets of Ec

of order type ω. Then M0 = Ec \
⋃
F0 must be finite; set F = F0 ∪ {{e} : e ∈ M0}.

(ii) Set M = M0 ∪ Ea. For L ∈ [M ]<ω, set

PL = {p : p ∈ P , ap ⊇ supL, µ̄(ap ∪ e) ≥ αp for e ∈ M \ L}.

Then 〈PL〉L⊆M is finite is a disjoint family of open subsets of P . Also
⋃

L∈[M ]<ω PL is dense in P . PPP If

p ∈ P , there is a maximal finite L ⊆ M such that µ̄(ap ∪ supL) < αp, because µ̄e ≥ ǫ for every e ∈ E. Set
q = (ap ∪ supL,αp); then p ≤ q ∈ PL. QQQ So RO↑(P ) is isomorphic to the simple product

∏
L∈[M ]<ω RO↑(PL)

(Fremlin 02, 315S8).

(iii) If L ∈ [M ]<ω, then RO↑(PL) has countable Maharam type. PPP If PL = ∅ this is trivial. Otherwise
there is a p ∈ PL and µ̄(supL) ≤ µ̄ap < αp ≤ µ̄1. Consider A

′ = A1\ sup(L∪Ea), E′ = E \ (L ∪ Ea),
F ′ = F \{{e} : e ∈ L∩M0} and 4′ = 4∩(E′×E′). Then (A′, µ̄↾A

′), E′, ǫ, 4′ and F ′ satisfy the conditions
of Lemma 1H. Setting

Q0 = {q : q ∈ P ∗(A′, µ̄↾A
′), αq ≤ µ̄(aq ∪ e) for every e ∈ M0 \ L},

RO↑(Q0) has countable Maharam type, by 1H. But the map q 7→ (aq ∪ supL,αq + µ̄(sup L)) is an order-
isomorphism between Q0 and PL, so RO↑(PL) has countable Maharam type. QQQ

7Later editions only.
8Later editions only.
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(iv) As #([M ]<ω) ≤ c, AM(A, µ̄, γ) = RO↑(P ) is isomorphic to the product of at most c Boolean
algebras with countable Maharam type, and has countable Maharam type (Fremlin 08, 514Ef).

(b) Now suppose that (A, µ̄) is localizable.

(i) In this case, let E be a partition of unity in A such that Ae is homogeneous and 0 < µ̄e < ∞ for
every e ∈ E. For each k ∈ N, set

Ek = {e : e ∈ E, µ̄e ≥ 2−k}, e∗k = supEk.

By (a), AM∗(Ae∗

k
, µ̄↾Ae∗

k
) has countable Maharam type for every k.

(ii) Now Proposition 1D tells us that we have a sequence 〈πk〉k∈N such that πk is an order-continuous
ring homomorphism from AM∗(Ae∗

k
, µ̄↾Ae∗

k
) into AM∗(A, µ̄) for each k, and

⋃
k∈N πk[AM(Ae∗

k
, µ̄↾Ae∗

k
)] τ -

generates AM∗(A, µ̄). So AM(A, µ̄, γ) has countable Maharam type. PPP For each k, we have a countable
τ -generating set Dk ⊆ AM∗(Ae∗

k
, µ̄↾Ae∗

k
). Let G be the order-closed subalgebra of AM∗(A, µ̄) generated by

D =
⋃

k∈N πk[Dk∪{1k}], where 1k here is the greatest element of AM∗(Ae∗

k
, µ̄↾Ae∗

k
). For each k ∈ N, π−1

k [G]
is an order-closed subalgebra of AM∗(Ae∗

k
, µ̄↾Ae∗

k
) including Dk, so is the whole of AM∗(Ae∗

k
, µ̄↾Ae∗

k
), that is,

πk[AM∗(Ae∗

k
, µ̄↾Ae∗

k
)] ⊆ G. Since

⋃
k∈N πk[AM∗(Ae∗

k
, µ̄↾Ae∗

k
)] τ -generates AM∗(A, µ̄), G = AM∗(A, µ̄) and

τ(AM∗(A, µ̄)) ≤ #(D) ≤ ω. QQQ

(c) Thus we have the result when (A, µ̄) is localizable. For the general case of atomless semi-finite (A, µ̄),

let (Â, µ̃) be the localization of (A, µ̄) (Fremlin 02, 322Q9). Since the embedding A ⊂→ Â identifies A
f with

Âf (Fremlin 02, 322P10), P ∗(Â, µ̃) can be identified with P , and the regular open algebras AM∗(A, µ̄) and

AM∗(Â, µ̃) are isomorphic. Again because A
f and Â

f are isomorphic, Â has at most c atoms. By (b), the

common Maharam type of AM∗(A, µ̄) and AM∗(Â, µ̃) is countable.

1J Example Let X be a set, and µ counting measure on X. Then AM∗(PX,µ) is purely atomic, with
#([X]<ω) atoms. PPP (i) For I ∈ [X]<ω, set pI = (I, 1

2 + µI). Then 〈pI〉I∈[X]<ω is an up-antichain in
P = P ∗(PX,µ). (ii) If p ∈ P , then I = ap is a finite subset of X, and µ(ap ∪apI

) = µI < min(αp, αpI
); thus

p and pI are compatible upwards; as p is arbitrary, 〈pI〉I∈[X]<ω is a maximal up-antichain. (iii) If I ∈ [X]<ω

and p, q ∈ [pI ,∞[, then ap = aq = I so p and q are compatible upwards; thus VpI
is an atom in RO↑(P ).

So RO↑(P ) = AM∗(PX,µ) is purely atomic, and we have a listing of its atoms. QQQ
Accordingly τ(AM∗(PX,µ)) = #(X) if X is finite and otherwise is min{λ : #(X) ≤ 2λ} (Fremlin 08,

514Xr11). In particular, it will be uncountable if #(X) > c.

1K Theorem Let (A, µ̄) be a purely atomic semi-finite measure algebra, and E the set of its atoms.
Suppose that

for every ǫ > 0 there is a δ > 0 such that #({e : e ∈ E, δ ≤ µ̄e < ǫ}) = #(E).

Then AM∗(A, µ̄) has countable Maharam type.

proof (a) Set κ = #(E); let 〈ǫn〉n∈N be a non-increasing sequence with limit 0 such that E(n) = {e : e ∈ E,
ǫn+1 ≤ µ̄e < ǫn} has cardinal κ for every n ∈ N. Then we have a partition 〈Eξ〉ξ<κ of E into countable sets

such that Eξ ∩ E(n) is infinite for every ξ < κ and n ∈ N. Enumerate each Eξ as 〈eξi〉e∈N. Let 4 be the

well-ordering of E corresponding to the lexicographic ordering of N × κ; then Eξ ∩ E(n) is cofinal for every
ξ and n.

(b) For p ∈ P = P ∗(A, µ̄) and n ∈ N, set An(p) = {e : e ∈ E, e ⊆ ap, µ̄e ≥ ǫn}; then An(p) is finite. For
n ∈ N, J ∈ [N]<ω, γ ∈ Q and ξ < κ set

Qn = {q : q ∈ P , An(q′) = An(q) 6= ∅ whenever q′ ≥ q},

9Formerly 322P.
10Formerly 322O.
11Later editions only.
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QnJγξ = {q : q ∈ Qn, the 4 -largest member of An(q) belongs to Eξ,

αq = γ and {i : eξi ∈ An(q)} = J},

GnJγξ = sup{Vq : q ∈ QnJγξ} ∈ RO↑(P ).

(c)(i) If n ∈ N, J ∈ [N]<ω, γ ∈ Q, ξ < η < κ, q ∈ QnJγξ and q′ ∈ QnJγη then An(q) 6= An(q′), while
both q and q′ belong to Qn. So [q,∞[ cannot meet [q′,∞[ and Vq ∩ Vq′ = ∅. As q and q′ are arbitrary,
GnJγξ ∩ GnJγη = ∅.

(ii) If p ∈ P , αp = γ ∈ Q, ξ < κ and m ∈ N, there are n ≥ m, J ∈ [N]ω and q ∈ QnJγξ such
that p ≤ q. PPP Take n > m such that ǫn−1 + µ̄ap ≤ γ. Let i ∈ N be such that ǫn ≤ µ̄eξi < ǫn−1 and

e 4 eξi for every e ∈ An(p). Then µ̄(ap ∪ eξi) < µ̄ap + ǫn−1 ≤ γ. Let L ⊆ E(n) be a maximal set such that

µ̄(ap ∪ eξi ∪ supL) < γ (such exists because µ̄e ≥ ǫn+1 for every e ∈ E(n)); set q = (ap ∪ eξi ∪ supL, γ) ∈ P .

Of course p ≤ q. Because E(n) is infinite and µ̄e ≤ ǫn for every e ∈ E(n), µ̄aq ≥ γ − ǫn. It follows that if
q′ ≥ q, An(q′) = An(q) = An(p) ∪ {eξi}. Set J = {j : eξj ∈ An(q)}. By the choice of i, eξi is the 4-greatest
member of An(q), and q ∈ QnJγξ, as required. QQQ

It follows that
⋃

n∈N,J∈[N]<ω,γ∈Q GnJγξ is dense in P for every ξ < κ. PPP Given p ∈ P , take γ ∈ Q such

that µ̄ap < γ ≤ αp; then we have n ∈ N, J ∈ [N ]<ω and q ∈ QnJγξ such that (ap, γ) ≤ q, in which case
[p,∞[ ∩ GnJγξ 6= ∅. QQQ

(iii) Suppose that p ∈ P and ap ∈ E. Set

H = sup{GnJγξ : n ∈ N, J ∈ [N]<ω, γ ∈ Q, ξ < κ, GnJγξ ⊆ Vp} ∈ RO↑(P ).

Then H = Vp. PPP Of course H ⊆ Vp. In the other direction, take any p′ ≥ p in P . Let γ ∈ Q be such that
µ̄ap′ < γ ≤ αp′ . Let m ∈ N be such that µ̄ap ≥ ǫm; let ξ < κ, i ∈ N be such that ap = eξi. By (ii), there
are n ≥ m, J ∈ [N]<ω and q ∈ QnJγξ such that p′ ≤ q. Now eξi ∈ Am(p) ⊆ Am(q) ⊆ An(q), so i ∈ J and
eξi ∈ An(q′) whenever q′ ∈ QnJγξ; thus p ≤ (eξi, γ) ≤ q′ for every q′ ∈ QnJγξ, Vq′ ⊆ Vp for every q′ ∈ QnJγξ,
GnJγξ ⊆ Vp and GnJγξ ⊆ H. Accordingly q ∈ [p′,∞[ ∩ H; as p′ is arbitrary, H is dense in Vp and H = Vp.
QQQ

(d) By (c-i) and (c-ii) and Fremlin 08, 514F, as in (d-i) of the proof of 1H, the order-closed subalgebra
G of RO↑(P ) generated by {GnJγξ : n ∈ N, J ∈ [N]<ω, γ ∈ Q, ξ < κ} has countable Maharam type; by
(c-iii), G contains Vp whenever p ∈ P and ap ∈ E; by Lemma 1B, G contains Vp for every p ∈ P ; as in (d-iv)
of the proof of 1H, G = RO↑(P ) and RO↑(P ) = AM(A, µ̄) has countable Maharam type.
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