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Maharam types of amoeba algebras
D.H.FREMLIN
University of Essex, Colchester, England

1 Variable-measure amoeba algebras

1A Definitions (see FREMLIN 08, §528) Let (2, i) be a measure algebra. I will write P*(2, i) for the
set {(a,a) :a €, ia < a < fl}, ordered by saying that (a,a) < (b,8) if a C b and 8 < «.

In this context, I will say that if p = (a,«) then a = a, and o = a,. Note that p, ¢ € P*(, fi) are
compatible upwards in P*(2, f1) iff (ap U aq, min(ay,, aq)) € P*(A, i), that is, iff fi(a, Uag) < min(oy, o).

P*(, ) will always be given its up-topology (FREMLIN 08, 514L); the variable-measure amoeba
algebra AM* (2, i) (FREMLIN 08, 528Ab) is the regular open algebra ROT(P*(%, 1)). For p € P*(2, 1) I

will write V,, = int [p, oo[ € ROT(P*(2, j1)).

1B Lemma Let (2, i) be a measure algebra, and P the partially ordered set P*(2, ). If (a,a) € P and
C C 2 is a non-empty set with supremum a, then V, ) = infcec Vic,a) in ROT(P).

proof Since (¢, @) < (a,), Vig,a) € Vc,a) for every ¢ € C, and
‘/(a,a) c infceC ‘/(c,a) = ﬂcGC ‘/(c,a)

(FREMLIN 08, 514M(d-ii)!). In the other direction, take any p € (\.cc Vic,a)- There is a ¢o € C; as p and
(co, ) are compatible upwards, fia, < fi(apUco) < min(a,,a). Take 8 such that fia, < 8 < min(ay, @)
and consider (a,, 3). We know that [(a,, 3),00[ € .cc Vie,a)- Inducing on #(I), we see that for any finite
I C C there is a ¢ > (ap, §) such that ¢ C aq for every ¢ € I. But this means that fi(a,u supI) < j for
every finite I C C, so fi(ap Ua) < § and p is compatible upwards with (a,a), that is, p € [(a, @), 0]

Thus the open set inf.cc V(¢ o) is included in [(a, @), 00[ and therefore in its interior Via,a), and Vig o) =
infeec Vie,a), as claimed.

1C Proposition Let (2, 1) be a measure algebra, and e € 2; write 2. for the principal ideal generated
by e. Set

P=P,p), P.={p:peP,a,<plapue)},

Q=P (UAe, alAe).
Then P, € ROT(P). For p € P., set
f(p) = (ap ne,ap — ﬂ(ap\e))i

then f is an order-preserving function from P, to Q). Now we have an order-continuous ring homomorphism

7 : ROT(Q) — ROT(P) defined by setting mH = int f~1[H] for every H € ROT(Q).

proof It is easy to check that P is up-open. To see that it is regular, take any p € P \ P.. Then
p' = (ap Ue,ap) belongs to P, and [p’, oof is disjoint from P, so p ¢ int P.. As p is arbitrary, P, = int P, is
a regular up-open set.

If p € P, then

flap ne) = ap — fifap \ €) < ap — fi(ap \ ) < fi(ay ve) — fifa, \ €) = fie,

so f(p) € Q; it is now easy to see that f: P — @ is order-preserving.

Suppose that Qo C @ is up-open and cofinal. Then f~![Qo] is cofinal with P.. P Take any p € P.. Then
there is a ¢ € Qo such that ¢ > f(p), that is, ag 2 apne and oy < oy, — fi(ap \ €). In this case,

filap Uaq) = fiaq + filay \ €) < ag + ifay \ e) < ap,
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2 1C

so p = (apUag,aq+ i(ap \ €)) belongs to P and p’ > p. Because P, is up-open, p’ € P.. Now f(p') = ¢, so
p € f7Qo]. As p is arbitrary, f~1[Qo] is cofinal with P.. Q

If H € ROT(Q) then int f~1[H] is the same whether we define closure and interior in P or in P., because
P, is a regular up-open set. By FREMLIN 08, 5140, the given formula therefore defines an order-continuous
Boolean homomorphism from ROT(Q) to ROT(P,); since ROT(P,) is a principal ideal of ROT(P), we have
an order-continuous ring homomorphism from RO'(Q) to ROT(P).

1D Proposition Let (2, i) be a semi-finite measure algebra, and F C 2 an upwards-directed family
with supremum 1. Set P = P*(2, f1); for e € F set

PeZ{ptpEP, apgﬁ(apue)}a Qe:P*(meyﬂrQ{e)Q
for e € F and p € P, set

fe(p) = (apne, o — i(ap \ €));

and for e € E and H € RO'(Q.) set m.H = int fo '[H] € RO'(P). Then |J,.pm[ROT(Q.)] T-generates
ROT(P) in the sense of FREMLIN 02, 331E.

proof (a) As noted in Proposition 1C, P, is a regular up open set and f. : P. — Q. is order-preserving.
The key to the proof is the following fact: if p € P and jia, < o < o, then there is an eg € E such that

P’ = (ap, &) belongs to P, for every e € E such that e D ey, and

Vi Cinfecpene, Vi () € Vp
P (i) Of course p’ > p. Because o, < il = sup,cp fie, there is an ey € E such that o < fieg, and now
p € P, whenever eDey. Set By ={e:e€ E, eDeg}.
(ii) For any e € Ey,
', 00 C fH [ [fe(@'), 0[] € fo Vi )]
because f. is order-preserving, so that
Vor © eV )
for every e € Ep; that is, Vjy Cinfeer, me Vi, (p)-
(iii) On the other side, suppose that
q < infeeEo Were(p/) = ﬂeEEo Were(p/)
(FREMLIN 08, 514M(d-ii) again). Then for any ¢’ > ¢ and e € Ey,

[q’, OO[ - [qv OO[ - f;l[er(p/)].
So [¢’, 00N fe_l[er(p,)] is non-empty, and there is a ¢” > ¢’ such that f.(¢") € V. )y C [fe(p'),00[. But
this means that f.(¢"") and f.(p'), therefore also f.(¢’) and f.(p’), are compatible upwards in Q., that is,
i((ag ne)u(apne)) < min(ag — ilag \ €), a — fi(ap \ €)).
Since FEy, like E, is upwards-directed and has supremum 1, we can take the limit as e increases and get
flag Uayp) < min(ay, o);
and this is true whenever ¢’ > ¢. In the first instance, this means that fi(aq Ua,) < § whenever fia, < 5 < ag;
so in fact fi(aq Uay) < fiag and a4 2 ap. Next, fia, < a. But it follows that
fi(ap U ag) = fiag < min(ayp, ag)

and ¢ and p are compatible upwards in P, that is, g € [p, oo].
As q is arbitrary, the open set inf.ep 7.V}, () is included in [p, oo and therefore in int [p, oo[ = V},, as
claimed. Q

(b) Let & be the order-closed subalgebra of RO'(P) generated by |J..p me[ROT(Q.)]. Then all the sets
infee g, e VY. (a,,a) examined in (a) belong to &. So (a) tells us that for every p € P there are a p’ > p
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and a G € & such that V,; C G CV,. As {[p,o00[ : p € P} is a base for the topology of P consisting of
non-empty sets, {V, : p € P} is a m-base of the Boolean algebra RO'(P) consisting of non-zero elements,
and & includes a 7-base of ROT(P); being order-closed, it is the whole of ROT(P), as required.

1E Lemma (compare FREMLIN 08, 528B2) Let (2, /i) be an atomless semi-finite measure algebra. Then
P = P*(, i) is separative upwards, so [p,oc[ € ROT(P) for every p € P.

proof Let p, ¢ € P be such that p £ ¢. If fi(ap Uay) > min(ay, ay) then p and ¢ are already incompatible
upwards. So suppose that fi(ap, Uaq) < min(ay,aq). If ap < o4 there is a ¢ D a4 such that fic = a,; now
¢ = (c,aq) > g and p and ¢’ are incompatible upwards. Otherwise, o, < o, and a, € a,. As ay < fil, there
is a d disjoint from a, U a, such that id = oy — fi(ap Uag); set ¢ = agud. Then

/_LC < ,L_l‘(ap UC) = Oéq,

so, just as in (a), (¢, oq) > ¢ and p, (¢, ) are incompatible upwards.
By FREMLIN 08, 514Me, it follows that [p, oo[ is a regular up-open set for every p € P.

1F Definition (FREMLIN 08, 5285%) Let (2, i) be a measure algebra. I will say that a well-spread
basis for 2 is a non-decreasing sequence (D,,),cn of subsets of 2 such that
(i) setting D = (U, ey Dn, #(D) < max(w, c(A), 7(A));
(ii) if a € A, v € R and fia < v, there is a set D C |J,,cyy D such that a C sup D and
f(sup D) < ;
(iii) if n € N and (d;);en is a sequence in D,, such that fi(sup, ¢y dn) < 00, there is an infinite
set J C N such that d = sup,c y d; belongs to Dy;
(iv) whenever n € N, a € 2 and fia < 7' < v < fil, there is a b € 2 such that a C b and
~' < @b < v and a(bud) > v whenever d € D,, and d Z a.

1G Lemma (FREMLIN 08, 528T*) (a) Let s be an infinite cardinal, and (e¢)¢<, the standard gener-
ating family in B, (FREMLIN 08, 525A). For n € N let C,, be the set of elements of B, expressible as
infeeree N infecy(1\ eg) where I, J C & are disjoint and #(I U J) < n. Then (Cp)nen is a well-spread basis
for (B, vy), with Cy = {1}. Moreover,
(*) for each n > 1, there is a set C/, C C,,, of cardinal s, such that ic = 27" for every
¢ € C}, and whenever a € B, \ {1} and I C C/, is infinite, there is a ¢ € I such that
¢ ¢auc whenever ¢ € C,, and cc .
(b) Let (A, ) be a measure algebra and e € A. If (Cp)nen is a well-spread basis for (A, al2A.) and
(Dn)nen is a well-spread basis for (2\ ¢, 1] A1\ ), then (Cp, U Dy )nen is a well-spread basis for (21, f1).

1H Lemma (compare FREMLIN 08, 528U°) Let (2, /1) be an atomless semi-finite measure algebra. Let
E, €, < and F be such that
FE is a partition of unity in 2 such that 2. is homogeneous and 0 < € < fie < oo for every
e € F,;
< is a well-ordering of E such that 7(.) < 7(./) whenever e < e’ in E;
F is a partition of F such that each member of F is either a singleton or a countable set with
no <-greatest member.
Set P = P*(, i) and let Py be

{p:p€P, ap <f(apue) whenever {e} € F}.
Then ROT(Py) has countable Maharam type.
proof (a)(i) For every e € E, (U, i 2.) is a non-zero atomless homogeneous totally finite measure algebra,

so is isomorphic, up to a scalar multiple of the measure, to (B, 7,;) for some infinite cardinal x (FREMLIN

2Later editions only.
3Later editions only.
4Later editions only.
5Later editions only.
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02, 331L). So we can copy the well-spread basis for (B, 7,) described in 1Ga into a well-spread basis
(Den)nen for (e, af2A.) such that

#(Upen Den) = 7(2Ae),

pd > 27" ke whenever n € N and d € D,

Doy = {6}7

for each n > 1 there is a set D/, C D.,, of cardinal 7(%.), such that id = 27" fie for every
d € D.,, and whenever a € 2, \ {e} and I C D/ is infinite, there is a d € I such that d' Zaud

whenever d' € D,,, and d' > d,
(Unen Den) \ (Up>1 DL,,) has cardinal 7(2,).

n>1"en

(The last item is not mentioned in 1G, but is clearly achievable by thinning the sets D!, appropriately.)
Note that (D, )n>1 is a disjoint sequence of subsets of 2, for each e, so (D, )ccp n>1 is disjoint.

(ii) Fore € F € F, set

De :UnENDeTl\Un21 Dén’ DZ = Ue’EF,e’%e De'

Because F is countable and 7(2) < 7(2.) whenever €’ X e, #(D}) = 7(™e) = #(D.,,) for every n > 1. We
therefore have a partition (Icq)qep= of |J,,~; Dy, into countably infinite sets such that I.q N D, is infinite
whenever d € Df and n > 1. -

Let ¢ be a limit ordinal such that the set € of limit ordinals less than 6 has cardinal # (.. De). (Of
course we can take 6 to be either an uncountable cardinal or the ordinal product w-w or 0.) Again because
every member of F is countable, we have an enumeration (dg)¢<g of |J D.,, such that whenever £ € Q)
then there are F' € F and e € F' such that

dg c De, {d§+z ) Z 1} = Ue/GF,e/#e Ie’dg'

This will mean that whenever £ € Q and F € F, e € F are such that d¢ € A, then {i : dey; € D, .} is
infinite whenever ¢’ € F, e < ¢ and n € N.

(b)(i) P, € ROT(P). P Evidently P, is up-open. If p € P\ Py, that is, there is some e such that {e} € F
and fi(ap Ue) < ap, set ¢ = (ap Ue, ap); then p < g € P, while

ecE,neN

flag ue) = ay < ag < a

whenever ¢’ € [g, 00|, so [g, oo[ does not meet Py. Accordingly [p,co[ € Py and p ¢ int Py. As p is arbitrary,
Py = int Py € ROT(P). Q

It follows that ROT(P) is the principal ideal of ROT(P) generated by Py (FREMLIN 02, 314R(b-ii)%).
Moreover, for p € Py, [p,oc[ is the same whether taken in P or Py, and belongs to ROT(P) by 1E above.

(ii) Forp € Pyandn € N, set A, (p) = {d:d € U,cp Den, d C a,}. Of course A, (p) C A, (¢) whenever
p < q. Also any sequence in A, (p) has a subsequence with an upper bound in A, (p). P Set L={e:e € E,
flap,ne) > 27"e}; then L is finite. If e € £\ L and d € D,,, then d C e and

pd >2""pe > 27" > f(ap ne) > fa,nd),

sodZa. Thus An(p) € U.cp, Den- It follows that if (c;)ien is any sequence in A, (p), there is an e € L such
that J = {i : ¢; € Dy} is infinite. Now there is an infinite I C J such that ¢ = sup,c; ¢; belongs to Dey. In
this case, ¢ C a so ¢ € A, (p) is an upper bound of {c; : i € I}. Q

It follows that A,,(p) has only finitely many maximal elements, and any non-decreasing sequence in A, (p)
has an upper bound in A4, (p). Consequently, every member of A, (p) is included in a maximal element of
An(p). P? Otherwise, we should be able to find a strictly increasing family (c¢)e<w, in A,(p); but now
there must be a & < wy such that fice = ficey1 <y and ¢¢ = ce11. XQ

Set E,(p) = {¢ : d¢ is a maximal element of A, (p)}, so that E,(p) is a finite subset of 6.

(iii) For n € N and v € R, set
@ny ={a:q€ Py, ag =7, An(q) = An(q') whenever ¢ < ¢' € Po}.

Then whenever p € Py, n € N and fia, < v < a, there is a ¢ € Q4 such that p < ¢ and A, (p) = A,(q).
P Let L be a finite subset of E including {e : ji(a, ne) > 27" e} and such that fi(sup L) > 7. Then

SLater editions only.
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(Ueer Dem)men is a well-spread basis for (sup 1, /1] ™sup ). (Induce on #(L), using 1Gb for the inductive
step.) Since
flapnsupL) <y — fap\ sup L) < fi(sup L),
there is a a by € Usyp 1, including a, N sup L, such that
v = fiap \ sup L) — 27" e < fibg < — fiap \ sup L) < ji(bo ud)
whenever d € |, Den and d € ap,. Then fi(bo U ap) = fibg + fi(a \ sup L) < v, so ¢ = (bo U ap,) belongs to
Py. If g < ¢ € Pyand d € |J,c Den \ An(p), then either e € L and
filag ud) = fi(bo Ud) + fi(ap \ sup L) = v > fag,

ored¢ L,

f(d\ap) > pd — fi(a,ne) > 27" e — 27" te > 27" e
and

fi(ay ud) > fibg + fi(a, \ sup L) + 27" te > v > fiay;
in either case d Z ay. Thus A, (¢') = A, (p) = An(¢) whenever ¢ < ¢’ € Py, and g € Q. Q

(c)(d) For m, n,i € N,y € Q and £ € Q, set
Qnmine =191 4 € Quy, E+1i € En(q), #(En(q) NE) = m},

Grmive = sup{[b,00[ : b € Qnmive} € ROT(P).

(ii) For any m, n, i € Nand v € Q, (Gpmiye)ecq is disjoint. I Suppose that £ < nin Q. If p € Qpmiye
and ¢ € Qnmiyy, We see that £ +1i < n, £ +i € E,(p) and

#(En(q) Nn) =m = #(En(p) N &) < #(En(p) Nn).

So E,(p) # En(q) and A, (p) # A,(q). But both p and ¢ are supposed to belong to Q.+, so [p, co[ must be
disjoint from [g,00[. As ¢ is arbitrary, [p,co[ N Gpmiyy = 0; as p is arbitrary, Gpmive N Grmivy = 0. Q

(iii) For any £ € ©Q and p € Py, there are m, n, i € N, v € Q and ¢ € Qpnmiye such that p < g. P Let
e € E be such that d¢ C e; let F be the member of F containing e. If F' = {e}, then fi(ay Ue) > a;, > fay;
set eg = e, so that eg € F, ey = e and apneg # eg. Otherwise, there are infinitely many members of F
greater than e for the ordering <, because I’ has no greatest member, so fi(Sup, ¢ o5 €') = 00, and there
must be an ep € F such that ey = e and a, ney # eo.

Take v € QN]fiay, o). Let n € N be such that 27" fieg < min(y—fia, fi(eo \ @)). Then {d¢y; : i > 1} meets
Dy ., in an infinite set. So there is an i € N such that d¢y; € D, ,,, fidey; = 27" fieg, and d € (ap Nep) Ude
whenever d € D, and d > de4;. Set p’ = (ap Udgyi,7); then p < p’ € Py and dey; is a maximal member of
An(p'). Let ¢ € Qpny be such that p’ < ¢ and A, (q) = An(p'). Then { +i € E,(q). Set m = #(E,(q) N§).
Then q € Qnmi*yg and p < q. Q

Accordingly g € [p, c0[NGpmive. Aspis arbitrary, |
PO in ROT(Po)

mon,ieN,yeqQ Gnmive is dense in Py and sup,,, , jen yeq Gnmive =

(d)(i) Let & be the order-closed subalgebra of ROT(Py) generated by {Gumire : m, n, i € N, v € Q,
& € Q}. By (c-ii) and (c-iii), the conditions of FREMLIN 08, 514F are satisfied, and & has countable Maharam

type.
(ii) If p € Py and a,, € UeeE,neN
H = sup{Gnmiye :m,n, i €N, v € Q, £ € Q and Gpmire C [p, [} € ROT(F).
Then H €  and H C [p,o0[. Suppose that p’ € Py and p’ > p. Let n € N be such that a, € J,cp Den-
Take v € QN ]fa,, o] and set p” = (ap,7). Then p < p’ < p” and there is a ¢ € Q4 such that p”’ <¢. In
this case, a, € A, (g) so there is a maximal d € A,(¢) including a,; let £ € Q, i € N be such that d = d¢4,

and set m = #(E,(¢)NE). Then ¢ € Qnmivye. On the other hand, for any ¢’ € Qnmiye, ap C deqs C ag, while
ag =7 < oy < ap, s0 [¢,00[ C [p,ool; as ¢ is arbitrary, Grmiye C [p, 00 and Gpmive € H. Accordingly

D, then [p,oo[ € . P Set
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g € HN[p',00[. As p' is arbitrary, H is dense in [p,oo] and must be the whole of [p, oo[; thus we have
[p,x[=Hec6. Q

(iii) If p € Py there is a ¢ € Py such that p < g and [g, 0] € &. P Take v € QN]fay, a,]. Let Ey be a
countable subset of E such that a, C sup Ey and f(sup Ey) > v. Set L ={e: e € Ey, ap De}. Then Ey\ L
is non-empty, and

ZeGEo\L A(ap, ne) = fia, — fi(sup L) < v — fi(sup L).
We therefore have a family (7e)ecg,\z such that fi(ane) <. < fie for every e € Ey \ L and ZeeEo\L Ve <

v — fi(sup L). For each e € Ey there is a B, C J,,cyy Den such that ane € sup Be and fisup B. < 7., by
1F (ii). Set

B=LU UeEEo\L B. UeeE,neN Der,
and b =sup B. Then a, C b and
fib=fi(sup L) + > c g\ A(sup Be) < fi(sup L) + 3 e povp, Ve < 75
so ¢ = (b,7v) € Py. On the other hand, Lemma 1B tells us that
¢, 00[ = infaep [(d,7), 00 € &
as required. Q

(iv) As p is arbitrary, ® includes a 7-base for the Boolean algebra ROT(F,) and must be the whole of
ROT(P,). Accordingly

T(ROT(Ry)) = 7(8) < w.
This completes the proof.

1I Theorem (compare FREMLIN 08, 528V7) Let (2, /i) be a semi-finite measure algebra with at most ¢
atoms. Then AM™ (2, i) has countable Maharam type.

proof Throughout the proof, P will stand for P*(2, fx).

(a) Suppose that there are a partition E of unity in 20 and an € > 0 such that 2(, is homogeneous and
€ < fie < oo for every e € F.

(i) Set E, = {e:e € E, e is an atom}; then #(E,) <c¢. Set E. = E'\ E,. Let < be a well-ordering of
E. such that 7(2.) < 7(2/) whenever e < ¢’ in E.. Let Fy be a maximal disjoint family of subsets of E.
of order type w. Then My = E. \ |J Fo must be finite; set F = Fo U {{e} : e € My}.

(ii) Set M = My U E,. For L € [M]<¥, set
Pr={p:peP,a,d>suplL, fila,ue) >, for e € M\ L}.
Then (Pr)rcm is finite 1S & disjoint family of open subsets of P. Also ULe[M]<w Py, is dense in P. P If
p € P, there is a maximal finite L C M such that fi(a, U sup L) < o, because fie > € for every e € E. Set
q= (a,usupL,a,); then p < g € Pr. Q So ROT(P) is isomorphic to the simple product HLG[M]@ RO (Pp)
(FREMLIN 02, 315S8).

(iii) If L € [M]<¥, then ROT(Py) has countable Maharam type. P If P;, = () this is trivial. Otherwise
there is a p € Pp and f(sup L) < fia, < o < fil. Consider A = Ay sup(rup,), £ = E\ (LU Ey),
F'=F\{{e} :e € LNMy} and ' = xN(E' x E'). Then (A, z[A'), E’, ¢, <" and F’ satisfy the conditions
of Lemma 1H. Setting

Qo={q:qe P*A,nlA), ag < fi(aque) for every e € My \ L},

ROT(Qo) has countable Maharam type, by 1H. But the map ¢ — (a, U sup L, a; + fi(sup L)) is an order-
isomorphism between Qo and Pr, so RO'(Pp) has countable Maharam type. Q

"Later editions only.
8Later editions only.
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(iv) As #([M]<%) < ¢, AM(2, fi,7) = ROT(P) is isomorphic to the product of at most ¢ Boolean
algebras with countable Maharam type, and has countable Maharam type (FREMLIN 08, 514Ef).

(b) Now suppose that (2, ) is localizable.

(i) In this case, let E be a partition of unity in 2 such that 2(. is homogeneous and 0 < fie < oo for
every e € F. For each k € N, set

Ep,={e:e€E, jie>27"}, e =supFE}.
By (a), AM"(2l.;, il %e: ) has countable Maharam type for every k.

(ii) Now Proposition 1D tells us that we have a sequence (m)ren such that 7 is an order-continuous
ring homomorphism from AM"(2l.:, fi]RAcx) into AM™ (2, 1) for each k, and (Jj ey mu[AM(Uer, fi] e )] 7-
generates AM* (2, ). So AM(2, fi,) has countable Maharam type. I For each k, we have a countable
T-generating set Dy € AM™(cx, fi[ Aer ). Let & be the order-closed subalgebra of AM™ (%, fi) generated by
D = Upen Tk [Dr U{1x}], where 1; here is the greatest element of AM" (%, fi[ s ). For each k € N, ' [®]
is an order-closed subalgebra of AM" (%, fi A ) including Dy, so is the whole of AM™ (s, i 2e; ), that is,
TR[AM" (er, i Aex )] € &. Since ey T [AM* (e, il ez )] T-generates AM™ (A, 1), & = AM* (A, i) and

T(AM* (%, i) < #(D) <w. Q

(c) Thus we have the result when (2, 1) is localizable. For the general case of atomless semi-finite (2, 1),
let (%A, i) be the localization of (2, ii) (FREMLIN 02, 322Q°). Since the embedding 2 C 2l identifies A/ with
A (FREMLIN 02, 322P10), P~ (QAl, &) can be identified with P, and the regular open algebras AM* (2, i) and

AM*(QAL, fi) are isomorphic. Again because 2 and A7 are isomorphic, A has at most ¢ atoms. By (b), the
common Maharam type of AM*(2(, &) and AM* (2, 1) is countable.

1J Example Let X be a set, and p counting measure on X. Then AM*(PX, ) is purely atomic, with
#([X]<¥) atoms. P (i) For I € [X]|<%, set p; = (I,5 4+ pI). Then (pr)re(x)<- is an up-antichain in
P =P*(PX,p). (ii) If p € P, then I = qa, is a finite subset of X, and u(a,Ua,,) = pl < min(oy, oy, ); thus
p and pr are compatible upwards; as p is arbitrary, (pr)ex]<~ is a maximal up-antichain. (iii) If I € [X]<*
and p, q € [pr,oc[, then a, = a; = I so p and ¢ are compatible upwards; thus Vj, is an atom in ROT(P).
So ROT(P) = AM*(PX, 1) is purely atomic, and we have a listing of its atoms. Q

Accordingly T7(AM*(PX, 1)) = #(X) if X is finite and otherwise is min{\ : #(X) < 2} (FREMLIN 08,
514Xr!!). In particular, it will be uncountable if #(X) > c.

1K Theorem Let (2, i) be a purely atomic semi-finite measure algebra, and E the set of its atoms.
Suppose that

for every € > 0 there is a § > 0 such that #({e:e € E, § < fie < €}) = #(F).
Then AM™(2(, i) has countable Maharam type.
proof (a) Set k = #(E); let (€,)nen be a non-increasing sequence with limit 0 such that E(™ = {e: e € E,
€n+1 < fie < €, } has cardinal x for every n € N. Then we have a partition (E¢)e<, of E into countable sets

such that E¢ N E(™) is infinite for every & < x and n € N. Enumerate each E¢ as (eg;)een. Let < be the

well-ordering of F corresponding to the lexicographic ordering of N x x; then F¢ N E(™) is cofinal for every
& and n.

(b) Forpe P=P*(U, i) and n € N, set A, (p) ={e:e € E, e C ay, fie > ¢,}; then A,(p) is finite. For
neN, Je[NJ<¥ ~veQand¢ <k set

Qn={q:q€ P, A, (¢') = An(q) # 0 whenever ¢’ > ¢},

9Formerly 322P.
O0Formerly 3220.
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Qnive ={q:q € Qn, the < -largest member of A, (q) belongs to E¢,
ag =7 and {i:eg € Ax(q)} = J},

Guyye = sup{Vy : 4 € Qnyse} € ROI(P).

(c)@) IneN Je N vyeQ &<n <k, q€ Qniye and ¢’ € Qpnyyy then A, (q) # A,(¢'), while
both ¢ and ¢’ belong to Q,. So [g,00[ cannot meet [¢',00[ and V; NV, = 0. As g and ¢’ are arbitrary,
Gniye N Gy = 0.

(i) IfpeP a=v€Q < kand me N, there are n > m, J € [N]* and ¢ € Qp ¢ such
that p < q. P Take n > m such that €,_1 + fia, < 7. Let i € N be such that €, < fieg; < €,—1 and
e < eg; for every e € A,,(p). Then f(apUeg;) < fiap + €,—1 <. Let L C E(™ be a maximal set such that
fi(ap Ueg U sup L) < v (such exists because fie > €, for every e € EM); set ¢ = (apuUeg;usupL,v) € P.
Of course p < ¢q. Because E(™ is infinite and jie < €, for every e € E(™, fiag > v — €. It follows that if
¢ >q, An(¢') = An(q) = An(p) U{eg}. Set J ={j :ec; € An(q)}. By the choice of i, eg; is the <-greatest
member of A,(q), and ¢ € Qp.1+¢, as required. Q

It follows that (U, e jemj<w eq Gnare is dense in P for every { < k. I Given p € P, take v € Q such
that fia, < v < ap; then we have n € N, J € [N]<“ and ¢ € Q¢ such that (a,,7) < ¢, in which case
[Z% OO[ n Gn]w& 7é 0. Q

(iii) Suppose that p € P and a, € E. Set

H =sup{Gnjye :n €N, J € [N<¥ vy €Q, £ < Kk, Gnjye CV,} € ROT(P).
Then H =V,. PP Of course H C V},. In the other direction, take any p’ > p in P. Let v € Q be such that
fay < v < ap. Let m € N be such that fia, > €n; let £ < k, ¢ € N be such that a, = e¢;. By (ii), there
are n > m, J € [N]<“ and ¢ € Q¢ such that p’ < ¢. Now eg; € A, (p) € Am(q) € An(g), so i € J and
eei € An(q') whenever ¢’ € Quyy¢; thus p < (eg;,7v) < ¢ for every ¢’ € Quyye, Vi C V), for every ¢/ € Qnqe,

Gnive €V, and Gy yye € H. Accordingly g € [p/,00[N H; as p’ is arbitrary, H is dense in V,, and H = V,,.
Q

(d) By (c-i) and (c-ii) and FREMLIN 08, 514F, as in (d-i) of the proof of 1H, the order-closed subalgebra
® of ROT(P) generated by {Gnyye :n €N, J € [NJ<¥, v € Q, £ < r} has countable Maharam type; by
(c-iii), & contains V,, whenever p € P and a, € F; by Lemma 1B, & contains V), for every p € P; as in (d-iv)
of the proof of 1H, & = ROT(P) and ROT(P) = AM(%, ji) has countable Maharam type.
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