Maharam types of amoeba algebras

D.H.FREMLIN

University of Essex, Colchester, England

1 Variable-measure amoeba algebras

1A Definitions (see FREMLIN 08, §528) Let $(\mathfrak{A}, \bar{\mu})$ be a measure algebra. I will write $P^*(\mathfrak{A}, \bar{\mu})$ for the set $\{(a, \alpha) : a \in \mathfrak{A}, \bar{\mu}a < \alpha \leq \bar{\mu}1\}$, ordered by saying that $(a, \alpha) \leq (b, \beta)$ if $a \subseteq b$ and $\beta \leq \alpha$.

In this context, I will say that if $p = (a, \alpha)$ then $a = a_p$ and $\alpha = \alpha_p$. Note that $p, q \in P^*(\mathfrak{A}, \bar{\mu})$ are compatible upwards in $P^*(\mathfrak{A}, \bar{\mu})$ iff $(a_p \cup a_q, \min(\alpha_p, \alpha_q)) \in P^*(\mathfrak{A}, \bar{\mu})$, that is, iff $\bar{\mu}(a_p \cup a_q) < \min(\alpha_p, \alpha_q)$.

 $P^*(\mathfrak{A}, \bar{\mu})$ will always be given its up-topology (FREMLIN 08, 514L); the **variable-measure amoeba** algebra AM^{*}($\mathfrak{A}, \bar{\mu}$) (FREMLIN 08, 528Ab) is the regular open algebra RO[†]($P^*(\mathfrak{A}, \bar{\mu})$). For $p \in P^*(\mathfrak{A}, \bar{\mu})$ I will write $V_p = \operatorname{int} [p, \infty] \in \operatorname{RO}^{\uparrow}(P^*(\mathfrak{A}, \bar{\mu}))$.

1B Lemma Let $(\mathfrak{A}, \overline{\mu})$ be a measure algebra, and P the partially ordered set $P^*(\mathfrak{A}, \overline{\mu})$. If $(a, \alpha) \in P$ and $C \subseteq \mathfrak{A}$ is a non-empty set with supremum a, then $V_{(a,\alpha)} = \inf_{c \in C} V_{(c,\alpha)}$ in $\mathrm{RO}^{\uparrow}(P)$.

proof Since $(c, \alpha) \leq (a, \alpha), V_{(a,\alpha)} \subseteq V_{(c,\alpha)}$ for every $c \in C$, and

$$V_{(a,\alpha)} \subseteq \inf_{c \in C} V_{(c,\alpha)} = \bigcap_{c \in C} V_{(c,\alpha)}$$

(FREMLIN 08, 514M(d-ii)¹). In the other direction, take any $p \in \bigcap_{c \in C} V_{(c,\alpha)}$. There is a $c_0 \in C$; as p and (c_0, α) are compatible upwards, $\bar{\mu}a_p \leq \bar{\mu}(a_p \cup c_0) < \min(\alpha_p, \alpha)$. Take β such that $\bar{\mu}a_p < \beta < \min(\alpha_p, \alpha)$ and consider (a_p, β) . We know that $[(a_p, \beta), \infty] \subseteq \bigcap_{c \in C} V_{(c,\alpha)}$. Inducing on #(I), we see that for any finite $I \subseteq C$ there is a $q \geq (a_p, \beta)$ such that $c \subseteq a_q$ for every $c \in I$. But this means that $\bar{\mu}(a_p \cup \sup I) \leq \beta$ for every finite $I \subseteq C$, so $\bar{\mu}(a_p \cup a) \leq \beta$ and p is compatible upwards with (a, α) , that is, $p \in \overline{[(a, \alpha), \infty]}$.

Thus the open set $\inf_{c \in C} V_{(c,\alpha)}$ is included in $[(a, \alpha), \infty]$ and therefore in its interior $V_{(a,\alpha)}$, and $V_{(a,\alpha)} = \inf_{c \in C} V_{(c,\alpha)}$, as claimed.

1C Proposition Let $(\mathfrak{A}, \overline{\mu})$ be a measure algebra, and $e \in \mathfrak{A}$; write \mathfrak{A}_e for the principal ideal generated by e. Set

$$P = P^*(\mathfrak{A}, \bar{\mu}), \quad P_e = \{p : p \in P, \, \alpha_p \le \bar{\mu}(a_p \cup e)\},$$
$$Q = P^*(\mathfrak{A}_e, \bar{\mu} \upharpoonright \mathfrak{A}_e).$$

Then $P_e \in \mathrm{RO}^{\uparrow}(P)$. For $p \in P_e$, set

$$f(p) = (a_p \cap e, \alpha_p - \bar{\mu}(a_p \setminus e))$$

then f is an order-preserving function from P_e to Q. Now we have an order-continuous ring homomorphism $\pi : \mathrm{RO}^{\uparrow}(Q) \to \mathrm{RO}^{\uparrow}(P)$ defined by setting $\pi H = \mathrm{int} \overline{f^{-1}[H]}$ for every $H \in \mathrm{RO}^{\uparrow}(Q)$.

proof It is easy to check that P_e is up-open. To see that it is regular, take any $p \in P \setminus P_e$. Then $p' = (a_p \cup e, \alpha_p)$ belongs to P, and $[p', \infty[$ is disjoint from P_e , so $p \notin \operatorname{int} \overline{P_e}$. As p is arbitrary, $P_e = \operatorname{int} \overline{P_e}$ is a regular up-open set.

If $p \in P$, then

$$\bar{\mu}(a_p \cap e) = \bar{\mu}a_p - \bar{\mu}(a_p \setminus e) < \alpha_p - \bar{\mu}(a_p \setminus e) \le \bar{\mu}(a_p \cup e) - \bar{\mu}(a_p \setminus e) = \bar{\mu}e,$$

so $f(p) \in Q$; it is now easy to see that $f: P \to Q$ is order-preserving.

Suppose that $Q_0 \subseteq Q$ is up-open and cofinal. Then $f^{-1}[Q_0]$ is cofinal with P_e . **P** Take any $p \in P_e$. Then there is a $q \in Q_0$ such that $q \ge f(p)$, that is, $a_q \supseteq a_p \cap e$ and $\alpha_q \le \alpha_p - \overline{\mu}(a_p \setminus e)$. In this case,

$$\bar{\mu}(a_p \cup a_q) = \bar{\mu}a_q + \bar{\mu}(a_p \setminus e) < \alpha_q + \bar{\mu}(a_p \setminus e) \le \alpha_p,$$

¹Later editions only.

so $p' = (a_p \cup a_q, \alpha_q + \overline{\mu}(a_p \setminus e))$ belongs to P and $p' \ge p$. Because P_e is up-open, $p' \in P_e$. Now f(p') = q, so $p' \in f^{-1}[Q_0]$. As p is arbitrary, $f^{-1}[Q_0]$ is cofinal with P_e . **Q**

If $H \in \mathrm{RO}^{\uparrow}(Q)$ then int $\overline{f^{-1}[H]}$ is the same whether we define closure and interior in P or in P_e , because P_e is a regular up-open set. By FREMLIN 08, 514O, the given formula therefore defines an order-continuous Boolean homomorphism from $\mathrm{RO}^{\uparrow}(Q)$ to $\mathrm{RO}^{\uparrow}(P_e)$; since $\mathrm{RO}^{\uparrow}(P_e)$ is a principal ideal of $\mathrm{RO}^{\uparrow}(P)$, we have an order-continuous ring homomorphism from $\mathrm{RO}^{\uparrow}(Q)$ to $\mathrm{RO}^{\uparrow}(Q)$ to $\mathrm{RO}^{\uparrow}(P)$.

1D Proposition Let $(\mathfrak{A}, \bar{\mu})$ be a semi-finite measure algebra, and $E \subseteq \mathfrak{A}$ an upwards-directed family with supremum 1. Set $P = P^*(\mathfrak{A}, \bar{\mu})$; for $e \in E$ set

$$P_e = \{ p : p \in \mathbb{P}, \, \alpha_p \le \bar{\mu}(a_p \cup e) \}, \quad Q_e = P^*(\mathfrak{A}_e, \bar{\mu} \upharpoonright \mathfrak{A}_e);$$

for $e \in E$ and $p \in P_e$ set

$$f_e(p) = (a_p \cap e, \alpha_p - \bar{\mu}(a_p \setminus e))$$

and for $e \in E$ and $H \in \mathrm{RO}^{\uparrow}(Q_e)$ set $\pi_e H = \mathrm{int} \overline{f_e^{-1}[H]} \in \mathrm{RO}^{\uparrow}(P)$. Then $\bigcup_{e \in E} \pi_e[\mathrm{RO}^{\uparrow}(Q_e)] \tau$ -generates $\mathrm{RO}^{\uparrow}(P)$ in the sense of FREMLIN 02, 331E.

proof (a) As noted in Proposition 1C, P_e is a regular up open set and $f_e : P_e \to Q_e$ is order-preserving. The key to the proof is the following fact: if $p \in P$ and $\overline{\mu}a_p < \alpha < \alpha_p$, then there is an $e_0 \in E$ such that $p' = (a_p, \alpha)$ belongs to P_e for every $e \in E$ such that $e \supseteq e_0$, and

$$V_{p'} \subseteq \inf_{e \in E, e \supseteq e_0} \pi_e V_{f_e(p')} \subseteq V_p$$

P(i) Of course $p' \ge p$. Because $\alpha_p \le \overline{\mu}1 = \sup_{e \in E} \overline{\mu}e$, there is an $e_0 \in E$ such that $\alpha \le \overline{\mu}e_0$, and now $p \in P_e$ whenever $e \supseteq e_0$. Set $E_0 = \{e : e \in E, e \supseteq e_0\}$.

(ii) For any $e \in E_0$,

$$[p',\infty[\subseteq f_e^{-1}[[f_e(p'),\infty[]\subseteq f_e^{-1}[V_{f_e(p')}]]$$

because f_e is order-preserving, so that

$$V_{p'} \subseteq \pi_e V_{f_e(p')}$$

for every $e \in E_0$; that is, $V_{p'} \subseteq \inf_{e \in E_0} \pi_e V_{f_e(p')}$.

(iii) On the other side, suppose that

$$q \in \inf_{e \in E_0} \pi_e V_{f_e(p')} = \bigcap_{e \in E_0} \pi_e V_{f_e(p')}$$

(FREMLIN 08, 514M(d-ii) again). Then for any $q' \ge q$ and $e \in E_0$,

$$[q',\infty[\subseteq [q,\infty[\subseteq \overline{f_e^{-1}[V_{f_e(p')}]}]$$

So $[q', \infty[\cap f_e^{-1}[V_{f_e(p')}]]$ is non-empty, and there is a $q'' \ge q'$ such that $f_e(q'') \in V_{f_e(p')} \subseteq \overline{[f_e(p'), \infty]}$. But this means that $f_e(q'')$ and $f_e(p')$, therefore also $f_e(q')$ and $f_e(p')$, are compatible upwards in Q_e , that is,

$$\bar{\mu}((a_{q'} \cap e) \cup (a_p \cap e)) < \min(\alpha_{q'} - \bar{\mu}(a_{q'} \setminus e), \alpha - \bar{\mu}(a_p \setminus e))$$

Since E_0 , like E, is upwards-directed and has supremum 1, we can take the limit as e increases and get

$$\bar{\mu}(a_{q'} \cup a_p) \le \min(\alpha_{q'}, \alpha);$$

and this is true whenever $q' \ge q$. In the first instance, this means that $\bar{\mu}(a_q \cup a_p) \le \beta$ whenever $\bar{\mu}a_q < \beta \le \alpha_q$; so in fact $\bar{\mu}(a_q \cup a_p) \le \bar{\mu}a_q$ and $a_q \supseteq a_p$. Next, $\bar{\mu}a_q \le \alpha$. But it follows that

$$\bar{\mu}(a_p \cup a_q) = \bar{\mu}a_q < \min(\alpha_p, \alpha_q)$$

and q and p are compatible upwards in P, that is, $q \in [p, \infty[$.

As q is arbitrary, the open set $\inf_{e \in E} \pi_e V_{f_e(p')}$ is included in $\overline{[p, \infty[}$ and therefore in $\inf[\overline{p, \infty[} = V_p, \text{ as claimed.} \mathbf{Q}$

(b) Let \mathfrak{G} be the order-closed subalgebra of $\mathrm{RO}^{\uparrow}(P)$ generated by $\bigcup_{e \in E} \pi_e[\mathrm{RO}^{\uparrow}(Q_e)]$. Then all the sets $\inf_{e \in E_0} \pi_e V_{f_e(a_p,\alpha)}$ examined in (a) belong to \mathfrak{G} . So (a) tells us that for every $p \in P$ there are a $p' \geq p$

Measure Theory

and a $G \in \mathfrak{G}$ such that $V_{p'} \subseteq G \subseteq V_p$. As $\{[p, \infty[: p \in P\} \text{ is a base for the topology of } P \text{ consisting of non-empty sets}, <math>\{V_p : p \in P\}$ is a π -base of the Boolean algebra $\mathrm{RO}^{\uparrow}(P)$ consisting of non-zero elements, and \mathfrak{G} includes a π -base of $\mathrm{RO}^{\uparrow}(P)$; being order-closed, it is the whole of $\mathrm{RO}^{\uparrow}(P)$, as required.

1E Lemma (compare FREMLIN 08, 528B²) Let $(\mathfrak{A}, \overline{\mu})$ be an atomless semi-finite measure algebra. Then $P = P^*(\mathfrak{A}, \overline{\mu})$ is separative upwards, so $[p, \infty] \in \mathrm{RO}^{\uparrow}(P)$ for every $p \in P$.

proof Let $p, q \in P$ be such that $p \not\leq q$. If $\bar{\mu}(a_p \cup a_q) \geq \min(\alpha_p, \alpha_q)$ then p and q are already incompatible upwards. So suppose that $\bar{\mu}(a_p \cup a_q) < \min(\alpha_p, \alpha_q)$. If $\alpha_p < \alpha_q$ there is a $c \supseteq a_q$ such that $\bar{\mu}c = \alpha_p$; now $q' = (c, \alpha_q) \geq q$ and p and q' are incompatible upwards. Otherwise, $\alpha_q \leq \alpha_p$ and $a_p \not\leq a_q$. As $\alpha_q \leq \bar{\mu}1$, there is a d disjoint from $a_p \cup a_q$ such that $\bar{\mu}d = \alpha_q - \bar{\mu}(a_p \cup a_q)$; set $c = a_q \cup d$. Then

$$\bar{\mu}c < \bar{\mu}(a_p \cup c) = \alpha_q$$

so, just as in (a), $(c, \alpha_q) \ge q$ and $p, (c, \alpha_q)$ are incompatible upwards.

By FREMLIN 08, 514Me, it follows that $[p, \infty]$ is a regular up-open set for every $p \in P$.

1F Definition (FREMLIN 08, 528S³) Let $(\mathfrak{A}, \overline{\mu})$ be a measure algebra. I will say that a well-spread basis for \mathfrak{A} is a non-decreasing sequence $\langle D_n \rangle_{n \in \mathbb{N}}$ of subsets of \mathfrak{A} such that

(i) setting $D = \bigcup_{n \in \mathbb{N}} D_n$, $\#(D) \le \max(\omega, c(\mathfrak{A}), \tau(\mathfrak{A}))$;

(ii) if $a \in \mathfrak{A}$, $\gamma \in \mathbb{R}$ and $\overline{\mu}a < \gamma$, there is a set $D \subseteq \bigcup_{n \in \mathbb{N}} D_n$ such that $a \subseteq \sup D$ and $\overline{\mu}(\sup D) < \gamma$;

(iii) if $n \in \mathbb{N}$ and $\langle d_i \rangle_{i \in \mathbb{N}}$ is a sequence in D_n such that $\bar{\mu}(\sup_{n \in \mathbb{N}} d_n) < \infty$, there is an infinite set $J \subseteq \mathbb{N}$ such that $d = \sup_{i \in J} d_i$ belongs to D_n ;

(iv) whenever $n \in \mathbb{N}$, $a \in \mathfrak{A}$ and $\bar{\mu}a \leq \gamma' < \gamma < \bar{\mu}1$, there is a $b \in \mathfrak{A}$ such that $a \subseteq b$ and $\gamma' \leq \bar{\mu}b < \gamma$ and $\bar{\mu}(b \cup d) \geq \gamma$ whenever $d \in D_n$ and $d \not\subseteq a$.

1G Lemma (FREMLIN 08, 528T⁴) (a) Let κ be an infinite cardinal, and $\langle e_{\xi} \rangle_{\xi < \kappa}$ the standard generating family in \mathfrak{B}_{κ} (FREMLIN 08, 525A). For $n \in \mathbb{N}$ let C_n be the set of elements of \mathfrak{B}_{κ} expressible as $\inf_{\xi \in I} e_{\xi} \cap \inf_{\xi \in J} (1 \setminus e_{\xi})$ where $I, J \subseteq \kappa$ are disjoint and $\#(I \cup J) \leq n$. Then $\langle C_n \rangle_{n \in \mathbb{N}}$ is a well-spread basis for $(\mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa})$, with $C_0 = \{1\}$. Moreover,

(*) for each $n \ge 1$, there is a set $C'_n \subseteq C_n$, of cardinal κ , such that $\overline{\mu}c = 2^{-n}$ for every $c \in C'_n$, and whenever $a \in \mathfrak{B}_{\kappa} \setminus \{1\}$ and $I \subseteq C'_n$ is infinite, there is a $c \in I$ such that $c' \not\subseteq a \cup c$ whenever $c' \in C_n$ and $c \subset c'$.

(b) Let $(\mathfrak{A}, \bar{\mu})$ be a measure algebra and $e \in \mathfrak{A}$. If $\langle C_n \rangle_{n \in \mathbb{N}}$ is a well-spread basis for $(\mathfrak{A}_e, \bar{\mu} \upharpoonright \mathfrak{A}_e)$ and $\langle D_n \rangle_{n \in \mathbb{N}}$ is a well-spread basis for $(\mathfrak{A}, \bar{\mu} \upharpoonright \mathfrak{A}_e)$, then $\langle C_n \cup D_n \rangle_{n \in \mathbb{N}}$ is a well-spread basis for $(\mathfrak{A}, \bar{\mu})$.

1H Lemma (compare FREMLIN 08, 528U⁵) Let $(\mathfrak{A}, \overline{\mu})$ be an atomless semi-finite measure algebra. Let $E, \epsilon, \preccurlyeq$ and \mathcal{F} be such that

E is a partition of unity in \mathfrak{A} such that \mathfrak{A}_e is homogeneous and $0 < \epsilon \leq \overline{\mu}e < \infty$ for every $e \in E$;

 \preccurlyeq is a well-ordering of E such that $\tau(\mathfrak{A}_e) \leq \tau(\mathfrak{A}_{e'})$ whenever $e \preccurlyeq e'$ in E;

 \mathcal{F} is a partition of E such that each member of \mathcal{F} is either a singleton or a countable set with no \preccurlyeq -greatest member.

Set $P = P^*(\mathfrak{A}, \overline{\mu})$ and let P_0 be

$$\{p: p \in P, \alpha_p \leq \overline{\mu}(a_p \cup e) \text{ whenever } \{e\} \in \mathcal{F}\}.$$

Then $\mathrm{RO}^{\uparrow}(P_0)$ has countable Maharam type.

proof (a)(i) For every $e \in E$, $(\mathfrak{A}_e, \bar{\mu} \upharpoonright \mathfrak{A}_e)$ is a non-zero atomless homogeneous totally finite measure algebra, so is isomorphic, up to a scalar multiple of the measure, to $(\mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa})$ for some infinite cardinal κ (FREMLIN

3

²Later editions only.

 $^{^{3}\}mathrm{Later}$ editions only.

⁴Later editions only.

⁵Later editions only.

02, 331L). So we can copy the well-spread basis for $(\mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa})$ described in 1Ga into a well-spread basis $\langle D_{en} \rangle_{n \in \mathbb{N}}$ for $(\mathfrak{A}_{e}, \bar{\mu} \upharpoonright \mathfrak{A}_{e})$ such that

 $#(\bigcup_{n\in\mathbb{N}} D_{en}) = \tau(\mathfrak{A}_e),$ $\bar{\mu}d \ge 2^{-n}\bar{\mu}e \text{ whenever } n\in\mathbb{N} \text{ and } d\in D_{en},$ $D_{e0} = \{e\},$

for each $n \geq 1$ there is a set $D'_{en} \subseteq D_{en}$, of cardinal $\tau(\mathfrak{A}_e)$, such that $\overline{\mu}d = 2^{-n}\overline{\mu}e$ for every $d \in D'_{en}$, and whenever $a \in \mathfrak{A}_e \setminus \{e\}$ and $I \subseteq D'_{en}$ is infinite, there is a $d \in I$ such that $d' \not\subseteq a \cup d$ whenever $d' \in D_{en}$ and $d' \supset d$,

 $(\bigcup_{n\in\mathbb{N}} D_{en}) \setminus (\bigcup_{n\geq 1} D'_{en})$ has cardinal $\tau(\mathfrak{A}_e)$.

(The last item is not mentioned in 1G, but is clearly achievable by thinning the sets D'_{en} appropriately.) Note that $\langle D'_{en} \rangle_{n \ge 1}$ is a disjoint sequence of subsets of \mathfrak{A}_e for each e, so $\langle D'_{en} \rangle_{e \in E, n \ge 1}$ is disjoint.

(ii) For
$$e \in F \in \mathcal{F}$$
, set

$$D_e = \bigcup_{n \in \mathbb{N}} D_{en} \setminus \bigcup_{n \ge 1} D'_{en}, \quad D^*_e = \bigcup_{e' \in F, e' \preccurlyeq e} D_e$$

Because F is countable and $\tau(\mathfrak{A}_{e'}) \leq \tau(\mathfrak{A}_e)$ whenever $e' \preccurlyeq e, \#(D_e^*) = \tau(\mathfrak{A}_e) = \#(D'_{en})$ for every $n \geq 1$. We therefore have a partition $\langle I_{ed} \rangle_{d \in D_e^*}$ of $\bigcup_{n \geq 1} D'_{en}$ into countably infinite sets such that $I_{ed} \cap D'_{en}$ is infinite whenever $d \in D_e^*$ and $n \geq 1$.

Let θ be a limit ordinal such that the set Ω of limit ordinals less than θ has cardinal $\#(\bigcup_{e \in E} D_e)$. (Of course we can take θ to be either an uncountable cardinal or the ordinal product $\omega \cdot \omega$ or 0.) Again because every member of \mathcal{F} is countable, we have an enumeration $\langle d_{\xi} \rangle_{\xi < \theta}$ of $\bigcup_{e \in E, n \in \mathbb{N}} D_{en}$ such that whenever $\xi \in \Omega$ then there are $F \in \mathcal{F}$ and $e \in F$ such that

$$d_{\xi} \in D_e, \quad \{d_{\xi+i} : i \ge 1\} = \bigcup_{e' \in F, e' \succcurlyeq e} I_{e'd_{\xi}}.$$

This will mean that whenever $\xi \in \Omega$ and $F \in \mathcal{F}$, $e \in F$ are such that $d_{\xi} \in \mathfrak{A}_{e}$, then $\{i : d_{\xi+i} \in D'_{e'n}\}$ is infinite whenever $e' \in F$, $e \preccurlyeq e'$ and $n \in \mathbb{N}$.

(b)(i) $P_0 \in \mathrm{RO}^{\uparrow}(P)$. **P** Evidently P_0 is up-open. If $p \in P \setminus P_0$, that is, there is some e such that $\{e\} \in \mathcal{F}$ and $\overline{\mu}(a_p \cup e) < \alpha_p$, set $q = (a_p \cup e, \alpha_p)$; then $p \leq q \in P$, while

$$\bar{\mu}(a_{q'} \cup e) = \bar{\mu}a_{q'} < \alpha_{q'} \le \alpha_p$$

whenever $q' \in [q, \infty[$, so $[q, \infty[$ does not meet P_0 . Accordingly $[p, \infty[\not\subseteq \overline{P}_0 \text{ and } p \notin \operatorname{int} \overline{P}_0]$. As p is arbitrary, $P_0 = \operatorname{int} \overline{P}_0 \in \operatorname{RO}^{\uparrow}(P)$. **Q**

It follows that $\mathrm{RO}^{\uparrow}(P_0)$ is the principal ideal of $\mathrm{RO}^{\uparrow}(P)$ generated by P_0 (FREMLIN 02, 314R(b-ii)⁶). Moreover, for $p \in P_0$, $[p, \infty[$ is the same whether taken in P or P_0 , and belongs to $\mathrm{RO}^{\uparrow}(P)$ by 1E above.

(ii) For $p \in P_0$ and $n \in \mathbb{N}$, set $A_n(p) = \{d : d \in \bigcup_{e \in E} D_{en}, d \subseteq a_p\}$. Of course $A_n(p) \subseteq A_n(q)$ whenever $p \leq q$. Also any sequence in $A_n(p)$ has a subsequence with an upper bound in $A_n(p)$. **P** Set $L = \{e : e \in E, \overline{\mu}(a_p \cap e) \geq 2^{-n}\epsilon\}$; then L is finite. If $e \in E \setminus L$ and $d \in D_{en}$, then $d \subseteq e$ and

$$\bar{\mu}d \ge 2^{-n}\bar{\mu}e \ge 2^{-n}\epsilon > \bar{\mu}(a_p \cap e) \ge \bar{\mu}(a_p \cap d),$$

so $d \not\subseteq a$. Thus $A_n(p) \subseteq \bigcup_{e \in L} D_{en}$. It follows that if $\langle c_i \rangle_{i \in \mathbb{N}}$ is any sequence in $A_n(p)$, there is an $e \in L$ such that $J = \{i : c_i \in D_{en}\}$ is infinite. Now there is an infinite $I \subseteq J$ such that $c = \sup_{i \in I} c_i$ belongs to D_{en} . In this case, $c \subseteq a$ so $c \in A_n(p)$ is an upper bound of $\{c_i : i \in I\}$. **Q**

It follows that $A_n(p)$ has only finitely many maximal elements, and any non-decreasing sequence in $A_n(p)$ has an upper bound in $A_n(p)$. Consequently, every member of $A_n(p)$ is included in a maximal element of $A_n(p)$. **P?** Otherwise, we should be able to find a strictly increasing family $\langle c_{\xi} \rangle_{\xi < \omega_1}$ in $A_n(p)$; but now there must be a $\xi < \omega_1$ such that $\bar{\mu}c_{\xi} = \bar{\mu}c_{\xi+1} < \gamma$ and $c_{\xi} = c_{\xi+1}$. **XQ**

Set $E_n(p) = \{\xi : d_\xi \text{ is a maximal element of } A_n(p)\}$, so that $E_n(p)$ is a finite subset of θ .

(iii) For $n \in \mathbb{N}$ and $\gamma \in \mathbb{R}$, set

$$Q_{n\gamma} = \{q : q \in P_0, \alpha_q = \gamma, A_n(q) = A_n(q') \text{ whenever } q \leq q' \in P_0\}$$

Then whenever $p \in P_0$, $n \in \mathbb{N}$ and $\bar{\mu}a_p < \gamma < \alpha_p$ there is a $q \in Q_{n\gamma}$ such that $p \leq q$ and $A_n(p) = A_n(q)$. **P** Let *L* be a finite subset of *E* including $\{e : \bar{\mu}(a_p \cap e) \geq 2^{-n-1}\epsilon\}$ and such that $\bar{\mu}(\sup L) > \gamma$. Then

Measure Theory

⁶Later editions only.

 $(\bigcup_{e \in L} D_{em})_{m \in \mathbb{N}}$ is a well-spread basis for $(\mathfrak{A}_{\sup L}, \overline{\mu} | \mathfrak{A}_{\sup L})$. (Induce on #(L), using 1Gb for the inductive step.) Since

$$\bar{\mu}(a_p \cap \sup L) < \gamma - \bar{\mu}(a_p \setminus \sup L) < \bar{\mu}(\sup L),$$

there is a a $b_0 \in \mathfrak{A}_{\sup L}$, including $a_p \cap \sup L$, such that

$$\gamma - \bar{\mu}(a_p \setminus \sup L) - 2^{-n-1}\epsilon \le \bar{\mu}b_0 < \gamma - \bar{\mu}(a_p \setminus \sup L) \le \bar{\mu}(b_0 \cup d)$$

whenever $d \in \bigcup_{e \in L} D_{en}$ and $d \not\subseteq a_p$. Then $\bar{\mu}(b_0 \cup a_p) = \bar{\mu}b_0 + \bar{\mu}(a \setminus \sup L) < \gamma$, so $q = (b_0 \cup a_p, \gamma)$ belongs to P_0 . If $q \leq q' \in P_0$ and $d \in \bigcup_{e \in E} D_{en} \setminus A_n(p)$, then either $e \in L$ and

$$\bar{\mu}(a_{q'} \cup d) \ge \bar{\mu}(b_0 \cup d) + \bar{\mu}(a_p \setminus \sup L) \ge \gamma > \bar{\mu}a_{q'},$$

or $e \notin L$,

$$\bar{\mu}(d \setminus a_p) \ge \bar{\mu}d - \bar{\mu}(a_p \cap e) \ge 2^{-n}\bar{\mu}e - 2^{-n-1}\epsilon \ge 2^{-n-1}\epsilon$$

and

$$\bar{\mu}(a_{q'} \cup d) \ge \bar{\mu}b_0 + \bar{\mu}(a_p \setminus \sup L) + 2^{-n-1}\epsilon \ge \gamma > \bar{\mu}a_{q'}$$

in either case $d \not\subseteq a_{q'}$. Thus $A_n(q') = A_n(p) = A_n(q)$ whenever $q \leq q' \in P_0$, and $q \in Q_{n\gamma}$.

(c)(i) For $m, n, i \in \mathbb{N}, \gamma \in \mathbb{Q}$ and $\xi \in \Omega$, set

$$Q_{nmi\gamma\xi} = \{q : q \in Q_{n\gamma}, \xi + i \in E_n(q), \#(E_n(q) \cap \xi) = m\}$$
$$G_{nmi\gamma\xi} = \sup\{[b, \infty[: b \in Q_{nmi\gamma\xi}] \in \mathrm{RO}^{\uparrow}(P_0).$$

(ii) For any $m, n, i \in \mathbb{N}$ and $\gamma \in \mathbb{Q}$, $\langle G_{nmi\gamma\xi} \rangle_{\xi \in \Omega}$ is disjoint. **P** Suppose that $\xi < \eta$ in Ω . If $p \in Q_{nmi\gamma\xi}$ and $q \in Q_{nmi\gamma\eta}$, we see that $\xi + i < \eta, \xi + i \in E_n(p)$ and

$$\#(E_n(q) \cap \eta) = m = \#(E_n(p) \cap \xi) < \#(E_n(p) \cap \eta).$$

So $E_n(p) \neq E_n(q)$ and $A_n(p) \neq A_n(q)$. But both p and q are supposed to belong to $Q_{n\gamma}$, so $[p, \infty]$ must be disjoint from $[q, \infty[$. As q is arbitrary, $[p, \infty[\cap G_{nmi\gamma\eta} = \emptyset]$; as p is arbitrary, $G_{nmi\gamma\eta} = \emptyset$. **Q**

(iii) For any $\xi \in \Omega$ and $p \in P_0$, there are $m, n, i \in \mathbb{N}, \gamma \in \mathbb{Q}$ and $q \in Q_{nmi\gamma\xi}$ such that $p \leq q$. **P** Let $e \in E$ be such that $d_{\xi} \subseteq e$; let F be the member of \mathcal{F} containing e. If $F = \{e\}$, then $\bar{\mu}(a_p \cup e) \geq \alpha_p > \bar{\mu}a_p$; set $e_0 = e$, so that $e_0 \in F$, $e_0 \geq e$ and $a_p \cap e_0 \neq e_0$. Otherwise, there are infinitely many members of F greater than e for the ordering \preccurlyeq , because F has no greatest member, so $\bar{\mu}(\sup_{e' \in F, e' \geq e} e') = \infty$, and there must be an $e_0 \in F$ such that $e_0 \geq e$ and $a_p \cap e_0 \neq e_0$.

Take $\gamma \in \mathbb{Q} \cap]\bar{\mu}a_p, \alpha_p]$. Let $n \in \mathbb{N}$ be such that $2^{-n}\bar{\mu}e_0 < \min(\gamma - \bar{\mu}a, \bar{\mu}(e_0 \setminus a))$. Then $\{d_{\xi+i} : i \geq 1\}$ meets D'_{e_0n} in an infinite set. So there is an $i \in \mathbb{N}$ such that $d_{\xi+i} \in D'_{e_0n}, \bar{\mu}d_{\xi+i} = 2^{-n}\bar{\mu}e_0$, and $d \not\subseteq (a_p \cap e_0) \cup d_{\xi+i}$ whenever $d \in D_{e_0n}$ and $d \supset d_{\xi+i}$. Set $p' = (a_p \cup d_{\xi+i}, \gamma)$; then $p \leq p' \in P_0$ and $d_{\xi+i}$ is a maximal member of $A_n(p')$. Let $q \in Q_{n\gamma}$ be such that $p' \leq q$ and $A_n(q) = A_n(p')$. Then $\xi + i \in E_n(q)$. Set $m = \#(E_n(q) \cap \xi)$. Then $q \in Q_{nmi\gamma\xi}$ and $p \leq q$. **Q**

Accordingly $q \in [p, \infty[\cap G_{nmi\gamma\xi}]$. As p is arbitrary, $\bigcup_{m,n,i\in\mathbb{N},\gamma\in\mathbb{Q}} G_{nmi\gamma\xi}$ is dense in P_0 and $\sup_{m,n,i\in\mathbb{N},\gamma\in\mathbb{Q}} G_{nmi\gamma\xi} = P_0$ in $\mathrm{RO}^{\uparrow}(P_0)$.

(d)(i) Let \mathfrak{G} be the order-closed subalgebra of $\mathrm{RO}^{\uparrow}(P_0)$ generated by $\{G_{nmi\gamma\xi} : m, n, i \in \mathbb{N}, \gamma \in \mathbb{Q}, \xi \in \Omega\}$. By (c-ii) and (c-iii), the conditions of FREMLIN 08, 514F are satisfied, and \mathfrak{G} has countable Maharam type.

(ii) If
$$p \in P_0$$
 and $a_p \in \bigcup_{e \in E, n \in \mathbb{N}} D_{en}$, then $[p, \infty] \in \mathfrak{G}$. **P** Set

 $H = \sup\{G_{nmi\gamma\xi} : m, n, i \in \mathbb{N}, \gamma \in \mathbb{Q}, \xi \in \Omega \text{ and } G_{nmi\gamma\xi} \subseteq [p, \infty[\} \in \mathrm{RO}^{\uparrow}(P_0).$

Then $H \in \mathfrak{G}$ and $H \subseteq [p, \infty[$. Suppose that $p' \in P_0$ and $p' \ge p$. Let $n \in \mathbb{N}$ be such that $a_p \in \bigcup_{e \in E} D_{en}$. Take $\gamma \in \mathbb{Q} \cap]\bar{\mu}a_{p'}, \alpha_{p'}]$ and set $p'' = (a_{p'}, \gamma)$. Then $p \le p' \le p''$ and there is a $q \in Q_{n\gamma}$ such that $p'' \le q$. In this case, $a_p \in A_n(q)$ so there is a maximal $d \in A_n(q)$ including a_p ; let $\xi \in \Omega$, $i \in \mathbb{N}$ be such that $d = d_{\xi+i}$, and set $m = \#(E_n(q) \cap \xi)$. Then $q \in Q_{nmi\gamma\xi}$. On the other hand, for any $q' \in Q_{nmi\gamma\xi}$, $a_p \subseteq d_{\xi+i} \subseteq a_{q'}$, while $\alpha_{q'} = \gamma \le \alpha_{p'} \le \alpha_p$, so $[q', \infty] \subseteq [p, \infty]$; as q' is arbitrary, $G_{nmi\gamma\xi} \subseteq [p, \infty]$ and $G_{nmi\gamma\xi} \subseteq H$. Accordingly $q \in H \cap [p', \infty[$. As p' is arbitrary, H is dense in $[p, \infty[$ and must be the whole of $[p, \infty[$; thus we have $[p, \infty[= H \in \mathfrak{G}. \mathbf{Q}]$

(iii) If $p \in P_0$ there is a $q \in P_0$ such that $p \leq q$ and $[q, \infty] \in \mathfrak{G}$. **P** Take $\gamma \in \mathbb{Q} \cap]\bar{\mu}a_p, \alpha_p[$. Let E_0 be a countable subset of E such that $a_p \subseteq \sup E_0$ and $\bar{\mu}(\sup E_0) > \gamma$. Set $L = \{e : e \in E_0, a_p \supseteq e\}$. Then $E_0 \setminus L$ is non-empty, and

$$\sum_{e \in E_0 \setminus L} \bar{\mu}(a_p \cap e) = \bar{\mu}a_p - \bar{\mu}(\sup L) < \gamma - \bar{\mu}(\sup L).$$

We therefore have a family $\langle \gamma_e \rangle_{e \in E_0 \setminus L}$ such that $\bar{\mu}(a \cap e) < \gamma_e \leq \bar{\mu}e$ for every $e \in E_0 \setminus L$ and $\sum_{e \in E_0 \setminus L} \gamma_e < \gamma - \bar{\mu}(\sup L)$. For each $e \in E_0$ there is a $B_e \subseteq \bigcup_{n \in \mathbb{N}} D_{en}$ such that $a \cap e \subseteq \sup B_e$ and $\bar{\mu} \sup B_e \leq \gamma_e$, by 1F(ii). Set

$$B = L \cup \bigcup_{e \in E_0 \setminus L} B_e \subseteq \bigcup_{e \in E.n \in \mathbb{N}} D_{en}$$

and $b = \sup B$. Then $a_p \subseteq b$ and

$$\bar{\mu}b = \bar{\mu}(\sup L) + \sum_{e \in E_0 \setminus L} \bar{\mu}(\sup B_e) \le \bar{\mu}(\sup L) + \sum_{e \in E_0 \setminus L} \gamma_e < \gamma,$$

so $q = (b, \gamma) \in P_0$. On the other hand, Lemma 1B tells us that

$$[q,\infty] = \inf_{d \in B} [(d,\gamma),\infty] \in \mathfrak{G}$$

as required. **Q**

(iv) As p is arbitrary, \mathfrak{G} includes a π -base for the Boolean algebra $\mathrm{RO}^{\uparrow}(P_0)$ and must be the whole of $\mathrm{RO}^{\uparrow}(P_0)$. Accordingly

$$\tau(\mathrm{RO}^{\uparrow}(P_0)) = \tau(\mathfrak{G}) \leq \omega.$$

This completes the proof.

1I Theorem (compare FREMLIN 08, 528V⁷) Let $(\mathfrak{A}, \overline{\mu})$ be a semi-finite measure algebra with at most \mathfrak{c} atoms. Then AM^{*} $(\mathfrak{A}, \overline{\mu})$ has countable Maharam type.

proof Throughout the proof, P will stand for $P^*(\mathfrak{A}, \overline{\mu})$.

(a) Suppose that there are a partition E of unity in \mathfrak{A} and an $\epsilon > 0$ such that \mathfrak{A}_e is homogeneous and $\epsilon \leq \overline{\mu}e < \infty$ for every $e \in E$.

(i) Set $E_a = \{e : e \in E, e \text{ is an atom}\}$; then $\#(E_a) \leq \mathfrak{c}$. Set $E_c = E \setminus E_a$. Let \preccurlyeq be a well-ordering of E_c such that $\tau(\mathfrak{A}_e) \leq \tau(\mathfrak{A}_{e'})$ whenever $e \preccurlyeq e'$ in E_c . Let \mathcal{F}_0 be a maximal disjoint family of subsets of E_c of order type ω . Then $M_0 = E_c \setminus \bigcup \mathcal{F}_0$ must be finite; set $\mathcal{F} = \mathcal{F}_0 \cup \{\{e\} : e \in M_0\}$.

(ii) Set $M = M_0 \cup E_a$. For $L \in [M]^{<\omega}$, set

$$P_L = \{ p : p \in P, a_p \supseteq \sup L, \overline{\mu}(a_p \cup e) \ge \alpha_p \text{ for } e \in M \setminus L \}.$$

Then $\langle P_L \rangle_{L \subseteq M}$ is finite is a disjoint family of open subsets of P. Also $\bigcup_{L \in [M] \leq \omega} P_L$ is dense in P. **P** If $p \in P$, there is a maximal finite $L \subseteq M$ such that $\bar{\mu}(a_p \cup \sup L) < \alpha_p$, because $\bar{\mu}e \geq \epsilon$ for every $e \in E$. Set $q = (a_p \cup \sup L, \alpha_p)$; then $p \leq q \in P_L$. **Q** So $\mathrm{RO}^{\uparrow}(P)$ is isomorphic to the simple product $\prod_{L \in [M] \leq \omega} \mathrm{RO}^{\uparrow}(P_L)$ (FREMLIN 02, 315S⁸).

(iii) If $L \in [M]^{\leq \omega}$, then $\operatorname{RO}^{\uparrow}(P_L)$ has countable Maharam type. **P** If $P_L = \emptyset$ this is trivial. Otherwise there is a $p \in P_L$ and $\bar{\mu}(\sup L) \leq \bar{\mu}a_p < \alpha_p \leq \bar{\mu}1$. Consider $\mathfrak{A}' = \mathfrak{A}_{1 \setminus \sup(L \cup E_a)}, E' = E \setminus (L \cup E_a),$ $\mathcal{F}' = \mathcal{F} \setminus \{\{e\} : e \in L \cap M_0\}$ and $\preccurlyeq' = \preccurlyeq \cap (E' \times E')$. Then $(\mathfrak{A}', \bar{\mu} \upharpoonright \mathfrak{A}'), E', \epsilon, \preccurlyeq'$ and \mathcal{F}' satisfy the conditions of Lemma 1H. Setting

$$Q_0 = \{ q : q \in P^*(\mathfrak{A}', \bar{\mu} \upharpoonright \mathfrak{A}'), \, \alpha_q \leq \bar{\mu}(a_q \cup e) \text{ for every } e \in M_0 \setminus L \},\$$

 $\mathrm{RO}^{\uparrow}(Q_0)$ has countable Maharam type, by 1H. But the map $q \mapsto (a_q \cup \sup L, \alpha_q + \overline{\mu}(\sup L))$ is an orderisomorphism between Q_0 and P_L , so $\mathrm{RO}^{\uparrow}(P_L)$ has countable Maharam type. **Q**

⁷Later editions only.

⁸Later editions only.

(iv) As $\#([M]^{<\omega}) \leq \mathfrak{c}$, AM $(\mathfrak{A}, \overline{\mu}, \gamma) = \mathrm{RO}^{\uparrow}(P)$ is isomorphic to the product of at most \mathfrak{c} Boolean algebras with countable Maharam type, and has countable Maharam type (FREMLIN 08, 514Ef).

(b) Now suppose that $(\mathfrak{A}, \overline{\mu})$ is localizable.

(i) In this case, let E be a partition of unity in \mathfrak{A} such that \mathfrak{A}_e is homogeneous and $0 < \overline{\mu}e < \infty$ for every $e \in E$. For each $k \in \mathbb{N}$, set

$$E_k = \{e : e \in E, \, \bar{\mu}e \ge 2^{-k}\}, \quad e_k^* = \sup E_k$$

By (a), $\mathrm{AM}^*(\mathfrak{A}_{e_k^*}, \bar{\mu} \upharpoonright \mathfrak{A}_{e_k^*})$ has countable Maharam type for every k.

(ii) Now Proposition 1D tells us that we have a sequence $\langle \pi_k \rangle_{k \in \mathbb{N}}$ such that π_k is an order-continuous ring homomorphism from $\operatorname{AM}^*(\mathfrak{A}_{e_k^*}, \bar{\mu} \upharpoonright \mathfrak{A}_{e_k^*})$ into $\operatorname{AM}^*(\mathfrak{A}, \bar{\mu})$ for each k, and $\bigcup_{k \in \mathbb{N}} \pi_k[\operatorname{AM}(\mathfrak{A}_{e_k^*}, \bar{\mu} \upharpoonright \mathfrak{A}_{e_k^*})]$ τ -generates $\operatorname{AM}^*(\mathfrak{A}, \bar{\mu})$. So $\operatorname{AM}(\mathfrak{A}, \bar{\mu}, \gamma)$ has countable Maharam type. **P** For each k, we have a countable τ -generating set $D_k \subseteq \operatorname{AM}^*(\mathfrak{A}_{e_k^*}, \bar{\mu} \upharpoonright \mathfrak{A}_{e_k^*})$. Let \mathfrak{G} be the order-closed subalgebra of $\operatorname{AM}^*(\mathfrak{A}, \bar{\mu})$ generated by $D = \bigcup_{k \in \mathbb{N}} \pi_k[D_k \cup \{1_k\}]$, where 1_k here is the greatest element of $\operatorname{AM}^*(\mathfrak{A}_{e_k^*}, \bar{\mu} \upharpoonright \mathfrak{A}_{e_k^*})$. For each $k \in \mathbb{N}, \pi_k^{-1}[\mathfrak{G}]$ is an order-closed subalgebra of $\operatorname{AM}^*(\mathfrak{A}_{e_k^*}, \bar{\mu} \upharpoonright \mathfrak{A}_{e_k^*})$ including D_k , so is the whole of $\operatorname{AM}^*(\mathfrak{A}_{e_k^*}, \bar{\mu} \upharpoonright \mathfrak{A}_{e_k^*})$, that is, $\pi_k[\operatorname{AM}^*(\mathfrak{A}_{e_k^*}, \bar{\mu} \upharpoonright \mathfrak{A}_{e_k^*})] \subseteq \mathfrak{G}$. Since $\bigcup_{k \in \mathbb{N}} \pi_k[\operatorname{AM}^*(\mathfrak{A}_{e_k^*}, \bar{\mu} \upharpoonright \mathfrak{A}_{e_k^*})]$ τ -generates $\operatorname{AM}^*(\mathfrak{A}, \bar{\mu}), \mathfrak{G} = \operatorname{AM}^*(\mathfrak{A}, \bar{\mu})$ and $\tau(\operatorname{AM}^*(\mathfrak{A}, \bar{\mu})) \leq \#(D) \leq \omega$. **Q**

(c) Thus we have the result when $(\mathfrak{A}, \bar{\mu})$ is localizable. For the general case of atomless semi-finite $(\mathfrak{A}, \bar{\mu})$, let $(\widehat{\mathfrak{A}}, \tilde{\mu})$ be the localization of $(\mathfrak{A}, \bar{\mu})$ (FREMLIN 02, 322Q⁹). Since the embedding $\mathfrak{A} \subseteq \widehat{\mathfrak{A}}$ identifies \mathfrak{A}^f with $\widehat{\mathfrak{A}}^f$ (FREMLIN 02, 322P¹⁰), $P^*(\widehat{\mathfrak{A}}, \tilde{\mu})$ can be identified with P, and the regular open algebras AM^{*}($\mathfrak{A}, \bar{\mu}$) and AM^{*}($\widehat{\mathfrak{A}}, \tilde{\mu}$) are isomorphic. Again because \mathfrak{A}^f and $\widehat{\mathfrak{A}}^f$ are isomorphic, $\widehat{\mathfrak{A}}$ has at most \mathfrak{c} atoms. By (b), the common Maharam type of AM^{*}($\mathfrak{A}, \bar{\mu}$) and AM^{*}($\widehat{\mathfrak{A}}, \tilde{\mu}$) is countable.

1J Example Let X be a set, and μ counting measure on X. Then $\operatorname{AM}^*(\mathcal{P}X, \mu)$ is purely atomic, with $\#([X]^{<\omega})$ atoms. \mathbf{P} (i) For $I \in [X]^{<\omega}$, set $p_I = (I, \frac{1}{2} + \mu I)$. Then $\langle p_I \rangle_{I \in [X]^{<\omega}}$ is an up-antichain in $P = P^*(\mathcal{P}X, \mu)$. (ii) If $p \in P$, then $I = a_p$ is a finite subset of X, and $\mu(a_p \cup a_{p_I}) = \mu I < \min(\alpha_p, \alpha_{p_I})$; thus p and p_I are compatible upwards; as p is arbitrary, $\langle p_I \rangle_{I \in [X]^{<\omega}}$ is a maximal up-antichain. (iii) If $I \in [X]^{<\omega}$ and $p, q \in [p_I, \infty[$, then $a_p = a_q = I$ so p and q are compatible upwards; thus V_{p_I} is an atom in $\operatorname{RO}^{\uparrow}(P)$. So $\operatorname{RO}^{\uparrow}(P) = \operatorname{AM}^*(\mathcal{P}X, \mu)$ is purely atomic, and we have a listing of its atoms. \mathbf{Q}

Accordingly $\tau(\operatorname{AM}^*(\mathcal{P}X,\mu)) = \#(X)$ if X is finite and otherwise is $\min\{\lambda : \#(X) \le 2^{\lambda}\}$ (FREMLIN 08, 514Xr¹¹). In particular, it will be uncountable if $\#(X) > \mathfrak{c}$.

1K Theorem Let $(\mathfrak{A}, \overline{\mu})$ be a purely atomic semi-finite measure algebra, and E the set of its atoms. Suppose that

for every $\epsilon > 0$ there is a $\delta > 0$ such that $\#(\{e : e \in E, \delta \le \overline{\mu}e < \epsilon\}) = \#(E)$.

Then $AM^*(\mathfrak{A}, \overline{\mu})$ has countable Maharam type.

proof (a) Set $\kappa = \#(E)$; let $\langle \epsilon_n \rangle_{n \in \mathbb{N}}$ be a non-increasing sequence with limit 0 such that $E^{(n)} = \{e : e \in E, \epsilon_{n+1} \leq \overline{\mu}e < \epsilon_n\}$ has cardinal κ for every $n \in \mathbb{N}$. Then we have a partition $\langle E_{\xi} \rangle_{\xi < \kappa}$ of E into countable sets such that $E_{\xi} \cap E^{(n)}$ is infinite for every $\xi < \kappa$ and $n \in \mathbb{N}$. Enumerate each E_{ξ} as $\langle e_{\xi i} \rangle_{e \in \mathbb{N}}$. Let \preccurlyeq be the well-ordering of E corresponding to the lexicographic ordering of $\mathbb{N} \times \kappa$; then $E_{\xi} \cap E^{(n)}$ is cofinal for every ξ and n.

(b) For $p \in P = P^*(\mathfrak{A}, \overline{\mu})$ and $n \in \mathbb{N}$, set $A_n(p) = \{e : e \in E, e \subseteq a_p, \overline{\mu}e \ge \epsilon_n\}$; then $A_n(p)$ is finite. For $n \in \mathbb{N}, J \in [\mathbb{N}]^{<\omega}, \gamma \in \mathbb{Q}$ and $\xi < \kappa$ set

$$Q_n = \{q : q \in P, A_n(q') = A_n(q) \neq \emptyset \text{ whenever } q' \ge q\}$$

⁹Formerly 322P.

 $^{^{10}\}ensuremath{\mathrm{Formerly}}$ 322O.

¹¹Later editions only.

$$Q_{nJ\gamma\xi} = \{q : q \in Q_n, \text{ the } \preccurlyeq \text{-largest member of } A_n(q) \text{ belongs to } E_{\xi}, \\ \alpha_q = \gamma \text{ and } \{i : e_{\xi i} \in A_n(q)\} = J\},$$

$$G_{nJ\gamma\xi} = \sup\{V_q : q \in Q_{nJ\gamma\xi}\} \in \mathrm{RO}^{\uparrow}(P).$$

(c)(i) If $n \in \mathbb{N}$, $J \in [\mathbb{N}]^{<\omega}$, $\gamma \in \mathbb{Q}$, $\xi < \eta < \kappa$, $q \in Q_{nJ\gamma\xi}$ and $q' \in Q_{nJ\gamma\eta}$ then $A_n(q) \neq A_n(q')$, while both q and q' belong to Q_n . So $[q, \infty[$ cannot meet $[q', \infty[$ and $V_q \cap V_{q'} = \emptyset$. As q and q' are arbitrary, $G_{nJ\gamma\xi} \cap G_{nJ\gamma\eta} = \emptyset$.

(ii) If $p \in P$, $\alpha_p = \gamma \in \mathbb{Q}$, $\xi < \kappa$ and $m \in \mathbb{N}$, there are $n \geq m$, $J \in [\mathbb{N}]^{\omega}$ and $q \in Q_{nJ\gamma\xi}$ such that $p \leq q$. **P** Take n > m such that $\epsilon_{n-1} + \bar{\mu}a_p \leq \gamma$. Let $i \in \mathbb{N}$ be such that $\epsilon_n \leq \bar{\mu}e_{\xi i} < \epsilon_{n-1}$ and $e \preccurlyeq e_{\xi i}$ for every $e \in A_n(p)$. Then $\bar{\mu}(a_p \cup e_{\xi i}) < \bar{\mu}a_p + \epsilon_{n-1} \leq \gamma$. Let $L \subseteq E^{(n)}$ be a maximal set such that $\bar{\mu}(a_p \cup e_{\xi i} \cup \sup L) < \gamma$ (such exists because $\bar{\mu}e \geq \epsilon_{n+1}$ for every $e \in E^{(n)}$); set $q = (a_p \cup e_{\xi i} \cup \sup L, \gamma) \in P$. Of course $p \leq q$. Because $E^{(n)}$ is infinite and $\bar{\mu}e \leq \epsilon_n$ for every $e \in E^{(n)}$, $\bar{\mu}a_q \geq \gamma - \epsilon_n$. It follows that if $q' \geq q$, $A_n(q') = A_n(q) = A_n(p) \cup \{e_{\xi i}\}$. Set $J = \{j : e_{\xi j} \in A_n(q)\}$. By the choice of $i, e_{\xi i}$ is the \preccurlyeq -greatest member of $A_n(q)$, and $q \in Q_{nJ\gamma\xi}$, as required. **Q**

It follows that $\bigcup_{n \in \mathbb{N}, J \in [\mathbb{N}]^{<\omega}, \gamma \in \mathbb{Q}} G_{nJ\gamma\xi}$ is dense in P for every $\xi < \kappa$. **P** Given $p \in P$, take $\gamma \in \mathbb{Q}$ such that $\bar{\mu}a_p < \gamma \leq \alpha_p$; then we have $n \in \mathbb{N}, J \in [N]^{<\omega}$ and $q \in Q_{nJ\gamma\xi}$ such that $(a_p, \gamma) \leq q$, in which case $[p, \infty[\cap G_{nJ\gamma\xi} \neq \emptyset, \mathbf{Q}]$

(iii) Suppose that $p \in P$ and $a_p \in E$. Set

$$H = \sup\{G_{nJ\gamma\xi} : n \in \mathbb{N}, J \in [\mathbb{N}]^{<\omega}, \gamma \in \mathbb{Q}, \xi < \kappa, G_{nJ\gamma\xi} \subseteq V_p\} \in \mathrm{RO}^{\uparrow}(P).$$

Then $H = V_p$. **P** Of course $H \subseteq V_p$. In the other direction, take any $p' \ge p$ in P. Let $\gamma \in \mathbb{Q}$ be such that $\bar{\mu}a_{p'} < \gamma \le \alpha_{p'}$. Let $m \in \mathbb{N}$ be such that $\bar{\mu}a_p \ge \epsilon_m$; let $\xi < \kappa$, $i \in \mathbb{N}$ be such that $a_p = e_{\xi i}$. By (ii), there are $n \ge m$, $J \in [\mathbb{N}]^{<\omega}$ and $q \in Q_{nJ\gamma\xi}$ such that $p' \le q$. Now $e_{\xi i} \in A_m(p) \subseteq A_m(q) \subseteq A_n(q)$, so $i \in J$ and $e_{\xi i} \in A_n(q')$ whenever $q' \in Q_{nJ\gamma\xi}$; thus $p \le (e_{\xi i}, \gamma) \le q'$ for every $q' \in Q_{nJ\gamma\xi}$, $V_{q'} \subseteq V_p$ for every $q' \in Q_{nJ\gamma\xi}$, $G_{nJ\gamma\xi} \subseteq V_p$ and $G_{nJ\gamma\xi} \subseteq H$. Accordingly $q \in [p', \infty[\cap H; as p']$ is arbitrary, H is dense in V_p and $H = V_p$.

(d) By (c-i) and (c-ii) and FREMLIN 08, 514F, as in (d-i) of the proof of 1H, the order-closed subalgebra \mathfrak{G} of $\mathrm{RO}^{\uparrow}(P)$ generated by $\{G_{nJ\gamma\xi} : n \in \mathbb{N}, J \in [\mathbb{N}]^{<\omega}, \gamma \in \mathbb{Q}, \xi < \kappa\}$ has countable Maharam type; by (c-iii), \mathfrak{G} contains V_p whenever $p \in P$ and $a_p \in E$; by Lemma 1B, \mathfrak{G} contains V_p for every $p \in P$; as in (d-iv) of the proof of 1H, $\mathfrak{G} = \mathrm{RO}^{\uparrow}(P)$ and $\mathrm{RO}^{\uparrow}(P) = \mathrm{AM}(\mathfrak{A}, \bar{\mu})$ has countable Maharam type.

References

Fremlin D.H. [01] Measure Theory, Vol. 2: Broad Foundations. Torres Fremlin, 2001.

Fremlin D.H. [02] Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, 2002.†

Fremlin D.H. [08] Measure Theory, Vol. 5: Set-theoretic Measure Theory. Torres Fremlin, 2008 (http://www.lulu.com).[†]

[†]For 'later editions' see http://www.essex.ac.uk/maths/people/fremlin/mtcont.htm.