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Distributive lattices and modular functions

D.H.Fremlin
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1 Two facts

1A Stone representation of distributive lattices: Theorem Let P be a distributive lattice and Z
the set of surjective lattice homomorphisms from P to {0, 1}. For p ∈ P set π(p) = {z : z ∈ Z, z(p) = 1}.
Then π is an injective lattice homomorphism, so P is isomorphic to the sublattice π[P ] of PZ.

proof Just because Z consists of lattice homomorphisms, π is a lattice homomorphism. To see that it is
injective, suppose that p0, q0 ∈ P and q0 6≤ p0. Consider the family Q of pairs (A,B) of subsets of P such
that

p0 ∈ A, q0 ∈ B,
p ∨ p′ ∈ A for all p, p′ ∈ A, q ∧ q′ ∈ B for all q, q′ ∈ B,
q 6≤ p for all p ∈ A, q ∈ B.

Then ({p0}, {q0}) ∈ Q. Ordering Q by saying that

(A,B) ≤ (A′, B′) if A ⊆ A′, B ⊆ B′,

any totally ordered subset of Q has an upper bound in Q; so Q has a maximal element (A0, B0) say.
??? If A0 ∪B0 6= P , take r ∈ P \ (A0 ∪B0). Set A = A0 ∪{p∨ r : p ∈ A0}, B = B0 ∪{q∧ r : q ∈ B0}. Then

(A,B0) /∈ Q, so there must be p ∈ A0, q ∈ B0 such that q ≤ p ∨ r; also (A0, B) /∈ Q, so there are p′ ∈ A0,
q′ ∈ B0 such that q′ ∧ r ≤ p′. In this case,

q ∧ q′ ≤ (p ∨ r) ∧ q′ = (p ∧ q′) ∨ (r ∧ q′)

(because P is distributive)

≤ p ∨ p′.

But q ∧ q′ ∈ B0 and p ∨ p′ ∈ A0, so this is impossible. XXX
Of course A0 ∩ B0 = ∅, so we can define z : P → {0, 1} by setting z(p) = 0 for p ∈ A0 and z(q) = 1

for q ∈ B0. If p ∈ A0 and p′ ≤ p, then p′ /∈ B0 so p′ ∈ A0; similarly, if q ∈ B0 and q ≤ q′, then
q′ ∈ B0. Accordingly z is order-preserving. Because A0 is closed under ∨, z(p ∨ q) = max(z(p), z(q)) for
all p, q ∈ P ; because B0 is closed under ∧, z(p ∧ q) = min(z(p), z(q)) for all p, q ∈ P . Thus z ∈ Z, while
z(p0) = 0 6= 1 = z(q0); and π(p0) 6= π(q0).

Similarly, π(p0) 6= π(q0) if p0 6≤ q0, so π is injective.

1B Definition Let (G,+) be a semigroup, (H,+,≤) a semigroup with a partial ordering ≤, and f : G→
H a function.

(a) f is superadditive if f(x+ y) ≥ f(x) + f(y) for all x, y ∈ G.

(b) f is subadditive if f(x+ y) ≤ f(x) + f(y) for all x, y ∈ G.

1C Theorem (König 00) Let (G,+) be a commutative semigroup with identity 0G and U a Dedekind
complete Riesz space. Let f , g : G→ U be functions such that

f(0G) = g(0G) = 0, f(x) ≤ g(x) for every x ∈ G,

f is superadditive, g is subadditive.

Then there is an additive h : G→ U such that f ≤ h ≤ g.
1
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proof (a) Define nx, for n ∈ N and x ∈ G, by saying that 0x = 0G and (n + 1)x = nx + x for every n;
note that n(x+ y) = nx+ ny, (m+ n)x = mx+ nx for x, y ∈ G and m, n ∈ N. Also f1(nx) ≥ nf1(x) and
g1(nx) ≤ ng1(x) whenever n ∈ N, x ∈ G, f1 : G → U is superadditive and zero at 0G, and g1 : G → U is
subadditive and zero at 0G.

(b) Give UG the product partial order. If Q ⊆ UG is the set of superadditive functionals dominated by g,
then any non-empty upwards-directed R ⊆ Q has an upper bound in Q. PPP For each x ∈ G, {h(x) : h ∈ R}
is an upwards-directed set bounded above by g(x), so has a supremum h0(x) say. If x, y ∈ G, then
A = {h(x) : h ∈ R}, B = {h(y) : h ∈ R} are upwards-directed and bounded above. Also, if h′, h′′ ∈ R, then
there is an h ∈ R such that h′ ≤ h and h′′ ≤ h, and now

h′(x) + h′′(y) ≤ h(x) + h(y) ≤ h(x+ y) ≤ h0(x+ y).

So h0(x+ y) is an upper bound for A+B and

h0(x+ y) ≥ sup(A+B) = supA+ supB = h0(x) + h0(y)

(Fremlin 02, 351Db). Accordingly h0 belongs to Q and is an upper bound of R in Q. QQQ
By Zorn’s Lemma, there is a maximal superadditive h such that f ≤ h ≤ g. The rest of the argument is

devoted to showing that h is subadditive, therefore additive.

(c) h(nx) = nh(x) for every n ∈ N, x ∈ G. PPP The case n = 0 is trivial (note that f(0G) ≤ h(0G) ≤ g(0G)

so h(0G) = 0). For n ≥ 1, consider f1(x) =
1

n

h(nx) for x ∈ G. Then f1 is superadditive because h is, and

h ≤ f1 because h(nx) ≥ nh(x) for every x ∈ G. Finally

nf1(x) = h(nx) ≤ g(nx) ≤ ng(x)

for every x, so f1 ≤ g. By the maximality of h, f1 = h and h(nx) = nh(x) for every x. QQQ

(d) h(x+ z) ≤ h(x) + g(z) for all x, z ∈ G. PPP Set

f1(x) = supn∈N h(x+ nz) − ng(z)

for x ∈ G. Then f1(x) ≥ h(x) for every x; also

h(x+ nz) − ng(z) ≤ g(x+ nz) − ng(z) ≤ g(x) + g(nz) − ng(z) ≤ g(x)

for all n, so f1(x) ≤ g(x), for every x. If x, y ∈ G, then

f1(x) + f1(y) = sup
m,n∈N

h(x+mz) + h(y + nz) −mg(z) − ng(z)

≤ sup
m,n∈N

h(x+mz + y + nz) − (m+ n)g(z)

(because h is superadditive)

= sup
m,n∈N

h(x+ y + (m+ n)z) − (m+ n)g(z)

(because (G,+) is commutative)

= f1(x+ y),

so f1 is superadditive. By the maximality of h, h = f1; in particular, h(x) ≥ h(x + z) − g(z), that is,
h(x+ z) ≤ h(x) + g(z) for every x. QQQ

(e) h(z + x) ≤ h(z) + h(x) for all x, z ∈ G. PPP This time, set

f1(x) = supn∈N h(nz + x) − nh(z)

for x ∈ X. Again, f1(x) ≥ h(x), and

f1(x) ≤ sup
n∈N

h(nz) + g(x) − nh(z)

(by (d))
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= g(x)

by (c). Also, as in (d),

f1(x) + f1(y) = sup
m,n∈N

h(mz + x) + h(nz + y) −mh(z) − nh(z)

≤ sup
m,n∈N

h((m+ n)z + x+ y) − (m+ n)h(z) = f1(x+ y),

for all x, y ∈ G. So f1 is superadditive; by the maximality of h, f1 = h; in particular, h(x) ≥ h(z+x)−h(z).
QQQ

(f) So h is subadditive and therefore additive, as required.

2 A note on additive functions

2A Lemma Let A be a Boolean algebra, B a subalgebra of A, b ∈ B either 0 or an atom of B, I an
ideal of A and C the subalgebra of A generated by B ∪ I.

(a) If a ∈ C, then either b ∩ a ∈ I or b \ a ∈ I.
(b) Now suppose that (G,+) is an abelian group, ν : I → G an additive function and g ∈ G. Define

λ : C → G by setting

λa = ν(b ∩ a) if b ∩ a ∈ I,

= g − ν(b \ a) otherwise.

Then λ is an additive function.

proof (a)

{a : a ∈ A, at least one of b ∩ a, b \ a belongs to I}

is a subalgebra of A including B ∪ I, so includes C.

(b) If b ∈ I then λa = ν(b ∩ a) for every a ∈ C and the result is immediate. Otherwise, if a, a′ ∈ C are
disjoint, at most one of b \ a, b \ a′ can belong to I, so (by (a)) at least one of b ∩ a, b ∩ a′ belongs to I, and

λa+ λa′ = ν(b ∩ a) + ν(b ∩ a′) = ν(b ∩ (a ∪ a′)) = λ(a ∪ a′)

if b ∩ a and b ∩ a′ belong to I,

= ν(b ∩ a) + g − ν(b \ a′) = g − ν(b \ (a ∪ a′)) = λ(a ∪ a′)

if b ∩ a ∈ I and b ∩ a′ /∈ I,

= ν(b ∩ a′) + g − ν(b \ a) = g − ν(b \ (a ∪ a′)) = λ(a ∪ a′)

if b ∩ a′ ∈ I and b ∩ a /∈ I.

2B Lemma Let A be a Boolean algebra, I an ideal of A, B a finite subalgebra of A, C the subalgebra of
A generated by B∪ I, (G,+) an abelian group and λ : C → G an additive function. Suppose that d ∈ A and
that B′, C′ are the subalgebras of A generated by B ∪ {d}, B′ ∪ I respectively. Then there is an extension
of λ to an additive function λ′ : C′ → G.

proof (a) Let B be the set of atoms of B. For each b ∈ B, b ∩ d and b \ d are either 0 or atoms of B′. Define
λ′b, λ

′′
b : C′ → G by setting

λ′ba = λ(b ∩ d ∩ a) if b ∩ d ∩ a ∈ I,

= λ(b ∩ d) − λ(b ∩ d \ a) if b \ d ∈ I and b ∩ d ∩ a /∈ I,

= −λ(b ∩ d \ a) otherwise ,

λ′′b a = λ((b \ d) ∩ a) if (b \ d) ∩ a ∈ I,

= λ(b \ d) − λ((b \ d) \ a) if b ∩ d ∈ I and (b \ d) ∩ a /∈ I,

= λb− λ((b \ d) \ a) otherwise .
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By Lemma 2A, applied to λ↾I, λ′b and λ′′b are additive. So we can define an additive λ′ : C′ → G by setting
λ′ =

∑
b∈B λ

′
b + λ′′b .

(b) λ′ba+ λ′′b a = λ(b ∩ a) whenever a ∈ C and b ∈ B. PPP

case 1 If b ∩ a ∈ I, then

λ′ba+ λ′′b a = λ(b ∩ d ∩ a) + λ((b \ d) ∩ a) = λ(b ∩ a).

case 2 If b ∩ a /∈ I and b ∩ d ∈ I then (b \ d) ∩ a /∈ I and

λ′ba+ λ′′b a = λ(b ∩ d ∩ a) + λ(b \ d) − λ((b \ d) \ a) = λ(b ∩ a).

case 3 If b ∩ a /∈ I and b \ d ∈ I then b \ a ∈ I (by 2Aa) while b ∩ d /∈ I, so b ∩ d ∩ a /∈ I and

λ′ba+ λ′′b a = λ(b ∩ d) − λ(b ∩ d \ a) + λ((b \ d) ∩ a) = λ(b ∩ a).

case 4 If b ∩ a /∈ I and neither b ∩ d nor b \ d belongs to I, then again b \ a ∈ I, so neither (b ∩ d) ∩ a nor
(b \ d) ∩ a belongs to I, and

λ′ba+ λ′′b a = −λ(b ∩ d \ a) + λb− λ((b \ d) \ a) = λ(b ∩ a).

Thus we have the required equality in all cases. QQQ

(c) Now, for any a ∈ C,

λ′a =
∑

b∈B λ
′
ba+ λ′′b a =

∑
b∈B λ(b ∩ a) = λa,

so λ′ extends λ, as required.

2C Corollary Let A be a Boolean algebra, I an ideal of A, (G,+) an abelian group and ν : I → G
an additive function. If D ⊆ A is countable and C is the subalgebra of A generated by D ∪ I, there is an
additive function λ : C → G extending ν.

proof (a) If A = ∅, we can use Lemma 2A with B = {0, 1} and g = 0.

(b) Otherwise, let 〈dn〉n∈N run over D, and for n ∈ N let Bn be the subalgebra of A generated by
{di : i < n}, and Cn the subalgebra generated by Bn ∪ I. Using (a) to start, and Lemma 2B for the
inductive step, we can construct inductively a sequence 〈λn〉n∈N such that λn : Cn → G is additive for each
n, λ0 extends ν, and λn+1 extends λn for each n; so that λ =

⋃
n∈N

λn is an additive function from C to G
extending ν.

2D Lemma Let A be a countable Boolean algebra with a subalgebra B and a d ∈ A such that A is the
algebra generated by B∪{d}. Suppose that (G,+) is an abelian group and λ : B → G an additive function.
Then there is an additive function λ′ : A → G extending λ.

proof (a) Let I be the set

{a : a ∈ B, a ∩ d ∈ B}.

Then I is an ideal of A. PPP Of course I is closed under ∪ and contains 0. If a ∈ I and b ⊆ a, then b is
expressible as (c ∩ d) ∪ (c′ \ d) where c, c′ ∈ B (Fremlin 02, 312N). Now a \ d ∈ B, so

b ∩ d = a ∩ b ∩ d = (a ∩ d) ∩ c ∈ B,

b \ d = a ∩ b \ d = (a \ d) ∩ c′ ∈ B.

So b ∈ B and b ∈ I. QQQ

(b) By Lemma 2C, there is an additive function λ0 : A → G such that λ0a = λ(a ∩ d) for every a ∈ I.
Now observe that if b, b′ ∈ B and b ∩ d = b′ ∩ d, both b \ b′ and b′ \ b are members of B disjoint from d, so
belong to I, and

λ0b− λ0b
′ = λ0(b \ b

′) − λ0(b
′ \ b) = 0.

Similarly, if c, c′ ∈ B and c \ d = c′ \ d, c△ c′ is included in d and belongs to I, and
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λc− λ0c = λ(c ∩ c′) + λ(c \ c′) − λ0(c ∩ c
′) − λ0(c \ c

′)

= λ(c ∩ c′) + λ(c \ c′) − λ0(c ∩ c
′) − λ(c \ c′)

= λ(c ∩ c′) − λ0(c ∩ c
′) = λc′ − λ0c

′.

We can therefore define a function λ′ : A → G by setting

λ′((b ∩ d) ∪ (c \ d)) = λ0b+ λc− λ0c

whenever b, c ∈ B. Just because (b, c) 7→ λ0b+λc−λ0c : B×B → G is additive and (b, c) 7→ (b ∩ d) ∪ (c ∩ d) :
B × B → A is a Boolean homomorphism, λ′ is additive. Now if b ∈ B,

λ′b = λ′((b ∩ d) ∪ (b \ d)) = λ0b+ λb− λ0b = λb.

So λ′ extends λ.

2E Theorem Let A be a Boolean algebra of cardinal at most ω1, B a countable subalgebra of A, (G,+)
an abelian group and λ : B → G an additive function. Then there is an additive function λ′ : A → G
extending λ.

proof Let 〈aξ〉ξ<ω1
run over A, and for ξ ≤ ω1 let Bξ be the subalgebra of A generated by B∪{aη : η < ξ}.

Construct additive functions λξ : Bξ → G inductively, as follows. Start with B0 = B and λ0 = λ. For the
inductive step to ξ + 1, Bξ+1 is countable and is generated by Bξ ∪ {aξ}, so Lemma 2D tells us that λξ

extends to an additive λξ+1 : Bξ+1 → G. For the inductive step to a limit ordinal ξ > 0, set λξ =
⋃

η<ξ λη.

Now λ′ = λω1
is an extension of λ to the whole of A.

3 Modular functions

3A Definition Let P be a lattice, (G,+) a commutative semigroup and φ : P → G a function. φ is
modular if φ(p) + φ(q) = φ(p ∨ q) + φ(p ∧ q) for all p, q ∈ P .

3B Elementary facts (a) Let P be a lattice and (G,+) a commutative semigroup.
(i) If φ, ψ : P → G are modular functions, then φ+ ψ is a modular function.
(ii) Any constant function from P to G is modular.
(iii) If (H,+) is another commutative semigroup and T : G→ H is a homomorphism, then Tφ is modular

whenever φ : P → G is modular.

(b) Let A be a Boolean algebra and (G,+) a commutative group. Then a function φ : A → G is modular
iff a 7→ φ(a) − φ(0) is additive. PPP Set νa = φ(a) − φ(0). (α) If φ is modular and a, b ∈ A are disjoint, then
ν is modular (by (a)), so

νa+ νb = ν(a ∪ b) + ν(a ∩ b) = ν(a ∪ b) + ν0 = ν(a ∪ b),

so ν is additive. (β) If ν is additive, and a, b ∈ A, then

ν(a ∪ b) + ν(a ∩ b) = ν(a \ b) + ν(a ∩ b) + ν(b \ a) + ν(a ∩ b) = ν(a) + ν(b),

so ν is modular; by (a) again, φ is modular. QQQ

3C Extension of modular functions: Proposition Let A be a Boolean algebra, Q a sublattice of A,
(G,+) a commutative group and φ : Q → G a modular function. Let B be the subalgebra of A generated
by Q. Then there is an extension of φ to a modular function from B to G.

proof Let (Q∗, φ∗) be a maximal extension of (Q,φ) to a modular function from a sublattice of B to G.

(a) 0 ∈ Q∗. PPP??? Otherwise, set Q′ = Q∗ ∪ {0} and extend φ∗ to φ′ : Q′ → V arbitrarily; then Q′ is a
sublattice of B, φ′ is modular, and (Q′, φ′) is a proper extension of (Q∗, φ∗). XXXQQQ Similarly, 1 ∈ Q∗.

(b) If d ∈ Q∗, then 1 \ d ∈ Q∗. PPP Set

Q′ = {(a \ d) ∪ (b ∩ d) : a, b ∈ Q∗},

and define φ′ : Q′ → V by setting
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φ′(c) = φ∗(c ∪ d) + φ∗(c ∩ d) − φ∗(d)

for c ∈ Q′; this is well-defined because if a, b ∈ Q∗ and c = (a \ d) ∪ (b ∩ d), then (c \ d) ∪ d = a ∪ d and
c ∩ d = b ∩ d belong to Q∗. If a ∈ Q∗, then

φ′(a) = φ∗(a ∪ d) + φ∗(a ∩ d) − φ∗(d) = φ∗(a)

because φ∗ is modular. So φ′ extends φ∗. Next, it is easy to check that Q′ is a sublattice of B, and also
that the functions

a 7→ φ∗(a ∪ d), a 7→ φ∗(a ∩ d) : Q∗ → G

are modular. Consequently

c 7→ φ∗(c ∪ d), c 7→ φ∗(c ∩ d) : Q′ → V

are modular, so their sum is modular, and the translated version φ′ is still modular.

By the maximality of (Q∗, φ∗), Q∗ = Q′ contains 1 \ d. QQQ

(c) It follows that Q∗ is a subalgebra of A, and must be B.

3D Proposition Let P be a distributive lattice, V a linear space over a field F , Q a sublattice of P , and
φ : Q→ V a modular function. Then there is an extension of φ to a modular function from P to V .

proof (a) By Theorem 1A, P is isomorphic to a sublattice of PZ for some Z, so we can suppose that P is
actually equal to PZ. Let (Q∗, φ∗) be a maximal extension of (Q,φ) to a modular function from a sublattice
of PZ to V . By Proposition 3C, Q∗ must actually be the subalgebra of PZ it generates. Define ν : Q∗ → V
by setting νK = φ∗(K) − φ∗(∅) for K ∈ Q∗; then ν is additive, by 3Bb.

(b)(i) Let S ⊆ FZ be the set of functions u : Z → F such that u[Z] is finite and {z : u(z) = α} ∈ Q∗ for
every α ∈ F . Then S is a linear subspace of the linear space FZ . For u ∈ S, set

f(u) =
∑

α∈u[Z] αν(u
−1[{α}]);

then f : S → V is linear. PPP (i) If u, v ∈ S, set Kαβ = u−1[{α}] ∩ v−1[{β}] for α ∈ u[Z], β ∈ v[Z]. For each
α ∈ u[Z], 〈Kαβ〉β∈v[Z] is a finite partition of u−1[{α}], so

f(u) =
∑

α∈u[Z] αν(u
−1[{α}]) =

∑
α∈u[Z] α

∑
β∈v[Z] νKαβ .

Similarly,

f(v) =
∑

α∈u[Z],β∈v[Z] βνKαβ .

On the other hand, (u+ v)[Z] ⊆ u[Z] + v[Z], and for γ ∈ (u+ v)[Z],

〈Kαβ〉α∈u[Z],β∈v[Z],α+β=γ

is a finite partition of (u+ v)−1[{γ}], so

f(u+ v) =
∑

γ∈(u+v)[Z]

ν((u+ v)−1[{γ}]) =
∑

γ∈(u+v)[Z]

γ
∑

α∈u[Z]
β∈v[Z]
α+β=γ

νKαβ

=
∑

γ∈(u+v)[Z]

∑
α∈u[Z]
β∈v[Z]
α+β=γ

(α+ β)νKαβ =
∑

α∈u[Z]
β∈v[Z]

(α+ β)νKαβ

(because Kαβ = ∅ if α+ β /∈ (u+ v)[Z])

= f(u) + f(v).

(ii) If u ∈ S and γ ∈ F is non-zero, then (γu)[Z] = {γα : α ∈ u[Z]}, so
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f(γu) =
∑

β∈(γu)[Z]

βν((γu)−1[{β}] =
∑

α∈u[Z]

γαν((γu)−1[{γα}]

=
∑

α∈u[Z]

γαν(u−1[{α}]) = γf(u).

So f is linear. QQQ

(ii) There is therefore a linear function g : FZ → V extending f . Set

φ′(A) = φ∗(∅) + g(χA)

for A ⊆ Z, where χA : Z → F is defined by setting χA(z) = 1F for z ∈ A, 0F for z ∈ Z \ F . If K ∈ Q∗,
χK ∈ S and

φ′(K) = g(χK) + φ∗(∅) = f(χK) + φ∗(∅) = νK + φ∗(∅) = φ∗(K).

It is also easy to check that, for A, B ⊆ Z,

χA+ χB = χ(A ∩B) + χ(A ∪B),

so φ′ is modular. So in fact φ′ = φ∗ and φ∗ is an extension of φ to the whole of PZ.

3E Proposition Let P be a distributive lattice of cardinal at most ω1, (G,+) an abelian group, Q a
countable sublattice of P , and φ : Q→ G a modular function. Then there is an extension of φ to a modular
function from P to G.

proof By Theorem 1A again, P is isomorphic to a sublattice of a Boolean algebra; the subalgebra it generates
is again of cardinal at most ω1, so it is enough to consider the case in which P is itself a sublattice of a
Boolean algebra A of cardinal at most ω1.

Let B be the subalgebra of A generated by Q. Then Proposition 3C tells us that there is an extension of
φ to a modular function φ1 : B → G. Set λb = φ1b− φ10 for b ∈ B; then λ is additive. By Theorem 2E, λ
has an extension to an additive function λ′ : A → G. Setting ψa = λ′a+ φ10 for a ∈ A, ψ↾P : P → G is a
modular function extending φ.

3F Problem Set φ(K) = #(K) for K ∈ [ω1]
<ω. Is there an extension of φ to a finitely additive functional

from Pω1 to Z?

4 Submodular and supermodular functions

4A Definitions (a) Let P be a lattice, (G,+) a commutative semigroup with a partial ordering ≤ and
φ : P → G a function.

(i) φ is supermodular if φ(p) + φ(q) ≤ φ(p ∨ q) + φ(p ∧ q) for all p, q ∈ P .

(ii) φ is submodular if φ(p) + φ(q) ≥ φ(p ∨ q) + φ(p ∧ q) for all p, q ∈ P .

(b) A partially ordered semigroup is a semigroup (G,+) such that x + y ≤ x′ + y′ whenever x, x′,
y, y′ ∈ G, x ≤ x′ and y ≤ y′.

4B Lemma Let A be a Boolean ring and K ⊆ A a sublattice containing 0. Set

W = {
∑n

i=0 χai : ai ∈ K for every i ≤ n} ⊆ S(A).

(a) If u ∈W then [[u > t]] = [[u > ⌊t⌋]] ∈ K for every t ≥ 0.
(b) If u ∈W then u is expressible as

∑n
i=0 χai where ai ∈ K for each i, and moreover a0 ⊇ a1 ⊇ . . . ⊇ an.

proof (For basic facts about the Riesz space S(A), see Fremlin 02, §361.)

(a) If u =
∑n

i=0 χai where ai ∈ K for each i, then

[[u > t]] = sup{inf
i∈J

ai : J ⊆ {0, . . . , n}, #(J) > t}

= sup{inf
i∈J

ai : J ⊆ {0, . . . , n}, #(J) > ⌊t⌋} ∈ K.
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(b) If u = 0, this is trivial. Otherwise, express u as
∑n

i=0 αiχbi where αi > 0 and bi ∈ A for each i and
b0 ⊃ . . . ⊃ bn 6= 0 (Fremlin 02, 361Ec). Then

bi = [[u >
∑i−1

j=0 αj ]] ∈ K

for each i, while [[u >
∑n

j=0 αj ]] = 0. We know also that the function t 7→ [[u > t]] is constant on each interval

[k, k + 1[. So all the sums
∑i

j=0 αj must be integers, and every αj is an integer. Accordingly we can get the

desired form by taking ak = bi if
∑i−1

j=0 αj ≤ k <
∑n

j=0 αj .

4C Proposition (König 97) Let A be a Boolean ring, K a sublattice of A containing 0, (G,+,≤) a
partially ordered commutative semigroup with identity 0G, and φ : K → U a functional such that φ0 = 0G.
Let W ⊆ S(A) be the sub-semigroup generated by {χa : a ∈ K}, as in 4B, and define

∫
dφ : W → G by

setting ∫
u dφ =

∑∞

n=0 φ[[u > n]]

for u ∈W .
(a) If u =

∑n
i=0 χai where ai ∈ K for every i and a0 ⊇ a1 ⊇ . . . ⊇ an, then

∫
u dφ =

∑n
i=0 αiφai.

(b)
∫
nu dφ = n

∫
u dφ for every u ∈W and n ∈ N.

(c) If φ(a) ≤ φ(b) whenever a ⊆ b, then
∫
u dφ ≤

∫
v dφ whenever u ≤ v.

(d) If φ is supermodular, then
∫
u+ v dφ ≥

∫
u dφ+

∫
v dφ for all u, v ∈ G.

(e) If φ is submodular, then
∫
u+ v dφ ≤

∫
u dφ+

∫
v dφ for all u, v ∈ G.

proof (a) I ought to explain what I mean by
∫ ∞

0
φ[[u > t]]dt. We can take this together with the calculation

in hand. As in the proof of 4Bb, [[u > t]] = ai for
∑i−1

j=0 αj ≤ t <
∑i

j=0 αj , while [[u > t]] = 0 for t ≥
∑n

j=0 αi.
Thus we are integrating a U -valued function which is constant on each of finitely many half-open intervals
and zero above a certain level; of course the integral is the sum of the (scalar) products of the lengths of
the intervals with the values on those intervals. The reason for expressing it in this form is to make (c)
transparent and (d)-(e) natural. There is a check to be performed. If, as is natural, we define the integral
in terms of intervals on which our function takes different values, then the expression u =

∑n
i=0 αiχai may

subdivide some of these intervals if the ai take repeated values; we have to observe that we can collapse
these together without changing the sum

∑n
i=0 αiφ(ai).

(b) Immediate from (a) and 4Bb.

(c) [[u > t]] ⊆ [[v > t]] for every t, so φ[[u > n]] ≤ φ[[v > n]] for every n.

(d)(i) If u = χa+ v where a ∈ K, v ∈ G and [[v > 0]] ⊆ a, then∫
u+ v dφ = φa+

∫
v dφ =

∫
u dφ+

∫
v dφ

by (a).

(ii) For the moment, suppose that A is finite. If u, v ∈W , then
∫
u+ v dφ ≥

∫
u dφ+

∫
v dφ. PPP Induce

on m =
∫
u dµ̄+

∫
v dµ̄ where µ̄ is the measure on A such that µ̄a = 1 for every atom a. (See Fremlin 02,

§365 for the elementary theory of such integrals.) We start with the trivial case m = 0 in which u = v = 0.
For the inductive step to m > 0, set a = [[u > 0]] and b = [[v > 0]]. Then u′ = u−χa and v′ = v−χb belong
to W (use 4Bb once more). Now

−

∫
u+ v dφ = −

∫
χa+ χb+ u′ + v′dφ = −

∫
χ(a ∪ b) + χ(a ∩ b) + u′ + v′dφ

= φ(a ∪ b) + −

∫
χ(a ∩ b) + u′ + v′dφ

(by (i))

≥ φ(a ∪ b) + −

∫
χ(a ∩ b)dφ+ −

∫
u′ + v′dφ

(by the inductive hypothesis, because
∫
χ(a ∩ b)dµ̄+

∫
u′ + v′dµ̄ = m− µ̄(a ∪ b) < m)
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≥ φ(a ∪ b) + φ(a ∩ b) + −

∫
u′dφ+ −

∫
v′dφ

(by the inductive hypothesis again)

≥ φa+ φb+ −

∫
u′dφ+ −

∫
v′dφ

(because φ is supermodular)

= −

∫
u dφ+ −

∫
v dφ

by (i) again, and the induction proceeds. QQQ

(iii) For the general case, given u, v ∈ W , express them as
∑m

i=0 χai and
∑m

j=0 χbj where ai, bj ∈ K

for all i and j; then there is a finite subalgebra B of A containing all the ai and bj . Applying (ii) to φ↾K∩B,
we get

∫
u+ v dφ ≥

∫
u dφ+

∫
v dφ, as required.

(e) We can copy the proof of (d), with each ≥ replaced by ≤.

4D Theorem (König 00) Let P be a distributive lattice, U a Dedekind complete Riesz space, φ : P → U
a supermodular function and ψ : P → U a submodular function. Suppose that φ ≤ ψ.

(a) There is a modular function θ : P → U such that φ ≤ θ ≤ ψ.
(b) If either φ or ψ is non-decreasing, we can take θ to be non-decreasing.

proof (a)(i) Suppose to begin with that P is a sublattice of a Boolean algebra A containing 0, and that
φ(0) = ψ(0) = 0. Let W ⊆ S(A)+ be the semigroup generated by {χa : a ∈ P} as in 4B, and consider the
functionals

∫
dφ,

∫
dψ : W → U as described in 4C. By 4C(d-e) these are respectively superadditive and

subadditive, and ∫
u dφ =

∑∞

n=0 φ[[u > n]] ≤
∑∞

n=0 ψ[[u > n]] =
∫
u dψ

for every u ∈W . By 1C, there is an additive h : W → U such that
∫
u dφ ≤ h(u) ≤

∫
u dψ for every u ∈W ;

setting θa = h(χa) for a ∈ P , θ is modular (see 3Bb) and

φa =
∫
χa dφ ≤ θa ≤

∫
χa dψ = ψa

for every a ∈ P .

(ii) Now suppose that P is any distributive lattice with least element 0, and that φ(0) = ψ(0) = 0.
Taking Z to be the set of surjective lattive homomorphisms from P to {0, 1}, p 7→ π(p) = {z : z(p) = 1} is
an injective lattice homomorphism from P to P(Z), matching 0 with ∅. So we can apply (a) to the sublattice
π[P ] of the Boolean algebra PZ and the functionals φπ−1, ψπ−1 : π[P ] → U to find a modular function
θ0 : π[P ] → U bracketed between φπ−1 and ψπ−1, and now θπ : P → U will be a modular function between
φ and ψ.

(iii) For the general case, we can adjoin a least element to P by taking any 0∗ /∈ P and setting
P ∗ = P ∪ {0∗}, 0∗ < p for every p ∈ P ; P ∗ is again a distributive lattice, and if we extend φ and ψ by
setting φ(0∗) = ψ(0∗) = 0, these are still respectively supermodular and submodular. So we can interpolate
them with a modular function on P ∗ whose restriction to P is a modular function on P , as required.

(b)(i) Suppose that ψ is non-decreasing. Then there is a maximal modular function θ such that φ ≤ θ ≤
ψ. (As in part (b) of the proof of 1C, if R is a non-empty upwards-directed family of modular functions
dominated by ψ, the supremum of R in UP is a modular function.) Now set

θ+(p) = sup{θq : q ≤ p}

for p ∈ P . Because ψ is non-decreasing, θ+ ≤ ψ, and of course θ ≤ θ+. If p, q ∈ P , then

θ+(p) + θ+(q) = sup
p′≤p

θ(p′) + sup
q′≤q

θ(q′) = sup
p′≤p,q′≤q

θ(p′) + θ(q′)

(Fremlin 02, 351Db again)
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= sup
p′≤p,q′≤q

θ(p′ ∨ q′) + θ(p′ ∧ q′) ≤ θ+(p ∨ q) + θ+(p ∧ q),

because if p′ ≤ p and q′ ≤ q then p′ ∨ q′ ≤ p ∨ q and p′ ∧ q′ ≤ p ∧ q, so θ(p′ ∨ q′) ≤ θ+(p ∨ q) and
θ(p′ ∧ q′) ≤ θ+(p ∧ q). As p, q and ǫ are arbitrary, θ+ is supermodular. But now (a) tells us that there is a
modular θ1 : P → R such that θ+ ≤ θ1 ≤ ψ, in which case θ ≤ θ1 ≤ ψ and θ1 = θ. Accordingly θ+ = θ; but
this means that θ is non-decreasing.

(ii) If φ is non-decreasing, argue similarly but with a minimal modular function θ dominating φ, and
θ−(p) = inf{θ(q) : p ≤ q}. Or apply (i) to the reversed lattice (P,≥) and the functions −ψ, −φ.

4E Corollary (König 00) Let P be a distributive lattice, φ : P → ]−∞,∞] a supermodular function
and ψ : P → ]−∞,∞] a non-decreasing submodular function. If φ ≤ ψ, there is a non-decreasing modular
function θ : P → ]−∞,∞] such that φ ≤ θ ≤ ψ.

proof Set Q = {p : p ∈ P, ψ(p) < ∞}. Then Q is a sublattice of P , and p ∈ Q whenever p ∈ P and
p ≤ q ∈ Q. Applying 4D to φ↾Q and ψ↾Q, we get a non-decreasing modular θ0 : Q → R between φ and
ψ. Extending θ0 to θ : P → ]−∞,∞] by setting θ(p) = ∞ for p ∈ P \ Q, we find that we have a suitable
interpolation between φ and ψ.

4F Corollary Let P be a distributive lattice, Q a sublattice of P , and θ0 : Q→ [0,∞] a non-decreasing
modular function. Then there is a non-decreasing modular function θ : P → [0,∞] extending θ0.

proof (a) For p ∈ P set φ(p) = sup{θ0(q) : q ∈ Q, q ≤ p}, ψ(p) = inf{θ0(q) : p ≤ q ∈ Q}, counting inf ∅
as ∞ and sup ∅ as 0. Then φ and ψ are both non-decreasing functions from P to [0,∞]. Because θ0 is
non-decreasing, φ(q) = θ0(q) = ψ(q) for every q ∈ Q and φ(p) ≤ ψ(p) for every p ∈ P .

(b)(i) φ is supermodular. PPP??? Otherwise, there are p, p′ ∈ P such that φ(p∨p′)+φ(p∧p′) < φ(p)+φ(p′).
In this case, φ(p) and φ(p′) must both be non-zero, so there are q, q′ ∈ Q such that q ≤ p, q′ ≤ p′ and

θ(q) + θ(q′) > φ(p ∨ p′) + φ(p ∧ p′) ≥ θ(q ∨ q′) + θ(q ∧ q′). XXXQQQ

(ii) ψ is submodular. PPP??? Otherwise, there are p, p′ ∈ P such that ψ(p∨p′)+ψ(p∧p′) > φ(p)+φ(p′).
In this case, φ(p) and φ(p′) must both be finite, so there are q, q′ ∈ Q such that q ≥ p, q′ ≥ p′ and

θ(q) + θ(q′) < φ(p ∨ p′) + φ(p ∧ p′) ≤ θ(q ∨ q′) + θ(q ∧ q′). XXXQQQ

(c) By 4E, there is a non-decreasing modular function θ : P → ]−∞,∞] such that φ ≤ θ ≤ ψ; as φ is
non-negative, so is θ; as φ and ψ both extend θ0, so does θ.
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