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Distributive lattices and modular functions
D.H.FREMLIN

University of Essex, Colchester, England

1 Two facts

1A Stone representation of distributive lattices: Theorem Let P be a distributive lattice and Z
the set of surjective lattice homomorphisms from P to {0,1}. For p € P set n(p) = {2 :z € Z, z(p) = 1}.
Then 7 is an injective lattice homomorphism, so P is isomorphic to the sublattice 7[P] of PZ.

proof Just because Z consists of lattice homomorphisms, 7 is a lattice homomorphism. To see that it is
injective, suppose that pg, go € P and ¢o £ po. Consider the family Q of pairs (A, B) of subsets of P such
that

p0€A7q0€Ba
pVp € Aforallp, p' € A, qNq € Bforall q, ¢ € B,
qgLpforallpe A q€ B.

Then ({po},{q0}) € Q. Ordering Q by saying that
(A,B) < (A,B"itACA , BCH,
any totally ordered subset of Q has an upper bound in Q; so Q has a maximal element (Ag, Bg) say.
? If AgUBy # P, taker € P\ (AgUBy). Set A= AgU{pVr:pe Ao}, B=BoU{gAr:q€ Bp}. Then

(A, By) ¢ Q, so there must be p € Ag, ¢ € By such that ¢ < pV r; also (Ag, B) ¢ Q, so there are p’ € Ay,
q' € By such that ¢ Ar < p’. In this case,

gng <(pVr)ng =(pNrd)V(rng)
(because P is distributive)
<pvp.

But g A ¢ € By and pV p' € Ay, so this is impossible. X

Of course Ag N By = 0, so we can define z : P — {0,1} by setting 2(p) = 0 for p € Ag and 2(q) = 1
for ¢ € Bg. If p € Ag and p’ < p, then p’ ¢ By so p' € Apy; similarly, if ¢ € By and ¢ < ¢/, then
q € By. Accordingly z is order-preserving. Because A is closed under V, z(p V q) = max(z(p), z(q)) for
all p, ¢ € P; because By is closed under A, z(p A ¢) = min(z(p), z(q)) for all p, ¢ € P. Thus z € Z, while

z(po) = 0 # 1 = z(qo); and m(po) # 7(qo)-
Similarly, 7w(po) # 7(qo) if po £ qo, so 7 is injective.

1B Definition Let (G, +) be a semigroup, (H, +, <) a semigroup with a partial ordering <, and f : G —
H a function.

(a) f is superadditive if f(x +y) > f(x) + f(y) for all z, y € G.

(b) f is subadditive if f(x +y) < f(z) + f(y) for all z, y € G.

1C Theorem (KONIG 00) Let (G, +) be a commutative semigroup with identity 0g and U a Dedekind
complete Riesz space. Let f, g : G — U be functions such that

f(0c) =9(0c) =0,  f(z) < g(x) for every z € G,
f is superadditive, g is subadditive.

Then there is an additive h : G — U such that f < h <g.
1



2

proof (a) Define nz, for n € N and =z € G, by saying that 0z = O¢ and (n + 1)z = nz + x for every n;
note that n(z + y) = nx + ny, (m + n)x = ma + nzx for x, y € G and m, n € N. Also fi(nz) > nfi(z) and
g1(nz) < ngi(x) whenever n € N, z € G, f; : G — U is superadditive and zero at Og, and g1 : G — U is
subadditive and zero at Og.

(b) Give U the product partial order. If Q C UY is the set of superadditive functionals dominated by g,
then any non-empty upwards-directed R C @ has an upper bound in Q. P For each x € G, {h(z) : h € R}
is an upwards-directed set bounded above by g(x), so has a supremum hg(x) say. If z, y € G, then
A={h(z): he R}, B={h(y): h € R} are upwards-directed and bounded above. Also, if h’, h”" € R, then
there is an h € R such that A’ < h and h” < h, and now

W(x)+h"(y) < h(z) 4+ h(y) < h(z+y) < ho(z +y).
So ho(z + y) is an upper bound for A + B and
ho(z +y) > sup(A + B) = sup A + sup B = ho(z) + ho(y)

(FREMLIN 02, 351Db). Accordingly hg belongs to @) and is an upper bound of R in Q. Q
By Zorn’s Lemma, there is a maximal superadditive h such that f < h < g. The rest of the argument is
devoted to showing that h is subadditive, therefore additive.

(c) h(nz) = nh(x) for every n € N, 2 € G. P The case n = 0 is trivial (note that f(0g) < h(0g) < g(0¢)
so h(0g) = 0). For n > 1, consider fi(x) = %h(nm) for x € G. Then f; is superadditive because h is, and
h < f1 because h(nz) > nh(x) for every z € G. Finally

nfi(z) = h(n) < gnz) < ng()
for every z, so fi1 < g. By the maximality of h, f; = h and h(nz) = nh(zx) for every z. Q
(d) h(z+z) < h(z) + g(2) for all z, z € G. P Set
f1(w) = sup,ex hlo + n2) — ng(2)
for € G. Then f;(z) > h(x) for every z; also
B +n2) —ng(z) < gz +n2) — ng(2) < g(z) + g(n2) — ng(2) < g(x)
for all n, so f1(z) < g(z), for every z. If x, y € G, then

filzx)+ fily) = su;e)N h(z +mz) 4+ h(y + nz) — mg(z) — ng(z)

< sup h(x +mz+y+nz) — (m+n)g(z)
m,neN

(because h is superadditive)

= su}gN hz+y+ (m+mn)z) — (m+n)g(z)

(because (G,+) is commutative)
= filz +y),
so f1 is superadditive. By the maximality of h, h = f1; in particular, h(z) > h(xz + 2) — g(z), that is,
h(z + 2) < h(z) + g(2) for every z. Q
(e) h(z+z) < h(z) 4+ h(x) for all x, z € G. P This time, set
f1(@) = sup,ex hl(nz + 7) — nh(2)
for x € X. Again, fi(z) > h(z), and

fi(z) < sup h(nz) + g(z) — nh(z)



=g(x)
by (c). Also, as in (d),

(@) + fuly) = sup h(mz + @)+ h(nz +y) — mh(z) - nh(2)

m,neN

< swp h{(m+n)zto+y) = (m+n)h(z) = filz+y),
m,ne

forall z, y € G. So f; is superadditive; by the maximality of h, f; = h; in particular, h(z) > h(z+2z) — h(z2).
Q
(f) So h is subadditive and therefore additive, as required.

2 A note on additive functions

2A Lemma Let 2 be a Boolean algebra, 8 a subalgebra of 2, b € B either 0 or an atom of B, I an
ideal of 2 and € the subalgebra of 2 generated by 28 U I.

(a) If a € €, then either bna € T or b\a € I.

(b) Now suppose that (G,+) is an abelian group, v : I — G an additive function and g € G. Define
A € — G by setting

Aa=v(bna)ifbna eI,
=g —v(b\ a) otherwise.
Then X is an additive function.
proof (a)
{a:a €, at least one of bna, b\ a belongs to I}

is a subalgebra of 2 including % U I, so includes €.

(b) If b € I then Aa = v(bna) for every a € € and the result is immediate. Otherwise, if a, a’ € € are
disjoint, at most one of b\ a, b\ a’ can belong to I, so (by (a)) at least one of bna, bna’ belongs to I, and

Xa+ X =v(bna)+v(bnad)=vbn(aud)) = Aaud)
if bna and bna' belong to I,
=v(bna)+g—vb\d)=g—-v\(aud))=Naud)
ifbnaeland bnad ¢ 1,
=vbnd)+g—vb\a)=g—-v(\(aud))=Naud)
ifbna’ € I'and bna ¢ I.

2B Lemma Let 2 be a Boolean algebra, I an ideal of 2, B a finite subalgebra of 2, € the subalgebra of
A generated by BUI, (G, +) an abelian group and A : € — G an additive function. Suppose that d € 2 and
that 9B’, € are the subalgebras of 2 generated by B U {d}, B’ U I respectively. Then there is an extension
of X\ to an additive function X : ¢ — G.

proof (a) Let B be the set of atoms of B. For each b € B, bnd and b\ d are either 0 or atoms of B’. Define
Ay Ay 1 € — G by setting
va=Abndna)ifbndna€l,
= A(bnd) = Abnd\a)ifb\de I and bndna¢ I,
= —A(bnd\ a) otherwise ,
va=XA(b\d)na)if (b\d)na € I,
=A(b\d) — M(b\d)\a) ifbnd e I and (b\d)na ¢ I,
= Ab— A((b\d)\ a) otherwise .
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By Lemma 2A, applied to A[I, A} and A} are additive. So we can define an additive A’ : € — G by setting
N=2ep M+ A
(b) Nya+ Aja= A(bna) whenever a € Cand b€ B. P
case 1 If bna € I, then
Apa+Na=Abndna)+ A((b\d)na) = A(bna).
case 2 If bna ¢ I and bnd € I then (b\d)na ¢ I and
ANa+Aja=Abndna)+Ab\d) —A(b\d)\a) = Abna).
case 3Ifbna ¢ I and b\d € I then b\a € I (by 2Aa) while bnd ¢ I,sobndna ¢ I and
Apa+Na=Abnd)—Abnd\a)+A((b\d)na) =Abna).

case 4 If bna ¢ I and neither bnd nor b\ d belongs to I, then again b\ a € I, so neither (bnd)na nor
(b\d) na belongs to I, and

Na+Aja=—Xbnd\a)+Xb—A((b\d)\a)=Abna).
Thus we have the required equality in all cases. Q
(¢) Now, for any a € €,
Na=3cpghat+Na= zAbna) = Aa,

so X extends )\, as required.

2C Corollary Let 2 be a Boolean algebra, I an ideal of 2, (G,+) an abelian group and v : I — G
an additive function. If D C 2 is countable and € is the subalgebra of 2 generated by D U I, there is an
additive function A : € — G extending v.

proof (a) If A =), we can use Lemma 2A with %8 = {0,1} and g = 0.

(b) Otherwise, let (d,,)nen run over D, and for n € N let 9B, be the subalgebra of 2 generated by
{d; : i < n}, and €, the subalgebra generated by B, U I. Using (a) to start, and Lemma 2B for the
inductive step, we can construct inductively a sequence (\,)nen such that A, : €, — G is additive for each
n, Ao extends v, and A\, 41 extends A, for each n; so that A = UneN An is an additive function from € to G
extending v.

2D Lemma Let 2 be a countable Boolean algebra with a subalgebra B and a d € 2 such that 2 is the
algebra generated by BU{d}. Suppose that (G, +) is an abelian group and A : B — G an additive function.
Then there is an additive function A’ : 2l — G extending .

proof (a) Let I be the set
{a:a€B,and e B}.

Then I is an ideal of 2A. B Of course I is closed under U and contains 0. If a € I and b C a, then b is
expressible as (cnd)u (¢ \ d) where ¢, ¢ € B (FREMLIN 02, 312N). Now a\ d € B, so

bnd=anbnd=(and)nce B,

b\d=anb\d= (a\d)nc € B.
SobeBandbel. Q

(b) By Lemma 2C, there is an additive function Ag : 2 — G such that Aga = A(and) for every a € I.
Now observe that if b, ¥’ € B and bnd = V' nd, both b\ b’ and b’ \ b are members of B disjoint from d, so
belong to I, and

Aob — A\l = )\o(b\b/) — /\Q(b/ \ b) =0.
Similarly, if ¢, ¢ € B and ¢\ d =’ \d, cA ¢ is included in d and belongs to I, and



Ac—Xdoc=Acnd)+ A\ ) —Xolenc) — Xo(c\ )

=Aend)+ e\ ) —Xolend) — A\ ()

=Acnd) = Xo(end) = A — N
We can therefore define a function ) : 2 — G by setting

AN((bnd)u(e\d)) = Xob+ Ae — Aoe
whenever b, ¢ € B. Just because (b, ¢) — Agb+Ac—Agc : BxB — G is additive and (b, ¢) — (bnd)u (ecnd) :
B x B — A is a Boolean homomorphism, X is additive. Now if b € B,

ANo=XN({(bnd)u(b\d)) = Aob+ Ab — A\gb = \b.

So X extends A.

2E Theorem Let 2 be a Boolean algebra of cardinal at most wq, B a countable subalgebra of 2, (G, +)
an abelian group and A : 8 — G an additive function. Then there is an additive function X : 2l — G
extending .

proof Let (a¢)¢<w, run over A, and for § < wy let B¢ be the subalgebra of A generated by BU {a, : n < &}.
Construct additive functions \¢ : B¢ — G inductively, as follows. Start with By =B and A\g = A. For the
inductive step to £ + 1, B¢y is countable and is generated by B¢ U {ag}, so Lemma 2D tells us that Ag

extends to an additive A¢y1 : B¢y — G. For the inductive step to a limit ordinal £ > 0, set A¢ = Un<€ Ay

Now X = A, is an extension of A to the whole of 2.
3 Modular functions

3A Definition Let P be a lattice, (G,4) a commutative semigroup and ¢ : P — G a function. ¢ is
modular if ¢(p) + é(q) = ¢(pV q) + ¢(p A q) for all p, g € P.

3B Elementary facts (a) Let P be a lattice and (G, +) a commutative semigroup.

(i) If ¢, ¢ : P — G are modular functions, then ¢ + 1 is a modular function.

(ii) Any constant function from P to G is modular.

(iii) If (H,+) is another commutative semigroup and T : G — H is a homomorphism, then T'¢ is modular
whenever ¢ : P — G is modular.

(b) Let 2 be a Boolean algebra and (G, +) a commutative group. Then a function ¢ : 4 — G is modular
iff a — ¢(a) — ¢(0) is additive. P Set va = ¢(a) — #(0). («) If ¢ is modular and a, b € A are disjoint, then
v is modular (by (a)), so

va+vb=v(aub)+v(anb) =v(aub) +1v0=r(aub),
so v is additive. (3) If v is additive, and a, b € 2, then
v(aub) +v(and) =v(a\b) +v(and)+v(b\a)+rianbd) =v(a)+ v(b),
so v is modular; by (a) again, ¢ is modular. Q
3C Extension of modular functions: Proposition Let 20 be a Boolean algebra, @) a sublattice of 2,

(G, +) a commutative group and ¢ : @ — G a modular function. Let B be the subalgebra of 2 generated
by @. Then there is an extension of ¢ to a modular function from % to G.

proof Let (Q*, ¢*) be a maximal extension of (Q, ¢) to a modular function from a sublattice of B to G.

(a) 0 € Q*. P? Otherwise, set Q' = Q* U {0} and extend ¢* to ¢' : Q" — V arbitrarily; then Q' is a
sublattice of 9B, ¢’ is modular, and (Q’, ¢') is a proper extension of (Q*, ¢*). XQ Similarly, 1 € Q*.

(b) If d € Q*, then 1\ d € Q*. P Set
Q' ={(a\d)u(bnd):a, beQ},
and define ¢' : Q' — V by setting



¢'(c) = ¢*(cud) + ¢*(cnd) — ¢*(d)

for ¢ € @Q'; this is well-defined because if a, b € Q* and ¢ = (a\d)u (bnd), then (¢c\d)ud = aud and
cnd=0bnd belong to Q*. If a € Q*, then

¢'(a) = ¢*(aud) + ¢*(and) — ¢*(d) = ¢ (a)

because ¢* is modular. So ¢’ extends ¢*. Next, it is easy to check that Q' is a sublattice of B, and also
that the functions

a— ¢*(aud), a— ¢ (and):Q* =G
are modular. Consequently
cr— ¢*(cud), cr @*(cnd):Q —V
are modular, so their sum is modular, and the translated version ¢’ is still modular.

By the maximality of (Q*, ¢*), Q* = Q' contains 1\ d. Q

(c) It follows that @Q* is a subalgebra of 2, and must be 8.

3D Proposition Let P be a distributive lattice, V' a linear space over a field F, ) a sublattice of P, and
¢ : Q@ — V a modular function. Then there is an extension of ¢ to a modular function from P to V.

proof (a) By Theorem 1A, P is isomorphic to a sublattice of PZ for some Z, so we can suppose that P is
actually equal to PZ. Let (Q*, ¢*) be a maximal extension of (Q, ¢) to a modular function from a sublattice
of PZ to V. By Proposition 3C, @* must actually be the subalgebra of PZ it generates. Define v : Q* — V
by setting vK = ¢*(K) — ¢*(0) for K € Q*; then v is additive, by 3Bb.

(b)(i) Let S C FZ be the set of functions u : Z — F such that u[Z] is finite and {2 : u(z) = a} € Q* for
every a € F. Then S is a linear subspace of the linear space F'4. For u € S, set

fu) =3 peuiz av(u™[{a}]);

then f: S — V is linear. P (i) If u, v € S, set Kop = v [{a}] No[{B}] for a € u[Z], B € v[Z]. For each
o € u[Z), (Kap)pev|z] is a finite partition of u=![{a}], so

fu) =Y geuz v {o}]) = Xacuiz) 2 eviz) VEap-

Similarly,

flv) = ZaGu[Z],BGv[Z] BrKagp.
On the other hand, (u + v)[Z] C u[Z] + v[Z], and for v € (u + v)[Z],

<Ko¢ﬁ>a6u[Z]7ﬁEv[Z],a+ﬂ:'y
is a finite partition of (u + v)~1[{v}], so

fluto)y= > vluto) ' [{}) = Z v Y, vKag
vE(u+v)[Z] e(utv)[Z ] a€culZ]
pev(Z]
a+p=y
= Y Y (atPwKag= Y (a+P)vkas
v€(u+v)[Z] acu[Z] aculZ]
pev[Z] Bev[Z]
a+p=y
(because Ko =0 if a+ 3 ¢ (u+v)[Z])
= f(w) + f(v).

(ii) If w € S and « € F is non-zero, then (yu)[Z] = {ya : a € u[Z]}, so



fow = Bl HBY = Z yar((vu)~ {a}]

Be(yu)[Z] aculZ]
— Y v {al) = 1),
acu[Z]

So f is linear. Q
(ii) There is therefore a linear function g : FZ — V extending f. Set
¢'(A) = ¢*(0) + g(xA)

for A C Z, where YA : Z — F is defined by setting xA(z) = 1p for z € A, Op for z € Z\ F. If K € Q*,
xK € S and

¢'(K) = g(xK) + ¢*(0) = f(xK) + ¢*(0) = vK + ¢*(0) = ¢ (K).
It is also easy to check that, for A, B C Z,
XA+ xB=x(ANB)+ x(AU B),
so ¢ is modular. So in fact ¢’ = ¢* and ¢* is an extension of ¢ to the whole of PZ.
3E Proposition Let P be a distributive lattice of cardinal at most wy, (G,+) an abelian group, @ a

countable sublattice of P, and ¢ : Q — G a modular function. Then there is an extension of ¢ to a modular
function from P to G.

proof By Theorem 1A again, P is isomorphic to a sublattice of a Boolean algebra; the subalgebra it generates
is again of cardinal at most wq, so it is enough to consider the case in which P is itself a sublattice of a
Boolean algebra 2 of cardinal at most ws.

Let B be the subalgebra of  generated by @. Then Proposition 3C tells us that there is an extension of
¢ to a modular function ¢; : B — G. Set \b = ¢1b — ¢10 for b € B; then A is additive. By Theorem 2E, A
has an extension to an additive function ) : 2l — G. Setting ¥a = Na + ¢,0 fora € A, Y|P : P — G is a
modular function extending ¢.

3F Problem Set ¢(K) = #(K) for K € [w1]<¥. Is there an extension of ¢ to a finitely additive functional
from Pw; to Z?
4 Submodular and supermodular functions

4A Definitions (a) Let P be a lattice, (G,+) a commutative semigroup with a partial ordering < and
¢ : P — G a function.

(i) ¢ is supermodular if ¢(p) + ¢(q) < ¢(pV q) + ¢(p A q) for all p, g € P.
(ii) ¢ is submodular if ¢(p) + ¢(q) > ¢(p V q) + ¢(p A q) for all p, g € P.
(b) A partially ordered semigroup is a semigroup (G, +) such that x + y < 2’ + ¢y’ whenever z, 2/,
v,y €G, o<z andy <y
4B Lemma Let 2 be a Boolean ring and K C 2 a sublattice containing 0. Set
W ={>"xa;:a; €K for every i <n} C S(2).

(a) If w € W then Ju > ¢] = [u > |t]] € K for every t > 0.
(b) If uw € W then u is expressible as Y xa; where a; € K for each i, and moreover ag 2 a1 2 ... D ay.

proof (For basic facts about the Riesz space S(2l), see FREMLIN 02, §361.)
(a) Ifu= 37", xa; where a; € K for each i, then
[ > 1] = sup{inf a,: 7 € {0, n}, #(/) > 1}
= sup{infa, € {0, n}, #(J) > |1]} € K.



(b) If w = 0, this is trivial. Otherwise, express u as Y . a;xb; where a; > 0 and b; € 2 for each i and
bp> ... Db, #0 (FREMLIN 02, 361Ec). Then

bi=[u>Y""ga] €K
for each i, while [u > >77_j a;] = 0. We know also that the function ¢ — [u > ] is constant on each interval

[k, k + 1[. So all the sums Z;‘:o a; must be integers, and every «; is an integer. Accordingly we can get the
desired form by taking aj = b; if Z;;E a; <k< Z?:o o

4C Proposition (KONIG 97) Let 2 be a Boolean ring, K a sublattice of 2 containing 0, (G,+,<) a
partially ordered commutative semigroup with identity Og, and ¢ : K — U a functional such that ¢0 = 0.
Let W C S(2) be the sub-semigroup generated by {xa : a € K}, as in 4B, and define f d¢ : W — G by
setting

fudd =307 6u>n]

a) If u= Y"1, xa; where a; € K for every i and ag2 a1 2 ... D ay, then fudp =31, aida;.
b) frudg = nfudg for every u € W and n € N.

c) If ¢(a) < ¢(b) whenever a C b, then fudp < fvdg whenever u < v.

d) If ¢ is supermodular, then fu + vd¢ > fudg + fvdg for all u, v € G.

e) If ¢ is submodular, then fu + vd¢ < fudgp +fvde for all u, v € G.

proof (a) I ought to explain what I mean by fooo ofu > t]dt. We can take this together with the calculation
in hand. As in the proof of 4Bb, [u > ¢] = a; for Z;;g aj <t <375 ooy, while [u>t] =0fort> 3" .
Thus we are integrating a U-valued function which is constant on each of finitely many half-open intervals
and zero above a certain level; of course the integral is the sum of the (scalar) products of the lengths of
the intervals with the values on those intervals. The reason for expressing it in this form is to make (c)
transparent and (d)-(e) natural. There is a check to be performed. If, as is natural, we define the integral
in terms of intervals on which our function takes different values, then the expression u = Y 7" ; a;xa; may
subdivide some of these intervals if the a; take repeated values; we have to observe that we can collapse
these together without changing the sum > ; o;¢(a;).

(b) Immediate from (a) and 4Bb.
() [u>t] € [v>t] for every t, so ¢u > n] < ¢[v > n] for every n.
(d)() If u= xa + v where a € K, v € G and [v > 0] C a, then
fu+vdp=ga+ fvdp=fudp+ fvdg
by (a).

(ii) For the moment, suppose that 2 is finite. If u, v € W, then fu+vd¢ > fudg + fvdg. P Induce
onm = [udii+ [vdp where fi is the measure on 2 such that fia = 1 for every atom a. (See FREMLIN 02,
§365 for the elementary theory of such integrals.) We start with the trivial case m = 0 in which u =v = 0.
For the inductive step to m > 0, set a = [u > 0] and b = [v > 0]. Then v’ = v — xa and v' = v — xb belong
to W (use 4Bb once more). Now

][u—&—vdqb:fxa+xb+u’+vld¢:][)((aub)—|—X(amb)+u'+v'd¢

= ¢(aub) —|—fx(amb) +u' +v'de
(by (i)
> ¢(aub) +][>dcmb)d¢+][u’ +'de
(by the inductive hypothesis, because [ x(anb)di+ [ v +v'di=m — (aub) < m)



> p(aub) + ¢land) +][u’d¢+][v’d¢
(by the inductive hypothesis again)

> ¢a+¢b+][u’d¢+][v’d¢
(because ¢ is supermodular)

:][ud¢+][ud¢

by (i) again, and the induction proceeds. Q

(iii) For the general case, given u, v € W, express them as Z:‘io xa; and z;nzo xb; where a;, b; € K
for all ¢ and j; then there is a finite subalgebra B of 2 containing all the a; and b;. Applying (ii) to ¢ K N'B,
we get fu+vdd > fudg + fvdg, as required.

(e) We can copy the proof of (d), with each > replaced by <.

4D Theorem (KONIG 00) Let P be a distributive lattice, U a Dedekind complete Riesz space, ¢ : P — U
a supermodular function and ¢ : P — U a submodular function. Suppose that ¢ < .

(a) There is a modular function 6 : P — U such that ¢ < 6 < 4.

(b) If either ¢ or # is non-decreasing, we can take 6 to be non-decreasing.

proof (a)(i) Suppose to begin with that P is a sublattice of a Boolean algebra 2 containing 0, and that
#(0) = (0) = 0. Let W C S(A)*" be the semigroup generated by {xa : a € P} as in 4B, and consider the
functionals f d¢, fdiy : W — U as described in 4C. By 4C(d-e) these are respectively superadditive and
subadditive, and

Judp =307 o[u>n] <302 (u>n] = fudy

for every u € W. By 1C, there is an additive h : W — U such that fud¢ < h(u) < fu dy for every u € W;
setting fa = h(xa) for a € P, 0 is modular (see 3Bb) and

d)a:fxadqi)g Gagfxadw = 1a
for every a € P.

(ii) Now suppose that P is any distributive lattice with least element 0, and that ¢(0) = (0) = 0.
Taking Z to be the set of surjective lattive homomorphisms from P to {0,1}, p— 7w(p) = {z: z(p) = 1} is
an injective lattice homomorphism from P to P(Z), matching 0 with . So we can apply (a) to the sublattice
7[P] of the Boolean algebra PZ and the functionals ¢!, vr~! : 7[P] — U to find a modular function
0o : m[P] — U bracketed between ¢m ! and ¢7 !, and now 7 : P — U will be a modular function between

¢ and .

(iii) For the general case, we can adjoin a least element to P by taking any 0* ¢ P and setting
P* = PU{0*}, 0* < p for every p € P; P* is again a distributive lattice, and if we extend ¢ and ¢ by
setting ¢(0*) = ¢(0*) = 0, these are still respectively supermodular and submodular. So we can interpolate
them with a modular function on P* whose restriction to P is a modular function on P, as required.

(b) (i) Suppose that v is non-decreasing. Then there is a maximal modular function € such that ¢ <60 <
1. (As in part (b) of the proof of 1C, if R is a non-empty upwards-directed family of modular functions
dominated by 1, the supremum of R in U” is a modular function.) Now set

0% (p) = sup{fg : ¢ < p}
for p € P. Because 9 is non-decreasing, 7 < 1, and of course § < 0+. If p, ¢ € P, then

0% (p) +0%(q) = sup O(p) + sup 0(¢') = sup  O(p') +0(¢)

p'<p 7'<q p'<p,q'<q
(FREMLIN 02, 351Db again)
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= sup O’ Vd)+0p Ag)<O0T(pVa)+6T(pAQ),
p'<p,q'<q

because if p’ < p and ¢ < g then p’ V¢ < pVgand pP Aqd < pAgq,sof@p VvVg) <0T(pVq) and
0(p' Nq') < 0T (pAq). As p, g and € are arbitrary, 07 is supermodular. But now (a) tells us that there is a
modular 6; : P — R such that §+ < 6; <, in which case § < 0; < and 0; = 0. Accordingly 6+ = ; but
this means that # is non-decreasing.

(ii) If ¢ is non-decreasing, argue similarly but with a minimal modular function # dominating ¢, and
0_(p) = inf{0(q) : p < ¢q}. Or apply (i) to the reversed lattice (P,>) and the functions —¢, —¢.

4E Corollary (KONIG 00) Let P be a distributive lattice, ¢ : P — ]—00, o0] a supermodular function
and ¢ : P — |—00, o0] a non-decreasing submodular function. If ¢ < 4, there is a non-decreasing modular
function 6 : P — ]|—o00, 00] such that ¢ < 6 < 4.

proof Set @ = {p : p € P, (p) < oo}. Then Q is a sublattice of P, and p € @ whenever p € P and
p < q € Q. Applying 4D to ¢[Q and ¥ [Q, we get a non-decreasing modular 6y : Q — R between ¢ and
1. Extending 6y to 6 : P — ]—00,00] by setting 8(p) = oo for p € P\ @, we find that we have a suitable
interpolation between ¢ and .

4F Corollary Let P be a distributive lattice, @ a sublattice of P, and 6, : Q@ — [0, o0] a non-decreasing
modular function. Then there is a non-decreasing modular function 6 : P — [0, o] extending 6y.

proof (a) For p € P set ¢(p) = sup{o(q) : ¢ € Q, ¢ < p}, ¥(p) = inf{by(q) : p < q € Q}, counting inf @
as oo and sup() as 0. Then ¢ and 1 are both non-decreasing functions from P to [0,00]. Because 6y is

non-decreasing, ¢(q) = 6y(q) = ¥(q) for every g € Q and ¢(p) < ¥(p) for every p € P.

(b)(i) ¢ is supermodular. P? Otherwise, there are p, p’ € P such that ¢(pVp')+¢(pAp') < ¢(p)+o(p').
In this case, ¢(p) and ¢(p’) must both be non-zero, so there are ¢, ¢’ € @ such that ¢ < p, ¢’ <p’ and

0(q) +0(¢') > opVp)+olpAp) =0(gVvd)+0ang) XQ
(ii) ¢ is submodular. P? Otherwise, there are p, p’ € P such that ¢(pVp')+¢¥(pAp') > ¢(p) + ¢(p').
In this case, ¢(p) and ¢(p’) must both be finite, so there are ¢, ¢ € Q such that ¢ > p, ¢ > p’ and
0(q) +0(d") < ppVvp)+dlpAp) <bgVd)+0(gnd) XQ

(c) By 4E, there is a non-decreasing modular function 6 : P — ]—00, 00] such that ¢ < 6 < 9; as ¢ is
non-negative, so is 0; as ¢ and ¥ both extend 6y, so does 6.
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