Vector-valued Saks-Henstock indefinite integrals

D.H.FREMLIN

University of Essex, Colchester, England

1 Basic definitions and results

1A The context (a) Let X be a set. A tagged partition on X will be a finite subset t of $X \times \mathcal{P}X$; in this case, H_t will be $\bigcup \{C : (x, C) \in t\}$. A gauge on X is a subset δ of $X \times \mathcal{P}X$. For a gauge δ on X, a tagged partition t on X is δ -fine if $t \subseteq \delta$. If $\mathcal{R} \subseteq \mathcal{P}X$, and t is a tagged partition on X, t is \mathcal{R} -filling if $X \setminus H_t \in \mathcal{R}$. A straightforward set of tagged partitions on X is a set of the form

 $T = \{ \boldsymbol{t} : \boldsymbol{t} \in [Q]^{<\omega}, C \cap C' = \emptyset \text{ whenever } (x, C), (x', C') \text{ are distinct members of } \boldsymbol{t} \}$

where $Q \subseteq X \times \mathcal{P}X$.

(b)(i) A family Δ of gauges on a set X is full if whenever $\langle \delta_x \rangle_{x \in X}$ is a family in Δ , then

$$\{(x,A): x \in X, (x,A) \in \delta_x\}$$

belongs to Δ . Δ is **countably full** if this is true whenever $\{\delta_x : x \in X\}$ is countable.

(ii) If X is a topological space, a **neighbourhood gauge** on X is a gauge of the form $\{(x, C) : x \in X, C \subseteq G_x\}$ where $\langle G_x \rangle_{x \in X}$ is a family of open subsets of X such that $x \in G_x$ for every $x \in X$.

For any topological space, the family of all neighbourhood gauges on X is full.

(c) A quadruple $(X, T, \Delta, \mathfrak{R})$ is a tagged-partition structure allowing subdivisions, witnessed by \mathcal{C} , if

(i) X is a set.

(ii) Δ is a non-empty downwards-directed family of gauges on X.

(iii)(α) \Re is a non-empty downwards-directed collection of families of subsets of X, all containing \emptyset ;

(β) for every $\mathcal{R} \in \mathfrak{R}$ there is an $\mathcal{R}' \in \mathfrak{R}$ such that $A \cup B \in \mathcal{R}$ whenever $A, B \in \mathcal{R}'$ are disjoint.

(iv) \mathcal{C} is a family of subsets of X such that whenever $C, C' \in \mathcal{C}$ then $C \cap C' \in \mathcal{C}$ and $C \setminus C'$ is expressible as the union of a disjoint finite subset of \mathcal{C} .

(v) Whenever $\mathcal{C}_0 \subseteq \mathcal{C}$ is finite and $\mathcal{R} \in \mathfrak{R}$, there is a finite set $\mathcal{C}_1 \subseteq \mathcal{C}$, including \mathcal{C}_0 , such that $X \setminus \bigcup \mathcal{C}_1 \in \mathcal{R}$.

(vi) $T \subseteq [X \times \mathcal{C}]^{<\omega}$ is a non-empty straightforward set of tagged partitions on X.

(vii) Whenever $C \in \mathcal{C}$, $\delta \in \Delta$ and $\mathcal{R} \in \mathfrak{R}$ there is a δ -fine tagged partition $\mathbf{t} \in T$ such that $H_{\mathbf{t}} \subseteq C$ and $C \setminus H_{\mathbf{t}} \in \mathcal{R}$.

(d) Given a set X, a non-empty set T of tagged-partitions on X, a non-empty family Δ of gauges on X, and a non-empty collection \Re of families of subsets of X, consider sets of the form

 $T_{\delta \mathcal{R}} = \{ \boldsymbol{t} : \boldsymbol{t} \in T \text{ is } \delta \text{-fine and } \mathcal{R} \text{-filling} \}$

for $\delta \in \Delta$ and $\mathcal{R} \in \mathfrak{R}$. If the collection of these sets has the finite intersection property, say that T is **compatible** with Δ and \mathfrak{R} , and write $\mathcal{F}(T, \Delta, \mathfrak{R})$ for the filter on T generated by the collection.

(e) For the basic theory of these structures, see FREMLIN 03, §§481-482. In particular, we shall need the following facts. Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions.

(i) If $\mathcal{R} \in \mathfrak{R}$, there is a non-increasing sequence $\langle \mathcal{R}_n \rangle_{n \in \mathbb{N}}$ in \mathfrak{R} such that $\bigcup_{i \leq n} A_i \in \mathcal{R}$ whenever $A_i \in \mathcal{R}_i$ for $i \leq n$ and $\langle A_i \rangle_{i < n}$ is disjoint (FREMLIN 03, 481He).

(ii) Let \mathcal{E}_0 be the subring of $\mathcal{P}X$ generated by \mathcal{C} . Then every member of \mathcal{E}_0 is expressible as a disjoint union of members of \mathcal{C} (use (c-iv)).

(iii) Let \mathcal{E} be the algebra of subsets of X generated by \mathcal{C} . If $E \in \mathcal{E}$, $\delta \in \Delta$ and $\mathcal{R} \in \mathfrak{R}$, there is a δ -fine $\mathbf{t} \in T$ such that $H_{\mathbf{t}} \subseteq E$ and $E \setminus H_{\mathbf{t}} \in \mathcal{R}$. **P** Let $\langle \mathcal{R}_i \rangle_{i \in \mathbb{N}}$ be a sequence in \mathfrak{R} such that $\bigcup_{i < n} A_i \in \mathcal{R}$

whenever $A_i \in \mathcal{R}_i$ for $i \leq n$ and $\langle A_i \rangle_{i \leq n}$ is disjoint. (α) If $E = \emptyset$ we can take $\mathbf{t} = \emptyset$. (β) If $E \in \mathcal{E}_0 \setminus \{\emptyset\}$, express E as $\bigcup_{i \leq n} C_i$ where $\langle C_i \rangle_{i \leq n}$ is a disjoint family in \mathcal{C} . For each i, there is a δ -fine $\mathbf{t}_i \in T$ such that $H_{\mathbf{t}_i} \subseteq C_i$ and $C_i \setminus H_{\mathbf{t}_i} \in \mathcal{R}_{i+1}$, by (c-vii). Set $\mathbf{t} = \bigcup_{i \leq n} \mathbf{t}_i$; then

$$E \setminus H_t = \bigcup_{i < n} C_i \setminus H_{t_i} \in \mathcal{R}_1 \subseteq \mathcal{R}_1$$

(γ) Otherwise, $X \setminus E \in \mathcal{E}_0$. By (c-v), there is an $F \in \mathcal{E}_0$, including $X \setminus E$, such that $X \setminus F \in \mathcal{R}_1$. By (α)-(β), there is a δ -fine $t \in T$ such that $H_t \subseteq E \cap F$ and $E \cap F \setminus H_t \in \mathcal{R}_1$; in which case $E \setminus H_t \in \mathcal{R}$. **Q**

(iv) T is compatible with Δ and \Re . **P** Apply (iii) with E = X. **Q**

(f) Leading examples include the following.

(i) $X = [a, b] \subseteq \mathbb{R}$, C the family of subintervals of [a, b] (open, closed, or half-open), T the straightforward set of tagged partitions generated by $\{(x, C) : C \in C, x \in \overline{C}\}$, Δ the set of gauges of the form $\{(x, C) : x \in X, C \subseteq X, \text{ diam } C \leq \eta\}$ where $\eta > 0$, $\Re = \{\{\emptyset\}\}$. (This corresponds to the Riemann integral.)

(ii) $X = \mathbb{R}$, C the family of bounded subintervals of \mathbb{R} (open, closed, or half-open), T the straightforward set of tagged partitions generated by $\{(x, C) : C \in C, x \in \overline{C}\}, \Delta$ the set of neighbourhood gauges on X,

 $\mathfrak{R} = \{\{\mathbb{R} \setminus [a,b] : a \le a_0, b_0 \le b\} : a_0, b_0 \in \mathbb{R}\}.$

(This corresponds to the Henstock integral.)

(iii) $X = \mathbb{R}$, C the family of bounded subintervals of \mathbb{R} (open, closed, or half-open), T the straightforward set of tagged partitions generated by $\mathbb{R} \times C$, Δ the set of neighbourhood gauges on X,

$$\mathfrak{R} = \{\{A : A \subseteq \mathbb{R}, \, \mu^*(A \cap [a, b]) \le \eta\} : a \le b, \, \eta > 0\},\$$

where μ is Lebesgue measure on \mathbb{R} . (This corresponds to McShane's description of the Lebesgue integral.)

1B Vector-valued gauge integrals Suppose that we are given a set X, a family Δ of gauges on X, a collection \mathfrak{R} of families of subsets of X, a collection \mathcal{C} of subsets of X, a family $T \subseteq X \times \mathcal{C}$ of tagged partitions on X which is compatible with Δ and \mathfrak{R} , Banach spaces U, V and W and a continuous bilinear operator $(u, v) \mapsto \langle u | v \rangle : U \times V \to W$. Let $f : X \to U$ and $\nu : \operatorname{dom} \nu \to V$ be functions, where $\mathcal{C} \subseteq \operatorname{dom} \nu$. For $\mathbf{t} \in T$, set

$$S_t(f,\nu) = \sum_{(x,C) \in t} \langle f(x) | \nu C \rangle \in W.$$

If $\lim_{t\to\mathcal{F}(T,\Delta,\mathfrak{R})} S_t(f,\nu)$ is defined in W, call it $I_{\nu}(f)$, the **gauge integral** of f with respect to ν .

Evidently $\{(\nu, f) : I_{\nu}(f) \text{ is defined}\}$ is a linear subspace of $V^{\mathcal{C}} \times U^X$, and I_{ν} is a linear operator, just because every S_t is a linear operator on $V^{\mathcal{C}} \times U^X$.

In this context, if U or V is equal to \mathbb{R} , I will take it for granted that $\langle | \rangle$ is just scalar multiplication.

1C Lemma Suppose that $(X, T, \Delta, \mathfrak{R})$ is a tagged-partition structure allowing subdivisions witnessed by $\mathcal{C} \subseteq \mathcal{P}X, U, V$ and W are Banach spaces, and $\langle | \rangle : U \times V \to W$ is a continuous bilinear operator. Suppose that $f : X \to U, \nu : \mathcal{C} \to V, \delta \in \Delta, \mathcal{R} \in \mathfrak{R}$ and $\epsilon \geq 0$ are such that $||S_t(f, \nu) - S_{t'}(f, \nu)|| \leq \epsilon$ whenever $t, t' \in T$ are δ -fine and \mathcal{R} -filling. Then

(a) $||S_t(f,\nu) - S_{t'}(f,\nu)|| \le \epsilon$ whenever $t, t' \in T$ are δ -fine and $H_t = H_{t'}$;

(b) whenever $\mathbf{t} \in T$ is δ -fine, $\delta' \in \Delta$ and $\mathcal{R}' \in \mathcal{R}$, there is a δ' -fine $\mathbf{s} \in T$ such that $H_{\mathbf{s}} \subseteq H_{\mathbf{t}}, H_{\mathbf{t}} \setminus H_{\mathbf{s}} \in \mathcal{R}'$ and $\|S_{\mathbf{s}}(f, \nu) - S_{\mathbf{t}}(f, \nu)\| \leq \epsilon$.

proof (a) By FREMLIN 03, 4A2Ab, there is a δ -fine $\boldsymbol{s} \in T$ such that $W_{\boldsymbol{s}} \cap W_{\boldsymbol{t}} = \emptyset$ and $\boldsymbol{t} \cup \boldsymbol{s}$ is \mathcal{R} -filling. Now $H_{\boldsymbol{t} \cup \boldsymbol{s}} = H_{\boldsymbol{t}' \cup \boldsymbol{s}}$, so $\boldsymbol{t}' \cup \boldsymbol{s}$ also is \mathcal{R} -filling, and

$$\|S_{\boldsymbol{t}}(f,\nu) - S_{\boldsymbol{t}'}(f,\nu)\| = \|S_{\boldsymbol{t}\cup\boldsymbol{s}}(f,\nu) - S_{\boldsymbol{t}'\cup\boldsymbol{s}}(f,\nu)\| \le \epsilon.$$

(b) Replacing δ' by a lower bound of $\{\delta, \delta'\}$ in Δ and \mathcal{R}' by a lower bound of $\{\mathcal{R}, \mathcal{R}'\}$ if necessary, we may suppose that $\delta' \subseteq \delta$ and $\mathcal{R}' \subseteq \mathcal{R}$. Enumerate \boldsymbol{t} as $\langle (x_i, C_i) \rangle_{i < n}$. Let $\langle \mathcal{R}_k \rangle_{k \in \mathbb{N}}$ be a sequence in \mathfrak{R} such that $\bigcup_{i \leq k} A_i \in \mathcal{R}'$ whenever $\langle A_i \rangle_{i \leq k}$ is disjoint and $A_i \in \mathcal{R}_i$ for every $i \leq k$ (1A(e-i)). For each i < n, let \boldsymbol{s}_i be a δ' -fine member of T such that $H_{\boldsymbol{s}_i} \subseteq C_i$ and $C_i \setminus H_{\boldsymbol{s}_i} \in \mathcal{R}_{i+1}$, and set $\boldsymbol{s} = \bigcup_{i < n} \boldsymbol{s}_i$, so that

 $s \in T$ is δ' -fine and $H_s \subseteq H_t$. By FREMLIN 03, 482Aa, there is a δ -fine $u \in T$ such that $H_u \cap H_t = \emptyset$ and $X \setminus (H_t \cup H_u) \in \mathcal{R}_0$. Set $t' = t \cup u$, $s' = s \cup u$; then t' and s' are δ -fine and \mathcal{R} -filling, because

$$X \setminus H_{\boldsymbol{s}'} = (X \setminus (H_{\boldsymbol{t}} \cup H_{\boldsymbol{u}})) \cup \bigcup_{i < n} (C_i \setminus H_{\boldsymbol{s}_i}) \in \mathcal{R}' \subseteq \mathcal{R},$$

by the choice of $\langle \mathcal{R}_k \rangle_{k \in \mathbb{N}}$. So

$$||S_{t}(f,\nu) - S_{s}(f,\nu)|| = ||S_{t'}(f,\nu) - S_{s'}(f,\nu)|| \le \epsilon$$

as required. Also, of course,

$$H_{\boldsymbol{t}} \setminus H_{\boldsymbol{s}} = \bigcup_{i < n} C_i \setminus H_{\boldsymbol{s}_i} \in \mathcal{R}'.$$

1D Saks-Henstock Lemma Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions witnessed by \mathcal{C}, U, V, W Banach spaces, $\langle | \rangle : U \times V \to W$ a continuous bilinear operator, and $f : X \to U$, $\nu : \mathcal{C} \to V$ functions such that $I_{\nu}(f) = \lim_{t \to \mathcal{F}(T,\Delta,\mathfrak{R})} S_t(f,\nu)$ is defined in W. Let \mathcal{E} be the algebra of subsets of X generated by \mathcal{C} . Then there is a unique additive function $F : \mathcal{E} \to \mathbb{R}$ such that for every $\epsilon > 0$ there are $\delta \in \Delta$ and $\mathcal{R} \in \mathfrak{R}$ such that

(α) $||F(H_t) - S_t(f, \nu)|| \le \epsilon$ for every δ -fine $t \in T$,

 $(\beta) ||F(E)|| \le \epsilon \text{ whenever } E \in \mathcal{E} \cap \mathcal{R}.$

Moreover, $F(X) = I_{\nu}(f)$.

proof (a) For $E \in \mathcal{E}$, write T_E for the set of those $\mathbf{t} \in T$ such that, for every $(x, C) \in \mathbf{t}$, either $C \subseteq E$ or $C \cap E = \emptyset$. For any $\delta \in \Delta$, $\mathcal{R} \in \mathfrak{R}$ and finite $\mathcal{D} \subseteq \mathcal{E}$ there is a δ -fine $\mathbf{t} \in \bigcap_{E \in \mathcal{D}} T_E$ such that $E \setminus H_{\mathbf{t}} \in \mathcal{R}$ for every $E \in \mathcal{D}$. **P** Let $\langle \mathcal{R}_n \rangle_{n \in \mathbb{N}}$ be a sequence in \mathfrak{R} such that whenever $A_i \in \mathcal{R}_i$ for $i \leq n$ and $\langle A_i \rangle_{i \leq n}$ is disjoint then $\bigcup_{i \leq n} A_i \in \mathcal{R}$. Let \mathcal{E}_0 be the subalgebra of \mathcal{E} generated by \mathcal{D} , and enumerate the atoms of \mathcal{E}_0 as $\langle E_i \rangle_{i < n}$. By FREMLIN 03, 482Aa, there is for each i < n a δ -fine $\mathbf{s}_i \in T$ such that $H_{\mathbf{s}_i} \subseteq E_i$ and $E_i \setminus H_{\mathbf{s}_i} \in \mathcal{R}_i$. Set $\mathbf{t} = \bigcup_{i < n} \mathbf{s}_i$. If $E \in \mathcal{D}$ then $E = \bigcup_{i \in J} E_i$ for some $J \subseteq n$. For any $(x, C) \in \mathbf{t}$, there is some i < n such that $C \subseteq E_i$, so that $C \subseteq E$ if $i \in J$, $C \cap E = \emptyset$ otherwise; thus $\mathbf{t} \in T_E$. Moreover, $E \setminus H_{\mathbf{t}} = \bigcup_{i \in J} (E_i \setminus H_{\mathbf{s}_i})$ belongs to \mathcal{R} . **Q**

(b) We therefore have a filter \mathcal{F}^* on T generated by sets of the form

$$T_{E\delta\mathcal{R}} = \{ \boldsymbol{t} : \boldsymbol{t} \in T_E \text{ is } \delta \text{-fine, } E \setminus H_{\boldsymbol{t}} \in \mathcal{R} \}$$

as δ runs over Δ , \mathcal{R} runs over \mathfrak{R} and E runs over \mathcal{E} . For $\mathbf{t} \in T$, $E \subseteq X$ set $\mathbf{t}_E = \{(x, C) : (x, C) \in \mathbf{t}, C \subseteq E\}$. Now $F(E) = \lim_{\mathbf{t} \to \mathcal{F}^*} S_{\mathbf{t}_E}(f, \nu)$ is defined for every $E \in \mathcal{E}$. **P** For any $\epsilon > 0$, there are $\delta \in \Delta$, $\mathcal{R} \in \mathfrak{R}$ such that $\|I_{\nu}(f) - S_{\mathbf{t}}(f, \nu)\| \leq \epsilon$ for every δ -fine \mathcal{R} -filling $\mathbf{t} \in T$. Let $\mathcal{R}' \in \mathfrak{R}$ be such that $A \cup B \in \mathcal{R}$ for all disjoint $A, B \in \mathcal{R}'$. If \mathbf{t}, \mathbf{t}' belong to $T_{E,\delta,\mathcal{R}'} = T_{X \setminus E,\delta,\mathcal{R}'}$, then set

$$\boldsymbol{s} = \{(x,C) : (x,C) \in \boldsymbol{t}', \ C \subseteq E\} \cup \{(x,C) : (x,C) \in \boldsymbol{t}, \ C \cap E = \emptyset\}.$$

Then $s \in T_E$ is δ -fine, and also $E \setminus H_s = E \setminus H_{t'}$, $(X \setminus E) \setminus H_s = (X \setminus E) \setminus H_t$ both belong to \mathcal{R}' ; so their union $X \setminus H_s$ belongs to \mathcal{R} , and s is \mathcal{R} -filling. Accordingly

$$\begin{aligned} \|S_{\boldsymbol{t}_{E}}(f,\nu) - S_{\boldsymbol{t}_{E}'}(f,\nu)\| &= \|S_{\boldsymbol{t}}(f,\nu) - S_{\boldsymbol{s}}(f,\nu)\| \\ &\leq \|S_{\boldsymbol{t}}(f,\nu) - I_{\nu}(f)\| + \|I_{\nu}(f) - S_{\boldsymbol{s}}(f,\nu)\| \leq 2\epsilon. \end{aligned}$$

As ϵ is arbitrary and W is complete, this is enough to show that $\lim_{t\to\mathcal{F}^*} S_{t_E}(f,\nu)$ is defined. **Q**

(c) If $E, E' \in \mathcal{E}$ are disjoint, then

$$S_{t_{E'+E'}}(f,\nu) = S_{t_E}(f,\nu) + S_{t_{E'}}(f,\nu)$$

for any $t \in T_E \cap T_{E'}$; since both T_E and $T_{E'}$ belong to \mathcal{F}^* , $F(E \cup E') = F(E) + F(E')$. Thus F is additive.

(d) Now suppose that $\epsilon > 0$. Let $\delta \in \Delta$, $\mathcal{R}^* \in \mathfrak{R}$ be such that $\|I_{\nu}(f) - S_t(f,\nu)\| \leq \frac{1}{2}\epsilon$ for every δ -fine, \mathcal{R}^* -filling $t \in T$. Let $\mathcal{R} \in \mathfrak{R}$ be such that $A \cup B \in \mathcal{R}^*$ for all disjoint $A, B \in \mathcal{R}$. If $t \in T$ is δ -fine, then $\|F(H_t) - S_t(f,\nu)\| \leq \epsilon$. **P** For any $\eta > 0$, there is a δ -fine $s \in T$ such that

 $\begin{aligned} \|I_{\nu}(f) - S_{\boldsymbol{s}}(f,\nu)\| &\leq \eta, \\ \text{for every } (x,C) \in \boldsymbol{s}, \text{ either } C \subseteq H_{\boldsymbol{t}} \text{ or } C \cap H_{\boldsymbol{t}} = \emptyset, \\ (X \setminus H_{\boldsymbol{t}}) \setminus H_{\boldsymbol{s}} \in \mathcal{R}, H_{\boldsymbol{t}} \setminus H_{\boldsymbol{s}} \in \mathcal{R}, \end{aligned}$

 $\|F(H_{\boldsymbol{t}}) - \sum_{(x,C) \in \boldsymbol{s}, C \subseteq H_{\boldsymbol{t}}} \langle f(x) | \nu C \rangle \| \le \eta$

because the set of s with these properties belongs to \mathcal{F}^* . Now, setting $s_1 = \{(x, C) : (x, C) \in s, C \subseteq H_t\}$ and $t' = t \cup (s \setminus s_1), t'$ is δ -fine and \mathcal{R}^* -filling, like s, so

$$\begin{aligned} \|F(H_{t}) - S_{t}(f,\nu)\| &\leq \|F(H_{t}) - S_{s_{1}}(f,\nu)\| + \|S_{s_{1}}(f,\nu) - S_{t}(f,\nu)\| \\ &\leq \eta + \|S_{s}(f,\nu) - S_{t'}(f,\nu)\| \\ &\leq \eta + \|S_{s}(f,\nu) - I_{\nu}(f)\| + \|I_{\nu}(f) - S_{t'}(f,\nu)\| \leq \eta + \frac{1}{2}\epsilon \end{aligned}$$

As η is arbitrary we have the result. **Q**

(ii) Now suppose that $E \in \mathcal{E} \cap \mathcal{R}$. Then $||F(E)|| \leq \epsilon$. **P** Let $\mathcal{R}' \in \mathfrak{R}$ be such that $A \cup B \in \mathcal{R}$ whenever $A, B \in \mathcal{R}'$ are disjoint. Let t be such that

 $\boldsymbol{t} \in T_E$ is δ -fine,

$$\begin{split} E \setminus H_{\boldsymbol{t}} \text{ and } (X \setminus E) \setminus H_{\boldsymbol{t}} \text{ both belong to } \mathcal{R}', \\ \|F(E) - S_{\boldsymbol{t}_E}(f, \nu)\| \leq \frac{1}{2}\epsilon; \end{split}$$

once again, the set of candidates belongs to \mathcal{F}^* , so is not empty. Then t and $t_{X\setminus E}$ are both \mathcal{R}^* -filling and δ -fine, so

$$\|F(E)\| \le \frac{1}{2}\epsilon + \|S_{t_E}(f,\nu)\| = \frac{1}{2}\epsilon + \|S_t(f,\nu) - S_{t_{X\setminus E}}(f,\nu)\| \le \epsilon.$$

As ϵ is arbitrary, this shows that F has all the required properties.

(e) I have still to show that F is unique. Suppose that $F' : \mathcal{E} \to \mathbb{R}$ is another function with the same properties, and take $E \in \mathcal{E}$ and $\epsilon > 0$. Then there are $\delta, \delta' \in \Delta$ and $\mathcal{R}, \mathcal{R}' \in \mathfrak{R}$ such that

 $\begin{aligned} \|F(H_{\boldsymbol{t}}) - S_{\boldsymbol{t}}(f,\nu)\| &\leq \epsilon \text{ for every } \delta\text{-fine } \boldsymbol{t} \in T, \\ \|F'(H_{\boldsymbol{t}}) - S_{\boldsymbol{t}}(f,\nu)\| &\leq \epsilon \text{ for every } \delta'\text{-fine } \boldsymbol{t} \in T, \\ \|F(R)\| &\leq \epsilon \text{ whenever } R \in \mathcal{E} \cap \mathcal{R}, \end{aligned}$

 $||F'(R)|| \leq \epsilon$ whenever $R \in \mathcal{E} \cap \mathcal{R}'$.

Now taking $\delta'' \in \Delta$ such that $\delta'' \subseteq \delta \cap \delta'$, and $\mathcal{R}'' \in \mathfrak{R}$ such that $\mathcal{R}'' \subseteq \mathcal{R} \cap \mathcal{R}'$, there is a δ'' -fine $\mathbf{t} \in T$ such that $E' = H_{\mathbf{t}}$ is included in E and $E \setminus E' \in \mathcal{R}''$. In this case

$$||F(E) - S_{t}(f,\nu)|| \leq ||F(E) - F(E')|| + ||F(E') - S_{t}(f,\nu)||$$

= ||F(E \ E')|| + ||F(H_{t}) - S_{t}(f,\nu)||

(because F is additive)

$$\leq 2\epsilon$$

because $E \setminus E' \in \mathcal{R}'' \subseteq \mathcal{R}$ and t is δ'' -fine, therefore δ -fine. Similarly, $||F'(E) - S_t(f, \nu)|| \leq 2\epsilon$ so $||F'(E) - F(E)|| \leq 4\epsilon$. As E and ϵ are arbitrary, F = F'.

(f) Finally, to calculate F(X), take any $\epsilon > 0$. Let $\delta \in \Delta$ and $\mathcal{R} \in \mathfrak{R}$ be such that $||F(H_t) - S_t(f, \nu)|| \le \epsilon$ for every δ -fine $t \in T$ and $||F(E)|| \le \epsilon$ whenever $E \in \mathcal{E} \cap \mathcal{R}$. Let t be any δ -fine \mathcal{R} -filling member of T such that $||S_t(f, \nu) - I_{\nu}(f)|| \le \epsilon$. Then, because F is additive,

$$||F(X) - I_{\nu}(f)|| \le ||F(X) - F(H_{\mathbf{t}})|| + ||F(H_{\mathbf{t}}) - S_{\mathbf{t}}(f,\nu)|| + ||S_{\mathbf{t}}(f,\nu) - I_{\nu}(f)|| \le 3\epsilon.$$

As ϵ is arbitrary, $F(X) = I_{\nu}(f)$.

1E Definition In the context of §1D, I will call the function F the **Saks-Henstock indefinite integral** of f with respect to ν ; of course it depends on the whole structure $(X, T, \Delta, \mathfrak{R}, \mathcal{C}, U, V, W, \langle | \rangle, f, \nu)$, not just f and ν . You should *not* take it for granted that $F(E) = I_{\nu}(f \times \chi E)$, but see Proposition 2D below.

1F The Saks-Henstock lemma characterizes the gauge integral, as follows.

Theorem Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions, witnessed by \mathcal{C}, U, V and W Banach spaces, $\langle | \rangle : U \times V \to W$ a continuous bilinear operator, and $\nu : \mathcal{C} \to V, f : X \to U$ two functions. Let \mathcal{E} be the algebra of subsets of X generated by \mathcal{C} . Then the following are equiveridical:

- (i) $I_{\nu}(f) = \lim_{\boldsymbol{t} \to \mathcal{F}(T,\Delta,\mathfrak{R})} S_{\boldsymbol{t}}(f,\nu)$ is defined in W;
- (ii) there is an additive function $F: \mathcal{E} \to W$ such that
 - (α) for every $\epsilon > 0$ there is a $\delta \in \Delta$ such that $||F(H_t) S_t(f, \nu)|| \le \epsilon$ for every δ -fine $t \in T$,
- (β) for every $\epsilon > 0$ there is an $\mathcal{R} \in \mathfrak{R}$ such that $||F(E)|| \leq \epsilon$ for every $E \in \mathcal{E} \cap \mathcal{R}$.

In this case, $F(X) = I_{\nu}(f)$.

proof (i) \Rightarrow (ii) is just the Saks-Henstock Lemma above; so let us assume (ii) and seek to prove (i). Given $\epsilon > 0$, take $\delta \in \Delta$ and $\mathcal{R} \in \mathfrak{R}$ such that (α) and (β) are satisfied. Let $\mathbf{t} \in T$ be δ -fine and \mathcal{R} -filling. Then

$$||F(X) - S_t(f,\mu)|| \le ||F(X \setminus H_t)|| + ||F(H_t) - S_t(f,\nu)|| \le 2\epsilon$$

As ϵ is arbitrary, $I_{\nu}(f)$ is defined and equal to F(X).

2 Further properties

2A Proposition Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions, witnessed by \mathcal{C} , U, V and W Banach spaces and $\langle | \rangle : U \times V \to W$ a continuous bilinear operator. Let \mathcal{E} be the algebra of subsets of X generated by \mathcal{C} . For $\nu \in V^{\mathcal{C}}$ and $f \in U^X$, write $F_{f\nu} \in W^{\mathcal{E}}$ for the Saks-Henstock indefinite integral of f with respect to ν when this is defined. Then the operator $(\nu, f) \mapsto F_{f\nu}$ is bilinear.

proof Immediate from 1F.

2B Proposition Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions, witnessed by \mathcal{C} . Suppose that U_0, V_0, W_0, U_1, V_1 and W_1 are Banach spaces, $\langle | \rangle_0 : U_0 \times V_0 \to W_0, \langle | \rangle_1 : U_1 \times V_1 \to W_1$ continuous bilinear operators, and $\pi : U_0 \to U_1, \phi : V_0 \to V_1$ and $\psi : W_0 \to W_1$ continuous linear operators such that $\psi(\langle u|v\rangle_0) = \langle \pi(u)|\phi v\rangle_1$ for all $u \in U_0$ and $v \in V_0$. Let $f : X \to U_0$ and $v : \mathcal{C} \to V_0$ be such that $I_{\nu}(f)$ is defined and has Saks-Henstock indefinite integral F. Then $I_{\phi\nu}(\pi f)$ is defined and has Saks-Henstock indefinite integral ψF .

proof We just have to observe that $S_t(\pi f, \phi \nu) = \psi(S_t(f, \nu))$ for every $t \in T$, and apply Theorem 1F.

2C Proposition Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions, witnessed by \mathcal{C} , U, V and W Banach spaces and $\langle | \rangle : U \times V \to W$ a continuous bilinear operator. Suppose that Σ is a σ -algebra of subsets of X including \mathcal{C} , and $\nu : \Sigma \to V$ a vector measure; let $\mu : \Sigma \to [0, \infty]$ be the total variation of ν , and $f : X \to U$ a function which is Bochner integrable with respect to μ . Suppose further that

(i) X has a topology \mathfrak{T} such that μ is inner regular with respect to the closed sets and outer regular with respect to the open sets;

(ii) Δ contains every neighbourhood gauge on X;

(iii) whenever $E \in \Sigma$, $\mu E < \infty$ and $\epsilon > 0$ there is an $\mathcal{R} \in \mathfrak{R}$ such that $\mu^*(A \cap E) \leq \epsilon$ for every $A \in \mathcal{R}$.

Then $I_{\nu}(f) = \lim_{\boldsymbol{t} \to \mathcal{F}(T,\Delta,\mathfrak{R})} S_{\boldsymbol{t}}(f,\nu)$ is defined.

proof Let $\gamma \geq 0$ be such that $||\langle u|v\rangle|| \leq \gamma ||u|| ||v||$ for all $u \in U$ and $v \in V$.

(a) Consider first the case in which f is of the form $u \otimes \chi E$ where $E \in \Sigma$, $\mu E < \infty$ and $u \in U$, where $(u \otimes \chi E)(x) = \chi E(x) \cdot u$ for every $x \in X$. Then $I_{\nu}(f) = \langle u | \nu E \rangle$. **P** Let $\epsilon > 0$. Let $G \supseteq E$ be an open set and $F \subseteq E$ a closed set such that $\mu(G \setminus F) \leq \epsilon$, and \mathcal{R} a member of \mathfrak{R} such that $\mu^*(A \cap E) \leq \epsilon$ for every $A \in \mathcal{R}$. Let $\delta \in \Delta$ be the neighbourhood gauge

$$\{(x,A): x \in E, A \subseteq G\} \cup \{(x,A): x \in X \setminus E, A \subseteq X \setminus F\}$$

If $\mathbf{t} \in T$ is δ -fine and \mathcal{R} -filling, then $S_{\mathbf{t}}(f) = \langle u | \nu H_{\mathbf{t} \upharpoonright E} \rangle$, where $H_{\mathbf{t} \upharpoonright E} = \{(x, C) : (x, C) \in \mathbf{t}, x \in E\}$. Now we know that $\mu(E \setminus H_{\mathbf{t}}) \leq \epsilon$, while $H_{\mathbf{t} \upharpoonright E} \subseteq G$ and $H_{\mathbf{t} \upharpoonright X \setminus E}$ does not meet F; so that $F \cap H_{\mathbf{t}} \subseteq H_{\mathbf{t} \upharpoonright E}$, and

$$\mu(E \triangle H_{\boldsymbol{t} \upharpoonright E}) \le \mu(G \setminus F) + \mu(E \setminus H_{\boldsymbol{t}}) \le 2\epsilon.$$

But this means that

$$\begin{split} \|S_{\mathbf{t}}(f) - \langle u|\nu E \rangle\| &= \|\langle u|\nu H_{\mathbf{t}\uparrow E} - \nu E \rangle\| \leq \gamma \|u\| \|\nu H_{\mathbf{t}\uparrow E} - \nu E\| \\ &\leq \gamma \|u\| (\|\nu (H_{\mathbf{t}\uparrow E} \setminus E)\| + \|\nu (E \setminus H_{\mathbf{t}\restriction E})\|) \\ &\leq \gamma \|u\| (\mu (H_{\mathbf{t}\restriction E} \setminus E) + \mu (E \setminus H_{\mathbf{t}\restriction E})) = \gamma \|u\| \mu (H_{\mathbf{t}\restriction E} \triangle E) \leq 2\gamma \|u\| \epsilon. \end{split}$$

As ϵ is arbitrary, $I_{\nu}(f)$ is defined and equal to $\langle u | \nu E \rangle$. Q

(b) Consequently $I_{\nu}(f)$ is defined whenever $f: X \to U$ is a 'simple' function in the sense that it is expressible as $\sum_{i=0}^{n} u_i \otimes \chi E_i$ where each E_i has finite measure.

(c) Now suppose that $f: X \to U$ is any function. Then

$$\limsup_{\boldsymbol{t}\to\mathcal{F}(T,\Delta,\mathfrak{R})} \|S_{\boldsymbol{t}}(f)\| \leq \gamma \int \|f\| d\mu.$$

P If $\gamma = 0$, $S_t(f, \nu) = 0$ for every **t** and we can stop. If $\gamma > 0$ and $\overline{\int} ||f|| d\mu = \infty$, the result is trivial. So suppose that $\gamma > 0$ and $\int ||f|| d\mu$ is finite. Let $\hat{\mu}$ be the completion of μ and $\hat{\Sigma}$ its domain. Note that $\hat{\mu}$ is still inner regular with respect to the closed sets and outer regular with respect to the open sets. Let $g: X \to \mathbb{R}$ be a $\hat{\Sigma}$ -measurable function such that $g(x) \ge ||f(x)||$ for every x and $\int g \, d\mu = \int ||f|| d\mu$.

Let $\epsilon > 0$. For $m \in \mathbb{Z}$, set $E_m = \{x : x \in X, (1 + \epsilon)^m \le g(x) < (1 + \epsilon)^{m+1}\}$. Then $E_m \in \hat{\Sigma}$ and $\hat{\mu}E_m < \infty$, so there is a measurable open set $G_m \supseteq E_m$ such that $(1 + \epsilon)^{m+1}\mu(G_m \setminus E_m) \le 2^{-|m|}\epsilon$. Define $\langle G'_x \rangle_{x \in X}$ by setting $G'_x = G_m$ if $m \in \mathbb{Z}$ and $x \in E_m$, $V_x = X$ if g(x) = 0. Let $\delta \in \Delta$ be the

corresponding neighbourhood gauge $\{(x, C) : x \in X, C \subseteq G'_x\}$.

Suppose that \boldsymbol{t} is any δ -fine member of T. For each $m \in \mathbb{Z}$, set $\boldsymbol{t}_m = \boldsymbol{t} \upharpoonright E_m$. Then $H_{\boldsymbol{t}_m} \subseteq G_m$ for each m, SO

$$\begin{split} S_{\mathbf{t}}(\|f\|,\mu) &= \sum_{m=-\infty}^{\infty} S_{\mathbf{t}_m}(\|f\|,\mu) \leq \sum_{m=-\infty}^{\infty} (1+\epsilon)^{m+1} \mu H_{\mathbf{t}_m} \\ &\leq \sum_{m=-\infty}^{\infty} (1+\epsilon)^{m+1} \mu G_m \leq \sum_{m=-\infty}^{\infty} (1+\epsilon)^{m+2} \mu E_m + 2^{-|m|} \epsilon \\ &\leq 3\epsilon + (1+\epsilon)^2 \sum_{m=-\infty}^{\infty} (1+\epsilon)^m \mu E_m \\ &\leq 3\epsilon + (1+\epsilon)^2 \int g d\mu = 3\epsilon + (1+\epsilon)^2 \overline{\int} \|f\| d\mu \end{split}$$

and

$$\|S_{\boldsymbol{t}}(f,\nu)\| \leq \gamma S_{\boldsymbol{t}}(\|f\|,\mu) \leq 3\gamma\epsilon + (1+\epsilon)^2\gamma \int \|f\|d\mu.$$

As ϵ is arbitrary, we have the result. **Q**

(d) Now suppose that $f: X \to U$ is Bochner integrable with respect to μ , and $\epsilon > 0$. Then there is a simple function $f_0: X \to U$ such that $\int ||f - f_0|| d\mu \leq \epsilon$. By (b) and (c), there are a $w \in W, \delta \in \Delta$ and $\mathcal{R} \in \mathfrak{R}$ such that

$$\|S_{\boldsymbol{t}}(f_0,\nu) - w\| \le \epsilon, \quad \|S_{\boldsymbol{t}}(f - f_0,\nu)\| \le \epsilon + \gamma\epsilon$$

for every δ -fine \mathcal{R} -filling $t \in T$. But this means that if s, t are δ -fine and \mathcal{R} -filling members of T,

$$||S_{\mathbf{s}}(f,\nu) - S_{\mathbf{t}}(f,\nu)|| \le ||S_{\mathbf{s}}(f_0,\nu) - S_{\mathbf{t}}(f_0,\nu)|| + ||S_{\mathbf{s}}(f-f_0,\nu)|| + ||S_{\mathbf{t}}(f-f_0,\nu)|| \le 4\epsilon + 2\gamma\epsilon;$$

as ϵ is arbitrary and W is complete, $\lim_{t\to\mathcal{F}(T,\Delta,\mathfrak{R})} S_t(f,\nu)$ is defined.

2D Proposition Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions witnessed by \mathcal{C} , U, V and W Banach spaces and $\langle | \rangle : U \times V \to W$ a continuous bilinear operator. Suppose that

(i) \mathfrak{T} is a topology on X, and Δ is the set of neighbourhood gauges on X;

(ii) $\nu : \mathcal{C} \to V$ is a function which is additive in the sense that if $C_0, \ldots, C_n \in \mathcal{C}$ are disjoint and have union $C \in \mathcal{C}$, then $\nu C = \sum_{i=0}^{n} \nu C_i$;

(iii) whenever $E \in \mathcal{C}$ and $\epsilon > 0$, there are closed sets $F \subseteq E$, $F' \subseteq X \setminus E$ such that $\sum_{(x,C)\in \boldsymbol{t}} \|\nu C\| \leq \epsilon$ whenever $\boldsymbol{t} \in T$ and $H_{\boldsymbol{t}} \cap (F \cup F') = \emptyset$;

(iv) for every $E \in \mathcal{C}$ and $x \in X$ there is a neighbourhood G of x such that if $C \in \mathcal{C}$, $C \subseteq G$ and $\{(x, C)\} \in T$, there is a partition \mathcal{D} of C into members of \mathcal{C} , each either included in E or disjoint from E, such that $\{(x, D)\} \in T$ for every $D \in \mathcal{D}$;

(v) for every $C \in \mathcal{C}$ and $\mathcal{R} \in \mathfrak{R}$, there is an $\mathcal{R}' \in \mathfrak{R}$ such that $C \cap A \in \mathcal{R}$ whenever $A \in \mathcal{R}'$.

Let $f: X \to U$ be a function such that $I_{\nu}(f) = \lim_{t \to \mathcal{F}(T,\Delta,\mathfrak{R})} S_t(f,\nu)$ is defined. Let \mathcal{E} be the algebra of subsets of X generated by \mathcal{C} , and $F: \mathcal{E} \to \mathbb{R}$ the Saks-Henstock indefinite integral of f. Then $I_{\nu}(f \times \chi E)$ is defined and equal to F(E) for every $E \in \mathcal{E}$.

proof (a) Because both F and I_{ν} are additive, and $F(X) = I_{\nu}(f)$, and either E or its complement is a finite disjoint union of members of C (see 1A(e-ii) above), it is enough to consider the case in which $E \in C$. Let $\gamma \geq 0$ be such that $||\langle u|v \rangle|| \leq \gamma ||u|| ||v||$ for all $u \in U$ and $v \in V$.

(b) Let $\epsilon > 0$. For each $x \in X$ let G_x be an open set containing x such that whenever $C \in \mathcal{C}$, $C \subseteq G$ and $\{(x, C)\} \in T$, there is a partition \mathcal{D} of C into members of \mathcal{C} such that $\{(x, D)\} \in T$ for every $D \in \mathcal{D}$ and every member of \mathcal{D} is either included in E or disjoint from E. For each $n \in \mathbb{N}$, let $F_n \subseteq E$, $F'_n \subseteq X \setminus E$ be closed sets such that $\sum_{(x,C)\in \mathbf{t}} \|\nu C\| \leq \frac{2^{-n}\epsilon}{n+1}$ whenever $\mathbf{t} \in T$ and $H_{\mathbf{t}} \cap (F_n \cup F'_n) = \emptyset$; now define G'_x , for $x \in X$, by saying that

$$G'_x = G_x \setminus F'_n \text{ if } x \in E \text{ and } n \le ||f(x)|| < n+1,$$

= $G_x \setminus F_n \text{ if } x \in X \setminus E \text{ and } n \le ||f(x)|| < n+1.$

Let $\delta_0 \in \Delta$ be the neighbourhood gauge defined by the family $\langle G'_x \rangle_{x \in X}$. Let $\delta \in \Delta$ and $\mathcal{R}_1 \in \mathfrak{R}$ be such that $\delta \subseteq \delta_0$, $||F(H_t) - \sum_{(x,C) \in t} f(x)\nu C|| \leq \epsilon$ for every δ -fine $t \in T$, and $|F(E)| \leq \epsilon$ for every $E \in \mathcal{E} \cap \mathcal{R}_1$. Let $\mathcal{R} \in \mathfrak{R}$ be such that $R \cap H \in \mathcal{R}_1$ whenever $R \in \mathcal{R}$.

(c) As in the proof of the Saks-Henstock Lemma, let T_E be the set of those $\mathbf{t} \in T$ such that, for each $(x, C) \in \mathbf{t}$, either $C \subseteq E$ or $C \cap E = \emptyset$. The key to the proof is the following fact: if $\mathbf{t} \in T$ is δ -fine, then there is a δ -fine $\mathbf{s} \in T_E$ such that $W_{\mathbf{s}} = W_{\mathbf{t}}$ and $S_{\mathbf{s}}(g, \nu) = S_{\mathbf{t}}(g, \nu)$ for every $g: X \to U$. **P** For each $(x, C) \in \mathbf{t}$, we know that $C \subseteq G'_x \subseteq G_x$, because $\delta \subseteq \delta_0$. Let $\mathcal{D}_{(x,C)}$ be a finite partition of C into members of C, each either included in E or disjoint from E, such that $\{(x, D)\} \in T$ for every $D \in \mathcal{D}_{(x,C)}$. Then $\mathbf{s} = \{(x, D) : (x, C) \in \mathbf{t}, D \in \mathcal{D}_{(x,C)}\}$ belongs to T_E . Because δ is a neighbourhood gauge, $(x, D) \in \delta$ whenever $(x, C) \in \mathbf{t}$ and $D \in \mathcal{D}_{(x,C)}$, so \mathbf{s} is δ -fine.

If $g: X \to U$ is any function,

$$\begin{split} S_{\boldsymbol{s}}(g,\nu) &= \sum_{(x,C)\in\boldsymbol{t}} \sum_{D\in\mathcal{D}_{(x,C)}} \langle g(x)|\nu D \rangle \\ &= \sum_{(x,C)\in\boldsymbol{t}} \langle g(x)| \sum_{D\in\mathcal{D}_{(x,C)}} \nu D \rangle = \sum_{(x,C)\in\boldsymbol{t}} \langle g(x)|\nu C \rangle \end{split}$$

(because ν is additive)

$$= S_t(g, \nu). \mathbf{Q}$$

(d) Now suppose that $t \in T$ is δ -fine and \mathcal{R} -filling. Let $s \in T_E$ be as in (c), and set

$$\begin{split} s^* &= \{ (x, D) : (x, D) \in s, \, x \in E, \, D \subseteq E \}, \\ s' &= \{ (x, D) : (x, D) \in s, \, x \notin E, \, D \subseteq E \}, \\ s'' &= \{ (x, D) : (x, D) \in s, \, x \in E, \, D \cap E = \emptyset \}. \end{split}$$

Because $\boldsymbol{s} \in T_E$,

$$H_{\boldsymbol{s}^*\cup\boldsymbol{s}'} = E \cap H_{\boldsymbol{s}} = E \cap H_{\boldsymbol{t}}$$

and $E \setminus H_{s^* \cup s'} = E \setminus H_t$ belongs to \mathcal{R}_1 , by the choice of \mathcal{R} . Accordingly

$$\|F(E) - S_{s^* \cup s'}(f, \nu)\| \le \|F(E) - F(H_{s^* \cup s'})\| + \|F(H_{s^* \cup s'}) - S_{s'}(f, \nu)\| \le 2\epsilon$$

because $\boldsymbol{s}^* \cup \boldsymbol{s}' \subseteq \boldsymbol{s}$ is δ -fine.

For $n \in \mathbb{N}$ set

$$s'_n = \{(x, D) : (x, D) \in s', n \le ||f(x)|| < n+1\},\$$
$$s''_n = \{(x, D) : (x, D) \in s'', n \le ||f(x)|| < n+1\}.$$

Then $H_{\mathbf{s}'_n} \subseteq E \setminus F_n$. **P** If $(x, D) \in \mathbf{s}'_n$, there is a $C \in \mathcal{C}$ such that $D \subseteq E \cap C$ and $(x, C) \in \mathbf{t}$, while $x \notin E$, so that $C \subseteq G'_x$ and $C \cap F_n = \emptyset$. **Q** Similarly, $H_{\mathbf{s}''_n} \subseteq (X \setminus E) \setminus F'_n$. Thus $H_{\mathbf{s}'_n \cup \mathbf{s}''_n}$ is disjoint from $F_n \cup F'_n$ and

$$\begin{split} \|S_{\mathbf{s}'_n}(f,\nu) - S_{\mathbf{s}''_n}(f,\nu)\| &= \|\sum_{(x,D)\in\mathbf{s}'_n} \langle f(x_i)|\nu D \rangle - \sum_{(x,D)\in\mathbf{s}'_n} \langle f(x_i)|\nu D \rangle \\ &\leq \sum_{(x,D)\in\mathbf{s}'_n\cup\mathbf{s}''_n} \gamma \|f(x_i)\|\|\nu D\| \\ &\leq \gamma(n+1) \sum_{(x,D)\in\mathbf{s}'_n\cup\mathbf{s}''_n} \|\nu D\| \leq 2^{-n}\gamma\epsilon \end{split}$$

by the choice of F_n and F'_n .

Consequently,

 $\|F(E) - S_{t}(f \times \chi E, \nu)\| = \|F(E) - S_{s}(f \times \chi E, \nu)\| = \|F(E) - S_{s^{*} \cup s''}(f, \nu)\|$ (because $s^{*} \cup s'' = \{(x, D) : (x, D) \in s, x \in E\}$)

$$\leq \|F(E) - S_{s^* \cup s'}(f, \nu)\| + \|S_{s'}(f, \nu) - S_{s''}(f, \nu)\|$$

(because $\boldsymbol{s}^*, \, \boldsymbol{s}'$ and \boldsymbol{s}'' are disjoint subsets of \boldsymbol{s})

$$\leq 2\epsilon + \|\sum_{n=0}^{\infty} S_{\boldsymbol{s}_n'}(f,\nu) - \sum_{n=0}^{\infty} S_{\boldsymbol{s}_n''}(f,\nu)\|$$

(the infinite sums are well-defined because \boldsymbol{s} is finite, so that all but finitely many terms are zero)

$$\leq 2\epsilon + \sum_{n=0}^{\infty} \|S_{\mathbf{s}'_n}(f,\nu) - S_{\mathbf{s}''_n}(f,\nu)\|$$
$$\leq 2\epsilon + \sum_{n=0}^{\infty} 2^{-n} \gamma \epsilon = 2(1+\gamma)\epsilon.$$

As ϵ is arbitrary, $I_{\nu}(f \times \chi E)$ is defined and equal to F(E), as required.

2E Proposition Suppose that $X, \mathfrak{T}, \mathcal{C}, \nu, T, \Delta, \mathfrak{R}, U, V, W, \langle | \rangle$ and ν satisfy the conditions of 2D, and that $f: X \to U, \langle G_n \rangle_{n \in \mathbb{N}}, G$ and w are such that

(vi) $\langle G_n \rangle_{n \in \mathbb{N}}$ is a sequence of open subsets of X with union G,

- (vii) $I_{\nu}(f \times \chi G_n)$ is defined for every $n \in \mathbb{N}$,
- (viii) $\lim_{\boldsymbol{t}\to\mathcal{F}(T,\Delta,\mathfrak{R})} I_{\nu}(f\times\chi H_{\boldsymbol{t}\uparrow G})$ is defined and equal to w,

where $\boldsymbol{t} \upharpoonright G = \{(x, C) : (x, C) \in \boldsymbol{t}, x \in G\}$ for $\boldsymbol{t} \in T$. Then $I_{\nu}(f \times \chi G)$ is defined and equal to γ .

proof Let $\epsilon > 0$. For each $n \in \mathbb{N}$, let F_n be the Saks-Henstock indefinite integral of $f \times \chi G_n$. Let $\delta_n \in \Delta$ be such that

$$\|F_n(H_{\boldsymbol{s}}) - S_{\boldsymbol{s}}(f \times \chi G_n, \nu)\| \le 2^{-n} \epsilon$$

whenever $\boldsymbol{s} \in T$ is δ_n -fine. Set

$$\begin{split} \tilde{\delta} &= \{ (x,A) : x \in X \setminus G, A \subseteq X \} \\ & \cup \bigcup_{n \in \mathbb{N}} \{ (x,A) : x \in G_n \setminus \bigcup_{i < n} G_i, A \subseteq G_n, \, (x,A) \in \delta_n \}, \end{split}$$

so that $\tilde{\delta} \in \Delta$. Note that if $x \in G$ and $C \in \mathcal{C}$ and $(x, C) \in \tilde{\delta}$, then there is some $n \in \mathbb{N}$ such that $x \in G_n$ and $C \subseteq G_n$, so that

$$I_{\nu}(f \times \chi C) = I_{\nu}((f \times \chi G_n) \times \chi C) = F_n(C)$$

is defined, by 2D; this means that $I_{\nu}(f \times \chi H_{t \upharpoonright G})$ will be defined for every $\tilde{\delta}$ -fine $t \in T$. Let $\delta \in \Delta, \mathcal{R} \in \mathfrak{R}$ be such that $||w - I_{\nu}(f \times \chi H_{t \upharpoonright G})|| \leq \epsilon$ whenever $t \in T$ is δ -fine and \mathcal{R} -filling.

Let $\boldsymbol{t} \in T$ be $(\delta \cap \tilde{\delta})$ -fine and \mathcal{R} -filling. For $n \in \mathbb{N}$, set $\boldsymbol{t}_n = \{(x, C) : (x, C) \in \boldsymbol{t}, x \in G_n \setminus \bigcup_{i < n} G_i\}$. Then $t \upharpoonright G = \bigcup_{n \in \mathbb{N}} t_n$, and t_n is δ_n -fine and $H_{t_n} \subseteq G_n$ for every n. So

$$\begin{split} \|w - S_{\mathbf{t}}(f \times \chi G, \nu)\| &= \|w - \sum_{n=0}^{\infty} S_{\mathbf{t}_n}(f \times \chi G_n, \nu)\| \\ &\leq \|w - I_{\nu}(f \times \chi H_{\mathbf{t} \upharpoonright G})\| + \sum_{n=0}^{\infty} \|I_{\nu}(f \times \chi H_{\mathbf{t}_n}) - S_{\mathbf{t}_n}(f \times \chi G_n, \nu)\| \\ &\leq \epsilon + \sum_{n=0}^{\infty} \|I_{\nu}(f \times \chi G_n \times \chi H_{\mathbf{t}_n}) - S_{\mathbf{t}_n}(f \times \chi G_n, \nu)\| \\ &= \epsilon + \sum_{n=0}^{\infty} \|F_n(H_{\mathbf{t}_n}) - S_{\mathbf{t}_n}(f \times \chi G_n, \nu)\| \end{split}$$

(2D)

$$\leq \epsilon + \sum_{n=0}^{\infty} 2^{-n} \epsilon$$

(because every \boldsymbol{t}_n is δ_n -fine)

$$= 3\epsilon$$

As ϵ is arbitrary, $w = I_{\nu}(f \times \chi G)$, as claimed.

2F Proposition Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions witnessed by \mathcal{C} , U and V Banach spaces, $\langle | \rangle : U \times V \to \mathbb{R}$ a continuous bilinear functional, and $\nu : \mathcal{C} \to V$ a function. Suppose that $\langle f_i \rangle_{i \in I}$ is a family of functions from X to U such that

- (i) $w_i = I_{\nu}(f_i, \nu)$ is defined for every $i \in I$,
- (ii) $\inf_{\delta \in \Delta, \mathcal{R} \in \mathfrak{R}} \sum_{i \in I} \sup_{t \in T \text{ is } \delta \text{-fine and } \mathcal{R}\text{-filling}} \|S_t(f_i, \nu)\|$ is finite, (iii) $f(x) = \sum_{i \in I} f_i(x)$ is defined in U for every $x \in X$.

Then $I_{\nu}(f,\nu)$ and $\sum_{i\in I} w_i$ are defined in W and equal.

proof (a) Let $\delta_0 \in \Delta$, $\mathcal{R}_0 \in \mathfrak{R}$ be such that

$$M = \sum_{i \in I} \sup\{\|S_{\boldsymbol{t}}(f_i, \nu)\| : \boldsymbol{t} \in T \text{ is } \delta_0 \text{-fine and } \mathcal{R}_0 \text{-filling}\}$$

is finite. Then $\sum_{i \in I} ||w_i|| \leq M$. **P** If $J \subseteq I$ is finite and $\epsilon > 0$, there is a δ_0 -fine \mathcal{R}_0 -filling $t \in T$ such that $\sum_{i \in J} \|w_i - S_t(\overline{f_i}, \nu)\| \le \epsilon$, so that $\sum_{i \in J} \|w_i\| \le M + \epsilon$. **Q** So $w = \sum_{i \in I} w_i$ is defined.

(b) Now take any $\epsilon > 0$. Let $J \subseteq I$ be a finite set such that

$$\sum_{i \in I \setminus J} \sup\{\|S_{\boldsymbol{t}}(f_i, \nu)\| : \boldsymbol{t} \in T \text{ is } \delta_0 \text{-fine and } \mathcal{R}_0 \text{-filling}\} \leq \epsilon;$$

then the argument of (a) tells us that $\sum_{i \in I \setminus J} \|w_i\| \leq \epsilon$. Let $\delta \in \Delta$, $\mathcal{R} \in \mathfrak{R}$ be such that $\delta \subseteq \delta_0$, $\mathcal{R} \subseteq \mathcal{R}_0$ and $\sum_{i \in J} \|w_i - S_t(f_i, \nu)\| \le \epsilon$ for every δ -fine \mathcal{R} -filling $t \in T$. In this case, for any such t,

10

$$\begin{split} S_{\boldsymbol{t}}(f,\nu) &= \sum_{(x,C) \in \boldsymbol{t}} \langle f(x) | \nu C \rangle = \sum_{(x,C) \in \boldsymbol{t}} \langle \sum_{i \in I} f_i(x) | \nu C \rangle \\ &= \sum_{(x,C) \in \boldsymbol{t}} \sum_{i \in I} \langle f_i(x) | \nu C \rangle = \sum_{i \in I} S_{\boldsymbol{t}}(f_i,\nu), \end{split}$$

 \mathbf{so}

$$||w - S_{t}(f, \nu)|| \le \sum_{i \in J} ||w_{i} - S_{t}(f_{i}, \nu)|| + \sum_{i \in I \setminus J} ||S_{t}(f_{i}, \nu)|| + \sum_{i \in I \setminus J} ||w_{i}|| \le 3\epsilon.$$

As ϵ is arbitrary, $I_{\nu}(f)$ is defined and equal to w.

2G The scalar-valued case: Proposition Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions witnessed by \mathcal{C} , U and V Banach spaces, $\langle | \rangle : U \times V \to \mathbb{R}$ a continuous bilinear functional, $f: X \to U, \nu : \mathcal{C} \to V$ functions such that $I_{\nu}(f) = \lim_{t \to \mathcal{F}(T,\Delta,\mathfrak{R})} S_t(f,\nu)$ is defined in \mathbb{R} , \mathcal{E} the algebra of subsets of X generated by \mathcal{C} and $F: \mathcal{E} \to \mathbb{R}$ the Saks-Henstock indefinite integral of f with respect to ν . Then for every $\epsilon > 0$ there is a $\delta \in \Delta$ such that

$$\sum_{(x,C)\in t} |F(C) - \langle f(x)|\nu C \rangle| \le \epsilon$$

for every δ -fine $\boldsymbol{t} \in T$,

proof (See FREMLIN 03, 482B.) Let $\delta \in \Delta$ be such that

$$|F(H_{\pmb{t}}) - S_{\pmb{t}}(f,\nu)| \leq \frac{\epsilon}{2}$$

for every δ -fine $t \in T$. For any such t, any subset s of t is also a δ -fine member of T, so

$$\left|\sum_{(x,C)\in\boldsymbol{s}}F(C)-\langle f(x)|\nu C\rangle\right|=\left|F(H_{\boldsymbol{s}})-S_{\boldsymbol{s}}(f,\nu)\right|\leq\frac{\epsilon}{2}$$

Applying this to $\boldsymbol{s} = \{(x, C) : (x, C) \in \boldsymbol{t}, F(C) > \langle f(x) | \nu C \rangle \}$ and $\boldsymbol{s}' = \{(x, C) : (x, C) \in \boldsymbol{t}, F(C) < \langle f(x) | \nu C \rangle \}$, we get

$$\begin{split} \sum_{(x,C)\in\boldsymbol{t}} |F(C) - \langle f(x)|\nu C\rangle| \\ &= \sum_{(x,C)\in\boldsymbol{s}} (F(C) - \langle f(x)|\nu C\rangle) - \sum_{(x,C)\in\boldsymbol{s}'} (F(C) - \langle f(x)|\nu C\rangle) \leq \epsilon, \end{split}$$

as required.

2H In the case of real-valued set functions ν , many problems can be reduced to the case in which ν is additive, as in the following.

Proposition Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions, witnessed by \mathcal{C} , U a Banach space, and $\nu : \mathcal{C} \to \mathbb{R}$ a function; let \mathcal{E} be the algebra of subsets of X generated by \mathcal{C} . Suppose that $I_{\nu}(\chi X)$ is defined, and that $F_1 : \mathcal{E} \to \mathbb{R}$ is the Saks-Henstock indefinite integral of χX with respect to ν . Then for a bounded function $f : X \to U$, $I_{\nu}(f) = I_{F_1}(f)$ if either is defined, and in this case f has the same Saks-Henstock indefinite integral with respect to either ν or F_1 .

proof (a) Suppose that f has Saks-Henstock indefinite integral F with respect to ν . Given $\epsilon > 0$, there is a $\delta \in \Delta$ such that

$$\|F(H_t) - S_t(f,\nu)\| \le \epsilon, \quad \sum_{(x,C)\in t} |F_1(C) - \nu C| \le \epsilon$$

for every δ -fine $\boldsymbol{t} \in T$ (2G). Now, given such a \boldsymbol{t} ,

$$\begin{split} \|F(H_{t}) - S_{t}(f, F_{1})\| &\leq \|F(H_{t}) - S_{t}(f, \nu)\| + \|S_{t}(f, \nu) - S_{t}(f, F_{1})\| \\ &\leq \epsilon + \sum_{(x, C) \in t} \|\nu C \cdot f(x) - F_{1}(C)f(x)\| \\ &\leq \epsilon + \gamma \|f\|_{\infty} \sum_{(x, C) \in t} |\nu C - F_{1}(C)| \leq (1 + \gamma \|f\|_{\infty})\epsilon. \end{split}$$

Also, of course, there is an $\mathcal{R} \in \mathfrak{R}$ such that $||F(E)|| \leq \epsilon$ for every $E \in \mathcal{E} \cap \mathcal{R}$. So F is the Saks-Henstock indefinite integral of f with respect to F_1 .

(b) Conversely, suppose that f has Saks-Henstock indefinite integral F with respect to F_1 . Given $\epsilon > 0$, there is a $\delta \in \Delta$ such that

$$||F(H_t) - S_t(f, F_1)|| \le \epsilon, \quad \sum_{(x,C) \in t} |F_1(C) - \nu C| \le \epsilon$$

for every δ -fine $\boldsymbol{t} \in T$ (2G). This time, for such a \boldsymbol{t} ,

$$\begin{aligned} \|F(H_{t}) - S_{t}(f,\nu)\| &\leq \|F(H_{t}) - S_{t}(f,F_{1})\| + \|S_{t}(f,\nu) - S_{t}(f,F_{1})\| \\ &\leq \epsilon + \sum_{(x,C)\in t} \|\nu C \cdot f(x) - F_{1}(C)f(x)\| \\ &\leq \epsilon + \gamma \|f\|_{\infty} \sum_{(x,C)\in t} |\nu C - F_{1}(C)| \leq (1 + \gamma \|f\|_{\infty})\epsilon \end{aligned}$$

As before, there is an $\mathcal{R} \in \mathfrak{R}$ such that $||F(E)|| \leq \epsilon$ for every $E \in \mathcal{E} \cap \mathcal{R}$. So F is the Saks-Henstock indefinite integral of f with respect to ν .

2I Proposition Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions witnessed by \mathcal{C} , U a Banach space, $f: X \to U, \nu: \mathcal{C} \to \mathbb{R}$ functions such that $I_{\nu}(f) = \lim_{t \to \mathcal{F}(T, \Delta, \mathfrak{R})} S_t(f, \nu)$ is defined in U, \mathcal{E} the algebra of subsets of X generated by \mathcal{C} and $F: \mathcal{E} \to \mathbb{R}$ the Saks-Henstock indefinite integral of f with respect to ν . Suppose further that

(α) Δ is countably full,

(β) $I_{\nu}(\chi X) = \lim_{t \to \mathcal{F}(T,\Delta,\mathfrak{R})} \sum_{(x,C) \in t} \nu C$ is defined in \mathbb{R} and the Saks-Henstock indefinite integral of χX with respect to ν is F_0 .

Then $I_{F_0}(f) = \lim_{t \to \mathcal{F}(T,\Delta,\mathfrak{R})} S_t(f,F_0)$ is defined and equal to $I_{\nu}(f)$, and F is the Saks-Henstock indefinite integral of f with respect to F_0 .

proof Let $\epsilon > 0$. For each $n \in \mathbb{N}$ there is a $\delta_n \in \Delta$ such that

$$\sum_{(x,C)\in\boldsymbol{t}} |F_0(C) - \nu C| \le \frac{2^{-n-1}\epsilon}{n+1}$$

for every δ_n -fine $\mathbf{t} \in T$ (2G). Because Δ is countably full, there is a $\delta' \in \Delta$ such that $(x, C) \in \delta_n$ whenever $(x, C) \in \delta$ and $n \leq ||f(x)|| < n + 1$; now there is a $\delta \in \Delta$, included in δ' , such that $||F(H_t) - S_t(f, \nu)|| \leq \epsilon$ for every δ -fine $\mathbf{t} \in T$. In this case, for such \mathbf{t} ,

$$\begin{aligned} \|F(H_{\boldsymbol{t}}) - S_{\boldsymbol{t}}(f, F_0)\| &\leq \|F(H_{\boldsymbol{t}}) - S_{\boldsymbol{t}}(f, \nu)\| + \|S_{\boldsymbol{t}}(f, \nu) - S_{\boldsymbol{t}}(f, F_0)\| \\ &\leq \epsilon + \sum_{(x, C) \in \boldsymbol{t}} \|\nu C \cdot f(x) - F_0(C)f(x)\| \\ &= \epsilon + \sum_{(x, C) \in \boldsymbol{t}} |\nu C - F_0(C)| \|f(x)\| \\ &\leq \epsilon + \sum_{n=0}^{\infty} \frac{2^{-n-1}\epsilon}{n+1} \cdot (n+1) = 2\epsilon. \end{aligned}$$

At the same time, there is certainly an $\mathcal{R} \in \mathfrak{R}$ such that $||F(E)|| \leq \epsilon$ for every $E \in \mathcal{E} \cap \mathcal{R}$. By 1F, $I_{F_0}(f)$ is defined; by 1D, F is the Saks-Henstock indefinite integral of f with respect to F_0 .

2J Dominated convergence: Proposition Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions witnessed by \mathcal{C} , U, V and W Banach spaces, $\langle | \rangle : U \times V \to W$ a continuous bilinear operator, and $\nu : \mathcal{C} \to V$ a function. Let \mathcal{E} be the algebra of subsets of X generated by \mathcal{C} . Suppose that

(i) Δ is countably full,

(ii) whenever $\langle h_n \rangle_{n \in \mathbb{N}}$ is a uniformly bounded sequence of functions from X to V^* such that $I_{\nu}(h_n)$ is defined for every n and $\lim_{n \to \infty} h_n(x) = 0$ for every x, then the Saks-Henstock indefinite integrals of the h_n converge uniformly to 0,

(iii) there is an $M \ge 0$ such that $\sum_{(x,C) \in \boldsymbol{t}} \|\nu C\| \le M$ for every $\boldsymbol{t} \in T$.

Then whenever U is a Banach space and $\langle f_n \rangle_{n \in \mathbb{N}}$ a uniformly bounded sequence of functions from X to U such that $I_{\nu}(f_n)$ is defined for every n and $f(x) = \lim_{n \to \infty} f_n(x)$ is convergent for every $x \in [0, 1]$, $I_{\nu}(f)$ is defined, and the Saks-Henstock indefinite integrals of the f_n converge uniformly to the Saks-Henstock indefinite integral of f.

Remark When speaking of $I_{\nu}(h_n)$ in the hypothesis (ii), I mean to use the natural bilinear operator $(w, v) \mapsto w(v) : V^* \times V \to \mathbb{R}$, so that $I_{\nu}(h_n)$ is a real number and the Saks-Henstock indefinite integral of h_n is real-valued; while for $I_{\nu}(f_n)$ and $I_{\nu}(f)$ in the conclusion of the proposition, I mean to use the bilinear operator $\langle | \rangle$ of the first sentence.

proof (a) For each $n \in \mathbb{N}$ let F_n be the Saks-Henstock indefinite integral of f_n . Then $\langle F_n \rangle_{n \in \mathbb{N}}$ is uniformly convergent to $F : \mathcal{E} \to U$ say. **P?** Otherwise, there is an $\epsilon > 0$ such that for every $n \in \mathbb{N}$ there are $k_n, l_n \geq n$ and $E_n \in \mathcal{E}$ such that $||F_{k(n)}(E_n) - F_{l(n)}(E_n)|| \geq \epsilon$. Note that $F_{k(n)} - F_{l(n)}$ is the Saks-Henstock indefinite integral of $f_{k(n)} - f_{l(n)}$, by 2A. For each n, let $\psi_n \in W^*$ be such that $||\psi_n|| \leq 1$ and $\psi_n(F_{k(n)}(E_n) - F_{l(n)}(E_n)) \geq \epsilon$; define $\pi_n : U \to V^*$ by setting $\pi_n(u)(v) = \psi_n(\langle u|v\rangle)$ for $u \in U$ and $v \in V$, and $h_n : X \to V^*$ by setting $h_n(x) = \pi_n(f_{k(n)}(x) - f_{l(n)}(x))$ for $x \in X$. Then $\langle h_n(x)|v\rangle = \psi_n(\langle f_{k(n)}(x) - f_{l(n)}(x)|v\rangle)$ for every $x \in X$ and $v \in V$, so 2B tells us that h_n has Saks-Henstock indefinite integral $E \mapsto \psi_n(F_{k(n)}(E) - F_{l(n)}(E))$. Also $\langle h_n \rangle_{n \in \mathbb{N}}$ is uniformly bounded and converges pointwise to the zero function. So $\lim_{n\to\infty} \psi_n(F_{k(n)}(E_n) - F_{l(n)}(E_n)) = 0$, by hypothesis (ii). **XQ**

(b) Let $\gamma \geq 0$ be such that $\|\langle u|v\rangle\| \leq \gamma \|u\| \|v\|$ for all $u \in U$ and $v \in V$. Let $\epsilon > 0$. Then there is a neighbourhood gauge δ such that $\|S_t(f, \nu) - F(H_t)\| \leq (4 + \gamma M)\epsilon$ for every δ -fine t. **P** Let $\langle r_n \rangle_{n \in \mathbb{N}}$ be strictly increasing and such that $\|F_{r_n}(E) - F(E)\| \leq 2^{-n}\epsilon$ for every $n \in \mathbb{N}$ and $E \in \mathcal{E}$. For each $n \in \mathbb{N}$, let δ_n be a gauge such that $\|S_t(f_{r_n}, \nu) - F_{r_n}(H_t)\| \leq 2^{-n}\epsilon$ for every δ_n -fine t. Let δ be the gauge

$$\bigcup_{n \in \mathbb{N}} \{ (x, C) : \| f_{r_n}(x) - f(x) \| \le \epsilon, \ (x, C) \in \delta_n \}.$$

If \boldsymbol{t} is δ -fine, express it as a disjoint union $\bigcup_{n \leq m} \boldsymbol{t}_n$ where $(x, C) \in \delta_n$ and $||f_{r_n}(x) - f(x)|| \leq \epsilon$ for $(x, C) \in \boldsymbol{t}_n$. Then each \boldsymbol{t}_n is δ_n -fine, so

$$\begin{split} \|S_{\boldsymbol{t}}(f,\nu) - F(H_{\boldsymbol{t}})\| &= \|\sum_{n=0}^{m} S_{\boldsymbol{t}_{n}}(f,\nu) - \sum_{n=0}^{m} F(H_{\boldsymbol{t}_{n}})\| \\ &\leq \sum_{n=0}^{m} \|S_{\boldsymbol{t}_{n}}(f,\nu) - F(H_{\boldsymbol{t}_{n}})\| \\ &\leq \sum_{n=0}^{m} \|S_{\boldsymbol{t}_{n}}(f,\nu) - S_{\boldsymbol{t}_{n}}(f_{r_{n}},\nu)\| + \sum_{n=0}^{m} \|S_{\boldsymbol{t}_{n}}(f_{r_{n}},\nu) - F_{r_{n}}(H_{\boldsymbol{t}_{n}})\| \\ &\quad + \sum_{n=0}^{m} \|F_{r_{n}}(H_{\boldsymbol{t}_{n}}) - F(H_{\boldsymbol{t}_{n}})\| \\ &\leq \sum_{n=0}^{m} \sum_{(x,C)\in\boldsymbol{t}_{n}} \|\langle f(x) - f_{r(n)}(x)|\nu C\rangle\| + \sum_{n=0}^{m} 2^{-n}\epsilon + \sum_{n=0}^{m} 2^{-n}\epsilon \\ &\leq \sum_{n=0}^{m} \sum_{(x,C)\in\boldsymbol{t}_{n}} \gamma\epsilon\|\nu C\| + 4\epsilon \\ &= \sum_{(x,C)\in\boldsymbol{t}} \gamma\epsilon\|\nu C\| + 4\epsilon \leq (4+\gamma M)\epsilon. \ \mathbf{Q} \end{split}$$

(c) By (a),

$$\inf_{\mathcal{R}\in\mathfrak{R}}\sup_{E\in\mathcal{E}\cap\mathcal{R}}\|F(E)\| = \lim_{n\to\infty}\inf_{\mathcal{R}\in\mathfrak{R}}\sup_{E\in\mathcal{E}\cap\mathcal{R}}\|F_n(E)\| = 0.$$

By 1F, f is $(X, T, \Delta, \mathfrak{R}, \nu)$ -integrable and its Saks-Henstock indefinite integral is F.

Remark To have (i) and (ii) true but (iii) false, or anyway so false that the argument of (b) won't work, something a little odd has to be happening. I do not have an example in which (i) and (iii) are true but (ii) is false.

2K Proposition Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions witnessed by \mathcal{C} , \mathcal{E} the algebra of subsets of X generated by \mathcal{C} , and $\nu : \mathcal{E} \to [0, 1]$ an additive functional such that $\nu X = 1$. Set $\mathcal{N} = \{E : E \in \mathcal{E}, \nu E = 0\}, \mathfrak{A}_0 = \mathcal{E}/\mathcal{N}$ and $\bar{\nu}_0 E^{\bullet} = \nu E$ for $E \in \mathcal{E}$; let $(\mathfrak{A}, \bar{\nu})$ be the probability algebra metric completion of $(\mathfrak{A}_0, \bar{\nu}_0)$ (FREMLIN 02, 392H¹). Let \mathcal{F}^* be the filter on T described in part (b) of the proof of 1D. For $A \subseteq X$, set

$$\nu^* A = \limsup_{\boldsymbol{t} \to \mathcal{F}^*} S_{\boldsymbol{t}}(\chi A, \nu)$$

and let Q_A be the set of those $a \in \mathfrak{A}$ such that

$$\lim_{\boldsymbol{t}\to\mathcal{F}^*}\bar{\nu}(H^{\bullet}_{\boldsymbol{t}\upharpoonright A}\setminus a)=0$$

where $\mathbf{t} \upharpoonright A = \{(x, C) : (x, C) \in \mathbf{t}, x \in A\}$. Then Q_A has a least member a_A , and $\bar{\nu}a_A = \nu^* A$.

proof For a finite set $\mathcal{E}_0 \subseteq \mathcal{E}$, say that $\mathbf{t} \in T$ is \mathcal{E}_0 -respecting if whenever $E \in \mathcal{E}_0$ and $(x, C) \in \mathbf{t}$ then either $C \subseteq E$ or $C \cap E = \emptyset$.

(a) If $a, b \in Q_A$, then

$$\bar{\nu}(H^{\bullet}_{t\uparrow A} \setminus (a \cap b)) \leq \bar{\nu}(H^{\bullet}_{t\uparrow A} \setminus a) + \bar{\nu}(H^{\bullet}_{t\uparrow A} \setminus b)$$

for every $t \in T$, so

$$\limsup_{\boldsymbol{t}\to\mathcal{F}^*}\bar{\nu}(H^{\boldsymbol{\bullet}}_{\boldsymbol{t}\upharpoonright A}\setminus(a\cap b))\leq \lim_{\boldsymbol{t}\to\mathcal{F}^*}\bar{\nu}(H^{\boldsymbol{\bullet}}_{\boldsymbol{t}\upharpoonright A}\setminus a)+\lim_{\boldsymbol{t}\to\mathcal{F}^*}\bar{\nu}(H^{\boldsymbol{\bullet}}_{\boldsymbol{t}\upharpoonright A}\setminus b)$$
$$=0$$

Thus Q_A is downwards-directed. Setting $a_A = \inf Q_A$, we have

$$\limsup_{\boldsymbol{t}\to\mathcal{F}^*}\bar{\nu}(H^{\bullet}_{\boldsymbol{t}\restriction A}\setminus a_A)\leq \lim_{\boldsymbol{t}\to\mathcal{F}^*}\bar{\nu}(H^{\bullet}_{\boldsymbol{t}\restriction A}\setminus a)+\bar{\nu}(a\setminus a_A)=\bar{\nu}(a\setminus a_A)$$

for every $a \in Q_A$, while $\inf_{a \in Q_A} \bar{\nu}(a \setminus a_A) = 0$ (FREMLIN 02, 321F), so $\lim_{t \to \mathcal{F}^*} \bar{\nu}(H^{\bullet}_{t \upharpoonright A} \setminus a_A) = 0$ and $a_A \in Q_A$ is the least member of Q_A .

(b) We have

$$\nu^* A = \limsup_{\boldsymbol{t} \to \mathcal{F}^*} S_{\boldsymbol{t}}(\chi A, \nu) = \limsup_{\boldsymbol{t} \to \mathcal{F}^*} \nu H_{\boldsymbol{t} \upharpoonright A}$$
$$= \limsup_{\boldsymbol{t} \to \mathcal{F}^*} \bar{\nu} H^{\bullet}_{\boldsymbol{t} \upharpoonright A} \leq \lim_{\boldsymbol{t} \to \mathcal{F}^*} \bar{\nu} (H^{\bullet}_{\boldsymbol{t} \upharpoonright A} \setminus a_A) + \bar{\nu} a_A = \bar{\nu} a_A.$$

(c) In the other direction, choose $\langle \mathcal{E}_n \rangle_{n \in \mathbb{N}}$, $\langle \delta_n \rangle_{n \in \mathbb{N}}$, $\langle \mathcal{R}_n \rangle_{n \in \mathbb{N}}$ and $\langle \boldsymbol{t}_n \rangle_{n \in \mathbb{N}}$ inductively in such a way that, for each n,

$$\mathcal{E}_n \in [\mathcal{E}]^{<\omega}, \, \delta_n \in \Delta, \, \mathcal{R}_n \in \mathfrak{R}, \, \boldsymbol{t}_n \in T$$

 $\bar{\nu}(H_{\mathbf{t}^{\bullet}|A} \setminus a_A) \leq 2^{-n}, \ \nu H_{\mathbf{t}|A} \leq \nu^* A + 2^{-n}$ whenever $\mathbf{t} \in T$ is δ_n -fine, \mathcal{R}_n -filling and \mathcal{E}_n -respecting,

 \boldsymbol{t}_n is δ_n -fine, \mathcal{R}_n -filling and \mathcal{E}_n -respecting, and $S_{\boldsymbol{t}_n}(\chi A, \nu) \geq \nu^* A - 2^{-n}$,

 $\delta_{n+1} \subseteq \delta_n, \mathcal{R}_{n+1} \subseteq \mathcal{R}_n \text{ and } \mathcal{E}_n \cup \{C : (x, C) \in \boldsymbol{t}_n\} \subseteq \mathcal{E}_{n+1}.$

If $t \in T$ is δ_n -fine and \mathcal{E}_{n+1} -respecting, then $\nu(H_{t \upharpoonright A} \setminus H_{t_n \upharpoonright A}) \leq 2^{-n+1}$. **P** Set

$$\boldsymbol{s} = (\boldsymbol{t}_n \upharpoonright A) \cup \{ (x, C) : (x, C) \in \boldsymbol{t} \upharpoonright A, C \cap H_{\boldsymbol{t}_n \upharpoonright A} = \emptyset \}$$

then $\mathbf{s} \in T$ is δ_n -fine and \mathcal{E}_n -respecting, so extends to a δ_n -fine, \mathcal{E}_n -respecting and \mathcal{R}_n -filling $\mathbf{s}' \in T$ (see the proof of 1D). Now, because \mathbf{t} is \mathcal{E}_{n+1} -respecting and $C \in \mathcal{E}_{n+1}$ whenever $(x, C) \in \mathbf{t}_n$,

$$\nu(H_{\boldsymbol{t}_n \upharpoonright A} \cup H_{\boldsymbol{t} \upharpoonright A}) = \nu H_{\boldsymbol{s} \upharpoonright A} \le \nu H_{\boldsymbol{s}' \upharpoonright A} = S_{\boldsymbol{s}'}(\chi A, \nu)$$
$$\le \nu^* A + 2^{-n} \le \nu H_{\boldsymbol{t}_n \upharpoonright A} + 2^{-n+1}$$

¹Formerly 393B.

so $\nu(H_{\boldsymbol{t}\restriction A} \setminus H_{\boldsymbol{t}_n\restriction A}) \leq 2^{-n+1}$. **Q** For $n \in \mathbb{N}$, set $b_n = \sup_{m \geq n} H_{\boldsymbol{t}_m\restriction A}^{\bullet}$. Then, for any $m \geq n$,

$$\bar{\nu}(H^{\bullet}_{t \upharpoonright A} \setminus b_n) \le \nu(H_{t \upharpoonright A} \setminus H_{t_m \upharpoonright A}) \le 2^{-m+1}$$

whenever $\boldsymbol{t} \in T$ is δ_m -fine, \mathcal{R}_m -filling and \mathcal{E}_{m+1} -respecting, so $b_n \in Q_A$ and $b_n \supseteq a_A$. Thus

$$\begin{split} \bar{\nu}a_A &\leq \bar{\nu}b_n \leq \bar{\nu}H_{\boldsymbol{t}_n \upharpoonright A}^{\bullet} + \sum_{m=n}^{\infty} \bar{\nu}(H_{\boldsymbol{t}_m + 1 \upharpoonright A}^{\bullet} \setminus H_{\boldsymbol{t}_m \upharpoonright A}^{\bullet}) \\ &= \nu H_{\boldsymbol{t}_n \upharpoonright A} + \sum_{m=n}^{\infty} \nu(H_{\boldsymbol{t}_m + 1 \upharpoonright A} \setminus H_{\boldsymbol{t}_m \upharpoonright A}) \\ &\leq \nu^* A + 2^{-n} + \sum_{m=n}^{\infty} 2^{-m+1} = \nu^* A + 5 \cdot 2^{-n}. \end{split}$$

As n is arbitrary, $\bar{\nu}a_A \leq \nu^* A$ and we have equality.

3 The problem Characterise the functions which can arise as Saks-Henstock indefinite integrals.

(Compare the ACG_{*} functions for the ordinary Henstock integral, see FREMLIN 03, §483 or GORDON 94.)

3A Example Let $(X, T, \Delta, \mathfrak{R})$ be a tagged-partition structure allowing subdivisions, witnessed by \mathcal{C}, W a Banach space, \mathcal{E} the algebra of subsets of X generated by \mathcal{C} , and $F: \mathcal{E} \to W$ an additive functional such that

for every $\epsilon > 0$ there is an $\mathcal{R} \in \mathfrak{R}$ such that $||F(E)|| \leq \epsilon$ for every $E \in \mathcal{R} \cap \mathcal{E}$.

Then there are Banach spaces U and V, a continuouous bilinear operator $\langle | \rangle : U \times V \to W$, and functions $f: X \to U, \nu: \mathcal{C} \to V$ such that $I_{\nu}(f)$ is defined and F is the Saks-Henstock indefinite integral of f with respect to ν . **P** Set $U = \mathbb{R}$, V = W, $\langle \alpha | w \rangle = \alpha w$ for $\alpha \in \mathbb{R}$ and $w \in W$, f(x) = 1 for every $x \in X$, $\nu C = F(C)$ for every $C \in \mathcal{C}$. Then $S_t(f, \nu) = F(H_t)$ for every $t \in T$, so $I_{\nu}(f) = F(X)$ and F is the Saks-Henstock indefinite integral of f with respect to ν . **Q**

Remark Thus any non-trivial answer to the problem of this section (e.g., giving conditions for a Saks-Henstock indefinite integral to be countably additive) will demand hypotheses on the other elements U, V, $\langle | \rangle, \nu$ and f of the structure.

3B Example Let X be a set, \mathcal{E} an algebra of subsets of X, W a Banach space and $F: \mathcal{E} \to W$ an additive function. Set $T = \{(x, C) : x \in C \in \mathcal{E}\}, \Delta = \{X \times \mathcal{P}X\}, \mathfrak{R} = \{\{\emptyset\}\}\}$; then $(X, T, \Delta, \mathfrak{R})$ is a tagged-partition structure allowing subdivisions, witnessed by \mathcal{E} , so we can apply the construction of 3A.

3C Example Let $([0,1], T, C, \mathfrak{R})$ be the Henstock tagged-partition structure allowing subdivisions, as in 1A(f-ii), and \mathcal{E} the algebra of subsets of X generated by \mathcal{C} . Define $\nu : \mathcal{C} \to \mathbb{R}$ by saying that

$$\nu C = 1$$
 if $\gamma, 1 \subseteq C$ for some $\gamma < 1$,
= 0 otherwise.

If $f:[0,1] \to \mathbb{R}$ is any function, $I_{\nu}(f) = f(1)$ is defined for every $f:[0,1] \to \mathbb{R}$, and the Saks-Henstock indefinite integral F of f is defined by

$$F(E) = f(1) \text{ if }]\gamma, 1[\subseteq E \text{ for some } \gamma < 1,$$

= 0 otherwise.

On the other hand,

$$I_{\nu}(f \times \chi E) = f(1) \text{ if } 1 \in E,$$

= 0 otherwise.

14

3D Example Let $X = \{x_0, x_1, x_2\}$ be a set with three members, $C = \{X\} \cup \{\{x\} : x \in X\}, Q = \{(x, \{x\}) : x \in X\} \cup \{(x_1, X)\}, T$ the straightforward set of tagged partitions generated by $Q, \Delta = \{X \times \mathcal{P}X\}, \mathfrak{R} = \{\{\emptyset\}\}$. Then $(X, T, \Delta, \mathfrak{R})$ is a tagged-partition structure allowing subdivisions witnessed by C; the $\{\emptyset\}$ -filling members of T are $\mathbf{t}_0 = \{(x, \{x\}) : x \in X\}$ and $\mathbf{t}_1 = \{(x_1, X)\}$. Set $\nu C = \#(C)$ for $C \in C$, $f(x_i) = i-1$ for $i \leq 2$; then $S_{\mathbf{t}_0}(f, \nu) = S_{\mathbf{t}_1}(f, \nu) = 0$ so $I_{\nu}(f) = 0$. But $S_{\mathbf{t}_0}(|f|, \nu) = 2$ and $S_{\mathbf{t}_1}(|f|, \nu) = 0$ so $I_{\nu}(|f|)$ is undefined.

3E The Pfeffer integral In FREMLIN 03, §484, I describe a special integral on Euclidean space which is the basis of a very general divergence theorem. Here I briefly recapitulate the definition to show that the same idea can be used to give a class of vector-valued integrals. Let $r \ge 1$ be an integer. For a Lebesgue measurable set $E \subseteq \mathbb{R}^r$ write per E for its perimeter, and let C be the algebra of subsets of \mathbb{R}^r with locally finite perimeters (FREMLIN 03, 474D). For $\alpha > 0$ set

$$\mathcal{C}_{\alpha} = \{C : C \in \mathcal{C} \text{ is bounded}, \ \mu C \ge \alpha (\operatorname{diam} C)^r \}, \ \alpha \operatorname{per} C \le (\operatorname{diam} C)^{r-1},$$

where μ is Lebesgue measure on \mathbb{R}^r , and

$$Q_{\alpha} = \{ (x, C) : C \in \mathcal{C}_{\alpha}, x \in \mathrm{cl}^*C \}$$

where cl^*C is the essential closure of C (FREMLIN 03, 475B); let T_{α} be the straightforward set of tagged partitions generated by Q_{α} . Let \mathcal{I} be the σ -ideal of subsets of \mathbb{R}^r generated by the sets of finite (r-1)dimensional Hausdorff measure, and set

 $\Delta = \{\delta \setminus (D \times \mathcal{P}\mathbb{R}^r) : \delta \text{ is a neighbourhood gauge on } \mathbb{R}^r, D \in \mathcal{I} \}.$

Then Δ is a countably full family of gauges on \mathbb{R}^r . Let $\mathbf{H} \subseteq \mathbb{R}^{\mathbb{N}}$ be the family of strictly positive sequences. For $\eta \in \mathbf{H}$, write \mathcal{M}_{η} for the set of disjoint sequences $\langle E_i \rangle_{i \in \mathbb{N}}$ of Lebesgue measurable subsets of \mathbb{R}^r such that $\mu E_i \leq \eta(i)$ and per $E_i \leq 1$ for every $i \in \mathbb{N}$, and E_i is empty for all but finitely many i. For $\eta \in \mathbf{H}$ and $C \in \mathcal{C}$ set

$$\mathcal{R}_{\eta} = \{\bigcup_{i \in \mathbb{N}} E_i : \langle E_i \rangle_{i \in \mathbb{N}} \in \mathcal{M}_{\eta}\} \subseteq \mathcal{C}, \quad \mathcal{R}_{\eta}^{(C)} = \{R : R \subseteq \mathbb{R}^r, R \cap C \in \mathcal{R}_{\eta}\};$$

 set

$$\mathfrak{R} = \{ R_{\eta}^{(C)} : C \in \mathcal{C} \text{ is bounded}, \eta \in \mathbf{H} \}.$$

Then there is an $\alpha^* > 0$ such that $(\mathbb{R}^r, T_\alpha, \Delta, \mathfrak{R})$ is a tagged-partition structure allowing subdivisions, witnessed by \mathcal{C} , whenever $0 < \alpha \leq \alpha^*$ (FREMLIN 03, 484F).

Suppose now that we are given Banach spaces U, V and W, a continuous bilinear operator $\langle | \rangle : U \times V \to W$, a function $f : \mathbb{R}^r \to U$, a $\beta > 0$ and a function $\nu : \mathcal{C}_\beta \to V$. For $0 < \alpha \leq \min(\alpha^*, \beta)$, set

$$I_{\nu}^{(\alpha)}(f) = \lim_{\boldsymbol{t} \to \mathcal{F}(T_{\alpha}, \Delta, \mathfrak{R})} S_{\boldsymbol{t}}(f, \nu)$$

if this is defined. It is easy to show that if $I_{\nu}^{(\alpha)}(f)$ is defined, and $F_{\alpha}: \mathcal{C} \to W$ is the corresponding Saks-Henstock indefinite integral, then for any $\alpha' \in [\alpha, \min(\alpha^*, \beta)]$ we also have the integral $I_{\nu}^{(\alpha')}(f)$, and the indefinite integrals $F_{\alpha'}$ and F_{α} coincide (FREMLIN 03, 484H). We can therefore define a 'Pfeffer integral' by saying that

If
$$f d\nu = \lim_{\alpha \downarrow 0} I_{\nu}^{(\alpha)}(f)$$

whenever f and ν are such that the limit is defined, that is, there is a $\beta \in [0, \alpha^*]$ such that dom $\nu \supseteq C_\beta$ and $I_{\nu}^{(\alpha)}(f)$ is defined for every $\alpha \in [0, \beta]$; the common value of F_α for $\alpha \in [0, \beta]$ can now be called the Saks-Henstock indefinite integral of f with respect to ν .

References

Fremlin D.H. [02] Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, 2002.

Fremlin D.H. [03] Measure Theory, Vol. 4: Topological Measure Spaces. Torres Fremlin, 2003.

Gordon R.A. [94] The Integrals of Lebesgue, Denjoy, Perron and Henstock. Amer. Math. Soc., 1994 (Graduate Studies in Mathematics 4).