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1 Basic definitions and results

1A The context (a) Let X be a set. A tagged partition on X will be a finite subset ttt of X × PX;
in this case, Httt will be

⋃
{C : (x,C) ∈ ttt}. A gauge on X is a subset δ of X × PX. For a gauge δ on X,

a tagged partition ttt on X is δ-fine if ttt ⊆ δ. If R ⊆ PX, and ttt is a tagged partition on X, ttt is R-filling if
X \Httt ∈ R. A straightforward set of tagged partitions on X is a set of the form

T = {ttt : ttt ∈ [Q]<ω, C ∩ C ′ = ∅ whenever (x,C), (x′, C ′) are distinct members of ttt}

where Q ⊆ X × PX.

(b)(i) A family ∆ of gauges on a set X is full if whenever 〈δx〉x∈X is a family in ∆, then

{(x,A) : x ∈ X, (x,A) ∈ δx}

belongs to ∆. ∆ is countably full if this is true whenever {δx : x ∈ X} is countable.

(ii) If X is a topological space, a neighbourhood gauge on X is a gauge of the form {(x,C) : x ∈ X,
C ⊆ Gx} where 〈Gx〉x∈X is a family of open subsets of X such that x ∈ Gx for every x ∈ X.

For any topological space, the family of all neighbourhood gauges on X is full.

(c) A quadruple (X,T,∆,R) is a tagged-partition structure allowing subdivisions, witnessed by
C, if

(i) X is a set.
(ii) ∆ is a non-empty downwards-directed family of gauges on X.
(iii)(α) R is a non-empty downwards-directed collection of families of subsets of X, all con-

taining ∅;
(β) for every R ∈ R there is an R′ ∈ R such that A ∪ B ∈ R whenever A, B ∈ R′ are

disjoint.
(iv) C is a family of subsets of X such that whenever C, C ′ ∈ C then C ∩C ′ ∈ C and C \C ′ is

expressible as the union of a disjoint finite subset of C.
(v) Whenever C0 ⊆ C is finite and R ∈ R, there is a finite set C1 ⊆ C, including C0, such that

X \
⋃
C1 ∈ R.

(vi) T ⊆ [X × C]<ω is a non-empty straightforward set of tagged partitions on X.
(vii) Whenever C ∈ C, δ ∈ ∆ and R ∈ R there is a δ-fine tagged partition ttt ∈ T such that

Httt ⊆ C and C \Httt ∈ R.

(d) Given a set X, a non-empty set T of tagged-partitions on X, a non-empty family ∆ of gauges on X,
and a non-empty collection R of families of subsets of X, consider sets of the form

TδR = {ttt : ttt ∈ T is δ-fine and R-filling}

for δ ∈ ∆ and R ∈ R. If the collection of these sets has the finite intersection property, say that T is
compatible with ∆ and R, and write F(T,∆,R) for the filter on T generated by the collection.

(e) For the basic theory of these structures, see Fremlin 03, §§481-482. In particular, we shall need the
following facts. Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions.

(i) If R ∈ R, there is a non-increasing sequence 〈Rn〉n∈N in R such that
⋃

i≤nAi ∈ R whenever Ai ∈ Ri

for i ≤ n and 〈Ai〉i≤n is disjoint (Fremlin 03, 481He).
(ii) Let E0 be the subring of PX generated by C. Then every member of E0 is expressible as a disjoint

union of members of C (use (c-iv)).
(iii) Let E be the algebra of subsets of X generated by C. If E ∈ E , δ ∈ ∆ and R ∈ R, there is a

δ-fine ttt ∈ T such that Httt ⊆ E and E \Httt ∈ R. PPP Let 〈Ri〉i∈N be a sequence in R such that
⋃

i≤nAi ∈ R
1
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whenever Ai ∈ Ri for i ≤ n and 〈Ai〉i≤n is disjoint. (α) If E = ∅ we can take ttt = ∅. (β) If E ∈ E0 \ {∅},
express E as

⋃
i≤n Ci where 〈Ci〉i≤n is a disjoint family in C. For each i, there is a δ-fine ttti ∈ T such that

Httti
⊆ Ci and Ci \Httti

∈ Ri+1, by (c-vii). Set ttt =
⋃

i≤n ttti; then

E \Httt =
⋃

i≤n Ci \Httti
∈ R1 ⊆ R.

(γ) Otherwise, X \E ∈ E0. By (c-v), there is an F ∈ E0, including X \E, such that X \F ∈ R1. By (α)-(β),
there is a δ-fine ttt ∈ T such that Httt ⊆ E ∩ F and E ∩ F \Httt ∈ R1; in which case E \Httt ∈ R. QQQ

(iv) T is compatible with ∆ and R. PPP Apply (iii) with E = X. QQQ

(f) Leading examples include the following.

(i) X = [a, b] ⊆ R, C the family of subintervals of [a, b] (open, closed, or half-open), T the straight-
forward set of tagged partitions generated by {(x,C) : C ∈ C, x ∈ C}, ∆ the set of gauges of the form
{(x,C) : x ∈ X, C ⊆ X, diamC ≤ η} where η > 0, R = {{∅}}. (This corresponds to the Riemann integral.)

(ii) X = R, C the family of bounded subintervals of R (open, closed, or half-open), T the straight-
forward set of tagged partitions generated by {(x,C) : C ∈ C, x ∈ C}, ∆ the set of neighbourhood gauges
on X,

R = {{R \ [a, b] : a ≤ a0, b0 ≤ b} : a0, b0 ∈ R}.

(This corresponds to the Henstock integral.)

(iii) X = R, C the family of bounded subintervals of R (open, closed, or half-open), T the straight-
forward set of tagged partitions generated by R × C, ∆ the set of neighbourhood gauges on X,

R = {{A : A ⊆ R, µ∗(A ∩ [a, b]) ≤ η} : a ≤ b, η > 0},

where µ is Lebesgue measure on R. (This corresponds to McShane’s description of the Lebesgue integral.)

1B Vector-valued gauge integrals Suppose that we are given a set X, a family ∆ of gauges on X,
a collection R of families of subsets of X, a collection C of subsets of X, a family T ⊆ X × C of tagged
partitions on X which is compatible with ∆ and R, Banach spaces U , V and W and a continuous bilinear
operator (u, v) 7→ 〈u|v〉 : U × V → W . Let f : X → U and ν : dom ν → V be functions, where C ⊆ dom ν.
For ttt ∈ T , set

Sttt(f, ν) =
∑

(x,C)∈ttt〈f(x)|νC〉 ∈W .

If limttt→F(T,∆,R) Sttt(f, ν) is defined in W , call it Iν(f), the gauge integral of f with respect to ν.

Evidently {(ν, f) : Iν(f) is defined} is a linear subspace of V C × UX , and Iν is a linear operator, just
because every Sttt is a linear operator on V C × UX .

In this context, if U or V is equal to R, I will take it for granted that 〈 | 〉 is just scalar multiplication.

1C Lemma Suppose that (X,T,∆,R) is a tagged-partition structure allowing subdivisions witnessed by
C ⊆ PX, U , V and W are Banach spaces, and 〈 | 〉 : U × V →W is a continuous bilinear operator. Suppose
that f : X → U , ν : C → V , δ ∈ ∆, R ∈ R and ǫ ≥ 0 are such that ‖Sttt(f, ν) − Sttt′(f, ν)‖ ≤ ǫ whenever ttt,
ttt′ ∈ T are δ-fine and R-filling. Then

(a) ‖Sttt(f, ν) − Sttt′(f, ν)‖ ≤ ǫ whenever ttt, ttt′ ∈ T are δ-fine and Httt = Httt′ ;
(b) whenever ttt ∈ T is δ-fine, δ′ ∈ ∆ and R′ ∈ R, there is a δ′-fine sss ∈ T such that Hsss ⊆ Httt, Httt \Hsss ∈ R′

and ‖Ssss(f, ν) − Sttt(f, ν)‖ ≤ ǫ.

proof (a) By Fremlin 03, 4A2Ab, there is a δ-fine sss ∈ T such that Wsss ∩Wttt = ∅ and ttt ∪ sss is R-filling.
Now Httt∪sss = Httt′∪sss, so ttt′ ∪ sss also is R-filling, and

‖Sttt(f, ν) − Sttt′(f, ν)‖ = ‖Sttt∪sss(f, ν) − Sttt′∪sss(f, ν)‖ ≤ ǫ.

(b) Replacing δ′ by a lower bound of {δ, δ′} in ∆ and R′ by a lower bound of {R,R′} if necessary, we
may suppose that δ′ ⊆ δ and R′ ⊆ R. Enumerate ttt as 〈(xi, Ci)〉i<n. Let 〈Rk〉k∈N be a sequence in R such
that

⋃
i≤k Ai ∈ R′ whenever 〈Ai〉i≤k is disjoint and Ai ∈ Ri for every i ≤ k (1A(e-i)). For each i < n,

let sssi be a δ′-fine member of T such that Hsssi
⊆ Ci and Ci \ Hsssi

∈ Ri+1, and set sss =
⋃

i<n sssi, so that
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sss ∈ T is δ′-fine and Hsss ⊆ Httt. By Fremlin 03, 482Aa, there is a δ-fine uuu ∈ T such that Huuu ∩Httt = ∅ and
X \ (Httt ∪Huuu) ∈ R0. Set ttt′ = ttt ∪ uuu, sss′ = sss ∪ uuu; then ttt′ and sss′ are δ-fine and R-filling, because

X \Hsss′ = (X \ (Httt ∪Huuu)) ∪
⋃

i<n(Ci \Hsssi
) ∈ R′ ⊆ R,

by the choice of 〈Rk〉k∈N. So

‖Sttt(f, ν) − Ssss(f, ν)‖ = ‖Sttt′(f, ν) − Ssss′(f, ν)‖ ≤ ǫ,

as required. Also, of course,

Httt \Hsss =
⋃

i<n Ci \Hsssi
∈ R′.

1D Saks-Henstock Lemma Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions
witnessed by C, U , V , W Banach spaces, 〈 | 〉 : U × V →W a continuous bilinear operator, and f : X → U ,
ν : C → V functions such that Iν(f) = limttt→F(T,∆,R) Sttt(f, ν) is defined in W . Let E be the algebra of
subsets of X generated by C. Then there is a unique additive function F : E → R such that for every ǫ > 0
there are δ ∈ ∆ and R ∈ R such that

(α) ‖F (Httt) − Sttt(f, ν)‖ ≤ ǫ for every δ-fine ttt ∈ T ,
(β) ‖F (E)‖ ≤ ǫ whenever E ∈ E ∩ R.

Moreover, F (X) = Iν(f).

proof (a) For E ∈ E , write TE for the set of those ttt ∈ T such that, for every (x,C) ∈ ttt, either C ⊆ E or
C ∩ E = ∅. For any δ ∈ ∆, R ∈ R and finite D ⊆ E there is a δ-fine ttt ∈

⋂
E∈D TE such that E \Httt ∈ R

for every E ∈ D. PPP Let 〈Rn〉n∈N be a sequence in R such that whenever Ai ∈ Ri for i ≤ n and 〈Ai〉i≤n

is disjoint then
⋃

i≤nAi ∈ R. Let E0 be the subalgebra of E generated by D, and enumerate the atoms of

E0 as 〈Ei〉i<n. By Fremlin 03, 482Aa, there is for each i < n a δ-fine sssi ∈ T such that Hsssi
⊆ Ei and

Ei \ Hsssi
∈ Ri. Set ttt =

⋃
i<n sssi. If E ∈ D then E =

⋃
i∈J Ei for some J ⊆ n. For any (x,C) ∈ ttt, there

is some i < n such that C ⊆ Ei, so that C ⊆ E if i ∈ J , C ∩ E = ∅ otherwise; thus ttt ∈ TE . Moreover,
E \Httt =

⋃
i∈J(Ei \Hsssi

) belongs to R. QQQ

(b) We therefore have a filter F∗ on T generated by sets of the form

TEδR = {ttt : ttt ∈ TE is δ-fine, E \Httt ∈ R}

as δ runs over ∆, R runs over R and E runs over E . For ttt ∈ T , E ⊆ X set tttE = {(x,C) : (x,C) ∈ ttt, C ⊆ E}.
Now F (E) = limttt→F∗ StttE

(f, ν) is defined for every E ∈ E . PPP For any ǫ > 0, there are δ ∈ ∆, R ∈ R such
that ‖Iν(f) − Sttt(f, ν)‖ ≤ ǫ for every δ-fine R-filling ttt ∈ T . Let R′ ∈ R be such that A ∪ B ∈ R for all
disjoint A, B ∈ R′. If ttt, ttt′ belong to TE,δ,R′ = TX\E,δ,R′ , then set

sss = {(x,C) : (x,C) ∈ ttt′, C ⊆ E} ∪ {(x,C) : (x,C) ∈ ttt, C ∩ E = ∅}.

Then sss ∈ TE is δ-fine, and also E \Hsss = E \Httt′ , (X \ E) \Hsss = (X \ E) \Httt both belong to R′; so their
union X \Hsss belongs to R, and sss is R-filling. Accordingly

‖StttE
(f, ν) − Sttt′E

(f, ν)‖ = ‖Sttt(f, ν) − Ssss(f, ν)‖

≤ ‖Sttt(f, ν) − Iν(f)‖ + ‖Iν(f) − Ssss(f, ν)‖ ≤ 2ǫ.

As ǫ is arbitrary and W is complete, this is enough to show that limttt→F∗ StttE
(f, ν) is defined. QQQ

(c) If E, E′ ∈ E are disjoint, then

StttE∪E′ (f, ν) = StttE
(f, ν) + StttE′ (f, ν)

for any ttt ∈ TE ∩ TE′ ; since both TE and TE′ belong to F∗, F (E ∪E′) = F (E) +F (E′). Thus F is additive.

(d) Now suppose that ǫ > 0. Let δ ∈ ∆, R∗ ∈ R be such that ‖Iν(f) − Sttt(f, ν)‖ ≤ 1
2ǫ for every δ-fine,

R∗-filling ttt ∈ T . Let R ∈ R be such that A ∪ B ∈ R∗ for all disjoint A, B ∈ R. If ttt ∈ T is δ-fine, then
‖F (Httt) − Sttt(f, ν)‖ ≤ ǫ. PPP For any η > 0, there is a δ-fine sss ∈ T such that

‖Iν(f) − Ssss(f, ν)‖ ≤ η,
for every (x,C) ∈ sss, either C ⊆ Httt or C ∩Httt = ∅,
(X \Httt) \Hsss ∈ R, Httt \Hsss ∈ R,
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‖F (Httt) −
∑

(x,C)∈sss,C⊆Httt
〈f(x)|νC〉‖ ≤ η

because the set of sss with these properties belongs to F∗. Now, setting sss1 = {(x,C) : (x,C) ∈ sss, C ⊆ Httt}
and ttt′ = ttt ∪ (sss \ sss1), ttt′ is δ-fine and R∗-filling, like sss, so

‖F (Httt) − Sttt(f, ν)‖ ≤ ‖F (Httt) − Ssss1
(f, ν)‖ + ‖Ssss1

(f, ν) − Sttt(f, ν)‖

≤ η + ‖Ssss(f, ν) − Sttt′(f, ν)‖

≤ η + ‖Ssss(f, ν) − Iν(f)‖ + ‖Iν(f) − Sttt′(f, ν)‖ ≤ η +
1

2
ǫ.

As η is arbitrary we have the result. QQQ

(ii) Now suppose that E ∈ E ∩R. Then ‖F (E)‖ ≤ ǫ. PPP Let R′ ∈ R be such that A∪B ∈ R whenever
A, B ∈ R′ are disjoint. Let ttt be such that

ttt ∈ TE is δ-fine,
E \Httt and (X \ E) \Httt both belong to R′,
‖F (E) − StttE

(f, ν)‖ ≤ 1
2ǫ;

once again, the set of candidates belongs to F∗, so is not empty. Then ttt and tttX\E are both R∗-filling and
δ-fine, so

‖F (E)‖ ≤
1

2
ǫ+ ‖StttE

(f, ν)‖ =
1

2
ǫ+ ‖Sttt(f, ν) − StttX\E

(f, ν)‖ ≤ ǫ. QQQ

As ǫ is arbitrary, this shows that F has all the required properties.

(e) I have still to show that F is unique. Suppose that F ′ : E → R is another function with the same
properties, and take E ∈ E and ǫ > 0. Then there are δ, δ′ ∈ ∆ and R, R′ ∈ R such that

‖F (Httt) − Sttt(f, ν)‖ ≤ ǫ for every δ-fine ttt ∈ T ,
‖F ′(Httt) − Sttt(f, ν)‖ ≤ ǫ for every δ′-fine ttt ∈ T ,
‖F (R)‖ ≤ ǫ whenever R ∈ E ∩ R,
‖F ′(R)‖ ≤ ǫ whenever R ∈ E ∩ R′.

Now taking δ′′ ∈ ∆ such that δ′′ ⊆ δ ∩ δ′, and R′′ ∈ R such that R′′ ⊆ R∩R′, there is a δ′′-fine ttt ∈ T such
that E′ = Httt is included in E and E \ E′ ∈ R′′. In this case

‖F (E) − Sttt(f, ν)‖ ≤ ‖F (E) − F (E′)‖ + ‖F (E′) − Sttt(f, ν)‖

= ‖F (E \ E′)‖ + ‖F (Httt) − Sttt(f, ν)‖

(because F is additive)

≤ 2ǫ

because E \ E′ ∈ R′′ ⊆ R and ttt is δ′′-fine, therefore δ-fine. Similarly, ‖F ′(E) − Sttt(f, ν)‖ ≤ 2ǫ so ‖F ′(E) −
F (E)‖ ≤ 4ǫ. As E and ǫ are arbitrary, F = F ′.

(f) Finally, to calculate F (X), take any ǫ > 0. Let δ ∈ ∆ and R ∈ R be such that ‖F (Httt)−Sttt(f, ν)‖ ≤ ǫ
for every δ-fine ttt ∈ T and ‖F (E)‖ ≤ ǫ whenever E ∈ E ∩R. Let ttt be any δ-fine R-filling member of T such
that ‖Sttt(f, ν) − Iν(f)‖ ≤ ǫ. Then, because F is additive,

‖F (X) − Iν(f)‖ ≤ ‖F (X) − F (Httt)‖ + ‖F (Httt) − Sttt(f, ν)‖ + ‖Sttt(f, ν) − Iν(f)‖

≤ 3ǫ.

As ǫ is arbitrary, F (X) = Iν(f).

1E Definition In the context of §1D, I will call the function F the Saks-Henstock indefinite integral
of f with respect to ν; of course it depends on the whole structure (X,T,∆,R, C, U, V,W, 〈 | 〉, f, ν), not just
f and ν. You should not take it for granted that F (E) = Iν(f × χE), but see Proposition 2D below.

1F The Saks-Henstock lemma characterizes the gauge integral, as follows.
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Theorem Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions, witnessed by C, U , V and
W Banach spaces, 〈 | 〉 : U × V → W a continuous bilinear operator, and ν : C → V , f : X → U two
functions. Let E be the algebra of subsets of X generated by C. Then the following are equiveridical:

(i) Iν(f) = limttt→F(T,∆,R) Sttt(f, ν) is defined in W ;
(ii) there is an additive function F : E →W such that

(α) for every ǫ > 0 there is a δ ∈ ∆ such that ‖F (Httt)− Sttt(f, ν)‖ ≤ ǫ for every δ-fine ttt ∈ T ,
(β) for every ǫ > 0 there is an R ∈ R such that ‖F (E)‖ ≤ ǫ for every E ∈ E ∩R.

In this case, F (X) = Iν(f).

proof (i)⇒(ii) is just the Saks-Henstock Lemma above; so let us assume (ii) and seek to prove (i). Given
ǫ > 0, take δ ∈ ∆ and R ∈ R such that (α) and (β) are satisfied. Let ttt ∈ T be δ-fine and R-filling. Then

‖F (X) − Sttt(f, µ)‖ ≤ ‖F (X \Httt)‖ + ‖F (Httt) − Sttt(f, ν)‖ ≤ 2ǫ.

As ǫ is arbitrary, Iν(f) is defined and equal to F (X).

2 Further properties

2A Proposition Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions, witnessed by C,
U , V and W Banach spaces and 〈 | 〉 : U × V → W a continuous bilinear operator. Let E be the algebra of
subsets of X generated by C. For ν ∈ V C and f ∈ UX , write Ffν ∈ W E for the Saks-Henstock indefinite
integral of f with respect to ν when this is defined. Then the operator (ν, f) 7→ Ffν is bilinear.

proof Immediate from 1F.

2B Proposition Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions, witnessed by C.
Suppose that U0, V0, W0, U1, V1 and W1 are Banach spaces, 〈 | 〉0 : U0 × V0 → W0, 〈 | 〉1 : U1 × V1 → W1

continuous bilinear operators, and π : U0 → U1, φ : V0 → V1 and ψ : W0 → W1 continuous linear operators
such that ψ(〈u|v〉0) = 〈π(u)|φv〉1 for all u ∈ U0 and v ∈ V0. Let f : X → U0 and ν : C → V0 be such that
Iν(f) is defined and has Saks-Henstock indefinite integral F . Then Iφν(πf) is defined and has Saks-Henstock
indefinite integral ψF .

proof We just have to observe that Sttt(πf, φν) = ψ(Sttt(f, ν)) for every ttt ∈ T , and apply Theorem 1F.

2C Proposition Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions, witnessed by C,
U , V and W Banach spaces and 〈 | 〉 : U × V → W a continuous bilinear operator. Suppose that Σ is a
σ-algebra of subsets of X including C, and ν : Σ → V a vector measure; let µ : Σ → [0,∞] be the total
variation of ν, and f : X → U a function which is Bochner integrable with respect to µ. Suppose further
that

(i) X has a topology T such that µ is inner regular with respect to the closed sets and outer
regular with respect to the open sets;

(ii) ∆ contains every neighbourhood gauge on X;
(iii) whenever E ∈ Σ, µE <∞ and ǫ > 0 there is an R ∈ R such that µ∗(A∩E) ≤ ǫ for every

A ∈ R.

Then Iν(f) = limttt→F(T,∆,R) Sttt(f, ν) is defined.

proof Let γ ≥ 0 be such that ‖〈u|v〉‖ ≤ γ‖u‖‖v‖ for all u ∈ U and v ∈ V .

(a) Consider first the case in which f is of the form u ⊗ χE where E ∈ Σ, µE < ∞ and u ∈ U , where
(u ⊗ χE)(x) = χE(x) · u for every x ∈ X. Then Iν(f) = 〈u|νE〉. PPP Let ǫ > 0. Let G ⊇ E be an open set
and F ⊆ E a closed set such that µ(G \ F ) ≤ ǫ, and R a member of R such that µ∗(A ∩ E) ≤ ǫ for every
A ∈ R. Let δ ∈ ∆ be the neighbourhood gauge

{(x,A) : x ∈ E, A ⊆ G} ∪ {(x,A) : x ∈ X \ E, A ⊆ X \ F}.

If ttt ∈ T is δ-fine and R-filling, then Sttt(f) = 〈u|νHttt↾E〉, where Httt↾E = {(x,C) : (x,C) ∈ ttt, x ∈ E}. Now we
know that µ(E \Httt) ≤ ǫ, while Httt↾E ⊆ G and Httt↾X\E does not meet F ; so that F ∩Httt ⊆ Httt↾E , and

µ(E△Httt↾E) ≤ µ(G \ F ) + µ(E \Httt) ≤ 2ǫ.

But this means that
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‖Sttt(f) − 〈u|νE〉‖ = ‖〈u|νHttt↾E − νE〉‖ ≤ γ‖u‖‖νHttt↾E − νE‖

≤ γ‖u‖(‖ν(Httt↾E \ E)‖ + ‖ν(E \Httt↾E)‖)

≤ γ‖u‖(µ(Httt↾E \ E) + µ(E \Httt↾E)) = γ‖u‖µ(Httt↾E△E) ≤ 2γ‖u‖ǫ.

As ǫ is arbitrary, Iν(f) is defined and equal to 〈u|νE〉. QQQ

(b) Consequently Iν(f) is defined whenever f : X → U is a ‘simple’ function in the sense that it is
expressible as

∑n
i=0 ui ⊗ χEi where each Ei has finite measure.

(c) Now suppose that f : X → U is any function. Then

lim supttt→F(T,∆,R) ‖Sttt(f)‖ ≤ γ
∫
‖f‖dµ.

PPP If γ = 0, Sttt(f, ν) = 0 for every ttt and we can stop. If γ > 0 and
∫
‖f‖dµ = ∞, the result is trivial. So

suppose that γ > 0 and
∫
‖f‖dµ is finite. Let µ̂ be the completion of µ and Σ̂ its domain. Note that µ̂ is still

inner regular with respect to the closed sets and outer regular with respect to the open sets. Let g : X → R

be a Σ̂-measurable function such that g(x) ≥ ‖f(x)‖ for every x and
∫
g dµ =

∫
‖f‖dµ.

Let ǫ > 0. For m ∈ Z, set Em = {x : x ∈ X, (1 + ǫ)m ≤ g(x) < (1 + ǫ)m+1}. Then Em ∈ Σ̂ and
µ̂Em <∞, so there is a measurable open set Gm ⊇ Em such that (1 + ǫ)m+1µ(Gm \ Em) ≤ 2−|m|ǫ.

Define 〈G′
x〉x∈X by setting G′

x = Gm if m ∈ Z and x ∈ Em, Vx = X if g(x) = 0. Let δ ∈ ∆ be the
corresponding neighbourhood gauge {(x,C) : x ∈ X, C ⊆ G′

x}.
Suppose that ttt is any δ-fine member of T . For each m ∈ Z, set tttm = ttt↾Em. Then Htttm

⊆ Gm for each m,
so

Sttt(‖f‖, µ) =

∞∑
m=−∞

Stttm
(‖f‖, µ) ≤

∞∑
m=−∞

(1 + ǫ)m+1µHtttm

≤
∞∑

m=−∞

(1 + ǫ)m+1µGm ≤
∞∑

m=−∞

(1 + ǫ)m+2µEm + 2−|m|ǫ

≤ 3ǫ+ (1 + ǫ)2
∞∑

m=−∞

(1 + ǫ)mµEm

≤ 3ǫ+ (1 + ǫ)2
∫
gdµ = 3ǫ+ (1 + ǫ)2

∫
‖f‖dµ

and

‖Sttt(f, ν)‖ ≤ γSttt(‖f‖, µ) ≤ 3γǫ+ (1 + ǫ)2γ
∫
‖f‖dµ.

As ǫ is arbitrary, we have the result. QQQ

(d) Now suppose that f : X → U is Bochner integrable with respect to µ, and ǫ > 0. Then there is a
simple function f0 : X → U such that

∫
‖f − f0‖dµ ≤ ǫ. By (b) and (c), there are a w ∈ W , δ ∈ ∆ and

R ∈ R such that

‖Sttt(f0, ν) − w‖ ≤ ǫ, ‖Sttt(f − f0, ν)‖ ≤ ǫ+ γǫ

for every δ-fine R-filling ttt ∈ T . But this means that if sss, ttt are δ-fine and R-filling members of T ,

‖Ssss(f, ν) − Sttt(f, ν)‖ ≤ ‖Ssss(f0, ν) − Sttt(f0, ν)‖ + ‖Ssss(f − f0, ν)‖ + ‖Sttt(f − f0, ν)‖

≤ 4ǫ+ 2γǫ;

as ǫ is arbitrary and W is complete, limttt→F(T,∆,R) Sttt(f, ν) is defined.

2D Proposition Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions witnessed by C,
U , V and W Banach spaces and 〈 | 〉 : U × V →W a continuous bilinear operator. Suppose that

(i) T is a topology on X, and ∆ is the set of neighbourhood gauges on X;
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(ii) ν : C → V is a function which is additive in the sense that if C0, . . . , Cn ∈ C are disjoint
and have union C ∈ C, then νC =

∑n
i=0 νCi;

(iii) whenever E ∈ C and ǫ > 0, there are closed sets F ⊆ E, F ′ ⊆ X \ E such that∑
(x,C)∈ttt ‖νC‖ ≤ ǫ whenever ttt ∈ T and Httt ∩ (F ∪ F ′) = ∅;

(iv) for every E ∈ C and x ∈ X there is a neighbourhood G of x such that if C ∈ C, C ⊆ G
and {(x,C)} ∈ T , there is a partition D of C into members of C, each either included in E or
disjoint from E, such that {(x,D)} ∈ T for every D ∈ D;

(v) for every C ∈ C and R ∈ R, there is an R′ ∈ R such that C ∩A ∈ R whenever A ∈ R′.

Let f : X → U be a function such that Iν(f) = limttt→F(T,∆,R) Sttt(f, ν) is defined. Let E be the algebra of
subsets of X generated by C, and F : E → R the Saks-Henstock indefinite integral of f . Then Iν(f × χE)
is defined and equal to F (E) for every E ∈ E .

proof (a) Because both F and Iν are additive, and F (X) = Iν(f), and either E or its complement is a
finite disjoint union of members of C (see 1A(e-ii) above), it is enough to consider the case in which E ∈ C.
Let γ ≥ 0 be such that ‖〈u|v〉‖ ≤ γ‖u‖‖v‖ for all u ∈ U and v ∈ V .

(b) Let ǫ > 0. For each x ∈ X let Gx be an open set containing x such that whenever C ∈ C, C ⊆ G
and {(x,C)} ∈ T , there is a partition D of C into members of C such that {(x,D)} ∈ T for every D ∈ D
and every member of D is either included in E or disjoint from E. For each n ∈ N, let Fn ⊆ E, F ′

n ⊆ X \E

be closed sets such that
∑

(x,C)∈ttt ‖νC‖ ≤
2−n

ǫ

n+1
whenever ttt ∈ T and Httt ∩ (Fn ∪ F ′

n) = ∅; now define G′
x, for

x ∈ X, by saying that

G′
x = Gx \ F ′

n if x ∈ E and n ≤ ‖f(x)‖ < n+ 1,

= Gx \ Fn if x ∈ X \ E and n ≤ ‖f(x)‖ < n+ 1.

Let δ0 ∈ ∆ be the neighbourhood gauge defined by the family 〈G′
x〉x∈X . Let δ ∈ ∆ and R1 ∈ R be such

that δ ⊆ δ0, ‖F (Httt) −
∑

(x,C)∈ttt f(x)νC‖ ≤ ǫ for every δ-fine ttt ∈ T , and |F (E)| ≤ ǫ for every E ∈ E ∩ R1.

Let R ∈ R be such that R ∩H ∈ R1 whenever R ∈ R.

(c) As in the proof of the Saks-Henstock Lemma, let TE be the set of those ttt ∈ T such that, for each
(x,C) ∈ ttt, either C ⊆ E or C ∩ E = ∅. The key to the proof is the following fact: if ttt ∈ T is δ-fine,
then there is a δ-fine sss ∈ TE such that Wsss = Wttt and Ssss(g, ν) = Sttt(g, ν) for every g : X → U . PPP For
each (x,C) ∈ ttt, we know that C ⊆ G′

x ⊆ Gx, because δ ⊆ δ0. Let D(x,C) be a finite partition of C into
members of C, each either included in E or disjoint from E, such that {(x,D)} ∈ T for every D ∈ D(x,C).
Then sss = {(x,D) : (x,C) ∈ ttt, D ∈ D(x,C)} belongs to TE . Because δ is a neighbourhood gauge, (x,D) ∈ δ
whenever (x,C) ∈ ttt and D ∈ D(x,C), so sss is δ-fine.

If g : X → U is any function,

Ssss(g, ν) =
∑

(x,C)∈ttt

∑
D∈D(x,C)

〈g(x)|νD〉

=
∑

(x,C)∈ttt

〈g(x)|
∑

D∈D(x,C)

νD〉 =
∑

(x,C)∈ttt

〈g(x)|νC〉

(because ν is additive)

= Sttt(g, ν). QQQ

(d) Now suppose that ttt ∈ T is δ-fine and R-filling. Let sss ∈ TE be as in (c), and set

sss∗ = {(x,D) : (x,D) ∈ sss, x ∈ E, D ⊆ E},

sss′ = {(x,D) : (x,D) ∈ sss, x /∈ E, D ⊆ E},

sss′′ = {(x,D) : (x,D) ∈ sss, x ∈ E, D ∩ E = ∅}.

Because sss ∈ TE ,
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Hsss∗∪sss′ = E ∩Hsss = E ∩Httt

and E \Hsss∗∪sss′ = E \Httt belongs to R1, by the choice of R. Accordingly

‖F (E) − Ssss∗∪sss′(f, ν)‖ ≤ ‖F (E) − F (Hsss∗∪sss′)‖ + ‖F (Hsss∗∪sss′) − Ssss′(f, ν)‖ ≤ 2ǫ

because sss∗ ∪ sss′ ⊆ sss is δ-fine.
For n ∈ N set

sss′n = {(x,D) : (x,D) ∈ sss′, n ≤ ‖f(x)‖ < n+ 1},

sss′′n = {(x,D) : (x,D) ∈ sss′′, n ≤ ‖f(x)‖ < n+ 1}.

Then Hsss′
n
⊆ E \Fn. PPP If (x,D) ∈ sss′n, there is a C ∈ C such that D ⊆ E ∩C and (x,C) ∈ ttt, while x /∈ E, so

that C ⊆ G′
x and C ∩ Fn = ∅. QQQ Similarly, Hsss′′

n
⊆ (X \E) \ F ′

n. Thus Hsss′
n∪sss′′

n
is disjoint from Fn ∪ F ′

n and

‖Ssss′
n
(f, ν) − Ssss′′

n
(f, ν)‖ = ‖

∑
(x,D)∈sss′

n

〈f(xi)|νD〉 −
∑

(x,D)∈sss′′
n

〈f(xi)|νD〉‖

≤
∑

(x,D)∈sss′
n∪sss′′

n

γ‖f(xi)‖‖νD‖

≤ γ(n+ 1)
∑

(x,D)∈sss′
n∪sss′′

n

‖νD‖ ≤ 2−nγǫ

by the choice of Fn and F ′
n.

Consequently,

‖F (E) − Sttt(f × χE, ν)‖ = ‖F (E) − Ssss(f × χE, ν)‖ = ‖F (E) − Ssss∗∪sss′′(f, ν)‖

(because sss∗ ∪ sss′′ = {(x,D) : (x,D) ∈ sss, x ∈ E})

≤ ‖F (E) − Ssss∗∪sss′(f, ν)‖ + ‖Ssss′(f, ν) − Ssss′′(f, ν)‖

(because sss∗, sss′ and sss′′ are disjoint subsets of sss)

≤ 2ǫ+ ‖
∞∑

n=0

Ssss′
n
(f, ν) −

∞∑
n=0

Ssss′′
n
(f, ν)‖

(the infinite sums are well-defined because sss is finite, so that all but finitely many terms are zero)

≤ 2ǫ+

∞∑
n=0

‖Ssss′
n
(f, ν) − Ssss′′

n
(f, ν)‖

≤ 2ǫ+

∞∑
n=0

2−nγǫ = 2(1 + γ)ǫ.

As ǫ is arbitrary, Iν(f × χE) is defined and equal to F (E), as required.

2E Proposition Suppose that X, T, C, ν, T , ∆, R, U , V , W , 〈 | 〉 and ν satisfy the conditions of 2D,
and that f : X → U , 〈Gn〉n∈N, G and w are such that

(vi) 〈Gn〉n∈N is a sequence of open subsets of X with union G,
(vii) Iν(f × χGn) is defined for every n ∈ N,
(viii) limttt→F(T,∆,R) Iν(f × χHttt↾G) is defined and equal to w,

where ttt↾G = {(x,C) : (x,C) ∈ ttt, x ∈ G} for ttt ∈ T . Then Iν(f × χG) is defined and equal to γ.

proof Let ǫ > 0. For each n ∈ N, let Fn be the Saks-Henstock indefinite integral of f × χGn. Let δn ∈ ∆
be such that

‖Fn(Hsss) − Ssss(f × χGn, ν)‖ ≤ 2−nǫ

whenever sss ∈ T is δn-fine. Set
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δ̃ = {(x,A) : x ∈ X \G, A ⊆ X}

∪
⋃
n∈N

{(x,A) : x ∈ Gn \
⋃
i<n

Gi, A ⊆ Gn, (x,A) ∈ δn},

so that δ̃ ∈ ∆. Note that if x ∈ G and C ∈ C and (x,C) ∈ δ̃, then there is some n ∈ N such that x ∈ Gn

and C ⊆ Gn, so that

Iν(f × χC) = Iν((f × χGn) × χC) = Fn(C)

is defined, by 2D; this means that Iν(f × χHttt↾G) will be defined for every δ̃-fine ttt ∈ T . Let δ ∈ ∆, R ∈ R

be such that ‖w − Iν(f × χHttt↾G)‖ ≤ ǫ whenever ttt ∈ T is δ-fine and R-filling.

Let ttt ∈ T be (δ ∩ δ̃)-fine and R-filling. For n ∈ N, set tttn = {(x,C) : (x,C) ∈ ttt, x ∈ Gn \
⋃

i<nGi}. Then
ttt↾G =

⋃
n∈N

tttn, and tttn is δn-fine and Htttn
⊆ Gn for every n. So

‖w − Sttt(f × χG, ν)‖ = ‖w −
∞∑

n=0

Stttn
(f × χGn, ν)‖

≤ ‖w − Iν(f × χHttt↾G)‖ +

∞∑
n=0

‖Iν(f × χHtttn
) − Stttn

(f × χGn, ν)‖

≤ ǫ+

∞∑
n=0

‖Iν(f × χGn × χHtttn
) − Stttn

(f × χGn, ν)‖

= ǫ+
∞∑

n=0

‖Fn(Htttn
) − Stttn

(f × χGn, ν)‖

(2D)

≤ ǫ+

∞∑
n=0

2−nǫ

(because every tttn is δn-fine)

= 3ǫ.

As ǫ is arbitrary, w = Iν(f × χG), as claimed.

2F Proposition Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions witnessed by C,
U and V Banach spaces, 〈 | 〉 : U × V → R a continuous bilinear functional, and ν : C → V a function.
Suppose that 〈fi〉i∈I is a family of functions from X to U such that

(i) wi = Iν(fi, ν) is defined for every i ∈ I,
(ii) infδ∈∆,R∈R

∑
i∈I supttt∈T is δ-fine and R-filling ‖Sttt(fi, ν)‖ is finite,

(iii) f(x) =
∑

i∈I fi(x) is defined in U for every x ∈ X.

Then Iν(f, ν) and
∑

i∈I wi are defined in W and equal.

proof (a) Let δ0 ∈ ∆, R0 ∈ R be such that

M =
∑

i∈I sup{‖Sttt(fi, ν)‖ : ttt ∈ T is δ0-fine and R0-filling}

is finite. Then
∑

i∈I ‖wi‖ ≤ M . PPP If J ⊆ I is finite and ǫ > 0, there is a δ0-fine R0-filling ttt ∈ T such that∑
i∈J ‖wi − Sttt(fi, ν)‖ ≤ ǫ, so that

∑
i∈J ‖wi‖ ≤M + ǫ. QQQ

So w =
∑

i∈I wi is defined.

(b) Now take any ǫ > 0. Let J ⊆ I be a finite set such that∑
i∈I\J sup{‖Sttt(fi, ν)‖ : ttt ∈ T is δ0-fine and R0-filling} ≤ ǫ;

then the argument of (a) tells us that
∑

i∈I\J ‖wi‖ ≤ ǫ. Let δ ∈ ∆, R ∈ R be such that δ ⊆ δ0, R ⊆ R0

and
∑

i∈J ‖wi − Sttt(fi, ν)‖ ≤ ǫ for every δ-fine R-filling ttt ∈ T . In this case, for any such ttt,
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Sttt(f, ν) =
∑

(x,C)∈ttt

〈f(x)|νC〉 =
∑

(x,C)∈ttt

〈
∑
i∈I

fi(x)|νC〉

=
∑

(x,C)∈ttt

∑
i∈I

〈fi(x)|νC〉 =
∑
i∈I

Sttt(fi, ν),

so

‖w − Sttt(f, ν)‖ ≤
∑

i∈J ‖wi − Sttt(fi, ν)‖ +
∑

i∈I\J ‖Sttt(fi, ν)‖ +
∑

i∈I\J ‖wi‖ ≤ 3ǫ.

As ǫ is arbitrary, Iν(f) is defined and equal to w.

2G The scalar-valued case: Proposition Let (X,T,∆,R) be a tagged-partition structure allowing
subdivisions witnessed by C, U and V Banach spaces, 〈 | 〉 : U × V → R a continuous bilinear functional,
f : X → U , ν : C → V functions such that Iν(f) = limttt→F(T,∆,R) Sttt(f, ν) is defined in R, E the algebra of
subsets of X generated by C and F : E → R the Saks-Henstock indefinite integral of f with respect to ν.
Then for every ǫ > 0 there is a δ ∈ ∆ such that∑

(x,C)∈ttt |F (C) − 〈f(x)|νC〉| ≤ ǫ

for every δ-fine ttt ∈ T ,

proof (See Fremlin 03, 482B.) Let δ ∈ ∆ be such that

|F (Httt) − Sttt(f, ν)| ≤
ǫ

2

for every δ-fine ttt ∈ T . For any such ttt, any subset sss of ttt is also a δ-fine member of T , so

|
∑

(x,C)∈sss F (C) − 〈f(x)|νC〉| = |F (Hsss) − Ssss(f, ν)| ≤
ǫ

2
.

Applying this to sss = {(x,C) : (x,C) ∈ ttt, F (C) > 〈f(x)|νC〉} and sss′ = {(x,C) : (x,C) ∈ ttt, F (C) <
〈f(x)|νC〉}, we get

∑
(x,C)∈ttt

|F (C) − 〈f(x)|νC〉|

=
∑

(x,C)∈sss

(F (C) − 〈f(x)|νC〉) −
∑

(x,C)∈sss′

(F (C) − 〈f(x)|νC〉) ≤ ǫ,

as required.

2H In the case of real-valued set functions ν, many problems can be reduced to the case in which ν is
additive, as in the following.

Proposition Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions, witnessed by C, U a
Banach space, and ν : C → R a function; let E be the algebra of subsets of X generated by C. Suppose that
Iν(χX) is defined, and that F1 : E → R is the Saks-Henstock indefinite integral of χX with respect to ν.
Then for a bounded function f : X → U , Iν(f) = IF1

(f) if either is defined, and in this case f has the same
Saks-Henstock indefinite integral with respect to either ν or F1.

proof (a) Suppose that f has Saks-Henstock indefinite integral F with respect to ν. Given ǫ > 0, there is
a δ ∈ ∆ such that

‖F (Httt) − Sttt(f, ν)‖ ≤ ǫ,
∑

(x,C)∈ttt |F1(C) − νC| ≤ ǫ

for every δ-fine ttt ∈ T (2G). Now, given such a ttt,

‖F (Httt) − Sttt(f, F1)‖ ≤ ‖F (Httt) − Sttt(f, ν)‖ + ‖Sttt(f, ν) − Sttt(f, F1)‖

≤ ǫ+
∑

(x,C)∈ttt

‖νC · f(x) − F1(C)f(x)‖

≤ ǫ+ γ‖f‖∞
∑

(x,C)∈ttt

|νC − F1(C)| ≤ (1 + γ‖f‖∞)ǫ.
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Also, of course, there is an R ∈ R such that ‖F (E)‖ ≤ ǫ for every E ∈ E ∩ R. So F is the Saks-Henstock
indefinite integral of f with respect to F1.

(b) Conversely, suppose that f has Saks-Henstock indefinite integral F with respect to F1. Given ǫ > 0,
there is a δ ∈ ∆ such that

‖F (Httt) − Sttt(f, F1)‖ ≤ ǫ,
∑

(x,C)∈ttt |F1(C) − νC| ≤ ǫ

for every δ-fine ttt ∈ T (2G). This time, for such a ttt,

‖F (Httt) − Sttt(f, ν)‖ ≤ ‖F (Httt) − Sttt(f, F1)‖ + ‖Sttt(f, ν) − Sttt(f, F1)‖

≤ ǫ+
∑

(x,C)∈ttt

‖νC · f(x) − F1(C)f(x)‖

≤ ǫ+ γ‖f‖∞
∑

(x,C)∈ttt

|νC − F1(C)| ≤ (1 + γ‖f‖∞)ǫ.

As before, there is an R ∈ R such that ‖F (E)‖ ≤ ǫ for every E ∈ E ∩ R. So F is the Saks-Henstock
indefinite integral of f with respect to ν.

2I Proposition Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions witnessed by C,
U a Banach space, f : X → U , ν : C → R functions such that Iν(f) = limttt→F(T,∆,R) Sttt(f, ν) is defined in
U , E the algebra of subsets of X generated by C and F : E → R the Saks-Henstock indefinite integral of f
with respect to ν. Suppose further that

(α) ∆ is countably full,
(β) Iν(χX) = limttt→F(T,∆,R)

∑
(x,C)∈ttt νC is defined in R and the Saks-Henstock indefinite

integral of χX with respect to ν is F0.

Then IF0
(f) = limttt→F(T,∆,R) Sttt(f, F0) is defined and equal to Iν(f), and F is the Saks-Henstock indefinite

integral of f with respect to F0.

proof Let ǫ > 0. For each n ∈ N there is a δn ∈ ∆ such that

∑
(x,C)∈ttt |F0(C) − νC| ≤

2−n−1
ǫ

n+1

for every δn-fine ttt ∈ T (2G). Because ∆ is countably full, there is a δ′ ∈ ∆ such that (x,C) ∈ δn whenever
(x,C) ∈ δ and n ≤ ‖f(x)‖ < n+ 1; now there is a δ ∈ ∆, included in δ′, such that ‖F (Httt) − Sttt(f, ν)‖ ≤ ǫ
for every δ-fine ttt ∈ T . In this case, for such ttt,

‖F (Httt) − Sttt(f, F0)‖ ≤ ‖F (Httt) − Sttt(f, ν)‖ + ‖Sttt(f, ν) − Sttt(f, F0)‖

≤ ǫ+
∑

(x,C)∈ttt

‖νC · f(x) − F0(C)f(x)‖

= ǫ+
∑

(x,C)∈ttt

|νC − F0(C)|‖f(x)‖

≤ ǫ+

∞∑
n=0

2−n−1
ǫ

n+1
· (n+ 1) = 2ǫ.

At the same time, there is certainly an R ∈ R such that ‖F (E)‖ ≤ ǫ for every E ∈ E ∩R. By 1F, IF0
(f) is

defined; by 1D, F is the Saks-Henstock indefinite integral of f with respect to F0.

2J Dominated convergence: Proposition Let (X,T,∆,R) be a tagged-partition structure allowing
subdivisions witnessed by C, U , V and W Banach spaces, 〈 | 〉 : U × V →W a continuous bilinear operator,
and ν : C → V a function. Let E be the algebra of subsets of X generated by C. Suppose that

(i) ∆ is countably full,
(ii) whenever 〈hn〉n∈N is a uniformly bounded sequence of functions from X to V ∗ such that

Iν(hn) is defined for every n and limn→∞ hn(x) = 0 for every x, then the Saks-Henstock indefinite
integrals of the hn converge uniformly to 0,
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(iii) there is an M ≥ 0 such that
∑

(x,C)∈ttt ‖νC‖ ≤M for every ttt ∈ T .

Then whenever U is a Banach space and 〈fn〉n∈N a uniformly bounded sequence of functions from X to U
such that Iν(fn) is defined for every n and f(x) = limn→∞ fn(x) is convergent for every x ∈ [0, 1], Iν(f)
is defined, and the Saks-Henstock indefinite integrals of the fn converge uniformly to the Saks-Henstock
indefinite integral of f .

Remark When speaking of Iν(hn) in the hypothesis (ii), I mean to use the natural bilinear operator
(w, v) 7→ w(v) : V ∗ × V → R, so that Iν(hn) is a real number and the Saks-Henstock indefinite integral of
hn is real-valued; while for Iν(fn) and Iν(f) in the conclusion of the proposition, I mean to use the bilinear
operator 〈 | 〉 of the first sentence.

proof (a) For each n ∈ N let Fn be the Saks-Henstock indefinite integral of fn. Then 〈Fn〉n∈N is uniformly
convergent to F : E → U say. PPP??? Otherwise, there is an ǫ > 0 such that for every n ∈ N there are
kn, ln ≥ n and En ∈ E such that ‖Fk(n)(En) − Fl(n)(En)‖ ≥ ǫ. Note that Fk(n) − Fl(n) is the Saks-
Henstock indefinite integral of fk(n) − fl(n), by 2A. For each n, let ψn ∈ W ∗ be such that ‖ψn‖ ≤ 1 and
ψn(Fk(n)(En) − Fl(n)(En)) ≥ ǫ; define πn : U → V ∗ by setting πn(u)(v) = ψn(〈u|v〉) for u ∈ U and
v ∈ V , and hn : X → V ∗ by setting hn(x) = πn(fk(n)(x) − fl(n)(x)) for x ∈ X. Then 〈hn(x)|v〉 =
ψn(〈fk(n)(x) − fl(n)(x)|v〉) for every x ∈ X and v ∈ V , so 2B tells us that hn has Saks-Henstock indefinite
integral E 7→ ψn(Fk(n)(E) − Fl(n)(E)). Also 〈hn〉n∈N is uniformly bounded and converges pointwise to the
zero function. So limn→∞ ψn(Fk(n)(En) − Fl(n)(En)) = 0, by hypothesis (ii). XXXQQQ

(b) Let γ ≥ 0 be such that ‖〈u|v〉‖ ≤ γ‖u‖‖v‖ for all u ∈ U and v ∈ V . Let ǫ > 0. Then there is a
neighbourhood gauge δ such that ‖Sttt(f, ν) − F (Httt)‖ ≤ (4 + γM)ǫ for every δ-fine ttt. PPP Let 〈rn〉n∈N be
strictly increasing and such that ‖Frn

(E) − F (E)‖ ≤ 2−nǫ for every n ∈ N and E ∈ E . For each n ∈ N, let
δn be a gauge such that ‖Sttt(frn

, ν) − Frn
(Httt)‖ ≤ 2−nǫ for every δn-fine ttt. Let δ be the gauge⋃

n∈N
{(x,C) : ‖frn

(x) − f(x)‖ ≤ ǫ, (x,C) ∈ δn}.

If ttt is δ-fine, express it as a disjoint union
⋃

n≤m tttn where (x,C) ∈ δn and ‖frn
(x)−f(x)‖ ≤ ǫ for (x,C) ∈ tttn.

Then each tttn is δn-fine, so

‖Sttt(f, ν) − F (Httt)‖ = ‖
m∑

n=0

Stttn
(f, ν) −

m∑
n=0

F (Htttn
)‖

≤
m∑

n=0

‖Stttn
(f, ν) − F (Htttn

)‖

≤
m∑

n=0

‖Stttn
(f, ν) − Stttn

(frn
, ν)‖ +

m∑
n=0

‖Stttn
(frn

, ν) − Frn
(Htttn

)‖

+

m∑
n=0

‖Frn
(Htttn

) − F (Htttn
)‖

≤
m∑

n=0

∑
(x,C)∈tttn

‖〈f(x) − fr(n)(x)|νC〉‖ +
m∑

n=0

2−nǫ+
m∑

n=0

2−nǫ

≤
m∑

n=0

∑
(x,C)∈tttn

γǫ‖νC‖ + 4ǫ

=
∑

(x,C)∈ttt

γǫ‖νC‖ + 4ǫ ≤ (4 + γM)ǫ. QQQ

(c) By (a),

inf
R∈R

sup
E∈E∩R

‖F (E)‖ = lim
n→∞

inf
R∈R

sup
E∈E∩R

‖Fn(E)‖ = 0.

By 1F, f is (X,T,∆,R, ν)-integrable and its Saks-Henstock indefinite integral is F .
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Remark To have (i) and (ii) true but (iii) false, or anyway so false that the argument of (b) won’t work,
something a little odd has to be happening. I do not have an example in which (i) and (iii) are true but (ii)
is false.

2K Proposition Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions witnessed by C,
E the algebra of subsets of X generated by C, and ν : E → [0, 1] an additive functional such that νX = 1.
Set N = {E : E ∈ E , νE = 0}, A0 = E/N and ν̄0E

• = νE for E ∈ E ; let (A, ν̄) be the probability algebra
metric completion of (A0, ν̄0) (Fremlin 02, 392H1). Let F∗ be the filter on T described in part (b) of the
proof of 1D. For A ⊆ X, set

ν∗A = lim supttt→F∗ Sttt(χA, ν),

and let QA be the set of those a ∈ A such that

limttt→F∗ ν̄(H•

ttt↾A \ a) = 0,

where ttt↾A = {(x,C) : (x,C) ∈ ttt, x ∈ A}. Then QA has a least member aA, and ν̄aA = ν∗A.

proof For a finite set E0 ⊆ E , say that ttt ∈ T is E0-respecting if whenever E ∈ E0 and (x,C) ∈ ttt then either
C ⊆ E or C ∩ E = ∅.

(a) If a, b ∈ QA, then

ν̄(H•

ttt↾A \ (a ∩ b)) ≤ ν̄(H•

ttt↾A \ a) + ν̄(H•

ttt↾A \ b)

for every ttt ∈ T , so

lim sup
ttt→F∗

ν̄(H•

ttt↾A \ (a ∩ b)) ≤ lim
ttt→F∗

ν̄(H•

ttt↾A \ a) + lim
ttt→F∗

ν̄(H•

ttt↾A \ b)

= 0.

Thus QA is downwards-directed. Setting aA = inf QA, we have

lim supttt→F∗ ν̄(H•

ttt↾A \ aA) ≤ limttt→F∗ ν̄(H•

ttt↾A \ a) + ν̄(a \ aA) = ν̄(a \ aA)

for every a ∈ QA, while infa∈QA
ν̄(a \ aA) = 0 (Fremlin 02, 321F), so limttt→F∗ ν̄(H•

ttt↾A \ aA) = 0 and
aA ∈ QA is the least member of QA.

(b) We have

ν∗A = lim sup
ttt→F∗

Sttt(χA, ν) = lim sup
ttt→F∗

νHttt↾A

= lim sup
ttt→F∗

ν̄H•

ttt↾A ≤ lim
ttt→F∗

ν̄(H•

ttt↾A \ aA) + ν̄aA = ν̄aA.

(c) In the other direction, choose 〈En〉n∈N, 〈δn〉n∈N, 〈Rn〉n∈N and 〈tttn〉n∈N inductively in such a way that,
for each n,

En ∈ [E ]<ω, δn ∈ ∆, Rn ∈ R, tttn ∈ T ,
ν̄(Httt•↾A \ aA) ≤ 2−n, νHttt↾A ≤ ν∗A + 2−n whenever ttt ∈ T is δn-fine, Rn-filling and En-

respecting,
tttn is δn-fine, Rn-filling and En-respecting, and Stttn

(χA, ν) ≥ ν∗A− 2−n,
δn+1 ⊆ δn, Rn+1 ⊆ Rn and En ∪ {C : (x,C) ∈ tttn} ⊆ En+1.

If ttt ∈ T is δn-fine and En+1-respecting, then ν(Httt↾A \Htttn↾A) ≤ 2−n+1. PPP Set

sss = (tttn↾A) ∪ {(x,C) : (x,C) ∈ ttt↾A, C ∩Htttn↾A = ∅};

then sss ∈ T is δn-fine and En-respecting, so extends to a δn-fine, En-respecting and Rn-filling sss′ ∈ T (see the
proof of 1D). Now, because ttt is En+1-respecting and C ∈ En+1 whenever (x,C) ∈ tttn,

ν(Htttn↾A ∪Httt↾A) = νHsss↾A ≤ νHsss′↾A = Ssss′(χA, ν)

≤ ν∗A+ 2−n ≤ νHtttn↾A + 2−n+1,

1Formerly 393B.
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so ν(Httt↾A \Htttn↾A) ≤ 2−n+1. QQQ
For n ∈ N, set bn = supm≥nH

•

tttm↾A. Then, for any m ≥ n,

ν̄(H•

ttt↾A \ bn) ≤ ν(Httt↾A \Htttm↾A) ≤ 2−m+1

whenever ttt ∈ T is δm-fine, Rm-filling and Em+1-respecting, so bn ∈ QA and bn ⊇ aA. Thus

ν̄aA ≤ ν̄bn ≤ ν̄H•

tttn↾A +

∞∑
m=n

ν̄(H•

tttm+1↾A \H•

tttm↾A)

= νHtttn↾A +

∞∑
m=n

ν(Htttm+1↾A \Htttm↾A)

≤ ν∗A+ 2−n +

∞∑
m=n

2−m+1 = ν∗A+ 5 · 2−n.

As n is arbitrary, ν̄aA ≤ ν∗A and we have equality.

3 The problem Characterise the functions which can arise as Saks-Henstock indefinite integrals.
(Compare the ACG∗ functions for the ordinary Henstock integral, see Fremlin 03, §483 or Gordon

94.)

3A Example Let (X,T,∆,R) be a tagged-partition structure allowing subdivisions, witnessed by C, W
a Banach space, E the algebra of subsets of X generated by C, and F : E → W an additive functional such
that

for every ǫ > 0 there is an R ∈ R such that ‖F (E)‖ ≤ ǫ for every E ∈ R ∩ E .

Then there are Banach spaces U and V , a continuouous bilinear operator 〈 | 〉 : U × V → W , and functions
f : X → U , ν : C → V such that Iν(f) is defined and F is the Saks-Henstock indefinite integral of f with
respect to ν. PPP Set U = R, V = W , 〈α|w〉 = αw for α ∈ R and w ∈ W , f(x) = 1 for every x ∈ X,
νC = F (C) for every C ∈ C. Then Sttt(f, ν) = F (Httt) for every ttt ∈ T , so Iν(f) = F (X) and F is the
Saks-Henstock indefinite integral of f with respect to ν. QQQ

Remark Thus any non-trivial answer to the problem of this section (e.g., giving conditions for a Saks-
Henstock indefinite integral to be countably additive) will demand hypotheses on the other elements U , V ,
〈 | 〉, ν and f of the structure.

3B Example Let X be a set, E an algebra of subsets of X, W a Banach space and F : E → W an
additive function. Set T = {(x,C) : x ∈ C ∈ E}, ∆ = {X × PX}, R = {{∅}}; then (X,T,∆,R) is a
tagged-partition structure allowing subdivisions, witnessed by E , so we can apply the construction of 3A.

3C Example Let ([0, 1], T, C,R) be the Henstock tagged-partition structure allowing subdivisions, as in
1A(f-ii), and E the algebra of subsets of X generated by C. Define ν : C → R by saying that

νC = 1 if ]γ, 1[ ⊆ C for some γ < 1,

= 0 otherwise.

If f : [0, 1] → R is any function, Iν(f) = f(1) is defined for every f : [0, 1] → R, and the Saks-Henstock
indefinite integral F of f is defined by

F (E) = f(1) if ]γ, 1[ ⊆ E for some γ < 1,

= 0 otherwise.

On the other hand,

Iν(f × χE) = f(1) if 1 ∈ E,

= 0 otherwise.
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3D Example Let X = {x0, x1, x2} be a set with three members, C = {X} ∪ {{x} : x ∈ X}, Q =
{(x, {x}) : x ∈ X}∪{(x1,X)}, T the straightforward set of tagged partitions generated byQ, ∆ = {X×PX},
R = {{∅}}. Then (X,T,∆,R) is a tagged-partition structure allowing subdivisions witnessed by C; the {∅}-
filling members of T are ttt0 = {(x, {x}) : x ∈ X} and ttt1 = {(x1,X)}. Set νC = #(C) for C ∈ C, f(xi) = i−1
for i ≤ 2; then Sttt0(f, ν) = Sttt1(f, ν) = 0 so Iν(f) = 0. But Sttt0(|f |, ν) = 2 and Sttt1(|f |, ν) = 0 so Iν(|f |) is
undefined.

3E The Pfeffer integral In Fremlin 03, §484, I describe a special integral on Euclidean space which
is the basis of a very general divergence theorem. Here I briefly recapitulate the definition to show that the
same idea can be used to give a class of vector-valued integrals. Let r ≥ 1 be an integer. For a Lebesgue
measurable set E ⊆ R

r write perE for its perimeter, and let C be the algebra of subsets of R
r with locally

finite perimeters (Fremlin 03, 474D). For α > 0 set

Cα = {C : C ∈ C is bounded, µC ≥ α(diamC)r}, α perC ≤ (diamC)r−1,

where µ is Lebesgue measure on R
r, and

Qα = {(x,C) : C ∈ Cα, x ∈ cl*C},

where cl*C is the essential closure of C (Fremlin 03, 475B); let Tα be the straightforward set of tagged
partitions generated by Qα. Let I be the σ-ideal of subsets of R

r generated by the sets of finite (r − 1)-
dimensional Hausdorff measure, and set

∆ = {δ \ (D × PR
r) : δ is a neighbourhood gauge on R

r, D ∈ I}.

Then ∆ is a countably full family of gauges on R
r. Let H ⊆ R

N be the family of strictly positive sequences.
For η ∈ H, write Mη for the set of disjoint sequences 〈Ei〉i∈N of Lebesgue measurable subsets of R

r such
that µEi ≤ η(i) and perEi ≤ 1 for every i ∈ N, and Ei is empty for all but finitely many i. For η ∈ H and
C ∈ C set

Rη = {
⋃

i∈N
Ei : 〈Ei〉i∈N ∈ Mη} ⊆ C, R

(C)
η = {R : R ⊆ R

r, R ∩ C ∈ Rη};

set

R = {R
(C)
η : C ∈ C is bounded, η ∈ H}.

Then there is an α∗ > 0 such that (Rr, Tα,∆,R) is a tagged-partition structure allowing subdivisions,
witnessed by C, whenever 0 < α ≤ α∗ (Fremlin 03, 484F).

Suppose now that we are given Banach spaces U , V and W , a continuous bilinear operator 〈 | 〉 : U ×V →
W , a function f : R

r → U , a β > 0 and a function ν : Cβ → V . For 0 < α ≤ min(α∗, β), set

I
(α)
ν (f) = limttt→F(Tα,∆,R) Sttt(f, ν)

if this is defined. It is easy to show that if I
(α)
ν (f) is defined, and Fα : C → W is the corresponding Saks-

Henstock indefinite integral, then for any α′ ∈ [α,min(α∗, β)] we also have the integral I
(α′)
ν (f), and the

indefinite integrals Fα′ and Fα coincide (Fremlin 03, 484H). We can therefore define a ‘Pfeffer integral’ by
saying that

Pf
∫
f dν = limα↓0 I

(α)
ν (f)

whenever f and ν are such that the limit is defined, that is, there is a β ∈ ]0, α∗] such that dom ν ⊇ Cβ

and I
(α)
ν (f) is defined for every α ∈ ]0, β]; the common value of Fα for α ∈ ]0, β] can now be called the

Saks-Henstock indefinite integral of f with respect to ν.
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