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Vector-valued Saks-Henstock indefinite integrals
D.H.FREMLIN
University of Essex, Colchester, England

1 Basic definitions and results

1A The context (a) Let X be a set. A tagged partition on X will be a finite subset t of X x PX;
in this case, Hy will be J{C : (z,C) € t}. A gauge on X is a subset § of X x PX. For a gauge ¢ on X,
a tagged partition ¢t on X is -fine if £ C §. If R C PX, and t is a tagged partition on X, t is R-filling if
X \ H; € R. A straightforward set of tagged partitions on X is a set of the form

T={t:te[Q]<¥, CNC" = whenever (z,C), (x’,C") are distinct members of t}
where Q C X x PX.

(b)(i) A family A of gauges on a set X is full if whenever (0,)ex is a family in A, then
{(z,A) :z € X, (x,A) €.}
belongs to A. A is countably full if this is true whenever {4, : € X} is countable.

(ii) If X is a topological space, a neighbourhood gauge on X is a gauge of the form {(z,C) : z € X,
C C G} where (G)zex is a family of open subsets of X such that « € G, for every z € X.
For any topological space, the family of all neighbourhood gauges on X is full.

(c) A quadruple (X, T, A,R) is a tagged-partition structure allowing subdivisions, witnessed by
C,if

(i) X is a set.

(ii) A is a non-empty downwards-directed family of gauges on X.

(iii) () R is a non-empty downwards-directed collection of families of subsets of X, all con-
taining 0;

(B) for every R € R there is an R’ € R such that AU B € R whenever A, B € R are

disjoint.

(iv) C is a family of subsets of X such that whenever C, C’ € C then CNC’ € C and C'\ ' is
expressible as the union of a disjoint finite subset of C.

(v) Whenever Cy C C is finite and R € R, there is a finite set C; C C, including Cy, such that
X \ UCl €R.

(vi) T C [X x C]<¥ is a non-empty straightforward set of tagged partitions on X.

(vil) Whenever C € C, § € A and R € R there is a d-fine tagged partition ¢ € T such that
H, CCand C\ Ht €R.

(d) Given a set X, a non-empty set T of tagged-partitions on X, a non-empty family A of gauges on X,
and a non-empty collection R of families of subsets of X, consider sets of the form

Tsgr = {t:t € T is 6-fine and R-filling}

for 6 € A and R € MR. If the collection of these sets has the finite intersection property, say that T is
compatible with A and R, and write F (T, A,R) for the filter on T generated by the collection.

(e) For the basic theory of these structures, see FREMLIN 03, §§481-482. In particular, we shall need the

following facts. Let (X, T, A,R) be a tagged-partition structure allowing subdivisions.

(i) If R € R, there is a non-increasing sequence (Ry)nen in 9 such that | J,.,, A; € R whenever A; € R;
for i < n and (A;)i<, is disjoint (FREMLIN 03, 481He). -

(ii) Let & be the subring of PX generated by C. Then every member of & is expressible as a disjoint
union of members of C (use (c-iv)).

(iii) Let & be the algebra of subsets of X generated by C. If E € £, § € A and R € R, there is a
0-fine t € T such that Hy C E and E'\ H; € R. P Let (R;);en be a sequence in R such that J,.,, 4; € R
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whenever A4; € R; for i < n and (4;)i<, is disjoint. (o) If E = we can take t = 0. (8) If E € & \ {0},
express F as Uign C; where (C;);<y, is a disjoint family in C. For each 1, there is a d-fine t; € T such that
H:, CC; and C; \ Hy, € Riy1, by (c-vii). Set t = Uign t;; then

E\Ht:UignCi\Hti eERi1CR.

(7) Otherwise, X \ FE € &. By (c-v), there is an F' € &, including X \ E, such that X\ F € R4. By («)-(8),
there is a d-fine t € T such that Hy C ENF and ENF \ H; € Rq; in which case E\ H; € R. Q
(iv) T is compatible with A and 8. P Apply (iii) with £ = X. Q

(f) Leading examples include the following.

(i) X = [a,b] C R, C the family of subintervals of [a,b] (open, closed, or half-open), T' the straight-
forward set of tagged partitions generated by {(z,C) : C € C, x € C}, A the set of gauges of the form
{(z,C):z € X,C C X,diamC < n} wheren > 0, %8 = {{0}}. (This corresponds to the Riemann integral.)

(i) X = R, C the family of bounded subintervals of R (open, closed, or half-open), T the straight-
forward set of tagged partitions generated by {(z,C) : C € C, x € C}, A the set of neighbourhood gauges
on X,

R = {{R\ [04717] ca < ag, bg < b} :ag, by € R}
(This corresponds to the Henstock integral.)

(iii) X =R, C the family of bounded subintervals of R (open, closed, or half-open), T' the straight-
forward set of tagged partitions generated by R x C, A the set of neighbourhood gauges on X,

R={{A4: ACR, p*(ANa,b]) <n}:a<b,n>0},

where p is Lebesgue measure on R. (This corresponds to McShane’s description of the Lebesgue integral.)

1B Vector-valued gauge integrals Suppose that we are given a set X, a family A of gauges on X,
a collection PR of families of subsets of X, a collection C of subsets of X, a family T" C X x C of tagged
partitions on X which is compatible with A and R, Banach spaces U, V and W and a continuous bilinear
operator (u,v) — (ulv) : U xV — W. Let f: X — U and v : domv — V be functions, where C C domv.
Fort €T, set

Se(fiv) = X0y f(@)WC) € W.

If limg_, (7, a,m) Se(f, v) is defined in W, call it I,(f), the gauge integral of f with respect to v.
Evidently {(v, f) : I,(f) is defined} is a linear subspace of V¢ x UX, and I, is a linear operator, just
because every S; is a linear operator on V¢ x UX.
In this context, if U or V is equal to R, I will take it for granted that (|) is just scalar multiplication.

1C Lemma Suppose that (X, T, A,9R) is a tagged-partition structure allowing subdivisions witnessed by
C CPX, U,V and W are Banach spaces, and (|) : U x V — W is a continuous bilinear operator. Suppose
that f: X - U,v:C—V,d €A, R e R and € > 0 are such that ||S¢(f,v) — Sp(f,v)|| < e whenever t,
t' € T are d-fine and R-filling. Then

(a) [|Se(f,v) = Se (f,v)|| < € whenever ¢, t' € T are §-fine and Hy = Hy;

(b) whenever t € T is -fine, &' € A and R’ € R, there is a ¢’-fine s € T such that Hs C Hy, H;\ Hs € R’
and ||Ss(f,v) — Se(f,v)| <e.

proof (a) By FREMLIN 03, 4A2Ab, there is a d-fine s € T such that Ws N Wy = 0 and t U s is R-filling.
Now Hyus = Hyrus, so t' U s also is R-illing, and

156 (f,v) = Ser (f; )|l = |Sews (f, v) = Serus (F,0)l] < e

(b) Replacing ¢’ by a lower bound of {§,¢'} in A and R’ by a lower bound of {R, R’} if necessary, we
may suppose that ¢ C § and R’ C R. Enumerate t as {(x;,C;))i<n. Let (Ri)ren be a sequence in R such
that |J,., A; € R’ whenever (A;)i<y is disjoint and A; € R; for every i < k (1A(e-i)). For each i < n,
let 8; be a §’-fine member of T such that H;, C C; and C; \ Hg, € R;y1, and set s = |J,_. 8;, so that
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s € T is §'-fine and Hy; C H;. By FREMLIN 03, 482Aa, there is a é-fine w € T such that H, N Hy =  and
X\ (HtUHy,) € Rp. Set t' =tUwu, s' =sUu; then t' and s’ are §-fine and R-filling, because

X\ Hy = (X \ (Hy UHy)) UU,, (Ci \ Hy) € R C R,
by the choice of (Ri)ren- So
15:(f,v) = Ss(fy )l = 1Se (f,v) = Ser (f,0)l] < e,

as required. Also, of course,

Hy\ Hy = U,,, Ci \ Hy, € R'.

1D Saks-Henstock Lemma Let (X,T,A,R) be a tagged-partition structure allowing subdivisions

witnessed by C, U, V, W Banach spaces, (|): U x V — W a continuous bilinear operator, and f : X — U,
v : C — V functions such that I,(f) = lims_, z(p A m) St(f,v) is defined in W. Let £ be the algebra of
subsets of X generated by C. Then there is a unique additive function F : £ — R such that for every € > 0
there are 6 € A and R € R such that

(o) |F'(He) — Se(f,v)|| < € for every d-finet € T,

(8) |1F(E)|| < € whenever E € ENTR.
Moreover, FI(X) = I,(f).

proof (a) For E € &, write Tg for the set of those t € T such that, for every (z,C) € t, either C C E or
CNE=§. Forany 6 € A, R € R and finite D C & there is a d-fine t € (zcp T such that B\ Hy € R
for every E € D. P Let (R,)nen be a sequence in P such that whenever A; € R, for i < n and (4;)i<n
is disjoint then | J,.,, A; € R. Let & be the subalgebra of £ generated by D, and enumerate the atoms of
Eo as (Ei)icn. By FREMLIN 03, 482Aa, there is for each i < n a d-fine s; € T such that H,, C E; and
E;\ Hg, € Ri. Sett =J,., 8. If E € Dthen E = |J,.; E; for some J C n. For any (z,C) € t, there
is some ¢ < n such that C C E;, so that C C E if 1 € J, CNE = () otherwise; thus t € Tg. Moreover,
E\ Hy = ;c;(E; \ Hg,) belongs to R. Q

(b) We therefore have a filter F* on T generated by sets of the form
Tesr = {t teTgis 5—ﬁne, E \ H; € T\J,}

as ¢ runs over A, R runs over R and E runsover €. Fort € T, E C X settg = {(z,C) : (z,C) €t, C C E}.
Now F(FE) = limy_, 7« St (f,v) is defined for every E € £. PP For any € > 0, there are 6 € A, R € R such
that ||I,(f) — Se(f,v)|| < € for every d-fine R-filling t € T. Let R’ € R be such that AU B € R for all
disjoint A, B € R'. If t, ¢’ belong to Tg 5= = Tx\g,s,%’, then set

s={(z,C): (z,C)et/,C CE}U{(z,0): (x,C) €et, CNE =0}
Then s € Tg is 0-fine, and also B\ Hs = E\ Hy, (X \ E)\ Hs = (X \ E) \ H; both belong to R’; so their
union X \ H, belongs to R, and s is R-filling. Accordingly
1St (f,v) = St (Fs )l = 156 (f,v) = Sa (£, )l
<ASe(f,v) = LN+ () = Ss(f,v)l] < 26

As e is arbitrary and W is complete, this is enough to show that lims_, z« S, (f,v) is defined. Q
(c) If E, E’ € £ are disjoint, then

StEUE’ (f’ V) = StE (fa V) + StE/ (f7 V)
for any t € Ty N Tg; since both Ty and Txr belong to F*, F(EUE') = F(E) + F(E’). Thus F is additive.

(d) Now suppose that € > 0. Let § € A, R* € R be such that ||, (f) — S¢(f,v)|| < Fe for every d-fine,
R*filling t € T. Let R € R be such that AU B € R* for all disjoint A, B € R. If t € T is d-fine, then
|[E'(He) — Se(f,v)]] <e. PP For any n > 0, there is a §-fine s € T such that

||Iy(f) - Ss(fa V)” < ,
for every (z,C) € s, either C C Hy or CN Hy =0,
(X\H)\Hs € R, Hy\ H; € R,



1 (He) = 2 0. 0)es,ccm, (@O <1
because the set of s with these properties belongs to F*. Now, setting 81 = {(z,C) : (z,C) € s, C C H;}
andt' =t U (s\ 81), t' is d-fine and R*-filling, like s, so

[E(He) = Se(f, )| < [[F(Hp) = S, (f, )l + 195, (f,v) = Se(f, )l
<0+ [18s(f,v) = Se (f, V)]

<+ 18(£,) = LD+ IL(F) = Se(f0) < n+ e

As 7 is arbitrary we have the result. Q

(ii) Now suppose that E € ENR. Then ||F(E)| <e. P Let R’ € R be such that AUB € R whenever
A, B € R/ are disjoint. Let ¢ be such that
t € Tg is 0-fine,
E\ Hy and (X \ E) \ H; both belong to R/,
IF(E) = Sep (f,v)]| < 36
once again, the set of candidates belongs to F*, so is not empty. Then ¢ and tx\ g are both R*-filling and
d-fine, so

IFE)] < Se+ 1 (£ 1)l = 3¢+ 1Se(£,1) = Stx s (FV)| < Q

As € is arbitrary, this shows that F' has all the required properties.
(e) T have still to show that F' is unique. Suppose that F’ : & — R is another function with the same
properties, and take E € £ and € > 0. Then there are §, 8 € A and R, R’ € R such that
|F'(Hy) — Se(f,v)|| < e for every é-finet € T,
|F'(He) — Se(f,v)|| < e for every ¢'-finet € T,
IF(R)|| < e whenever R € ENR,
|IF'(R)|| < € whenever R€ ENTR'.

Now taking ¢” € A such that 6” C §N¢’, and R” € R such that R € RN R/, there is a §"-fine t € T such
that E/ = Hy is included in E and E \ E' € R”. In this case

IF(E) = Se(f,v)]| < |1F(E) = F(E|| + [|[F(E') = Se(f,v)]l
= |F(E\ EN| + | F(He) = Se(f,v)]
(because F' is additive)

< 2e
because £\ E' € R” C R and t is 6”-fine, therefore d-fine. Similarly, ||[F'(E) — Se(f,v)|| < 2e so |F'(E) —
F(E)|| < 4e. As F and € are arbitrary, F = F.

(f) Finally, to calculate F/(X), take any € > 0. Let 6 € A and R € R be such that ||F(Hy)— Se(f,v)|| <€
for every -fine t € T and |F(E)|| < € whenever E € ENR. Let ¢t be any J-fine R-filling member of T' such
that ||St(f,v) — I, (f)|| < e. Then, because F is additive,

[F(X) = LN < |F(X) = F(Hy)| + [[F(He) — Se(f, )| + [1Se(f, v) — L.(f)]l
< 3e.

As € is arbitrary, F(X) = I,(f).

1E Definition In the context of §1D, I will call the function F' the Saks-Henstock indefinite integral
of f with respect to v; of course it depends on the whole structure (X, T, A,R,C,U,V,W,(]), f,v), not just
f and v. You should not take it for granted that F(E) = I, (f x xE), but see Proposition 2D below.

1F The Saks-Henstock lemma characterizes the gauge integral, as follows.
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Theorem Let (X, T, A, R) be a tagged-partition structure allowing subdivisions, witnessed by C, U, V' and
W Banach spaces, (|) : U x V. — W a continuous bilinear operator, and v : C — V, f : X — U two
functions. Let £ be the algebra of subsets of X generated by C. Then the following are equiveridical:

(i) L,(f) = limg— 7(7,a,m) St (f,v) is defined in W;
(ii) there is an additive function F' : £ — W such that
() for every € > 0 there is a 6 € A such that |[F(Hy) — S¢(f,v)|| < e for every d-fine t € T,
(B) for every € > 0 there is an R € MR such that [|[F(E)| < € for every E € ENR.
In this case, F(X) = L,(f).

proof (i)=-(ii) is just the Saks-Henstock Lemma above; so let us assume (ii) and seek to prove (i). Given
€ >0, take § € A and R € R such that («) and (3) are satisfied. Let t € T be d-fine and R-filling. Then

[1F(X) = Se(f )| < 1F(X N\ Hy)|| + [ F(He) — Se(f,v)|| < 2e.
As e is arbitrary, I, (f) is defined and equal to F(X).

2 Further properties

2A Proposition Let (X, T, A,2R) be a tagged-partition structure allowing subdivisions, witnessed by C,
U, V and W Banach spaces and (|) : U x V — W a continuous bilinear operator. Let £ be the algebra of
subsets of X generated by C. For v € V¢ and f € UX, write Fy, € W¢ for the Saks-Henstock indefinite
integral of f with respect to v when this is defined. Then the operator (v, f) — Fy, is bilinear.

proof Immediate from 1F.

2B Proposition Let (X, T, A, fR) be a tagged-partition structure allowing subdivisions, witnessed by C.
Suppose that Uy, Vy, Wy, U, Vi and W; are Banach spaces, (|)g : Uyp x Vo — Wy, (|)1 : Uy x Vi — W
continuous bilinear operators, and 7 : Uy — Uy, ¢ : Vo — Vi and ¢ : Wy — W7 continuous linear operators
such that ¥ ((u|v)o) = (w(u)|pv); for all u € Uy and v € V. Let f: X — Uy and v : C — V) be such that
I,(f) is defined and has Saks-Henstock indefinite integral F'. Then I, (7 f) is defined and has Saks-Henstock
indefinite integral ¢ F.

proof We just have to observe that Si(wf, pv) = ¥(S¢(f,v)) for every t € T, and apply Theorem 1F.

2C Proposition Let (X, T, A,fR) be a tagged-partition structure allowing subdivisions, witnessed by C,
U, V and W Banach spaces and (|) : U x V' — W a continuous bilinear operator. Suppose that ¥ is a
o-algebra of subsets of X including C, and v : ¥ — V a vector measure; let p : ¥ — [0, 00] be the total
variation of v, and f : X — U a function which is Bochner integrable with respect to u. Suppose further
that

(i) X has a topology ¥ such that u is inner regular with respect to the closed sets and outer
regular with respect to the open sets;
(ii) A contains every neighbourhood gauge on X;
(iii) whenever E € 3, pE < oo and € > 0 there is an R € R such that p*(ANE) < e for every
AeR.
Then I,(f) = limy— 77, :) St(f, V) is defined.

proof Let v > 0 be such that ||(u|v)|| < v|lul|||v| for all w € U and v € V.

(a) Consider first the case in which f is of the form u ® xF where E € X, uE < oo and u € U, where
(u® xE)(x) = xE(z) - u for every € X. Then I,(f) = (u|[vE). P Let € > 0. Let G O E be an open set
and F' C E a closed set such that u(G \ F) <€, and R a member of R such that p*(AN E) < € for every
A €R. Let § € A be the neighbourhood gauge

{(z,A) ;2 € E, ACG}U{(z,A): 2 € X\E,AC X\ F}.

If t € T is é-fine and R-filling, then S;(f) = (u|vHyg), where Hyyp = {(z,C) : (2,C) € t, z € E}. Now we
know that u(E \ Hy) <€, while Hyyp C G and Hyj x\ g does not meet F; so that F'N Hy C Hyy g, and

WEAHyg) < (G\F) + p(E\ Hy) < 2e.
But this means that



15e(f) = (ulvE)| = [{ulvHe 5 = vE)| < A|ullllvHey 2 — vE]|
<Allull(lv(Here \ E)| + [lv(E\ Hee)l)
< ull(p(Hey g\ E) + (B \ Hyy ) = vl p(He g AE) < 27|ufe.

As € is arbitrary, I,,(f) is defined and equal to (u|vE). Q

(b) Consequently I, (f) is defined whenever f : X — U is a ‘simple’ function in the sense that it is
expressible as Y7 u; ® xE; where each FE; has finite measure.

(c) Now suppose that f: X — U is any function. Then
lim supy (7.3 156 ()| < 7 J1|Flldp

P If v =0, S¢(f,v) = 0 for every t and we can stop. If v > 0 and [||f||dp = oo, the result is trivial. So
suppose that v > 0 and [||f||du is finite. Let i be the completion of  and 3 its domain. Note that j is still
inner regular with respect to the closed sets and outer regular with respect to the open sets. Let g : X — R
be a S-measurable function such that g(z) > ||f(z)|| for every z and Jgdu= [flldp.

Let € > 0. Form € Z, set Ep, = {z : 2z € X, (1 + &)™ < g(z) < (1 + ¢ '}, Then E,, € ¥ and
E,, < oo, so there is a measurable open set G, 2 E,, such that (1 + €)™ u(G,, \ En) < 2-Imle,

Define (G))zex by setting G, = Gy, if m € Z and z € E,,, V, = X if g(x) = 0. Let § € A be the
corresponding neighbourhood gauge {(z,C) : z € X, C C G. }.

Suppose that ¢ is any J-fine member of T'. For each m € Z, set t,, =t[E,,. Then H; , C G, for each m,
SO

oo

Selflw) = >0 Sen(Iflw) < D L+ uly,

m=—0o0 m=—0o0

< Z 14+ e)™MuG,, < Z (14 &)™ 2uE,, + 2 Imle

m=—oo m=—o0o

<Be+ (1467 Y (L+6)"uEy,

<t (147 [ g =3c+ (1402 [ ]

and
I1Se (£ )l < ASe(1£1l, 1) < Bye+ (1+ )2y [IIf | de.
As € is arbitrary, we have the result. Q

(d) Now suppose that f : X — U is Bochner integrable with respect to u, and € > 0. Then there is a
simple function fo : X — U such that [||f — folldp < e. By (b) and (c), there are a w € W, § € A and
R € A such that

[Se(fo,v) —wl <& [ISe(f — fo, v)Il < €+ e
for every §-fine R-filling £ € T. But this means that if s, t are §-fine and R-filling members of T',
195 (f,v) = Se(f, )|l < 1S5 (fo, v) = Se(fo, )| + 15s(f = fo, )| + [[Se(f = fo, V)]
< 4e + 2
as € is arbitrary and W is complete, limg_, 71, A m) S¢(f, V) is defined.
2D Proposition Let (X, T, A,R) be a tagged-partition structure allowing subdivisions witnessed by C,

U, V and W Banach spaces and (|) : U x V — W a continuous bilinear operator. Suppose that
(i) T is a topology on X, and A is the set of neighbourhood gauges on X;



(ii) v : C — V is a function which is additive in the sense that if Cy,... ,C, € C are disjoint
and have union C' € C, then vC = """ vC;;
(iii) whenever E € C and € > 0, there are closed sets FF C E, F' C X \ F such that
P (w.0yet [VC]] < € whenever t € T and Hy N (F U F') = 0;
(iv) for every E € C and x € X there is a neighbourhood G of = such that if C € C, C C G
and {(z,C)} € T, there is a partition D of C' into members of C, each either included in F or
disjoint from FE, such that {(z, D)} € T for every D € D;
(v) for every C' € C and R € %R, there is an R’ € R such that C N A € R whenever A € R'.
Let f: X — U be a function such that I,(f) = limy_, z(p,a ;) S¢(f,v) is defined. Let £ be the algebra of
subsets of X generated by C, and F : £ — R the Saks-Henstock indefinite integral of f. Then I, (f x xF)
is defined and equal to F'(E) for every E € £.

proof (a) Because both F' and I, are additive, and F(X) = I,(f), and either E or its complement is a
finite disjoint union of members of C (see 1A(e-ii) above), it is enough to consider the case in which E € C.
Let v > 0 be such that ||[{u|v)|| < v|lu||||v|| for all w € U and v € V.

(b) Let € > 0. For each x € X let G, be an open set containing x such that whenever C € C, C C G
and {(z,C)} € T, there is a partition D of C into members of C such that {(z,D)} € T for every D € D
and every member of D is either included in E or disjoint from E. For each n € N, let F,, CE, F/, C X\ E

be closed sets such that 3, o)c VO] < i_—_:f whenever t € T and Hy N (F, U F))) = (); now define G, for
z € X, by saying that

G, =G, \F,ifz€ Fand n<|f(z)| <n+1,
=G, \F,ifze X\ Eand n<|f(z)||<n+1.
Let 69 € A be the neighbourhood gauge defined by the family (G’ ),cx. Let 6 € A and Ry € R be such

that 0 C do, |[F'(He) — 22, cpet f(@)VC|| < € for every o-fine t € T', and |F(E)| < € for every E € ENRy.
Let R € R be such that RN H € Ry whenever R € R.

(c) As in the proof of the Saks-Henstock Lemma, let T be the set of those t € T such that, for each
(z,C) € t, either C C E or CNE = 0. The key to the proof is the following fact: if ¢ € T is d-fine,
then there is a 0-fine s € Ty such that W, = Wy and Ss(g,v) = St(g,v) for every g : X — U. P For
each (z,C) € t, we know that C' C G, C G, because § C dy. Let D, ¢y be a finite partition of C into
members of C, each either included in E or disjoint from E, such that {(x, D)} € T for every D € D, ¢).
Then s = {(z,D) : (x,C) €t, D € D, )} belongs to Tg. Because ¢ is a neighbourhood gauge, (z, D) € ¢
whenever (z,C) € t and D € D, ¢y, so 8 is 0-fine.

If g: X — U is any function,

Ss(g:v)= > Y. (9(x)|vD)

(x,0)et DED(,,

= > (@l Y, wvDy= Y {g)v0)

(z,C)et DeD(,,c) (z,C)et

(because v is additive)

= St(g, V)~ Q
(d) Now suppose that t € T is 6-fine and R-filling. Let s € T be as in (), and set
s*={(z,D):(x,D)€es,z € E, D CE},
s ={(x,D): (z,D)es,x ¢ E, D C E},

s"={(z,D): (z,D)es,z€ E, DNE =}

Because s € T,



HS*US' :EOHS :EmHt
and E \ Hs-usr = E \ Hg belongs to Ry, by the choice of R. Accordingly
| F(E) = Ss«us (fs V) || < |F(E) — F(Hsrus')|| + | F(Hsrus') — Ssr (f, V)| < 2¢

because s* U s’ C s is J-fine.
For n € N set

s, ={(x,D): (z,D) € s', n <[ f(2)| <n+1},

sy ={(x,D): (z,D) es”, n<|f(z)] <n+1}

Then Hyy € E\ F,,. P If (z,D) € 87, there is a C' € C such that D C ENC and (x,C) € ¢, while x ¢ E, so
that C C G/, and C N F,, = 0. Q Similarly, Hy» C (X \ E) \ F},. Thus Hg/ ygr is disjoint from F,, U F}), and

1Ss, (f,v) = Ssu (£l =11 > (f@)lwD)y = Y (fz)lvD)]

(z,D)es’, (z,D)es’!
< S Alf@livD]
(z,D)€s!, Us"!
<~v(n+1) Z |[vD]| <27 "ve

(z,D)es! Us!

by the choice of F,, and F,.
Consequently,

IF(E) = Se(f x xE,v)|| = |[F(E) = Ss(f x XxE,v)|| = [|F(E) = Sg=us~ (f, V)]
(because s* Us"” = {(z,D) : (x,D) € s, z € E})
S F(E) = Seeus (f, )| + [1Ss (f, v) = S (f, V)|
(because s*, s’ and §” are disjoint subsets of s)

<2+ | ZSS/”(f,V) - Zss;;(fa V)|l
n=0 n=0

(the infinite sums are well-defined because s is finite, so that all but finitely many terms are zero)

<2+ > ||Ss, (f,v) = S (f,0)l

n=0

<2+ Z 27" ye = 2(1 + y)e.

n=0

As e is arbitrary, I, (f x xE) is defined and equal to F(E), as required.

2E Proposition Suppose that X, ¥, C, v, T, A, R, U, V, W, (|) and v satisfy the conditions of 2D,
and that f: X — U, (Gp)nen, G and w are such that
(vi) (Gp)nen is a sequence of open subsets of X with union G,
(vii) I, (f x xGy,) is defined for every n € N,
(viii) limg—, 7(7,a,m) 1o (f X xHzja) is defined and equal to w,
where t|G = {(z,C) : (x,C) €t, x € G} for t € T. Then I,(f x xG) is defined and equal to .

proof Let € > 0. For each n € N, let F}, be the Saks-Henstock indefinite integral of f x xG,. Let §, € A
be such that

[Fn(Hs) = Ss(f X XGn,v)|| <27 "€

whenever s € T is §,-fine. Set



6={(z,A):z € X\G, AC X}
U J{@ A):2e G\ | Gi, AC Gy, (x,4) €6},

neN i<n

so that & € A. Note that if z € G and C' € C and (x,C) € §, then there is some n € N such that z € G,
and C C G,,, so that
L(f x xC) = L((f x xGn) x xC) = Fp(C)
is defined, by 2D; this means that I, (f x xHy ) will be defined for every bfineteT. Let 6 € A, R € R
be such that |[w — I, (f X xHz¢)|| < € whenever t € T is ¢-fine and R-filling.
Let t € T be (6 N0)-fine and R-filling. For n € N, set t,, = {(2,C) : (z,C) €t, x € G,, \ U,.,, Gi}. Then
tIG = UneN t,, and t, is d,-fine and H;, C G,, for every n. So

lw = Se(f x XG,v)|| = |lw =Y S, (f X XCin, V)|

n=0
< lw = L(f x xXHya)ll + Y I (f % xHe,) = S, (f X xGn, V)|
n=0
e+ Y L(f x XGn X xHy,) = St, (f % XGn. V)|
n=0

=c+ Y IFu(Hy,) = St,(f X xGn, V)|

(2D)

<e+ i 27 e
n=0

(because every t,, is ,,-fine)
= 3e.

As € is arbitrary, w = I,(f x xG), as claimed.

2F Proposition Let (X,T, A,fR) be a tagged-partition structure allowing subdivisions witnessed by C,
U and V Banach spaces, (|) : U x V — R a continuous bilinear functional, and v : C — V a function.
Suppose that {f;)icr is a family of functions from X to U such that
i) w; = I, (fi,v) is defined for every ¢ € I,

(
(H) lnf5€A RER Z’LGI SUPteT is 6-fine and R-filling ||St(f’b7 H is ﬁnite7
(iii) f(z) = > ;s fi(w) is defined in U for every z € X.

Then I,(f,v) and ), ; w; are defined in W and equal.
proof (a) Let g € A, Ry € R be such that
M =3 crsup{||Si(fi,v)| : t € T is do-fine and Ro-filling}

is finite. Then >, [lw;|| < M. B If J C I is finite and € > 0, there is a do-fine Ro-filling t € T such that

Yies lwi — Se(fi, V)| < € sothat 5 i will <M +e Q
Sow =}, .; w; is defined.

(b) Now take any € > 0. Let J C I be a finite set such that
Yieng sup{lISe(fi, V)|l : t € T is do-fine and Ro-filling} < ¢;

then the argument of (a) tells us that 3, ; [|wil < e. Let 6 € A, R € R be such that § € dp, R € Ro
and ), [lwi — Si(fi,v)| < e for every o-fine R-filling ¢ € T'. In this case, for any such ¢,
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Si(fiv)= Y (f@C)= Y O filx)0)

(=,C)et (=,C)et i€l
= Y S h@WC) =D Si(fi,v)
(z,0)et i€l iel

SO

llw = Se(f, )l < Xiey lws = Se(fis V)| + 2iep g [1Se(fo V) + 2ie g lwill < 3e.
As € is arbitrary, I,,(f) is defined and equal to w.

2G The scalar-valued case: Proposition Let (X, T, A,fR) be a tagged-partition structure allowing
subdivisions witnessed by C, U and V Banach spaces, (|) : U x V — R a continuous bilinear functional,
f:X —=U,v:C— V functions such that I,,(f) = lim;_ z(p A n) St(f,v) is defined in R, £ the algebra of
subsets of X generated by C and F' : £ — R the Saks-Henstock indefinite integral of f with respect to v.
Then for every € > 0 there is a § € A such that

Y@yt F(C) = (f(@)|vC)| <€
for every é-finet € T,

proof (See FREMLIN 03, 482B.) Let 6 € A be such that

\F(Hy) — Se(f,v)| < <

V) \

for every d-fine t € T. For any such ¢, any subset s of ¢ is also a J-fine member of T', so

2 (@.cyes F(C) = (F(2)|[vC)| = |F(Hs) = Ss(f,v)] < 3.

Applying this to s = {(z,C) : (z,C) € t, F(C) > (f(x)|vC)} and s’ = {(z,C) : (z,C) € t, F(C) <
(f(@)[rC)}, we get

Y F(©O) = (f()lvO)]

(z,C)et
= Y (FO) —(f@C) - Y (F(C)=(f(x)C) <
(z,C)es
as required.
2H In the case of real-valued set functions v, many problems can be reduced to the case in which v is

additive, as in the following.

Proposition Let (X,T,A,R) be a tagged-partition structure allowing subdivisions, witnessed by C, U a
Banach space, and v : C — R a function; let £ be the algebra of subsets of X generated by C. Suppose that
I,(xX) is defined, and that F; : £ — R is the Saks-Henstock indefinite integral of xX with respect to v.
Then for a bounded function f: X — U, I, (f) = Ir, (f) if either is defined, and in this case f has the same
Saks-Henstock indefinite integral with respect to either v or Fj.

proof (a) Suppose that f has Saks-Henstock indefinite integral F' with respect to v. Given € > 0, there is
a d € A such that

I1E(He) = Se(fsn)l <6 Xaoyer [F1(C) —vCl < e
for every -fine t € T (2G). Now, given such a ¢,

|F(He) — Se(£ PO < 1P(Hy) = Se(f0)]| + [1Se(Fv) = Se(f. )
<et Y vC- @) - B(O) (@)

(z,C)et

<etTlfle Y. WC—Fi(C)] < (147 flloo)e.
(z,C)et
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Also, of course, there is an R € R such that |[F(E)| < e for every E € ENR. So F is the Saks-Henstock
indefinite integral of f with respect to Fj.

(b) Conversely, suppose that f has Saks-Henstock indefinite integral F' with respect to F;. Given e > 0,
there is a § € A such that

I1F'(He) = Se(f, Pl <€, Yo oye F1(C) —vC| <€
for every d-fine t € T' (2G). This time, for such a ¢,

|F(Hy) — Se(f,v)|| < |F(Hg) — Se(f, Fo)ll + ISt (f,v) — Se(f, F1) ||
<et+ > |C-flx) - Fi(C)f ()|

(z,C)€et

<e+qlflee Y WC—=Fi(CO] < (L4 flloo)e

(z,C)€t

As before, there is an R € MR such that |[F(E)|| < € for every E € £ENR. So F is the Saks-Henstock
indefinite integral of f with respect to v.

21 Proposition Let (X, T, A,R) be a tagged-partition structure allowing subdivisions witnessed by C,

U a Banach space, f: X — U, v : C — R functions such that I,,(f) = limy_ 77 a m) St(f,v) is defined in
U, & the algebra of subsets of X generated by C and F : £ — R the Saks-Henstock indefinite integral of f
with respect to v. Suppose further that

(o) A is countably full,

(B) L (xX) = limg 7 (1,a,3) D (5,0)ex VO 1s defined in R and the Saks-Henstock indefinite

integral of xX with respect to v is Fj.
Then Ig,(f) = limg_ 7(7,a,m) St (f, Fo) is defined and equal to I,(f), and F' is the Saks-Henstock indefinite
integral of f with respect to Fp.
proof Let ¢ > 0. For each n € N there is a d,, € A such that
—n—1
> (@.cyet [Fo(C) —vC| < 2n+1 :

for every d,-fine t € T (2G). Because A is countably full, there is a 6’ € A such that (z,C) € §,, whenever
(x,C) € § and n < ||f(x)]] < n+1; now there is a § € A, included in ¢’, such that ||F(Hy) — Se(f,v)|| <€
for every d-fine t € T'. In this case, for such ¢,

| F(He) — Se(f, Fo)ll < [|F(Hg) — Se(f,v)| + [1Se(f,v) — Se(f, Fo)|l
<e+ Z [vC - f(z) — Fo(C)f ()]

(z,C)€t

=ct+ Y WO - FR(O)|f()|

(z,C)et

oo
2—77.—1
<et Y — (1) =2e
n=0

At the same time, there is certainly an R € R such that ||F'(E)| < € for every E € ENR. By 1F, I, (f) is
defined; by 1D, F' is the Saks-Henstock indefinite integral of f with respect to Fj.

2J Dominated convergence: Proposition Let (X, T, A,fR) be a tagged-partition structure allowing
subdivisions witnessed by C, U, V and W Banach spaces, (|) : U x V. — W a continuous bilinear operator,
and v : C — V a function. Let £ be the algebra of subsets of X generated by C. Suppose that
(i) A is countably full,
(ii) whenever (hy)nen is a uniformly bounded sequence of functions from X to V* such that
I, (hy,) is defined for every n and lim,, o, by, (z) = 0 for every z, then the Saks-Henstock indefinite
integrals of the h,, converge uniformly to 0,
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(iii) there is an M > 0 such that 3_ , o ¢, [[VC| < M for every t € T.

Then whenever U is a Banach space and (f,,)nen a uniformly bounded sequence of functions from X to U
such that I,,(f,) is defined for every n and f(x) = lim, . fn(z) is convergent for every z € [0,1], I, (f)
is defined, and the Saks-Henstock indefinite integrals of the f, converge uniformly to the Saks-Henstock
indefinite integral of f.

Remark When speaking of I, (h,) in the hypothesis (ii), I mean to use the natural bilinear operator
(w,v) — w(v) : V* x V — R, so that I,,(hy,) is a real number and the Saks-Henstock indefinite integral of
h., is real-valued; while for I,(f,) and I,,(f) in the conclusion of the proposition, I mean to use the bilinear
operator (|) of the first sentence.

proof (a) For each n € N let F,, be the Saks-Henstock indefinite integral of f,,. Then (F},),en is uniformly
convergent to F' : £ — U say. PP?7 Otherwise, there is an € > 0 such that for every n € N there are
kn, I, > n and E, € &£ such that ||F,)(En) — Fim)(En)|| > €. Note that Fj(,) — Fy) is the Saks-
Henstock indefinite integral of fy(,) — fi(n), by 2A. For each n, let ¢, € W* be such that [[¢,|| < 1 and
U (Fin)(En) — Fin)(En)) > € define m, : U — V* by setting m,(u)(v) = ¥n((ufv)) for v € U and
v € V,and h, : X — V* by setting h,(z) = 7n(frm) () — fimy(x)) for z € X. Then (h,(z)lv) =
U ((frn) () = fign)(z)[v)) for every x € X and v € V, so 2B tells us that h, has Saks-Henstock indefinite
integral £+ vy, (Fin)(E) — Fyn)(E)). Also (hp)nen is uniformly bounded and converges pointwise to the
zero function. So limy, .o ¥ (Fi(n)(En) — Fi(n)(En)) = 0, by hypothesis (ii). XQ

(b) Let v > 0 be such that [[(u[v)]] < ~v|lu||||v]] for all w € U and v € V. Let ¢ > 0. Then there is a
neighbourhood gauge 0 such that ||S¢(f,v) — F(Hy)|| < (4 4+ vM)e for every o-fine t. P Let (r,)nen be
strictly increasing and such that ||F,. (E) — F(E)|| < 27 "¢ for every n € Nand E € £. For each n € N, let
dn be a gauge such that ||S¢(fr, ,v) — F, (H)|| < 27 "€ for every d,-fine t. Let 6 be the gauge

n

Uneni (@, C) = I e, (2) = f(2)] <€, (2,C) € bn}-
If ¢ is J-fine, express it as a disjoint union | J t, where (z,C) € 0, and || f,, () — f(z)|| < efor (z,C) €t

Then each t,, is J,,-fine, so

n<m

1Se(f,v) — F(He)|| = || Z St (f,v) — ZF(th)”
n=0 n=0

<3 1ISk, (fov) — F(Hy,)

n=0

< IS, (f,v) = Sty (fr v ||+Z||Stn frosv) = Fp (Hy,)|
n=0

n=0

S0 ()~ F(H,)|
<y ~ >|u0>||+§2"e+§jo2"e
gi S aelve]+ e
=P
Z

’yeHuCH +4e< (d+vM)e. Q

(c) By (a),

inf su F(E)|| = lim inf su F,(E)|| =0.
jnt, swp [F(E)| = lim inf sup [P, (E)]

By 1F, fis (X, T, A,R, v)-integrable and its Saks-Henstock indefinite integral is F'.
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Remark To have (i) and (ii) true but (iii) false, or anyway so false that the argument of (b) won’t work,
something a little odd has to be happening. I do not have an example in which (i) and (iii) are true but (ii)
is false.

2K Proposition Let (X, T, A,R) be a tagged-partition structure allowing subdivisions witnessed by C,
£ the algebra of subsets of X generated by C, and v : £ — [0, 1] an additive functional such that vX = 1.
Set N={E:FEec& vE =0} A =E/N and ipE* = vE for E € &; let (2, 7) be the probability algebra
metric completion of (Ao, %) (FREMLIN 02, 392H'). Let F* be the filter on T described in part (b) of the
proof of 1D. For A C X, set

v*A = limsup,_, 7~ St(xA4, V),
and let Q4 be the set of those a € 2 such that
lim¢—, 7« U(Hg 4\ @) =0,
where t[|A = {(z,C) : (z,C) €t, x € A}. Then Q4 has a least member a4, and vay = v*A.
proof For a finite set & C &, say that t € T is £y-respecting if whenever E € &y and (z,C) € t then either
CCEorCNE=0.
(a) If a, b € Q4, then
U(Hg o\ (anb)) <v(Hg g\ a) + v(Hf 4\ D)
for every t € T', so

litrgigp 7(Hija\(anb)) < lim v(H{4\a) + Hm (Hf4\b)

=0.
Thus @ 4 is downwards-directed. Setting a4 = inf Q) 4, we have
limsupy_, 7« U(Hgj 4 \ aa) < limg, r« U(Hf 4\ a) +7(a\aa) = v(a\ aa)
for every a € Qa, while inf,eq, 7(a\aa) = 0 (FREMLIN 02, 321F), so limg z+ U(H{; 4 \aa) = 0 and
ap € Q4 is the least member of Q4.
(b) We have

v*A = limsup Sz (x A, v) = limsup vHyj 4
t—F* t—F*

=limsupvHg) 4 < lim U(Hf 4\ aa) +Vaa = vaa.
t—F* t—F

(c) In the other direction, choose (€,)nen, (On)nen, (Rn)nen and (t,)nen inductively in such a way that,
for each n,
En €], 0 AR, ER L, ET,
D(Hgera\aa) < 27", vHya < v*A + 27" whenever t € T is J,-fine, R, -filling and &,-
respecting,
t, is d,-fine, R,-filling and &,-respecting, and Sz (yA,v) > v*A—27",
5n+1 C 6p, Rn+1 € Ry, and E, U {C : ((E,C) S tn} C 5n+1-
Ift € T is 6,-fine and &, 1-respecting, then v(Hya \ Hy,1a) < 2-"+1 P Set

s=(t.lA)U{(z,C): (z,C) €t]A, C N Hy,1a =0}

then s € T is §,,-fine and &,-respecting, so extends to a d,-fine, &,-respecting and R,,-filling 8’ € T' (see the
proof of 1D). Now, because t is &, 1-respecting and C € &, 11 whenever (z,C) € &,

V(th[A UHt[A) = VHs[A < Z/Hs/[A = Ss’(XA; V)
<pvFrA+27" < Z/th[A + 2—n+1’

Formerly 393B.
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SO l/(HﬁA \ Ht,,L[A) < 2_”+1. Q
For n € N, set b,, = sup,,,>,, Hy | . Then, for any m > n,
D(Hg o \bn) < v(Hgpa\ Hy,pa) <277
whenever t € T' is §,,-fine, R,,-filling and &,,1-respecting, so b, € Q4 and b, Day. Thus

oo
van < vby SUHY o+ Y U(H] A \HE ja)

m=n

=vHp 4+ > V(Hep 14\ Hi,ia)

m=n
< VA2 + Z 27t — A4 5.2
m=n

As n is arbitrary, a4 < v*A and we have equality.

3 The problem Characterise the functions which can arise as Saks-Henstock indefinite integrals.
(Compare the ACG, functions for the ordinary Henstock integral, see FREMLIN 03, §483 or GORDON
94.)

3A Example Let (X, T, A,%R) be a tagged-partition structure allowing subdivisions, witnessed by C, W
a Banach space, £ the algebra of subsets of X generated by C, and F : £ — W an additive functional such
that

for every € > 0 there is an R € R such that |F(E)|| < € for every E € RNE.

Then there are Banach spaces U and V', a continuouous bilinear operator (|): U x V' — W, and functions
f: X —>U,v:C— V such that I,(f) is defined and F is the Saks-Henstock indefinite integral of f with
respect to v. P Set U =R, V =W, (a|lw) = aw for « € R and w € W, f(x) = 1 for every z € X,
vC = F(C) for every C € C. Then Si(f,v) = F(H) for every t € T, so I,(f) = F(X) and F is the
Saks-Henstock indefinite integral of f with respect to v. Q

Remark Thus any non-trivial answer to the problem of this section (e.g., giving conditions for a Saks-
Henstock indefinite integral to be countably additive) will demand hypotheses on the other elements U, V|
(), v and f of the structure.

3B Example Let X be a set, £ an algebra of subsets of X, W a Banach space and F' : £ — W an
additive function. Set T = {(z,C) : z € C € &}, A = {X x PX}, R = {{0}}; then (X,T,A,R) is a
tagged-partition structure allowing subdivisions, witnessed by &£, so we can apply the construction of 3A.

3C Example Let ([0,1],T,C,R) be the Henstock tagged-partition structure allowing subdivisions, as in
1A(f-ii), and & the algebra of subsets of X generated by C. Define v : C — R by saying that

vC =11if ]vy,1[ C C for some vy < 1,
= 0 otherwise.

If f:[0,1] — R is any function, I,(f) = f(1) is defined for every f : [0,1] — R, and the Saks-Henstock
indefinite integral F' of f is defined by

F(E) = f(1)if ]v,1[ C E for some v < 1,

= 0 otherwise.
On the other hand,

L(f x XE) = f(1) if 1 € E,

= 0 otherwise.
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3D Example Let X = {zg,21,22} be a set with three members, C = {X} U {{z} : z € X}, Q =
{(z,{z}) : ¢ € X}U{(x1,X)}, T the straightforward set of tagged partitions generated by @, A = {X xPX},
R ={{0}}. Then (X, T,A,R) is a tagged-partition structure allowing subdivisions witnessed by C; the {0}-
filling members of T are tg = {(z,{z}) : v € X} and t; = {(x1, X)}. Set vC = #(C) for C € C, f(x;) =i—1
for 4 < 2; then Sy, (f,v) = St, (f,v) = 0so I,(f) = 0. But S, (|f|,v) =2 and Sy, (|f|,v) = 0so L,(|f]) is
undefined.

3E The Pfeffer integral In FREMLIN 03, §484, I describe a special integral on Euclidean space which
is the basis of a very general divergence theorem. Here I briefly recapitulate the definition to show that the
same idea can be used to give a class of vector-valued integrals. Let » > 1 be an integer. For a Lebesgue
measurable set £ C R” write per F for its perimeter, and let C be the algebra of subsets of R" with locally
finite perimeters (FREMLIN 03, 474D). For o > 0 set

Co = {C : C € C is bounded, uC > a(diam C)"}, aper C < (diam C)" 1,
where p is Lebesgue measure on R”, and
Qo ={(z,0): C €C,, x € cI*C},

where cI*C is the essential closure of C' (FREMLIN 03, 475B); let T, be the straightforward set of tagged
partitions generated by Q.. Let Z be the o-ideal of subsets of R” generated by the sets of finite (r — 1)-
dimensional Hausdorff measure, and set

A ={6\ (D xPR") :4 is a neighbourhood gauge on R", D € T}.
Then A is a countably full family of gauges on R”. Let H C RY be the family of strictly positive sequences.
For n € H, write M,, for the set of disjoint sequences (E;);cn of Lebesgue measurable subsets of R” such
that uF; < n(i) and per E; <1 for every ¢ € N, and E; is empty for all but finitely many i. For n € H and
C € C set
Ry = {Uien Bi - (Ediene My} CC, RY) ={R:RCR", RNC € R,};
set
R = {R%C) : C' € C is bounded, n € H}.

Then there is an o > 0 such that (R",T,,A,R) is a tagged-partition structure allowing subdivisions,
witnessed by C, whenever 0 < o < a* (FREMLIN 03, 484F).

Suppose now that we are given Banach spaces U, V' and W, a continuous bilinear operator (|) : U xV —
W, a function f:R" — U, a > 0 and a function v : Cg — V. For 0 < a < min(a*, 3), set

Iz(/a)(f) = limy_, (1, ,A,m) St (f, V)
if this is defined. It is easy to show that if L(,O‘)(f) is defined, and F, : C — W is the corresponding Saks-

Henstock indefinite integral, then for any o’ € [a, min(a*, 3)] we also have the integral L(,O/)( f), and the
indefinite integrals F,s and F, coincide (FREMLIN 03, 484H). We can therefore define a ‘Pfeffer integral’ by
saying that

it f dv = limgo 15 (f)

whenever f and v are such that the limit is defined, that is, there is a 8 € ]0, @*] such that domv 2 Cg

and I,Ea)(f) is defined for every a € |0, 8]; the common value of F,, for a € ]0, 5] can now be called the
Saks-Henstock indefinite integral of f with respect to v.
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