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Baker’s product measures

D.H.Fremlin

University of Essex, Colchester, England

I discuss variations on the measures described in Baker 04. My notation generally follows Fremlin 03.

1 Infinite products

1A Definition Let I be a set and F a filter on [I]<ω containing {J : i ∈ J ∈ [I]<ω} for every i ∈ I. For

a family 〈αi〉i∈I in [0,∞] write
∏(F)

i∈I αi for limJ→F

∏
i∈J αi if this is defined in [0,∞].

For definiteness, count
∏

i∈∅ αi as 1.
When F is precisely the filter F([I]<ω↑) generated by {{J : i ∈ J ∈ [I]<ω : i ∈ I}, write

∏
i∈I αi for

∏(F)
i∈I αi.

1B Remarks Suppose that I and F are as in 1A.

(a) If 〈αi〉i∈I is a family in [0,∞] and α =
∏(F)

i∈I αi is defined and finite, then

either α = 0, in which case limJ→F

∏
i∈J\K αi = 0 for every K ⊆ I such that

∏
i∈K αi is

defined, finite and not 0,
or limK→F limJ→F

∏
i∈J\K αi = 1.

(b) If 0 ≤ αi ≤ βi for every i ∈ I and β =
∏(F)

i∈I βi is defined and finite, then α =
∏(F)

i∈I αi is defined; if
β = 0, then α = 0; if β > 0, then α

β
=

∏
i∈I

αi

βi
. So if α > 0 then {i : αi < βi} must be countable.

1C Lemma Let I be a set, 〈Ik〉k∈K a partition of I, and 〈αi〉i∈I a family in ]0,∞[ such that α =
∏

i∈I αi

is defined and finite. Then
∏

k∈K

∏
i∈Ik

αi is defined and equal to α.

proof The point is that
∏

i∈I max(1, αi) must be finite, so it will be enough to deal separately with the
cases (i) αi ≥ 1 for every i (ii) αi ≤ 1 for every i.

2 The basic construction

2A Definitions Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, and F a filter on the set [I]<ω of
finite subsets of I containing {J : i ∈ J ∈ [I]<ω} for every i ∈ I. Set X =

∏
i∈I Xi, and let C ⊆ PX be

the family of sets of the form C =
∏

i∈I Ei where Ei ∈ Σi for every i ∈ I and τC =
∏(F)

i∈I µiEi is defined in
[0,∞[.

Note that τC is well-defined because
∏

i∈I Ei can be equal to
∏

i∈I Fi only if either some Ei is empty or
if Ei = Fi for every i. If there is any i such that µiEi = ∞ there must be a j such that µjEj = 0, and in
this case τC = 0.

Let D ⊆ PX be the family of sets of the form D =
⋃

i∈I{x : x ∈ X, x(i) ∈ Ei} where µiEi = 0 for every
i ∈ I; set τD = 0 for every D ∈ D. It is easy to check that in the exceptional case that there is a D ∈ C ∩D
then τD = 0 on either definition.

2B Lemma Suppose that I, F , C, D and τ are as in 2A. If C ∈ C ∪ D, 〈Cn〉n∈N is a sequence in C ∪ D
and C ⊆

⋃
n∈N

Cn, then τC ≤
∑∞

n=0 τCn.

proof (a) It is enough to consider the case τC > 0, so that C ∈ C; express C as
∏

i∈I Ei. Set L0 = {n :
Cn ∈ D}; for n ∈ L0, let 〈Eni〉i∈I be such that Cn =

⋃
i∈I{x : x(i) ∈ Eni} and µiEni = 0 for every i; for

n ∈ N \ L0, let 〈Eni〉i∈I be such that Cn =
∏

i∈I Eni and Eni ∈ Σi for every i. Set

L1 = {n : n ∈ N \ L0, τCn > 0},

L2 = {n : n ∈ N \ (L0 ∪ L1), µiEni > 0 for every i},
1
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E′
i = Ei \

⋃
{Eni : n ∈ N, µiEni = 0} for each i ∈ I, C ′ =

∏
i∈I E′

i;

then C ′ ∩ Cn = ∅ for every n ∈ N \ (L1 ∪ L2), so C ′ ⊆
⋃

n∈L1∪L2
Cn, while τC ′ = τC.

(b) ??? Suppose, if possible, that τC >
∑∞

n=0 τCn. Then there is a γ < 1 such that
∑∞

n=0 τCn < γτC ′.
Set β = 1

2 min(1, τC ′). Let 〈γm〉m∈N be a strictly increasing sequence, with limit γ, such that
∑∞

n=0 τCn ≤
γ0τC ′. By 1Ba, there is a non-decreasing sequence 〈Jm〉m∈N in [I]<ω, starting from J0 = ∅, such that

limJ→F

∏
i∈J\Jm

µiE
′
i > β for every m ∈ N,

∏
i∈Jm+1\Jm

µiE
′
i ≥ β for every m ∈ N,

limJ→F

∏
i∈J\Jm

µiEni ≥ 1 − 2−m whenever m ≥ 1, n ∈ L1 and n ≤ m,

limJ→F

∏
i∈J\Jm

µiE
′
i ≤ 1 + 2−m whenever m ≥ 1,

∏
i∈Jm+1\Jm

µiEmi ≤ β(1 −
γm

γm+1

) whenever m ∈ L2.

For m ∈ N and z ∈
∏

i∈Jm
Xi set

αm = limJ→F

∏
i∈J\Jm

µiE
′
i,

αmn = limJ→F

∏
i∈J\Jm

µiEni for n ∈ L1 ∪ L2,

Km(z) = {n : n ∈ L1 ∪ L2, z(i) ∈ Eni for every i ∈ Jm},

gm(z) =
∑

n∈Km(z) αmn.

We are supposing that gm(∅) ≤ γ0α0. Now, for each m ∈ N, write λm for the c.l.d. product measure on
Zm =

∏
i∈Jm+1\Jm

Xi, and set

Hm =
∏

i∈Jm+1\Jm

Emi if m ∈ L2,

= ∅ otherwise,

Fm =
∏

i∈Jm+1\Jm
E′

i, F ′
m = Fm \ Hm, Fmn =

∏
i∈Jm+1\Jm

Eni

for n ∈ N. Then we shall always have

λmHm ≤ β(1 −
γm

γm+1

) ≤ (1 −
γm

γm+1

)λmFm,

γmλmFm ≤ γm+1(λmFm − λmHm) ≤ γm+1λmF ′
m.

In this case, for m ∈ N and z ∈
∏

i∈Jm
Xi,

gm(z) =
∑

n∈Km(z)

αmn =
∑

n∈Km(z)

λ0Fmnαm+1,n

=

∫

Zm

∑

n∈Km(z)

αm+1,nχFmn(w)λm(dw)

=

∫

Zm

∑

n∈Km+1(zaw)

αm+1,nλm(dw) =

∫

Zm

gm+1(z
aw)λm(dw).

So if z ∈
∏

i∈Jm
Xi is such that

gm(z) ≤ γmαm = γmλmFm · αm+1 ≤ γm+1λmF ′
m · αm+1,

there must be a w ∈ F ′
m such that

gm+1(z
aw) ≤ γm+1αm+1.
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We can therefore choose 〈zm〉m∈N, 〈wm〉m∈N inductively such that

zm ∈
∏

i∈Jm
E′

i, gm(zm) ≤ γmαm, zm+1 = zm
awm, wm /∈ Hm

for each m, starting with z0 = ∅.
At the end of this construction, take x ∈

∏
i∈I E′

i such that x¹Jm = zm for every m. Then there is an
n ∈ L1 ∪ L2 such that x ∈

∏
i∈I Eni. Note that n cannot belong to L2, because wn = x¹Jn+1 \ Jn never

belongs to Hn; so n ∈ L1. We therefore have

limm→∞ αm ≤ 1,

limm→∞ αmn ≥ 1,

αmn ≤ γαm

for every m, which is absurd. XXX

2C Definition Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, and F a filter on [I]<ω containing
{J : i ∈ J ∈ [I]<ω} for every i ∈ I. Defining X, C, D and τ as in 2A, define θ : PX → [0,∞] by setting

θA = inf{
∑∞

n=0 τCn : Cn ∈ C ∪ D for every n ∈ N, A ⊆
⋃

n∈N
Cn},

counting inf ∅ as 0. Then θ is an outer measure. Let λ0 be the measure defined from θ by Carathéodory’s
method, and λ the c.l.d. version of λ; I will call λ the Baker F-product of 〈µi〉i∈I , or just the Baker
product if F is the filter generated by {{J : i ∈ J ∈ [I]<ω : i ∈ I}.

2D Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, F a filter on [I]<ω containing {J : i ∈
J ∈ [I]<ω} for every i ∈ I, and λ the Baker F-product of 〈µi〉i∈I on X =

∏
i∈I Xi; write Λ for the domain

of λ.
(a)

⊗̂
i∈IΣi ⊆ Λ.

(b) If Ai ⊆ Xi is µi-conegligible for every i, then
∏

i∈I Ai is λ-conegligible.

(c) If 〈Ei〉i∈I ∈
∏

i∈I Σi, then
∏

i∈I Ei ∈ Λ; if α =
∏(F)

i∈I µiEi is defined and finite, then λ(
∏

i∈I Ei) = α.

(d) Let C be the family of subsets of X expressible as
∏

i∈I Ei where Ei ∈ Σi for every i ∈ I and
∏(F)

i∈I µiEi

is defined and finite. Let K be the set of countable intersections of finite unions of members of C. Then λ
is inner regular with respect to K.

proof Let D, τ , θ and λ0 be as in 1C-1D. By 2B, θC = τC for every C ∈ C ∪ D. Let Λ0 be the domain of
λ0.

(a) If j ∈ I and E ∈ Σj , λ0 measures W = {x : x ∈ X, x(j) ∈ E}. PPP If C ∈ C, express C as
∏

i∈I Ei; set

E′
i = Ej ∩ E if i = j,

= Ei for other i ∈ I,

E′′
i = Ej \ E if i = j,

= Ei for other i ∈ I.

Then C ∩ W =
∏

i∈I E′
i and C \ W =

∏
i∈I E′′

i , so τC = τ(C ∩ W ) + τ(C \ W ). It follows that θA =
θ(A ∩ W ) + θ(A \ W ) for every A ⊆ X, so that λ0 measures W . QQQ

Consequently
⊗̂

i∈IΣi ⊆ Λ0 ⊆ Λ.

(b) For each i ∈ I let Ei ⊆ Ai be a measurable conegligible set; then D = X \
∏

i∈I Ei belongs to D, so
λD = λ0D = θD = τD = 0 and

∏
i∈I Ai ⊇ X \ D is λ0-conegligible and λ-conegligible.

(c) Let C∗ be the set of all products
∏

i∈I Ei such that Ei ∈ Σi for every i ∈ I. If C ∈ C and C∗ ∈ C∗

then there is a W ∈ Λ0 such that C ∩ C∗ = C ∩ W . PPP If I = ∅ this is trivial; suppose otherwise. Express
C∗ as

∏
i∈I Ei and C as

∏
i∈I Fi, so that C ∩ C∗ =

∏
i∈I(Ei ∩ Fi); set αi = µi(Ei ∩ Fi), βi = µiFi for each

i. If τ(C ∩ C∗) = 0 then C ∩ C∗ itself belongs to Λ0. Otherwise, as remarked in 1Bb, K = {i : αi 6= βi} is
countable. Let 〈in〉n∈N run over a subset K ′ of I including K. For n ∈ N set

Wn = {x : x ∈ X, x(im) ∈ Eim
for m < n, x(in) /∈ Ein

};
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set

D =
⋃

i∈I\K′{x : x(i) ∈ Fi \ Ei}.

Then

C \ C∗ =
⋃

n∈N
(C ∩ Wn) ∪ (C ∩ (D \ C∗)) = C ∩ W ′

where W ′ = (D \ C∗) ∪
⋃

n∈N
Wn belongs to Λ0. Now C ∩ C∗ = C ∩ W where W = X \ W ′ belongs to Λ0.

QQQ
It follows that C∗ ⊆ Λ0 and λ0C = τC for every C ∈ C; consequently λC = τC for every C ∈ C.

(d)(i) Note first that K is closed under finite unions and countable intersections.

(ii) If C, C ′ ∈ C and ε > 0, then there is a K ∈ K such that K ⊆ C \ C ′ and λK ≥ λ(C \ C ′) − ε.
PPP Express C, C ′ as

∏
i∈I Ei and

∏
i∈I Fi respectively. Set βi = µiEi, αi = µi(Ei ∩ Fi) for each i,

β =
∏(F)

i∈I βi = λC. If β = 0 we can stop. Otherwise, λ(C \ C ′) = β(1 −
∏

i∈I
αi

βi
) and there is a

finite L ⊆ I such that β(1 −
∏

j∈L

αj

βj
) ≥ β − ε. For j ∈ L set

Cj = {x : x ∈ C, x(j) /∈ Fj};

then

λ(C \
⋃

j∈L Cj) = β
∏

j∈L

αj

βj

so λ(
⋃

j∈L Cj) ≥ β − ε. Set K =
⋃

j∈L Cj . QQQ

Note that if C ∈ C and D ∈ D then there is a C0 ∈ C such that C0 ⊆ C \ D and λC0 = λC.

(iii) Suppose that W ∈ Λ and λW > 0. Then there is a K ∈ K such that K ⊆ W and λK > 0. PPP
There is a W1 ∈ Λ0 such that W1 ⊆ W and 0 < λ0W1 < ∞. In this case, θW1 is finite, so there is a sequence
〈Cn〉n∈N in C ∪ D such that W1 ⊆

⋃
n∈N

Cn. Now there is an n ∈ N such that W2 = λ0(W1 ∩ Cn) > 0.
Of course Cn must belong to C. Let 〈C ′

m〉m∈N be a sequence in C ∪ D such that Cn \ W2 ⊆
⋃

m∈N
C ′

m and∑∞
m=0 λ0C

′
n < λ0Cn; set W3 =

⋂
m∈N

Cm \ C ′
m, so that λW3 > 0.

For each m ∈ N we have a Km ∈ K such that Km ⊆ Cn \C ′
m and λKm ≥ λ(Cn \C ′

m)− 2−m−2λW3. Now
K =

⋂
m∈N

Km ⊆ W3 ⊆ W , K ∈ K and λK > 0. QQQ

(iv) As K is closed under finite unions, this is enough to show that λ is inner regular with respect to
K.

2E Two special cases: Proposition Let 〈(Xi,Σi, µi)〉i∈I , F , X and λ be as in 2D.
(a) If I is finite, then λ is the c.l.d. product measure on X.

(b) If I is countable and β =
∏(F)

i∈I µiXi is defined, finite and not zero, set µ′
i =

1

µiXi

µi for each i, and

let λ′ be the product probability measure on X; then λ = βλ′.

proof In both parts, because I is countable, we see that the outer measure θ of 2C can be defined from C
alone, since every member of D is included in the union of countably many sets C ∈ C with τC = 0.

(a) If I is finite, then, looking at the construction in Fremlin 01, §251, we see that λ0, as defined in 2C,
is just the primitive product measure, so its c.l.d. version λ is the c.l.d. product measure.

(b) A direct calculation, using 1B, shows that β
∏

i∈I µ′
iEi = θC whenever Ei ∈ Σi for every i and

C =
∏

i∈I Ei. So if we write θ′ for the outer measure described in Fremlin 01, 251A-251B, we shall have
θ = βθ′ and λ0 = βλ′. Since λ0 is totally finite, we now have λ = βλ′.

2F Subspaces: Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, and F a filter on [I]<ω

containing {J : i ∈ J ∈ [I]<ω} for every i ∈ I. For each i ∈ I take a Yi ∈ Σi and write Ti, νi for the
subspace σ-algebra and measure on Yi. Let λ be the Baker F-product measure on X =

∏
i∈I Xi. Then the

Baker F-product measure of 〈νi〉i∈I is the subspace measure λY induced on Y =
∏

∈I Yi by λ.

proof Defining C, τ , θ and λ0 as in 2C, and C′, τ ′, θ′ and λ′
0 by the same process applied to 〈(Yi,Ti, νi)〉i∈I ,

we see that
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C′ = {C ∩ Y : C ∈ C},
τ ′C ′ = min{τC : C ∈ C, C ′ = C ∩ Y } for C ′ ∈ C′,
θ′ = θ¹PY ,
Y ∈ dom λ0 (see the proof of 2Dc).

It follows that λ′
0 is the subspace measure on Y induced by λ0 (Fremlin 01, 214H(b-ii)), and it is now easy

to check that λY is the c.l.d. version of λ′
0, so is the Baker F-product of 〈νi〉i∈I .

3 Associative law

3B Theorem (cf. Baker 04, Theorem II) Let I be a set, 〈(Xi,Σi, µi)〉i∈I a family of measure spaces,
and (X,Λ, λ) the Baker product of 〈µi〉i∈I . Let (I0, I1) be a partition of I; for each k ≤ 1, let λ0k be the
Baker product measure on Yk =

∏
i∈Ik

Xi. Let ν be the c.l.d. product measure of λ0 and λ1 on Z = Y0×Y1.
Let φ : X → Z be the natural bijection. Then φ is an isomorphism between λ and ν.

proof (a) Let C be the family of subsets of X expressible in the form
∏

i∈I Ei where Ei ∈ Σi for every i ∈ I
and

∏
i∈I µiEi is finite, and K the family of countable intersections of finite unions of members of C, as in

2Dd, so that λ is inner regular with respect to K Now νφ[K] = λK for every K ∈ K. PPP If K = ∅ this is
trivial. If K ∈ C \ {∅}, express it as

∏
i∈I Ei where

∏
i∈I µiEi is finite; then

λK = λ0(
∏

i∈I0
Ei) · λ1(

∏
i∈I1

Ei) = νφ[K].

As C is closed under finite intersections, νφ[K] = λK for every K ∈ K (see Fremlin 01, 136Xc1). QQQ

(b) Now, for k = 0 and k = 1, let Ck be the family of subsets of Zk expressible in the form
∏

i∈I Ei

where Ei ∈ Σi for every i ∈ Ik and
∏

i∈Ik
µiEi is finite, and Kk the family of countable intersections of finite

unions of members of Ck. Then λ0k is inner regular with respect to Kk. Writing L = {φ[K] : K ∈ K}, we
see that L is closed under finite unions and countable intersections and contains C0 ×C1 whenever Ck ∈ Ck

for both k. It therefore contains K0 × K1 whenever Kk ∈ Kk for both k, and ν must be inner regular with
respect to L, by Fremlin 03, 412R. By Fremlin 03, 412L, φ must be a measure space isomorphism.

4 Topological Baker products

4A Theorem Let 〈(Xi,Ti,Σi, µi)〉i∈I be a family of Radon measure spaces, and F a filter on [I]<ω

containing {J : i ∈ J ∈ [I]<ω} for every i ∈ I. Let Ck be the family of sets C ⊆ X expressible in the form

C =
∏

i∈I Ei where Ei ⊆ Xi is compact for every i and τC =
∏(F)

i∈I µiEi is defined and finite. Then there

is a unique complete locally determined topological measure λ̃ on X =
∏

i∈I Xi, inner regular with respect
to the compact sets, such that

λ̃C = τC for every C ∈ Ck;
λ̃A = 0 whenever A ⊆ X is such that λ̃(A ∩ C) = 0 for every C ∈ Ck.

proof (a) Define C ⊆ PX and τ : C → [0,∞[ as in 2A. Let C′
kss ⊆ C be the family of sets expressible in the

form C =
∏

i∈I µiEi where Ei ∈ Σi for every i, Ei is compact and self-supporting (Fremlin 03, 411Na) for

all but countably many i, and τC =
∏(F)

i∈I Ei is defined and finite. Set

θkA = inf{
∑∞

n=0 τCn : Cn ∈ C′
kss for every n ∈ N, C ⊆

⋃
n∈N

Cn}

for A ⊆ X (cf. 2C); as before, interpret inf ∅ as ∞, so that θk is an outer measure. By 2B, θkC = τC for
every C ∈ C′

kss. Let λ0k be the measure on X defined from θk by Carathéodory’s method, and λk its c.l.d.
version; write Λ0k and Λk for their respective domains.

(b) If j ∈ I and E ∈ Σj , λ0k measures W = {x : x ∈ X, x(j) ∈ E}. PPP Argue as in 2Da. If C ∈ C′
kss,

express it as
∏

i∈I Ei; set

E′
i = Ej ∩ E if i = j,

= Ei for other i ∈ I,

E′′
i = Ej \ E if i = j,

= Ei for other i ∈ I.

1Later editions only.
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Then C ∩ W =
∏

i∈I E′
i and C \ W =

∏
i∈I E′′

i both belong to C′
kss, and τC = τ(C ∩ W ) + τ(C \ W ). It

follows that θkA = θk(A ∩ W ) + θk(A \ W ) for every A ⊆ X, so that W ∈ Λ0k. QQQ

Consequently
⊗̂

i∈IΣi ⊆ Λ0k.

(c) Let C′
c be the family of sets expressible in the form

∏
i∈I Ei where Ei ∈ Σi for every i ∈ I and Ei is

closed for all but countably many i.

(i) If C∗ ∈ C′
c and C ∈ C′

kss, then θk(C∩C∗)+θk(C \C∗) ≤ τC. PPP If τC = 0, this is trivial. Otherwise,
express C∗ as

∏
i∈I Ei and C as

∏
i∈I Fi where Ei is closed and Fi is compact and self-supporting for all

but countably many i. Set

L = {i : Ei is not closed} ∪ {i : µi(Ei ∩ Fi) < µiFi}

∪ {i : Fi is not a compact self-supporting set}.

(α) If L is uncountable, then there must be a δ > 0 such that {i : µi(Ei∩Fi) ≤ (1−δ)µiFi} is infinite, and a

countable L′ ⊆ I such that
∏

i∈L′

µi(Ei∩Fi)

µiFi

= 0. Setting F ′
i = Ei∩Fi for i ∈ L′, Fi for i ∈ I \L′, we see that

C ′ =
∏

i∈I F ′
i belongs to C′

kss and τC ′ = 0. As C ′ ⊇ C∩C∗, θk(C∩C∗) = 0 and θk(C∩C∗)+θk(C\C∗) ≤ τC.

(β) If L is countable, set W = {x : x ∈ X, x(i) ∈ Ei for every i ∈ L}; then W ∈
⊗̂

i∈IΣi and C∩C∗ = C∩W ,
so

θk(C ∩ C∗) + θk(C \ C∗) = θk(C ∩ W ) + θk(C \ W ) = θkC = τC. QQQ

(ii) It follows that C′
c ⊆ Λ0k; in particular, C′

kss ⊆ Λ0k, so λ0kC = θkC = τC for every C ∈ C′
kss.

(iii) In fact λ0k(C ∩ C∗) = τ(C ∩ C∗) whenever C ∈ C′
kss and C∗ ∈ C′

c. PPP Express C, C∗ as
∏

i∈I Fi,∏
i∈I Ei respectively, as in (i) above. If τC = 0 then of course τ(C ∩ C∗) = λ0k(C ∩ C∗) = 0. Otherwise,

again set

L = {i : Ei is not closed} ∪ {i : µi(Ei ∩ Fi) < µiFi}

∪ {i : Fi is not a compact self-supporting set}.

As in (i), if L is uncountable then τ(C ∩C∗) = λ0k(C ∩C∗) = 0. But if L is countable, then C ∩C∗ ∈ C′
kss,

so surely τ(C ∩ C∗) = λ0k(C ∩ C∗). QQQ

(iv) We find also that λkC = τC for every C ∈ Ck. PPP We know from (ii) that C belongs to Λ0k so

is measured by λk. Express C as
∏

i∈I Ei where every Ei is compact. For each i, let Êi ⊆ Ei be a self-

supporting compact set with the same measure as Ei; then Ĉ =
∏

i∈I Êi belongs to C′
kss and is measured by

λ0k. We also have

λ0k(C ′ ∩ Ĉ) = τ(C ′ ∩ Ĉ) = τ(C ′ ∩ C) = λ0k(C ′ ∩ C), λ0k(C ′ ∩ C \ Ĉ) = 0

for every C ∈ C′
kss, so λk(C \ Ĉ) = 0 and

λkC = λkĈ = τĈ = τC. QQQ

(d) Let Ckss ⊆ C′
kss be the family of subsets of X of the form

∏
i∈I Ei where Ei is a compact self-supporting

subset of Xi for every i and
∏(F)

i∈I µiEi is defined and finite. Let Kk be the family of countable intersections
of finite unions of members of Ckss. Then Kk is closed under finite unions and countable intersections, and
every member of Kk is compact.

If C, C ′ ∈ C′
kss and ε > 0, there is a K ⊆ C \ C ′ such that K ∈ Kk and λ0kK ≥ λ0k(C \ C ′) − 3ε. PPP

Express C, C ′ as
∏

i∈I Ei,
∏

i∈I E′
i respectively; set βi = µiEi for each i, β = τC. If β = 0 we can take

K = ∅ and stop. Otherwise, since L0 = {i : Ei is not a compact self-supporting set} is countable, we can

find 〈β′
i〉i∈L0

such that 0 < β′
i < βi for i ∈ L0 and β ·

∏
i∈L0

β′

i

βi

≥ β − ε. For i ∈ L0 choose a compact

self-supporting Fi ⊆ Ei such that µiFi ≥ β′
i; for i ∈ I \ L0 set Fi = Ei, and set Ĉ =

∏
i∈I Fi ∈ Ckss. For

every i ∈ I set γi = µiFi, and γ = τĈ =
∏(F)

i∈I γi. Then λ0kĈ = γ ≥ β − ε and λ0k(C \ Ĉ) ≤ ε.
Next, for i ∈ I, set αi = µi(Fi ∩ E′

i). By (c-iii) above,
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λ0k(Ĉ ∩ C ′) =
∏(F)

i∈I αi = γ ·
∏

i∈I

αi

γi

,

and

γ(1 −
∏

i∈I

αi

γi

) = λ0k(Ĉ \ C ′) ≥ λ0k(C \ C ′) − ε.

There is now a finite L ⊆ I such that γ(1 −
∏

j∈L

αj

γj
) ≥ λ0k(C \ C ′) − 2ε. Let 〈α′

j〉j∈L be such that

γ(1 −
∏

j∈L

α′

j

γj
) ≥ λ0k(C \ C ′) − 3ε and α′

j > αj for each j ∈ L. For j ∈ L take a compact self-supporting

set Hj ⊆ Fj \ E′
j such that µjHj ≥ γj − α′

j , and set

Cj = {x : x ∈ Ĉ, x(j) ∈ Hj};

then Cj ∈ Ckss for each j, Ĉ \
⋃

j∈L Cj ∈ C′
kss, and

λ0k(Ĉ \
⋃

j∈L

Cj) = τ({x : x ∈ Ĉ, x(j) /∈ Hj for every j ∈ L})

= γ ·
∏

j∈L

µj(Fj\Hj)

µjFj

≤ γ ·
∏

j∈L

α′

j

γj

so K =
⋃

j∈L Cj belongs to Kk and

λ0kK = λ0k(
⋃

j∈L Cj) ≥ γ(1 −
∏

j∈L

α′

j

γj

) ≥ λ0k(C \ C ′) − 3ε

as required. QQQ
Now we can use the argument in (d-iii) and (d-iv) of the proof of 2D to see that λk is inner regular with

respect to Kk.

(e) Let Kf be the family of those compact sets K ⊆ X included in some member of Kk. By Fremlin

03, 413O, there is a complete locally determined measure λ̃ on X, extending λk, and inner regular with
respect to Kf . By Fremlin 03, 412Ja, λ̃ measures every closed set and is a topological measure; of course
it is inner regular with respect to the compact sets. By (c-iv), λ̃C = τC for every C ∈ Ck.

If A ⊆ X is such that λ̃(A ∩ C) = 0 for every C ∈ Ck, then of course λ̃(A ∩ C) = 0 for every C ∈ Ckss,

and λ̃(A ∩ K) = 0 for every K ∈ Kf ; it follows that A is λ̃-negligible (Fremlin 03, 412Jb).

(f) Thus λ̃ satisfies the conditions of the theorem. Now suppose that ν is another measure on X with
these properties. Let E be the ring of sets generated by Ck. Because Ck is closed under finite intersections
and ν and λ̃ agree on Ck, they agree on E . It follows that they agree on any compact set K included in a
member of E . PPP Every member of E is included in a finite union of members of Ck, which will always be
compact; so there is a compact V0 ∈ E including K. Let V be the family of compact members of E including
K and included in V0. Then V is downwards-directed and K ⊆

⋂
V. If x ∈ X \ K, there is an open set U ,

of the form {y : y(i) ∈ Ui for i ∈ J} where J ⊆ X is finite and Ui ⊆ Xi is open for every i ∈ J , such that
x ∈ U ⊆ X \ K; in which case V0 \ U is a compact set, belonging to E , including K and not containing x.

Thus K =
⋂
V. Because both ν and λ̃ are topological measures inner regular with respect to the compact

sets and finite on V0,

νK = infV ∈V νV = infV ∈V λ̃V = λ̃K. QQQ

On the other hand, the final clause in the specifications for λ̃ implies that both λ̃ and ν are inner regular
with respect to the family of compact sets included in members of E . Since they are both complete locally
determined topological measures, they are identical (Fremlin 03, 412L).

4B There are significant simplifications for countable products, as follows.

Proposition Let 〈(Xi,Σi, µi)〉i∈I be a countable family of measure spaces, and F a filter on [I]<ω containing
{J : i ∈ J ∈ [I]<ω} for every i ∈ I. Let λ be the Baker F-product measure on X =

∏
i∈I Xi. Suppose that

each Xi is endowed with a topology, and that X has the product topology.
(i) If every µi is inner regular with respect to the closed sets, so is λ.
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(ii) If every µi is inner regular with respect to the zero sets, so is λ.
(iii) If every µi is inner regular with respect to the closed compact sets, so is λ.

proof (a) If for each i ∈ I we are given a family Ki ⊆ PXi such that µi is inner regular with respect to Ki,
and if M ⊆ PX is closed under finite unions and countable intersections and contains

∏
i∈I Ki whenever

Ki ∈ Ki for every i, then λ is inner regular with respect to M. PPP As in 2D, let C be the family of sets

expressible as
∏

i∈I Ei where Ei ∈ Σi for every i and
∏(F)

i∈I µiEi is defined and finite, and K the family of
sets expressible as countable intersections of finite unions of members of C. Because I is countable, we find
that whenever C ∈ C and ε > 0 there is an M ∈ M such that M ⊆ C and λM ≥ λC − ε. It follows that
whenever K ∈ K and ε > 0 there is an M ∈ M such that M ⊆ K and λM ≥ λK − ε. As λ is inner regular
with respect to K (2Dd), it is inner regular with respect to M. QQQ

(b) Now all we have to do is apply (a) with suitable families Ki, as in the proof of 412T in Fremlin 03.

4C Proposition Let 〈(Xi,Ti,Σi, µi)〉i∈I be a countable family of Radon measure spaces, and F a filter
on [I]<ω containing {J : i ∈ J ∈ [I]<ω} for every i ∈ I. Let λ be the Baker F-product measure on

X =
∏

i∈I Xi, and λ̃ be the product topological measure defined in Theorem 4A. Then λ̃ extends λ.

proof In the language of the proof of 4A, C′
kss = C. So θk, λ0k and λk, as defined there, coincide with θ, λ0

and λ as defined in 2C. But we saw in part (e) of the proof of 4A that λ̃ extends λk.

4D Let I be any set and suppose that (Xi,Σi, µi) is R with Lebesgue measure for every i ∈ I. Let F be
a filter on [I]<ω containing {J : i ∈ J ∈ [I]<ω} for every i ∈ I, and λ the Baker F-product measure on R

I .
Then λ is translation-invariant. PPP In the construction of 2A, C, D and τ are all translation-invariant. QQQ
Similarly, λ(−W ) = λW whenever either is defined. By 2Dd, {x : x ≥ y} and {x : x ≤ y} are measured by
λ, for every y ∈ R

I .
The subspace measure on `∞(I) induced by λ is a translation-invariant measure in which a ball B(x, α)

has measure 0 if α < 1
2 , 1 if α = 1

2 and ∞ if α > 1
2 .

The magnitude of λ is c (because there are just c compact subsets of X) and its additivity is the additivity
of Lebesgue measure (use 2F and 2Eb). So if these are equal, λ is strictly localizable (Fremlin 08, 521K2).
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