# Baker's product measures

### D.H.Fremlin

University of Essex, Colchester, England

I discuss variations on the measures described in Baker 04. My notation generally follows Fremlin 03.

# 1 Infinite products

**1A Definition** Let I be a set and  $\mathcal{F}$  a filter on  $[I]^{<\omega}$  containing  $\{J:i\in J\in [I]^{<\omega}\}$  for every  $i\in I$ . For a family  $\langle \alpha_i \rangle_{i\in I}$  in  $[0,\infty]$  write  $\prod_{i\in I}^{(\mathcal{F})} \alpha_i$  for  $\lim_{J\to\mathcal{F}} \prod_{i\in J} \alpha_i$  if this is defined in  $[0,\infty]$ .

For definiteness, count  $\prod_{i \in \emptyset} \alpha_i$  as 1.

When  $\mathcal{F}$  is precisely the filter  $\mathcal{F}([I]^{<\omega}\uparrow)$  generated by  $\{\{J:i\in J\in [I]^{<\omega}:i\in I\},\text{ write }\prod_{i\in I}\alpha_i\text{ for }\prod_{i\in I}\alpha_i$ .

- **1B Remarks** Suppose that I and  $\mathcal{F}$  are as in 1A.
- (a) If  $\langle \alpha_i \rangle_{i \in I}$  is a family in  $[0, \infty]$  and  $\alpha = \prod_{i \in I}^{(\mathcal{F})} \alpha_i$  is defined and finite, then either  $\alpha = 0$ , in which case  $\lim_{J \to \mathcal{F}} \prod_{i \in J \setminus K} \alpha_i = 0$  for every  $K \subseteq I$  such that  $\prod_{i \in K} \alpha_i$  is defined, finite and not 0, or  $\lim_{K \to \mathcal{F}} \lim_{J \to \mathcal{F}} \prod_{i \in J \setminus K} \alpha_i = 1$ .
- (b) If  $0 \le \alpha_i \le \beta_i$  for every  $i \in I$  and  $\beta = \prod_{i \in I}^{(\mathcal{F})} \beta_i$  is defined and finite, then  $\alpha = \prod_{i \in I}^{(\mathcal{F})} \alpha_i$  is defined; if  $\beta = 0$ , then  $\alpha = 0$ ; if  $\beta > 0$ , then  $\frac{\alpha}{\beta} = \prod_{i \in I} \frac{\alpha_i}{\beta_i}$ . So if  $\alpha > 0$  then  $\{i : \alpha_i < \beta_i\}$  must be countable.
- **1C Lemma** Let I be a set,  $\langle I_k \rangle_{k \in K}$  a partition of I, and  $\langle \alpha_i \rangle_{i \in I}$  a family in  $]0, \infty[$  such that  $\alpha = \prod_{i \in I} \alpha_i$  is defined and finite. Then  $\prod_{k \in K} \prod_{i \in I_k} \alpha_i$  is defined and equal to  $\alpha$ .

**proof** The point is that  $\prod_{i \in I} \max(1, \alpha_i)$  must be finite, so it will be enough to deal separately with the cases (i)  $\alpha_i \geq 1$  for every i (ii)  $\alpha_i \leq 1$  for every i.

#### 2 The basic construction

**2A Definitions** Let  $\langle (X_i, \Sigma_i, \mu_i) \rangle_{i \in I}$  be a family of measure spaces, and  $\mathcal{F}$  a filter on the set  $[I]^{<\omega}$  of finite subsets of I containing  $\{J : i \in J \in [I]^{<\omega}\}$  for every  $i \in I$ . Set  $X = \prod_{i \in I} X_i$ , and let  $\mathcal{C} \subseteq \mathcal{P}X$  be the family of sets of the form  $C = \prod_{i \in I} E_i$  where  $E_i \in \Sigma_i$  for every  $i \in I$  and  $\tau C = \prod_{i \in I} \mu_i E_i$  is defined in  $[0, \infty[$ .

Note that  $\tau C$  is well-defined because  $\prod_{i \in I} E_i$  can be equal to  $\prod_{i \in I} F_i$  only if either some  $E_i$  is empty or if  $E_i = F_i$  for every i. If there is any i such that  $\mu_i E_i = \infty$  there must be a j such that  $\mu_j E_j = 0$ , and in this case  $\tau C = 0$ .

Let  $\mathcal{D} \subseteq \mathcal{P}X$  be the family of sets of the form  $D = \bigcup_{i \in I} \{x : x \in X, x(i) \in E_i\}$  where  $\mu_i E_i = 0$  for every  $i \in I$ ; set  $\tau D = 0$  for every  $D \in \mathcal{D}$ . It is easy to check that in the exceptional case that there is a  $D \in \mathcal{C} \cap \mathcal{D}$  then  $\tau D = 0$  on either definition.

**2B Lemma** Suppose that  $I, \mathcal{F}, \mathcal{C}, \mathcal{D}$  and  $\tau$  are as in 2A. If  $C \in \mathcal{C} \cup \mathcal{D}, \langle C_n \rangle_{n \in \mathbb{N}}$  is a sequence in  $\mathcal{C} \cup \mathcal{D}$  and  $C \subseteq \bigcup_{n \in \mathbb{N}} C_n$ , then  $\tau C \leq \sum_{n=0}^{\infty} \tau C_n$ .

**proof (a)** It is enough to consider the case  $\tau C > 0$ , so that  $C \in \mathcal{C}$ ; express C as  $\prod_{i \in I} E_i$ . Set  $L_0 = \{n : C_n \in \mathcal{D}\}$ ; for  $n \in L_0$ , let  $\langle E_{ni} \rangle_{i \in I}$  be such that  $C_n = \bigcup_{i \in I} \{x : x(i) \in E_{ni}\}$  and  $\mu_i E_{ni} = 0$  for every i; for  $n \in \mathbb{N} \setminus L_0$ , let  $\langle E_{ni} \rangle_{i \in I}$  be such that  $C_n = \prod_{i \in I} E_{ni}$  and  $E_{ni} \in \Sigma_i$  for every i. Set

$$L_1 = \{n : n \in \mathbb{N} \setminus L_0, \, \tau C_n > 0\},\$$

$$L_2 = \{ n : n \in \mathbb{N} \setminus (L_0 \cup L_1), \, \mu_i E_{ni} > 0 \text{ for every } i \},$$

$$E_i' = E_i \setminus \bigcup \{E_{ni} : n \in \mathbb{N}, \, \mu_i E_{ni} = 0\}$$
 for each  $i \in I$ ,  $C' = \prod_{i \in I} E_i'$ ;

then  $C' \cap C_n = \emptyset$  for every  $n \in \mathbb{N} \setminus (L_1 \cup L_2)$ , so  $C' \subseteq \bigcup_{n \in L_1 \cup L_2} C_n$ , while  $\tau C' = \tau C$ .

(b) ? Suppose, if possible, that  $\tau C > \sum_{n=0}^{\infty} \tau C_n$ . Then there is a  $\gamma < 1$  such that  $\sum_{n=0}^{\infty} \tau C_n < \gamma \tau C'$ . Set  $\beta = \frac{1}{2} \min(1, \tau C')$ . Let  $\langle \gamma_m \rangle_{m \in \mathbb{N}}$  be a strictly increasing sequence, with limit  $\gamma$ , such that  $\sum_{n=0}^{\infty} \tau C_n \leq \gamma_0 \tau C'$ . By 1Ba, there is a non-decreasing sequence  $\langle J_m \rangle_{m \in \mathbb{N}}$  in  $[I]^{<\omega}$ , starting from  $J_0 = \emptyset$ , such that

$$\lim_{J\to\mathcal{F}}\prod_{i\in J\setminus J_m}\mu_iE_i'>\beta$$
 for every  $m\in\mathbb{N}$ ,

$$\prod_{i \in J_{m+1} \setminus J_m} \mu_i E_i' \ge \beta \text{ for every } m \in \mathbb{N},$$

 $\lim_{J\to\mathcal{F}}\prod_{i\in J\setminus J_m}\mu_i E_{ni}\geq 1-2^{-m}$  whenever  $m\geq 1,\ n\in L_1$  and  $n\leq m,$ 

$$\lim_{J\to\mathcal{F}}\prod_{i\in J\setminus J_m}\mu_i E_i'\leq 1+2^{-m}$$
 whenever  $m\geq 1$ ,

$$\prod_{i \in J_{m+1} \setminus J_m} \mu_i E_{mi} \leq \beta (1 - \frac{\gamma_m}{\gamma_{m+1}}) \text{ whenever } m \in L_2.$$

For  $m \in \mathbb{N}$  and  $z \in \prod_{i \in J_m} X_i$  set

$$\alpha_m = \lim_{J \to \mathcal{F}} \prod_{i \in J \setminus J_m} \mu_i E_i',$$

$$\alpha_{mn} = \lim_{J \to \mathcal{F}} \prod_{i \in J \setminus J_m} \mu_i E_{ni} \text{ for } n \in L_1 \cup L_2,$$

$$K_m(z) = \{n : n \in L_1 \cup L_2, z(i) \in E_{ni} \text{ for every } i \in J_m\},\$$

$$g_m(z) = \sum_{n \in K_m(z)} \alpha_{mn}.$$

We are supposing that  $g_m(\emptyset) \leq \gamma_0 \alpha_0$ . Now, for each  $m \in \mathbb{N}$ , write  $\lambda_m$  for the c.l.d. product measure on  $Z_m = \prod_{i \in J_{m+1} \setminus J_m} X_i$ , and set

$$H_m = \prod_{i \in J_{m+1} \setminus J_m} E_{mi} \text{ if } m \in L_2,$$
  
=  $\emptyset$  otherwise,

$$F_m = \prod_{i \in J_{m+1} \setminus J_m} E_i', \quad F_m' = F_m \setminus H_m, \quad F_{mn} = \prod_{i \in J_{m+1} \setminus J_m} E_{ni}$$

for  $n \in \mathbb{N}$ . Then we shall always have

$$\lambda_m H_m \leq \beta \left(1 - \frac{\gamma_m}{\gamma_{m+1}}\right) \leq \left(1 - \frac{\gamma_m}{\gamma_{m+1}}\right) \lambda_m F_m$$

$$\gamma_m \lambda_m F_m \le \gamma_{m+1} (\lambda_m F_m - \lambda_m H_m) \le \gamma_{m+1} \lambda_m F'_m.$$

In this case, for  $m \in \mathbb{N}$  and  $z \in \prod_{i \in J_m} X_i$ ,

$$\begin{split} g_m(z) &= \sum_{n \in K_m(z)} \alpha_{mn} = \sum_{n \in K_m(z)} \lambda_0 F_{mn} \alpha_{m+1,n} \\ &= \int_{Z_m} \sum_{n \in K_m(z)} \alpha_{m+1,n} \chi F_{mn}(w) \lambda_m(dw) \\ &= \int_{Z_m} \sum_{n \in K_{m+1}(z \cap w)} \alpha_{m+1,n} \lambda_m(dw) = \int_{Z_m} g_{m+1}(z \cap w) \lambda_m(dw). \end{split}$$

So if  $z \in \prod_{i \in J_m} X_i$  is such that

$$g_m(z) \le \gamma_m \alpha_m = \gamma_m \lambda_m F_m \cdot \alpha_{m+1} \le \gamma_{m+1} \lambda_m F'_m \cdot \alpha_{m+1},$$

there must be a  $w \in F'_m$  such that

$$g_{m+1}(z^{\smallfrown}w) \leq \gamma_{m+1}\alpha_{m+1}.$$

We can therefore choose  $\langle z_m \rangle_{m \in \mathbb{N}}$ ,  $\langle w_m \rangle_{m \in \mathbb{N}}$  inductively such that

$$z_m \in \prod_{i \in I_m} E_i', \quad g_m(z_m) \le \gamma_m \alpha_m, \quad z_{m+1} = z_m \hat{w}_m, \quad w_m \notin H_m$$

for each m, starting with  $z_0 = \emptyset$ .

At the end of this construction, take  $x \in \prod_{i \in I} E_i'$  such that  $x \upharpoonright J_m = z_m$  for every m. Then there is an  $n \in L_1 \cup L_2$  such that  $x \in \prod_{i \in I} E_{ni}$ . Note that n cannot belong to  $L_2$ , because  $w_n = x \upharpoonright J_{n+1} \setminus J_n$  never belongs to  $H_n$ ; so  $n \in L_1$ . We therefore have

$$\lim_{m \to \infty} \alpha_m \le 1,$$
$$\lim_{m \to \infty} \alpha_{mn} \ge 1,$$

$$\alpha_{mn} \le \gamma \alpha_m$$

for every m, which is absurd. **X** 

**2C** Definition Let  $\langle (X_i, \Sigma_i, \mu_i) \rangle_{i \in I}$  be a family of measure spaces, and  $\mathcal{F}$  a filter on  $[I]^{<\omega}$  containing  $\{J : i \in J \in [I]^{<\omega}\}$  for every  $i \in I$ . Defining  $X, \mathcal{C}, \mathcal{D}$  and  $\tau$  as in 2A, define  $\theta : \mathcal{P}X \to [0, \infty]$  by setting

$$\theta A = \inf\{\sum_{n=0}^{\infty} \tau C_n : C_n \in \mathcal{C} \cup \mathcal{D} \text{ for every } n \in \mathbb{N}, A \subseteq \bigcup_{n \in \mathbb{N}} C_n\},\$$

counting inf  $\emptyset$  as 0. Then  $\theta$  is an outer measure. Let  $\lambda_0$  be the measure defined from  $\theta$  by Carathéodory's method, and  $\lambda$  the c.l.d. version of  $\lambda$ ; I will call  $\lambda$  the **Baker**  $\mathcal{F}$ -product of  $\langle \mu_i \rangle_{i \in I}$ , or just the **Baker** product if  $\mathcal{F}$  is the filter generated by  $\{\{J: i \in J \in [I]^{<\omega}: i \in I\}$ .

- **2D Theorem** Let  $\langle (X_i, \Sigma_i, \mu_i) \rangle_{i \in I}$  be a family of measure spaces,  $\mathcal{F}$  a filter on  $[I]^{<\omega}$  containing  $\{J : i \in J \in [I]^{<\omega}\}$  for every  $i \in I$ , and  $\lambda$  the Baker  $\mathcal{F}$ -product of  $\langle \mu_i \rangle_{i \in I}$  on  $X = \prod_{i \in I} X_i$ ; write  $\Lambda$  for the domain of  $\lambda$ .
  - (a)  $\bigotimes_{i \in I} \Sigma_i \subseteq \Lambda$ .
  - (b) If  $A_i \subseteq X_i$  is  $\mu_i$ -conegligible for every i, then  $\prod_{i \in I} A_i$  is  $\lambda$ -conegligible.
  - (c) If  $\langle E_i \rangle_{i \in I} \in \prod_{i \in I} \Sigma_i$ , then  $\prod_{i \in I} E_i \in \Lambda$ ; if  $\alpha = \prod_{i \in I}^{(\mathcal{F})} \mu_i E_i$  is defined and finite, then  $\lambda(\prod_{i \in I} E_i) = \alpha$ .
- (d) Let  $\mathcal{C}$  be the family of subsets of X expressible as  $\prod_{i \in I} E_i$  where  $E_i \in \Sigma_i$  for every  $i \in I$  and  $\prod_{i \in I}^{(\mathcal{F})} \mu_i E_i$  is defined and finite. Let  $\mathcal{K}$  be the set of countable intersections of finite unions of members of  $\mathcal{C}$ . Then  $\lambda$  is inner regular with respect to  $\mathcal{K}$ .

**proof** Let  $\mathcal{D}$ ,  $\tau$ ,  $\theta$  and  $\lambda_0$  be as in 1C-1D. By 2B,  $\theta C = \tau C$  for every  $C \in \mathcal{C} \cup \mathcal{D}$ . Let  $\Lambda_0$  be the domain of  $\lambda_0$ .

(a) If  $j \in I$  and  $E \in \Sigma_j$ ,  $\lambda_0$  measures  $W = \{x : x \in X, x(j) \in E\}$ . **P** If  $C \in \mathcal{C}$ , express C as  $\prod_{i \in I} E_i$ ; set

$$E'_{i} = E_{j} \cap E \text{ if } i = j,$$

$$= E_{i} \text{ for other } i \in I,$$

$$E''_{i} = E_{j} \setminus E \text{ if } i = j,$$

$$= E_{i} \text{ for other } i \in I.$$

Then  $C \cap W = \prod_{i \in I} E_i'$  and  $C \setminus W = \prod_{i \in I} E_i''$ , so  $\tau C = \tau(C \cap W) + \tau(C \setminus W)$ . It follows that  $\theta A = \theta(A \cap W) + \theta(A \setminus W)$  for every  $A \subseteq X$ , so that  $\lambda_0$  measures W. **Q** 

Consequently  $\bigotimes_{i \in I} \Sigma_i \subseteq \Lambda_0 \subseteq \Lambda$ .

- (b) For each  $i \in I$  let  $E_i \subseteq A_i$  be a measurable conegligible set; then  $D = X \setminus \prod_{i \in I} E_i$  belongs to  $\mathcal{D}$ , so  $\lambda D = \lambda_0 D = \theta D = \tau D = 0$  and  $\prod_{i \in I} A_i \supseteq X \setminus D$  is  $\lambda_0$ -conegligible and  $\lambda$ -conegligible.
- (c) Let  $C^*$  be the set of all products  $\prod_{i \in I} E_i$  such that  $E_i \in \Sigma_i$  for every  $i \in I$ . If  $C \in C$  and  $C^* \in C^*$  then there is a  $W \in \Lambda_0$  such that  $C \cap C^* = C \cap W$ .  $\mathbf{P}$  If  $I = \emptyset$  this is trivial; suppose otherwise. Express  $C^*$  as  $\prod_{i \in I} E_i$  and C as  $\prod_{i \in I} F_i$ , so that  $C \cap C^* = \prod_{i \in I} (E_i \cap F_i)$ ; set  $\alpha_i = \mu_i(E_i \cap F_i)$ ,  $\beta_i = \mu_i F_i$  for each i. If  $\tau(C \cap C^*) = 0$  then  $C \cap C^*$  itself belongs to  $\Lambda_0$ . Otherwise, as remarked in 1Bb,  $K = \{i : \alpha_i \neq \beta_i\}$  is countable. Let  $\langle i_n \rangle_{n \in \mathbb{N}}$  run over a subset K' of I including K. For  $n \in \mathbb{N}$  set

$$W_n = \{x : x \in X, x(i_m) \in E_{i_m} \text{ for } m < n, x(i_n) \notin E_{i_n} \};$$

set

$$D = \bigcup_{i \in I \setminus K'} \{x : x(i) \in F_i \setminus E_i\}.$$

Then

$$C \setminus C^* = \bigcup_{n \in \mathbb{N}} (C \cap W_n) \cup (C \cap (D \setminus C^*)) = C \cap W'$$

where  $W' = (D \setminus C^*) \cup \bigcup_{n \in \mathbb{N}} W_n$  belongs to  $\Lambda_0$ . Now  $C \cap C^* = C \cap W$  where  $W = X \setminus W'$  belongs to  $\Lambda_0$ .

It follows that  $C^* \subseteq \Lambda_0$  and  $\lambda_0 C = \tau C$  for every  $C \in C$ ; consequently  $\lambda C = \tau C$  for every  $C \in C$ .

- (d)(i) Note first that K is closed under finite unions and countable intersections.
- (ii) If  $C, C' \in \mathcal{C}$  and  $\epsilon > 0$ , then there is a  $K \in \mathcal{K}$  such that  $K \subseteq C \setminus C'$  and  $\lambda K \ge \lambda(C \setminus C') \epsilon$ . **P** Express C, C' as  $\prod_{i \in I} E_i$  and  $\prod_{i \in I} F_i$  respectively. Set  $\beta_i = \mu_i E_i$ ,  $\alpha_i = \mu_i (E_i \cap F_i)$  for each i,  $\beta = \prod_{i \in I}^{(\mathcal{F})} \beta_i = \lambda C$ . If  $\beta = 0$  we can stop. Otherwise,  $\lambda(C \setminus C') = \beta(1 - \prod_{i \in I} \frac{\alpha_i}{\beta_i})$  and there is a finite  $L \subseteq I$  such that  $\beta(1 - \prod_{j \in L} \frac{\alpha_j}{\beta_i}) \ge \beta - \epsilon$ . For  $j \in L$  set

$$C_j = \{x : x \in C, x(j) \notin F_j\};$$

then

$$\lambda(C \setminus \bigcup_{j \in L} C_j) = \beta \prod_{j \in L} \frac{\alpha_j}{\beta_j}$$

so  $\lambda(\bigcup_{j\in L} C_j) \geq \beta - \epsilon$ . Set  $K = \bigcup_{j\in L} C_j$ . **Q** 

Note that if  $C \in \mathcal{C}$  and  $D \in \mathcal{D}$  then there is a  $C_0 \in \mathcal{C}$  such that  $C_0 \subseteq C \setminus D$  and  $\lambda C_0 = \lambda C$ .

(iii) Suppose that  $W \in \Lambda$  and  $\lambda W > 0$ . Then there is a  $K \in \mathcal{K}$  such that  $K \subseteq W$  and  $\lambda K > 0$ . **P** There is a  $W_1 \in \Lambda_0$  such that  $W_1 \subseteq W$  and  $0 < \lambda_0 W_1 < \infty$ . In this case,  $\theta W_1$  is finite, so there is a sequence  $\langle C_n \rangle_{n \in \mathbb{N}}$  in  $\mathcal{C} \cup \mathcal{D}$  such that  $W_1 \subseteq \bigcup_{n \in \mathbb{N}} C_n$ . Now there is an  $n \in \mathbb{N}$  such that  $W_2 = \lambda_0(W_1 \cap C_n) > 0$ . Of course  $C_n$  must belong to  $\mathcal{C}$ . Let  $\langle C'_m \rangle_{m \in \mathbb{N}}$  be a sequence in  $\mathcal{C} \cup \mathcal{D}$  such that  $C_n \setminus W_2 \subseteq \bigcup_{m \in \mathbb{N}} C'_m$  and  $\sum_{m=0}^{\infty} \lambda_0 C'_n < \lambda_0 C_n$ ; set  $W_3 = \bigcap_{m \in \mathbb{N}} C_m \setminus C'_m$ , so that  $\lambda W_3 > 0$ .

For each  $m \in \mathbb{N}$  we have a  $K_m \in \mathcal{K}$  such that  $K_m \subseteq C_n \setminus C'_m$  and  $\lambda K_m \ge \lambda(C_n \setminus C'_m) - 2^{-m-2}\lambda W_3$ . Now  $K = \bigcap_{m \in \mathbb{N}} K_m \subseteq W_3 \subseteq W$ ,  $K \in \mathcal{K}$  and  $\lambda K > 0$ . **Q** 

- (iv) As K is closed under finite unions, this is enough to show that  $\lambda$  is inner regular with respect to K.
  - **2E** Two special cases: Proposition Let  $\langle (X_i, \Sigma_i, \mu_i) \rangle_{i \in I}$ ,  $\mathcal{F}$ , X and  $\lambda$  be as in 2D.
  - (a) If I is finite, then  $\lambda$  is the c.l.d. product measure on X.
- (b) If I is countable and  $\beta = \prod_{i \in I}^{(\mathcal{F})} \mu_i X_i$  is defined, finite and not zero, set  $\mu'_i = \frac{1}{\mu_i X_i} \mu_i$  for each i, and let  $\lambda'$  be the product probability measure on X; then  $\lambda = \beta \lambda'$ .

**proof** In both parts, because I is countable, we see that the outer measure  $\theta$  of 2C can be defined from  $\mathcal{C}$  alone, since every member of  $\mathcal{D}$  is included in the union of countably many sets  $C \in \mathcal{C}$  with  $\tau C = 0$ .

- (a) If I is finite, then, looking at the construction in FREMLIN 01, §251, we see that  $\lambda_0$ , as defined in 2C, is just the primitive product measure, so its c.l.d. version  $\lambda$  is the c.l.d. product measure.
- (b) A direct calculation, using 1B, shows that  $\beta \prod_{i \in I} \mu_i' E_i = \theta C$  whenever  $E_i \in \Sigma_i$  for every i and  $C = \prod_{i \in I} E_i$ . So if we write  $\theta'$  for the outer measure described in Fremlin 01, 251A-251B, we shall have  $\theta = \beta \theta'$  and  $\lambda_0 = \beta \lambda'$ . Since  $\lambda_0$  is totally finite, we now have  $\lambda = \beta \lambda'$ .
- **2F Subspaces: Proposition** Let  $\langle (X_i, \Sigma_i, \mu_i) \rangle_{i \in I}$  be a family of measure spaces, and  $\mathcal{F}$  a filter on  $[I]^{<\omega}$  containing  $\{J: i \in J \in [I]^{<\omega}\}$  for every  $i \in I$ . For each  $i \in I$  take a  $Y_i \in \Sigma_i$  and write  $T_i$ ,  $\nu_i$  for the subspace  $\sigma$ -algebra and measure on  $Y_i$ . Let  $\lambda$  be the Baker  $\mathcal{F}$ -product measure on  $X = \prod_{i \in I} X_i$ . Then the Baker  $\mathcal{F}$ -product measure of  $\langle \nu_i \rangle_{i \in I}$  is the subspace measure  $\lambda_Y$  induced on  $Y = \prod_{i \in I} Y_i$  by  $\lambda$ .

**proof** Defining C,  $\tau$ ,  $\theta$  and  $\lambda_0$  as in 2C, and C',  $\tau'$ ,  $\theta'$  and  $\lambda'_0$  by the same process applied to  $\langle (Y_i, T_i, \nu_i) \rangle_{i \in I}$ , we see that

$$\begin{split} \mathcal{C}' &= \{C \cap Y : C \in \mathcal{C}\}, \\ \tau'C' &= \min\{\tau C : C \in \mathcal{C}, \, C' = C \cap Y\} \text{ for } C' \in \mathcal{C}', \\ \theta' &= \theta \! \upharpoonright \! \mathcal{P}Y, \end{split}$$

 $Y \in \text{dom } \lambda_0$  (see the proof of 2Dc).

It follows that  $\lambda'_0$  is the subspace measure on Y induced by  $\lambda_0$  (FREMLIN 01, 214H(b-ii)), and it is now easy to check that  $\lambda_Y$  is the c.l.d. version of  $\lambda'_0$ , so is the Baker  $\mathcal{F}$ -product of  $\langle \nu_i \rangle_{i \in I}$ .

#### 3 Associative law

**3B Theorem** (cf. Baker 04, Theorem II) Let I be a set,  $\langle (X_i, \Sigma_i, \mu_i) \rangle_{i \in I}$  a family of measure spaces, and  $(X, \Lambda, \lambda)$  the Baker product of  $\langle \mu_i \rangle_{i \in I}$ . Let  $(I_0, I_1)$  be a partition of I; for each  $k \leq 1$ , let  $\lambda_{0k}$  be the Baker product measure on  $Y_k = \prod_{i \in I_k} X_i$ . Let  $\nu$  be the c.l.d. product measure of  $\lambda_0$  and  $\lambda_1$  on  $Z = Y_0 \times Y_1$ . Let  $\rho: X \to Z$  be the natural bijection. Then  $\rho$  is an isomorphism between  $\lambda$  and  $\nu$ .

**proof** (a) Let  $\mathcal{C}$  be the family of subsets of X expressible in the form  $\prod_{i \in I} E_i$  where  $E_i \in \Sigma_i$  for every  $i \in I$  and  $\prod_{i \in I} \mu_i E_i$  is finite, and  $\mathcal{K}$  the family of countable intersections of finite unions of members of  $\mathcal{C}$ , as in 2Dd, so that  $\lambda$  is inner regular with respect to  $\mathcal{K}$  Now  $\nu \phi[K] = \lambda K$  for every  $K \in \mathcal{K}$ .  $\mathbf{P}$  If  $K = \emptyset$  this is trivial. If  $K \in \mathcal{C} \setminus \{\emptyset\}$ , express it as  $\prod_{i \in I} E_i$  where  $\prod_{i \in I} \mu_i E_i$  is finite; then

$$\lambda K = \lambda_0(\prod_{i \in I_0} E_i) \cdot \lambda_1(\prod_{i \in I_1} E_i) = \nu \phi[K].$$

As  $\mathcal{C}$  is closed under finite intersections,  $\nu\phi[K] = \lambda K$  for every  $K \in \mathcal{K}$  (see Fremlin 01, 136Xc<sup>1</sup>). **Q** 

(b) Now, for k=0 and k=1, let  $\mathcal{C}_k$  be the family of subsets of  $Z_k$  expressible in the form  $\prod_{i\in I} E_i$  where  $E_i \in \Sigma_i$  for every  $i \in I_k$  and  $\prod_{i\in I_k} \mu_i E_i$  is finite, and  $\mathcal{K}_k$  the family of countable intersections of finite unions of members of  $\mathcal{C}_k$ . Then  $\lambda_{0k}$  is inner regular with respect to  $\mathcal{K}_k$ . Writing  $\mathcal{L} = \{\phi[K] : K \in \mathcal{K}\}$ , we see that  $\mathcal{L}$  is closed under finite unions and countable intersections and contains  $C_0 \times C_1$  whenever  $C_k \in \mathcal{C}_k$  for both k. It therefore contains  $K_0 \times K_1$  whenever  $K_k \in \mathcal{K}_k$  for both k, and  $\nu$  must be inner regular with respect to  $\mathcal{L}$ , by FREMLIN 03, 412R. By FREMLIN 03, 412L,  $\phi$  must be a measure space isomorphism.

# 4 Topological Baker products

**4A Theorem** Let  $\langle (X_i, \mathfrak{T}_i, \Sigma_i, \mu_i) \rangle_{i \in I}$  be a family of Radon measure spaces, and  $\mathcal{F}$  a filter on  $[I]^{<\omega}$  containing  $\{J: i \in J \in [I]^{<\omega}\}$  for every  $i \in I$ . Let  $\mathcal{C}_k$  be the family of sets  $C \subseteq X$  expressible in the form  $C = \prod_{i \in I} E_i$  where  $E_i \subseteq X_i$  is compact for every i and  $\tau C = \prod_{i \in I} \mu_i E_i$  is defined and finite. Then there is a unique complete locally determined topological measure  $\tilde{\lambda}$  on  $X = \prod_{i \in I} X_i$ , inner regular with respect to the compact sets, such that

```
\tilde{\lambda}C = \tau C for every C \in \mathcal{C}_k;

\tilde{\lambda}A = 0 whenever A \subseteq X is such that \tilde{\lambda}(A \cap C) = 0 for every C \in \mathcal{C}_k.
```

**proof (a)** Define  $C \subseteq \mathcal{P}X$  and  $\tau : \mathcal{C} \to [0, \infty[$  as in 2A. Let  $\mathcal{C}'_{kss} \subseteq \mathcal{C}$  be the family of sets expressible in the form  $C = \prod_{i \in I} \mu_i E_i$  where  $E_i \in \Sigma_i$  for every i,  $E_i$  is compact and self-supporting (FREMLIN 03, 411Na) for all but countably many i, and  $\tau C = \prod_{i \in I}^{(\mathcal{F})} E_i$  is defined and finite. Set

$$\theta_k A = \inf\{\sum_{n=0}^{\infty} \tau C_n : C_n \in \mathcal{C}'_{kss} \text{ for every } n \in \mathbb{N}, C \subseteq \bigcup_{n \in \mathbb{N}} C_n\}$$

for  $A \subseteq X$  (cf. 2C); as before, interpret inf  $\emptyset$  as  $\infty$ , so that  $\theta_k$  is an outer measure. By 2B,  $\theta_k C = \tau C$  for every  $C \in \mathcal{C}'_{\mathrm{kss}}$ . Let  $\lambda_{0k}$  be the measure on X defined from  $\theta_k$  by Carathéodory's method, and  $\lambda_k$  its c.l.d. version; write  $\Lambda_{0k}$  and  $\Lambda_k$  for their respective domains.

(b) If  $j \in I$  and  $E \in \Sigma_j$ ,  $\lambda_{0k}$  measures  $W = \{x : x \in X, x(j) \in E\}$ . **P** Argue as in 2Da. If  $C \in \mathcal{C}'_{kss}$ , express it as  $\prod_{i \in I} E_i$ ; set

$$E'_{i} = E_{j} \cap E \text{ if } i = j,$$

$$= E_{i} \text{ for other } i \in I,$$

$$E''_{i} = E_{j} \setminus E \text{ if } i = j,$$

$$= E_{i} \text{ for other } i \in I.$$

<sup>&</sup>lt;sup>1</sup>Later editions only.

Then  $C \cap W = \prod_{i \in I} E_i'$  and  $C \setminus W = \prod_{i \in I} E_i''$  both belong to  $\mathcal{C}'_{kss}$ , and  $\tau C = \tau(C \cap W) + \tau(C \setminus W)$ . It follows that  $\theta_k A = \theta_k (A \cap W) + \theta_k (A \setminus W)$  for every  $A \subseteq X$ , so that  $W \in \Lambda_{0k}$ . **Q** Consequently  $\bigotimes_{i \in I} \Sigma_i \subseteq \Lambda_{0k}$ .

- (c) Let  $C'_c$  be the family of sets expressible in the form  $\prod_{i \in I} E_i$  where  $E_i \in \Sigma_i$  for every  $i \in I$  and  $E_i$  is closed for all but countably many i.
- (i) If  $C^* \in \mathcal{C}'_c$  and  $C \in \mathcal{C}'_{kss}$ , then  $\theta_k(C \cap C^*) + \theta_k(C \setminus C^*) \le \tau C$ . **P** If  $\tau C = 0$ , this is trivial. Otherwise, express  $C^*$  as  $\prod_{i \in I} E_i$  and C as  $\prod_{i \in I} F_i$  where  $E_i$  is closed and  $F_i$  is compact and self-supporting for all but countably many i. Set

$$L = \{i : E_i \text{ is not closed}\} \cup \{i : \mu_i(E_i \cap F_i) < \mu_i F_i\}$$
  
  $\cup \{i : F_i \text{ is not a compact self-supporting set}\}.$ 

( $\alpha$ ) If L is uncountable, then there must be a  $\delta > 0$  such that  $\{i : \mu_i(E_i \cap F_i) \le (1 - \delta)\mu_i F_i\}$  is infinite, and a countable  $L' \subseteq I$  such that  $\prod_{i \in L'} \frac{\mu_i(E_i \cap F_i)}{\mu_i F_i} = 0$ . Setting  $F'_i = E_i \cap F_i$  for  $i \in L'$ ,  $F_i$  for  $i \in I \setminus L'$ , we see that  $C' = \prod_{i \in I} F'_i$  belongs to  $C'_{kss}$  and  $\tau C' = 0$ . As  $C' \supseteq C \cap C^*$ ,  $\theta_k(C \cap C^*) = 0$  and  $\theta_k(C \cap C^*) + \theta_k(C \setminus C^*) \le \tau C$ . ( $\beta$ ) If L is countable, set  $W = \{x : x \in X, x(i) \in E_i \text{ for every } i \in L\}$ ; then  $W \in \widehat{\bigotimes}_{i \in I} \Sigma_i$  and  $C \cap C^* = C \cap W$ ,

$$\theta_k(C \cap C^*) + \theta_k(C \setminus C^*) = \theta_k(C \cap W) + \theta_k(C \setminus W) = \theta_kC = \tau C.$$
 **Q**

- (ii) It follows that  $\mathcal{C}'_c \subseteq \Lambda_{0k}$ ; in particular,  $\mathcal{C}'_{\mathrm{kss}} \subseteq \Lambda_{0k}$ , so  $\lambda_{0k}C = \theta_kC = \tau C$  for every  $C \in \mathcal{C}'_{\mathrm{kss}}$ .
- (iii) In fact  $\lambda_{0k}(C \cap C^*) = \tau(C \cap C^*)$  whenever  $C \in \mathcal{C}'_{kss}$  and  $C^* \in \mathcal{C}'_c$ .  $\mathbf{P}$  Express  $C, C^*$  as  $\prod_{i \in I} F_i$ ,  $\prod_{i \in I} E_i$  respectively, as in (i) above. If  $\tau C = 0$  then of course  $\tau(C \cap C^*) = \lambda_{0k}(C \cap C^*) = 0$ . Otherwise, again set

$$L = \{i : E_i \text{ is not closed}\} \cup \{i : \mu_i(E_i \cap F_i) < \mu_i F_i\}$$
$$\cup \{i : F_i \text{ is not a compact self-supporting set}\}.$$

- As in (i), if L is uncountable then  $\tau(C \cap C^*) = \lambda_{0k}(C \cap C^*) = 0$ . But if L is countable, then  $C \cap C^* \in \mathcal{C}'_{lss}$ , so surely  $\tau(C \cap C^*) = \lambda_{0k}(C \cap C^*)$ . **Q**
- (iv) We find also that  $\lambda_k C = \tau C$  for every  $C \in \mathcal{C}_k$ . **P** We know from (ii) that C belongs to  $\Lambda_{0k}$  so is measured by  $\lambda_k$ . Express C as  $\prod_{i \in I} E_i$  where every  $E_i$  is compact. For each i, let  $\hat{E}_i \subseteq E_i$  be a selfsupporting compact set with the same measure as  $E_i$ ; then  $\hat{C} = \prod_{i \in I} \hat{E}_i$  belongs to  $\mathcal{C}'_{kss}$  and is measured by  $\lambda_{0k}$ . We also have

$$\lambda_{0k}(C' \cap \hat{C}) = \tau(C' \cap \hat{C}) = \tau(C' \cap C) = \lambda_{0k}(C' \cap C), \quad \lambda_{0k}(C' \cap C \setminus \hat{C}) = 0$$

for every  $C \in \mathcal{C}'_{kss}$ , so  $\lambda_k(C \setminus \hat{C}) = 0$  and

$$\lambda_k C = \lambda_k \hat{C} = \tau \hat{C} = \tau C.$$
 Q

- (d) Let  $\mathcal{C}_{kss} \subseteq \mathcal{C}'_{kss}$  be the family of subsets of X of the form  $\prod_{i \in I} E_i$  where  $E_i$  is a compact self-supporting subset of  $X_i$  for every i and  $\prod_{i\in I}^{(\mathcal{F})}\mu_iE_i$  is defined and finite. Let  $\mathcal{K}_k$  be the family of countable intersections of finite unions of members of  $\mathcal{C}_{kss}$ . Then  $\mathcal{K}_k$  is closed under finite unions and countable intersections, and every member of  $\mathcal{K}_k$  is compact.
- If C,  $C' \in \mathcal{C}'_{kss}$  and  $\epsilon > 0$ , there is a  $K \subseteq C \setminus C'$  such that  $K \in \mathcal{K}_k$  and  $\lambda_{0k}K \ge \lambda_{0k}(C \setminus C') 3\epsilon$ . **P** Express C, C' as  $\prod_{i \in I} E_i$ ,  $\prod_{i \in I} E_i'$  respectively; set  $\beta_i = \mu_i E_i$  for each i,  $\beta = \tau C$ . If  $\beta = 0$  we can take  $K = \emptyset$  and stop. Otherwise, since  $L_0 = \{i : E_i \text{ is not a compact self-supporting set}\}$  is countable, we can find  $\langle \beta_i' \rangle_{i \in L_0}$  such that  $0 < \beta_i' < \beta_i$  for  $i \in L_0$  and  $\beta \cdot \prod_{i \in L_0} \frac{\beta_i'}{\beta_i} \ge \beta - \epsilon$ . For  $i \in L_0$  choose a compact self-supporting  $F_i \subseteq E_i$  such that  $\mu_i F_i \geq \beta_i'$ ; for  $i \in I \setminus L_0$  set  $F_i = E_i$ , and set  $\hat{C} = \prod_{i \in I} F_i \in \mathcal{C}_{kss}$ . For every  $i \in I$  set  $\gamma_i = \mu_i F_i$ , and  $\gamma = \tau \hat{C} = \prod_{i \in I}^{(\mathcal{F})} \gamma_i$ . Then  $\lambda_{0k} \hat{C} = \gamma \geq \beta - \epsilon$  and  $\lambda_{0k} (C \setminus \hat{C}) \leq \epsilon$ .

Next, for  $i \in I$ , set  $\alpha_i = \mu_i(F_i \cap E'_i)$ . By (c-iii) above,

$$\lambda_{0k}(\hat{C} \cap C') = \prod_{i \in I}^{(\mathcal{F})} \alpha_i = \gamma \cdot \prod_{i \in I} \frac{\alpha_i}{\gamma_i},$$

and

$$\gamma(1 - \prod_{i \in I} \frac{\alpha_i}{\gamma_i}) = \lambda_{0k}(\hat{C} \setminus C') \ge \lambda_{0k}(C \setminus C') - \epsilon.$$

There is now a finite  $L \subseteq I$  such that  $\gamma(1 - \prod_{j \in L} \frac{\alpha_j}{\gamma_j}) \geq \lambda_{0k}(C \setminus C') - 2\epsilon$ . Let  $\langle \alpha'_j \rangle_{j \in L}$  be such that  $\gamma(1 - \prod_{j \in L} \frac{\alpha'_j}{\gamma_j}) \geq \lambda_{0k}(C \setminus C') - 3\epsilon$  and  $\alpha'_j > \alpha_j$  for each  $j \in L$ . For  $j \in L$  take a compact self-supporting set  $H_j \subseteq F_j \setminus E'_j$  such that  $\mu_j H_j \geq \gamma_j - \alpha'_j$ , and set

$$C_j = \{x : x \in \hat{C}, x(j) \in H_j\};$$

then  $C_j \in \mathcal{C}_{\mathrm{kss}}$  for each j,  $\hat{C} \setminus \bigcup_{j \in L} C_j \in \mathcal{C}'_{\mathrm{kss}}$ , and

$$\lambda_{0k}(\hat{C} \setminus \bigcup_{j \in L} C_j) = \tau(\{x : x \in \hat{C}, x(j) \notin H_j \text{ for every } j \in L\})$$

$$= \gamma \cdot \prod_{j \in L} \frac{\mu_j(F_j \setminus H_j)}{\mu_j F_j} \le \gamma \cdot \prod_{j \in L} \frac{\alpha'_j}{\gamma_j}$$

so  $K = \bigcup_{j \in L} C_j$  belongs to  $\mathcal{K}_k$  and

$$\lambda_{0k}K = \lambda_{0k}(\bigcup_{j \in L} C_j) \ge \gamma(1 - \prod_{j \in L} \frac{\alpha'_j}{\gamma_j}) \ge \lambda_{0k}(C \setminus C') - 3\epsilon$$

as required. **Q** 

Now we can use the argument in (d-iii) and (d-iv) of the proof of 2D to see that  $\lambda_k$  is inner regular with respect to  $\mathcal{K}_k$ .

(e) Let  $\mathcal{K}^f$  be the family of those compact sets  $K \subseteq X$  included in some member of  $\mathcal{K}_k$ . By Fremlin 03, 413O, there is a complete locally determined measure  $\tilde{\lambda}$  on X, extending  $\lambda_k$ , and inner regular with respect to  $\mathcal{K}^f$ . By Fremlin 03, 412Ja,  $\tilde{\lambda}$  measures every closed set and is a topological measure; of course it is inner regular with respect to the compact sets. By (c-iv),  $\tilde{\lambda}C = \tau C$  for every  $C \in \mathcal{C}_k$ .

If  $A \subseteq X$  is such that  $\tilde{\lambda}(A \cap C) = 0$  for every  $C \in \mathcal{C}_k$ , then of course  $\tilde{\lambda}(A \cap C) = 0$  for every  $C \in \mathcal{C}_{kss}$ , and  $\tilde{\lambda}(A \cap K) = 0$  for every  $K \in \mathcal{K}^f$ ; it follows that A is  $\tilde{\lambda}$ -negligible (FREMLIN 03, 412Jb).

(f) Thus  $\tilde{\lambda}$  satisfies the conditions of the theorem. Now suppose that  $\nu$  is another measure on X with these properties. Let  $\mathcal{E}$  be the ring of sets generated by  $\mathcal{C}_k$ . Because  $\mathcal{C}_k$  is closed under finite intersections and  $\nu$  and  $\tilde{\lambda}$  agree on  $\mathcal{C}_k$ , they agree on  $\mathcal{E}$ . It follows that they agree on any compact set K included in a member of  $\mathcal{E}$ . P Every member of  $\mathcal{E}$  is included in a finite union of members of  $\mathcal{C}_k$ , which will always be compact; so there is a compact  $V_0 \in \mathcal{E}$  including K. Let  $\mathcal{V}$  be the family of compact members of  $\mathcal{E}$  including K and included in  $V_0$ . Then  $\mathcal{V}$  is downwards-directed and  $K \subseteq \bigcap \mathcal{V}$ . If  $x \in X \setminus K$ , there is an open set U, of the form  $\{y: y(i) \in U_i \text{ for } i \in J\}$  where  $J \subseteq X$  is finite and  $U_i \subseteq X_i$  is open for every  $i \in J$ , such that  $x \in U \subseteq X \setminus K$ ; in which case  $V_0 \setminus U$  is a compact set, belonging to  $\mathcal{E}$ , including K and not containing X. Thus  $K = \bigcap \mathcal{V}$ . Because both  $\nu$  and  $\tilde{\lambda}$  are topological measures inner regular with respect to the compact sets and finite on  $V_0$ ,

$$\nu K = \inf_{V \in \mathcal{V}} \nu V = \inf_{V \in \mathcal{V}} \tilde{\lambda} V = \tilde{\lambda} K.$$
 **Q**

On the other hand, the final clause in the specifications for  $\tilde{\lambda}$  implies that both  $\tilde{\lambda}$  and  $\nu$  are inner regular with respect to the family of compact sets included in members of  $\mathcal{E}$ . Since they are both complete locally determined topological measures, they are identical (FREMLIN 03, 412L).

4B There are significant simplifications for countable products, as follows.

**Proposition** Let  $\langle (X_i, \Sigma_i, \mu_i) \rangle_{i \in I}$  be a countable family of measure spaces, and  $\mathcal{F}$  a filter on  $[I]^{<\omega}$  containing  $\{J: i \in J \in [I]^{<\omega}\}$  for every  $i \in I$ . Let  $\lambda$  be the Baker  $\mathcal{F}$ -product measure on  $X = \prod_{i \in I} X_i$ . Suppose that each  $X_i$  is endowed with a topology, and that X has the product topology.

(i) If every  $\mu_i$  is inner regular with respect to the closed sets, so is  $\lambda$ .

- (ii) If every  $\mu_i$  is inner regular with respect to the zero sets, so is  $\lambda$ .
- (iii) If every  $\mu_i$  is inner regular with respect to the closed compact sets, so is  $\lambda$ .

**proof (a)** If for each  $i \in I$  we are given a family  $\mathcal{K}_i \subseteq \mathcal{P}X_i$  such that  $\mu_i$  is inner regular with respect to  $\mathcal{K}_i$ , and if  $\mathcal{M} \subseteq \mathcal{P}X$  is closed under finite unions and countable intersections and contains  $\prod_{i \in I} K_i$  whenever  $K_i \in \mathcal{K}_i$  for every i, then  $\lambda$  is inner regular with respect to  $\mathcal{M}$ .  $\mathbf{P}$  As in 2D, let  $\mathcal{C}$  be the family of sets expressible as  $\prod_{i \in I} E_i$  where  $E_i \in \Sigma_i$  for every i and  $\prod_{i \in I}^{(\mathcal{F})} \mu_i E_i$  is defined and finite, and  $\mathcal{K}$  the family of sets expressible as countable intersections of finite unions of members of  $\mathcal{C}$ . Because I is countable, we find that whenever  $C \in \mathcal{C}$  and  $\epsilon > 0$  there is an  $M \in \mathcal{M}$  such that  $M \subseteq C$  and  $\lambda M \ge \lambda C - \epsilon$ . It follows that whenever  $K \in \mathcal{K}$  and  $\epsilon > 0$  there is an  $M \in \mathcal{M}$  such that  $M \subseteq K$  and  $\lambda M \ge \lambda K - \epsilon$ . As  $\lambda$  is inner regular with respect to  $\mathcal{K}$ .  $\mathbf{Q}$ 

- (b) Now all we have to do is apply (a) with suitable families  $\mathcal{K}_i$ , as in the proof of 412T in Fremlin 03.
- **4C Proposition** Let  $\langle (X_i, \mathfrak{T}_i, \Sigma_i, \mu_i) \rangle_{i \in I}$  be a countable family of Radon measure spaces, and  $\mathcal{F}$  a filter on  $[I]^{<\omega}$  containing  $\{J: i \in J \in [I]^{<\omega}\}$  for every  $i \in I$ . Let  $\lambda$  be the Baker  $\mathcal{F}$ -product measure on  $X = \prod_{i \in I} X_i$ , and  $\tilde{\lambda}$  be the product topological measure defined in Theorem 4A. Then  $\tilde{\lambda}$  extends  $\lambda$ .

**proof** In the language of the proof of 4A,  $C'_{kss} = C$ . So  $\theta_k$ ,  $\lambda_{0k}$  and  $\lambda_k$ , as defined there, coincide with  $\theta$ ,  $\lambda_0$  and  $\lambda$  as defined in 2C. But we saw in part (e) of the proof of 4A that  $\tilde{\lambda}$  extends  $\lambda_k$ .

**4D** Let I be any set and suppose that  $(X_i, \Sigma_i, \mu_i)$  is  $\mathbb{R}$  with Lebesgue measure for every  $i \in I$ . Let  $\mathcal{F}$  be a filter on  $[I]^{<\omega}$  containing  $\{J: i \in J \in [I]^{<\omega}\}$  for every  $i \in I$ , and  $\lambda$  the Baker  $\mathcal{F}$ -product measure on  $\mathbb{R}^I$ . Then  $\lambda$  is translation-invariant.  $\mathbf{P}$  In the construction of 2A,  $\mathcal{C}$ ,  $\mathcal{D}$  and  $\tau$  are all translation-invariant.  $\mathbf{Q}$  Similarly,  $\lambda(-W) = \lambda W$  whenever either is defined. By 2Dd,  $\{x: x \geq y\}$  and  $\{x: x \leq y\}$  are measured by  $\lambda$ , for every  $y \in \mathbb{R}^I$ .

The subspace measure on  $\ell^{\infty}(I)$  induced by  $\lambda$  is a translation-invariant measure in which a ball  $B(x,\alpha)$  has measure 0 if  $\alpha < \frac{1}{2}$ , 1 if  $\alpha = \frac{1}{2}$  and  $\infty$  if  $\alpha > \frac{1}{2}$ .

The magnitude of  $\lambda$  is  $\mathfrak{c}$  (because there are just  $\mathfrak{c}$  compact subsets of X) and its additivity is the additivity of Lebesgue measure (use 2F and 2Eb). So if these are equal,  $\lambda$  is strictly localizable (Fremlin 08, 521K<sup>2</sup>).

## References

Baker R. [04] "Lebesgue measure" on  $\mathbb{R}^{\infty}$ , II', Proc. Amer. Math. Soc. 132 (2004) 2577-2591.

Fremlin D.H. [01] Measure Theory, Vol. 2: Broad Foundations. Torres Fremlin, 2001.

Fremlin D.H. [02] Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, 2002.

Fremlin D.H. [03] Measure Theory, Vol. 4: Topological Measure Spaces. Torres Fremlin, 2003.

Fremlin D.H. [08] Measure Theory, Vol. 5: Set-Theoretic Measure Theory. Torres Fremlin, 2008.

<sup>&</sup>lt;sup>2</sup>Later editions only.