Linked sets in probability algebras

D.H.FREMLIN

University of Essex, Colchester, England

1 Definition For a cardinal κ , write $(\mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa})$ for the measure algebra of the usual measure on $\{0, 1\}^{\kappa}$. For a cardinal κ and real $\alpha \in [0, 1]$, write $lk(\kappa, \alpha)$ for the least cardinal of any family of linked subsets of \mathfrak{B}_{κ} covering $C_{\kappa\alpha} = \{a : a \in \mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa}a \geq \alpha\}$. (Recall that a set $A \subseteq \mathfrak{B}_{\kappa}$ is linked if $a \cap b \neq 0$ for all $a, b \in A$; see FREMLIN 08, 511Dd.)

2 Lemma Let $r \ge 1$ be an integer, and $S_r \subseteq \mathbb{R}^{r+1}$ the unit sphere in (r+1)-dimensional Euclidean space. If $\langle F_i \rangle_{i \le r}$ is a cover of S_r by closed sets, then there are a $u \in S_r$ and an $i \le r$ such that u and -u both belong to S_r .

proof ? Otherwise, there is a $\delta > 0$ such that $||u + v|| \ge \delta$ whenever $i \le r$ and $u, v \in F_i$. For each $i \le r$, set $f_i(v) = \max(0, 1 - \frac{2}{\delta}\rho(v, F_i))$ for every $v \in S_r$, setting $\rho(v, F_i) = \inf_{u \in F_i} ||u - v||$ (or ∞ if $F_i = \emptyset$). Then $f(v) = \sum_{i=0}^r f_i(v) \ge 1$ for every $v \in S_r$. Set $g(v) = \langle \frac{f_i(v)}{f(v)} \rangle_{i \le r}$ for $v \in S_r$; then g is a continuous function from S_r to $\{x : x \in \mathbb{R}^{r+1}, \sum_{i=0}^r x(i) = 1\} \cong \mathbb{R}^r$. By the Borsuk-Ulam theorem (HATCHER 02, 2B.7), there is a $w \in S_r$ such that g(w) = g(-w). In this case, there is an $i \le r$ such that $f_i(w) > 0$, and we must also have $f_i(-w) > 0$. So there are $u, v \in F_i$ such that $||u - w|| \le \frac{1}{2}\delta$ and also $||v + w|| \le \frac{1}{2}\delta$; but it follows that $||u + v|| \le \delta$, contrary to the definition of δ .

3 Theorem (a) If $\alpha \in \left]\frac{1}{2}, 1\right]$ then $\operatorname{lk}(\kappa, \alpha) = 1$ for every κ . (b) $\operatorname{lk}(\kappa, \frac{1}{2}) = 2$ for every $\kappa \geq 1$. (c) If $\kappa \leq \lambda$ are cardinals and $\alpha \leq \beta$, then $\operatorname{lk}(\kappa, \beta) \leq \operatorname{lk}(\lambda, \alpha)$.

(d) If $\omega \leq \kappa \leq \mathfrak{c}$ and $0 < \alpha < \frac{1}{2}$, then $lk(\kappa, \alpha) = \omega$.

proof (a) In this case, $C_{\kappa\alpha}$ itself is linked.

(b) Since $C_{\kappa,1/2}$ is not linked, $\operatorname{lk}(\kappa, \frac{1}{2}) \geq 2$. In the other direction, let A_0, A_1 be a partition of $C_{\kappa\alpha}$ such that $1 \setminus a \in A_1$ for every $a \in A_0$; then A_0 and A_1 are both linked, so $\operatorname{lk}(\kappa, \frac{1}{2}) \leq 2$.

(c) There is a measure-preserving Boolean homomorphism $\pi : \mathfrak{B}_{\kappa} \to \mathfrak{B}_{\lambda}$, and $\pi[C_{\kappa\beta}] \subseteq C_{\lambda\alpha}$. So if \mathcal{A} is a family of linked subsets of \mathfrak{B}_{λ} , covering $C_{\lambda\alpha}$, of cardinal $\operatorname{lk}(\lambda,\beta)$, $\{\pi^{-1}[A] : A \in \mathfrak{A}\}$ is a family of linked subsets of \mathfrak{B}_{λ} , covering $C_{\kappa\beta}$, of cardinal at most $\operatorname{lk}(\lambda,\beta)$.

(d) Since \mathfrak{B}_{κ} is σ -linked (FREMLIN 08, 524L), $|\mathbf{k}(\kappa, \alpha)| \leq \omega$. In the other direction, $|\mathbf{k}(\kappa, \alpha)| > r + 1$ for every integer $r \geq 1$. **P?** If $|\mathbf{k}(\kappa, \alpha)| \leq r + 1$, let $\langle A_i \rangle_{i \leq r}$ be a family of linked subsets of \mathfrak{B}_{κ} covering $C_{\omega\alpha}$. As in §2, let $S_r \subseteq \mathbb{R}^{r+1}$ be the unit sphere. Let μ_{Hr} be Hausdorff *r*-dimensional measure on S_r ; set $\mu = \frac{1}{\mu_{Hr}S_r}\mu_{Hr}$. Because μ is an atomless Radon probability measure on a compact metrizable space, μ and ν_{ω} are isomorphic (FREMLIN 02, 344K), and the measure algebra $(\mathfrak{A}, \bar{\mu})$ of μ is isomorphic to $(\mathfrak{B}_{\omega}, \bar{\nu}_{\omega})$; there is therefore a measure-preserving homomorphism $\pi : \mathfrak{A} \to \mathfrak{B}_{\kappa}$. Let $\delta > 0$ be such that $\mu\{x : x \in S_r, x(0) \geq \delta\} = \alpha$, and for $u \in S_r$ set

$$D_u = \{ x : x \in S_r, \, x \cdot u \ge \delta \}, \quad d_u = \pi D_u^{\bullet} \in C_{\omega \alpha}$$

For each i < r, set $H_i = \{u : u \in S_r, c_u \in A_i\}$. Then $S_r = \bigcup_{i < r} H_i$, so there are $w \in S_r$ and i < r such that w and -w both belong to \overline{H}_i , by Lemma 2. Let $u, v \in H_i$ be such that $||u - w|| < \delta$ and $||v + w|| < \delta$. Then $D_u \cap D_v \neq \emptyset$; take $x \in D_u \cap D_v$; we have

$$x \cdot w > x \cdot u - \delta \ge 0, \quad x \cdot (-w) > x \cdot v - \delta \ge 0,$$

which is impossible. **X** Thus $lk(\omega, \alpha) > r + 1$. **Q**

Since r is arbitrary, $lk(\kappa, \alpha) \ge \omega$, as required.

4 Problem What about $\kappa > \mathfrak{c}, \alpha < \frac{1}{2}$?

5 Lemma Let κ be an infinite cardinal and $k \ge 1$ an integer; set n = 4k. For $I \in [\kappa]^n$, enumerate I in increasing order as $\langle \xi_i \rangle_{i < n}$ and set $I_e = \{\xi_{2i} : i < 2k\}, I_o = \{\xi_{2i+1} : i < 2k\}$. Set

$$E_I = \{x : x \in \{0,1\}^{\kappa}, \, \#(I_o \cap x^{-1}[\{1\}]) > \#(I_e \cap x^{-1}[\{1\}])\}$$

Then

(a)
$$\nu_{\kappa} E_I \geq \frac{1}{2} - 2^{-k}$$
 for every $I \in [\kappa]^n$,

(b) if $J \in [\kappa]^{n+1}$ then $E_{J \setminus \{\max J\}}$ and $E_{J \setminus \{\min J\}}$ are disjoint.

proof (a) Let $\langle X_i \rangle_{i < n}$ be independent random variables, each taking the values 0, 1 with probability $\frac{1}{2}$; set $X_e = \sum_{i=0}^{2k-1} X_{2i}, X_o = \sum_{i=0}^{2k-1} X_{2i+1}$. Then

$$\nu_{\kappa} E_I = \Pr(X_e - X_o > 0) = \frac{1}{2} (1 - \Pr(X_o = X_e)) \ge \frac{1}{2} (1 - \max_{r \le 2k} \Pr(X_o = r))$$

(because X_o, X_e are independent, so $\Pr(X_o = X_e) = \sum_{r=0}^{2k} \Pr(X_e = r) \Pr(X_o = r)$)

$$= \frac{1}{2} \left(1 - \frac{(k!)^2}{(2k)!} \right) \ge \frac{1}{2} - 2^{-k}.$$

(b) Setting $I = J \setminus \{\max J\}$ and $I' = J \setminus \{\min J\}$, we see that

$$I'_e = I_o, \quad I'_o = (I_e \setminus \{\min J\}) \cup \{\max J\}.$$

So if $x \in E_I$,

$$\#(I'_o \cap x^{-1}[\{1\}]) - \#(I'_e \cap x^{-1}[\{1\}]) \le 1 + \#(I_e \cap x^{-1}[\{1\}]) - \#(I_o \cap x^{-1}[\{1\}]) < 1$$

and $x \notin E'_I$.

6 An arrow relation If κ , λ are cardinals and n is an integer, consider the statement

 $P(\kappa, n, \lambda)$: whenever $f : [\kappa]^n \to \lambda$ is a function, there is a $J \in [\kappa]^{n+1}$ such that $f(J \setminus \{\max J\}) = f(J \setminus \{\min J\})$.

7 Proposition Suppose that $k \ge 1$ is an integer and that κ , λ are infinite cardinals such that $P(\kappa, 4k, \lambda)$ is true. Then $lk(\kappa, \frac{1}{2} - 2^{-k}) > \lambda$.

proof ? Otherwise, let $\langle A_{\eta} \rangle_{\eta < \lambda}$ be a family of linked sets in \mathfrak{B}_{κ} covering $C_{\kappa\alpha}$, where $\alpha = \frac{1}{2} - 2^{-k}$. For $I \in [\kappa]^n$, define E_I as in Lemma 5; then $E_I^{\bullet} \in C_{\kappa\alpha}$, by 5a. Set $f(I) = \min\{\eta : E_I^{\bullet} \in A_{\eta}\}$ for $I \in [\kappa]^n$. Let $J \in [\kappa]^{n+1}$ be such that $f(J \setminus \{\max J\}) = f(J \setminus \{\min J\})$; then $E_{J \setminus \{\max J\}} \cap E_{J \setminus \{\min J\}} \neq \emptyset$; but this contradicts 5b. **X**

8 Problem Is there any $n \in \mathbb{N}$ such that $P(\mathfrak{c}^+, n, \omega)$ is true? By the Erdős-Rado theorem (JUST & WEESE 97, 15.13), $P(\mathfrak{c}^+, 2, \omega)$ is false.

References

Fremlin D.H. [02] Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, 2002.

Fremlin D.H. [08] Measure Theory, Vol. 5: Set-theoretic Measure Theory. Torres Fremlin, 2008 (http://www.lulu.com) Hatcher, A. [02] Algebraic Topology. Cambridge U.P., 2002; http://www.math.cornell.edu/~hatcher/AT/ATpage.html. Just W. & Weese M. [97] Discovering Modern Set Theory II. Amer. Math. Soc., 1997 (Graduate Studies in Mathematics 18).