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Give a penny, take a penny
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1 A game

1A Definition (Model 96, Abraham & Schipperus 07) For k ∈ N, l ≤ m in N and a cardinal κ ≥ m

consider the following game MG(κ,m, l, k):

start from I0 = m;
given In ∈ [κ]m, Remover plays I ′n ∈ [In]m−l,
given I ′n ∈ [κ]m−l, Adder plays In+1 ∈ [κ]m such that In+1 ⊇ I ′n,
Remover wins if #(

⋃
n∈N

⋂
j≥n I ′j) ≤ k.

1B Elementary remarks (a) On the ordinary rules for infinite games, Remover has a winning strategy
whenever l ≥ 1, since he can delete points in the order in which they are introduced.

(b) On the other hand, Remover can have a winning tactic only if k ≥ m − l, since Adder can always
replace the points which Remover has just deleted to make In = m, I ′n = I ′0 for every n. (Of course, if
k ≥ m − l, then Remover necessarily wins.)

(c) So we look at time-dependent tactics for Remover, that is, functions f : N × [κ]m → [κ]m−l such
that f(n, I) ⊆ I for every I and n, and a corresponding run of the game will have I ′n = f(n, In) for every n.

2 Winning tactics

2A Proposition If m ≤ k + l then Remover has a winning time-dependent tactic in MG(κ,m, l, k).

proof Trivial.

2B Proposition (B.I.Model) If κ ≤ c and m < (k+1)(l+1) then Remover has a winning time-dependent
tactic in MG(κ,m, l, k).

proof Because κ ≤ c there is a family 〈Kni〉n∈N,i≤k such that Kni ∩Knj = ∅ whenever i, j ≤ k are distinct
and whenever K ∈ [κ]k+1 there are infinitely many n such that K meets Kni for every i ≤ k. Now, given
J ∈ [κ]m and n ∈ N, there must be an i ≤ k such that #(J ∩ Kni) ≤ l; take f(n, J) ⊆ J \ Kni for such an
i. ??? If I0, I

′
0, . . . is a run of the game, consistent with f , in which Remover loses, let K ∈ [κ]k+1, n0 ∈ N be

such that K ⊆ I ′n for every n ≥ n0. There is an n ≥ n0 such that K ∩ Kni for every i ≤ k; but there is an
i ≤ k such that I ′n ∩ Kni = ∅. XXX So f is a winning time-dependent tactic.

2C Theorem (Abraham & Schipperus 07, 2.1) If k, l, m ∈ N, 1 ≤ l ≤ m, and κ ≤ ωk, there is a
winning time-dependent tactic for Remover in MG(ωk,m, l, k).

proof Fix l ≥ 1.

(a) I show by induction on k, simultaneously for all m ≥ l, that that there is a winning time-dependent
tactic fmk for Remover in MG(ωk,m, l, k) such that

(*) for every K ∈ [ωk]k+1 there is a q ∈ N such that

whenever I0, I
′
0, . . . , Iq, I

′
q is a finite sequence such that In ∈ [ωk]m and I ′n = fmk(n, In)

for every n ≤ q and I ′n ⊆ In+1 for n < q

then K 6⊆
⋂

n≤q I ′n.

(Note that I0, I
′
0, . . . here need not be quite a finite partial run of MG(ωk,m, l, k) because there is no promise

that I0 = m.)

(b) To start the induction, with k = 0, all we need to do is take a function fm0 : N × [ω]m → ωm−l such
that
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fm0(2
j(2i + 1), I) ⊆ I \ {j}

for all i, j ∈ N and I ∈ [ω]m.
The rest of the proof will be devoted to the inductive step to k > 1, for a given m ≥ l.

(c) Of course if m = l then we have to take fkm(I) = ∅ for every I ∈ [ωk]m, and this will do what
we want. So we may suppose that l < m. In this case, if ξ < ωk is an ordinal and l ≤ p < m, then we
can copy the function fp,k−1¹N × [#(ξ)]p into a function gξp : N × [ξ]p → [ξ]p−l such that gξp(n, I) ⊆ I

whenever I ∈ [ξ]p and n ∈ N, and whenever K ∈ [ξ]k there is a q ∈ N such that K 6⊆
⋂

n≤q I ′n whenever

I0, I
′
0, . . . , Iq, I

′
q are such that In ∈ [ξ]p and I ′n = gξp(In) for n ≤ q, while I ′n ⊆ In+1 for n < q.

(d) The tactic f = fmk will be based on ‘cycles’, ‘phases’ and ’steps’, as follows. Cycle q, for q ≥ 1,
will consist of m − l phases labelled with phase numbers p = m − 1, . . . , l in decreasing order. Phase p of
cycle q will consist of q steps. So each cycle q will take q(m− l) steps; accordingly cycle q will begin at time
1
2q(q− 1)(m− l). Time n will therefore be step i of phase p of cycle q where q ≥ 1, m− 1 ≥ p ≥ l, i < q and

n =
1

2
q(q − 1)(m − l) + (m − 1 − p)q + i.

Next we need the notion of ‘pivot’. If we are at step i of phase p of cycle q, with n = 1
2q(q − 1)(m− l) +

(m − 1 − p)q + i, and I ⊆ ωk has m members, the pivot of I will be that ξ ∈ I such that #(I ∩ ξ) = p. In
this case, Remover’s move will be

f(n, I) = (I \ ξ) ∪ gξp(i, I ∩ ξ) ∈ [I]m−l.

(e) A run of MG(ωk,m, l, k) in which Remover follows this tactic will therefore see him using the tactics gξp

in an irregular succession, because the pivots will change in response to the moves by Adder. So the key to the
proof is the fact that these changes are limited in the presence of fixed points, as follows. Suppose that ξ < ωk

and that we have a finite sequence corresponding to a whole cycle, that is, Ir, I
′
r, Ir+1, I

′
r+1, . . . , Ir+(m−l)q,

where r = 1
2q(q − 1), such that In ∈ [ωk]m and I ′n = f(n, In) ⊆ In+1 for r ≤ n < r + (m − l)q, such that

ξ ∈
⋂

r≤n<r+(m−l)q I ′n. Then there will be a phase of the cycle q during the whole of which ξ is the pivot.

PPP For m − 1 ≥ p ≥ m − l and i < q, set npi = r + (m − 1 − p)q + i, and let ξpi ∈ Inpi
be the corresponding

pivot, so that #(Inpi
∩ ξpi) = p and I ′npi

= (Inpi
\ ξpi) ∪ gξpip(i, Inpi

∩ ξpi).

In this case, for each p, we see that

#(Inp,i+1
∩ ξpi) = #(Inpi+1 ∩ ξpi) ≤ l + #(I ′npi

∩ ξpi) = l + #(f(npi, Inpi
) ∩ ξpi)

= l + #(gξpip(i, Inpi
∩ ξpi)) = l + #(Inpi

∩ ξpi) − l = p

whenever i < q − 1. But this will mean that ξp,i+1 ≥ ξpi, that is, the pivots are non-decreasing during the
phase p.

In the final phase p = l, we have gξlil(i, J) = ∅ for every i and every J ∈ [ξli]
l, so that ξ ≥ ξli for every

i < q. There is therefore a first (that is to say, greatest) p such that ξp,q−1 ≤ ξ. ??? If ξp0 < ξ, we have
ξ ∈ Inp0

and #(Inp0
∩ ξ) > p. Of course this means that p < m− 1 and ξ′ = ξp+1,q−1 is defined and greater

than ξ. But now

#(Inp0
∩ ξ) ≤ #(Inp0

∩ ξ′) − 1

≤ l + #(gξ′,p+1(Inp+1,q−1
∩ ξ′)) − 1 = p

and ξ ≤ ξp0. XXX Thus ξ ≤ ξp0 and ξpi = ξ for every i < q, as required. QQQ

(f) Now suppose that K ∈ [ωk]k+1. Set ξ = max K. For each p such that m− 1 ≥ p ≥ l there is a qp ∈ N

such that if I0, I
′
0, . . . , Iqp

, I ′qp
are such that Ii ∈ [ξ]p, I ′i = gξp(i, Ii) for i ≤ qp, Ii+1 ⊇ I ′i for i < qp, then

K ∩ ξ 6⊆
⋂

i<qp
I ′i. Take any q ≥ max{qp : l ≤ p < m − 1}. Then if r = 1

2q(q − 1) and Ir, I
′
r, . . . , Ir+(m−l)q

are such that In ∈ [ωk]m and I ′n = f(n, In) ⊆ In+1 for r ≤ n < r + (m − l)q, then K 6⊆
⋂

r≤n<r+(m−l)q I ′n.

PPP??? Otherwise, there must be a phase p, with l ≤ p ≤ m− 1, such that ξ is the pivot throughout the phase,
that is, setting r′ = r + (m − 1 − p)q,

I ′n = f(n, In) = (In \ ξ) ∪ gξp(n − r′, In ∩ ξ)
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for r′ ≤ n < r′ + q. But in this case K ∩ ξ ∈ [ξ]k and K ∩ ξ ⊆ gξp(i, Ir′+i) for i < qp, which is impossible.
XXXQQQ

(g) In particular, taking q = max{qp : l ≤ p ≤ m − 1}, we see that the hypothesis (*) is satisfied by
f . But we also see that if K ∈ [ωk]k+1 and I0, I

′
0, . . . is a run of MG(ωk,m, l, k) consistent with f , then

K 6⊆
⋂

n≥r I ′n for any r ∈ N, so f is a winning tactic for Remover, and the induction continues, with fmk = f .

(h) Finally, if κ ≤ ωk, then fmk¹N×[κ]m is a winning time-dependent tactic for Remover in MG(κ,m, l, k).

3 When there is no winning tactic

3A Proposition (Model 96, Abraham & Schipperus 07, 3.1) If κ ≥ ω1 and l < m then Remover
has no winning time-dependent tactic in MG(κ,m, l, 0).

proof Let f : N× [κ]m → [κ]m−l be a time-dependent tactic for Remover in MG(κ,m, l, 0). Let D ⊆ ω1 be
the set of those δ < ω1 such that whenever n ∈ N, J ∈ [κ]m−l and maxJ = δ there is an I ∈ [ω1]

m such that
I ⊇ J and δ = max f(n, I). Then D is infinite. PPP??? Otherwise, for δ ∈ ω1 \D, take nδ ∈ N and Jδ ∈ [ω1]

m−l

such that δ = max Jδ and δ 6= max f(nδ, I) whenever Jδ ⊆ I ∈ [ω1]
m. By the Pressing-Down Lemma, there

are n∗ ∈ N and J∗ ∈ [ω1]
m−l−1 such that C = {δ : n∗ = nδ, Jδ = J∗ ∪ {δ}} is stationary. But now take any

I ∈ [ω1]
m such that J∗ ⊆ I ⊆ J∗ ∪ C and every member of I \ J∗ is greater than every member of J∗. Set

δ = max f(n∗, I). Then δ ∈ C, Jδ = J∗ ∪{δ} ⊆ I and δ = max f(nδ, I), which is supposed to be impossible.
XXXQQQ

Now let g : N × [κ]m−l → [κ]m be a function such that

g(n, J) ⊆ J ∪ (D \ m),
if maxJ ∈ D then max f(n + 1, g(n, J)) = max J .

Now consider a run (I0, I
′
0, . . . ) in MG(κ,m, l, 0) in which I ′n = f(n, In) and, for every n,

I ′n ⊆ In ⊆ I ′n ∪ (D \ m),
if max I ′n ∈ D then max(f(n + 1), In) = max I ′n;

such a run exists by the definition of D. In this case, either I ′n = I ′0 for every n, or there is an n such that
max I ′j = max I ′n for every j ≥ n; in either case, Remover loses. As f is arbitrary, we have the result.

3B Theorem (see Abraham & Schipperus 07, §4) If k, l ∈ N, m = k + l + 1, and κ > ik(k+1)/2, then
there is no winning time-dependent tactic for Remover in MG(κ,m, l, k).

proof (a) Induce on k. The induction starts with k = 0, κ > ω and m = l + 1, which is covered by
Proposition 3A. For the inductive step to k > 0, given l ∈ N and κ > ik(k+1)/2, let f : N× [κ]k+l+1 → [κ]k+1

be a time-dependent tactic for Remover in MG(κ, k + l + 1, l, k). For n ∈ N, set

Sn = {J : J ∈ [κ]k+1, J 6= f(n, I) whenever J ⊆ I ∈ [κ]k+l+1}.

Note that if I ∈ [κ]k+l+1 then f(n, I) ∈ [I]k+1 \Sn. By the Erdős-Rado theorem (Kanamori 03, 7.3) there
is a D ⊆ κ\m such that #(D) > i(k(k+1)/2)−k and either [D]k+1 is included in some Sn or [D]k+1 is disjoint

from every Sn. The former is impossible, so [D]k+1 ∩ Sn = ∅ for every n.

(b) Let us say that a sensible partial run of MG(κ, k + l+1, l, k) is a finite sequence (I0, I
′
0, . . . , In, I ′n)

such that I0 = m, I ′j = f(j, Ij) for every j ≤ n, and Ij+1 ⊆ I ′j ∪ D for every j < n. Among the sensible

partial runs, choose one, (Î0, . . . , Î ′n̂) say, for which K = Î ′n̂ \m has as many elements as possible. Note that

as Î ′n̂ ⊆ În̂ ⊆ m ∪ D, K ⊆ D. Set L = m ∩ Î ′n̂. The argument now divides.

(c) Suppose that L = ∅. In this case, K = Î ′n̂ belongs to [D]k+1. Choose (I0, I
′
0, . . . ) such that

if j ≤ n̂ then Ij = Îj and I ′j = Î ′j ,

if j > n̂ then Ij ∈ [κ]k+l+1 is such that K ⊆ Ij and f(j, Ij) = K, while I ′j = K.

Then (I0, I
′
0, . . . ) is a run of MG(κ, k + l + 1, l, k), consistent with f , such that #(

⋂
j≥n̂ I ′j) = K has k + 1

members, so Remover loses.

(d) Now suppose that L 6= ∅.

(i) Set k′ = #(K)−1 < k, so that #(L) = k−k′. Take M ∈ [D]k
′+l+1 including K. Let MGM (D, k′ +

l + 1, l, k′) be the variant of MG(#(D), k′ + l + 1, l, k′) in which
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the players start from J0 = M ;
given Jn ∈ [D]k

′+l+1, Remover plays J ′
n ∈ [Jn]k

′+1,

given J ′
n ∈ [D]k

′+1, Adder plays Jn+1 ∈ [D]k
′+l+1 such that Jn+1 ⊇ J ′

n,
Remover wins if #(

⋃
n∈N

⋂
j≥n J ′

j) ≤ k′.

Since #(D) > i(k(k+1)/2)−k = i(k−1)k/2 ≥ ik′(k′+1)/2, the inductive hypothesis tells us that Remover has no
winning time-dependent tactic in either MG(#(D), k′ + l +1, l, k′) or in the isomorphic game MGM (D, k′ +
l + 1, l, k′).

Let g : N × [D]k
′+l+1 → [D]k

′+1 be such that

g(i, J) ∈ [J ]k
′+1, g(i, J) ⊆ f(n̂ + i + 1, J ∪ L) \ L

for every i ∈ N and J ∈ [D]k
′+l+1. Then g is a time-dependent tactic for Remover in MGM (D, k′+l+1, l, k′).

It cannot be a winning tactic, so there is a run (J0, J
′
0, . . . ) of MGM (D, k′ + l + 1, l, k′), consistent with g,

and an n ∈ N such that
⋂

j≥n J ′
j has more than k′ members.

(ii) Consider the sequence (I0, I
′
0, . . . ) where

if j ≤ n̂ then Ij = Îj and I ′j = Î ′j ,

if j > n̂ then Ij = Jj−n̂−1 ∪ L and I ′j = J ′
j−n̂−1 ∪ L.

Since

In̂+1 = J0 ∪ L = M ∪ L ⊇ K ∪ L = I ′n̂,

this is a run of MG(κ, k+ l+1, l, k), and since
⋂

j>n+n̂ I ′j = L∪
⋂

j≥n J ′
j has more than k members, Remover

loses the run.

(iii) However, the run is consistent with the time-dependent tactic f . PPP??? Otherwise, there is a first
j ∈ N such that I ′j 6= f(j, Ij); in this case, since these sets both have k +1 members, I ′j 6⊆ f(j, Ij). We know

that Î ′i = f(i, Îi) for every i, so j > n̂ and

I ′j = L ∪ J ′
j−n̂−1 = L ∪ g(j − n̂ − 1, Jj−n̂−1)

⊆ L ∪ (f(j, Jj−n̂−1 ∪ L) \ L) ⊆ L ∪ f(j, Jj−n̂−1 ∪ L) = L ∪ f(j, Ij).

So f(j, Ij) does not include L. On the other hand,

f(j, Ij) ⊆ Ij ⊆ D ∪ L, #(D ∩ f(j, Ij)) > #(f(j, Ij)) − #(L) = k′ + 1.

Now (I0, I
′
0, . . . , Ij−1, I

′
j−1, Ij , f(j, Ij)) is a sensible partial run of MG(κ, k + l + 1, l, k) in which the final

term meets D in more than k′ + 1 = #(K) elements, contradicting the choice of (Î0, . . . , Î ′n̂). XXXQQQ

(e) Thus in both cases we have a run of MG(κ, k + l + 1, l, k), consistent with f , in which Remover loses,
and f is not a winning time-dependent tactic for Remover. As f is arbitrary, the induction proceeds.

3C Proposition If m > k + l and κ > im then Remover has no winning time-dependent tactic in
MG(κ,m, l, k).

proof (a) Fix a time-dependent tactic f : N × [κ]m → [κ]m−l tactic for Remover in MG(κ,m, l, k). We
need a re-coding of f , as follows. Let F be the set of functions from N × [2m]m to [2m]m−l. For I ⊆ κ, let
φI : otp(I ∪m) → I ∪m be the order-isomorphism between the ordinal otp(I ∪m) and the well-ordered set
I ∪ m. Define g : [κ \ m]m → F by saying that

g(I)(n, J) = φ−1
I [f(n, φI [J ])]

whenever I ∈ [κ \ m]m, n ∈ N and J ∈ [2m]m. Now #(F ) = c = i1, so the Erdős-Rado theorem tells us
that if κ > im there must be an uncountable set L∗ ⊆ κ \ m such that g is constant on [L∗]m. Let L ⊆ L∗

be a set of size m such that between any two members of L, and also below the first member of L and above
the last member of L, there are at least l members of L∗.

(b) The aim of the argument is to devise a tactic for player Adder in MG(κ,m, l, k) which will defeat the
time-dependent tactic f . What we find is that for any J ∈ [L ∪ m]m−l and n ∈ N there is a I ∈ [L∗ ∪ m]m

such that I ⊇ J , f(n + 1, I) ⊆ L ∪ (J ∩ m) and if f(n + 1, I) ∩ m = J ∩ m then f(n + 1, I) = J . PPP Set
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r = m − #(J ∩ m), and let N ∈ [2m]m−l be the constant value of g(I)(n + 1, (J ∩ m) ∪ ((m + r) \ m)) for
I ∈ [L∗]m. Let I be the set of those I ∈ [L∗ ∪ m]m such that I ⊇ J and I ∩ m = J ∩ m. For each I ∈ I,
there is an I ′ ∈ [L∗]m such that I \ m is an initial segment of I ′, and now

φ−1
I [f(n + 1, I)] = φ−1

I′ [f(n + 1, I)]

(because I ∪ m is an initial segment of I ′ ∪ m)

= g(I ′)(n + 1, φ−1
I′ [I]) = g(I ′)(n + 1, (J ∩ m) ∪ ((m + r) \ m)) = N,

and f(n + 1, I) = φI [N ]. We have φI(i) = i for i < m, so

N ∩ m = f(n + 1, I) ∩ m ⊆ I ∩ m ⊆ J

for every I ∈ I.
If N∩m is a proper subset of J∩m, then we can take I to be any member of I included in L∪m. Otherwise,

N \ m and J \ m both have r − l members, so there is an order-preserving bijection ψ : N \ m → J \ m.
Since J \ m ⊆ L, and there are many points of L∗ \ L, we can extend ψ to an order-preserving bijection
between subsets M0 of 2m \m and M1 of L∗, both of cardinal r. Setting I = M1 ∪ (J ∩m), we have I ⊇ J ,
I ∩ m = J ∩ m and f(n + 1, I) = φI [N ] = J , as required. QQQ

(c) Now consider the run I0, I
′
0, . . . of the game MG(κ,m, l, k) in which I ′n = f(n, In) and In+1 = I ′n, as

defined in (b), for every n. Then

I ′n+1 ∩ m = f(n + 1, I ′n) ∩ m ⊆ I ′n ∩ m

for every n, and if I ′n+1 ∩ m = I ′n ∩ m then I ′n+1 = I ′n. But this means that 〈I ′n〉n∈N is eventually constant
and

⋃
n∈N

⋂
j≥n I ′j has m− l > k members, so Remover loses and f is not a winning time-dependent tactic.

As f is arbitrary, we have the result.

4 Problems

4A Does Remover have a winning time-dependent tactic in MG(ω2, 4, 1, 1)?
By 2B, Remover has winning time-dependent tactics in MG(ω2, 4, 2, 1) and MG(ω2, 4, 1, 2); by 2C, he

has a winning time-dependent tactic in MG(ω1, 4, 1, 1). Remover does not have a winning time-dependent
tactic in MG(ω2, 4, 1, 0), by 3A, or in MG(i5, 4, 1, 1), by 3C; if c = ω1, then he does not have a winning
time-dependent tactic in MG(ω2, 3, 1, 1), by 3B.

4B Generally, there is a large gap between the positive results of §2, dealing with games MG(ℵ
•
,m, l, k),

and the negative results of §3, dealing with games MG(i+
•
,m, l, k).
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