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Dependently selective filters

D.H.Fremlin

University of Essex, Colchester, England

I repeat and amplify the material of §2 of Fremlin p09.

1A Definitions Let F be a filter on a set X.

(a) I will say that F is dependently selective if it has the following property:

whenever S ⊆ [X]<ω is such that ∅ ∈ S and {x : K ∪ {x} ∈ S} ∈ F for every K ∈ S, then there
is a F ∈ F such that [F ]<ω ⊆ S.

(b) F is uniform if #(F ) = #(X) for every F ∈ F .

(c) If A ⊆ X, set

F⌈A = {F ∩ A : F ∈ F} = {B : B ⊆ A, B ∪ (X \ A) ∈ F}.

Note that F⌈A is PA if X \ A ∈ F , and otherwise is a filter on A. If A ∈ F then F⌈A = F ∩ PA.

1B Proposition Let X and Y be sets, f : X → Y a function, and F a dependently selective filter on X.
(a) The image filter f [[F ]] = {B : f−1[B] ∈ F} is a dependently selective filter on Y .
(b) If f [[F ]] is free, then there is an F ∈ F such that f↾F is injective.
(c) If #(X) = #(Y ) and f [[F ]] is free, then F and f [[F ]] are isomorphic.

proof (a) Let S ⊆ [Y ]<ω be such that ∅ ∈ S and {y : K ∪ {y} ∈ S} ∈ f [[F ]] for every K ∈ S. Set
S ′ = {K : K ∈ [X]<ω, f [K] ∈ S}. Then ∅ ∈ S ′. If K ∈ S ′, then f [K] ∈ S, {y : f [K] ∪ {y} ∈ S} ∈ f [[F ]]
and

{x : K ∪ {x} ∈ S ′} = {x : x ∈ X, f [K] ∪ {f(x)} ∈ S} = f−1[{y : f [K] ∪ {y} ∈ S}]

belongs to F . Because F is dependently selective, there is an F ∈ F such that [F ]<ω ⊆ S ′; now f [F ] ∈ f [[F ]]
and [f [F ] ]<ω ⊆ S. As S is arbitary, f [[F ]] is dependently selective.

(b) If f [[F ]] is free, consider

S = {K : K ∈ [X]<ω, f↾K is injective}.

Of course ∅ ∈ S, and if K ∈ S then

{x : K ∪ {x} ∈ S} ⊇ f−1[Y \ f [K]]

belongs to F because Y \f [K] ∈ f [[F ]]. So there is an F ∈ F such that [F ]<ω ⊆ S, that is, f↾F is injective.

(c)(i) Set G = f [[F ]] and B = f [F ] ∈ G. Then there is a C ⊆ B such that C ∈ G and #(B \C) ≥ #(C).
PPP As G is free, B is infinite. So we have a set Z and a function g : Y → Z such that #(B ∩ g−1[{z}]) = 2
for every z ∈ Z. By (a), G is dependently selective; by (b), there is a G ∈ G such that g↾G is injective. Now
C = B ∩ G belongs to G and g[B \ C] ⊇ g[C], so #(B \ C) ≥ #(C). QQQ

(ii) Now F ′ = F ∩ f−1[C] belongs to F , and f [F ′] = C, #(X \ F ′) ≥ #(F ′), #(Y \ C) ≥ #(C).
Consequently

#(X \ F ′) = #(X) = #(Y ) = #(Y \ C),

and there is a bijection h : X → Y extending f↾F ′; in which case h[[F ]] = G and F ∼= G.

1C Proposition Let F be a filter on a set X, and A a subset of X such that X \ A /∈ F .
(a) If F is dependently selective, then F⌈A is dependently selective.
(b) If A ∈ F and F⌈A is dependently selective, then F is dependently selective.
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proof (a) Let S ⊆ [A]<ω be such that ∅ ∈ S and {x : K ∪ {x} ∈ S} ∈ F⌈A for every K ∈ S. Set

S ′ = {K : K ∈ [X]<ω, K ∩ A ∈ S}.

Then ∅ ∈ S ′ and for K ∈ S ′

{x : K ∪ {x} ∈ S ′} = (X \ A) ∪ {x : (K ∩ A) ∪ {x} ∈ S} ∈ F .

So there is an F ∈ F such that [F ]<ω ⊆ S ′, and now F ∩ A ∈ F⌈A and [F ∩ A]<ω ⊆ S. As S is arbitrary,
F⌈A is dependently selective.

(b) Let S ⊆ [X]<ω be such that ∅ ∈ S and {x : K ∪ {x} ∈ S} ∈ F for every K ∈ S. Set

S ′ = {K ∩ A : K ∈ S}.

Then ∅ ∈ S ′ and for K ∈ S ′

{x : K ∪ {x} ∈ S ′} = A ∩ {x : K ∪ {x} ∈ S} ∈ F⌈A.

So there is an F ∈ F⌈A such that [F ]<ω ⊆ S ′, and now F ∈ F and [F ]<ω ⊆ S. As S is arbitrary, F⌈A is
dependently selective.

1D Proposition Let X be a set and F a dependently selective filter on X.

(a) F is a rapid p-point filter in the sense that for every sequence 〈Fn〉n∈N in F there is a F ∈ F such
that #(F \ Fn) ≤ n for every n ∈ N.

(b) If A ⊆ F there is an F ∈ F such that #(F \ A) < #(A) for every A ∈ A.

proof (a) Let S be

{K : K ∈ [X]<ω, #(K \ Fn) ≤ n for every n ∈ N}.

Of course ∅ ∈ S. If K ∈ S, then

{x : K ∪ {x} ∈ S} ⊇
⋂

n≤#(K) Fn ∈ F ,

so there is a F ∈ F such that [F ]<ω ⊆ S and #(F \ Fn) ≤ n for every n.

(b) If A is finite we can take F = X ∩
⋂
A. Otherwise, enumerate A as 〈Fξ〉ξ<κ. Set L =

⋂
A, and

for x ∈ X \ L set f(x) = min{ξ : i /∈ Fξ}. Let S be the family of finite sets K ⊆ X such that f↾K \ L is
injective. Of course ∅ ∈ S. If K ∈ S then

{x : K ∪ {x} ∈ S} ⊇ X ∩
⋂

y∈K\L Ff(y)

belongs to F . So there is a F ∈ F such that [F ]<ω ⊆ S. Suppose that ξ < κ and consider C = F \Fξ. If x,
y ∈ C then f(x) 6= f(y), and both f(x) and f(y) are at most ξ; so #(C) ≤ #(ξ + 1) < κ, as required.

1E Proposition Let X be a set and F a dependently selective filter on X. Set κ = min{#(A) : A ⊆ X,
X \ A /∈ F}.

(a) F is κ-complete.

(b) κ is either 1 or a regular infinite cardinal.

proof (a) If κ ≤ ω this is trivial. Otherwise, if A ∈ [F ]<κ, then by 1Db there is an F ∈ F such that
#(F \A) < #(A) for every A ∈ A. So B =

⋃
F∈F F \A has cardinal at most max(ω,#(A)) < κ, and X \B

and F \ B belong to F . But F \ B ⊆
⋂
A, so X ∩

⋂
A ∈ F .

(b) Of course κ 6= 0. If κ > 1, then X \ {x} ∈ F for every x ∈ X, so κ ≥ ω. If κ = ω it is certainly
regular, so suppose that κ > ω. Let A ∈ [X]κ be such that X \ A /∈ F , and enumerate A as 〈xξ〉ξ<κ. If
C ⊆ κ is cofinal with κ, then for ζ ∈ C set Fζ = X \ {xξ : ξ ≤ ζ}; then Fζ ∈ F for every ζ ∈ C, while⋂

ζ∈C Fζ = X \ A does not belong to F . By (a), #(C) ≥ κ. As C is arbitrary, κ is regular.

Remark If we take I to be the dual ideal {A : A ⊆ X, X \ A ∈ F}, then κ is the uniformity non I of
I (Fremlin 08, 511F), and (b) can be restated as ‘add I ≥ non I’, where add I is the additivity of X
(Fremlin 08, 511B). If F is free (that is, contains all cofinite subsets of X) then we must have equality.



3

1F Proposition Let F and G be dependently selective filters on a set X such that F ∩ G is non-empty
for all F ∈ F and G ∈ G, and let F ∨ G be the filter on X generated by F ∪ G. Then F ∨ G is dependently
selective.

proof (a) To begin with, suppose that F and G are both uniform. The case of finite X is trivial, so we may
suppose that X = κ is an infinite cardinal; by 1E, κ is regular and both F and G are κ-additive.

Let S ⊆ [κ]<ω be such that ∅ ∈ S and {ξ : K ∪ {ξ} ∈ S} ∈ F ∨ G for every K ∈ S. For K ∈ S let
FK ∈ F , GK ∈ G be such that K ∪ {x} ∈ S whenever x ∈ FK ∩ GK . Set

S ′ = {K : K ∈ [κ]<ω, ξ ∈ FL whenever ξ ∈ K and L ⊆ K ∩ ξ belongs to S}.

Then ∅ ∈ S ′. If K ∈ S ′ then

{ξ : K ∪ {ξ} ∈ S ′} ⊇ {ξ : K ⊆ ξ < κ, ξ ∈ FL whenever L ⊆ K belongs to S}

belongs to F . (This is where we need to know that F is uniform.) So there is an F ∈ F such that [F ]<ω ⊆ S ′.
Similarly, setting

S ′′ = {K : K ∈ [κ]<ω, ξ ∈ GL whenever ξ ∈ K and L ⊆ K ∩ ξ belongs to S},

there is a G ∈ G such that [G]<ω ⊆ S ′′. Set H = F ∩G ∈ F ∨ G; then [H]n ⊆ S for every n ∈ N. PPP Induce
on n. The case n = 0 is trivial. For the inductive step to n + 1, take K ∈ [H]n+1 and set ξ = max K,
L = K \ {ξ}. By the inductive hypothesis, L ∈ S. As K ⊆ F , K ∈ S ′ and ξ ∈ FL; similarly, ξ ∈ GL, so
K = L ∪ {ξ} ∈ S by the choice of FL and GL. Thus the induction proceeds. QQQ

So [H]<ω ⊆ S; as S is arbitrary, F ∨ G is dependently selective.

(b) For the general case, let A ∈ F ∨G be a set of minimal cardinality. Then (F ∨G)⌈A = (F⌈A)∨(G⌈A),
so F⌈A and G⌈A are both uniform; by 1Ca, they are dependently selective. So (a) tells us that (F ∨ G)⌈A
is dependently selective, and now 1Cb tells us that F ∨ G itself if dependently selective.

1G Proposition (a) Let κ be a regular uncountable cardinal and F a normal filter on κ (definition:
Fremlin 03, 4A1Ic). Then F is dependently selective.

(b) If κ is any cardinal of uncountable cofinality, the filter generated by the closed cofinal subsets of κ is
dependently selective.

proof (a) Let S ⊆ [κ]<ω be such that ∅ ∈ S and FK = {ξ : K ∪ {ξ} ∈ S} ∈ F for every K ∈ S. For each
ξ < κ, set F ′

ξ =
⋂
{FK : K ∈ S ∩ [ξ + 1]<ω}; because F is κ-complete (Fremlin 03, 4A1J), F ′

ξ ∈ F . Let F

be the diagonal intersection of 〈F ′
ξ〉ξ<κ. Because F is normal, F and F ∩F∅ belong to F . Now [F ∩F∅]

n ⊆ S
for every n ∈ N. PPP Induce on n. The case n = 0 is trivial, and {ξ} ∈ S for every ξ ∈ F∅, which deals with
the case n = 1. For the inductive step to n + 1 ≥ 2, take K ∈ [F ]n+2 and set η = max K, J = K \ {η} and
ξ = max J . By the inductive hypothesis, J ∈ S, so F ′

ξ ⊆ FJ ; since η ∈ F and η > ξ, η ∈ F ′
ξ and K = J ∪{η}

belongs to S. Thus the induction proceeds. QQQ At the end of the induction, we have [F ∩ F∅]
<ω ⊆ S; as S

is arbitrary, F is dependently selective.

(b) Set λ = cf κ. Then we have an order-continuous strictly increasing function f : λ → κ such that
f [λ] is cofinal with κ. The filter F on λ generated by the closed cofinal subsets of λ is normal (Fremlin

03, 4A1B(c-ii)), so is dependently selective, by (a); by 1Ba, f [[F ]] is a dependently selective filter on κ; but
f [[F ]] is the filter generated by the closed cofinal subsets of κ.

1H Proposition Suppose that mcountable = c. Let A be a family of fewer than c infinite subsets of N.
Then there is a free dependently selective filter F on N such that N \ A /∈ F for every A ∈ A.

Remark For the definition and basic properties of mcountable, see Fremlin 08, 517O-517Q and 522R.

proof Enumerate P([N]<ω) as 〈Sξ〉ξ<c . For ξ < c and K ∈ [N]<ω set Cξ(K) = {n : K ∪ {n} ∈ Sξ}. Choose
a non-decreasing family 〈Eξ〉ξ<c of filter bases inductively, as follows. E0 = {N \ n : n ∈ N}. Given that
#(Eξ) ≤ max(ω,#(ξ)) and that E ∩ A is non-empty for every E ∈ Eξ and A ∈ A, consider Sξ. If either
∅ /∈ Sξ or there are E ∈ Eξ, A ∈ A and a finite family K ⊆ Sξ such that

⋂
K∈K Cξ(K) ∩ E ∩ A = ∅, set

Eξ+1 = Eξ and continue. Otherwise, set S ′
ξ = {K : PK ⊆ Sξ}; then ∅ ∈ S ′

ξ and

{K : K ∈ S ′
ξ, K ∩ E ∩ A 6= ∅}
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is cofinal with S ′
ξ for every E ∈ Eξ and A ∈ A. Because #(Eξ ∪A) < mcountable, there is a Jξ, meeting E ∩A

for every E ∈ Eξ and A ∈ A, such that [Jξ]
<ω ⊆ S ′

ξ. Set

Eξ+1 = Eξ ∪ {Jξ ∩ E : E ∈ Eξ},

and continue.

At non-zero limit ordinals ξ ≤ c, set Eξ =
⋃

η<ξ Eη.

At the end of the induction, let F be the filter generated by Ec . If A ∈ A, then F ∩ A 6= ∅ for every
F ∈ F , so N \ A /∈ F . If S ⊆ [N]<ω is such that ∅ ∈ S and {n : K ∪ {n} ∈ F} for every K ∈ S, let ξ < c be
such that S = Sξ. Then ∅ ∈ Sξ and if K ⊆ Sξ is finite, N∩

⋂
K∈K Cξ(K) belongs to F and must meet E ∩A

whenever E ∈ Eξ and A ∈ A. We therefore applied the second rule when determining Eξ+1, and Jξ ∈ F is
such that [Jξ]

<ω ⊆ S ′
ξ ⊆ S. As S is arbitrary, F is dependently selective.

Remark In terms of the dual ideal I of F , A∩ I = ∅. So if, for instance, A is almost disjoint, or we could
otherwise arrange that A ∩ B ∈ E0 for all distinct A, B ∈ A, we get sat(PN/I) > #(A), and in particular,
I need not be ω1-saturated, at least if mcountable = c.

Conceivably things are different in random real models. See Problem 3A.

2 Ramsey ultrafilters

2A Definition If X is an infinite set, a filter F on X is Ramsey if it is uniform and for every S ⊆ [X]2

there is a F ∈ F such that either [F ]2 ⊆ S or [F ]2 ∩ S 6= ∅.

2B Theorem (see Comfort & Negrepontis 74, Theorem 9.6) Let F be a uniform Ramsey ultrafilter
on an infinite cardinal κ.

(a) F is κ-complete.

(b) If κ is uncountable, then it is two-valued-measurable and there is a bijection f : κ → κ such that
f [[F ]] is a normal ultrafilter.

(c) If κ is uncountable, then for every S ⊆ [κ]<ω there is an X ∈ F such that for each n ∈ N either
[X]n ⊆ S or [X]n ∩ S = ∅.

proof (a) ??? Otherwise, let λ < κ be the least cardinal such that there is a non-empty family E ∈ [F ]≤λ

such that
⋂
E /∈ F . Then there is a non-increasing family 〈Fα〉α<λ in F such that L =

⋂
α<λ Fα /∈ F and

Fα =
⋂

β<α Fβ if α < λ is a non-zero limit ordinal.

Set

S =
⋃

α<λ{{ξ, η} : ξ ∈ κ \ Fα, η ∈ Fα, ξ < η} ⊆ [κ]2.

Then there is an F ∈ F such that either [F ]2 ⊆ S or [F ]2 ∩ S = ∅.
In fact [F ]2 ⊆ S. PPP Take any ξ ∈ F \ L. Then there is an α < λ such that ξ /∈ Fα. Now F ∩ Fα belongs

to F , so has cardinal κ, and there must be an η ∈ F ∩ Fα such that ξ < η; in which case {ξ, η} ∈ [F ]2 ∩ S.
Thus [F ]2 ∩ S 6= ∅ and [F ]2 ⊆ S. QQQ

Since #(F \ L) = κ > λ, there must be a β < κ such that F ∩ Fβ \ Fβ+1 has more than one member.
Suppose that ξ, η ∈ F ∩ Fβ \ Fβ+1 and ξ < η. Then there is an α < λ such that ξ /∈ Fα (so α > β) and
η ∈ Fα (so α ≤ β); which is absurd. XXX

(b) Part (a) tells us immediately that κ is regular. By Fremlin 08, 541F, there are a set Y ⊆ κ and
a function g : Y → κ such that {B : B ⊆ κ, g−1[B] /∈ F} is a normal principal ideal of Pκ. Of course it
follows that Y ∈ F and that G = {B : B ⊆ κ, g−1[B] ∈ F} is a normal ultrafilter on κ. Extending g to the
whole of κ by setting g(ξ) = 0 for ξ ∈ κ \ Y , we have g : κ → κ such that G = g[[F ]].

Consider the set

S = {{ξ, η} : ξ < η < κ, g(ξ) = g(η)}.

If F ∈ F then g[F ] ∈ G has cardinal κ, so [F ]2 6⊆ S; it follows that there is an F ∈ F such that [F ]2 ∩S = ∅,
that is, g↾F is injective. Next, there is certainly a partition of F into two sets of cardinal κ, just one of
which belongs to κ; so we can suppose that both κ \ F and κ \ g[F ] have cardinal κ. In this case, there is
an extension of g↾F to a bijection f : κ → κ, and f [[F ]] = G is a normal ultrafilter on κ.
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(c) This is true for normal ultrafilters by Rowbottom’s theorem (Fremlin 03, 4A1L); by (b), it is true
for Ramsey ultrafilters.

2C Proposition If X is an infinite set, an ultrafilter on X is Ramsey iff it is uniform and dependently
selective.

proof It is enough to consider the case in which X = κ is a cardinal.

(a)(i) If F is a Ramsey ultrafilter on κ, then it is uniform (by definition) and κ-complete, by 2Ba. It
follows that if 〈Fξ〉ξ<κ is any family in F , there is an F ∈ F such that F \ Fξ ⊆ ξ + 1 for every ξ ∈ F . PPP
Set

S = {{ξ, η} : ξ < η < κ, η ∈ Fξ}.

If F ∈ F and ξ ∈ F , then F ∩ Fξ \ (ξ + 1) belongs to F , so there is an η ∈ F ∩ Fξ such that η > ξ and
{ξ, η} ∈ S. Thus [F ]2 ∩ S 6= ∅ for every F ∈ F ; because F is a Ramsey ultrafilter, there is F ∈ F such that
[F ]2 ⊆ S. Now F \ Fξ ⊆ ξ + 1 for every ξ ∈ F . QQQ

(ii) Now suppose that S ⊆ [κ]<ω is such that ∅ ∈ S and {ξ : K ∪ {ξ} ∈ S} ∈ F for every K ∈ S. For
ξ < κ set

Fξ = {η : K ∪ {η} ∈ S whenever K ∈ [ξ + 1]<ω and K ∈ S}.

Then Fξ is the intersection of fewer than κ members of F and belongs to F . By (i), there is a F ∈ F such
that F \ Fξ ⊆ ξ + 1 for every ξ ∈ F ; and we can suppose that F ⊆ F0. Now K ∈ S whenever n ∈ N and
K ∈ [F ]n. PPP Induce on n. If n = 0 we just have to recall that ∅ ∈ S. If n = 1, then K = {η} for some
η ∈ F0, so {η} ∈ S. For the inductive step to n ≥ 2, set η = max K, K ′ = K \{η} and ξ = max K ′. Because
ξ, η ∈ F and ξ < η, η ∈ Fξ; K ′ ⊆ ξ + 1 and K ′ ∈ S, by the inductive hypothesis; so K = K ′ ∪ {η} ∈ S and
the induction proceeds. QQQ

So [F ]<ω ⊆ S. As S is arbitrary, F is dependently selective.

(b) If F is a uniform dependently selective ultrafilter on κ, take any S ⊆ [κ]2. For ξ < κ set Aξ =
{η : {ξ, η} ∈ S}. Let S be the family of finite subsets K of κ such that for all ξ, η ∈ K such that ξ < η,
{ξ, η} ∈ S iff Aξ ∈ F . If K ∈ S, then (because F is an ultrafilter) there is a F ∈ F such that, for every
ξ ∈ K, F is either included in Aξ or disjoint from Aξ. Now K ∪ {η} ∈ S whenever η ∈ F and η > ξ for
every ξ ∈ K. So S satisfies the condition of 1A. Let F ∈ F be such that [F ]<ω ⊆ S. In this case, if ξ, η ∈ F
and ξ < η, {ξ, η} ∈ S iff Aξ ∈ F . Now

F1 = {ξ : ξ ∈ F , Aξ ∈ F}, F0 = {ξ : ξ ∈ F , Aξ /∈ F}

have union F and one of them must belong to F ; while [F0]
2 ∩ S = ∅ and [F1]

2 ⊆ S. As S is arbitrary, F is
a Ramsey ultrafilter.

2D Lemma (a) Let X be an infinite set, F a Ramsey ultrafilter on X, and A ⊆ F a set of size at most
#(X). Then there is a C ∈ F such that #(C \ A) < #(X) for every A ∈ A.

(b) Let κ be an infinite cardinal, λ ≤ κ another cardinal, and 〈Fα〉α<λ a family of distinct Ramsey
ultrafilters on κ. Then there is a disjoint family 〈Aα〉α<λ of subsets of κ such that Aα ∈ Fα for every α < λ.

proof (a) Set A∗ = κ∩
⋂

A. If A∗ ∈ F , we can set C = A∗ and stop. Otherwise, enumerate A as 〈Aα〉α<λ.
For i ∈ X, set f(i) = min{α : α < λ, i /∈ Aα \ A∗}. Then there is a C ∈ F such that f↾C is either constant
or injective (Comfort & Negrepontis 74, 9.6). The former is impossible, because {i : f(i) = α} never
belongs to F . So f↾C is injective and C \ Aα = {i : i ∈ C, f(i) ≤ α} has cardinal less than κ for every
α < λ.

(b) For α < β < λ, take Aαβ ∈ Fβ \Fα. For each α < κ, there is a Bα ∈ Fα such that #(Bα ∩Aαβ) < κ
for every β > α (apply (a) to {X \ Aαβ : α < β < λ} ⊆ Fα)). Set

Aβ = Bβ \
⋃

α<β Bα

for β < λ. Of course 〈Aβ〉β<λ is disjoint. On the other hand, for each β < λ, A′
β = Bβ ∩

⋂
α<β Aαβ belongs

to F because F is κ-complete; and Aβ \ A′
β ⊆

⋃
α<β Aαβ ∩ Bα has cardinal less than κ, so Aβ also belongs

to F .
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2E Proposition Let X be an infinite set, and F a non-empty family of non-isomorphic Ramsey ultrafilters
on X with #(F) ≤ #(X). Then H =

⋂
F is a dependently selective filter on X.

proof (a) It is enough to consider the case in which X = κ is a cardinal. Let 〈Fα〉α<λ be an enumeration
of F.

(b) If 〈Aα〉α<λ is such that Aα ∈ Fα for α < λ, then there is a family 〈Dα〉α<λ such that Dα ∈ Fα and
Dα ⊆ Aα for every α < λ, and whenever ξ < η < κ, α, β < λ are such that ξ ∈ Dα and η ∈ Dβ , there
is a ζ ∈ Aβ such that ξ ≤ ζ < η. PPP By 2Db, we may suppose that 〈Aα〉α<λ is disjoint. For any ζ < κ,
{α : α < λ, Aα ∩ ζ 6= ∅} has cardinal less than κ; so there is a closed cofinal set F ⊆ κ, containing 0, such
that Aα ∩ ζ ′ \ ζ 6= ∅ whenever ζ < ζ ′ in F , α < λ and Aα ∩ ζ 6= ∅. Set f(ξ) = max{ζ : ζ ∈ F , ζ ≤ ξ} for
ξ < κ. Then 〈f [[Fα]]〉α<λ is a family of κ-complete uniform ultrafilters on F , so there must be a cofinal set
V ⊆ F not belonging to any of them. (We can easily build inductively a family 〈Vξ〉ξ<κ+ of cofinal subsets
of F such that #(Vξ ∩ Vη) < κ whenever ξ < η < κ+, and now each f [[Fα]] can contain Vξ for at most one
ξ, so there is a ξ left over for which we can set V = Vξ.) Set M = f−1[V ]; then Aα \ M ∈ Fα for each α.

Define g : κ → κ by setting g(ξ) = min{ζ : ξ ≤ ζ ∈ V } for ξ < κ. By 1Bc, or otherwise, g[[Fα]] is
isomorphic to Fα, and is surely a Ramsey ultrafilter. Because the Fα are non-isomorphic, all the g[[Fα]] are
different. By 2Db again, there is a disjoint family 〈Gα〉α<λ of sets such that Gα ∈ g[[Fα]] for every α.

Set

Cα = Aα ∩ Bα ∩ g−1[Gα] \ M , Dα = Cα \ {min Cα} ∈ Fα

for each α < λ. Suppose that ξ ∈ Dα, η ∈ Dβ and ξ < η. Then g(ξ) < g(η). PPP If α = β, this is because
g↾Bα is injective; otherwise, it is because Gα ∩Gβ is empty. QQQ Let η0 be the least member of Cβ . We have
η0 < η. If ξ ≤ η0, then η0 is a member of Aβ ∩η \ ξ. Otherwise, Aβ ∩g(ξ) 6= ∅, so there is a ζ ∈ Aβ ∩γ \g(ξ),
where γ is the next member of F above g(ξ). Now γ \ g(ξ) = f−1[{g(ξ)}] ⊆ M is disjoint from Dβ , so γ ≤ η
and ζ ∈ Aβ ∩ η \ ξ.

Thus 〈Dα〉α<λ is a suitable family. QQQ

(c) Now suppose that S is a family of finite subsets of κ such that ∅ ∈ S and {ξ : K ∪ {ξ} ∈ S} ∈ H for
every K ∈ S. For each α < λ, set

S = {{ξ, η} : ξ < η < κ, K ∪ {η} ∈ S whenever K ∈ S and K ⊆ ξ + 1}.

Then there is an Aα ∈ Fα such that [Aα]2 is either included in or disjoint from Sα. But taking ξ = min Aα,
we see that {η : η > ξ, K ∪ {η} ∈ S} belongs to H ⊆ Fα for every K ∈ S; because Fα is κ-complete,
there must be an η ∈ Aα such that η > ξ and K ∪ {η} ∈ S whenever K ∈ S and K ⊆ ξ + 1, in which
case {ξ, η} ∈ S. So we must have [Aα]2 ⊆ S. Set A′

α = {ξ : ξ ∈ Aα, {ξ} ∈ S}; then A′
α ∈ Fα because

{ξ : {ξ} ∈ S} ∈ H ⊆ Fα.

By (b), we have a family 〈Dα〉α<λ of sets such that Dα ∈ Fα and Dα ⊆ A′
α for every α < λ, and

whenever ξ < η < κ, α, β < λ are such that ξ ∈ Dα and η ∈ Dβ , there is a ζ ∈ A′
β such that ξ ≤ ζ < η.

Set A =
⋃

α<λ Dα ∈ H. Then [A]n ⊆ S for every n. PPP Induce on n. The case n = 0 is trivial, and the case

n = 1 has been dealt with when defining A′
α. For the inductive step to n + 1 ≥ 2, suppose that X ∈ [A]n+1.

Let ξ < η be the two greatest points of X; suppose that η ∈ Dβ . Then there is a ζ ∈ A′
β such that ξ ≤ ζ < η.

In this case, K = X \{η} belongs to [A]n ⊆ S and K ⊆ ζ +1. Also {ζ, η} ∈ [Aβ ]2 ⊆ S, so X = K ∪{η} ∈ S.
Thus the induction continues. QQQ

So [A]<ω ⊆ S. As S is arbitrary, F is dependently selective.

2F Proposition Let X be a set, and F a non-empty countable family of non-isomorphic dependently
selective ultrafilters on X. Then

(a) there is a disjoint family 〈AF 〉F∈F of sets such that AF ∈ F for every F ∈ F;

(b) H =
⋂

F is dependently selective.

proof (a) For each F ∈ F, let XF ∈ F be a set of minimal size. Let K be the countable set {#(XF ) : F ∈ F};
for κ ∈ K, set Fκ = {F : F ∈ F, #(XF ) = κ} and Fκ =

⋃
F∈Fκ

XF , so that #(Fκ) ≤ κ. (For if κ = 1, any

member of Fκ is a principal ultrafilter, and there can be at most one such.) Set F ′
κ = Fκ \

⋃
λ∈K,λ<κ Fλ for

κ ∈ K; then 〈F ′
κ〉κ∈K is disjoint and F ′

κ ∈ F whenever κ ∈ K and F ∈ Fκ.
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For F ∈ F, let F ′ = F ∩ PF ′
κ be the trace of F on F ′

κ, where κ ∈ K is such that F ∈ Fκ. Then F ′ is
either a principal ultrafilter or a Ramsey ultrafilter. Moreover, F ′ and G′ must be non-isomorphic whenever
F , G are distinct members of the same Fκ. So 2Db tells us that we have for each κ ∈ K a disjoint family
〈AF 〉F∈Fκ

of subsets of F ′
κ such that AF ∈ F ′ for every F ∈ Fκ, and 2E tells us that Hκ =

⋂
{F ′ : F ∈ Fκ}

is dependently selective for every κ ∈ K. Assembling the families 〈AF 〉F∈Fκ
, we have a disjoint family

〈AF 〉F∈F such that AF ∈ F for every F ∈ F.

(b) Evidently

H = {A : A ⊆ X, A ∩ F ′
κ ∈ Hκ for every κ ∈ K}.

Now suppose that S ⊆ [X]<ω is such that ∅ ∈ S and {i : K ∪ {i} ∈ S} ∈ H for every K ∈ S. Choose
〈Bκ〉κ∈K inductively, as follows. Given that κ ∈ K, that Bλ ∈ Hλ has been defined for λ ∈ K ∩ κ and that
[
⋃

λ∈K∩κ Bλ]<ω ⊆ S, note that #(
⋃

λ∈K∩κ F ′
λ) < κ, because if κ > ω then κ is two-valued-measurable and

certainly has uncountable cofinality. So Cκ =
⋃

λ∈K∩κ Bλ and [Cκ]<ω have cardinal less than κ.
Set

Sκ = {K : K ∈ [F ′
κ]<ω, K ∪ L ∈ S for every L ∈ [Cκ]<ω}.

Then ∅ ∈ Sκ, by the hypothesis on Cκ. If K ∈ Sκ, then for each L ∈ [Cκ]<ω the set CL = {i : i ∈ F ′
κ,

K ∪L∪ {i} ∈ S} belongs to Hκ; but Hκ, being an intersection of κ-complete filters, is again κ-complete, so
C =

⋂
{CL : L ∈ [Cκ]<ω} ∈ Hκ, and K ∪ {i} ∈ Sκ for every i ∈ C. As Hκ is dependently selective, there is

an Bκ ∈ Hκ such that [Bκ]<ω ⊆ Sκ and [Bκ ∪ Cκ]<ω ⊆ S.
The inductive hypothesis

[
⋃

λ∈K∩κ Bλ]<ω ⊆ S

gives no difficulty when κ ∈ K is a limit in K, so the induction proceeds to the end. Setting A =
⋃

κ∈K Bκ,
we have A ∈ H and [A]<ω ⊆ S. As S is arbitrary, H is dependently selective.

3 Problems

3A Is it relatively consistent with ZFC to suppose that there are no free dependently selective filters on
N?
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