Dependently selective filters

D.H.FREMLIN

University of Essex, Colchester, England

I repeat and amplify the material of §2 of FREMLIN P09.

1A Definitions Let \mathcal{F} be a filter on a set X.

(a) I will say that \mathcal{F} is **dependently selective** if it has the following property:

whenever $S \subseteq [X]^{<\omega}$ is such that $\emptyset \in S$ and $\{x : K \cup \{x\} \in S\} \in \mathcal{F}$ for every $K \in S$, then there is a $F \in \mathcal{F}$ such that $[F]^{<\omega} \subseteq S$.

(b) \mathcal{F} is uniform if #(F) = #(X) for every $F \in \mathcal{F}$.

(c) If $A \subseteq X$, set

$$\mathcal{F}[A = \{F \cap A : F \in \mathcal{F}\} = \{B : B \subseteq A, B \cup (X \setminus A) \in \mathcal{F}\}$$

Note that $\mathcal{F}[A \text{ is } \mathcal{P}A \text{ if } X \setminus A \in \mathcal{F}, \text{ and otherwise is a filter on } A.$ If $A \in \mathcal{F}$ then $\mathcal{F}[A = \mathcal{F} \cap \mathcal{P}A.$

1B Proposition Let X and Y be sets, $f : X \to Y$ a function, and \mathcal{F} a dependently selective filter on X. (a) The image filter $f[[\mathcal{F}]] = \{B : f^{-1}[B] \in \mathcal{F}\}$ is a dependently selective filter on Y.

- (b) If $f[[\mathcal{F}]]$ is free, then there is an $F \in \mathcal{F}$ such that $f \upharpoonright F$ is injective.
- (c) If #(X) = #(Y) and $f[[\mathcal{F}]]$ is free, then \mathcal{F} and $f[[\mathcal{F}]]$ are isomorphic.

proof (a) Let $S \subseteq [Y]^{<\omega}$ be such that $\emptyset \in S$ and $\{y : K \cup \{y\} \in S\} \in f[[\mathcal{F}]]$ for every $K \in S$. Set $S' = \{K : K \in [X]^{<\omega}, f[K] \in S\}$. Then $\emptyset \in S'$. If $K \in S'$, then $f[K] \in S, \{y : f[K] \cup \{y\} \in S\} \in f[[\mathcal{F}]]$ and

 $\{x: K \cup \{x\} \in \mathcal{S}'\} = \{x: x \in X, f[K] \cup \{f(x)\} \in \mathcal{S}\} = f^{-1}[\{y: f[K] \cup \{y\} \in \mathcal{S}\}]$

belongs to \mathcal{F} . Because \mathcal{F} is dependently selective, there is an $F \in \mathcal{F}$ such that $[F]^{<\omega} \subseteq \mathcal{S}'$; now $f[F] \in f[[\mathcal{F}]]$ and $[f[F]]^{<\omega} \subseteq \mathcal{S}$. As \mathcal{S} is arbitrary, $f[[\mathcal{F}]]$ is dependently selective.

(b) If $f[[\mathcal{F}]]$ is free, consider

$$\mathcal{S} = \{ K : K \in [X]^{<\omega}, f \upharpoonright K \text{ is injective} \}.$$

Of course $\emptyset \in \mathcal{S}$, and if $K \in \mathcal{S}$ then

$$\{x: K \cup \{x\} \in \mathcal{S}\} \supseteq f^{-1}[Y \setminus f[K]]$$

belongs to \mathcal{F} because $Y \setminus f[K] \in f[[\mathcal{F}]]$. So there is an $F \in \mathcal{F}$ such that $[F]^{<\omega} \subseteq \mathcal{S}$, that is, $f \upharpoonright F$ is injective.

(c)(i) Set $\mathcal{G} = f[[\mathcal{F}]]$ and $B = f[F] \in \mathcal{G}$. Then there is a $C \subseteq B$ such that $C \in \mathcal{G}$ and $\#(B \setminus C) \ge \#(C)$. **P** As \mathcal{G} is free, B is infinite. So we have a set Z and a function $g: Y \to Z$ such that $\#(B \cap g^{-1}[\{z\}]) = 2$ for every $z \in Z$. By (a), \mathcal{G} is dependently selective; by (b), there is a $G \in \mathcal{G}$ such that $g \upharpoonright G$ is injective. Now $C = B \cap G$ belongs to \mathcal{G} and $g[B \setminus C] \supseteq g[C]$, so $\#(B \setminus C) \ge \#(C)$.

(ii) Now $F' = F \cap f^{-1}[C]$ belongs to \mathcal{F} , and f[F'] = C, $\#(X \setminus F') \ge \#(F')$, $\#(Y \setminus C) \ge \#(C)$. Consequently

$$\#(X \setminus F') = \#(X) = \#(Y \setminus C)$$

and there is a bijection $h: X \to Y$ extending $f \upharpoonright F'$; in which case $h[[\mathcal{F}]] = \mathcal{G}$ and $\mathcal{F} \cong \mathcal{G}$.

1C Proposition Let \mathcal{F} be a filter on a set X, and A a subset of X such that $X \setminus A \notin \mathcal{F}$.

(a) If \mathcal{F} is dependently selective, then $\mathcal{F}[A]$ is dependently selective.

(b) If $A \in \mathcal{F}$ and $\mathcal{F} \lceil A$ is dependently selective, then \mathcal{F} is dependently selective.

proof (a) Let $S \subseteq [A]^{<\omega}$ be such that $\emptyset \in S$ and $\{x : K \cup \{x\} \in S\} \in \mathcal{F} \mid A$ for every $K \in S$. Set $S' = \{K : K \in [X]^{<\omega}, K \cap A \in S\}.$

Then $\emptyset \in \mathcal{S}'$ and for $K \in \mathcal{S}'$

$$\{x: K \cup \{x\} \in \mathcal{S}'\} = (X \setminus A) \cup \{x: (K \cap A) \cup \{x\} \in \mathcal{S}\} \in \mathcal{F}.$$

So there is an $F \in \mathcal{F}$ such that $[F]^{<\omega} \subseteq \mathcal{S}'$, and now $F \cap A \in \mathcal{F}[A \text{ and } [F \cap A]^{<\omega} \subseteq \mathcal{S}$. As \mathcal{S} is arbitrary, $\mathcal{F}[A \text{ is dependently selective.}]$

(b) Let $S \subseteq [X]^{<\omega}$ be such that $\emptyset \in S$ and $\{x : K \cup \{x\} \in S\} \in \mathcal{F}$ for every $K \in S$. Set

$$\mathcal{S}' = \{ K \cap A : K \in \mathcal{S} \}.$$

Then $\emptyset \in \mathcal{S}'$ and for $K \in \mathcal{S}'$

$$\{x: K \cup \{x\} \in \mathcal{S}'\} = A \cap \{x: K \cup \{x\} \in \mathcal{S}\} \in \mathcal{F}\lceil A$$

So there is an $F \in \mathcal{F}[A \text{ such that } [F]^{<\omega} \subseteq \mathcal{S}'$, and now $F \in \mathcal{F}$ and $[F]^{<\omega} \subseteq \mathcal{S}$. As \mathcal{S} is arbitrary, $\mathcal{F}[A \text{ is dependently selective.}}$

1D Proposition Let X be a set and \mathcal{F} a dependently selective filter on X.

(a) \mathcal{F} is a rapid *p*-point filter in the sense that for every sequence $\langle F_n \rangle_{n \in \mathbb{N}}$ in \mathcal{F} there is a $F \in \mathcal{F}$ such that $\#(F \setminus F_n) \leq n$ for every $n \in \mathbb{N}$.

(b) If $\mathcal{A} \subseteq \mathcal{F}$ there is an $F \in \mathcal{F}$ such that $\#(F \setminus A) < \#(\mathcal{A})$ for every $A \in \mathcal{A}$.

proof (a) Let S be

$$\{K: K \in [X]^{<\omega}, \#(K \setminus F_n) \le n \text{ for every } n \in \mathbb{N}\}.$$

Of course $\emptyset \in \mathcal{S}$. If $K \in \mathcal{S}$, then

$$\{x: K \cup \{x\} \in \mathcal{S}\} \supseteq \bigcap_{n < \#(K)} F_n \in \mathcal{F}_n$$

so there is a $F \in \mathcal{F}$ such that $[F]^{<\omega} \subseteq \mathcal{S}$ and $\#(F \setminus F_n) \leq n$ for every n.

(b) If \mathcal{A} is finite we can take $F = X \cap \bigcap \mathcal{A}$. Otherwise, enumerate \mathcal{A} as $\langle F_{\xi} \rangle_{\xi < \kappa}$. Set $L = \bigcap \mathcal{A}$, and for $x \in X \setminus L$ set $f(x) = \min\{\xi : i \notin F_{\xi}\}$. Let \mathcal{S} be the family of finite sets $K \subseteq X$ such that $f \upharpoonright K \setminus L$ is injective. Of course $\emptyset \in \mathcal{S}$. If $K \in \mathcal{S}$ then

$$\{x: K \cup \{x\} \in \mathcal{S}\} \supseteq X \cap \bigcap_{y \in K \setminus L} F_{f(y)}$$

belongs to \mathcal{F} . So there is a $F \in \mathcal{F}$ such that $[F]^{<\omega} \subseteq \mathcal{S}$. Suppose that $\xi < \kappa$ and consider $C = F \setminus F_{\xi}$. If x, $y \in C$ then $f(x) \neq f(y)$, and both f(x) and f(y) are at most ξ ; so $\#(C) \leq \#(\xi + 1) < \kappa$, as required.

1E Proposition Let X be a set and \mathcal{F} a dependently selective filter on X. Set $\kappa = \min\{\#(A) : A \subseteq X, X \setminus A \notin \mathcal{F}\}.$

(a) \mathcal{F} is κ -complete.

(b) κ is either 1 or a regular infinite cardinal.

proof (a) If $\kappa \leq \omega$ this is trivial. Otherwise, if $\mathcal{A} \in [\mathcal{F}]^{<\kappa}$, then by 1Db there is an $F \in \mathcal{F}$ such that $\#(F \setminus A) < \#(\mathcal{A})$ for every $A \in \mathcal{A}$. So $B = \bigcup_{F \in \mathcal{F}} F \setminus A$ has cardinal at most $\max(\omega, \#(\mathcal{A})) < \kappa$, and $X \setminus B$ and $F \setminus B$ belong to \mathcal{F} . But $F \setminus B \subseteq \bigcap \mathcal{A}$, so $X \cap \bigcap \mathcal{A} \in \mathcal{F}$.

(b) Of course $\kappa \neq 0$. If $\kappa > 1$, then $X \setminus \{x\} \in \mathcal{F}$ for every $x \in X$, so $\kappa \geq \omega$. If $\kappa = \omega$ it is certainly regular, so suppose that $\kappa > \omega$. Let $A \in [X]^{\kappa}$ be such that $X \setminus A \notin \mathcal{F}$, and enumerate A as $\langle x_{\xi} \rangle_{\xi < \kappa}$. If $C \subseteq \kappa$ is cofinal with κ , then for $\zeta \in C$ set $F_{\zeta} = X \setminus \{x_{\xi} : \xi \leq \zeta\}$; then $F_{\zeta} \in \mathcal{F}$ for every $\zeta \in C$, while $\bigcap_{\zeta \in C} F_{\zeta} = X \setminus A$ does not belong to \mathcal{F} . By (a), $\#(C) \geq \kappa$. As C is arbitrary, κ is regular.

Remark If we take \mathcal{I} to be the dual ideal $\{A : A \subseteq X, X \setminus A \in \mathcal{F}\}$, then κ is the uniformity non \mathcal{I} of \mathcal{I} (FREMLIN 08, 511F), and (b) can be restated as 'add $\mathcal{I} \ge \operatorname{non} \mathcal{I}$ ', where add \mathcal{I} is the additivity of \mathcal{X} (FREMLIN 08, 511B). If \mathcal{F} is free (that is, contains all cofinite subsets of X) then we must have equality.

1F Proposition Let \mathcal{F} and \mathcal{G} be dependently selective filters on a set X such that $F \cap G$ is non-empty for all $F \in \mathcal{F}$ and $G \in \mathcal{G}$, and let $\mathcal{F} \lor \mathcal{G}$ be the filter on X generated by $\mathcal{F} \cup \mathcal{G}$. Then $\mathcal{F} \lor \mathcal{G}$ is dependently selective.

proof (a) To begin with, suppose that \mathcal{F} and \mathcal{G} are both uniform. The case of finite X is trivial, so we may suppose that $X = \kappa$ is an infinite cardinal; by 1E, κ is regular and both \mathcal{F} and \mathcal{G} are κ -additive.

Let $S \subseteq [\kappa]^{<\omega}$ be such that $\emptyset \in S$ and $\{\xi : K \cup \{\xi\} \in S\} \in \mathcal{F} \lor \mathcal{G}$ for every $K \in S$. For $K \in S$ let $F_K \in \mathcal{F}, G_K \in \mathcal{G}$ be such that $K \cup \{x\} \in S$ whenever $x \in F_K \cap G_K$. Set

$$\mathcal{S}' = \{ K : K \in [\kappa]^{<\omega}, \xi \in F_L \text{ whenever } \xi \in K \text{ and } L \subseteq K \cap \xi \text{ belongs to } \mathcal{S} \}$$

Then $\emptyset \in \mathcal{S}'$. If $K \in \mathcal{S}'$ then

 $\{\xi: K \cup \{\xi\} \in \mathcal{S}'\} \supseteq \{\xi: K \subseteq \xi < \kappa, \xi \in F_L \text{ whenever } L \subseteq K \text{ belongs to } \mathcal{S}\}$

belongs to \mathcal{F} . (This is where we need to know that \mathcal{F} is uniform.) So there is an $F \in \mathcal{F}$ such that $[F]^{<\omega} \subseteq \mathcal{S}'$. Similarly, setting

 $\mathcal{S}'' = \{ K : K \in [\kappa]^{<\omega}, \, \xi \in G_L \text{ whenever } \xi \in K \text{ and } L \subseteq K \cap \xi \text{ belongs to } \mathcal{S} \},\$

there is a $G \in \mathcal{G}$ such that $[G]^{<\omega} \subseteq \mathcal{S}''$. Set $H = F \cap G \in \mathcal{F} \vee \mathcal{G}$; then $[H]^n \subseteq \mathcal{S}$ for every $n \in \mathbb{N}$. **P** Induce on n. The case n = 0 is trivial. For the inductive step to n + 1, take $K \in [H]^{n+1}$ and set $\xi = \max K$, $L = K \setminus \{\xi\}$. By the inductive hypothesis, $L \in \mathcal{S}$. As $K \subseteq F$, $K \in \mathcal{S}'$ and $\xi \in F_L$; similarly, $\xi \in G_L$, so $K = L \cup \{\xi\} \in \mathcal{S}$ by the choice of F_L and G_L . Thus the induction proceeds. **Q**

So $[H]^{<\omega} \subseteq S$; as S is arbitrary, $\mathcal{F} \lor \mathcal{G}$ is dependently selective.

(b) For the general case, let $A \in \mathcal{F} \lor \mathcal{G}$ be a set of minimal cardinality. Then $(\mathcal{F} \lor \mathcal{G}) \upharpoonright A = (\mathcal{F} \upharpoonright A) \lor (\mathcal{G} \upharpoonright A)$, so $\mathcal{F} \upharpoonright A$ and $\mathcal{G} \upharpoonright A$ are both uniform; by 1Ca, they are dependently selective. So (a) tells us that $(\mathcal{F} \lor \mathcal{G}) \upharpoonright A$ is dependently selective, and now 1Cb tells us that $\mathcal{F} \lor \mathcal{G}$ itself if dependently selective.

1G Proposition (a) Let κ be a regular uncountable cardinal and \mathcal{F} a normal filter on κ (definition: FREMLIN 03, 4A1Ic). Then \mathcal{F} is dependently selective.

(b) If κ is any cardinal of uncountable cofinality, the filter generated by the closed cofinal subsets of κ is dependently selective.

proof (a) Let $S \subseteq [\kappa]^{<\omega}$ be such that $\emptyset \in S$ and $F_K = \{\xi : K \cup \{\xi\} \in S\} \in \mathcal{F}$ for every $K \in S$. For each $\xi < \kappa$, set $F'_{\xi} = \bigcap\{F_K : K \in S \cap [\xi + 1]^{<\omega}\}$; because \mathcal{F} is κ -complete (FREMLIN 03, 4A1J), $F'_{\xi} \in \mathcal{F}$. Let F be the diagonal intersection of $\langle F'_{\xi} \rangle_{\xi < \kappa}$. Because \mathcal{F} is normal, F and $F \cap F_{\emptyset}$ belong to \mathcal{F} . Now $[F \cap F_{\emptyset}]^n \subseteq S$ for every $n \in \mathbb{N}$. **P** Induce on n. The case n = 0 is trivial, and $\{\xi\} \in S$ for every $\xi \in F_{\emptyset}$, which deals with the case n = 1. For the inductive step to $n + 1 \ge 2$, take $K \in [F]^{n+2}$ and set $\eta = \max K$, $J = K \setminus \{\eta\}$ and $\xi = \max J$. By the inductive hypothesis, $J \in S$, so $F'_{\xi} \subseteq F_J$; since $\eta \in F$ and $\eta > \xi$, $\eta \in F'_{\xi}$ and $K = J \cup \{\eta\}$ belongs to S. Thus the induction proceeds. **Q** At the end of the induction, we have $[F \cap F_{\emptyset}]^{<\omega} \subseteq S$; as S is arbitrary, \mathcal{F} is dependently selective.

(b) Set $\lambda = \operatorname{cf} \kappa$. Then we have an order-continuous strictly increasing function $f : \lambda \to \kappa$ such that $f[\lambda]$ is cofinal with κ . The filter \mathcal{F} on λ generated by the closed cofinal subsets of λ is normal (FREMLIN 03, 4A1B(c-ii)), so is dependently selective, by (a); by 1Ba, $f[[\mathcal{F}]]$ is a dependently selective filter on κ ; but $f[[\mathcal{F}]]$ is the filter generated by the closed cofinal subsets of κ .

1H Proposition Suppose that $\mathfrak{m}_{\text{countable}} = \mathfrak{c}$. Let \mathcal{A} be a family of fewer than \mathfrak{c} infinite subsets of \mathbb{N} . Then there is a free dependently selective filter \mathcal{F} on \mathbb{N} such that $\mathbb{N} \setminus A \notin \mathcal{F}$ for every $A \in \mathcal{A}$.

Remark For the definition and basic properties of $\mathfrak{m}_{countable}$, see FREMLIN 08, 517O-517Q and 522R.

proof Enumerate $\mathcal{P}([\mathbb{N}]^{<\omega})$ as $\langle \mathcal{S}_{\xi} \rangle_{\xi < \mathfrak{c}}$. For $\xi < \mathfrak{c}$ and $K \in [\mathbb{N}]^{<\omega}$ set $C_{\xi}(K) = \{n : K \cup \{n\} \in \mathcal{S}_{\xi}\}$. Choose a non-decreasing family $\langle \mathcal{E}_{\xi} \rangle_{\xi < \mathfrak{c}}$ of filter bases inductively, as follows. $\mathcal{E}_0 = \{\mathbb{N} \setminus n : n \in \mathbb{N}\}$. Given that $\#(\mathcal{E}_{\xi}) \leq \max(\omega, \#(\xi))$ and that $E \cap A$ is non-empty for every $E \in \mathcal{E}_{\xi}$ and $A \in \mathcal{A}$, consider \mathcal{S}_{ξ} . If either $\emptyset \notin \mathcal{S}_{\xi}$ or there are $E \in \mathcal{E}_{\xi}$, $A \in \mathcal{A}$ and a finite family $\mathcal{K} \subseteq \mathcal{S}_{\xi}$ such that $\bigcap_{K \in \mathcal{K}} C_{\xi}(K) \cap E \cap A = \emptyset$, set $\mathcal{E}_{\xi+1} = \mathcal{E}_{\xi}$ and continue. Otherwise, set $\mathcal{S}'_{\xi} = \{K : \mathcal{P}K \subseteq \mathcal{S}_{\xi}\}$; then $\emptyset \in \mathcal{S}'_{\xi}$ and

$$\{K: K \in \mathcal{S}'_{\mathcal{E}}, \ K \cap E \cap A \neq \emptyset\}$$

is cofinal with \mathcal{S}'_{ξ} for every $E \in \mathcal{E}_{\xi}$ and $A \in \mathcal{A}$. Because $\#(\mathcal{E}_{\xi} \cup \mathcal{A}) < \mathfrak{m}_{\text{countable}}$, there is a J_{ξ} , meeting $E \cap A$ for every $E \in \mathcal{E}_{\xi}$ and $A \in \mathcal{A}$, such that $[J_{\xi}]^{<\omega} \subseteq \mathcal{S}'_{\xi}$. Set

$$\mathcal{E}_{\xi+1} = \mathcal{E}_{\xi} \cup \{J_{\xi} \cap E : E \in \mathcal{E}_{\xi}\}$$

and continue.

At non-zero limit ordinals $\xi \leq \mathfrak{c}$, set $\mathcal{E}_{\xi} = \bigcup_{\eta < \xi} \mathcal{E}_{\eta}$.

At the end of the induction, let \mathcal{F} be the filter generated by $\mathcal{E}_{\mathfrak{c}}$. If $A \in \mathcal{A}$, then $F \cap A \neq \emptyset$ for every $F \in \mathcal{F}$, so $\mathbb{N} \setminus A \notin \mathcal{F}$. If $S \subseteq [\mathbb{N}]^{<\omega}$ is such that $\emptyset \in S$ and $\{n : K \cup \{n\} \in \mathcal{F}\}$ for every $K \in S$, let $\xi < \mathfrak{c}$ be such that $S = S_{\xi}$. Then $\emptyset \in S_{\xi}$ and if $\mathcal{K} \subseteq S_{\xi}$ is finite, $\mathbb{N} \cap \bigcap_{K \in \mathcal{K}} C_{\xi}(K)$ belongs to \mathcal{F} and must meet $E \cap A$ whenever $E \in \mathcal{E}_{\xi}$ and $A \in \mathcal{A}$. We therefore applied the second rule when determining $\mathcal{E}_{\xi+1}$, and $J_{\xi} \in \mathcal{F}$ is such that $[J_{\xi}]^{<\omega} \subseteq S'_{\xi} \subseteq S$. As S is arbitrary, \mathcal{F} is dependently selective.

Remark In terms of the dual ideal \mathcal{I} of \mathcal{F} , $\mathcal{A} \cap \mathcal{I} = \emptyset$. So if, for instance, \mathcal{A} is almost disjoint, or we could otherwise arrange that $A \cap B \in \mathcal{E}_0$ for all distinct $A, B \in \mathcal{A}$, we get sat $(\mathcal{PN}/\mathcal{I}) > \#(\mathcal{A})$, and in particular, \mathcal{I} need not be ω_1 -saturated, at least if $\mathfrak{m}_{\text{countable}} = \mathfrak{c}$.

Conceivably things are different in random real models. See Problem 3A.

2 Ramsey ultrafilters

2A Definition If X is an infinite set, a filter \mathcal{F} on X is **Ramsey** if it is uniform and for every $S \subseteq [X]^2$ there is a $F \in \mathcal{F}$ such that either $[F]^2 \subseteq S$ or $[F]^2 \cap S \neq \emptyset$.

2B Theorem (see COMFORT & NEGREPONTIS 74, Theorem 9.6) Let \mathcal{F} be a uniform Ramsey ultrafilter on an infinite cardinal κ .

(a) \mathcal{F} is κ -complete.

(b) If κ is uncountable, then it is two-valued-measurable and there is a bijection $f : \kappa \to \kappa$ such that $f[[\mathcal{F}]]$ is a normal ultrafilter.

(c) If κ is uncountable, then for every $S \subseteq [\kappa]^{<\omega}$ there is an $X \in \mathcal{F}$ such that for each $n \in \mathbb{N}$ either $[X]^n \subseteq S$ or $[X]^n \cap S = \emptyset$.

proof (a) ? Otherwise, let $\lambda < \kappa$ be the least cardinal such that there is a non-empty family $\mathcal{E} \in [\mathcal{F}]^{\leq \lambda}$ such that $\bigcap \mathcal{E} \notin \mathcal{F}$. Then there is a non-increasing family $\langle F_{\alpha} \rangle_{\alpha < \lambda}$ in \mathcal{F} such that $L = \bigcap_{\alpha < \lambda} F_{\alpha} \notin \mathcal{F}$ and $F_{\alpha} = \bigcap_{\beta < \alpha} F_{\beta}$ if $\alpha < \lambda$ is a non-zero limit ordinal. Set

$$S = \bigcup_{\alpha < \lambda} \{ \{\xi, \eta\} : \xi \in \kappa \setminus F_{\alpha}, \eta \in F_{\alpha}, \xi < \eta \} \subseteq [\kappa]^2.$$

Then there is an $F \in \mathcal{F}$ such that either $[F]^2 \subseteq S$ or $[F]^2 \cap S = \emptyset$.

In fact $[F]^2 \subseteq S$. **P** Take any $\xi \in F \setminus L$. Then there is an $\alpha < \lambda$ such that $\xi \notin F_{\alpha}$. Now $F \cap F_{\alpha}$ belongs to \mathcal{F} , so has cardinal κ , and there must be an $\eta \in F \cap F_{\alpha}$ such that $\xi < \eta$; in which case $\{\xi, \eta\} \in [F]^2 \cap S$. Thus $[F]^2 \cap S \neq \emptyset$ and $[F]^2 \subseteq S$. **Q**

Since $\#(F \setminus L) = \kappa > \lambda$, there must be a $\beta < \kappa$ such that $F \cap F_{\beta} \setminus F_{\beta+1}$ has more than one member. Suppose that $\xi, \eta \in F \cap F_{\beta} \setminus F_{\beta+1}$ and $\xi < \eta$. Then there is an $\alpha < \lambda$ such that $\xi \notin F_{\alpha}$ (so $\alpha > \beta$) and $\eta \in F_{\alpha}$ (so $\alpha \leq \beta$); which is absurd. **X**

(b) Part (a) tells us immediately that κ is regular. By FREMLIN 08, 541F, there are a set $Y \subseteq \kappa$ and a function $g: Y \to \kappa$ such that $\{B: B \subseteq \kappa, g^{-1}[B] \notin \mathcal{F}\}$ is a normal principal ideal of $\mathcal{P}\kappa$. Of course it follows that $Y \in \mathcal{F}$ and that $\mathcal{G} = \{B: B \subseteq \kappa, g^{-1}[B] \in \mathcal{F}\}$ is a normal ultrafilter on κ . Extending g to the whole of κ by setting $g(\xi) = 0$ for $\xi \in \kappa \setminus Y$, we have $g: \kappa \to \kappa$ such that $\mathcal{G} = g[[\mathcal{F}]]$.

Consider the set

$$S = \{\{\xi, \eta\} : \xi < \eta < \kappa, \ g(\xi) = g(\eta)\}$$

If $F \in \mathcal{F}$ then $g[F] \in \mathcal{G}$ has cardinal κ , so $[F]^2 \not\subseteq S$; it follows that there is an $F \in \mathcal{F}$ such that $[F]^2 \cap S = \emptyset$, that is, $g \upharpoonright F$ is injective. Next, there is certainly a partition of F into two sets of cardinal κ , just one of which belongs to κ ; so we can suppose that both $\kappa \setminus F$ and $\kappa \setminus g[F]$ have cardinal κ . In this case, there is an extension of $g \upharpoonright F$ to a bijection $f : \kappa \to \kappa$, and $f[[\mathcal{F}]] = \mathcal{G}$ is a normal ultrafilter on κ . (c) This is true for normal ultrafilters by Rowbottom's theorem (FREMLIN 03, 4A1L); by (b), it is true for Ramsey ultrafilters.

2C Proposition If X is an infinite set, an ultrafilter on X is Ramsey iff it is uniform and dependently selective.

proof It is enough to consider the case in which $X = \kappa$ is a cardinal.

(a)(i) If \mathcal{F} is a Ramsey ultrafilter on κ , then it is uniform (by definition) and κ -complete, by 2Ba. It follows that if $\langle F_{\xi} \rangle_{\xi < \kappa}$ is any family in \mathcal{F} , there is an $F \in \mathcal{F}$ such that $F \setminus F_{\xi} \subseteq \xi + 1$ for every $\xi \in F$. **P** Set

$$S = \{\{\xi, \eta\} : \xi < \eta < \kappa, \, \eta \in F_{\xi}\}.$$

If $F \in \mathcal{F}$ and $\xi \in F$, then $F \cap F_{\xi} \setminus (\xi + 1)$ belongs to \mathcal{F} , so there is an $\eta \in F \cap F_{\xi}$ such that $\eta > \xi$ and $\{\xi, \eta\} \in S$. Thus $[F]^2 \cap S \neq \emptyset$ for every $F \in \mathcal{F}$; because \mathcal{F} is a Ramsey ultrafilter, there is $F \in \mathcal{F}$ such that $[F]^2 \subseteq S$. Now $F \setminus F_{\xi} \subseteq \xi + 1$ for every $\xi \in F$. **Q**

(ii) Now suppose that $S \subseteq [\kappa]^{<\omega}$ is such that $\emptyset \in S$ and $\{\xi : K \cup \{\xi\} \in S\} \in \mathcal{F}$ for every $K \in S$. For $\xi < \kappa$ set

$$F_{\xi} = \{\eta : K \cup \{\eta\} \in \mathcal{S} \text{ whenever } K \in [\xi + 1]^{<\omega} \text{ and } K \in \mathcal{S}\}.$$

Then F_{ξ} is the intersection of fewer than κ members of \mathcal{F} and belongs to \mathcal{F} . By (i), there is a $F \in \mathcal{F}$ such that $F \setminus F_{\xi} \subseteq \xi + 1$ for every $\xi \in F$; and we can suppose that $F \subseteq F_0$. Now $K \in \mathcal{S}$ whenever $n \in \mathbb{N}$ and $K \in [F]^n$. **P** Induce on n. If n = 0 we just have to recall that $\emptyset \in \mathcal{S}$. If n = 1, then $K = \{\eta\}$ for some $\eta \in F_0$, so $\{\eta\} \in \mathcal{S}$. For the inductive step to $n \geq 2$, set $\eta = \max K, K' = K \setminus \{\eta\}$ and $\xi = \max K'$. Because $\xi, \eta \in F$ and $\xi < \eta, \eta \in F_{\xi}; K' \subseteq \xi + 1$ and $K' \in \mathcal{S}$, by the inductive hypothesis; so $K = K' \cup \{\eta\} \in \mathcal{S}$ and the induction proceeds. **Q**

So $[F]^{\leq \omega} \subseteq S$. As S is arbitrary, \mathcal{F} is dependently selective.

(b) If \mathcal{F} is a uniform dependently selective ultrafilter on κ , take any $S \subseteq [\kappa]^2$. For $\xi < \kappa$ set $A_{\xi} = \{\eta : \{\xi, \eta\} \in S\}$. Let \mathcal{S} be the family of finite subsets K of κ such that for all $\xi, \eta \in K$ such that $\xi < \eta$, $\{\xi, \eta\} \in S$ iff $A_{\xi} \in \mathcal{F}$. If $K \in \mathcal{S}$, then (because \mathcal{F} is an ultrafilter) there is a $F \in \mathcal{F}$ such that, for every $\xi \in K$, F is either included in A_{ξ} or disjoint from A_{ξ} . Now $K \cup \{\eta\} \in \mathcal{S}$ whenever $\eta \in F$ and $\eta > \xi$ for every $\xi \in K$. So \mathcal{S} satisfies the condition of 1A. Let $F \in \mathcal{F}$ be such that $[F]^{<\omega} \subseteq \mathcal{S}$. In this case, if $\xi, \eta \in F$ and $\xi < \eta, \{\xi, \eta\} \in S$ iff $A_{\xi} \in \mathcal{F}$. Now

$$F_1 = \{\xi : \xi \in F, A_{\xi} \in \mathcal{F}\}, \quad F_0 = \{\xi : \xi \in F, A_{\xi} \notin \mathcal{F}\}$$

have union F and one of them must belong to \mathcal{F} ; while $[F_0]^2 \cap S = \emptyset$ and $[F_1]^2 \subseteq S$. As S is arbitrary, \mathcal{F} is a Ramsey ultrafilter.

2D Lemma (a) Let X be an infinite set, \mathcal{F} a Ramsey ultrafilter on X, and $\mathcal{A} \subseteq \mathcal{F}$ a set of size at most #(X). Then there is a $C \in \mathcal{F}$ such that $\#(C \setminus A) < \#(X)$ for every $A \in \mathcal{A}$.

(b) Let κ be an infinite cardinal, $\lambda \leq \kappa$ another cardinal, and $\langle \mathcal{F}_{\alpha} \rangle_{\alpha < \lambda}$ a family of distinct Ramsey ultrafilters on κ . Then there is a disjoint family $\langle A_{\alpha} \rangle_{\alpha < \lambda}$ of subsets of κ such that $A_{\alpha} \in \mathcal{F}_{\alpha}$ for every $\alpha < \lambda$.

proof (a) Set $A^* = \kappa \cap \bigcap \mathcal{A}$. If $A^* \in \mathcal{F}$, we can set $C = A^*$ and stop. Otherwise, enumerate \mathcal{A} as $\langle A_{\alpha} \rangle_{\alpha < \lambda}$. For $i \in X$, set $f(i) = \min\{\alpha : \alpha < \lambda, i \notin A_{\alpha} \setminus A^*\}$. Then there is a $C \in \mathcal{F}$ such that $f \upharpoonright C$ is either constant or injective (COMFORT & NEGREPONTIS 74, 9.6). The former is impossible, because $\{i : f(i) = \alpha\}$ never belongs to \mathcal{F} . So $f \upharpoonright C$ is injective and $C \setminus A_{\alpha} = \{i : i \in C, f(i) \le \alpha\}$ has cardinal less than κ for every $\alpha < \lambda$.

(b) For $\alpha < \beta < \lambda$, take $A_{\alpha\beta} \in \mathcal{F}_{\beta} \setminus \mathcal{F}_{\alpha}$. For each $\alpha < \kappa$, there is a $B_{\alpha} \in \mathcal{F}_{\alpha}$ such that $\#(B_{\alpha} \cap A_{\alpha\beta}) < \kappa$ for every $\beta > \alpha$ (apply (a) to $\{X \setminus A_{\alpha\beta} : \alpha < \beta < \lambda\} \subseteq \mathcal{F}_{\alpha}$)). Set

$$A_{\beta} = B_{\beta} \setminus \bigcup_{\alpha < \beta} B_{\alpha}$$

for $\beta < \lambda$. Of course $\langle A_{\beta} \rangle_{\beta < \lambda}$ is disjoint. On the other hand, for each $\beta < \lambda$, $A'_{\beta} = B_{\beta} \cap \bigcap_{\alpha < \beta} A_{\alpha\beta}$ belongs to \mathcal{F} because \mathcal{F} is κ -complete; and $A_{\beta} \setminus A'_{\beta} \subseteq \bigcup_{\alpha < \beta} A_{\alpha\beta} \cap B_{\alpha}$ has cardinal less than κ , so A_{β} also belongs to \mathcal{F} .

2E Proposition Let X be an infinite set, and \mathfrak{F} a non-empty family of non-isomorphic Ramsey ultrafilters on X with $\#(\mathfrak{F}) \leq \#(X)$. Then $\mathcal{H} = \bigcap \mathfrak{F}$ is a dependently selective filter on X.

proof (a) It is enough to consider the case in which $X = \kappa$ is a cardinal. Let $\langle \mathcal{F}_{\alpha} \rangle_{\alpha < \lambda}$ be an enumeration of F.

(b) If $\langle A_{\alpha} \rangle_{\alpha < \lambda}$ is such that $A_{\alpha} \in \mathcal{F}_{\alpha}$ for $\alpha < \lambda$, then there is a family $\langle D_{\alpha} \rangle_{\alpha < \lambda}$ such that $D_{\alpha} \in \mathcal{F}_{\alpha}$ and $D_{\alpha} \subseteq A_{\alpha}$ for every $\alpha < \lambda$, and whenever $\xi < \eta < \kappa$, $\alpha, \beta < \lambda$ are such that $\xi \in D_{\alpha}$ and $\eta \in D_{\beta}$, there is a $\zeta \in A_{\beta}$ such that $\xi \leq \zeta < \eta$. **P** By 2Db, we may suppose that $\langle A_{\alpha} \rangle_{\alpha < \lambda}$ is disjoint. For any $\zeta < \kappa$, $\{\alpha : \alpha < \lambda, A_{\alpha} \cap \zeta \neq \emptyset\}$ has cardinal less than κ ; so there is a closed cofinal set $F \subseteq \kappa$, containing 0, such that $A_{\alpha} \cap \zeta' \setminus \zeta \neq \emptyset$ whenever $\zeta < \zeta'$ in $F, \alpha < \lambda$ and $A_{\alpha} \cap \zeta \neq \emptyset$. Set $f(\xi) = \max\{\zeta : \zeta \in F, \zeta \leq \xi\}$ for $\xi < \kappa$. Then $\langle f[[\mathcal{F}_{\alpha}]] \rangle_{\alpha < \lambda}$ is a family of κ -complete uniform ultrafilters on F, so there must be a cofinal set $V \subseteq F$ not belonging to any of them. (We can easily build inductively a family $\langle V_{\xi} \rangle_{\xi < \kappa^+}$ of cofinal subsets of F such that $\#(V_{\xi} \cap V_{\eta}) < \kappa$ whenever $\xi < \eta < \kappa^+$, and now each $f[[\mathcal{F}_{\alpha}]]$ can contain V_{ξ} for at most one ξ , so there is a ξ left over for which we can set $V = V_{\xi}$.) Set $M = f^{-1}[V]$; then $A_{\alpha} \setminus M \in \mathcal{F}_{\alpha}$ for each α .

Define $g: \kappa \to \kappa$ by setting $g(\xi) = \min\{\zeta : \xi \leq \zeta \in V\}$ for $\xi < \kappa$. By 1Bc, or otherwise, $g[[\mathcal{F}_{\alpha}]]$ is isomorphic to \mathcal{F}_{α} , and is surely a Ramsey ultrafilter. Because the \mathcal{F}_{α} are non-isomorphic, all the $g[[\mathcal{F}_{\alpha}]]$ are different. By 2Db again, there is a disjoint family $\langle G_{\alpha} \rangle_{\alpha < \lambda}$ of sets such that $G_{\alpha} \in g[[\mathcal{F}_{\alpha}]]$ for every α .

Set

$$C_{\alpha} = A_{\alpha} \cap B_{\alpha} \cap g^{-1}[G_{\alpha}] \setminus M, \quad D_{\alpha} = C_{\alpha} \setminus \{\min C_{\alpha}\} \in \mathcal{F}_{\alpha}$$

for each $\alpha < \lambda$. Suppose that $\xi \in D_{\alpha}$, $\eta \in D_{\beta}$ and $\xi < \eta$. Then $g(\xi) < g(\eta)$. **P** If $\alpha = \beta$, this is because $g \upharpoonright B_{\alpha}$ is injective; otherwise, it is because $G_{\alpha} \cap G_{\beta}$ is empty. **Q** Let η_0 be the least member of C_{β} . We have $\eta_0 < \eta$. If $\xi \leq \eta_0$, then η_0 is a member of $A_\beta \cap \eta \setminus \xi$. Otherwise, $A_\beta \cap g(\xi) \neq \emptyset$, so there is a $\zeta \in A_\beta \cap \gamma \setminus g(\xi)$, where γ is the next member of F above $g(\xi)$. Now $\gamma \setminus g(\xi) = f^{-1}[\{g(\xi)\}] \subseteq M$ is disjoint from D_{β} , so $\gamma \leq \eta$ and $\zeta \in A_{\beta} \cap \eta \setminus \xi$.

Thus $\langle D_{\alpha} \rangle_{\alpha < \lambda}$ is a suitable family. **Q**

(c) Now suppose that S is a family of finite subsets of κ such that $\emptyset \in S$ and $\{\xi : K \cup \{\xi\} \in S\} \in \mathcal{H}$ for every $K \in \mathcal{S}$. For each $\alpha < \lambda$, set

$$S = \{\{\xi, \eta\} : \xi < \eta < \kappa, \ K \cup \{\eta\} \in \mathcal{S} \text{ whenever } K \in \mathcal{S} \text{ and } K \subseteq \xi + 1\}$$

Then there is an $A_{\alpha} \in \mathcal{F}_{\alpha}$ such that $[A_{\alpha}]^2$ is either included in or disjoint from S_{α} . But taking $\xi = \min A_{\alpha}$, we see that $\{\eta : \eta > \xi, K \cup \{\eta\} \in S\}$ belongs to $\mathcal{H} \subseteq \mathcal{F}_{\alpha}$ for every $K \in S$; because \mathcal{F}_{α} is κ -complete, there must be an $\eta \in A_{\alpha}$ such that $\eta > \xi$ and $K \cup \{\eta\} \in S$ whenever $K \in S$ and $K \subseteq \xi + 1$, in which case $\{\xi, \eta\} \in S$. So we must have $[A_{\alpha}]^2 \subseteq S$. Set $A'_{\alpha} = \{\xi : \xi \in A_{\alpha}, \{\xi\} \in S\}$; then $A'_{\alpha} \in \mathcal{F}_{\alpha}$ because $\{\xi : \{\xi\} \in \mathcal{S}\} \in \mathcal{H} \subseteq \mathcal{F}_{\alpha}.$

By (b), we have a family $\langle D_{\alpha} \rangle_{\alpha < \lambda}$ of sets such that $D_{\alpha} \in \mathcal{F}_{\alpha}$ and $D_{\alpha} \subseteq A'_{\alpha}$ for every $\alpha < \lambda$, and whenever $\xi < \eta < \kappa$, α , $\beta < \lambda$ are such that $\xi \in D_{\alpha}$ and $\eta \in D_{\beta}$, there is a $\zeta \in A'_{\beta}$ such that $\xi \leq \zeta < \eta$. Set $A = \bigcup_{\alpha \leq \lambda} D_{\alpha} \in \mathcal{H}$. Then $[A]^n \subseteq \mathcal{S}$ for every n. **P** Induce on n. The case n = 0 is trivial, and the case n = 1 has been dealt with when defining A'_{α} . For the inductive step to $n + 1 \ge 2$, suppose that $X \in [A]^{n+1}$. Let $\xi < \eta$ be the two greatest points of X; suppose that $\eta \in D_{\beta}$. Then there is a $\zeta \in A'_{\beta}$ such that $\xi \leq \zeta < \eta$. In this case, $K = X \setminus \{\eta\}$ belongs to $[A]^n \subseteq S$ and $K \subseteq \zeta + 1$. Also $\{\zeta, \eta\} \in [A_\beta]^2 \subseteq S$, so $X = K \cup \{\eta\} \in S$. Thus the induction continues. \mathbf{Q}

So $[A]^{<\omega} \subseteq S$. As S is arbitrary, \mathcal{F} is dependently selective.

2F Proposition Let X be a set, and \mathfrak{F} a non-empty countable family of non-isomorphic dependently selective ultrafilters on X. Then

(a) there is a disjoint family $\langle A_{\mathcal{F}} \rangle_{\mathcal{F} \in \mathfrak{F}}$ of sets such that $A_{\mathcal{F}} \in \mathcal{F}$ for every $\mathcal{F} \in \mathfrak{F}$;

(b) $\mathcal{H} = \bigcap \mathfrak{F}$ is dependently selective.

proof (a) For each $\mathcal{F} \in \mathfrak{F}$, let $X_{\mathcal{F}} \in \mathcal{F}$ be a set of minimal size. Let K be the countable set $\{\#(X_{\mathcal{F}}) : \mathcal{F} \in \mathfrak{F}\}$; for $\kappa \in \mathcal{K}$, set $\mathfrak{F}_{\kappa} = \{\mathcal{F} : \mathcal{F} \in \mathfrak{F}, \#(X_{\mathcal{F}}) = \kappa\}$ and $F_{\kappa} = \bigcup_{\mathcal{F} \in \mathfrak{F}_{\kappa}} X_{\mathcal{F}}$, so that $\#(F_{\kappa}) \leq \kappa$. (For if $\kappa = 1$, any member of \mathfrak{F}_{κ} is a principal ultrafilter, and there can be at most one such.) Set $F'_{\kappa} = F_{\kappa} \setminus \bigcup_{\lambda \in \mathcal{K}, \lambda < \kappa} F_{\lambda}$ for $\kappa \in \mathcal{K}$; then $\langle F'_{\kappa} \rangle_{\kappa \in \mathcal{K}}$ is disjoint and $F'_{\kappa} \in \mathcal{F}$ whenever $\kappa \in \mathcal{K}$ and $\mathcal{F} \in \mathfrak{F}_{\kappa}$.

For $\mathcal{F} \in \mathfrak{F}$, let $\mathcal{F}' = \mathcal{F} \cap \mathcal{P}F'_{\kappa}$ be the trace of \mathcal{F} on F'_{κ} , where $\kappa \in K$ is such that $\mathcal{F} \in \mathfrak{F}_{\kappa}$. Then \mathcal{F}' is either a principal ultrafilter or a Ramsey ultrafilter. Moreover, \mathcal{F}' and \mathcal{G}' must be non-isomorphic whenever \mathcal{F} , \mathcal{G} are distinct members of the same \mathfrak{F}_{κ} . So 2Db tells us that we have for each $\kappa \in K$ a disjoint family $\langle A_{\mathcal{F}} \rangle_{\mathcal{F} \in \mathfrak{F}_{\kappa}}$ of subsets of F'_{κ} such that $A_{\mathcal{F}} \in \mathcal{F}'$ for every $\mathcal{F} \in \mathfrak{F}_{\kappa}$, and 2E tells us that $\mathcal{H}_{\kappa} = \bigcap \{\mathcal{F}' : \mathcal{F} \in \mathfrak{F}_{\kappa}\}$ is dependently selective for every $\kappa \in K$. Assembling the families $\langle A_{\mathcal{F}} \rangle_{\mathcal{F} \in \mathfrak{F}_{\kappa}}$, we have a disjoint family $\langle A_{\mathcal{F}} \rangle_{\mathcal{F} \in \mathfrak{F}}$ such that $A_{\mathcal{F}} \in \mathcal{F}$ for every $\mathcal{F} \in \mathfrak{F}$.

(b) Evidently

$$\mathcal{H} = \{ A : A \subseteq X, A \cap F'_{\kappa} \in \mathcal{H}_{\kappa} \text{ for every } \kappa \in \mathbf{K} \}.$$

Now suppose that $S \subseteq [X]^{<\omega}$ is such that $\emptyset \in S$ and $\{i : K \cup \{i\} \in S\} \in \mathcal{H}$ for every $K \in S$. Choose $\langle B_{\kappa} \rangle_{\kappa \in K}$ inductively, as follows. Given that $\kappa \in K$, that $B_{\lambda} \in \mathcal{H}_{\lambda}$ has been defined for $\lambda \in K \cap \kappa$ and that $[\bigcup_{\lambda \in K \cap \kappa} B_{\lambda}]^{<\omega} \subseteq S$, note that $\#(\bigcup_{\lambda \in K \cap \kappa} F'_{\lambda}) < \kappa$, because if $\kappa > \omega$ then κ is two-valued-measurable and certainly has uncountable cofinality. So $C_{\kappa} = \bigcup_{\lambda \in K \cap \kappa} B_{\lambda}$ and $[C_{\kappa}]^{<\omega}$ have cardinal less than κ .

Set

$$\mathcal{S}_{\kappa} = \{K : K \in [F'_{\kappa}]^{<\omega}, K \cup L \in \mathcal{S} \text{ for every } L \in [C_{\kappa}]^{<\omega} \}$$

Then $\emptyset \in \mathcal{S}_{\kappa}$, by the hypothesis on C_{κ} . If $K \in \mathcal{S}_{\kappa}$, then for each $L \in [C_{\kappa}]^{<\omega}$ the set $C_L = \{i : i \in F'_{\kappa}, K \cup L \cup \{i\} \in \mathcal{S}\}$ belongs to \mathcal{H}_{κ} ; but \mathcal{H}_{κ} , being an intersection of κ -complete filters, is again κ -complete, so $C = \bigcap \{C_L : L \in [C_{\kappa}]^{<\omega}\} \in \mathcal{H}_{\kappa}$, and $K \cup \{i\} \in \mathcal{S}_{\kappa}$ for every $i \in C$. As \mathcal{H}_{κ} is dependently selective, there is an $B_{\kappa} \in \mathcal{H}_{\kappa}$ such that $[B_{\kappa}]^{<\omega} \subseteq \mathcal{S}_{\kappa}$ and $[B_{\kappa} \cup C_{\kappa}]^{<\omega} \subseteq \mathcal{S}$.

The inductive hypothesis

$$[\bigcup_{\lambda \in \mathbf{K} \cap \kappa} B_{\lambda}]^{<\omega} \subseteq \mathcal{S}$$

gives no difficulty when $\kappa \in K$ is a limit in K, so the induction proceeds to the end. Setting $A = \bigcup_{\kappa \in K} B_{\kappa}$, we have $A \in \mathcal{H}$ and $[A]^{<\omega} \subseteq S$. As S is arbitrary, \mathcal{H} is dependently selective.

3 Problems

3A Is it relatively consistent with ZFC to suppose that there are no free dependently selective filters on \mathbb{N} ?

References

Comfort W.W. & Negrepontis S. [74] The Theory of Ultrafilters. Springer, 1974.

Fremlin D.H. [03] Measure Theory, Vol. 4: Topological Measure Spaces. Torres Fremlin, 2003.

Fremlin D.H. [08] Measure Theory, Vol. 5: Set-theoretic Measure Theory. Torres Fremlin, 2008.

Fremlin D.H. [p09] 'Measure-centering ultrafilters', in preparation for the proceedings of the Ultramath conference in Pisa, 2008, to be published in Contemporary Math.