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Measure-centering ultrafilters

D.H.Fremlin

University of Essex, Colchester, England

Like pure mathematicians in general, measure theorists in the last hundred years have often used ultrafil-
ters as a tool. I suppose that the first person to notice that ultrafilters have intrinsic properties expressible
in terms of measure theory was Sierpiński (Sierpiński 45), who showed that if 〈En〉n∈N is a stochasti-
cally independent sequence of measurable subsets of [0, 1], and F is a non-principal ultrafilter on N, then
limn→F En has inner measure 0 and outer measure 1. But if you are starting from an interest in ultrafilters
rather than an interest in measure theory, your attention will be directed to ways in which measure theory
can display differences between different classes of ultrafilter. In §538 of my book Fremlin 08, I looked at
p-point filters, Ramsey ultrafilters, rapid filters, ‘measure-converging’ filters (an idea due to Matt Foreman),
and filters with what I call the ‘Fatou property’. Rather than try to cover such a range here, however, I
will concentrate on a single class, the ‘measure-centering’ or ‘property M ’ ultrafilters. The most interesting
results are due to Michael Benedikt.

The plan of this note is to begin with statements of the principal definitions and results, with some
discussion (§1). Proofs are given in §§3-6, after a preliminary section §2 examining ‘dependently selective’
filters. Finally I comment on some open questions in §7.

1 Definitions and results

1A I start by defining the class of ultrafilters I mean to study. Its nature will perhaps be clearer if I
move to a slightly more general context than is strictly necessary for the main theorems to follow. If A is a
Boolean algebra, a functional ν : A → [0, 1] is additive if ν(a ∪ b) = νa+νb whenever a, b ∈ A and a ∩ b = 0.
In this language, we can define measure-centering ultrafilters (‘property M ultrafilters’) as follows.

Definition An ultrafilter F on a set I is measure-centering if whenever A is a Boolean algebra,
ν : A → [0, 1] is an additive functional such that ν(1A) = 1, and 〈ai〉i∈I is a family in A such that
infi∈I νai > 0, then there is a J ∈ F such that ν(infi∈K ai) > 0 for every finite K ⊆ J .

1B Principal ultrafilters are obviously measure-centering. There do not have to be any others (see
Theorem 1Mj below). Subject to appropriate special axioms (in particular, the continuum hypothesis), we
have a variety of types of measure-centering ultrafilter, which it is the purpose of this note to examine. To
begin with, we have the following.

Theorem (a)(see Henson & Wattenberg 81) A Ramsey ultrafilter is measure-centering.
(b) If κ is an infinite cardinal and covNκ = 2κ, then there is a uniform measure-centering

ultrafilter on κ.
(c) If covNLeb = c, there is a measure-centering ultrafilter on N which contains no set of zero

asymptotic density.

(For the proof, see 3E-3G.) As you see, we are going to need rather a lot of definitions. Most of them are to
be found in Fremlin 08, but it will I expect help if I repeat some here. In particular:

Definitions (α)(Comfort & Negrepontis 74) If I is an infinite set, an ultrafilter F on I is
Ramsey (or ‘selective’) if it is uniform and for every S ⊆ [I]2 there is a J ∈ F such that either
[J ]2 ⊆ S or [J ]2 ∩ S 6= ∅.

(β) If (X,Σ, µ) is a measure space, set µ∗A = inf{µE : E ∈ Σ, E ⊇ A} for every A ⊆ X. The
null ideal of µ is N = {A : µ∗A = 0}. NLeb will be the null ideal of Lebesgue measure on [0, 1].

(γ) For any set I, I will write νI for the usual probability measure on {0, 1}I , the completed
product measure if each copy of {0, 1} is given the uniform probability in which each point has
measure 1

2 ; NI will be its null ideal.
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(δ) If X is a set and I is an ideal of subsets of X such that X =
⋃ I, then its covering

number cov I will be the least cardinal of any set A ⊆ I such that X =
⋃A.

(ǫ) If A ⊆ N then the upper asymptotic density of A is d∗(A) = lim supn→∞
1

n
#(A ∩ n).

A has zero asymptotic density if d∗(A) = 0.

Recall that the continuum hypothesis is sufficient to ensure that there are Ramsey ultrafilters on N; in fact
it is sufficient to suppose that covM = c, where M is the ideal of meager subsets of R (Fremlin 08, 538Fg).
For an uncountable cardinal κ, there is a Ramsey ultrafilter on κ iff κ is two-valued-measurable, and in this
case an ultrafilter on κ is Ramsey iff it is isomorphic to a normal ultrafilter (Comfort & Negrepontis

74, 9.6). There appears to be no bar to the number of such cardinals κ, but of course they must all be
enormous. Note that if there is a Ramsey ultrafilter F on κ, then κ is regular and F is κ-complete.

To get a notion of the scope of (b) in this theorem, note that covNκ ≤ covNLeb ≤ c for every infinite
cardinal κ (Fremlin 08, 523F), with equalities if Martin’s axiom is true (Fremlin 08, 524Na or Fremlin

84, 32C); moreover, Martin’s axiom implies that 2κ = c whenever ω ≤ κ < c (Fremlin 08, 517Rb or
Fremlin 84, 21C). So we see that we can have many cardinals less than c with uniform measure-centering
ultrafilters.

Martin’s axiom is sufficient to ensure that there are Ramsey ultrafilters on N (because it implies that
covM = c, or otherwise). But there is another important context in which (b) can be applied in the absence
of any Ramsey ultrafilters at all. If we start with a model of ZFC and an uncountable regular cardinal λ
such that 2κ ≤ λ for every κ < λ, and add λ random reals, then in the resulting forcing language we shall
have

covNκ = 2κ = c for every infinite κ < c,

but there are no Ramsey ultrafilters on N

(Fremlin 08, 552B, 552G and 553H). The position is similar in any model in which c is real-valued-
measurable (Fremlin 93, 5E, 6B and 5G).

1C In 1A I gave a definition of ‘measure-centering’ ultrafilter in a context well removed from the ordinary
concerns of elementary measure theory. The original conception derived, as you would expect, from ideas
closer to home, looking at filters on N and Lebesgue measure. To relate Lebesgue measure to the next result,
recall that the usual measure on {0, 1}N is isomorphic to Lebesgue measure on [0, 1] (Fremlin 01, 254K).

Proposition Let I be a set, and F an ultrafilter on I. Then the following are equiveridical, that
is, if one is true so are the others:

(i) F is measure-centering;
(ii) whenever 〈ai〉i∈I is a family in BI such that infi∈I ν̄Iai > 0, there is an A ∈ F such

that {ai : i ∈ A} is centered in BI ;
(iii) whenever 〈Ei〉i∈I is a family of measurable subsets of {0, 1}I such that infi∈I νIEi > 0,

there is an A ∈ F such that
⋂

i∈AEi 6= ∅;
(iv) whenever (X,Σ, µ) is a compact probability space and 〈Ei〉i∈I is a family in Σ, then

µ∗(limi→F Ei) ≥ limi→F µEi.

(For the proof, see 3C.) Of course this calls for some more definitions from modern abstract measure theory.

Definitions (α) If A is a Boolean algebra, a family 〈ai〉i∈I in A is centered if infi∈K ai 6= 0 for
every finite K ⊆ I.

(β) If (X,Σ, µ) is a measure space, and N the null ideal of µ, the measure algebra of µ is
the quotient Boolean algebra A = Σ/Σ ∩ N together with the functional µ̄ : A → [0,∞] defined
by setting µ̄E• = µE for every E ∈ Σ. For any cardinal κ, I will write (BI , ν̄I) for the measure
algebra of νI , the usual measure on {0, 1}I .

(γ) A family K of sets is a compact class if
⋂L is non-empty whenever L ⊆ K has the finite

intersection property, that is,
⋂L′ 6= ∅ for every finite L′ ⊆ L. If (X,Σ, µ) is a measure space, µ

is inner regular with respect to a family K of sets if whenever E ∈ Σ and 0 ≤ γ < µE there is
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a K ∈ K ∩Σ such that K ⊆ E and µK ≥ γ. A measure space (X,Σ, µ) is compact if µ is inner
regular with respect to some compact class of sets.

(δ) If 〈Ei〉i∈I is a family of sets and F is an ultrafilter on I, I write limi→F Ei for
⋃

A∈F

⋂

i∈AEi =
⋂

A∈F

⋃

i∈AEi = {x : {i : x ∈ Ei} ∈ F},
the limit of 〈Ei〉i∈I along F in PX if X is any set including

⋃

i∈I Ei and PX ∼= {0, 1}X is given
its usual compact Hausdorff topology.

For basic results on compact measure spaces, see Fremlin 02, §342. I remark here that a family K of
subsets of a set X is a compact class iff there is a compact (not necessarily Hausdorff) topology on X such
that every member of K is closed (Fremlin 02, 342D); thus all Radon measures, and in particular Lebesgue
measure, are compact measures in this sense.

1D It is natural to seek to explore the relationship of the class of measure-centering ultrafilters with the
ordinary operations of the theory of ultrafilters. At an elementary level, we have the following.

Proposition (a) Let I and J be sets, f : I → J a function, and F a measure-centering ultrafilter
on I. Then the image ultrafilter f [[F ]] is a measure-centering ultrafilter on J .

(b)(Benedikt 98) If F is a non-principal ultrafilter, then F ⋉ F is not measure-centering.

(Proof in 3H.) Some relevant definitions are as follows.

Definitions (α) If I and J are sets, f : I → J is a function and F is a filter on I, then the image
filter f [[F ]] is {B : B ⊆ J , f−1[B] ∈ F}, that is, the filter on J generated by {f [A] : A ∈ F}.

(β) If F , G are filters on sets I, J respectively, then I write F ⋉ G for the filter

{A : A ⊆ I × J , {i : i ∈ I, A[{i}] ∈ G} ∈ F};
here A[{i}] = {j : (i, j) ∈ A}.

1E Extension of measures The original impulse to study measure-centering ultrafilters arose because
they give an interesting expression of an ultrapower construction which I will describe shortly. The first
result is a theorem on extension of probability measures.

Theorem Let (X,Σ, µ) be a compact probability space, and F a measure-centering ultrafilter
on a set I. Let A be the family of all sets of the form limi→F Ei where 〈Ei〉i∈I is a family in Σ.
Then there is a unique complete probability measure λ on X such that λ is inner regular with
respect to A and λ(limi→F Ei) = limi→F µEi for every family 〈Ei〉i∈I in Σ.

(Proof in 3I. I ought perhaps to note that a measure λ is complete if λA is defined whenever λ∗A = 0; thus
Lebesgue measure is complete.) Note that in the context of this theorem, λ must extend µ, because we can
apply the defining formula to constant families 〈Ei〉i∈I .

1F Reduced products of probability algebras We now need an abstract construction from the theory
of measure algebras.

(a) First, let me define measure algebras in the abstract, as opposed to those constructed from measure
spaces as in Definition 1C above. A measure algebra is a pair (A, µ̄) where

A is a Boolean algebra,
A is Dedekind σ-complete, that is, every countable subset of A has a least upper bound in

A,
µ̄ : A → [0,∞] is countably additive, that is, µ̄0 = 0 and µ̄(supn∈N an) =

∑∞
n=0 µ̄an

whenever 〈an〉n∈N is a disjoint sequence in A.

It is straightforward to check that the measure algebras of Definition 1Cb are measure algebras in this sense.
Conversely, any measure algebra as defined here is isomorphic to the measure algebra of some measure space
(Fremlin 02, 321J). A probability algebra is a measure algebra (A, µ̄) such that µ̄1 = 1, that is, (A, µ̄)
is isomorphic to the measure algebra of a probability space.
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(b) Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras and F an ultrafilter on I. Write B for the product
Boolean algebra

∏

i∈I Ai, so that if aaa = 〈ai〉i∈I and bbb = 〈bi〉i∈I belong to B, then aaa ∗ bbb = 〈ai ∗ bi〉i∈I for
all the Boolean operations ∗ = △ , ∩ , ∪ and \ . Define ν : B → [0, 1] by setting ν(〈ai〉i∈I) = limi→F µ̄ai

whenever 〈ai〉i∈I ∈ B. Then ν is additive. Set I = {aaa : aaa ∈ B, νaaa = 0}; then I ⊳ B. Let C be the
quotient Boolean algebra B/I. Then we have a functional ν̄ : C → [0, 1] defined by saying that ν̄(aaa•) = νaaa
for every aaa ∈ B; and it turns out that (C, ν̄) is a probability algebra. I will call it the reduced product
∏

i∈I(Ai, µ̄i)|F . (See 4A below.)

1G Note that the construction in 1Fb does not depend on any property of the ultrafilter F . When F is
a measure-centering ultrafilter, however, we have the following result.

Theorem Let (X,Σ, µ) be a compact probability space and (A, µ̄) its measure algebra. Let I be
a set and F a measure-centering ultrafilter on I; write λ for the corresponding extension of µ as
described in Theorem 1E, and (C, ν̄) for the reduced power (A, µ̄)I |F as described in 1Fb. Then
we have a natural isomorphism between (C, ν̄) and the measure algebra (D, λ̄) of λ defined by
saying that 〈E•

i 〉•i∈I ∈ C is matched with (limi→F Ei)
• ∈ D for every family 〈Ei〉i∈I in Σ.

(Proof in 4C.)

1H Products of filters As will I hope become clear when we come to the proofs in §§3-4, all the results
so far are more or less elementary, though some of them, naturally enough, demand graduate-level measure
theory – in particular, Maharam’s theorem and the lifting theorem – for their full strength. I want now to
explain an astonishing theorem from Benedikt 98. This will depend on a construction of iterated products
of filters, which may be of independent interest. I look at finite products of filters first.

Definition For n ∈ N and filters F0, . . . ,Fn, define the product F0 ⋉ . . . ⋉ Fn inductively by
saying that it is F0 when n = 0 and (F0 ⋉ . . .⋉ Fn−1) ⋉ Fn when n ≥ 1.

Proposition If 0 ≤ m < n and F0, . . . ,Fn are filters on I0, . . . , In respectively, then the natural
bijection between ((. . . (I0 × I1) × . . . ) × Im) × ((. . . (Im+1 × Im+2) × . . . ) × In) and ((. . . (I0 ×
I1) × . . . ) × In) identifies F0 ⋉ . . .⋉ Fn with (F0 ⋉ . . .⋉ Fm) ⋉ (Fm+1 ⋉ . . .⋉ Fn).

(The proof is a simple induction on n.)

1I Iterated products of filters The next bit works best for filters on N and countable iterations, but
something can be done in a more general context.

(a) First, a scrap of notation. Let I be a set. If m, n ∈ N, σ ∈ Im and τ ∈ In, define the concatenation
σaτ ∈ Im+n by setting

(σaτ)(k) = σ(k) if k < m,

= τ(k −m) if m ≤ k < m+ n.

For i ∈ I write <i> for the member of I1 with value i.

(b) Now suppose that ζ > 0 is an ordinal, 〈Iξ〉1≤ξ≤ζ a family of sets, and Fξ a filter on Iξ for 1 ≤ ξ ≤ ζ.
Set I =

⋃

1≤ξ≤ζ Iξ and S∗ =
⋃

i∈N
Ii. Fix a function θ such that θ(ξ, i) < ξ for 1 ≤ ξ ≤ ζ and i ∈ Iξ. For

ξ ≤ ζ, define Gξ ⊆ PS∗ inductively, as follows. Start by taking G0 to be the principal filter generated by
{∅}. For 1 ≤ ξ ≤ ζ, given that Gη has been defined for every η < ξ, set

Gξ = {A : A ⊆ S∗, {i : i ∈ Iξ, {τ : <i>aτ ∈ A} ∈ Gθ(ξ,i)} ∈ Fξ}.
It is elementary to check that every Gξ is a filter. Moreover, if every Fξ is an ultrafilter, so is every Gξ.

1J We are now ready for the statements of the main theorems.

Theorem In the construction of 1Ib above, suppose that ζ is countable, Iξ = I whenever
1 ≤ ξ ≤ ζ, 〈Fξ〉1≤ξ≤ζ is a family of Ramsey ultrafilters on I, no two isomorphic, and {i : i ∈ I,
θ(ξ, i) ≥ η} ∈ Fξ whenever η < ξ ≤ ζ. Then Gζ is measure-centering.
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(Proof in 5B. You will lose very little by restricting yourself to the case in which every sequence 〈θ(ξ, i)〉i∈N is
non-decreasing, and is constant with value η when ξ = η+1 is a successor ordinal.) The point of this theorem
is that there will be for each ξ ∈ [1, ζ] a function f : S∗ → I such that f [[Gζ ]] = Fξ; starting from the family
〈Fξ〉1≤ξ≤ζ of Ramsey ultrafilters on I, we can find a single measure-centering ultrafilter on S∗ from which
they can all be derived. I ought to point out straight away that if ζ is infinite, then the Ramsey ultrafilter
Fω contains all the sets {i : θ(ω, i) ≥ n}, for n < ω, but not their intersection, so is not ω1-additive. In
this case, of course, I = Iω cannot be uncountable. Thus we have either a finite iteration in which Gζ is the
extension to

⋃

n∈N
In of the filter Fm ⋉Fm−1 ⋉ . . .⋉F1 on Im, or a countably infinite iteration in which I

can be identified with N. The finite-iteration case is in fact the hard part of a more general result: the skew
product of finitely many non-isomorphic Ramsey ultrafilters is always measure-centering (Proposition 5E).

1K The second theorem is a universal extension theorem for Ramsey ultrafilters on N.

Theorem Let (X,Σ, µ) be a compact probability space. Then there is a measure λ on X,
extending µ, such that λ(limi→F Ei) is defined and equal to limi→F µEi whenever F is a Ramsey
ultrafilter on N and 〈Ei〉i∈N is a sequence in Σ.

(Proof in 5J.) The idea here will be that for each countable family F of Ramsey ultrafilters on N, we can
define a measure-centering ultrafilter GF on S∗ dominating every member of F, and that this can be done
in such a way that the measures defined from the GF by the process of Theorem 1E will have a common
extension.

1L Perfect measure spaces Readers familiar with Benedikt 98 and Benedikt 99 may have noted
that I speak of ‘compact’ measures where Benedikt deals with ‘perfect’ measures. The latter form a larger
class, so it is not obvious that the results in this note really cover Benedikt’s. The point is that a probability
space (X,Σ, µ) is perfect iff (X,T, µ↾T) is compact for every countably generated σ-subalgebra T of Σ
(Sazonov 66, or Fremlin 03, 451F). Using this, it is easy to check that we have a variant on condition
(iv) of Proposition 1C for filters on N:

if F is an ultrafilter on N, it is measure-centering iff whenever (X,Σ, µ) is a perfect probability
space and 〈En〉n∈N is a sequence in Σ, then µ∗(limn→F En) ≥ limn→F µEn.

Versions of Theorems 1E and 1G for perfect probability spaces and ultrafilters on N are now easy to deduce.
With a little more trouble – it is probably easiest to check that the proof in 5J applies essentially unchanged
– we can confirm that Theorem 1K is true for all perfect probability spaces (X,Σ, µ).

1M Of course there are many classes of ultrafilters, associated with those considered above, which have
been studied over the years. Six of them are the following.

Definitions Let F be an ultrafilter on a set I.

(α)(Daguenet-Tessier 79) An ultrafilter F on a set I is Hausdorff (or has ‘property C’)
if whenever J is a set and f : I → J , g : I → J are functions such that {i : f(i) 6= g(i)} ∈ F ,
then f [[F ]] 6= g[[F ]].

(β) F is nowhere dense if for every function f : I → R the image filter f [[F ]] contains a
nowhere dense subset of R.

(γ)(Blass 74) F is weakly Ramsey if whenever S0, S1, S2 are disjoint subsets of [I]2 there
is a J ∈ F such that [J ]2 is disjoint from at least one of S0, S1, S2.

(δ)(Baumgartner & Taylor 78) F is an arrow ultrafilter if whenever S ⊆ [I]2 and k ∈ N

then either there is a K ∈ [I]k such that [K]2 ∩ S = ∅ or there is a J ∈ F such that [J ]2 ⊆ S.

(ǫ)(Benedikt 99) F is measure-linking if whenever A is a Boolean algebra, ν : A → [0, 1] is
an additive functional such that ν(1A) = 1, and 〈ai〉i∈I is a family in A such that infi∈I νai > 0,
then there is a J ∈ F such that ν(ai ∩ aj) > 0 for all i, j ∈ J .

(ζ)(Baumgartner 95) F is closed Lebesgue null if for every function f : I → [0, 1] the
image filter f [[F ]] contains a closed Lebesgue negligible set.

An obvious strengthening of (ǫ) is

D.H.Fremlin
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(η) F is strongly measure-linking if whenever A is a Boolean algebra, ν : A → [0, 1] is an
additive functional such that ν(1A) = 1, and 〈ai〉i∈I is a family in A such that infi∈I νai > 0,
then there is a J ∈ F such that infi,j∈J ν(ai ∩ aj) > 0.

(I ought to remark that in all of Daguenet-Tessier 79, Blass 74, Baumgartner & Taylor 78,
Baumgartner 95 and Benedikt 99 only non-principal ultrafilters on countable sets are considered; that
what I call ‘measure-linking’ is what Benedikt 99 calls ‘property M2’; and that what I call ‘closed Lebesgue
null’ is what Baumgartner 95 calls ‘measure zero’.) Evidently Ramsey ultrafilters are weakly Ramsey,
measure-centering ultrafilters are measure-linking, strongly measure-linking ultrafilters are measure-linking,
and closed Lebesgue null filters are nowhere dense; it is also the case that p-point ultrafilters on N are closed
Lebesgue null (Baumgartner 95). Subject to the continuum hypothesis, there are non-principal weakly
Ramsey ultrafilters on N which are not Ramsey (Blass 74). The results I wish to present here are the
following:

Theorem (a)(Benedikt 98) A measure-linking ultrafilter is Hausdorff.
(b)(Shelah 98) A measure-centering ultrafilter is nowhere dense.
(c)(see Baumgartner & Taylor 78, Corollary 2.5) A weakly Ramsey ultrafilter is an arrow

ultrafilter.
(d)(i)(see Benedikt 99, p. 214, Proposition 3) An arrow ultrafilter is strongly measure-linking.

(ii) An arrow ultrafilter on N is nowhere dense.
(e) A strongly measure-linking ultrafilter on N contains a set of zero asymptotic density.
(f) A closed Lebesgue null ultrafilter on N contains a set of zero asymptotic density.
(g) If covNLeb = c, there is a measure-centering ultrafilter on N which is neither strongly

measure-linking nor closed Lebesgue null.
(h) If c = ω1, there is a strongly measure-linking ultrafilter on N which is not nowhere dense,

so is neither measure-centering nor an arrow ultrafilter.
(i) If p = c, there is a Hausdorff p-point ultrafilter which is not measure-centering.
(j)(see Shelah 98) It is relatively consistent with ZFC to suppose that every measure-centering

ultrafilter is a principal ultrafilter.

(Proof in 6A, 6C, 6E, 6H, 6L and 6O. Recall that p is the least cardinal of any family A of infinite subsets
of N such that

⋂A0 is infinite for any finite A0 ⊆ A, but there is no infinite B ⊆ N such that B \A is finite
for every A ∈ A.)

2 Dependently selective filters

A particularly important property of Ramsey ultrafilters is preserved under certain intersections of such
ultrafilters, and it is in this form that it will be used in §5. I therefore isolate it in the next definition. The
results which will be needed in the proofs of Theorems 1Ba, 1J and 1K are special cases of Propositions 2D
and 2E, but I think it is worth while expressing the intermediate lemmas 2B and 2C in their full natural
strength.

2A Definition Let F be a filter on a set I. I will say that F is dependently selective if it has the
following property:

whenever S ⊆ [I]<ω is such that ∅ ∈ S and {i : K ∪ {i} ∈ S} ∈ F for every K ∈ S, then there is
a J ∈ F such that [J ]<ω ⊆ S.

In the present paper I will give only those results which are necessary for the applications in §5; for a fuller
account of this class of filters, see my note Fremlin n09.

2B Lemma A uniform dependently selective ultrafilter is a Ramsey ultrafilter.

proof Let F be a uniform dependently selective ultrafilter on a set I. It will be enough to consider the
case in which I = κ is a cardinal. Take any S ⊆ [κ]2. For ξ < κ set Aξ = {η : {ξ, η} ∈ S}. Let S be the
family of finite subsets K of κ such that for all ξ, η ∈ K such that ξ < η, {ξ, η} ∈ S iff Aξ ∈ F . If K ∈ S,
then (because F is an ultrafilter) there is a J ∈ F such that, for every ξ ∈ K, J is either included in Aξ or
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disjoint from Aξ. Now K ∪ {η} ∈ S whenever η ∈ J and η > ξ for every ξ ∈ K. So S satisfies the condition
of 2A. Let J ∈ F be such that [J ]<ω ⊆ S. In this case, if ξ, η ∈ J and ξ < η, {ξ, η} ∈ S iff Aξ ∈ F . Now

J1 = {ξ : ξ ∈ J , Aξ ∈ F}, J0 = {ξ : ξ ∈ J , Aξ /∈ F}
have union J and one of them must belong to F ; while [J0]

2 ∩ S = ∅ and [J1]
2 ⊆ S. As S is arbitrary, F is

a Ramsey ultrafilter.

2C Lemma (a) Let I be an infinite set, F a Ramsey ultrafilter on I, and A ⊆ F a set of size at most
#(I). Then there is a C ∈ F such that #(C \A) < #(I) for every A ∈ A.

(b) Let κ be an infinite cardinal, λ ≤ κ another cardinal, and 〈Fα〉α<λ a family of distinct Ramsey
ultrafilters on κ. Then there is a disjoint family 〈Aα〉α<λ of subsets of κ such that Aα ∈ Fα for every α < λ.

proof (a) Set A∗ = κ∩⋂A. If A∗ ∈ F , we can set C = A∗ and stop. Otherwise, enumerate A as 〈Aα〉α<λ,
where λ ≤ κ. For i ∈ I, set f(i) = min{α : α < λ, i /∈ Aα \ A∗}. Then there is a C ∈ F such that
f↾C is either constant or injective (Comfort & Negrepontis 74, 9.6). The former is impossible, because
{i : f(i) = α} ⊆ A∗ ∪ (κ \ Aα) never belongs to F . So f↾C is injective and C \ Aα ⊆ {i : i ∈ C, f(i) ≤ α}
has cardinal less than κ for every α < λ.

(b) For α < β < λ, take Aαβ ∈ Fβ \Fα. For each α < κ, there is a Bα ∈ Fα such that #(Bα ∩Aαβ) < κ
for every β > α (apply (a) to {I \Aαβ : α < β < λ} ⊆ Fα)). Set

Aβ = Bβ \ ⋃

α<β Bα

for β < λ. Of course 〈Aβ〉β<λ is disjoint. On the other hand, for each β < λ, A′
β = Bβ ∩⋂

α<β Aαβ belongs

to F because F is κ-complete; and A′
β \Aβ ⊆ ⋃

α<β Aαβ ∩Bα has cardinal less than κ, so Aβ also belongs
to F .

2D Proposition Let I be an infinite set, and F a non-empty family of non-isomorphic Ramsey ultrafilters
on I with #(F) ≤ #(I). Then H =

⋂

F is a dependently selective filter on I.

proof (a) It is enough to consider the case in which I = κ is a cardinal. Let 〈Fα〉α<λ be an enumeration
of F.

(b) If 〈Aα〉α<λ is such that Aα ∈ Fα for α < λ, then there is a family 〈Dα〉α<λ such that Dα ∈ Fα and
Dα ⊆ Aα for every α < λ, and whenever ξ < η < κ, α, β < λ are such that ξ ∈ Dα and η ∈ Dβ , there
is a ζ ∈ Aβ such that ξ ≤ ζ < η. PPP By 2Cb, we may suppose that 〈Aα〉α<λ is disjoint. For any ζ < κ,
{α : α < λ, Aα ∩ ζ 6= ∅} has cardinal less than κ; so there is a closed cofinal set F ⊆ κ, containing 0, such
that Aα ∩ ζ ′ \ ζ 6= ∅ whenever ζ < ζ ′ in F , α < λ and Aα ∩ ζ 6= ∅. Set f(ξ) = max{ζ : ζ ∈ F , ζ ≤ ξ} for
ξ < κ. Then 〈f [[Fα]]〉α<λ is a family of κ-complete uniform ultrafilters on F , so there must be a cofinal set
V ⊆ F not belonging to any of them. (We can easily build inductively a family 〈Vξ〉ξ<κ+ of cofinal subsets
of F such that #(Vξ ∩ Vη) < κ whenever ξ < η < κ+, and now each f [[Fα]] can contain Vξ for at most one
ξ, so there is a ξ left over for which we can set V = Vξ.) Set M = f−1[V ]; then Aα \M ∈ Fα for each α.

Define g : κ → κ by setting g(ξ) = min{ζ : ξ ≤ ζ ∈ V } for ξ < κ. For each α < λ, there is a Bα ∈ Fα

on which g is injective (Comfort & Negrepontis 74, 9.6), so that g[[Fα]] is a Ramsey ultrafilter on κ
isomorphic to Fα. Because the Fα are non-isomorphic, all the g[[Fα]] are different. By 2Cb again, there is
a disjoint family 〈Gα〉α<λ of sets such that Gα ∈ g[[Fα]] for every α.

Set

Cα = Aα ∩Bα ∩ g−1[Gα] \M , Dα = Cα \ {minCα} ∈ Fα

for each α < λ. Suppose that ξ ∈ Dα, η ∈ Dβ and ξ < η. Then g(ξ) < g(η). (If α = β, this is because
g↾Bα is injective; otherwise, it is because Gα ∩Gβ is empty.) It follows that g(ξ) < η. Let η0 be the least
member of Cβ . We have η0 < η. If ξ ≤ η0, then η0 is a member of Aβ ∩ η \ ξ. Otherwise, Aβ ∩ g(ξ) 6= ∅, so
there is a ζ ∈ Aβ ∩ γ \ g(ξ), where γ is the next member of F above g(ξ). Now γ \ g(ξ) = f−1[{g(ξ)}] ⊆M
is disjoint from Dβ , so γ ≤ η and ζ ∈ Aβ ∩ η \ ξ.

Thus 〈Dα〉α<λ is a suitable family. QQQ

(c) Now suppose that S is a family of finite subsets of κ such that ∅ ∈ S and {ξ : K ∪ {ξ} ∈ S} ∈ H for
every K ∈ S. Set

D.H.Fremlin
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S = {{ξ, η} : ξ < η < κ, K ∪ {η} ∈ S whenever K ∈ S and K ⊆ ξ + 1}.
For each α < λ, there is an Aα ∈ Fα such that [Aα]2 is either included in or disjoint from S. But taking
ξ = minAα, we see that {η : η > ξ, K ∪ {η} ∈ S} belongs to H ⊆ Fα for every K ∈ S; because Fα is
κ-complete, there must be an η ∈ Aα such that η > ξ and K ∪ {η} ∈ S whenever K ∈ S and K ⊆ ξ + 1, in
which case {ξ, η} ∈ S. So we must have [Aα]2 ⊆ S. Set A′

α = {ξ : ξ ∈ Aα, {ξ} ∈ S}; then A′
α ∈ Fα because

{ξ : {ξ} ∈ S} ∈ H ⊆ Fα.
By (b), we have a family 〈Dα〉α<λ of sets such that Dα ∈ Fα and Dα ⊆ A′

α for every α < λ, and
whenever ξ < η < κ, α, β < λ are such that ξ ∈ Dα and η ∈ Dβ , there is a ζ ∈ A′

β such that ξ ≤ ζ < η.

Set A =
⋃

α<λDα ∈ H. Then [A]n ⊆ S for every n. PPP Induce on n. The case n = 0 is trivial, and the case

n = 1 has been dealt with when defining A′
α. For the inductive step to n+ 1 ≥ 2, suppose that I ∈ [A]n+1.

Let ξ < η be the two greatest points of I; suppose that η ∈ Dβ . Then there is a ζ ∈ A′
β such that ξ ≤ ζ < η.

In this case, K = I \ {η} belongs to [A]n ⊆ S and K ⊆ ζ + 1. Also {ζ, η} ∈ [Aβ ]2 ⊆ S, so I = K ∪ {η} ∈ S.
Thus the induction continues. QQQ

So [A]<ω ⊆ S. As S is arbitrary, F is dependently selective.

Remark In particular, every Ramsey ultrafilter is dependently selective. Compare the ‘weak T -ideals’ of
Grigorieff 71, and also §4 of Blass 88.

2E Proposition Let I be a set, and F a non-empty countable family of non-isomorphic dependently
selective ultrafilters on I. Then

(a) there is a disjoint family 〈AF 〉F∈F of sets such that AF ∈ F for every F ∈ F,
(b) H =

⋂

F is dependently selective.

proof (a) For each F ∈ F, let IF ∈ F be a set of minimal size. Let K be the countable set {#(IF ) : F ∈ F};
for κ ∈ K, set Fκ = {F : F ∈ F, #(IF ) = κ} and Jκ =

⋃

F∈Fκ
IF , so that #(Jκ) = κ. (For if κ = 1, any

member of Fκ is a principal ultrafilter, and there can be at most one such.) Set J ′
κ = Jκ \ ⋃

λ∈K,λ<κ Jλ for

κ ∈ K; then 〈J ′
κ〉κ∈K is disjoint and J ′

κ ∈ F whenever κ ∈ K and F ∈ Fκ.
For F ∈ F, let F ′ = F ∩ PJ ′

κ be the trace of F on J ′
κ, where κ ∈ K is such that F ∈ Fκ. It is easy to

check that F ′ is dependently selective, so is either principal (if κ = 1) or a Ramsey ultrafilter (Lemma 2B).
Moreover, F ′ and G′ must be non-isomorphic whenever F , G are distinct members of the same Fκ. So 2Cb
tells us that we have for each κ ∈ K a disjoint family 〈AF 〉F∈Fκ

of subsets of J ′
κ such that AF ∈ F ′ for every

F ∈ Fκ, and 2D tells us that Hκ =
⋂{F ′ : F ∈ Fκ} is dependently selective for every κ ∈ K. Assembling

the families 〈AF 〉F∈Fκ
, we have a disjoint family 〈AF 〉F∈F such that AF ∈ F for every F ∈ F.

(b) Evidently

H = {A : A ⊆ I, A ∩ J ′
κ ∈ Hκ for every κ ∈ K}.

Now suppose that S ⊆ [I]<ω is such that ∅ ∈ S and {i : K ∪ {i} ∈ S} ∈ H for every K ∈ S. Choose
〈Bκ〉κ∈K inductively, as follows. Given that κ ∈ K, that Bλ ∈ Hλ has been defined for λ ∈ K ∩ κ and that
[
⋃

λ∈K∩κBλ]<ω ⊆ S, note that #(
⋃

λ∈K∩κ J
′
λ) < κ, because if κ > ω then κ is two-valued-measurable and

certainly has uncountable cofinality. So Cκ =
⋃

λ∈K∩κBλ and [Cκ]<ω have cardinal less than κ.
Set

Sκ = {K : K ∈ [J ′
κ]<ω, K ∪ L ∈ S for every L ∈ [Cκ]<ω}.

Then ∅ ∈ Sκ, by the hypothesis on Cκ. If K ∈ Sκ, then for each L ∈ [Cκ]<ω the set CL = {i : i ∈ J ′
κ,

K ∪L∪ {i} ∈ S} belongs to Hκ; but Hκ, being an intersection of κ-complete filters, is again κ-complete, so
C =

⋂{CL : L ∈ [Cκ]<ω} ∈ Hκ, and K ∪ {i} ∈ Sκ for every i ∈ C. As Hκ is dependently selective, there is
a Bκ ∈ Hκ such that [Bκ]<ω ⊆ Sκ and [Bκ ∪ Cκ]<ω ⊆ S.

The inductive hypothesis

[
⋃

λ∈K∩κBλ]<ω ⊆ S
gives no difficulty when κ ∈ K is a limit in K, so the induction proceeds to the end. Setting A =

⋃

κ∈KBκ,
we have A ∈ H and [A]<ω ⊆ S. As S is arbitrary, H is dependently selective.

3 Proofs of Theorems 1B-1E

Measure Theory
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The main work of this paper begins with proofs of the relatively elementary results up to Theorem 1E.
These will not be done in exactly the order in which they were presented in §1; in the hope of minimising
confusion, I will restate the results as I come to prove them. I begin with a review of basic fragments of
measure theory which will be used later.

3A Measure spaces: definitions and facts

(a)(i) Let (X,Σ, µ) be a measure space. Its completion is the measure space (X, Σ̂, µ̂), where Σ̂ =

{E△F : E ∈ Σ, F belongs to the null ideal of µ} and µ̂ is the unique monotonic extension of µ to Σ̂
(Fremlin 01, 212C).

(ii) If a measure is inner regular with respect to a class K of sets, so is its completion (Fremlin 03,
412H).

(iii) If X is a set and µ1, µ2 are two complete probability measures on X such that µ1 is inner regular
with respect to {K : K ∈ domµ1 ∩ domµ2, µ1K = µ2K}, then µ2 extends µ1 (Fremlin 03, 412K).

(iv) If X is a set and µ1, µ2 are two complete probability measures on X both inner regular with
respect to {K : K ∈ domµ1 ∩ domµ2, µ1K = µ2K}, they are equal (Fremlin 03, 412L).

(b) Let X be a set, and Λ a family of probability measures on X such that (α) for all λ0, λ1 ∈ Λ there
is a λ ∈ Λ which extends both λ0 and λ1 (β) for every countable Λ0 ⊆ Λ there is a probability measure on
X (not necessarily belonging to Λ) extending every measure in Λ0. Then there is a probability measure on
X extending every measure in Λ. (Fremlin 03, 457G.)

(c) A Radon probability space is a quadruple (X,T,Σ, µ) where (X,T) is a Hausdorff topological
space, µ is a complete probability measure on X with domain Σ, T ⊆ Σ (so that µ measures every Borel
subset of X), and µ is inner regular with respect to the family of compact subsets of X. The usual measure
νI on {0, 1}I is always a Radon probability measure (Fremlin 03, 416Ub).

(d) Suppose that Z is a zero-dimensional compact Hausdorff space and A is the Boolean algebra of
open-and-closed subsets of Z. If ν : A → [0, 1] is an additive functional such that νZ = 1, there is a unique
Radon probability measure on Z extending ν (Fremlin 03, 416Qa).

(e) Let I be an infinite set.
(i) #(BI) is the cardinal power #(I)ω (Fremlin 08, 524Ma).

(ii) Let TI be the domain of νI . If F ∈ TI and νIF > 0, set Σ = TI ∩ PF and µE =
1

νIF
νIE for

E ∈ Σ; then (F,Σ, µ) is isomorphic to ({0, 1}I ,TI , νI) (Fremlin 02, 344L1). Writing NI for the null ideal
of νI , so that NI ∩ PF is the null ideal of µ, we see that NI and NI ∩ PF are isomorphic, and have the
same covering number.

(iii) Suppose that E ⊆ TI is a non-empty downwards-directed family of measurable sets such that
#(E) < covNI and γ = infE∈E νIE > 0. Then

⋂ E 6= ∅. PPP For n ∈ N we can find Fn ∈ E such that
νIFn ≤ γ + 2−n; because E is downwards-directed, we can suppose that 〈Fn〉n∈N is non-decreasing, so that
F =

⋂

n∈N
Fn has measure limn→∞ νIFn = γ. If E ∈ E , then νI(E ∩ Fn) ≥ γ for each n, so νI(E ∩ F ) = γ

and νI(F \ E) = 0. As #(E) is less than covNI , which by (ii) is the covering number of the subspace
measure on F , F cannot be covered by {F \ E : E ∈ E}, and

⋂ E is non-empty. QQQ

(f) Let X be a set, Σ an algebra of subsets of X, and ν : Σ → [0, 1] an additive functional such that
νX = 1 and limn→∞ νEn = 0 whenever 〈En〉n∈N is a non-increasing sequence in Σ with empty intersection.
Then ν has a unique extension to a complete probability measure on X which is inner regular with respect
to the family Σδ of intersections of sequences in Σ (Fremlin 03, 413K).

3B Measure algebras: definitions and facts

(a) If (A, µ̄) is a probability algebra, then A is ccc (Fremlin 02, 322G). So if A ⊆ A is any set, there is
a countable B ⊆ A with the same upper bounds as A (Fremlin 02, 316E), and A has a least upper bound.
(Thus A is Dedekind complete.) µ̄ is order-continuous in the sense that

1Later editions only; obtainable through http://www.essex.ac.uk/maths/staff/fremlin/mtcont.htm. Note to reader: do
you know of a more satisfactory reference for this result?
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—– if A ⊆ A is non-empty and upwards-directed, with supremum c, then µ̄c = supa∈A µ̄a,
—– if A ⊆ A is non-empty and downwards-directed, with infimum c, then µ̄c = infa∈A µ̄a.

(Fremlin 02, 321C and 321F).

(b) If A is a Boolean algebra and A ⊆ A, I say that A τ-generates A if A is the smallest order-closed
subalgebra of itself including A. The Maharam type τ(A) is the least cardinal of any set A ⊆ A which
τ -generates A. If (A, µ̄) is a probability algebra, I is an infinite set and τ(A) ≤ #(I), then (A, µ̄) can be
embedded in (BI , ν̄I) in the sense that there is an injective Boolean homomorphism π : A → BI such that
ν̄I(πa) = µ̄a for every a ∈ A (Fremlin 02, 332N).

(c) If (X,Σ, µ) is a measure space with measure algebra (A, µ̄), and E ⊆ Σ σ-generates Σ in the sense
that Σ is the σ-algebra of subsets of X generated by E , then {E• : E ∈ E} τ -generates A. (If A′ is an
order-closed subalgebra of A including {E• : E ∈ E}, then {F : F • ∈ A′} must be a σ-subalgebra of Σ
including E , so is the whole of Σ.)

(d) Let (X,Σ, µ) be a measure space with measure algebra (A, µ̄). A lifting for µ is a Boolean homo-
morphism θ : A → Σ such that (θa)• = a for every a ∈ A. Every complete probability measure has a lifting
(Fremlin 02, 341K).

If (X,Σ, µ) is a probability space with measure algebra (A, µ̄), θ : A → Σ is a lifting, and A ⊆ A is a
non-empty set with supremum c in A, then θc \ ⋃

a∈A θa is negligible. PPP There is a sequence 〈an〉n∈N in A
such that c = supn∈N an ((a) above). Now

(
⋃

n∈N
θ(an))• = supn∈N θ(an)• = supn∈N an = c = (θc)•,

so θc \ ⋃

a∈A θa ⊆ θc \ ⋃

n∈N
θ(an) is negligible. QQQ

(e) If I is an infinite set, I will say that the standard generating family in the probability algebra BI

is the family 〈ei〉i∈I = 〈E•

i 〉i∈I where Ei = {x : x ∈ {0, 1}I , x(i) = 1} for each i ∈ I. Note that ν̄Iei = 1
2

and ν̄I(ei \ ej) = 1
4 for all distinct i, j ∈ I.

3C We are ready to begin work on the proofs of results announced in §1.

Proof of Proposition 1C Let I be a set, and F an ultrafilter on I. Then the following are equiveridical:
(i) F is measure-centering;
(ii) whenever 〈ai〉i∈I is a family in BI such that infi∈I ν̄Iai > 0, there is an A ∈ F such that {ai : i ∈ A}

is centered in BI ;
(iii) whenever 〈Ei〉i∈I is a family of measurable subsets of {0, 1}I such that infi∈I νIEi > 0, there is an

A ∈ F such that
⋂

i∈AEi 6= ∅;
(iv) whenever (X,Σ, µ) is a compact probability space and 〈Ei〉i∈I is a family in Σ, then µ∗(limi→F Ei) ≥

limi→F µEi.

proof The case in which F is a principal ultrafilter is trivial, so I shall assume henceforth that F is non-
principal; in particular, that I is infinite.

(i)⇒(ii) is trivial.

not-(iv)⇒not-(ii) Suppose there are a compact probability space (X,Σ, µ) and a family 〈Ei〉i∈I in Σ
such that limi→F µEi > µ∗(limi→F Ei). Let F ∈ Σ be such that limi→F µEi ⊆ F and µF < limi→F µEi; let
γ > 0 be such that limi→F µEi > µF +γ, and set C = {i : µEi > γ+µF}, so that C ∈ F and µ(Ei \F ) > γ
for every i ∈ C.

Let K be a compact class such that µ is inner regular with respect to K. For i ∈ C, let Ki ∈ K ∩ Σ be
such that Ki ⊆ Ei \ F and µKi ≥ γ. For i ∈ I \ C, set Ki = X. Observe that

limi→F Ki ⊆ limi→F (Ei \ F ) = (limi→F Ei) \ F = ∅.
Let T be the σ-subalgebra of Σ generated by {Ki : i ∈ I}, and ν = µ↾T. Then the measure algebra

(B, ν̄) of (X,T, ν) is a probability algebra of Maharam type at most #(I), by 3Bc. By 3Bb, there is a
measure-preserving Boolean homomorphism π : B → BI . Set ai = π(K•

i ) for i ∈ C; then ν̄Iai = µKi ≥ γ
for every i ∈ I.

If A ∈ F , then A ∩ C ∈ F so

Measure Theory
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⋂

i∈AKi ⊆
⋂

i∈A∩C Ei \ F ⊆ (limi→F Ei) \ F = ∅.
As K is a compact class, there must be a finite set J ⊆ A ∩ C such that

⋂

i∈J Ki = ∅. But this means that

inf
i∈J

ai = inf
i∈J

π(K•

i ) = π(inf
i∈J

K•

i ) = π((
⋂

i∈J

Ki)
•)

= π(∅•) = π0 = 0

in BI . This shows that {ai : i ∈ A} is not centered. As A is arbitrary, 〈ai〉i∈I witnesses that (ii) is false.

(iv)⇒(i) Suppose that (iv) is true. Take a Boolean algebra A, an additive functional ν : A → [0,∞[ such
that ν1 = 1, and a family 〈ai〉i∈I in A such that infi∈I νai > 0. Let Z be the Stone space of A, so that Z is
a compact Hausdorff space and A can be identified with the algebra of open-and-closed subsets of Z. Then
there is an extension of ν to a Radon probability measure µ on Z (Fact 3Ad). Since µ is inner regular with
respect to the compact class of compact subsets of Z, (Z, µ) is a compact probability space.

Let G be the family of µ-negligible open subsets of Z, and H its union. Then H is an open set, so µH
is defined. If K ⊆ H is compact, K is covered by finitely many members of G, so µK = 0; as µ is inner
regular with respect to the compact sets, µH = 0.

By (iv),

µ∗( lim
i→F

(ai \H)) ≥ lim
i→F

µ(ai \H) ≥ inf
i∈I

µ(ai \H)

= inf
i∈I

µai = inf
i∈I

νai > 0.

So limi→F (ai \H) is non-empty and there is a z ∈ Z \H such that A = {i : z ∈ ai} ∈ F . If J ⊆ A is finite
and not empty, then

⋂

i∈J ai is an open set containing z, so is not included in H and does not belong to G,
and

0 < µ(
⋂

i∈J ai) = ν(infi∈J ai).

Thus A ∈ F has the property demanded in Definition 1A; as A, ν and 〈ai〉i∈I are arbitrary, F is measure-
centering.

(iv)⇒(iii) is elementary, once we know that every νI is a Radon measure (Fact 3Ac).

(iii)⇒(ii) Suppose that (iii) is true, and that 〈ai〉i∈I is a family in BI such that ǫ = infi∈I ν̄Iai is greater
than 0. Write TI for the domain of νI , and let θ : BI → TI be a lifting (Fact 3Bd); set Ei = θai for each
i ∈ I. Then

νIEi = ν̄I(E
•

i ) = ν̄Iai ≥ ǫ

for every i ∈ I. By (iii), there is an A ∈ F such that
⋂

i∈AEi 6= ∅. If J ⊆ A is finite and not empty, then

θ(infi∈J ai) =
⋂

i∈J θai =
⋂

i∈J Ei 6= ∅,
so infi∈J ai 6= 0; as J is arbitrary, {ai : i ∈ A} is centered in BI ; as 〈ai〉i∈I is arbitrary, (ii) is true.

3D In Definition 1A, it is clear that we can expect to have more difficulty in finding a centering set in F
if infi∈I νai is nearly 0, and it is natural to focus on that case as the essence of the definition. As it happens,
however, it makes no difference.

Proposition Let F be an ultrafilter on a set I, and suppose that γ < 1 is such that whenever A is a Boolean
algebra, ν : A → [0, 1] is an additive functional such that ν1 = 1, and 〈ai〉i∈I is a family in A such that
νai ≥ γ for every i, then there is a J ∈ F such that ν(infi∈K ai) > 0 for every finite K ⊆ J . Then F is
measure-centering.

proof Suppose that A is a Boolean algebra, ν : A → [0, 1] is an additive functional such that ν1 = 1, and
〈ai〉i∈I is a family in A such that infi∈I νai = ǫ > 0. Let m ∈ N be such that (1 − ǫ)m ≤ 1 − γ, and let
C =

⊗

m A be the free product of m copies of A, so that we have Boolean homomorphisms εk : A → C,

D.H.Fremlin
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for k < m, such that infk<m εkbk 6= 0 whenever bk ∈ A \ {0} for every k < m (Fremlin 02, §315). Let
λ : C → [0, 1] be the additive functional such that λ(infk<m εkbk) =

∏

k>m νkbk whenever 〈bk〉k<m ∈ Am

(Fremlin 02, 326Q). For i ∈ I, set ci = supk<m εkai; then

λ(1 \ ci) = (ν(1 \ ai))
m ≤ (1 − ǫ)m ≤ 1 − γ

and λci ≥ γ for every i ∈ I. By hypothesis, there is a J ∈ F such that λ(infi∈K ci) > 0 for every finite
K ⊆ J . Let D ⊆ C be a maximal set such that ci ∈ D for every i ∈ J and λ(infD0) > 0 for every finite
D0 ⊆ D. Then for every i ∈ J there is a ki < m such that εki

(ai) ∈ D. Because F is an ultrafilter, there
is a k < m such that J ′ = {i : i ∈ J , ki = k} belongs to F ; and now ν(infi∈K ai) = λ(infi∈K εkai) > 0 for
every finite K ⊆ J ′. As A, ν and 〈ai〉i∈I are arbitrary, F is measure-centering.

3E Proof of Theorem 1Ba A Ramsey ultrafilter is measure-centering.

proof Let F be a Ramsey ultrafilter on a set I, and 〈ai〉i∈I a family in BI such that ǫ = infi∈I ν̄Iai is
greater than 0. For C ⊆ I set bC = supi∈C ai; then ν̄IbC ≥ ǫ for every C ∈ F . Set b = infC∈F bC ; because
F is downwards-directed, so is {bC : C ∈ F}, and ν̄Ib ≥ ǫ (Fact 3Ba). In particular, b 6= 0.

Let S be the set of those finite subsets K of I such that b ∩ infi∈K ai is non-zero, counting inf ∅ as 1, so
that ∅ ∈ S. If K ∈ S, then C = {i : K ∪ {i} ∈ S} belongs to F . PPP??? Otherwise, I \ C ∈ F and b ⊆ bI\C .
Set

d = b ∩ infk∈K ak ⊆ bI\C = supi∈I\C ai;

as d 6= 0, there is a j ∈ I \C such that d ∩ aj 6= 0. But d ∩ aj = b ∩ infi∈K∪{j} ai, so K ∪{j} ∈ S and j ∈ C,
which is absurd. XXXQQQ

So S satisfies the conditions of 2A. Since F is dependently selective (Proposition 2D), there is a J ∈ F
such that [J ]<ω ⊆ S, that is, {ai : i ∈ J} is centered. As 〈ai〉i∈I is arbitrary, F is measure-centering.

3F Proof of Theorem 1Bb If κ is an infinite cardinal and covNκ = 2κ, then there is a uniform
measure-centering ultrafilter on κ.

proof (a) #(Bκ) = κω (Fact 3A(e-i)), so we can enumerate Bκ
κ as 〈aaaζ〉ζ<2κ . Let Tκ be the domain of νκ

and θ : Bκ → Tκ a lifting. Set λ = cfκ. If λ = κ, set Iα = {α} for every α < κ; otherwise, let 〈κα〉α<λ be a
strictly increasing family of cardinals less than κ with supremum κ, and set Iα = κ+

α \ ⋃

β<α Iβ for α < λ,

so that 〈Iα〉α<λ is a partition of κ and otp(Iα) = κ+
α for every α < λ.

(b) Construct families 〈Cαζ〉α<λ,ζ≤2κ , 〈Dζ〉ζ<2κ , 〈Cαζ〉α<λ,ζ≤2κ and 〈Dζ〉ζ<2κ inductively, as follows.
Start by setting Cα0 = {Iα \ξ : ξ ∈ Iα}, so that Cα0 is a filter base of subsets of Iα of cardinal less than κ; let
D0 be {λ}. Given that ζ < 2κ, that Dζ is a filter base of subsets of λ of cardinal at most max(ω,#(ζ)), and
Cαζ is a filter base of subsets of Iα of cardinal at most max(κ,#(ζ)) for each α < λ, consider aaaζ = 〈aξ〉ξ<κ

say. Set ǫ = infξ<κ ν̄κaξ. If ǫ = 0, set Dζ+1 = λ and Cα,ζ+1 = Iα for every α < λ. Otherwise, set
bC = supξ∈C aξ for C ⊆ κ, and cα = infC∈Cαζ

bC for α < λ; as in 3E above, ν̄κcα = infC∈Cαζ
ν̄κbC ≥ ǫ. Set

dD = supα∈D cα for D ∈ Dζ and e = infD∈Dζ
dD; then the same arguments show that ν̄κe ≥ ǫ.

For each C ⊆ κ, θ(bC) \ ⋃

ξ∈C θ(aξ) is negligible (Fact 3Bd). So EαC = θ(cα) \ ⋃

ξ∈C θ(aξ) is negligible

whenever α < λ and C ∈ Cα. Similarly, ED = θ(e) \ ⋃

α∈D θ(cα) is negligible for every D ∈ D. Now
Dζ ∪ {(α,C) : α < λ, C ∈ Cαζ} has cardinal at most max(ω,#(ζ),#(κ)) < 2κ, so {ED : D ∈ Dζ} ∪ {EαC :
α < λ, C ∈ Cαζ} cannot cover the non-negligible measurable set θ(e) (Fact 3A(e-iii)), and there must be an
xζ ∈ θ(e) such that xζ /∈ ⋃

D∈Dζ
ED ∪ ⋃

α<λ,C∈Cα
EαC . Set Dζ = {α : α < λ, xζ ∈ θ(cα)}; then Dζ meets

every member of Dζ . For α ∈ Dζ , set Cαζ = {ξ : ξ ∈ Iα, xζ ∈ θ(aξ)}; for α ∈ κ \Dζ , set Cαζ = Iα; then
Cαζ meets every member of Cαζ .

Now define Dζ+1, Cα,ζ+1 by setting

Dζ+1 = Dζ ∪ {D ∩Dζ : D ∈ Dζ},

Cα,ζ+1 = Cαζ ∪ {C ∩ Cαζ : C ∈ Cαζ}
for α < λ. Then Dζ+1 is a filter base of subsets of λ of cardinal at most max(ω,#(ζ + 1)), and Cα,ζ+1 is a
filter base of subsets of Iα of cardinal at most max(κ,#(ζ + 1)) for every α < λ.
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For non-zero limit ordinals ζ ≤ 2κ, set Dζ =
⋃

ξ<ζ Dξ and Cαζ =
⋃

ξ<ζ Cαξ; once again, Dζ will be a filter

base of subsets of λ of cardinal at most max(ω,#(ζ)), and Cαζ will a filter base of subsets of Iα of cardinal
at most max(κ,#(ζ)) for each α < λ.

(c) At the end of the induction, let F be an ultrafilter on κ containing all sets of the form
⋃

α∈D Cα

where D ∈ D2κ and Cα ∈ Cα,2κ for every α ∈ D. Then F is measure-centering. PPP Let aaa = 〈aξ〉ξ<κ ∈ Bκ
κ

be such that infξ<κ ν̄κaξ > 0. Then there is a ζ < 2κ such that aaa = aaaζ . In this case, xζ is defined and
J =

⋃

α∈Dζ
Cαζ belongs to F . If α ∈ Dζ and ξ ∈ Cαζ , then xζ ∈ θ(aξ). But this means that if K ⊆ J is

finite and not empty,

xζ ∈ ⋂

ξ∈K θ(aξ) = θ(infξ∈K aξ),

and infξ∈K aξ 6= 0. Thus {aξ : ξ ∈ J} is centered. As aaa is arbitrary, F is measure-centering, by Proposition
1C(ii). QQQ

(d) Of course I should note that F is uniform because if D ∈ D2κ and Cα ∈ Cα,2κ for every α ∈ D, then
D meets every member of D0, so has cardinal λ. Set B =

⋃

α∈D Cα. Since Cα meets every member of Cα0,
#(Cα) = #(Iα) for every α ∈ D, and #(B) = #(

⋃

α∈D Iα) = κ.

3G Proof of Theorem 1Bc If covNLeb = c, there is a measure-centering ultrafilter on N which contains
no set of zero asymptotic density.

proof (a) I start with a general fact about upper asymptotic density d∗ : PN → [0, 1]. Let (X,Σ, µ) be
a probability space, I ∈ PN \ Z, and 〈En〉n∈N a sequence in Σ with infn∈N µEn = γ > 0. For x ∈ X set
Jx = {n : n ∈ I, x ∈ En}. Then µ{x : d∗(Jx) > 0} ≥ γ.

PPP Set δ = d∗(I); then there is a disjoint sequence 〈Kn〉n∈N of non-empty finite subsets of N, all of the
form {i : k ≤ i < 2k}, such that #(I ∩Kn) ≥ 1

3δ#(Kn) for every n. If n ∈ N then

γ#(I ∩Kn) ≤ ∑

i∈I∩Kn
µEi =

∫

∑

i∈I∩Kn
χEi(x)µ(dx) =

∫

#(Jx ∩Kn)µ(dx),

so if η > 0

µ{x : #(Jx ∩Kn) ≥ η#(I ∩Kn)} ≥ γ − η.

Consequently

µ{x : d∗(Jx) ≥ 1

6
δη}

≥ µ{x : for infinitely many n, #(Jx ∩Kn) ≥ 1

3
δη#(Kn)}

≥ µ{x : for infinitely many n, #(Jx ∩Kn) ≥ η#(I ∩Kn)}
≥ γ − η.

As η is arbitrary, µ{x : d∗(Jx) > 0} ≥ γ. QQQ

(b) Now, given that covNLeb = c, enumerate the family of all sequences 〈En〉n∈N of Borel subsets of
{0, 1}ω such that infn∈N νEn > 0 as 〈〈Eξn〉n∈N〉ξ<c. Build filter bases Eξ ⊆ PN, for ξ ≤ c, as follows. Start
with E0 = {N}. The inductive hypothesis will be that #(Eξ) ≤ max(ω,#(ξ)) and Eξ ∩ Z = ∅. For the
inductive step to ξ + 1, set ǫ = infn∈N νEξn. For each I ∈ Eξ, set

FI = {x : d∗(Jx ∩ I) > 0},
where Jx = {n : x ∈ Eξn}. By (a), νFI ≥ ǫ; because 〈FI〉I∈Eξ

is downwards-directed, and #(Eξ) <
covNLeb = covNω, there is a point x ∈ ⋂

I∈Eξ
FI (Fact 3A(e-iii)). Set Iξ = Jx,

Eξ+1 = Eξ ∪ {I ∩ Iξ : I ∈ Eξ}.
Then Eξ+1 is a filter base, including Eξ, disjoint from Z, of cardinal at most max(ω,#(ξ+1)), and containing
a set Iξ such that

⋂

n∈Iξ
Eξn is non-empty. At non-zero limit ordinals ξ ≤ c, set Eξ =

⋃

η<ξ Eη.

Let G be the filter on N generated by Ec . Then G∩Z = ∅, so there is an ultrafilter F on N, including G, and
still disjoint from Z. If 〈Fn〉n∈N is any sequence of measurable subsets of {0, 1}N such that infn∈N νFn > 0,
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there is a ξ < c such that Eξn ⊆ Fn for every n; now Iξ ∈ F and
⋂

n∈Iξ
Fn 6= ∅. By Proposition 1C(iii), F

is measure-centering.

3H Proof of Proposition 1D (a) Let I and J be sets, f : I → J a function, and F a measure-centering
ultrafilter on I. Then the image ultrafilter f [[F ]] is a measure-centering ultrafilter on J .

(b) If F is a non-principal ultrafilter, then F ⋉ F is not measure-centering.

proof (a) Let A be a Boolean algebra, ν : A → [0, 1] an additive functional such that ν1 = 1, and 〈aj〉j∈J

a family in A such that infj∈J νaj > 0. Set bi = af(i) for i ∈ I; then infi∈I νbi > 0, so there is an A ∈ F
such that ν(infi∈K bi) > 0 for every K ∈ [A]<ω. Now f [A] ∈ f [[F ]], and if L ⊆ f [A] is finite there is a finite
K ⊆ A such that L = f [K], so that

ν(infj∈L aj) = ν(infi∈K bi) > 0.

This shows that f [[F ]] has the property of Definition 1A and is measure-centering.

(b) Let I be a set and F a non-principal ultrafilter on I. Let 〈ei〉i∈I be the standard generating family
in BI , and for i, j ∈ I set

aij = ei \ ej if i 6= j,

= 1 if i = j.

Then ν̄Iaij ≥ 1
4 for all i, j ∈ I. If A ∈ F ⋉ F , then B = {i : A[{i}] ∈ F} belongs to F . Take any i ∈ B;

then B must meet A[{i}] in more than one point, because F is non-principal; take j ∈ B ∩A[{i}] \ {i} and
k ∈ A[{j}] \ {j}. The points (i, j) and (j, k) are distinct points of A and ajk ∩ aij ⊆ ej \ ej = 0. As A is
arbitrary, F ⋉ F cannot be measure-centering.

Remark I include (b) here to show that in Theorem 1J we really need to have non-isomorphic filters. In
fact rather more can be said; the argument here already shows that F ⋉ F is not measure-linking, and in
fact it is not Hausdorff (Daguenet-Tessier 79).

3I Proof of Theorem 1E Let (X,Σ, µ) be a compact probability space, and F a measure-centering
ultrafilter on a set I. Let A be the family of all sets of the form limi→F Ei where 〈Ei〉i∈I is a family in Σ.
Then there is a unique complete probability measure λ on X such that λ is inner regular with respect to A
and λ(limi→F Ei) = limi→F µEi for every family 〈Ei〉i∈I in Σ.

proof (a) The key fact is that if 〈Ei〉i∈I and 〈Fi〉i∈I are two families in Σ such that limi→F Ei = limi→F Fi,
then limi→F µEi = limi→F µFi. PPP We have

| lim
i→F

µEi − lim
i→F

µFi| = lim
i→F

|µEi − µFi| ≤ lim
i→F

µ(Ei△Fi)

≤ µ∗( lim
i→F

(Ei△Fi))

(by Proposition 1C(iv))

≤ µ∗( lim
i→F

Ei△ lim
i→F

Fi) = µ∗∅ = 0. QQQ

(b) The formula φ(limi→F Ei) = limi→F µEi therefore defines a functional φ : A → [0, 1]. If ∗ is any of
the Boolean operations \, ∩ and ∪, then

limi→F Ei ∗ limi→F Fi = limi→F (Ei ∗ Fi)

for all families 〈Ei〉i∈I and 〈Fi〉i∈I in Σ, so A is an algebra of subsets of X. As noted in 1E, φ extends µ.
If 〈Ei〉i∈I and 〈Fi〉i∈I are two families in Σ,

Measure Theory



15

φ( lim
i→F

Ei ∪ lim
i→F

Fi) + φ( lim
i→F

Ei ∩ lim
i→F

Fi)

= φ( lim
i→F

(Ei ∪ Fi)) + φ( lim
i→F

(Ei ∩ Fi))

= lim
i→F

µ(Ei ∪ Fi) + lim
i→F

µ(Ei ∩ Fi)

= lim
i→F

µ(Ei ∪ Fi) + µ(Ei ∩ Fi)

= lim
i→F

µEi + µFi = φ( lim
i→F

Ei) + φ( lim
i→F

Fi));

so φ(A ∪ B) + φ(A ∩ B) = φA + φB for all A, B ∈ A. Because φ∅ = µ∅ = 0, this is enough to show that
φ : A → [0, 1] is additive.

(c) If 〈An〉n∈N is a non-increasing sequence in A and 0 ≤ γ < infn∈N φAn, then there is an A ∈ A such
that A ⊆ ⋂

n∈N
An and φA ≥ γ. PPP For each n, express An as limi→F Eni, where Eni ∈ Σ for each i ∈ I;

replacing Eni by
⋂

m≤nEmi if necessary, we may suppose that Eni ⊆ Emi whenever m ≤ n and i ∈ I. For
each i ∈ I, define Fi by saying that

Fi = X if µE0i < γ,

= Eni if n ∈ N and µEni ≥ γ > µEn+1,i,

=
⋂

n∈N

Eni if µEni ≥ γ for every n ∈ N.

Then µFi ≥ γ for every i ∈ I, and Fi ⊆ Eni whenever n ∈ N, i ∈ I and µEni ≥ γ. For each n ∈ N, therefore,
{i : Fi ⊆ Eni} belongs to F , and A = limi→F Fi ⊆ An; while φA ≥ γ. QQQ

(d) In particular, φ is countably additive in the sense that if 〈An〉n∈N is a non-increasing sequence in A
such that

⋂

n∈N
An is empty, then limn→∞ φAn = 0. There is therefore an extension of φ to a complete

probability measure λ on X which is inner regular with respect to Aδ, the family of subsets of X expressible
as the intersection of a sequence in A (Fact 3Af). From (c) we see that if B ∈ Aδ and γ < λB, there must
be an A ∈ A such that A ⊆ B and φA ≥ γ. So in fact λ is inner regular with respect to A.

(e) Thus we have a suitable extension of µ. By 3A(a-iv), λ is uniquely defined.

Remark If you have seen a construction of Loeb measure (Loeb 75), you will recognise the method above;
the special properties of measure-centering ultrafilters and compact measure spaces mean, in effect, that the
original set X has full outer measure in the Loeb measure space.

4 Reduced products of probability algebras

The construction offered in 1F is straightforward enough, but requires some support, in particular in the
assertion that the reduced product (C, λ̄) there is a probability algebra in the full sense of the phrase as
used here. In this section I fill in the details, with a proof of Theorem 1G, and also of a further result,
Proposition 4B, which will be needed for the proof of Theorem 1J in the next section.

4A I start with a slightly expanded version of 1Fb.

Proposition Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras and F an ultrafilter on I. Let B be
the product Boolean algebra

∏

i∈I Ai. Define ν : B → [0, 1] by setting ν(〈ai〉i∈I) = limi→F µ̄ai whenever
〈ai〉i∈I ∈ B, and set I = {aaa : aaa ∈ B, νaaa = 0}.

(a) ν is additive; I is an ideal of B; and if C is the quotient Boolean algebra B/I, we have an additive
functional ν̄ : C → [0, 1] defined by saying that ν̄(aaa•) = νaaa for every aaa ∈ B. If 〈ai〉i∈I , 〈bi〉i∈I ∈ B, then

—– if {i : ai ⊆ bi} ∈ F , then 〈ai〉•i∈I ⊆ 〈bi〉•i∈I ;
—– if {i : ai = bi} ∈ F , then 〈ai〉•i∈I = 〈bi〉•i∈I .

(b) (C, ν̄) is a probability algebra.
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proof (a) is entirely elementary.

(b)(i) Perhaps I should begin by remarking that

ν̄(1C) = ν̄(1•

B) = ν(1B) = ν(〈1Ai
〉i∈I) = limi→F µi(1Ai

) = 1.

Next, if c ∈ C \ {0}, then c = bbb• for some bbb ∈ B \ I, so ν̄c = νbbb is non-zero.

(ii) If 〈cn〉n∈N is a non-decreasing sequence in C, there is a c ∈ C such that cn ⊆ c for every n ∈ N and
ν̄c = supn∈N ν̄cn. PPP For each n ∈ N, let 〈ani〉i∈I ∈ B be such that cn = 〈ani〉•i∈I . Set a′ni = supm≤n ami

for n ∈ N and i ∈ I; then cn = 〈a′ni〉•i∈I for each n, and 〈a′ni〉n∈N is non-decreasing for each i ∈ I. Let γ be
supn∈N ν̄cn = supn∈N limi→F µia

′
ni, and for i ∈ I set

ai = a′ni if µia
′
ni ≤ γ + 2−n and µia

′
n+1,i > γ + 2−n−1,

= sup
n∈N

a′ni if µia
′
ni ≤ γ + 2−n for every n ∈ N.

Consider c = 〈ai〉•i∈I . For any n ∈ N,

{i : a′ni ⊆ ai, µiai ≤ γ + 2−n} ⊇ {i : µia
′
ni ≤ γ + 2−n}

⊇ {i : µia
′
ni ≤ lim

j→F
µja

′
nj + 2−n} ∈ F ,

so

cn = 〈a′ni〉•i∈I ⊆ 〈ai〉•i∈I = c.

It follows at once that ν̄c ≥ γ. At the same time, ν̄c ≤ γ + 2−n for every n, so ν̄c ≤ γ. QQQ

(iii) C is Dedekind σ-complete. PPP If C ⊆ C is a countable set, take a sequence 〈cn〉n∈N running over
C ∪ {0C}. Set c′n = supm≤n cm for each n. By (ii), there is a c ∈ C such that c′n ⊆ c for every n and
ν̄c = supn∈N ν̄c

′
n. Because cn ⊆ c′n ⊆ c for every n, c is an upper bound of C. If c′ is any other upper bound

of C, then c′ ⊇ c′n for every n ∈ N, so

ν̄(c \ c′) ≤ infn∈N ν̄(c \ c′n) ≤ infn∈N ν̄c− ν̄c′n = 0,

c \ c′ = 0 and c ⊆ c′. Thus c is the least upper bound of C; as C is arbitrary, C is Dedekind σ-complete. QQQ

(iv) ν̄ is countably additive. PPP This time, let 〈cn〉n∈N be a disjoint sequence in C. Again set c′n =
supm≤n cm for each n ∈ N. Re-running the argument of (iii), we see that if c is the least upper bound
supn∈N c

′
n then

ν̄c = supn∈N ν̄c
′
n = supn∈N

∑n
m=0 ν̄cm =

∑∞
n=0 ν̄cn,

while c is also the least upper bound of {cn : n ∈ N}. QQQ
Putting these together, (C, ν̄) is a probability algebra.

4B Directed families Some further phenomena appear if 〈(Ai, µ̄i)〉i∈I is appropriately linked, as follows.

Proposition Let (I,≤) be a non-empty pre-ordered set (that is, ≤ is a reflexive transitive relation on I), and
〈(Ai, µ̄i)〉i∈I a family of probability algebras. Suppose that for i ≤ j in I we are given a measure-preserving
Boolean homomorphism πji : Ai → Aj , and that πki = πkjπji whenever i ≤ j ≤ k in I. Let F be an
ultrafilter on I such that {j : i ≤ j} belongs to F for every i ∈ I, and let (C, ν̄) be the reduced product
∏

i∈I(A, µ̄i)|F .
(a) For each i ∈ I we have a measure-preserving Boolean homomorphism πi : Ai → C defined by saying

that πia = 〈aj〉•j∈I whenever 〈aj〉j∈I ∈ ∏

j∈I Aj is such that aj = πjiai for every j ≥ i.

(b) πi = πjπji whenever i ≤ j in I.
(c) 〈ai〉•i∈I ⊆ supj∈A πjaj whenever 〈ai〉i∈I ∈ ∏

i∈I Ai and A ∈ F .

proof (a) πi is well-defined because {j : j ≥ i} ∈ F ; now it is a measure-preserving Boolean homomorphism
because every πji is.
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(b) If ak = πkia for k ≥ i, then ak = πkjπjia for k ≥ j, so πjπjia = 〈ak〉•k∈I = πia.

(c) Set c = supj∈A πjaj in C. For every ǫ > 0, there is a finite K ⊆ A such that ν̄c ≤ ǫ+ ν̄(supj∈K πjaj),
because ν̄ is order-continuous (Fact 3Ba). The set B = {k : k ∈ I, j ≤ k for every j ∈ K} belongs to F ; fix
k ∈ B, and set b = supj∈K πkjaj ∈ Ak,

bi = πikb if k ≤ i,

= 0Ai
for other i ∈ I.

Then

〈bi〉•i∈I = πkb = πk(supj∈K πkjaj) = supj∈K πkπkjaj = supj∈K πjaj ⊆ c.

If i ∈ A and i ≥ k, then

µ̄i(ai \ bi) = ν̄(πiai \ πibi) = ν̄(πiai \ πiπikb)

= ν̄(πiai \ πkb) = ν̄(πiai \ sup
j∈K

πjaj) ≤ ν̄(c \ sup
j∈K

πjaj) ≤ ǫ

by the choice of K. Because {i : i ∈ A, i ≥ k} ∈ F ,

ν̄(〈ai〉•i∈I \ c) ≤ ν̄(〈ai〉•i∈I \ πkb) = ν̄(〈ai \ bi〉•i∈I)

= lim
i→F

µ̄i(ai \ bi) ≤ sup
i∈A,i≥k

µ̄i(ai \ bi) ≤ ǫ.

As ǫ is arbitrary, ν̄(〈ai〉•i∈I \ c) = 0 and 〈ai〉•i∈I ⊆ c.

4C Proof of Theorem 1G Let (X,Σ, µ) be a compact probability space and (A, µ̄) its measure algebra.
Let I be a set and F a measure-centering ultrafilter on I; write λ for the corresponding extension of µ as
described in Theorem 1E, and (C, ν̄) for the reduced power (A, µ̄)I |F . Then we have a natural isomorphism
between (C, ν̄) and the measure algebra (D, λ̄) of λ defined by saying that 〈E•

i 〉•i∈I ∈ C is matched with
(limi→F Ei)

• ∈ D for every family 〈Ei〉i∈I in Σ.

proof If 〈Ei〉i∈I and 〈Fi〉i∈I are families in Σ, then (limi→F Ei)
• = (limi→F Fi)

• in D iff 〈E•

i 〉•i∈I = 〈F •

i 〉•i∈I

in C. PPP

( lim
i→F

Ei)
• = ( lim

i→F
Fi)

• ⇐⇒ ( lim
i→F

Ei)
• △ ( lim

i→F
Fi)

• = 0D

⇐⇒ (( lim
i→F

Ei) △ ( lim
i→F

Fi))
• = 0D

⇐⇒ ( lim
i→F

Ei △ Fi)
• = 0D

⇐⇒ λ( lim
i→F

Ei △ Fi) = 0

⇐⇒ lim
i→F

µ(Ei △ Fi) = 0

⇐⇒ lim
i→F

µ̄(Ei △ Fi)
• = 0

⇐⇒ lim
i→F

µ̄(E•

i △ F •

i ) = 0

⇐⇒ ν̄(〈E•

i △ F •

i 〉•i∈I) = 0

⇐⇒ ν̄(〈E•

i 〉•i∈I △ 〈F •

i 〉•i∈I) = 0

⇐⇒ 〈E•

i 〉•i∈I △ 〈F •

i 〉•i∈I = 0C

⇐⇒ 〈E•

i 〉•i∈I = 〈F •

i 〉•i∈I . QQQ
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We therefore have a function π : D → C defined by saying that π(〈E•

i 〉•i∈I) = (limi→F Ei)
• for every family

〈Ei〉i∈I in Σ. Following the formulae just above, we see that the same ideas tell us that π is a Boolean
homomorphism and that λ̄π = ν̄. Next, π[C] = {A• : A ∈ A}, where A is the family of Theorem 1E. But
this means that every d ∈ D is the supremum of a non-decreasing sequence in π[C] and is expressible as
supn∈N πcn for some non-decreasing sequence 〈cn〉n∈N in C. In this case, if c = supn∈N cn, we must have
d ⊆ πc and λ̄d = λ̄(πc), so that d = πc ∈ π[C]. This shows that π is an isomorphism between C and D, as
required.

5 Products of filters

I come now to the proofs of Theorems 1J and 1K, based on the ideas of §§2-4. The first step is to find a
way of simultaneously representing many reduced products inside a single probability algebra.

5A Lemma Let ζ ≥ 1 be an ordinal, and suppose that for 1 ≤ ξ ≤ ζ we are given a set Iξ, an ultrafilter
Fξ on Iξ, and a function i 7→ θ(ξ, i) : Iξ → ξ such that {i : i ∈ Iξ, θ(ξ, i) ≥ η} ∈ Fξ for every η < ξ. Set
I =

⋃

1≤ξ≤ζ Iξ, and let 〈Gξ〉ξ≤ζ be the family of ultrafilters on S∗ =
⋃

i∈N
Ii constructed from 〈Fξ〉1≤ξ≤ζ and

θ as in 1I. Let (A, µ̄) be a probability algebra. Then there are a probability algebra (C, ν̄), a family 〈Cξ〉ξ≤ζ

of closed subalgebras of C, a measure-preserving Boolean homomorphism π : A → C such that π[A] = C0,
and a family 〈ψξ〉1≤ξ≤ζ such that, for 1 ≤ ξ ≤ ζ, ψξ :

∏

i∈Iξ
Cθ(ξ,i) → Cξ is a Boolean homomorphism and

ν̄ψξ(〈ci〉i∈Iξ
) = limi→Fξ

ν̄ci, ψξ(〈ci〉i∈Iξ
) ⊆ supi∈A ci

whenever 〈ci〉i∈Iξ
∈ ∏

i∈Iξ
Cθ(ξ,i) and A ∈ Fξ.

proof Define families 〈(Aξ, µ̄ξ)〉ξ≤ζ , 〈φξη〉η≤ξ≤ζ inductively, as follows. The inductive hypothesis will be that
each (Aξ, µ̄ξ) is a probability algebra and that each φξη is a measure-preserving Boolean homomorphism
from Aη to Aξ such that φξη′φη′η = φξη whenever η ≤ η′ ≤ ξ.

Start with (A0, µ̄0) = (A, µ̄) and φ00 : A0 → A0 the identity map. Given 〈(Aη, µ̄η)〉η<ξ and 〈φη′η〉η≤η′<ξ,
where 0 < ξ ≤ ζ, let (Aξ, µ̄ξ) be the reduced power

∏

i∈Iξ
(Aθ(ξ,i), µ̄θ(ξ,i))|Fξ, as defined in 1Fb/4A. Let

≤ξ be the pre-order on Iξ defined by saying that i ≤ξ j iff θ(ξ, i) ≤ θ(ξ, j); then our hypothesis on θ

ensures that {j : i ≤ξ j} ∈ Fξ for every i ∈ Iξ. For i ≤ξ j ∈ Iξ, φ̃ji = φθ(ξ,j),θ(ξ,i) : Aθ(ξ,i) → Aθ(ξ,j) is

defined; and if i ≤ξ j ≤ξ k, then φ̃ki = φ̃kj φ̃ji. By 4B, we have measure-preserving Boolean homomorphisms

φ̃i : Aθ(ξ,i) → Aξ such that φ̃i = φ̃j φ̃ji for i ≤ξ j. If i ≤ξ j and η ≤ θ(ξ, i), then

φ̃jφθ(ξ,j),η = φ̃jφθ(ξ,j),θ(ξ,i)φθ(ξ,i),η = φ̃iφθ(ξ,i),η,

so we can take this common value for φξη : Aη → Aξ. If η ≤ η′ < ξ, take i ∈ Iξ such that η′ ≤ θ(ξ, i), and
see that

φξη′φη′η = φ̃iφθ(ξ,i),η′φη′η = φ̃iφθ(ξ,i),η = φξη,

so the induction proceeds.
At the end of the induction, set C = Aζ , ν̄ = µ̄ζ , πξ = φζξ : Aξ → C and Cξ = πξ[Aξ] ⊆ C. If η ≤ ξ ≤ ζ,

then πη = πξφξη, so Cη ⊆ Cξ.
For each ξ > 0, we have a canonical map 〈ai〉i∈Iξ

7→ 〈ai〉•i∈Iξ
:
∏

i∈Iξ
Aθ(ξ,i) → Aξ. Since πη : Aη → Cη

is always a measure-preserving isomorphism, we have corresponding maps ψξ :
∏

i∈Iξ
Cθ(ξ,i) → Cξ. Reading

off the basic facts from 4A-4B, we see that

ν̄ψξ(〈ci〉i∈Iξ
) = limi→Fξ

ν̄ci whenever 〈ci〉i∈Iξ
∈ ∏

i∈Iξ
Cθ(ξ,i),

ψξ(〈ci〉i∈Iξ
) ⊆ supi∈A ci whenever 〈ci〉i∈Iξ

∈ ∏

i∈N
Cθ(ξ,i) and A ∈ Fξ

(we can take the suprema in C because Cξ, being a closed subalgebra, is regularly embedded in C, as noted
in Fremlin 02, 314Ga).

5B Proof of Theorem 1J Let ζ ≥ 1 be a countable ordinal, and I an infinite set. Suppose that
for 1 ≤ ξ ≤ ζ we are given a Ramsey ultrafilter Fξ on I, and a function i 7→ θ(ξ, i) : I → ξ such that
{i : θ(ξ, i) ≥ η} belongs to Fξ for every η < ξ. Let 〈Gξ〉ξ≤ζ be the family of ultrafilters on S∗ =

⋃

n∈N
In

constructed from 〈Fξ〉1≤ξ≤ζ and θ as in 1I. Suppose further that all the Fξ are non-isomorphic. Then Gζ is
measure-centering.
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proof (a) It is enough to consider the case in which I = κ is a cardinal. Let (A, µ̄) be a probability algebra,
and 〈aτ 〉τ∈S∗ a family in A such that ǫ = infτ∈S∗ µ̄aτ is greater than 0. By 5A, there are a probability
algebra (C, ν̄), a family 〈Cξ〉ξ≤ζ of closed subalgebras of C, a measure-preserving Boolean homomorphism
π : A → C such that π[A] = C0, and a family 〈ψξ〉1≤ξ≤ζ such that, for 1 ≤ ξ ≤ ζ, ψξ :

∏

δ<κ Cθ(ξ,δ) → Cξ is
a Boolean homomorphism and

ν̄ψξ(〈cδ〉δ<κ) = limδ→Fξ
ν̄cδ, ψξ(〈cδ〉δ<κ) ⊆ supδ∈A cδ

whenever 〈cδ〉δ<κ ∈ ∏

δ<κ Cθ(ξ,δ) and A ∈ Fξ.

(b) By 2Ea, there is a disjoint family 〈Aξ〉1≤ξ≤ζ of subsets of I such that Aξ ∈ Fξ for every ξ. (This is
where we need to know that ζ is countable.) Define T ⊆ S∗ and α : T → [0, ζ] as follows. Start by saying
that ∅ ∈ T and that α(∅) = ζ. Having determined T ∩ κn and α : T ∩ κn → [0, ζ], where n ∈ N, then for
τ ∈ κn+1 say that τ ∈ T iff τ is of the form σa<δ> where

σ ∈ T ∩ κn, α(σ) > 0, δ ∈ Aα(σ), σ(m) < δ for every m < n,

and in this case set α(τ) = θ(α(σ), δ). Continue. Observe that every member of T is a strictly increasing
finite sequence in κ. For D ⊆ κ, set TD = T ∩ ⋃

n∈N
Dn.

(c) Set H =
⋂

1≤ξ≤ζ Fξ. Then T ∗
D = {τ : τ ∈ TD, α(τ) = 0} belongs to Gζ for every D ∈ H. PPP I aim to

show by induction on ξ that if τ ∈ TD and α(τ) = ξ then {σ : τaσ ∈ T ∗
D} ∈ Gξ. The induction starts with

α(τ) = 0 and {σ : τaσ ∈ T ∗
D} = {∅} ∈ G0. For the inductive step to α(τ) = ξ > 0,

{δ : {σ : τa<δ>aσ ∈ T ∗
D} ∈ Gθ(ξ,δ)}

⊇ {δ : δ ∈ D, τa<δ> ∈ T, α(τa<δ>) = θ(ξ, δ)}
(by the inductive hypothesis)

= {δ : δ ∈ Aξ ∩D, τ(m) < δ for every m < dom τ} ∈ Fξ,

so {σ : τaσ ∈ T ∗
D} ∈ Gξ. At the end of the induction, we can apply this to τ = ∅ and ξ = ζ. QQQ

(d) Set cτ = πaτ for τ ∈ S∗ \T . For τ ∈ T define cτ ∈ Cα(τ) by induction on α(τ), as follows. If α(τ) = 0,

set cτ = πaτ . For the inductive step to α(τ) = ξ > 0, α(τa<δ>) = θ(α(τ), δ) < α(τ) whenever τa<δ> ∈ T .
So cτa<δ> is defined and belongs to Cθ(ξ,δ) for every δ < κ. We can therefore set cτ = ψξ(〈cτa<δ>〉δ<κ),
and continue. Inducing on α(τ) when τ ∈ T , we see that ν̄cτ ≥ ǫ for every τ ∈ S∗.

(e) For K ⊆ I, set eK = infτ∈TK
cτ ; let S be the family of those finite sets K ⊆ I such that eK 6= 0.

Interpreting inf ∅ as 1C, ∅ ∈ S. Moreover, if K ∈ S, then {δ : K ∪{δ} ∈ S} belongs to H. PPP Set γ = supK.
Take any ξ such that 1 ≤ ξ ≤ ζ. Set

dδ = inf{cτa<δ> : τ ∈ TK , α(τ) = ξ}
for δ < κ,

B = {δ : δ ∈ Aξ, δ > γ, dδ ∩ eK 6= 0}.
If δ ∈ B, then

TK∪{δ} = TK ∪ {τa<δ> : τ ∈ TK , α(τ) = ξ},
because every member of T is strictly increasing and τa<δ> can belong to T only when δ ∈ Aα(τ), that is,
when α(τ) = ξ. So eK∪{δ} = dδ ∩ eK 6= 0 and K ∪ {δ} ∈ S.

??? If B /∈ Fξ, then B′ = {δ : δ ∈ Aξ, δ > γ, dδ ∩ eK = 0} belongs to Fξ. So

eK ⊆ inf{cτ : τ ∈ TK , α(τ) = ξ}
= inf

τ∈TK

α(τ)=ξ

ψξ(〈cτa<δ>〉δ<κ) = ψξ(〈 inf
τ∈TK

α(τ)=ξ

cτa<δ>〉δ<κ)

(because ψξ is a Boolean homomorphism and TK is finite)
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⊆ sup
δ∈B′

inf
τ∈TK

α(τ)=ξ

cτa<δ>

(as noted in (a) above)

= sup
δ∈B′

dδ.

But eK ∩ dδ = 0 for every δ ∈ B′ and eK 6= 0. XXX
Thus {δ : K ∪ {δ} ∈ S} ⊇ B belongs to Fξ. As ξ is arbitrary, {δ : K ∪ {δ} ∈ S} ∈ H. QQQ

(f) At this point, recall that H is dependently selective, by 2D. So there is a D ∈ H such that [D]<ω ⊆ S,
that is, eK 6= 0 for every K ∈ [D]<ω, that is, {cτ : τ ∈ TD} is centered in C. It follows that {cτ : τ ∈ T ∗

D}
is centered; but for τ ∈ T ∗

D, cτ = πaτ , so {aτ : τ ∈ T ∗
D} is centered, while T ∗

D ∈ Gζ , by (c). As (A, µ̄) and
〈aτ 〉τ∈S∗ are arbitrary, Gζ is measure-centering, by Proposition 1C(ii).

5C Lemma Suppose that I, J are sets and that F , G are measure-centering ultrafilters on I, J respec-
tively such that F is #(J)+-complete. If (A, µ̄) is a probability algebra and 〈aij〉i∈I,j∈J is a family in A

such that infi∈I,j∈J µ̄aij > 0, there are A ∈ F , B ∈ G such that {aij : i ∈ A, j ∈ B} is centered.

proof If J is finite then G is principal; taking B = {j} to be the singleton belonging to G, there is an A ∈ F
such that {aij : i ∈ A} is centered, and we’re done. Otherwise, let κ be the greatest cardinal such that F is

κ-complete. Then κ is two-valued-measurable and greater than #(J), so must be greater than 2#(J). For
K ∈ [J ]<ω and i ∈ J set biK = infj∈K aij . Because F is κ-complete, there is a family 〈γK〉K∈[J]<ω in [0, 1]
such that A∗ = {i : µ̄biK = γK for every finite K ⊆ I} belongs to F . Take any i0 ∈ A∗; then there must be
a B ∈ G such that {ai0j : j ∈ B} is centered, so that γK > 0 for every K ∈ [B]<ω. In this case, for each
K ∈ [B]<ω, there is an AK ∈ F such that {biK : i ∈ AK} is centered. Set A = A∗ ∩ ⋂

K⊆B is finiteAK ; then

A ∈ F and {aij : i ∈ A, j ∈ B} is centered.

5D Lemma Suppose that F0, . . . ,Fn are filters on sets I0, . . . , In. Let (K,L) be a non-trivial partition
of {0, . . . , n}, and (i0, . . . , ik), (j0, . . . , jl) the increasing enumerations of K, L respectively. For A ⊆
Ii0 × . . .× Iik

and B ⊆ Ij0 × . . .× Ijl
set

A#B = {(x0, . . . , xn) : (xi0 , . . . , xik
) ∈ A, (xj0 , . . . , xjl

) ∈ B} ⊆ I0 × . . .× In.

If A ∈ Fi0 ⋉ . . .⋉ Fik
and B ∈ Fj0 ⋉ . . .⋉ Fjl

then A#B ∈ F0 ⋉ . . .⋉ Fn.

proof Induce on n. The induction starts with n = 1 and k = l = 0 and either A#B = A×B with A ∈ F0

and B ∈ F1, or A#B = B ×A with B ∈ F0 and A ∈ F1; in either case the result is trivial.
For the inductive step to n > 1, suppose to begin with that 0 ∈ K. If K = {0}, then we have A ∈ F0

and B ∈ F1 ⋉ . . .⋉ Fn, so that A#B can be identified with A×B ∈ F0 ⋉ (F1 ⋉ . . .⋉ Fn), identified with
F0 ⋉ . . . ⋉ Fn. Otherwise, set K ′ = K \ {0}, so that (K ′, L) is a non-trivial partition of {1, . . . , n}. For
x ∈ I0, it is easy to see that

(A#B)[{x}] = {(x1, . . . , xn) : (x, x1, . . . , xn) ∈ A#B}
and

A[{x}]#B = {(xi1 , . . . , xik
) : (x, xi1 , . . . , xik

) ∈ A}#B
are equal, where the interleaving A[{x}]#B is computed with regard to the partition (K ′, L) and the
increasing enumerations (i1, . . . , ik) and (j0, . . . , jl). Now

{x : (A#B)[{x}] ∈ F1 ⋉ . . .⋉ Fn} = {x : A[{x}]#B ∈ F1 ⋉ . . .⋉ Fn}
⊇ {x : A[{x}] ∈ Fi1 ⋉ . . .⋉ Fik

}
(by the inductive hypothesis, because B ∈ Fj0 ⋉ . . .⋉ Fjl

)

∈ Fi0 = F0

because A ∈ Fi0 ⋉ . . .⋉ Fik
. So A#B ∈ F0 ⋉ . . .⋉ Fn.
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If 0 ∈ L, the same argument applies, but looking at sections B[{x}] rather than A[{x}] and the partition
(K,L \ {0}) of {1, . . . , n}. So the induction proceeds.

5E Proposition Suppose that F0, . . . ,Fn are non-isomorphic Ramsey ultrafilters. Then F0 ⋉ . . .⋉ Fn

is measure-centering.

proof It is enough to consider the case in which every Fi is based on a cardinal λi. Induce on n. If n = 0 we
just use Theorem 1Ba. For the inductive step, set κ = maxi≤n λi, K = {i : i ≤ n, λi = κ}, L = {i : i ≤ n,
λi < κ}. If K = {0, . . . , n} then we can use Theorem 1J with I = κ and ζ = n + 1. Otherwise, (K,L)
is a proper partition of {0, . . . , n}. Let (i0, . . . , ik) and (j0, . . . , jl) be the increasing enumerations of K,
L respectively. Then the inductive hypothesis tells us that G = Fi0 ⋉ . . . ⋉ Fik

and H = Fj0 ⋉ . . . ⋉ Fjl

are measure-centering. Observe next that as every Fim
is κ-complete, so is G, while the base set of H is

λj0 × . . .× λjl
, which has cardinal less than κ.

Let (A, µ̄) be a probability measure, and 〈ax〉x∈I a family in A such that infx∈I µ̄ax > 0, where I =
λ0 × . . .× λn. For x ∈ I, set x′ = (xi0 , . . . , xik

) and x′′ = {xj0 , . . . , xjl
), so that x 7→ (x′, x′′) is a bijection

between I and (Ii0 × . . . × Iik
) × (Ij0 × . . . × Ijl

). By Lemma 5C, there are sets A ∈ G, B ∈ H such that
{ax : x′ ∈ A, x′′ ∈ B} is centered; that is, in the language of Lemma 5D, {ax : x ∈ A#B} is centered. But
5D tells us that A#B ∈ F0 ⋉ . . .⋉Fn. As 〈ax〉x∈I is arbitrary, F0 ⋉ . . .⋉Fn is measure-centering, and the
induction continues.

5F To prove Theorem 1K, we need to know a little more both about the extensions of measures described
in 1E and about the iterated products of 1I. It will be convenient to have a name for a relation extending
the Rudin-Keisler pre-ordering of the ultrafilters on a given set.

Definition If F and G are filters on sets I, J respectively, I will say that F ≤RK G if there is a function
f : J → I such that F = f [[G]]. Observe that ≤RK is a reflexive transitive relation on the class of all filters.

5G Proposition Let F and G be measure-centering ultrafilters such that F ≤RK G. Let (X,Σ, µ) be a
compact probability space, and λF , λG the extensions of µ defined from F and G as in Theorem 1E. Then
λG extends λF .

proof Set I =
⋃F and J =

⋃G, and let f : J → I be such that F = f [[G]]. Defining AF and AG from F
and G as in 1E, AF ⊆ AG and λGA = λFA for every A ∈ AF . PPP Express A as limi→F Ei where 〈Ei〉i∈I is
a family in Σ. For j ∈ J , set Fj = Ef(j); then A = limj→G Fj ∈ AG and

λFA = limi→F µEi = limj→G µFj = λGA. QQQ

Since λF and λG are complete probability measures and λF is inner regular with respect to AF , λG extends
λF , by 3A(a-iii).

5H Proposition Let F0, . . . ,Fn be filters.
(a) F0 ≤RK F0 ⋉ F1 and F1 ≤RK F0 ⋉ F1.
(b) If G0, . . . ,Gn are filters such that Gk ≤RK Fk for every k ≤ n, then G0 ⋉ . . .⋉ Gn ≤RK F0 ⋉ . . .⋉ Fn.
(c) If 0 ≤ k0 < k1 < . . . < km ≤ n, then Fk0

⋉ . . .⋉ Fkm
≤RK F0 ⋉ . . .⋉ Fn.

proof Let Ik =
⋃Fk be the base set of Fk for each k.

(a) If f0 : I0 × I1 → I0 and f1 : I0 × I1 → I1 are the canonical projections, it is easy to see that
F0 = f0[[F0 ⋉ F1]] and F1 = f1[[F0 ⋉ F1]].

(b)(i) If n = 1, set Jk =
⋃Gk and let fk : Ik → Jk be such that Gk = fk[[Fk]] for k = 0 and k = 1. Setting

h(i, j) = (f0(i), f1(j)) for i ∈ I0 and j ∈ J0, it is easy to check that G0 ⋉ G1 = h[[F0 ⋉ F1]] ≤RK F0 ⋉ F1.

(ii) For n ≥ 2 the result now follows by induction.

(c)(i) Induce on n to see that Fk ≤RK F0 ⋉ . . .⋉ Fn whenever 0 ≤ k ≤ n; for the case n = k > 0, apply
(a) to the product (F0 ⋉ . . .⋉ Fk−1) ⋉ Fk; for the inductive step to n+ 1 > k, observe that

Fk ≤RK F0 ⋉ . . .⋉ Fn ≤RK (F0 ⋉ . . .⋉ Fn) ⋉ Fn+1

by the other half of (a).
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(ii) Now induce on m; the inductive step to m+ 1 is

(Fk0
⋉ Fk1

⋉ . . .⋉ Fkm
) ⋉ Fkm+1

≤RK (F0 ⋉ F1 ⋉ . . .⋉ Fkm
) ⋉ (Fkm+1 ⋉ . . .⋉ Fn)

∼= F0 ⋉ . . .⋉ Fn,

using the inductive hypothesis, (i) here and (b) above for the first step.

5I These have been easy. For the next result we have to think a little harder, but the principles are the
same.

Proposition Let ζ, 〈Iξ〉1≤ξ≤ζ , 〈Fξ〉1≤ξ≤ζ , I, S
∗, θ and 〈Gξ〉ξ≤ζ be as in 1Ib, and suppose that {i : i ∈ Iξ,

θ(ξ, i) ≥ η} ∈ Fξ whenever η < ξ ≤ ζ. Then Fξn
⋉ . . .⋉ Fξ0

≤RK Gζ whenever 1 ≤ ξ0 < ξ1 < . . . < ξn ≤ ζ.

proof (a) The first step is to show that Fξ ≤RK Gξ whenever 1 ≤ ξ ≤ ζ. PPP Let f : S∗ → Iξ be such that
f(τ) = τ(0) whenever τ 6= ∅ and τ(0) ∈ Iξ. For A ⊆ Iξ,

f−1[A] ∈ Gξ ⇐⇒ {i : i ∈ Iξ, {τ : <i>aτ ∈ f−1[A]} ∈ Gθ(ξ,i)} ∈ Fξ

⇐⇒ {i : i ∈ Iξ, {τ : f(<i>aτ) ∈ A} ∈ Gθ(ξ,i)} ∈ Fξ

⇐⇒ {i : i ∈ A, S∗ ∈ Gθ(ξ,i)} ∈ Fξ ⇐⇒ A ∈ Fξ.

So Fξ = f [[Gξ]] ≤RK Gξ. QQQ

(b) Next, Gη ≤RK Gξ whenever η ≤ ξ ≤ ζ. PPP Induce on ξ. If ξ = η, the result is trivial. For the inductive
step to ξ > η, set J = {i : i ∈ Iξ, θ(ξ, i) ≥ η}; then J ∈ Fξ, by hypothesis. For i ∈ J , the inductive
hypothesis tells us that Gη ≤RK Gθ(ξ,i); let gi : S∗ → S∗ be such that gi[[Gθ(ξ,i)]] = Gη. Now let g : S∗ → S∗

be such that g(<i>aσ) = gi(σ) whenever σ ∈ S∗ and i ∈ J . For A ⊆ S∗,

g−1[A] ∈ Gξ ⇐⇒ {i : i ∈ Iξ, {τ : g(<i>aτ) ∈ A} ∈ Gθ(ξ,i)} ∈ Fξ

⇐⇒ {i : i ∈ J, {τ : gi(τ) ∈ A} ∈ Gθ(ξ,i)} ∈ Fξ

⇐⇒ {i : i ∈ J, g−1
i [A] ∈ Gθ(ξ,i)} ∈ Fξ

⇐⇒ {i : i ∈ J, A ∈ Gη} ∈ Fξ ⇐⇒ A ∈ Gη,

so Gη = g[[Gξ]] ≤RK g[[Gξ]]. QQQ

(c) It follows that if 1 ≤ ξ0 < . . . < ξn ≤ ζ then Fξn
⋉ . . .⋉ Fξ0

≤ Gξn
. PPP Induce on the pair (n, ξn). If

ξn = 1 then n = 0 and we just have to know that F1 ≤RK G1, as in (a). For the inductive step to ξn > 1,
if n = 0 we again have only to know that Fξ0

≤RK Gξ0
≤RK Gξn

, this time using (b). If n > 0, let J be
{i : i ∈ Iξn

, θ(ξn, i) ≥ ξn−1} ∈ Fξn
. For i ∈ J ,

Fξn−1
⋉ . . .⋉ Fξ0

≤RK Gξn−1
≤RK Gθ(ξn,i)

by the inductive hypothesis; let hi : S∗ → Iξn−1
× . . .× Iξ0

be a function witnessing this. Now let h : S∗ →
Iξn

×Iξn−1
× . . .×Iξ0

be such that h(<i>aσ) = (i, hi(σ)) whenever i ∈ J and σ ∈ S∗. For A ⊆ Iξn
× . . .×Iξ0

,

h−1[A] ∈ Gξn
⇐⇒ {i : i ∈ Iξn

, {τ : h(<i>aτ) ∈ A} ∈ Gθ(ξn,i)} ∈ Fξn

⇐⇒ {i : i ∈ J, {τ : h(<i>aτ) ∈ A} ∈ Gθ(ξn,i)} ∈ Fξn

⇐⇒ {i : i ∈ J, {τ : hi(τ) ∈ A[{i}]} ∈ Gθ(ξn,i)} ∈ Fξn

⇐⇒ {i : i ∈ J, A[{i}] ∈ hi[[Gθ(ξn,i)}]] ∈ Fξn

⇐⇒ {i : i ∈ J, A[{i}] ∈ Fξn−1
⋉ . . .⋉ Fξ0

} ∈ Fξn

⇐⇒ A ∈ Fξn
⋉ (Fξn−1

⋉ . . .⋉ Fξ0
) ∼= Fξn

⋉ . . .⋉ Fξ0
.
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So h witnesses that Fξn
⋉ . . .⋉ Fξ0

≤RK Gξn
, and the induction proceeds. QQQ

(d) Finally, if 1 ≤ ξ0 < . . . < ξn ≤ ζ then Fξn
⋉ . . .⋉ Fξ0

≤ Gξn
≤RK Gζ .

5J Proof of Theorem 1K Let (X,Σ, µ) be a compact probability space. Then there is a measure λ
on X, extending µ, such that λ(limi→F Ei) is defined and equal to limi→F µEi whenever F is a Ramsey
ultrafilter on N and 〈Ei〉i∈N is a sequence in Σ.

proof (a) If there are no Ramsey ultrafilters on N, we can set λ = µ and stop; so let us suppose that
there is at least one Ramsey ultrafilter. Let F be a family of Ramsey ultrafilters on N consisting of just
one member of each isomorphism class. Fix a well-ordering 4 of F with greatest member F∗ and a ladder
system 〈θ(ξ, i)〉1≤ξ<ω1,i∈N such that 〈θ(ξ, i)〉i∈N is a non-decreasing sequence in ξ, and {θ(ξ, i) : i ∈ N} is
cofinal with ξ, whenever 1 ≤ ξ < ω1.

(b)(i) For any non-empty finite set V ⊆ F, list it in 4-increasing order as F0 ≺ F1 ≺ . . . ≺ Fn, and set
HV = Fn ⋉ . . .⋉ F0.

(ii) For any non-empty countable set W ⊆ F containing F∗, list it in 4-increasing order as 〈Fξ〉1≤ξ≤ζ ,
where ζ ≥ 1 is a countable ordinal, and let GW be the final ultrafilter on S∗ =

⋃

n∈N
Nn defined from

〈Fξ〉1≤ξ≤ζ and 〈θ(ξ, i)〉1≤ξ≤ζ,i∈N by the process of 1Ib. By Theorem 1J, GW is measure-centering.

(iii) If V ⊆W ⊆ F, W is countable and contains F∗, and V is finite and not empty, then HV ≤RK GW ,
by 5I; so HV is measure-centering (Proposition 1Da). Let λV be the corresponding extension of µ as
described in Theorem 1E.

(c) Consider the family Λ = {λV : V ∈ [F]<ω \ {∅}}. This is a collection of probability measures on X.
It is upwards-directed in the sense that if we have any two members of Λ they have a common extension
belonging to Λ. PPP If V0, V1 are non-empty finite subsets of F with union V , then HV0

≤RK HV , by 5Hc,
so λV extends λV0

, by 5G; and similarly λV extends λV1
. QQQ Next, if Λ0 ⊆ Λ is countable, then there is

a measure on X extending every member of Λ0. PPP Let W ⊆ F be a non-empty countable set, containing
F∗, such that Λ0 ⊆ {λV : V ∈ [W ]<ω \ {∅}}. Let λ# be the extension of µ corresponding to the measure-
centering ultrafilter GW . If V ⊆ W is finite and non-empty, then HV ≤RK GW , so λ# extends λV ; thus λ#

extends every member of Λ0. QQQ
By 3Ab, there is a measure λ on X extending every member of Λ.

(d) Suppose that 〈Ei〉i∈N is a sequence in Σ and that F is a Ramsey ultrafilter on N. Then there is
a F ′ ∈ F such that F ′ = H{F ′} is isomorphic to F . Let f : N → N be such that f [[F ′]] = F , and set
Fj = Ef(j), as in the proof of 5G; then limi→F Ei = limj→F ′ Fj and

λ(limi→F Ei) = λ(limj→F ′ Fj) = λ{F ′}(limj→F ′ Fj)

is defined and equal to limj→F ′ µFj = limi→F µEi. So λ has the required property.

6 Other kinds of ultrafilter

I return to the relatively concrete context of a proof of Theorem 1M, describing the relationships between
various classes of ultrafilters.

6A Proof of Theorem 1M, parts (a), (c) and (j) As usual, I begin by repeating the statements of
the results in question.

(a) A measure-linking ultrafilter is Hausdorff.
(b) A measure-centering ultrafilter is nowhere dense.
(j) It is relatively consistent with ZFC to suppose that every measure-centering ultrafilter is principal.

proof (a) Let F be a measure-linking ultrafilter on a set I, and f : I → J , g : I → J two functions such
that A = {i : f(i) 6= g(i)} ∈ F}. Let 〈ej〉j∈J be the standard generating family in BJ (Definition 3Be), and
for i ∈ I set

ai = ef(i) \ eg(i) if i ∈ A,

= 1 otherwise.

D.H.Fremlin



24

Then infi∈I ν̄Jai ≥ 1
4 , so there is a B ∈ F such that ai ∩ aj 6= 0 for all i, j ∈ B; we can suppose that B ⊆ A.

Now f [B] ∩ g[B] = ∅. PPP??? Otherwise, there are i, j ∈ B such that f(i) = g(j). In this case,

0 6= ai ∩ aj ⊆ ef(i) \ eg(j) = 0. XXXQQQ

Since f [B] ∈ f [[F ]] and g[B] ∈ g[[F ]], f [[F ]] 6= g[[F ]]; as f and g are arbitrary, F is a Hausdorff ultrafilter.

(b) Let I be a set, F a measure-centering ultrafilter on I and f : I → R a function. Let µ be Lebesgue
measure on R. Let G ⊆ R be an open set, including Q, of measure at most 1

2 ; for x ∈ R, write <x> = x−⌊x⌋
for the fractional part of x. For each i ∈ I, set

Ki = [0, 1] \ (G+<f(i)>).

Then µKi ≥ 1
2 . Applying the definition 1A with A the algebra of measurable subsets of [0, 1], we see that

there is an A ∈ F such that µ(
⋂

i∈LKi) > 0 for every non-empty finite L ⊆ A. Because all the sets Ki are
closed subsets of the compact set [0, 1], there must be a point x of

⋂

i∈AKi. In this case, x /∈ G +<f(i)>
for every i ∈ A, that is, <f(i)> /∈ x − G for every i ∈ A. Now x − G is a dense open subset of R,
so H = (x − G) ∩ ]0, 1[ is a dense open subset of ]0, 1[, and H + Z is a dense open subset of R; while
f(i) /∈ H + Z for every i ∈ A. Thus f [A] is nowhere dense in R; as f is arbitrary, F is nowhere dense.

(j)(ααα) The point is that if there is a non-principal measure-centering ultrafilter F on a set I, then either
there is a non-principal nowhere dense ultrafilter on N, or there is a two-valued-measurable cardinal. PPP If
F is not closed under countable intersections, there is a partition of I into a sequence 〈An〉n∈N of sets not
belonging to F . Setting f(i) = n for i ∈ An, we get a function f : I → N such that f [[F ]] is a non-principal
ultrafilter on N. By Proposition 1Da f [[F ]] is measure-centering, and by (b) above it is nowhere dense. On
the other hand, if F is closed under countable intersections, then there is a two-valued-measurable cardinal
(Comfort & Negrepontis 74, 8.31; Jech 03, 10.2). QQQ

(βββ) In Shelah 98, Theorem 3.1, Shelah proved that if c = ω1 and ♦ω2
({γ : γ < ω2, cf γ = ω1}) is

true, then there is a proper forcing notion P of cardinality ω2 such that

P there are no non-principal nowhere dense ultrafilters on N.

In particular, this is so if we start from a model of V = L (Jech 03, 13.20 & Exercise 27.4). Now, if we
begin with such a model, so that there are no two-valued-measurable cardinals (Jech 03, 17.1), then we
shall certainly have

P there are no two-valued-measurable cardinals

(Jech 03, 21.2). So (α) tells us that

P all measure-centering ultrafilters are principal.

6B Lemma (a) (cf. Blass 74, Theorem 5) Let F be a uniform κ-complete weakly Ramsey ultrafilter on
a regular infinite cardinal κ. If 〈Aξ〉ξ<κ is any family in F , there is an A ∈ F such that #(A \ Aξ) < κ for
every ξ < κ.

(b) Let F be a weakly Ramsey ultrafilter on a set I, and D a disjoint family of subsets of κ, none belonging
to F . Set Q =

⋃

D∈D[D]2. Then for any S ⊆ [κ]2 there is an A ∈ F such that Q∩ [A]2 is either included in
S or disjoint from S.

(c) Let F be a weakly Ramsey ultrafilter on a set I. If A ∈ F , then F⌈A is weakly Ramsey, where
F⌈A = F ∩ PA.

(d) Let F be an ultrafilter on a set I, and suppose that there is an A ∈ F such that F⌈A is an arrow
ultrafilter. Then F is an arrow ultrafilter.

proof (a) For α < κ, set h(α) = min{ξ : ξ < κ, α /∈ Aξ \ ξ}. Note that h−1[ξ] /∈ F for every ξ < κ, because
F is uniform and κ-complete; so suph[A] = κ for every A ∈ F . Set

S0 = {{α, β} : α < β < κ and h(α) > h(β)},

S1 = {{α, β} : α < β < κ and h(α) = h(β)},

S2 = {{α, β} : α < β < κ and h(α) < h(β)},
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If A ∈ F then [A]2 ∩ S2 6= ∅. PPP??? Otherwise, h(α) ≥ h(β) whenever α, β ∈ A and α < β. Set ξ = minh[A]
and let α ∈ A be such that h(α) = ξ; then h(β) = ξ whenever β ∈ A \ α. But this means that A \ α and
Aξ \ ξ are disjoint sets both belonging to F . XXXQQQ

Because F is weakly Ramsey, there is an A ∈ F such that [A]2 is disjoint from at least one of S0 and S1.
case 0 If [A]2 ∩ S0 = ∅, then h(α) ≤ h(β) whenever α, β ∈ A and α < β. If ξ < κ, take α ∈ A such

that h(α) > ξ. If β ∈ A \α, then h(β) ≥ h(α) > ξ so β ∈ Aξ \ ξ; thus A \Aξ ⊆ A∩α has cardinal less than
κ.

case 1 If [A]2 ∩ S1 = ∅, then h↾A is injective. If ξ < κ, take α such that h(β) > ξ for every β ∈ A \ α;
then again A \Aξ ⊆ A ∩ α has cardinal less than κ, as required.

(b) There is an A ∈ F such that [A]2 is disjoint from at least one of Q ∩ S, Q \ S and [I]2 \ Q. Since
A 6⊆ D for any D ∈ D, [A]2 \Q 6= ∅. So [A]2 ∩Q is either disjoint from S or included in S.

(c) If S0, S1, S2 are disjoint subsets of [A]2, then there is a B ∈ F such that [B]2 is disjoint from some
Sj , and now A ∩B ∈ F⌈A and [A ∩B]2 ∩ Sj = ∅.

(d) If S ⊆ [I]2 and k ∈ N, then either there is a K ∈ [A]k such that [K]2 ∩ (S ∩ [A]2) = ∅ (in which case
K ∈ [I]k and [K]2 ∩ S = ∅) or there is a B ∈ F⌈A such that [B]2 ⊆ S ∩ [A]2 (in which case B ∈ F and
[B]2 ⊆ S).

6C Proof of Theorem 1Mc Every weakly Ramsey ultrafilter is an arrow ultrafilter.

proof (a)(i) To begin with, I will suppose that F is a uniform κ-complete weakly Ramsey ultrafilter on an
infinite cardinal κ. Note that it follows at once that κ is regular, since if A ∈ [κ]<κ then

⋂

ξ∈A κ \ ξ belongs

to F and cannot be empty. I aim to show, by induction on k, that if S ⊆ [κ]2 is such that [K]2 meets S for
every K ∈ [κ]k then there is an A ∈ F such that [A]2 ⊆ S.

(ii) The cases k = 0 and k = 1 are vacuous, since there is a K ∈ [κ]k and [K]2 = ∅; and the case k = 2
is trivial, since if [K]2∩S 6= ∅ for every K ∈ [κ]2 then S = [κ]2. For the inductive step to k ≥ 3, take S ⊆ [κ]2

such that [K]2 meets S for every K ∈ [κ]k. For each ξ < κ set Aξ = {η : η < κ, {ξ, η} ∈ S}∪{ξ}. If there is
any ξ such that Aξ /∈ F , then there is an A ∈ F such that [A]2 ⊆ S. PPP Set B = κ\Aξ, S

′ = S∪ ([κ]2 \ [B]2);
because F is an ultrafilter, B ∈ F . If K ∈ [κ]k−1 and K 6⊆ B, then certainly [K]2 meets S′. If K ∈ [B]k−1,
then K ′ = K ∪ {ξ} belongs to [κ]k and there is an L ∈ S such that L ⊆ K ′; now ξ /∈ L so L ⊆ K and [K]2

meets S′. By the inductive hypothesis, there is a C ∈ F such that [C]2 ⊆ S′; now A = B ∩ C belongs to F
and [A]2 ⊆ S. QQQ

(iii) So we may suppose that Aξ ∈ F for every ξ < κ. By 6Ba, there is an A ∈ F such that #(A\Aξ) < κ
for every ξ < κ. Because κ is regular, we can define inductively a strictly increasing family 〈ξα〉α<κ in κ
by saying that ξα is to be the least ordinal such that ξα > ξβ for every β < α and A \ Aη ⊆ ξα whenever
η < supβ<α ξβ . Note that ξα = supβ<α ξβ whenever α < κ is a limit ordinal. Set Dα = ξα+1 \ ξα for each

α; then 〈Dα〉α∈κ is a partition of κ. Write Q for
⋃

α<κ[Dα]2.

One of
⋃

α<κ is evenDα,
⋃

α<κ is oddDα belongs to F . Call this B. Then [A ∩ B]2 ⊆ S ∪ Q. PPP If ξ,

η ∈ A ∩ B and ξ < η, let α ≤ β be such that ξ ∈ Dα and η ∈ Dβ . If α = β then {ξ, η} ∈ [Dα]2 ⊆ Q.
Otherwise, ξ < α+ 1 < β and A \Aξ ⊆ ξα+2 does not meet Dβ , so η ∈ Aξ and {ξ, η} ∈ S. QQQ

(iv) There is a C ∈ F such that Q ∩ [C]2 ⊆ S. PPP By 6Bb, there is a C0 ∈ F such that Q ∩ [C0]
2 is

either included in S or disjoint from S. In the former case, we can take C = C0 and stop. In the latter case,
#(C0 ∩Dα) < k for every α < κ, so there is a C ∈ F such that #(C ∩Dα) ≤ 1 for every α < κ. But in this
case Q ∩ [C]2 is empty so is included in S. QQQ

(v) Now A ∩B ∩ C ∈ F and

[A ∩B ∩ C]2 = [A ∩B]2 ∩ [C]2 ⊆ S ∪ (Q ∩ [C]2) = S.

So we have a suitable member of F . Thus the induction continues, and it is the case for every k ∈ N that if
S ⊆ [κ]2 is such that S ∩ [K]2 6= ∅ for every K ∈ [κ]k, then there is an A ∈ F such that [A]2 ⊆ S; that is, F
is an arrow ultrafilter.

(b) Accordingly the theorem is proved in the case of a uniform κ-complete ultrafilter on an infinite
cardinal κ. Now suppose that F is a uniform weakly Ramsey ultrafilter on an infinite cardinal κ, and is not
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κ-complete. Then there are a cardinal λ < κ and a family 〈Aλ〉α<λ in F such that
⋂

α<λAλ is empty. For

ξ < κ, set h(ξ) = min{α : α < λ, ξ /∈ Aα}; for α < λ, set Dα = h−1[{α}], so that 〈Dα〉α<λ is a partition of
κ into sets not belonging to F . Set Q =

⋃

α<λ[Dα]2.

Let S ⊆ [κ]2 and k ∈ N be such that [K]2 ∩ S 6= ∅ whenever K ∈ [κ]k. Set S0 = [κ]2 \ (S ∪ Q) and
S1 = S \ Q. Then there is a B ∈ F such that [B]2 is disjoint from at least one of Q, S0 and S1. Since
#(B) = κ > λ, there is some α < λ such that #(B ∩Dα) ≥ 2, and [B]2 meets Q. Since B meets infinitely
many Dα, there is a K ∈ [B]k such that #(K ∩Dα) ≤ 1 for every α; now [B]2 ∩S1 ⊇ [K]2 ∩S is non-empty.
So [B]2 ∩ S0 = ∅, that is, [B]2 ⊆ Q ∪ S.

By 6Bb again, there is a C ∈ F such that Q ∩ [C]2 is either included in S or disjoint from S. Since
#(C) = κ > λ, there must be an α < λ such that #(C ∩Dα) ≥ k, in which case [C ∩Dα]2 meets S; so we
must have Q ∩ [C]2 ⊆ S. So if we set A = B ∩C, A belongs to F and [A]2 ⊆ S ∪ (Q ∩ [C]2) = S. As S and
k are arbitrary, F is an arrow ultrafilter.

(c) Putting (a) and (b) together, we see that any uniform weakly Ramsey ultrafilter on an infinite set is
an arrow ultrafilter. Of course any principal ultrafilter is an arrow ultrafilter, so all uniform weakly Ramsey
ultrafilters are arrow ultrafilters. Finally, if F is any weakly Ramsey ultrafilter on any set I, let A ∈ F be
a set of minimal size; then F⌈A is uniform; by 6Bc, F⌈A is weakly Ramsey, therefore an arrow ultrafilter;
by 6Bd, F is an arrow ultrafilter. So the proof is complete.

6D The following lemma is very well known in essence, though it is usually expressed in less quantitative
forms.

Lemma Let A be a Boolean algebra, and ν : A → [0, 1] an additive functional such that ν1 = 1. Suppose
that ǫ, δ ∈ [0, 1] are such that δ < ǫ2, and that 〈ai〉i∈I is a family in A such that νai ≥ ǫ and ν(ai ∩ aj) ≤ δ

for all distinct i, j ∈ I. Then #(I) ≤ 1

ǫ2−δ
.

proof It is enough to deal with the case in which I is finite and A is generated by {ai : i ∈ I}, so that A is
finite and can be identified with a power set PX. Consider u =

∑

i∈I χai ∈ RX . By Cauchy’s ineqality,

(
∑

x∈X

u(x)ν{x})2 ≤
∑

x∈X

ν{x} ·
∑

x∈X

u(x)2ν{x}

= νX ·
∑

x∈X

u(x)2ν{x} =
∑

x∈X

u(x)2ν{x}.

Now, setting m = #(I),

∑

x∈X

u(x)ν{x} =
∑

x∈X

∑

i∈I

χai(x)ν{x}

=
∑

i∈I

∑

x∈X

χai(x)ν{x} =
∑

i∈I

νai ≥ ǫm,

∑

x∈X

u(x)2ν{x} =
∑

x∈X,i,j∈I

χai(x)χaj(x)ν{x} =
∑

i,j∈I

ν(ai ∩ aj)

=
∑

i∈I

νai +
∑

i6=j

ν(ai ∩ aj) ≤ m+ δm(m− 1).

So we get

ǫ2m2 ≤ m+ δm2, m ≤ 1

ǫ2−δ
,

as claimed.

Measure Theory



27

6E Proof of Theorem 1Md (i) An arrow ultrafilter is strongly measure-linking.
(ii) An arrow ultrafilter on N is nowhere dense.

proof (i) Let F be an arrow ultrafilter on a set I, A a Boolean algebra, ν : A → [0, 1] an additive functional
such that ν(1A) = 1, and 〈ai〉i∈I a family in A such that infi∈I νai = ǫ > 0. Take any δ ∈

]

0, ǫ2
[

and set

S = {{i, j} : i, j ∈ I are distinct, ν(ai ∩ aj) ≥ δ}. Let k ∈ N be such that k >
1

ǫ2−δ
. If K ∈ [I]k then by

Lemma 6D there are distinct i, j ∈ K such that ν(ai ∩ aj) ≥ δ, that is, [K]2 meets S. Because F is an arrow
ultrafilter, there is a J ∈ F such that [J ]2 ⊆ S, that is, ν(ai ∩ aj) ≥ δ for all i, j ∈ J . As A, ν and 〈ai〉i∈I

are arbitrary, F is strongly measure-linking.

(ii)(ααα) The key to the proof is the following: if D ⊆ ]0, 1] is a countable set, there is a set S ⊆ [D]2

such that [K]2 ∩ S 6= ∅ for every K ∈ [D]3 and A is nowhere dense whenever A ⊆ D, [A]2 ⊆ S and 0 ∈ A.
PPP Let 4 be a well-ordering of D in order type at most ω. Let 〈ǫt〉t∈D be a family of strictly positive real
numbers with sum at most 1. For m, k ∈ N set Hmk = ]2−mk, 2−m(k + 1)[; for t ∈ D let mt ∈ N be such
that 2−mt−1 < t ≤ 2−mt . Define Gt inductively, for t ∈ D, following the well-ordering 4, in such a way
that, writing m for mt,

Gt ⊆ ]2−m, 1[,
s /∈ Gt if s ≺ t,
Gt ∩Gs = ∅ if s ≺ t and ms > m,
for 1 ≤ k < 2m, Gt ∩Hmk is a non-empty open interval of length at most 2−mǫt.

To see that this is possible, note that when we come to choose Gt the forbidden points in
⋃

1≤k<2m Hmk

consist of some of the the finitely many s ≺ t, together with
⋃

s≺t,ms>mGs; and the latter meets each Hmk

in a finite union of intervals of total length at most
∑

s≺t 2−mǫs < 2−m, so there must be a gap remaining.
Note that ms < mt whenever s ∈ Gt. On completing the inductive construction, set

S = {{s, t} : s, t ∈ D are distinct, s /∈ Gt and t /∈ Gs}.
If K ∈ [D]3 then either there are distinct s, t ∈ K such that ms = mt, in which case {s, t} ∈ S ∩ [K]2, or
K = {s, t, u} where ms < mt < mu. If {t, u} /∈ S, then t ∈ Gu so u ≺ t and Gt ∩ Gu is empty. But this
means that one of {s, t}, {s, u} belongs to S. So in all cases we have [K]2 ∩ S 6= ∅.

Now suppose that A ⊆ D is such that 0 ∈ A and [A]2 ⊆ S. For each m ∈ N and k ≥ 1 there is a t ∈ A
such that mt > m. In this case, A cannot meet Gt, so A cannot include Hmk. As m and k are arbitrary, A
is nowhere dense. QQQ

(βββ) Let F be an arrow ultrafilter on N, and f : N → R a function. Set g(n) = arctan f(n) for n ∈ N;

then g is bounded; set z = limn→F g(n). Set h(n) =
1

π
|g(n) − z| for n ∈ N; then h takes values in [0, 1] and

limn→F h(n) = 0.
If A0 = {i : h(i) = 0} belongs to F , then f [A0] is a singleton, and is certainly nowhere dense. Otherwise,

set D = h[N] \ {0}, and let S ⊆ [D]2 be as in (α). Set

S1 = {{i, j} : i, j ∈ N, either i ∈ A0 or j ∈ A0

or h(i) = h(j) or {h(i), h(j)} ∈ S}.

If K ⊆ N and [K]2 ∩S1 = ∅, then h↾K is injective, h[K] ⊆ D and [h[K] ]2 ∩S = ∅, so #(K) ≤ 2. Because F
is an arrow ultrafilter, there is an A ∈ F such that [A]2 ⊆ S1; we can suppose that A∩A0 is empty, so that

h[A] ⊆ D and [h[A] ]2 ⊆ S. But now recall that limn→F h(n) = 0, so 0 ∈ h[A] and h[A] is nowhere dense,
by the choice of S. In this case, B = h[A]∪ (−h[A]) is nowhere dense, g[A] ⊆ z+ πB is nowhere dense, and
f [A] = tan[g[A]] is nowhere dense. As f is arbitrary, F is a nowhere dense filter.

6F The next lemma is a version of one which I learnt from Michel Talagrand when visiting him in 1987.
He claims to have no recollection of it.

Lemma (M.Talagrand) (a) For finite I, J ⊆ N, say that I 4 J if #(I) = #(J) and #(I \ k) ≤ #(J \ k) for
every k ∈ N.
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(i) 4 is a transitive relation.
(ii) If I 4 J , there are I0, . . . , Ir such that I = I0 4 I1 4 . . . 4 Ir = J and #(Ik△Ik+1) = 2 for every

k < r.
(iii) Suppose that m ≥ 1. For n ∈ N, set

In = {I : I ⊆ n, #(I ∩ J) ≥ m whenever J ⊆ n and J < I}.

Then #(In) ≤ 2n
√

n

m
.

(b) If 1 ≤ m ≤ n ∈ N, I ⊆ Pn and #(I ∩ J) ≥ m for all I, J ∈ I, then #(I) ≤ 2n
√

n

m
.

proof (a)(i) is trivial.

(ii) Induce on r = #(I \ J). If r = 0 then I = J and we can stop. For the inductive step to r + 1, set
i0 = max(I \ J), j0 = max(J \ I). Then i0 < j0. PPP

#(I \ j0) ≤ #(J \ j0) = #(I ∩ J \ j0)
so I \ j0 = I ∩ J \ j0 does not contain i0, and i0 ≤ j0; but of course i0 6= j0. QQQ

Set J ′ = J△{i0, j0}. Then

#(I \ k) ≤ #(J \ k) = #(J ′ \ k) if k ≤ i0 or j0 < k,

= #(I ∩ J \ k) ≤ #((J \ {j0}) \ k) = #(J ′ \ k) if i0 < k ≤ j0,

so I 4 J ′ 4 J . Also #(I \ J ′) = r and #(J ′△J) = 2. By the inductive hypothesis, there are I0, . . . , Ir
such that I = I0 4 I1 4 . . . 4 Ir = J ′ and #(Ik△Ik+1) = 2 for every k < r; setting Ir+1 = J , we have an
appropriate chain to complete the inductive step.

(iii) For I ⊆ N and n ∈ N, set hn(I) = min{#(I ∩ J) : I ∩ n 4 J ⊆ n}. Then we find that

hn+1(I) = hn(I) + 1 if n ∈ I,

= max(0, hn(I) − 1) otherwise.

PPP (α) If n ∈ I, then for J ⊆ n+1 we have I∩(n+1) 4 J iff n ∈ J and I∩n 4 J∩n; so hn+1(I) = hn(I)+1.
(β) If n /∈ I, let J be such that I ∩ n 4 J ⊆ n and #(I ∩ J) = hn(I). If hn(I) = 0 then J witnesses that
hn+1(I) = 0. Otherwise, take any i0 ∈ I ∩ J , and consider J ′ = J△{i0, n}; we shall have

I ∩ (n+ 1) = I ∩ n 4 J 4 J ′ ⊆ n+ 1,

so hn+1(I) ≤ #(I ∩ J ′) = hn(I) − 1. Thus hn+1(I) ≤ max(0, hn(I) − 1). (γ) Again supposing that n /∈ I,
take J ⊆ n+ 1 such that I ∩ (n+ 1) 4 J and #(I ∩ J) = hn+1(I). If n /∈ J , then

I ∩ n = I ∩ (n+ 1) 4 J ⊆ n

so hn(I) ≤ #(I ∩ J) = hn+1(I). If n ⊆ J , then I ∩ n 4 J ∩ n and again hn(I) ≤ hn+1(I). If n ∈ J but
n 6⊆ J , set j0 = max(n \ J) and J ′ = J△{j0, n}. For k ∈ N,

#(I ∩ n \ k) ≤ #(J \ k) = #(J ′ \ k) if k ≤ j0,

≤ n− k = #(J ′ \ k) if j0 ≤ k ≤ n,

= 0 = #(J ′ \ k) if k ≥ n.

So I ∩ n 4 J ′ and

hn(I) ≤ #(I ∩ J ′) ≤ #(I ∩ J) + 1 = hn+1(I) + 1.

Thus we must have hn+1(I) ≥ hn(I) − 1, and of course hn+1(I) ≥ 0, so hn+1(I) ≥ max(0, hn(I) − 1). QQQ
We have hn+1 = hn + gn where
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gn(I) = 1 if n ∈ I,

= −1 if hn(I) > 0 and n /∈ I,

= 0 if hn(I) = 0 and n /∈ I.

Giving PN its usual probability measure, matching νN on {0, 1}N, and writing E for expectation with respect
to this measure, we have

E(h2
n+1) = E(h2

n) + 2E(hn × gn) + E(g2
n).

Now E(hn × gn) = 0, because given that hn(I) 6= 0 then gn(I) is equally likely to be ±1; while E(g2
n) ≤ 1.

Since h0(I) = 0 for every I, we see by induction that E(h2
n) ≤ n for every n ∈ N. Consequently E(hn) ≤ √

n.
Now In = {I ∩ n : hn(I) ≥ m}, so

#(In) = 2n Pr(hn ≥ m) ≤ 2n

m
E(hn) ≤ 2n

√
n

m
.

(b) Induce on w(I) =
∑

I∈I

∑

i∈I(n − i). If w(I) = 0 then I must be empty and the result is trivial.
For the inductive step to w(I) = k + 1, then if I ⊆ In, as defined in (a-iii), we can stop. Otherwise, there
must be an I0 ∈ I \ In and J0 ⊆ n such that J0 < I0 and #(I0 ∩ J0) < m, so that J0 /∈ I.

By (a-ii), I0 and J0 are linked by a 4-chain of sets each differing from the preceding one at just two
points; so there must be I1 ∈ I, J1 ∈ Pn \ I such that I1 4 J1 and #(I1△J1) = 2. Let i1 be the member
of I1 \ J1 and j1 the member of J1 \ I1; of course i1 < j1. Define φ : I → Pn by saying that

φ(I) = I△{i1, j1} if i1 ∈ I, j1 /∈ I and I△{i1, j1} /∈ I,
= I otherwise.

Then φ is injective. Set J = φ[I], so that #(I) = #(J ), while w(J ) < w(I). Now #(J ∩ J ′) ≥ m for all
J , J ′ ∈ J . PPP Set I = φ−1(J), I ′ = φ−1(J ′). Then

—– if I = J and I ′ = J ′, surely #(J ∩ J ′) = #(I ∩ I ′) ≥ m;
—– if I 6= J and I ′ 6= J ′, then

#(J ∩ J ′) = #((I△{i1, j1}) ∩ (I ′△{i1, j1}) = #(I ∩ I ′) ≥ m

because i1 ∈ I ∩ I ′ and j1 /∈ I ∪ I ′;
—– if I = J and I ′ 6= J ′ and j1 ∈ I, then j1 /∈ I ′, J ′ = I ′△{i1, j1} so

#(J ∩ J ′) = #(I ∩ J ′) ≥ #(I ∩ I ′) ≥ m;

—– if I = J and I ′ 6= J ′ and i1 /∈ I, then i1 ∈ I ′, J ′ = I ′△{i1, j1} so

#(J ∩ J ′) = #(I ∩ J ′) ≥ #(I ∩ I ′) ≥ m;

—– if I = J and I ′ 6= J ′ and i1 ∈ I and j1 /∈ I, then I ′′ = I△{i1, j1} ∈ I so

#(J ∩ J ′) = #((I ′′△{i1, j1}) ∩ (I ′△{i1, j1})) = #(I ′′ ∩ I ′) ≥ m

because i1 ∈ I ′ \ I ′′ and j1 ∈ I ′′ \ I ′.
Similarly, #(J ∩ J ′) ≥ m if I ′ = J ′ and I 6= J . Thus in all cases we have #(J ∩ J ′) ≥ m. QQQ

By the inductive hypothesis,

2n
√

n

m
≥ #(J ) = #(I)

and the induction continues.

6G Proposition (V.Bergelson-M.Talagrand) There are a probability algebra (A, µ̄) and a sequence
〈an〉n∈N in A such that µ̄an ≥ 1

2 for every n and I has zero asymptotic density whenever I ⊆ N and
infm,n∈I µ̄(am ∩ an) > 0.

proof For r ∈ N, set Kr = {n : 2r − 1 ≤ n ≤ 2r+1 − 2} and
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Kr = {I : I ⊆ r + 1, #(I) >
r+1

2
} ∪ {I : 0 ∈ I ⊆ r + 1, #(I) =

r+1

2
},

so that #(Kr) = #(Kr) = 2r. For each r ∈ N let hr : Kr → Kr be a bijection. Set X =
∏

r∈N
(r + 1), with

the product µ of the uniform probabilities on the factors; let (A, µ̄) be the measure algebra of µ. Define
An ⊆ X, for n ∈ N, by saying that An = {x : x ∈ X, x(r) ∈ hr(n)} for that r such that n ∈ Kr; as
#(hr(n)) ≥ r+1

2 , µAn ≥ 1
2 . Set an = A•

n ∈ A, so that µ̄an ≥ 1
2 for every n.

Let I ⊆ N and ǫ > 0 be such that µ̄(am ∩ an) ≥ ǫ for all m, n ∈ I. For r ∈ N, set Jr = hr[I ∩Kr]. If J ,
J ′ ∈ Jr, then #(J ∩ J ′) ≥ ǫ(r + 1). So, setting mr = ⌈ǫ(r + 1)⌉,

#(I ∩Kr) = #(Jr) ≤ 2r+1
√

r+1

mr

for each r, by 6Fb, and

2−r#(I ∩Kr) ≤ 2
√

r+1

ǫ(r+1)
→ 0

as r → ∞. So I has zero asymptotic density, as claimed.

6H Proof of Theorem 1M, parts (e)-(g)
(e) A strongly measure-linking ultrafilter on N contains a set of zero asymptotic density.
(f) A closed Lebesgue null ultrafilter on N contains a set of zero asymptotic density.
(g) If covNLeb = c, there is a measure-centering ultrafilter on N which is neither strongly measure-linking

nor closed Lebesgue null.

proof For I ⊆ N write d∗(I) for its upper asymptotic density; write Z for the asymptotic density ideal
{I : d∗(I) = 0}.

(e) Let (A, µ̄) and 〈an〉n∈N be as in 6G. If F is a strongly measure-linking ultrafilter on N, there is an
I ∈ F such that infm,n∈I µ̄(am ∩ an) > 0, so I ∈ Z.

(f) Let 〈tn〉n∈N be a sequence in [0, 1] which is equidistributed for Lebesgue measure, and F a closed

Lebesgue null ultrafilter on N. Then there is an I ∈ F such that F = {tn : n ∈ I} is negligible. So d∗(I) = 0
(Fremlin 03, 491B).

(g) By Theorem 1Bc, we have a measure-centering ultrafilter on N which contains no set of zero asymptotic
density, so can be neither strongly measure-linking nor closed Lebesgue null.

6I I turn now to the proofs of 1Mh-1Mi. While these are expected results, they seem to depend on some
non-trivial combinatorial probability theory. For the rest of this section, I will write Nwd for the ideal of
nowhere dense subsets of R and I for the ideal {A : A ⊆ R, A ∩ [0, ǫ] ∈ Nwd for some ǫ > 0}.
Lemma Suppose that D ⊆ R.

(a)(i) If D /∈ Nwd there is a D′ ⊆ D, with no isolated points, such that D′ /∈ Nwd.
(ii) If D /∈ I there is a D′ ⊆ D, with no isolated points, such that D′ /∈ I.

(b) Suppose that S ⊆ [D]2 is such that {t : {s, t} /∈ S} ∈ Nwd for every s ∈ D.
(i) If D /∈ Nwd there is a D′ ⊆ D such that [D′]2 ⊆ S and D′ /∈ Nwd.
(ii) If D /∈ I there is a D′ ⊆ D such that [D′]2 ⊆ S and D′ /∈ I.

proof (a) Set G = intD, D′ = D∩G; then D′ has no isolated points and D \D′ ⊆ D \G is nowhere dense.
So D′ /∈ Nwd if D /∈ Nwd and D′ /∈ I if D /∈ I.

(b) By (a), we can suppose that D has no isolated points. Let 〈Vn〉n∈N enumerate a base for the topology
of R and choose 〈sn〉n∈N inductively so that

sn ∈ D, {si, sn} ∈ S for i < n, if Vn ∩D 6= ∅ then sn ∈ Vn

for each n. Set D′ = {sn : n ∈ N}; then [D′]2 ⊆ S and D′ is dense in D. So D′ /∈ Nwd if D /∈ Nwd and
D′ /∈ I if D /∈ I.

6J Lemma Suppose that D ⊆ R, and that S ⊆ [D]2 and k ∈ N are such that [K]2 ∩ S 6= ∅ for every
K ∈ [D]k.
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(a) If D /∈ Nwd, then there is a D′ ⊆ D such that D′ /∈ Nwd and [D′]2 ⊆ S.
(b) If D /∈ I, there is a D′ ⊆ D such that D′ /∈ I and {t : t ∈ D′, {s, t} /∈ S} ∈ I for every s ∈ D′.

proof For t ∈ D set S′
t = {s : s ∈ D \ {t}, {s, t} /∈ S}.

(a) Induce on k. If k ≤ 1 the result is vacuous and for k = 2 it is trivial. For the inductive step to k ≥ 3,
if S′

t ∈ Nwd for every t ∈ D, then 6I(b-i) tells us that there is a D′ ⊆ D such that [D′]2 ⊆ S and D′ /∈ Nwd.
Otherwise, take t such that S′

t /∈ Nwd. If K ∈ [S′
t]

k−1 then K ∪ {t} ∈ [D]k so there is a J ∈ [K ∪ {t}]2 ∩ S;
since K ⊆ S′

t, t /∈ J and J ⊆ K. By the inductive hypothesis, there is a D′ ⊆ S′
t such that [D′]2 ⊆ S and

D /∈ Nwd.

(b) Again induce on k; as before, the case k ≤ 2 is trivial. For the inductive step to k ≥ 3, if there is a
t ∈ D such that S′

t does not belong to I, then we can apply the inductive hypothesis to S′
t.

6K Lemma Suppose that D ⊆ R, (A, µ̄) is a probability algebra and that 〈at〉t∈D is a family in A such
that ǫ = inft∈D µ̄at is greater than 0.

(a) Take any δ < ǫ2, and set S = {{s, t} : s, t ∈ D are distinct, µ̄(as ∩ at) ≥ δ}. If k >
1

ǫ2−δ
, then

[K]2 ∩ S 6= ∅ for every K ∈ [D]k.
(b) If D /∈ Nwd and δ, η > 0 then there are an e ∈ A and a D′ ⊆ D such that D′ /∈ Nwd, µ̄(as \ e) ≤ η

for every s ∈ D′, and whenever d ⊆ e, µ̄d ≥ δ then {s : s ∈ D′, µ̄(as ∩ d) ≤ ηµ̄d} ∈ Nwd.
(c) If D /∈ I there are a D′ ⊆ D and an η > 0 such that D′ /∈ I and {s : s ∈ D′, s > t, µ̄(as ∩ at) ≤ η} ∈

Nwd for every t ∈ D′.
(d) If D /∈ I there are a D′ ⊆ D and an η > 0 such that D′ /∈ I and {t : t ∈ D′, t < s, µ̄(as ∩ at) ≤ η} ∈

Nwd for every s ∈ D′.
(e) If D /∈ I there are a D′ ⊆ D and an η > 0 such that D′ /∈ I and µ̄(as ∩ at) ≥ η for all s, t ∈ D′.

proof (a) This is immediate from Lemma 6D.

(b) Set

γ = inf{µ̄d : d ∈ A, {s : s ∈ D, µ̄(as \ d) ≤ η(1 − µ̄d)} /∈ Nwd}.
Let e ∈ A be such that D′ = {s : s ∈ D, µ̄(as \ e) ≤ η(1 − µ̄e)} is not in Nwd and µ̄e < γ + δ. If d ⊆ e and
µ̄d ≥ δ, set C = {s : s ∈ D′, µ̄(as ∩ d) ≤ ηµ̄d}. For any s ∈ C,

µ̄(as \ (e \ d)) = µ̄(as \ e) + µ̄(as ∩ d) ≤ η(1 − µ̄e) + ηµ̄d = η(1 − µ̄(e \ d)).

But also µ̄(e \ d) < γ; by the definition of γ, C ∈ Nwd, as required.

(c) The proof proceeds by induction on the least n >
1

ǫ
. The case n ≤ 2 is trivial, because if ǫ > 1

2 then

we can take D′ = D and η = ǫ − 1
2 . For the inductive step to n ≥ 3, take A, µ̄ and 〈at〉t∈D as described.

Let δ > 0 be such that δ < ǫ− 1

n
; set η0 = δ2.

case 1 Suppose that whenever A, B ⊆ D, A /∈ Nwd and B /∈ I there are A′ ⊆ A, B′ ⊆ B such that
A′ /∈ Nwd, B′ /∈ I and {s : s ∈ A′, µ̄(as ∩ at) ≤ η0} ∈ Nwd for every t ∈ B′. In this case, choose 〈An〉n∈N,
〈Bn〉n∈N inductively, as follows. Start with B0 = D ∩ [0,∞[. Given that Bn /∈ I, let α ∈ ]0, 2−n] be such
that Bn \ [0, α] /∈ Nwd. Then there are An ⊆ Bn \ [0, α] and Bn+1 ⊆ Bn ∩ [0, α] such that An /∈ Nwd,
Bn+1 /∈ I and {s : s ∈ An, µ̄(as ∩ at) ≤ η0} ∈ Nwd for every t ∈ Bn. Continue.

At the end of the induction, choose for each n ∈ N an A∗
n ⊆ An such that A∗

n /∈ Nwd and µ̄(as ∩ at) ≥ η0
for every s, t ∈ A∗

n; this is possible by (a) above and Lemma 6Ja. Set D′ =
⋃

n∈N
A∗

n, η = η0; this works.

case 2 Otherwise, take A, B ⊆ D such that A /∈ Nwd, B /∈ I and whenever A′ ⊆ A, B′ ⊆ B,
A′ /∈ Nwd and B′ /∈ I, then {s : s ∈ A′, µ̄(as ∩ at) ≤ η0} /∈ Nwd for some t ∈ B′. By (b), there are
e ∈ A, A′ ⊆ A such that A′ /∈ Nwd, µ̄(as \ e) ≤ δ for every s ∈ A′, and whenever d ⊆ e and µ̄d ≥ η0 then
{s : s ∈ A′, µ̄(as ∩ d) ≤ δµ̄d} ∈ Nwd.

Set B′ = {t : t ∈ B, µ̄(at ∩ e) ≥ δ}. ??? If B′ /∈ I, then there is a t ∈ B′ such that C = {s : s ∈ A′,
µ̄(as ∩ at) ≤ η0} /∈ Nwd. But C ⊆ {s : s ∈ A′, µ̄(as ∩ (at ∩ e)) ≤ δµ̄(at ∩ e)}, which is nowhere dense, by
the choice of A′ and e. XXX

D.H.Fremlin



32

Accordingly B′ ∈ I; set D1 = B \B′ /∈ I. Since there are s ∈ A′ and t ∈ D1, we have

ǫ− δ ≤ µ̄as − δ ≤ µ̄e = µ̄(e ∪ at) + µ̄(e ∩ at) − µ̄at ≤ 1 + δ − ǫ < 1,

and 1 \ e 6= 0. Consider the principal ideal A1\e with the normalized measure ν̄ where ν̄a =
µ̄a

1−µ̄e
for

a ∈ A1\e; set a′t = at \ e for t ∈ D1. Then

ν̄a′t ≥
ǫ−δ

1−ǫ+δ
>

1

n−1

(by the choice of δ) for every t ∈ D1. So the inductive hypothesis tells us that there are a D′ ⊆ D1 and an
η > 0 such that D′ /∈ I and {s : s ∈ D′, s > t, µ̄(as ∩ at) ≤ η} ∈ Nwd for every t ∈ D′.

(d) Set δ = 1
3ǫ

2, η0 = 1
2δ

2. Putting (a) here and Lemma 6Jb together, there is a D1 ⊆ D such that
D1 /∈ I and {t : t ∈ D1, µ̄(as ∩ at) ≤ δ} ∈ I for every s ∈ D1. Let 〈αn〉n∈N be a strictly decreasing sequence
in ]0, 1] such that αn+1 ≤ 1

2αn and An = D1 ∩ ]αn+1, αn[ /∈ Nwd for every n ∈ N. By (b), we can find

for each n ∈ N an A′
n ⊆ An and an en ∈ A such that A′

n /∈ Nwd, µ̄(as \ en) ≤ 1
2δ for every s ∈ A′

n and

whenever d ⊆ en and µ̄d ≥ η0 then {s : s ∈ A′
n, µ̄(as ∩ d) ≤ 1

2δµ̄d} ∈ Nwd; moreover, by Lemma 6I(a-i), we

can suppose that A′
n has no isolated points. Of course µ̄en ≥ ǫ− δ for every n; since δ < (ǫ − δ)2, there is

an infinite J ⊆ N such that µ̄(em ∩ en) ≥ δ whenever m, n ∈ J and m < n. (Apply Ramsey’s theorem to
{{m,n} : m < n, µ̄(em ∩ en) < δ}.)

If m ∈ J and J ′ ⊆ J is infinite, there are an infinite J ′′ ⊆ J ′ and a set A′′
m ⊆ A′

m such that A′′
m is dense

in A′
m and µ̄(as ∩ en) ≥ η0 whenever s ∈ A′′

m and n ∈ J ′′. PPP Let 〈Vn〉n∈N enumerate a base for the topology
of R. Choose 〈sn〉n∈N, 〈jn〉n∈N inductively, as follows. j0 is to be any member of J ′ greater than m. Given
that ji > m for i ≤ n,

{s : s ∈ A′
m, µ̄(as ∩ eji

) ≤ η0} ⊆ {s : s ∈ A′
m, µ̄(as ∩ eji

) ≤ 1

2
δµ̄(em ∩ eji

)}
∈ Nwd

for every i ≤ n, so there is an sn ∈ Am such that µ̄(asn
∩ eji

) ≥ η0 for every i ≤ n, and if Am ∩ Vn

is not empty then we can take sn ∈ Vn. Given si for i < n, where n ≥ 1, then there is an r ∈ N

such that {t : t ∈ D1 ∩ [0, αr], µ̄(asi
∩ at) ≤ δ} is nowhere dense for each i < n; so if we take jn ∈ J ′

such that jn > max(jn−1, r), there is a t ∈ A′
jn

such that µ̄(asi
∩ at) ≥ δ for every i < n, in which case

µ̄(asi
∩ ejn

) ≥ δ− 1
2δ ≥ η0 for every i < n. Continue; at the end, set A′′

m = {si : i ∈ N} and J ′′ = {ji : i ∈ N}.
QQQ

We can therefore find an infinite I ⊆ J and a family 〈A′′
m〉m∈I of sets such that A′′

m is dense in A′
m and

µ̄(as ∩ en) ≥ η0 whenever m < n in I and s ∈ A′′
m. But this will mean that {t : t ∈ A′′

n, µ̄(as ∩ at) ≤ 1
2δη0} ∈

Nwd whenever m < n in I and s ∈ A′′
m.

Finally, by Lemma 6Ja, there is for each m ∈ I an A∗
m ⊆ A′′

m such that A∗
m /∈ Nwd and {t : t ∈ A∗

m,
µ̄(as ∩ at) ≤ δ} ∈ Nwd for every s ∈ A∗

m. So setting D′ =
⋃

m∈I A
∗
m we shall have a suitable set, with

η = 1
2δη0.

(e) Putting (c) and (d) together, we see that there are an η > 0 and a D1 ⊆ D such that D1 /∈ I and
{t : t ∈ D1, µ̄(as ∩ at) ≤ η} ∈ Nwd for every s ∈ D1. By Lemma 6I(b-ii) there is a D′ ⊆ D1 such that
D′ /∈ I and µ̄(as ∩ at) ≥ η for all s, t ∈ D′.

6L Proof of Theorem 1Mh If c = ω1, there is a strongly measure-linking ultrafilter on N which is not
nowhere dense, therefore not measure-centering nor an arrow ultrafilter.

proof (a) Set D = Q∩ [0, 1]. Let 〈〈aξt〉t∈D〉ξ<ω1
run over all families 〈at〉t∈D in Bω such that inft∈D ν̄ωat >

0. Choose a family 〈Dξ〉ξ<ω1
of subsets of D inductively, as follows. The inductive hypothesis will be

that
⋂

η∈J Dη /∈ I for every finite J ⊆ ξ. Start with D0 = D. Given 〈Dη〉η<ξ, where 1 ≤ ξ < ω1,

let 〈θ(ξ, n)〉n∈N run over ξ, and take a strictly decreasing sequence 〈αn〉n∈N, with infimum 0, such that
Cn = ]αn+1, αn[ ∩ ⋂

i≤nDθ(ξ,i) /∈ Nwd for every n ∈ N. Then C =
⋃

n∈N
Cn /∈ I. By Lemma 6Ke, there is

a Dξ ⊆ C such that Dξ /∈ I and infs,t∈Dξ
ν̄ω(aξs ∩ aξt) > 0. Since Dξ ∩ [0, αn[ ⊆ ⋂

i≤nDθ(ξ,i) for every n,

Dξ ∩
⋂

η∈J Dη /∈ I for every finite J ⊆ ξ, and
⋂

η∈J Dη /∈ I for every finite J ⊆ ξ + 1. Continue.
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(b) At the end of the induction, let F be an ultrafilter on D containing every Dξ and no nowhere
dense set; then F is not nowhere dense. But F is strongly measure-linking. PPP If A is a Boolean algebra,
ν : A → [0, 1] an additive functional such that ν1 = 1, and 〈at〉t∈D is a family in A such that inft∈D νat > 0,
then (as in (iv)⇒(i) of the proof in 3C) there is a Radon probability measure µ on the Stone space Z of A,
identified with the algebra of open-and-closed subsets of Z, which extends ν. Taking T to be the σ-algebra
of subsets of Z generated by {at : t ∈ D}, (B, µ̄) to be the measure algebra of (Z,T, µ↾T) and a•

t ∈ B the
equivalence class of at ∈ T for each t ∈ D, we see that inft∈D µ̄a•

t > 0. As in part (ii)⇒(iv) of the proof in
3C, there is a measure-preserving Boolean homomorphism π : B → Bω, and now there must be a ξ < ω1

such that πa•

t = aξt for every t ∈ D. In this case, Dξ ∈ F and

infs,t∈Dξ
ν(as ∩ at) = infs,t∈Dξ

ν̄ω(aξs ∩ aξt) > 0.

As A, ν and 〈at〉t∈D are arbitrary, F is strongly measure-linking. QQQ

(c) Thus we have a strongly measure-linking ultrafilter on the countably infinite set D which is not
nowhere dense. Of course it follows at once that there is such an ultrafilter on N. By parts (b) and (d-ii) of
Theorem 1M it cannot be either measure-centering or an arrow ultrafilter.

6M To convert the last result into a proof that there can be a Hausdorff p-point ultrafilter which is not
measure-centering, I use the language of ‘game strategies’. Let GH|m-c be the game for two players, Empty
and Non-empty, in which

Empty chooses m ≥ 1,
Non-empty chooses k ∈ N,
Empty chooses n ≥ 1, a set B with mn members, and a set L0 ⊆ [B]n,
given i < k and Li, Non-empty chooses fi, gi : Li → N with fi(a) 6= gi(a) for every a ∈ Li,
given i < k and Li, fi and gi, Empty chooses Li+1 ⊆ Li such that fi[Li+1] ∩ gi[Li+1] = ∅.

A run of the game ends when Empty has chosen Lk; Empty wins if
⋂

Lk = ∅; otherwise Non-empty wins.
Note that the game is determined, that is, one of the players has a winning strategy. (Since the game

always terminates after finitely many moves, it is an ‘open’ game in the usual terminology of infinite games.)

6N Lemma Empty has a winning strategy in the game GH|m-c.

proof (a) To begin with, suppose that c = ω1.

(i) By Theorem 1Mh, there is a strongly measure-linking ultrafilter F on N which is not measure-
centering. By Theorem 1Ma, F is a Hausdorff ultrafilter. Let 〈aj〉j∈N be a sequence in Bω such that
ǫ = infj∈N ν̄ωai is greater than 0, but there is no A ∈ F such that {aj : j ∈ A} is centered

(ii) Let L0 be the family of finite subsets L of N such that infj∈L aj = 0 in Bω, and for i ∈ N set

Li+1 = {L : L ∈ Li and for every pair f , g of nowhere equal functions defined on L there
is an L′ ∈ Li such that L′ ⊆ L and f [L′] ∩ g[L′] = ∅}.

By the choice of 〈aj〉j∈N, every member of F has a finite subset belonging to L0. In fact, if A ∈ F and i ∈ N,
A has a finite subset belonging to Li. PPP Induce on i. For the inductive step to i+1, ??? suppose, if possible,
that A ∈ F has no finite subset belonging to Li+1. For each r ∈ N, A ∩ r /∈ Li+1, so there are nowhere
equal functions fr, gr defined on A ∩ r such that if L ⊆ Ar is such that fr[L] ∩ gr[L] is empty, then L /∈ Li.
Adjusting fr, gr if necessary, we can suppose that fr(j) ≤ 2j and gr(j) ≤ 2j + 1 for every j ∈ A∩ r. In this
case, there will be functions f : A → N, g : A → N such that for every finite L ⊆ A there is an r ∈ N such
that L ⊆ r, f↾L = fr↾L and g↾L = gr↾L; of course f and g are nowhere equal. Because F is a Hausdorff
ultrafilter, there is an A′ ⊆ A such that A′ ∈ F and f [A′] ∩ g[A′] = ∅. Now A′ has a finite subset L ∈ Li,
by the inductive hypothesis. Take r such that fr↾L = f↾L and gr↾L = g↾L; since fr[L]∩ gr[L] = ∅, L /∈ Li,
which is absurd. XXXQQQ

(iii) I am now in a position to describe a winning strategy for Empty. His first move should be m ≥ 1
such that 1

m
< ǫ. Suppose that Non-empty responds with k ∈ N. By (ii), Lk is not empty; take L0 ∈ Lk.

Let B be the finite subalgebra of Bω generated by {aj : j ∈ L0}; let r be the number of atoms of B. Let

n ≥ r be such that
r

mn
≤ ǫ − 1

m
and every atom of B has measure at least

1

mn
, and let C be a partition
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of unity in Bω such that every member of C has measure 1
mn

and for every atom b of B the number of
members of C included in b is the maximum possible value ⌊mnµ̄(b)⌋. For j ∈ L0, set Kj = {c : c ∈ C,
c ⊆ aj}; then #(Kj) ≥ n (because the number of members of C not included in any atom of B is at most
r ≤ mnǫ− n, so #(Kj) ≥ mnµ̄(aj) − (mnǫ− n) ≥ n). Take K ′

j ⊆ Kj to be a set of size n for each j ∈ L0;
because n ≥ r, we can suppose that whenever b is an atom of B included in aj , there is a c ∈ K ′

j included
in b. Consequently j 7→ K ′

j : L0 → [C]n is injective. Finally, Empty plays (n,C,L′
0) for his second move,

where L′
0 = {K ′

j : j ∈ L0}.
For subsequent moves, given that i < k, Empty has played L′

i ⊆ L′
0 and Non-empty has played nowhere-

equal functions f ′i , g
′
i, the rule for Empty is as follows. The inductive hypothesis will be that Li = {j : K ′

j ∈
L′

i} belongs to Lk−i. Define fi, gi on Li by saying that fi(j) = f ′i(K
′
j), gi(j) = g′i(K

′
j) for j ∈ Li; because

Li ∈ Lk−i, there is an Li+1 ∈ Lk−i−1 such that Li+1 ⊆ Li and fi[Li+1] ∩ gi[Li+1] is empty. Now Empty
plays L′

i+1 = {K ′
j : j ∈ Li+1}, and the run continues.

At the end of the run, we get Lk ∈ L0. But this means that infj∈Lk
aj = 0, so

⋂

j∈Lk
K ′

j must be empty,
and Empty has won the run. Thus we have a winning strategy for Empty.

(b) This proves the result on the assumption that c = ω1. But now look at the logical nature of the
statement ‘Empty has a winning strategy in GH|m-c’. It makes no difference if Empty is required to choose
a member of N for the set B in his second move, following which all Non-empty’s moves will have to

belong to the countable set N[[N]<ω]<ω

, all Empty’s moves will be in the countable set [[N]<ω]<ω, and the
deciding move Lk wins iff it too belongs to a specific countable set (the family of finite subsets of [N]<ω

with empty intersection). We therefore have in fact a Borel code for the set of winning strategies for Empty.
By Shoenfield’s theorem (Jech 78, Theorem 98, or Jech 03, 25.20), the assertion that it is non-empty is
absolute for inner models of ZFC. Consequently it is absolute for forcing, that is, if P is any forcing notion,
then

Empty has a winning strategy in GH|m-c

iff P Empty has a winning strategy in GH|m-c.

Now take any forcing notion P such that

P c = ω1;

for instance, take P to be the partially ordered set of functions from countable ordinals to R, active upwards.
Then we shall have

P c = ω1, so Empty has a winning strategy in GH|m-c,

and it follows that Empty has a winning strategy in GH|m-c in the ordinary universe.

Remark No doubt there is a more illuminating proof of this lemma which does not employ considerations
of absoluteness.

6O Proof of Theorem 1Mi If p = c, there is a Hausdorff p-point ultrafilter on N which is not measure-
centering.

proof (a) By Lemma 6N, Empty has a winning strategy in GH|m-c; let m ≥ 1 be such that Empty has a
winning strategy with first move m. For each n ∈ N, fix a set Bn of size mn. For n ∈ N, set In = [Bn]n; set
I =

⋃

n∈N
In,

L0 =
⋃

n≥1{L : L ⊆ In,
⋂

L = ∅},
and for i ∈ N set

Li+1 = {L : L ∈ Li and whenever f , g are nowhere equal functions defined on L, there is
an L′ ∈ Li such that L′ ⊆ L and f [L′] ∩ g[L′] = ∅}.

An easy induction shows that if i, n ∈ N, L ⊆ L′ ⊆ In and L ∈ Li, then L′ ∈ Li.
For L ∈ L0, say that the depth depth(L) of L is the greatest k such that L ∈ Lk; observe that

depth(L) ≤ #(L) for every L. (The point is that every member of L0 has at least two members, so that
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for every L ∈ L0 there are nowhere equal functions f and g defined on L such that if L′ ⊆ L and f [L′] is
disjoint from g[L′], L′ is a proper subset of L.) Say that A ⊆ I is deep if supn≥1,A∩In∈L0

depth(A ∩ In) is
infinite. Note that if A ⊆ B ⊆ I, then depth(B ∩ In) ≥ depth(A ∩ In) whenever the latter is defined, so B
will be deep if A is.

Now let σ be a winning strategy for Empty in GH|m-c with first move m; we can suppose that σ is such
that whenever Empty plays (n,B,L0) = σ(k) for his second move, he actually chooses B = Bn.

(b) Suppose that (m, k, (n,Bn, L0), (f0, g0), L1, (f1, g1), . . . , Li), where i ≤ k, is any partial run of the
game in which Empty follows the strategy σ. Then Li ∈ Lk−i. PPP Induce downwards on i, starting with i = k.
At the end of the run, Empty must win, so we certainly have Lk a subset of L0 ⊆ In with empty intersection,
in which case Lk ∈ L0. For the inductive step down to i < k, given that Empty has just played Li, let f , g be
any nowhere-equal functions defined on Li. Then Empty will reply with Li+1 = σ(k, (f0, g0), . . . , (f, g)) ⊆ Li

such that f [Li+1] ∩ g[Li+1] = ∅; by the inductive hypothesis, Li+1 ∈ Lk−i−1; as f and g are arbitrary,
Li ∈ Lk−i, as required. QQQ

It follows that I is deep. PPP For every k ∈ N there is a partial run, following Empty’s strategy, of the
form (m, k, (n,Bn, L0)), where (n,Bn, L0) = σ(k), so that L0 ∈ Lk and the depth of In is at least k. QQQ

(c) If A ⊆ I is deep and A′ ⊆ A, then at least one of A′, A \ A′ is deep. PPP Define f , g : I → {0, 1} by
setting

f(a) = 1 if a ∈ A′,

= 0 otherwise,

g(a) = 1 − f(a) for every a ∈ I.

For every k, there is an nk ∈ N such that A∩ Ink
∈ Lk+1. Since f and g are nowhere equal on A∩ Ink

, there
is an Lk ⊆ A ∩ Ink

such that Lk ∈ Lk and f [Lk] ∩ g[Lk] = ∅, that is, Lk is either included in A′ or disjoint
from A′. If Lk ⊆ A′ for infinitely many k, then A′ is deep; otherwise, Lk ⊆ A \A′ for infinitely many k and
A \A′ is deep. QQQ

(d) If A ⊆ I is deep and f , g are nowhere equal functions defined on I, then there is a deep A′ ⊆ A such
that f [A′] and g[A′] are disjoint. PPP (i) If there is some j such that A ∩ f−1[{j}] is deep, we can take this
for A′; similarly, if there is some j such that A ∩ g−1[{j}] is deep, this will serve for A′. By (c), we can
therefore restrict our attention to the case in which A \ (f−1[M ] ∪ g−1[M ]) is deep for every finite set M .
(ii) Choose 〈nk〉k∈N, 〈Mk〉k∈N inductively in such a way that, for each k ∈ N,

Mk =
⋃

i<k f [Ini
] ∪ g[Ini

],
nk > ni whenever i < k,
depth(A ∩ Ink

\ (f−1[Mk] ∪ g−1[Mk])) ≥ k + 1.

Then we have for each k an Lk ⊆ A ∩ Ink
\ (f−1[Mk] ∪ g−1[Mk]) such that depth(Lk) ≥ k and f [Lk] is

disjoint from g[Lk]. Setting A′ =
⋃

k∈N
Lk, we see that A′ ⊆ A is deep and f [A′] ∩ g[A′] = ∅. QQQ

(e) If ξ < p and 〈Aη〉η<ξ is a family of deep subsets of I such that Aη \Aζ is finite whenever ζ ≤ η < ξ,
then there is a deep set A ⊆ I such that A \ Aη is finite for every η < ξ. PPP Let P be the set of pairs
(J,D) where J ⊆ I, D ⊆ ξ are finite, ordered by saying that (J,D) ≤ (J ′,D′) if J ⊆ J ′, D ⊆ D′ and
J ′ \ J ⊆ Aη for every η ∈ D. Then P is a partially ordered set, σ-centered upwards. For every k ∈ N,
Qk = {(J,D) : (J,D) ∈ P , there is an n ∈ N such that depth(J ∩ In) ≥ k} is cofinal with P , because if
D ⊆ ξ is finite then I ∩⋂

η∈D Aη is deep. For every η < ξ, Q′
η = {(J,D) : (J,D) ∈ P , η ∈ D} is cofinal with

P . By Bell’s theorem (Fremlin 84, 14C) there is an upwards-directed R ⊆ P meeting every Qk and every
Q′

η; set A =
⋃{J : (J,D) ∈ R}. QQQ

(f) Let 〈(fξ, gξ)〉ξ<c enumerate the set of pairs (f, g) of nowhere equal functions from I to N. Because
p = c, we can use (d) and (e) to find a family 〈Aξ〉ξ<c of deep subsets of I such that

Aξ \Aη is finite whenever η ≤ ξ < c,
fξ[Aξ+1] is disjoint from gξ[Aξ+1] for every ξ < c.

Let F be the filter on I generated by {Aξ \J : ξ < c, J ∈ [I]<ω}. If f , g are any two nowhere-equal functions
on I, then (because f [I] ∪ g[I] must be countable) there is a ξ < c such that for all a, b ∈ I, f(a) = g(b) iff
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fξ(a) = gξ(b); so f [Aξ+1] ∩ g[Aξ+1] = ∅. It follows that F is a Hausdorff ultrafilter. (It is an ultrafilter by
the argument in (c) above.) By construction, F is a p-point ultrafilter.

(g) F is not measure-centering. PPP Let (A, µ̄) be any atomless probability algebra. For each n ∈ N

let πn : PBn → A be a Boolean homomorphism which is measure-preserving for the uniform probability

measure on PBn. For n ∈ N and a ∈ In set da = πna; then µ̄da =
#(a)

#(Bn)
=

1

m
. If A ∈ F , there is a ξ < c

such that Aξ \ A is finite, so A is deep; in particular, there is some n ∈ N such that A ∩ In ∈ L0, that is,
A ∩ In has empty intersection. But now {da : a ∈ A} ⊇ πn[A ∩ In] is not centered. So 〈da〉a∈I witnesses
that F is not measure-centering. QQQ

Transferring F from the countably infinite set I to N, we have the required example.

7 Problems

7A If Martin’s axiom is true, the constructions used in the proof of Theorem 1B, given in 3F-3G, and
in the proof of existence of Ramsey ultrafilters in Fremlin 08, provide three essentially different classes
of free measure-centering ultrafilters on N, and further measure-centering ultrafilters on κ for ω < κ < c;
moreover, since there are 2c Ramsey ultrafilters (Fremlin 84, 26Ed), we get further measure-centering
ultrafilters on N from Theorem 1J. I know of no construction for a uniform measure-centering ultrafilter on
c. Indeed, Martin’s axiom ensures that there is no such ultrafilter, for the following reason. A cardinal κ is
a measure-precaliber of probability algebras if whenever (A, µ̄) is a probability algebra and 〈aξ〉ξ<κ

is a family in A such that infξ<κ µ̄aξ > 0, there is a set J ⊆ κ, of cardinal κ, such that {aξ : ξ ∈ J} is
centered. If F is a uniform measure-centering ultrafilter on κ, there will always be such a set belonging to
F , so κ will certainly be a measure-precaliber of probability algebras. Now Martin’s axiom (or much less)
ensures that c is not a measure-precaliber of probability algebras (see Fremlin 08, 525D and 525O); so it
is certainly consistent to suppose that there is no uniform measure-centering ultrafilter on c. On the other
hand, it is also consistent to suppose that c is a measure-precaliber of probability algebras (this happens, for
instance, if c = ω2 and there is a subset of R of cardinal ω1 which is not Lebesgue negligible; see Fremlin

08, 525L). So my question is: is it consistent with ZFC to suppose that there is a uniform measure-centering
ultrafilter on c? Could it even be consistent to suppose that for every infinite cardinal κ there is a uniform
measure-centering ultrafilter on κ?

7B I have been unable to answer the following question from Andreas Blass: is a weakly Ramsey ultrafilter
on N necessarily measure-centering?

7C Under what circumstances is the product F ⋉ G of two measure-centering ultrafilters measure-
centering? For instance, when the product is Hausdorff, will it always be measure-centering?

7D Is every Hausdorff ultrafilter measure-linking?
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