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Measure-centering ultrafilters
D.H.FREMLIN

University of Essex, Colchester, England

Like pure mathematicians in general, measure theorists in the last hundred years have often used ultrafil-
ters as a tool. I suppose that the first person to notice that ultrafilters have intrinsic properties expressible
in terms of measure theory was Sierpiriski (SIERPINSKI 45), who showed that if (E,)nen is a stochasti-
cally independent sequence of measurable subsets of [0, 1], and F is a non-principal ultrafilter on N, then
lim,,_, 7 E,, has inner measure 0 and outer measure 1. But if you are starting from an interest in ultrafilters
rather than an interest in measure theory, your attention will be directed to ways in which measure theory
can display differences between different classes of ultrafilter. In §538 of my book FREMLIN 08, I looked at
p-point filters, Ramsey ultrafilters, rapid filters, ‘measure-converging’ filters (an idea due to Matt Foreman),
and filters with what I call the ‘Fatou property’. Rather than try to cover such a range here, however, I
will concentrate on a single class, the ‘measure-centering’ or ‘property M’ ultrafilters. The most interesting
results are due to Michael Benedikt.

The plan of this note is to begin with statements of the principal definitions and results, with some
discussion (§1). Proofs are given in §§3-6, after a preliminary section §2 examining ‘dependently selective’
filters. Finally I comment on some open questions in §7.

1 Definitions and results

1A I start by defining the class of ultrafilters I mean to study. Its nature will perhaps be clearer if I
move to a slightly more general context than is strictly necessary for the main theorems to follow. If 2 is a
Boolean algebra, a functional v : 2 — [0, 1] is additive if v(a Ub) = va+vb whenever a, b € A and anb = 0.
In this language, we can define measure-centering ultrafilters (‘property M ultrafilters’) as follows.

Definition An ultrafilter F on a set I is measure-centering if whenever 2 is a Boolean algebra,
v: A —[0,1] is an additive functional such that v(1y) = 1, and (a;);cs is a family in 2 such that
inf;esy va; > 0, then there is a J € F such that v(inf,c i a;) > 0 for every finite K C J.

1B Principal ultrafilters are obviously measure-centering. There do not have to be any others (see
Theorem 1Mj below). Subject to appropriate special axioms (in particular, the continuum hypothesis), we
have a variety of types of measure-centering ultrafilter, which it is the purpose of this note to examine. To
begin with, we have the following.

Theorem (a)(see HENSON & WATTENBERG 81) A Ramsey ultrafilter is measure-centering.

(b) If  is an infinite cardinal and covN,, = 27, then there is a uniform measure-centering
ultrafilter on x.

(c) If cov NLep = ¢, there is a measure-centering ultrafilter on N which contains no set of zero
asymptotic density.

(For the proof, see 3E-3G.) As you see, we are going to need rather a lot of definitions. Most of them are to
be found in FREMLIN 08, but it will I expect help if I repeat some here. In particular:

Definitions («)(COMFORT & NEGREPONTIS 74) If I is an infinite set, an ultrafilter F on I is
Ramsey (or ‘selective’) if it is uniform and for every S C [I]? there is a J € F such that either
[J]2C Sor [JJ2NS #0.

(B) If (X, %, u) is a measure space, set p*A = inf{uFE : E € ¥, E D A} for every A C X. The
null ideal of pis N = {A: p*A = 0}. Npeb will be the null ideal of Lebesgue measure on [0, 1].

(7) For any set I, I will write vy for the usual probability measure on {0,1}, the completed
product measure if each copy of {0,1} is given the uniform probability in which each point has
measure +: A7 will be its null ideal.
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(6) If X is a set and Z is an ideal of subsets of X such that X = (JZ, then its covering
number covZ will be the least cardinal of any set A C 7 such that X = J.A.

(e) If A C N then the upper asymptotic density of A is d*(A4) = limsup,,_, ., %#(A Nnn).
A has zero asymptotic density if d*(A) = 0.

Recall that the continuum hypothesis is sufficient to ensure that there are Ramsey ultrafilters on N; in fact
it is sufficient to suppose that cov M = ¢, where M is the ideal of meager subsets of R (FREMLIN 08, 538Fg).
For an uncountable cardinal x, there is a Ramsey ultrafilter on x iff x is two-valued-measurable, and in this
case an ultrafilter on x is Ramsey iff it is isomorphic to a normal ultrafilter (COMFORT & NEGREPONTIS
74, 9.6). There appears to be no bar to the number of such cardinals k, but of course they must all be
enormous. Note that if there is a Ramsey ultrafilter F on k, then  is regular and F is k-complete.

To get a notion of the scope of (b) in this theorem, note that covN,, < covNie, < ¢ for every infinite
cardinal k (FREMLIN 08, 523F), with equalities if Martin’s axiom is true (FREMLIN 08, 524Na or FREMLIN
84, 32C); moreover, Martin’s axiom implies that 2® = ¢ whenever w < k < ¢ (FREMLIN 08, 517Rb or
FREMLIN 84, 21C). So we see that we can have many cardinals less than ¢ with uniform measure-centering
ultrafilters.

Martin’s axiom is sufficient to ensure that there are Ramsey ultrafilters on N (because it implies that
cov M = ¢, or otherwise). But there is another important context in which (b) can be applied in the absence
of any Ramsey ultrafilters at all. If we start with a model of ZFC and an uncountable regular cardinal A
such that 2% < X for every x < A, and add A random reals, then in the resulting forcing language we shall
have

|F cov N, = 2" = ¢ for every infinite k < c,

but there are no Ramsey ultrafilters on N

(FREMLIN 08, 552B, 552G and 553H). The position is similar in any model in which ¢ is real-valued-
measurable (FREMLIN 93, 5E, 6B and 5G).

1C In 1A I gave a definition of ‘measure-centering’ ultrafilter in a context well removed from the ordinary
concerns of elementary measure theory. The original conception derived, as you would expect, from ideas
closer to home, looking at filters on N and Lebesgue measure. To relate Lebesgue measure to the next result,
recall that the usual measure on {0, 1} is isomorphic to Lebesgue measure on [0, 1] (FREMLIN 01, 254K).

Proposition Let I be a set, and F an ultrafilter on I. Then the following are equiveridical, that
is, if one is true so are the others:

(i) F is measure-centering;

(ii) whenever (a;);cr is a family in B; such that inf;c; vra; > 0, there is an A € F such
that {a; : i € A} is centered in By;

(iii) whenever (F;);c; is a family of measurable subsets of {0,1}! such that inf;c; v; E; > 0,
there is an A € F such that ;. , E; # 0;

(iv) whenever (X, u) is a compact probability space and (E;);cr is a family in 3, then
w*(lim,; 7 E;) > lim; 7 uE;.

(For the proof, see 3C.) Of course this calls for some more definitions from modern abstract measure theory.

Definitions («) If 2 is a Boolean algebra, a family (a;);er in 2 is centered if inf;cx a; # 0 for
every finite K C I.

(B) If (X,%, ) is a measure space, and A the null ideal of p, the measure algebra of yu is
the quotient Boolean algebra 2 = 3/% N A together with the functional i : 2 — [0, 0o] defined
by setting pE* = pFE for every E € .. For any cardinal x, I will write (B, 77) for the measure
algebra of v;, the usual measure on {0, 1}/.

(v) A family K of sets is a compact class if (] £ is non-empty whenever £ C K has the finite
intersection property, that is, (| £" # () for every finite £ C £. If (X, X, 1) is a measure space, j
is inner regular with respect to a family IC of sets if whenever ¥ € ¥ and 0 < v < pE there is
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a K € KNX such that K C E and K > ~. A measure space (X, X, 1) is compact if g is inner
regular with respect to some compact class of sets.
() If (E;);er is a family of sets and F is an ultrafilter on I, I write lim;_, » E; for

UsaerNica Bi = NacrUsea Bi ={z : {i:z € E;} € F},

the limit of (E;);cr along F in PX if X is any set including | J,.; F; and PX = {0,1}¥ is given
its usual compact Hausdorff topology.

el

For basic results on compact measure spaces, see FREMLIN 02, §342. I remark here that a family K of
subsets of a set X is a compact class iff there is a compact (not necessarily Hausdorfl) topology on X such
that every member of K is closed (FREMLIN 02, 342D); thus all Radon measures, and in particular Lebesgue
measure, are compact measures in this sense.

1D It is natural to seek to explore the relationship of the class of measure-centering ultrafilters with the
ordinary operations of the theory of ultrafilters. At an elementary level, we have the following.

Proposition (a) Let I and J be sets, f : I — J a function, and F a measure-centering ultrafilter
on I. Then the image ultrafilter f[[F]] is a measure-centering ultrafilter on J.
(b)(BENEDIKT 98) If F is a non-principal ultrafilter, then F x F is not measure-centering.

(Proof in 3H.) Some relevant definitions are as follows.

Definitions («) If I and J are sets, f : I — J is a function and F is a filter on I, then the image
filter f[[F]]is {B: B C J, f~1[B] € F}, that is, the filter on J generated by {f[A] : A € F}.
(B) If F, G are filters on sets I, J respectively, then I write F x G for the filter

{A:ACIx J, {i:iel, A[{i}] € G} e F};
here A[{i}] = {j: (i,5) € A}.

1E Extension of measures The original impulse to study measure-centering ultrafilters arose because
they give an interesting expression of an ultrapower construction which I will describe shortly. The first
result is a theorem on extension of probability measures.

Theorem Let (X, X, 1) be a compact probability space, and F a measure-centering ultrafilter
on a set I. Let A be the family of all sets of the form lim; .+ E; where (E;);cs is a family in 3.
Then there is a unique complete probability measure A on X such that A is inner regular with
respect to A and A(lim;_, 7 E;) = lim;_, 7 uF; for every family (E;);cr in 2.

(Proof in 31. T ought perhaps to note that a measure X is complete if AA is defined whenever A* A = 0; thus
Lebesgue measure is complete.) Note that in the context of this theorem, A must extend pu, because we can
apply the defining formula to constant families (F;);c;.

1F Reduced products of probability algebras We now need an abstract construction from the theory
of measure algebras.

(a) First, let me define measure algebras in the abstract, as opposed to those constructed from measure
spaces as in Definition 1C above. A measure algebra is a pair (2, i) where
2 is a Boolean algebra,
2 is Dedekind o-complete, that is, every countable subset of 2 has a least upper bound in
Ql7
fo: 2 — [0,00] is countably additive, that is, 70 = 0 and A(sup,cyan) = D poq Aan
whenever (a,)nen is a disjoint sequence in 2.
It is straightforward to check that the measure algebras of Definition 1Cb are measure algebras in this sense.
Conversely, any measure algebra as defined here is isomorphic to the measure algebra of some measure space
(FREMLIN 02, 321J). A probability algebra is a measure algebra (2, i) such that gl = 1, that is, (2, 1)
is isomorphic to the measure algebra of a probability space.

D.H.FREMLIN



(b) Let ((2;, fi;))ics be a family of probability algebras and F an ultrafilter on I. Write B for the product
Boolean algebra [];.; A, so that if @ = (a;)scr and b = (b;)scr belong to B, then a * b = (a; * b;)icr for
all the Boolean operations * = A, n, U and \. Define v : B — [0, 1] by setting v({a;)icr) = lim;_, r fia;
whenever (a;);cr € B. Then v is additive. Set Z = {a : @ € B, va = 0}; then Z < B. Let € be the
quotient Boolean algebra B/Z. Then we have a functional 7 : € — [0, 1] defined by saying that v(a®) = va
for every @ € 9B; and it turns out that (€, 7) is a probability algebra. I will call it the reduced product
[Lic (i, 13)| F. (See 4A below.)

1G Note that the construction in 1Fb does not depend on any property of the ultrafilter 7. When F is
a measure-centering ultrafilter, however, we have the following result.

Theorem Let (X, X, 1) be a compact probability space and (2, 1) its measure algebra. Let I be
a set and F a measure-centering ultrafilter on I; write A for the corresponding extension of i as
described in Theorem 1E, and (€&, 7) for the reduced power (2, i)!|F as described in 1Fb. Then
we have a natural isomorphism between (€, 7) and the measure algebra (D, )) of A defined by
saying that (E?):.; € € is matched with (lim;_x E;)* € D for every family (E;);cs in X.

(Proof in 4C.)

1H Products of filters As will I hope become clear when we come to the proofs in §§3-4, all the results
so far are more or less elementary, though some of them, naturally enough, demand graduate-level measure
theory — in particular, Maharam’s theorem and the lifting theorem — for their full strength. I want now to
explain an astonishing theorem from BENEDIKT 98. This will depend on a construction of iterated products
of filters, which may be of independent interest. I look at finite products of filters first.

Definition For n € N and filters Fy, ... ,F,, define the product Fy x ... X F, inductively by
saying that it is Fo when n =0 and (Fo X ... X Fp,—1) X F,, when n > 1.

Proposition If 0 < m < n and Fy, ... ,F, are filters on Iy, ... , I, respectively, then the natural
bijection between ((...(Ip X I1) X ...) X I,) X ((«.. (Lyma1 X Impyo) X ... ) x I,) and ((...(Jp x
I) x...) x I,) identifies Fo x ... x Fp, with (Fo X ... X Fpp) X (Frg1 X ... X Fp).

(The proof is a simple induction on n.)
11 Iterated products of filters The next bit works best for filters on N and countable iterations, but
something can be done in a more general context.

(a) First, a scrap of notation. Let I be a set. If m, n € N, o € I"™ and 7 € I", define the concatenation
o7 € I™T" by setting

(c71)(k) = o(k) if K < m,
=7(k—m)ifm<k<m+n.
For i € I write <i> for the member of I' with value i.

(b) Now suppose that ¢ > 0 is an ordinal, (I¢)1<e<¢ a family of sets, and F¢ a filter on I for 1 <& < (.
Set I =U;j<ceceLe and 5™ = U,y I'. Fix a function 6 such that 6(£,i) < £ for 1 < ¢ < ¢ and i € I¢. For
& < ¢, define G; C PS* inductively, as follows. Start by taking Gy to be the principal filter generated by
{0}. For 1 < ¢ < ¢, given that G, has been defined for every n < &, set

Ge={A:ACS* {iriel, {T:<i>"17€ A} € Gyei)} € Fe}-
It is elementary to check that every G is a filter. Moreover, if every F¢ is an ultrafilter, so is every Ge.
1J We are now ready for the statements of the main theorems.

Theorem In the construction of 1Ib above, suppose that ¢ is countable, I = I whenever
1 <€ <, (Fe)i<e<c is a family of Ramsey ultrafilters on I, no two isomorphic, and {i : i € I,
0(&,9) > n} € Fe whenever n < { <. Then G, is measure-centering.
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(Proof in 5B. You will lose very little by restricting yourself to the case in which every sequence (0(§,));en is
non-decreasing, and is constant with value 7 when £ = n+1 is a successor ordinal.) The point of this theorem
is that there will be for each & € [1,(] a function f : S* — I such that f[[G¢]] = F¢; starting from the family
(Fe)1<e<c of Ramsey ultrafilters on I, we can find a single measure-centering ultrafilter on S* from which
they can all be derived. I ought to point out straight away that if ¢ is infinite, then the Ramsey ultrafilter
F., contains all the sets {i : (w,i) > n}, for n < w, but not their intersection, so is not w;-additive. In
this case, of course, I = I, cannot be uncountable. Thus we have either a finite iteration in which G, is the
extension to UneN I"™ of the filter F,,, X Fp_1 X ... X Fp on I™, or a countably infinite iteration in which [
can be identified with N. The finite-iteration case is in fact the hard part of a more general result: the skew
product of finitely many non-isomorphic Ramsey ultrafilters is always measure-centering (Proposition 5E).

1K The second theorem is a universal extension theorem for Ramsey ultrafilters on N.

Theorem Let (X, 1) be a compact probability space. Then there is a measure A on X,
extending u, such that A(lim;_, # E;) is defined and equal to lim;_, » uE; whenever F is a Ramsey
ultrafilter on N and (F;);en is a sequence in 3.

(Proof in 5J.) The idea here will be that for each countable family § of Ramsey ultrafilters on N, we can
define a measure-centering ultrafilter Gz on S* dominating every member of §, and that this can be done
in such a way that the measures defined from the Gz by the process of Theorem 1E will have a common
extension.

1L Perfect measure spaces Readers familiar with BENEDIKT 98 and BENEDIKT 99 may have noted

that I speak of ‘compact’ measures where Benedikt deals with ‘perfect’ measures. The latter form a larger
class, so it is not obvious that the results in this note really cover Benedikt’s. The point is that a probability
space (X,X,u) is perfect iff (X, T, u|T) is compact for every countably generated o-subalgebra T of 2
(SazonNov 66, or FREMLIN 03, 451F). Using this, it is easy to check that we have a variant on condition
(iv) of Proposition 1C for filters on N:

if F is an ultrafilter on N, it is measure-centering iff whenever (X, X%, 1) is a perfect probability

space and (E,),en is a sequence in X, then p*(lim,_,z Fy,) > lim, .,z pE,.
Versions of Theorems 1E and 1G for perfect probability spaces and ultrafilters on N are now easy to deduce.
With a little more trouble — it is probably easiest to check that the proof in 5J applies essentially unchanged
— we can confirm that Theorem 1K is true for all perfect probability spaces (X, X, u).

1M Of course there are many classes of ultrafilters, associated with those considered above, which have
been studied over the years. Six of them are the following.

Definitions Let F be an ultrafilter on a set 1.

() (DAGUENET-TESSIER 79) An ultrafilter F on a set I is Hausdorff (or has ‘property C’)
if whenever J is a set and f: I — J, g : I — J are functions such that {i : f(i) # g(¢)} € F,
then f([F]] # g[lF]].

(8) F is nowhere dense if for every function f : I — R the image filter f[[F]] contains a
nowhere dense subset of R.

(7)(BLass 74) F is weakly Ramsey if whenever Sy, S1, So are disjoint subsets of [I]? there
is a J € F such that [J]? is disjoint from at least one of Sy, Sy, So.

(0)(BAUMGARTNER & TAYLOR 78) F is an arrow ultrafilter if whenever S C [I]? and k € N
then either there is a K € [I]* such that [K]?> NS = or there is a J € F such that [J]?> C S.

(¢)(BENEDIKT 99) F is measure-linking if whenever 2 is a Boolean algebra, v : 2 — [0, 1] is
an additive functional such that v(1y) = 1, and (a;);cs is a family in 2 such that inf;c; va; > 0,
then there is a J € F such that v(a; na;) > 0 for all 4, j € J.

(¢)(BAUMGARTNER 95) F is closed Lebesgue null if for every function f : I — [0,1] the
image filter f[[F]] contains a closed Lebesgue negligible set.

An obvious strengthening of (e) is
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(n) F is strongly measure-linking if whenever 2 is a Boolean algebra, v : 2l — [0, 1] is an
additive functional such that v(1yg) = 1, and (a;)ies is a family in 2 such that inf;c; va; > 0,
then there is a J € F such that inf; jc;v(a;n aj) > 0.

(I ought to remark that in all of DAGUENET-TESSIER 79, BLASS 74, BAUMGARTNER & TAYLOR 78,
BAUMGARTNER 95 and BENEDIKT 99 only non-principal ultrafilters on countable sets are considered; that
what I call ‘measure-linking’ is what BENEDIKT 99 calls ‘property M>’; and that what I call ‘closed Lebesgue
null’ is what BAUMGARTNER 95 calls ‘measure zero’.) Evidently Ramsey ultrafilters are weakly Ramsey,
measure-centering ultrafilters are measure-linking, strongly measure-linking ultrafilters are measure-linking,
and closed Lebesgue null filters are nowhere dense; it is also the case that p-point ultrafilters on N are closed
Lebesgue null (BAUMGARTNER 95). Subject to the continuum hypothesis, there are non-principal weakly
Ramsey ultrafilters on N which are not Ramsey (BrAss 74). The results I wish to present here are the
following:

Theorem (a)(BENEDIKT 98) A measure-linking ultrafilter is Hausdorff.

(b)(SHELAH 98) A measure-centering ultrafilter is nowhere dense.

(c)(see BAUMGARTNER & TAYLOR 78, Corollary 2.5) A weakly Ramsey ultrafilter is an arrow
ultrafilter.

(d)(i)(see BENEDIKT 99, p. 214, Proposition 3) An arrow ultrafilter is strongly measure-linking.

(ii) An arrow ultrafilter on N is nowhere dense.

(e) A strongly measure-linking ultrafilter on N contains a set of zero asymptotic density.

(f) A closed Lebesgue null ultrafilter on N contains a set of zero asymptotic density.

(g) If covNLer = ¢, there is a measure-centering ultrafilter on N which is neither strongly
measure-linking nor closed Lebesgue null.

(h) If ¢ = wy, there is a strongly measure-linking ultrafilter on N which is not nowhere dense,
S0 is neither measure-centering nor an arrow ultrafilter.

(i) If p = ¢, there is a Hausdorfl p-point ultrafilter which is not measure-centering.

(j)(see SHELAH 98) Tt is relatively consistent with ZFC to suppose that every measure-centering
ultrafilter is a principal ultrafilter.

(Proof in 6A, 6C, 6E, 6H, 6L and 60. Recall that p is the least cardinal of any family A of infinite subsets
of N such that (). Ag is infinite for any finite Ay C A, but there is no infinite B C N such that B\ A is finite
for every A € A.)

2 Dependently selective filters

A particularly important property of Ramsey ultrafilters is preserved under certain intersections of such
ultrafilters, and it is in this form that it will be used in §5. I therefore isolate it in the next definition. The
results which will be needed in the proofs of Theorems 1Ba, 1J and 1K are special cases of Propositions 2D
and 2E, but I think it is worth while expressing the intermediate lemmas 2B and 2C in their full natural
strength.

2A Definition Let F be a filter on a set I. I will say that F is dependently selective if it has the
following property:

whenever S C [I]<% is such that ) € S and {7 : K U{i} € S} € F for every K € S, then there is
a J € F such that [J]<¥ C S.

In the present paper I will give only those results which are necessary for the applications in §5; for a fuller
account of this class of filters, see my note FREMLIN N09.

2B Lemma A uniform dependently selective ultrafilter is a Ramsey ultrafilter.

proof Let F be a uniform dependently selective ultrafilter on a set I. It will be enough to consider the
case in which I = & is a cardinal. Take any S C [k]%. For & < x set Ac = {n: {¢,n} € S}. Let S be the
family of finite subsets K of  such that for all £, n € K such that £ <n, {{,n} € Siff A, e F. If K € S,
then (because F is an ultrafilter) there is a J € F such that, for every £ € K, J is either included in A or
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disjoint from A;. Now K U{n} € S whenever n € J and n > £ for every £ € K. So S satisfies the condition
of 2A. Let J € F be such that [J]<“ C S. In this case, if §, n € J and £ <7, {{,n} € S iff Ac € F. Now

Ji={¢:¢6eJ, Ace F}, Jo={¢:£€J, Ac ¢ F}

have union J and one of them must belong to F; while [Jy]2N S = 0 and [J;]?> C S. As S is arbitrary, F is
a Ramsey ultrafilter.

2C Lemma (a) Let I be an infinite set, F a Ramsey ultrafilter on I, and A C F a set of size at most
#(I). Then there is a C € F such that #(C' \ A) < #(I) for every A € A.

(b) Let k be an infinite cardinal, A < k another cardinal, and (F,)n<x a family of distinct Ramsey
ultrafilters on . Then there is a disjoint family (A.)a<x of subsets of k such that A, € F, for every oo < \.

proof (a) Set A* = kN A. If A* € F, we can set C = A* and stop. Otherwise, enumerate A as (Ay)a<x,
where A < k. For ¢ € I, set f(i) = min{a : @« < A\, i ¢ A, \ A*}. Then there is a C' € F such that
f1C is either constant or injective (COMFORT & NEGREPONTIS 74, 9.6). The former is impossible, because
{i: f(i) = a} C A* U (k\ Aq) never belongs to F. So f[C is injective and C'\ A, C {i:i € C, f(i) < a}
has cardinal less than  for every o < A.

(b) For a < B < A, take Ayp € Fpg\ Fao. For each a < &, there is a B, € F,, such that #(ByNAyz) < K
for every 8 > a (apply (a) to {I\ Aag:a < B <A} CF,)). Set
AIB = Bﬁ\Ua<ﬁBa

for B < A. Of course (Ag)g<y is disjoint. On the other hand, for each § < A\, Ay = Bs N ﬂa<3 Aqnp belongs

to F because F is k-complete; and A\ Ag € U, 3 Aap N Bq has cardinal less than r, so Ag also belongs
to F.

a<f

2D Proposition Let I be an infinite set, and § a non-empty family of non-isomorphic Ramsey ultrafilters
on I with #(F) < #(I). Then H = () § is a dependently selective filter on 1.

proof (a) It is enough to consider the case in which I = « is a cardinal. Let (F,)a<x be an enumeration

of §.

(b) If (An)a<n is such that A, € F, for a < A\, then there is a family (D,)a<x such that D, € F, and
D, C A, for every a < A, and whenever £ < n < k, o, # < A are such that £ € D, and n € Dg, there
is a ¢ € Ag such that £ < ¢ < n. P By 2Cb, we may suppose that (A,)a<x is disjoint. For any ¢ < &,
{a:a <)\ Ay N # 0} has cardinal less than «; so there is a closed cofinal set F' C , containing 0, such
that A, N ¢\ ¢ # 0 whenever ¢ < ¢'in F, a < Xand A, N¢ # 0. Set f(§) =max{(: ¢ € F, (<} for
&€ < k. Then (f[[Fal])a<nx is a family of k-complete uniform ultrafilters on F, so there must be a cofinal set
V' C F not belonging to any of them. (We can easily build inductively a family (V¢)e<,+ of cofinal subsets
of F such that #(Ve N'V;) < k whenever £ <7 < k™, and now each f[[F,]] can contain V¢ for at most one
&, so there is a £ left over for which we can set V = V¢.) Set M = f~![V]; then A, \ M € F, for each a.

Define g : k — £ by setting g(§) = min{¢ : £ < { € V} for £ < k. For each a < A, there is a B, € F,
on which g is injective (COMFORT & NEGREPONTIS 74, 9.6), so that g[[F,]] is a Ramsey ultrafilter on x
isomorphic to F,. Because the F, are non-isomorphic, all the g[[F,]] are different. By 2Cb again, there is
a disjoint family (G, )a<a of sets such that G, € g[[F.]] for every a.

Set

Co=AaNByNg G\ M, D,=C,\{minC,} € F,

for each a@ < A. Suppose that £ € D,, n € Dg and £ < 5. Then g(§) < g(n). (If « = §, this is because
9| By, is injective; otherwise, it is because G, N G is empty.) It follows that g(§) < n. Let 1o be the least
member of Cjz. We have ng < 7. If £ < g, then 79 is a member of AgNn\ & Otherwise, AgNg(&) # 0, so
there is a ¢ € Ag N~y \ g(§), where v is the next member of F above g(€§). Now v\ g(¢) = f~[{g(&)}] € M
is disjoint from Dg, so v <nand ( € AgNn\&.

Thus (Dg)a<x is a suitable family. Q

(c) Now suppose that S is a family of finite subsets of £ such that § € S and {¢: K U {¢} € S} € H for
every K € §. Set
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S={{&n}:E<n <k, KU{n} €S whenever K € S and K C £ +1}.

For each o < A, there is an A, € F, such that [4,]? is either included in or disjoint from S. But taking
¢ = min A,, we see that {n :n > ¢ K U{n} € §} belongs to H C F, for every K € S; because F, is
r~complete, there must be an n € A, such that n > £ and K U {n} € S whenever K € S and K C{+1, in
which case {£,n} € S. So we must have [A,]2 C S. Set A/, = {£: & € A,, {&} € S}; then A/, € F, because
{€:{ eSteHC Fa.

By (b), we have a family (D,)a<) of sets such that D, € F, and D, C A/ for every o < A, and
whenever £ <7 < K, a, 8 < X are such that { € D, and nn € Dg, thereis a ¢ € Ab such that ¢ < ( < n.
Set A= J, o\ Da € H. Then [A]" C S for every n. B Induce on n. The case n = 0 is trivial, and the case
n = 1 has been dealt with when defining A’,. For the inductive step to n + 1 > 2, suppose that I € [A]"+1.
Let £ <7 be the two greatest points of I; suppose that n € Dg. Then there is a ( € A} such that £ < { < 7.
In this case, K = I\ {} belongs to [A]" C S and K C ( + 1. Also {¢,n} € [A5]> C S,s0 [ = KU{n} € S.
Thus the induction continues. Q

So [A]<¥ C S. As S is arbitrary, F is dependently selective.

Remark In particular, every Ramsey ultrafilter is dependently selective. Compare the ‘weak T-ideals’ of
GRIGORIEFF 71, and also §4 of BLASS 88.

2E Proposition Let I be a set, and § a non-empty countable family of non-isomorphic dependently
selective ultrafilters on I. Then

(a) there is a disjoint family (Az)res of sets such that Ax € F for every F € §,

(b) H =T is dependently selective.

proof (a) For each F € §, let Ix € F be a set of minimal size. Let K be the countable set {#(Ir) : F € §};
for k € K, set §o = {F : F €, #(Ir) = } and J, = Ugpg;, IF, so that #(J,) = &. (For if k = 1, any
member of §; is a principal ultrafilter, and there can be at most one such.) Set Jj, = Jis \ Uyex r<, I for
k € K; then (J)) ek is disjoint and J], € F whenever x € K and F € §,.

For F € §, let 7/ = F NPJ,, be the trace of F on J/,, where x € K is such that F € §,. It is easy to
check that F’ is dependently selective, so is either principal (if £ = 1) or a Ramsey ultrafilter (Lemma 2B).
Moreover, F' and G’ must be non-isomorphic whenever F, G are distinct members of the same F,. So 2Cb
tells us that we have for each k € K a disjoint family (Ax)zcz, of subsets of J.. such that Ax € F’ for every
F € §x, and 2D tells us that H, = ({F' : F € §.} is dependently selective for every x € K. Assembling
the families (Ar)rez,, we have a disjoint family (Az)rez such that Ax € F for every F € §.

(b) Evidently
H={A: ACI, AN J, € H, for every k € K}.

Now suppose that S C [I]<% is such that § € S and {i : K U {i} € 8§} € H for every K € S. Choose
(By) ek inductively, as follows. Given that x € K, that By € H, has been defined for A € KN« and that
Useknrx Bal= € S, note that #(Uyckn, J3) < K, because if k > w then & is two-valued-measurable and
certainly has uncountable cofinality. So Cx = Uycxn,. B and [C,]<* have cardinal less than .

Set

S, ={K:K¢elJ]<¥ KUL € S for every L € [C,]<“}.
Then () € S, by the hypothesis on C,. If K € S, then for each L € [Cy]<¥ the set Cp, = {i : i € J.,
KULU{i} € S} belongs to H,; but H,, being an intersection of x-complete filters, is again k-complete, so
C={CL:Le[C]"*“} € H,,and KU{i} €S, for every i € C. As H, is dependently selective, there is
a B, € H, such that [B,]<¥ C S, and [B, UC,]<¥ C S.
The inductive hypothesis

Unexns BT €S

gives no difficulty when s € K is a limit in K, so the induction proceeds to the end. Setting A = |J,.ci B,
we have A € H and [A]<¥ C S. As § is arbitrary, H is dependently selective.

3 Proofs of Theorems 1B-1E
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The main work of this paper begins with proofs of the relatively elementary results up to Theorem 1E.
These will not be done in exactly the order in which they were presented in §1; in the hope of minimising
confusion, I will restate the results as I come to prove them. I begin with a review of basic fragments of
measure theory which will be used later.

3A Measure spaces: definitions and facts

(a)(i) Let (X,%, ) be a measure space. Its completion is the measure space (X,3, 1), where 3 =
{EAF : E € ¥, F belongs to the null ideal of x} and fi is the unique monotonic extension of y to 3
(FREMLIN 01, 212C).

(ii) If a measure is inner regular with respect to a class K of sets, so is its completion (FREMLIN 03,
412H).

(iii) If X is a set and py, pe are two complete probability measures on X such that pq is inner regular
with respect to {K : K € dom 3 Ndom pg, p1 K = po K}, then ps extends py (FREMLIN 03, 412K).

(iv) If X is a set and p;, pe are two complete probability measures on X both inner regular with
respect to {K : K € dom p3 Ndom po, u1 K = ps K}, they are equal (FREMLIN 03, 412L).

(b) Let X be a set, and A a family of probability measures on X such that («) for all A\g, A\; € A there
is a A € A which extends both Ay and A; () for every countable Ag C A there is a probability measure on
X (not necessarily belonging to A) extending every measure in Ag. Then there is a probability measure on
X extending every measure in A. (FREMLIN 03, 457G.)

(c) A Radon probability space is a quadruple (X, %, >, u) where (X, %) is a Hausdorff topological
space, p is a complete probability measure on X with domain ¥, ¥ C ¥ (so that p measures every Borel
subset of X), and p is inner regular with respect to the family of compact subsets of X. The usual measure
vr on {0,1} is always a Radon probability measure (FREMLIN 03, 416Ub).

(d) Suppose that Z is a zero-dimensional compact Hausdorff space and 2 is the Boolean algebra of
open-and-closed subsets of Z. If v : 2 — [0,1] is an additive functional such that vZ = 1, there is a unique
Radon probability measure on Z extending v (FREMLIN 03, 416Qa).

(e) Let I be an infinite set.
(i) #(B7) is the cardinal power #(I)* (FREMLIN 08, 524Ma).

(ii) Let T; be the domain of v;. If F € Ty and v F > 0, set ¥ = Ty NPF and pFE = ﬁl/]E for
I

E € 3; then (F, %, ) is isomorphic to ({0,1}!, Tr,vr) (FREMLIN 02, 344L%). Writing N7 for the null ideal
of v, so that N7 N PF is the null ideal of p, we see that N7 and N7 N PF are isomorphic, and have the
same covering number.

(iii) Suppose that £ C Ty is a non-empty downwards-directed family of measurable sets such that
#(E) < covNy and v = infgecgviE > 0. Then € # (. P For n € N we can find F,, € £ such that
viF, <~+4 27" because £ is downwards-directed, we can suppose that (F),),en is non-decreasing, so that
F =N, en Fr has measure lim,, oo v1 F,, = . If E € £, then vi(E N F,) >« for each n, so vi(ENF) =y
and v(F'\ E) = 0. As #(&) is less than cov N7, which by (ii) is the covering number of the subspace
measure on F, F' cannot be covered by {F'\ E: E € £}, and (€ is non-empty. Q

(f) Let X be a set, ¥ an algebra of subsets of X, and v : ¥ — [0, 1] an additive functional such that
vX =1 and lim,,_,, vE,, = 0 whenever (F,),cn is a non-increasing sequence in ¥ with empty intersection.
Then v has a unique extension to a complete probability measure on X which is inner regular with respect
to the family X5 of intersections of sequences in ¥ (FREMLIN 03, 413K).

3B Measure algebras: definitions and facts

(a) If (2, ) is a probability algebra, then 2 is ccc (FREMLIN 02, 322G). So if A C 2 is any set, there is
a countable B C A with the same upper bounds as A (FREMLIN 02, 316E), and A has a least upper bound.
(Thus 2 is Dedekind complete.) fi is order-continuous in the sense that

ILater editions only; obtainable through http://www.essex.ac.uk/maths/staff/fremlin/mtcont.htm. Note to reader: do
you know of a more satisfactory reference for this result?
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— if A C A is non-empty and upwards-directed, with supremum c, then fic = sup,¢ 4 fia,
—— if A C 2l is non-empty and downwards-directed, with infimum ¢, then fic = inf,¢ 4 fia.
(FREMLIN 02, 321C and 321F).

(b) If A is a Boolean algebra and A C 2, I say that A T-generates 2 if 2 is the smallest order-closed
subalgebra of itself including A. The Maharam type 7(2) is the least cardinal of any set A C 2 which
7-generates A. If (A, i) is a probability algebra, I is an infinite set and 7(2) < #(I), then (A, ) can be
embedded in (B, 7;) in the sense that there is an injective Boolean homomorphism 7 : 2 — 9B; such that
vr(ma) = fia for every a € A (FREMLIN 02, 332N).

(c) If (X,X, ) is a measure space with measure algebra (2, i), and £ C ¥ o-generates X in the sense
that 3 is the o-algebra of subsets of X generated by &, then {E* : F € £} 7-generates 2. (If 2’ is an
order-closed subalgebra of 2 including {E* : E € £}, then {F : F* € A’} must be a o-subalgebra of ¥
including &, so is the whole of ¥.)

(d) Let (X,X, ) be a measure space with measure algebra (2, ). A lifting for u is a Boolean homo-
morphism 6 : % — X such that (6a)® = a for every a € 2. Every complete probability measure has a lifting
(FREMLIN 02, 341K).

If (X,%,u) is a probability space with measure algebra (2, i), 6 : 2 — X is a lifting, and A C 2 is a
non-empty set with supremum c in 2, then ¢\ |J fa is negligible. I There is a sequence (a,)pen in A
such that ¢ = sup,cyan ((a) above). Now

(Unen b(an))® = sup,ey 0(an)® = sup, ey an = ¢ = (0c)°,
0 0c\ U,ea fa C 0c\ U, ey 0(an) is negligible. Q

(e) If I is an infinite set, I will say that the standard generating family in the probability algebra %B;
is the family (e;);e; = (Ef)ier where E; = {z : @ € {0,1}, (i) = 1} for each i € I. Note that vje; = %
and vy(e; \ ej) = 1 for all distinct i, j € 1.

acA

3C We are ready to begin work on the proofs of results announced in §1.

Proof of Proposition 1C Let I be a set, and F an ultrafilter on I. Then the following are equiveridical:

(i) F is measure-centering;

(ii) whenever {(a;);cr is a family in B such that inf;c; Dra; > 0, there is an A € F such that {a; : i € A}
is centered in By;

(iii) whenever (E;);cr is a family of measurable subsets of {0, 1}! such that inf;c; v7 E; > 0, there is an
A € F such that (,c 4 Es # 0;

(iv) whenever (X, X, 1) is a compact probability space and (E;);ey is a family in ¥, then p*(lim;_, » E;) >
hmi_,]: ,uEi.

proof The case in which F is a principal ultrafilter is trivial, so I shall assume henceforth that F is non-
principal; in particular, that I is infinite.

(i)=(ii) is trivial.

not-(iv)=-not-(ii) Suppose there are a compact probability space (X,¥, 1) and a family (E;);cr in 3
such that lim; , 7 uE; > p*(lim; .+ E;). Let F' € ¥ be such that lim; .z pF; C F and pF < lim;_, 7 uFE;; let
v > 0 be such that lim; ,x uF; > uF+~, and set C = {i : uE; > v+ uF}, so that C € F and pu(E; \ F) > v
for every i € C.

Let IC be a compact class such that p is inner regular with respect to K. For i € C, let K; € KN X be
such that K; C F; \ F and pK; > . Fori € I\ C, set K; = X. Observe that

Let T be the o-subalgebra of ¥ generated by {K; : i € I}, and v = u|T. Then the measure algebra
(B,v) of (X, T,v) is a probability algebra of Maharam type at most #(I), by 3Bc. By 3Bb, there is a
measure-preserving Boolean homomorphism 7 : 8 — B;. Set a; = 7(K}) for i € C; then vra; = pkK; > v

for every i € I.
If Ae F, then ANC € F so

MEASURE THEORY
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mieA Kz Q mieAﬂC El \ F g (limiﬁ}- El) \ F = @
As K is a compact class, there must be a finite set J C AN C such that ﬂie.] K; = (. But this means that

inf a; = inf w(K;) = 7(inf K7) = w(((") K:)*)

ieJ i€J ieJ

=7(0*)=70=0

icJ

in B;. This shows that {a; : i € A} is not centered. As A is arbitrary, (a;);c; witnesses that (ii) is false.

(iv)=-(i) Suppose that (iv) is true. Take a Boolean algebra 2, an additive functional v : 2 — [0, co[ such
that 1 =1, and a family (a;);e; in 2 such that inf;c;va; > 0. Let Z be the Stone space of 2, so that Z is
a compact Hausdorff space and 2 can be identified with the algebra of open-and-closed subsets of Z. Then
there is an extension of v to a Radon probability measure p on Z (Fact 3Ad). Since p is inner regular with
respect to the compact class of compact subsets of Z, (Z, i) is a compact probability space.

Let G be the family of p-negligible open subsets of Z, and H its union. Then H is an open set, so uH
is defined. If K C H is compact, K is covered by finitely many members of G, so uK = 0; as p is inner
regular with respect to the compact sets, uH = 0.

By (iv),

*(lim (a; \ H)) > 1i \ H) > inf p(a; \ H
po(lim (a; \ H)) 2 lim p(a; \ H) 2 inf p(e; \ H)
= inf pa; = inf va; > 0.
% i€l

el

So lim;_, #(a; \ H) is non-empty and there is a z € Z\ H such that A={i:z € a;} € F. If J C A is finite
and not empty, then [, ; a; is an open set containing z, so is not included in H and does not belong to G,
and

icJ

0 < p(Niey ai) = v(infies a;).
Thus A € F has the property demanded in Definition 1A; as 2, v and (a;);c; are arbitrary, F is measure-
centering.

(iv)=(iii) is elementary, once we know that every v; is a Radon measure (Fact 3Ac).

(iii)=(ii) Suppose that (iii) is true, and that {(a;);cs is a family in B such that € = inf;c; Dya; is greater
than 0. Write T for the domain of vy, and let 6 : B; — T; be a lifting (Fact 3Bd); set E; = fa; for each
i € 1. Then

viE; = D](Ei') =rra; > €
for every i € I. By (iii), there is an A € F such that ;. 4 E; # 0. If J C A is finite and not empty, then

O(infiej ai) = ﬂieJ Hai = ﬂieJ E; 7é (Z)u

so inf;eya; # 0; as J is arbitrary, {a; : i € A} is centered in By; as (a;)es is arbitrary, (ii) is true.

3D In Definition 1A, it is clear that we can expect to have more difficulty in finding a centering set in F
if inf;c; va; is nearly 0, and it is natural to focus on that case as the essence of the definition. As it happens,
however, it makes no difference.

Proposition Let F be an ultrafilter on a set I, and suppose that v < 1 is such that whenever 2l is a Boolean
algebra, v : 2 — [0,1] is an additive functional such that v1 = 1, and (a;);cs is a family in 2 such that
va; > « for every i, then there is a J € F such that v(inf;cx a;) > 0 for every finite K C J. Then F is
measure-centering.

proof Suppose that 2 is a Boolean algebra, v : 2l — [0,1] is an additive functional such that v1 = 1, and
(a;)ier is a family in 2 such that inf;c;va; = € > 0. Let m € N be such that (1 — €)™ < 1 —+, and let
¢ =@Q,, 2 be the free product of m copies of U, so that we have Boolean homomorphisms ¢, : A — €,
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for k < m, such that infy<,, exbr # 0 whenever b, € A\ {0} for every k¥ < m (FREMLIN 02, §315). Let
A € — [0,1] be the additive functional such that A(infy<m, exbr) = [[;5.m Yabr Whenever (bi)p<m € A™
(FREMLIN 02, 326Q). For i € I, set ¢; = supy,,,, €xa;; then

AL\e) = (r(1\a)™ < (1= )" <17

and A¢; > v for every i € I. By hypothesis, there is a J € F such that A(inf;cx ¢;) > 0 for every finite
K C J. Let D C € be a maximal set such that ¢; € D for every i € J and A(inf Dy) > 0 for every finite
Dy C D. Then for every ¢ € J there is a k; < m such that ey, (a;) € D. Because F is an ultrafilter, there
is a k < m such that J = {i : i € J, k; = k} belongs to F; and now v(inf;cx a;) = A(inf;cx era;) > 0 for
every finite K C J'. As 2, v and (a;);cs are arbitrary, F is measure-centering.

3E Proof of Theorem 1Ba A Ramsey ultrafilter is measure-centering.

proof Let F be a Ramsey ultrafilter on a set I, and (a;);c; a family in B; such that e = inf;c; vra; is
greater than 0. For C' C I set bg = sup,c¢ a;; then Uybc > € for every C' € F. Set b = infoer bo; because
F is downwards-directed, so is {bc : C € F}, and v;b > € (Fact 3Ba). In particular, b # 0.

Let S be the set of those finite subsets K of I such that bn inf;c i a; is non-zero, counting inf () as 1, so
that ) € S. If K € S, then C = {i : K U {i} € S} belongs to 7. P? Otherwise, I\ C' € F and b C by\c-
Set

d=0bninfrerx ar Cbpc = SUP;e\ ¢ @i

as d # 0, there is a j € I'\ C such that dna; # 0. But dna; = bn inf;cgyg;y ai, so KU{j} € Sand j € C,
which is absurd. XQ

So S satisfies the conditions of 2A. Since F is dependently selective (Proposition 2D), there is a J € F
such that [J]<¥ C S, that is, {a; : ¢ € J} is centered. As (a;);es is arbitrary, F is measure-centering.

3F Proof of Theorem 1Bb If x is an infinite cardinal and cov N, = 2%, then there is a uniform
measure-centering ultrafilter on k.

proof (a) #(B,) = k¥ (Fact 3A(e-1)), so we can enumerate B as (a¢)c<2+«. Let T, be the domain of v,
and 0 : B, — T, alifting. Set A = cfx. If A = &, set I, = {a} for every a < k; otherwise, let (kq)a<x be a
strictly increasing family of cardinals less than x with supremum r, and set I, = k} \ |J g<a s for o <A,
so that (I,)a<x is a partition of x and otp(I,) = 7 for every o < \.

(b) Construct families (Cac)a<nrc<2s, (De)e<os, (Caclac<rc<os and (D¢)e<or inductively, as follows.
Start by setting Coo = {In \ & : € € I}, so that Cyy is a filter base of subsets of I, of cardinal less than x; let
Dy be {A}. Given that ¢ < 2”, that D¢ is a filter base of subsets of X of cardinal at most max(w, #(()), and
Cac is a filter base of subsets of I, of cardinal at most max(k,#(()) for each a < A, consider a; = (a¢)e<x
say. Set € = infec,Ueae. If € = 0, set Depq = A and Cu 41 = Iy for every o < A Otherwise, set
bc = supgec ag for C C k, and ¢, = infeec, bo for a < A; as in 3E above, v,cq = infoec,, Vsbo > €. Set
dp =sup,ecp Ca for D € D¢ and e = infDeDC dp; then the same arguments show that v.e > e.

For each C' C &, 0(bc) \ Ugec 0(ag) is negligible (Fact 3Bd). So Eac = 0(ca) \ Ugec 0(ag) is negligible
whenever o < X\ and C € C,. Similarly, Ep = 0(e) \ U,ep 0(ca) is negligible for every D € D. Now
DeU{(a,C) :a < A, C € Cyc} has cardinal at most max(w, #(¢), #(k)) < 2%,s0 {Ep : D € D¢} U{Equ¢ :
a < A, C € Cuc} cannot cover the non-negligible measurable set 6(e) (Fact 3A(e-iii)), and there must be an
z¢ € 6(e) such that z. ¢ UDEDC Ep UUu<ncec, Bac- Set D¢ = {a:a <A, ¢ € 0(ca)}; then D¢ meets
every member of D¢. For o € Dy, set Coe = {£ : § € I, x¢ € 8(ag)}; for o € K\ D¢, set Coe = I,; then
Coc meets every member of Cqc.

Now define D¢y 1, Ca,c4+1 by setting

Dy :DcLJ{DﬂDgZDEDC},

Ca’g+1 = Cag U {C n Cag :C e Cac}

for & < A. Then D¢, is a filter base of subsets of A of cardinal at most max(w,#({ 4+ 1)), and Cq,c41 is a
filter base of subsets of I, of cardinal at most max(r,#(¢ + 1)) for every a < .

MEASURE THEORY
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For non-zero limit ordinals ¢ < 2%, set D¢ = Uf<< D¢ and Co¢ = U£<C Cae; once again, D¢ will be a filter
base of subsets of A of cardinal at most max(w, #(¢)), and Co¢ will a filter base of subsets of I, of cardinal
at most max(r, #(()) for each a < A.

(c) At the end of the induction, let F be an ultrafilter on x containing all sets of the form (J,.p Ca
where D € Dax and Cy € Cq 2+ for every oo € D. Then F is measure-centering. I Let a = (a¢)e<r € B
be such that inf¢c, Ucae > 0. Then there is a ¢ < 2% such that @ = a¢. In this case, z¢ is defined and
J = Uaep, Cac belongs to F. If a € D¢ and & € Cac, then z¢ € 6(ag). But this means that if K C J is
finite and not empty,

z¢ € (Neex 0(ag) = O(infecr ag),
and infec e ag # 0. Thus {ag : £ € J} is centered. As a is arbitrary, F is measure-centering, by Proposition

1C(i1). Q

(d) Of course I should note that F is uniform because if D € Dy« and C,, € Cy 2+ for every a € D, then
D meets every member of Dy, so has cardinal . Set B = |J,cp Ca. Since C, meets every member of Cao,

#(Co) = #(1,) for every o € D, and #(B) = #(Upep la) = 5.
3G Proof of Theorem 1Bc If cov N e, = ¢, there is a measure-centering ultrafilter on N which contains
no set of zero asymptotic density.

proof (a) I start with a general fact about upper asymptotic density d* : PN — [0,1]. Let (X,X, u) be
a probability space, I € PN\ Z, and (E,)nen a sequence in ¥ with inf,eypuE, =5 > 0. For z € X set
Jy={n:ne€l, x € E,}. Then p{x:d*(J,) >0} > .

P Set § = d*(I); then there is a disjoint sequence (K, )nen of non-empty finite subsets of N, all of the
form {i: k <1i < 2k}, such that #(I N K,) > $6#(K,) for every n. If n € N then

1#INKy) < ZiemKn pl; = fZielmKn XEi(z)p(dz) = f#(Jx N Ky)p(dz),
soifp >0
pla s #(Je N Ky) > n#(I N Ky)} >y — 1.
Consequently

pl = d*(Jz) = é5?7}

> p{x : for infinitely many n, #(J, N K,) > %57}#([(71)}
> p{z : for infinitely many n, #(J, N K,) > n# (I N K,)}
i /2

As n is arbitrary, p{z : d*(J;) >0} > ~v. Q

(b) Now, given that covNpe, = ¢, enumerate the family of all sequences (F,),en of Borel subsets of
{0,1}* such that inf,,enVE,, > 0 as ((Eg¢p)nen)e<c. Build filter bases & C PN, for { < ¢, as follows. Start
with & = {N}. The inductive hypothesis will be that # (&) < max(w,#(§)) and & N Z = (. For the
inductive step to £ + 1, set € = inf,, ey v Eg,. For each I € &, set

Fr={z:d*(J,NI) >0},
where J, = {n : ¥ € Eg,}. By (a), vF1T > € because (F7)rce, is downwards-directed, and #(&) <
covNpLep = cov Ny, there is a point @ € (¢, Fr (Fact 3A(e-iii)). Set I = Jy,
Eerr :5§U{IQI§ : IGE&}.

Then &1 is a filter base, including &, disjoint from Z, of cardinal at most max(w, #({+1)), and containing
a set I¢ such that ﬂneIE E¢p is non-empty. At non-zero limit ordinals £ < ¢, set & =, ¢ &-

Let G be the filter on N generated by & . Then GNZ = (), so there is an ultrafilter F on N, including G, and
still disjoint from Z. If (F},),en is any sequence of measurable subsets of {0, 1} such that inf, ey v F, > 0,
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there is a £ < ¢ such that E¢, C F,, for every n; now I € F and ()
is measure-centering.

nere Fn # (). By Proposition 1C(iii), F

3H Proof of Proposition 1D (a) Let I and J be sets, f : I — J a function, and F a measure-centering
ultrafilter on I. Then the image ultrafilter f[[F]] is a measure-centering ultrafilter on J.
(b) If F is a non-principal ultrafilter, then F x F is not measure-centering.

proof (a) Let 2 be a Boolean algebra, v : 2 — [0,1] an additive functional such that v1 =1, and (a;),cs
a family in 2 such that inf;e;va; > 0. Set b; = ay(;) for i € I; then infie; vb; > 0, so there is an A € F
such that v(inf;cx b;) > 0 for every K € [A]<%. Now f[A] € f[[F]], and if L C f[A4] is finite there is a finite
K C A such that L = f[K], so that

v(infjer a;) = v(inficx b;) > 0.
This shows that f[[F]] has the property of Definition 1A and is measure-centering.

(b) Let I be a set and F a non-principal ultrafilter on I. Let (e;);c; be the standard generating family
in By, and for i, j € I set

a;j =e;\ejif i # j,
—1ifi=j.

Then vra;; > + for all i, j € I. If A € F x F, then B = {i : A[{i}] € F} belongs to F. Take any i € B;
then B must meet A[{i}] in more than one point, because F is non-principal; take j € BN A[{i}] \ {¢} and
ke A{j}] \ {j}- The points (i,7) and (j, k) are distinct points of A and a,;pna;; Ce;\e; = 0. As A is
arbitrary, F x F cannot be measure-centering.

Remark I include (b) here to show that in Theorem 1J we really need to have non-isomorphic filters. In
fact rather more can be said; the argument here already shows that F x F is not measure-linking, and in
fact it is not Hausdorff (DAGUENET-TESSIER 79).

31 Proof of Theorem 1E Let (X,X, 1) be a compact probability space, and F a measure-centering
ultrafilter on a set I. Let A be the family of all sets of the form lim;_,» E; where (E;);c; is a family in X.
Then there is a unique complete probability measure A on X such that A is inner regular with respect to A
and A(lim; = E;) = lim;_,  pE; for every family (E;);cr in X.

proof (a) The key fact is that if (E;);c; and (F;);cs are two families in ¥ such that lim;_, z E; = lim;_, z F},
then lim; ,r pF; = lim; 7 uF;. P We have

. L T LRl < T A
| b = figp il = Jiy Ml — wBil < iy WEAE)
< M*(.linjl__(EiAFi))
(by Proposition 1C(iv))
< u*(lim ByA lim F)) = 0 = 0.
S#ip Bb iy B =10=0.Q

(b) The formula ¢(lim;_, # E;) = lim;_, 7 pE; therefore defines a functional ¢ : A — [0,1]. If % is any of
the Boolean operations \, N and U, then

for all families (E;);cr and (F;);er in X, so A is an algebra of subsets of X. As noted in 1E, ¢ extends p.

If (E;)icr and (F;);cr are two families in X,
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lim F; U lim F; lim F; N lim F;
Py B g )+ o B g B
= o(lim (E; U F)) + ¢(lim (E; N F))
:iILH}_M(EiUFi)+1,1LH}M(EiﬂFi)
= _hHJL_M(Ei UF;) + pu(E; N E;)
fivg By - o = o(limg ) + o(Jimy, 1))

so (AU B) + ¢(ANB) = ¢pA+ ¢B for all A, B € A. Because ¢l = u) = 0, this is enough to show that
¢ A—[0,1] is additive.

(c) If (A,)nen is a non-increasing sequence in A and 0 < vy < inf,,eny @A, then there is an A € A such
that A C [,y An and ¢A > . P For each n, express A, as lim;_r E,;, where E,; € ¥ for each i € I;
replacing En; by (),,<,, Emi if necessary, we may suppose that E,; C E,,; whenever m < n and i € I. For
each i € I, define F; by saying that

=EyifneNand pky; > v > ,UEn-i-l,iv

= ﬂ E,; if pE,; > v for every n € N.
neN

Then uF; > v for every i € I, and F; C E,,; whenever n € N, i € I and uF,; > . For each n € N, therefore,
{i: F; C E,;} belongs to F, and A =lim;_,z F; C A,,; while ¢4 > ~. Q

(d) In particular, ¢ is countably additive in the sense that if (A, ),en is a non-increasing sequence in A
such that (1, .y A, is empty, then lim,, .o ¢A, = 0. There is therefore an extension of ¢ to a complete
probability measure A on X which is inner regular with respect to Ajg, the family of subsets of X expressible
as the intersection of a sequence in A (Fact 3Af). From (c) we see that if B € As and v < AB, there must
be an A € A such that A C B and ¢A > ~. So in fact A is inner regular with respect to A.

(e) Thus we have a suitable extension of p. By 3A(a-iv), A is uniquely defined.

Remark If you have seen a construction of Loeb measure (LOEB 75), you will recognise the method above;
the special properties of measure-centering ultrafilters and compact measure spaces mean, in effect, that the
original set X has full outer measure in the Loeb measure space.

4 Reduced products of probability algebras

The construction offered in 1F is straightforward enough, but requires some support, in particular in the
assertion that the reduced product (€, )) there is a probability algebra in the full sense of the phrase as
used here. In this section I fill in the details, with a proof of Theorem 1G, and also of a further result,
Proposition 4B, which will be needed for the proof of Theorem 1J in the next section.

4A T start with a slightly expanded version of 1Fb.

Proposition Let ((2;,[i;)):c; be a family of probability algebras and F an ultrafilter on I. Let B be
the product Boolean algebra [, ;2;. Define v : B — [0, 1] by setting v({a;)icr) = lim;_. r fia; whenever
(a;)ier € B, and set T ={a:a € B, va = 0}.
(a) v is additive; Z is an ideal of ®B; and if € is the quotient Boolean algebra % /Z, we have an additive
functional 7 : € — [0, 1] defined by saying that 7(a*) = va for every a € B. If (a;)ier, (bi)ics € B, then
—if {i:a; C b} € F, then (a;)jc; C (bi)css
—if {i:a; =b;} € F, then (a;)5c; = (bi)5c;-
(b) (€, D) is a probability algebra.

D.H.FREMLIN



16

proof (a) is entirely elementary.
(b) (i) Perhaps I should begin by remarking that
v(le) = v(1y) = v(1s) = v((la,)ier) = limj— 7 pi(le,) = 1.
Next, if ¢ € €\ {0}, then ¢ = b® for some b € B\ Z, so vc = vb is non-zero.
(ii) If (¢ )nen is a non-decreasing sequence in €, there is a ¢ € € such that ¢, C ¢ for every n € N and
vc = sup, ey Vcn. PP For each n € N, let (ani)ier € B be such that ¢, = (ani)jc;- Set ap; = sup,, <, Gmi

for n € N and i € I; then ¢, = (a;,;);c; for each n, and (a;,;)nen is non-decreasing for each i € I. Let v be
SUP, e VCn = SUpP,, ey lim; 7 p;al,;, and for i € I set

a; = ap; i piag; <y +27" and piag g >y 27",
= sup a; if pial,; <~ +27" for every n € N.
ne

Consider ¢ = (a;)5c;. For any n € N,

{ian; Cai, piai <y +27"} 2 {is pag,; <y +27")
2 {i: piay,; < lim pja;; +27"}F € F,
J=F

SO

cn = (ani)ier € (@i)ier = c
It follows at once that Dc > . At the same time, vc < v+ 27" for every n, so vc < v. Q

(iii) € is Dedekind o-complete. P If C' C € is a countable set, take a sequence (¢ )nen running over
C U{0¢}. Set c), = sup,,<, cm for each n. By (ii), there is a ¢ € € such that ¢}, C ¢ for every n and
Uc = sup,,ey ¢, Because ¢, C ¢, C ¢ for every n, ¢ is an upper bound of C. If ¢’ is any other upper bound
of C, then ¢ D ¢, for every n € N, so

v(e\d) <infpenv(c\¢,) < infpenPe— e, =0,
c\¢ =0 and ¢ C ¢. Thus c is the least upper bound of C; as C is arbitrary, € is Dedekind o-complete. Q

(iv) 7 is countably additive. I This time, let (c¢,)nen be a disjoint sequence in €. Again set ¢, =
SUP,,<,, Cm for each n € N. Re-running the argument of (iii), we see that if ¢ is the least upper bound
Sup,,ey ¢, then

UC = SUP,cn VChy = SUDP, e D omeo VCm = D meo VCn,
while ¢ is also the least upper bound of {¢, : n € N}. Q
Putting these together, (€, ) is a probability algebra.

4B Directed families Some further phenomena appear if ((2;, fi;))ics is appropriately linked, as follows.

Proposition Let (I, <) be a non-empty pre-ordered set (that is, < is a reflexive transitive relation on I), and
(A, [11))ser a family of probability algebras. Suppose that for ¢ < j in I we are given a measure-preserving
Boolean homomorphism j; : 2; — 2, and that m,; = 77 whenever ¢ < j < kin I. Let F be an
ultrafilter on I such that {j : ¢ < j} belongs to F for every ¢ € I, and let (€,7) be the reduced product
[Lics (%, )| 7.

(a) For each i € I we have a measure-preserving Boolean homomorphism 7; : 2; — € defined by saying
that mia = (a;)5c; whenever (a;)jer € [[;c;®; is such that a; = 7j;a; for every j > i.

(b) m; = m;mj; whenever ¢ < j in 1.

(c) {ai)ier C sup;cq mja; whenever (a;)ier € [[;c; % and A € F.

proof (a) m; is well-defined because {j : j > i} € F; now it is a measure-preserving Boolean homomorphism
because every j; is.
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(b) If a, = mpia for k > i, then ap = my;mj5a for k > j, so mjmja = (ag)he; = Tia.

(c) Set ¢ = sup;c 4 mja; in €. For every € > 0, there is a finite K’ C A such that e < e+ v(sup;cx 7ja;),
because 7 is order-continuous (Fact 3Ba). The set B={k: k € I, j <k for every j € K} belongs to F; fix
k € B, and set b = sup¢ ¢ mja; € AUy,

bi = 7Tikb if k& S i,
= Og, for other ¢ € I.

Then

(bi)ier = kb = i (SUD ek Thj@)) = SUDje ¢ ThTkjA; = SUPje ¢ Tja; C C.

If i € A and i > k, then

fi(a; \ b)) = v(ma; \ m3b;) = v(ma; \ wimb)

p(ma; \ mpb) = v(ma; \ sup mia;) < v(c\ sup wja;) <€
jeK JEK

by the choice of K. Because {i:i € A, i >k} € F,

v({ai)ier \ ) < v({ai)jer \ mkb) = v({ai \ bi)icy)
= lim fi;(a; \ b;)) < sup fii(a;\b;) <e
i—F i€Ai>k

As e is arbitrary, 7({a;)jc; \ ¢) = 0 and (a;)5c; C c

4C Proof of Theorem 1G Let (X, X, i) be a compact probability space and (2, i) its measure algebra.
Let I be a set and F a measure-centering ultrafilter on I; write A for the corresponding extension of u as
described in Theorem 1E, and (€, #) for the reduced power (2, ii)'|F. Then we have a natural isomorphism
between (€, 7) and the measure algebra (D,\) of A defined by saying that (E;)s.; € € is matched with
(lim;, 7 E;)* € D for every family (E;);ecr in 3.
proof If (E;)icr and (F;);cs are families in X, then (lim;_r E;)* = (lim; 7 F3)* in © iff (E3)s.; = (F)5cr
inc. P

lim lim lim E;)* A (lim F;)* = 0p

(z—>.7: i—F
((hm E) A (hm F))* =09
(hm E; A F;)* =0p
i—F
li E;ANF;) =
i pu(E; A Fy) =0
limy (5 2 F7) = 0
P(Br & Fier) = 0

(2

(< z>z€1 A <Fz >1€]) =0
(E)ier & (FY)ier = Oc
(Ef)ier = (F)ier Q

Mﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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We therefore have a function 7 : ® — € defined by saying that 7({E}):.;) = (lim;_ 7 E;)* for every family
(E;Yier in X. Following the formulae just above, we see that the same ideas tell us that 7 is a Boolean
homomorphism and that A = v. Next, 7[¢] = {A* : A € A}, where A is the family of Theorem 1E. But
this means that every d € © is the supremum of a non-decreasing sequence in 7[€] and is expressible as
Sup,,cn T¢p for some non-decreasing sequence (¢p)nen in €. In this case, if ¢ = sup,,cycn, we must have
d C me and \d = A(me), so that d = 7c € 7[€]. This shows that 7 is an isomorphism between € and D, as
required.

5 Products of filters

I come now to the proofs of Theorems 1J and 1K, based on the ideas of §§2-4. The first step is to find a
way of simultaneously representing many reduced products inside a single probability algebra.

5A Lemma Let ¢ > 1 be an ordinal, and suppose that for 1 < ¢ < ¢ we are given a set I¢, an ultrafilter
Fe on I¢, and a function i — 6(&,7) : Ic — & such that {i : i € I, 6(£,9) > n} € F¢ for every n < £. Set
I'=Uj<e<c Le, and let (Ge)e<c be the family of ultrafilters on 5™ = (J; oy I' constructed from (F¢)i<¢<¢ and
6 as in 1I. Let (2, i) be a probability algebra. Then there are a probability algebra (€, 7), a family (€¢)e<¢
of closed subalgebras of €, a measure-preserving Boolean homomorphism 7 : 2 — € such that 7[] = &,

and a family (1¢)1<¢<¢ such that, for 1 <& < ¢, e : Hiel§ Cy(¢,i) — €¢ is a Boolean homomorphism and

e ((ci)ier,) = lim; 7, Dei, he({Ci)icr,) © Sup;ea G
whenever (c;)icr, € Hiel§ Co(e,iy and A € Fe.

proof Define families (¢, fic))e<c, (den)n<e<c inductively, as follows. The inductive hypothesis will be that
each (2, fi¢) is a probability algebra and that each ¢¢, is a measure-preserving Boolean homomorphism
from A, to A¢ such that ¢epdyryy = dgyy whenever n <7 <&

Start with (2o, fio) = (2, &) and ¢go : Ao — Ao the identity map. Given (U, fin))n<e and (prp)n<n/<e,
where 0 < & < (, let (¢, fig) be the reduced power HiEI& (Ag(e,iys foce,i)) | Fe, as defined in 1Fb/4A. Let
<¢ be the pre-order on I defined by saying that ¢ <, j iff (£,7) < 6(&,j); then our hypothesis on 6
ensures that {j : ¢ <¢ j} € F¢ for every i € Ic. For i < j € I, gzzﬁ = Po(e,j),006,i) * Aoce,iy — Aoe,j) s
defined; and if 7 <¢ j <¢ k, then i = ékj (iji. By 4B, we have measure-preserving Boolean homomorphisms

@i Age.iy — Ye such that ¢; = ¢p,p,; for i <¢g j. If i <¢ j and n < 6(&,1), then
(&:1) 3 i Pi 3 3

PiPo(e,j)m = PiPo(€,5).0(6.5)Po(E,i)m = PiPo(e,i)

so we can take this common value for ¢¢, : A, — Ae. If n <y’ <&, take i € I¢ such that " < 0(£,4), and
see that

be P = PiPo(e.i) ' Purn = Pido(e,iym = Peny
so the induction proceeds.
At the end of the induction, set € = A, 7 = fic, Te = ¢¢e : Ae — Cand € = m[A] CC. I <€ <,
then m, = Te¢pey, so €, C .
For each £ > 0, we have a canonical map (a;)icr, = (ai)jey, : Hielg Ag(e,iy — Ae. Since m, : A, — &,
is always a measure-preserving isomorphism, we have corresponding maps ¢ : [ |
off the basic facts from 4A-4B, we see that

ier; Co(e.i) — C¢. Reading

l7¢5(<ci>i€1§) = limi_)]:€ vc; whenever <Ci>ieI§ S HiEIg Q:g(gyi),

Ve((ci)ier:) C sup;ea ¢ whenever (c;)icr, € [[;en Coe,iy and A € Fe

(we can take the suprema in € because €¢, being a closed subalgebra, is regularly embedded in €, as noted
in FREMLIN 02, 314Ga).

5B Proof of Theorem 1J Let ( > 1 be a countable ordinal, and I an infinite set. Suppose that
for 1 < ¢ < ¢ we are given a Ramsey ultrafilter F¢ on I, and a function ¢ — 6(&,i) : I — ¢ such that
{i:0(£,1) > n} belongs to F¢ for every n < & Let (Ge)e<¢ be the family of ultrafilters on S* = |J, o 1"
constructed from (F¢)i<e<¢ and 0 as in 11. Suppose further that all the F¢ are non-isomorphic. Then G is
measure-centering.
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proof (a) It is enough to consider the case in which I =  is a cardinal. Let (2, ) be a probability algebra,
and (ar)res+ a family in 2 such that € = inf,cg+ fia, is greater than 0. By 5A, there are a probability
algebra (€,7), a family (€¢)e<¢ of closed subalgebras of €, a measure-preserving Boolean homomorphism
7 : A — € such that 7] = &g, and a family (¢¢)1<e<¢ such that, for 1 <& < ¢, Ye @ [[5-, Coe,5) — Ce is
a Boolean homomorphism and
e ((cs)o<n) = lims 7, Ucs,  Ye({Cs)s<n) C SUDsea Cs

whenever (cs)s<x € [[5., Co(e,5) and A € Fe.

(b) By 2Ea, there is a disjoint family (A¢)i1<e<¢ of subsets of I such that A¢ € F¢ for every & (This is
where we need to know that ¢ is countable.) Define T' C S* and « : T — [0,(] as follows. Start by saying

that @ € T and that a(0) = ¢. Having determined TN k™ and o : T N k™ — [0,(], where n € N, then for
7 € k™! say that 7 € T iff 7 is of the form o~ <§> where

ceTnNk", «afo)>0, 0€ Ay, o(m)<dforeverym<n,

and in this case set a(7) = 0(a(c),d). Continue. Observe that every member of T is a strictly increasing
finite sequence in k. For D C K, set Tp = T'NJ,,cn D™

(c) Set H =\, c¢<¢ Fe. Then Ty = {7 : 7 € Tp, a(r) = 0} belongs to G¢ for every D € H. P I aim to
show by induction on ¢ that if 7 € Tp and a(7) = & then {0 : 770 € T},} € G¢. The induction starts with
a(r)=0and {o: 770 € T},} = {0} € Gy. For the inductive step to a(r) =& > 0,

{0:{o:77<6>"0€ThH} € Goes)}
D2{0:0eD,77<I>eT, a(rm<é>) =0(£,0)}
(by the inductive hypothesis)
={0:0€ A:ND, 7(m) < for every m < domr} € Fe,

so{o: 770 €T} } € Ge. At the end of the induction, we can apply this to 7 =0 and { = (. Q

(d) Set ¢ = ma, for 7 € S*\T. For 7 € T define ¢, € €,(;) by induction on «(7), as follows. If a(7) = 0,
set ¢, = ma,. For the inductive step to a(7) =& > 0, a(77<6>) = 0(a(7),d) < «(7) whenever 77<6> € T.
S0 ¢;~ 4> is defined and belongs to €y 5y for every 6 < x. We can therefore set c; = ¢({cr~<5>)s5<x),
and continue. Inducing on a(7) when 7 € T, we see that ve, > € for every T € S*.

(e) For K C I, set ex = inf,cpy ¢r; let S be the family of those finite sets K C I such that ex # 0.
Interpreting inf () as 1¢, § € S. Moreover, if K € S, then {6 : K U{d§} € S} belongs to H. P Set v = sup K.
Take any £ such that 1 < & < (. Set

ds = inf{c,~cs5 : 7 €Tk, a(T) =&}
for § < &,
B={0:0€A¢, 6 >, dsnex # 0}.
If 6 € B, then
Trugsy = Tk U{T7 <> : 7 € Tk, ofT) = &},

because every member of T' is strictly increasing and 77 <> can belong to T only when ¢ € A,(;), that is,
when a(7) = €. So egugsy =dsnex #0 and K U{d} € S.
? If B¢ Fe, then B' ={§:6 € A¢, 6 >, dsnex = 0} belongs to F¢. So

ex C inf{c; : 7 € Tk, a(r) =&}
= inf ~ k) = inf aa) K
T(ler%“ff Ve({Crmcs>)<n) = Ye(( T(IEI?EE Crr<5>)6<n)

(because )¢ is a Boolean homomorphism and T is finite)
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C sup inf ¢,
= 565’ r€Tx T <LO>
a(r)=¢
(as noted in (a) above)
= sup ds.
seB’

But ex nds =0 for every 6 € B’ and ey # 0. X
Thus {0 : KU {d} € S} D B belongs to F¢. As £ is arbitrary, {0 : KU{0} € S} ¢ H. Q

(f) At this point, recall that H is dependently selective, by 2D. So there is a D € ‘H such that [D]<* C S,
that is, ex # 0 for every K € [D]<¥, that is, {¢; : 7 € Tp} is centered in €. It follows that {c, : 7 € T}}
is centered; but for 7 € T}, ¢, = ma,, so {a, : 7 € T} is centered, while T}, € G, by (c). As (2, i) and
(ar)res- are arbitrary, G¢ is measure-centering, by Proposition 1C(ii).

5C Lemma Suppose that I, J are sets and that F, G are measure-centering ultrafilters on I, J respec-
tively such that F is #(J)T-complete. If (2, i) is a probability algebra and (a;j)icr,jcs is a family in 2
such that inf;er jes fia;; > 0, there are A € F, B € G such that {a;; : i € A, j € B} is centered.
proof If J is finite then G is principal; taking B = {j} to be the singleton belonging to G, there is an A € F
such that {a;; : i € A} is centered, and we’re done. Otherwise, let k be the greatest cardinal such that F is
k-complete. Then r is two-valued-measurable and greater than #(.J), so must be greater than 2#(/). For
K € [J]< and i € J set bjx = infjcf a;j. Because F is k-complete, there is a family (yx)ges)<e in [0,1]
such that A* = {i : ib;jx = vk for every finite K C I} belongs to F. Take any ig € A*; then there must be
a B € G such that {a;,; : j € B} is centered, so that yx > 0 for every K € [B]<“. In this case, for each
K € [B]<¥, there is an Ax € F such that {b;x : i € A} is centered. Set A = A* V(g p is finite Ak then
A€ Fand {a;; :i € A,j € B} is centered. N

5D Lemma Suppose that Fo,... ,F, are filters on sets Iy, ..., I,. Let (K, L) be a non-trivial partition
of {0,...,n}, and (io,...,ix), (Jo,...,Ji) the increasing enumerations of K, L respectively. For A C
Iio X o, XIz’k andBQIjO X ... XIjl set

A#B ={(zo,... ,xn) : (@i, ... ,xi,) € A, (xjy,...,x5) € B} C Iy x...x I,
IfAeFiyx...xF and B € Fj, X ... X Fj, then A#B € Fox ... x Fp.
proof Induce on n. The induction starts with n =1 and k =1 = 0 and either A#B = A x B with A € F
and B € Fy, or A#B = B x A with B € Fy and A € Fi; in either case the result is trivial.

For the inductive step to n > 1, suppose to begin with that 0 € K. If K = {0}, then we have A € Fy
and B € F; X ... X F,, so that A# B can be identified with A x B € Fy X (F; X ... X F,), identified with
Fo X ... x Fp. Otherwise, set K’ = K \ {0}, so that (K’, L) is a non-trivial partition of {1,... ,n}. For
x € Iy, it is easy to see that

(A#B)[{z}] = {(x1,... ,2n) : (x,21,... ,2,) € A#B}

and

A{x}|#B = {(xiy, - yxi,) (T, T4y ,24,) € A}#B

are equal, where the interleaving A[{x}|#B is computed with regard to the partition (K’,L) and the
increasing enumerations (iy, ... i) and (jo,... , 7). Now

{z:(A#B){z}l e Fix ... x F} ={z: A{z}[#B € Fi x ... x F,}
D{x: A{z} e F, x ... x Fi.}
(by the inductive hypothesis, because B € Fj, X ... x Fj,)
€ .7:1'0 =Fo

because A € Fi;y X ... X F;,. So A#B € Fo x ... x F,.
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If 0 € L, the same argument applies, but looking at sections B[{x}] rather than A[{z}] and the partition
(K,L\ {0}) of {1,...,n}. So the induction proceeds.

5E Proposition Suppose that Fy, ... ,F, are non-isomorphic Ramsey ultrafilters. Then Fy X ... X F,
is measure-centering.

proof It is enough to consider the case in which every F; is based on a cardinal A\;. Induce on n. If n =0 we
just use Theorem 1Ba. For the inductive step, set kK = max;<, Ay, K ={i:i<n, \; =k}, L={i:1<n,
Ai < Kk} If K ={0,...,n} then we can use Theorem 1J with I = x and ¢ = n + 1. Otherwise, (K, L)
is a proper partition of {0,... ,n}. Let (ig,...,ix) and (jo,...,J;) be the increasing enumerations of K,
L respectively. Then the inductive hypothesis tells us that G = F;, x ... x F;, and H = Fj, x ... x Fy,
are measure-centering. Observe next that as every F;  is k-complete, so is G, while the base set of H is
Ajo X ... X Aj;, which has cardinal less than .

Let (A, ) be a probability measure, and (a;).er a family in 2 such that inf,c; ga, > 0, where I =
Xo X ... x A, Forz eI, set 2’ = (x;,...,25,) and 2’ = {xj,,... ,xj,), so that x — (2,2") is a bijection
between I and (I;, X ... x I;;) X (I, X ... x I;). By Lemma 5C, there are sets A € G, B € H such that
{a, : 2’ € A, 2" € B} is centered; that is, in the language of Lemma 5D, {a, : x € A# B} is centered. But
5D tells us that A#B € Fo X ... X F,. As {a;)zer is arbitrary, Fo X ... x F,, is measure-centering, and the
induction continues.

5F To prove Theorem 1K, we need to know a little more both about the extensions of measures described
in 1E and about the iterated products of 1I. It will be convenient to have a name for a relation extending
the Rudin-Keisler pre-ordering of the ultrafilters on a given set.

Definition If F and G are filters on sets I, J respectively, I will say that F <gk G if there is a function
f+J — I such that F = f[[G]]. Observe that <gk is a reflexive transitive relation on the class of all filters.

5G Proposition Let F and G be measure-centering ultrafilters such that F <gx G. Let (X, X, ) be a
compact probability space, and Az, Ag the extensions of p defined from F and G as in Theorem 1E. Then
Ag extends A\r.

proof Set I = JF and J =G, and let f: J — I be such that F = f[[G]]. Defining Ar and Ag from F
and G as in 1E, Ar C Ag and A\gA = ArA for every A € Ar. P Express A as lim;_, x F; where (E;);cy is
a family in X. For j € J, set Fj; = Ey(;); then A =lim; g F; € Ag and

/\]:A = hmi_,]: ,LLEi = limj_,g ILLFj = /\gA Q
Since Ar and Ag are complete probability measures and Az is inner regular with respect to Az, Ag extends

Az, by 3A(a-iii).

5H Proposition Let Fy,... ,F, be filters.

(a) Fo <rk Fo X F1 and F; <gk Fo X Fi.

(b) If Gy, . .. , G, are filters such that Gy <grk Fi for every k < n, then Gy X ... x G,, <px Fo X ... X Fy.
() H0<ky<hks<...<kp<mn,then Fr, X ... X Fr. <gx FoX...XFp.

proof Let I, = |J Fx be the base set of F, for each k.

(@) If fo : To x I — Iy and f; : Iy x Iy — I are the canonical projections, it is easy to see that
.7:0 = fo[[fo X .7:1]] and .7:1 = f1[[.7:0 X ]:1]]

(b)(i) If n = 1, set J, = |JGr and let fi, : I, — Ji be such that G, = fi[[Fi]] for k = 0 and k = 1. Setting
h(i,7) = (fo(3), f1(4)) for i € Iy and j € Jy, it is easy to check that Gy x G1 = h[[Fo x F1]] <rx Fo X Fi.

(i) For n > 2 the result now follows by induction.

(c) (i) Induce on n to see that Fy, <gx Fo X ... X F, whenever 0 < k < n; for the case n = k > 0, apply
(a) to the product (Fop X ... X Fr_1) X Fi; for the inductive step to n + 1 > k, observe that

Fr <R Fo X ... X Fp <gk (Fo X ... X Fp) X Fpi1
by the other half of (a).
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(ii) Now induce on m; the inductive step to m + 1 is

(J:ko I><.7'—'}€1 X ... K]:km) D<.7:km+1
<R (Fo X F1 X oo X Fr, ) X (Frp 41 X oo X Fp)
2 FoX ... X Fy,

using the inductive hypothesis, (i) here and (b) above for the first step.

5I These have been easy. For the next result we have to think a little harder, but the principles are the
same.

Proposition Let ¢, (I¢)1<¢e<c, (Fe)i<e<c, I, S*, 0 and (Ge)e<c be as in 1Ib, and suppose that {i : ¢ € I¢,
6(¢,7) > n} € Fe whenever n < £ < (. Then Fe, X ... X Fey <pk G¢ whenever 1 <&, <& <...<§&, <C(.

proof (a) The first step is to show that ¢ <gx G¢ whenever 1 < ¢ < (. P Let f : S* — I¢ be such that
f(7) = 7(0) whenever 7 # () and 7(0) € I¢. For A C I,

fﬁl[A] S gg < {Z 11 € IE’ {T r<>"TT E fﬁl[A}} € ga(&i)} S fg
= {irielg, {r: f(<i>77) € A} € Gyeiy} € Fe
<~ {i:iEA,S*Egg(§7i)}€f§ <:>A€f§.

So Fe = fl[G¢]] <rk Ge- Q

(b) Next, G,, <rk G¢ whenever n < ¢ < ¢. PP Induce on &. If £ = 7, the result is trivial. For the inductive
step to & > n, set J = {i : i € I, 6(§,i) > n}; then J € F¢, by hypothesis. For ¢ € J, the inductive
hypothesis tells us that G,, <rk Gp(e,i); let g; : S* — S* be such that g;[[Gy(¢ 5)]] = G, Now let g : S* — S*
be such that g(<i>"0) = g;(c) whenever ¢ € S* and i € J. For A C S*,

g A € Ge <= {ii€le, {T:9(<i>"7) € A} € Gyeiy} € Fe
= {izieJ {7:9:i(1) € A} € Gpe.iy} € Fe
— {izieJ g '[A € Goeiy € Fe
= {iriceJ AcGyeFs <= Acg,

so Gy = g[[G¢]] <rk 9[[0¢]]- Q

(c) It follows that if 1 <y < ... <&, < ¢ then Fe, x ... x Fey < Ge, . PP Induce on the pair (n,&,). If
&, = 1 then n = 0 and we just have to know that 71 <gk Gi, as in (a). For the inductive step to &, > 1,
if n = 0 we again have only to know that F¢, <gx G¢, <rk Gg,, this time using (b). If n > 0, let J be
{i:i€ Ie,, 0(&n,i) > &n1} € Fe,. For i€ J,

Fenoa X oo X Fey SRK e,y SRK Go(e,.0)

by the inductive hypothesis; let h; : S* — I¢, | x ... x I¢, be a function witnessing this. Now let A : §* —
Ie, x I, | x...xIg besuch that h(<i>"0) = (4, h;(0)) whenever i € J and o € S*. For A C I, x...xI¢,,

hYA] € Ge, {iviel,, {T:M<i>"7) € A} € Gye,iy} € Fe,
{izie J {7 h(<i>"T) € A} € Gy, i)} € Fen
{izieJ {7 :hi(7) € A[{i}]} € Goge,.i)} € Fen
{i:ieJ, Al{i}] € hillGoe,.»}]] € T,

{izied A[{i}] € Fe, X ... X Feo} € Fe,
Aefgn X (.7:57171 X ... D(]'-go) g}—gn X ... D<.7:,$0.

[
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So h witnesses that Fe¢, x ... x Fgy <rk Gg,, and the induction proceeds. Q
(d) Finally, if1< o < ... <&, < then fgn X ... X ]:Eo < ggn <RK gc.

5J Proof of Theorem 1K Let (X, X, 1) be a compact probability space. Then there is a measure A
on X, extending u, such that A(lim;_ z E;) is defined and equal to lim;_, » uE; whenever F is a Ramsey
ultrafilter on N and (E;);en is a sequence in 3.

proof (a) If there are no Ramsey ultrafilters on N, we can set A = u and stop; so let us suppose that
there is at least one Ramsey ultrafilter. Let § be a family of Ramsey ultrafilters on N consisting of just
one member of each isomorphism class. Fix a well-ordering < of § with greatest member F* and a ladder
system (0(€,%))1<e<ws,ien such that (6(£,%))ien is a non-decreasing sequence in &, and {6(¢,4) : ¢ € N} is
cofinal with &, whenever 1 < € < wy.

(b)(i) For any non-empty finite set V' C §, list it in <-increasing order as Fy < F1 < ... < F,, and set
HV:fn XL l><.7:0.

(ii) For any non-empty countable set W C § containing F*, list it in <-increasing order as (F¢)i<e<c,
where ¢ > 1 is a countable ordinal, and let Gy be the final ultrafilter on S* = J, .y N" defined from
(Fe)i<e<c and (0(&,1))1<e<c,ien by the process of 1Ib. By Theorem 1J, Gy is measure-centering.

(iii) IV C W C §, W is countable and contains F*, and V is finite and not empty, then Hy <gx Gw,
by 5I; so Hy is measure-centering (Proposition 1Da). Let Ay be the corresponding extension of p as
described in Theorem 1E.

(c) Consider the family A = {\y : V € [§]<“ \ {0}}. This is a collection of probability measures on X.
It is upwards-directed in the sense that if we have any two members of A they have a common extension
belonging to A. P If Vj, V4 are non-empty finite subsets of § with union V, then Hy, <gx Hy, by 5Hc,
so Ay extends Ay,, by 5G; and similarly Ay extends Ay,. Q Next, if Ag € A is countable, then there is
a measure on X extending every member of Ag. I Let W C § be a non-empty countable set, containing
F*, such that Ag C {\y : V € [W]<¥\ {0}}. Let A* be the extension of y corresponding to the measure-
centering ultrafilter Gy, If V' C W is finite and non-empty, then Hy <grk Gw, so A\# extends Ay; thus \#
extends every member of Ag. Q

By 3Ab, there is a measure A on X extending every member of A.

(d) Suppose that (E;);en is a sequence in ¥ and that F is a Ramsey ultrafilter on N. Then there is
a F' € § such that 7' = Mz is isomorphic to F. Let f : N — N be such that f[[F']] = F, and set
F; = Ey(j), as in the proof of 5G; then lim;_. 7 E; = lim;_, # F; and
)\(hmz_,]: Ez) = )\(limj_,]:/ Fj) = /\{F}(lim]‘_ﬂ:/ Fj)

is defined and equal to lim;_ 7 pF; = lim;_. 7 uE;. So A has the required property.

i)

6 Other kinds of ultrafilter

I return to the relatively concrete context of a proof of Theorem 1M, describing the relationships between
various classes of ultrafilters.

6A Proof of Theorem 1M, parts (a), (c) and (j) As usual, I begin by repeating the statements of
the results in question.

(a) A measure-linking ultrafilter is Hausdorff.

(b) A measure-centering ultrafilter is nowhere dense.

(j) It is relatively consistent with ZFC to suppose that every measure-centering ultrafilter is principal.

proof (a) Let F be a measure-linking ultrafilter on a set I, and f: I — J, g : I — J two functions such
that A= {i: f(i) # g(i)} € F}. Let (¢j);es be the standard generating family in B ; (Definition 3Be), and
for i € I set

a; = €5(;) \ €g(i) ifie A,

= 1 otherwise.
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Then inf;c; vya; > i, so there is a B € F such that a; na; # 0 for all ¢, j € B; we can suppose that B C A.
Now f[B]Ng[B] =0. P? Otherwise, there are 7, j € B such that f(i) = g(j). In this case,

0+#a; naj Cerey\egy) = 0. XQ
Since f[B] € f[[F]] and g[B] € g[[F], f[[F]] # g[[F]]; as f and g are arbitrary, F is a Hausdorff ultrafilter.

(b) Let I be a set, F a measure-centering ultrafilter on I and f : I — R a function. Let p be Lebesgue
measure on R. Let G C R be an open set, including Q, of measure at most %; for z € R, write <a> = z— |z
for the fractional part of . For each i € I, set

Ki = [0,1]\ (G + <f(i)>).
Then puK; > % Applying the definition 1A with 2 the algebra of measurable subsets of [0, 1], we see that
there is an A € F such that u((),., K;) > 0 for every non-empty finite L C A. Because all the sets K; are
closed subsets of the compact set [0, 1], there must be a point  of ;. , K;. In this case, z ¢ G + <f(i)>
for every i € A, that is, <f(i)> ¢ « — G for every i € A. Now x — G is a dense open subset of R,
so H = (x — G)NJ0,1[ is a dense open subset of ]0,1[, and H + Z is a dense open subset of R; while
fl) ¢ H+Z for every i € A. Thus f[A] is nowhere dense in R; as f is arbitrary, F is nowhere dense.

(j) (@) The point is that if there is a non-principal measure-centering ultrafilter F on a set I, then either
there is a non-principal nowhere dense ultrafilter on N, or there is a two-valued-measurable cardinal. B If
F is not closed under countable intersections, there is a partition of I into a sequence (A, )nen of sets not
belonging to F. Setting f(i) = n for i € A,,, we get a function f : I — N such that f[[F]] is a non-principal
ultrafilter on N. By Proposition 1Da f[[F]] is measure-centering, and by (b) above it is nowhere dense. On
the other hand, if F is closed under countable intersections, then there is a two-valued-measurable cardinal
(CoMFORT & NEGREPONTIS 74, 8.31; JECH 03, 10.2). Q

(8) In SHELAH 98, Theorem 3.1, Shelah proved that if ¢ = wy and $u, ({7 1 7 < wo, cfy = wy}) is
true, then there is a proper forcing notion P of cardinality ws such that

|Fp there are no non-principal nowhere dense ultrafilters on N.

In particular, this is so if we start from a model of V' = L (JECH 03, 13.20 & Exercise 27.4). Now, if we
begin with such a model, so that there are no two-valued-measurable cardinals (JECH 03, 17.1), then we
shall certainly have

|Fp there are no two-valued-measurable cardinals
(JECH 03, 21.2). So () tells us that

|Fp all measure-centering ultrafilters are principal.

6B Lemma (a) (cf. BLASS 74, Theorem 5) Let F be a uniform x-complete weakly Ramsey ultrafilter on
a regular infinite cardinal k. If (A¢)e<, is any family in F, there is an A € F such that #(A \ A¢) < & for
every £ < K.

(b) Let F be a weakly Ramsey ultrafilter on a set I, and D a disjoint family of subsets of x, none belonging
to F. Set Q@ = Upep[D]?. Then for any S C [£]? there is an A € F such that Q N [A]? is either included in
S or disjoint from S.

(c) Let F be a weakly Ramsey ultrafilter on a set I. If A € F, then F[A is weakly Ramsey, where
F[A=FNPA.

(d) Let F be an ultrafilter on a set I, and suppose that there is an A € F such that F[A is an arrow
ultrafilter. Then F is an arrow ultrafilter.

proof (a) For a < k, set h(a) = min{¢ : £ < K, a & A¢ \ }. Note that h=1[¢] & F for every £ < k, because
F is uniform and k-complete; so sup h[A] =  for every A € F. Set

So={{a,8}:a < B <k and h(a) > h(B)},
S1={{a,8}:a < B <k and h(a) =h(B)},
Sy ={{a,B}:a< < kand h(a) < h(8)},
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If A€ F then [A]2N Sy # 0. P? Otherwise, h(a)
and let & € A be such that h(a) = &; then h(8) =
Ag \ € are disjoint sets both belonging to F. XQ
Because F is weakly Ramsey, there is an A € F such that [A]? is disjoint from at least one of Sy and Sj.
case 0 If [A]2 N Sy = 0, then h(a) < h(B) whenever a, 3 € A and o < (. If € < k, take a € A such
that h(a) > . If B € A\ a, then h(S) > h(a) > € so § € A\ &; thus A\ A; € ANa has cardinal less than
K.

h(B) whenever a, § € A and o < 3. Set £ = min h[A]

>
& whenever § € A\ a. But this means that A\ o and

case 1 If [A]2N S; = 0, then h|A is injective. If £ < k, take a such that h(3) > £ for every 3 € A\ a;
then again A\ A¢ C AN« has cardinal less than k, as required.

(b) There is an A € F such that [A]? is disjoint from at least one of @ NS, @\ S and [I]? \ Q. Since
AZ D for any D € D, [A]*\ Q # 0. So [A]?> N Q is either disjoint from S or included in S.

(c) If So, Si, S are disjoint subsets of [A]?, then there is a B € F such that [B]? is disjoint from some
S;, and now ANB € F[Aand [ANB]*NS; = 0.

(d) If S C [I)? and k € N, then either there is a K € [A]¥ such that [K]?2 N (SN [A4]?) = 0 (in which case
K € [If and [K]2N S = () or there is a B € F[A such that [B]?> C SN [A]? (in which case B € F and
[B]? € 9).

6C Proof of Theorem 1Mc Every weakly Ramsey ultrafilter is an arrow ultrafilter.

proof (a)(i) To begin with, I will suppose that F is a uniform x-complete weakly Ramsey ultrafilter on an
infinite cardinal . Note that it follows at once that  is regular, since if A € [k]<" then .., £\  belongs
to F and cannot be empty. I aim to show, by induction on k, that if S C [k]? is such that [K]? meets S for
every K € [k]* then there is an A € F such that [4]? C S.

(ii) The cases k = 0 and k = 1 are vacuous, since there is a K € [x]* and [K]? = 0); and the case k = 2
is trivial, since if [K]2N.S # 0 for every K € [k]? then S = [x]?. For the inductive step to k > 3, take S C [k]?
such that [K]? meets S for every K € [k]*. For each £ < k set A¢ = {n:n < &, {{,n} € STU{&}. If there is
any ¢ such that A¢ ¢ F, then there is an A € F such that [A]? C S. P Set B = k\ A¢, S' = SU([]?\ [B]?);
because F is an ultrafilter, B € F. If K € [x]*~! and K ¢ B, then certainly [K]? meets S’. If K € [B]¥~1,
then K’ = K U {¢} belongs to [k]* and there is an L € S such that L C K'; now £ ¢ L so L C K and [K]?
meets S’. By the inductive hypothesis, there is a C' € F such that [C]? C S’; now A = BN C belongs to F
and [A]>C S. Q

(iii) So we may suppose that A¢ € F for every £ < k. By 6Ba, thereis an A € F such that #(A\A¢) < &
for every £ < k. Because k is regular, we can define inductively a strictly increasing family (€4 )a<x in &
by saying that £, is to be the least ordinal such that £, > &g for every 8 < a and A\ A, C &, whenever
n < supg, 3. Note that §, = supg., &g whenever o < & is a limit ordinal. Set Dy = £u11 \ {a for each
; then (Dqy)aex is a partition of k. Write @ for |, [Dal?.

One of Uy<y is even Pas Uacr is oad Pa belongs to F. Call this B. Then [ANB]> C SUQ. P If ¢,
n € ANB and £ < n, let a < (3 be such that £ € D, and n € Dg. If a = 3 then {&,n} € [D,)? C Q.
Otherwise, { <a+1< [ and A\ A¢ C &2 does not meet Dg, son € A and {{,n} € 5. Q

(iv) There is a C' € F such that Q N [C]?2 C S. P By 6Bb, there is a Cy € F such that Q N [Cp)? is
either included in S or disjoint from S. In the former case, we can take C' = Cj and stop. In the latter case,
#(CoND,,) < k for every o < K, so there is a C' € F such that #(C' N D,) < 1 for every a < k. But in this
case Q N [C]? is empty so is included in S. Q

(v) Now ANBNC € F and

[ANBNCP =[ANBPNn[CI?CSu(Qn[C]?)=S.
So we have a suitable member of F. Thus the induction continues, and it is the case for every k € N that if

S C [k]? is such that SN [K]? # 0 for every K € [x]*, then there is an A € F such that [A]? C S; that is, F
is an arrow ultrafilter.

(b) Accordingly the theorem is proved in the case of a uniform s-complete ultrafilter on an infinite
cardinal k. Now suppose that F is a uniform weakly Ramsey ultrafilter on an infinite cardinal x, and is not
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k-complete. Then there are a cardinal A < x and a family (Ax)a<x in F such that (1, _, A is empty. For
€ < r,set h(§) =min{a:a <\ ¢ A,}; for a < A, set D, = h™![{a}], so that {D,)a<x is a partition of
% into sets not belonging to F. Set Q = J,.,[Dal*-

Let S C [k]*> and k € N be such that [K]> NS # () whenever K € [r]*. Set Sy = [k]*>\ (SUQ) and
S1 = S\ Q. Then there is a B € F such that [B]? is disjoint from at least one of Q, Sy and S;. Since
#(B) = k > A, there is some « < A such that #(B N D,) > 2, and [B]? meets Q. Since B meets infinitely
many D, there is a K € [B]* such that #(K N D,) < 1 for every a; now [B]>NS; 2 [K]?N S is non-empty.
So [B]>N Sy =0, that is, [B]> C QU S.

By 6Bb again, there is a C' € F such that Q N [C]? is either included in S or disjoint from S. Since
#(C) = k > ), there must be an o < X such that #(C N D,) > k, in which case [C'N D,]? meets S; so we
must have Q N [C]? C S. So if we set A = BNC, A belongs to F and [4]? C SU(QN[C]?) =S. As S and
k are arbitrary, F is an arrow ultrafilter.

(c) Putting (a) and (b) together, we see that any uniform weakly Ramsey ultrafilter on an infinite set is
an arrow ultrafilter. Of course any principal ultrafilter is an arrow ultrafilter; so all uniform weakly Ramsey
ultrafilters are arrow ultrafilters. Finally, if F is any weakly Ramsey ultrafilter on any set I, let A € F be
a set of minimal size; then F[A is uniform; by 6Bc, F[A is weakly Ramsey, therefore an arrow ultrafilter;
by 6Bd, F is an arrow ultrafilter. So the proof is complete.

6D The following lemma is very well known in essence, though it is usually expressed in less quantitative
forms.

Lemma Let 2 be a Boolean algebra, and v : 2 — [0, 1] an additive functional such that v1 = 1. Suppose
that €, 6 € [0, 1] are such that § < €2, and that (a;);cs is a family in 2 such that va; > € and v(a;na;) <6

for all distinct 4, j € I. Then #(I) < 521—5'

proof It is enough to deal with the case in which I is finite and 2 is generated by {a; : i € I}, so that 2 is
finite and can be identified with a power set PX. Consider u =), ; xa; € RX. By Cauchy’s ineqality,

(D ul@{a})? < Y- vfa}- Y ule)via}

zeX zeX zeX

=vX. Z u(z)?v{r} = Z u(z)?v{r}.

reX rzeX

Now, setting m = #(I),

D ulefel = Y xai)r{z)

reX zeX i€l
= Z Z xai(z)v{z} = Z va; > em,
iel zeX i€l

Z u(z)?v{z} = Z xai(x)xa;(z)v{z} = Z v(a; Naj)

z€X zeX,ijel ijel
= Zuai +Zu(ai Naj) <m+om(m —1).
il i#]
So we get
1
em? <m+dm?, m<—,
€2—0

as claimed.
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6E Proof of Theorem 1Md (i) An arrow ultrafilter is strongly measure-linking.
(ii) An arrow ultrafilter on N is nowhere dense.

proof (i) Let F be an arrow ultrafilter on a set I, 2 a Boolean algebra, v : 20 — [0, 1] an additive functional
such that v(1ly) = 1, and {(a;);c; a family in 2 such that inf;c; va; = ¢ > 0. Take any 6 € }0,62[ and set

S ={{i,j} : i, j € I are distinct, v(a; na;) > 6}. Let k € N be such that k > i If K € [I]* then by

Lemma 6D there are distinct 4, j € K such that v(a; na;) > 6, that is, [K]? meets S. Because F is an arrow
ultrafilter, there is a J € F such that [J]? C S, that is, v(a; Na;) > d for all 4, j € J. As 2, v and (a;)ier
are arbitrary, F is strongly measure-linking.

(ii) (@) The key to the proof is the following: if D C ]0,1] is a countable set, there is a set S C [D]?
such that [K]?2 NS # () for every K € [D]? and A is nowhere dense whenever A C D, [A]2 C S and 0 € A.
P Let < be a well-ordering of D in order type at most w. Let {(€;);cp be a family of strictly positive real
numbers with sum at most 1. For m, k € N set Hy,p, = |27k, 27 (k + 1)[; for t € D let my € N be such
that 27™~1 < ¢ < 27™¢, Define G, inductively, for ¢t € D, following the well-ordering <, in such a way
that, writing m for my,

Gt g ]27m’ 1[7

s¢ Gyifs<t,

GiNGs=0if s <t and m, > m,

for 1 <k < 2™, Gy N Hpyi is a non-empty open interval of length at most 27 ™¢;.
To see that this is possible, note that when we come to choose G the forbidden points in J;j com Hmg
consist of some of the the finitely many s < ¢, together with Us_<t’m3>m G.,; and the latter meets each H,y,p,
in a finite union of intervals of total length at most ), 27™e, < 27™, so there must be a gap remaining.

Note that ms < m; whenever s € G¢. On completing the inductive construction, set

S = {{s,t} :s,t € D are distinct, s ¢ G; and t ¢ G,}.
If K € [D)? then either there are distinct s, t € K such that mg = my, in which case {s,t} € SN [K]?, or
K = {s,t,u} where ms; < my; < my. If {t,u} ¢ S, then ¢t € G, so u < ¢t and G; N G, is empty. But this
means that one of {s,t}, {s,u} belongs to S. So in all cases we have [K]?2 NS # 0.
Now suppose that A C D is such that 0 € A and [A]2 CS. ForeachmeNand k> 1 thereisate A

such that m; > m. In this case, A cannot meet Gy, so A cannot include H,,;. As m and k are arbitrary, A
is nowhere dense. Q

(B) Let F be an arrow ultrafilter on N, and f : N — R a function. Set g(n) = arctan f(n) for n € N;
then g is bounded; set z = lim,_, 7 g(n). Set h(n) = %|g(n) — z| for n € N; then h takes values in [0, 1] and

lim,,—,z h(n) = 0.
If Ag = {i: h(i) = 0} belongs to F, then f[Ao] is a singleton, and is certainly nowhere dense. Otherwise,
set D = h|N]\ {0}, and let S C [D]? be as in (). Set

S1={{4,j}:4,j €N, either i € Ay or j € Ay
or h(i) = h(j) or {h(i), h(4)} € S}.

If K C Nand [K]?NS; =0, then h K is injective, h[K] C D and [h[K]]>NS =0, so #(K) < 2. Because F
is an arrow ultrafilter, there is an A € F such that [A]? C S;; we can suppose that AN Ay is empty, so that
h[A] € D and [h[A]]? € S. But now recall that lim, 7 h(n) = 0, so 0 € h[A] and h[A] is nowhere dense,
by the choice of S. In this case, B = h[A] U (—h[A]) is nowhere dense, g[A] C z + 7B is nowhere dense, and

f[A] = tan[g[A]] is nowhere dense. As f is arbitrary, F is a nowhere dense filter.

6F The next lemma is a version of one which I learnt from Michel Talagrand when visiting him in 1987.
He claims to have no recollection of it.

Lemma (M.Talagrand) (a) For finite I, J C N, say that I < J if #(I) = #(J) and #(I \ k) < #(J \ k) for
every k € N.
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(i) = is a transitive relation.

(ii) If I < J, there are Ip,... I, such that I = lp < I < ... < I, = J and #([ A1) = 2 for every
k<.

(iii) Suppose that m > 1. For n € N, set

In=4{I:1Cn, #(INJ)>m whenever J Cn and J = I}.

2™\/n

m

5

Then #(Z,,) <

(b) IflgmgneN,Ianand#(IﬂJ)meorall[,JEI,then#(I)SQn‘/ﬁ.

m

proof (a)(i) is trivial.

(ii) Induce on r = #(I'\ J). If r = 0 then I = J and we can stop. For the inductive step to r + 1, set
io = max(I'\ J), jo = max(J \ I). Then iy < jo. P

#(I\ jo) < #(J\jo) =#UINJ\ Jo)

so I'\ jo=1INJ\ jo does not contain ig, and ig < jo; but of course ig # jo. Q
Set J' = JA{ig, jo}. Then

#IN\ k) < 4T\ k) = #(J"\ k) if k <o or jo <k,
=#INT\E) < #((J\{jo}) \ k) = #(J"\ k) if do <k < jo,
sol xJ =g J. Also #(I\ J') = r and #(J'AJ) = 2. By the inductive hypothesis, there are Iy,... , I,

such that I =Tp K 1 < ... < I, = J and #([xAlp+1) = 2 for every k < r; setting I,.,1 = J, we have an
appropriate chain to complete the inductive step.

(iii) For I C N and n € N, set h,(I) = min{#(I NJ): INn =< J Cn}. Then we find that

hoi1(I) = ho(I) + 1if n e I,
= max(0, h,,(I) — 1) otherwise.
P (o) If n € I, then for J C n+1we have IN(n+1) g Jiff n € Jand INn < JNn; 80 hyy1(I) = by (1) +1.

(B) If n ¢ I, let J besuch that INn < J Cnand #(INJ) = h,(I). If h,(I) = 0 then J witnesses that
hn+1(I) = 0. Otherwise, take any ig € I N J, and consider J' = JA{ig,n}; we shall have

INm+1)=INnJ=xJ Cn+1,

S0 hpt1(I) < #(INJ') = hy(I)— 1. Thus hp41(I) < max(0,h,(I) —1). () Again supposing that n ¢ I,
take J Cn+1suchthat IN(n+1)xJand #(I NJ) =hpt1 (D). Ifn ¢ J, then

Inn=INn(n+1)xJCn

s0 hp(I) < #(INJ) = hpi1(I). fn C J, then INn < JNn and again h,(I) < hpp1(I). If n € J but
n ¢ J, set jo =max(n\J) and J = JA{jo,n}. For k € N,

#INn\k) < #(J\k) =4\ k) if k < jo,
<n—k=#J\k)if jo <k <n,
=0=#(J'\k)if k>n.

SoINn<J and
ho(I) <#INJT)<H#INJT)+1=hpp1(I)+ 1.

Thus we must have hp41(I) > h,(I) — 1, and of course hp41(I) > 0, so hy11 (1) > max(0,h,(I) — 1). Q
We have hy+1 = hy, + g, Where
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gn(I)=1ifnel,
=—-1ifh,(I)>0and n ¢ I,
=0if h,(I)=0and n ¢ I.
Giving PN its usual probability measure, matching vy on {0, 1}, and writing E for expectation with respect
to this measure, we have
E(h7 1) = E(h7) + 2E(hn X gn) + E(g7)-
Now E(h,, x g,) = 0, because given that h,,(I) # 0 then g, (I) is equally likely to be +1; while E(¢g2) < 1

<1
Since ho(I) = 0 for every I, we see by induction that E(h2) < n for every n € N. Consequently E(h,) < /n.
Now Z, ={INn: h,(I) > m}, so

#(Ta) = 2" Pr(hn = m) < ZE(R,) < 2V,

(b) Induce on w(Z) = > ;o7 > icr(n — ). If w(Z) = 0 then T must be empty and the result is trivial.
For the inductive step to w(Z) = k + 1, then if Z C 7, as defined in (a-iii), we can stop. Otherwise, there
must be an Iy € T\ Z,, and Jy C n such that Jy = Iy and #(Iy N Jy) < m, so that Jy ¢ 7.

By (a-ii), Zyp and Jy are linked by a =<-chain of sets each differing from the preceding one at just two
points; so there must be I; € Z, J; € Pn\ T such that I} < J; and #(I1AJ;) = 2. Let i1 be the member
of I \ J; and j; the member of J; \ I1; of course iy < j;. Define ¢ : T — Pn by saying that

(]5(]) = IA{il,jl} ifi; €1, J1 ¢ I and IA{il,jl} ¢ Z,
= I otherwise.
Then ¢ is injective. Set J = ¢[Z], so that #(Z) = #(J), while w(J) < w(Z). Now #(J N J') > m for all
J, JeJ. PSetI=¢"Y(J), I'=0¢"1(J). Then

—ifI=Jand I' = J' surely #(JNJ)=#INI)>m;
—— if I # J and I’ # J’, then

#(JNJ') = #((IAi, 1)) N (I'A{i, i }) =#UNT) >m

because iy € INT and j; ¢ TUT;
—ifI=Jand I' # J and j; € I, then jy ¢ I', J' = I'A{i1,j1} so

HINT) = #INT) = #INT) > m;
—ifI=Jand I' # J and 4y ¢ I, then 4, € I', J' = I'A{i1, j1} so
B NT) = #(INT) > #INT) > m:
—ifI=Jand I' #J and 4y € I and j; ¢ I, then I = IA{i1,j1} € Z so
BTN J) = £ Din, D) 0 (AL i) = #0701 > m
because iy € I'\ I"” and j; € I\ I'.

Similarly, #(J NJ') > m if I' = J" and I # J. Thus in all cases we have #£(JNJ') > m. Q
By the inductive hypothesis,

EVB > () = #(T)
and the induction continues.

6G Proposition (V.Bergelson-M.Talagrand) There are a probability algebra (2, i) and a sequence
(an)nen in A such that pa, > % for every n and I has zero asymptotic density whenever I C N and
infy, ner f(am nay) > 0.

proof For 7 € N, set K, = {n:2" —1<n <2""! — 2} and
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Ke={I:1Cr+1,#(I) > u{I:0e1Crt1, #(I) =",

so that #(K,) = #(K,) = 2". For each r € N let h, : K, — K, be a bijection. Set X = [[,oy(r + 1), with
the product p of the uniform probabilities on the factors; let (2, i) be the measure algebra of y. Define
A, C X, for n € N, by saying that 4,, = {z : « € X, z(r) € h.(n)} for that r such that n € K,; as
#(hy(n)) > =, pA, > 1. Set a, = A, € 2, so that fia, > 3 for every n.

Let I C N and € > 0 be such that f(a,, nay,) > € for all m, n € I. For r € N, set J,. = h,.[I N K,]. If J,
J' € T, then #(JNJ') > e(r+1). So, setting m, = [e(r + 1)],

#INK,) = #(J,) < TVt

my.

for each r, by 6Fb, and
2 T#(INK,) < i”“ ~0

as r — 00. So I has zero asymptotic density, as claimed.

6H Proof of Theorem 1M, parts (e)-(g)

(e) A strongly measure-linking ultrafilter on N contains a set of zero asymptotic density.

(f) A closed Lebesgue null ultrafilter on N contains a set of zero asymptotic density.

(g) If cov NLen = ¢, there is a measure-centering ultrafilter on N which is neither strongly measure-linking
nor closed Lebesgue null.

proof For I C N write d*(I) for its upper asymptotic density; write Z for the asymptotic density ideal
{I:d*(I)=0}.

(e) Let (A, @) and (an)nen be as in 6G. If F is a strongly measure-linking ultrafilter on N, there is an
I € F such that inf,, ,er f(amnay,) > 0,80 I € Z.

(f) Let (tn)nen be a sequence in [0,1] which is equidistributed for Lebesgue measure, and F a closed
Lebesgue null ultrafilter on N. Then there is an I € F such that F = {t, : n € I'} is negligible. So d*(I) =0
(FREMLIN 03, 491B).

(g) By Theorem 1Bc, we have a measure-centering ultrafilter on N which contains no set of zero asymptotic
density, so can be neither strongly measure-linking nor closed Lebesgue null.

61 I turn now to the proofs of 1IMh-1Mi. While these are expected results, they seem to depend on some
non-trivial combinatorial probability theory. For the rest of this section, I will write Nwd for the ideal of
nowhere dense subsets of R and Z for the ideal {A: A CR, AN[0,¢] € Nwd for some € > 0}.

Lemma Suppose that D C R.
(a)(i) If D ¢ N'wd there is a D’ C D, with no isolated points, such that D’ ¢ Nwd.
(ii) If D ¢ T there is a D’ C D, with no isolated points, such that D’ ¢ 7.
(b) Suppose that S C [D]? is such that {t: {s,t} ¢ S} € N'wd for every s € D.
(i) If D ¢ N'wd there is a D' C D such that [D']? C S and D’ ¢ N'wd.
(ii) If D ¢ T there is a D’ C D such that [D']? C S and D’ ¢ T.

proof (a) Set G = int D, D’ = DN G; then D’ has no isolated points and D\ D’ C D\ G is nowhere dense.
SoD' ¢ Nwdif D¢ Nwdand D' ¢ Tif D ¢ T.

(b) By (a), we can suppose that D has no isolated points. Let (V},),cn enumerate a base for the topology
of R and choose (s,)nen inductively so that

sn €D, {si,sp}e€Sfori<n, ifV,ND#(thens, €V,
for each n. Set D' = {s,, : n € N}; then [D']> C S and D’ is dense in D. So D' ¢ Nwd if D ¢ N'wd and
D ¢TitD¢T.

6J Lemma Suppose that D C R, and that S C [D]? and k € N are such that [K]2N S # () for every
K € [D]*.
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(a) If D ¢ N'wd, then there is a D’ C D such that D’ ¢ N'wd and [D']? C S.
(b) If D ¢ Z, there is a D’ C D such that D' ¢ 7 and {t: t € D', {s,t} ¢ S} € T for every s € D'.

proof For t € D set S} = {s:se€ D\ {t}, {s,t} ¢ S}.

(a) Induce on k. If k < 1 the result is vacuous and for k = 2 it is trivial. For the inductive step to k > 3,
if S} € N'wd for every t € D, then 61(b-i) tells us that there is a D’ C D such that [D’]*> C S and D’ ¢ Nwd.
Otherwise, take ¢ such that S ¢ Nwd. If K € [S{]*~! then K U {t} € [D]* so thereis a J € [K U{t}]*N S;
since K C S;, t ¢ J and J C K. By the inductive hypothesis, there is a D’ C S} such that [D']> C S and
D ¢ Nwd.

(b) Again induce on k; as before, the case k < 2 is trivial. For the inductive step to k > 3, if there is a
t € D such that S} does not belong to Z, then we can apply the inductive hypothesis to Sj.

6K Lemma Suppose that D C R, (2, ) is a probability algebra and that (a:):ecp is a family in 2 such
that € = infycp pias is greater than 0.

(a) Take any 6§ < €2, and set S = {{s,t} : s, t € D are distinct, ji(asna;) > §}. If k >

[K]? NS # 0 for every K € [D]*.

(b) If D ¢ Nwd and 6, n > 0 then there are an ¢ € 2 and a D’ C D such that D' ¢ Nwd, ji(as \e) <7
for every s € D', and whenever d C e, jid > 0 then {s: s € D', p(asnd) < nid} € Nwd.

(c) If D ¢ 7 there are a D’ C D and an n > 0 such that D’ ¢ Z and {s: s € D', s > ¢, filas nay) < n} €
Nwad for every t € D’.

(d) If D ¢ 7 there are a D’ C D and an n > 0 such that D' ¢ Z and {t : t € D', t < s, ji(as nay) < n} €
Nwd for every s € D'.

(e) If D ¢ T there are a D’ C D and an n > 0 such that D’ ¢ 7 and fi(as na) > n for all s, t € D',

1
€25’

then

proof (a) This is immediate from Lemma 6D.
(b) Set
vy=inf{ud:de WU, {s:s€ D, jlas\d) <n(l —pd)} ¢ Nwd}.

Let e € A be such that D' = {s: s € D, ji(as\ e) <n(1 — pe)} is not in Nwd and jie < v+ 4. If d C e and
ad > 6, set C ={s:se D plasnd) <nid}. For any s € C,

i(as\ (e\d)) = fi(as \ €) + ias nd) < (1 — fie) + nid = 1(1 — fi(e\ d)).
But also ji(e\ d) < ~; by the definition of v, C' € N'wd, as required.

(c) The proof proceeds by induction on the least n > % The case n < 2 is trivial, because if € > 3 then
we can take D' = D and n = € — % For the inductive step to n > 3, take 2, i and (a;)tep as described.
Let § > 0 be such that § < e—%; set g = 2.

case 1 Suppose that whenever A, B C D, A ¢ Nwd and B ¢ T there are A’ C A, B’ C B such that
A ¢ Nwd, B ¢Z and {s:se€ A, plasnas) <no}t € Nwd for every ¢ € B’. In this case, choose (A, )nen,
(Bn)nen inductively, as follows. Start with Bo = D N [0,00[. Given that B, ¢ Z, let o € ]0,27"] be such
that By, \ [0,a] ¢ Nwd. Then there are 4,, C B, \ [0,«a] and B,+1 C B, N[0, ] such that 4,, ¢ Nwd,
Bni1 € Z and {s:s € A,, jilasnay) <no} € Nwd for every ¢ € B,,. Continue.
At the end of the induction, choose for each n € N an A% C A,, such that A% ¢ Nwd and fi(as nat) > no
for every s, t € Ay; this is possible by (a) above and Lemma 6Ja. Set D’ = |J,,cy Ar,» 7 = no; this works.

case 2 Otherwise, take A, B C D such that A ¢ Nwd, B ¢ Z and whenever A’ C A, B’ C B,
A ¢ Nwd and B’ ¢ 7, then {s : s € A, i(asnas) < no} ¢ Nwd for some ¢ € B’. By (b), there are
e €A, A’ C A such that A’ ¢ Nwd, fi(as\e) < for every s € A’, and whenever d C e and fid > 79 then
{s:se€ A, ilasnd) < dpd} € Nwd.
Set B ={t:te€ B, plagne) > 6}. T If B’ ¢ T, then there is a t € B" such that C = {s : s € A,
pdlasnay) <mot ¢ Nwd. But C C {s:s € A, ulasn(azne)) < dji(a; ne)}, which is nowhere dense, by
the choice of A" and e. X
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Accordingly B’ € Z; set D1 = B\ B’ ¢ Z. Since there are s € A’ and ¢t € D1, we have
e—0<pas;—d<pe=plevay)+palena) —pa; <14+06—e<1,

and 1\e # 0. Consider the principal ideal ;\. with the normalized measure 7 where va = lﬁ—?e for
a € Ay e; set ap = ay \ e for t € Dy. Then

e—0 1
1—e+6 n—1

vay >

(by the choice of §) for every t € Dy. So the inductive hypothesis tells us that there are a D’ C D; and an
n >0 such that D’ ¢ Z and {s:s € D', s > t, i(asna;) < n} € Nwd for every t € D'.

(d) Set 6 = 2€2, o = 302, Putting (a) here and Lemma 6Jb together, there is a D; € D such that
Dy ¢Z and {t:te€ Dy, i(asnas) <} €T for every s € Dy. Let (an)nen be a strictly decreasing sequence
in ]0,1] such that a,41 < oy, and A, = Dy N a1, an] ¢ Nwd for every n € N. By (b), we can find
for each n € N an A, C A, and an e, € 2 such that A}, ¢ Nwd, fi(as\e,) < 30 for every s € A/, and
whenever d C e, and fid > 1o then {s: s € A, i(asnd) < £6ad} € Nwd; moreover, by Lemma 61(a-i), we
can suppose that A/ has no isolated points. Of course jie, > ¢ — d for every n; since § < (e — )2, there is
an infinite J C N such that (e, ne,) > § whenever m, n € J and m < n. (Apply Ramsey’s theorem to
{{m,n} :m <n, glem ne,) <d}.)

If m € J and J' C J is infinite, there are an infinite J” C J’ and a set A” C Al such that A/ is dense
in Al and fi(asney) > no whenever s € A and n € J”. P Let (V,,)nen enumerate a base for the topology
of R. Choose ($p)nen, (Jn)nen inductively, as follows. jg is to be any member of J’ greater than m. Given
that j; > m for i < n,

{s:seAl,, iilasnej,) <no} C{s:se€ A, ilasnej,) < %6;1(6,,1 nej, )}
e Nwd

for every ¢ < n, so there is an s, € A,, such that f(as, nej) > no for every ¢ < n, and if A, NV,
is not empty then we can take s, € V,. Given s; for i < n, where n > 1, then there is an r € N
such that {¢t : ¢ € D1 N[0,¢,], i{as, na;) < &} is nowhere dense for each ¢ < n; so if we take j, € J’
such that j, > max(j,—1,7), there is a t € A} such that ji(as, na;) > ¢ for every i < n, in which case
fi(as, nej,) > 8—%6 > no for every i < n. Continue; at the end, set A/, = {s; : i € N} and J” = {j; : i € N}.
Q

We can therefore find an infinite I C J and a family (A! ),.er of sets such that A/ is dense in A/, and
fi(as ney) > no whenever m < n in I and s € A7,. But this will mean that {t : t € AL, fi(asnay) < 30} €
Nwd whenever m < nin I and s € A7),.

Finally, by Lemma 6Ja, there is for each m € I an A%, C A" such that A% ¢ Nwd and {¢t : ¢t € A% |

m m

flasnay) < 6} € Nwd for every s € A¥,. So setting D' = |, .; A%, we shall have a suitable set, with
1
n= 55770~

mel

(e) Putting (c) and (d) together, we see that there are an 7 > 0 and a D; C D such that D; ¢ 7 and
{t .t € Dy, plasnay) < n} € Nwd for every s € D;. By Lemma 6I(b-ii) there is a D’ C D; such that
D' ¢ 7T and fi(asnat) > nfor all s, t € D'.

6L Proof of Theorem 1Mh If ¢ = wy, there is a strongly measure-linking ultrafilter on N which is not
nowhere dense, therefore not measure-centering nor an arrow ultrafilter.

proof (a) Set D = QN|[0,1]. Let ((aet)ten)e<w, run over all families (a;)tcp in B, such that infyep D,a; >
0. Choose a family (D¢)¢<,, of subsets of D inductively, as follows. The inductive hypothesis will be
that (,c; Dy ¢ T for every finite J C & Start with Dy = D. Given (Dy)y<¢, where 1 < & < wy,
let (6(¢,n))nen run over £, and take a strictly decreasing sequence (a,)nen, with infimum 0, such that
Cpn = lant1, [NV (N;<,, Doce,iy € Nwd for every n € N. Then C' = |J,,cy Cn ¢ Z. By Lemma 6Ke, there is
a D¢ C C such that D¢ ¢ T and inf, yep, %, (ags Nage) > 0. Since De N[0, an[ € (,;<,, Do(e,i) for every n,
Den mneJ D,, ¢ T for every finite J C &, and mneJ D,, ¢ T for every finite J C £ + 1. Continue.
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(b) At the end of the induction, let F be an ultrafilter on D containing every D¢ and no nowhere
dense set; then F is not nowhere dense. But F is strongly measure-linking. I If 2 is a Boolean algebra,
v : A — [0, 1] an additive functional such that 1 =1, and (a¢)tep is a family in 2 such that inf;cp va; > 0,
then (as in (iv)=(i) of the proof in 3C) there is a Radon probability measure u on the Stone space Z of 2,
identified with the algebra of open-and-closed subsets of Z, which extends v. Taking T to be the o-algebra
of subsets of Z generated by {a; : t € D}, (B, 1) to be the measure algebra of (Z, T, u[T) and a; € B the
equivalence class of a; € T for each ¢t € D, we see that inf,cp fia; > 0. As in part (ii)=(iv) of the proof in
3C, there is a measure-preserving Boolean homomorphism 7 : %8 — 9, and now there must be a & < w;
such that ma; = ag for every t € D. In this case, D¢ € F and

inf&teDg l/(as N at) = infs,teDg ij(ags N agt) > 0.
As 2, v and (a¢)iep are arbitrary, F is strongly measure-linking. Q

(¢) Thus we have a strongly measure-linking ultrafilter on the countably infinite set D which is not
nowhere dense. Of course it follows at once that there is such an ultrafilter on N. By parts (b) and (d-ii) of
Theorem 1M it cannot be either measure-centering or an arrow ultrafilter.

6M To convert the last result into a proof that there can be a Hausdorff p-point ultrafilter which is not
measure-centering, I use the language of ‘game strategies’. Let GHI™¢ be the game for two players, Empty
and Non-empty, in which
Empty chooses m > 1,
Non-empty chooses k € N,
Empty chooses n > 1, a set B with mn members, and a set Ly C [B]",
given i < k and L;, Non-empty chooses f;, g; : L; — N with f;(a) # g;(a) for every a € L;,
given ¢ < k and L;, f; and g;, Empty chooses L;11 C L; such that f;[L;11] N gi[Lit1] = 0.
A run of the game ends when Empty has chosen Ly; Empty wins if (| Ly = 0; otherwise Non-empty wins.
Note that the game is determined, that is, one of the players has a winning strategy. (Since the game
always terminates after finitely many moves, it is an ‘open’ game in the usual terminology of infinite games.)

6N Lemma Empty has a winning strategy in the game GHlm-c,
proof (a) To begin with, suppose that ¢ = w.

(i) By Theorem 1Mh, there is a strongly measure-linking ultrafilter F on N which is not measure-
centering. By Theorem 1Ma, F is a Hausdorff ultrafilter. Let (a;)jen be a sequence in 9B, such that
€ = inf en 7,a; is greater than 0, but there is no A € F such that {a; : j € A} is centered

(ii) Let Lo be the family of finite subsets L of N such that inf;cr a; = 0 in B, and for ¢ € N set

Lit1 ={L:L € L; and for every pair f, g of nowhere equal functions defined on L there

isan L' € £; such that L’ C L and f[L']| Ng[L'] = 0}.
By the choice of (a;)jen, every member of F has a finite subset belonging to £o. In fact, if A € F and i € N,
A has a finite subset belonging to £;. I® Induce on . For the inductive step to i+ 1,  suppose, if possible,
that A € F has no finite subset belonging to £;11. For each r € N, ANr ¢ L;,1, so there are nowhere
equal functions f,., g, defined on AN such that if L C A, is such that f.[L] N g,[L] is empty, then L ¢ L;.
Adjusting f,, g, if necessary, we can suppose that f.(j) < 2j and g,(j) < 25+ 1 for every j € ANr. In this
case, there will be functions f: A — N, g : A — N such that for every finite L C A there is an r € N such
that L Cr, fI[L = f.[L and g|L = g, [ L; of course f and g are nowhere equal. Because F is a Hausdorff
ultrafilter, there is an A’ C A such that A’ € F and f[A'] N g[A’] = (. Now A’ has a finite subset L € L;,
by the inductive hypothesis. Take r such that f.|L = f|L and g,|L = g|L; since f.[L]Ng.[L] =0, L & L;,
which is absurd. XQ

(iii) T am now in a position to describe a winning strategy for Empty. His first move should be m > 1
such that % < €. Suppose that Non-empty responds with k € N. By (ii), £y is not empty; take Lo € L.
Let B be the finite subalgebra of B, generated by {a; : j € Lo}; let r be the number of atoms of B. Let

n > r be such that % <e— % and every atom of 8 has measure at least %, and let C' be a partition
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of unity in B, such that every member of C' has measure ﬁ and for every atom b of B the number of
members of C' included in b is the maximum possible value [mnfi(b)]. For j € Lo, set K; = {c: c e C,
¢ C a;}; then #(K;) > n (because the number of members of C' not included in any atom of 9B is at most
r < mne —n, so #(K;) > mnjfi(a;) — (mne —n) > n). Take K C K; to be a set of size n for each j € Ly;
because n > r, we can suppose that whenever b is an atom of B included in a;, there is a c € K ; included
in b. Consequently j — K : Ly — [C]" is injective. Finally, Empty plays (n,C, Lj) for his second move,
where Ly = {K’ : j € Lo}.

For subsequent moves, given that ¢ < k, Empty has played L, C L{; and Non-empty has played nowhere-
equal functions f, ¢;, the rule for Empty is as follows. The inductive hypothesis will be that L; = {j : K ; €
L}} belongs to Ly_;. Define f;, g; on L; by saying that f;(j) = f{(K?}), g:(j) = gi(K}) for j € L;; because
L; € Ly, there is an L;11 € L_;—1 such that L;y; C L; and f;[L; 1] N g;[Li+1] is empty. Now Empty
plays L, = {Kj : j € Li1}, and the run continues.

At the end of the run, we get L € Ly. But this means that inf;cz, a; =0, so [
and Empty has won the run. Thus we have a winning strategy for Empty.

jeLy K} must be empty,

(b) This proves the result on the assumption that ¢ = w;. But now look at the logical nature of the
statement ‘Empty has a winning strategy in GH™ <. It makes no difference if Empty is required to choose
a member of N for the set B in his second move, following which all Non-empty’s moves will have to
belong to the countable set NIM™1" "all Empty’s moves will be in the countable set [[N]<¥]<¢, and the
deciding move Ly wins iff it too belongs to a specific countable set (the family of finite subsets of [N]<“
with empty intersection). We therefore have in fact a Borel code for the set of winning strategies for Empty.
By Shoenfield’s theorem (JECH 78, Theorem 98, or JECH 03, 25.20), the assertion that it is non-empty is
absolute for inner models of ZFC. Consequently it is absolute for forcing, that is, if P is any forcing notion,
then

Empty has a winning strategy in GHm-c

iff |Fp Empty has a winning strategy in GHm-e,

Now take any forcing notion P such that

|Fpc=ws;

for instance, take P to be the partially ordered set of functions from countable ordinals to R, active upwards.
Then we shall have

|Fep ¢ = wi, so Empty has a winning strategy in GHIm-c,
and it follows that Empty has a winning strategy in GH™=¢ in the ordinary universe.

Remark No doubt there is a more illuminating proof of this lemma which does not employ considerations
of absoluteness.

60 Proof of Theorem 1Mi If p = ¢, there is a Hausdorff p-point ultrafilter on N which is not measure-
centering.

proof (a) By Lemma 6N, Empty has a winning strategy in GH/™°; let m > 1 be such that Empty has a
winning strategy with first move m. For each n € N, fix a set B,, of size mn. For n € N, set I, = [B,]"; set

I= UnENIn’
Lo = Un21{L :LC I, L =0},
and for i € N set

Lit1 ={L:L € L; and whenever f, g are nowhere equal functions defined on L, there is
an L' € £; such that L' C L and f[L'] Ng[L'] = 0}.
An easy induction shows that if i, n € N, L C L' C I,, and L € £;, then L' € L;.
For L € Ly, say that the depth depth(L) of L is the greatest k such that L € Lj; observe that
depth(L) < #(L) for every L. (The point is that every member of Ly has at least two members, so that
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for every L € Ly there are nowhere equal functions f and g defined on L such that if L’ C L and f[L] is
disjoint from g[L'], L' is a proper subset of L.) Say that A C I is deep if sup,,>; any, ez, depth(AN1,) is
infinite. Note that if A C B C I, then depth(B N I,,) > depth(A N I,,) whenever the latter is defined, so B
will be deep if A is.

Now let o be a winning strategy for Empty in GHI™¢ with first move m; we can suppose that o is such
that whenever Empty plays (n, B, Ly) = o(k) for his second move, he actually chooses B = B,,.

(b) Suppose that (m,k, (n, By, Lo), (fo,90), L1, (f1,91),--- , L;), where ¢ < k, is any partial run of the
game in which Empty follows the strategy o. Then L; € Lj_;. I Induce downwards on 4, starting with i = k.
At the end of the run, Empty must win, so we certainly have L a subset of Ly C I,, with empty intersection,
in which case Ly € Ly. For the inductive step down to ¢ < k, given that Empty has just played L;, let f, g be
any nowhere-equal functions defined on L;. Then Empty will reply with L; 11 = o(k, (fo,90),---,(f,9)) C L;
such that f[L;y1] N g[Liy1] = 0; by the inductive hypothesis, L;11 € L_;—1; as f and g are arbitrary,
L; € Li,_;, as required. Q

It follows that I is deep. P For every k € N there is a partial run, following Empty’s strategy, of the
form (m, k, (n, By, Lo)), where (n, By, Lo) = o(k), so that Ly € £, and the depth of I, is at least k. Q

(c) If AC T is deep and A’ C A, then at least one of A’, A\ A’ is deep. P Define f, g : I — {0,1} by
setting

fla)=1ifae A,
= 0 otherwise,

g(a) =1— f(a) for every a € I.

For every k, there is an nj € N such that AN, € Lx11. Since f and g are nowhere equal on AN, , there
isan Ly C ANI,, such that Ly € Ly and f[Lx] N g[Lg] = 0, that is, Ly is either included in A’ or disjoint
from A’. If L, C A’ for infinitely many k, then A’ is deep; otherwise, Ly C A\ A’ for infinitely many k and
A\ A is deep. Q

(d) If A C I is deep and f, g are nowhere equal functions defined on I, then there is a deep A’ C A such
that f[A’] and g[A’] are disjoint. I (i) If there is some j such that AN f~1[{j}] is deep, we can take this
for A’; similarly, if there is some j such that A N g=![{j}] is deep, this will serve for A’. By (c), we can
therefore restrict our attention to the case in which A\ (f~[M]U g~1[M]) is deep for every finite set M.
(ii) Choose (ng)ren, (Mk)ren inductively in such a way that, for each k € N,

ng > n; whenever i < k,

depth(AN I,, \ (f_l[Mk] U g_l[Mk])) >k+1.
Then we have for each k an Ly € AN, \ (f7'[My] U g '[My]) such that depth(Ly) > k and f[Lj] is
disjoint from g[Ly|. Setting A" = (J; cyy Lk, we see that A’ C A is deep and f[A'|Ng[A] =0. Q

(e) If £ < p and (A,),<¢ is a family of deep subsets of I such that A, \ A¢ is finite whenever ( <n < ¢,
then there is a deep set A C I such that A\ A, is finite for every n < £&. I Let P be the set of pairs
(J,D) where J C I, D C & are finite, ordered by saying that (J,D) < (J',D') if J C J'; D C D’ and
J'\J C A, for every n € D. Then P is a partially ordered set, o-centered upwards. For every k € N,
Qr = {(J,D) : (J,D) € P, there is an n € N such that depth(J N1I,) > k} is cofinal with P, because if
D C ¢ is finite then IN(), cp Ay is deep. For every n < ¢, @ = {(J,D): (J, D) € P, n € D} is cofinal with
P. By Bell’s theorem (FREMLIN 84, 14C) there is an upwards-directed R C P meeting every @y and every

mset A=U{J:(J,D) € R}. Q

(f) Let ((fe, ge))e<e enumerate the set of pairs (f,g) of nowhere equal functions from I to N. Because
p = ¢, we can use (d) and (e) to find a family (A¢)e<. of deep subsets of I such that
A¢ \ A, is finite whenever n < & <,
Je[Aeqq] is disjoint from ge[Agyq] for every € < c.
Let F be the filter on I generated by {A¢\J : § <¢, J € [I]<¥}. If f, g are any two nowhere-equal functions
on I, then (because f[I] U g[I] must be countable) there is a £ < ¢ such that for all a, b € I, f(a) = g(b) iff
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fe(a) = ge(b); so f[Aer1] N g[Aeqq] = 0. It follows that F is a Hausdorff ultrafilter. (It is an ultrafilter by
the argument in (c) above.) By construction, F is a p-point ultrafilter.

(g) F is not measure-centering. P Let (A, i) be any atomless probability algebra. For each n € N
let 7, : PB,, — 2 be a Boolean homomorphism which is measure-preserving for the uniform probability

measure on PB,. For n € N and a € I, set d, = m,a; then id, = ##(g)) = % If A€ F, thereisa { <c¢

such that A¢ \ A is finite, so A is deep; in particular, there is some n € N such that AN I, € Ly, that is,
AN I, has empty intersection. But now {d, : a € A} D m,[A N I,] is not centered. So (d4)qcr Witnesses
that F is not measure-centering. Q

Transferring F from the countably infinite set I to N, we have the required example.

7 Problems

7A If Martin’s axiom is true, the constructions used in the proof of Theorem 1B, given in 3F-3G, and
in the proof of existence of Ramsey ultrafilters in FREMLIN 08, provide three essentially different classes
of free measure-centering ultrafilters on N, and further measure-centering ultrafilters on x for w < kK < ¢;
moreover, since there are 2° Ramsey ultrafilters (FREMLIN 84, 26Ed), we get further measure-centering
ultrafilters on N from Theorem 1J. I know of no construction for a uniform measure-centering ultrafilter on
¢. Indeed, Martin’s axiom ensures that there is no such ultrafilter, for the following reason. A cardinal  is
a measure-precaliber of probability algebras if whenever (2, fi) is a probability algebra and (ag)e<,
is a family in 2 such that infe., fiae > 0, there is a set J C k, of cardinal x, such that {a¢ : £ € J} is
centered. If F is a uniform measure-centering ultrafilter on x, there will always be such a set belonging to
F, so k will certainly be a measure-precaliber of probability algebras. Now Martin’s axiom (or much less)
ensures that ¢ is not a measure-precaliber of probability algebras (see FREMLIN 08, 525D and 5250); so it
is certainly consistent to suppose that there is no uniform measure-centering ultrafilter on ¢. On the other
hand, it is also consistent to suppose that ¢ is a measure-precaliber of probability algebras (this happens, for
instance, if ¢ = wo and there is a subset of R of cardinal w; which is not Lebesgue negligible; see FREMLIN
08, 525L). So my question is: is it consistent with ZFC to suppose that there is a uniform measure-centering
ultrafilter on ¢? Could it even be consistent to suppose that for every infinite cardinal k there is a uniform
measure-centering ultrafilter on x?

7B I have been unable to answer the following question from Andreas Blass: is a weakly Ramsey ultrafilter
on N necessarily measure-centering?

7C Under what circumstances is the product F x G of two measure-centering ultrafilters measure-
centering? For instance, when the product is Hausdorff, will it always be measure-centering?

7D Is every Hausdorff ultrafilter measure-linking?
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