Version of 30.12.08

Invertive extensions
D.H.FREMLIN

University of Essex, Colchester, England

1 Basics

1A Definition Let (2, i) be a probability algebra and ® a semigroup of measure-preserving Boolean ho-
momorphisms from 2 to itself. By an invertive extension of (2, i, ®) I will mean a structure (€, \, 7, (¢) sca)
such that
(€, \) is a probability algebra,
7w : A — € is a measure-preserving Boolean homomorphism,

(9)pea is a family of measure-preserving Boolean automorphisms of €,

(¢h)~ = o) for all ¢, 1 € D,
¢m = 7o for every ¢ € ¥;
that is, 7 embeds 2 as a closed subalgebra of € in such a way that the Boolean homomorphisms in ® can

be simultaneously and consistently extended to automorphisms of €.

1B The problem When can we expect such an extension to exist?

When ® = {¢™ : n € N} for some ¢, we are looking for a ‘natural extension’ in the sense of FREMLIN
02, 383Yc; when expressed in terms of inverse-measure-preserving functions on probability spaces, this is a
classical construction (PETERSEN 83, 1.3G).

An obviously necessary condition is that ® should be right-cancellative in the sense that if ¢, ¢, ¢ € @
and ¢y = ¢'1p then ¢ = ¢'. (Because P consists of injective functions, it is necessarily left-cancellative.)

Note that, writing ¢ for the identity automorphism of A, (2, iz, ®) has an invertive extension iff (2, i, ® U
{¢}) has an invertive extension. I* Of course we need consider only the case in which ¢ ¢ ®. (i) If (A, i, D)
has an invertive extension (&, \, , <q~5>¢€<p), let 7 be the identity automorphism of €; then (€, \, 7, <¢~>>¢e¢>u{b})
is an invertive extension of (2, i, ® U {¢}). (ii) The reverse implication is at least equally elementary. Q

When (€, \, 7, <¢~5>¢€q>) is an invertive extension of (2, i, ®), the function ¢ +— ® is a semigroup homomor-
phism from @ to the group Autj € of measure-preserving Boolean automorphisms of €. It follows that if @
has an identity ¢ (which is necessarily the identity automorphism of 2, since it is injective and idempotent),
then 7 is an idempotent in Aut;(€), and must be the identity automorphism of €. Similarly, if ¢, ¢ form
an inverse pair in ® (that is, ¢1p = ¢ = ¢ is the identity in ®), we must have (51[) = z/;é =7 and 1/; = é‘l in
Aut; ().

2 Amenable semigroups

2A Definition (see FREMLIN 03, 449Ya) If S is a semigroup with identity e and X is a set, an action
of Son X is amap (s,z) — sex : S x X — X such that se(tex) = (st)sz and eex = x for every s, t € S and
x € X. A topological semigroup S with identity is amenable if for every non-empty compact Hausdorff
space X and every continuous action of S on X there is a Radon probability measure u on X such that

[ f(ssx)p(dz) = [ f(x)p(dz) for every s € S and f € C(X).

2B Proposition Abelian topological semigroups with identity are amenable.

proof (a) Let S be an abelian topological semigroup with identity e, and « a continuous action of S on a
non-empty compact Hausdorff space X. Let Pr(X) be the compact Hausdorff space of Radon probability
measure on X with the narrow topology (FREMLIN 03, 4370). For s € S and « € X, set §(z) = sex, so that
5: X — X is continuous. For u € Pr(X) and s € S, the image measure 5~ belongs to Pr(X) (FREMLIN
03, 4181); call it ssp. If s, t € S then st = 4, so
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$8(t3p1) = s3(ui=) = (ui=1)51 = u(sh) !
(FREMLIN 01, 234Ec!)

— (5t = (st)ous

and of course é is the identity function on X, so ésy = p. Thus ¢ is an action of S on Pr(X).
Note that if f € C(X), p € Pr(X) and s € S, then

[ fd(sip) = [ fd(ps=') = [ f(3(x))u(dz) = [ f(sox)p(da).

So we are looking for a fixed point in Pr(X) under the action s.

(b) s : S x Pr(X) — Pr(X) is continuous. ¥ Suppose that s € S, p € Pr(X), G C X is open and
(ssu)(G) > o in R. Let H be an open set such that uH > o« and H C 87 ![G], that is, sex € G for every
x € H. Because H is compact, G is open and e is continuous, there is a neighbourhood U of s in S such that
tex € G whenever t € U and z € H. Next, by the definition of the narrow topology, there is a neighbourhood
V of uin Pr(X) such that vH > « for every v € V. If t € U and v € V| then

(tw)(G) = vi~'[G] > vH > a.
As G and « are arbitrary, ¢ is continuous at (s, ). Q

(c) Let K C Pr(X) be a minimal non-empty compact convex set such that sey € K whenever p € K
and s € S. Then for any s € S there is a u € K such that sep = p. PP Start from any pg € K and take a
1
n+l
we set Ky = {p: p € K, ssp = p}, we shall have top € K for every t € S and p € K. Since also K is
compact and convex, it must be equal to K. But this means that every member of K is a fixed point under

cluster point of ( S o 8% o) nen. Q At this point, recall that we are supposing that S is abelian. So if

2C Proposition Let S be a semigroup with identity, endowed with its discrete topology. Then S is
amenable iff there is an additive functional v : PS — [0,1] such that vS = 1 and v{t : st € A} = vA
whenever A C S and s € S.

proof (a) Suppose that S is amenable.

(i) Consider its Stone-Cech compactification 3S. We can identify 35 with the Stone space of PS
(FREMLIN 03, 4A2Ib); for A C S let A be the corresponding open-and-closed set in 3S. For s, t € S set
5(t) = st; then the function 8 : S — S gives us a Boolean homomorphism A +— §71[A] : PS — PS and a
continuous function ¢, : 3S — BS such that ¢§1[//1\] = §*/1[\A] for every A C S (FREMLIN 02, 312Q)). Now
Gst = Qs for all s, t € S. P If AC S, then
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It follows that if we set sez = ¢4(z) for s € S and z € 55, « is an action of S on 8S; as S is being given its
discrete topology and every ¢, is continuous, « is a continuous action.

(ii) There is therefore a Radon probability measure g on S which is invariant in the sense that
J f(sez)p(dz) = [ fdu for every f € C(8S) and s € S. Set vA = p(A) for AC S. Then v : PS — [0,1] is
additive and vS = 1. Also, given A C S and s € S,

Formerly FREMLIN 00, 112Xd.
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vt st € A} = v(3YA]) = p(E1[A]) = (67 A]) = / X6 AN dp

_ / X(A) (st pldt) = / X(A) (st u(dt) = / x(A)dp = p(A) = vA.
So v is invariant in the sense required.

(b) Now suppose that there is a functional v as described, and that s is a continuous action of S on
a non-empty compact Hausdorff space X. Take any zo € S and for f € C(X) set 0(f) = f f(sexo)v(ds),
defining { ... dv as in FREMLIN 02, 363L. Then 6 is a positive linear functional and §(xX) = 1, so there is a
Radon probability measure p on X such that 0(f) = [ fdu for every f € C(X) (FREMLIN 03, 436J/436K).
If se Sand feC(X)", set g(x) = f(sex) for z € X; then g € C(X) and

[ st = [gau=o5) = f gttsaapian) = f f(se(tsa)via

z][f(stoxo)u(dt) = /000 v{t: f(stexg) > a}da
(FREMLIN 02, 363Le)

= /OOO v{t: f(texg) > atda
(because if A = {t: f(texo) > o} then v{t: f(stexg) > a} =v{t: st e A} =vA)

][f (texo)v(dt) = 0(f /fdy

Of course it follows at once that [ f(sex)u(dz) = [ fdp for every f € C(X). As s is arbitrary, p is invariant
in the sense demanded by the definition in §2A. As X and « are arbitrary, S is amenable.

2D Definition I will say that a topological semigroup with identity S is reverse-amenable if (S,¢) is
amenable, where sot = ts for s, t € §. S is reverse-amenable in its discrete topology iff there is an additive
functional v : PS — [0, 1] such that vS =1 and v{t:ts € A} = vA whenever A C S and s € S.

3 Sufficient conditions

3A Theorem Let (2, i) be a measure algebra, and ® a right-cancellative semigroup of measure-preserving
Boolean homomorphisms from 2 to itself. Suppose that ®¢gN...N P, is non-empty for all ¢g, ... , ¢, € P.
Then (2, /i, ®) has an invertive extension (€*, \*, 7, (¢*)scq) such that whenever (€,\, 7, (¢)seca) is an
invertive extension of (2, s ) there is a unique measure-preserving Boolean homomorphism ¢ : €* — €
such that 67* = 7 and Ugb = ¢a for every ¢ € ®.

proof (a) It will be enough to deal with the case in which the identity automorphism belongs to ®. Note
that {®y : b € B} is a filter base, because if ¢ € Py N ... NP, then Ptp C Py N ... N Pe,; let F be the
filter it generates.

(b) In the simple power Boolean algebra A® let B be the set of those families (as)sece With the property
that there is a 1) € ® such that asy = ¢ay for every ¢ € ®. Then B is a subalgebra of A®. P Suppose
that (ag)ece and (by)gsecae belong to B, and that = is either of the Boolean operations n, A . There are 9y,
11 € @ such that

Agpy = Paygs  bgyy = Pby,
for every ¢ € ®. Now there is a ¢ € ®1hg N PePy; suppose that ¢ = Y1y = Y111 where ¥, 1] belong to P.
Then, for any ¢ € ®,
g = Qg = PPy = Py = Py,
and similarly byy = ¢by. So
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Q) * b¢¢ = (d)a,/,) * ((ZSbw) = (ZS((W, * bw)
As ¢ is arbitrary,
(ag)peca * (bs)pce = (ag * by)peca
belongs to B. Since (1)4ca € B, B is a subalgebra of AT. Q
(c) M{ag)pcw) = limgy_. 7 fiay is defined in [0, 1] for every (ag)pce € B. P Let 1) € ® be such that
agy = Pay for every ¢ € ®. Then fiayy = fiay for every ¢. As {¢py : ¢ € @} € F, this is enough to show

1im¢_,]: Hag = [y - Q
It is easy to see that A : B — [0,1] is additive, and that A1g = 1.

(d)(i) For 6 € @, define  : A — A® by setting §((ag)peca) = (ag0)sca whenever (ag)pen € AL, Tt is
easy to see that 6 is a Boolean homomorphism.

(ii) 6¢) = 64 for all 6, 1 € . P If (ay)pcq € A%, then
00 ((ag)sea) = 0({agy)sca) = (asov)oce = 00 ({ag)ocs). Q

(iii) é[‘B] C B for every 0 € &. P If (ag)gca € B, let ¢ € O be such that agy = ¢pay, for every ¢ € P.
Then ®1 N ®0 is not empty; suppose that g, 11 € ® are such that 191 = 110. In this case, setting by = aes
for ¢ € @,

by = Qo0 = Agypoyy = PP0ay
= Qg = Py, 9 = Py, .

As ¢ is arbitrary, (by)peco = é((a¢)¢e¢) belongs to B. Q

(iv) If 6 € @, then \d = \. P Take @ = (ag)gca € B; set a = Aa and (bs)peo = fa. There is a 1) € @
such that fiagy = o for every ¢ € @ (see (c) above). Once again, take vy, ¢1 € ® such that oy = ¢1 6.
Then

fiboy, = Hagy,0 = PAgpey = @
for every ¢ € ®. Thus A((by)¢ca) = , that is, \a = \a. Q

(v) Define # : A — A® by setting 7a = (pa)scq for every a € 2A. Then 7 is a Boolean homomorphism.
If a € AU, then 7a € B, \Mra = fia and

Orta = 0((6a)sca) = (dWa)sca = Ta
for every 0 € ®. So O = #0 for every 0 € ®.

(e)(i) Taking Z to be the ideal {b: b € B, \b = 0}, we have a quotient algebra € = B/7 with a strictly
positive additive functional A} defined by setting A\jb* = \b for every b € B. Because \d = \ for § € ®, we
have Boolean homomorphisms 0* : €} — €% defined by setting 6*b* = (6b)* for every b € B, and \}0* = )\
for every 6. If 6, ¢» € ®@, then (0v)* = 0*¢* because 6y = 01 Setting 7% a = (fa)® for a € A, 7 : A — &

is a Boolean homomorphism, A\j7* = i and §*7* = 7*0 for every 6 € ®.
(ii) (The key.) For every 6 € @, 6* : € — & is surjective. PP If ¢ € €, let @ = (ag)gpco € B be such
that ¢ = a*. Define b = (bs)sca by saying that
b¢:a¢ if¢)=¢9,
=0if ¢p € &\ DY;

this definition is acceptable because @ is right-cancellative, so that 1 — 18 is injective. In this case, byg = ag
for every ¢, so 6b = a. We know that there is a ) € ® such that agy = Pa,, for every ¢ € @; in this case,

bypo = apy = Pay = Pbyyg
for every ¢. Thus b € B. Now
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0*b* = (6b)* =a* = c.
As c is arbitrary, 6* is surjective. Q

(F)(i) Taking €* to be the metric completion of €}, with the corresponding continuous extension A\* of
A, (€*,\*) is a probability algebra (FREMLIN 02, 392H?). The Boolean homomorphisms 6* : € — &5,
for 8 € ®, extend continuously to measure-preserving Boolean homomorphisms 6* . € — ¢*. Of course
m* : A — € can now be regarded as a measure-preserving Boolean homomorphism from 2 to €*. Because
0*p* = (0p)* and 0*7* = 70, 0*p* = (eip)* and 6*m = 7*0 for all 0, ) € ®. If € &, *[¢*] is a closed
subalgebra of €* (FREMLIN 02, 324Kb) including the topologically dense subalgebra €, so it is the whole
of &€*; thus 0* is surjective, therefore a measure-preserving automorphism.

So (€%, \*, 7%, (¢*)pea) is an invertive extension of (2, i, ).

(ii) ¢ = Ugeé(é*)*l[w*[ﬂ]]. P If c € &, it is of the form a® where @ = (ay)pco € B. Let § € O be
such that agp = ¢a for every ¢ € ®, where a = ay. In this case,

0*ch*a* = 0*a® = (fa)*

= (ap0)jes = (Pa)ee = (Fa)* = 7"a,

SO

c=(0")"}(r"a) € (") 2] Q

(g)(i) Now let (€,\, 7, (d)pca) be another invertive extension of (2, i, ®). In this case, for any a =

(ag)pca € B, oa = limy_.r ¢~ '7may is defined in €, and in fact there is a ¢ € ® such that ca = q~5_17m¢ for
every ¢ € 1. PP There is a 1) € ® such that agy = pay, for every ¢ € . In this case

~

(o) 'magy = o mday
1;_1<£_1<57mw = 1[)_17raw

for every ¢ € @, and oga = i_lﬁaw. Q
Evidently o : 8 — € is a Boolean homomorphism. If a € 2, then

ofa =limg_r ¢~ 'mpa = limy_ 5 ¢~ ¢ma = ma.

Ifa = (a¢)¢€¢, € ‘B, then

\oa = ;\(qﬁh_r)rJ}E ¢ lmay) = ;ﬂ‘ Mo tmay)
= (;me Aray) = (gllg_ﬂa¢ = \a
(all the limits here being of eventually-constant functions, so we do not even need to appeal to continuity).
So Ao = A.
(ii) If § € ®, then Ao = 0f. P Take @ = (ay)sce € B. Then
ofa = 0 ((age)pea) = limy—.x ¢~ mag,
SO
0 oba = limg .z 0 ¢ ' magy = limg_ £ ((59)_171'6%9.
By (g-i) and (a) we can find a ¢ € ® such that
oa=¢ 'ray, 60 'oba= (¢~9)_17ra¢g

whenever ¢ € ®. At this point observe that ®1 and ®6f meet, so there are 1y, ¥; € ® such that
1900 = o). In this case, taking ¢ = 119, both ¢ and ¢f belong to P, and

2Formerly 393B.
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oa = (59)_1ﬁa¢9, 0~ oba = (¢0) ' Tage,
so oa = 0"'ofa. As a is arbitrary, 6o = 6. Q

(iii) Because Ao = ), o induces a Boolean homomorphism &y : €} — € defined by saying that Goa® = oa
whenever a € 8; now

oo a = oma = Ta
for every a € 2. Next,
\Gpa® = Aoa = \a = \ja*,

050a® = 0oa = oba = 5¢(0a)* = 5o0*a"
whenever a € B and 0 € ®, so
oo =X, 050 = Gob*
for every 6 € ®.

(iv) Because Ay = )}, and €} is a topologically dense subalgebra of €*, &y has a unique extension to
a measure-preserving Boolean homomorphism & : €* — €; and we shall have
or*a=ma, Ao =\, 05=ac0*
for every 6 € ®, by continuity.
(v) Thus ¢ has the required properties. To see that it is uniquely defined, recall from (f-ii) that
Uges (0*)'n*[A] = €. Now if 6’ : € — € is another Boolean homomorphism such that '7* = 7 and
5'0* = 05" for every 0 € ®, we see that

5/(0*)7171_* _ (9)7155/(9*)71,”* _ (é)fla_la*(a*)flﬂ*
=)' =)'t =a5(0") " 1n*

for every 6 € ®. But this means that ' and & agree on € and are equal.
This completes the proof.

3B Corollary Let (2, ) be a measure algebra, and ® a semigroup of measure-preserving Boolean
homomorphisms from 2 to itself, with identity, which is right-cancellative and reverse-amenable in its
discrete topology. Then (2, i, ®) has an invertive extension.

proof Let v : P® — [0, 1] be an additive functional such that v® = 1 and v{¢ : ¢o» € A} = v A whenever
A C ® and ¢ € ¢ (2D). Then, in particular, v® = v(Pv) for every ¢ € @, so v(PYoN...NPY,) =1 for all
Yo, ...,y € @, and P satisfies the conditions of Theorem 3A.

3C Corollary Let (2, i) be a measure algebra, and ® a commutative semigroup of measure-preserving
Boolean homomorphisms from 2 to itself. Then (2, i, ®) has an invertive extension.

proof @ is right-cancellative (because it is left-cancellative), and ®yg N ... N Py, contains the product
g . .. ¥, whenever v, ..., 1, € ®, so again the conditions of Theorem 2E are satisfied.

3D Theorem Let (2, i) be a probability algebra, and ® a semigroup of measure-preserving Boolean
automorphisms of 2. Suppose that (2, i, ¥) has an invertive extension for every finitely generated sub-
semigroup ¥ of ®. Then (2, i, ®) has an invertive extension.

proof For I € [®]<“ let ¥ be the sub-semigroup of ® generated by I and (&, A7, 77, <q~51>¢€‘1,1) an invertive
extension of (U, &, ). For ¢ € &\ Uy, take é1 to be the identity automorphism of €;. Let F be an
ultrafilter on [®]“ containing {J : I C J € [®]<%} for every I € [®]<“. Let (€, \) be the probability algebra
reduced product [T;¢(g)<. (€r, Ar)|F (FREMLIN 02, 328C?).

3Later editions only.
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For ¢ € ® we have a function gz~5 : € — € defined by saying that
S({cn)yeray<e) = (B1en)ic o)<

whenever ¢y € € for every finite I C ®. Because every ¢; is a measure-preserving Boolean homomorphism,

sois ¢. If ¢, ) € ®, then {1 b1 = ()1} belongs to F, so ¢y = (¢np)™. If ¢ € ®, then {I : ¢ is
surjective} belongs to F, so ¢ : € — € is surjective, therefore is a measure-preserving automorphism. For
a €U, set ma = <7T1a>}e[<1>]<u? then 7 : % — € is a measure-preserving Boolean homomorphism. If ¢ € @,

then {1 : 7r¢ = ¢1~7r} belongs to F, so ¢ = ¢.
Thus (€, 5\, , <¢>¢€q>) is an invertive extension of (2, i, ®).

3E Lemma Let (2, i) be a probability algebra and ® a semigroup of measure-preserving Boolean homo-
morphisms from 2 to itself. Let £ > max(w, 7(A), #(®P)) be a cardinal, and (B,;, 7;) the measure algebra
of the usual measure on {0, 1}". Suppose that (2, i, ®) has an invertive extension. Then it has an invertive
extension (€, \, 7, (¢)gsca) where (€, \, 7, ¢) is the probability algebra free product of (2, i) and (B, )
(FREMLIN 02, 325K).
proof Let (€* \* 7*, <g5*)¢€q>) be an invertive extension of (2, i, ®). Let U* be the subgroup of the
automorphism group Agt ¢* generated by {¢* : ¢ € @}, and D the closed subalgebra of €* generated by
Uscw- 0[7*[A]]. Then ¢*[D is a measure-preserving Boolean automorphism of © for every ¢ € ®. Let
(€, )\, 0,€1) be the probability algebra free product of (D, \*[D) and (B, 7). For ¢ € ®, let $:€ — €be
the measure-preserving Boolean automorphism such that

(550 = 50‘1;*T@, <Z~5€1 =é€1.

(See the defining universal mapping theorem 325J in FREMLIN 02.) If ¢, ¢ € ® then (¢N1/))* = ¢**, so
(o) 1D = (¢"D) (D) and (¢h)” = ¢

Set m =eon* : A — €. Then

T = com* = 0" T = geort = ¢

for every ¢ € ®. So (€, \, 7, (@) sca) is an invertive extension of (A, i, ).

Now we come to the point. Consider 2’ = 7[]. This is a closed subalgebra of € included in D’ = £¢[D*].

If ¢ € €\ {0}, the relative Maharam type 7o/ (€.) of the principal ideal €. of € over ®,, = {cnd:d € D'} is
k (FREMLIN 02, 333E). Setting 2, = {cna:a €A},

k=Tp (€c) < (€c) < 7(e)
(because 2., C D! C €., see FREMLIN 02, 333Be)
< 7(¢)
(FREMLIN 02, 332Th)
< max(w, 7(D*), 7(Bk)
(FREMLIN 02, 334B)

= K.

Thus 7y (€.) = & for every non-zero ¢ € €. But this means that we have a measure algebra isomorphism
between € and the probability algebra free product of (2, i) and (B, ) which makes 7 : 2l — € correspond
to the canonical embedding of 2 in the free product (FREMLIN 02, 333F(ii)); which is what we needed to
know.

3F Theorem Let (2, i) be a probability algebra and ® a free semigroup of measure-preserving Boolean
homomorphisms from 2 to itself. Then (2, &, ) has an invertive extension.

proof Set £ = max(w,7(2)), and let (€, \,7,¢) be the probability algebra free product of (2, f) and
(B, 7). Let © C ® be a set such that @ is the free semigroup generated by ©. For 6 € O, let ®y be the
semigroup {6" : n > 1}. By 3C, (U, i, Py) has an invertive extension; by 3E, we can base this extension on

D.H.FREMLIN
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(€, \, ), so that there is a measure-preserving automorphism 6 :¢ — € such that 7 = 7. Writing Auty €
for the group of measure-preserving automorphisms of €, § — 6:0 — Aut; € must extend to a semigroup
homomorphism ¢ — ¢ : & — Auts €. The set {¢: ¢ € D, om = 7w} is a sub-semigroup of @ including O,
so is the whole of ®; thus (&, \, 7, <g?>>¢e¢,) is an invertive extension of (2, i, ®).
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