Invertive extensions

D.H.Fremlin

University of Essex, Colchester, England

1 Basics

1A Definition Let $(\mathfrak{A}, \bar{\mu})$ be a probability algebra and Φ a semigroup of measure-preserving Boolean homomorphisms from \mathfrak{A} to itself. By an **invertive extension** of $(\mathfrak{A}, \bar{\mu}, \Phi)$ I will mean a structure $(\mathfrak{C}, \bar{\lambda}, \pi, \langle \tilde{\phi} \rangle_{\phi \in \Phi})$ such that

```
(\mathfrak{C}, \bar{\lambda}) is a probability algebra,

\pi: \mathfrak{A} \to \mathfrak{C} is a measure-preserving Boolean homomorphism,

\langle \tilde{\phi} \rangle_{\phi \in \Phi} is a family of measure-preserving Boolean automorphisms of \mathfrak{C},

(\phi \psi)^{\sim} = \tilde{\phi} \tilde{\psi} for all \phi, \psi \in \Phi,

\tilde{\phi} \pi = \pi \phi for every \phi \in \Phi;
```

that is, π embeds $\mathfrak A$ as a closed subalgebra of $\mathfrak C$ in such a way that the Boolean homomorphisms in Φ can be simultaneously and consistently extended to automorphisms of $\mathfrak C$.

1B The problem When can we expect such an extension to exist?

When $\Phi = \{\phi^n : n \in \mathbb{N}\}$ for some ϕ , we are looking for a 'natural extension' in the sense of FREMLIN 02, 383Yc; when expressed in terms of inverse-measure-preserving functions on probability spaces, this is a classical construction (Petersen 83, 1.3G).

An obviously necessary condition is that Φ should be **right-cancellative** in the sense that if ϕ , ϕ' , $\psi \in \Phi$ and $\phi\psi = \phi'\psi$ then $\phi = \phi'$. (Because Φ consists of injective functions, it is necessarily left-cancellative.)

Note that, writing ι for the identity automorphism of \mathfrak{A} , $(\mathfrak{A}, \bar{\mu}, \Phi)$ has an invertive extension iff $(\mathfrak{A}, \bar{\mu}, \Phi \cup \{\iota\})$ has an invertive extension. \mathbf{P} Of course we need consider only the case in which $\iota \notin \Phi$. (i) If $(\mathfrak{A}, \bar{\mu}, \Phi)$ has an invertive extension $(\mathfrak{C}, \bar{\lambda}, \pi, \langle \tilde{\phi} \rangle_{\phi \in \Phi})$, let $\tilde{\iota}$ be the identity automorphism of \mathfrak{C} ; then $(\mathfrak{C}, \bar{\lambda}, \pi, \langle \tilde{\phi} \rangle_{\phi \in \Phi \cup \{\iota\}})$ is an invertive extension of $(\mathfrak{A}, \bar{\mu}, \Phi \cup \{\iota\})$. (ii) The reverse implication is at least equally elementary. \mathbf{Q}

When $(\mathfrak{C}, \bar{\lambda}, \pi, \langle \tilde{\phi} \rangle_{\phi \in \Phi})$ is an invertive extension of $(\mathfrak{A}, \bar{\mu}, \Phi)$, the function $\phi \mapsto \tilde{\Phi}$ is a semigroup homomorphism from Φ to the group $\operatorname{Aut}_{\bar{\lambda}} \mathfrak{C}$ of measure-preserving Boolean automorphisms of \mathfrak{C} . It follows that if Φ has an identity ι (which is necessarily the identity automorphism of \mathfrak{A} , since it is injective and idempotent), then $\tilde{\iota}$ is an idempotent in $\operatorname{Aut}_{\bar{\lambda}}(\mathfrak{C})$, and must be the identity automorphism of \mathfrak{C} . Similarly, if ϕ , ψ form an inverse pair in Φ (that is, $\phi\psi = \iota = \psi\phi$ is the identity in Φ), we must have $\tilde{\phi}\tilde{\psi} = \tilde{\psi}\tilde{\phi} = \tilde{\iota}$ and $\tilde{\psi} = \tilde{\phi}^{-1}$ in $\operatorname{Aut}_{\bar{\lambda}}(\mathfrak{C})$.

2 Amenable semigroups

2A Definition (see Fremlin 03, 449Ya) If S is a semigroup with identity e and X is a set, an **action** of S on X is a map $(s,x) \mapsto s \cdot x : S \times X \to X$ such that $s \cdot (t \cdot x) = (st) \cdot x$ and $e \cdot x = x$ for every $s, t \in S$ and $x \in X$. A topological semigroup S with identity is **amenable** if for every non-empty compact Hausdorff space X and every continuous action of S on X there is a Radon probability measure μ on X such that $\int f(s \cdot x) \mu(dx) = \int f(x) \mu(dx)$ for every $s \in S$ and $f \in C(X)$.

2B Proposition Abelian topological semigroups with identity are amenable.

proof (a) Let S be an abelian topological semigroup with identity e, and • a continuous action of S on a non-empty compact Hausdorff space X. Let $P_{\mathbf{R}}(X)$ be the compact Hausdorff space of Radon probability measure on X with the narrow topology (Fremlin 03, 4370). For $s \in S$ and $x \in X$, set $\hat{s}(x) = s \cdot x$, so that $\hat{s}: X \to X$ is continuous. For $\mu \in P_{\mathbf{R}}(X)$ and $s \in S$, the image measure $\mu \hat{s}^{-1}$ belongs to $P_{\mathbf{R}}(X)$ (Fremlin 03, 418I); call it $s \cdot \mu$. If $s, t \in S$ then $\hat{s}t = \hat{s}t$, so

$$\begin{split} s \hat{\bullet}(t \hat{\bullet} \mu) &= s \hat{\bullet}(\mu \hat{t}^{-1}) = (\mu \hat{t}^{-1}) \hat{s}^{-1} = \mu (\hat{s} \hat{t})^{-1} \\ (\text{Fremlin 01, 234Ec}^1) &= \mu (\hat{s} \hat{t})^{-1} = (st) \hat{\bullet} \mu; \end{split}$$

and of course \hat{e} is the identity function on X, so $\hat{e} \cdot \mu = \mu$. Thus \cdot is an action of S on $P_{\mathbf{R}}(X)$. Note that if $f \in C(X)$, $\mu \in P_{\mathbf{R}}(X)$ and $s \in S$, then

$$\int f d(s \cdot \mu) = \int f d(\mu \hat{s}^{-1}) = \int f(\hat{s}(x)) \mu(dx) = \int f(s \cdot x) \mu(dx).$$

So we are looking for a fixed point in $P_{\mathbf{R}}(X)$ under the action $\hat{\bullet}$.

(b) $\hat{\bullet}: S \times P_{\mathbb{R}}(X) \to P_{\mathbb{R}}(X)$ is continuous. **P** Suppose that $s \in S$, $\mu \in P_{\mathbb{R}}(X)$, $G \subseteq X$ is open and $(s\hat{\bullet}\mu)(G) > \alpha$ in \mathbb{R} . Let H be an open set such that $\mu H > \alpha$ and $\overline{H} \subseteq \hat{s}^{-1}[G]$, that is, $s\hat{\bullet}x \in G$ for every $x \in \overline{H}$. Because \overline{H} is compact, G is open and $\hat{\bullet}$ is continuous, there is a neighbourhood U of S in S such that S then S whenever S is a neighbourhood S of S in S such that S is a neighbourhood S of S in S such that S is a neighbourhood S of S is a neighbourhood S in S such that S is a neighbourhood S in S such that S is a neighbourhood S in S in S is a neighbourhood S in S in S is a neighbourhood S in S in S in S in S in S is a neighbourhood S in S in S in S in S is a neighbourhood S in S in

$$(t \cdot \nu)(G) = \nu t^{-1}[G] \ge \nu H > \alpha.$$

As G and α are arbitrary, $\hat{\bullet}$ is continuous at (s, μ) . **Q**

- (c) Let $K \subseteq P_{\mathbb{R}}(X)$ be a minimal non-empty compact convex set such that $s \cdot \mu \in K$ whenever $\mu \in K$ and $s \in S$. Then for any $s \in S$ there is a $\mu \in K$ such that $s \cdot \mu = \mu$. P Start from any $\mu_0 \in K$ and take a cluster point of $\langle \frac{1}{n+1} \sum_{i=0}^n s^i \cdot \mu_0 \rangle_{n \in \mathbb{N}}$. Q At this point, recall that we are supposing that S is abelian. So if we set $K_s = \{\mu : \mu \in K, s \cdot \mu = \mu\}$, we shall have $t \cdot \mu \in K_s$ for every $t \in S$ and $\mu \in K_s$. Since also K_s is compact and convex, it must be equal to K. But this means that every member of K is a fixed point under
- **2C** Proposition Let S be a semigroup with identity, endowed with its discrete topology. Then S is amenable iff there is an additive functional $\nu: \mathcal{P}S \to [0,1]$ such that $\nu S = 1$ and $\nu \{t: st \in A\} = \nu A$ whenever $A \subseteq S$ and $s \in S$.
- **proof** (a) Suppose that S is amenable.
- (i) Consider its Stone-Čech compactification βS . We can identify βS with the Stone space of $\mathcal{P}S$ (Fremlin 03, 4A2Ib); for $A \subseteq S$ let \widehat{A} be the corresponding open-and-closed set in βS . For $s, t \in S$ set $\widehat{s}(t) = st$; then the function $\widehat{s}: S \to S$ gives us a Boolean homomorphism $A \mapsto \widehat{s}^{-1}[A]: \mathcal{P}S \to \mathcal{P}S$ and a continuous function $\phi_s: \beta S \to \beta S$ such that $\phi_s^{-1}[\widehat{A}] = \widehat{s}^{-1}[A]$ for every $A \subseteq S$ (Fremlin 02, 312Q). Now $\phi_{st} = \phi_s \phi_t$ for all $s, t \in S$. \mathbf{P} If $A \subseteq S$, then

$$\begin{split} \phi_{st}^{-1}[\widehat{A}] &= ((\widehat{st})^{-1}[A]) \widehat{\ } = ((\widehat{st})^{-1}[A]) \widehat{\ } \\ \text{(because } (\widehat{st})(s') &= \widehat{s}(\widehat{t}(s')) = \widehat{s}(ts') = sts' = \widehat{st}(s') \text{ for every } s' \in S) \\ &= (\widehat{t}^{-1}[\widehat{s}^{-1}[A]]) \widehat{\ } = \phi_t^{-1}[(\widehat{s}^{-1}[A]) \widehat{\ }] = \phi_t^{-1}[\widehat{\phi}_s^{-1}[\widehat{A}]] = (\phi_s \phi_t)^{-1}[\widehat{A}]. \ \mathbf{Q} \end{split}$$

It follows that if we set $s \cdot z = \phi_s(z)$ for $s \in S$ and $z \in \beta S$, \bullet is an action of S on βS ; as S is being given its discrete topology and every ϕ_s is continuous, \bullet is a continuous action.

(ii) There is therefore a Radon probability measure μ on βS which is invariant in the sense that $\int f(s \cdot z) \mu(dz) = \int f \, d\mu$ for every $f \in C(\beta S)$ and $s \in S$. Set $\nu A = \mu(\widehat{A})$ for $A \subseteq S$. Then $\nu : \mathcal{P}S \to [0,1]$ is additive and $\nu S = 1$. Also, given $A \subseteq S$ and $s \in S$,

 $^{^{1}}$ Formerly Fremlin 00, 112Xd.

$$\begin{split} \nu\{t:st\in A\} &= \nu(\hat{s}^{-1}[A]) = \mu(\widehat{\hat{s}^{-1}[A]}) = \mu(\phi_s^{-1}[\widehat{A}]) = \int \chi(\phi_s^{-1}[\widehat{A}]) d\mu \\ &= \int \chi(\widehat{A})(\phi_s(t))\mu(dt) = \int \chi(\widehat{A})(s \cdot t)\mu(dt) = \int \chi(\widehat{A}) d\mu = \mu(\widehat{A}) = \nu A. \end{split}$$

So ν is invariant in the sense required.

(b) Now suppose that there is a functional ν as described, and that \bullet is a continuous action of S on a non-empty compact Hausdorff space X. Take any $x_0 \in S$ and for $f \in C(X)$ set $\theta(f) = \int f(s \bullet x_0) \nu(ds)$, defining $f \dots d\nu$ as in Fremlin 02, 363L. Then θ is a positive linear functional and $\theta(\chi X) = 1$, so there is a Radon probability measure μ on X such that $\theta(f) = \int f d\mu$ for every $f \in C(X)$ (Fremlin 03, 436J/436K). If $s \in S$ and $f \in C(X)^+$, set $g(x) = f(s \bullet x)$ for $x \in X$; then $g \in C(X)$ and

$$\int f(s \cdot x) \mu(dx) = \int g \, d\mu = \theta(g) = \int g(t \cdot x_0) \nu(dt) = \int f(s \cdot (t \cdot x_0)) \nu(dt)$$
$$= \int f(st \cdot x_0) \nu(dt) = \int_0^\infty \nu\{t : f(st \cdot x_0) \ge \alpha\} d\alpha$$

(Fremlin 02, 363Le)

$$= \int_0^\infty \nu\{t : f(t \cdot x_0) \ge \alpha\} d\alpha$$
 (because if $A = \{t : f(t \cdot x_0) \ge \alpha\}$ then $\nu\{t : f(st \cdot x_0) \ge \alpha\} = \nu\{t : st \in A\} = \nu A$)
$$= \int f(t \cdot x_0) \nu(dt) = \theta(f) = \int f d\mu.$$

Of course it follows at once that $\int f(s \cdot x) \mu(dx) = \int f d\mu$ for every $f \in C(X)$. As s is arbitrary, μ is invariant in the sense demanded by the definition in §2A. As X and • are arbitrary, S is amenable.

2D Definition I will say that a topological semigroup with identity S is **reverse-amenable** if (S, \diamond) is amenable, where $s \diamond t = ts$ for $s, t \in S$. S is reverse-amenable in its discrete topology iff there is an additive functional $\nu : \mathcal{P}S \to [0, 1]$ such that $\nu S = 1$ and $\nu \{t : ts \in A\} = \nu A$ whenever $A \subseteq S$ and $s \in S$.

3 Sufficient conditions

- **3A Theorem** Let $(\mathfrak{A}, \bar{\mu})$ be a measure algebra, and Φ a right-cancellative semigroup of measure-preserving Boolean homomorphisms from \mathfrak{A} to itself. Suppose that $\Phi\phi_0\cap\ldots\cap\Phi\phi_n$ is non-empty for all $\phi_0,\ldots,\phi_n\in\Phi$. Then $(\mathfrak{A},\bar{\mu},\Phi)$ has an invertive extension $(\mathfrak{C}^*,\bar{\lambda}^*,\pi^*,\langle\tilde{\phi}^*\rangle_{\phi\in\Phi})$ such that whenever $(\mathfrak{C},\bar{\lambda},\pi,\langle\tilde{\phi}\rangle_{\phi\in\Phi})$ is an invertive extension of $(\mathfrak{A},\bar{\mu},\Phi)$ there is a unique measure-preserving Boolean homomorphism $\bar{\sigma}:\mathfrak{C}^*\to\mathfrak{C}$ such that $\bar{\sigma}\pi^*=\pi$ and $\bar{\sigma}\tilde{\phi}^*=\tilde{\phi}\bar{\sigma}$ for every $\phi\in\Phi$.
- **proof (a)** It will be enough to deal with the case in which the identity automorphism belongs to Φ . Note that $\{\Phi\psi:\psi\in\Phi\}$ is a filter base, because if $\psi\in\Phi\psi_0\cap\ldots\cap\Phi\psi_n$, then $\Phi\psi\subseteq\Phi\psi_0\cap\ldots\cap\Phi\psi_n$; let $\mathcal F$ be the filter it generates.
- (b) In the simple power Boolean algebra \mathfrak{A}^{Φ} let \mathfrak{B} be the set of those families $\langle a_{\phi} \rangle_{\phi \in \Phi}$ with the property that there is a $\psi \in \Phi$ such that $a_{\phi\psi} = \phi a_{\psi}$ for every $\phi \in \Phi$. Then \mathfrak{B} is a subalgebra of \mathfrak{A}^{Φ} . \blacksquare Suppose that $\langle a_{\phi} \rangle_{\phi \in \Phi}$ and $\langle b_{\phi} \rangle_{\phi \in \Phi}$ belong to \mathfrak{B} , and that * is either of the Boolean operations \cap , \triangle . There are ψ_0 , $\psi_1 \in \Phi$ such that

$$a_{\phi\psi_0} = \phi a_{\psi_0}, \quad b_{\phi\psi_1} = \phi b_{\psi_1}$$

for every $\phi \in \Phi$. Now there is a $\psi \in \Phi \psi_0 \cap \Phi \psi_1$; suppose that $\psi = \psi_0' \psi_0 = \psi_1' \psi_1$ where ψ_0' , ψ_1' belong to Φ . Then, for any $\phi \in \Phi$,

$$a_{\phi\psi} = a_{\phi\psi_0'\psi_0} = \phi\psi_0' a_{\psi_0} = \phi a_{\psi_0'\psi_0} = \phi a_{\psi},$$

and similarly $b_{\phi\psi} = \phi b_{\psi}$. So

$$a_{\phi\psi} * b_{\phi\psi} = (\phi a_{\psi}) * (\phi b_{\psi}) = \phi (a_{\psi} * b_{\psi}).$$

As ϕ is arbitrary,

$$\langle a_{\phi} \rangle_{\phi \in \Phi} * \langle b_{\phi} \rangle_{\phi \in \Phi} = \langle a_{\phi} * b_{\phi} \rangle_{\phi \in \Phi}$$

belongs to \mathfrak{B} . Since $\langle 1 \rangle_{\phi \in \Phi} \in \mathfrak{B}$, \mathfrak{B} is a subalgebra of \mathfrak{A}^{Φ} . \mathbf{Q}

(c) $\lambda(\langle a_{\phi}\rangle_{\phi\in\Phi}) = \lim_{\phi\to\mathcal{F}} \bar{\mu}a_{\phi}$ is defined in [0,1] for every $\langle a_{\phi}\rangle_{\phi\in\Phi} \in \mathfrak{B}$. **P** Let $\psi\in\Phi$ be such that $a_{\phi\psi} = \phi a_{\psi}$ for every $\phi\in\Phi$. Then $\bar{\mu}a_{\phi\psi} = \bar{\mu}a_{\psi}$ for every ϕ . As $\{\phi\psi:\phi\in\Phi\}\in\mathcal{F}$, this is enough to show $\lim_{\phi\to\mathcal{F}} \bar{\mu}a_{\phi} = \bar{\mu}a_{\psi}$. **Q**

It is easy to see that $\lambda:\mathfrak{B}\to[0,1]$ is additive, and that $\lambda1_{\mathfrak{B}}=1.$

- (d)(i) For $\theta \in \Phi$, define $\hat{\theta} : \mathfrak{A}^{\Phi} \to \mathfrak{A}^{\Phi}$ by setting $\hat{\theta}(\langle a_{\phi} \rangle_{\phi \in \Phi}) = \langle a_{\phi\theta} \rangle_{\phi \in \Phi}$ whenever $\langle a_{\phi} \rangle_{\phi \in \Phi} \in \mathfrak{A}^{\Phi}$. It is easy to see that $\hat{\theta}$ is a Boolean homomorphism.
 - (ii) $\hat{\theta}\hat{\psi} = \widehat{\theta\psi}$ for all θ , $\psi \in \Phi$. **P** If $\langle a_{\phi} \rangle_{\phi \in \Phi} \in \mathfrak{A}^{\Phi}$, then $\hat{\theta}\hat{\psi}(\langle a_{\phi} \rangle_{\phi \in \Phi}) = \hat{\theta}(\langle a_{\phi\psi} \rangle_{\phi \in \Phi}) = \langle a_{\phi\theta\psi} \rangle_{\phi \in \Phi} = \widehat{\theta\psi}(\langle a_{\phi} \rangle_{\phi \in \Phi})$. **Q**
- (iii) $\hat{\theta}[\mathfrak{B}] \subseteq \mathfrak{B}$ for every $\theta \in \Phi$. \blacksquare If $\langle a_{\phi} \rangle_{\phi \in \Phi} \in \mathfrak{B}$, let $\psi \in \Phi$ be such that $a_{\phi\psi} = \phi a_{\psi}$ for every $\phi \in \Phi$. Then $\Phi \psi \cap \Phi \theta$ is not empty; suppose that $\psi_0, \psi_1 \in \Phi$ are such that $\psi_0 \psi = \psi_1 \theta$. In this case, setting $b_{\phi} = a_{\phi\theta}$ for $\phi \in \Phi$,

$$b_{\phi\psi_1} = a_{\phi\psi_1\theta} = a_{\phi\psi_0\psi} = \phi\psi_0 a_{\psi}$$
$$= \phi a_{\psi_0\psi} = \phi a_{\psi_1\theta} = \phi b_{\psi_1}.$$

As ϕ is arbitrary, $\langle b_{\phi} \rangle_{\phi \in \Phi} = \hat{\theta}(\langle a_{\phi} \rangle_{\phi \in \Phi})$ belongs to \mathfrak{B} . **Q**

(iv) If $\theta \in \Phi$, then $\lambda \hat{\theta} = \lambda$. **P** Take $\mathbf{a} = \langle a_{\phi} \rangle_{\phi \in \Phi} \in \mathfrak{B}$; set $\alpha = \lambda \mathbf{a}$ and $\langle b_{\phi} \rangle_{\phi \in \Phi} = \hat{\theta} \mathbf{a}$. There is a $\psi \in \Phi$ such that $\bar{\mu} a_{\phi\psi} = \alpha$ for every $\phi \in \Phi$ (see (c) above). Once again, take ψ_0 , $\psi_1 \in \Phi$ such that $\psi_0 \psi = \psi_1 \theta$. Then

$$\bar{\mu}b_{\phi\psi_1} = \bar{\mu}a_{\phi\psi_1\theta} = \bar{\mu}a_{\phi\psi_0\psi} = \alpha$$

for every $\phi \in \Phi$. Thus $\lambda(\langle b_{\phi} \rangle_{\phi \in \Phi}) = \alpha$, that is, $\lambda \hat{\theta} \boldsymbol{a} = \lambda \boldsymbol{a}$. **Q**

(v) Define $\hat{\pi}: \mathfrak{A} \to \mathfrak{A}^{\Phi}$ by setting $\hat{\pi}a = \langle \phi a \rangle_{\phi \in \Phi}$ for every $a \in \mathfrak{A}$. Then $\hat{\pi}$ is a Boolean homomorphism. If $a \in \mathfrak{A}$, then $\hat{\pi}a \in \mathfrak{B}$, $\lambda \hat{\pi}a = \bar{\mu}a$ and

$$\hat{\theta}\hat{\pi}a = \hat{\theta}(\langle \phi a \rangle_{\phi \in \Phi}) = \langle \phi \theta a \rangle_{\phi \in \Phi} = \hat{\pi}\theta a$$

for every $\theta \in \Phi$. So $\hat{\theta}\hat{\pi} = \hat{\pi}\theta$ for every $\theta \in \Phi$.

- (e)(i) Taking \mathcal{I} to be the ideal $\{\boldsymbol{b}:\boldsymbol{b}\in\mathfrak{B},\,\lambda\boldsymbol{b}=0\}$, we have a quotient algebra $\mathfrak{C}_0^*=\mathfrak{B}/\mathcal{I}$ with a strictly positive additive functional $\bar{\lambda}_0^*$ defined by setting $\bar{\lambda}_0^*\boldsymbol{b}^\bullet=\lambda\boldsymbol{b}$ for every $\boldsymbol{b}\in\mathfrak{B}$. Because $\lambda\hat{\theta}=\lambda$ for $\theta\in\Phi$, we have Boolean homomorphisms $\theta^*:\mathfrak{C}_0^*\to\mathfrak{C}_0^*$ defined by setting $\theta^*\boldsymbol{b}^\bullet=(\hat{\theta}\boldsymbol{b})^\bullet$ for every $\boldsymbol{b}\in\mathfrak{B}$, and $\bar{\lambda}_0^*\theta^*=\bar{\lambda}_0^*$ for every $\boldsymbol{\theta}$. If θ , $\psi\in\Phi$, then $(\theta\psi)^*=\theta^*\psi^*$ because $\widehat{\theta\psi}=\hat{\theta}\hat{\psi}$. Setting $\pi^*a=(\hat{\pi}a)^\bullet$ for $a\in\mathfrak{A},\,\pi^*:\mathfrak{A}\to\mathfrak{C}_0^*$ is a Boolean homomorphism, $\bar{\lambda}_0^*\pi^*=\bar{\mu}$ and $\theta^*\pi^*=\pi^*\theta$ for every $\theta\in\Phi$.
- (ii) (The key.) For every $\theta \in \Phi$, $\theta^* : \mathfrak{C}_0^* \to \mathfrak{C}_0^*$ is surjective. **P** If $c \in \mathfrak{C}_0^*$, let $\mathbf{a} = \langle a_{\phi} \rangle_{\phi \in \Phi} \in \mathfrak{B}$ be such that $c = \mathbf{a}^*$. Define $\mathbf{b} = \langle b_{\phi} \rangle_{\phi \in \Phi}$ by saying that

$$b_{\phi} = a_{\psi} \text{ if } \phi = \psi \theta,$$

= 0 if $\phi \in \Phi \setminus \Phi \psi;$

this definition is acceptable because Φ is right-cancellative, so that $\psi \mapsto \psi \theta$ is injective. In this case, $b_{\phi\theta} = a_{\phi}$ for every ϕ , so $\hat{\theta} \boldsymbol{b} = \boldsymbol{a}$. We know that there is a $\psi \in \Phi$ such that $a_{\phi\psi} = \phi a_{\psi}$ for every $\phi \in \Phi$; in this case,

$$b_{\phi\psi\theta} = a_{\phi\psi} = \phi a_{\psi} = \phi b_{\psi\theta}$$

for every ϕ . Thus $\boldsymbol{b} \in \mathfrak{B}$. Now

Measure Theory

$$\theta^* \boldsymbol{b}^{\bullet} = (\hat{\theta} \boldsymbol{b})^{\bullet} = \boldsymbol{a}^{\bullet} = c.$$

As c is arbitrary, θ^* is surjective. **Q**

(f)(i) Taking \mathfrak{C}^* to be the metric completion of \mathfrak{C}_0^* , with the corresponding continuous extension $\bar{\lambda}^*$ of λ^* , $(\mathfrak{C}^*, \bar{\lambda}^*)$ is a probability algebra (FREMLIN 02, 392H²). The Boolean homomorphisms $\theta^*: \mathfrak{C}_0^* \to \mathfrak{C}_0^*$, for $\theta \in \Phi$, extend continuously to measure-preserving Boolean homomorphisms $\tilde{\theta}^*: \mathfrak{C}^* \to \mathfrak{C}^*$. Of course $\pi^*: \mathfrak{A} \to \mathfrak{C}_0^*$ can now be regarded as a measure-preserving Boolean homomorphism from \mathfrak{A} to \mathfrak{C}^* . Because $\theta^*\psi^* = (\theta\psi)^*$ and $\theta^*\pi^* = \pi^*\theta$, $\tilde{\theta}^*\tilde{\psi}^* = (\tilde{\theta}\psi)^*$ and $\tilde{\theta}^*\pi = \pi^*\theta$ for all θ , $\psi \in \Phi$. If $\theta \in \Phi$, $\tilde{\theta}^*[\mathfrak{C}^*]$ is a closed subalgebra of \mathfrak{C}^* (FREMLIN 02, 324Kb) including the topologically dense subalgebra \mathfrak{C}_0^* , so it is the whole of \mathfrak{C}^* ; thus $\tilde{\theta}^*$ is surjective, therefore a measure-preserving automorphism.

So $(\mathfrak{C}^*, \bar{\lambda}^*, \pi^*, \langle \tilde{\phi}^* \rangle_{\phi \in \Phi})$ is an invertive extension of $(\mathfrak{A}, \bar{\mu}, \Phi)$.

(ii) $\mathfrak{C}_0^* = \bigcup_{\theta \in \Phi} (\tilde{\theta}^*)^{-1} [\pi^* [\mathfrak{A}]]$. **P** If $c \in \mathfrak{C}_0^*$, it is of the form \boldsymbol{a}^{\bullet} where $\boldsymbol{a} = \langle a_{\phi} \rangle_{\phi \in \Phi} \in \mathfrak{B}$. Let $\theta \in \Phi$ be such that $a_{\phi\theta} = \phi a$ for every $\phi \in \Phi$, where $a = a_{\theta}$. In this case,

$$\begin{split} \tilde{\theta}^* c \tilde{\theta}^* \boldsymbol{a}^{\bullet} &= \theta^* \boldsymbol{a}^{\bullet} = (\hat{\theta} \boldsymbol{a})^{\bullet} \\ &= \langle a_{\phi\theta} \rangle_{\phi \in \Phi}^{\bullet} = \langle \phi a \rangle_{\phi \in \Phi}^{\bullet} = (\hat{\pi} a)^{\bullet} = \pi^* a, \end{split}$$

so

$$c = (\tilde{\theta}^*)^{-1}(\pi^*a) \in (\tilde{\theta}^*)^{-1}[\pi^*[\mathfrak{A}]].$$
 Q

(g)(i) Now let $(\mathfrak{C}, \bar{\lambda}, \pi, \langle \tilde{\phi} \rangle_{\phi \in \Phi})$ be another invertive extension of $(\mathfrak{A}, \bar{\mu}, \Phi)$. In this case, for any $\boldsymbol{a} = \langle a_{\phi} \rangle_{\phi \in \Phi} \in \mathfrak{B}$, $\sigma \boldsymbol{a} = \lim_{\phi \to \mathcal{F}} \tilde{\phi}^{-1} \pi a_{\phi}$ is defined in \mathfrak{C} , and in fact there is a $\psi \in \Phi$ such that $\sigma \boldsymbol{a} = \tilde{\phi}^{-1} \pi a_{\phi}$ for every $\phi \in \Phi \psi$. \mathbf{P} There is a $\psi \in \Phi$ such that $a_{\phi\psi} = \phi a_{\psi}$ for every $\phi \in \Phi$. In this case

$$(\widetilde{\phi\psi})^{-1}\pi a_{\phi\psi} = \widetilde{\psi}^{-1}\widetilde{\phi}^{-1}\pi \phi a_{\psi}$$
$$= \widetilde{\psi}^{-1}\widetilde{\phi}^{-1}\widetilde{\phi}\pi a_{\psi} = \widetilde{\psi}^{-1}\pi a_{\psi}$$

for every $\phi \in \Phi$, and $\sigma \boldsymbol{a} = \tilde{\psi}^{-1} \pi a_{\psi}$. **Q**

Evidently $\sigma:\mathfrak{B}\to\mathfrak{C}$ is a Boolean homomorphism. If $a\in\mathfrak{A}$, then

$$\sigma \hat{\pi} a = \lim_{\phi \to \mathcal{F}} \tilde{\phi}^{-1} \pi \phi a = \lim_{\phi \to \mathcal{F}} \tilde{\phi}^{-1} \tilde{\phi} \pi a = \pi a.$$

If $\mathbf{a} = \langle a_{\phi} \rangle_{\phi \in \Phi} \in \mathfrak{B}$, then

$$\bar{\lambda}\sigma\boldsymbol{a} = \bar{\lambda}(\lim_{\phi \to \mathcal{F}} \tilde{\phi}^{-1}\pi a_{\phi}) = \lim_{\phi \to \mathcal{F}} \bar{\lambda}(\tilde{\phi}^{-1}\pi a_{\phi})$$
$$= \lim_{\phi \to \mathcal{F}} \bar{\lambda}(\pi a_{\phi}) = \lim_{\phi \to \mathcal{F}} \bar{\mu}a_{\phi} = \lambda \boldsymbol{a}$$

(all the limits here being of eventually-constant functions, so we do not even need to appeal to continuity). So $\bar{\lambda}\sigma = \lambda$.

(ii) If
$$\theta \in \Phi$$
, then $\tilde{\theta}\sigma = \sigma\hat{\theta}$. **P** Take $\mathbf{a} = \langle a_{\phi} \rangle_{\phi \in \Phi} \in \mathfrak{B}$. Then

 $\sigma \hat{\theta} \boldsymbol{a} = \sigma(\langle a_{\phi\theta} \rangle_{\phi \in \Phi}) = \lim_{\phi \to \mathcal{F}} \tilde{\phi}^{-1} \pi a_{\phi\theta},$

so

$$\tilde{\theta}^{-1}\sigma\hat{\theta}\pmb{a}=\mathrm{lim}_{\phi\to\mathcal{F}}\,\tilde{\theta}^{-1}\tilde{\phi}^{-1}\pi a_{\phi\theta}=\mathrm{lim}_{\phi\to\mathcal{F}}\,(\overset{\sim}{\phi\theta})^{-1}\pi a_{\phi\theta}.$$

By (g-i) and (a) we can find a $\psi \in \Phi$ such that

$$\sigma \boldsymbol{a} = \tilde{\phi}^{-1} \pi a_{\phi}, \quad \tilde{\theta}^{-1} \sigma \hat{\theta} \boldsymbol{a} = (\tilde{\phi} \theta)^{-1} \pi a_{\phi \theta}$$

whenever $\phi \in \Phi \psi$. At this point observe that $\Phi \psi$ and $\Phi \psi \theta$ meet, so there are ψ_0 , $\psi_1 \in \Phi$ such that $\psi_1 \psi \theta = \psi_0 \psi$. In this case, taking $\phi = \psi_1 \psi$, both ϕ and $\phi \theta$ belong to $\Phi \psi$, and

²Formerly 393B.

$$\sigma \boldsymbol{a} = (\tilde{\phi \theta})^{-1} \pi a_{\phi \theta}, \quad \tilde{\theta}^{-1} \sigma \hat{\theta} \boldsymbol{a} = (\tilde{\phi \theta})^{-1} \pi a_{\phi \theta},$$

so $\sigma \mathbf{a} = \tilde{\theta}^{-1} \sigma \hat{\theta} \mathbf{a}$. As \mathbf{a} is arbitrary, $\tilde{\theta} \sigma = \sigma \hat{\theta}$. \mathbf{Q}

(iii) Because $\bar{\lambda}\sigma = \lambda$, σ induces a Boolean homomorphism $\bar{\sigma}_0 : \mathfrak{C}_0^* \to \mathfrak{C}$ defined by saying that $\bar{\sigma}_0 \boldsymbol{a}^{\bullet} = \sigma \boldsymbol{a}$ whenever $\boldsymbol{a} \in \mathfrak{B}$; now

$$\bar{\sigma}_0 \pi^* a = \sigma \hat{\pi} a = \pi a$$

for every $a \in \mathfrak{A}$. Next,

$$\bar{\lambda}\bar{\sigma}_0 \mathbf{a}^{\bullet} = \bar{\lambda}\sigma \mathbf{a} = \lambda \mathbf{a} = \bar{\lambda}_0^* \mathbf{a}^{\bullet},$$

$$\tilde{\theta}\bar{\sigma}_0 \mathbf{a}^{\bullet} = \tilde{\theta}\sigma \mathbf{a} = \sigma\hat{\theta}\mathbf{a} = \bar{\sigma}_0(\hat{\theta}\mathbf{a})^{\bullet} = \bar{\sigma}_0\theta^*\mathbf{a}^{\bullet}$$

whenever $\boldsymbol{a} \in \mathfrak{B}$ and $\theta \in \Phi$, so

$$\bar{\lambda}\bar{\sigma}_0 = \bar{\lambda}_0^*, \quad \tilde{\theta}\bar{\sigma}_0 = \bar{\sigma}_0\theta^*$$

for every $\theta \in \Phi$.

(iv) Because $\bar{\lambda}\bar{\sigma}_0 = \bar{\lambda}_0^*$, and \mathfrak{C}_0^* is a topologically dense subalgebra of \mathfrak{C}^* , $\bar{\sigma}_0$ has a unique extension to a measure-preserving Boolean homomorphism $\bar{\sigma}: \mathfrak{C}^* \to \mathfrak{C}$; and we shall have

$$\bar{\sigma}\pi^*a = \pi a, \quad \bar{\lambda}\bar{\sigma} = \bar{\lambda}^*, \quad \tilde{\theta}\bar{\sigma} = \bar{\sigma}_0\tilde{\theta}^*$$

for every $\theta \in \Phi$, by continuity.

(v) Thus $\bar{\sigma}$ has the required properties. To see that it is uniquely defined, recall from (f-ii) that $\bigcup_{\theta \in \Phi} (\tilde{\theta}^*)^{-1} \pi^* [\mathfrak{A}] = \mathfrak{C}_0^*$. Now if $\bar{\sigma}' : \mathfrak{C}^* \to \mathfrak{C}$ is another Boolean homomorphism such that $\bar{\sigma}' \pi^* = \pi$ and $\bar{\sigma}' \tilde{\theta}^* = \tilde{\theta} \bar{\sigma}'$ for every $\theta \in \Phi$, we see that

$$\bar{\sigma}'(\theta^*)^{-1}\pi^* = (\tilde{\theta})^{-1}\tilde{\theta}\bar{\sigma}'(\theta^*)^{-1}\pi^* = (\tilde{\theta})^{-1}\bar{\sigma}'\theta^*(\theta^*)^{-1}\pi^*$$
$$= (\tilde{\theta})^{-1}\bar{\sigma}'\pi^* = (\tilde{\theta})^{-1}\pi = \bar{\sigma}(\theta^*)^{-1}\pi^*$$

for every $\theta \in \Phi$. But this means that $\bar{\sigma}'$ and $\bar{\sigma}$ agree on \mathfrak{C}_0^* and are equal.

This completes the proof.

3B Corollary Let $(\mathfrak{A}, \bar{\mu})$ be a measure algebra, and Φ a semigroup of measure-preserving Boolean homomorphisms from \mathfrak{A} to itself, with identity, which is right-cancellative and reverse-amenable in its discrete topology. Then $(\mathfrak{A}, \bar{\mu}, \Phi)$ has an invertive extension.

proof Let $\nu : \mathcal{P}\Phi \to [0,1]$ be an additive functional such that $\nu\Phi = 1$ and $\nu\{\phi : \phi\psi \in A\} = \nu A$ whenever $A \subseteq \Phi$ and $\psi \in \Phi$ (2D). Then, in particular, $\nu\Phi = \nu(\Phi\psi)$ for every $\psi \in \Phi$, so $\nu(\Phi\psi_0 \cap \ldots \cap \Phi\psi_n) = 1$ for all $\psi_0, \ldots, \psi_n \in \Phi$, and Φ satisfies the conditions of Theorem 3A.

3C Corollary Let $(\mathfrak{A}, \bar{\mu})$ be a measure algebra, and Φ a commutative semigroup of measure-preserving Boolean homomorphisms from \mathfrak{A} to itself. Then $(\mathfrak{A}, \bar{\mu}, \Phi)$ has an invertive extension.

proof Φ is right-cancellative (because it is left-cancellative), and $\Phi\psi_0 \cap \ldots \cap \Phi\psi_n$ contains the product $\psi_0 \ldots \psi_n$ whenever $\psi_0, \ldots, \psi_n \in \Phi$, so again the conditions of Theorem 2E are satisfied.

3D Theorem Let $(\mathfrak{A}, \bar{\mu})$ be a probability algebra, and Φ a semigroup of measure-preserving Boolean automorphisms of \mathfrak{A} . Suppose that $(\mathfrak{A}, \bar{\mu}, \Psi)$ has an invertive extension for every finitely generated subsemigroup Ψ of Φ . Then $(\mathfrak{A}, \bar{\mu}, \Phi)$ has an invertive extension.

proof For $I \in [\Phi]^{<\omega}$ let Ψ_I be the sub-semigroup of Φ generated by I and $(\mathfrak{C}_I, \bar{\lambda}_I, \pi_I, \langle \tilde{\phi}_I \rangle_{\phi \in \Psi_I})$ an invertive extension of $(\mathfrak{A}, \bar{\mu}, \Psi_I)$. For $\phi \in \Phi \setminus \Psi_I$, take $\tilde{\phi}_I$ to be the identity automorphism of \mathfrak{C}_I . Let \mathcal{F} be an ultrafilter on $[\Phi]^{\omega}$ containing $\{J : I \subseteq J \in [\Phi]^{<\omega}\}$ for every $I \in [\Phi]^{<\omega}$. Let $(\mathfrak{C}, \bar{\lambda})$ be the probability algebra reduced product $\prod_{I \in [\Phi]^{<\omega}} (\mathfrak{C}_I, \bar{\lambda}_I) | \mathcal{F}$ (Fremlin 02, 328C³).

³Later editions only.

For $\phi \in \Phi$ we have a function $\tilde{\phi} : \mathfrak{C} \to \mathfrak{C}$ defined by saying that

$$\tilde{\phi}(\langle c_I \rangle_{I \in [\Phi]^{<\omega}}^{\bullet}) = \langle \tilde{\phi}_I c_I \rangle_{I \in [\Phi]^{<\omega}}^{\bullet}$$

whenever $c_I \in \mathfrak{C}_I$ for every finite $I \subseteq \Phi$. Because every $\tilde{\phi}_I$ is a measure-preserving Boolean homomorphism, so is $\tilde{\phi}$. If ϕ , $\psi \in \Phi$, then $\{I : \tilde{\phi}_I \tilde{\psi}_I = (\tilde{\phi} \psi)_I\}$ belongs to \mathcal{F} , so $\tilde{\phi}_I \tilde{\psi}_I = (\phi \psi)^\sim$. If $\phi \in \Phi$, then $\{I : \tilde{\phi}_I$ is surjective} belongs to \mathcal{F} , so $\tilde{\phi} : \mathfrak{C} \to \mathfrak{C}$ is surjective, therefore is a measure-preserving automorphism. For $a \in \mathfrak{A}$, set $\pi a = \langle \pi_I a \rangle_{I \in [\Phi]^{<\omega}}^{\bullet}$; then $\pi : \mathfrak{A} \to \mathfrak{C}$ is a measure-preserving Boolean homomorphism. If $\phi \in \Phi$, then $\{I : \pi_I \phi = \phi_I \pi\}$ belongs to \mathcal{F} , so $\pi \tilde{\phi} = \tilde{\phi} \pi$.

Thus $(\mathfrak{C}, \bar{\lambda}, \pi, \langle \tilde{\phi} \rangle_{\phi \in \Phi})$ is an invertive extension of $(\mathfrak{A}, \bar{\mu}, \Phi)$.

3E Lemma Let $(\mathfrak{A}, \bar{\mu})$ be a probability algebra and Φ a semigroup of measure-preserving Boolean homomorphisms from \mathfrak{A} to itself. Let $\kappa \geq \max(\omega, \tau(\mathfrak{A}), \#(\Phi))$ be a cardinal, and $(\mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa})$ the measure algebra of the usual measure on $\{0,1\}^{\kappa}$. Suppose that $(\mathfrak{A}, \bar{\mu}, \Phi)$ has an invertive extension. Then it has an invertive extension $(\mathfrak{C}, \bar{\lambda}, \pi, \langle \tilde{\phi} \rangle_{\phi \in \Phi})$ where $(\mathfrak{C}, \bar{\lambda}, \pi, \varepsilon)$ is the probability algebra free product of $(\mathfrak{A}, \bar{\mu})$ and $(\mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa})$ (Fremlin 02, 325K).

proof Let $(\mathfrak{C}^*, \bar{\lambda}^*, \pi^*, \langle \tilde{\phi}^* \rangle_{\phi \in \Phi})$ be an invertive extension of $(\mathfrak{A}, \bar{\mu}, \Phi)$. Let Ψ^* be the subgroup of the automorphism group Aut \mathfrak{C}^* generated by $\{\tilde{\phi}^* : \phi \in \Phi\}$, and \mathfrak{D} the closed subalgebra of \mathfrak{C}^* generated by $\bigcup_{\theta \in \Psi^*} \theta[\pi^*[\mathfrak{A}]]$. Then $\tilde{\phi}^* \upharpoonright \mathfrak{D}$ is a measure-preserving Boolean automorphism of \mathfrak{D} for every $\phi \in \Phi$. Let $(\mathfrak{C}, \bar{\lambda}, \varepsilon_0, \varepsilon_1)$ be the probability algebra free product of $(\mathfrak{D}, \bar{\lambda}^* \upharpoonright \mathfrak{D})$ and $(\mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa})$. For $\phi \in \Phi$, let $\tilde{\phi} : \mathfrak{C} \to \mathfrak{C}$ be the measure-preserving Boolean automorphism such that

$$\tilde{\phi}\varepsilon_0 = \varepsilon_0 \tilde{\phi}^* \upharpoonright \mathfrak{D}, \quad \tilde{\phi}\varepsilon_1 = \varepsilon_1.$$

(See the defining universal mapping theorem 325J in Fremlin 02.) If ϕ , $\psi \in \Phi$ then $(\widetilde{\phi\psi})^* = \widetilde{\phi}^* \widetilde{\psi}^*$, so $(\widetilde{\phi\psi})^* \upharpoonright \mathfrak{D} = (\widetilde{\phi}^* \upharpoonright \mathfrak{D})(\widetilde{\psi}^* \upharpoonright \mathfrak{D})$ and $(\phi\psi)^\sim = \widetilde{\phi}\widetilde{\psi}$.

Set $\pi = \varepsilon_0 \pi^* : \mathfrak{A} \to \mathfrak{C}$. Then

$$\pi \phi = \varepsilon_0 \pi^* \phi = \varepsilon_0 \tilde{\phi}^* \pi^* = \tilde{\phi} \varepsilon_0 \pi^* = \tilde{\phi} \pi$$

for every $\phi \in \Phi$. So $(\mathfrak{C}, \bar{\lambda}, \pi, \langle \tilde{\phi} \rangle_{\phi \in \Phi})$ is an invertive extension of $(\mathfrak{A}, \bar{\mu}, \Phi)$.

Now we come to the point. Consider $\mathfrak{A}' = \pi[\mathfrak{A}]$. This is a closed subalgebra of \mathfrak{C} included in $\mathfrak{D}' = \varepsilon_0[\mathfrak{D}^*]$. If $c \in \mathfrak{C} \setminus \{0\}$, the relative Maharam type $\tau_{\mathfrak{D}'_c}(\mathfrak{C}_c)$ of the principal ideal \mathfrak{C}_c of \mathfrak{C} over $\mathfrak{D}'_c = \{c \cap d : d \in \mathfrak{D}'\}$ is κ (Fremlin 02, 333E). Setting $\mathfrak{A}'_c = \{c \cap a : a \in \mathfrak{A}'\}$,

$$\kappa = \tau_{\mathfrak{D}'_c}(\mathfrak{C}_c) \le \tau_{\mathfrak{A}'_c}(\mathfrak{C}_c) \le \tau(\mathfrak{C}_c)$$

(because $\mathfrak{A}'_c \subseteq \mathfrak{D}'_c \subseteq \mathfrak{C}_c$, see Fremlin 02, 333Be)

$$\leq \tau(\mathfrak{C})$$

(Fremlin 02, 332Tb)

$$\leq \max(\omega, \tau(\mathfrak{D}^*), \tau(\mathfrak{B}_{\kappa})$$

(Fremlin 02, 334B)

 $= \kappa$

Thus $\tau_{\mathfrak{A}'_{c}}(\mathfrak{C}_{c}) = \kappa$ for every non-zero $c \in \mathfrak{C}$. But this means that we have a measure algebra isomorphism between \mathfrak{C} and the probability algebra free product of $(\mathfrak{A}, \bar{\mu})$ and $(\mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa})$ which makes $\pi : \mathfrak{A} \to \mathfrak{C}$ correspond to the canonical embedding of \mathfrak{A} in the free product (Fremlin 02, 333F(ii)); which is what we needed to know.

3F Theorem Let $(\mathfrak{A}, \bar{\mu})$ be a probability algebra and Φ a free semigroup of measure-preserving Boolean homomorphisms from \mathfrak{A} to itself. Then $(\mathfrak{A}, \bar{\mu}, \Phi)$ has an invertive extension.

proof Set $\kappa = \max(\omega, \tau(\mathfrak{A}))$, and let $(\mathfrak{C}, \bar{\lambda}, \pi, \varepsilon)$ be the probability algebra free product of $(\mathfrak{A}, \bar{\mu})$ and $(\mathfrak{B}_{\kappa}, \bar{\nu}_{\kappa})$. Let $\Theta \subseteq \Phi$ be a set such that Φ is the free semigroup generated by Θ . For $\theta \in \Theta$, let Φ_{θ} be the semigroup $\{\theta^n : n \geq 1\}$. By 3C, $(\mathfrak{A}, \bar{\mu}, \Phi_{\theta})$ has an invertive extension; by 3E, we can base this extension on

 $(\mathfrak{C}, \bar{\lambda}, \pi)$, so that there is a measure-preserving automorphism $\tilde{\theta} : \mathfrak{C} \to \mathfrak{C}$ such that $\tilde{\theta}\pi = \pi\theta$. Writing $\operatorname{Aut}_{\bar{\lambda}}\mathfrak{C}$ for the group of measure-preserving automorphisms of \mathfrak{C} , $\theta \mapsto \tilde{\theta} : \Theta \to \operatorname{Aut}_{\bar{\lambda}}\mathfrak{C}$ must extend to a semigroup homomorphism $\phi \mapsto \tilde{\phi} : \Phi \to \operatorname{Aut}_{\bar{\lambda}}\mathfrak{C}$. The set $\{\phi : \phi \in \Phi, \tilde{\phi}\pi = \pi\phi\}$ is a sub-semigroup of Φ including Θ , so is the whole of Φ ; thus $(\mathfrak{C}, \bar{\lambda}, \pi, \langle \tilde{\phi} \rangle_{\phi \in \Phi})$ is an invertive extension of $(\mathfrak{A}, \bar{\mu}, \Phi)$.

Acknowledgements Correspondence with T.Austin.

References

Fremlin D.H. [00] Measure Theory, Vol. 1: The Irreducible Minimum. Torres Fremlin, 2000.

Fremlin D.H. [01] Measure Theory, Vol. 2: Broad Foundations. Torres Fremlin, 2001.

Fremlin D.H. [02] $Measure\ Theory,\ Vol.\ 3:\ Measure\ Algebras.$ Torres Fremlin, 2002.

Fremlin D.H. [03] Measure Theory, Vol. 4: Topological Measure Spaces. Torres Fremlin, 2003.

Petersen K. [83] Ergodic Theory. Cambridge U.P., 1983