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1 Basics

1A Definition Let (A, µ̄) be a probability algebra and Φ a semigroup of measure-preserving Boolean ho-

momorphisms from A to itself. By an invertive extension of (A, µ̄,Φ) I will mean a structure (C, λ̄, π, 〈φ̃〉φ∈Φ)
such that

(C, λ̄) is a probability algebra,

π : A → C is a measure-preserving Boolean homomorphism,

〈φ̃〉φ∈Φ is a family of measure-preserving Boolean automorphisms of C,

(φψ)
∼

= φ̃ψ̃ for all φ, ψ ∈ Φ,

φ̃π = πφ for every φ ∈ Φ;

that is, π embeds A as a closed subalgebra of C in such a way that the Boolean homomorphisms in Φ can
be simultaneously and consistently extended to automorphisms of C.

1B The problem When can we expect such an extension to exist?

When Φ = {φn : n ∈ N} for some φ, we are looking for a ‘natural extension’ in the sense of Fremlin

02, 383Yc; when expressed in terms of inverse-measure-preserving functions on probability spaces, this is a
classical construction (Petersen 83, 1.3G).

An obviously necessary condition is that Φ should be right-cancellative in the sense that if φ, φ′, ψ ∈ Φ
and φψ = φ′ψ then φ = φ′. (Because Φ consists of injective functions, it is necessarily left-cancellative.)

Note that, writing ι for the identity automorphism of A, (A, µ̄,Φ) has an invertive extension iff (A, µ̄,Φ∪
{ι}) has an invertive extension. PPP Of course we need consider only the case in which ι /∈ Φ. (i) If (A, µ̄,Φ)

has an invertive extension (C, λ̄, π, 〈φ̃〉φ∈Φ), let ι̃ be the identity automorphism of C; then (C, λ̄, π, 〈φ̃〉φ∈Φ∪{ι})
is an invertive extension of (A, µ̄,Φ ∪ {ι}). (ii) The reverse implication is at least equally elementary. QQQ

When (C, λ̄, π, 〈φ̃〉φ∈Φ) is an invertive extension of (A, µ̄,Φ), the function φ 7→ Φ̃ is a semigroup homomor-
phism from Φ to the group Autλ̄ C of measure-preserving Boolean automorphisms of C. It follows that if Φ
has an identity ι (which is necessarily the identity automorphism of A, since it is injective and idempotent),
then ι̃ is an idempotent in Autλ̄(C), and must be the identity automorphism of C. Similarly, if φ, ψ form

an inverse pair in Φ (that is, φψ = ι = ψφ is the identity in Φ), we must have φ̃ψ̃ = ψ̃φ̃ = ι̃ and ψ̃ = φ̃−1 in
Autλ̄(C).

2 Amenable semigroups

2A Definition (see Fremlin 03, 449Ya) If S is a semigroup with identity e and X is a set, an action
of S on X is a map (s, x) 7→ s•x : S ×X → X such that s•(t•x) = (st)•x and e•x = x for every s, t ∈ S and
x ∈ X. A topological semigroup S with identity is amenable if for every non-empty compact Hausdorff
space X and every continuous action of S on X there is a Radon probability measure µ on X such that∫
f(s•x)µ(dx) =

∫
f(x)µ(dx) for every s ∈ S and f ∈ C(X).

2B Proposition Abelian topological semigroups with identity are amenable.

proof (a) Let S be an abelian topological semigroup with identity e, and • a continuous action of S on a
non-empty compact Hausdorff space X. Let PR(X) be the compact Hausdorff space of Radon probability
measure on X with the narrow topology (Fremlin 03, 437O). For s ∈ S and x ∈ X, set ŝ(x) = s•x, so that
ŝ : X → X is continuous. For µ ∈ PR(X) and s ∈ S, the image measure µŝ−1 belongs to PR(X) (Fremlin

03, 418I); call it s•̂µ. If s, t ∈ S then ŝt = ŝt̂, so
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s•̂(t̂•µ) = s•̂(µt̂−1) = (µt̂−1)ŝ−1 = µ(ŝt̂)−1

(Fremlin 01, 234Ec1)

= µ(ŝt)−1 = (st)̂•µ;

and of course ê is the identity function on X, so ê•̂µ = µ. Thus •̂ is an action of S on PR(X).

Note that if f ∈ C(X), µ ∈ PR(X) and s ∈ S, then∫
fd(s•̂µ) =

∫
fd(µŝ−1) =

∫
f(ŝ(x))µ(dx) =

∫
f(s•x)µ(dx).

So we are looking for a fixed point in PR(X) under the action •̂.

(b) •̂ : S × PR(X) → PR(X) is continuous. PPP Suppose that s ∈ S, µ ∈ PR(X), G ⊆ X is open and
(s•̂µ)(G) > α in R. Let H be an open set such that µH > α and H ⊆ ŝ−1[G], that is, s•x ∈ G for every
x ∈ H. Because H is compact, G is open and • is continuous, there is a neighbourhood U of s in S such that
t•x ∈ G whenever t ∈ U and x ∈ H. Next, by the definition of the narrow topology, there is a neighbourhood
V of µ in PR(X) such that νH > α for every ν ∈ V . If t ∈ U and ν ∈ V , then

(t̂•ν)(G) = νt̂−1[G] ≥ νH > α.

As G and α are arbitrary, •̂ is continuous at (s, µ). QQQ

(c) Let K ⊆ PR(X) be a minimal non-empty compact convex set such that s•̂µ ∈ K whenever µ ∈ K
and s ∈ S. Then for any s ∈ S there is a µ ∈ K such that s•̂µ = µ. PPP Start from any µ0 ∈ K and take a

cluster point of 〈
1

n+1

∑n

i=0 s
i
•̂µ0〉n∈N. QQQ At this point, recall that we are supposing that S is abelian. So if

we set Ks = {µ : µ ∈ K, s•̂µ = µ}, we shall have t̂•µ ∈ Ks for every t ∈ S and µ ∈ Ks. Since also Ks is
compact and convex, it must be equal to K. But this means that every member of K is a fixed point under
•̂.

2C Proposition Let S be a semigroup with identity, endowed with its discrete topology. Then S is
amenable iff there is an additive functional ν : PS → [0, 1] such that νS = 1 and ν{t : st ∈ A} = νA
whenever A ⊆ S and s ∈ S.

proof (a) Suppose that S is amenable.

(i) Consider its Stone-Čech compactification βS. We can identify βS with the Stone space of PS

(Fremlin 03, 4A2Ib); for A ⊆ S let Â be the corresponding open-and-closed set in βS. For s, t ∈ S set
ŝ(t) = st; then the function ŝ : S → S gives us a Boolean homomorphism A 7→ ŝ−1[A] : PS → PS and a

continuous function φs : βS → βS such that φ−1
s [Â] = ˆ̂s−1[A] for every A ⊆ S (Fremlin 02, 312Q). Now

φst = φsφt for all s, t ∈ S. PPP If A ⊆ S, then

φ−1
st [Â] = ((ŝt)−1[A])̂= ((ŝt̂)−1[A])̂

(because (ŝt̂)(s′) = ŝ(t̂(s′)) = ŝ(ts′) = sts′ = ŝt(s′) for every s′ ∈ S)

= (t̂−1[ŝ−1[A]])̂= φ−1
t [(ŝ−1[A]) ]̂ = φ−1

t [φ−1
s [Â]] = (φsφt)

−1[Â]. QQQ

It follows that if we set s•z = φs(z) for s ∈ S and z ∈ βS, • is an action of S on βS; as S is being given its
discrete topology and every φs is continuous, • is a continuous action.

(ii) There is therefore a Radon probability measure µ on βS which is invariant in the sense that∫
f(s•z)µ(dz) =

∫
f dµ for every f ∈ C(βS) and s ∈ S. Set νA = µ(Â) for A ⊆ S. Then ν : PS → [0, 1] is

additive and νS = 1. Also, given A ⊆ S and s ∈ S,

1Formerly Fremlin 00, 112Xd.
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ν{t : st ∈ A} = ν(ŝ−1[A]) = µ(ˆ̂s−1[A]) = µ(φ−1
s [Â]) =

∫
χ(φ−1

s [Â])dµ

=

∫
χ(Â)(φs(t))µ(dt) =

∫
χ(Â)(s•t)µ(dt) =

∫
χ(Â)dµ = µ(Â) = νA.

So ν is invariant in the sense required.

(b) Now suppose that there is a functional ν as described, and that • is a continuous action of S on
a non-empty compact Hausdorff space X. Take any x0 ∈ S and for f ∈ C(X) set θ(f) =

∫
f(s•x0)ν(ds),

defining
∫
. . . dν as in Fremlin 02, 363L. Then θ is a positive linear functional and θ(χX) = 1, so there is a

Radon probability measure µ on X such that θ(f) =
∫
fdµ for every f ∈ C(X) (Fremlin 03, 436J/436K).

If s ∈ S and f ∈ C(X)+, set g(x) = f(s•x) for x ∈ X; then g ∈ C(X) and

∫
f(s•x)µ(dx) =

∫
g dµ = θ(g) = −

∫
g(t•x0)ν(dt) = −

∫
f(s•(t•x0))ν(dt)

= −

∫
f(st•x0)ν(dt) =

∫ ∞

0

ν{t : f(st•x0) ≥ α}dα

(Fremlin 02, 363Le)

=

∫ ∞

0

ν{t : f(t•x0) ≥ α}dα

(because if A = {t : f(t•x0) ≥ α} then ν{t : f(st•x0) ≥ α} = ν{t : st ∈ A} = νA)

= −

∫
f(t•x0)ν(dt) = θ(f) =

∫
fdµ.

Of course it follows at once that
∫
f(s•x)µ(dx) =

∫
fdµ for every f ∈ C(X). As s is arbitrary, µ is invariant

in the sense demanded by the definition in §2A. As X and • are arbitrary, S is amenable.

2D Definition I will say that a topological semigroup with identity S is reverse-amenable if (S, ⋄) is
amenable, where s ⋄ t = ts for s, t ∈ S. S is reverse-amenable in its discrete topology iff there is an additive
functional ν : PS → [0, 1] such that νS = 1 and ν{t : ts ∈ A} = νA whenever A ⊆ S and s ∈ S.

3 Sufficient conditions

3A Theorem Let (A, µ̄) be a measure algebra, and Φ a right-cancellative semigroup of measure-preserving
Boolean homomorphisms from A to itself. Suppose that Φφ0∩ . . .∩Φφn is non-empty for all φ0, . . . , φn ∈ Φ.
Then (A, µ̄,Φ) has an invertive extension (C∗, λ̄∗, π∗, 〈φ̃∗〉φ∈Φ) such that whenever (C, λ̄, π, 〈φ̃〉φ∈Φ) is an
invertive extension of (A, µ̄,Φ) there is a unique measure-preserving Boolean homomorphism σ̄ : C∗ → C

such that σ̄π∗ = π and σ̄φ̃∗ = φ̃σ̄ for every φ ∈ Φ.

proof (a) It will be enough to deal with the case in which the identity automorphism belongs to Φ. Note
that {Φψ : ψ ∈ Φ} is a filter base, because if ψ ∈ Φψ0 ∩ . . .∩Φψn, then Φψ ⊆ Φψ0 ∩ . . .∩Φψn; let F be the
filter it generates.

(b) In the simple power Boolean algebra AΦ let B be the set of those families 〈aφ〉φ∈Φ with the property
that there is a ψ ∈ Φ such that aφψ = φaψ for every φ ∈ Φ. Then B is a subalgebra of AΦ. PPP Suppose
that 〈aφ〉φ∈Φ and 〈bφ〉φ∈Φ belong to B, and that ∗ is either of the Boolean operations ∩ , △ . There are ψ0,
ψ1 ∈ Φ such that

aφψ0
= φaψ0

, bφψ1
= φbψ1

for every φ ∈ Φ. Now there is a ψ ∈ Φψ0 ∩ Φψ1; suppose that ψ = ψ′
0ψ0 = ψ′

1ψ1 where ψ′
0, ψ

′
1 belong to Φ.

Then, for any φ ∈ Φ,

aφψ = aφψ′

0
ψ0

= φψ′
0aψ0

= φaψ′

0
ψ0

= φaψ,

and similarly bφψ = φbψ. So

D.H.Fremlin
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aφψ ∗ bφψ = (φaψ) ∗ (φbψ) = φ(aψ ∗ bψ).

As φ is arbitrary,

〈aφ〉φ∈Φ ∗ 〈bφ〉φ∈Φ = 〈aφ ∗ bφ〉φ∈Φ

belongs to B. Since 〈1〉φ∈Φ ∈ B, B is a subalgebra of AΦ. QQQ

(c) λ(〈aφ〉φ∈Φ) = limφ→F µ̄aφ is defined in [0, 1] for every 〈aφ〉φ∈Φ ∈ B. PPP Let ψ ∈ Φ be such that
aφψ = φaψ for every φ ∈ Φ. Then µ̄aφψ = µ̄aψ for every φ. As {φψ : φ ∈ Φ} ∈ F , this is enough to show
limφ→F µ̄aφ = µ̄aψ. QQQ

It is easy to see that λ : B → [0, 1] is additive, and that λ1B = 1.

(d)(i) For θ ∈ Φ, define θ̂ : AΦ → AΦ by setting θ̂(〈aφ〉φ∈Φ) = 〈aφθ〉φ∈Φ whenever 〈aφ〉φ∈Φ ∈ AΦ. It is

easy to see that θ̂ is a Boolean homomorphism.

(ii) θ̂ψ̂ = θ̂ψ for all θ, ψ ∈ Φ. PPP If 〈aφ〉φ∈Φ ∈ AΦ, then

θ̂ψ̂(〈aφ〉φ∈Φ) = θ̂(〈aφψ〉φ∈Φ) = 〈aφθψ〉φ∈Φ = θ̂ψ(〈aφ〉φ∈Φ). QQQ

(iii) θ̂[B] ⊆ B for every θ ∈ Φ. PPP If 〈aφ〉φ∈Φ ∈ B, let ψ ∈ Φ be such that aφψ = φaψ for every φ ∈ Φ.
Then Φψ∩Φθ is not empty; suppose that ψ0, ψ1 ∈ Φ are such that ψ0ψ = ψ1θ. In this case, setting bφ = aφθ
for φ ∈ Φ,

bφψ1
= aφψ1θ = aφψ0ψ = φψ0aψ

= φaψ0ψ = φaψ1θ = φbψ1
.

As φ is arbitrary, 〈bφ〉φ∈Φ = θ̂(〈aφ〉φ∈Φ) belongs to B. QQQ

(iv) If θ ∈ Φ, then λθ̂ = λ. PPP Take aaa = 〈aφ〉φ∈Φ ∈ B; set α = λaaa and 〈bφ〉φ∈Φ = θ̂aaa. There is a ψ ∈ Φ
such that µ̄aφψ = α for every φ ∈ Φ (see (c) above). Once again, take ψ0, ψ1 ∈ Φ such that ψ0ψ = ψ1θ.
Then

µ̄bφψ1
= µ̄aφψ1θ = µ̄aφψ0ψ = α

for every φ ∈ Φ. Thus λ(〈bφ〉φ∈Φ) = α, that is, λθ̂aaa = λaaa. QQQ

(v) Define π̂ : A → AΦ by setting π̂a = 〈φa〉φ∈Φ for every a ∈ A. Then π̂ is a Boolean homomorphism.
If a ∈ A, then π̂a ∈ B, λπ̂a = µ̄a and

θ̂π̂a = θ̂(〈φa〉φ∈Φ) = 〈φθa〉φ∈Φ = π̂θa

for every θ ∈ Φ. So θ̂π̂ = π̂θ for every θ ∈ Φ.

(e)(i) Taking I to be the ideal {bbb : bbb ∈ B, λbbb = 0}, we have a quotient algebra C∗
0 = B/I with a strictly

positive additive functional λ̄∗0 defined by setting λ̄∗0bbb
• = λbbb for every bbb ∈ B. Because λθ̂ = λ for θ ∈ Φ, we

have Boolean homomorphisms θ∗ : C∗
0 → C∗

0 defined by setting θ∗bbb• = (θ̂bbb)• for every bbb ∈ B, and λ̄∗0θ
∗ = λ̄∗0

for every θ. If θ, ψ ∈ Φ, then (θψ)∗ = θ∗ψ∗ because θ̂ψ = θ̂ψ̂. Setting π∗a = (π̂a)• for a ∈ A, π∗ : A → C∗
0

is a Boolean homomorphism, λ̄∗0π
∗ = µ̄ and θ∗π∗ = π∗θ for every θ ∈ Φ.

(ii) (The key.) For every θ ∈ Φ, θ∗ : C∗
0 → C∗

0 is surjective. PPP If c ∈ C∗
0, let aaa = 〈aφ〉φ∈Φ ∈ B be such

that c = aaa•. Define bbb = 〈bφ〉φ∈Φ by saying that

bφ = aψ if φ = ψθ,

= 0 if φ ∈ Φ \ Φψ;

this definition is acceptable because Φ is right-cancellative, so that ψ 7→ ψθ is injective. In this case, bφθ = aφ
for every φ, so θ̂bbb = aaa. We know that there is a ψ ∈ Φ such that aφψ = φaψ for every φ ∈ Φ; in this case,

bφψθ = aφψ = φaψ = φbψθ

for every φ. Thus bbb ∈ B. Now

Measure Theory
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θ∗bbb• = (θ̂bbb)• = aaa• = c.

As c is arbitrary, θ∗ is surjective. QQQ

(f)(i) Taking C∗ to be the metric completion of C∗
0, with the corresponding continuous extension λ̄∗ of

λ∗, (C∗, λ̄∗) is a probability algebra (Fremlin 02, 392H2). The Boolean homomorphisms θ∗ : C∗
0 → C∗

0,

for θ ∈ Φ, extend continuously to measure-preserving Boolean homomorphisms θ̃∗ : C∗ → C∗. Of course
π∗ : A → C∗

0 can now be regarded as a measure-preserving Boolean homomorphism from A to C∗. Because

θ∗ψ∗ = (θψ)∗ and θ∗π∗ = π∗θ, θ̃∗ψ̃∗ =
∼

(θψ)∗ and θ̃∗π = π∗θ for all θ, ψ ∈ Φ. If θ ∈ Φ, θ̃∗[C∗] is a closed
subalgebra of C∗ (Fremlin 02, 324Kb) including the topologically dense subalgebra C∗

0, so it is the whole

of C∗; thus θ̃∗ is surjective, therefore a measure-preserving automorphism.
So (C∗, λ̄∗, π∗, 〈φ̃∗〉φ∈Φ) is an invertive extension of (A, µ̄,Φ).

(ii) C∗
0 =

⋃
θ∈Φ(θ̃∗)−1[π∗[A]]. PPP If c ∈ C∗

0, it is of the form aaa• where aaa = 〈aφ〉φ∈Φ ∈ B. Let θ ∈ Φ be
such that aφθ = φa for every φ ∈ Φ, where a = aθ. In this case,

θ̃∗cθ̃∗aaa• = θ∗aaa• = (θ̂aaa)•

= 〈aφθ〉
•

φ∈Φ = 〈φa〉•φ∈Φ = (π̂a)• = π∗a,

so

c = (θ̃∗)−1(π∗a) ∈ (θ̃∗)−1[π∗[A]]. QQQ

(g)(i) Now let (C, λ̄, π, 〈φ̃〉φ∈Φ) be another invertive extension of (A, µ̄,Φ). In this case, for any aaa =

〈aφ〉φ∈Φ ∈ B, σaaa = limφ→F φ̃
−1πaφ is defined in C, and in fact there is a ψ ∈ Φ such that σaaa = φ̃−1πaφ for

every φ ∈ Φψ. PPP There is a ψ ∈ Φ such that aφψ = φaψ for every φ ∈ Φ. In this case

∼

(φψ)−1πaφψ = ψ̃−1φ̃−1πφaψ

= ψ̃−1φ̃−1φ̃πaψ = ψ̃−1πaψ

for every φ ∈ Φ, and σaaa = ψ̃−1πaψ. QQQ
Evidently σ : B → C is a Boolean homomorphism. If a ∈ A, then

σπ̂a = limφ→F φ̃
−1πφa = limφ→F φ̃

−1φ̃πa = πa.

If aaa = 〈aφ〉φ∈Φ ∈ B, then

λ̄σaaa = λ̄( lim
φ→F

φ̃−1πaφ) = lim
φ→F

λ̄(φ̃−1πaφ)

= lim
φ→F

λ̄(πaφ) = lim
φ→F

µ̄aφ = λaaa

(all the limits here being of eventually-constant functions, so we do not even need to appeal to continuity).
So λ̄σ = λ.

(ii) If θ ∈ Φ, then θ̃σ = σθ̂. PPP Take aaa = 〈aφ〉φ∈Φ ∈ B. Then

σθ̂aaa = σ(〈aφθ〉φ∈Φ) = limφ→F φ̃
−1πaφθ,

so

θ̃−1σθ̂aaa = limφ→F θ̃
−1φ̃−1πaφθ = limφ→F

∼

(φθ)−1πaφθ.

By (g-i) and (a) we can find a ψ ∈ Φ such that

σaaa = φ̃−1πaφ, θ̃−1σθ̂aaa =
∼

(φθ)−1πaφθ

whenever φ ∈ Φψ. At this point observe that Φψ and Φψθ meet, so there are ψ0, ψ1 ∈ Φ such that
ψ1ψθ = ψ0ψ. In this case, taking φ = ψ1ψ, both φ and φθ belong to Φψ, and

2Formerly 393B.
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σaaa =
∼

(φθ)−1πaφθ, θ̃−1σθ̂aaa =
∼

(φθ)−1πaφθ,

so σaaa = θ̃−1σθ̂aaa. As aaa is arbitrary, θ̃σ = σθ̂. QQQ

(iii) Because λ̄σ = λ, σ induces a Boolean homomorphism σ̄0 : C∗
0 → C defined by saying that σ̄0aaa

• = σaaa
whenever aaa ∈ B; now

σ̄0π
∗a = σπ̂a = πa

for every a ∈ A. Next,

λ̄σ̄0aaa
• = λ̄σaaa = λaaa = λ̄∗0aaa

•,

θ̃σ̄0aaa
• = θ̃σaaa = σθ̂aaa = σ̄0(θ̂aaa)

• = σ̄0θ
∗aaa•

whenever aaa ∈ B and θ ∈ Φ, so

λ̄σ̄0 = λ̄∗0, θ̃σ̄0 = σ̄0θ
∗

for every θ ∈ Φ.

(iv) Because λ̄σ̄0 = λ̄∗0, and C∗
0 is a topologically dense subalgebra of C∗, σ̄0 has a unique extension to

a measure-preserving Boolean homomorphism σ̄ : C∗ → C; and we shall have

σ̄π∗a = πa, λ̄σ̄ = λ̄∗, θ̃σ̄ = σ̄0θ̃
∗

for every θ ∈ Φ, by continuity.

(v) Thus σ̄ has the required properties. To see that it is uniquely defined, recall from (f-ii) that⋃
θ∈Φ(θ̃∗)−1π∗[A] = C∗

0. Now if σ̄′ : C∗ → C is another Boolean homomorphism such that σ̄′π∗ = π and

σ̄′θ̃∗ = θ̃σ̄′ for every θ ∈ Φ, we see that

σ̄′(θ∗)−1π∗ = (θ̃)−1θ̃σ̄′(θ∗)−1π∗ = (θ̃)−1σ̄′θ∗(θ∗)−1π∗

= (θ̃)−1σ̄′π∗ = (θ̃)−1π = σ̄(θ∗)−1π∗

for every θ ∈ Φ. But this means that σ̄′ and σ̄ agree on C∗
0 and are equal.

This completes the proof.

3B Corollary Let (A, µ̄) be a measure algebra, and Φ a semigroup of measure-preserving Boolean
homomorphisms from A to itself, with identity, which is right-cancellative and reverse-amenable in its
discrete topology. Then (A, µ̄,Φ) has an invertive extension.

proof Let ν : PΦ → [0, 1] be an additive functional such that νΦ = 1 and ν{φ : φψ ∈ A} = νA whenever
A ⊆ Φ and ψ ∈ Φ (2D). Then, in particular, νΦ = ν(Φψ) for every ψ ∈ Φ, so ν(Φψ0 ∩ . . .∩Φψn) = 1 for all
ψ0, . . . , ψn ∈ Φ, and Φ satisfies the conditions of Theorem 3A.

3C Corollary Let (A, µ̄) be a measure algebra, and Φ a commutative semigroup of measure-preserving
Boolean homomorphisms from A to itself. Then (A, µ̄,Φ) has an invertive extension.

proof Φ is right-cancellative (because it is left-cancellative), and Φψ0 ∩ . . . ∩ Φψn contains the product
ψ0 . . . ψn whenever ψ0, . . . , ψn ∈ Φ, so again the conditions of Theorem 2E are satisfied.

3D Theorem Let (A, µ̄) be a probability algebra, and Φ a semigroup of measure-preserving Boolean
automorphisms of A. Suppose that (A, µ̄,Ψ) has an invertive extension for every finitely generated sub-
semigroup Ψ of Φ. Then (A, µ̄,Φ) has an invertive extension.

proof For I ∈ [Φ]<ω let ΨI be the sub-semigroup of Φ generated by I and (CI , λ̄I , πI , 〈φ̃I〉φ∈ΨI
) an invertive

extension of (A, µ̄,ΨI). For φ ∈ Φ \ ΨI , take φ̃I to be the identity automorphism of CI . Let F be an
ultrafilter on [Φ]ω containing {J : I ⊆ J ∈ [Φ]<ω} for every I ∈ [Φ]<ω. Let (C, λ̄) be the probability algebra
reduced product

∏
I∈[Φ]<ω (CI , λ̄I)|F (Fremlin 02, 328C3).

3Later editions only.

Measure Theory
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For φ ∈ Φ we have a function φ̃ : C → C defined by saying that

φ̃(〈cI〉
•

I∈[Φ]<ω ) = 〈φ̃IcI〉
•

I∈[Φ]<ω

whenever cI ∈ CI for every finite I ⊆ Φ. Because every φ̃I is a measure-preserving Boolean homomorphism,

so is φ̃. If φ, ψ ∈ Φ, then {I : φ̃I ψ̃I =
∼

(φψ)I} belongs to F , so φ̃I ψ̃I = (φψ)
∼

. If φ ∈ Φ, then {I : φ̃I is

surjective} belongs to F , so φ̃ : C → C is surjective, therefore is a measure-preserving automorphism. For
a ∈ A, set πa = 〈πIa〉

•

I∈[Φ]<ω ; then π : A → C is a measure-preserving Boolean homomorphism. If φ ∈ Φ,

then {I : πIφ = φIπ} belongs to F , so πφ̃ = φ̃π.

Thus (C, λ̄, π, 〈φ̃〉φ∈Φ) is an invertive extension of (A, µ̄,Φ).

3E Lemma Let (A, µ̄) be a probability algebra and Φ a semigroup of measure-preserving Boolean homo-
morphisms from A to itself. Let κ ≥ max(ω, τ(A),#(Φ)) be a cardinal, and (Bκ, ν̄κ) the measure algebra
of the usual measure on {0, 1}κ. Suppose that (A, µ̄,Φ) has an invertive extension. Then it has an invertive

extension (C, λ̄, π, 〈φ̃〉φ∈Φ) where (C, λ̄, π, ε) is the probability algebra free product of (A, µ̄) and (Bκ, ν̄κ)
(Fremlin 02, 325K).

proof Let (C∗, λ̄∗, π∗, 〈φ̃∗〉φ∈Φ) be an invertive extension of (A, µ̄,Φ). Let Ψ∗ be the subgroup of the

automorphism group AutC∗ generated by {φ̃∗ : φ ∈ Φ}, and D the closed subalgebra of C∗ generated by⋃
θ∈Ψ∗ θ[π∗[A]]. Then φ̃∗↾D is a measure-preserving Boolean automorphism of D for every φ ∈ Φ. Let

(C, λ̄, ε0, ε1) be the probability algebra free product of (D, λ̄∗↾D) and (Bκ, ν̄κ). For φ ∈ Φ, let φ̃ : C → C be
the measure-preserving Boolean automorphism such that

φ̃ε0 = ε0φ̃
∗↾D, φ̃ε1 = ε1.

(See the defining universal mapping theorem 325J in Fremlin 02.) If φ, ψ ∈ Φ then
∼

(φψ)∗ = φ̃∗ψ̃∗, so
∼

(φψ)∗↾D = (φ̃∗↾D)(ψ̃∗↾D) and (φψ)
∼

= φ̃ψ̃.
Set π = ε0π

∗ : A → C. Then

πφ = ε0π
∗φ = ε0φ̃

∗π∗ = φ̃ε0π
∗ = φ̃π

for every φ ∈ Φ. So (C, λ̄, π, 〈φ̃〉φ∈Φ) is an invertive extension of (A, µ̄,Φ).
Now we come to the point. Consider A′ = π[A]. This is a closed subalgebra of C included in D′ = ε0[D

∗].
If c ∈ C \ {0}, the relative Maharam type τD′

c
(Cc) of the principal ideal Cc of C over D′

c = {c ∩ d : d ∈ D′} is
κ (Fremlin 02, 333E). Setting A′

c = {c ∩ a : a ∈ A′},

κ = τD′

c
(Cc) ≤ τA′

c
(Cc) ≤ τ(Cc)

(because A′
c ⊆ D′

c ⊆ Cc, see Fremlin 02, 333Be)

≤ τ(C)

(Fremlin 02, 332Tb)

≤ max(ω, τ(D∗), τ(Bκ)

(Fremlin 02, 334B)

= κ.

Thus τA′

c
(Cc) = κ for every non-zero c ∈ C. But this means that we have a measure algebra isomorphism

between C and the probability algebra free product of (A, µ̄) and (Bκ, ν̄κ) which makes π : A → C correspond
to the canonical embedding of A in the free product (Fremlin 02, 333F(ii)); which is what we needed to
know.

3F Theorem Let (A, µ̄) be a probability algebra and Φ a free semigroup of measure-preserving Boolean
homomorphisms from A to itself. Then (A, µ̄,Φ) has an invertive extension.

proof Set κ = max(ω, τ(A)), and let (C, λ̄, π, ε) be the probability algebra free product of (A, µ̄) and
(Bκ, ν̄κ). Let Θ ⊆ Φ be a set such that Φ is the free semigroup generated by Θ. For θ ∈ Θ, let Φθ be the
semigroup {θn : n ≥ 1}. By 3C, (A, µ̄,Φθ) has an invertive extension; by 3E, we can base this extension on

D.H.Fremlin
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(C, λ̄, π), so that there is a measure-preserving automorphism θ̃ : C → C such that θ̃π = πθ. Writing Autλ̄ C

for the group of measure-preserving automorphisms of C, θ 7→ θ̃ : Θ → Autλ̄ C must extend to a semigroup

homomorphism φ 7→ φ̃ : Φ → Autλ̄ C. The set {φ : φ ∈ Φ, φ̃π = πφ} is a sub-semigroup of Φ including Θ,

so is the whole of Φ; thus (C, λ̄, π, 〈φ̃〉φ∈Φ) is an invertive extension of (A, µ̄,Φ).
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