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Ergodic averages, following Austin
D.H.FREMLIN
University of Essex, Colchester, England

I rewrite the main results of AUSTIN PO8A and AUSTIN PO8B, in which a version of the multiple recurrence
theorem is proved by a new method based on ideas of T.Tao.

1 Useful facts

1A Lemma Let (2, i) be a measure algebra. If a € 2 and u € L>(2) is such that 0 < u < x1, there is
an « € ]0,1[ such that f(a A [u > a]) < [|xa —ul.

proof Set v = [|xa — u|. If v = co we can stop. Otherwise, we may suppose that (2, i) is the measure
algebra of a measure space (X,%, u). Express a as E* and u as f* where E € ¥ and f : X — [0,1] is
Y-measurable. Then [ |[xE — fldu = v is finite, so H = {x : xE(x) # f(z)} is expressible as a countable
union of sets of finite measure. Set @} = {(z,a) 12 € X, 0 < a < f(z)} and W = (£ x [0,1])AQ. Then
W C H x R is measured by the product of the subspace measure puy on H and Lebesgue measure py on
[0,1]. Because pp is o-finite, we have

= /H XE(z) — f(z)|u(dz) = /H Wz e (de)
1

= [ W e do) = [ (B @) > o) o),
and there must be an « € |0, 1] such that
v > p(BALw : f(2) > a}) = p(BAz : (@) > a}) = pla & [u > a)).

1B Lemma Let G be a topological group, (2, i) a measure algebra, and « a continuous action of G on
A, where 2l is given its measure-algebra topology (FREMLIN 02, §323), such that a — gea is a measure-
preserving Boolean automorphism for every g € G.

(a) We have an action of G on L° = L%(2) defined by saying that [geu > «] = g+[u > a] whenever g € G,
u€ L% and a € R; for g € G, u — geu: L° — L% is an f-algebra automorphism.

(b) For every p € [1,00], LP = LP(2, fi) and || ||, are G-invariant. For p € [1, co[, the action is continuous.

(c) Let B be the unit ball of L> = L>(2(), with the topology Ts(L>, L) induced by the duality between
L> and L' = L*(, ii). Then B is G-invariant and the action of G' on B is continuous.

proof (a) For each g € G, we have a measure-preserving automorphism 7, defined by saying that 74 (a) = g-a
for a € 2, and a corresponding f-algebra isomorphism R, : L — L% where L° = L°(2(), given by saying
that [Ryu > o] = myfu > ] for u € L° and o € R.

If g, h € G, then

mgn(a) = (gh)ea = g+(hea) = m4(mn(a))

for every a € A, so my, = mgmh, Rgn = RgRp (FREMLIN 02, 364Re) and ge(heu) = (gh)su for every
u € LO(21). So we have an action of G on LO(21).

(b) Every R, acts on every LP as a Banach lattice automorphism (FREMLIN 02, 364R, 3650 and 366H).
If p < oo, this action is continuous for the norm topology on LP. I Suppose that gg € G, vg € LP and € > 0.
Then we can find a v; € LP such that [[v; — vol|, < € and vy is expressible as Y .-, a;xa; where fia; < 00
for every i < n.

Let > 0 be such that (2)Y/? 3" /|a;| < e. Because the action of G' on 2 is continuous, there is
a neighbourhood V' of go such that f(gea; ngoea;) > f(goea;) —n whenever ¢ < n and g € V. Since 7,
is measure-preserving for every g, we see that fi(gea; A goea;) < 2n whenever g € V and i < n, so that
lgev1 — goev1|l, < € whenever g € V. Now if g € V and v € L' is such that ||v — vy, < €, we shall have
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llgev — gosvollp < |lgev — gevillp + [lgev1 — go*villp + [[go*v1 — goovollp
< v —v1llp + €+ [[vr —vollp < 4e.

As go, vg and € are arbitrary, the action is continuous. Q

(c) Ry| L% is a norm-preserving automorphism of L>, so we have an action of G on B. Now suppose that
ug € B, go € G, v € L' and € > 0. Then there is a neighbourhood V of gy such that ||g= v — gy 'ev||s < €
whenever g € V. Suppose that u € B is such that | [ u x (go tev) — [ ug x (g5 tev)| < €. Then, for any g € V,

| [tgru = gueuo) ol =1 [ (g x v [(gnru) x
=1 [ g x o) = [ g5 ((geun) )
| [ux(g o) = [0 x (50

< fuxts / % (g5 "+v)|
+|/u>< o /uox g5 tev)|

<llg™ v — g5 tovll +e < 2e

(because Ry, Ry, are multiplicative)

As ug, go, v and € are arbitrary, the action of G on B is continuous.

1C Remark In this context, the following remark will be useful. Suppose that G is a topological group,
(A, i) a probability algebra, and « an action of G on 2 such that a — gea is a measure-preserving Boolean
automorphism for every g € G. If D C 2 is such that the subalgebra ® of 2 generated by D is dense for the
measure-algebra topology of %, and g — ged : G — 2 is continuous for every d € D, then « is continuous.
P (i) {d:d e, g ged is continuous} is a subalgebra of 2 because the Boolean operations are uniformly
continuous (FREMLIN 02, 323B). So it includes ®. (ii) Suppose that go € G, ap € A and € > 0. Let d € D
be such that i(d A a) <€, and H C G a neighbourhood of gg such that fi(ged A goed) < € for every g € H.
Then if g € H and fi(a & ag) < e,

fi(gea & god) + fi(ged A& gosd) + fi(gosd A gosao)

[i(gea & goeag) <
< fhland)+e+ a(dLag) < 4de

As go, ag and € are arbitrary,  is continuous. Q

1D Proposition Let U and V be Hausdorff locally convex linear topological spaces, A C U a convex set
and ¢ : A — V a continuous function such that ¢[A] is bounded and ¢(az + (1 —a)y) = ad(z)+ (1 —a)o(y)
for all z, y € A and « € [0,1]. Let p be a topological probability measure on A with a barycenter z* in A.
Then ¢(z*) is the barycenter of the image measure pu¢=! on V.

proof (a) Suppose that (F;);cs is a finite partition of A into non-empty convex sets measured by u, and
set a; = uE; for each i € I. Set C ={> . _;a;z; : x; € E; for every i € I'}. Then 2* € C. P Because each
FE; is convex, so is C. If g € U™, then

g(z*) = / wu(dz) Z/

iel

icl
< Zal sup g(x) = sup{z a;g(x;) : x; € E; for every i € I}
el TEE; el
= sup{g(z a;x;) : x; € E; for every i € I} = sup g(z).
il z€C
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By the Hahn-Banach theorem, z* € C. Q

(b) Now suppose that h € V* and € > 0. Then h[p[A]] is bounded; take & € R and n > 1 such that
h[p[A]] C [, +ne|. Fori<mnset F; ={y:y €V, a+ie<h(y) <a+(i+1)e} and E; = ¢~ L[F}]; set
I={i:i<n, E; #0}. Then (E;);cs is a partition of A into relatively Borel sets. As in (a), set a; = pFE;
forie Iand C = {},.; z; : x; € E; for every i € I'}. Then C C A and z* € C'; there must therefore be
a z € C such that |h(¢(z2)) — h(¢(z*))| < e. Express z as ), ; a;x; where z; € E; for each i € I. Then

n6a) — [ naus™)| < e+ 106 = X [ wtus™)

el
= (L () - Y [ o)
iel ier VF

<et ) laih(d(@)) = [ hdpe™)|
<e+ ) a;sup |h(g(w:) — h(y)]

icr  VEF

(because pu¢~1[F;] = a; for each 1)

<e+ Z Q€

iel

(by the choice of the F})
= 2e.

As h and € are arbitrary, ¢(z*) is the barycenter of u¢=1.

1E Lemma Let U be a uniformly convex Banach space, A C U a non-empty bounded set, and C C U a
non-empty closed convex set. Set

dp = inf{¢ : there is some w € C such that A C B(w,d)}.
Then there is a unique w* € C such that A C B(w*, do).
proof (a) For § > 4, set
Cs = C NNy Blu,0)},
so that Cjs is closed, and is non-empty if § > dp. Now lims,s, diam Cs = 0. I Of course diam C5 < 26, so
if 8o = 0 the result is trivial. Otherwise, let € > 0. Then there is an > 0 such that ||%(v0 +u)] < L;Z

whenever ||vo[, [[v1]] < 1 and |jvg—v1|| > €do. T Suppose that § < (1+7)dp and diam Cs > €. Let wy, wy € Cs
be such that ||wo—w1]| > e. Then 3(wo+w1) € C, so there is au € A such that ||u— 4 (wo+w1)|| = (1—n)do,

while [|u — wo|| < (1 +n)dp and |Ju —w1|| < (14 n)do; setting v; = (u—wj) for j=0and j =1, we

_
(14m)o
see that this contradicts the choice of . X

So diam Cs < € whenever 6 < (1 + 7)do; as € is arbitrary, we have the result. Q

(b) {Cs:6 > do} generates a Cauchy filter, which has a limit w* € (5.4, Cs. Now w* € Cj,; since Cj,
has zero diameter, w* is its only member, that is, is the unique element of U such that A C B(w*, dp).

1F Proposition (T.Austin, e-mail of 8.10.08) Let G be a group, (2, i) a probability algebra, and « an
action of G on 2 such that a — gea is a measure-preserving Boolean automorphism for every g € G. Let €
be the fixed-point algebra {c: ¢ € 2, gec = ¢ for every g € G}. Then for every a € 2, there is a ¢ € € such
that fi(a A c) < supyeg fi(a A gea).

proof (a) Set v = sup,cq fi(a & gea). As in Lemma 1B, we have an action of G on L°(2) defined by saying
that [geu > o] = ge[u > «] whenever g € G, u € B and a € R. Set
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A={x(gea): g€ G} ={goxa: g€ G}, C={u:0<u<xlin L}
If p € [1,00[, LP = LP(A, ) is invariant under this action, and v — geu : LP — LP is a Banach lattice

automorphism for every g € G. If p € |1,00[, L? is uniformly convex (FREMLIN 01, 244P', or CLARKSON
36), so there is a unique w, € C such that

sup,ea [u — wpllp = infueosup,eq lu —wllp, <sup,eqllu —xall, = ’71/p

(1E). Because A and C and || [|,, are G-invariant, so is wy, and w, € L°(€).

(b) Recall now that there is a w* € Lt = L*(€, 1) such that ||ya — w*||; = inf{||xa — w| : w € L§ (use
Bukhvalov’s theorem, FREMLIN 02, 367V /367Xx, or Koml6s’ theorem, FREMLIN 01, 276H). Replacing w*
by med (0, w*, x1) if necessary, we may suppose that w* € C. In this case,

Ixa —wlly < lIxa —wpll < [xa —wpll, <7/

for every p > 1, and || xa — w*||; <. By Lemma 1A, there is an « € )0, 1[ such that fi(a A v > a]) < 4.
Set ¢ = [v > af; then ¢ € € and fi(a A ¢) < 7, so we have the result.

1G Proposition (AUSTIN P08A, 2.1) Let (T, <) be an upwards-directed partially ordered set, (s, fit))ter
a family of probability algebras and G a group; suppose that ¢;; : A; — 2; and o) . G x A, — Ay are such
that
1) ¢g is a measure-preserving Boolean homomorphism whenever s <t in T,
i) @5y = PruPst whenever i < j <k in T,
iii) «® is an action of G on 2l; for each t € T,
iv) ge® (¢gra) = ¢si(g+Pa) whenever s <t in T, a € A, and g € G,

(v) a— g*Wa : A, — Ay is a measure-preserving Boolean automorphism for each t € T'.

(a) Writing (21, fi, {¢¢)icr) for the inductive limit of ({(Ay, fit))icr, (st)s<t) as in FREMLIN 02, 328G2, we

have a unique action « of G on 2 such that

A~ N S

a+— gea : A — 2 is a measure-preserving Boolean automorphism for every g € G,
g+(¢ra) = ¢¢(goMa) whenever t € T, a € ; and g € G.
(b) For each t € T, let €&, = {c: c € AUy, goc = ¢ for every g € G} be the fixed-point subalgebra of the
action «(). Then the fixed-point subalgebra € of the action  is the closure of User 0¢[€4].

(c) If G is a topological group and «(®) is continuous for every ¢t € T, then » is continuous.

proof (a) For g € G and t € T, set ¥g(a) = ¢1(g+®Pa) for every a € ;. Then vy = g1¢5 Whenever
s < t, so by the defining property of probability algebra inductive limit, there is a unique measure-preserving
Boolean homomorphism 9, : % — 2 such that 4¢; = ¥4 for every t. It is now elementary to verify that
(g9,a) — ¢g4(a) is an action of G on 2, as required.

(b) Ifi € I and a € ¢;[€], set ¢ = ¢; "a; then

gea = ¢t(9'(t)0) =a

so a € €. Now suppose that ¢ € € and € > 0. Then there are at € T and an a € 2, such that fi(c & ¢ra) < e.
If g € G, then

fi(a & goDa) = ipy(a s goVa) = fi(dra A godra)
< fi(pra & c) + fi(gec A gopra) = fi(¢ra A ¢) + fi(c A pra) < 2e.

By Lemma 1F, there is a b € €; such that fi;(a & b) < 2, so that ¢.b € ¢;[€;] and fi(c A ¢¢b) < 2e. As ¢ and
€ are arbitrary, € = (J,cp ¢¢[&s].

(c) Because {0,1} U (J,eq ¢:[2A;] is dense in A (FREMLIN 02, 328G), it will be enough to show that
g — ge(¢ra) : G — A is continuous whenever ¢t € T and a € A, (1C). But this is just the function
g — ¢¢(g*®a), which is continuous because «*) and ¢, are continuous.

ILater editions only; see http://www.essex.ac.uk/maths/staff/fremlin/mtcont.htm.
2Later editions only.
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1H Well-distributed limits (FREMLIN NO8) Let G be an amenable discrete group (FREMLIN 03, §449)
and U a Banach space.

(a) The left Fglner filter of G is the filter Fp on [G]<“ \ {#} generated by sets of the form
{K : K C G is finite and not empty and #(KAhK) < e#(K)}
where h € G and € > 0. If U is a Banach space and f : G — U is a bounded function, I write

WDLy ¢ f(g9) = limz— 7, ﬁzg@ f(g)

if the limit exists in U for the norm of U. Of course WDL,_.¢ f(g), if defined, must belong to the closed
convex hull of the image f[G], and we have

WDLy_c(f1 + f2)(9) = WDLy_.¢ fi(g9) + WDLy_q f2(g),

WDL,_.c(Tf)(9) = T(WDLy_c f(9))

whenever the right-hand sides are defined and T : U — V is a bounded linear operator to another Banach
space. Also

| WDLy—c f(g9)l < WDL,—q [If(9)ll
whenever both sides are defined.
(b) If f: G — R is any function I will write

1

WDLg—»Gf(g) = lim SUPyr, . Fg MZQEL f(g)

Observe that of U is a Banach space and f : G — U is a bounded function such that WDL, .|/ f(g)|| =0
then WDLy_.¢ f(g) = 0.

(c) For a bounded function f: G — R,

WDL(f) = sup{ / fdu : pis a translation-invariant finitely additive functional
from PG to [0,1], and uG = 1}.

(Here the ‘integral’ | f du must be interpreted as in FREMLIN 02, 363L.) P For f € RY and g € G, define
gof € RE by setting (ge1f)(h) = f(g~*h) for every h € G. Writing P for the set of positive linear functionals
p: £°(G) — R such that p(xG) =1 and p(ge;f) = p(f) whenever f € £*°(G) and g € G,

WDL(f) = sup,c p p(f)
for every f € £°(G) (FREMLIN NO8, 6Ia). On the other hand, it is easy to check that we have a one-to-
one correspondence between positive linear functionals on £*°(X) and the set of finitely additive measures
w: PG — [0, 00[, given by setting
pA=p(xA) for ACX, »p(f)= ffdu for f € £>(G)
(see the discussion in FREMLIN 02, 363L); and p € P iff p is translation-invariant and uG = 1. So we get

WDL(f) = sg}gp(f)
p

= sup{ / fdup: pis a translation-invariant finitely additive functional
from PG to [0,1], and uG = 1}.

(d) If G is infinite, and f : G — U is a bounded function such that #({g : f(g9) # 0}) < #(G), then
WDL,_¢ f(g) = 0. P Setting A = #({g : f(g) # 0}), we can choose inductively a sequence (gn)nen
in G such that g, AN, 9:A = 0 for every n. (When we come to choose g, only |J,_, ;AA™" is
forbidden, and this has cardinal less than #(G).) By (c), WDLy_.axA(g) =0, so WDLy_.¢ || f(9)|| = 0 and
WDLy—¢ f(9) =0. Q
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1I Theorem Let G be an abelian group, and « an action of G on a Banach space U such that u +— geu is
a linear operator of norm at most 1 for every g € G. If u € U is such that {geu : g € G} is relatively weakly
compact, then w = WDL,_,¢ geu is defined in U and gew = w for every g € G.

proof FREMLIN 08, 6M. (To match between the definition of WDL in 1H with that in FREMLIN 08, apply
FREMLIN 08, 6Ic to the discrete topology on G.)

1J Notation (a) We shall have a very large number of conditional expectation operators in the work
to follow. It will be convenient to reserve a letter for these. If (2, &) is a probability algebra and B is a
closed subalgebra of ,? I will write Qg for the associated conditional expectation operator from L* (L, 1)
to L1(%B, il B) C L'(A, 1) (FREMLIN 02, 365R).

(b) It will also be convenient to have some notation for lattices of closed subalgebras. If (A, ) is a
probability algebra and (%B;):cr is a family of closed subalgebras of 2, then I will write \/, B, for the
closed subalgebra of 2 generated by (J,., B¢. Similarly, if B and € are two closed subalgebras of 2, B Vv &
will be the smallest closed subalgebra including both B and €.

2 Measure-automorphism action systems

2A Definitions (a) An action system is a triple (X, G, (+;);cr) where X is a set, G is a group and »;
is an action of G on X for each i € I.

(b) An action system (X, G, (+;)icr) is commuting if G is abelian and ge;(he;x) = he;(ge;x) whenever
g, heG,i,j€l and z € X.

(¢) A measure-automorphism action system is a quadruple (2, i, G, (*;);cr) such that
(2, i) is a probability algebra,
(A, G, {+;)icr) is an action system,
a +— ge;a is a measure-preserving Boolean automorphism for every i € I and g € G.

2B Construction Let (2, G, (+;);cr) be an action system. Suppose that 2 is a Boolean algebra and that
w: A — [0,1] an additive functional; suppose that
a — ge;a is a Boolean automorphism whenever g € G and i € I,
pl =1,
p(ge;a) = pa whenever a € A, g € G and ¢ € I.
Set T ={a:a €, pa =0}; then T < A. Let €y be the quotient A/Z. Then we can define «; : G x €5 — &o,
for ¢ € I, by saying that ge,a® = (ge;a)® whenever a € 2, g € G and i € I. Each +} is an action of G on €.
There is a strictly positive additive functional 7y : €y — [0, 1] defined by saying that 7pa® = pa for every
a € A. Let € be the completion of €, under the metric (¢, ') — 7y(c & ), and U the continuous extension
of 7y to €; then (&, ) is a probability algebra. Each o, has a unique extension to a function s; : G x € — €
such that ¢ — g+;c is a measure-preserving Boolean automorphism for every g € G.
(€, 7,G, (3;)icr) is a measure-preserving action system. Setting ¢a =* for a € 2, ¢ : A — € is a Boolean
homomorphism and

grip(a) = g+ig(a) = (g+ia)

whenever a € 2, i € I and g € G.
If (2, G, (+;)icr) is commuting, so is (&, G, (3;)icr).

proof The verifications are all elementary. We have to confirm, for instance, that if a, b € 2 and a* = b* in
€, then (ge;a)* = (ge;b)* whenever g € G and i € I. But for this all we need to know is that

((g+i) & (g+b)) = pi(ges(a &) = pula &b) = 0.

Because a — ge;a : A — A is always a Boolean automorphism, so is ¢ — geic : €y — €. We see at the same
time that

3As noted in FREMLIN 02, 323H, a subalgebra of 2 is order-closed iff it is topologically closed; so we can use the word
‘closed’ without qualification in this context.
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Uo(g+ia®) = vo(geia)* = p(g=ia) = pa = ya*
whenever a € 2, g € G and i € I. So all the maps ¢ — geic are isometries on €y, and extend uniquely to
isometries on the completion €, which are again Boolean automorphisms. (See FREMLIN 02, 392H* for the
construction of (&, ) from (&g, 7).) Now the confirmation that all the o} and +; are actions is just a matter
of writing out the relevant formulae with their interpretations, and the same is true of the confirmation that
if the original system (A, G, (;)icr) is commuting, so are (&g, G, («})icr) and (€, G, (+;)ic1)-

2C Definition Let (2, i, G, (s;);cr) be a measure-preserving action system. A factor of the system is a
closed subalgebra 9B of 2 which is G-invariant in the sense that ge;b € 8B whenever b € B, g€ G and i € I.

2D Lemma Let A = (%, i, G, (*;)ic 1) be a commutlng measure-preserving action system.

(a) If B is a factor of A, then (B,a[B, G, (|G X B)cr) is a commuting measure-preserving action
system.

(b) If (B¢)ser is a non-empty family of factors of A, then \/, ., B; and (,., B are factors of A.

(c)If JCI,then By ={a:aec, go;b=gejbforall ge G and i, je J} is a factor of A.

(d) Let B be a factor of A. Then

g+i(Quu) = Qu(g+iu)

forall g € G, i€ I and u € L' (2, fz).
(e) Suppose that J C I and that B is any factor of A. Then QuQx, = Quns, -

proof (a)-(b) Elementary.
(c) Elementary, recalling that A is supposed to be commuting.
(d) Because Quu € L°(B), g+:(Qpu) € LY(B). P For any a € R,

[g9°i(Quu) > a] = goi[Quu > o] € B
because [Quu > a] € B. Q Also, for any b € B,

/bg’i(Q%u) di = /gl”b Quu dfi

= / udp = /g-iudﬂ;
g_loib b
as b is arbitrary, ge;(Quu) = Qx(ge;u).

(e) Ifu € L'(A, i), then QuQwu,u € L°(B,). P Set v = Qup,u. For any g € G, « € R and 4, j € J,
[geiv > a] = gei[v > a] = goj[v > af = [ge;v > af;
80 ge;v = ge;v. It follows that, for any a« € R, g € G and ¢, j € J,

g+i[Quv > o] = [g+:(Quv) > o] = [Qn(geiv) > o]
(by (d))
= [Q@un(g+jv) > o] = g+;[Quv > o],

so that [Quv > ] € B; as « is arbitrary, Quv € LY(B,). Q
So in fact QuQm,u € L°(BNB,). Now if be BN B,

be‘BQ%Judﬂ:be%Judﬂ:fbudﬁ,

50 QuQn,u = Quns,u.

4Formerly 393B.
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2E Definition Let (2, ii, G, (*;)icsr) be a measure-automorphism action system. An extension of the
system (2, i, G, (+;)icr) will be a quintuple (U, &', G, («{)ic1,¢) such that (A, @', G, (e >z€I) is a measure-
automorphism action system, ¢ : 2 — 2’ is a measure-preserving homomorphlsm and ge}(¢a) = ¢(ge;a)
whenever a € A, g€ G and i € I.

In this case, @[] is a factor of (A, 7', G, (s})icr)-

2F Inductive limits Elaborating on 1G, we have the following. Let us say that an inductive system of
measure-automorphism action systems is an object of the form (((, fit, G, <‘1('t)>iel>teT7 (pst)s<ter) where
T is an upwards-directed set,
I is a set, GG is a group,
(A, g, G, <.Z(.t)>i61) is a measure-automorphism action system for each t € T,
(A, fir, G, <.§t>>iel, ¢st) 1s an extension of (s, fis, G, (-Es)he]) whenever s <t in T,
Drudst = Psy Whenever s <t < wuinT.
In this case, if (A, i, (¢1)rer) is the inductive limit of (((A¢, fie))ier, (Pst)s<t), we have a unique family
(e;)ier of actions of G on A such that (U, i, G, (*;)icr, ¢¢) is an extension of (A, iz, G, <o§t
teT (1Ga).
In this case I will call (2, fz, G, (s;)ic1, ()1er) the inductive limit of (U, e, G, (+\VVier)Veer, (dst)s<ter)-

)>iel) for every

2G Proposition Let ({(2y, iz, G, (e E Yier))teT, (Pst)s<ter) be an inductive system of measure-automorphism
action systems, with inductive limit (2, i, G, (*;)icr, {(dt)teT)-
(a) Suppose that J C I. Set

%g) ={a:a e, g-gt)a = gogt)a whenever g € G and 4, j € J} fort € T,
By ={a:aec, go;a=ge;a whenever g€ G and i, j € J}.

Then B = ,cp 6:[B)].
(b) Suppose that J C PI. Then

Vies B =Uier o [\/JeJ (t)]
(c) If (A, fir, G, (-Et))iel) is commuting for every t € T, then (2, fi, G, (*;)ics) is commuting.

proof (a) It is easy to check that ¢ [SBS;)] =B ;N [A] for every t € T. If a € By and € > 0, there are a
t €T and a b € ¢[A;] such that ji(arb) <e Let P: LY(A, i) — L' (2, i) be the conditional expectation
defined by the factor ¢:[2;]. Then

1P(xa) = xbl1 = [P(xa — xb)llh <e
By Lemma 1A, there is an « € ]0,1[ such that fi(a Ab') < e, where b’ = [Pxa > a]. Now recall from
Lemma 2De that P(xa) € L°(B), so that &’ belongs to B; and therefore to ¢;[B t)]. As € is arbitrary,

a € Uer ¢t[ ] as a is arbitrary, By = J,cp &1 [%(t ]
(b) Of course ¢,[\ ;c ;B S)] C [V jes B )] whenever s <t in T, so ® = Uyep [V ;e s B )] is a

subalgebra of 2 and D is a closed subalgebra included in \/ 7B, By (a), it includes B for each J € J,
so we have equality.

(c)If g, he G and i, j € I, then {a: ge;(he;ja) = hej(ge;a)} is a closed subalgebra of 2 including
User dulfa s a € 2, g7 (h+0) = b7 (9" )} = Urer %1
so is the whole of 2.
2H Definitions (a) A measure-automorphism action system (2, i, G, (+;);cs) is measure-averaging if
G is an abelian group,

I is finite,
WDL, _c(I];c; geius) is defined, for the norm || [|1, for every family (u;);cr in L>°(A).

MEASURE THEORY
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(If I = 0, so that we need to interpret an empty product [Lics g Leju;, I will take it to be the multiplicative
identity x1 of L°(21).)

(b) A measure-automorphism action system (2, i, G, (+;)icr) is weakly measure-averaging if
G is an abelian group,
I is finite,
WDL,_.¢ f(inficr g+ia;) is defined in R for every family (a;);cr in 2L

2I Remark A measure-automorphism action system (2, i, G, (+;);cs) is measure-averaging whenever G
is an abelian group and #(I) = 1, by Theorem 11, since || ||-bounded sets are relatively weakly compact
in LY(A, ji).

2J Definition (AUSTIN P08A, 4.1-4.2) Let (U, &, G, (*;)icr) be a commuting measure-automorphism
action system, with 7 finite, and j € I. T will say that (2, i, G, (*;)icr) is j-pleasant if, taking B to be the
closed subalgebra of 2 generated by

{a:geja =afor every g € G} UJ;c {a : gesa = geja for every g € G},
then
WDL, . (g‘j(uy‘ — Quu;) x Hie[\{j} g'iui) =0

in LY(2A, i) whenever (u;);cr is a family in L>°(21).

2K Lemma In the context of Definition 2J,

1
||mZgEL [Licr goiwilly < [lugllr - HieI\{j} l[willoo

for every non-empty finite set L C G.
proof For each g € L,
ITier geiuills < llgejuslls - Thien gy lgeivilloe < Nujlly - Tie gy lilloo-

2L Lemma (AUSTIN PO8A, 4.5) Suppose that I is a finite set, j € I, and that (2, &, G, (s;)icr) is a
J-pleasant system such that (%, i, G, (*i)ien ;1) is measure-averaging. Then (A, i, G, (+;)icr) is measure-
averaging.

proof Take B as in 2J. Take u; € L>(2) for ¢ € I. Set v = Qpu,. Set
B, ={a:geja=aforevery ge G}, B;={a:gea=ge;aforevery g c G}

for i € I'\ {j}, so that every %B; is a closed subalgebra of 2 and B = \/,.;B; is the closed subalgebra of
2 generated by (J,c; B;. Taking ® to be the subalgebra of 2 generated by J;c; B, B is the closure of
© for the measure-algebra topology. Let E C 2 be the family of elements expressible as inf;c; b; where
b; € B, for every i € I. Then every element of © is expressible as the supremum of a finite disjoint subset
of E. Let € > 0. Then we have disjoint e, ... ,e, € F and ag, ... ,am, € R such that ||v — w||; <€, where

w=>7", arxek.
For each k < m, express ey as inf;cj by; where bg; € B; for each i. Then

gejXek X H geiu; = g'j(H kai) X H geily = Hg'kkai X H geil;

i€1\{j} i€l i€\ {5} iel i€\ {5}

=xbes x [ geixori x [ geiw
iel\{j} iel\{j}

= xbig <[] g0 (xbri x wy)
ie€I\{j}

for each g, so

D.H.FREMLIN
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WDLy ¢ (g+jxer X [Ticp (3 9%iui) = Xbrj X WDLg—c ([Ticp (3 9% (Xbri % us))
is defined for || ||; because (2, fi, G, (*i)icr\{;}) is measure-averaging. Consequently
WDLg . (ge5w % [Licp 5y 9*iwi)
is defined. As € is arbitrary,
WDLQ*}G (g'j’l) X Hie[\{j} g’zuz)
is defined (use 2K). Because (2, i, G, (+;)icr) is a j-pleasant system,
WDLg_,G (ng(’U — Uj) X Hie]\{j} g-zul) =0
for || |]1. So
WDLy—.c (ge5u; x Hie[\{j} geiui)
is defined. As (u;);es is arbitrary, (2, fi, G, (*;)icr) is measure-averaging.
2M Lemma (AUSTIN P08A, §3) Let I be a finite set, j an element of I, and (2, i, G, (s;)icr) & com-
muting measure-automorphism action system such that (2, fi, G, (*})icr\{;}) is measure-averaging whenever

(si)ien g} is such that (A, i, G, (*})icr ;) is a commuting measure-automorphism action system. Then
(A, 1, G, (+;)ier) is weakly measure-averaging.
proof Let (a;);cr be a family in 2. For i € I'\ {j}, define +; : G x 2A — 2 by setting geja = g~*+;(ge;a) for
geGandae If g, h € G and a € A, then
(gh)eia = (gh)~"+j((gh)eia) = h™"ejg ™ e jgeiheia
= g71°jg°ih71°jh°ia = go;ho;a,
/

so «; is an action. Similarly direct calculation shows that (%, i, G, (*})icr\ ;1) is a commuting measure-
automorphism action system. Accordingly

WDL,—.c Hie]\{j} 9*iX;
is defined in L' (2, ji), and

WDL, ¢ ;L(lnf ge:a;) = WDL,_.¢ / Hgo,XG,z dfi
el

:WDLgeG/gil'j(Hg’iXai)d:u
el
= WDL,_¢ / [T "eigeixaidn

i€l

=WDLg—c [ ][ gvixaidn

“9ieI\{j}
/WDL(]—»G H g.zXal
iel\{s}

is defined in R.

3 Furstenberg self-joinings

3A Construction (AUSTIN P08A, §3) Let G be an abelian group and (2, i, G, {+;);cr) a commuting
measure-automorphism action system. Suppose that J C [ is a non-empty finite set such that (2, i, G, (*;)ic.s)
is weakly measure-averaging.

(a) Let (B, (gj)ics) be the free power &) ;2 of J copies of A (FREMLIN 03, §315). Then we have an
additive functional v : B — [0, 1] defined by saying that

I/(infjej Ejaj) = WDLg_,G ﬂ(infjeJ ngG,j)

MEASURE THEORY
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whenever (a;);ecs is a family in 2, writing F¢ for the Fglner filter of G. Note that ve;(a) = fia for every
ac€Aand je J.

(b) Let € be the quotient Boolean algebra B/{b : vb = 0}, 7y the strictly positive finitely additive
functional on €y defined by saying that Dgb® = vb for every b € B, and € the metric completion of €y under
the associated metric; let 7 be the continuous extension of 7y to €, so that (&, v) is a probability algebra.
For each j € J, we have a measure-preserving Boolean homomorphism 7; : 2 — € defined by saying that
mja = (gja)* for a € A.

(c)(i) v(inf;csa;) = WDLy_.¢ fi(inf;c 5 ge;a;) for any family (a;)ics in 2.

(ii) For j € J let R; : LY(A) — L°(€) be the multiplicative Riesz homomorphism corresponding to the
Boolean homomorphism 7; : 2 — €. Then for any family (u;);cs in L>(2),

f H]EJ Rju]' dv = WDLg_,G f Hjej.g'juj dﬂ

(d) We have a commuting measure-automorphism action system (&, 7, G, (%;)ierufoc}) defined by saying
that

gri(mja) = m;(g%ia),

gooo(mja) = mj(geja)
whenever i € I, j € J and a € A.> The corresponding actions on L°(¢€) are defined by the formulae

g%i(Rru) = Ri(geiu),

9% (Rru) = Ri(geru)
foriel, ke Jandue LO2).

(e) Now fix on a member j of J, and for i € T set
:i EXS if 71 = j’
=+, otherwise.
Then (&, 7, G, (%;)icr, ;) is an extension of (2, fi, G, (*;)icr).
proof (a) We know that the limit
WDL,_.¢ ﬂ(infjeJ g-jaj)

is always defined, so we have a well-defined functional on the set 7. Since this is clearly additive in each
variable separately, it uniquely defines an additive functional on B (FREMLIN 02, 326Q).
Taking a; = a, a; = 1 for i € J\ {j} in the formula, we get the correct value for ve;(a).

(b) Elementary, in view of the results in FREMLIN 02.
(c)(i) This is just the definition of v translated into terms of v.

(ii) Both sides of the equation correspond to || ||s-continuous multilinear functionals on L°°(21)”, which
agree on families of the form (u;);c; = (xai)iecJ-

*

(d)(i) The defining universal mapping property of @ ;2 tells us that we have functions s}, % from
G x B to B defined by saying that

g+i(gja) = ¢j(g=ia),
g5 (eja) = €;(geja)

for e, g € G,i € I and j € J, and that all the maps b — g+;b (for i € IU{oo}) are Boolean homomorphisms.

Direct calculation shows that «f is an action of G on B for every i € I U {co}.

(ii) v is G-invariant for all these actions. PP If i € I, h € G and a; € U for j € J,

5Here, and later, I use the symbol co unscrupulously to denote an object not belonging to any relevant set previously
mentioned.

D.H.FREMLIN
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v(he; (inf ej0;)) = V(iﬂf;fj(h'iaj))

V(h'io(]igf; gja;)) = V(]igg Ej(h'jaj>)
= WDL, ¢ ii(inf ge;heja;)

jedJ
= WDLy— ji(inf (gh)-ja;)

mf geja;) = V(lnf gja;)
eJ JjE

lim

L%f@ # Lh) Z
because F¢ is invariant under translation. Since an additive functional on B is determined by its values on
the basic elements infjcjeja;, v(hefb) = vb for every b € B, he G and i € IU {cc}. Q

(iii) Of course

gei (hep(inf e50;)) = g+ (inf &;(hera;)) = inf &;(geihera;))
jeJ JjeJ

= inf & (hignay) = hei(ge; (il <50,)),

g'f(h'io(}felﬁ gja;)) = 9'?(}25 gj(hejaj)) = Jlfelg gj(geiheja;))
= ;ng gj(hejgeia;)) = h%o(g';*(i_gg gja;))

whenever g, h € G, i, k € I and (a;)jes € A7. So the o, for i € I U {oo}, are commuting actions.

(iv) Applying the method of 2B to the system (B, v, G, (+})icru{oc}), We see that the declared formulae
define actions ¢; of G on € such that (&, 7, G, (%;)icru{o0}) I8 @ commuting measure-automorphism action
system.

(v) The other formulae are now elementary.

(e) All we have to check is that, for g € G and a €

goi(mja) = gios(mja) = mj(geja) if i = j,
= g+;(m;a) = mj(g+;a) otherwise.

3B Definition In the context of 3A, I will call (&, 7, G, (%)icrufso}s (Tj)jes) the Furstenberg self-
joining of (2, fi, G, (+;)icr) over J; in addition, I will call (€, 7, G, (3;)icr, ;) the (J, j)-Furstenberg ex-
tension of (A, i, G, (s;)icr). (See AUSTIN PO8A for some of the history of this construction.)

3C Proposition Let (U, fi, G, (+;);cr) be a commuting measure-automorphism action system with an
extension (Q[’ 7, G, (*})icr, ), and J C I a non-empty finite set. Suppose that both (U, i, G, (+;)je.s) and
F,17, G, (o >]€J) are weakly measure-averaging, with Furstenberg self-joinings (&, 7, G, (%) ie1ufoc} (T5) je7)
and (QZ’ v G (*1)ieru{oo}> (7)) jes) respectively. Then there is a unique measure-preserving Boolean homo-
morphism ¢ ¢ — ¢’ such that Ymj = ;¢ for every i € I, and (€, 7', G, (%])icrufo}, ) is an extension of
(€,v,G, />zEIU{oo})

proof (a) Taking B = @, A and B’ = Q) ; A’, we have a Boolean homomorphism 6 : B — B’ defined by
saying that 0e; = /¢ for every j € J. Now, writing ¢ for the Fglner filter of G,

MEASURE THEORY
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v'0(inf ¢ja;) = v'(inf £56a;) = WDLg—c ' (inf g+jda;)

— WDL, ¢/ (inf ¢(g+;a;)) = WDL, ¢ '@(inf g+;a;)
JjeJ JjeJ
= WDLg_,G ﬂ(]lréf} g'jaj) = l/(]lrég ejaj)
whenever a; € 2 for j € J. So /'0b = vb for every b € B. It follows that 6 induces a Boolean homomorphism
o+ €9 — € such that 1y(b*) = (0b)* for every b € B, taking €y, € to be the quotient algebras as in 3Ab;

and Pyyoc = pyc for every ¢ € €y. Accordingly ¢y extends to a measure-preserving Boolean homomorphism
1 : € — €', Tracing the definitions, we have

Ymja = homja = o(gja)* = (€5¢a)* = mida

for every a € 2 and j € J, and clearly this defines . Similarly, examining the actions of G on these
structures,

g% (¥mja) = goi(mjda) = m;(ge;(da))
= mp(geia) = Ymj(geia) = Y(gei(m;a)),
9 (¥mja) = gol (Tipa) = mi(g+}(da))
= mi¢(geja) = Ymi(geja) = (goec(mja))
whenever a € 2, g € G, i € I and j € J; consequently
g% (¥e) = d(geic)
whenever c € €, g € G and ¢ € TU{o0}. So (¢/,7,G, <:;>ieju{oo}, 1) is an extension of (&, 7, G, (%) icru{so})-

3D Lemma (BERGELSON MCCUTCHEON & ZHANG 97, 4.2) Let G be an abelian group, Fg¢ its Fglner
filter, U an inner product space and g — uy : G — U a bounded function such that

infgsprefe)<e (M)2WDL9"GZ}L wem (Ungltnrg) < 0.
Then WDL,_.g ugy = 0.
proof Set v = sup ¢ [luyl|. Let € > 0. Let M € [G]<* \ {#} be such that

1 [—
#(M)?2 g—’GZh,h’eM(uhg‘uh’g) <e

For non-empyt finite sets L C G set

1 1
vL = ZgEL WZ}LEM %Uhg
Then

Z Ug — Z“hg

geL geL

< sup limsup —|| Z y( Ug|

heM L—Fo #(L

. 1
limsup ||lvp — —— Ug|| <
map o = g5 3 vl <

< sup limsup ——

LAKL) = 0.
sup lim su #(L 7#( )=

On the other hand, for every non-empty finite L C G,

1
#(M) Z uhQ”

heM
o7 2wl

1
< -
ool < 757

D.H.FREMLIN
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(by the Cauchy-Schwartz inequality), so

1 1
el < 55 3 iy O noll?
geL h

eM
=25 2 a2
= 2 hglung)
#(L) geL #(M) h,h' €M
and

. 1 . 1
limsup [Jvg||* < —— limsup —— (tng|ung)
L—Fo #(M)2 L—Fo #(L)gh,;M g g

1
T #(M)?

WDL,—.c D (ungluny) <.
hh'EM

Putting these together,

: 1
limsupy_. 7, Hng@ ugl < Ve

as € is arbitrary, the limit is zero, and

. 1
WDLg_>G Ug = th_,].‘¢ mdeL Ug = 0.

3E Lemma (AUSTIN P08A, 4.7) Let (2, i, G, {+;);c1) be a commuting measure-automorphism action sys-
tem, J C I a finite non-empty set such that (A, fi, G, (+;)ic s) is weakly measure-averaging, and (&, 7, G, (%i)ic1u{oo}»
(m;)jes) the Furstenberg self-joining of (A, fi, G, (*;)icr) over J. Let D be the fixed-point algebra {c: ¢ € €,
goooC = c for every g € G}. For j € J let R; : L°(2) — LY(€) be the multiplicative Riesz homomorphism

corresponding to 7; : A — €.
If (uj)jes is a family in L°°(A) such that Qo ([];c; Rju;) = 0, then

WDL,; ¢ HjeJ geju; =0
in LY(A, fi).

proof Set w = [[,c; Rjuy; for h € G, set w, = heow. Set v = [];c s [[u)sc; note that [|wsllec < v for
every h.

(a) Note first that Qowy, =0 for every he G. P If d € D,
[ihisowdr = [, . jwdr=0
because h™1sod = d € D. As d is arbitrary, Qow;, = 0. Q
(b) For any h, ' € G,
/wh X Wh dv = / H Rj(h'jUj) X H Rj(h/'jUj) dv
jeJ jeJ
= / H Rj(h'ltj X h/'jUj> dv
jeJ
= WDLg_>G / Hg.j(h.uj X thjUj)d‘L_L
jeJ
by 3Ac. Now
w* = WDLhHG Wwp,
is defined for || ||2 and belongs to L (D) (1I).
(c) For g € G set vg = [];c;g+ju;, We find that

MEASURE THEORY



15

. 1 =7 _
infpsareay<e MWDLQHMZMWGM fvhg X Vprg dji < 0.

P Let € > 0. Then there is an non-empty finite M C G such that ||w* — ﬁ > hea Whll2 < €. Now

1 =7 _
Zan WPLy—c > / Uhg X Vnrg di

h,h/ €M

= mmgﬁg Z /H(hg)-juj X H(h/g)'juj)dﬁ

h,h'e M jeJ JjE€J

1 so=r _
hh €M jeJ
(because the system is commuting)

1 —
= #(M)2 Z /U}h X Wp dv

kW EM

(by (b) above)

1 1 Nz
= 200 hz /wh X (7#(M) Z wpr) dD

eM heM
1 % 73— 1 * 1
< gt & [ wxwdn+ i 3 kel = 5 3 ol
heM heM heM
1
< > e
#(M)

(because w* € L= (D) and Qowy = 0, so [ wy, X w*dv = 0 for every h)
< ~e.

As € is arbitrary, we have the result. Q
. 1 . 1
(d) By 3D, limy_ 4 ”/TL > ger Vgl = 0. But {vy : g € G} is || [|ec-bounded, so {/TL dogerVg i L €

[G]<W \ {0}} also iS, and th_,}‘@ ||MLL ZgEL ’Ung = O’ as required.

3F Lemma (AUSTIN P08A, 4.6) Let G be an abelian group, and suppose that I is a non-empty finite
set such that every commuting measure-automorphism action system (2, i1, G, (*;)icr) is weakly measure-
averaging. If j € I, every commuting measure-automorphism action system (2, i, G, {+;);cr) has a j-pleasant
extension.

My ;) is a commuting
measure-automorphism action system, then our hypothesis tells us that it is weakly measure-averaging; let

(€ im Gy (3™ Vie 10go0y (1™ ) i) be its Furstenberg self-joining over I, and (Am-41, fim-+1. G, (™ Vicr, dmm-+1)

proof (a) Set Ao = 2, jip = [z and «g; = «; for i € I. Given that (U, fim, G, <~(

the (I, j)-Furstenberg extension of (A, fim, G, <'7(;m)>iej). Continue.

For [ < m, define ¢y, : A; — 2, by taking ¢;; to be the identity on ; and ¢ m+1 = Gm,m+1Pim- Let
A, 1, (pm)men) be the inductive limit of (A, fim))meNs (Pim)i<m). For each i € I we have an action
i of G on A" defined by saying that ge;(¢na) = ¢m(g-§m)a) for g € G, m € N and a € 2,,, (1Ga); now

)ier) and
(T, G, <:1('m)>ielu{oo}) are commuting, so is (A, G, («{);cr). Of course (A, i, G, (*})ic1, $o) is an extension
of (Ql’ f Gv <'i>i€l)'

(b) Once again, the hypothesis of this lemma ensure that (', G, («/);cs) is weakly measure-averaging and
has a Furstenberg self-joining (&, 7, G, (3;)ic1u{oo}s (Ti)icr) over I. Now we can identify (&, 7, G, (%)icrufsc})

.(m)

A, 1, G, (+})icr) is a measure-automorphism action system. Because all the systems (2, G, {
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with the inductive limit of ({(€,,, U, G, <7§m)>ielu{m})>m€N, (d1+1,m+1)1<m)- PP By Proposition 3C, we have
measure-preserving Boolean homomorphisms ¥y, : €, — &, and ¥, : &, — €, for [ < m, such that

wlmﬂgl) = ng)(yblma wmﬂ—l(m) = 7Ti¢m
for I < m and i € I; and these homomorphisms are consistent with the actions, that is,
~lm ~ l
5" (imd) = Yum (g d)

whenever | <m, i € I U{oc}, g € G and d € €. We need to check that |J,,cy ¥m[€m] is metrically dense
in €, but this is easy; the closure of J,, cy %¥m[Cm] must include

Unmenier Ymlm™ 2] = Uies 7ilUnen dm(2]

and therefore includes (J;; m;[2'] and the subalgebra it generates, which is dense in € (see the construction
in 3Ab). Q

(c) The formulae of the rest of this proof will be easier to read if I give names to the multiplicative Riesz
homomorphisms corresponding to the measure-preserving Boolean homomorphisms here:

St LO(24;) — LO(A,,) from ¢y : A — U,
St LO(A,,) — LO(A) from ¢y, = Ay — A,
R™  LOR,,) — LO(€) = LO(Apnsy) from 7™ 1 2y, — €,
R;: L) — LY(@) from 7; : A — €,
Tim : LY(€;) — LY(€,,) from vy, : € — €,

T : L°(€,,) — LO(€) from ¢, : €, — €
for I < m and 7 € I. The identities above become

Sl = R™ because Grmm+1 = i,

S; = Sy Sim because ¢; = G dim,

T, = T, Ty because ¥y = Y Yim,

TmREm) = R;S,, because wmw§m) = TiPm.-
In addition, we shall have

fdvdﬁm = fwdemv dii’ whenever d € €, and u € L'(€,,, V),
fa Udfly, = f¢>md5mu di’ whenever a € 2, and u € L' (A, firn)-

(d) For each m € N, let 9B,,, be the closed subalgebra of 2,,, generated by

m)

{a:aeﬂm,g-g a = a for every g € G}

U U {a:a €Uy, gogm)a = g-;m)a for every g € G},
ieI\{j}

and P, = Qw,, . Similarly, let B be the closed subalgebra of 2" generated by

{a:a e, goia=a for every g € G}
U U {a:a e, goja = ga for every g € G},
ieI\{j}
and P = Qg. If | € Nand u € L' (2, fi;), then PSju = lim,;, 00 Sin P Simu for || ||1. P By 1Fb, {a:a € 2,
g-;-a = a for every g € G} is the metric closure of

Umeniodma : a € Ay, g-ém)a = a for every g € G};

MEASURE THEORY



applying the same result to the actions (g,a) — g,l.gm) (goz(.m)

every g € G} is the metric closure of

UmeN{qua ca €Uy, g-gm)a = g-gm)a for every g € G}.

17

a), we see that {a : a € A', geja = g+’a for

So B is the closure of (J,,cn @m[Bm]. Of course ¢pm+1[Bm] € Brms1 for every m, 50 (¢m[Bm])men is
non-decreasing. For each m > [, S, P, Simu is the conditional expectation of Sju on ¢, [B,,]; the result

follows at once, by the martingale convergence theorem (FREMLIN 02, 367Qb). Q

(e) Suppose that m € N, that u; € L®(2,,) for i € I and that d € €, = A4 is such that gs(™d = d

for every g € G. Then

/ 1 RiSmu dD:/ HTmREm)uidﬁz/ To([] R wi) d
md md Ymd

i€l meiel

= [T o = [ TR

icl dicr

:/Sm7m+1u]' X H Rgm)uz d,[_tm+1.
¢ i€\ {5}

Now (™) = o™ 50 d € %B,,,1.1. While if i € '\ {j}, then

i€l

g ma) = " (nl"a) = g (" a) = g2 ")

v

for every a € 2,, and g € G, so that 7Tim) [2,,] € B,,41 and Pm+1RZ(.m)u = Rgm)u for every u € LY (A, fim)-

Accordingly
/ HRszuz dv = /Sm,m+1Uj X H Rgm)uz dﬂerl
mdiel ‘ i€\ ()
= /Pm+1(Sm,m+1uj X H Rim)ul) dﬂm+1
¢ i€\ {5}

:/Pm+1Sm7M+1“j X H Rgm)ui Afim1
¢ iel\ {5}

:/ Sm+1P,n+1Sm,m+1uj X H Sm_;,_lRl(»m)’U,i dﬁ/
dm41d

iel\{j}

(f) Re-casting the formulae in (e) we get the following. Suppose that [ € N, that u; € L>®(2;) for ¢ € T

and that d € €, =24, is such that g-§l+1)d = g:(()lo)d =d for every g € G. Then

/ [[R:Smidv = lim 1 RiSmSumui: dv
wldié] mmee "/)mwlmdiej

= lim Sm+1Pm+1Sl’m+1’U,j X H SerlREm)Slmuidﬂl

m—oo ¢m+1wlmd ’LEI\{]}
(by (e), because g:g? (Yimd) = wlm(gzgo)d) = ymd for every g € G)

= lim S PnSimug ¥ [ St B™ Sy di!
M= J b 1%imd ie\{j}

(because limy, o0 Sy PrnSimt; = PSju; = limp, o0 Smt1Pmt151,m+1u; for the norm || ||1, by (d))

= lim Sm+1Pm+1Sm,m+1PmSlmUj X H Sm+1R§m)Slmuidﬂ/

m—00
¢m+1wlmd lEI\{j}

(because ¢m,m+1[%m] - s‘-B’rn+17 S0 Pm+15m7m+1Pm = Sm,m+1Pm)
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= lim RjSmPrnSimu; x [ RiSius dv
T ien\ ()
(by (e) again, applied to Yymd, PrySimu; and (Simui)ier (5})

:/ R;PSu; x [[ RiSuidv.
wid i€\ {j}

(g) It follows that if v; € L>°() for i € I and ¢ € € is such that gss.c = ¢ for every g € G, then
fc HiEI Ri’l)i dv = f.CRjPUj X Hie[\{j} Rﬂ}i dp.
P Set v = max;ey ||villoo- Let € > 0. Then ¢ belongs to the metric closure of {¢,,d : m € N, d € &,

g*™d = d for every g € G} (1Gb). Also every v; belongs to the || ||;-closure of {Sy,u:m € N, u € L>®(2,,),
lullo <} So there are an l € N, a d € € and u; € L (), for ¢ € I, such that

g:(()lo)d =d for every g € G, v(cAyd) <e,
lwilloo < vy, |lvi = Siug|lr < € for every i € 1.
It follows that
HHigj Riv; — HiSj RiSiuilli < (j+ 1)ey?

for every j < m (induce on j, recalling that S; and every R; are both || ||;-non-expanding and || ||oo-non-
expanding), so that

ITLicr Rivi — [Lier RiSiwally < (n+ 1)ey™.
Consequently
|fc HiEI Rivi dv — fwld Hie] stlul d17| S (n + 1)6’7” + €.
Similarly,
‘fc ijj X HiEI\{j} Rivi dv — f’l/)ld RjSlUj X HiEI\{j} RZSluz d17| < (1 + (n + 1)’7”)6
Putting these together with (f), we get
|fc RjPUj X Hiel\{j} Ri’Uq; dv — fc ijj X Hie]\{j} Rivi dD‘ < 26(1 + (TL + 1)7“)
As € is arbitrary,
fc Hie[ Ryv; dv = fc R;Pv; x Hiel\{j} Ryv;dv. Q

(h) We are nearly home. Take any v; € L= (') for i € I. Let © be the fixed-point algebra {c: ¢ € €,

g*ooC = c for every g € G}. We know that
fc R]‘(’Uj — P'Uj) X Hie[\{j} Rﬂ)i dv =0
for every ¢ € @, that is, that
Qo(R;(v; — Pvj) x [Liep g5y Rivi) = 0.
By Lemma 3E,
WDL, ¢ (g-;(vj — Puj) x Hie[\{j} g*ivi) =0

But this means that (', @/, G, («})ic1) is a j-pleasant system. And we have known since (a) above that it is
an extension of (A, i, G, (*:)icr)-

3G Theorem (AUSTIN PO8A, 1.1) Let G be an abelian group, I a non-empty finite set and (2, i, G, (*;):cr)
a commuting measure-automorphism action system. Then (2, i, G, (s;);cs) is measure-averaging.
proof We may suppose that I = n + 1 for some n € N. Induce on n. If n = 0 the result is a special case of

Proposition 11. For the inductive step ton > 1, the inductive hypothesis tells us that the conditions of Lemma
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2M are satisfied, so (2, i, G, (*i)i<n) is weakly measure-averaging whenever it is a commuting measure-
automorphism action system. Consequently, if (2, i, G, (*;)i<n) is & commuting measure-automorphism
action system, it has an n-pleasant extension (2, 7/, G, (+})i<n), by 3F. Take ¢ : A — A’ witnessing the
extension, and S : LY(2) — L°(2’) the associated multiplicative Riesz homomorphism. By the inductive
hypothesis and Lemma 2L, (20, @/, G, (+})i<y) is measure-averaging. Let Fp be the Fglner filter of G. If
Ug, - - . , Uy, belong to L (2A),

WDLy—¢a Hign geiSu;
is defined in L' (20, i), so

1 1 _
||E > [ gewidn— Y] %M T g#iw: dalls

geL i<n i<n
1 _ 1 _
=I5Gz > [T geimidin— Y] y{ I g#5ws) dialls
gEL i<n M i<p
1 _ 1 _
=12 3" T Stowudn 1 [T Staesus) dal
geLi<n M i<n
1 _ 1 _
=15 S ] oisSusdi— - yﬁ T] o+.Sus dills — 0
gELi<n M i<n
as L, M — Fo, and
WDL9—>G Hifn ge;u;
is defined in L'(2, @i). As ug, ... ,u, are arbitrary, (2, i, G, (s;);<n) is measure-averaging, and the induction

proceeds.

3H Corollary Let G be an abelian group and (2, fi, G, (+;);c;) a commuting measure-automorphism
action system. Then (2, i, G, (s;);cr) has a Furstenberg self-joining over J for any finite set J C I.

4 Agreeable and isotropized extensions
4A Definition (AUSTIN PO8B, 4.1)

(a) Let I be a set, J a finite subset of I and j a member of J and G an abelian group. A commut-
ing measure-automorphism action system (2, i, G, (+;);cr) is (J, j)-agreeable if, writing % for the closed
subalgebra of 2 generated by

UieJ\{j}{a ta €U, goja = geja for every g € G},

we have
WDLy—.c fg'j(“j — Quuj) X [Le pyy 9oiwidi = 0

whenever (u;);ecy is a family in L ().
(Compare, but do not confuse, with 2J.)

(b) A commuting measure-automorphism action system (2, i, G, (+;)icr) is fully agreeable if it is (J, j)-
agreeable whenever j € J € [I]<%.

4B Lemma (AUSTIN PO8B, §4) Let G be an abelian group, x an ordinal and (((2¢, fie, G, <-§§)>i61)>5<,{,
(ne)n<e<w) an inductive system of commuting measure-automorphism action systems with inductive limit

(A, i, G, (si)ier, (Pe)e<r). Suppose that J € [I]<¥, j € J and a cofinal set M C k are such that, for
e M, (et gy, G, (-5&1))2-617(;55’&1) is the (J, j)-Furstenberg extension of (¢, fi¢, G, <-(»§)>Z-€1). Then

(A, i, G, (+i)ier) is (J, j)-agreeable. ’
proof (a) For { < & let B, be the closed subalgebra of ¢ generated by

UieJ\{j}{a ta €A, g-gg)a = g-gg)a for every g € G},
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and let B be the closed subalgebra of 2 generated by
UieJ\{j}{a ta €, ge;ja = geja for every g € G};

set Pe = Qu, and P = Qp. Then ¢,¢[B,] C B whenever n < £, and B is the closed subalgebra of 2
generated by U, ¢¢[B¢] (2Gb), so PSyu = lime_.,; S¢ PeSyeu for | [|1 whenever n < r and u € LY, i),
writing Spe : LO(2,) — LY(A¢) and S¢ : LO(A¢) — LO(A) for the multiplicative Riesz homomorphisms
corresponding to ¢¢ : A, — A¢ and ¢¢ : A — A, as in the proof of 3H.

(b) Suppose that v; € L>(2) for each i € J; set v = max;ej ||vi]|oo. Let € > 0.

(i) There are a £ € M and u,; € L>(2y), for i € J, such that
lwilloo <7, lJvi — Sewsllr < € for every i € J,

| PSeuj — SePeujln <€, [|PSgu; — Se1Pet1S¢ e+1usll1 < €.

P First, there are an n < k and u; € L>(%,), for i € J, such that ||v; — Syu;|j1 < € for every i; replacing
ul by med(—vyx1, ul, vx1) if necessary, we can arrange that ||u}||.. < for every i. Next, by the martingale
convergence theorem, there is a ¢ < x such that 7 < ¢ and ||S¢ P Syeu; — PSyu}|ly < € whenever i € J and
¢ <& < k. Since M is cofinal with x, there is a £ € M such that £ > (; set u; = Syeu] for each i. Q

(ii) It follows that

|/Hg°ivi dp — /Hg'l@)ui djie| = |/Hg’ivi - Hg'isgui dji

icJ ieJ ieJ ieJ
<A Z llgeivi — geiSeuillx
ied
< AHITIL()e

for every g € G, so that
|WDL9—>G f [Lics g%ivi dii = WDLy.c f [Lics g'z(‘g)“i dﬁ&} < A#FDTH (e

(iii) Writing (€, 7, G, (%i)icsu{oo}s (Ti)ics) for the Furstenberg self-joining of (™Ue, fi¢, G, <'§E)>Z‘€[), and
R; : L°(A¢) — LO(€) for the Riesz homomorphism corresponding to m; : Ae — €,

WDL,_¢ / H g°§£)Ui djie = /H Riju; dv = /H Riu; djie i

ieJ icJ i€

Z/P5+1(Rjuj x J[ Riwi)digr
ie€\{j}

:/P5+1Rju]‘ X H R;u; dﬂ§+1
ieI\{j}

£+1)

(because goEEH)Riui = g%;Rju; = Ri(gogg)ui) = gvoo(Riu;) = g-; Riu; for every g € G, i € J\ {j}, so

Pey1Riu; = Riu; for every i € J\ {j})
= /P§+1S§7§+1Uj X H R;u; dﬂ§+1.

ieJ\{j}

(iv)
| Pet1S¢ e+1u5 — Seev1Peujlln = [[Se1 Pet1Se e+1us — SePeuglln < 2e,

SO
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|/Pg+15£,£+1uj X H Riu; dfieyq

ieJ\{sj}
_/SE}EJ’,lPé'Uj X H Riui dﬂerl < 26’}/#(J)_1.
i€ J\{j}
(v)
/S§’§+1PEUj X H Rlui dﬂ§+1 = /ijfuj X H Rluz dv
ieJ\{j} ieJ\{s}

:WDLgﬁg/g-E»g)Pguj X H goz(-g)ui diie
ieJ\{j}

ZWDLgﬁg/QOj,SEPfuj' X H geiSiu; dfi.
ieJ\{s}

(vi) Since
llge;(Pvj) — g+jSe Peujlly = [[Pvj — SePeujlly
< ||Pv; — PSeujll1 + || PSeuj — SePeujla
< lvj = Seujlls + € < 2,
llgeivi — geiSeuilly = |lvi — Seusl|s <€
for every g € G and i € I\ {j},

’WDLgﬁg/gﬁSnguJ‘ X H ge;Siu; dii
i€J\{j}

—WDLgHG/g-ijj X H geiv; dii| < ,y#(J)—l(#(J) + 1)e.
ieJ\{j}
(vii) Assembling (ii)-(vi), we get
|WDLy_¢ / [[ g#:vi din — WDLy_c / goiPuj x [[ gesvidl
i€J ieJ\{j}
< AFD T () + 2¢ + (H(T) + 1)e).
As € is arbitrary,
WDLy ¢ [ [Lies 9+vidit = WDLy . [ g+ Puj x [T p (3 9%ivi dfi-
As (v;)ieg is arbitrary, (2, fi, G, (*;)icr) is (J, j)-agreeable.
4B Definition (AUSTIN P08B, 5.1) Let G be a group, I a set, and (2, i, G, (s;);cr) a measure-automorphism
action system. If J C I, write
By={a:aeU g,a=gejaforalli, jeJand g€ G}

If j € J C I, we say that (2, i, G, (s;)icr) is (J, j)-isotropized if

BN ViEI\J By = vieI\J B jugiy-
(A, 1, G, (+;)ier) is fully isotropized if it is (J, j)-isotropized whenever j € J C I.

4D Construction (a) Let (2, i, G, (+;);cr) be a measure-automorphism action system, and j € J C I.
Set By = {a:a €, geja = geja whenever i, j € J and g € G}. The (J, j)-isotropizing extension of
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A, 1, G, (oi)ier) is (A, @/, G, (s})ier, o), constructed as follows. (', i/, 1o, 1) is the relative free product
of (2, i) with itself over B ; (FREMLIN 03, 458N°). For i € I and g € G, we can define g+}b, for b € 2, by
setting

9+ (thoa) = Yo (g+ia),
g+i(¥1a) = Pi(gea) if i € T\ J,
= wl(g-ja) ifielJ
whenever ¢ € G and a € 2, and requiring that b — gejb : A’ — A’ is a measure-preserving Boolean
homomorphism for every g € G. I The point is that if ¢ € J and a € By then geja = geja € By,
s0 Yo(geia) = ¥1(geja). We can therefore apply the defining universal mapping theorem for the relative
free product (FREMLIN 03, 45807) to see that there is indeed a (unique) measure-preserving Boolean

homomorphism from 2’ to itself satisfying the given formulae. Q

It is now elementary to check that every o is an action of G on 2, so that (U, 7', G, («L)ics) is a

measure-automorphism action system. And the formula for gs}(1pa) is just what we need to ensure that
(Q[/a p/la Ga <'2>i€1a ¢0) is an extension of (Ql) /-7/7 G? <.i>i61)'

(b) If (A, i, G, (+;)icr) is a commuting system, then a similar calculation shows that (', @', G, (*})icr) is
also commuting.

4E Lemma Let (2, i, G, (s;);cr) be a measure-automorphism action system, and j € J C I. Let
A, 1, G, (+})icr,%0) be the (J, j)-isotropizing extension of (A, ii, G, (s;)icr). For K C I, set

B ={a:a €U, goa=gepaforali, ke K andge G},

w={a:aeW, gla=geaforali, ke K and g€ G}
set
D=%B,N \/iel\J Brujyc™ €= VieI\J %{]U{i} c.

Then ¢y[D] C €.

proof Take d € ® and € > 0. Then there are n € N, a finite set K C I\ J and a family (¢,4)r<n kex Such
that ¢, € By ) for r <nand k € K and fi(dad') < ¢, where d' = sup,.,, infrex ¢, Now if r < n,
ke K,ieJand g€ G,

g (1erk) = P1(goncrr) = Y1(gejcrr) = goi(Y1crk),
S0 Y1Crk € %f,u{k} C ¢; accordingly ¥1d’ € €. Also

i (Yod & iprd) = [ (Yrd &y d')
(because d € B )
pldnad) <e.

As € is arbitrary and € is closed, ¥od € €; as d is arbitrary, we have the result.

4F Lemma (AUsTIN PO8B, §5) Let G be an abelian group, x an ordinal of uncountable cofinality,

and (((Ue¢, fie, G, <'§f)>i€I)>E<K7 (Pne)n<e<w) an inductive system of commuting measure-automorphism ac-
tion systems with inductive limit (U, fi, G, (*:)ic1, (¢¢)e<w). Suppose that J C I, j € J and a cofinal set

M C k are such that, for £ € M, (Uey1, fiet1, G, <'§£+1)>iel,¢§,§+1) is the (J, j)-isotropizing extension of
(22[5,/.7/5, Ga <.§£)>i61)- Then (Q'laﬂ7 G) <'i>i€[> is (J,j)-isotropized.

proof (a) For K C I and & < & set

SFormerly 458J.
"Formerly 458K.

MEASURE THEORY



23
@&? ={a:a €U, g-E’f)a = g-,(f)a for all ¢, k € K and g € G},

Cx={a:a€U gya=geaforali, ke K and g € G};
set
3 €) (€
95 = C(I) N \/ieI\J Cii,j}’ Qfé = \/ieI\J CJL)J{i} - Q‘E
for £ < k and
2=¢;N \/z‘EI\J Cijp, €= viEI\J oy €A
Because cfrk > w, A = U§<,,i ¢e[Ue]; consequently Cx = U5<R o¢ [G%)] for every K C I, and ® =
Ug<r ¢[Del-
(b) Take any d € . Then thereis a § € M such that d € ¢¢[D¢]; set d' = (bgl(d). By 4E, ¢¢ ¢1d € Ecq.
But this means that
d = ¢er10ec41d" € Peia[€ein] C €.
As d is arbitrary, ® C €. It is elementary to check from their definitions that © includes &, so they are
equal, that is, (2, @, G, (+;)icr) is (J, j)-isotropized.

4G Proposition Let G be an abelian group and (2, fi, G, (*;);c7) a commuting measure-automorphism
action system. Then it has an extension which is commuting, fully isotropized and fully agreeable.

proof Set £ = max(wy, 2#()). Then we can build inductively an inductive system (((A¢, fie, G, (-Z(-g))>i€1>§<,@,

(Gne)n<e<w) of commuting measure-automorphism action systems such that (o, fig, G, <'z('0)>i61) =0, G, (*)ier)
and

_ 1
{6 err ienn, G- Vier, b )
is the (J, j)-Furstenberg extension of (2, fie, G, <-§€)>i61)}
is cofinal with x whenever j € J € [I]<%, and
{€: Ueqr, fierr, Gy (S Vier, deei1)
is the (J, j)-isotropizing extension of (e, fie, G, <’,§§)>i61>}'
is cofinal with x whenever j € J C I. Now if (U, i/, G, (+})icr, (¢¢)e<x) is the inductive limit of this system,
Lemmas 4B and 4F tell us that (', ', G, (s});cs) is fully agreeable and fully isotropized, and of course
(', 1", G, (+5)ier; ¢o) is an extension of (A, i, G, (+i)icr)-
5 More about Furstenberg self-joinings

5A Alternative description of agreeable systems Let G be an abelian group, (2, i, G, (+;)icr) a
commuting measure-preserving action system, J a finite subset of I, and j a member of J. Let (&, 7, G,
(Si)icrufoo}s (i)ics) be the Furstenberg self-joining of (%, iz, G, (*i)icr) over J. Set

B = Viengyla:a €, geia = geja for every g € G} C2A.
Then (A, i, G, (+i)ic1) is (J, j)-agreeable iff 7;[2A] and \/,¢ ;\ (;, ™[] are relatively independent over 7;[%B].

proof For j € J, let R; : L°(A) — L°(€) be the Riesz homomorphism defined from 7; : % — €. Set
D= \/iel\{j} m;[2A] C €. We have

(2, 1,G, (vi)ier) is (J, j)-agreeable

— WDL, ¢ / 9+5(Quu;) x [ gesuidi = WDL,y_q / [ g#iw dn
ie\{j} ieJ
whenever (u;);c; € L ()7
(4Aa)

D.H.FREMLIN



24

A /RJQ%“J' X H RiuidD:/HRiUidﬁ
i€J\{j} ieJ

whenever (u;)ic; € L ()7

(3Ac)

= /RjQ%an I Rxa dV—/HRxazdy

i€J\{s} e

whenever (a;)ics € A7
<~ /RjQ%XG,j dv = D(dﬂ Wjaj)
d

N Nies €AY and d = inf ma;
whenever (a;);cs an ie}JI{{j}W ¢

= /R]ngxaj dv = v(dnmja;) whenever a; € A and d € ®

(because {inf;c y\ ;) mia; ci— € A for every i € J\ {j}} is closed under finite infima and generates D)
= /Q,TJ. ) Rjxa; dv = v(dnmja;) whenever a; € A and d € D

(because R;Qs = Qx, [%]Rj (FREMLIN 02, 365Xq®))

— /(Qﬂj [B]Xxc) X xddv = /Xc x xddv whenever ¢ € 7;[U] and d € D

= /(Qﬂjm]xd X (Qn;mxd) dv = /xc x xd dv
whenever ¢ € m;[] and d € D
<= m;[A] and D are relatively independent over 7;[B].

5B Lemma (AUSTIN PO8B, 3.2) Let G be an abelian group, (2, i, G, (s;)icr) a commuting measure-
automorphism action system and J a finite subset of I. Let (&, 7, G, (%i)icru{oc}, {Ti)ics) be the Furstenberg
self-joining of (A, i, G, (*;)icr) over J.

(a) If j, k € J and a € A is such that gs;a = gexa for every g € G, then mja = mxa.

(b)) f K CJand Bx ={a:a €, geja=gerafor all g € G and j, k € K}, then 7;[B k] = m[Bk] for
all j, k e K.

proof (a) If j = k this is trivial. Otherwise, by 3A(c-1),
v(mjanmpa) = WDLy g fi(gejan gera) = WDLy g fi(geja) = Umja
and 7mja C mia; similarly, mpa C 7;a and the two are equal.
(b) follows at once.
5C Definition (AUSTIN PO8B, 3.3) In the context of part (b) of 5B, I will call the common value 7;[B k]

the divaricate copy of Bk in €. For definiteness, if K is empty, I will say that the divaricate copy of
By =Ais C

5D Lemma (AUSTIN PO8B, 6.1) Let G be an abelian group, I a finite set and (2, i, G, (*;)icr
commuting measure-automorphism action system which is fully isotropized and fully agreeable. Let (¢,0,G
(Si)ierufoo}s (i)icr) be the Furstenberg self-joining of (A, fi, G, (*i)icr) over I. For J C I set

) a

By={a:aecC ga=gejaforali je Jand g€ G},

and let B% C € be the divaricate copy of B (5C). Let J C PI be such that K € J whenever J € J and
J C K C1I, and L a maximal element of PI\ J. Set

8Later editions only.
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D= \/Jej B,

¢ = \/LgJej “Bj'
Then ® and B7 are relatively independent over €.
proof (a) If L is empty, then © = € and B} = €, so the result is trivial. If 7 = () then © = € = {0,1} and
again the result is trivial. Otherwise, fix j € L. Set B = \/Z-E[\L By and B = \/Z-E[\L Brugy- Because
(A, 1, G, (+i)ier) is (L, j)-isotropized,
By, NB =B,

s0 Qu' = QuQs, (2De).

Because L ¢ 7, VLgJeJ B ; C B’; on the other hand, by the maximality of L, B’ C \/LgJEJ B ;. Now

¢ = \/LgJeJ B = \/LgJeJ m;[B ] = 7Tj[\/LgJeJ B ] = m;[B'].

Set I' = (I\L)U{j}, and let (&', 7, G, (*})ic 1 u{oo}» (T})icr’) be the Furstenberg self-joining of (2, i, G, (*i)icr)
over I'.

Let Jo,...,J, enumerate the minimal elements of J. Since L ¢ J, we can find 4,, € J,, \ L for each
m <n. If Je€ J, there is an m < n such that J 2 J,, and B; C B, . SoD =V %f,m. Suppose that
ay, € B, for m <n, and that b € B. Then

m* m<n
p(mibn irif TiOm) = WDLg_,q i(ge;bn iréf g%, Am,)
(note that it makes no difference if the i,, are not all distinct)
=7/ (nhbn nllréfn T m)
= /R;-ngxb X X(ni%fn T ) dD
(because (2, i, G, (+;)icr) is (I, j)-agreeable)
= /R]ngxb x x( irif i, Qm )AD
— [ Ri@n @, b % (it i, 0
= /Rngsz x x( iréf i, Qm ) AT
= /Q@ijb x x( irif i, G ) AV
(because € = 7;[B'])
— [ Gextmst) x x(int s, am)do.
Because 7;[B] = B} and m;,,[B,,| =B for each m, we have
pleninf<p em) = fQ@(Xc) x x(inf,<pn ¢ )dD
whenever ¢ € B7 and ¢, € B = for each m. Because ® =/, _, B |
v(end) = [ Qe(xc) x xddv = [ Qe(xc) x Qe(xd) dv

whenever ¢ € B7 and d € ©. But this is just what is required to ensure that 87 and © are relatively
independent over & (FREMLIN 03, 458Lc?).

5E Lemma (AUSTIN PO8B, 6.2) Let G be an abelian group, I a finite set and (2, i, G, (*;)icr) a com-
muting measure-automorphism action system which is fully isotropized and fully agreeable. Let (€, 7, G,
(Si)ierufoo}s (Ti)ier) be the Furstenberg self-joining of (U, fi, G, (*i)icr) over I. For J C I set

9Later editions only.
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By={a:aeC g,a=gejaforalli, jeJand g€ G},

and let B% C € be the divaricate copy of B, (5C). Let J, K C PI be sets such that J' € J whenever
JeJand JC J CI and K’ € K whenever K € K and K C K’ C I. Then \/Jej%f} and \/ - B are
relatively independent over \/, . 70k B

proof (a) Induce on #(K\ J). If £ C J the result is trivial. So the rest of the argument will be the
inductive step to #(K\ J) =n > 0.

(b) Take a maximal member M of K\ J, and set K' =K\ {M}. If M C J C I then J € K; thus M is
maximal in PI\K'. If M C J € JUK' then J € K because M € K, while J # M, so J € K'. Thus M is
also maximal in PI\ (JUK'). Set

D1 = VJGJ By, D= \/Keic B, €= VLejmic B, = \/LEJOIC’ B,

! * ! __ * *
D5 =Vger Bk, €= \/MQJEJUIC’ B = \/MgJe/c' B

By the inductive hypothesis, D1 and @) are relatively independent over €.
If ¢ € B3, then

Qo,voy(xc) = Qe (xc)
(because ©1 V D% and B%, are relatively independent over €', by 5D)

= Qo (xc)

because D), and B, are relatively independent over &', again by 5D. So if ¢ € B%, and d € Dj,

Q®1 (XC X Xd) = Q®1 (Q@ﬂ/@é (XC X Xd)) = Q©1 (Q®1V©'2 (XC) X Xd)
= Qo,(Qo;(xc) x xd) = Qo,(Qoy(xc x xd)) = Qe(xc x xd)

because D7 and D) are relatively independent over €.
As c and d are arbitrary, Qp, and Qe agree on B%, V D) = D,y. Rearranging the notation, we have

p(dinds) = [ xdi x Qo, (xd2) dv = [ xdi x Qe(xd2) dv = [ Qe(xdr) x Qe(xdz) dv
whenever d; € ©; and dy € D3, so D1 and D, are relatively independent over €.
5F Lemma (AUSTIN PO8B, 7.1) Let G be an abelian group, I a finite set and (2, i, G, (+;);cs) & commut-
, U

ing measure-automorphism action system which is fully isotropized and fully agreeable. Let (€, 7, G, (3;)icrufoo}s (Ti)icr)
be the Furstenberg self-joining of (U, ii, G, (s;)icr) over I. For J C PI set

B, =Vjegsla:a €A, geja = gejaforalli, j € Jand g € G}

(interpreting By as {0}, of course). Let J C I x PPI be such that if (i, 7) € J then
IleJg, ieJforeveryJeJ, ifJeJandJC K CI then K € 7.
If (ai7)(i,7)ey is a family in A such that a;7 € B 7 for all (4, 7) € J, and
inf(; 7ye5milaig) = 0,
then
inf(;, pyeyaig = 0.
proof (a) Before starting on the main argument, it will be helpful to explain the way in which Lemma 5F
will be applied. Import the notation of 5E, so that if J C I then
By={a:ga=gejaforali,jeJand g e G}, B =m[B,] whenever e J,

(with B = €); then B7 = \/,.,B; and m[B7] = V., B whenever (i,J) € J. Take any lp € N
and for J C PI set J = {J:J €T, #(J) > lp}. Suppose that for each J C I we are given a closed
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subalgebra & ; of B, and for 7 C Pl set D7 =\ ;. :B;VV ;c,6,. If (I,£) € J then & = m[B,] and
€2 = V(i 7ye16.0)£0,c) Ti[D7) are relatively independent over € = m[D.]. B Set
K= U(i,j)ejj\ (L \ EA)

Observe that if K € K and K C K’ C I then K’ € K. By 5F, & = \/ ;.. B and &, = \/ ;B are
relatively independent over

VJeICmE ‘Bj} = VJeﬁ %TI ce¢= \/Jeﬁ %3 \ VJe£ 7rl[QSJ] c¢.

Consequently &; and &, are relatively independent over ¢ (FREMLIN 03, 458Ld1%). It follows that &; and
¢, Vv € are relatively independent over ¢ (FREMLIN 03, 458Ld again). But

€ C &V, e mlGs]Ceve,
so €; and €&, are relatively independent over €. Q

(b) Now for the main line of the proof. The case J = () is trivial; suppose that J is non-empty. Induce
on the triple (#(I) — lo, {1, l2) where

lo = mln{#(J) . J S U(i7j)EJ j},
Lh=4#{6,J): 6,T) €], min{#(J): J € T} =1y, J has no least element},
lo=#{0G,T): (,J) €], min{#(J): J € J} =lo, J has a least element}.
The case I3 =l = 0 is vacuous. Let M be {(4,7) : (¢,7) € J, min{#(J) : J € T} = o}

(c) Suppose that there are an £ C PI and distinct j, k € I such that (4, £) and (k, £) both belong to M.
In this case, every member of £ must contain both j and k, so B C By; 1y for every J € L, B C Bk}
geja = ger.a whenever a € B, and g € G, and 7; and 7}, agree on ‘:BL, by 5Ba.

Set J' = J\ {(k, £)}. Then J’ yields the triple (#(I) —lo,1},1) where I§ <1y, 1, <lyand I} +15 <l +1a,
so has been previously dealt with. Set

a;J:ajcﬂakﬁ le:]andj:£7

Since ap, € B,

inf ma.,= inf m(a;7)n7i(a
@er T G ner (aig) nmj(are)
= inf m(a;7)nmi(a = inf m(a;7) =0.
(onf (aig) N mi(arc) ot (aig)

By the inductive hypothesis,
0= inf(i,J)EJ/ a;J = inf(iyj)e.]]/ ;7 NAkL = inf(iyj)ej a; 7

and the induction proceeds.
We can therefore assume, for the rest of the argument, that there are no such £, j and k.

(d) Inductive step to (lo,0,l2) when I > 0: In this case, for every (i, J) € M, J has a least member.
(i) Take any (I,£) € M, and let L be the least member of £. Set £ = £\ {L},
V=\{OY) u{L)

Then J' yields a triple (#(I) — 1§, 11,15) where either I > Iy (because (I, £) was the only member of M) or
I, =1pand I} =0 and I} = l3 — 1; in either case, it has already been dealt with.

Set ® = %ﬁ,

10Later editions only.
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ai; =upr(aye,®) ifi =l and J = £ and (I, J) ¢ J,
(recall that upr(a,®) = inf{d : a C d € D}; see FREMLIN, 313S'!)
= a7 nupr(aye,®) ifi=land J = £ and (1,7) € J,
=z ifi=1land (1,J) €] and J # L,
=a;7 ifieI\{l} and (:,7) € J.
Then a; ; € B 7 whenever (i, 7) € J'. PIfi =1 and J = L, then
upr(a;z, D) € D =B
If 7 =L and (I, 7) ¢ J then a;; = upr(ayc,D); if J = L and (1,7) € J then a;; = a;z N upr(a;s,D); in
either case it belongs to B 7- In all other cases, aj; = a;7 € B 7-Q
(ii) Write N for J\ {(1,£)}. In (a), set &; = {0} and &; = B; for other J C I. Then D; = B
whenever (i, J) € N. P The point is that L ¢ J. For if J € J then either #(J) > ly or #(J) = o is the

least member of J; since J # L, as settled in (b) above, and J and £ both have least members, their least
members must be different, and J # L. So

D7 =VsesBrVVies61=Ve5B1V Vs Bs= Bs. Q
On the other hand,
D=V, Bs=9

because £ = LU {L} and &, = {0}.
Now observe that, in the notation of (a),

¢ =m[B.]

contains m(a;z),

¢ = \/(i,j)eN m[Dg] = \/(iJ)eN ™ [B 7]
contains inf(; 7)en a7, and
¢ = WZ[QL] = FZ[Q].

Since ¢; and € are relatively independent over &, by (a), and m;(a;c) n inf(; 7)en Ti(aiz) = 0, we also have

0 =upr(m(aiz), ) n inf m;(a;
pr(m(aic), €) . (ai7)

(FREMLIN 03, 458Lf12)
=m(upr(ay),®)n inf m(a;i7)

(i,J)EN
(FREMLIN 02, 313Xs'2)
m(upr(aiz), D) (i’l‘%ejﬂz(azj) (i,.l7n)€.]]’ Ti(aiz)
By the inductive hypothesis,
0= inf a);=upr(a,®)n inf a;72 inf a;
@ner 7 pr(aiz, D) @en = e

and the induction proceeds in this case also.

(e) Inductive step to (lo,l1,l2) when l; > 0: For J C PI, set J={J:J €T, #(J)>l}. Note
that By =B 7V V ez 4(5)=1, Bs whenever (i, ) € J.

M Formerly 314V.
12Later editions only.
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case 1 Suppose there is a pair (I,£) € M such that ajz is of the form bn infrcp 4 (1)=i, br Where
be B, and by, € By, for each L € L\ L.
Set K, ={J:LCJCI}for L CI,sothat ‘B;CL =B, for each L, and
T =@\{ o u{(,Ke): L e L\LYU{( L)}

Then J' yields a triple (#(1) —lo, 11 — 1,13, because every K, has a least element of size [y, while £ contains
no set of size ly; so J' has been previously dealt with. Set

diy=bifi=1,7=Land (I,J) ¢ J,
=bnaygifi=1,7=~Land (I,7) €],
=bpifi=1,LeL\L, J=Kyand (1,J) ¢J,
=brnaifi=1,LelL\L, J=Kand (I,7) €,
=aqyifi=1,(1,7)eJand J ¢ {L,L}U{KL:Le L\ L},
=aq;7ifieI\{l}and (i,J) €.

Then

inf m(a,;)=m(bn inf by)n inf  m;(a;

(4,7)el ( ‘7) l( Lel\L L) (,7)ed ( ‘7)

(@, )#(1,L)
= inf Tila; =0.
(,T)€T ( j)
By the inductive hypothesis,
0= inf da;=bn inf brn inf a;7 = inf aq;
ey rece & aoer 0T e

(&, N#(,L)
and again we can move forward.

case 2 Suppose there is a pair (I, £) € M such that a;z belongs to the subalgebra of 2 generated by
B, UU{B;: J € L} Then it is a finite supremum of elements of the form considered in case 1 and,
applying the argument above to each of these, we again find that inf(; 7)eya;7 = 0.

case 3 Now for the case of general a;7. Take any € € ]0,1]. Set 6 = ¢/2#(J). For each (¢, 7) € J,
aiJE%J:%j\/ \/ By
Jeg\J

= U{%J \Y, \/ &, : & is a finite subalgebra of B for every J € J}.
JeJg

We can therefore find families (& ;) ;c; and (bi7) i, 7)es such that & is a finite subalgebra of 9B ; for every
J, big € ‘Bj V'V ey ® for every (i,J) € J, and ji(a;z Abiy) < 6 for every (i,7) € J. As in (a), set
Dy = %j VVjeqs &y for J CPI. For (i,J) € ], set diy = [Qo,(xaiz) > 1 —5]. Then

Qo,x(dig \ aiz) = Qo, (x(dig) — x(diz) x x(aiz))
= xdig — x(dig) x Qo ,x(aiz7) < dxdiz;
on the other hand,

dp(aig \dig) < /

a\

xaig — Qo (xaiz)dii < |[xaigz — Qo (xaiz)lh
d

< llxaiz = xbiglli + Ixbiz — Qo (xbi7)|1 + Qo (xbig — xaiz)|1
< 2||lxaiz — xbigll < 26%,
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so fi(aiz \ dig) < 20. .
Consider ¢ = inf(; syeymi(diz). For (I,£) € J, we know from (a) that €, = m[B,] and &
Vi.mena,.m20c) TilDg] are relatively independent over € = m[Dr]. Since m(dic \aiz) € €1 and e

inf(i,J)EJ, (6, T)A1,L) Ti (dlj) belongs to &y,

vle\m(ag)) = /Xﬁz(dw\aw) X xedv = /Qe(xﬂl(dw\aw)) X xedv

= /RZQ’DLX(dlﬁ\alﬁ) X xedv
(where R; : L°(2) — L9(€) corresponds to 7, : % — €, as usual)

< 6/R1X dir) X xedv = 6/ inf m;(d;7))dv = dve.
(1,TJ)ET

Summing over (I, £) € J,

(c\ lnf Wzaw)
(because inf(hg)ej m(aiz) = 0)

< Z v(e\mac) < 0#(J )Z/CS%DC,
(L,L)el

and vc = 0, that is, ¢ = 0.

Now observe that, because every & ; is finite, the subalgebra of 2 generated by B 7Y Use 7 ®. is closed,
and is equal to ® 7, for every J C PI. Applying case 2 to the family (d;7)(;,7)er and any (I, £) € M, we
see that inf(; 7)cydiy = 0. But this means that

pinf gyey aig) < 326 gyep ilaig \ dig) < 20#(J) < e
As e is arbitrary, inf(; 7)cya;7 = 0 and the induction proceeds in this case also.
This completes the proof.
5G Theorem Let G be an abelian group, I a finite set and (2, i, G, (+;)iecr) & commuting measure-
automorphism action system. Then
WDL,_.¢ a(inficr go;a) > 0
for every non-zero a € .

proof (a)(i) If I = () we have to interpret the infimum of the empty set in 2, but this is 1, so we get
WDL,_¢ a(inf;er ge;a) = 1 for every a € 2.

(ii) If I = {j} is a singleton, then
WDL,_.¢ ﬂ(infie[ g-ia) = WDL,_.¢ ﬂ(goja) =pa >0
for every non-zero a. So henceforth we can assume that #(I) > 2.

(iii) It may make you more comfortable if I remind you that (2, i, G, (s;);cs) is measure-averaging, by
Theorem 3G, so

WDL,_c X(infies goja) = WDLy_ [[;¢; 9*ixa
is defined in L'(A, 1) for every a € 2, and WDL,_¢ i(inf;er g+;a) is always defined.

(b) Suppose that (2, i, G, (+;)icr) is fully isotropized and fully agreeable. Let (€, 7, G, (%;)ic1ufoo} (Ti)icr)
be the Furstenberg self-joining of (2, i1, G, (+;);cr) over I.

Take a € A such that WDL,_,¢ fi(inf;er geia) = 0. Because (2, i, G, (*i)icr) is (I, j)-agreeable for every
Jjel,
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0 = WDLy_¢ fi(infies g+ia) = v(infie; mia) = [ [1;c; RiPixady
where R; : L9(2) — L%(€) is the Riesz homomorphism corresponding to 7; : % — €, and P; is the conditional
expectation operator corresponding to the closed subalgebra \/jef\{i}{a : geja = ge;a for every g € G} C Q.

Set a; = [Pixa > 0] for each 4; then ma; = [R;P;xa] for each i, so inf;c; ma; = 0. Applying 5F with
TJi={J:1eJCI, #(J)>2},I1={(JT) i€ I}, we see that

a; € Vjepgipla: geja = gea for every g € G} = B,
for each i, so inf;c;a; = 0. But a C a; for each i, so a = 0.

() In general, (2, [i, G, (+;);cr) has a fully isotropized and fully agreeable extension (', i/, G, (+})icr, ¢),
by Proposition 4G. If a € 2\ {0}, then ¢a # 0 so

0 <WDLy4_.¢ ﬁ’(irelg ge;¢a) = WDL,_.¢ ﬂ/(irellf o(geia))
= WDL, ¢ (6(inf g#ia)) = WDL, g (inf ge;0),
as required.

Remark The special case of this theorem in which G = Z is the Multiple Recurrence Theorem (FURSTEN-
BERG & KATZNELSON 78).

5H Corollary Let G be an infinite abelian group, I a finite set and (X, G, {*;);cs) a commuting action
system. Suppose that there is a finitely additive functional p : PX — [0, oo[ which is G-invariant, that is,
1(g%;A) = pA whenever A C X, i € I and g € G, writing ¢g+; A for {ge;x : x € A}. If A C X and pA > 0,

there are a g € GG, not the identity, and an x € X such that ge;x € A for every i € I.

proof If X = 0 this is vacuous; otherwise, taking a scalar multiple of p if necessary, we can assume that
uX = 1. Of course we can take it that I is non-empty. Applying 2B to the system (PX, G, (3;);cr), we get
a commuting measure-preserving action system (2, i, G, (3;);cs) together with a Boolean homomorphism
¢ : PX — A such that gp(A) = pA for every A C X and g+;¢(A) = ¢(g+; A) whenever A C X, i € I and
g€G. If uA >0, then igp(A) > 0 so

WDL, . ([ ] 9% 4) = WDLy . i(é([ ") 9%:A4)) = WDLy. fi(inf 6(g%i4))
el el

= WDL,_.c fi(inf g%i¢(4)) > 0

by Theorem 5G. In particular, there is a g € G, other than the identity, such that p((;c; g%:4) > 0 (1Hd);
in which case, there is surely an x € [,; g:A. Now g le;x € Afor every i € I.

5J Corollary Let R be an infinite ring and X an R-module. Suppose that I C X is a finite set and
that A C X has WDL,_, x xA(z) > 0, where WDL,,_, x is defined with respect to the additive group (X, +).
Then there is a similar copy x + rI of I included in A, where z € X and r € R\ {0}.

proof By 1Hc, there is a translation-invariant finitely additive functional u : PX — [0, 1] such that pA > 0.
Forie€ I, r € Rand xz € X, set re;z = x + ri. It is easy to check that (X, R, (*;)ics) is a commuting action
system when R is given its additive group structure. Because p is translation-invariant, it is R-invariant.
By 51, there are an € X and an r € R\ {0} such that z + i = re;x € A for every i € I.
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