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Ergodic averages, following Austin

D.H.Fremlin

University of Essex, Colchester, England

I rewrite the main results of Austin p08a and Austin p08b, in which a version of the multiple recurrence
theorem is proved by a new method based on ideas of T.Tao.

1 Useful facts

1A Lemma Let (A, µ̄) be a measure algebra. If a ∈ A and u ∈ L∞(A) is such that 0 ≤ u ≤ χ1, there is
an α ∈ ]0, 1[ such that µ̄(a△ [[u > α]]) ≤

∫

|χa− u|.
proof Set γ =

∫

|χa − u|. If γ = ∞ we can stop. Otherwise, we may suppose that (A, µ̄) is the measure
algebra of a measure space (X,Σ, µ). Express a as E• and u as f• where E ∈ Σ and f : X → [0, 1] is
Σ-measurable. Then

∫

|χE − f |dµ = γ is finite, so H = {x : χE(x) 6= f(x)} is expressible as a countable
union of sets of finite measure. Set Ω′

f = {(x, α) : x ∈ X, 0 ≤ α < f(x)} and W = (E × [0, 1])△Ω′
f . Then

W ⊆ H × R is measured by the product of the subspace measure µH on H and Lebesgue measure µL on
[0, 1]. Because µH is σ-finite, we have

γ =

∫

H

|χE(x) − f(x)|µ(dx) =

∫

H

µLW [{x}]µH(dx)

=

∫ 1

0

µHW
−1[{α}]µL(dα) =

∫ 1

0

µH(E△{x : f(x) > α})µL(dα),

and there must be an α ∈ ]0, 1[ such that

γ ≥ µH(E△{x : f(x) > α}) = µ(E△{x : f(x) > α}) = µ̄(a△ [[u > α]]).

1B Lemma Let G be a topological group, (A, µ̄) a measure algebra, and • a continuous action of G on
A, where A is given its measure-algebra topology (Fremlin 02, §323), such that a 7→ g•a is a measure-
preserving Boolean automorphism for every g ∈ G.

(a) We have an action of G on L0 = L0(A) defined by saying that [[g•u > α]] = g•[[u > α]] whenever g ∈ G,
u ∈ L0 and α ∈ R; for g ∈ G, u 7→ g•u : L0 → L0 is an f -algebra automorphism.

(b) For every p ∈ [1,∞], Lp = Lp(A, µ̄) and ‖ ‖p are G-invariant. For p ∈ [1,∞[, the action is continuous.
(c) Let B be the unit ball of L∞ = L∞(A), with the topology Ts(L

∞, L1) induced by the duality between
L∞ and L1 = L1(A, µ̄). Then B is G-invariant and the action of G on B is continuous.

proof (a) For each g ∈ G, we have a measure-preserving automorphism πg defined by saying that πg(a) = g•a
for a ∈ A, and a corresponding f -algebra isomorphism Rg : L0 → L0, where L0 = L0(A), given by saying
that [[Rgu > α]] = πg[[u > α]] for u ∈ L0 and α ∈ R.

If g, h ∈ G, then

πgh(a) = (gh)•a = g•(h•a) = πg(πh(a))

for every a ∈ A, so πgh = πgπh, Rgh = RgRh (Fremlin 02, 364Re) and g•(h•u) = (gh)•u for every
u ∈ L0(A). So we have an action of G on L0(A).

(b) Every Rg acts on every Lp as a Banach lattice automorphism (Fremlin 02, 364R, 365O and 366H).
If p <∞, this action is continuous for the norm topology on Lp. PPP Suppose that g0 ∈ G, v0 ∈ Lp and ǫ > 0.
Then we can find a v1 ∈ Lp such that ‖v1 − v0‖p ≤ ǫ and v1 is expressible as

∑n
i=0 αiχai where µ̄ai < ∞

for every i ≤ n.
Let η > 0 be such that (2η)1/p

∑n
i=0 |αi| ≤ ǫ. Because the action of G on A is continuous, there is

a neighbourhood V of g0 such that µ̄(g•ai ∩ g0•ai) ≥ µ̄(g0•ai) − η whenever i ≤ n and g ∈ V . Since πg
is measure-preserving for every g, we see that µ̄(g•ai △ g0•ai) ≤ 2η whenever g ∈ V and i ≤ n, so that
‖g•v1 − g0•v1‖p ≤ ǫ whenever g ∈ V . Now if g ∈ V and v ∈ L1 is such that ‖v − v0‖p ≤ ǫ, we shall have
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‖g•v − g0•v0‖p ≤ ‖g•v − g•v1‖p + ‖g•v1 − g0•v1‖p + ‖g0•v1 − g0•v0‖p
≤ ‖v − v1‖p + ǫ+ ‖v1 − v0‖p ≤ 4ǫ.

As g0, v0 and ǫ are arbitrary, the action is continuous. QQQ

(c) Rg↾L
∞ is a norm-preserving automorphism of L∞, so we have an action of G on B. Now suppose that

u0 ∈ B, g0 ∈ G, v ∈ L1 and ǫ > 0. Then there is a neighbourhood V of g0 such that ‖g−1
•v − g−1

0
•v‖1 ≤ ǫ

whenever g ∈ V . Suppose that u ∈ B is such that |
∫

u× (g−1
0

•v)−
∫

u0× (g−1
0

•v)| ≤ ǫ. Then, for any g ∈ V ,

|
∫

(g•u− g0•u0) × v| = |
∫

(g•u) × v −
∫

(g0•u0) × v|

= |
∫

g−1
•((g•u) × v) −

∫

g−1
0

•((g0•u0) × v)|

= |
∫

u× (g−1
•v) −

∫

u0 × (g−1
0

•v)|

(because Rg, Rg0 are multiplicative)

≤ |
∫

u× (g−1
•v) −

∫

u× (g−1
0

•v)|

+ |
∫

u× (g−1
0

•v) −
∫

u0 × (g−1
0

•v)|

≤ ‖g−1
•v − g−1

0
•v‖1 + ǫ ≤ 2ǫ.

As u0, g0, v and ǫ are arbitrary, the action of G on B is continuous.

1C Remark In this context, the following remark will be useful. Suppose that G is a topological group,
(A, µ̄) a probability algebra, and • an action of G on A such that a 7→ g•a is a measure-preserving Boolean
automorphism for every g ∈ G. If D ⊆ A is such that the subalgebra D of A generated by D is dense for the
measure-algebra topology of A, and g 7→ g•d : G → A is continuous for every d ∈ D, then • is continuous.
PPP (i) {d : d ∈ A, g 7→ g•d is continuous} is a subalgebra of A because the Boolean operations are uniformly
continuous (Fremlin 02, 323B). So it includes D. (ii) Suppose that g0 ∈ G, a0 ∈ A and ǫ > 0. Let d ∈ D

be such that µ̄(d△ a) ≤ ǫ, and H ⊆ G a neighbourhood of g0 such that µ̄(g•d△ g0•d) ≤ ǫ for every g ∈ H.
Then if g ∈ H and µ̄(a△ a0) ≤ ǫ,

µ̄(g•a△ g0•a0) ≤ µ̄(g•a△ g•d) + µ̄(g•d△ g0•d) + µ̄(g0•d△ g0•a0)

≤ µ̄(a△ d) + ǫ+ µ̄(d△ a0) ≤ 4ǫ.

As g0, a0 and ǫ are arbitrary, • is continuous. QQQ

1D Proposition Let U and V be Hausdorff locally convex linear topological spaces, A ⊆ U a convex set
and φ : A→ V a continuous function such that φ[A] is bounded and φ(αx+(1−α)y) = αφ(x)+(1−α)φ(y)
for all x, y ∈ A and α ∈ [0, 1]. Let µ be a topological probability measure on A with a barycenter x∗ in A.
Then φ(x∗) is the barycenter of the image measure µφ−1 on V .

proof (a) Suppose that 〈Ei〉i∈I is a finite partition of A into non-empty convex sets measured by µ, and
set αi = µEi for each i ∈ I. Set C = {∑i∈I αixi : xi ∈ Ei for every i ∈ I}. Then x∗ ∈ C. PPP Because each
Ei is convex, so is C. If g ∈ U∗, then

g(x∗) =

∫

A

g(x)µ(dx) =
∑

i∈I

∫

Ei

g(x)µ(dx)

≤
∑

i∈I

αi sup
x∈Ei

g(x) = sup{
∑

i∈I

αig(xi) : xi ∈ Ei for every i ∈ I}

= sup{g(
∑

i∈I

αixi) : xi ∈ Ei for every i ∈ I} = sup
z∈C

g(z).
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By the Hahn-Banach theorem, x∗ ∈ C. QQQ

(b) Now suppose that h ∈ V ∗ and ǫ > 0. Then h[φ[A]] is bounded; take α ∈ R and n ≥ 1 such that
h[φ[A]] ⊆ [α, α+ nǫ[. For i < n set Fi = {y : y ∈ V , α + iǫ ≤ h(y) < α + (i + 1)ǫ} and Ei = φ−1[Fi]; set
I = {i : i < n, Ei 6= ∅}. Then 〈Ei〉i∈I is a partition of A into relatively Borel sets. As in (a), set αi = µEi
for i ∈ I and C = {∑i∈I αixi : xi ∈ Ei for every i ∈ I}. Then C ⊆ A and x∗ ∈ C; there must therefore be
a z ∈ C such that |h(φ(z)) − h(φ(x∗))| ≤ ǫ. Express z as

∑

i∈I αixi where xi ∈ Ei for each i ∈ I. Then

|h(φ(x∗)) −
∫

h d(µφ−1)| ≤ ǫ+ |h(φ(z)) −
∑

i∈I

∫

Fi

h d(µφ−1)|

= ǫ+ |h(
∑

i∈I

αiφ(xi)) −
∑

i∈I

∫

Fi

h d(µφ−1)|

≤ ǫ+
∑

i∈I

|αih(φ(xi)) −
∫

Fi

h d(µφ−1)|

≤ ǫ+
∑

i∈I

αi sup
y∈Fi

|h(φ(xi)) − h(y)|

(because µφ−1[Fi] = αi for each i)

≤ ǫ+
∑

i∈I

αiǫ

(by the choice of the Fi)

= 2ǫ.

As h and ǫ are arbitrary, φ(x∗) is the barycenter of µφ−1.

1E Lemma Let U be a uniformly convex Banach space, A ⊆ U a non-empty bounded set, and C ⊆ U a
non-empty closed convex set. Set

δ0 = inf{δ : there is some w ∈ C such that A ⊆ B(w, δ)}.
Then there is a unique w∗ ∈ C such that A ⊆ B(w∗, δ0).

proof (a) For δ ≥ δ0, set

Cδ = C ∩ ⋂

u∈AB(u, δ)},
so that Cδ is closed, and is non-empty if δ > δ0. Now limδ↓δ0 diamCδ = 0. PPP Of course diamCδ ≤ 2δ, so

if δ0 = 0 the result is trivial. Otherwise, let ǫ > 0. Then there is an η > 0 such that ‖1

2
(v0 + v1)‖ < 1−η

1+η

whenever ‖v0‖, ‖v1‖ ≤ 1 and ‖v0−v1‖ ≥ ǫδ0. ??? Suppose that δ ≤ (1+η)δ0 and diamCδ > ǫ. Let w0, w1 ∈ Cδ
be such that ‖w0−w1‖ ≥ ǫ. Then 1

2 (w0+w1) ∈ C, so there is a u ∈ A such that ‖u− 1
2 (w0+w1)‖ ≥ (1−η)δ0,

while ‖u− w0‖ ≤ (1 + η)δ0 and ‖u− w1‖ ≤ (1 + η)δ0; setting vj =
1

(1+η)δ0

(u− wj) for j = 0 and j = 1, we

see that this contradicts the choice of η. XXX
So diamCδ ≤ ǫ whenever δ ≤ (1 + η)δ0; as ǫ is arbitrary, we have the result. QQQ

(b) {Cδ : δ > δ0} generates a Cauchy filter, which has a limit w∗ ∈ ⋂

δ>δ0
Cδ. Now w∗ ∈ Cδ0 ; since Cδ0

has zero diameter, w∗ is its only member, that is, is the unique element of U such that A ⊆ B(w∗, δ0).

1F Proposition (T.Austin, e-mail of 8.10.08) Let G be a group, (A, µ̄) a probability algebra, and • an
action of G on A such that a 7→ g•a is a measure-preserving Boolean automorphism for every g ∈ G. Let C

be the fixed-point algebra {c : c ∈ A, g•c = c for every g ∈ G}. Then for every a ∈ A, there is a c ∈ C such
that µ̄(a△ c) ≤ supg∈G µ̄(a△ g•a).

proof (a) Set γ = supg∈G µ̄(a△ g•a). As in Lemma 1B, we have an action of G on L0(A) defined by saying
that [[g•u > α]] = g•[[u > α]] whenever g ∈ G, u ∈ B and α ∈ R. Set

D.H.Fremlin
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A = {χ(g•a) : g ∈ G} = {g•χa : g ∈ G}, C = {u : 0 ≤ u ≤ χ1 in L0}.
If p ∈ [1,∞[, Lp = Lp(A, µ̄) is invariant under this action, and u 7→ g•u : Lp → Lp is a Banach lattice
automorphism for every g ∈ G. If p ∈ ]1,∞[, Lp is uniformly convex (Fremlin 01, 244P1, or Clarkson

36), so there is a unique wp ∈ C such that

supu∈A ‖u− wp‖p = infw∈C supu∈A ‖u− w‖p ≤ supu∈A ‖u− χa‖p = γ1/p

(1E). Because A and C and ‖ ‖p, are G-invariant, so is wp, and wp ∈ L0(C).

(b) Recall now that there is a w∗ ∈ L1
C

= L1(C, µ̄) such that ‖χa − w∗‖1 = inf{‖χa − w‖ : w ∈ L1
C

(use
Bukhvalov’s theorem, Fremlin 02, 367V/367Xx, or Komlós’ theorem, Fremlin 01, 276H). Replacing w∗

by med(0, w∗, χ1) if necessary, we may suppose that w∗ ∈ C. In this case,

‖χa− w∗‖1 ≤ ‖χa− wp‖1 ≤ ‖χa− wp‖p ≤ γ1/p

for every p > 1, and ‖χa − w∗‖1 ≤ γ. By Lemma 1A, there is an α ∈ ]0, 1[ such that µ̄(a△ [[v > α]]) ≤ γ.
Set c = [[v > α]]; then c ∈ C and µ̄(a△ c) ≤ γ, so we have the result.

1G Proposition (Austin p08a, 2.1) Let (T,≤) be an upwards-directed partially ordered set, 〈(At, µ̄t)〉t∈T
a family of probability algebras and G a group; suppose that φji : At → Aj and •

(t) : G×At → At are such
that

(i) φst is a measure-preserving Boolean homomorphism whenever s ≤ t in T ,
(ii) φsu = φtuφst whenever i ≤ j ≤ k in T ,

(iii) •
(t) is an action of G on At for each t ∈ T ,

(iv) g•
(t)(φsta) = φst(g•

(s)a) whenever s ≤ t in T , a ∈ At and g ∈ G,

(v) a 7→ g•
(t)a : At → At is a measure-preserving Boolean automorphism for each t ∈ T .

(a) Writing (A, µ̄, 〈φt〉i∈I) for the inductive limit of (〈(At, µ̄t)〉i∈I , 〈φst〉s≤t) as in Fremlin 02, 328G2, we
have a unique action • of G on A such that

a 7→ g•a : A → A is a measure-preserving Boolean automorphism for every g ∈ G,
g•(φta) = φt(g•

(t)a) whenever t ∈ T , a ∈ At and g ∈ G.

(b) For each t ∈ T , let Ct = {c : c ∈ At, g•
(t)c = c for every g ∈ G} be the fixed-point subalgebra of the

action •
(t). Then the fixed-point subalgebra C of the action • is the closure of

⋃

t∈T φt[Ct].

(c) If G is a topological group and •
(t) is continuous for every t ∈ T , then • is continuous.

proof (a) For g ∈ G and t ∈ T , set ψgt(a) = φt(g•
(t)a) for every a ∈ At. Then ψgt = ψgtφst whenever

s ≤ t, so by the defining property of probability algebra inductive limit, there is a unique measure-preserving
Boolean homomorphism ψg : A → A such that ψgφt = ψgt for every t. It is now elementary to verify that
(g, a) → φg(a) is an action of G on A, as required.

(b) If i ∈ I and a ∈ φt[Ct], set c = φ−1
t a; then

g•a = φt(g•
(t)c) = a

so a ∈ C. Now suppose that c ∈ C and ǫ > 0. Then there are a t ∈ T and an a ∈ At such that µ̄(c△ φta) ≤ ǫ.
If g ∈ G, then

µ̄t(a△ g•
(t)a) = µ̄φt(a△ g•

(t)a) = µ̄(φta△ g•φta)

≤ µ̄(φta△ c) + µ̄(g•c△ g•φta) = µ̄(φta△ c) + µ̄(c△ φta) ≤ 2ǫ.

By Lemma 1F, there is a b ∈ Ct such that µ̄t(a△ b) ≤ 2ǫ, so that φtb ∈ φt[Ct] and µ̄(c△ φtb) ≤ 2ǫ. As c and

ǫ are arbitrary, C =
⋃

t∈T φt[Ct].

(c) Because {0, 1} ∪ ⋃

t∈T φt[At] is dense in A (Fremlin 02, 328G), it will be enough to show that
g 7→ g•(φta) : G → A is continuous whenever t ∈ T and a ∈ At (1C). But this is just the function
g 7→ φt(g•

(t)a), which is continuous because •
(t) and φt are continuous.

1Later editions only; see http://www.essex.ac.uk/maths/staff/fremlin/mtcont.htm.
2Later editions only.
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1H Well-distributed limits (Fremlin n08) Let G be an amenable discrete group (Fremlin 03, §449)
and U a Banach space.

(a) The left Følner filter of G is the filter Fø on [G]<ω \ {∅} generated by sets of the form

{K : K ⊆ G is finite and not empty and #(K△hK) ≤ ǫ#(K)}
where h ∈ G and ǫ > 0. If U is a Banach space and f : G→ U is a bounded function, I write

WDLg→G f(g) = limL→Fø
1

#(L)

∑

g∈L f(g)

if the limit exists in U for the norm of U . Of course WDLg→G f(g), if defined, must belong to the closed
convex hull of the image f [G], and we have

WDLg→G(f1 + f2)(g) = WDLg→G f1(g) + WDLg→G f2(g),

WDLg→G(Tf)(g) = T (WDLg→G f(g))

whenever the right-hand sides are defined and T : U → V is a bounded linear operator to another Banach
space. Also

‖WDLg→G f(g)‖ ≤ WDLg→G ‖f(g)‖
whenever both sides are defined.

(b) If f : G→ R is any function I will write

WDLg→Gf(g) = lim supL→Fø
1

#(L)

∑

g∈L f(g).

Observe that of U is a Banach space and f : G → U is a bounded function such that WDLg→G‖f(g)‖ = 0
then WDLg→G f(g) = 0.

(c) For a bounded function f : G→ R,

WDL(f) = sup{
∫

f dµ : µ is a translation-invariant finitely additive functional

from PG to [0, 1], and µG = 1}.
(Here the ‘integral’

∫

f dµ must be interpreted as in Fremlin 02, 363L.) PPP For f ∈ RG and g ∈ G, define
g•lf ∈ RG by setting (g•lf)(h) = f(g−1h) for every h ∈ G. Writing P for the set of positive linear functionals
p : ℓ∞(G) → R such that p(χG) = 1 and p(g•lf) = p(f) whenever f ∈ ℓ∞(G) and g ∈ G,

WDL(f) = supp∈P p(f)

for every f ∈ ℓ∞(G) (Fremlin n08, 6Ia). On the other hand, it is easy to check that we have a one-to-
one correspondence between positive linear functionals on ℓ∞(X) and the set of finitely additive measures
µ : PG→ [0,∞[, given by setting

µA = p(χA) for A ⊆ X, p(f) =
∫

fdµ for f ∈ ℓ∞(G)

(see the discussion in Fremlin 02, 363L); and p ∈ P iff µ is translation-invariant and µG = 1. So we get

WDL(f) = sup
p∈P

p(f)

= sup{
∫

f dµ : µ is a translation-invariant finitely additive functional

from PG to [0, 1], and µG = 1}.

(d) If G is infinite, and f : G → U is a bounded function such that #({g : f(g) 6= 0}) < #(G), then
WDLg→G f(g) = 0. PPP Setting A = #({g : f(g) 6= 0}), we can choose inductively a sequence 〈gn〉n∈N

in G such that gnA ∩ ⋃

i<n giA = ∅ for every n. (When we come to choose gn, only
⋃

i<n giAA
−1 is

forbidden, and this has cardinal less than #(G).) By (c), WDLg→GχA(g) = 0, so WDLg→G ‖f(g)‖ = 0 and
WDLg→G f(g) = 0. QQQ

D.H.Fremlin



6

1I Theorem Let G be an abelian group, and • an action of G on a Banach space U such that u 7→ g•u is
a linear operator of norm at most 1 for every g ∈ G. If u ∈ U is such that {g•u : g ∈ G} is relatively weakly
compact, then w = WDLg→G g•u is defined in U and g•w = w for every g ∈ G.

proof Fremlin 08, 6M. (To match between the definition of WDL in 1H with that in Fremlin 08, apply
Fremlin 08, 6Ic to the discrete topology on G.)

1J Notation (a) We shall have a very large number of conditional expectation operators in the work
to follow. It will be convenient to reserve a letter for these. If (A, µ̄) is a probability algebra and B is a
closed subalgebra of A,3 I will write QB for the associated conditional expectation operator from L1(A, µ̄)
to L1(B, µ̄↾B) ⊆ L1(A, µ̄) (Fremlin 02, 365R).

(b) It will also be convenient to have some notation for lattices of closed subalgebras. If (A, µ̄) is a
probability algebra and 〈Bt〉t∈T is a family of closed subalgebras of A, then I will write

∨

t∈T Bt for the
closed subalgebra of A generated by

⋃

t∈T Bt. Similarly, if B and C are two closed subalgebras of A, B ∨ C

will be the smallest closed subalgebra including both B and C.

2 Measure-automorphism action systems

2A Definitions (a) An action system is a triple (X,G, 〈•i〉i∈I) where X is a set, G is a group and •i

is an action of G on X for each i ∈ I.

(b) An action system (X,G, 〈•i〉i∈I) is commuting if G is abelian and g•i(h•jx) = h•j(g•ix) whenever
g, h ∈ G, i, j ∈ I and x ∈ X.

(c) A measure-automorphism action system is a quadruple (A, µ̄, G, 〈•i〉i∈I) such that

(A, µ̄) is a probability algebra,
(A, G, 〈•i〉i∈I) is an action system,
a 7→ g•ia is a measure-preserving Boolean automorphism for every i ∈ I and g ∈ G.

2B Construction Let (A, G, 〈•i〉i∈I) be an action system. Suppose that A is a Boolean algebra and that
µ : A → [0, 1] an additive functional; suppose that

a 7→ g•ia is a Boolean automorphism whenever g ∈ G and i ∈ I,
µ1 = 1,
µ(g•ia) = µa whenever a ∈ A, g ∈ G and i ∈ I.

Set I = {a : a ∈ A, µa = 0}; then I ⊳ A. Let C0 be the quotient A/I. Then we can define •
′
i : G×C0 → C0,

for i ∈ I, by saying that g•
′
ia

• = (g•ia)
• whenever a ∈ A, g ∈ G and i ∈ I. Each •

′
i is an action of G on C0.

There is a strictly positive additive functional ν̄0 : C0 → [0, 1] defined by saying that ν̄0a
• = µa for every

a ∈ A. Let C be the completion of C0 under the metric (c, c′) 7→ ν̄0(c△ c′), and ν̄ the continuous extension
of ν̄0 to C; then (C, ν̄) is a probability algebra. Each •

′
i has a unique extension to a function •̃i : G× C → C

such that c 7→ g•̃ic is a measure-preserving Boolean automorphism for every g ∈ G.
(C, ν̄, G, 〈̃•i〉i∈I) is a measure-preserving action system. Setting φa =• for a ∈ A, φ : A → C is a Boolean

homomorphism and

g•̃iφ(a) = g•
′
iφ(a) = φ(g•ia)

whenever a ∈ A, i ∈ I and g ∈ G.
If (A, G, 〈•i〉i∈I) is commuting, so is (C, G, 〈̃•i〉i∈I).

proof The verifications are all elementary. We have to confirm, for instance, that if a, b ∈ A and a• = b• in
C0, then (g•ia)

• = (g•ib)
• whenever g ∈ G and i ∈ I. But for this all we need to know is that

µ((g•ia) △ (g•ib)) = µ(g•i(a△ b)) = µ(a△ b) = 0.

Because a 7→ g•ia : A → A is always a Boolean automorphism, so is c 7→ g•
′
ic : C0 → C0. We see at the same

time that

3As noted in Fremlin 02, 323H, a subalgebra of A is order-closed iff it is topologically closed; so we can use the word
‘closed’ without qualification in this context.

Measure Theory
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ν̄0(g•
′
ia

•) = ν̄0(g•ia)
• = µ(g•ia) = µa = ν̄0a

•

whenever a ∈ A, g ∈ G and i ∈ I. So all the maps c 7→ g•
′
ic are isometries on C0, and extend uniquely to

isometries on the completion C, which are again Boolean automorphisms. (See Fremlin 02, 392H4 for the
construction of (C, ν̄) from (C0, ν̄0).) Now the confirmation that all the •

′
i and •̃i are actions is just a matter

of writing out the relevant formulae with their interpretations, and the same is true of the confirmation that
if the original system (A, G, 〈•i〉i∈I) is commuting, so are (C0, G, 〈•′i〉i∈I) and (C, G, 〈̃•i〉i∈I).

2C Definition Let (A, µ̄, G, 〈•i〉i∈I) be a measure-preserving action system. A factor of the system is a
closed subalgebra B of A which is G-invariant in the sense that g•ib ∈ B whenever b ∈ B, g ∈ G and i ∈ I.

2D Lemma Let A = (A, µ̄, G, 〈•i〉i∈I) be a commuting measure-preserving action system.

(a) If B is a factor of A, then (B, µ̄↾B, G, 〈•i↾G × B〉i∈I) is a commuting measure-preserving action
system.

(b) If 〈Bt〉t∈T is a non-empty family of factors of A, then
∨

t∈T Bt and
⋂

t∈T Bt are factors of A.

(c) If J ⊆ I, then BJ = {a : a ∈ A, g•ib = g•jb for all g ∈ G and i, j ∈ J} is a factor of A.

(d) Let B be a factor of A. Then

g•i(QBu) = QB(g•iu)

for all g ∈ G, i ∈ I and u ∈ L1(A, µ̄).

(e) Suppose that J ⊆ I and that B is any factor of A. Then QBQBJ
= QB∩BJ

.

proof (a)-(b) Elementary.

(c) Elementary, recalling that A is supposed to be commuting.

(d) Because QBu ∈ L0(B), g•i(QBu) ∈ L0(B). PPP For any α ∈ R,

[[g•i(QBu) > α]] = g•i[[QBu > α]] ∈ B

because [[QBu > α]] ∈ B. QQQ Also, for any b ∈ B,

∫

b

g•i(QBu) dµ̄ =

∫

g−1•ib

QBu dµ̄

=

∫

g−1•ib

u dµ̄ =

∫

b

g•iu dµ̄;

as b is arbitrary, g•i(QBu) = QB(g•iu).

(e) If u ∈ L1(A, µ̄), then QBQBJ
u ∈ L0(BJ). PPP Set v = QBJ

u. For any g ∈ G, α ∈ R and i, j ∈ J ,

[[g•iv > α]] = g•i[[v > α]] = g•j [[v > α]] = [[g•jv > α]];

so g•iv = g•jv. It follows that, for any α ∈ R, g ∈ G and i, j ∈ J ,

g•i[[QBv > α]] = [[g•i(QBv) > α]] = [[QB(g•iv) > α]]

(by (d))

= [[QB(g•jv) > α]] = g•j [[QBv > α]],

so that [[QBv > α]] ∈ BJ ; as α is arbitrary, QBv ∈ L0(BJ). QQQ

So in fact QBQBJ
u ∈ L0(B ∩ BJ). Now if b ∈ B ∩ BJ ,

∫

b
QBQBJ

u dµ̄ =
∫

b
QBJ

u dµ̄ =
∫

b
u dµ̄,

so QBQBJ
u = QB∩BJ

u.

4Formerly 393B.
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2E Definition Let (A, µ̄, G, 〈•i〉i∈I) be a measure-automorphism action system. An extension of the
system (A, µ̄, G, 〈•i〉i∈I) will be a quintuple (A′, µ̄′, G, 〈•′i〉i∈I , φ) such that (A′, µ̄′, G, 〈•′i〉i∈I) is a measure-
automorphism action system, φ : A → A′ is a measure-preserving homomorphism and g•

′
i(φa) = φ(g•ia)

whenever a ∈ A, g ∈ G and i ∈ I.
In this case, φ[A] is a factor of (A′, µ̄′, G, 〈•′i〉i∈I).

2F Inductive limits Elaborating on 1G, we have the following. Let us say that an inductive system of

measure-automorphism action systems is an object of the form (〈(At, µ̄t, G, 〈•(t)i 〉i∈I〉t∈T , 〈φst〉s≤t∈T ) where

T is an upwards-directed set,
I is a set, G is a group,

(At, µ̄t, G, 〈•(t)i 〉i∈I) is a measure-automorphism action system for each t ∈ T ,

(At, µ̄t, G, 〈•(t)i 〉i∈I , φst) is an extension of (As, µ̄s, G, 〈•(s)i 〉i∈I) whenever s ≤ t in T ,
φtuφst = φsu whenever s ≤ t ≤ u in T .

In this case, if (A, µ̄, 〈φt〉t∈T ) is the inductive limit of (〈(At, µ̄t)〉t∈T , 〈φst〉s≤t), we have a unique family

〈•i〉i∈I of actions of G on A such that (A, µ̄, G, 〈•i〉i∈I , φt) is an extension of (At, µ̄t, G, 〈•(t)i 〉i∈I) for every
t ∈ T (1Ga).

In this case I will call (A, µ̄, G, 〈•i〉i∈I , 〈φt〉t∈T ) the inductive limit of (〈(At, µ̄t, G, 〈•(t)i 〉i∈I)〉t∈T , 〈φst〉s≤t∈T ).

2G Proposition Let (〈(At, µ̄t, G, 〈•(t)i 〉i∈I)〉t∈T , 〈φst〉s≤t∈T ) be an inductive system of measure-automorphism
action systems, with inductive limit (A, µ̄, G, 〈•i〉i∈I , 〈φt〉t∈T ).

(a) Suppose that J ⊆ I. Set

B
(t)
J = {a : a ∈ At, g•

(t)
i a = g•

(t)
j a whenever g ∈ G and i, j ∈ J} for t ∈ T ,

BJ = {a : a ∈ A, g•ia = g•ja whenever g ∈ G and i, j ∈ J}.

Then BJ =
⋃

t∈T φt[B
(t)
J ].

(b) Suppose that J ⊆ PI. Then

∨

J∈J BJ =
⋃

t∈T φt[
∨

J∈J B
(t)
J ].

(c) If (At, µ̄t, G, 〈•(t)i 〉i∈I) is commuting for every t ∈ T , then (A, µ̄, G, 〈•i〉i∈I) is commuting.

proof (a) It is easy to check that φt[B
(t)
J ] = BJ ∩ φt[At] for every t ∈ T . If a ∈ BJ and ǫ > 0, there are a

t ∈ T and a b ∈ φt[At] such that µ̄(a△ b) ≤ ǫ. Let P : L1(A, µ̄) → L1(A, µ̄) be the conditional expectation
defined by the factor φt[At]. Then

‖P (χa) − χb‖1 = ‖P (χa− χb)‖1 ≤ ǫ.

By Lemma 1A, there is an α ∈ ]0, 1[ such that µ̄(a△ b′) ≤ ǫ, where b′ = [[Pχa > α]]. Now recall from

Lemma 2De that P (χa) ∈ L0(BJ ), so that b′ belongs to BJ and therefore to φt[B
(t)
J ]. As ǫ is arbitrary,

a ∈ ⋃

t∈T φt[B
(t)
J ]; as a is arbitrary, BJ =

⋃

t∈T φt[B
(t)
J ].

(b) Of course φs[
∨

J∈J B
(s)
J ] ⊆ φt[

∨

J∈J B
(t)
J ] whenever s ≤ t in T , so D =

⋃

t∈T φt[
∨

J∈J B
(t)
J ] is a

subalgebra of A and D is a closed subalgebra included in
∨

J∈J BJ . By (a), it includes BJ for each J ∈ J ,
so we have equality.

(c) If g, h ∈ G and i, j ∈ I, then {a : g•i(h•ja) = h•j(g•ia)} is a closed subalgebra of A including
⋃

t∈T φt[{a : a ∈ At, g•
(t)
i (h•

(t)
j a) = h•

(t)
j (g•

(t)
i a)} =

⋃

t∈T At

so is the whole of A.

2H Definitions (a) A measure-automorphism action system (A, µ̄, G, 〈•i〉i∈I) is measure-averaging if

G is an abelian group,
I is finite,
WDLg→G(

∏

i∈I g•iui) is defined, for the norm ‖ ‖1, for every family 〈ui〉i∈I in L∞(A).

Measure Theory
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(If I = ∅, so that we need to interpret an empty product
∏

i∈I g
−1

•iui, I will take it to be the multiplicative

identity χ1 of L0(A).)

(b) A measure-automorphism action system (A, µ̄, G, 〈•i〉i∈I) is weakly measure-averaging if

G is an abelian group,
I is finite,
WDLg→G µ̄(infi∈I g•iai) is defined in R for every family 〈ai〉i∈I in A.

2I Remark A measure-automorphism action system (A, µ̄, G, 〈•i〉i∈I) is measure-averaging whenever G
is an abelian group and #(I) = 1, by Theorem 1I, since ‖ ‖∞-bounded sets are relatively weakly compact
in L1(A, µ̄).

2J Definition (Austin p08a, 4.1-4.2) Let (A, µ̄, G, 〈•i〉i∈I) be a commuting measure-automorphism
action system, with I finite, and j ∈ I. I will say that (A, µ̄, G, 〈•i〉i∈I) is j-pleasant if, taking B to be the
closed subalgebra of A generated by

{a : g•ja = a for every g ∈ G} ∪ ⋃

i∈I{a : g•ia = g•ja for every g ∈ G},
then

WDLg→G

(

g•j(uj −QBuj) ×
∏

i∈I\{j} g•iui
)

= 0

in L1(A, µ̄) whenever 〈ui〉i∈I is a family in L∞(A).

2K Lemma In the context of Definition 2J,

‖ 1

#(L)

∑

g∈L

∏

i∈I g•iui‖1 ≤ ‖uj‖1 ·
∏

i∈I\{j} ‖ui‖∞

for every non-empty finite set L ⊆ G.

proof For each g ∈ L,

‖∏i∈I g•iui‖1 ≤ ‖g•juj‖1 ·
∏

i∈I\{j} ‖g•iui‖∞ ≤ ‖uj‖1 ·
∏

i∈I\{j} ‖ui‖∞.

2L Lemma (Austin p08a, 4.5) Suppose that I is a finite set, j ∈ I, and that (A, µ̄, G, 〈•i〉i∈I) is a
j-pleasant system such that (A, µ̄, G, 〈•i〉i∈I\{j}) is measure-averaging. Then (A, µ̄, G, 〈•i〉i∈I) is measure-
averaging.

proof Take B as in 2J. Take ui ∈ L∞(A) for i ∈ I. Set v = QBuj . Set

Bj = {a : g•ja = a for every g ∈ G}, Bi = {a : g•ia = g•ja for every g ∈ G}
for i ∈ I \ {j}, so that every Bi is a closed subalgebra of A and B =

∨

i∈I Bi is the closed subalgebra of
A generated by

⋃

i∈I Bi. Taking D to be the subalgebra of A generated by
⋃

i∈I Bi, B is the closure of
D for the measure-algebra topology. Let E ⊆ A be the family of elements expressible as infi∈I bi where
bi ∈ Bi for every i ∈ I. Then every element of D is expressible as the supremum of a finite disjoint subset
of E. Let ǫ > 0. Then we have disjoint e0, . . . , em ∈ E and α0, . . . , αm ∈ R such that ‖v − w‖1 ≤ ǫ, where
w =

∑m
k=0 αkχek.

For each k ≤ m, express ek as infi∈I bki where bki ∈ Bi for each i. Then

g•jχek ×
∏

i∈I\{j}

g•iui = g•j(
∏

i∈I

χbki) ×
∏

i∈I\{j}

g•iui =
∏

i∈I

g•kχbki ×
∏

i∈I\{j}

g•iui

= χbkj ×
∏

i∈I\{j}

g•iχbki ×
∏

i∈I\{j}

g•iui

= χbkj ×
∏

i∈I\{j}

g•i(χbki × ui)

for each g, so

D.H.Fremlin
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WDLg→G

(

g•jχek ×
∏

i∈I\{j} g•iui
)

= χbkj × WDLg→G

(
∏

i∈I\{j} g•i(χbki × ui)
)

is defined for ‖ ‖1 because (A, µ̄, G, 〈•i〉i∈I\{j}) is measure-averaging. Consequently

WDLg→G

(

g•jw × ∏

i∈I\{j} g•iui
)

is defined. As ǫ is arbitrary,

WDLg→G

(

g•jv ×
∏

i∈I\{j} g•iui
)

is defined (use 2K). Because (A, µ̄, G, 〈•i〉i∈I) is a j-pleasant system,

WDLg→G

(

g•j(v − uj) ×
∏

i∈I\{j} g•iui
)

= 0

for ‖ ‖1. So

WDLg→G

(

g•juj ×
∏

i∈I\{j} g•iui
)

is defined. As 〈ui〉i∈I is arbitrary, (A, µ̄, G, 〈•i〉i∈I) is measure-averaging.

2M Lemma (Austin p08a, §3) Let I be a finite set, j an element of I, and (A, µ̄, G, 〈•i〉i∈I) a com-
muting measure-automorphism action system such that (A, µ̄, G, 〈•′i〉i∈I\{j}) is measure-averaging whenever
〈•′i〉i∈I\{j} is such that (A, µ̄, G, 〈•′i〉i∈I\{j}) is a commuting measure-automorphism action system. Then
(A, µ̄, G, 〈•i〉i∈I) is weakly measure-averaging.

proof Let 〈ai〉i∈I be a family in A. For i ∈ I \ {j}, define •
′
i : G× A → A by setting g•

′
ia = g−1

•j(g•ia) for
g ∈ G and a ∈ A. If g, h ∈ G and a ∈ A, then

(gh)•′ia = (gh)−1
•j((gh)•ia) = h−1

•jg
−1

•jg•ih•ia

= g−1
•jg•ih

−1
•jh•ia = g•

′
ih•

′
ia,

so •
′
i is an action. Similarly direct calculation shows that (A, µ̄, G, 〈•′i〉i∈I\{j}) is a commuting measure-

automorphism action system. Accordingly

WDLg→G

∏

i∈I\{j} g•
′
iχai

is defined in L1(A, µ̄), and

WDLg→G µ̄(inf
i∈I

g•iai) = WDLg→G

∫

∏

i∈I

g•iχai dµ̄

= WDLg→G

∫

g−1
•j(

∏

i∈I

g•iχai)dµ̄

= WDLg→G

∫

∏

i∈I

g−1
•j(g•iχai)dµ̄

= WDLg→G

∫

aj

∏

i∈I\{j}

g•
′
iχai dµ̄

=

∫

aj

WDLg→G

(

∏

i∈I\{j}

g•
′
iχai

)

dµ̄

is defined in R.

3 Furstenberg self-joinings

3A Construction (Austin p08a, §3) Let G be an abelian group and (A, µ̄, G, 〈•i〉i∈I) a commuting
measure-automorphism action system. Suppose that J ⊆ I is a non-empty finite set such that (A, µ̄, G, 〈•i〉i∈J)
is weakly measure-averaging.

(a) Let (B, 〈εj〉i∈J ) be the free power
⊗

J A of J copies of A (Fremlin 03, §315). Then we have an
additive functional ν : B → [0, 1] defined by saying that

ν(infj∈J εjaj) = WDLg→G µ̄(infj∈J g•jaj)

Measure Theory
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whenever 〈aj〉j∈J is a family in A, writing Fø for the Følner filter of G. Note that νεj(a) = µ̄a for every
a ∈ A and j ∈ J .

(b) Let C0 be the quotient Boolean algebra B/{b : νb = 0}, ν̄0 the strictly positive finitely additive
functional on C0 defined by saying that ν̄0b

• = νb for every b ∈ B, and C the metric completion of C0 under
the associated metric; let ν̄ be the continuous extension of ν̄0 to C, so that (C, ν̄) is a probability algebra.
For each j ∈ J , we have a measure-preserving Boolean homomorphism πj : A → C defined by saying that
πja = (εja)

• for a ∈ A.
(c)(i) ν̄(infi∈J ai) = WDLg→G µ̄(infi∈J g•iai) for any family 〈aj〉i∈J in A.

(ii) For j ∈ J let Rj : L0(A) → L0(C) be the multiplicative Riesz homomorphism corresponding to the
Boolean homomorphism πj : A → C. Then for any family 〈uj〉j∈J in L∞(A),

∫

∏

j∈J Rjuj dν̄ = WDLg→G

∫

∏

j∈J g•juj dµ̄.

(d) We have a commuting measure-automorphism action system (C, ν̄, G, 〈̃•i〉i∈I∪{∞}) defined by saying
that

g•̃i(πja) = πj(g•̃ia),

g•̃∞(πja) = πj(g•ja)

whenever i ∈ I, j ∈ J and a ∈ A.5 The corresponding actions on L0(C) are defined by the formulae

g•̃i(Rku) = Rk(g•iu),

g•̃∞(Rku) = Rk(g•ku)

for i ∈ I, k ∈ J and u ∈ L0(A).
(e) Now fix on a member j of J , and for i ∈ I set

•̂i = •̃∞ if i = j,

= •̃i otherwise.

Then (C, ν̄, G, 〈̂•i〉i∈I , πj) is an extension of (A, µ̄, G, 〈•i〉i∈I).
proof (a) We know that the limit

WDLg→G µ̄(infj∈J g•jaj)

is always defined, so we have a well-defined functional on the set AJ . Since this is clearly additive in each
variable separately, it uniquely defines an additive functional on B (Fremlin 02, 326Q).

Taking aj = a, ai = 1 for i ∈ J \ {j} in the formula, we get the correct value for νεj(a).

(b) Elementary, in view of the results in Fremlin 02.

(c)(i) This is just the definition of ν translated into terms of ν̄.

(ii) Both sides of the equation correspond to ‖ ‖∞-continuous multilinear functionals on L∞(A)J , which
agree on families of the form 〈ui〉i∈J = 〈χai〉i∈J .

(d)(i) The defining universal mapping property of
⊗

J A tells us that we have functions •
∗
i , •

∗
∞ from

G× B to B defined by saying that

g•
∗
i (εja) = εj(g•ia),

g•
∗
∞(εja) = εj(g•ja)

for aA, g ∈ G, i ∈ I and j ∈ J , and that all the maps b 7→ g•
∗
i b (for i ∈ I∪{∞}) are Boolean homomorphisms.

Direct calculation shows that •
∗
i is an action of G on B for every i ∈ I ∪ {∞}.

(ii) ν is G-invariant for all these actions. PPP If i ∈ I, h ∈ G and aj ∈ A for j ∈ J ,

5Here, and later, I use the symbol ∞ unscrupulously to denote an object not belonging to any relevant set previously
mentioned.

D.H.Fremlin
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ν(h•
∗
i ( inf
j∈J

εjaj)) = ν( inf
j∈J

εj(h•iaj))

= WDLg→G µ̄( inf
j∈J

g•jh•iaj)

= WDLg→G µ̄( inf
j∈J

h•ig•jaj)

= WDLg→G µ̄(h•i( inf
j∈J

g•jaj))

= WDLg→G µ̄( inf
j∈J

g•jaj) = ν( inf
j∈J

εjaj),

ν(h•
∗
∞( inf

j∈J
εjaj)) = ν( inf

j∈J
εj(h•jaj))

= WDLg→G µ̄( inf
j∈J

g•jh•jaj)

= WDLg→G µ̄( inf
j∈J

(gh)•jaj)

= lim
L→Fø

1

#(Lh)

∑

g∈Lh

µ̄( inf
j∈J

g•jaj) = ν( inf
j∈J

εjaj)

because Fø is invariant under translation. Since an additive functional on B is determined by its values on
the basic elements infj∈J εjaj , ν(h•

∗
i b) = νb for every b ∈ B, h ∈ G and i ∈ I ∪ {∞}. QQQ

(iii) Of course

g•
∗
i (h•

∗
k( inf
j∈J

εjaj)) = g•
∗
i ( inf
j∈J

εj(h•kaj)) = inf
j∈J

εj(g•ih•kaj))

= inf
j∈J

εj(h•kg•iaj)) = h•
∗
k(g•

∗
i ( inf
j∈J

εjaj)),

g•
∗
i (h•

∗
∞( inf

j∈J
εjaj)) = g•

∗
i ( inf
j∈J

εj(h•jaj)) = inf
j∈J

εj(g•ih•jaj))

= inf
j∈J

εj(h•jg•iaj)) = h•
∗
∞(g•

∗
i ( inf
j∈J

εjaj))

whenever g, h ∈ G, i, k ∈ I and 〈aj〉j∈J ∈ AJ . So the •
∗
i , for i ∈ I ∪ {∞}, are commuting actions.

(iv) Applying the method of 2B to the system (B, ν,G, 〈•∗i 〉i∈I∪{∞}), we see that the declared formulae
define actions •̃i of G on C such that (C, ν̄, G, 〈̃•i〉i∈I∪{∞}) is a commuting measure-automorphism action
system.

(v) The other formulae are now elementary.

(e) All we have to check is that, for g ∈ G and a ∈ A,

g•̂i(πja) = g•̃∞(πja) = πj(g•ja) if i = j,

= g•̃i(πja) = πj(g•ia) otherwise.

3B Definition In the context of 3A, I will call (C, ν̄, G, 〈̃•i〉i∈I∪{∞}, 〈πj〉j∈J) the Furstenberg self-
joining of (A, µ̄, G, 〈•i〉i∈I) over J ; in addition, I will call (C, ν̄, G, 〈̂•i〉i∈I , πj) the (J, j)-Furstenberg ex-
tension of (A, µ̄, G, 〈•i〉i∈I). (See Austin p08a for some of the history of this construction.)

3C Proposition Let (A, µ̄, G, 〈•i〉i∈I) be a commuting measure-automorphism action system with an
extension (A′, µ̄′, G, 〈•′i〉i∈I , φ), and J ⊆ I a non-empty finite set. Suppose that both (A, µ̄, G, 〈•j〉j∈J) and
(A′, µ̄′, G, 〈•′j〉j∈J) are weakly measure-averaging, with Furstenberg self-joinings (C, ν̄, G, 〈̃•i〉i∈I∪{∞}, 〈πj〉j∈J )

and (C′, ν̄′, G, 〈̃•′i〉i∈I∪{∞}, 〈π′
j〉j∈J) respectively. Then there is a unique measure-preserving Boolean homo-

morphism ψ : C → C′ such that ψπj = π′
jφ for every i ∈ I, and (C′, ν̄′, G, 〈̃•′i〉i∈I∪{∞}, ψ) is an extension of

(C, ν̄, G, 〈̃•i〉i∈I∪{∞}).

proof (a) Taking B =
⊗

J A and B′ =
⊗

J A′, we have a Boolean homomorphism θ : B → B′ defined by
saying that θεj = ε′jφ for every j ∈ J . Now, writing Fø for the Følner filter of G,

Measure Theory
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ν′θ( inf
j∈J

εjaj) = ν′( inf
j∈J

ε′jφaj) = WDLg→G µ̄
′( inf
j∈J

g•
′
jφaj)

= WDLg→G µ̄
′( inf
j∈J

φ(g•jaj)) = WDLg→G µ̄
′φ( inf

j∈J
g•jaj)

= WDLg→G µ̄( inf
j∈J

g•jaj) = ν( inf
j∈J

εjaj)

whenever aj ∈ A for j ∈ J . So ν′θb = νb for every b ∈ B. It follows that θ induces a Boolean homomorphism
ψ0 : C0 → C′

0 such that ψ0(b
•) = (θb)• for every b ∈ B, taking C0, C′

0 to be the quotient algebras as in 3Ab;
and ν̄′0ψ0c = ν̄0c for every c ∈ C0. Accordingly ψ0 extends to a measure-preserving Boolean homomorphism
ψ : C → C′. Tracing the definitions, we have

ψπja = ψ0πja = ψ0(εja)
• = (ε′jφa)

• = π′
jφa

for every a ∈ A and j ∈ J , and clearly this defines ψ. Similarly, examining the actions of G on these
structures,

g•̃
′
i(ψπja) = g•̃

′
i(π

′
jφa) = π′

j(g•
′
i(φa))

= π′
jφ(g•ia) = ψπj(g•ia) = ψ(g•̃i(πja)),

g•̃
′
∞(ψπja) = g•̃

′
∞(π′

jφa) = π′
j(g•

′
j(φa))

= π′
jφ(g•ja) = ψπj(g•ja) = ψ(g•̃∞(πja))

whenever a ∈ A, g ∈ G, i ∈ I and j ∈ J ; consequently

g•̃
′
i(ψc) = ψ(g•̃ic)

whenever c ∈ C, g ∈ G and i ∈ I∪{∞}. So (C′, ν̄′, G, 〈̃•′i〉i∈I∪{∞}, ψ) is an extension of (C, ν̄, G, 〈̃•i〉i∈I∪{∞}).

3D Lemma (Bergelson McCutcheon & Zhang 97, 4.2) Let G be an abelian group, Fø its Følner
filter, U an inner product space and g 7→ ug : G→ U a bounded function such that

inf∅6=M∈[G]<ω
1

#(M)2
WDLg→G

∑

h,h′∈M (uhg|uh′g) ≤ 0.

Then WDLg→G ug = 0.

proof Set γ = supg∈G ‖ug‖. Let ǫ > 0. Let M ∈ [G]<ω \ {∅} be such that

1

#(M)2
WDLg→G

∑

h,h′∈M (uhg|uh′g) ≤ ǫ.

For non-empyt finite sets L ⊆ G set

vL =
∑

g∈L
1

#(M)

∑

h∈M
1

#(L)
uhg.

Then

lim sup
L→Fø

‖vL − 1

#(L)

∑

g∈L

ug‖ ≤ 1

#(M)

∑

h∈M

lim sup
L→Fø

‖ 1

#(L)
(
∑

g∈L

ug −
∑

g∈L

uhg)‖

≤ sup
h∈M

lim sup
L→Fø

1

#(L)
‖

∑

g∈L

ug − B

∫

hL

ug‖

≤ sup
h∈M

lim sup
L→Fø

1

#(L)
γ#(L△hL) = 0.

On the other hand, for every non-empty finite L ⊆ G,

‖vL‖ ≤ 1

#(L)

∑

g∈L

‖ 1

#(M)

∑

h∈M

uhg‖

≤ 1

#(L)
·
√

#(L) ·
√

∑

g∈L

‖ 1

#(M)

∑

h∈M

uhg‖2

D.H.Fremlin
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(by the Cauchy-Schwartz inequality), so

‖vL‖2 ≤ 1

#(L)

∑

g∈L

‖ 1

#(M)

∑

h∈M

uhg‖2

=
1

#(L)

∑

g∈L

1

#(M)2

∑

h,h′∈M

(uhg|uh′g)

and

lim sup
L→Fø

‖vL‖2 ≤ 1

#(M)2
lim sup
L→Fø

1

#(L)

∑

g∈L

∑

h,h′∈M

(uhg|uh′g)

=
1

#(M)2
WDLg→G

∑

h,h′∈M

(uhg|uh′g) ≤ ǫ.

Putting these together,

lim supL→Fø ‖
1

#(L)

∑

g∈L ug‖ ≤ √
ǫ;

as ǫ is arbitrary, the limit is zero, and

WDLg→G ug = limL→Fø
1

#(L)

∑

g∈L ug = 0.

3E Lemma (Austin p08a, 4.7) Let (A, µ̄, G, 〈•i〉i∈I) be a commuting measure-automorphism action sys-
tem, J ⊆ I a finite non-empty set such that (A, µ̄, G, 〈•i〉i∈J) is weakly measure-averaging, and (C, ν̄, G, 〈̃•i〉i∈I∪{∞},
〈πj〉j∈J) the Furstenberg self-joining of (A, µ̄, G, 〈•i〉i∈I) over J . Let D be the fixed-point algebra {c : c ∈ C,
g•̃∞c = c for every g ∈ G}. For j ∈ J let Rj : L0(A) → L0(C) be the multiplicative Riesz homomorphism
corresponding to πj : A → C.

If 〈uj〉j∈J is a family in L∞(A) such that QD(
∏

j∈J Rjuj) = 0, then

WDLg→G

∏

j∈J g•juj = 0

in L1(A, µ̄).

proof Set w =
∏

j∈J Rjuj ; for h ∈ G, set wh = h•̃∞w. Set γ =
∏

j∈J ‖uj‖∞; note that ‖wh‖∞ ≤ γ for
every h.

(a) Note first that QDwh = 0 for every h ∈ G. PPP If d ∈ D,
∫

d
h•̃∞w dν̄ =

∫

h−1•̃∞d
w dν̄ = 0

because h−1
•̃∞d = d ∈ D. As d is arbitrary, QDwh = 0. QQQ

(b) For any h, h′ ∈ G,

∫

wh × wh′ dν̄ =

∫

∏

j∈J

Rj(h•juj) ×
∏

j∈J

Rj(h
′
•juj) dν̄

=

∫

∏

j∈J

Rj(h•uj × h′•juj) dν̄

= WDLg→G

∫

∏

j∈J

g•j(h•uj × h′•juj) dµ̄

by 3Ac. Now

w∗ = WDLh→G wh

is defined for ‖ ‖2 and belongs to L∞(D) (1I).

(c) For g ∈ G set vg =
∏

j∈J g•juj , We find that

Measure Theory
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inf∅6=M∈[G]<ω
1

#(M)2
WDLg→∞

∑

h,h′∈M

∫

vhg × vh′g dµ̄ ≤ 0.

PPP Let ǫ > 0. Then there is an non-empty finite M ⊆ G such that ‖w∗ − 1

#(M)

∑

h∈M wh‖2 ≤ ǫ. Now

1

#(M)2
WDLg→G

∑

h,h′∈M

∫

vhg × vh′g dµ̄

=
1

#(M)2
WDLg→G

∑

h,h′∈M

∫

∏

j∈J

(hg)•juj ×
∏

j∈J

(h′g)•juj) dµ̄

=
1

#(M)2
WDLg→G

∑

h,h′∈M

∫

g•j

∏

j∈J

(h•juj × h′•juj) dµ̄

(because the system is commuting)

=
1

#(M)2

∑

h,h′∈M

∫

wh × wh′ dν̄

(by (b) above)

=
1

#(M)

∑

h∈M

∫

wh × (
1

#(M)

∑

h∈M

wh′) dν̄

≤ 1

#(M)

∑

h∈M

∫

wh × w∗dν̄ +
1

#(M)

∑

h∈M

‖wh‖2‖w∗ − 1

#(M)

∑

h∈M

wh′‖2

≤ 1

#(M)

∑

h∈M

γǫ

(because w∗ ∈ L∞(D) and QDwh = 0, so
∫

wh × w∗dν̄ = 0 for every h)

≤ γǫ.

As ǫ is arbitrary, we have the result. QQQ

(d) By 3D, limL→Fø ‖ 1

µL

∑

g∈L vg‖2 = 0. But {vg : g ∈ G} is ‖ ‖∞-bounded, so { 1

µL

∑

g∈L vg : L ∈

[G]<ω \ {0}} also is, and limL→Fø ‖ 1

µL

∑

g∈L vg‖1 = 0, as required.

3F Lemma (Austin p08a, 4.6) Let G be an abelian group, and suppose that I is a non-empty finite
set such that every commuting measure-automorphism action system (A, µ̄, G, 〈•i〉i∈I) is weakly measure-
averaging. If j ∈ I, every commuting measure-automorphism action system (A, µ̄, G, 〈•i〉i∈I) has a j-pleasant
extension.

proof (a) Set A0 = A, µ̄0 = µ̄ and •0i = •i for i ∈ I. Given that (Am, µ̄m, G, 〈•(m)
i 〉i∈I) is a commuting

measure-automorphism action system, then our hypothesis tells us that it is weakly measure-averaging; let

(Cm, ν̄m, G, 〈̃•(m)
i 〉i∈I∪{∞}, 〈π(m)

i 〉i∈I) be its Furstenberg self-joining over I, and (Am+1, µ̄m+1, G, 〈•(m+1)
i 〉i∈I , φm,m+1)

the (I, j)-Furstenberg extension of (Am, µ̄m, G, 〈•(m)
i 〉i∈I). Continue.

For l ≤ m, define φlm : Al → Am by taking φll to be the identity on Al and φl,m+1 = φm,m+1φlm. Let
(A′, µ̄′, 〈φm〉m∈N) be the inductive limit of 〈(Am, µ̄m)〉m∈N, 〈φlm〉l≤m). For each i ∈ I we have an action

•
′
i of G on A′ defined by saying that g•

′
i(φma) = φm(g•

(m)
i a) for g ∈ G, m ∈ N and a ∈ Am (1Ga); now

(A′, µ̄′, G, 〈•′i〉i∈I) is a measure-automorphism action system. Because all the systems (Am, G, 〈•(m)
i 〉i∈I) and

(Cm, G, 〈̃•(m)
i 〉i∈I∪{∞}) are commuting, so is (A′, G, 〈•′i〉i∈I). Of course (A′, µ̄′, G, 〈•′i〉i∈I , φ0) is an extension

of (A, µ̄, G, 〈•i〉i∈I).

(b) Once again, the hypothesis of this lemma ensure that (A′, G, 〈•′i〉i∈I) is weakly measure-averaging and
has a Furstenberg self-joining (C, ν̄, G, 〈̃•i〉i∈I∪{∞}, 〈πi〉i∈I) over I. Now we can identify (C, ν̄, G, 〈̃•i〉i∈I∪{∞})

D.H.Fremlin
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with the inductive limit of (〈(Cm, ν̄m, G, 〈̃•(m)
i 〉i∈I∪{∞})〉m∈N, 〈φl+1,m+1〉l≤m). PPP By Proposition 3C, we have

measure-preserving Boolean homomorphisms ψlm : Cl → Cm and ψm : Cm → C, for l ≤ m, such that

ψlmπ
(l)
i = π

(m)
i φlm, ψmπ

(m)
i = πiφm

for l ≤ m and i ∈ I; and these homomorphisms are consistent with the actions, that is,

g•̃
(m)
i (ψlmd) = ψlm(g•̃

(l)
i d)

whenever l ≤ m, i ∈ I ∪ {∞}, g ∈ G and d ∈ Cl. We need to check that
⋃

m∈N
ψm[Cm] is metrically dense

in C, but this is easy; the closure of
⋃

m∈N
ψm[Cm] must include

⋃

m∈N,i∈I ψm[π
(m)
i [A]] =

⋃

i∈I πi[
⋃

m∈N
φm[A]]

and therefore includes
⋃

i∈I πi[A
′] and the subalgebra it generates, which is dense in C (see the construction

in 3Ab). QQQ

(c) The formulae of the rest of this proof will be easier to read if I give names to the multiplicative Riesz
homomorphisms corresponding to the measure-preserving Boolean homomorphisms here:

Slm : L0(Al) → L0(Am) from φlm : Al → Am,

Sm : L0(Am) → L0(A′) from φm : Am → A′,

R
(m)
i : L0(Am) → L0(Cm) = L0(Am+1) from π

(m)
i : Am → Cm,

Ri : L0(A′) → L0(C) from πi : A′ → C,

Tlm : L0(Cl) → L0(Cm) from ψlm : Cl → Cm,

Tm : L0(Cm) → L0(C) from ψm : Cm → C

for l ≤ m and i ∈ I. The identities above become

Sm,m+1 = R
(m)
n because φm,m+1 = π

(m)
n ,

Sl = SmSlm because φl = φmφlm,
Tl = TmTlm because ψl = ψmψlm,

TmR
(m)
i = RiSm because ψmπ

(m)
i = πiφm.

In addition, we shall have
∫

d
v dν̄m =

∫

ψmd
Tmv dµ̄

′ whenever d ∈ Cm and u ∈ L1(Cm, ν̄m),

∫

a
u dµ̄m =

∫

φmd
Smu dµ̄

′ whenever a ∈ Am and u ∈ L1(Am, µ̄m).

(d) For each m ∈ N, let Bm be the closed subalgebra of Am generated by

{a : a ∈ Am, g•
(m)
j a = a for every g ∈ G}

∪
⋃

i∈I\{j}

{a : a ∈ Am, g•
(m)
i a = g•

(m)
j a for every g ∈ G},

and Pm = QBm
. Similarly, let B be the closed subalgebra of A′ generated by

{a : a ∈ A
′, g•

′
ja = a for every g ∈ G}

∪
⋃

i∈I\{j}

{a : a ∈ A
′, g•

′
ia = g•

′
ja for every g ∈ G},

and P = QB. If l ∈ N and u ∈ L1(Al, µ̄l), then PSlu = limm→∞ SmPmSlmu for ‖ ‖1. PPP By 1Fb, {a : a ∈ A′,
g•

′
ja = a for every g ∈ G} is the metric closure of

⋃

m∈N
{φma : a ∈ Am, g•

(m)
j a = a for every g ∈ G};

Measure Theory
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applying the same result to the actions (g, a) 7→ g−1
•
(m)
j (g•

(m)
i a), we see that {a : a ∈ A′, g•

′
ia = g•

′
ja for

every g ∈ G} is the metric closure of
⋃

m∈N
{φma : a ∈ Am, g•

(m)
i a = g•

(m)
j a for every g ∈ G}.

So B is the closure of
⋃

m∈N
φm[Bm]. Of course φm,m+1[Bm] ⊆ Bm+1 for every m, so 〈φm[Bm]〉m∈N is

non-decreasing. For each m ≥ l, SmPmSlmu is the conditional expectation of Slu on φm[Bm]; the result
follows at once, by the martingale convergence theorem (Fremlin 02, 367Qb). QQQ

(e) Suppose that m ∈ N, that ui ∈ L∞(Am) for i ∈ I and that d ∈ Cm = Am+1 is such that g•̃
(m)
∞ d = d

for every g ∈ G. Then

∫

ψmd

∏

i∈I

RiSmui dν̄ =

∫

ψmd

∏

i∈I

TmR
(m)
i ui dν̄ =

∫

ψmd

Tm(
∏

i∈I

R
(m)
i ui) dν̄

=

∫

d

∏

i∈I

R
(m)
i ui dν̄m =

∫

d

∏

i∈I

R
(m)
i ui dµ̄m+1

=

∫

d

Sm,m+1uj ×
∏

i∈I\{j}

R
(m)
i ui dµ̄m+1.

Now •̃
(m)
∞ = •

(m+1)
j , so d ∈ Bm+1. While if i ∈ I \ {j}, then

g•
(m+1)
i (π

(m)
i a) = g•̃

(m)
i (π

(m)
i a) = g•̃

(m)
∞ (π

(m)
i a) = g•

(m+1)
j (π

(m)
i a)

for every a ∈ Am and g ∈ G, so that π
(m)
i [Am] ⊆ Bm+1 and Pm+1R

(m)
i u = R

(m)
i u for every u ∈ L1(Am, µ̄m).

Accordingly

∫

ψmd

∏

i∈I

RiSmui dν̄ =

∫

d

Sm,m+1uj ×
∏

i∈I\{j}

R
(m)
i ui dµ̄m+1

=

∫

d

Pm+1(Sm,m+1uj ×
∏

i∈I\{j}

R
(m)
i ui) dµ̄m+1

=

∫

d

Pm+1Sm,m+1uj ×
∏

i∈I\{j}

R
(m)
i ui dµ̄m+1

=

∫

φm+1d

Sm+1Pm+1Sm,m+1uj ×
∏

i∈I\{j}

Sm+1R
(m)
i ui dµ̄

′.

(f) Re-casting the formulae in (e) we get the following. Suppose that l ∈ N, that ui ∈ L∞(Al) for i ∈ I

and that d ∈ Cl = Al+1 is such that g•
(l+1)
j d = g•̃

(l)
∞d = d for every g ∈ G. Then

∫

ψld

∏

i∈I

RiSlui dν̄ = lim
m→∞

∫

ψmψlmd

∏

i∈I

RiSmSlmui dν̄

= lim
m→∞

∫

φm+1ψlmd

Sm+1Pm+1Sl,m+1uj ×
∏

i∈I\{j}

Sm+1R
(m)
i Slmui dµ̄

′

(by (e), because g•̃
(m)
∞ (ψlmd) = ψlm(g•̃

(l)
∞d) = ψlmd for every g ∈ G)

= lim
m→∞

∫

φm+1ψlmd

SmPmSlmuj ×
∏

i∈I\{j}

Sm+1R
(m)
i Slmui dµ̄

′

(because limm→∞ SmPmSlmuj = PSluj = limm→∞ Sm+1Pm+1Sl,m+1uj for the norm ‖ ‖1, by (d))

= lim
m→∞

∫

φm+1ψlmd

Sm+1Pm+1Sm,m+1PmSlmuj ×
∏

i∈I\{j}

Sm+1R
(m)
i Slmui dµ̄

′

(because φm,m+1[Bm] ⊆ Bm+1, so Pm+1Sm,m+1Pm = Sm,m+1Pm)
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= lim
m→∞

∫

ψld

RjSmPmSlmuj ×
∏

i∈I\{j}

RiSlui dν̄

(by (e) again, applied to ψlmd, PmSlmuj and 〈Slmui〉i∈I\{j})

=

∫

ψld

RjPSluj ×
∏

i∈I\{j}

RiSlui dν̄.

(g) It follows that if vi ∈ L∞(A′) for i ∈ I and c ∈ C is such that g•̃∞c = c for every g ∈ G, then
∫

c

∏

i∈I Rivi dν̄ =
∫

c
RjPvj ×

∏

i∈I\{j}Rivi dν̄.

PPP Set γ = maxi∈I ‖vi‖∞. Let ǫ > 0. Then c belongs to the metric closure of {ψmd : m ∈ N, d ∈ Cm,

g•̃
(m)
∞ d = d for every g ∈ G} (1Gb). Also every vi belongs to the ‖ ‖1-closure of {Smu : m ∈ N, u ∈ L∞(Am),

‖u‖∞ ≤ γ}. So there are an l ∈ N, a d ∈ Cl and ui ∈ L∞(Al), for i ∈ I, such that

g•̃
(l)
∞d = d for every g ∈ G, ν̄(c△ ψld) ≤ ǫ,

‖ui‖∞ ≤ γ, ‖vi − Slui‖1 ≤ ǫ for every i ∈ I.

It follows that

‖∏i≤j Rivi −
∏

i≤j RiSlui‖1 ≤ (j + 1)ǫγj

for every j ≤ n (induce on j, recalling that Sl and every Ri are both ‖ ‖1-non-expanding and ‖ ‖∞-non-
expanding), so that

‖∏i∈I Rivi −
∏

i∈I RiSlui‖1 ≤ (n+ 1)ǫγn.

Consequently

|
∫

c

∏

i∈I Rivi dν̄ −
∫

ψld

∏

i∈I RiSlui dν̄| ≤ (n+ 1)ǫγn + ǫ.

Similarly,

|
∫

c
Rjvj ×

∏

i∈I\{j}Rivi dν̄ −
∫

ψld
RjSluj ×

∏

i∈I\{j}RiSlui dν̄| ≤ (1 + (n+ 1)γn)ǫ.

Putting these together with (f), we get

|
∫

c
RjPvj ×

∏

i∈I\{j}Rivi dν̄ −
∫

c
Rjvj ×

∏

i∈I\{j}Rivi dν̄| ≤ 2ǫ(1 + (n+ 1)γn).

As ǫ is arbitrary,
∫

c

∏

i∈I Rivi dν̄ =
∫

c
RjPvj ×

∏

i∈I\{j}Rivi dν̄. QQQ

(h) We are nearly home. Take any vi ∈ L∞(A′) for i ∈ I. Let D be the fixed-point algebra {c : c ∈ C,
g•̃∞c = c for every g ∈ G}. We know that

∫

c
Rj(vj − Pvj) ×

∏

i∈I\{j}Rivi dν̄ = 0

for every c ∈ D, that is, that

QD(Rj(vj − Pvj) ×
∏

i∈I\{j}Rivi) = 0.

By Lemma 3E,

WDLg→G

(

g•
′
j(vj − Pvj) ×

∏

i∈I\{j} g•
′
ivi

)

= 0

But this means that (A′, µ̄′, G, 〈•′i〉i∈I) is a j-pleasant system. And we have known since (a) above that it is
an extension of (A, µ̄, G, 〈•i〉i∈I).

3G Theorem (Austin p08a, 1.1) LetG be an abelian group, I a non-empty finite set and (A, µ̄, G, 〈•i〉i∈I)
a commuting measure-automorphism action system. Then (A, µ̄, G, 〈•i〉i∈I) is measure-averaging.

proof We may suppose that I = n+ 1 for some n ∈ N. Induce on n. If n = 0 the result is a special case of
Proposition 1I. For the inductive step to n ≥ 1, the inductive hypothesis tells us that the conditions of Lemma
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2M are satisfied, so (A, µ̄, G, 〈•i〉i≤n) is weakly measure-averaging whenever it is a commuting measure-
automorphism action system. Consequently, if (A, µ̄, G, 〈•i〉i≤n) is a commuting measure-automorphism
action system, it has an n-pleasant extension (A′, µ̄′, G, 〈•′i〉i≤n), by 3F. Take φ : A → A′ witnessing the
extension, and S : L0(A) → L0(A′) the associated multiplicative Riesz homomorphism. By the inductive
hypothesis and Lemma 2L, (A′, µ̄′, G, 〈•′i〉i≤n) is measure-averaging. Let Fø be the Følner filter of G. If
u0, . . . , un belong to L∞(A),

WDLg→G

∏

i≤n g•
′
iSui

is defined in L1(A′, µ̄′), so

‖ 1

µL

∑

g∈L

∏

i≤n

g•iui dµ̄− 1

µM
B

∫

M

∏

i≤n

g•iui dµ̄‖1

= ‖S(
1

µL

∑

g∈L

∏

i≤n

g•iui dµ̄− 1

µM
B

∫

M

∏

i≤n

g•iui) dµ̄‖1

= ‖ 1

µL

∑

g∈L

∏

i≤n

S(g•iui) dµ̄− 1

µM
B

∫

M

∏

i≤n

S(g•iui) dµ̄‖1

= ‖ 1

µL

∑

g∈L

∏

i≤n

g•
′
iSui dµ̄− 1

µM
B

∫

M

∏

i≤n

g•
′
iSui dµ̄‖1 → 0

as L, M → Fø, and

WDLg→G

∏

i≤n g•iui

is defined in L1(A, µ̄). As u0, . . . , un are arbitrary, (A, µ̄, G, 〈•i〉i≤n) is measure-averaging, and the induction
proceeds.

3H Corollary Let G be an abelian group and (A, µ̄, G, 〈•i〉i∈I) a commuting measure-automorphism
action system. Then (A, µ̄, G, 〈•i〉i∈I) has a Furstenberg self-joining over J for any finite set J ⊆ I.

4 Agreeable and isotropized extensions

4A Definition (Austin p08b, 4.1)

(a) Let I be a set, J a finite subset of I and j a member of J and G an abelian group. A commut-
ing measure-automorphism action system (A, µ̄, G, 〈•i〉i∈I) is (J, j)-agreeable if, writing B for the closed
subalgebra of A generated by

⋃

i∈J\{j}{a : a ∈ A, g•ia = g•ja for every g ∈ G},
we have

WDLg→G

∫

g•j(uj −QBuj) ×
∏

i∈J\{j} g•iuidµ̄ = 0

whenever 〈ui〉i∈J is a family in L∞(A).
(Compare, but do not confuse, with 2J.)

(b) A commuting measure-automorphism action system (A, µ̄, G, 〈•i〉i∈I) is fully agreeable if it is (J, j)-
agreeable whenever j ∈ J ∈ [I]<ω.

4B Lemma (Austin p08b, §4) Let G be an abelian group, κ an ordinal and (〈(Aξ, µ̄ξ, G, 〈•(ξ)i 〉i∈I)〉ξ<κ,
〈φηξ〉η≤ξ<κ) an inductive system of commuting measure-automorphism action systems with inductive limit
(A, µ̄, G, 〈•i〉i∈I , 〈φξ〉ξ<κ). Suppose that J ∈ [I]<ω, j ∈ J and a cofinal set M ⊆ κ are such that, for

ξ ∈ M , (Aξ+1, µ̄ξ+1, G, 〈•(ξ+1)
i 〉i∈I , φξ,ξ+1) is the (J, j)-Furstenberg extension of (Aξ, µ̄ξ, G, 〈•(ξ)i 〉i∈I). Then

(A, µ̄, G, 〈•i〉i∈I) is (J, j)-agreeable.

proof (a) For ξ < κ let Bξ be the closed subalgebra of Aξ generated by
⋃

i∈J\{j}{a : a ∈ Aξ, g•
(ξ)
i a = g•

(ξ)
j a for every g ∈ G},
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and let B be the closed subalgebra of A generated by
⋃

i∈J\{j}{a : a ∈ A, g•ia = g•ja for every g ∈ G};
set Pξ = QBξ

and P = QB. Then φηξ[Bη] ⊆ Bξ whenever η ≤ ξ, and B is the closed subalgebra of A

generated by
⋃

ξ<κ φξ[Bξ] (2Gb), so PSηu = limξ→κ SξPξSηξu for ‖ ‖1 whenever η < κ and u ∈ L1(Aη, µ̄η),

writing Sηξ : L0(Aη) → L0(Aξ) and Sξ : L0(Aξ) → L0(A) for the multiplicative Riesz homomorphisms
corresponding to φηξ : Aη → Aξ and φξ : Aξ → A, as in the proof of 3H.

(b) Suppose that vi ∈ L∞(A) for each i ∈ J ; set γ = maxi∈J ‖vi‖∞. Let ǫ > 0.

(i) There are a ξ ∈M and ui ∈ L∞(Aξ), for i ∈ J , such that

‖ui‖∞ ≤ γ, ‖vi − Sξui‖1 ≤ ǫ for every i ∈ J ,

‖PSξuj − SξPξuj‖1 ≤ ǫ, ‖PSξuj − Sξ+1Pξ+1Sξ,ξ+1uj‖1 ≤ ǫ.

PPP First, there are an η < κ and u′i ∈ L∞(Aη), for i ∈ J , such that ‖vi − Sηui‖1 ≤ ǫ for every i; replacing
u′i by med(−γχ1, u′i, γχ1) if necessary, we can arrange that ‖u′i‖∞ ≤ γ for every i. Next, by the martingale
convergence theorem, there is a ζ < κ such that η ≤ ζ and ‖SξPξSηξu′i − PSηu

′
i‖1 ≤ ǫ whenever i ∈ J and

ζ ≤ ξ < κ. Since M is cofinal with κ, there is a ξ ∈M such that ξ ≥ ζ; set ui = Sηξu
′
i for each i. QQQ

(ii) It follows that

∣

∣

∫

∏

i∈J

g•ivi dµ̄−
∫

∏

i∈J

g•
(ξ)
i ui dµ̄ξ

∣

∣ =
∣

∣

∫

∏

i∈J

g•ivi −
∏

i∈J

g•iSξui dµ̄
∣

∣

≤ γ#(J)−1
∑

i∈J

‖g•ivi − g•iSξui‖1

≤ γ#(J)−1#(J)ǫ

for every g ∈ G, so that
∣

∣WDLg→G

∫

∏

i∈J g•ivi dµ̄− WDLg→G

∫

∏

i∈J g•
(ξ)
i ui dµ̄ξ

∣

∣ ≤ γ#(J)−1#(J)ǫ.

(iii) Writing (C, ν̄, G, 〈̃•i〉i∈J∪{∞}, 〈πi〉i∈J ) for the Furstenberg self-joining of (Aξ, µ̄ξ, G, 〈•(ξ)i 〉i∈I), and

Ri : L0(Aξ) → L0(C) for the Riesz homomorphism corresponding to πi : Aξ → C,

WDLg→G

∫

∏

i∈J

g•
(ξ)
i ui dµ̄ξ =

∫

∏

i∈J

Riui dν̄ =

∫

∏

i∈J

Riui dµ̄ξ+1

=

∫

Pξ+1(Rjuj ×
∏

i∈I\{j}

Riui) dµ̄ξ+1

=

∫

Pξ+1Rjuj ×
∏

i∈I\{j}

Riui dµ̄ξ+1

(because g•
(ξ+1)
i Riui = g•̃iRiui = Ri(g•

(ξ)
i ui) = g•̃∞(Riui) = g•

(ξ+1)
j Riui for every g ∈ G, i ∈ J \ {j}, so

Pξ+1Riui = Riui for every i ∈ J \ {j})

=

∫

Pξ+1Sξ,ξ+1uj ×
∏

i∈J\{j}

Riui dµ̄ξ+1.

(iv)

‖Pξ+1Sξ,ξ+1uj − Sξ,ξ+1Pξuj‖1 = ‖Sξ+1Pξ+1Sξ,ξ+1uj − SξPξuj‖1 ≤ 2ǫ,

so
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∣

∣

∫

Pξ+1Sξ,ξ+1uj ×
∏

i∈J\{j}

Riui dµ̄ξ+1

−
∫

Sξ,ξ+1Pξuj ×
∏

i∈J\{j}

Riui dµ̄ξ+1

∣

∣ ≤ 2ǫγ#(J)−1.

(v)

∫

Sξ,ξ+1Pξuj ×
∏

i∈J\{j}

Riui dµ̄ξ+1 =

∫

RjPξuj ×
∏

i∈J\{j}

Riui dν̄

= WDLg→G

∫

g•
(ξ)
j Pξuj ×

∏

i∈J\{j}

g•
(ξ)
i ui dµ̄ξ

= WDLg→G

∫

g•jSξPξuj ×
∏

i∈J\{j}

g•iSiui dµ̄.

(vi) Since

‖g•j(Pvj) − g•jSξPξuj‖1 = ‖Pvj − SξPξuj‖1

≤ ‖Pvj − PSξuj‖1 + ‖PSξuj − SξPξuj‖1

≤ ‖vj − Sξuj‖1 + ǫ ≤ 2ǫ,

‖g•ivi − g•iSξui‖1 = ‖vi − Sξui‖1 ≤ ǫ

for every g ∈ G and i ∈ I \ {j},
∣

∣WDLg→G

∫

g•jSξPξuj ×
∏

i∈J\{j}

g•iSiui dµ̄

− WDLg→G

∫

g•jPvj ×
∏

i∈J\{j}

g•ivi dµ̄
∣

∣ ≤ γ#(J)−1(#(J) + 1)ǫ.

(vii) Assembling (ii)-(vi), we get

∣

∣WDLg→G

∫

∏

i∈J

g•ivi dµ̄− WDLg→G

∫

g•jPuj ×
∏

i∈J\{j}

g•ivi dµ̄
∣

∣

≤ γ#(J)−1(ǫ#(J) + 2ǫ+ (#(J) + 1)ǫ).

As ǫ is arbitrary,

WDLg→G

∫

∏

i∈J g•ivi dµ̄ = WDLg→G

∫

g•jPuj ×
∏

i∈J\{j} g•ivi dµ̄.

As 〈vi〉i∈J is arbitrary, (A, µ̄, G, 〈•i〉i∈I) is (J, j)-agreeable.

4B Definition (Austin p08b, 5.1) LetG be a group, I a set, and (A, µ̄, G, 〈•i〉i∈I) a measure-automorphism
action system. If J ⊆ I, write

BJ = {a : a ∈ A, g•ia = g•ja for all i, j ∈ J and g ∈ G}.
If j ∈ J ⊆ I, we say that (A, µ̄, G, 〈•i〉i∈I) is (J, j)-isotropized if

BJ ∩ ∨

i∈I\J B{i,j} =
∨

i∈I\J BJ∪{i}.

(A, µ̄, G, 〈•i〉i∈I) is fully isotropized if it is (J, j)-isotropized whenever j ∈ J ⊆ I.

4D Construction (a) Let (A, µ̄, G, 〈•i〉i∈I) be a measure-automorphism action system, and j ∈ J ⊆ I.
Set BJ = {a : a ∈ A, g•ia = g•ja whenever i, j ∈ J and g ∈ G}. The (J, j)-isotropizing extension of
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(A, µ̄, G, 〈•i〉i∈I) is (A′, µ̄′, G, 〈•′i〉i∈I , ψ0), constructed as follows. (A′, µ̄′, ψ0, ψ1) is the relative free product
of (A, µ̄) with itself over BJ (Fremlin 03, 458N6). For i ∈ I and g ∈ G, we can define g•

′
ib, for b ∈ A′, by

setting

g•
′
i(ψ0a) = ψ0(g•ia),

g•
′
i(ψ1a) = ψ1(g•ia) if i ∈ I \ J,

= ψ1(g•ja) if i ∈ J

whenever g ∈ G and a ∈ A, and requiring that b 7→ g•
′
ib : A′ → A′ is a measure-preserving Boolean

homomorphism for every g ∈ G. PPP The point is that if i ∈ J and a ∈ BJ then g•ja = g•ia ∈ BJ ,
so ψ0(g•ia) = ψ1(g•ja). We can therefore apply the defining universal mapping theorem for the relative
free product (Fremlin 03, 458O7) to see that there is indeed a (unique) measure-preserving Boolean
homomorphism from A′ to itself satisfying the given formulae. QQQ

It is now elementary to check that every •
′
i is an action of G on A′, so that (A′, µ̄′, G, 〈•′i〉i∈I) is a

measure-automorphism action system. And the formula for g•
′
i(ψ0a) is just what we need to ensure that

(A′, µ̄′, G, 〈•′i〉i∈I , ψ0) is an extension of (A, µ̄, G, 〈•i〉i∈I).
(b) If (A, µ̄, G, 〈•i〉i∈I) is a commuting system, then a similar calculation shows that (A′, µ̄′, G, 〈•′i〉i∈I) is

also commuting.

4E Lemma Let (A, µ̄, G, 〈•i〉i∈I) be a measure-automorphism action system, and j ∈ J ⊆ I. Let
(A′, µ̄′, G, 〈•′i〉i∈I , ψ0) be the (J, j)-isotropizing extension of (A, µ̄, G, 〈•i〉i∈I). For K ⊆ I, set

BK = {a : a ∈ A, g•ia = g•ka for all i, k ∈ K and g ∈ G},

B′
K = {a : a ∈ A′, g•

′
ia = g•

′
ka for all i, k ∈ K and g ∈ G};

set

D = BJ ∩ ∨

i∈I\J B{i,j} ⊆ A, E =
∨

i∈I\J B′
J∪{i} ⊆ A′.

Then ψ0[D] ⊆ E.

proof Take d ∈ D and ǫ > 0. Then there are n ∈ N, a finite set K ⊆ I \ J and a family 〈crk〉r≤n,k∈K such
that crk ∈ B{k,j} for r ≤ n and k ∈ K and µ̄(d△ d′) ≤ ǫ, where d′ = supr≤n infk∈K crk. Now if r ≤ n,
k ∈ K, i ∈ J and g ∈ G,

g•
′
k(ψ1crk) = ψ1(g•kcrk) = ψ1(g•jcrk) = g•

′
i(ψ1crk),

so ψ1crk ∈ B′
J∪{k} ⊆ E; accordingly ψ1d

′ ∈ E. Also

µ̄′(ψ0d△ ψ1d
′) = µ̄′(ψ1d△ ψ1d

′)

(because d ∈ BJ)

= µ̄(d△ d′) ≤ ǫ.

As ǫ is arbitrary and E is closed, ψ0d ∈ E; as d is arbitrary, we have the result.

4F Lemma (Austin p08b, §5) Let G be an abelian group, κ an ordinal of uncountable cofinality,

and (〈(Aξ, µ̄ξ, G, 〈•(ξ)i 〉i∈I)〉ξ<κ, 〈φηξ〉η≤ξ<κ) an inductive system of commuting measure-automorphism ac-
tion systems with inductive limit (A, µ̄, G, 〈•i〉i∈I , 〈φξ〉ξ<κ). Suppose that J ⊆ I, j ∈ J and a cofinal set

M ⊆ κ are such that, for ξ ∈ M , (Aξ+1, µ̄ξ+1, G, 〈•(ξ+1)
i 〉i∈I , φξ,ξ+1) is the (J, j)-isotropizing extension of

(Aξ, µ̄ξ, G, 〈•(ξ)i 〉i∈I). Then (A, µ̄, G, 〈•i〉i∈I) is (J, j)-isotropized.

proof (a) For K ⊆ I and ξ < κ set

6Formerly 458J.
7Formerly 458K.
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C
(ξ)
K = {a : a ∈ Aξ, g•

(ξ)
i a = g•

(ξ)
k a for all i, k ∈ K and g ∈ G},

CK = {a : a ∈ A, g•ia = g•ka for all i, k ∈ K and g ∈ G};
set

Dξ = C
(ξ)
J ∩ ∨

i∈I\J C
(ξ)
{i,j}, Eξ =

∨

i∈I\J C
(ξ)
J∪{i} ⊆ Aξ

for ξ < κ and

D = CJ ∩ ∨

i∈I\J C{i,j}, E =
∨

i∈I\J CJ∪{i} ⊆ A.

Because cfκ > ω, A =
⋃

ξ<κ φξ[Aξ]; consequently CK =
⋃

ξ<κ φξ[C
(ξ)
K ] for every K ⊆ I, and D =

⋃

ξ<κ φξ[Dξ].

(b) Take any d ∈ D. Then there is a ξ ∈M such that d ∈ φξ[Dξ]; set d′ = φ−1
ξ (d). By 4E, φξ,ξ+1d

′ ∈ Eξ+1.
But this means that

d = φξ+1φξ,ξ+1d
′ ∈ φξ+1[Eξ+1] ⊆ E.

As d is arbitrary, D ⊆ E. It is elementary to check from their definitions that D includes E, so they are
equal, that is, (A, µ̄, G, 〈•i〉i∈I) is (J, j)-isotropized.

4G Proposition Let G be an abelian group and (A, µ̄, G, 〈•i〉i∈I) a commuting measure-automorphism
action system. Then it has an extension which is commuting, fully isotropized and fully agreeable.

proof Set κ = max(ω1, 2
#(I)). Then we can build inductively an inductive system (〈(Aξ, µ̄ξ, G, 〈•(ξ)i )〉i∈I〉ξ<κ,

〈φηξ〉η≤ξ<κ) of commuting measure-automorphism action systems such that (A0, µ̄0, G, 〈•(0)i 〉i∈I) = (A, µ̄, G, 〈•i〉i∈I)
and

{ξ : (Aξ+1, µ̄ξ+1, G, 〈•(ξ+1)
i 〉i∈I , φξ,ξ+1)

is the (J, j)-Furstenberg extension of (Aξ, µ̄ξ, G, 〈•(ξ)i 〉i∈I)}
is cofinal with κ whenever j ∈ J ∈ [I]<ω, and

{ξ : (Aξ+1, µ̄ξ+1, G, 〈•(ξ+1)
i 〉i∈I , φξ,ξ+1)

is the (J, j)-isotropizing extension of (Aξ, µ̄ξ, G, 〈•(ξ)i 〉i∈I)}
is cofinal with κ whenever j ∈ J ⊆ I. Now if (A′, µ̄′, G, 〈•′i〉i∈I , 〈φξ〉ξ<κ) is the inductive limit of this system,
Lemmas 4B and 4F tell us that (A′, µ̄′, G, 〈•′i〉i∈I) is fully agreeable and fully isotropized, and of course
(A′, µ̄′, G, 〈•′i〉i∈I , φ0) is an extension of (A, µ̄, G, 〈•i〉i∈I).

5 More about Furstenberg self-joinings

5A Alternative description of agreeable systems Let G be an abelian group, (A, µ̄, G, 〈•i〉i∈I) a
commuting measure-preserving action system, J a finite subset of I, and j a member of J . Let (C, ν̄, G,
〈̃•i〉i∈I∪{∞}, 〈πi〉i∈J) be the Furstenberg self-joining of (A, µ̄, G, 〈•i〉i∈I) over J . Set

B =
∨

i∈J\{j}{a : a ∈ A, g•ia = g•ja for every g ∈ G} ⊆ A.

Then (A, µ̄, G, 〈•i〉i∈I) is (J, j)-agreeable iff πj [A] and
∨

i∈J\{j} πi[A] are relatively independent over πj [B].

proof For j ∈ J , let Rj : L0(A) → L0(C) be the Riesz homomorphism defined from πj : A → C. Set
D =

∨

i∈I\{j} πi[A] ⊆ C. We have

(A, µ̄,G, 〈•i〉i∈I) is (J, j)-agreeable

⇐⇒ WDLg→G

∫

g•j(QBuj) ×
∏

i∈J\{j}

g•iui dµ̄ = WDLg→G

∫

∏

i∈J

g•iui dµ̄

whenever 〈ui〉i∈J ∈ L∞(A)J

(4Aa)
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⇐⇒
∫

RjQBuj ×
∏

i∈J\{j}

Riui dν̄ =

∫

∏

i∈J

Riui dν̄

whenever 〈ui〉i∈J ∈ L∞(A)J

(3Ac)

⇐⇒
∫

RjQBχaj ×
∏

i∈J\{j}

Riχai dν̄ =

∫

∏

i∈J

Riχaidν̄

whenever 〈ai〉i∈J ∈ A
J

⇐⇒
∫

d

RjQBχaj dν̄ = ν̄(d ∩ πjaj)

whenever 〈ai〉i∈J ∈ A
J and d = inf

i∈J\{j}
πiai

⇐⇒
∫

d

RjQBχaj dν̄ = ν̄(d ∩ πjaj) whenever aj ∈ A and d ∈ D

(because {infi∈J\{j} πiai : ai ∈ A for every i ∈ J \ {j}} is closed under finite infima and generates D)

⇐⇒
∫

d

Qπj [B]Rjχaj dν̄ = ν̄(d ∩ πjaj) whenever aj ∈ A and d ∈ D

(because RjQB = Qπj [B]Rj (Fremlin 02, 365Xq8))

⇐⇒
∫

(Qπj [B]χc) × χd dν̄ =

∫

χc× χd dν̄ whenever c ∈ πj [A] and d ∈ D

⇐⇒
∫

(Qπj [B]χc) × (Qπj [B]χd) dν̄ =

∫

χc× χd dν̄

whenever c ∈ πj [A] and d ∈ D

⇐⇒ πj [A] and D are relatively independent over πj [B].

5B Lemma (Austin p08b, 3.2) Let G be an abelian group, (A, µ̄, G, 〈•i〉i∈I) a commuting measure-
automorphism action system and J a finite subset of I. Let (C, ν̄, G, 〈̃•i〉i∈I∪{∞}, 〈πi〉i∈J) be the Furstenberg
self-joining of (A, µ̄, G, 〈•i〉i∈I) over J .

(a) If j, k ∈ J and a ∈ A is such that g•ja = g•ka for every g ∈ G, then πja = πka.
(b) If K ⊆ J and BK = {a : a ∈ A, g•ja = g•ka for all g ∈ G and j, k ∈ K}, then πj [BK ] = πk[BK ] for

all j, k ∈ K.

proof (a) If j = k this is trivial. Otherwise, by 3A(c-i),

ν̄(πja ∩ πka) = WDLg→G µ̄(g•ja ∩ g•ka) = WDLg→G µ̄(g•ja) = ν̄πja

and πja ⊆ πka; similarly, πka ⊆ πja and the two are equal.

(b) follows at once.

5C Definition (Austin p08b, 3.3) In the context of part (b) of 5B, I will call the common value πj [BK ]
the divaricate copy of BK in C. For definiteness, if K is empty, I will say that the divaricate copy of
B∅ = A is C.

5D Lemma (Austin p08b, 6.1) Let G be an abelian group, I a finite set and (A, µ̄, G, 〈•i〉i∈I) a
commuting measure-automorphism action system which is fully isotropized and fully agreeable. Let (C, ν̄, G,
〈̃•i〉i∈I∪{∞}, 〈πi〉i∈I) be the Furstenberg self-joining of (A, µ̄, G, 〈•i〉i∈I) over I. For J ⊆ I set

BJ = {a : a ∈ C, g•ia = g•ja for all i, j ∈ J and g ∈ G},
and let B∗

J ⊆ C be the divaricate copy of B (5C). Let J ⊂ PI be such that K ∈ J whenever J ∈ J and
J ⊆ K ⊆ I, and L a maximal element of PI \ J . Set

8Later editions only.
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D =
∨

J∈J B∗
J ,

E =
∨

L⊆J∈J B∗
J .

Then D and B∗
L are relatively independent over E.

proof (a) If L is empty, then D = E and B∗
L = C, so the result is trivial. If J = ∅ then D = E = {0, 1} and

again the result is trivial. Otherwise, fix j ∈ L. Set B =
∨

i∈I\L B{i,j} and B′ =
∨

i∈I\L BL∪{i}. Because

(A, µ̄, G, 〈•i〉i∈I) is (L, j)-isotropized,

BL ∩ B = B′,

so QB′ = QBQBL
(2De).

Because L /∈ J ,
∨

L⊆J∈J BJ ⊆ B′; on the other hand, by the maximality of L, B′ ⊆ ∨

L⊆J∈J BJ . Now

E =
∨

L⊆J∈J B∗
J =

∨

L⊆J∈J πj [BJ ] = πj [
∨

L⊆J∈J BJ ] = πj [B
′].

Set I ′ = (I\L)∪{j}, and let (C′, ν̄′, G, 〈̃•′i〉i∈I′∪{∞}, 〈π′
i〉i∈I′) be the Furstenberg self-joining of (A, µ̄, G, 〈•i〉i∈I)

over I ′.
Let J0, . . . , Jn enumerate the minimal elements of J . Since L /∈ J , we can find im ∈ Jm \ L for each

m ≤ n. If J ∈ J , there is an m ≤ n such that J ⊇ Jm and BJ ⊆ BJm
. So D =

∨

m≤n B∗
Jm

. Suppose that
am ∈ BJm

for m ≤ n, and that b ∈ BL. Then

ν̄(πjb ∩ inf
m≤n

πimam) = WDLg→G µ̄(g•jb ∩ inf
m≤n

g•imam)

(note that it makes no difference if the im are not all distinct)

= ν̄′(π′
jb ∩ inf

m≤n
π′
imam)

=

∫

R′
jQBχb× χ( inf

m≤n
π′
imam)dν̄′

(because (A, µ̄, G, 〈•i〉i∈I) is (I ′, j)-agreeable)

=

∫

RjQBχb× χ( inf
m≤n

πimam)dν̄

=

∫

RjQBQBL
χb× χ( inf

m≤n
πimam)dν̄

=

∫

RjQB′χb× χ( inf
m≤n

πimam)dν̄

=

∫

QERjχb× χ( inf
m≤n

πimam)dν̄

(because E = πj [B
′])

=

∫

QEχ(πjb) × χ( inf
m≤n

πimam)dν̄.

Because πj [BL] = B∗
L and πim [BJm

] = B∗
Jm

for each m, we have

ν̄(c ∩ infm≤n cm) =
∫

QE(χc) × χ(infm≤n cm)dν̄

whenever c ∈ B∗
L and cm ∈ B∗

Jm
for each m. Because D =

∨

m≤n B∗
Jm

,

ν̄(c ∩ d) =
∫

QE(χc) × χd dν̄ =
∫

QE(χc) ×QE(χd) dν̄

whenever c ∈ B∗
L and d ∈ D. But this is just what is required to ensure that B∗

L and D are relatively
independent over E (Fremlin 03, 458Lc9).

5E Lemma (Austin p08b, 6.2) Let G be an abelian group, I a finite set and (A, µ̄, G, 〈•i〉i∈I) a com-
muting measure-automorphism action system which is fully isotropized and fully agreeable. Let (C, ν̄, G,
〈̃•i〉i∈I∪{∞}, 〈πi〉i∈I) be the Furstenberg self-joining of (A, µ̄, G, 〈•i〉i∈I) over I. For J ⊆ I set

9Later editions only.
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BJ = {a : a ∈ C, g•ia = g•ja for all i, j ∈ J and g ∈ G},
and let B∗

J ⊆ C be the divaricate copy of BJ (5C). Let J , K ⊆ PI be sets such that J ′ ∈ J whenever
J ∈ J and J ⊆ J ′ ⊆ I and K ′ ∈ K whenever K ∈ K and K ⊆ K ′ ⊆ I. Then

∨

J∈J B∗
J and

∨

K∈K B∗
K are

relatively independent over
∨

L∈J∩K B∗
L.

proof (a) Induce on #(K \ J ). If K ⊆ J the result is trivial. So the rest of the argument will be the
inductive step to #(K \ J ) = n > 0.

(b) Take a maximal member M of K \ J , and set K′ = K \ {M}. If M ⊂ J ⊆ I then J ∈ K; thus M is
maximal in PI \ K′. If M ⊆ J ∈ J ∪ K′ then J ∈ K because M ∈ K, while J 6= M , so J ∈ K′. Thus M is
also maximal in PI \ (J ∪ K′). Set

D1 =
∨

J∈J B∗
J , D2 =

∨

K∈K B∗
K , E =

∨

L∈J∩K B∗
L =

∨

L∈J∩K′ B∗
L,

D′
2 =

∨

K∈K′ B∗
K , E′ =

∨

M⊆J∈J∪K′ B∗
J =

∨

M⊆J∈K′ B∗
J .

By the inductive hypothesis, D1 and D′
2 are relatively independent over E.

If c ∈ B∗
M , then

QD1∨D′
2
(χc) = QE′(χc)

(because D1 ∨ D′
2 and B∗

M are relatively independent over E′, by 5D)

= QD′
2
(χc)

because D′
2 and B∗

M are relatively independent over E′, again by 5D. So if c ∈ B∗
M and d ∈ D′

2,

QD1
(χc× χd) = QD1

(QD1∨D′
2
(χc× χd)) = QD1

(QD1∨D′
2
(χc) × χd)

= QD1
(QD′

2
(χc) × χd) = QD1

(QD′
2
(χc× χd)) = QE(χc× χd)

because D1 and D′
2 are relatively independent over E.

As c and d are arbitrary, QD1
and QE agree on B∗

M ∨ D′
2 = D2. Rearranging the notation, we have

ν̄(d1 ∩ d2) =
∫

χd1 ×QD1
(χd2) dν̄ =

∫

χd1 ×QE(χd2) dν̄ =
∫

QE(χd1) ×QE(χd2) dν̄

whenever d1 ∈ D1 and d2 ∈ D2, so D1 and D2 are relatively independent over E.

5F Lemma (Austin p08b, 7.1) Let G be an abelian group, I a finite set and (A, µ̄, G, 〈•i〉i∈I) a commut-
ing measure-automorphism action system which is fully isotropized and fully agreeable. Let (C, ν̄, G, 〈̃•i〉i∈I∪{∞}, 〈πi〉i∈I)
be the Furstenberg self-joining of (A, µ̄, G, 〈•i〉i∈I) over I. For J ⊆ PI set

B̃J =
∨

J∈J {a : a ∈ A, g•ia = g•ja for all i, j ∈ J and g ∈ G}
(interpreting B̃∅ as {0}, of course). Let J ⊆ I × PPI be such that if (i,J ) ∈ J then

I ∈ J , i ∈ J for every J ∈ J , if J ∈ J and J ⊆ K ⊆ I then K ∈ J .

If 〈aiJ 〉(i,J )∈J is a family in A such that aiJ ∈ B̃J for all (i,J ) ∈ J, and

inf(i,J )∈J πi(aiJ ) = 0,

then

inf(i,J)∈J aiJ = 0.

proof (a) Before starting on the main argument, it will be helpful to explain the way in which Lemma 5F
will be applied. Import the notation of 5E, so that if J ⊆ I then

BJ = {a : g•ia = g•ja for all i, j ∈ J and g ∈ G}, B∗
J = πi[BJ ] whenever i ∈ J ,

(with B∗
∅ = C); then B̃J =

∨

J∈J BJ and πi[B̃J ] =
∨

J∈J B∗
J whenever (i,J ) ∈ J. Take any l0 ∈ N

and for J ⊆ PI set Ĵ = {J : J ∈ J , #(J) > l0}. Suppose that for each J ⊆ I we are given a closed
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subalgebra GJ of BJ , and for J ⊆ PI set DJ =
∨

J∈Ĵ BJ ∨ ∨

J∈J GJ . If (l,L) ∈ J then E1 = πl[B̃L] and
E2 =

∨

(i,J )∈J,(i,J ) 6=(l,L) πi[DJ ] are relatively independent over E = πl[DL]. PPP Set

K =
⋃

(i,J )∈J
J \ (L \ L̂).

Observe that if K ∈ K and K ⊆ K ′ ⊆ I then K ′ ∈ K. By 5F, E1 =
∨

J∈L B∗
J and E′

2 =
∨

J∈K B∗
J are

relatively independent over
∨

J∈K∩L B∗
J =

∨

J∈L̂ B∗
J ⊆ E =

∨

J∈L̂ B∗
J ∨ ∨

J∈L πl[GJ ] ⊆ E1.

Consequently E1 and E′
2 are relatively independent over E (Fremlin 03, 458Ld10). It follows that E1 and

E′
2 ∨ E are relatively independent over E (Fremlin 03, 458Ld again). But

E2 ⊆ E′
2 ∨

∨

J∈L πl[GJ ] ⊆ E′
2 ∨ E,

so E1 and E2 are relatively independent over E. QQQ

(b) Now for the main line of the proof. The case J = ∅ is trivial; suppose that J is non-empty. Induce
on the triple (#(I) − l0, l1, l2) where

l0 = min{#(J) : J ∈ ⋃

(i,J )∈J
J },

l1 = #({(i,J ) : (i,J ) ∈ J, min{#(J) : J ∈ J } = l0, J has no least element},

l2 = #({(i,J ) : (i,J ) ∈ J, min{#(J) : J ∈ J } = l0, J has a least element}.
The case l1 = l2 = 0 is vacuous. Let M be {(i,J ) : (i,J ) ∈ J, min{#(J) : J ∈ J } = l0}.

(c) Suppose that there are an L ⊆ PI and distinct j, k ∈ I such that (j,L) and (k,L) both belong to M .

In this case, every member of L must contain both j and k, so BJ ⊆ B{j,k} for every J ∈ L, B̃L ⊆ B{j,k},

g•ja = g•ka whenever a ∈ B̃L and g ∈ G, and πj and πk agree on B̃L, by 5Ba.

Set J′ = J \ {(k,L)}. Then J′ yields the triple (#(I)− l0, l′1, l′2) where l′1 ≤ l1, l
′
2 ≤ l2 and l′1 + l′2 < l1 + l2,

so has been previously dealt with. Set

a′iJ = ajL ∩ akL if i = j and J = L,
= aiJ if (i,J ) ∈ J

′ and (i,J ) 6= (j,L).

Since akL ∈ B̃L,

inf
(i,J )∈J′

πia
′
iJ = inf

(i,J )∈J′
πi(aiJ ) ∩ πj(akL)

= inf
(i,J )∈J′

πi(aiJ ) ∩ πk(akL) = inf
(i,J )∈J

πi(aiJ ) = 0.

By the inductive hypothesis,

0 = inf(i,J )∈J′ a
′
iJ = inf(i,J )∈J′ aiJ ∩ akL = inf(i,J )∈J aiJ

and the induction proceeds.

We can therefore assume, for the rest of the argument, that there are no such L, j and k.

(d) Inductive step to (l0, 0, l2) when l2 > 0: In this case, for every (i,J ) ∈M , J has a least member.

(i) Take any (l,L) ∈M , and let L be the least member of L. Set L̂ = L \ {L},
J′ = (J \ {(l,L)}) ∪ {(l, L̂)}.

Then J′ yields a triple (#(I) − l′0, l
′
1, l

′
2) where either l′0 > l0 (because (l,L) was the only member of M) or

l′0 = l0 and l′1 = 0 and l′2 = l2 − 1; in either case, it has already been dealt with.

Set D = B̃L̂,

10Later editions only.
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a′iJ = upr(alL,D) if i = l and J = L̂ and (l,J ) /∈ J,

(recall that upr(a,D) = inf{d : a ⊆ d ∈ D}; see Fremlin, 313S11)

= alJ ∩ upr(alL,D) if i = l and J = L̂ and (l,J ) ∈ J,

= alJ if i = l and (l,J ) ∈ J
′ and J 6= L̂,

= aiJ if i ∈ I \ {l} and (i,J ) ∈ J.

Then a′iJ ∈ B̃J whenever (i,J ) ∈ J′. PPP If i = l and J = L̂, then

upr(alL,D) ∈ D = B̃J .

If J = L̂ and (l,J ) /∈ J then a′iJ = upr(alL,D); if J = L̂ and (l,J ) ∈ J then a′iJ = aiJ ∩ upr(alL,D); in

either case it belongs to B̃J . In all other cases, a′iJ = aiJ ∈ B̃J . QQQ

(ii) Write N for J \ {(l,L)}. In (a), set GL = {0} and GJ = BJ for other J ⊆ I. Then DJ = B̃J

whenever (i,J ) ∈ N . PPP The point is that L /∈ J . For if J ∈ J then either #(J) > l0 or #(J) = l0 is the
least member of J ; since J 6= L, as settled in (b) above, and J and L both have least members, their least
members must be different, and J 6= L. So

DJ =
∨

J∈Ĵ BJ ∨ ∨

J∈J GJ =
∨

J∈Ĵ BJ ∨ ∨

J∈J BJ = B̃J . QQQ

On the other hand,

DL =
∨

J∈L̂ BJ = D

because L = L̂ ∪ {L} and GL = {0}.
Now observe that, in the notation of (a),

E1 = πl[B̃L]

contains πl(alL),

E2 =
∨

(i,J )∈N πi[DJ ] =
∨

(i,J )∈N πi[B̃J ]

contains inf(i,J )∈N aiJ , and

E = πl[DL] = πl[D].

Since E1 and E2 are relatively independent over E, by (a), and πl(alL) ∩ inf(i,J )∈N πi(aiJ ) = 0, we also have

0 = upr(πl(alL),E) ∩ inf
(i,J )∈N

πi(aiJ )

(Fremlin 03, 458Lf12)

= πl(upr(alL),D) ∩ inf
(i,J )∈N

πi(aiJ )

(Fremlin 02, 313Xs12)

= πl(upr(alL),D) ∩ inf
(i,J )∈J

πi(aiJ ) = inf
(i,J )∈J′

πi(a
′
iJ ).

By the inductive hypothesis,

0 = inf
(i,J )∈J′

a′iJ = upr(alL,D) ∩ inf
(i,J )∈N

aiJ ⊇ inf
(i,J )∈J

aiJ

and the induction proceeds in this case also.

(e) Inductive step to (l0, l1, l2) when l1 > 0: For J ⊆ PI, set Ĵ = {J : J ∈ J , #(J) > l0}. Note

that B̃J = B̃Ĵ ∨ ∨

J∈J ,#(J)=l0
BJ whenever (i,J ) ∈ J.

11Formerly 314V.
12Later editions only.
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case 1 Suppose there is a pair (l,L) ∈ M such that alL is of the form b ∩ infL∈L,#(L)=l0 bL where

b ∈ B̃L̂ and bL ∈ BL for each L ∈ L \ L̂.

Set KL = {J : L ⊆ J ⊆ I} for L ⊆ I, so that B̃KL
= BL for each L, and

J′ = (J \ {(l,L)}) ∪ {(l,KL) : L ∈ L \ L̂} ∪ {(l, L̂)}.
Then J′ yields a triple (#(I)− l0, l1−1, l′2), because every KL has a least element of size l0, while L̂ contains
no set of size l0; so J′ has been previously dealt with. Set

a′iJ = b if i = l, J = L̂ and (l,J ) /∈ J,

= b ∩ alL if i = l, J = L̂ and (l,J ) ∈ J,

= bL if i = l, L ∈ L \ L̂, J = KL and (l,J ) /∈ J,

= bL ∩ alJ if i = l, L ∈ L \ L̂, J = KL and (l,J ) ∈ J,

= alJ if i = l, (l,J ) ∈ J and J /∈ {L, L̂} ∪ {KL : L ∈ L \ L̂},
= aiJ if i ∈ I \ {l} and (i,J ) ∈ J.

Then

inf
(i,J )∈J′

πi(a
′
iJ ) = πl(b ∩ inf

L∈L\L̂
bL) ∩ inf

(i,J )∈J

(i,J ) 6=(l,L)

πi(aiJ )

= inf
(i,J )∈J

πi(aiJ ) = 0.

By the inductive hypothesis,

0 = inf
(i,J )∈J′

a′iJ = b ∩ inf
L∈L\L̂

bL ∩ inf
(i,J )∈J

(i,J ) 6=(l,L)

aiJ = inf
(i,J )∈J

aiJ

and again we can move forward.

case 2 Suppose there is a pair (l,L) ∈ M such that alL belongs to the subalgebra of A generated by

B̃L̂ ∪ ⋃{BJ : J ∈ L}. Then it is a finite supremum of elements of the form considered in case 1 and,
applying the argument above to each of these, we again find that inf(i,J )∈J aiJ = 0.

case 3 Now for the case of general aiJ . Take any ǫ ∈ ]0, 1]. Set δ = ǫ/2#(J). For each (i,J ) ∈ J,

aiJ ∈ B̃J = B̃Ĵ ∨
∨

J∈J\Ĵ

BJ

=
⋃

{B̃Ĵ ∨
∨

J∈J

GJ : GJ is a finite subalgebra of BJ for every J ∈ J }.

We can therefore find families 〈GJ 〉J⊆I and 〈biJ 〉(i,J )∈J such that GJ is a finite subalgebra of BJ for every

J , biJ ∈ B̃Ĵ ∨ ∨

J∈J GJ for every (i,J ) ∈ J, and µ̄(aiJ △ biJ ) ≤ δ2 for every (i,J ) ∈ J . As in (a), set

DJ = B̃Ĵ ∨ ∨

J∈J GJ for J ⊆ PI. For (i,J ) ∈ J, set diJ = [[QDJ
(χaiJ ) > 1 − δ]]. Then

QDJ
χ(diJ \ aiJ ) = QDJ

(

χ(diJ ) − χ(diJ ) × χ(aiJ )
)

= χdiJ − χ(diJ ) ×QDJ
χ(aiJ ) ≤ δχdiJ ;

on the other hand,

δµ̄(aiJ \ diJ ) ≤
∫

a\d

χaiJ −QDJ
(χaiJ ) dµ̄ ≤ ‖χaiJ −QDJ

(χaiJ )‖1

≤ ‖χaiJ − χbiJ ‖1 + ‖χbiJ −QDJ
(χbiJ )‖1 + ‖QDJ

(χbiJ − χaiJ )‖1

≤ 2‖χaiJ − χbiJ ‖1 ≤ 2δ2,
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so µ̄(aiJ \ diJ ) ≤ 2δ.

Consider c = inf(i,J )∈J πi(diJ ). For (l,L) ∈ J, we know from (a) that E1 = πl[B̃L] and E2 =
∨

(i,J )∈J,(i,J ) 6=(l,L) πi[DJ ] are relatively independent over E = πl[DL]. Since πl(dlL \ alL) ∈ E1 and e =

inf(i,J )∈J, (i,J ) 6=(l,L) πi(diJ ) belongs to E2,

ν̄(c \ πl(alL)) =

∫

χπl(dlL \ alL) × χe dν̄ =

∫

QE(χπl(dlL \ alL)) × χe dν̄

=

∫

RlQDL
χ(dlL \ alL) × χe dν̄

(where Rl : L0(A) → L0(C) corresponds to πl : A → C, as usual)

≤ δ

∫

Rlχ(dlL) × χe dν̄ = δ

∫

χ( inf
(i,J )∈J

πi(diJ )) dν̄ = δνc.

Summing over (l,L) ∈ J,

ν̄c = ν̄(c \ inf
(l,L)∈J

πlalL)

(because inf(l,L)∈J πl(alL) = 0)

≤
∑

(l,L)∈J

ν̄(c \ πlalL) ≤ δ#(J)ν̄c ≤ 1

2
ν̄c,

and ν̄c = 0, that is, c = 0.
Now observe that, because every GJ is finite, the subalgebra of A generated by B̃Ĵ ∪⋃

J∈J GJ is closed,
and is equal to DJ , for every J ⊆ PI. Applying case 2 to the family 〈diJ 〉(i,J )∈J and any (l,L) ∈ M , we
see that inf(i,J )∈J diJ = 0. But this means that

µ̄(inf(i,J )∈J aiJ ) ≤ ∑

(i,J )∈J
µ̄(aiJ \ diJ ) ≤ 2δ#(J) ≤ ǫ.

As ǫ is arbitrary, inf(i,J )∈J aiJ = 0 and the induction proceeds in this case also.
This completes the proof.

5G Theorem Let G be an abelian group, I a finite set and (A, µ̄, G, 〈•i〉i∈I) a commuting measure-
automorphism action system. Then

WDLg→G µ̄(infi∈I g•ia) > 0

for every non-zero a ∈ A.

proof (a)(i) If I = ∅ we have to interpret the infimum of the empty set in A, but this is 1, so we get
WDLg→G µ̄(infi∈I g•ia) = 1 for every a ∈ A.

(ii) If I = {j} is a singleton, then

WDLg→G µ̄(infi∈I g•ia) = WDLg→G µ̄(g•ja) = µ̄a > 0

for every non-zero a. So henceforth we can assume that #(I) ≥ 2.

(iii) It may make you more comfortable if I remind you that (A, µ̄, G, 〈•i〉i∈I) is measure-averaging, by
Theorem 3G, so

WDLg→G χ(infi∈I g•ia) = WDLg→G

∏

i∈I g•iχa

is defined in L1(A, µ̄) for every a ∈ A, and WDLg→G µ̄(infi∈I g•ia) is always defined.

(b) Suppose that (A, µ̄, G, 〈•i〉i∈I) is fully isotropized and fully agreeable. Let (C, ν̄, G, 〈̃•i〉i∈I∪{∞}, 〈πi〉i∈I)
be the Furstenberg self-joining of (A, µ̄, G, 〈•i〉i∈I) over I.

Take a ∈ A such that WDLg→G µ̄(infi∈I g•ia) = 0. Because (A, µ̄, G, 〈•i〉i∈I) is (I, j)-agreeable for every
j ∈ I,
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0 = WDLg→G µ̄(infi∈I g•ia) = ν̄(infi∈I πia) =
∫

∏

i∈I RiPiχa dν̄

where Ri : L0(A) → L0(C) is the Riesz homomorphism corresponding to πi : A → C, and Pi is the conditional
expectation operator corresponding to the closed subalgebra

∨

j∈I\{i}{a : g•ja = g•ia for every g ∈ G} ⊆ A.

Set ai = [[Piχa > 0]] for each i; then πiai = [[RiPiχa]] for each i, so infi∈I πiai = 0. Applying 5F with
Ji = {J : i ∈ J ⊆ I, #(J) ≥ 2}, J = {(i,Ji) : i ∈ I}, we see that

ai ∈
∨

j∈I\{i}{a : g•ja = g•ia for every g ∈ G} = B̃Ji

for each i, so infi∈I ai = 0. But a ⊆ ai for each i, so a = 0.

(c) In general, (A, µ̄, G, 〈•i〉i∈I) has a fully isotropized and fully agreeable extension (A′, µ̄′, G, 〈•′i〉i∈I , φ),
by Proposition 4G. If a ∈ A \ {0}, then φa 6= 0 so

0 < WDLg→G µ̄
′(inf
i∈I

g•
′
iφa) = WDLg→G µ̄

′(inf
i∈I

φ(g•ia))

= WDLg→G µ̄
′(φ(inf

i∈I
g•ia)) = WDLg→G µ̄(inf

i∈I
g•ia),

as required.

Remark The special case of this theorem in which G = Z is the Multiple Recurrence Theorem (Fursten-

berg & Katznelson 78).

5H Corollary Let G be an infinite abelian group, I a finite set and (X,G, 〈•i〉i∈I) a commuting action
system. Suppose that there is a finitely additive functional µ : PX → [0,∞[ which is G-invariant, that is,
µ(g•̂iA) = µA whenever A ⊆ X, i ∈ I and g ∈ G, writing g•̂iA for {g•ix : x ∈ A}. If A ⊆ X and µA > 0,
there are a g ∈ G, not the identity, and an x ∈ X such that g•ix ∈ A for every i ∈ I.

proof If µX = 0 this is vacuous; otherwise, taking a scalar multiple of µ if necessary, we can assume that
µX = 1. Of course we can take it that I is non-empty. Applying 2B to the system (PX,G, 〈̂•i〉i∈I), we get
a commuting measure-preserving action system (A, µ̄, G, 〈̃•i〉i∈I) together with a Boolean homomorphism
φ : PX → A such that µ̄φ(A) = µA for every A ⊆ X and g•̃iφ(A) = φ(g•̂iA) whenever A ⊆ X, i ∈ I and
g ∈ G. If µA > 0, then µ̄φ(A) > 0 so

WDLg→G µ(
⋂

i∈I

g•̂iA) = WDLg→G µ̄(φ(
⋂

i∈I

g•̂iA)) = WDLg→G µ̄(inf
i∈I

φ(g•̂iA))

= WDLg→G µ̄(inf
i∈I

g•̃iφ(A)) > 0

by Theorem 5G. In particular, there is a g ∈ G, other than the identity, such that µ(
⋂

i∈I g•̂iA) > 0 (1Hd);

in which case, there is surely an x ∈ ⋂

i∈I g•̂iA. Now g−1
•ix ∈ A for every i ∈ I.

5J Corollary Let R be an infinite ring and X an R-module. Suppose that I ⊆ X is a finite set and
that A ⊆ X has WDLx→XχA(x) > 0, where WDLx→X is defined with respect to the additive group (X,+).
Then there is a similar copy x+ rI of I included in A, where x ∈ X and r ∈ R \ {0}.
proof By 1Hc, there is a translation-invariant finitely additive functional µ : PX → [0, 1] such that µA > 0.
For i ∈ I, r ∈ R and x ∈ X, set r•ix = x+ ri. It is easy to check that (X,R, 〈•i〉i∈I) is a commuting action
system when R is given its additive group structure. Because µ is translation-invariant, it is R-invariant.
By 5I, there are an x ∈ X and an r ∈ R \ {0} such that x+ ri = r•ix ∈ A for every i ∈ I.

References
Austin T. [p08a] ‘On the norm convergence of nonconventional ergodic averages’, preprint, 2008 (arXiv:

0805.0320).
Austin T. [p08b] ‘Deducing the multidimensional Szemerédi theorem from an infinitary removal lemma’,
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