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Topological spaces after forcing
D.H.FREMLIN
University of Essex, Colchester, England

I offer some notes on a general construction of topological spaces in forcing models.

I follow KUNEN 80 in my treatment of forcing; in particular, for a forcing notion P, terms in
VF are subsets of VF x P. For other unexplained notation it is worth checking in FREMLIN 02,
FREMLIN 03 and FREMLIN 08.
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1 Universally Baire-property sets

1A Definition Let X be a topological space. I will say that a set A C X is universally Baire-property
if f~'[A] has the Baire property in Z whenever Z is a Cech-complete completely regular Hausdorff space
and f: Z — X is a continuous function. Because the family g(Z ) of subsets of Z with the Baire property
is always a o-algebra closed under Souslin’s operation and including the Borel o-algebra, the family UB (X)
of universally Baire-property subsets of X is a o-algebra of subsets of X closed under Souslin’s operation
and including the Borel o-algebra.
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2 Universally Baire-property sets 1B

1B Elementary facts Let X be a topological space.
(a) If Y is another topological space, h : X — Y is continuous and A € UB(Y) then h=1[A] € UB(X).
(b)()) If Y C X and A € UB(X) then ANY € UB(Y).

(i) If F € UB(X) and A € UB(F) then A € UB(X). P Let Z be a Cech-complete space and
f:Z — X a continuous function. Then there is an G5 set W C f~1[F] such that f~[F]\ W is meager. Set
g=fIW : W — F; then g~ ![A] has the Baire property in W, so is the intersection of W with a set which
has the Baire property in Z, and g~![A] has the Baire property in Z. As f~'[A]Ag~'[A] C f71[F]\ W is
meager in Z, f~'[A] has the Baire property in Z. Q

(c) If (X;)ier is a countable family of topological spaces and A; € UE(XZ-) for every i, then [[,.; 4; €

UB(TT;e; Xi)-

(d) Suppose that A C X and that G is a family of open subsets of X, covering A, such that ANG € L{g(X)
for every G € G. Then A € L{g(X). P Let Z be a Cech-complete space and f : Z — |JG a continuous
function. For each G € G, ANG € UB(JG) (by (b-i)), so f~[A] N f~1[G] = f~1[A N G] belongs to B(Z):;
as {f71[G] : G € G} is an open cover of Z, f~'[A] € B(Z). As Z and f are arbitrary, A € UB({JG); by
(b-ii), A € UB(X). Q

(e) If X is Cech-complete, then UB(X) C B(X).

iel

1C Proposition If X is a Hausdorff space and A € L{g(X ) then A is universally Radon-measurable in
X in the sense of FREMLIN 03, 434E.

proof Let u be a Radon probability measure on X and (Z,v) the Stone space of the measure algebra of
. Let f be the canonical inverse-measure-preserving map from a conegligible open subset W of Z to X
(FREMLIN 03, 416V). Then u = vy f~1, where vy is the subspace measure on W, and f~![A] has the Baire
property in W and Z, therefore is measured by v.

1D Let X be a Hausdorff space such that every compact subset of X is scattered. Then UE(X )=PX.

proof Take any A C X. Let Z be a Cech-complete space and f : Z — X a continuous function. Set
W = Upex int f1[{z}]. 7 If W is not dense in Z, express Z as (,cy Hyn where (Hy)nen is a sequence
of dense open sets in a compact Hausdorff space Z.SetV =2 \ W. Choose (Vo)oes; and (Gy)ocsy as
follows, where S5 = (J,,cn{0,1}". Vp = V and Gy = X. Given that V, is a non-empty open subset of V'
and f[ZNV,] C Gy, then V, N Z € W, so f[V, N Z] has more than one element; because X is Hausdorff,
there must be non-empty open subsets G~ o>, Go~ 1> 0f G, both meeting f[Z NV,. Choose non-empty
open sets V,~ o>, Vor <15 C V, such that V,~;» CV, N Hy oy and f[Vo-cis € Gonoys for both i,
At the end of the construction, set

V= mnEN Uae{o,l}n Vo = ﬂnGN Uae{o,l}n V.
Then V' is a compact subset of Z, and we have a continuous surjection h : f[V'] — {0, 1} defined by saying

that o C h(z) whenever o € S5 and = € G,. So f[V'] C X is not scattered. X
So W is dense in Z, and if we set U = |, 4 int f ' [{z}] then UA f~*[A] is nowhere dense, so f~[A] €

B(Z). As f and Z are arbitrary, A € UB(X).

1E Theorem Let X be a compact Hausdorff space, and A C X. Then the following are equiveridical:

(i) A € UB(X);

(i) f~1[A] € g(W) whenever W is a topological space and f: W — X is continuous;

(iii) f71[A4] € B(Z) whenever Z is an extremally disconnected compact Hausdorff space and f : Z — X
is continuous;

_(iv) there are a compact Hausdorff space K and a continuous surjection f : K — X such that f 4]
UB(K).

TOPOLOGICAL SPACES AFTER FORCING



1F 3
proof (ii)=(i)=(iii) are immediate from the definition of UB(X).

(iii)=-(ii) (@) Let Z be the Stone space of the regular open algebra RO(W) of W. Let £ be the family
of sets U C W with nowhere dense boundaries; for U € U write U* for the open-and-closed subset of Z
corresponding to int U € RO(W). Note that U + U* : £ — PZ is a Boolean homomorphism with range
the algebra of open-and-closed subsets of Z, and that £ contains all open subsets of W; also U* # () if U is
a non-empty open subset of W, and £ C g(W) Set

g= [  @xF)uZ\('F)) xX)
FCX is closed

= [ @xX\))U( 6N x X),

GCX is open

so that g is a closed subset of Z x X. Now for any z € Z there is a unique « € X such that (z,z) € g.
P The set {F : F C X is closed, z € (f~![F])*} is a downwards-directed family of closed subsets of X so
has non-empty intersection, and if = belongs to this intersection then (z,z) € g. If 2, 1 € X are distinct
and z € Z, there are closed sets Fy, F; C X such that xg ¢ Fy, 1 ¢ Fy; and Fy U F; = X. In this case
Z = (fUR)* U (SR I 2 € (f1[F])* then (2,2:) ¢ 9. Q

(8) Thus g is a continuous function from Z to X. Now Z is an extremally disconnected compact
Hausdorff space, so g~![A] € B(Z); let E € € be such that E*Ag~*[A] is disjoint from (Mnen Zn, where each
Z, is a dense open subset of Z. For each n € Nset V,, = |J{U : U C W is open, U* C Z,}. Then V,, is
a dense open subset of W. P If U C W \ Z, is open, then U* N Z, = 0 so U* and U are empty. Q@ Now
int B\ f~1[A] is disjoint from (), Vi P? If 2 € int EN(), o Vi \ f 7 [A], then consider {U*: U C W is
open, x € U}. This is a downwards- dlrected family of non-empty closed subsets of Z so there is a point z
in the intersection. In this case, z € E* N[, o Zn 50 g(2) € A and f(z) # g(2). Let G, H be disjoint open
subsets of X containing f(z), g(2) respectively; then z € (f~1[G])* N (f~*[H])*, which is impossible. X Q

Similarly, int(W \ E) \ f~'[X \ A] is disjoint from (), oy Vy, so

EAfHAIC (E\int B) U (W \ ,en V)
is meager, and f~1[A] € E(W), as required.
(1)=(iv) is trivial.

(iv)=-(iii) Suppose that (iv) is true, that Z is a compact Hausdorft space and that g : Z — X is
continuous. Set

Q={(z,2):xeX,ze€Z flx)=g(2)}.

Then @ is a compact subset of X x Z. Writing 7 : Q — X and 73 : Q — Z for the coordinate maps, we
have a continuous function h = fm = gms from @ to X. Note that 7o : Q — Z is surjective because f is.

Let L C @ be a compact set such that mo[L is an irreducible surjection (FREMLIN 03, 4A2Gi). Set
B=LnNh YAl =Lz [f![A]]; then B € B(L), by (i)=(ii) here applied to 7 | L. Express B as FAM
where F' C L is closed and M C L is meager in L. Now mo[M] is meager in Z. P? If C C L is closed and
nowhere dense in L, but m2[C] is not nowhere dense in Z, there is a non-empty open H C m3[C]. In this
case, L N7, '[H] is relatively open and not empty, so cannot be included in C, and L' = L\ (75 *[H] \ C)
is a proper closed subset of L; but m3[L'] = Z. X Thus m2[C] is nowhere dense in Z for any closed C' C L
which is nowhere dense in L; it follows at once that mo[M] is meager. Q

Accordingly

WQ[B]ATFQ[F] = WQ[FAM]AWQ[F] Q WQ[(FAM)AF] = ﬂ'Q[M]
is meager, and m[B] € B(Z). But m[B] = g~'[A]. P If z € g~[A], there is an = € X such that (z,z) € L;

now h(z,z) = g(z) belongs to A, so (z,z) € B and z € m3[B]. On the other hand, if z € m3[B], then there
is an « such that (x,z) € B, andg( )=h(z,z) € A. Q

So g7 l[A] € B(Z). As Z and g are arbitrary, (iil) is true.

D.H.FREMLIN



4 Universally Baire-property sets 1F

1F Corollary (a) Let X be a topological space which is homeomorphic to a universally Baire-property
subset of some compact Hausdorff space, and W any topological space. Then any continuous function from
W to X is (B(W),UB(X))-measurable.

(b) Let X be a locally compact Hausdorff space, and A C X a set such that f~1[4] € B(Z) whenever Z
is an extremally disconnected compact Hausdorff space and f : Z — X is continuous. Then A € L{g(X ).

proof (a) Suppose that X € UE(X) where X is a compact Hausdorff space. Let f : W — X be continuous,
and A € UB(X). Then f can be regarded as a continuous function from W to X, and A € UB(X), by
1B(b-ii). So 1E(i)=-(ii) tells us that f~1[A] € B(W); as A is arbitrary, f is (B(W),UB(X))-measurable.

(b) If G C X is a relatively compact open set, then ANG € UB(G) by 1E(iii)=(i). So ANG € UB(G)
(1B(b-i)); as G is arbitrary, A € UB(X) (1Bd).

Remark Compare JECH 03, 32.21-32.24.

1G Proposition (a) Suppose that Z is a topological space, X is second-countable and f : Z — X is
l§(Z )-measurable. Then there is a comeager Z; C Z such that f[Z; is continuous.

(b) Suppose that X is a topological space, Y is a second-countable space and ¢ : X — Y is UE(X )-
measurable. Then ¢ is (Z/Ig(XLUE(Y))—measurable.

proof (a) KURATOWSKI 66 32.11.

(b) Let A € UB(Y). Let Z be a Cech-complete space and f : Z — X a continuous function. Then f is
(B(Z),UB(X))-measurable, by the definition of UB(X), so ¢f : Z — Y is (B(Z)-measurable. By (i), there
is a commeager Z; C Z such that ¢ f[Z; is continuous; we may suppose that Z; is a G set, so that Z; is
Cech-complete. In this case,

Zy N f o Y A] = (of121)V[A] € B(Z1)

and f~1[p1[A]] € l§(Z) As Z and f are arbitrary, ¢~ 1[A] € Ug(X). As Ais arbitrary, ¢ is (U@(X),Ug(Y))—
measurable.

1H Lemma If W is a non-empty topological space, x a cardinal and 7(W) < x, then " (giving each
copy of x the discrete topology) and W x s have isomorphic regular open algebras.

proof (a) To begin with (down to the end of (g)), suppose that RO(WW) is atomless. Let (Ug)e<, run over
a m-base U for the topology of W. Let P be the partially ordered set S% x S5, where S} = J, oy ["; let T
be the topology of W x . Given ¢ € S} define Q, C S5 and (H,,),cq, by saying that
0€Q, and H,y = W;
if 7 € Q, and there is an i < n such that neither H,, N U,(;) nor Hyr \ Uy is empty,
take the first such 7; put both 77°<0> and 77<1> into Q,; set H, .~ = H, N U,(;) and
HO',T’\<0> = HT \ Ua(i);
if there is no such ¢ then no proper extension of 7 belongs to Q-
Now set Q = {(0,7):0 € S, 7€ Q,} and f(0,7) = Hyr x {x:0 Cx € N} for (0,7) € Q.

(b) Every Q. is finite; in fact #(7) < #(0) whenever 7 € Q,. If 0, ¢’ € 5% and 0 C ¢/ then Q, C Q4
and Hy,, = Hyi for every 7 € Q, (induce on #(7)). If o € S¥ then J{Hyr : 7 € Q, is maximal} is dense
(induce on #(0)).

(c) Q is cofinal with P. P Suppose that o € ™ and 7 € {0,1}™ and (o,7) ¢ Q, Let 7/ be the longest
initial segment of 7 such that 7/ € Q,; set I = #(7) — #(7’). Because RO(W) is atomless, we can find
Vo,..., Vi, Ug, ... ,U]_; such that

VO = HO',T/;

given that j <l and V; C W is open and not empty, UJ’. € U and neither V; N U]{ nor V; \ﬁj’
is empty;

if 7(m — 1+ j) =1 then V;1; = V; NUJ;

if 7(m — 1+ j) = 0 then Vj 1y = V; \ U

TOPOLOGICAL SPACES AFTER FORCING



1I 5

Let ¢’ be an extension of o to a member of k"™ such that U, (45 = U;j for j <. Then (o',7) € Q, with
Hcr"r - ‘/l Q

(d) If (o,7), (o', 7") € Q and (0,7) < (¢/,7') then

flo,7)=Hyr x{z:0 Cx€rN} D Hyr x{z:0" Cxcr}
D Hyr x{z:0' Caxery=fo,7).
So if (o, 7), (¢/,7") are upwards-compatible in Q, f(o,7) and f(o’,7’) are downwards-compatible in T\ {0},
(e) If (o,7), (0/,7") are upwards-incompatible in @, f(o,7) and f(o’,7") are downwards-incompatible

in ¥\ {0}, P Because Q is cofinal with P, (o,7) and (¢’,7’) are upwards-incompatible in P. If o, o’ are
upwards-incompatible in S, then

flo, )N flo',7) CW x ({z:0 Cxand o’ Cz})=0.
If o C ¢’ then 7 and 7" must be incompatible in S3; let j be the least integer such that 7(j) # 7/(j). Then

there must be an i < #(o) such that one of Hy,, Hyr = Hyr7 is included in U,(iy and the other is disjoint
from U, (;y. So Hyr N Hyrpr = () and again f(o,7) and f(o’,7') are disjoint. Q

(f) f1Q] is coinitial with T\ {@}. P If U C W is open and not empty and o € S}, let 7 be a maximal
member of @, such that H,, NU is not empty. Let U’ be a member of U included in H,, N U such that
U’ is not dense in H,,. Let £ < x be such that U’ = Ug. Set ¢’ = 0~¢ and 7/ = 77<1>. Then (¢',7') € Q

and

flo,r)=U x{z:0' Cax} CUx{z:0Cz}. Q

(g) By FREMLIN 08, 514R,
RO(x") 2 RO(s" x {01} 2 ROT(P) = RO!(Q) 2 RO (¥ \ {0}) = RO(W x "),

(h) All this has been on the assumption that RO(W) is atomless. For the general case, let V be the set
of atoms in RO(W), and set W/ = W \ JV. Then RO(W’) is atomless, so (a)-(g) tell us that if W’ is not
empty, RO(W’ x k) is isomorphic to RO(x"Y), and

RO(W x k") 2 ROW’ x &) x J] ROV x &)
Vey
(taking the simple product of the Boolean algebras)
=RO(W’ x &) x [] RO(x") = RO(x")*
vevy
(where A = #(V) if W’ # 0, #(V U{W'}) otherwise)
~ RO\ x &) = RO(kY)

because A < ¢(W) < (W) < k. So we have the general result.

1I Lemma Let X be a metrizable space,  an infinite cardinal, W a Cech-complete space with regular
open algebra isomorphic to that of kY, and f : W — X a continuous function. Then there are a dense Gg
subset W’ of W and continuous functions ¢g : W/ — &N and h : kN — X such that hg = f[W’; moreover,
we can choose ¢ in such a way that it is surjective and g[F] is not dense for any proper relatively closed set
FCwW.

proof Express W as (1, .y Hn where (H,,)nen is a sequence of dense open sets in a compact Hausdorff space
Z. Then W is dense in Z, so RO(Z) 2 RO(W) = RO(s"); set Sf: = J,,en ™ and let (V,)ges+ be a family
in RO(Z) corresponding to the family ({z : o C 2})ses: in RO(k", so that {V, : o € S;} is order-dense
in RO(Z) and (V,~¢)e<x is always a disjoint family of subsets of V, with union dense in V,. Because the
topology of Z is regular, {V, : o € S*} is a m-base for it. In particular, every non-empty open subset of Z
has saturation exactly xT. Give X a metric p inducing its topology. Now, for each n € N, choose a family

D.H.FREMLIN



6 Universally Baire-property sets 1I

V., of open subsets of Z, as follows. Vy = {Z} = {V}. Given that V, is a disjoint family of non-empty
open subsets of Z with dense union, let V!, be the family of all non-empty open subsets V of Z such that
(a) there is a V' € V,, such that V C V' N H,, (B) diam f[W NV,] < 27" V! is a m-base for the topology
of Z, so we can find a disjoint family V,41 C V), such that (i) {V : V € Vyq1, V C V'} has cardinal x for
every V' €V, (ii) |JVn41 is dense in Z. Continue.

Of course we can now index each V,, as (V;)ecxn in such a way that (V) .)¢<, enumerates {V : V € V14,
V' C V/} whenever o € x". Since every member of V, is included in V, for some o € ", |J,cnVn is a
m-base for the topology of Z. If o € kY, then Vérn+1 C Vo, N Hy, for every n, so Ko = (e Vo, 18 2

neN Yaln
non-empty compact subset of W; and

W= UaEnN Ko = ﬂnEN UV”

is a dense G subset of W. Define g : W’ — &N by setting g(z) = a whenever z € K. Then g is surjective,
and it is continuous because g(z)[n is constant on each member of V,,. If F C W’ is a proper relatively
closed set, there is a o € S such that F NV, = (), in which case g[F] does not meet {a : 0 C a € sV} and
is not dense.

If « € kY and z, 2/ € K,, then the distance between f(z) and f(z') must be zero, so we can define
h: kN — X by saying that h(a) = f(z) whenever z € K,. If aln = 3|n =0, z € K, and 2’ € Kz, then
both z and 2’ belong to V,, so (if n > 1)

p(h(a), h(B)) = p(f(2), f(z")) < 27"
This shows that h is continuous. And of course f|W’' = hg.

1J Lemma Let W be a topological space and Y a non-empty a-favourable topological space.
(a) If A C W is such that A x Y is meager in W x Y, then A is meager in W.
(a) If AC W is such that A xY € B(W xY), then A € B(Y).

proof (a) Let (F,)nen be a sequence of closed nowhere dense subsets of W x Y covering A x Y. Let
o be a winning strategy for the second player in the Banach-Mazur game on Y. Choose (G, )nen and
({Hpnc)Geg, )nen inductively, as follows. The inductive hypothesis will be that

G, is a disjoint family of open subsets of W with dense union;

Gn4a refines Gy;

H, ¢ is always a non-empty open subset of Y;

if Go € Gy, ... ,Gny1 € Gpy1 and Gy 2 ... 2 Gpy1, then Hn+1,Gn+1 - O'(HQGO, R aHnGn)~
Start by setting Go = {W} and How =Y. For the inductive step, given G € G,,, take G; to be the unique
member of G; including G for each i < n, and set HY = 0(Hog,,--- , Hna, ), so that Hf, is a non-empty

open subset of Y. Let Ug be

{U :0 # U C G and there is a non-empty open V C H,
such that (U x V)N F,, = 0}.

Then |JUc is dense in G so we have a disjoint family U, in U with union dense in G. Set G, 41 = UGegn U
for U € G,,4+1 choose Hy4 1,7 to be a non-empty open set in Y such that U x H,; v is disjoint from F;, and
Hy 11, v € HE where G is the member of G,, including U. Continue.

At the end of the induction, W’ = () .U Gn is comeager in W. Now W' is disjoint from A. P7?
Otherwise, take z € W' N A. Let (G,)nen be such that z € G,, € G, for each n. Then Go 2 G; D ...
so Hyy1,6,., € 0(Hogy,--- ,Hng,) for each n. Because o is a winning strategy, there is a point y €
Npen Hna,- But now (z,y) € Gny1 N Hpy1,6,,,, 50 (2,y) & F, for each n, and (z,y) € (A x Y)\ U, en Fns
which is impossible. XQ

So A must be meager.

(b) Let G be the family of those open subsets G of W such that for some non-empty H CY, (AxY)N
(G x H) is meager. Then (a) tells us that AN G is meager for every G € G, so AN|JG is meager. Similarly,
if G’ is the family of open G C W such that ((IW\ A) x Y) N (G x H) is meager for some non-empty open
HCY,|JG \ A is meager. But as A X Y has the Baire property, [ JG U|JG’ is dense, so A has the Baire
property.

TOPOLOGICAL SPACES AFTER FORCING



2Ab 7

1K Theorem (sece FENG MAGIDOR & WOODIN 92, Theorem 2.1) Let X be a metrizable space and
A C X. Then A € UB(X) iff whenever k is a cardinal and f : kN — X is continuous, then f~1[A] € B(x").

proof Of course all the spaces kN are Cech-complete, so only one direction needs proof. Suppose that

f7'[A] has the Baire property whenever  is a cardinal and f : K — X is continuous.

(a) If W is a Cech-complete space with regular open algebra isomorphic to RO(xY), where & is an infinite
cardinal, and f: W — X is continuous, then f~'[A] € B(W). P By 11, there are a dense G subset W’ of
W and continuous functions g : W’ — N and h : kN — X such that hg = f[|W’, g is surjective and g[F]
is not dense for any proper relatively closed set I C W’. Now W' N f~1[A] = g~[h~}[A]]. By hypothesis,
h~1[A] has the Baire property in Y. Now if H C s is a dense open set, and G C W’ is a non-empty
relatively open set, g[W’ \ G] is not dense and H \ g[W’\ G] # 0, that is, G N g~ ![H] is non-empty (as g
is surjective). As G is arbitrary, g~ 1[H] is dense. It follows that g~![E] is comeager whenever E C k! is
comeager, and g~1[E] is meager whenever F is meager; consequently g~ 1[h71[A]] € E(W') C g(W) So
fHAleB(W). Q

(b) If W is any Cech-complete space and f : W — X is continuous, then f~'[A] € g(W) P Let
k > m(W) be an infinite cardinal. Then RO(W x &) = RO(xY), by 1H, while W x RO(xY) is Cech-
complete. Set g(z,a) = f(z) for 2 € W, a € k. Then g~![A] has the Baire property, by (a). But
g A] = f71[A] x &Y, so f71[A] has the Baire property, by 1J. Q

So Ae Mg(X), as claimed.

2 Basic theory

2A Hausdorff spaces after forcing Let (X, T) be a Hausdorff space and P a forcing notion.

(a) Let Z be the Stone space of the regular open algebra RO(P) of P; in this context I will interpret
Boolean truth values [¢] directly as open-and-closed sets in Z. For p € P let p C Z be the open-and-closed
set corresponding to the regular open set {q : if r is stronger than ¢ then r is compatible with p}. For
subsets S, T of Z I will say that S C* T if S\ T is meager. Note that if S, T € B(Z) and S ¢* T, then
there is a p € P such that p C* S\ T. Let C~(Z; X) be the space of continuous functions from dense Gs
subsets of Z to X. .

For a function f C Z x X let f be the P-name

{(g:p) :9€C(Z;X),peP,pC* {2:2 €dom fNdomyg, f(z) = g(2)}};
for A C X let A be the P-name

{((fip): f€C(Z;X), peP, pC* fHA]}

Remark Note that the definitions of f and A involve the whole set X as well as the pair (P, Z) and the
sets f and A themselves.

It will be some time before I will discuss f for anything but functions in C~(Z; X) but I slip the general
formulation in here for future reference.

(b)(i) If f C Z x X is a function, g € C~(Z; X) and p € P then p|Fpg € f iff (§,p) € f. P If (§,p) € f
then of course p|Fpg € f. i plFp g € f and q is stronger than p, then there are r, ¢/, h such that
heC~(Z;X), (h,¢) € f.r is stronger than both ¢ and ¢/, r|Fp h = §;
that is, ¢’ is compatible with ¢, h = g and qA’ C*{z:z€dom fNndomg, f(z) =g(z)}. But this means that,
setting D = {z : z € dom f Ndom g, f(z) = g(z)}, every non-empty open subset of p includes a non-empty
open set meeting Z \ D in a meager set, so p\ D is meager and (g,p) € f. Q
(i) If f C Zx X is a function, g € C~(Z; X) and p € ]P’thenp”—]pf: giff p C* {z: z € dom fNdom g,

f(z)=g(2)}. P (a) fpC* {z: 2z edom fNdomyg, f(z) = g(2)}, (h,q') € f and ¢ is stronger than both p
and ¢’, then

D.H.FREMLIN
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gC*{z:z€dom fNndomyg, f(2) =g(z)} N{z:2z€domgndomh, f(z)=h(z)}
C{z:zedomgndomh, h(z) = g(2)},

so (h,q) € §; the same applies with f and g exchanged so p|Fp f=3. B) I ple f = g and q is stronger
than p, then (g,q) € g and q|Fpg € § = f so there are an r stronger than g such that r Feg € f. By (i),
(g,r) € fand 7 C* {z:z € dom f Ndomy, f(z) = g(z)}. As q is arbitrary, p C* {2 : z € dom f Ndom g,
f(z)=9(2)} Q

(iii) If A € UB(X), f € C~(Z;X) and p € P, then p|-p f € A iff (f,p) € A. P If (f,p) € A then of
course p |Fp fe A If (f,p) ¢ A then p Z* f~'[A]. So there is a g, stronger than p, such that gnN f~1[4] is
meager. If (7,¢') € A and 7 is stronger than both ¢’ and ¢ then 7N f~1[A] and 7 \ g 1[ ] are both meager,
so {z:z € dom f Ndomyg, f(2) # g(2)} isdensein?andr)(f—pf g. SopJ(preA Q

(iv) Suppose that * is one of the four Boolean operations U, N, \ and A. If A, B, C € UB( ) and
A% B=Cthen |fpA*B=C. PIfpcPand & is a P-name such that p|-p& € AUBUC, then there are
a g stronger than p and an f € C~(Z; X) such that ¢ |fpz = f: now

glFpi€ AxB < q|lpfecAxB
7CfeA«Bl=[feA]«[f€B]
A« f7B)

1A % B]

el

C — q|rieC.

[N A

qc(f
qcf
acf
al-efe

c*
c*
c*
I_

As p and & are arbitrary, |-p A B=C. Q

(v) Let (A,)nen be a sequence in UB(X) with union A. Then |-p A = UneN . P (a) If pePand
# is a P-name such that p|fpz € A, then there are a ¢ stronger than p and an f € C~(Z;X) such that
qlFpd = f; now § C* f~1[A], while (f~[A,])nen is a sequence in the Baire-property algebra of Z with
union A; so there are an open subset H of Z and an n € N such that H C g and H C* f~![A,]. Let r be
such that 7 C H; then

rlrpd = feA,.
As p and & are arbitrary,
ke A S Unen An
(8) In the other direction, (iv) tells us that | A, N A = A, for every n € N, so that |-p
(vi) Let (G;)ier be a family in ¥ with union G. Then

e G = U;e; Git

A4, CA Q

neN

P Asin (v), we can use (iv) to see that
FeUier Gi € G-
In the other direction, if p € P and # is a P-name such that p|Fpd € G, let ¢ € P and f € C~(Z; X) be
such that ¢ is stronger than p and ¢ |Fp4 = f. Then g\ f~[G] is nowhere dense, so there is an i € I such

that ¢ meets f~1G;]. As gn f7YG,] is relatively open in the comeager set dom f, there is an r stronger
than ¢ such that 7 C* f~1[G,] and r |Fp 4 € G;. As p and & are arbitrary,

Fe G C Ui Gi- Q

IThere is something of an abuse of notation here. Strictly speaking, (G;)ics is a subset of I x T; now (G; )ici is to be a
suitable P-name for a corresponding subset of I x %, e.g., {((#,G;),1) : i € I}. See FREMLIN 08, 5A3EDb.
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(vii) Suppose that A € Z/lg(X), p € P and that & is a P-name such that p|Fpi € A. Then there is
an f € C7(Z;A) such that p|fpz = f. P Note first that there are surely a py stronger than p and an
fo € C~(Z;X) such that

polbed = fo € 4,
so that pg C* f71[A] and A # 0. Fix xp € A. Next, for every ¢ stronger than p there are an r stronger

than ¢ and an f € C~(Z; X) such that 7 |-p f = & € A, so that 7 C* f~1[A]. We therefore have a maximal
antichain @ C IP such that for every q € @

—— either ¢ is stronger than p and we have a g, € C~(Z; X) such that ¢|Fp & = g,
—— or ¢ is incompatible with p, in which case take g4 to be the constant function with domain
Z and value xg.

Now (@)4eq is a disjoint family of open subsets of Z with dense union. For ¢ € Q, ¢ C* gq_l[A]; let E, be a

dense Gs-subset of § included in g; '[A]. Set E = |J,cq Ey; then E is a dense Gy set in Z. Define f : E — A
by setting f(z) = g,(2) if z € E,; then f € C~(Z; X) and |Fp f € A. Also

ql-v JF: Gq =1
whenever g € @ and ¢ is stronger than p, so p|Fp f: Z, as required. Q

(viii) If; in (vii), the set A is compact, then every member of C~(Z; A) will have a (unique) extension
to a member of C'(Z; A), because Z is extremally disconnected; so we find that whenever p € P and % is a
P-name such that p|p& € A, then there is an f € C(Z; A) such that p|-pd = f.

(c) Now set
T={(G,1):Geg}.
Then
|Fe T is a topology base on X and generates a Hausdorff topology on X.

PP This is a first-order property so survives translation into the forcing language. More explicitly: suppose
that G and H are P-names and p € P is such that

plFeG, HeX.
Then there are G, H € ¥ and ¢ stronger than p such that
qlFpG =G and H = H.
In this case
qlFrGNH=(GNH) €%
by (b-iv). As p, G and H are arbitrary,
¢ ¥ is closed under N.
Of course
Fp X € T and G C X for every G € %,
SO
[Fe ¥ is a topology base on X.

To see that we have a Hausdorff topology in V¥, suppose that &, g are P-names and that p € P is such
that

pled geX, iy
By (b-vii), we have f, g € C~(Z; X) such that
plrei=f9=4
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Now pN{z:z € dom f Ndomg, f(z) = g(2)} has the Baire property and does not essentially include any
open set, so

U mex.anu—o PN TGN f7HH]

is relatively comeager in the non-meager G4 set p N dom f N dom g, and there are disjoint G, H € ¥ such
that pN f~[G] N f~1[H] is non-meager. Let g, stronger than p, be such that ¢ C* (f~[G] N f~1[H]); then

qlFpicGe, yge HeTand GNH = 0.
As p, & and ¢ are arbitrary,

(3 T generates a Hausdorff topology on X. Q

(d)(i) It is perhaps worth noting e>Eplicit1y that we can use any base for ¥ to define the topology on X
in V. If U is a base for T, set U = {(U, 1) : U € U}. Then

”—[PZ;[ is a topology base on X and generates the same topology as ¥.
P Suppose that p € P and that U and V are such that
P, V e li.
Then there are a ¢ stronger than p and U, V € U such that
qlFpU=Uand V="V.
Set W={W Wecld, WCUNV}then UNV = Uy W, so (b-iv) and (b-vi) tell us that
FeTU NV =0NV)" =Upew W,
and accordingly that
q|FpU NV is a union of members of .
It is easy to check that
e Ul = X,
SO
|FeU is a topology base on X.
To check that we get the right topology, we surely have
||‘1P1/~l C<.

IfpeP ar~1d G is a P-name such that P ||—[p>C¥ € %, there are a G € T and a q stronger than p such that
q|FepG = G. Setting W ={U :U €U, U C G} we now have

qu_]PG = é = UWEWW7
S0
¢ |Fr G belongs to the topology generated by .

As p and G are arbitrary,

q |Fp the topology generated by T is coarser than the topology generated by U, so the two
are equal.

Q
(ii) Similarly, if ¢/ is any subbase for ¥, and we set ¢ = {(U, 1) : U € U}, then
lFe U generates the same topology as ¥.
PSet V={X}U{Uyn...NU, : Uy,...,U, €U}. Then V is a base for T so
[Fe V defines the right topology.
But it is easy to check that
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FeV ={X}U{Usn...0U, :Uy,... U, €U}, soV and U define the same topology. Q

(e) Using (b-iv), we see that
e F is closed in X
whenever F' C X is closed. Using (b-v), we see that
e E is Borel in X
whenever E C X is Borel. We also find that
e A is nowhere dense in X
whenever A € Z/{g(X) is nowhere dense in X. I Suppose that p € P and G is a P-name such that
p|Fe G is a non-empty open subset of X.
Then there are a g € P, stronger than p, and a U € ¥ such that
q|Fe U is not empty and included in G.
Let V € ¥ be not empty and included in U \ A; then
qlFp0 £V CG\ A
As p and G are arbitrary,

|Fpif G C X is a non-empty open set
then there is a non-empty open subset of G\ A,
that is,
e A is nowhere dense. Q
It follows that
[Fe A is meager in X

whenever A € UB(X) is meager in X (note that the meagerness of A can be witnessed by a sequence of
nowhere dense sets which are relatively closed in A, therefore universally Baire-property in X), and that

| A has the Baire property in X
whenever A € UB(X) has the Baire property in X.

(f)(i) For z € X, let e, € C~(Z; X) be the constant function with domain Z and value z, and write &
for the P-name €. Set

¢ ={((&,1),1):x € X},
so that
[Fe ¢ is a function from X to X.
Since |Fp & # § whenever z, y € X are distinct, |-p ¢ is injective.
(ii) If A € UB(X) then
e A =@~ [A].

P If & is a P-name and p € P is such that p|fpd € X, then there are a ¢ stronger than p and an z € X
such that g |Fp2 = &. In this case

glFpic A < qlFpic A
= zcA
— q|pzecA
(because e, 1[A] = Z if x € A, () otherwise)

D.H.FREMLIN
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— qlFpp(i) € A < qllpp(d) € A

As p and T are arbitrary,

e for every z € X, z € A iff 4(z) € A. Q

(iii) Next, if D C X is dense,
IFe @[D] is dense in X.
P Suppose that p € P and that G is a P-name such that
p e G is a non-empty open set in X.
Then there are a g € P, stronger than p, and f € C~(Z;X), U € T such that
qlrefeUCq.

As f_1[~U] is a dense Gs set in the non-empty open-and-closed set ¢, U # (); take any x € U N D. Then
Frz e U, so

qlFep(x) €eUCG. Q

(g) (i) Suppose that every compact subset of X is scattered. Then, in the language of (f),
Fe X = @[X].

P? Otherwise, there are a p € P and a P-name & such that

e € X\lX)
Let f € C~(Z;X) be such that p|Fpi = f. Let (Wy)nen be a sequence of dense open sets in Z such
that dom f = [, ey Wa. Set S5 = [J,eni0, 1} and choose (ps)ses; and (Go)oes; inductively, as follows.
pp = p and Gy = X. Given that o € S5, p, € P is stronger than p and G, is an open subset of X including
f[ps], consider f|p,. Because

Po “'Pf ¢ @[X]v
there must be at least two points in f[p,], and we can find disjoint open subsets G,~ o> and Gy~ 1~ of
G, included in G, and both meeting f[p,]. Now, for each i, p, N f~[G,~;~] is a non-empty relatively
open subset of dom f, so we can find p,~_,-, stronger than p,, such that dom f N p,~ i~ C fFHGo~cis]
and p,~ ;> € W, where n = #(o). Continue.

At the end of the induction, set K = (1, oy Uae{o,l}" Do, S0 that K is a compact subset of dom f and
fIK] is a compact subset of X. For o € S5, set K, = K Np,, so that f[K,] = f[K] N G,; in particular,
fIK, )N fIK,] =0 if n € Nand o, 7 € {0,1}" are distinct. We therefore have a function h : f[K] — {0, 1}
defined by saying that h(z)[n = ¢ whenever n € N, ¢ € {0,1}" and = € f[K,], and h is a continuous
surjection from f[K] onto {0, 1}", because hf(z) =y whenever y € {0,1}" and z € (N, ey Pytn- So fIK] is
a non-scattered compact subset of X. XQ

(ii) In particular, if #(X) < ¢ or X is discrete,
ke X = $[X].
(iii) In fact, if X is discrete, then
Fe X = ¢[X] is discrete.

P Set U = {{z} : z € X}. If p € Pand & U are P-names such that p|-pU € U, then there are
f e C(Z;X), q stronger than p and U € U such that q|-p f = & € U = U. In this case,

S fTHUl={2:2z€domf, f(2) = ea(2)},

SO
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As p, U and & are arbitrary, we have

[Fe every non-empty member of U is of the form {y} for some y € ¢[X].

Since U is a base for the topology of X we also have

||‘JPZ] is a base for the topology of X;
putting these together, we have the result. Q

2B Closures and interiors In the context of 2A, suppose that A € UE(X). Then
[Fe int A = (int A)", A= PlA] = A and 94 = (0A)7,
where JA is the topological boundary of A. B* From 2Ab and 2Ac we know that
|Fe (int A)™ is an open subset of A, so (int A)~ C int A.
Now suppose that p € P and 2 is a P-name such that
plrpd € int A.
Then there are a ¢ stronger than p, an f € C~(Z;X) and an open set G C X such that
qlFpi=feUCA.
In this case U C A so U C int A and
qlFpi = f e (intA)".
As p and & are arbitrary,

[Fe every member of int A belongs to (int A)~, so int A = (int A)

Applying this to X \ A, and using 2A(b-iv), we have
e A=A,

FpdA=A\int A=A\ (int A)~ = (A\ int A)~ = (A)".

13

As for ¢[A], we have only to repeat the argument of 2A(f-iii). Suppose that p € P and that G is a P-name

such that
plFe G is an open set meeting A.
Then there are a ¢ stronger than p and an open set G C X such that
qIFpG C G and GN A #0.
So there must be an z € GN A, in which case
qlFp () € G, so G meets ¢[A].

As p and G are arbitrary,

e A C ¢[A] and o[A] = A. Q

2C Continuous functions, among others Let P be a forcing notion, Z the Stone space of its regular
open algebra, (X, %) and (Y, &) Hausdorfl spaces, and X, ¥, ¥ and & the P-names as defined in 2A. Let

¢ C X XY be a function.

(a) Let ¢ be the P-name
{((f,9).:p): f €CT(Z:X), g € C7(Z;Y), p € P, p " dom(g N &)}

D.H.FREMLIN
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(Here dom(g N ¢f) = {z: z € dom f Ndomg, g(z) = ¢f(2)}.2) Then
[ ¢ is a function from a subset of X to Y.
P Of course
bed C X x 7.
To see that 45 is a name for a function, suppose that p € P and that &, yg and y; are P-names such that
plFe (4,90) and (&, 7;) belong to ¢.
Then there are a g stronger than p, fo, f1 € C~(Z;X) and go, g1 € C~(Z;Y) such that
qled=fo=fi. g0 =Go. i1 =G
and
q C* dom(go N ¢ fo) Ndom(g1 N @ f1).
In this case,
q € dom(fo N ¢ f1) € dom(¢fo N ¢ f1),
so ¢ C* dom(go N g1) and
qlFedo = Go = 1 = ¥1-
As p, &, 9o and g, are arbitrary,

[Fe ¢ is a function. Q

(b) Corresponding to 2A(b-vii), we have the following.

(i) If p € P and &, § are P-names such that p|-p¢(i) = ¢, then there are f € C~(Z;X) and
g € C~(Z;Y) such that

plrpi=fandy=4g,
p C dom(gNgf).

P Argue as in 2A(b-vii), but in place of pairs ¢, g, take triplets ¢, f;, g4 such that, if ¢ is stronger than p,
then

QH‘]P’@:JFq andy:gqa

g C* dom(g,Nofy) Q

(i) In fact, if p e Pand f € C~(Z; X) and g € C~(Z;Y), then p|Fp &(f) = Fiff p C* dom(gﬂ(bf)

—

(@) It p C* dom(gNef) then ((f,5),p) € ¢ so surely p|le (f,7) € ¢ and p |2 &(f) = G. (8) U plked(f) = 7
then (i) tells us that there are f1 € C~(Z;X), g1 € C~(Z;Y) such that

plFe f = fiand §=gi,
p C* dom(gy Nfi.
But in this case
p € dom(g1 N ¢ f1) Ndom(g N gi) Ndom(f N f1) C dom(g N ¢f),
as required. Q
2There is an abuse of notation in the displayed formula. The subformula (f, g) must be interpreted in the forcing language,

so that instead of bﬂeingﬂthe simple ozdereﬂd pair {{f}, {f. ﬁl} itﬂis {{(F, 1)}, 1), {(f, ]1),(@:,]1)};, 1)}, or (to make myself
quite clear) {{{{{{f}{f, 13}}}, {{{{rH 4/, W} b} {{LL{F B A7 1 {{gh {g, 1 (L H A7 1 {{g) {9, 133}, 133

See the remark following 5A3H in FREMLIN 08.
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(¢) Next, suppose that A € Ug(X), A C dom ¢, ¢l A is continuous and B € UE(Y). Then AN¢~'[B] €

UB(X) and

e AN é1[B] = (AN o~ [B])"
(In particular, |Fp A C dom¢.) P (o) By 1B,

AN¢ Y B] = (¢]A)~}[B] € UB(A) CUB(X).
(8) Suppose that p € P and that & is a P-name such that p @ € AN ¢~1[B]. Then there is a P-name 3
such that p|Fp¢(i) =y € B;let f € C~(Z;X) and g € C~(Z;Y) be such that
plreé = fandj=g
and p C* dom(g N ¢f). Then
pP\{z:zedomfndomy, f(2) € 4, g(2) € B, g(2) = &(f(2))}

is meager, so p C* f~1[AN¢ 1 [B]] and p|Fpi € (AN¢~1[B])". As p and & are arbitrary,

ke AN Bl C (Ane'[B])".
(7) In the other direction, suppose that p € P and i are such that p |Fp @ € (AN¢~1[B])". Let f € C71(Z; X)
be such that p |Fp @ = f; then p C* f~[AN¢~1[B]]. Let Zy be a Gs subset of pN f~1[A] such that p C* Zj,
and let g : Zop U (Z \ p) — Y be such that g(z) = ¢f(z) for z € Zy and g is constant on Z \ p. Then
g€ C(Z;Y) and g(z) € B whenever z € ZoN f~1[¢p~1[B]] so

=

plred(f)=ge B
and
plei=feAng (B
As p and & are arbitrary,
FeAn¢='[B] C (AN [B])"
(6) Applying this with B =Y, we see that
Fp dom¢=o"1[Y] D A Q

(d) If A € UB(X), A C dom ¢ and ¢] A is continuous, then
lFe ¢ A is continuous.

P Suppose that p € P and tha‘p H is a P-name such that p |fp H € &. Then there are a q stronger than p
and an H € & such that ¢|Fp H = H. Let G € T be such that AN ¢~[H] = ANG. Then (c) tells us that

gl AN H]| = An¢~'[H] = (AN¢~'[H])" = (ANG)” = AN G is relatively open in

A.

As p and H are arbitrary,

e A ﬂfﬁfl[H] is relatively open in A for every H € &, while & is a base for the topology

of Y, so ¢ A is continuous. Q

(e) If Xy, X7, X5 are Hausdorff spaces and ¢ : Xg — X7, ¥ : X3 — X are continuous functions, then
e (¥¢)” = 9.
P If p € P and & is a P-name such that p |-p & € X, then let f € C~(Z; Xy) be such that p |-p4 = f. Then

e d(f) = (0f), ¥(3(f) = (W f)™ = (¥o)™(f),

plred(()) = () ().

As p and ¢ are arbitrary,
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e ()™ = vo. Q@

(f) If ¢ is injective, then
I ¢ is injective.
P Suppose that p € P and &g, & are such that
plFe o, 41 € dom ¢ and i # i1.
Let fo, f1 € C~(Z; X) and go, g1 € C~(Z;Y) be such that
plFedo = foand @y = f1
and
p " dom(go N ¢ fo) Ndom(g1 N ¢ f1).

Then the Gs set p N dom(fy N f1) cannot essentially include any non-empty open set, so must be meager,
and

p € dom(go N ¢ fo) Ndom(gy N @f1) \ dom(fo N f1) C (Z\ dom(go N g1))
because ¢ is injective. Thus
plFed(do) = d(fo) = Go # G = d(d1).
As p, ©o and %, are arbitrary,

e ¢ is injective. Q

(g) If ¢ is a homeomorphism between X and a set B € UB(Y), then
[ ¢ is a homeomorphism between X and B.
P From (e), with A = X, together with (¢) and (d), we know that
|Fe ¢ is an injective continuous function from X to Y.
Let G C X be any open set. Then G is expressible as ¢~1[H] for some open H C Y, so
e G = ¢~ 1[H] is the inverse image of an open set.

If p € P and G is a P-name such that p|Fp G € T, and ¢ stronger than p and G' € ¥ are such that ¢|Fp G = G,
then

¢ |Fp G is the inverse image of an open set.
As q is arbitrary,
p|Fr G is the inverse image of an open set.

As p and G are arbitrary,

|Fp every member of T is the inverse image of an open set, so that X is homeomorphic to
its image in Y.
I still have to check that
e $[X] = B.
But if p € P and ¢ is a P-name such that p|-p9 € B, there is a g € C~(Z; B) such that p|-py = §; now
f = ¢"1g belongs to C~(Z; X) and

— ~

e g =g =6(f) € S[X].
As p and gy are arbitrary,
e d[X] = B. Q
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Remark The point of (e) here is that we can discuss subspace topologies without inhibitions, at least on
universally Baire-property sets. If we have a topological space Y and a set X € UB(Y"), then the formula of
2Aa forces a formal distinction between the P-name

X={(fip): feC(ZY),peP " f[A]}
when X is regarded as a subset of Y, and the P-name
X ={(fip): f€C~(Z;X),peP}

when X is regarded as a topological space in its own right; indeed the subformula f demands different
interpretations in the two cases. But the result just proved shows that for ordinary purposes we can expect
any theorem concerning the topology of X to be indifferent to which interpretation is being used.

2D Lemma Suppose, in the context of 2C, that X =Y and we have a set A € Z/lg(X) such that ¢(z) = x
for every z € A. Then

IFe ¢(x) = = for every z € A.

proof Let p € P and & be a P-name such that p|-p& € A. Let ¢ stronger than p and f, g € C~(Z; X) be
such that

qlFpz = f and (&) =g
and g C dom(g N ¢f). Then

g <" dom(gnéf) N fHA] € dom(g N f),

that is,

qlhrd(d) == f=a.
This works for a set of ¢ which covers p, so

plke d(i) = i

as p and & are arbitrary, we have the result.

2E Alternative description of Borel sets Let P, Z and (X, %) be as in §2A.

(a) If G is a P-name such that
e G is an open set in X,
consider the open set
W=Uges[GCGIxGCZxX.
If B, G and H are P-names such that
|Fe G and H are open subsets of X and £ = G N H,

and Wy, W and W, are the corresponding open subsets of Z x X, then Wy = W N Wy. PP We have
Wy € W, just because [G'C E] C [G C (] for every open G C X. Similarly, W, C W,. Now suppose
that (z,2) € W N Wy, Then there are open G, H C X such that x € GN H and

ze[GCGIN[HCH)C[(GNH)CGNH]=[GnH) CE],

so (z,2) € Wg. Q
In particular, |Fp G N H = 0 iff W, and W, are disjoint.

(b) For any W C Z x X, let W be the P-name
{(F:p): F€C(Z:X), peP P {2: (2. f(2) €W}
(i) If G is a P-name such that
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¢ G is an open set in X,

W, is the corresponding open subset of Z x X, p € P and f € C~(Z; X), then p|p fe G iff (f,p) € WG
PG Ifple f € @, then for every ¢ stronger than p there are an 7 stronger than ¢ and a G € T such that
r|Fp f € G C G. In this case 7 x G C W and
{z:zerndomf, (2, f(2)) ¢ W} C7\ fG]

is meager. As ¢ is arbitrary, {z : z € pndom f, (2, f(2)) ¢ W} is meager and p C* {2 : (2, f(2)) € W}
(i) If p €* {2 : z € dom f, (2, f(2)) € W}, then for every ¢ stronger than p there is a G € T such that
gN[G € G] N f~G] is non-meager (because the function z — (z, f(2)) : dom f — Z x X is continuous).
In this case there is an 7 stronger than ¢ such that 7 C [G C G] and 7 C* f~1[G], so that

rlrefeGCa.
As ¢ is arbitrary, p |Fp fec. Q
(ii) Consequently
FeWe = G.

P () If p € P and & is a P-name such that p|-pi € G, then there is an f € C~(Z; X) such that p |Fp & = f;
now (i) tells us that (f,p) € WG, so of course p|Fpi = f € V_VG As p and # are arbitrary, |FpG C WG (8)
If p € P and % is a P-name such that p|Fp i € WC:’ then there are a ¢ stronger than p and an f € C~(Z; X)
such that ¢|Fp = f and (f, q) € Vf/g. Now (i) tells us that ¢|fpd = f e G. As p and i are arbitrary,
FeWy C G Q

(iii) Note that W = Z x X and

e X =(ZxX)".

(iv) Next, observe that if W € UB(Z x X) and f € C~(Z; X), then
[f € W]A{z: (2, f(z)) € W} is meager.
P Because z — (z, f(2)) : dom f — g x X is a Eontinuous function from a Cech-complete space to a
Hausdorff space, {z : (z, f(2)) € W} € B(dom f) C B(Z). Now, for p € P,
PC [feW] < plrefew
<= for every q stronger than p there is an r stronger than g
such that (f,r) € W
<= for every q stronger than p there is an r stronger than g
such that ¥ C* {z: (2, f(2)) e W}
— pC{z:(z f(2) e W}

As [f € W] and {z : (2, f(z)) € W} both have the Baire property, and {p : p € P} is a m-base for the
topology of Z, this is enough. Q

()Q) IfpeP, AcUB(X) and px A C W € UB(Z x X), then plFp A C W. P If ¢ is stronger than r

and & is a P-name such that ¢ |Fpi € A, there is an f € C~(Z; X) such that ¢ |Fpd = f; now
G pN A C{z: (2 f(2) e W},
soqlFepa € W. As ¢ and @ are arbitrary, plFeAC W. Q
(i) If W C Z x X is open, then
-p W is open.

P Suppose that p € P and that & is a P-name such that p|Fpd € W. Let f € C~(Z; X) be such that
plFpd = f, so that p C* {z : (2, f(2)) € W}. Take any zp € pNdom f such that (zo, f(20)) € W. Because
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W is open, there are a ¢ stronger than p and an open set G C X such that (zq, f(20)) € ¢ x G C W. Now
gN f~1[G] is non-empty and relatively open in the dense G4 set dom f, so there is an r stronger than ¢ such
that 7 C* f~1[G], that is,

rlFpi = feG.
Also 7 x G C W, sor|FpG C W, by (i). Now
rlpi e GCW and & € int W.
As p and & are arbitrary,
“‘]P’W Cint W and W is open. Q

~

(iii) If V C Z is open-and-closed, A € UB(X) and W =V x A, then
V=[W=A], Z\V=[W=0].
P By (i), p|Fp A C W whenever p C V; similarly, if p C V, then
plre (X \A) C((ZxX)\W)™.
But it is easy to see (cf. (d) below) that
Fe (Z x X)\ W)™ =X\ W,
while of course
e (X\4)" =X\ 4,
SO p ||—IP>W = A whenever p C V. And of course p ||—IP>W = () whenever pNV = (), since then p is disjoint
from {z: (2, f(2)) € W} for every f € C~(Z; X). So we have the result. Q
(d) (Compare 2A(b-iv).) If Vi, Vo € UB(Z x X), * is any of the Boolean operations U, M, \ and A and
W =V; x V5, then
”—]p W = Vl * VQ
P If p € P and & is a P-name such that p|fpd € W U V; U Vs, then there is an f € C~(Z;X) such that
plhe = : now
p”—[pi S ‘71 *‘72 <~ p“—[PfG ‘71 *‘72
PCIfeVixVa]=[feVi]=[feVi]
P {z: (2, f(2) e i} x{2: (2, f(2)) € Vo}
PC{z:(2/(2) eW}} < plreicW.Q

[

(d) If (V) nen is a sequence in UB(Z x X) with union W, then [Fp W = U, .y Wn. P As in 2A(b-v). Q

(£) If (W)ies is a family of open subsets of Z x X with union W, then |-p W = Uici W;. P As in
2A(b-vi). Q

(g) It follows that if W C Z x X is a Borel set, then |- W is a Borel set in X. (Induce on the Borel
class of W.3)

(h) (i) Now suppose that p € P, @ < w; and that E is a P-name such that
p|Fp E is a Borel subset of X of class a.

31 am not sure that there is a standard definition of Borel classes in general topological spaces. One I like is in HOLICKY &
SPURNY 03, starting from Bo(X) the algebra of subsets of X generated by the open sets. But you can pick your own for the
results here.
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Then there is a Borel set W C Z x X of class « such that p|Fp E = W. P Induce on . Q
(ii) If p € P and E is a P-name such that
plFe E is a Borel subset of X,

then there is a W € UB(X) such that p|-p £ = W. P Let Q C P be a maximal antichain such that for
each ¢ € @ there is a Borel set W, C Z x X such that ¢|p £ = W,. By (i), @ is dense subject to p, so
W =U,eq WqN (7 x X) will work. Q
(iii) If P is ccc, p € P and E is a P-name such that
plFe E is a Borel set in X,
then there is a Borel set W C Z x X such that p|Fp £ = W. P As (i), but noting that Q is countable so
W is Borel. Q

(i) f W C Z x X is open then
P Because W C W and W is closed,

SO

In the other direction, suppose that p € P and that G is a P-name such that

p|Fp G is an open set meeting w.
Then there are a ¢ stronger than p and an open G C X such that

e G C G and GNW # 0.
Now
glreG=@xG)7,

SO

glbe (W (@x Q) =WNG £,

and W meets the open set ¢ x G. So W also meets this, and there are r stronger than ¢ and an z € G such
that 7 x {z} C W. But now

rlFpz e WNG CW NG, so G meets W.
As p and G are arbitrary,

=

|Fp every open set meeting W meets W, so W C W. Q

2F Convergent sequences: Lemma Suppose that P is a forcing notion, Z the Stone space of its regular
open algebra, and X a Hausdorff space. Suppose that (f,,)nen is a sequence in C~(Z; X) and f € C~(Z; X),
p € P are such that

pC*{z: f(2) = limy oo fn(2) in X}.
Then
plFe f = lim, e f,, in X.

proof Suppose that ¢ is stronger than p and that G is a P-name such that

¢ |Fp G is an open subset of X containing f.
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Then there are r stronger than ¢ and an open G C X such that
rlpfeGCa.
Set
W ={z:z¢&dom fN[),cydom fp, lim, . fn(2) = f(2) € G};
then 7 C* W. Now
W C UnenNizn f7a),
so there is an n € N such that 7N ﬂiZn f[l[G] is non-meager and there is an s stronger than r such that
5C Nizn fi 1G], that is,
s||—pf;€(~}’§(;’for every i > n.

As g and G are arbitrary,

plre limy—oc fo = -

2G Supplementing the descriptions of open and closed sets in 2E, we have the following description of
at least some names for compact sets.

Theorem Let X be a Hausdorff space and P a forcing notion, with Stone space Z. If Zy C Z is comeager
and V C Zy x X is an usco-compact relation in Zy x X, then, in the language of 2E,

|Fe V is compact in X.

proof Let F be a P-name and p € P such that
plFe F is an ultrafilter on X containing V.

(a) Set
W:UGQXisopenﬂé’¢}.—]] X G.

Then W C Z x X is open. If 2 € Zg Np then V[{z}] £ W[{z}]. P? Otherwise, because V[{z}] is
compact, there are open sets Gy, ... ,G, C X such that z € [G; ¢ F] for each ¢ and V[{z}] C Uign G;. Set

G =U,<, Gi and U =pN [G ¢ FJ; then
”‘IP’ é = Uign éiv
S0
U=pninfic, [Gs ¢ F]=pN Ni<n [G: ¢ F]
contains z. Now V is usco-compact, so Zo NpNU N{z : V[{z'}] C G} is an open neighbourhood of z in Zj
and includes ¢ N Zy for some ¢ stronger than p. Now

which is impossible. XQ

(b) If z € Zy N p there is exactly one fo(z) such that (z, fo(2)) € V\ W. P By (a), there is at least one
such point. ? If (2, z) and Ez,y) belong to V\ W and = # y, let G, H C X be open sets containing z, y
respectively. Then |Fp GNH =0 so

[G ¢ FIU[H ¢ F] 2 p.
But z cannot belong to either of these sets. XQ

(¢) fo: ZoNp — X is continuous. P The graph of fj is a closed subset of V' so is itself an usco-compact
relation. Q
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(d) Let f € C~(Z;X) be a function extending fo. Since (z, f(z)) € V for every z € pN Zy, plFp feV.
Also

plkeF — f.
P Let g stronger than p and a P-name G be such that
¢|Fp G is an open set containing f.
Then there are an r stronger than ¢ and an open G C X such that
rlefeGCa.

Now r C* f7YG], so there is an s stronger than 7 such that ZyNs C F7YG); so f(2) € G for every z € ZgN§
and [G ¢ F] does not meet S, that is, s |Fp G € F. But this means that

SleC?E.ﬁ.
As g and G are arbitrary,
p|Fp every open set containing f belongs to F,

that is,
plre f=1lmF*. Q

(e) As p and F are arbitrary,

|Fp every ultrafilter on X containing V has a limit in ‘77 and V is compact.

2H Theorem Let X be a Hausdorff space, P a forcing notion and Z its Stone space. Set S = Un21 N™
and let (W,),cs be a Souslin scheme in UB(Z x X) with kernel W. Then

|Fe W is the kernel of the Souslin scheme (V_[}(,)geg.

proof (a) Suppose that p € P and that & is a P-name such that p|Fpé € W. Let f € C~(Z; X) be such
that p|fp f =4. Then p C* {z: (2, f(2)) € W}.
For o € §* = {J,,cny N" set
Wi =Uycaernt Nust Wain € UB(Z x X).

Choose open-and-closed sets V,, in Z so that

and for every o € S*

(Vo~<i>Vien 1s a disjoint sequence of subsets of V,, with union dense in V,

pPNVe C{z: (2 f(2) e W}
Then we have a P-name ¢ such that
|Fpc € NY and [0 C &] =V, for every o € S*.
Now, for every n € N,

[f € Warn] = sup [0 Ca]N[f € W,]
oceNn

2 sup v}rjﬁij% :ji
oeNn
SO

Fpi=fe MNhen Wi and @& belongs to the kernel of (W,)scs.
(b) Suppose that p € P and that & is a P-name such that
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p|Fp is in the kernel of the Souslin scheme (W, )ycs-
Let f € C~(Z; X) be such that p|p i = f, and for o € S* set
V, = [f € W,] N[f belongs to the kernel of the Souslin scheme (W, ~.)rcs].
Then p C Vj. Set
M= Vo\ U Ver) U J Vo \ {22 (2, f(2) € Wo}),
oS neN oes

so that M is meager. For z € p\ M, there is an o € NN such that 2 € Vg, for every n, and now
(z, f(2)) € Wy, for every n, so (2, f(z)) € W. But this means that p|pt = few.

2I Corollary If (A;),cs is a Souslin scheme in UE(X) with kernel A, then
|Fe A is the kernel of (A,)yes.

proof Apply 2H with W, = Z x A,.

2J Finding the Boolean value [[W # (] Let X be a Hausdorff space, P a forcing notion and Z its
Stone space. ~ We have straightforward formulae for [f = g] and [f € V_V]] when f, g € C7(Z;X) and
W € UB(Z x X). We do not have such elementary methods for finding [W = V] = [(WAV)™ = §]. Here
I give a handful of partial results.

(a)(i) If W € UB(Z x X) then
[W # 0] <* w-1[X].
P Suppose that p € P and p C [[W # (], that is, p||—[p>W # (), that is, there is a P-name & such that
plet € W. Let f € C~(Z;X) be such that p|Fp& = f; Then
P {z: (2 f(2) e W} CWHX].
The union of such sets p is open and dense in [W # 0] so [W # 0] C* W1[X]. Q
(ii) If V, W € UB(Z x X) then
{z: VI{z}] SW[{z}]} * [V C W]
P Apply (i) to V\W. Q
(iii) If A € UB(X) and W € UB(Z x X) then
{z: ACW[{z}]} ¢ [AC W]
P By 2E(c-iii) or otherwise, A = (Z x A)”. Q
(b) If Zy C Z is comeager and W C Zy x X is usco-compact, then [W # 0]JAW ~1[X] is meager. P
Start by observing that W~1[X] is relatively closed in Zy; express it as Zo N F where F' C Z is closed; set
Z' =int F, so that Z’ is open-and-closed in Z, and Z’' N Z; is comeager in Z'. Set W =W N (Z' x X), so
that W' C (Zy N Z') x X is usco-compact.
Let V. C W’ be a minimal relatively closed set such that V=1[X] = Z/ N W1[X]. Because Zy N Z' is
dense in the extremally disconnected space Z’; and V C (Zy N Z') x X is usco-compact, V' is the graph of
a function fy : Z' N Zy — X, which must be continuous, so there is an f € C~(Z; X) agreeing with fy on

Z'Ndom f. Now [W # 0] D [f € W] and [f € W]A{z: (2, f(z)) € W} is meager, so WL[X] C* [W # (]
is meager. With (a-i) this gives the result. Q

(c) If W C Z x X is K-analytic, then [W # 0]JAW ~[X] is meager. P Let R C NN x (Z x X) be an
usco-compact relation such that R[NY] = W. Then

R ={(a,2): (a,2z,7) € R} CNN x Z
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is usco-compact, therefore closed in N¥ x Z (use FREMLIN 03, 422Dc and 422Df). So W~1[X] = R[NV
has the Baire property in Z and there is a B(Z)-measurable function h : W—1[X] — N¥ which is a selector
for R (FREMLIN 03, 423N). Because NV is second-countable, there is a g € C~(Z;N") included in h. Set
V ={(z,2) : z € domy, (9(2),2,2) € R}; then V C dom g x X is an usco-compact relation (use FREMLIN
03, 422Df again). So (b) tells us that

WX € VAX] [V # 0] C [W # 0]
and with (a-i) again we have the result. Q

(d) If W C Z x X is open then [W # 0JAW ~1[X] is meager. B This time, if z € W~1[X], there are an
x € X and an open neighbourhood H of z such that H x {x} C W, Now H C [z € W]] As z is arbitrary,
W1X] C [W # 0], which is more than we need. Q

2K Examples (a) Let P be a forcing notion and Z its Stone space. Suppose that Z is expressible as
the union of xk nowhere dense zero sets. Set X = [0,1[". Then there is a closed set W C Z x X such that
W-1X] = Zbut |FpW = 0. P Let (Z¢)e<, be a family of nowhere dense zero sets covering Z, and for each
¢ <rklet fe € C(Z;[0,1]) be such that Z; = f{l[{l}] Set W={(z,2):2€Z,z € X, x(§) — fe(z) € Z for
every £}; then W is closed and W—1[X] = Z. 2 If p € P and p|Fp W # 0, there is a g € C~(Z; X) such
that p C* {z : (2,9(2)) € W}. Take any z € pndom g such that (z,¢(z)) € W and let £ < x be such that
z € Zg. Then g(2')(§) = fe(2') for every 2’ € domg \ Z¢, which is dense in dom g; so g(2)(§) = fe(2) = 1,
which is impossible. X So we must have |Fp W = (. Q

(b) Suppose that A C [0,1] is a coanalytic set with no perfect subset and that P is a forcing notion such
that the Stone space Z of P can be covered by w; nowhere dense sets. Then there is a set W € UB(Z x [0, 1))
such that W=1[/,[0,1]/,] = Z but |FpW = 0. P Express Z as |J, ., Z, where every Z, is closed and
nowhere dense. Set W = J,c 4 Z» % {z}; then W~1[[0,1]] = Z.

If Y is a Cech-complete space and h : ¥ — Z x [0,1] is continuous then, because A is coanalytic,
Yo = h™1[Z x 4] € g(Y); let Y1 C Yy be a Gs set such that Yy \ Y7 is meager. If Y7 is empty, then
h=1[W] C Y; is meager and has the Baire property. Otherwise, moh[Y; is a continuous function from the
Cech-complete space Y; to A. As A has no perfect subset, there is an 2 € A such that {y : mh(y) = =}
is non-meager and has non-empty relative interior H, C Y;. In this case, H, N h=}[W] = {y : y € H,,
mh(y) € Z,} is relatively closed in H, and has the Baire property in Y7 and Y. The same argument
applies to any non-empty relatively open subset of Y1, so Yo = (J,c 4 Ha is dense in Y7, while Y5 N h=[W]
has the Baire property in Y; but h=1[W]\ Ys is meager, so h~![W] € B(Y). As Y and h are arbitrary,
W e UB(Z x X).

? IfpePand f € C(Z;]0,1]) are such that p||—]p>f € W, then there is a non-meager Gy set V C
pN{z: (2 f(2)) € W}. Now f|V : V — A is continuous, so there is an x € A such that V' N f~1[{x}] is not
meager. But V N f~1[{z}] C Z, is nowhere dense. X

Thus |-p W = 0. Q

z€A

3 Identifying the new spaces

The most pressing problem is to find ways of getting a clear picture of the ‘new’ spaces as topological
spaces. For actual examples it will be easiest to wait for §4 below. Here I put together a handful of basic
techniques.

3A Theorem Let (X;);c; be a family of Hausdorff spaces with product X, and P a forcing notion.
Suppose that J = {i:¢ € I, X; is not compact} is countable. Then

[z X can be identified with ]

iel Xi-
proof (a) For i € I, let 7; : X — X; be the canonical map. For any f € C~(Z; X), let f# be the P-name
{G, (mif)7), 1) : i € I},
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where in this formula each (m;f)” is to be the P-name corresponding to m;f regarded as a member of
C~(Z; X;). Then
e /# € Tlier X

because |Fpi # j whenever i, j € I are distinct. (I hope it is clear that the formula ‘I]

icl X,  refers to the
P-name {((7, X;),1) : i € I'} for a family of topological spaces.)
Let 9 be the P-name
{(F ) 1) feC(Z: X))
I claim that ¢ is a name for a homeomorphism between X and [Lici X;. We surely have

et € X x [Tie; X

(b) Suppose that p € P and that Zg, 41, 9o, 1 are P-names such that

plFe (Z0,90) and (i1, 71) belong to 9.
Let g, stronger than p, and fy, f1 € C~(Z; X) be such that
q”_IF’iO :]%a yO :f(?a 3.51 :ﬁa yl :fl#
Then

qlreio =41 < qlrefo=fi
<~ fo(2) = f1(z) for every z € gNdom fy N dom f;
< forevery i€ I, mfo(z) =mif1(z)
for every z € gNdom fy N dom f;
for every i € I, m; fo(2) = ;i f1(2)
for every z € ¢ N dom m; fo N dom 7, f1
for every i € I, qll-e (mifo)” = (mef1)”
for every i € T, q|Fs f (i) = f{(7)
qlFp fEG) = fF() for every i e T

ale ff = fF = albeio =i

[ A

As q is arbitrary,
plredo =21 iff go = 1.
As p, o, Yo, 1 and y; are arbitrary,

lF» ¢ is an injective function.

(c) Since |Fp o (f) = f# for every f € C~(Z; X),
[Fe the domain of ¢ is X.

In the other direction, suppose that p € P and y is a P-name such that p|Fpy € [],c; X,. Then, for each
i €1,

plFe§(7) € X,
so there is an f; € C~(Z; X;) such that

plre(i) = fi;
moreover, 2A (b-viii) tells us that we can arrange that dom f; = Z for every i € I'\ J. Set Zy = [, ; dom f;;
because J is countable, Zj is a dense Gy set in Z. Set f(z) = (fi(2))ies for z € Zy; then f € C~(Z; X), and
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plre f#(0) = (mif)” = (fil Zo) ™ = fi = 5(2)

for every i € I, so
plFe f# (i) = y(i) for every i € I,
and
plFpy = f# is a value of ¥.

As p and gy are arbitrary,
[Fe the set of values of ¥ is [Lic; X;,and ¢ : X — [Lic; X, is a bijection.

(d) Suppose now that (G;);cs is a family such that G; is an open set in X; for every i € I, and G; = X;
for all but finitely many 4; set G = [],.; Gi, so that G is an open set in X. Then, for any f € C~(Z; X)
and p € P,

plhefeG « pC” G = )(mf) ' Gi]
iel

= foreveryic I, pC* (mf) ' [Gi]
(because (7rf )7L[G;] = dom f for all but finitely many )

— foreveryic I, plFpf*(i) € G;

— plFp f*(i) € G; for every i € I

= plref* e [[Gi <= plkev(f) € [ G-

iel iel
As p and f are arbitrary,
ke G = [[Te; Gil-

(e) Suppose that p € P and that &, W are P-names such that
plrepie X, W C Hiein is open and (&) € W.
Then
p|Fp there is an open cylinder set in [, ; X;, determined by coordinates in a finite subset
of I, containing (i) and included in W.
We therefore have a ¢ stronger than p, a finite set K C I and a P-name V such that
qlFpi(2) € V. C W and V is an open cylinder set in [Lici X;, determined by coordinates
in K.
Accordingly there is a family (Gi>ie1 of P-names such that G; = X; for i € T \ K and
q|Fr G; is an open subset of X; containing 1 (i)(i) for every i € K, and [Lici GiCW.
Now there must be an r stronger than ¢ and a family (G;);cs such that G; is an open set in X; and
for every i € K. Setting G; = X; fori e I \ K,
rlFed(d)(5) € Gi € G;
for every i € I; so
ke (i)(i) € G; € G for every i € I,
that is,
rlred(d) € [le, Gi SV W,

Setting G = [[,.; Gi, (d) above tells us that

iel
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rlkpi € G C W,
and therefore that

r|Fe € int 1 [IW].
As p, @ and W are arbitrary,

e ¢ is continuous.

(f) Suppose that p € P and that &, G are P-names such that
[Fe G is an open subset of X and & € G.

Let f € C~(Z; X) be such that p|Fpd = f. Taking U to be the family of open cylinder sets in X, we know
that

(83 U is a base for the topology of X,
so there must be a G € U and a ¢ stronger than p such that
qlFpi=feGCa.
Now (d) tells us that

& 1[G] is open in [Licr X,
so we get
qlFe(d) € int ¥[G].
As p, & and G are arbitrary (and |Fp ¢ is a bijection),
[Fp " is continuous,

which completes the proof.

3B Regular open algebras Let P, (X, %) and X be as in §2A.
(a) If G C X is a regular open set in X, then
|Fe G is a regular open set in X.
P Of course
e G is an open set in X.
Now suppose that p € P and that V is a P-name such that
p|Fp V is an open set in X not included in G.
Then
p|Fp there is a V € ¥ such that V C V but V ¢ G,
so there are a ¢ stronger than p and an open set V' C X such that
gFpVCVandV ZG.
Accordingly V ¢ G. But G is supposed to be a regular open set, so W = V' \ G is non-empty. Now
qlFp W is a non-empty open subset of V' \ G,soV ¢ G.
As p and V are arbitrary,
|Fp every open subset of G is included in G, so G is regular. Q
(b) Let RO(X) be the regular open algebra of X. Then Write ¢ for the P-name {((G,G),1) : G €
RO(X)}. By (a),
|F¢ ¥ is a function from RO(X)” to RO(X).

D.H.FREMLIN



28 Identifying the new spaces 3B

Now
[F& 9 is a Boolean homomorphism.

P (i) Let p € P and a be a P-name such that

plFpa=0in RO(X)".
Then

plFra =0 and 9(a) = § = 0 in RO(X).
As p and @ are arbitrary,
e 9(0) = 0.
(ii) Suppose that p € P and that a, b are P-names such that
plFpa, b€ RO(X)".

Then there are a g stronger than p and G, H € RO(X) such that

qlFpa =G and b= H.
In this case,

qlFranb=(GNH),
o

qlFedlanbd) = (GNH) =GN H=149(a)nd(b) in ROX).
As p, @ and b are arbitrary,
&9 preserves the Boolean operation N .
(iii) Suppose that p € P and that a, b are P-names such that
plFea and b are complementary elements of RO(X)”.

Then there are a g stronger than p and G, H € RO(X) such that

qlFpa =G and b= H, so G and H are complementary members of RO(X)~, that is, they
are disjoint and no non-zero member of RO(X)” can be disjoint from both.

But this means that G and H are disjoint and have union dense in X, so that
e G and H are disjoint and have union dense in X, that is, they are complementary in

RO(X).
So
q|Fpd(a) = G and 9(b) = H are complementary in RO(X).
As p, @ and b are arbitrary,
[Fp 9 preserves complements.
(iv) Putting (i)-(iii) together,

|Fp 9 is a Boolean homomorphism. @

(c) |Fp? is injective. P Suppose that p € P and that a is a P-name such that
p|Fea is a non-zero member of RO(X)™.
Then there are a ¢ stronger than p and a G € RO(X) such that
dlhri =G #0 i RO(X),
so that G # () and
qlFrd(a) = G # 0 in RO(X).

As p and a are arbitrary,
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|Fe 9(a) # 0 for every non-zero a € RO(X)” and ¥ is injective. Q

(d) [Fed[RO(X)] is order-dense in RO(X). P Suppose that p € P and that G is a P-name such that
p|Fp G is a non-empty regular open set in X.
Then there are a ¢ stronger than p and a non-empty open set G C X such that
qle G CG.
Next, there is a non-empty H € RO(X) such that H C G, in which case
¢ |Fp9(H) = H is a non-empty member of 9[RO(X)"] included in G.
As p and G are arbitrary, we have the result. Q

3C Corollary For any topological space X,
[Fe RO(X) can be identified with the Dedekind completion of RO(X)".

3D Normal bases and the finite-cover uniformity (a) Let X be a set. I will say that a topology
base U on X is normal if
(i) UUV and UNYV belong told for al U, V € U,
(ii) whenever z € U € U thereisa V e U such that UUV =X and x ¢ V,
(iii) whenever U, V € U and UUV = X then there are disjoint U’, V' € U such that UUV’' = U'UV = X.

(b) Let U be a normal topology base on X.

(i) If ¥ C U is a finite cover of X, there is a finite V* C U, a cover of X, which is a star-refinement of
V. P Induce on n = #(V). If n <1 we can take V* = V. For the inductive step to n + 1, fix V5 € V and
set Vi ={VouV:V e V\{Vu}}. Then V; is a subset of U, covers X and has at most n members, so there
is a finite star-refinement V' of V; included in U and covering X. For each W € Vj, set

W=Wn{V:VeV\{V}, WCVUW}
then W' 2O W\ V. Accordingly U = J{W' : W € V;j'} includes X \ V. Let Uy, Us be disjoint members of
U such that U; UU = Uy U V) = X. Now consider
Vi={U} U{W' NnVo : W eV }u{W nUs: W e Vi}
Then V* C U is finite and
Uv =0, uy{w’: wevy}=X.

We have to check that V* is a star-refinement of V. If & € Uy, then « ¢ U, so | {W :2 € W € V*} C V.
If € X \ Uy, then there is a V3 € V\ {V,} such that | J{W :2 € W € V{} C V; UV}. Now

Uw:zewevic YW zewevy}
c ' wevy, wcnulp C W
So we have what we need. Q

(ii) We have a uniformity W on X defined by saying that a subset W of X x X belongs to W iff there
is a finite subset V of U, covering X, such that Wy, C W, where Wy = (Jy, ¢, V x V. P (a) If Vi, Vo CU
are finite covers of X, then V ={ViNV,: V; € V1, V5 € Vo } covers X and Wy, C Wy, NWy,. So (if X is not
empty) W is a filter on X x X. (8) If V C U is a finite cover of X, then VVV_1 = Wy, so W=1 € W for every
W eW. (v) f V CU is a finite cover of X, there is a finite V' C U which covers X and is a star-refinement
of V; now Wy oWy, C Wy, So for any W € W there is a W’ € W such that W/oW/' C W. Q

(iii) The topologies Ty, Tyy induced on X by U, W respectively are equal. P If x € X and V C U is
a finite cover of X, then Wy [{z}] = J{V : ® € V € V} is open for the topology induced by U; so Ty 2 Tyy.
If £ € G € T thereis a U € U such that x € U C G; now thereisa V € U such that x ¢ V and UUV = X;
and in this case Wiy vy[{z}] =U C G. So Ty € Tyy. Q
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(iv) I will call W the finite-cover uniformity derived from U.
(c) The definition in (b-ii) makes it plain that X is totally bounded for the finite-cover uniformity.
(d) Let X be a compact Hausdorff space.

(i) If U is a base for the topology of X closed under U and N, then U is a normal topology base.

(i) If Y C X is dense, U is a base for the topology of X and Uy = {YNU : U € U} is a normal topology
base on Y, then X can be identified with the completion of Y for the finite-cover uniformity induced by Uy .

3E Descriptions of X The most important spaces of analysis come to us not as abstract sets but defined
by some more or less straightforward construction, and we shall be very much happier if we can relate the
space X, as defined above, to the construction leading to the space X. One reasonably general method leads
through ‘normal topology bases’ as just defined.

Proposition Let P be a forcing notion, X a compact Hausdorff space and ¢ a normal base for the topology
of X. Let Z, X, ¢: X — X be as in §2.
(a)
(83 U is a normal topology base on X.
(b)
|Fp the embedding ¢ : X — X identifies X, with the unique uniformity compatible with

its topology, with the completion of X with the finite-cover uniformity on X generated
by U.

proof (a) As in 2Ac, we are dealing with a first-order property. In detail: suppose that U and V are
P-names and p € P is such that p|p U, V € U. Then there are U, V € U and ¢ stronger than p such that
qlFeU=Uand V =V.
In this case, U UV and U NV belong to U and
e (TUV)=(UUV), (UNV)=(UNV) belong to U,
SO
qIFpU UV, UNV belong to U.
As p, U and V are arbitrary,
FeU UV and U NV belong to U for all U, V € U.

If &, U are P-names and p € PP is such that p|-p2 € U € U, then there are ¢ € P, z € X and G € U such
that

qlpi=ielU=3G,

so that € G. Set V = X \ {x}; then
qlFeVeUu,z¢V,UUV =X.
As p, @ and U are arbitrary,
|Fpif 2 € U € U thereis a V € U such that x ¢ V and UUV = X.
Finally, if U, V are P-names and p € P is such that
plFeU and V belong to ¢ and their union is X,
then there are a ¢ € P, stronger than p, and U, V' € U such that
qFpU=Uand V="V.

In this case,

qlFp(UUV) =UUV =X,
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so UUV = X. Because U is a normal topology base, there are disjoint Uy, Vi € U such that U; UV =
U UV, = X. In this case

q||—pU1 el;l, Vl EZ;[, Ulﬂf/l :@7 (71UV:UU‘72:X
So the normality condition 3D(a-iii) is satisfied.

(b) This follows from 2Ad and 3D(d-ii).

3F For certain classes of topological space, we have an alternative route to X, as follows.

Proposition Let P be a forcing notion and Z the Stone space of RO(P), which I think of as the algebra of
open-and-closed sets in Z; let X be a non-empty Hausdorff space.

(a)(i) For every f € C~(Z;X) we have a sequentially order-continuous Boolean homomorphism 7 :
UB(X) — RO(P) defined by saying that mr(A)Af1A] is meager for every A € UB(X).

(i) 7 (A) = [f € A] for any f € C~(Z; X) and A € UB(X).
(iii) 7s is T-additive in the sense that if G is a non-empty upwards-directed family of open sets with
union H, then 7y H = supgeg G in RO(P).
(iv) If f, g€ C~(Z; X) and p € P, then the following are equiveridical:
(o) f and g agree on pN dom f N dom g;
(8) p €* dom(f N g);
(7) for any t and for any ¢ stronger than p, (¢,q) € fiff (t,q) € G
@) plre f =g
() pNmpA=pnm,A for every A € UB(X);
(¢) there is a base U for the topology of X such that pN7yG = pNmyG for every G € U.

(b)(i) Suppose that X is Cech-complete and that m : Ba(X) — RO(P) is a sequentially order-continuous
Boolean homomorphism which is 7-additive in the sense that m(| JG) = supgecg 7G whenever G C Ba(X) is
a family of open sets with union in Ba(X). Then there is an f € C~(Z; X) such that 7 extends 7.

(ii) If X is compact, then for every sequentially order-continuous 7 : Ba(X) — RO(P) there is an
f € C(Z; X) such that 7y extends .

(iii) If X is Polish, then for every sequentially order-continuous 7 : Ba(X) — RO(P) there is an
f € C7(Z; X) such that 7y extends =.

(c) Suppose that X is Cech-complete and that w : B(X) — RO(P) is a 7-additive sequentially order-
continuous Boolean homomorphism. Then there is an f € C~(Z; X) such that 7 extends .

proof (a)(i) If A € UB(X) then f~1[A] € g(Z) so there is a unique open-and-closed set 7y A C Z such
that mp AAf~1[A] is meager.

Now 7 is sequentially order-continuous because it corresponds to the composition of the sequentially
order-continuous maps A — f~1[A] : Z/lg(X ) — g(Z ) and the canonical map from E(Z ) to the category
algebra of Z.

(ii) For p € P,
PCmfA < pC A <= plefed «— FC[fe A
as {p: p € P} is order-dense in RO(P), this gives the result.
(iil) Ugeg G 2 Ugeg f 1G] = f71H] is dense in wpH.
(iv) (@)= (B) because dom f N dom g is comeager.

B)=(y) If h e C~(Z; X) and g is stronger than p,

(h,q) € f < §C*dom(fNh) < §C* dom(gNh)
(because @\ dom(f N g) is meager)
<~ (h,q) €4
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(7)==(6) Use 2A(b-i).
(6)=(¢) follows from (ii).
(6)=(¢) is trivial.

(ma)=(=¢) Let z € pNndom f Ndomg be such that f(z) # g(z); let G, H € U be disjoint sets
containing f(z), g(z) respectively. Then p N f~[G] N g~ ![H] is not empty and is the intersection of the
dense Ge set dom f N domg with an open set, so is non-meager, and p N 7¢G N 7y H is non-empty; but
s GNnyH =0,s0 pNmgH #pNmgH.

(b) (i) Set
9= nGgX is a cozero set(TrCTV X X) U (Z X (X \ G))

(@) g is a function. P? If (z,z) and (z,y) both belong to g, where z # y, let G, H C X be disjoint
cozero sets containing x, y respectively. Then (z,z) € (7G x X) U (Z x (X \ G)) so z € ©G; similarly,
zemH; but tGN7H =7(GN H) is empty. XQ

(B) If G C X is a cozero set then g~ ![G] = 7G Ndom g. P By the definition of g, 2 € TG whenever
r € G and (z,7) € g, that is, 1G Ndomg C g~ ![G]. In the other direction, if g(z) € G, there are disjoint
cozero sets H, H' such that g(z) € H and X \G C H'. Now 2 ¢ H' so z ¢ 7H' and z ¢ n(X \ G) and
z € 7G. As z is arbitrary, g7 }[G] C G Ndomg. Q
It follows that ¢ is continuous.

(v) Express X as ﬂneN H,, where (H,)nen is a sequence of open sets in a compact Hausdorff space
Y. For each n € N, let G,, be the family of those cozero subsets G of X for which there is a zero set F C Y
such that G C F C H,; then G, = X,s0V,, = UGeg 7@ is dense in Z. (This is where I use the hypothesis
that 7 is 7-additive.) Set V' =",y Vi, so that V is a dense Gs set in Z. Now V C domg. P Take z € V
and consider the family & of zero sets FF C Y such that z € n(F N X). & is downwards-directed so there is
ay € E. For each n € N there is a G € G, such that z € 7G so there is an F' € £ such that F C H,, and
y € Hy; accordingly y € X. 2 If (2,y) ¢ g, let G C X be a cozero set such that z ¢ 7G and y ¢ X \ G.
Then there is a cozero set H C Y such that y € H and HNX C G. Now z € 7(X \ G) (recall that Z
is extremally disconnected, so RO(PP) is just the algebra of open-and-closed subsets of Z, and its Boolean
operations agree with those of PZ, so z € (X \ H) and Y \ H € &; but this is impossible. X Thus g(z) =y
and z € domg. Q

(6) Thus g is a continuous function with a comeager domain, and there is an f € C~(Z; X) such
that f C g. By (3), f'[G] = mGNdom f for every cozero G C X, so that 7;G = nG for cozero sets G. By
the Monotone Class Theorem, 7;E = 7FE for every E € Ba(X).

(ii) If X is compact, then every open set in Ba(X) is actually a cozero set (FREMLIN 03, 4A3Xc) so
is o-compact, therefore Lindelof. What this means is that if G is a family of cozero sets and | J G is a cozero
set, then there is a countable Gy C G with union |JG; as 7 is sequentially order-continuous,

m(JG) = supgeg, TG = supgeg 7G.
So 7 is T-additive and there is an f € C'~(Z; X) such that 7 = 7;[Ba(X), Because X is compact, f extends
to a member of C(Z; X) with the same property.
(iii) This time, X is hereditarily Lindelof so we can again apply (i).

(c) By (b), there is an f € C~(Z;X) such that 7y extends 7[Ba(X). Because 7y and 7 are both
T-additive and agree on a base for the topology of X, they agree on the open sets in X and therefore on
B(X).

3G Notation Suppose that X is either compact or Polish, P is a forcing notion and 7 : Ba(X) — RO(P)
is a sequentially order-continuous Boolean homomorphism. Then 3Fb tells us that we have a P-name 7
defined by saying that # = f whenever f € C~(Z; X) and 7 C 7. Now, of course, |-p# € X; moreover,
[# € F] = nF for every Baire set F C X. The following fact will be useful.
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3H Proposition Suppose that X is either compact or Polish, P is a forcing notion and =, ¢ : Ba(X) —
RO(P) are sequentially order-continuous Boolean homomorphisms. Then, for any p € P, the following are
equiveridical: 5

(i) ple 7 = o;

(ii) pNn7mE = pN ¢FE for every E € Ba(X);

(iii) there is a base U for the topology of X, consisting of cozero sets, such that pN7U = pN U for every
Uecl.

proof Use 3F(a-iv).

4 Preservation of topological properties

4A Theorem Let P, (X, %) and X be as in §2A.
(a) If X is regular, then

|Fp X is regular.
(b) If X is completely regular, then
(83 X is completely regular.
(¢) If X is compact, then
e X is compact.
(d) If X is separable, then
e X is separable.
(e) If X is metrizable, then
[Fe X is metrizable.
(f) If X is Cech-complete, then
[Fe X is Cech-complete.
(g) If X is Polish, then
|Fp X is Polish.
(h) If X is locally compact, then
|Fp X is locally compact.
(i) If ind X <n € N, where ind X is the small inductive dimension of X, then
|Fe ind X < n.

(In particular, if X is zero-dimensional then |Fp X is zero-dimensional.)
(j) If X is chargeable, then

[Fe X is chargeable.

proof As in §2A, let Z be the Stone space of RO(P) and C'~(Z; X) the set of continuous functions from
dense G4 subsets of Z to X.

(a) Let &, G be P-names and p € P such that
p|Fp G is an open set in X and & € G.
Then there are g stronger than p, f € C~(Z;X) and U € T such that
glFpi=feUCQ.
Now U = J{V :V € T, V C U}, while ¢ C* f~1[U], so there are an open set V such that V C U and an r
stronger than ¢ such that 7 C* f=1[V]. Set W = X \ V; then
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rlrez eV, VAW =0, GUW = X,
so that
7 |Fpd belongs to an open set with closure included in G'.
As q is arbitrary,
p|Fe & belongs to an open set with closure included in G;
as p, £ and G are arbitrary,

e the topology of X is regular.

(b)(i) Let W be a uniformity on X defining its topology, and Wy the family of those members of W
which are open for the product topology of X x X. For W € W, let W be the P-name

{(F:9).p):pEP. [, g€ C7(Z:X),
FC {22 € dom f Ndomyg, (f(2),g(2)) € W}}.
Then we have to check the following:
FpW C X x X
for every W € W;
Fe Wo N Wy = (WonNWy)~
whenever Wy, W1 € W;
ke (W)~ = (W)
for every W € Wy;
ke WooWo € W
whenever Wy, W € Wy and WyoWy C W. These are all easy. Now, setting
W= {(W,1): W € Wy},
we have

”‘]P‘W is a filter base on X x X, and the filter it generates is a uniformity on X.

(i) Now
|Fe the uniformity generated by W is finer than the given topology on X.
P Suppose that p € P and that z, G are P-names such that
p|Fp G is open in X and & € G.
Let g, stronger than p, and f € C~(Z; X), G € ¥ be such that
qlFpi=feGCq.
Now
G=U{H:WeW,y, HeZX W[H] C G},

so we have r stronger than ¢, W € W, and H € T such that W[H] C G and 7 C* f~'[H]. Suppose now
that we have s stronger than r and a P-name g such that s |Fpy € W[f]. Then we have a t stronger than s
and a g € C~(Z; X) such that t|Fpy = §and £ C* {z: z € dom f Ndom g, (f(2),g(z)) € W}. Now

A\ g G 28\ ({z: (£(2),9(z) € W} fH])
is meager, so t|Fpy € G. As s and ¢ are arbitrary,

r e Wi C G.
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As ¢ is arbitrary,
p|Fe there is a W in the uniformity such that W[z] C G.
As p, @ and G are arbitrary,

|Fe the topology defined by the uniformity is finer than the given topology on X. Q

(iii) Next, if W e Wy and f € C~(Z; X) then
lFe WI{f}] is open in X.
P Let p € P and gy be such that

plreg € WHFYL

Then there are ¢ stronger than p and g € C~(Z; X) such that ¢ C* {z : z € dom fNndomg, (f(2),9(z)) € W}
and g |Fpy = g. Now W is open in X x X, so whenever (f(z),g(z)) € Wy there are Hy, H; € ¥ such that
(f(2),9(2)) € Hy x HA € W. We can therefore find Hy, H; € T such that Hy x Hy C W, and r stronger
than ¢, such that 7 C* (f~'[Ho] N g~ *[H1]). In this case

r|Fpy € Hy, Hy is open and (f, %) € W whenever z € Hy,
so that
r|Fpy € int W[ﬂ
As g is arbitrary,

—

plrey € int WfJ;

as p and y are arbitrary,

—

plFe W[f] is open. Q

(iv) It follows that
|Fe the topology generated by the uniformity is coarser than the given topology on X.

P This time, take p € P and P-names =, G such that
plFe G is open for the topology generated by the uniformity and & € G.
Let ¢ stronger than p and f € C~(Z; X), W € W, be such that

glFpi = fand W[{f}] C G.
Then (iii) tells us that
qlFe € int G;
as q is arbitrary,
plrepd € int G;
as p, G and & are arbitrary, we have the result. Q
(v) Thus
|Fp the topology of X is generated by a uniformity and is completely regular.

(c) This follows at once from 2G, since if X is compact then Z x X is usco-compact.
(d) This follows at once from 2A(f-iii), because if D is countable then |p D is countable.

(e) Use the ideas of (b) to show that
|Fp the topology of X is generated by a uniformity with a countable base.
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(f) If X is homeomorphic to a Gs subset B of a compact Hausdorff space Y, then the results above tell
us that

||—]p}7 is compact, B is a Gg subset of Y and X is homeomorphic to B, therefore Cech-
complete.

(g) A topological space is Polish iff it is separable, metrizable and Cech-complete.
(h) Let U be a base for the topology of X consisting of relatively compact open sets. Then 2Ad tells us
that
”‘lP’Z/N{ is an open cover of X.
But we also have
[Fe every member of U is relatively compact in X.

P Suppose that p € P and that U is a P-name such that p||—[p>U € U. Then there are a q stronger than p
and a U € U such that ¢|pU = U. Consider K = U and the identity embedding ¢ : K — X. I think I
need to distinguish for a moment between K, thought of as a topological space standing alone, from itself
thought of as a subspace of X; I write L for the latter incarnation. We know from (c) that

e K is compact,
from 2Ab that
|Fp UcClL,
and from 2Cg that
|Fe K is homeomorphic to L with its subspace topology.
So
qlFe UCLis relatively compact.

As p and U are arbitrary, we have the result. Q
So

|Fe X is covered by a family of relatively compact open sets and is locally compact.

(i) Induce on n. If ind X < —1 then X =0 so
||—pX =@ and ind X = —1.

For the inductive step to n > 0, suppose that ind X < n. Then there is a base U for ¥ such that ind(0U) < n
for every U € U. Now

e U is a base for the topology of X.

IfpeP an~d U is a P-name such that p |Fe U € U, then there are a ¢ stronger than p and a U € U such that
q|FeU=U. So

q|Fp ind(0U) = ind(8U) = ind(dU)~ < n
by 2B, the inductive hypothesis and 2Cg. As p and U are arbitrary,
[Fp ind(8U) < n for every U € U, so ind X < n,
and the induction continues.
(j) Recall that X is ‘chargeable’ if there is an additive functional v : PX — [0, 1] such that vG > 0

for every non-empty open G C X. It is easy to check (using Kelley’s theorem, FREMLIN 02, 391J) that X
is chargeable iff there is a base U for its topology which is expressible as | J, .y U, where the intersection

number of each U, is at least 2". In this case, writing U,, = {(U, 1) : U € U, } for each n,
IFe U en U, is a base for the topology of X.

TOPOLOGICAL SPACES AFTER FORCING



4C 37

But we also have, for any n € N,
[F& the intersection number of U, is at least 27™.

P Suppose that p € P, m € N and Uy, ... ,U,,_1 are P-names such that

plFeU; €U, for every i < m.
Then there are a ¢ stronger than p and Uy, ... ,U,,_1 € U, such that

q|Fp Ui = U; for every i < m.
Now there is a J C m with #(J) > 27™m such that ﬂieJ U; # (), in which case
qlFpJ Cm, #(J) > 2 "m and Nicj U; # 0.

As p and UO, o U1 are arbitrary, we have the result. Q
So

|Fe X is chargeable.

4B Corollary Let X be a zero-dimensional compact Hausdorff space, and £ the algebra of open-and-
closed sets in X. Then

|# X can be identified with the Stone space of the Boolean algebra €.

proof Note that £ is a normal base for the topology of X. By 3Ea and 2Ad,
[F& € is a normal base for the topology of X,
and of course
|- € is an algebra of subsets of X and X is compact and Hausdorff
by 2A(b-iv) and 4c. It follows at once that
|Fp X is zero-dimensional and £ is its algebra of open-and-closed sets.
Since also
||—Ip>(€’~ is isomorphic, as Boolean algebra, to &,
we have

[ X can be identified with the Stone space of £.

4C Proposition Let P be a forcing notion and Z the Stone space of RO(P); let X be a topological

group. }
(a) We have a P-name for a group operation on X, defined by saying that

Fef-g=h
whenever f, g, h € C~(Z;X) and h(z) = f(2)g(z) for every z € dom f N dom g; and now
||‘IP’)~( is a topological group with identity e

where e is the identity of X.
(b)(i) For any A € UB(X),

Fe A=t = (A7)
(i) For any a € X and B € UB(X),
Fea-B=(aB)”, B-a=(Ba)".
(iii) For any open set G C X and A € UB(X),
FpG-A=(GA)", A-G=(AG)".
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proof a) Let ¢ : X x X — X and ¢ : X — X be the operations of multiplication and inversion. These are
continuous, so we have corresponding names ¢, 1 such that

Feé: (X x X)” — X, 4 : X — X are continuous.
Now the identification
e (X xX) =X
and the definition of ¢ make it plain that
e é(f.5) = h
iff {z:z € dom fNdomgndomh, f(z)g(z) = h(z)} is comeager. It is now elementary to check that
||—1p=gz~5 acts as a group operation on X, with inversion function 1[) and identity e.

(b)(i) Because inversion is a homeomorphism, A € UB(X). The point is just that if f € C~(Z; X) and
g(z) = f(2)7! for z € dom £, then

ke (f)~' =4,
so that, for any p € P,

plrefeA™ < plrge i
— pCrg A= AT = plrefe (AT

(ii) Note that as  — ax is a homeomorphism, aB certainly belongs to UE(X). If £ is a P-name and
p € Pis such that p|Fp i € X, let f € C~(Z; X) be such that p|Fpi = f. Set g(z) = a~'f(z) for z € dom f.
Then
plFeg=a""-f.
So

— ~

plrei€a-B < plleg=a ' -feB
<— pC*{z:9(z) e B} ={z: f(2) € aB}

~

< plei € (aB)
As p and & are arbitrary, |-pa- B = (aB)~. Similarly, |-p B -a = (Ba)".
(iii) (o) Suppose that p € P and # is a P-name such that p|-pd € G- A. Then there must be P-names
91, Y2 such that
plrei € G, g € A and 1ge = i
Let g1, g2 € C~(Z; X) be such that
plred1 = g1 and go = G,
and set f(z) = g1(2)ga(2) for z € dom g; Ndom gy. Then p|Fpa = f and
pC g '[GlNgy ' [A] C fHGA],
sop|Fpx € (GA)". As p and & are arbitrary,
e G- AC(GA)".
(B) Suppose that p € P and that @ is a P-name such that p|fpi € (GA)". Let f € C~(Z;X) be
such that p|rpd = f. Then p C* f1[GA]. Take any zy € pN f~1[GA]. Then we can express f(zg) as
y1y2 where y; € G and y, € A. Set g(z) = f(2)y; " for z € dom f, so that g € C~(Z; X). Because g is

continuous and G is open, there is a neighbourhood V' of zy such that g(z) € G whenever z € V N dom g.
Let g stronger than p be such that ¢ € V. Then
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As p and ¢ are arbitrary,

() Similarly,
e A-G = (AG)".

4D Examples Let P be a forcing notion and Z the Stone space of RO(P).

(a) Suppose that X is a totally ordered set with its order topology. Let < be the P-name
{((f.9),p): f.9€ C™(Z;X), p P,
PC* {z:2€domfNdomy, f(2) < g(=)}}.
(i) < is a P-name for a total ordering of X. P Let 4, y and # be P-names, and p € P such that
p”_Pi'7 y7 Z € X
Then there are f, g, h € C~(Z; X) such that

plFpd=f,y=gand s =h.

()

plbei = f< f=i.
(8) If

pled <gand gy <z,
then

P\ ({z:z€domfndomgndomh, f(z) <g(z) <h(z)}
is the union of two meager sets and is meager, so

plrei=f<h=z

(v) If
pllp® <gandy < 4,
then
pC*{z:zedomfndomyg, f(z) < g(2), g(z) < f(2)}),
SO

plrei=f=g=y.
(6) At least one of the Borel sets pN{z : z € dom f Ndomyg, f(z) < g(2)}, pN{z: 2z € dom f Ndomg,

g(z) < f(2)} is non-meager, suppose the former; then it essentially includes g for some ¢ stronger than p,
and in this case

qlri=Ff<g=4.
As p, &, ¥ and Z are arbitrary, we have the result. Q
(ii) Now
|Fp the order topology defined by < is the topology on X generated by T

P (o) Suppose that z, U are P-names and that p € Pissuch that p|fpd € U € X. Then there are q stronger
than p and f € C~(Z; X), U € T such that

glref=dcU=0.
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The open set f~1[U] is the union of sets of the form f~![]u,v[] where u, v € X U{—o0, 00} and Ju,v[ C U,
so there are such u, v such that ¢ N f~![]Ju,v[] is non-meager, that is, there is an 7 stronger than ¢ such
that f[7] C Ju,v]. Now

rlpi=fela,o[CU=U
(interpreting {z : @ < z} as X if u = —o0, of course). As p, & and G are arbitrary,
|Fe G is the union of the open intervals it includes, for every G in the topology generated
by T,
and
|Fe the topology generated by T is coarser than the order topology.

In the other direction, if , ¢ are P-names and

plFed, v € X, & < 4,
take f, g € C~(Z; X) such that

pef=2<y=g.
Then there is a u € X such that pN{z: z € dom f Ndomyg, f(z) < u < g(z)} is not meager, so essentially
includes ¢ for some ¢ stronger than p. In this case, setting G = Ju, oo[ € T,

albei =g eGC|fioo] =i o0l
where of course we interpret } j?, oo[ and ]2, 00[ in VE. As p, & and ¢ are arbitrary,
|Fe for every 2 € X, ], 00[ is the union of the members of the topology generated by
which it includes.

Similarly,

|Fp for every = € X, ]—00, x[ is the union of the members of the topology generated by T
which it includes,

and

|Fe the topology generated by < is finer than the order topology. Q

(iii) For any f, g € C~YZ; X), f
there is a non-empty open set U C [ f
p € P be such that p C U. Then p||—1p>f
such that

(2) < g(2) for every z € dom f Ndomg N[f < ]. P? Otherwise,
g] such that g(z) < f(z) for every z € U Ndom f Ndomg. Let
gs

<
< § so there must be a ¢ compatible with p and fi, g1 € C~(Z; X)

((f1.51),9) € <, Q||‘1P’f1 = fand g = 7.
But now pN @ is a non-empty open set included in
{z: 11(2) = f(2)} Nz : 91(2) = 9(2)} N {22 f1(2) <91 (2)} N{z: 9(2) < F(2)}
which is meager. X Q
(iv) In the language of 2Af,
[Fe ¢[X] is cofinal and coinitial with X.

P Suppose that p € P and a P-name & are such that p |Fpd € X. Let f € C~(Z; X) be such that p |Fp & = f
Take any zg € pNdom f. If f(zo) is the greatest element of X, then, writing e,, for the constant function
with value zg,

e f<&: = %0
and p|Fp2<¢$Zy. Otherwise, take any y > f(zo); then {2 : 2 € pndom f, f(z) < y} is a non-empty relatively
open set in dom f, so includes g N dom f for some ¢ stronger than p, and

qlred = f < ¢y
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As p and & are arbitrary,
e @[ X] is cofinal with X.
The argument for coinitiality is the same, upside down. Q
(v) If X is Dedekind complete, then
I-» X is Dedekind complete.
The point is that a totally ordered set is Dedekind complete iff there is a cofinal-and-coinitial set A such
that [a,b] is compact in the order topology whenever a, b € A and a < b. So 4Ac and (iv) above, with a
little care over subspace topologies and identification of intervals, give the result. Q
(b)(i) If X = [0, 1] with its usual topology, then
|Fe X, with the topology generated by ‘f, can be identified with the unit interval.
P By (a) and 4Ac we know that
[Fe X is compact in its order topology,
and therefore that
|F& X is Dedekind complete and has greatest and least elements.
So all we need to check is that
e if 2, y € X and & < y, there is a ¢ € Q such that z < ¢(q) < y,

where ¢ is the map of 2Ae above, and this is a trifling refinement of one of the steps in the proof of (a-ii).

Q
(ii) If X = R with its usual topology, then
IFe X, with the topology generated by ¥, can be identified with the real line.
P This time, we can use 4Ah to see that
|Fp X is locally compact in its order topology,
and as above we know that
IFzQ is dense in X.

Modifying the argument in 4Ah by taking U to be the set of open intervals with rational endpoints, we see
in fact that

|Fe Q is cofinal and coinitial with X and closed intervals in X with rational endpoints are
compact.

This is plenty. Q
(c) Let I be any set, and X = {0,1}!. Then
||—]p>)~( can be identified, as topological space, with {0, 1}f.
P Put 2A(g-iii) and 3A together. Q
(d) If X = N¥ then
|Fp X can be identified with N,
P Put 2A(g-iii) and 3A together. Q

(e) If X is an n-dimensional manifold, where n > 1, then
|Fe X is an n-dimensional manifold.
P Follow the argument of 4Ah, but this time taking U/ to be the family of open subsets of X which are

homeomorphic to R™. This time we need to use (c-ii) here and Theorem 3A to see that
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e U is homeomorphic to n-dimensional Euclidean space
for every U € U, so that
|Fp every member of U is homeomorphic to n-dimensional Euclidean space

and therefore that

IFe X has a base consisting of sets homeomorphic to n-dimensional Euclidean space. Q

4E Zero sets: Proposition If X is a topological space and F' C X is a zero set, then

||—]p>15 is a zero set in X.

proof Let ¢ : X — R be a continuous function such that F = ¢~ *[{0}]. Let ¢ be the P-name as defined in
2C, so that

[Fe ¢ is a continuous function from X to R

(2Cd). Now
ke £ = 67" [{0}]-
P Suppose that &, y are P-names and p € P is such that
plFe é(&) = 3.

Let f € C~(Z;X) and g € C~(Z;R) be such that
plrei=fandy =g
and p C* dom(g N ¢f). Then
plFei € F <= pC* f'F] <= pC* (¢f) " [{0}]
= pC g '{0}] = plred=0 < pled(i) = 0.

Asp, & and y are arbitrary, we have the result. Q
Since R is a P-name for the real line (4D(b-ii)), we see that

[Fe E is a zero set.

4F Proposition Let X be a connected Hausdorff space and P a forcing notion. Then
(a) If X is compact,

[Fe X is connected.
(b) If X is analytic,

[Fe X is connected.

proof (a) ? Otherwise, by Theorem 4Ac, there are p € P and a P-name G such that
p|Fe G is a compact open set in X, and is neither §) nor X.
Now
p|Fp there is a finite subset of ¥ with union G,
so there are a ¢ stronger than p, an n € N and Gy, ... ,G, € ¥ such that
q||—]pG=(~;0U...(~}'n;
setting G = U, ,, Gi,
qlFe G =G.

Similarly, there are an r stronger than ¢ and an open set H C X such that
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rle X\ G = A

But now G and H must be disjoint non-empty open sets in X. X

(b) ? Otherwise, there are p € P and P-names G, H such that

plFp G and H are disjoint non-empty open sets with union X.
Adjusting the names G, H if necessary, we can suppose that
Z\p=[G=X]=[H=10],
so that
e G and H are disjoint open sets with union X.

Let W, Wy be the corresponding open subsets of Z x X as described in §2E, so that they are disjoint (2Eb);
set F'=(Z x X)\ (W UWyp). The projections 71 [W], m1[Wp] are open subsets of Z both dense in p, and
(because X is connected) their intersection includes 71 [F|; so int 71 [F] is dense in p. By the von Neumann-
Jankow selection theorem (FREMLIN 03, 423N), m [F] € B(Z) and there is a selector hg : m [F] — X for
F which is B(Z)-measurable. Extending hq to a function h which is constant on Z \ my[F], h: Z — X is
B(Z)-measurable.

Because X has a countable network consisting of Souslin-F sets, there is a dense G5 set £ C Z such that
f = h|E is continuous and belongs to C~(Z; X). Now consider [f € G]. If ¢ € P is such that ¢|-p f € G,
then

GC*{z:2€E, (2, f(2)) e Wg} CE\intm[F] C* Z\p.
So p|Fe f ¢ G. Similarly,
plref¢ Hand GUH # X,
which is absurd. X

4G Corollary Let X be a Hausdorff space such that for any two points x, y € X there is a connected
compact set containing both. (For instance, X might be path-connected.) Then for any forcing notion P,

[Fe X is connected.

proof Let ¢ be the P-name described in 2Af. Then
|Fp any two points of gb[X' ] belong to the same component of X.
P Let @, y be P-names and p € P such that
p e, ¥ belong to p[X].
Then there are a ¢ stronger than p and x, y € X such that
glFpd =7 and y = §.

Let K be a connected compact subset of X containing both x and y. Putting 2Cg and 4Fa together, we see
that

|Fe K is a connected subset of X,
while
qlFe, v € K,
S0
q|Fp &, ¥ belong to the same component of X.

As p, © and g are arbitrary, we have the result. Q
Now 2A(f-iii) tells us that

IFe ¢[X] is dense in X,
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SO
|Fp X has a dense component and is connected.

Remark Of course the same idea works if we start from an adequate collection of connected Polish sub-
spaces.

4H For completeness, I set out two elementary remarks.
(a) If X is not connected then
|Fp X is not connected.
(For if U is a non-trivial open-and-closed subset of X, then

|Fe U is a non-trivial open-and-closed subset of X.)

(b) If X is not compact, then

[ X is not compact.

P Let (G;)ier be an open cover of X with no finite subcover. Then 2A(b-vi) tells us that
e (Gi);c7 is an open cover of X.

? If p € P is such that

P ”—[[»X is compact,
then

p|Fe there is a finite set J C I such that X = Uics Gi.
Now there are a ¢ stronger than p and an n € N such that
q|Fp there is a J € [[]™ such that X = |J

ieq Gis

in which case there must be an r stronger than ¢ and a J € [I]=" such that
e X =Uies Gi-

But this means that X = J,. ; G;, contrary to the choice of (G;);c;. X

So we must have

icJ
[F# X is not compact.

41 Metric spaces: Theorem Let (X, p) be a metric space.
(a) There is a P-name p such that

|Fp / is a metric on X defining its topology, and ¢ : X — X is an isometry for p and p.
(b) If (X, p) is complete, then

e (X, 5) is complete.

proof (a)(i) For f, g € C~(Z; X) define ay, € C~(Z;[0,00]) by setting
arg(z) = p(f(2),9(2)) for z € dom f Ndomg.

Let p be the P-name

{((£:8),a70). 1) : £, g € C(Z: X))
Then

e 5 is a function from X x X to the non-negative reals.
P (a) Suppose that p € P and that &, y are P-names such that
plre (i) € X x X.
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Then there are f, g € C~(Z; X) such that

—

pllet = fand y =g, so ((£,9),as4) € p, while @y, is a non-negative real number
(using 4D(b-ii)). (8) Suppose that p € P and that &, y, @ and &’ are P-names such that

plFe ((2,9),a) and ((£,9),a’") both belong to p.

Then there are a ¢ stronger than p and f, g, f/, ¢ € C~(Z; X) such that

glbed =f=F,§=§=7, a=ds and @ =asg.
In this case,

qC*{z:z€dom fndomf, f(z) = f'(2)}
N{z:z €domgndomyg, g(z) =¢'(2)}

C{z:zedomayssNdomay g, arye(z) =apg(2)}

and

qlFra=4ad". Q

(i) If f, g, he C(Z; X), then
afn(2) < agq(2) + agn(z) for every z € dom f Ndom g Ndom h;
it follows at once that
e i, w) < pla,y) + iy, w) for all @, y, w e X.
So we have the triangle inequality.
(iii) If p € P and #, y are P-names such that
plbed =g € X,
let f, g € C~(Z;X) be such that
plted = fand j=g.
Then
pC*{z:z€domfNdomg, f(2) =g(2)} ={z:2 €domay,, are(z) =0},
SO
plre p(E,9) = asq = 0.
(iv) In the other direction, if p € P and &, ¢ are P-names such that
plred, v € X and j(&,5) = 0,
let f, g € C~(Z;X) be such that
plred = Fand gy =3
Then
pC* {z:zedomaygy, afe(z) =0} ={2z:2z € dom fNdomy, f(z) =g(2)},
SO
plred =1y.
Putting this together with (ii) and (iii),
[Fe for all z, y € X, p(z,y) =0 iff 2 =y,
and

|Fe g is a metric on X.
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(v) Now suppose that p € P, ¢ > 0 is a rational and & is a P-name such that
p ”—]p To € X
Then there is an f € C~(Z; X) such that
plred = f.

Let U C X be an open set of diameter at most € such that f~![U] is not empty; then there is a ¢ stronger
than p such that ¢ C* f~1[U]. Now

q|Fe U is an open set containing .

Suppose that r is stronger than ¢ and g is a P-name such that

rley e 0.
Let g be such that
ey = g;
then
rCr T UINgTHU]
C {z:ayfy(2) is defined and at most €}.
So

rlFep(d,g) < e
As p and T are arbitrary,
|Fpif z € X there is an open set U containing z such that p(z,y) < e for every y € U;
as € is arbitrary,

[Fe the topology induced by f is coarser than the standard topology on X.

(vi) In the other direction, suppose that p € P and &, G are P-names such that
p|FpG C X is open and i € G.
Then there are a ¢ stronger than p and an open G C X such that
qglFrd € GCa;
let f € C~(Z;X) be such that ¢|Fpi = f, so that § C* f~1[G]. Let € > 0 be a rational such that § meets

J7YH], where H, = {z : p(x, X \ G) > €}. Let r stronger than ¢ be such that 7 C* f~![H,.]. Now suppose
that s is stronger than 7 and that gy is a P-name such that

slFpy € X and j(z,7) < e
Let g € C7(Z; X) be such that s|Fpy = §. Then
§C¢" {z:z €dom fndomyg, p(f(2),9(2)) < et N fH[H] g7 [G],
S0
slkpy € G CG.
As p, @ and G are arbitrary, we see that

|Fp whenever G C X is open and € G, there is an € > 0 such that y € G whenever
y € X and p(z,y) < ¢
so, with (v), we have

|Fe the topology defined by p is the standard topology on X.

(vii) T still have to check the assertion that ¢ is a name for an isometry. But suppose that x, y € X.
Then (in the notation of 2Af) ac,_ ., is the constant function with value p(z,y), so
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e 6(2(2), 2(9)) = p(€xy €y) = Gey e, = pT,y)" = P(E, ).
So
Fee: X — X is an isometry.

(b) Now suppose that (X, p) is complete. Take p € P, and let g be a P-name such that
plFeg is a sequence in X such that p(g(n + 1),§(n)) < 2™ for every n € N.
For each n € N let f,, € C~(Z; X) be such that
plreg(n) = fu.
Then
ﬁg* nneN{Z HEAS domafmfn+17 Afpi1,fn (Z) < 2_n} =K
say. Set E' = ENint E, so that E'\ E' is nowhere dense, and E’, like E, is a G4 set. For z € E', we have
p(frni1(2), fu(2)) < 27 for every n, so f(z) = lim, .. fn(2) is defined in X; for z € Z \ E take f(z) to be
any point of X. (I am passing over the trivial case X = ().) Because (f, ] F')nen is uniformly convergent to
fIE', fIE" and f are continuous, and f € C~(Z; X). Now, for any n € N, p(f(2), fn(2)) < 27"F! for every
z€FE,s0pC*{z:z€domay,y,, ar,,(2) <27 "'} and
plke p(a(n), f) < 27+
Accordingly
plFe J?: lim;, o0 g(n);
as p and g are arbitrary,

|Fe (X, ) is complete.

4J When studying random and Cohen forcing, among others, it is often useful to know when a name
for a Borel set in X can be represented, in the manner of 2E, by a set W C Z x X which factors through
a continuous function from Z to {0,1}. Here I collect some simple cases in which this can be done, in
preparation for §8 below.

Proposition Let P be a forcing notion and Z the Stone space of its regular open algebra. Write Ba(Z) for
the Baire o-algebra of Z. Let X be a Hausdorff space and ¥ a o-algebra of subsets of X including a base
for the topology of X. T will say that a P-name E is (Ba, ¥)-representable if there is a W € Ba(Z)®%
such that

e E =W,
defining W as in 2E.
(a) Suppose that X is second-countable and that
[Fe E is a Borel subset of X.
If either P is ccc or there is an o < wq such that
|Fe F is of Borel class at most «,

then F is (Ba, ¥)-representable.
(b) Suppose that P is ccc.
(i) If

|Fe E is a compact Gs set

then E is (Ba, ¥)-representable.
(ii) If X is compact and

”_P E € BQ(X),
then E is (Ba, )-representable.
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proof (a)(i) Suppose that
|Fe F is open.
Let U C X be a countable base for the topology of X and set
W =Upey [U C Bl x U € Ba(Z2)8%;

then |Fp E =W so E is (Ba, X)-representable.

(ii) Inducing on «, we see that if

e E is of class at most o,

then E is (Ba, X)-representable.
(iii) If PP is ccc then we can apply (ii).

(b)(i) Let (G,)nen be a sequence of P-names such that
|Fe G,, is open for every n and K = MNpen G-
Let U C X be a base for the topology of X closed under finite unions. Then, in the language of 2A,

[l is a base for the topology of X closed under finite unions.

Fix n € N for the moment. Then
|Fp there is a U € U such that £ C U C G,,,

so there are a maximal antichain @,, C P and a family (U,4)4eq, in U such that
qle B CUng C Gy
for every q € Q,,. Set W,, = quQn G x Upg; then
qlFe B C Ung =W, C Gy,
for every q € @,,, and
ke E C W, C G,.

So if we now set W = .y Whn, we shall have

neN
ke ECW CN,yenGn and E=W.

But also, because P is ccc, every @, is countable, so every W,, belongs to Ba(Z)®% and W also does.

(ii) From 4Ac and (i), we see that if

|Fe E is a zero set in X, therefore a compact Gg set

then E is (Ba,X)-representable. Now, writing Ba,, for 1 < o < wy, for the additive classes in the Baire
hierarchy®, then we see by induction on « that if

|Fe Ee Baa(f()
then E is (Ba, X)-representable. Finally, if
|2 E € Ba(X)
then, because PP is cce, there is an a < w; such that |-p B € Ba,(X) and E is therefore (Ba, X2)-representable.

4For any topological space Y, start with Bay(Y) the family of cozero sets, Baa4+1(Y) = {Unen(Y \ En) : En € Baa(Y)
for every n}, Baa(Y) = U;<g<o Bag(Y) for non-zero limit ordinals a.
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5 Cardinal functions

5A Theorem Let P, (X, %) and X be as in §2A, and 6 a cardinal.
(a) If the weight w(X) of X is 0 then

Few(X) < #(6).°
(b) If the m-weight 7(X) of X is 6 then
e 7 (X) < #(6).
(c) If the density d(X) of X is 6 then
e d(X) < #(9).
(d) If the saturation sat(X) of X is 6 then
e sat(X) > #(6).
proof (a) Apply 2Ad with a base U of cardinal 6.
(b) Let (Ue)e<op enumerate a m-base for the topology of X. Consider the P-name
b ={((,0¢),1): £ < 6}
Then
e ¢ is a function from 6 to ¥.
Now
IFe {1(€) : € < 6} is a m-base for the topology of X.
P Suppose that p € P and that G is a P-name such that
p|Fe G is a non-empty open subset of X.
Then
p|Fp there is a G € ¥ such that ) # G C G,
so there are a ¢ stronger than p and a G € ¥ such that
qlFr0 # GCda.
In this case, G # () so there is a £ < 0 such that () # U C G, in which case
qlFp(é) = 175 is non-empty and included in G.
As p and G are arbitrary,
|Fp every non-empty open subset of X includes a non-empty value of ¢,

which is what we need to know. Q
Now the result follows at once.

(c) Use 2A(f-iii) with a set D of cardinal 6.
(d) ? Otherwise, there are a p € P and an ordinal x such that
plFe sat(X) = & < #(6).
Now k < sat(X), so there is a disjoint family (G¢)e<, of non-empty open sets in X. But now
lFe (Ge)e<r is a disjoint family of non-empty open subsets of X, so # (&) < sat(X). X

5B Theorem Let P, Z, (X,%) and X be as in §2, and 0 a cardinal.
(a) If X is compact and w(X) = 6, then

5Recall that |-p 0 is an ordinal, but that in many cases |Fp 6 is not a cardinal.
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D.H.FREMLIN



50 Cardinal functions 5B

Fpw(X) = #(9).
(b) If X is metrizable and w(X) = 0, then

Few(X) = #(6).

proof (a) Suppose that p € P and that A is a P-name such that

plFe A < 6 is a regular cardinal.
Then there are an ordinal A\ and a ¢ stronger than p such that

q ”_]P’ )‘ = 5\7

and A must be a regular cardinal in the ground model, less than or equal to 8. Write I for the unit interval
[0,1]. Because A < w(X), there is a continuous function ¢ : X — I* such that whenever ¢ < X there are x,
y € X such that ¢(z)la = ¢(y)la but ¢(z)(a) # é(y)(a). Let ¢ be the corresponding P-name defined from
¢ by the construction of 2C. By Theorem 3A,

e (I*)™ can be identified with I*;
working through the identifications in §52C and 3A, we have a P-name ¢ such that
ke : X — I* is a continuous function,
and whenever f € C(Z; X) then
Fedb(f) = (6)* = ((medf)e<r) -

Now
q|Fr if a < A there are z, y € X such that 1 (z)[a = ¥(y)[a but (z) # b(y).

P Let 7 be stronger than ¢ and & a P-name such that 7 |Fp& < X. Then there are an s stronger than
r and an ordinal o < X such that s|fFpd& = & Now we have z, y € X such that ¢(z)[a = ¢(y)la but
o(z)(a) # o(y)(a). Let ey, ey € C(Z; X) be the corresponding constant functions. Then

e (&) = ((medes)er) ™
SO
e ¥ (2)(€) = (medes)” = ﬁrgqs(m)

for every £ < A, where fr () : Z — I is now the constant function with value ¢(z)(§). But this means that

ke 9(2)(€) = D ()(€)
for every £ < «, while

k2 9(@)(@) # $(7)()-
So

slke$(@)1é = P(F) 16 but () # (7).
As r and & are arbitrary, we have the result. Q
Because

q|Fe X is a regular cardinal and I is the unit interval
(4D(b-1)),
qlFpw(X)> A=A\
As p and A are arbitrary,
[Fp if A < #(6) is a regular cardinal, then w(X) >

SO

e w(X) > #(6).
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Putting this together with Theorem 5Aa,
e w(X) = #(6).

(b) If p is a metric on X inducing its topology, then X has a o-metrically-discrete base, so there is a
sequence (Gn)nen such that each G, is a disjoint family of non-empty open sets and sup,,cy 65, = 6, where

0, = #(G,). Now, setting G, = {(G,1) : G € G,,} for each n,
[F& G, is a disjoint family of non-empty open sets, so #(6,) = #(G,) < w(X)

for each n. But as

Fe 8= U, en On,
we have
e #(6) = sup,,ex #(6) < w(X);
putting this together with 5Ac,

Few(X) = #(6).

5C Theorem (A.Dow) Suppose that GCH is true, and that P is any forcing notion.
(a) Let A be a Dedekind complete Boolean algebra and set x = m(2(). Then

Fem(2) = #(%).

(b) Let X be a regular topological space and set k = w(X). Then
e m(X) = #(R).

(c) Let 2 be any Boolean algebra and set £ = w(2l). Then

ke m(2) = #(k).
proof (a) It is easy to see that
Fem(2) < #(%),
since if A is order-dense in 2 then
|Fe A is order-dense in 1.
? Suppose, if possible, that
= ke #(R) < ().
Then there must be a p € P and ordinals A1, Ay such that
plFp W(Ql) =M <A< #(k) and X2 is a regular cardinal.

Of course A; is a cardinal and \g is a regular cardinal. Note that sat(A) < Ao. B If A C A\ {0} is a disjoint
set of size A then

e A is a disjoint family in 2\ {0} so #()\) = #(A) < 7(A)
and
plFe #(N) < #(Xo)
SOA< . Q
It follows that if B C 2l is any set of cardinal at most A\ there is an order-closed subalgebra of 2, including

9B, of cardinal at most A\y. (This is where we need the continuum hypothesis, to see that 2* < A, for every
A < A2.) At the same time, Ay < £ = 7(2). We can therefore find families (B¢)e<r, and (be)e<n, such that

(Be)e<n, 1s a non-decreasing family of subalgebras of 2, all of cardinal less than Ag,

for each € < Ag, bg € Bey1 \ {0} and be Za for any a € By,
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B = U§</\2 B¢ is an order-closed subalgebra of .

For a € A set f(a) = upr(a,B), the smallest element of B including a.
Let A be a P-name such that

p|Fp A is an order-dense subset of 2 and #(A) < A;.
Let g be the P-name

{((@.€),q):a €, f(a) € B\ U, e By, qlrpa € A}
Then

p|Fe g is a function from A to Ay.
Since
plFe A2 is a regular cardinal greater than #(A),
there must be a ¢ stronger than p and a { < A9 such that
q|Frg(a) < ¢ for every a € A.

However,

¢|Fp there is some a € A such that 0 # a C Eé,

so there are an 7 stronger than ¢ and an a € 2\ {0} such that a C be and 7 |Fpa € A. As r|Fpg(a) < ¢,
there are an s stronger than r and a ¢/ < ¢ such that s|Fp g(a) = ¢’; but this means that f(a) € B¢ and
b¢ includes a non-zero element of B,. X

So (a) must be true.

(b) Apply (a) to RO(X); since m(RO(X)) = 7(X) = x and
[Fe RO(X)” is isomorphic to an order-dense subalgebra of RO(X),
we have (using the fact that |-p X is regular)
e 7(X) = 7(RO(X)) = n(RO(X)) = (%),
as required.

(c) Apply (b) to the Stone space of 2.

5D Proposition Let X be a ccc Hausdorff space, and P a productively ccc forcing notion. Then
||—H»X' is ccc.
proof If Z is the Stone space of RO(PP) then Z is productively ccc so Z x X is ccc.
? Suppose, if possible, that
e X is cce.
Then there is a p € P such that
p |Fp there is an uncountable disjoint family of non-empty open sets in X;
let (G¢)e<w, be a family of P-names such that
p|Fp Ge is a non-empty open subset of X and G¢ N G, = ) whenever £ < 7 < w;.

By 2Eb we have for each £ < w; an open set W C Z x X such that p|Fp Ge = We. Now (5 x X) N W is
never empty, so there are £ < n < w such that (p x X)NWeNW, # (. So we have an r stronger than p and
a non-empty open H C X such that (¥ x H) C Wy N W,. But now

’I"”—P@#JZIQVTQQWU ZGgﬂén,
which is impossible. X
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5E Proposition Suppose that X is a hereditarily ccc compact Hausdorff space and that P is a forcing
notion such that w; is a precaliber of P. Then

[F# X is hereditarily ccc.

proof 7 Otherwise, there are a p € P and P-names ¢, Gg for £ < wy such that
plFe Gg C X is open and Te € Cg \G,7 whenever £, n < w; are distinct.

Let Z be the Stone space of RO(P); for each £ < wy let fe € C(Z;X) be such that p|Fpie = fz Then we
can find an open set G¢ C X and a p¢ stronger than p such that

pelbe fe € Ge C Ge.
Now if £, n < wy are distinct and r is stronger than both p and p,,
rle fe ¢ Gn 2 én
and 7N fgl[Gn] must be empty. As r is arbitrary, pe NP, N fgl[Gn] is empty.

Because w; is a precaliber of P, there is a z € Z such that D = {{ : { < w1, z € P¢} is uncountable. But
now fe(z) € Ge \ Gy, for all distinct &, n € D, so {fe(z) : £ € D} is not ccc. X

6 Radon measures

6A Theorem Let (X,%,%, u) be a Radon measure space, and P a forcing notion. Let i be the P-name
{((4, (nA)), 1) : A € UB(X)}.
Then
e there is a unique Radon measure on X extending fi.
Remark Perhaps a note is in order on the interpretation of the formula (A)”. If we take a real number «
to be the set of rational numbers less than or equal to «, then & becomes a P-name for a real number. If,

in this context, we interpret co as the set of all rational numbers, then we can equally regard co = Q as a
P-name for the top point of the two-point compactification of the reals.

proof (a) By 1C, every member of Z/lg(X ) is universally Radon-measurable, so the formula for g makes
sense. Since we know that

e A+ B
whenever A and B are distinct elements of UE(X ), we have
|Fp iz is a function,
and from 2A we see that

|Fe i is an additive function from an algebra of subsets of X to [0, 00].

(b) Let T be the P-name
{(A,1): A € UB(X) is included in an open set of finite measure};

then

[Fe T is a ring of subsets of X.
Let v be the P-name

{((A, (pA)"),1) : A € UB(X) is included in an open set of finite measure}.

Then

|Fpo: T — [0,00] is additive.
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Let U be the family of open subsets of X of finite measure, so that U is upwards-directed and covers X.
Then

[Fetd € T is an upwards-directed family of open sets with union X.

By FREMLIN 03, 416K, there is a P-name £ such that

|Fe i is a Radon measure on X, 4K > VK whenever K € T is compact, and 4G < vG
whenever G € T is open.

(c) Suppose that A € L{E(X ) is included in an open set of finite measure, and ~y;, 2 are rationals such
that 71 < A < 2. Then there are a compact K C A such that uK > 7, and an open set G O A such that
1G < 5. In this case K and G are universally Baire-property sets included in open sets of finite measure,
SO

|Fe K S Tis a compact subset of f} and @ e T is an open set including 4, so y; < (uK)” =
VK < i < A < it A < jG <0G = (uG)” < 7.
As v, and v, are arbitrary,
e N*A = ,“*A = (nA)7,
SO
e (1A is defined and equal to (uA)” = A.

(d) Now take any A € UB(X).
(i)
& i measures ANU for every U € U.
P Let pc P and U be such that
pleUeU.
Then there are a ¢ stronger than p and a U € U such that
qleU =1,
in which case
qFpANU =(ANU)” € domy. Q
Since
|Fp iz is a Radon measure and U is an open cover of X,
we have

&/« measures A.

(i) If v < pA is rational, there is a compact set K C A such that pK > ~, and now
||—1P=K' C A and /lf(Z% SO ;lfl > .
As 7 is arbitrary,

(iii) If U € U, then

So
Fe (ANTU) < 1A for every U € U.
Since

|Fp i is a Radon measure and U is an upwards-directed family of open sets with union X,
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we have
e A < RA.
(iv) Putting these together, we see that
e A = A
for every A € UB(X), so that
|Fp v extends fi.

6B Theorem Let P be a forcing notion. Let ((X;, T;, 3, 1;))icr be a family of Radon probability spaces
such that J = {i : ¢ € I, X; is not compact} is countable. Let u be the product Radon measure on
X =[l;e; Xi- Let fi, f1, for i € I, be P-names for Radon measures on X, X; respectively, defined as in 6A.
Then

|Fe /2 can be identified with the Radon product of {f1;),c;-

proof We need to begin by checking that
[z X can be identified with ]

ier Xis
this is Theorem 3A. Next, consider the base U for the topology of X consisting of open cylinder sets, and
the corresponding name U, so that

||‘IPZ/~{ is a base for the topology of X closed under finite intersections.

If U € U, then U can be expressed as [[,.; U; where U; C X; is open for every ¢ and K = {i : U; # X;} is
finite. In this case,

iel

lp U is matched with [, U;.
Moreover,
e il = iU = (nU)" = (iex 13U = Miex (miUi)” = [iex Ui = ies Ui, so the
Radon measure i agrees with the Radon product measure 1# on U.
As U is arbitrary,
|Fe i agrees with 1# on U, and as these are both Radon measures they must coincide.

6C I extract a couple of simple facts about quasi-Radon measures for use in the next theorem.

Lemma Let (X, %, %, 1) be a quasi-Radon measure space, and (2, ) its measure algebra.

(a) For every E € ¥ there is an A € UB(X) such that A C E and E \ A is negligible.

(b) If U is any base for ¥ closed under finite unions, then {U* : U € U} is dense in 2A for the measure-
algebra topology.

proof (a) Let G be the set of open sets of finite measure, and G* its union. Let (F;);cr be a maximal disjoint
family of non-empty self-supporting sets all included in members of G. Then X \ {J,; Fi is negligible, and
every member of G meets only countably many of the F;. For each i € I, let E; C E N F; be a Borel set
such that (£ N F;) \ E; is negligible, and set A = J,.; £;. By 1Bd, A € UB(X). Of course A C E, and as
(E'\ A) N F; is negligible for every i, E'\ A is negligible.

(b) Suppose that H € ¥ has finite measure, E € 3 and € > 0. Then there is an open set G of finite
measure such that u(E \ G) < e. There is a closed set ' C G\ H such that uF' > pu(G \ H) — ¢, so that
w((EA(G\ F)) N H) < 2e. Because U is a base for T closed under finite unions, there is a U € U such that

UCG\F and pU > p(G\ F) — ¢, so that u((EAU)NH) < 3e. As E, H and € are arbitrary, we have the
result.

6D Theorem Let (X,%,%, 1) be a Radon measure space, and (2, i) its measure algebra. Let P be a
forcing notion, and /i a P-name for a Radon measure on X as described in 6A; let (2, ji) be a P-name such

that
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lFe (21, /i) is the measure algebra of .

Let @ be the P-name

{((A*)",A*), 1) : A € UB(X)}.
Then

|F-p @ is a measure-preserving Boolean homomorphism from (A, i) to (A, f1), and w[2] is
dense in 2 for the measure-algebra topology.
proof (a) The first step is to check that
|Fp o is a function.
P Suppose that p € P and that @, b, ¢ are P-names such that
p|Fe (a,b) and (4, ¢) belong to .
Then there are a ¢ stronger than p and A, B € Ug(X) such that
qlFpa=(A*)" = (B*)", b= A* and ¢ = B°.

In this case, A* = B* in 2, so u(AAB) =0 and

e (AAB) = ((AAB)™ =0,
SO

qlreb=¢ Q

(b) |Fp domcs =2A. P If p € P and @ is a P-name such that p|Fpa € 2A, then there are a g stronger
than p and an a € 2 such that ¢|-pa = a. Now 6C tells us that there is an A € UB(X) such that A* = q,
so that

qlFp(a,A*) e w. Q

(c) It is now elementary to check that

|Fp <o is a measure-preserving Boolean homomorphism.

(d) As for the density of the range, use 6Cb. Let U be the family of open sets of finite measure in X, so
that U/ is a base for ¥, and

|Fe U is a base for the topology of X closed under U, so {U* : U € U} is dense in 2.
Since
e ((U®)) = U
for every U € U,
|Fp[] D {U*: U € U} is dense in 2.

6E Proposition (see DZAMONJA & KUNEN 95) Let (X, T, X, 1) be a Maharam-type-homogeneous Radon
measure space and r its Maharam type. Let P’ be a forcing notion and £ the P-name for a Radon measure
on X derived from pg. Then

|Fp & is Maharam-type-homogeneous and its Maharam type is #(x).

proof Let (a¢)e<r be a stochastically independent generating set in the measure algebra 2 of p, all of
measure % Then, in the language of 6D,
e (2(d¢))e<r is a stochastically independent family of elements of measure  in the

measure algebra 2 of [, and the algebra they generate is dense for the measure metric,
so 2 is isomorphic to the measure algebra of the usual measure on {0, 1}*.
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6F Lemma Let (X, %, %, 1) be a Radon measure space, E € L{E(X) and (E;);er a family in UB(X) such

that E* = sup,c; £ in the measure algebra of u. Then, for any forcing notion P,

Fp E* = Sup; ¢ E3 in the measure algebra of .

proof (a) For each i € I, u(F; \ E) = 0 so (in the language of 6A)
e i(Ei \ E) = B(Ei \ E)” = 0.
Accordingly
e sup;e; B < E*.

(b) On the other side, writing U for the family of open subsets of X of finite measure, we have
for every U € U and rational € > 0 there is a finite J C I such that u(UNE) < w(UNU,¢; Ei) +e.
So

e for every U € U and rational € > 0 there is a finite J C I such that 4(U N E) <
AUNUes Bi) + e
But as
e U is a cover of X by open sets of finite measure,
this is enough to show that

ke E* C sup,c; B} in the measure algebra of fi.

6G Theorem Let (X, %, %, u) be a Radon measure space, Y a Hausdorff space and ¢ : X — Y an almost
continuous function. Let P be a forcing notion. Then, defining ¢ as in 2C, and taking a P-name £ for a

Radon measure on X as in 6A,

||—[p><,z~5 is a fi-almost continuous function from a conegligible subset of X to Y.

proof Let (K;);c; be a maximal disjoint family of non-empty self-supporting compact subsets of X such

that ¢[ K; is continuous for every i € I. Then 2C tells us that
|Fe K; C dom ¢ and ¢|K; is continuous for every i € I.
But 6F tells us that
| sup;c; K7 = 1 in the measure algebra of f,

and the result follows at once.

6H Theorem Let X be a locally compact Hausdorff group, and 1 a left Haar measure on X. Let P be

a forcing notion and £ a P-name for a Radon measure on X as in 6A. Then
[ v is a left Haar measure on X
when X is given its topological group structure as in 4C.
proof (a)
plre il - G) > pG
whenever 4 and G are P-names and p € P is such that

plFep# € X and G is an open subset of X.

P Suppose that + is rational, ¢ is stronger than p and ¢ |Fpy < MG Then there are an r stronger than g

and an open G C X such that
rlFpG C G and 4G > .
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In this case uG > 7, so there is a compact set K C G such that uK > . Let H be an open neighbourhood
of the identity such that HK C G. Because {xH ! :x € X} is an open cover of X, there are an s stronger
than r and an z € X such that

slpid € (xH™ Y = zH!
(4C(b-i) and (b-ii)). So

(4C(b-iii)) and

As q and ~ are arbitrary,

(b) Since we already know that
|Fe &t is a Radon measure on the Hausdorfl topological group X,
this is enough to show that

e v is a left Haar measure on X.

6I Theorem Let (X,%, %, 1) be a o-finite Radon measure space and g1 a P-name for a Radon measure
on X defined from it as in 6A. Suppose that W is a Borel set in Z x X and that W is the corresponding
P-name for a subset of X, as in 2E. Then there is an f € C~(Z; [0, ]) such that f(z) = uW[{z}] for every
z € dom f and

e i = f.

proof (a) Suppose that W is open. Then g(z) = pW/[{z}] is defined for every z, and g is lower semi-
continuous, so there is an f € C~(Z;[0,00]) such that f C g. Also |Fp W is open (2E(c-ii)). (a) If 7 is
rational, z € dom f and f(z) > -, then there are an open set U containing z and an open set G C X such
that uG > v and U x G C W. Now there is a ¢ stronger than p such that z € ¢ C U, so that

qlre G C W and gW > 4G = (uG)” > 1.
Thus z € § C [4W > 4]. As z is arbitrary, f~[]y,00]] C [¢W > 7] and
e if f> ~ then ﬂV_[} >,
as v is arbitrary,
e f < W

(8) If 5 is rational, p € P and p|Fp zW > 7, then let ((g;, G;))ics run over the set

{(¢,G):qeP,gx GC W},
and set W; = ¢; x G for i € I. Then | J,.; Wi = W, so by 2Eg we have

Fe W = Uier Wi = (Uie, W)
There must therefore be a g stronger than p and a finite set J C I such that
qlke iU s Wi) > 7.

But now there is an r stronger than ¢ such that, for every ¢ € J, either r is stronger than ¢; or r is
incompatible with ¢;; setting K for the set {i : 4 € J, r is stronger than ¢;} and G = (J,;. x G, we have
rlFeUics Wi = G,
SO
rle G > v
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and uG > v. Also §x G C W so f(z) > v for every z € g and ¢ |Fp f> ~. As p and ~y are arbitrary,
e f> @W and f= W
(b) Let G C X be an open set of finite measure and consider

We ={W : W C Z x G is Borel and satisfies the conclusion of the theorem}.

Then W is a Dynkin class of subsets of Z x G. P («) § € W, witnessed by f constant 0. (8) If W € W,
witnessed by f € C~(Z;[0,00]), then f(z) < puG for every z € dom f. Set g(z) = uG — f(z) for z € dom f;
then g witnesses that (Z x G) \ W belongs to Wg, because

Fe((Zx G)\W)™ = (ZxG)"\W =G\ W

(2E(c-iii), 2Ed) and |Fp aG = (uG)”. (7) If (Wy)nen is a non-decreasing sequence in W, witnessed by
(fn)nen in C7(Z; X), and W = UJ,,cy W, set h(z) = sup, ey fu(z) for z € (), cydom f,,. Then h is lower
semi-continuous and dom h is comeager in the extremally disconnected set Z, so there is a comeager Gy set
V C dom h such that g = h[V is continuous. Now

- -

”'lP’g = SUPpeN fn = SUPpeN NWH = ﬂ(UnEN Wp) = W

and g witnesses that W € Wg. Q
With (a), this is enough to show that W N (Z x G) € Wg for every Borel set W C Z x X.

(c) Because p is o-finite, there is a non-decreasing sequence (G, )ncn Of open sets of finite measure with
conegligible union in X. Repeating the argument of (b-v) just above, we see that if W C Z x X is Borel

and Xo = [J,cn G, then W N (Z x Xp) satisfies the conclusion of the theorem. But now

ke (W\ (Z x X0))™ € (X \ Xo)™ is ji-negligible, so gW = (W N (Z x Xo)) ™,
uW{z} = p(W N (Z x Xo))[{z}] for every z € Z,

so W also does.

6J Corollary Let (X, %, X, 1) be a o-finite Radon measure space, IP a forcing notion and i a corresponding
P-name for a Radon measure on X. Suppose that E is a P-name such that

|Fe E is a fi-negligible subset of X.
Then there is a G5 subset W of Z x X such that
”_]P’ E g Wa

W{z}] is p-negligible for every z € Z.

proof Because
|Fp i is o-finite
(apply 6G to a suitable sequence (E,)nen), there is a P-name H such that
|Fe H is a ji-negligible Gs set including E.
By 2Eh, there is a Gs set V C Z x X such that

e H=V.
By 61, there is an h € C~(Z; X) such that h(z) = pH[{z}] for z € dom h and
e h=pH.

But this means that h(z) = 0 for every z € domh. Set W = V N (domh x X); then W = V (see the
definition in 2Eb), so |Fp E C W, while W is Gs and has negligible vertical sections.

6K Example We really do need ‘o-finite’ in the last two results, as the following elementary example
shows. Let P be any atomless forcing notion, so that Z has no isolated points. Let X be Z with its discrete
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topology, and p counting measure on X. Consider W = {(z,2) : z € Z}. Then W C Z x X is closed and
pW[{z}] = 1 for every z. But W =0 so |FpgW = 0.
However there may be much more to be said along the lines of 6I; see 12D.

6L Theorem Let P be a forcing notion, (X;);c; a family of Hausdorff spaces, each either Polish or
compact, and p a Baire probability measure on X = [[,.; X;. Then there is a P-name j such that
|-p s is a Baire probability measure on [];.; X;
and whenever J C [ is finite and G; C X; is cozero for each ¢ € J,

Feifz:z(i) e GiVie J} = (u{z: x(i) € G;Vie J}).

proof For each finite J C I we have a unique Radon probability measure p1; on X; = [[,.; X; such that
wrH = pf{x: xlJ € H} for every cozero H C X ;. By 6A (with 3A) we have a corresponding name fi; such
that

[Fe s is a Radon probability measure on X; 2 [[.., X; and jiyH = (usH)™ for every
open H C X ;.

It follows at once that if J C K € [I]<“ then

icJ

|Fp the natural map from X K to X_] is inverse-measure-preserving.
Now 4A tells us that
|Fp for every i € I, X; is either Polish or compact,
o)
e Ba([T,er X) = ®,e Ba(Xy)

(FREMLIN NO5). Using Kolmogorov’s theorem (FREMLIN 03, 454D-454G) in V¥ we see that there is a
P-name /i such that

e f is a Baire measure on [],.; X, such that the canonical map onto every X is inverse-
measure-preserving for i and 17 B(X ).
This £ will serve.

6M Theorem Let X be a compact Hausdorff space and P a forcing notion, with Z the Stone space of
its regular open algebra. Let g be a P-name such that

|5« is a Radon probability measure on X.

Then there is a family (u.).cz of Radon probability measures on X such that whenever W C Z x X is a
Borel set then

e AW = hw,
where hyw (z) = p,W[{z}] for every z € Z.
proof (a) For E € B(X) let fg € C(Z;]0,1]) be such that
e fz = iE.
Note that fg is uniquely determined by this, so that F — fg : B(X) — C(Z;[0,1]) is additive. For z € Z,

E — fg(z) : B(X) — [0,1] is additive, so there is a Radon measure p, on X such that fx(z) < p.K for
every compact K C X and fg(z) > u.G for every open G C X; of course p, X = 1.

(b) If W C Z x X is open, let gy € C(Z;[0,1]) be such that |Fp W = Fw. Then hy (z) < gw(z) for
every z € Z. PP Suppose that v < hy (z). Consider
G={G:GC X isopen, Ux G CW for some open U C Z containing z}.

Then G is upwards-directed and has union W[{z}], so there is a G € G such that p,G > v; let U be an open
neighbourhood of z such that U x G C W. Then
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UCIGCW]C G < iW]
(2J(a-iii)) and fo(z) < gw(z) for every z € U (4D(b-iii)). But now

7 < G < falz) < gw(z).
As v is arbitrary, hyy (2) < gw(2). Q

(b) f W C Z x X is open, then {z: gw(z) < hw(z)} is comeager. P Let n € N. Let V be the family of
finite unions of sets of the form U x G where U C Z is open-and-closed, G C X is open and U x G C W;
let V be the P-name {(\7, 1) : V € V}. Then V is an upwards-directed family of open sets with union W, so
by 2Ef we have

[Fe V is an upwards-directed family of open sets with union W, and gW = supy cp 4V}
There are therefore a maximal antichain D C P and a family (Vy)aep in V such that
dlFe iV > gW — 27"
for every d € D. R
Take d € D and z € d. Express V; as Uign U; x G; where U; C Z is open-and-closed and G; C X is open
for each i; set J ={i: i <mn, z € U;}, U:(jﬂﬂieJUi and G = J;.;Gi, sothat z € U, U x G C W and
hw(z) > p.G > fg(z) > fa(z).
Also
2eUC[Vy=G] C[pW —27" < iV = iG]
and gy (z) — 27" < fa(z). Putting these together,
gw(z) — 27" < hw (2).
This is true for every z € (J,cp d, which is a dense open subset of Z. So {z : gw(z) — 27" < hw(2)} has
dense interior. As n is arbitrary, {z : gw(z) < hw(z)} is comeager. Q
(c) Thus {z : gw(2) = hw(2)} is comeager and G = hy . So
e iW = Gw = hw.
And this is true for every open W C Z x X. Using the formulae of 2E and the Monotone Class Theorem,
we have

ke iW = hw
for every Borel set W C Z x X, as claimed.

7 Second-countable spaces and Borel functions

7A Theorem Let P be a forcing notion, X a Hausdorff space, Y a second-countable Hausdorff space
and ¢ : X — Y a UB(X)-measurable function.

(a) |Fp o is a function from X to Y.

(b) If B € UB(Y), then

ke~ [B] = (67'[B])".
(c) If ¢ is Borel measurable,

& ¢ is Borel measurable.

proof (a) Suppose that p € P’ and & are such that p|lpd € X. Let f € C—(Z; ; X) be such that plbpd = f.
Then f is (B(Z),UB(X))-measurable (by the definition of UB(X)), so ¢f is B(Z)-measurable and defined
on a comeager subset of Z. Because Y is second-countable, there is a ¢ € C~(Z;Y) such that dom(g N ¢ f)

is comeager. So ((f,7),1) € ¢ and

—

plFe (i) = ¢(f) = g is defined.
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As p and & are arbitrary,
e dom¢ = X. Q
(b) By 1G, ¢~'[B] € UB(X), so ¢~[B]” is defined. If p € P and & is a P-name such that plFei € X,
let feC(Z;X)and g € C~(Z;Y) be such that
plred = fand ¢(#) = g
and p C* dom(g N ¢f). Then
plled € 671 [B] <= plreg€ B < pC* g '[B]
< pC* [ Bl < plreico [B]".

(c) Let U be a countable base for the topology of Y. Then
”‘lPZ/? is a countable base for the topology of Y.
Since
Fe ¢~ [U] = ¢~ [U]” is a Borel set in X
for every U € U (2Ae),
lFe ¢~ 1U] € B(X) for every U € U, and ¢ is Borel measurable.

7B Proposition Let P be a forcing notion, X a Hausdorff space, Y a second-countable Hausdorff space
and (¢ )nen a sequence of UB(X)-measurable functions such that ¢(z) = lim,, o ¢y () is defined for every
x € X. Then

e lim, o0 ¢n(z) = ¢(x) for every z € X.
proof Let p € P and & be such that p|Fpi# € X. For each n € Nlet f, € C~(Z; X) and g, € C~(Z;Y) be
such that

plrei = fo and 6u () = gn
and
p < dom(gn N én fn).
Set
W ={z:2z€N,enydom(gn N dnfn), fm(z) = fu(z) for all m, n € N},

so that p C* W. For z € W,

9(2) = limp o0 G fn(2) = limp—oo gn(2)

is defined, and g : W — Y is B(Z)-measurable, so there is an h € C~(Z;Y) such that W C* dom(g N h).
Now

pC{z: limn oo gn(z) = h(2)},
By 2F,
pled= h= lim,, o0 §n = lim, oo ggn(a:)
At the same time, for z € W,
9(2) = limy .00 dn fo(2) = ¢ fo(2),

SO
p “'lP’ J)(x) = ‘g’(ﬁ)) = !7 = lim, an(x‘)'

As p and ¢ are arbitrary, we have the result. Q
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7C Corollary Let P be a forcing notion, X a Hausdorff space and « a countable ordinal. If ¢ : X — R
belongs to the ath Baire class, then

[ ¢ belongs to the ath Baire class.

proof Induce on «.

7D Proposition Let X be a Hausdorff space and @ a set of 4B(X)-measurable real-valued functions
such that {¢(z) : ¢ € @} is bounded for every x € X. Suppose that p € P and that & is a P-name such that
p|Fet € X. Then there is a P-name & such that p|Fpa € N and p |Fp () < & for every ¢ € P.

proof ? Otherwise, let f € C~(Z;X) be such that p|fpt = j? There is a ¢ stronger than p such that
whenever 7 is stronger than ¢ and n € N there are an s stronger than r and a ¢ € ® such that s |-p ¢(z) > n,
that is, § C* {2z : z € dom f, ¢f(z) > n}. So for each n € N we have a maximal antichain R, and a family
(dnr)rer, such that for each r € R,, either r is incompatible with g or ¢y, € ® and 7 C* {2 : ¢ f(2) > n}.
Now for almost every z € ¢ we have

for every n € N there is an r € R,, such that ¢, f(z) > n,
and {¢f(z) : ¢ € } is unbounded above. X

Remark Compare §A, Lemma 1 of TODORCEVIC 99.

7TE Proposition Let X be an analytic Hausdorff space, P a forcing notion and Z the Stone space of P.
If W C Z x X is a Borel set then [W # 0JAW ~1[X] is meager.
proof (a) If W is open there is a K-analytic V. C Z x X such that (WAV)7![X] is meager. P Let
h : NY — X be a continuous surjection. For each o € S* = J, ey N" set X, = {h(a): 0 C o € N} so that
X, is analytic; set Hy = int{z : {z} x X, C W}. Then W = J, cg. Ho X Xo. Set V = U, cg- Ho X Xo;
then V is K-analytic and (WAV) " [X] C U,cg- Ho \ Ho is meager. Q

(b) Consider the family of those sets W C Z x X such that there are K-analytic V7, V5 C Z x X such
that (WAV;)7HX] and (((Z x X) \ W)AV2)~1[X] are meager; then W is closed under complements and
countable unions and contains all the open subsets of Z x X, so includes B(Z x X).

In particular, if W C Z x X is Borel, there is a K-analytic V such that (WAV)~![X] is meager, so that
[W # 0] = [V # 0] differs by a meager set from each of V"*[X] and W~1[X] (using 2Jc).

7F Proposition Let X be a separable metrizable space, P a forcing notion and Z the Stone space of P.
J— - —_—
Suppose that W C Z x X is K-analytic, and set W+ = {(z,2) : 2 € Z, x € W[{z}]}. Then |fpW =WT.
— . .
proof (a) Suppose that p € P, & is a P-name such that p|fpi € W and G is a P-name such that p |Fp G
is an open neighbourhood of &. Then there are a ¢ stronger than p, an f € C~(Z; X) and an open G C X
such that
qlFpi=fand feGand G CG.

Now

7€ {22 () eWIENING) € (W (Z x G) X € [W NG 0]
by 2Jc. So there is a P-name g such that ¢ |-p § € WNG C WNG. Asp, & and G are arbitrary, e WF CWw.

(b) Suppose that p € P and & is a P-name such that p|-p @ € W. Let f € C7(Z;X) be such that
plFed = f. Let G be a countable base for the topology of X. Then

{z:zedomf, f(2) ¢ W[{z}]} = Ugeglz: f(2) € G, GNW[{z}] = 0}.
For each G € G,
PNl f(2) G GNW[{z =0 C* pni e G, GNW = 0] = 0,

[ — —

sopN{z:z edomf, f(z) ¢ W[{z}]} is meager and p|Fp& € WT. As p and i are arbitrary, ||—]p>ﬁ C Tas
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7G Corollary Let X be an analytic separable metrizable space, P a forcing notion and Z the Stone space

=

—
of P. Suppose that W C Z x X is Borel, and set Wt = {(z,2): 2 € Z, z € W[{z}]}. Then |fp W = WT.

proof As in the proof of 7E, we can find a K-analytic set V' to put in the place of W and apply 7F to V.

8 Forcing with quotient algebras

For random and Cohen reals, in the first place, but in other cases too, we have a forcing notion which
is naturally representable as the non-zero elements of a Boolean algebra which comes to us as a quotient
algebra Y¥/7 where ¥ is a o-algebra of subsets of a set Q. In this case, it is often helpful to be able to
represent names for members of X by functions from € to X. I run through some simple cases in which we
can do this.

8A Definitions A measurable space with negligibles is a triple (2, X,7) such that € is a set, X is a
o-algebra of subsets of 0, and 7 is a o-ideal of subsets of 2 generated by ¥ NZ. It is non-trivial if Q ¢ 7,
complete if ¥ C 7, wy-saturated if there is no uncountable disjoint family in X\ Z, that is, the quotient
algebra /¥ NZ is ccc. Note that A is always Dedekind o-complete, so if (2,3, u) is wi-saturated it is
Dedekind complete. If (©,3,7) is non-trivial, the associated forcing notion is ¥ \ Z, active downwards.
Note that the regular open algebra of this forcing notion can be identified with the Dedekind completion of
the quotient Boolean algebra 2 = £/¥ N Z, and that for E € P the corresponding member E of RO(P) is
just the equivalence class E* € 2.

(For the general theory of measurable spaces with negligibles, see FREMLIN 87.)

8B Proposition Let (2,%,7) be a non-trivial measurable space with negligibles, and P the associated
forcing notion; set A = X/X N 7.

(a) If X is either compact or Polish, and f: Q — X is (X, Ba(X))-measurable, then there is a P-name &
such that |Fp# € X and, for every F € Ba(X),

[& € F]= f'[F]*
in 2 C RO(P). )
(b) Suppose that 2 is Dedekind complete and that X is Polish. If & is a P-name such that |Fp& € X,
then there is a ¥-measurable function f: ) — X such that
[& € F] = f~'[F]*
for every F € B(X).

(c) Still supposing that 2 is Dedekind complete, let (X;);cr be a family of Polish spaces with product

X, and & a P-name such that |Fpd € [[,; X,. Then there is a (X, Ba(X))-measurable function f : Q — X

such that whenever J C X is countable and F' C HiEJ X, is a Borel set, then
[/ € Fl=f'{z:zec X, z|J € F}].

proof (a) We have a sequentially order-continuous Boolean homomorphism 7 : Ba(X) — RO(P) defined
by saying that 7F = f~1[F]* for every F' € Ba(X). Let Z be the Stone space of RO(P). By 3Fb, there is a
g € C~(Z;X) such that [§ € F] = nF for every Baire set F C X. So we can take & = g.

(b) Let U be a countable base for the topology of X containing X. For each U € U, let Eyy € ¥ be such
that Ep, = [4 € U] in 2; arrange that Ex = Q. (This is where we need to suppose that 2 is Dedekind
complete, so that we can identify it with RO(IP).) As in (b-iv) of the proof of 3F, let p be a complete metric
defining the topology of X and such that diam X is finite, and for U € U let Vy be {V : V e U, V C U,
diamV < 1 diamU}. Set

B=({JEv\ |J Ev)U|{Bu\Ev:U, VeU UCV}
veu Vevy

U HEuNEy U, VeUu unv =0}
€T
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Then for w € Q\ B there is a unique z € X such that w € Ey whenever z € U € Y. I Choose (Up)nen in
U such that w € £y, Upy1 C U, and diam U, < 27" diam X for each n; let = be the member of ﬂneN U,.
If U €U and x € U, there is an n € N such that U,, C U, in which case w € Ey. If y € X and y # x, there
aren € N, V € Y such that y € V and U, NV = (), in which case w ¢ Ey. Q

So we can define fy : 2\ B — X by saying that w € Ey whenever fo(w) € U € U, and any extension f of
fo to a function which is constant on B will be measurable and have the property that [¢ € U] = f~1[U]*
for every U € U, and therefore for every Borel set U C X.

(c) Choose P-names i; such that |-pi; € X; for each i € I and |Fpd = (i:);c;. By (b), we have
a measurable function f; : Q — X, such that f;'[F]* = [i; € F] for every Baire set F' C X,. Setting
f(w) = (fi(w))ier for w € Q, f:Q — X is (¥, Ba(X))-measurable, because Ba(X) = @, B(X;). If J C 1
is countable, then
[g/1J e Fl=f'{z:z€ X, z|J €F}*

whenever I C [],.; X is of the form ], ; F; and every F; is a Baire set; by the Monotone Class Theorem,
the formula is valid for every Borel set F' C [, ; F;.

8C Notation Suppose that, as in 8B, we have a non-trivial measurable space with negligibles (£2,%,7)
with quotient algebra 2 and associated forcing notion P, and a topologica_l) space X which is either compact
or Polish. If f: Q — X is (£, Ba(X))-measurable, then we can define f to be the P-name 7, as defined
in 3F-3G, where 7F = f~1[F]* for F € Ba(X). In this case, ||—[p>7> € X and [[7) € F] = f~'[F]* for every
F € Ba(X).

When we have a family (X;);er of spaces with product X, each of the X; being either Polish or compact,
and a (X, Ba(X))-measurable function f: Q — X, write ? for the P-name

{({(Fien D},

where f;(w) = f(w)(i) for w € @ and i € I; of course the subformula (f)lel must be interpreted in the
forcing language, as noted in the footnote to 2A(b-vi).

The content of 8Bb is now expressible by saying that if X is a Polish space and 2 is Dedekind complete,
@ is a P-name and E € P is such that E|-pé € X, then there is a measurable f : Q — X such that

=
Elfpz= f. )
Moving to 8Bc, we see that if & is a P-name such that |Fpd € [], ;7 X;, there is a (2, Ba(X))-measurable

iel
f: 2 — X such that |Fpd = ?
I should perhaps remark that if, in 8Ba, X is a non-metrizable compact space, then we can have

(3, Ba(X))-measurable functions f, g : & — X which are nowhere equal but for which 7) = ¢ because
FYHF]Ag™L[F] € T for every Baire set I C X. What we do have, for both Polish and compact X, is: if
FEeX\Zand f, g:Q — Ba(X) are (X, Ba)-measurable, then F |Fp ? =g iff E\(f7F]Ag~1[F]) € T for
every Baire set ' C X. PP Let hy, hy € C(Z; X) be the functions defined from the Boolean homomorphisms
7y, Tg : Ba(X) — 2, so that 7) —#t; =hyand g = h,. Now, for E € ¥\ Z,

Elfp f =G <= E*\(nF Am,F) =0 for every F € Ba(X)
(3H)
<« E\ (f'[F)Ag '[F]) € T for every F € Ba(X). Q

8D Representing names for sets Let (€2, 3,7) be a non-trivial measurable space with negligibles, and
P the associated forcing notion; let 2 be the quotient ¥/X NZ. Let (X;);cr be a family of Polish spaces

with product X, and W C Q x X. Write W for the P-name
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(F.E):E€S\T, f:Q— X is (X, Ba(X))-measurable,
EN{w: (w, f(w)) e W} €T},

defining the P-name ? as in 8C.

8E Theorem Let (€2,X%,7) be a non-trivial measurable space with negligibles, 2 be the quotient ¥/XNZ,
and P the associated forcing notion. Let (X;);c; be a family of Polish spaces with product X.
(a) If W € S®@Ba(X), then

e W € Ba([T,c; Xo)-
(b) Now suppose that (Q.3,7) is wi-saturated. Let W be a P-name such that
e W e Ba([];er XZ)
Then there is a W € ©®Ba(X) such that |Fp W = W.

proof (a) Let W be the family of those W € Y®Ba(X) such that
( ) for every (X, Ba(X))-measurable function f: Q — X, {w: (w, f(w)) € W} € &;

8) e W € Ba([Te; Xo)-

(i) The key fact is the following: if W € L®@Ba(X), f: Q — X is a (¥, Ba(X))-measurable function
and E ={w: (w, f(w)) € W} € &, then E* = ? 17/}]] P Since (if E ¢ T) ? E) ﬁ, we surely have

E|Fp ?eﬁ, E'g[[?eﬁ]].

?IM ? € I?]] \ E* is non-zero, then there must be an B’ € P and a g : Q — R such that E' |Fp g = ?,
(7,F) ¢ W and E/ \ E ¢ Z. In this case E' \ {w : (w,g(w)) € W} € Z. Because Z is generated by X\ Z,
there is an E” C E'\ F such that E” € ¥\ 7 and E” is disjoint from {w : (v, g(w)) ¢ W}. Now, however,
recall that as W € Y®Ba(X) there is a countable set J C I such that (w,z) € W whenever (w,y) € W,
r € X and z[J = y[J. Take ¢ € J and let f;, g; : Q@ — X; be the corresponding coordinates of f, g
respectively. Then
-
E"le fi = i,
so, for any open set G C X;, E" N (f; '[G]Ag; '[G]) € . As X; is second-countable, B N {w : fi(w) #
gi(w)} € Z. This is true for every i € J, so
B = B0 {w (0, 1(@) ¢ W, (@,9()) € W} C B0 Ueydw: fi(w) £ gi(w)} € T,
which is impossible. X So p =0 and E* = [ ? € W}]] Q°

(ii) I W € W then W’ = (Q x X)\ W belongs to W. P (a) If f: Q — X is (3, Ba(X))-measurable
then
{w:(w, fw) eW}=0\{w: (v, f(w)) e W} e
(8) Suppose that p € P and that z is a P—name such that p|pd € HleIX For each i € I let f; : Q — X;

be a measurable function such that p|lp fl = (%) (8B-8C). Setting f(w) = (fi(w))ier for w € Q, f is
(3, Ba(X))-measurable; set F = {w : (w, f(w)) € W}. Then

[T eW]=@\Ey=1\[F e W],

1 don’t know if it is clear what is going on here. If |Fp ? = 7, then, for each i € I, |Fp E) = g:; because X is second-
countable and Hausdorfl, f; = g; almost everywhere (that is, except on a set belonging to Z). But it does not at all follow that
f = g almost everywhere. The point of this argument is that because W is determined by coordinates in a countable subset of
I, we can ignore all the other coordinates.
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SO
=
I-p ? eW — ? ¢ W
and
=
plrie W « i¢ W.
As p and ¢ are arbitrary,
= - ~
e W' = (ies X0\ W € Ba([T,¢; X)- @

(iii) If (W,)nen is a sequence in W then W = J
(3, Ba(X))-measurable then

{w:(w, f(w) e W} =Upeniw : (w, f(w)) € Wy} € .
(B) If p € P and & is such that p|Fp & € [ ;7 X;, then, as before, there is a (2, Ba(X))-measurable function
f such that p|Fp& = ? Now

neny Wi belongs to W. P (o) If f 1 Q — X is

[7 € Wl={o: (@ /@) e W) = supl: (@ /() € Wa}*

:sggﬂ?Gﬁﬂ:ﬂ?EUneNﬁﬂ

and

=
plhpie W — &el, W

neN
as p and & are arbitrary,

e W = U,cx Wi € Ba([Le; Xi)- Q

(iv) Of course ) € W, so W is a o-subalgebra of S®Ba(X). If E€ %, j € I and G C X is open, then
W=Ex{x:2€X, x(j) € G} belongs to W. P (a) If f: Q2 — X is (¥, Ba(X))-measurable then

{wi(w fw)eW}=Enf[G]ez,
writing f;(w) = f(w)(j) as usual. (3) Let V be a P-name such that
[V="{x:2€[lic; X, 2(j) € G}] = E*,
[V=0]=(Q\E)".
We have

|-p X; is Polish, so G is a cozero set in X; and V' is a cozero set in [[,.; X;.

If f:Q— X is (2, Ba(X))-measurable, then
[7 e Wl=(En; G =EnlT () ed =17 VL
If p € P and & are such that pllpi € [[;c; X;, let f be a (¥, Ba(X))-measurable function such that
plrepd = ? Then
plreie W « pc[f € W]

<:>p§[[?€‘./]] = pleieV;

as p and & are arbitrary,
e W =V € Ba([T,e; X)) Q

(v) So W = Ba(X), as required.
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(b) Let us say that a P-name W is ‘representable’ if there is some W € ¥®Ba(X) such that |Fp W = W.
(i) () If W is a representable P-name and V is a P-name such that |FpV = (ILies X;)\ W, then V is
representable. B If |-p W = W then FeV = ((Q x X)\ W):>, as in (a-ii). Q
B I <Wn>neN is a sequence of representable names, and W is a P-name such that |Fe W = U Wi,
then W is representable. I See (a-iii). Q

neN

() If (W,,)nen is a sequence of representable names, and W is a P-name such that |- W = Mhen W,
then W is representable. B Put () and (3) together. Q

(ii) Let W be a P-name such that |Fp W C ]
(a) Suppose there are j € I, a € 2 and an open set G C X such that

a=[W={z:2()e G}, 1\a=[W=0].

Then W is representable. P Let F' € X be such that F* = a and set W = F x {z : 2(j) € G}. Then for
any (X, Ba(X))-measurable f: Q — X,

[7 e W= Fns6)r
—an[f, €Gl=17 W]
As f is arbitrary, 8Bc-8C show that |-p W = Iﬁ and W is representable. @
(B) Suppose there are j € I and a P-name G such that
e G is an open set in X; and W = {z : z(j) € G}.

zGI

Then W is representable. P Let (U,)nen run over a base for the topology of X;. For n € N set a,, =
[U. C G] and choose F,, € ¥ such that F? = a,. Set W,, = F,, x {z : 2(j) € U,} and W = J W,,; then

||_PG:U{0TL:”€N; UngG}?

neN

so
e W = Unengce (2 1 20) € U} = Upen War = W

and W is representable. Q

() Suppose that

|-p W is a basic open cylinder in [],.; X

Then W is representable. P Use () and (i-y). Q

(6) Suppose that

e W is a cozero set.
Then W is representable. P By 4Ag,
e X; is Polish for every i € I.
So
e W is the union of a sequence of basic open sets,

and we can use (i-0). Q

(€) Suppose that there is an a < wy such that

ke W € Baa(IT;e; Xo)-
Then W is representable. P Induce on «. Q
(iii) Finally, suppose that ||—1p=W is a Baire set. Because P is ccc, there is an a < w; such that

|Fe W € Bao([1;c; Xi), so W is representable, as required.
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8F Proposition Let ({2, X,7) be a measurable space with negligibles and [P the associated forcing notion.

Let (X;)icr be a family of Polish spaces and p a Baire probability measure on X = J],o; Xi; let 1 be a
corresponding P-name for a Baire probability measure on [, ; X, as in 6L. Take W € T®Ba(X) and define
W as in 8D. Set f(w) = pW[{w}] for w € Q. Then f: Q — [0,1] is T-measurable, so |Fp 7 € [0,1] (8C,
4Db). Now

FeaW = 7.

proof Use the method of the proof of 8Ea.

8G Liftings Let (2,3,7) be a measurable space with negligibles. A lifting for (Q,%,7) is a Boolean
homomorphism 6 : 2 — 3, where 2 = X /X NZ, such that a = (6a)* for every a € 2. Note that if (2,3, ) is
a complete o-finite measure space and N (u) is the null ideal of u, then (2, X, M () has a lifting (FREMLIN
02, §341); similarly, if W is a Baire topological space and M is the ideal of meager subsets of W, then
(W, l?(VV)7 M) has a lifting.

If 0 : A — X is a lifting, and Z is the Stone space of 2, we have a corresponding map h :  — Z defined
by saying that h(w)(a) = x(fa)(w) for w € Q and a € ; that is, writing @ for the open-and-closed subset of
Z corresponding to a € A, h=1[a] = fa.

If 0 : A — ¥ is a lifting, the lifting topology %y on 2 is the topology generated by the algebra 6[2].

A lifting 6 : A — ¥ is strong if for every E € X\ 7 there is a non-zero a € 2 such that fa C E. (See
FREMLIN 03, §453.)

8H Proposition Let (2,%,7) be a measurable space with negligibles and 6 : 2 — X a lifting, where
A = X/Z. Let Z be the Stone space of A, h : Q@ — Z the function associated with 6 and Ty the lifting
topology.

(a)(i) h is continuous for Ty and the usual topology of Z.
ii) If W C Z is a dense open set, h~![W] is dense for T.
iii) If M C Z is meager, h~'[M] is meager for Ty.
iv) h is (B(Q), B(Z))-measurable.
Suppose that (2, %,7) is complete and wq-saturated.
i) Ty C 2.
ii) Every Tg-meager set belongs to Z and B(Q) C 3. So h is (X, B(Z))-measurable.

(¢) Now suppose that (2, 3,7) is complete and wq-saturated, and that 6 is a strong lifting. Then 7 is the
ideal of Tp-nowhere-dense sets, and ¥ = B(Q).

(
(
(
(b)
(
(

proof (a)(i) This is immediate from the definition of Ty, since {a : a € A} is a base for the topology of Z.

(ii) If G € Ty is non-empty, there is a non-zero a € A such that @ C G. Now a is a non-empty open

subset of Z, so there is a non-zero b € 2 such that b C W nNa. In this case, 6b is a non-empty subset of
W NG. As G is arbitrary, h=[IW] is dense.

(iii)-(iv) follow immediately from (ii).

(b)(i) If F € Ty, set A= {a:60a C E}. Then A is upwards-directed; because 2 is ccc, there is a non-
decreasing sequence (an)nen in A such that ¢ = sup,,cy a, is also the supremum of A. Set £/ = J, oy 0an €
¥ then B/ C E = J,c40a C fc. But also (fc\ E')* = ¢\ sup, ey an = 0, so 0c\ E’ € T; because (Q,%,7)
is complete, E \ E’ and FE belong to X.

(ii) If F C Q is a nowhere dense closed set, then it belongs to Z. P Set a = F*. If b € A and 6bNF = (),
then anb = F*n(0b)* =0 and faNBb = 0; as F is closed, fa C F; as F is nowhere dense, a = 0 and F € Z.

Q
As 7 is a o-ideal, every meager set belongs to Z. Since Z C ¥ and Ty C 3, B(Q2) C X. By (a-iv), h is

(2, B(Z))-measurable.

_ (¢) If E € Z, consider its closure E for Ty. There can be no non-zero a € 2 such that fa C E \ E, so
E\E €7 and E € T; so there is no non-zero a such that fa C F and F is nowhere dense. If F is any
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member of ¥, set F' = 0E*; then EAF € Zso E € E(Q) With (b-ii) this shows that Z is just the ideal of
nowhere dense sets and 3 = B(Q).

81 Proposition Let (£2,3,7) be a complete wy-saturated measurable space with negligibles, and P the
associated forcing notion; suppose that 6 : 2l — ¥ is a lifting, where 2 = X/Z. Let X be a Hausdorff space,
and & a P-name such that |Fp# € X. Then there is a (3,UB(X))-measurable function g : @ — X such that
[ € F] = g~'[F]* for every F € UB(X).

proof Let Z be the Stone space of RO(P) 2 2, and h : Q — Z the function associated with 6 as in 8G-8H.
Let f € C(Z; X) be such that |Fp@ = f. Then h=1[Z\ dom f] € Z (put 8H(a-iii) and 8H(b-ii) together).
Let g : © — X be any function extending fh. If F € UB(X) then f~}[F] € B(Z) so h™[f~![F]] € ©
(putting 8H(a-iv) and 8H(b-ii) together). Now there is an a € 2 such that f~![F]Ad is meager, in which
case h™1[f~1[F]]Afa € T and

g F) = A F]) = a = [f € F] = [i € F,

as required.

9 Banach spaces

9A Theorem Let X be a normed space, P a forcing notion and Z the Stone space of P.
(a)
[Fe X, with its natural linear space structure and norm, is a normed space.
(b) Write X . for the dual of X with its weak* topology. Then we have a P-name for a bilinear duality
between X and (X .)" such that

w*

e (31F) = (91"

whenever g € C~(Z; X.) and f € C~(Z; X), writing (g]f)(z) = g(2)(f(2)) for z € dom f N dom g.
(c) Now

[Fe this duality identifies (X.)” with the normed space dual of X.

proof (a) The checks are straightforward; compare 4C. The algebraic operations are given by the formulae

befta=(/+0) . af = (af)”
for f, g € C7(Z;X) and a € C~(Z;R), setting (f + g)(z) = f(2) + g(z) for z € dom f N domg and
(af)(z) = a(2)f(2) for z € doma Ndom f. The norm is given by the formula
e L7 = 1£117,
where || f||(z) = || f(2)]| for z € dom f.

(b)(i) The first thing to check is that for any f € C7(Z;X) and g € C~(Z; X}.) there is a dense
Gs set Zy C dom f Ndom g such that (g|f)[Zo is continuous. P For n € N, set V,, = {2z : z € dompyg,

lg(2)[| < m}. Then V, is relatively closed in domg so Vi, \ int V,, is nowhere dense in Z; set Zy =
dom fNdomg\ U, ey Vi \int V. If 2o € Zp and € > 0, there is an n > 1 such that 2o € V}, so zp € int V.
Now

U={z:2€Z, | f(z) = f(z)ll <, 2z € int Vir, |g(2)(f(20)) = 9(20)(f (20))| < €}

is a neighbourhood of zg, and if z € U then

19(2)(f(2)) = 9(20)(f(20))| < l9(2)(f(2)) = 9(2)(f(20))] + |9(2)(f(20)) — 9(20)(f (20))]
<AlgIIIf(2) = F(z0)]| + € < 2e.

As zy and € are arbitrary, (g|f)[Zo is continuous. Q
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(ii) Consequently |Fp(g|f)” € R whenever g € C7(Z;X;-) and f € C™(Z;X). It is now easy to
check that the given formula defines a name for a bilinear duality between X and (X}.)".

(c)(i) Note first that we have a P-name for a norm on (X*.)" given by the formula

ke llgl = llgll™
whenever g € C7(Z; X;;.). P Fory € Q,set V,, = {z: z € dompg, ||g(2)|| <~}. If Zo = domg\ U, (V4 \
int V), Zp is a dense Gs set in Z and ||g||[ Zo is continuous, so |Fp |lg|” € R. The algebraic checks required

are now straightforward. Q
Similarly, it is now elementary that

e [(G12)] < [|9lll]] whenever & € X and § € (X;.)"

(ii) Next, let K C X . be the unit ball of X} .. Then
|Fp K is a balanced mid-convex set in the unit ball of (X7.)".
Also
e 2]l = sup, ¢ & (y[x) for every x € X.
P Suppose that p € P, v € Q and that & is a P-name such that
plFpd € X and ||&] >+

Let f € C~(Z;X) be such that p|Fpi = f. Take any z € pNdom f. Then | f(z)| > 7, So there is a
y € K such that y(f(z0)) > v. Let U be a neighbourhood of zy such that y(f(z)) > v for z € U Ndom f,
and let g stronger than p be such that ¢ C U, Then

alFe i€ K and (312) > 7.
As p, & and +y are arbitrary, we have the result. Q
(iii) We can also identify the topology of K:
|Fp the topology of K corresponds to the weak topology induced by the duality.

P (o) Let U be the family of sets of the form {y : y € K, y(z) < v} where z € X and v € Q. Then U
generates the topology of K so

“']P’Z:l generates the topology of K
(2A(d-i1)). Bt if U ={y : y € K, y(z) < v} then
FeU ={y:yeK, (yl&) <},
SO

|Fp every member of U is open for the weak duality topology on K, so the usual topology
on K is weaker than the duality topology.

(8) On the other hand, suppose that p € P and g, G are P-names such that
plFp G is an open subset of K for the duality topology and 3o € G.
Then there are a ¢ stronger than p, an n € N, g, ... ,v, € Q and P-names %, ... , &, such that
qlFpii € X foreach i <n and g € {y:y € K, (y|i#;) < i for every i} C G.
Let go € C~(Z;X}.) and fo,..., fn € C~(Z;X) be such that
q|Fpii = fi for each i and 5o = go.

Then ¢ C* {z : go(2)(fi(z)) is defined and less than ~; for each i < n}. We can therefore find an open set
U C K such that

agN{z:g0(z) €U, y(fi(z)) <~; forevery i <m and y € U}

is non-meager and essentially includes 7 for some r stronger than ¢. In this case,
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r “—]p Yo € Tj - G
As p, 99 and G are arbitrary,

|Fp every weakly open set in K is open for the usual topology of K, so the two topologies
coincide. Q

(iv) Since we know that
K is compact,
we have

|Fe K acts on X as a mid-convex norming subset of the unit ball of the dual of X, and is
compact in the corresponding weak™® topology, so acts as the unit ball of the dual of
X.

At the same time, |-p (X}5.)" = U, oy nK. It follows easily that
lFe (X%.)" acts on X as the dual of X.

9B Lemma Let X be a normed space, W a Cech-complete topological space, and ¢ : W — X a function
which is continuous for the weak topology of X. Then there is a comeager set W’ C W such that ¢ W’ is
continuous for the norm topology of X.

proof (a) For each n € N let W, be [J{G : G C W is open, diam ¢[G] < 27"}; set W' =
¢ W’ is norm-continuous.

nen Wn. Then

(b) ? Suppose, if possible, that W’ is not comeager in W. Then there is an n € N such that W,
is not dense. Express W as ﬂmeN H,, where (H,,)men is a sequence of dense open sets in a compact
Hausdorff space Z, and set V = Z \ W, so that V C Z is a non-empty open set and W NV is dense
in V. Choose (V5)secs; inductively, where S5 = J,,cn10,1}™, as follows. Vj = V. Given that V; is a
non-empty open subset of V', then V, N W is a non-empty relatively open subset of W disjoint from W,,, so
diam @[V, N W] > 27"; let x4, . be points of ¢p[W NV,] such that ||z, — z/| > 27"; let y, € X* be such
that ||ys || = 1 and |ys(z5) — Yo (xL)| > 27™; let Vong» and V,~ 15 be open subsets of V, such that

Vgrcis CVon Hy (o) for both 4,
Yo (6(2)) — yo (H(2"))] = 27™ for every z € W NV, ~ o> and 2’ € W NV~ 5.
Note that this ensures that ||¢(z) — ¢(2')|| > 2™ whenever z € W NV, ~_gs and 2’ € W NV~ 5.

At the end of the construction, we have ||¢p(z) — ¢(2’)|| > 27" whenever o, 7 € S; are incomparable,
ze€WnNV,and 2/ € WNV,. Set

K= mmEN Uae{o,l}m Vo,

so that K C W is compact. All the K NV, are compact and not empty, so we have a Radon probability
measure jio on W such that uo(K NV,) = 2-#() for every o € S5 (FREMLIN 03, 416K). Then p1 = pop~"
is a Radon measure on X for the weak topology on X (FREMLIN 03, 418I), and therefore also for the norm
topology of X (FREMLIN 03, 466A). Since p1¢[K]| = po¢~[p[K]] = 1, there is a norm-compact set L C ¢[K]
such that

0 <L = po¢~'[L] = po(K No~'[L]).

For m € N, set A, = {0 : 0 € {0,1}™, V, N K N¢~[L] # 0}. Then #(A,,) > 2™u;L. But note
that for each o € A,, there is an a, € ¢[K NV, N L], and that if o, ¢’ are distinct members of A,, then
las — ap]] > 27™. So L cannot be covered by fewer than 2™ uq L sets of diameter less than 27", As this is
true for every m, L is not totally bounded and cannot be norm-compact. X

(c) So W’ is comeager, as required.

9C Theorem Let X be a normed space, P a forcing notion and Z the Stone space of P. Write X, for
X endowed with its weak topology. Let ¢ : X — X, be the identity function, regarded as a continuous
function form the norm and weak topologies of X. Then
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Feé: X — X, is surjective,
&)
[Fe X, can be identified with X with its weak topology.
proof (a) If f € C~(Z; X,), then applying 9B to the Cech-complete space dom f we have a dense G4 set
Zy C dom f such that f]Zy belongs to C~(Z; X); now
ke f = ((f120)6)" = 6((£120)7) € SIX].
Thus |Fp ¢ is surjective.
(b) Now use the identification of X* in 9A.
(i) Suppose that p € P and that z, G are P-names such that
plFp G is an open subset of X in its weak topology and i € G.

Then there are a ¢ stronger than p, an n € N, rational numbers o, ... , Yn, Y0, - - - » V5, and P-names 9o, ... , Jn
such that

plFevo, . im € X*and & € {u:ue X, v < gilu) <~/ ¥Vi<n}Ca.
Using 9A, we have f € C~(Z; X) and go, ... ,g, € C~(Z; X} .) such that
glpi=fe{u:ueX, v <(@Glu)<yVi<n}CG

As in the proof of 9A, we can now use the norm-continuity of f and the weak*-continuity of the g; to see
that there are a weakly open subset G of X and an r stronger than ¢ such that

rlrefeGC{u:ue X, v < (§ilu) <7, Vi<n}, so & belongs to the interior of G in
the topology of X,,.
As p, @ and G are arbitrary,

|Fp the weak topology of X is coarser than the topology of X,,.

(ii) In the other direction, suppose that p € P and that &, G are P-names such that
plFe G is an open subset of X,, and i € G.
Then we have a ¢ stronger than p, a basic weakly open subset G of X and an f € C~(Z;X) such that
glFpi=Ff€GCG
Now there are an n € N, rational numbers Yo, ... , Yn, ¥, - - 5 V5 and Yo, ... ,yn € X* such that
G={z:zeX, v <y(z) <~ Vi<n}

So

qlFpie{u:ue X, v < (Jilu) <+, Vi<n} =G C G and i belongs to the interior of G

for the weak topology of X.

As before, this means that

|Fe the topology of X, is coarser than the weak topology of X, so the two coincide.

10 Examples

10A Souslin lines and random reals: Proposition Let X be a Souslin line, that is, a ccc Dedekind
complete totally ordered space such that every countable set is nowhere dense. Let P be a random forcing,
that is, P = ¥\ M(u), active downwards, for some semi-finite measure space (€, X, u), writing N (u) for the
null ideal of p. Then

[F# X is a Souslin line.
proof (a) By 4Da,
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|Fe X is totally ordered and Dedekind complete and its topology is its order topology.
By 5D,
[Fp X is ccc.

(b) As for separable subspaces of X, the fact we need is the following. If p € P has finite measure, and
& is a P-name such that p|lp € X, there is a nowhere dense closed set F C X such that plFpi € F. P
Let f € C7(Z;X) be such that p|fpi = f. pis the Stone space of the subspace measure on p so carries a
non-zero totally finite Radon measure v for which meager sets are negligible; in particular, v(pNdom f) > 0.
Consider the subspace measure v; on pNdom f; this is again a non-zero totally finite Radon measure. So the
image measure v (f]p) ! is a Radon measure on X. But the support of any Radon measure on X is nowhere
dense, so there is a nowhere dense closed set F' C X such that v(p\ f~1[F]) = 0, that is, p C* f~1[F] and

plrei € F. Q
_ Because every meager subset of X is nowhere dense, we see that whenever p € P has finite measure and
A is a P-name such that

p|Fp A is a countable subset of X,
there is a closed nowhere dense set F' C X such that
plFe ACF.
But we also know that
p|Fe F is closed and nowhere dense
(2B). As p and A are arbitrary (and y is semi-finite, so the elements of finite measure are dense in P),

|Fp countable subsets of X are nowhere dense, so X is a Souslin line.

10B Kunen’s compact L-space In KUNEN 81 there is an example of a non-separable hereditarily
Lindel6f chargeable compact Hausdorff space X, constructed with the aid of the continuum hypothesis; it
is not hard to show that the construction can be performed if we assume that the cofinality of the Lebesgue
null ideal is wy. This space has the additional property that it is expressible as the union of a non-decreasing
family (X¢)ecw, of compact metrizable subspaces. The following proposition shows that at least some
aspects of the construction can be carried over into contexts in which the cofinality of the Lebesgue null
ideal is large.

Proposition Let X be a hereditarily Lindel6f chargeable compact Hausdorff space, of density wy, in which
every separable subspace is metrizable, and P a forcing notion such that wy is a precaliber of P. (For instance,
P could be Fn,(I,{0,1}) for any set I.) Then

|Fe Xisa hereditarily Lindelof chargeable compact Hausdorff space, of uncountable den-
sity, in which every separable subspace is metrizable.

proof (a) By 4Ac, 4Aj and 5Ac,
|Fp X isa chargeable compact Hausdorff space of density at most w.
(b) Because d(X) = w; and X is first-countable, X is expressible as the union of a strictly increasing
family (X¢)e<w, of closed separable subspaces, all of which are metrizable. Now

IFe <X§>5<w1 is a strictly increasing family of compact metrizable subspaces of X

by 2Ad and 4Ae. The point here is that
”_PX = U§<w1 X&

P? Otherwise, we have a p € P and a P-name & such that

plei € X\ Uee,, Xe-
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Let Z be the Stone space of RO(P) and let f € C(Z;X) be such that p|pd = f. Then none of the closed
sets f1[X¢] can include p, so we have for each £ < w; a pg stronger than p such that pe N f~1[X¢] = 0.
But as wy is a precaliber of P there is a z € Z such that D = {{ : £ < w1, 2z € p¢} is uncountable, and now

f(2) ¢ UgeDX£ =X. XQ
(c) As P is cce, we have
|Fp w1 is uncountable;

consequently
|Fe every countable subset of X is included in some Xg, every separable subspace of X is
metrizable, and d(X) is the first uncountable cardinal.

(d) Next,
[Fe X is hereditarily ccc

by 5E. Now we have

|Fe X is hereditarily ccc and every separable subspace of X is hereditarily Lindelof, so X
is hereditarily Lindelof,

which completes the proof.

10C Example Let X C [0,1]2 be a Bernstein set. Let P be the partially ordered set of non-negligible
compact subsets of [0,1], active downwards, so that its regular open algebra is isomorphic to the measure
algebra of Lebesgue measure on [0,1]. Then X is connected but

|Fp X is not connected.
proof (a) If G and H are disjoint non-empty open subsets of X, then there are x € G, y € H and § > 0
such that the open balls U(x,§) and U(y,d) are disjoint and included in [0,1]?, and X N U(z,d6) C G,
XNU(y,6) C H. Express G, H as GoN X and Hy N X where Gg, Hy are disjoint open sets in [0, 1]2. Then

[0,1]2\ (Go U Hy) meets the line segment from z + w to y + w for every w € U(0, $4), so has cardinal ¢ and
must meet X; thus X 2 GU H. As G and H are arbitrary, X is connected.

(b) Every compact subset of X is countable, so 2Ag tells us that
Fe X = $[X].
(c) Consider the P-names

G={(#p):2€X,peP, m(r)>supp},

H={(#p):zeX,pecP mx) < infp},

where 7 : [0,1]2 — [0,1] is the first-coordinate map (recall that every member of P is actually a compact
non-empty subset of [0,1]). Then

e G is an open subset of X.

P Note that if (#,p) € G and ¢ is stronger than p, then (i,q) € G. Of course |Fp G C X. Suppose that
p € P and that & is a P-name such that p |Fp& € G. Then there are a ¢ stronger than p and an x € X such
that g|Fp4 = & and supg < m1(z). Set U ={y:y € X, supg < m1(y)}. Then

q|Fp U is an open neighbourhood of .

Now suppose that r is stronger than ¢ and that g is a P-name such that 7 |Fpy € U. In this case (by (b))
there are an s stronger than r and a y € X such that s|Fpy = §, in which case y € U, m1(y) > sup s and

srey=7€G.
As r and g are arbitrary,

qlFeU C G so & € int G;
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as p and & are arbitrary,
e G C int G and G is open. Q
Next,
e G is not empty.

P If p € P, there is a ¢ stronger than p such that sup ¢ < 1, so that if « is any member of X N ({1} x [0, 1])
then¢q|FpZ € G. Q
Similarly,

|Fe H is open and not empty.

(d) Of course
e GNH=.
Also
e GUH = X.
P Suppose that p € P and that ¢ is a P-name such that p|fpd € X. Then there are a q stronger than p

and an x € X such that g|Fpd = Z. Now one of ¢ N [0, (2)[, ¢ N]mi (), 1] is non-negligible and includes
an r € P; in which case (Z,r) belongs to one of G, H and

rlred=2€GUH.

As p and z are arbitrary, we have the result. Q
So G, H witness that

”—PX is not connected.

10D Example There are a path-connected separable metrizable space X and a forcing notion P such
that

|Fe X is not path-connected.

proof (a) I start with some general remarks about spaces of the type to be set up, so as to shorten the part
of the argument which must be done in the forcing language. Consider the following situation. X will be a
Hausdorff space expressed as Yy U X7 UY; U X5 where Yy, X1, Y7 and X5 are disjoint and not empty; Y, and
Y7 are open; X1, X5 and YoU X7 are closed; and X; and X5 are zero-dimensional. There will be a continuous
function ¢ : X; UY; — X7 such that ¢(z) = x for z € X3, and a continuous function ¢ : [0,1] — X such
that ¢(0) € Yy and ¢(1) € X». In this case, there will be a greatest to € [0, 1 such that ¢(to) € Yo U X1, and
a least t1 € ]tg, 1] such that ¢(t1) € Xa. For t € [to,t1], ¢(t) € X1 U Y7, so ¢¥¢] [to, t1] is continuous; as X
is totally disconnected, 1¢ is constant on [tg,t1[. Moreover, ¢(t1) = ¢(1). PP? Otherwise, there are to, t3
such that t; <ty < t3 <1, ¢(t2) and ¢(t3) are different points of X5, and ¢(t) € Y3 for to < t < t3. In this
case, ¥¢(t) is constant for ¢ € |ta, t3[; let x be the constant value, so that ¢(¢) belongs to the line segment
from x to a(x) for every t € |ta, t3[. But this means that ¢(t1) = a(z) = ¢(t2). XQ

(b) Now for the actual space X, which will be in the form considered above. X will be a subset of R3. X5
will be a subset of the line segment Ks from (—1,0,2) to (1,0,2) homeomorphic to the Cantor set. X; will
be a Bernstein subset of the line segment K7 from (0,—1,1) to (0,1,1). Take any bijection a : X7 — Xo; V1
will be the union of the open line segments from z to «(z) as « runs over X;. Now set yo = (0,0,0), and let
Yy be the set consisting of yo together with all the open line segments from ¥, to points of X;. If K is the
convex hull of K7 U Ko, we have a continuous function ¢ : K \ K3 — K given by saying that ¢y (z) =y
whenever y € K1, 3y’ € K5 and z lies on the line segment from y to y'. Set 1 = 1)o[ X1 UY7. Then it is easy
to check that X, Yy, X1, Y1, X2 and ¢ have the properties listed in (a). Evidently X is path-connected,
because every point of X belongs to a path ending in yo.

(c) This time, let p be an atomless Radon measure on X5, and let P be the partially ordered set of
non-negligible compact subsets of Xs. Putting 2A, 2C, 2D and 4B together we see that
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”—]pX is the disjoint union of }70, Xl, ?1 and XQ; %, }71 U Xz, }71, YO @] Xl @] Yl, Y1 @] X2
are open; Xo is zero-dimensional; ar}d 1 is a continuous function from X; UY7 to Xy
such that ¢ (x) = x for every x € Xj.

(d) Exactly as in 10C, we have
e ¢[X1] = X1
It follows that
|Fe X, is zero-dimensional.
PP Suppose that p € P and that z, U are P-names such that
p|Fep U is a relatively open set in X; and & € U.
Then there must be a g stronger than p, an x € X; and a relatively open set U C X7 such that
qlFpi=2cUCU.
So z € U. As X, is zero-dimensional, there is a partition (V1,V2) of X into relatively open sets such that
x € Vi CU. But now
qlFrz € Vi C U and V; is relatively open-and-closed in Xj.

As p, @ and U are arbitrary, we have the result. Q

(e) Let Z be the Stone space of the regular open algebra of P and f : Z — X5 the canonical map; then

||—pf€ X,. Note that if p € P then p is actually a compact subset of X, and p ||—]pf€ p. Let yo = (0,0,0)
be the apex of Yy. 7 If p € P is such that

p|Fe X is path-connected,

then there is a P-name qb such that

plFe ¢ is a continuous function from the unit interval to X, ¢(0) = gjo and ¢(1) = f.
Now (a) tells us that

p|Fe there are real numbers ty < ¢; and an x € X, such that @Z)gb(t) =gfortg <t<t

and §(t1) = f.

Let g stronger than p and x € X7 be such that

¢ |Fp there are real numbers to < t; such that ¢ (t) = & for to <t < t; and ¢(t;) = f

Now consider a(x) € X3. There is an r stronger than ¢ such that a(z) does not belong to the convex hull of
r, just because u is atomless. So we have disjoint convex relatively open sets Uy, Vy C K> such that » C Uy
and a(z) € V. In this case, the sets U = T'(Up U K1)\ K1, V =T(Vp U K1) \ K are disjoint relatively open
subsets of K, and UN X, VN X are disjoint open subsets of X including r and ¥ ~![{z}]\ {z} respectively.
So

FeVindg~'{z}] C (VNX)".
P Suppose that p’ € P and 3 is a P-name such that
P Feg € Y1 and d(y) = 7.
Then there is a g € C~(Z,Y1) such that p/ |Fpy = §, so that
P C*{z:zedomg, ¥g(z) =2} =g [VNX]

and o/ ey € (VN X)". Q
‘We have

r|Fe feU.
Now there must be rational numbers v, 7' such that v <+’ <1 and an s stronger than r such that
slFepé(t) e (UNX) for v <t <+, while ¢(v) € Y1 and p(y) =z € (VN X)".
But this is impossible, because
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|Fe (UNX)" is disjoint from (VN X) . X
So
[Fe X is not path-connected,

and we have the required example.

10E I do not know whether any other cardinal functions are preserved in the way that weight, w-weight
and density are. ‘Character’ is not, as the following example (due to A.Dow and G.Gruenhage) shows.

Example There are a first-countable compact Hausdorff space X and a forcing notion P such that

||—[p>)2' is not first-countable.

proof (a) Let S C w; be a stationary set such that wy \ S is also stationary. Let T be the tree consisting of
subsets of S which are closed in the order topology of wy, ordered by end-extension, so that p < ¢ iff there
is some « such that p = ¢ N a. Then #(T) = ¢, T has no uncountable branches and every element of T" has
more than one immediate successor, so there is a first-countable compact Hausdorff space X with a mw-base
V isomorphic to T inverted (TODORCEVIC 84, 9.13). Replacing each member of V by the interior of its
closure, if necessary, we can suppose that every member of V is a regular open set. For p € P let V,, be the
corresponding member of V. If we take the forcing notion P to be T itself, acting upwards, {[p,co[ : p € P}
is an order-dense subset of the regular open algebra RO(P), because T is separative. Now we have an
order-isomorphism between V and {[p,oo[ : p € P} matching V,, with [p, oo[ for every p, and this order-
isomorphism extends to a Boolean isomorphism between the Dedekind complete Boolean algebras RO(X)
and RO(P). We can therefore identify the Stone space Z of RO(P) with the projective cover (projective
resolution, absolute, Gleason space) of X, in the sense of MILL 84; and under this identification the regular
open subset V,, of X is matched with the open-and-closed subset p of Z, for each p € P.

(b) We need a special property of the partially ordered set T or P: if (A4, )nen is any sequence of maximal
up-antichains in T', there is a maximal up-antichain C refining every A,, in the sense that for every p € C'
and n € N there is a ¢ € A,, such that ¢, < p. P For each n € N set T,, = quAn [q,00[, so that T,
is a cofinal up-open subset of T; set Q = [, cyTn- T If Q is not cofinal with T, take py € T such that
Q N [po, 00 = 0. Let S’ be the set of non-zero limit ordinals belonging to S, so that S’ is stationary, and
for each a € S let (Yan)nen be a sequence in a with supremum «. For p € T, v < wy and n € N, let
q(p,7v,n) be a member of T, such that p < ¢(p,v,n) and q(p,7y,n) € 7. For each a € S’ define a sequence
(Pan)nen by saying that pao = po and pa,nt1 = ¢(Pan; Yan,n) for each n. Consider o' = sup(U,,cy Pan)-
{a'} U U, ey Pan is a closed subset of wy, but cannot belong to T', since if it did it would dominate every
DPan, SO belong to every T,, and we are supposing that there is no such member of T' greater than or equal
to pp. So o ¢ S, and, in particular, o’ # a. Since o’ > 7,y for every n, o’ > «, and there is a first n, € N
such that pg n,+1 € o.

By the Pressing-Down Lemma, there is a stationary set S; C S’ such that n, = ng = n* say for every «,
B € S1, and moreover v,; = g =] say for every a, 3 € 51 and ¢ < n*. It follows that p,; = pg; = p; say
for every i < n* and «, 8 € S;. But this means that ¢(p}., 7., n*) € « for every a € Si; which is absurd.
X

So @ is cofinal with T', and includes a maximal antichain C', which will have the property required. Q

(¢) Because Z can be identified with the projective cover of X, there is a canonical continuous surjection
f from Z onto X, defined by saying that f(z) € G whenever z € Z, G C X is a regular open set and
z belongs to the open-and-closed subset of Z corresponding to G. In particular, if p € P and V), is the
corresponding member of V, f(z) € V, for every z € p. In the language of this note, f belongs to the space
X defined from X and P and p|Fp f € (V)" for every p € P. Now

Fex(£, X) > w.
P? Suppose, if possible, otherwise. Then there are py € P and a P-name W such that
po |Fp W C ¥ is a countable base of neighbourhoods of f,

let (Up)nen be a sequence of P-names such that
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po |Fe U, € ¥ for every n and W = {U,, : n € N}.

For each n € N we have a maximal antichain A, in P and a family (Up,,)pea, in ¥ such that, for each
p € A, either p is incompatible with pg or p > po and p ||p U, = ~np. Let C be a maximal antichain in P
refining every A,; take any p € C such that p > pg, so that for each n € N there is a ¢, € A,, dominated by
p, and p |p U, = Uy, ,, for every n.

Now take two incompatible extensions p;, p2 of P and consider the corresponding members V,, , V,, of
V. These are non-empty disjoint open sets, and V is a w-base for a compact Hausdorff topology, so there
are V{, VJ € V such that W C Vp, for both j; if V] = V,.,, we have r; > p; for both j. Now

rlefe (V) cV, €%,

s0 there must be an 74 > 71 and an m € N such that 7} |-p U, C f/p].. But we have 1} > ¢, 50 7, |Fp Uy om C
Vp, and Uy, m C V,,. Similarly, there is an n € N such that U, , C V,,, so that Uy, ,m N Uy, n =0 and

e Uy, is disjoint from U, .
But we also have
plre £ € Ugpm NUgyn,
so this is impossible. X Q
(d) It follows at once that
|Fp X is not first-countable,
and we have the required example.

Remark In view of 4Da above, it is perhaps worth noting that the space X here can be thought of as a
totally ordered set with its order topology and is a Corson compact (see TODORCEVIC 84, 9.14). The same
phenomenon occurs if we start from a Souslin tree in place of the tree T here, and in this case we have a
ccc forcing notion P, at the cost of moving outside ZFC.

10F Example (A.Dow) If b = 0 = wy there are a forcing notion P and

(a) a countable Hausdorff space X of weight wy such that |Fpw(X) < #(w2);

(b) a compact Hausdorff space Y of m-weight wy such that |Fp7(Y) < #(w2).

proof (a)(i) Set X = [N]<“ with the topology ¥ defined by saying that U C X is open iff for every I € U
there is an n € N such that I U {m} € U for every m > n.

(ii) For f e NNV n € Nand K C n set
Ungg=4{I:1€X,INn=K and f(i) < j whenever i € I\ n, j € I and i < j}.

Then U,k s is open, and also closed. I In fact U, k¢ is closed for the coarser topology on X induced by the
usual topology of PN. Q

If F C NN is <*-cofinal with N, then {U,r; : f € F, K C n € N} is a base for T. P Suppose
that 7 € U € T. Let g : [N]* — N be such that J U {m} € U whenever J € U and m > g(J), and set
h(m) = max{g(J) : J C m+ 1} for m € N. Let f € F be such that h <* f, and take n such that I C n,
g(I) <nand h(m) < f(m) for every m >n. Then I € U,y CU. Q

So X is zero-dimensional.

(iii) w(X) = m(X) = 2. P By (aii), w(X) < 0. Now let V be a m-base for T of size 7(X); we
can suppose that V = {U,ks : K Cn € N, f € F} where F C NY and #(F) = 7(X). For f € F say
that f/(i) = max(f(i),i + 1) for every i. Take any g € NY. Then there are K, C n, € N and f, € F
such that Upgy D Un,k,f,- If i > ng, i < j and fy(i) < j then K, U {i,j} € Uy, k,s, s0 g(i) < j. Thus
g9(i) < max(i + 1, f,(@)) for every i > ng and g <* f;. As g is arbitrary, {f’: f € '} is <*-cofinal with NN
and 0 < #(F) =7(X). Q

(iv) Now suppose that b = 9 = wy and that P is the wy-Namba forcing notion (Al below). Then

e w(X) = m(X) = w.

D.H.FREMLIN



80 Ezxzamples 10F

P Let (fe)e<w, run over a cofinal family in NY such that fe <* f,, whenever £ <7 < ws. Set U = {Unky,
K CneN, £ <ws}, so that U is a base for T. Let A be a P-name such that

[Fe A is a countable cofinal subset of ws

(Proposition A4). Consider the P-name

V={(Unkse,p) : K CneN, £ <wp, plreé € A},
Then

[Fe V is a countable subset of <.
Now suppose that p € P and that I, G are P-names such that
p|Fe G is an open subset of X containing 1.
Because X is countable, there are a ¢ stronger than p, I € X, K Cn € N and £ < wy such that
qlbel=1C UanE CG
(I am using 2Ad). It follows that I € Upnky,. Now there are n < wp and r stronger than ¢ such that
rlkpé <neA.

Let m > n be such that fe(i) < f, () for every i > m; then I € Uy,ry, € Upnky,, S0

rlkpl=1¢ Unl[fn €V and ﬁmjf77 - Uang ayel
As p, I and G are arbitrary,

[Fe V is a base for the topology of X, so w(X) < w.
Since of course

|Fe X is infinite and Hausdorff,

Few(X) =7(X)=w. Q
(v) So, in the circumstances of (iv), we have a Hausdorff space X and a forcing notion P such that
w(X) = w(X) = we and
Fpw(X) =n(X) =w < wy = #(ws)
(using Corollary A3).
(b) Again suppose that b =0 = wy and that P is the we-Namba forcing notion.

(i) Let RO(X) be the regular open algebra of the topological space X described in (a). Then
m(RO(X)) = 7n(X) = wy. But
e m(RO(X)") = .
P By §3B,
[F» RO(X)™ is isomorphic to an order-dense subalgebra of RO(X), so 7(RO(X)") =
T(X)=w
((a-iv) above). Q

(ii) Let Y be the Stone space of RO(X). Then Y is a compact Hausdorff space and 7(Y') = 7(RO(X)) =
wo. But

|Fe Y is homeomorphic to the Stone space of RO(X)”
(Corollary 4B), so
Fem(Y) = n(RO(X)") = w.

Remark What these show are that in Theorem 5B, we cannot (at least, if we are looking for a theorem in
ZFC) omit the hypothesis that X is compact; and moreover that m-weight need not be preserved in the way

TOPOLOGICAL SPACES AFTER FORCING



10H 81

that weight is, even for compact spaces. In the next proposition, we shall see that the same thing happens
for density. By Theorem 5C, on the other hand, we have a positive result if the generalized continuum
hypothesis is true.

10G Proposition Suppose that there is a set A C R such that k = #(A) is a regular cardinal greater
than w; and every Lebesgue negligible subset of R meets A in a set of size less than k. (Such a set exists,
for instance, if there is a Sierpiniski set of size k = ws, or if Kk = m = ¢ > w;.) Let P be the xk-Namba forcing
notion (Al below).

(a) If 2 is the Lebesgue measure algebra, and A is its centering number, then

e d(@) = w < #00).
(b) If X is the Stone space of 2, then its density d(X) is A, but
e d(X) < #(N).

proof (a) Enumerate A as (t¢)e<r. Let 6 : A — X be a lifting, where X is the o-algebra of Lebesgue
measurable sets (FREMLIN 02, §341). For t € Rset Cy = {a : a € &, ¢t € 6(a)}, so that C, is a centered
subset of 2. Of course A > wy (FREMLIN 08, 524Ne, or otherwise).

Let B be a P-name such that

e B is a countable cofinal subset of .

Consider the P-name

D= {(Dt£+q,p) peP <k, plrée B, ye Q}.
Then

lF& D is a countable family of centered subsets of 9.
Also

FeUD =24\ {0}.
P Suppose that p € P and that a is a P-name such that
p|Fpa is a non-zero member of 2.

Then there are a ¢ stronger than p and an a € 2\ {0} such that ¢ |Fpa = a. Consider the non-negligible
measurable set 6(a). The set 6(a) + Q is a conegligible measurable set, so there is a {; < & such that
te € 0(a)+ Q for every £ > &. Now there are r stronger than ¢ and § > &, such that r |Fp& € B. Lety€Q
be such that t¢ ++ € 0(a), that is, a € D¢, 1. Then

rlpa=a€ Dy, 1y €D.

As p and a are arbitrary, we have the result. Q
So

e d() < w < wi = #(wr1) < #O).

(b) The Stone space of any Boolean algebra has density equal to the centering number of the algebra, so
we have d(X) = A\. Now

Fed(X) = d@) =w < #())
by Corollary 4B and (a) above.

10H Example Suppose that there is a weakly inaccessible cardinal §. Let X be a topological space such
that ¢(X) = sat(X) = 6. Let P be the Lévy collapsing order for § (KUNEN 80, VII.8.6). Then

e c(X) = w < #(0).
proof We know that
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|Fp 0 is the first uncountable cardinal
(KuNEN 80, VIL.8.8). ? Suppose, if possible, that
—|Fp X is ccc.

Then there are a p € P and a P-name g such that

plFeg is a function from @ to the family of non-empty open sets in X and g(£) Ng(n) =0
whenever £ < n < 6.

Now for each £ < 6 we have a p¢ € P, stronger than p, and a non-empty open set G¢ C X such that
pe e Ge € 9(9)-

Let I¢ C 6 x N be the domain of p¢; by the A-system lemma, there is a I' € [0]% such that (I¢)eer is a

A-system with root I say. Now there is a function ¢ : I — 6 such that I" = {£ : £ € T, pe[I = ¢} has

cardinal §. But now p¢ and p, are compatible for all £, n € I, so (G¢)¢er is disjoint and sat(X) > 6. X
So

e e(X) = o,

as required.

10I Examples (a) Let u be Dieudonné’s measure on X = wy, and P a forcing which collapses wy to w,
that is,

|Fp @1 is countable.
Note that as all the compact subsets of X are countable,
e X = ¢[X]
(2Ag). We still have a P-name i as defined in 6A, but since
IFpaX =1, a{€} =0 for every £ € X
there is no way to turn it into the name of a countably additive measure.

(b) Let X be the right-facing Sorgenfrey line and u Lebesgue measure, so that pu is a locally finite o-finite
quasi-Radon measure on X. Let P be simple Cohen forcing, expressed as the set of functions from finite
subsets of N to Z. Again define fi as in 6A. Again, every compact subset of X is countable, so

Fe X = [X].
Consider the P-name
g=A{((n, 277,27 (i + 1)]),p) : p € P, n € domp, p(n) = i},
where in the formula here the interval [27"i,27"(i + 1)] is of course to be interpreted in V¥. Then
IFe ig(n) = 2™ for every n € N, while X = MNnen Umsn 9(m).
So again we have

|Fr & has no extension to a measure on X.

10J Example (J.Hart, K.Kunen) Let X be the long line [0,w] with a top point added (that is, X is the
one-point compactification of wy x [0, 1] when this is given the order topology defined from the lexicographic
ordering). Then X is compact and Hausdorff and connected but not path-connected. If P is any forcing
which collapses w1, then
|Fe X is totally ordered, compact, connected and has countable weight, so is homeomorphic
to the unit interval, and in particular is path-connected.

10K Example (DZAMONJA & KUNEN 95) Let P be a well-pruned Souslin tree, active upwards. Then
there is a compact Hausdorff space X such that every Radon measure on X has metrizable support, but
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e X has a subspace homeomorphic to {0, 1}1.
In the language of FREMLIN 08, §533, Mahg(X) = {0,w} but

e Mahg (X) # {0,w}.

proof (a) I begin by noting that because P is ccc,

|Fp@: is uncountable.

(b) Let X be the set of functions  C P x {0,1} such that domz is a totally ordered subset of P and
p € domz whenever ¢ € domz and ¢ is stronger than p. Then X is a closed subset of P(P x {0,1}) with
its usual topology, so is a compact Hausdorff space. Now every Radon measure p on X has metrizable
support, so has countable Maharam type. I For p € P, set G, = {z : x € X, p € domz}. Then G, is an
open-and-closed subset of X, and G,, C G, whenever p is stronger than ¢ in P, while G, NG, = 0 if p and ¢
are incompatible in P. For € > 0, let A. be {p:p € P, uGp, > €}. Then A, is a subtree of P, and every level
of A is finite; consequently A, is countable. It follows that A = |J ., Ae is a countable subtree of P. Set
F=X\ Upep\A Gp; then F' is a closed conegligible subset of X, and includes the support of . However F'
is homeomorphic to a subset of P(A x {0,1}), so is metrizable. Q

Set

V=,ep((Z\D) x X)U(Z x x{z:z € X, p € domuz}.
Then V is a closed subset of Z x X, so
ke V is a closed subset of X.

(c) Let rank : P — wq be the rank function of P, and Z the Stone space of RO(PP). For ¢ < wy let He be
the open set

{z:x € X, otp(domz) > £} = {z : there is some p € dom x such that rankp > £},

and define a function ¢¢ : He — {0, 1} by saying that ¢¢(z) = 2(p) when p € domx and rankp = . Let ¢~5§
be the corresponding P-name for a function as defined in 2C. Because ¢¢ is continuous,

e &5 : Hg — {0,1} is continuous.
Note that
eV C He.

Plf feCZ;X),pePandpC*{z:(zf(z) € V}, let ¢ stronger than p be such that rankg > ¢
(remember that P is supposed to be well-pruned). If z € ¢ and (z, f(2)) € V, then ¢ € dom f(z) so

f(z) € He. Thus q|kpf€ He. Q
(d) We therefore have a P-name ¢ such that
lFpé: V — {0,1}*" is continuous and ¢(z)(£) = ¢¢(z) for every z € V and € < w;.
Now
e ¢ is surjective.

P Suppose that I € [w;]<* and w € {0,1}!. Let £ < w; be such that I C ¢, and set U = Upep rank p—¢ Ps SO
that U is a dense open subset of Z. For z € U define f(z) € X by saying that

dom f(2)={p:peP, z € p},
f(z)(p) =wn) if zepand rankp=n € 1,
=0if z € pand rankp ¢ I.
Then f: U — X is continuous so |Fp f € V, while
{Z : d)n(f(z)) = w(’?) for every 7 € I} 2 UpE]P’,rankpZ{p\
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is dense, so

—

2w C 6(f).
As w is arbitrary,

|Fe $[V] is dense in {0,1}*" and ¢ is surjective. Q

(e) Also
e ¢ is injective.
P Suppose that f, g € C(Z, X) and that p € P is such that
P {z: (2 f(2) €V, (2,9(2)) € V and f(2) # g(2)}-

Then there must be a (go,i9) € P x {0,1} and a ¢ stronger than p such that ¢ is included in one of
{z : (q0,%0) € f(2)}, {z : (qo,%0) € g(2)}, and is disjoint from the other; suppose it is included in the
former. Because {z : (7, f(z)) € V} is closed and essentially includes ¢, we have (z, f(z)) € V for every
z € q, and g, ¢o € dom f(z) for every z € q; accordingly gy is weaker than ¢. Similarly, for any z € g,
g € domg(z), so qo € domg(2); as (qo,%0) ¢ 9(2), 9(2)(q0) # f(2)(go). But this means that if £ = rank ¢
then ¢¢(f(2)) # ¢e(g(2)) for every z € ¢ and

ale de(F) # d¢(@) s0 3(f) # 6(9). Q
Putting these together,
e V is a subspace of X homeomorphic to {0, 1},

Remark I have gone to some trouble to express the ideas of DZAMONJA & KUNEN 95 in the language of
this note. Readers may find that the original version gives hints as to how the formulations here can be
related to other approaches to forcing; in particular, to models built from generic filters.

11 Possibilities

Here I collect some conjectures which look as if they might sometime be worth exploring.

11B Let X, Y be Hausdorff spaces, P a forcing notion and Z the Stone space of RO(P).
() If Zy C Z is comeager and h : Zy x X — Y is continuous, then

e A is a continuous function from X to Y.

11D Let X, Y be Hausdorff spaces and P a forcing notion.
(a) If R C X x Y is an usco-compact relation, then
Fe R € X x Y is usco-compact.
(b) If X is K-analytic then
e X is K-analytic.
(c) If X is analytic then
e X is analytic.

11G Let P be a forcing notion and Z the Stone space of its regular open algebra.
(a) If X is a K-analytic Hausdorff space, Y is a compact metrizable space and h is a P-name such that

|Fe h is a continuous function from X to Y,
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then there is a function h : X — Y such that
e h = h.

(b) If X is a K-analytic Hausdorff space, & < w; and E is a P-name such that
e E € Baa(X),
then there are a comeager set Zy C Z and a W € Ba,(Zy x X) such that
e B2 = 17,

12 Problems

12A Suppose that add N = k < add M, where A/, M are the Lebesgue null ideal and the ideal of
meager subsets of R. Then there is a family (E¢)e<, of Borel subsets of [0,1] such that A = {J,_, E¢ is
not Lebesgue measurable, therefore not universally Baire-property, by 1C. But if Z is any Polish space and
f:Z —0,1] is continuous, f~1[A] has the Baire property in Z (cf. MATHERON SOLECKI & ZELENY P05).

However, we can still ask: is there an example in ZFC of a Polish space X and a set A C X such that
f7YA] € B(Z) whenever Z is Polish and f : Z — X is continuous, but A ¢ UB(X)?

12B In Theorem 5C, is there a corresponding result for topological density, or for centering numbers of
Boolean algebras?

12C 1In Corollary 7C, do we have a converse? that is, can ¢ belong to a Baire class lower than the first
Baire class containing ¢?

12D In Theorem 61, what can can we do for non-Borel sets W C Z x X7 Maybe we can reach a class
closed under Souslin’s operation. What about arbitrary W € UB(Z x X)?

12E In Proposition 3F, are there any other natural classes of topological space for which 3Fb or 3Fc
will be valid? What about analytic Hausdorff spaces?

12F In Theorem 2G, can we characterize those V C Z x X for which |Fp V' is compact?

~

12G In Proposition 81, can we characterize those (X,UB(X))-measurable functions ¢ for which there is
a P-name i such that [& € F] = g~![F]* for every F € UB(X)?

12H In Theorem 4A, can we add .
if X is a Hausdorfl k-space, then |Fp X is a k-space,
if X is compact, Hausdorff and path-connected, then |Fp X is path-connected?

Acknowledgements Correspondence with A.Dow, G.Gruenhage and J.Pachl; conversations with M.R.Burke,
I.Farah, F.D.Tall, A.W.Miller, J.Hart, K.Kunen and S.Todorcevi¢; hospitality of M.R.Burke, the Fields In-
stitute and A.W.Miller.

Appendix: Namba forcing

For Example 10F we need a classic forcing notion. It is discussed at length in SHELAH 82. In FREMLIN
N86 I wrote out my own version of the following theorem, itself derived from notes taken by G.Gruenhage at a
lecture by M.Magidor. As FREMLIN N86 exists only as photocopies-of-photocopies-of-typescript I reproduce
the argument here with a different set of typos.
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A1l Let X be aset and Z a proper ideal of subsets of X. Consider the forcing notion P defined by saying
that P is the set of those p C UneN X" such that
oln € p whenever 0 € pand n € N
there is an element stem(p) of p such that for every o € p
either o C stem(p)
or stem(p) Co and {z: 0" <ax> € p} ¢ Z,
where, for 0 € X" and x € X, 07 <z> = o U {(n,x)} € X"T!; and that p is stronger than ¢ if p C ¢. T will
call this the (X,Z)-Namba forcing notion; when X = k is an infinite cardinal and Z = [k]<" I will call
it the k-Namba forcing notion.
Note that if p is stronger than ¢ then stem(p) D stem(q).

A2 Theorem Let X be a set, Z a proper ideal of subsets of X with additivity and saturation greater
than wy, and P the (X,Z)-Namba forcing notion. If S C w; is stationary then

[Fp S is stationary in @;.

Remark As for any forcing notion,
|Fp @1 is a non-zero limit ordinal.
We do not yet know that
|Fp @1 is a cardinal

(this will be considered in A3 below), so we need to say: if « is an ordinal, a subset A of « is ‘stationary’
if it meets every relatively closed subset of a which is cofinal with «. If « is a non-zero limit ordinal of
countable cofinality, this can happen only if sup(a \ A) < «, of course.

X™ set

Io ={7:7 €U,en X" and either 1 C o or o C 7}.

proof (a) For o € J, ¢y

Then I, € P and pN I, € P whenever o € p € P.

It will be convenient to fix here on a ladder system on wi, that is, a family (6({,n))¢eq,nen, Where Q
is the set of non-zero countable limit ordinals, such that (8(¢,n))nen is a strictly increasing sequence with
supremum ( for each ¢ € Q.

Suppose that p € P and that C is a P-name such that

plFeC is a closed cofinal subset of w;.

For each r € P stronger than p set C,. = {3 : 3 < wi, r|Fp3 € C}. Note that (a) C, is always a closed
subset of wy (8) C, C Cy if 77 is stronger than r () if r is stronger than p and o < wy then there is an 7’/
stronger than 7 such that C,» € a.

(b) Whenever ¢ is stronger than p and a < w; there is an r stronger than ¢ such that stem(r) = stem(q)
and C, € a. PP Set

s={stem(r):reP,rCq, C. £ a},

¢ ={o:0€q,0ln¢sfor every n € N}.

? If ¢* € P there is an r stronger than ¢* such that C, € «; but in this case stem(r) € ¢* N's. X So
q* ¢ P. Next, if o is a proper initial segment of stem(q), then o cannot be equal to stem(r) for any r stronger
than ¢, so o € ¢*; and o[n € s whenever o € s and n € N.

? If stem(q) ¢ s then stem(q) € ¢*. So there must be a o € ¢* such that stem(q) C o and {x : 0" <z> €
¢*} ={x: 07 <x> ¢ s} belongs to Z. In this case, A = {z : 07 <z> € ¢\ ¢*} does not belong to Z. For
each € A choose ¢, € P such that stem(g,) = 0”<z> and C, € . As addZ > wy, thereis a 8 < wy
such that B={z:2€ A, € Cy, \a} ¢I. Setr=J,.5q: Thenr € P and stem(r) = 0. If 7’ is stronger
than r there is some x € B such that r’ is compatible with g,., so there is an r” stronger than 7’ such that
e B € C; accordingly r|Fpf € C, 3 € C.\ @ and ¢ € 5. But o is supposed to belong to ¢* which is
disjoint from s. X
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So stem(q) € s, as claimed. Q

(c) Let R be the set of pairs (r, g) such that r € P is stronger than p and g : » — w; is such that
whenever stem(r) C o € r then g(o) € Crar,, g(0) < g(7) whenever 7 € r properly extends
o,and {z:07<z>€r, g(c"<z>) > a} ¢ T for every a < w;.
Then for any ¢ stronger than p there is a pair (r,g) € R such that r is stronger than ¢ and stem(r) = stem(q).
P Use (b) repeatedly, as follows. Set k = #(stem(q)) and take gy stronger than ¢ such that stem(gp) =
stem(q) and Cy, # 0; take g(o) € Cy, for initial segments o of stem(q).

Given that g, € P is stronger than g, stem(g,) = stem(gq) and that g(o) has been defined when o € ¢,
and #(c) < k + n, then for each o € g, N X*+" set

A, ={x:0"<z> € ¢, N XK1Y
Then A, ¢ T; let f, : A, — wy be such that f,(z) > g(o) for every 7 € A, and {z : x € A,, fr(x) > a} ¢ T
for every a < w;. For each 7 € ¢, N X**t"*! use (b) to find r, € P and g(7) such that stem(r,) = 7 and
g(1) € Cr. C frikan(T(k +n)). Now set gni1 = U{rr : 7 € ¢, N X¥T" 1Y Then g,11 € P, gny1 C aa,
Gn1 N XFFHL = ¢, 0 XF+HH1 stem(gn41) = stem(q), and g(7) € C,.. = Cy,,,n1. and g(7) > g(71k +n)
whenever 7 € g1 N X*THL,

So if we set r = [,,cy @n, We shall have r N Xkt — g, N Xk for every n, r € P is stronger than g,
stem(r) = stem(q) and 7 = domg. If stem(r) C o € r, and € A,, then g(c™<z>) > f,(x) > g(0), so
{z:07<a>¢er, glo™<x>) > a} ¢ T for every o < wy. Also g(7) € Cyy C C, if 7 is an initial segment of
stem(r) = stem(q), while for any other member of  we have g(7) € C,. C Cynr,. So we have a suitable 7.

Q

(d) Take (r,g) € R, and set k = #(stem(r)). For ¢ €  let W,4¢ be the set of those w € X" such that
wln € rand 0(¢,n) < g(wlk+n+1) < ¢ for every n € N. For o € r let Q,.4, be the set of those ¢ € Q such
that whenever h : |J,cy X™ — T is a function there is a w € W,.4¢ such that o C w and w(n) ¢ h(wln) for
n > #(o). Then

A= {x o7 <x> € r, < S Qr,g,o”“<ﬂi>}

does not belong to Z for any ¢ € Q,.4,. P? Otherwise, for each x € X \ A choose hy : |J,cn X" — T
such that there is no w € W,y such that c”<z> C w and w(n) ¢ hy(wln) for n > #(o) + 1. Define
h:U,en X" — T by setting

h(r)=Aif 1 =0,
= h,(7) if 7 properly extends o and z = 7(#(0)),
=0ifocZ .

As ¢ € Q,40, there is supposed to be a w € W,.g¢ such that 0 C w and w(n) ¢ h(w[n) for n > #(0); but in
this case, setting z = w(n) € X \ A, w ¢ hy(wln) for n > #(0) + 1. XQ
(e) Recall that we were given a stationary set S in the statement of the theorem. Take (r,g) € R. Then
S meets Q, g stem(r)- P Set k = #(stem(r)). Again because addZ > wy, there is an h: | J, oy X™ — Z such
that whenever ¢ € Q\ Q. g stem(r) there is no w € Wiy¢ such that stem(r) C w and w ¢ h(w[n) for n > k.
Choose (0v)veyy, ., wp SO that
op = stem(r),
whenever n € N, v € Wi, o, €7 N wi”” and a < wy, then oy~ o~ = o <z> for some z such
that = ¢ h(o,) and g(o, <z>) > a.
Because S is stationary, there is a ¢ € S N Q such that g(o,) < ¢ for every v € (J,cy¢" Set v, =
(0(¢,4))i<n for each n; then we have a w € X" such that wlk +n = o,,, for each n. Now

gwlk+n+1) =g(ov,,,) € C\vngi(n) S C\O(C,n)
for each n, so w € W4¢, while w(n) ¢ h(w[n) for n > k. By the choice of h, { must belong to 2, ¢ stem(r)-
Q

(f) If (r,g9) € R and S C wy is stationary, there is an r/, stronger than r, such that C,» NS is non-empty.
P Take ( € SN Qr,g,stem(r)- Set
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r'={o:stem(r) Co €r, (€ Qrgo} U {stem(r)[n:n e N}.
Then (d)-(e) tell us that ' € P. Also, setting k = #(stem(r)) as usual,
g<0) € CTOIU) - Cr’ﬂlg N C \ Q(Ca ’I’L)

whenever n € N and o € 7/ N X**+". Now if n € N and 7 is stronger than r’, there is an ry stronger than
r1 such that Cy, meets ¢\ 6((,n), that is, 72 |Fp C meets (¢ \ 6(¢,n))Y. So v’ |FpC meets (¢ \ 0(¢,n))Y. As
this is true for every n, and ¢’ |- C is closed, 7’ |Fp{ € C and ( € C,v N S. Q

(g) We are nearly home. For any ¢ stronger than p there are an (r,g) € R such that r is stronger than ¢
and an 1’ stronger than r such that C,» N S is non-empty, so surely 7’ |Fp S N C # 0. But this means that
plFpSNC #0. As p and C are arbitrary,

|Fe S is stationary,

as required.

A3 Corollary If X is a set, Z is a proper ideal of subsets of X which is ws-additive and not wy-saturated,
and P is the (X,Z)-Namba forcing notion, then

|Fpw; is a cardinal.

proof Take any stationary set S C wy such that w \ S is uncountable. Then
[Fpan \ S is cofinal with ©; and for every cofinal subset A of @y there is a ¢ € S such that
¢ =sup(¢NA).
But this implies that

”_]P cfwy 7é W,
SO

|Fp @1 is the first uncountable ordinal.

A4 Proposition If £ is an infinite cardinal and P is the xk-Namba forcing notion,

|Fp cfk = w.

proof Let f be the P-name

{((n,€),p) : p € P, n < #(stem(p)), stem(p)(n) = &}
Then

lFe f : w — & is a function and f[w] is cofinal with #}.
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