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Topological spaces after forcing

D.H.Fremlin

University of Essex, Colchester, England

I offer some notes on a general construction of topological spaces in forcing models.
I follow Kunen 80 in my treatment of forcing; in particular, for a forcing notion P, terms in

V P are subsets of V P × P. For other unexplained notation it is worth checking in Fremlin 02,
Fremlin 03 and Fremlin 08.
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1 Universally Baire-property sets

1A Definition Let X be a topological space. I will say that a set A ⊆ X is universally Baire-property
if f−1[A] has the Baire property in Z whenever Z is a Čech-complete completely regular Hausdorff space

and f : Z → X is a continuous function. Because the family B̂(Z) of subsets of Z with the Baire property

is always a σ-algebra closed under Souslin’s operation and including the Borel σ-algebra, the family UB̂(X)
of universally Baire-property subsets of X is a σ-algebra of subsets of X closed under Souslin’s operation
and including the Borel σ-algebra.
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2 Universally Baire-property sets 1B

1B Elementary facts Let X be a topological space.

(a) If Y is another topological space, h : X → Y is continuous and A ∈ UB̂(Y ) then h−1[A] ∈ UB̂(X).

(b)(i) If Y ⊆ X and A ∈ UB̂(X) then A ∩ Y ∈ UB̂(Y ).

(ii) If F ∈ UB̂(X) and A ∈ UB̂(F ) then A ∈ UB̂(X). PPP Let Z be a Čech-complete space and
f : Z → X a continuous function. Then there is an Gδ set W ⊆ f−1[F ] such that f−1[F ]\W is meager. Set
g = f↾W : W → F ; then g−1[A] has the Baire property in W , so is the intersection of W with a set which
has the Baire property in Z, and g−1[A] has the Baire property in Z. As f−1[A]△g−1[A] ⊆ f−1[F ] \W is
meager in Z, f−1[A] has the Baire property in Z. QQQ

(c) If 〈Xi〉i∈I is a countable family of topological spaces and Ai ∈ UB̂(Xi) for every i, then
∏

i∈I Ai ∈

UB̂(
∏

i∈I Xi).

(d) Suppose that A ⊆ X and that G is a family of open subsets of X, covering A, such that A∩G ∈ UB̂(X)

for every G ∈ G. Then A ∈ UB̂(X). PPP Let Z be a Čech-complete space and f : Z →
⋃
G a continuous

function. For each G ∈ G, A ∩G ∈ UB̂(
⋃

G) (by (b-i)), so f−1[A] ∩ f−1[G] = f−1[A ∩G] belongs to B̂(Z);

as {f−1[G] : G ∈ G} is an open cover of Z, f−1[A] ∈ B̂(Z). As Z and f are arbitrary, A ∈ UB̂(
⋃

G); by

(b-ii), A ∈ UB̂(X). QQQ

(e) If X is Čech-complete, then UB̂(X) ⊆ B̂(X).

1C Proposition If X is a Hausdorff space and A ∈ UB̂(X) then A is universally Radon-measurable in
X in the sense of Fremlin 03, 434E.

proof Let µ be a Radon probability measure on X and (Z, ν) the Stone space of the measure algebra of
µ. Let f be the canonical inverse-measure-preserving map from a conegligible open subset W of Z to X
(Fremlin 03, 416V). Then µ = νW f−1, where νW is the subspace measure on W , and f−1[A] has the Baire
property in W and Z, therefore is measured by ν.

1D Let X be a Hausdorff space such that every compact subset of X is scattered. Then UB̂(X) = PX.

proof Take any A ⊆ X. Let Z be a Čech-complete space and f : Z → X a continuous function. Set
W =

⋃
x∈X int f−1[{x}]. ??? If W is not dense in Z, express Z as

⋂
n∈N Hn where 〈Hn〉n∈N is a sequence

of dense open sets in a compact Hausdorff space Ẑ. Set V = Ẑ \W . Choose 〈Vσ〉σ∈S∗
2

and 〈Gσ〉σ∈S∗
2

as
follows, where S∗

2 =
⋃

n∈N{0, 1}
n. V∅ = V and G∅ = X. Given that Vσ is a non-empty open subset of V

and f [Z ∩ Vσ] ⊆ Gσ, then Vσ ∩ Z 6⊆ W , so f [Vσ ∩ Z] has more than one element; because X is Hausdorff,
there must be non-empty open subsets Gσa<0>, Gσa<1> of Gσ both meeting f [Z ∩ Vσ. Choose non-empty
open sets Vσa<0>, Vσa<1> ⊆ Vσ such that V σa<i> ⊆ Vσ ∩H#(σ) and f [Vσa<i> ⊆ Gσa<i> for both i.

At the end of the construction, set

V ′ =
⋂

n∈N

⋃
σ∈{0,1}n Vσ =

⋂
n∈N

⋃
σ∈{0,1}n V σ.

Then V ′ is a compact subset of Z, and we have a continuous surjection h : f [V ′] → {0, 1}N defined by saying
that σ ⊆ h(x) whenever σ ∈ S∗

2 and x ∈ Gσ. So f [V ′] ⊆ X is not scattered. XXX
So W is dense in Z, and if we set U =

⋃
x∈A int f−1[{x}] then U△f−1[A] is nowhere dense, so f−1[A] ∈

B̂(Z). As f and Z are arbitrary, A ∈ UB̂(X).

1E Theorem Let X be a compact Hausdorff space, and A ⊆ X. Then the following are equiveridical:

(i) A ∈ UB̂(X);

(ii) f−1[A] ∈ B̂(W ) whenever W is a topological space and f : W → X is continuous;

(iii) f−1[A] ∈ B̂(Z) whenever Z is an extremally disconnected compact Hausdorff space and f : Z → X
is continuous;

(iv) there are a compact Hausdorff space K and a continuous surjection f : K → X such that f−1[A] ∈

UB̂(K).
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1F 3

proof (ii)⇒(i)⇒(iii) are immediate from the definition of UB̂(X).

(iii)⇒(ii)(ααα) Let Z be the Stone space of the regular open algebra RO(W ) of W . Let E be the family
of sets U ⊆ W with nowhere dense boundaries; for U ∈ U write U∗ for the open-and-closed subset of Z
corresponding to intU ∈ RO(W ). Note that U 7→ U∗ : E → PZ is a Boolean homomorphism with range
the algebra of open-and-closed subsets of Z, and that E contains all open subsets of W ; also U∗ 6= ∅ if U is

a non-empty open subset of W , and E ⊆ B̂(W ). Set

g =
⋂

F⊆X is closed

(Z × F ) ∪ ((Z \ (f−1[F ])∗) ×X)

=
⋂

G⊆X is open

(Z × (X \G)) ∪ ((f−1[G])∗ ×X),

so that g is a closed subset of Z × X. Now for any z ∈ Z there is a unique x ∈ X such that (z, x) ∈ g.
PPP The set {F : F ⊆ X is closed, z ∈ (f−1[F ])∗} is a downwards-directed family of closed subsets of X so
has non-empty intersection, and if x belongs to this intersection then (z, x) ∈ g. If x0, x1 ∈ X are distinct
and z ∈ Z, there are closed sets F0, F1 ⊆ X such that x0 /∈ F0, x1 /∈ F1 and F0 ∪ F1 = X. In this case
Z = (f−1[F0])

∗ ∪ (f−1[F1])
∗. If z ∈ (f−1[Fi])

∗ then (z, xi) /∈ g. QQQ

(βββ) Thus g is a continuous function from Z to X. Now Z is an extremally disconnected compact

Hausdorff space, so g−1[A] ∈ B̂(Z); let E ∈ E be such that E∗△g−1[A] is disjoint from
⋂

n∈N Zn, where each
Zn is a dense open subset of Z. For each n ∈ N set Vn =

⋃
{U : U ⊆ W is open, U∗ ⊆ Zn}. Then Vn is

a dense open subset of W . PPP If U ⊆ W \ Zn is open, then U∗ ∩ Zn = ∅ so U∗ and U are empty. QQQ Now
intE \ f−1[A] is disjoint from

⋂
n∈N Vn. PPP??? If x ∈ intE ∩

⋂
n∈N Vn \ f−1[A], then consider {U∗ : U ⊆W is

open, x ∈ U}. This is a downwards-directed family of non-empty closed subsets of Z so there is a point z
in the intersection. In this case, z ∈ E∗ ∩

⋂
n∈N Zn so g(z) ∈ A and f(x) 6= g(z). Let G, H be disjoint open

subsets of X containing f(x), g(z) respectively; then z ∈ (f−1[G])∗ ∩ (f−1[H])∗, which is impossible. XXXQQQ

Similarly, int(W \ E) \ f−1[X \A] is disjoint from
⋂

n∈N Vn, so

E△f−1[A] ⊆ (E \ intE) ∪ (W \
⋂

n∈N Vn)

is meager, and f−1[A] ∈ B̂(W ), as required.

(i)⇒(iv) is trivial.

(iv)⇒(iii) Suppose that (iv) is true, that Z is a compact Hausdorff space and that g : Z → X is
continuous. Set

Q = {(x, z) : x ∈ X, z ∈ Z, f(x) = g(z)}.

Then Q is a compact subset of X × Z. Writing π1 : Q → X and π2 : Q → Z for the coordinate maps, we
have a continuous function h = fπ1 = gπ2 from Q to X. Note that π2 : Q→ Z is surjective because f is.

Let L ⊆ Q be a compact set such that π2↾L is an irreducible surjection (Fremlin 03, 4A2Gi). Set

B = L ∩ h−1[A] = L ∩ π−1
1 [f−1[A]]; then B ∈ B̂(L), by (i)⇒(ii) here applied to π1↾L. Express B as F△M

where F ⊆ L is closed and M ⊆ L is meager in L. Now π2[M ] is meager in Z. PPP??? If C ⊆ L is closed and
nowhere dense in L, but π2[C] is not nowhere dense in Z, there is a non-empty open H ⊆ π2[C]. In this
case, L ∩ π−1

2 [H] is relatively open and not empty, so cannot be included in C, and L′ = L \ (π−1
2 [H] \ C)

is a proper closed subset of L; but π2[L
′] = Z. XXX Thus π2[C] is nowhere dense in Z for any closed C ⊆ L

which is nowhere dense in L; it follows at once that π2[M ] is meager. QQQ

Accordingly

π2[B]△π2[F ] = π2[F△M ]△π2[F ] ⊆ π2[(F△M)△F ] = π2[M ]

is meager, and π2[B] ∈ B̂(Z). But π2[B] = g−1[A]. PPP If z ∈ g−1[A], there is an x ∈ X such that (x, z) ∈ L;
now h(x, z) = g(z) belongs to A, so (x, z) ∈ B and z ∈ π2[B]. On the other hand, if z ∈ π2[B], then there
is an x such that (x, z) ∈ B, and g(z) = h(x, z) ∈ A. QQQ

So g−1[A] ∈ B̂(Z). As Z and g are arbitrary, (iii) is true.
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4 Universally Baire-property sets 1F

1F Corollary (a) Let X be a topological space which is homeomorphic to a universally Baire-property
subset of some compact Hausdorff space, and W any topological space. Then any continuous function from

W to X is (B̂(W ),UB̂(X))-measurable.

(b) Let X be a locally compact Hausdorff space, and A ⊆ X a set such that f−1[A] ∈ B̂(Z) whenever Z

is an extremally disconnected compact Hausdorff space and f : Z → X is continuous. Then A ∈ UB̂(X).

proof (a) Suppose that X ∈ UB̂(X̂) where X̂ is a compact Hausdorff space. Let f : W → X be continuous,

and A ∈ UB̂(X). Then f can be regarded as a continuous function from W to X̂, and A ∈ UB̂(X̂), by

1B(b-ii). So 1E(i)⇒(ii) tells us that f−1[A] ∈ B̂(W ); as A is arbitrary, f is (B̂(W ),UB̂(X))-measurable.

(b) If G ⊆ X is a relatively compact open set, then A ∩G ∈ UB̂(G) by 1E(iii)⇒(i). So A ∩G ∈ UB̂(G)

(1B(b-i)); as G is arbitrary, A ∈ UB̂(X) (1Bd).

Remark Compare Jech 03, 32.21-32.24.

1G Proposition (a) Suppose that Z is a topological space, X is second-countable and f : Z → X is

B̂(Z)-measurable. Then there is a comeager Z1 ⊆ Z such that f↾Z1 is continuous.

(b) Suppose that X is a topological space, Y is a second-countable space and φ : X → Y is UB̂(X)-

measurable. Then φ is (UB̂(X),UB̂(Y ))-measurable.

proof (a) Kuratowski 66 32.II.

(b) Let A ∈ UB̂(Y ). Let Z be a Čech-complete space and f : Z → X a continuous function. Then f is

(B̂(Z),UB̂(X))-measurable, by the definition of UB̂(X), so φf : Z → Y is (B̂(Z)-measurable. By (i), there
is a commeager Z1 ⊆ Z such that φf↾Z1 is continuous; we may suppose that Z1 is a Gδ set, so that Z1 is
Čech-complete. In this case,

Z1 ∩ f−1[φ−1[A]] = (φf↾Z1)
−1[A] ∈ B̂(Z1)

and f−1[φ−1[A]] ∈ B̂(Z). As Z and f are arbitrary, φ−1[A] ∈ UB̂(X). AsA is arbitrary, φ is (UB̂(X),UB̂(Y ))-
measurable.

1H Lemma If W is a non-empty topological space, κ a cardinal and π(W ) ≤ κ, then κN (giving each
copy of κ the discrete topology) and W × κN have isomorphic regular open algebras.

proof (a) To begin with (down to the end of (g)), suppose that RO(W ) is atomless. Let 〈Uξ〉ξ<κ run over
a π-base U for the topology of W . Let P be the partially ordered set S∗

κ × S∗
2 , where S∗

I =
⋃

n∈N I
n; let T

be the topology of W × κN. Given σ ∈ S∗
κ define Qσ ⊆ S∗

2 and 〈Hστ 〉τ∈Qσ
by saying that

∅ ∈ Qσ and Hσ∅ = W ;
if τ ∈ Qσ and there is an i < n such that neither Hστ ∩ Uσ(i) nor Hστ \ Uσ(i) is empty,

take the first such i; put both τa<0> and τa<1> into Qσ; set Hσ,τa<1> = Hτ ∩ Uσ(i) and

Hσ,τa<0> = Hτ \ Uσ(i);
if there is no such i then no proper extension of τ belongs to Qσ.

Now set Q = {(σ, τ) : σ ∈ S∗
κ, τ ∈ Qσ} and f(σ, τ) = Hστ × {x : σ ⊆ x ∈ κN} for (σ, τ) ∈ Q.

(b) Every Qσ is finite; in fact #(τ) ≤ #(σ) whenever τ ∈ Qσ. If σ, σ′ ∈ S∗
κ and σ ⊆ σ′ then Qσ ⊆ Qσ′

and Hστ = Hσ′τ for every τ ∈ Qσ (induce on #(τ)). If σ ∈ S∗
κ then

⋃
{Hστ : τ ∈ Qσ is maximal} is dense

(induce on #(σ)).

(c) Q is cofinal with P . PPP Suppose that σ ∈ κn and τ ∈ {0, 1}m and (σ, τ) /∈ Q, Let τ ′ be the longest
initial segment of τ such that τ ′ ∈ Qσ; set l = #(τ) − #(τ ′). Because RO(W ) is atomless, we can find
V0, . . . , Vl, U

′
0, . . . , U

′
l−1 such that

V0 = Hσ,τ ′ ;

given that j < l and Vj ⊆ W is open and not empty, U ′
j ∈ U and neither Vj ∩ U ′

j nor Vj \ U ′
j

is empty;
if τ(m− l + j) = 1 then Vj+1 = Vj ∩ U

′
j ;

if τ(m− l + j) = 0 then Vj+1 = Vj \ U ′
j .

Topological spaces after forcing



1I 5

Let σ′ be an extension of σ to a member of κn+l such that Uσ′(n+j) = U ′
j for j < l. Then (σ′, τ) ∈ Q, with

Hσ′τ = Vl. QQQ

(d) If (σ, τ), (σ′, τ ′) ∈ Q and (σ, τ) ≤ (σ′, τ ′) then

f(σ, τ) = Hστ × {x : σ ⊆ x ∈ κN} ⊇ Hσ′τ × {x : σ′ ⊆ x ∈ κN}

⊇ Hσ′τ ′ × {x : σ′ ⊆ x ∈ κN} = f(σ′, τ ′).

So if (σ, τ), (σ′, τ ′) are upwards-compatible in Q, f(σ, τ) and f(σ′, τ ′) are downwards-compatible in T \ {∅},

(e) If (σ, τ), (σ′, τ ′) are upwards-incompatible in Q, f(σ, τ) and f(σ′, τ ′) are downwards-incompatible
in T \ {∅}, PPP Because Q is cofinal with P , (σ, τ) and (σ′, τ ′) are upwards-incompatible in P . If σ, σ′ are
upwards-incompatible in S∗

κ, then

f(σ, τ) ∩ f(σ′, τ ′) ⊆W × ({x : σ ⊆ x and σ′ ⊆ x}) = ∅.

If σ ⊆ σ′ then τ and τ ′ must be incompatible in S∗
2 ; let j be the least integer such that τ(j) 6= τ ′(j). Then

there must be an i < #(σ) such that one of Hστ , Hστ ′ = Hσ′τ ′ is included in Uσ(i) and the other is disjoint
from Uσ(i). So Hστ ∩Hσ′τ ′ = ∅ and again f(σ, τ) and f(σ′, τ ′) are disjoint. QQQ

(f) f [Q] is coinitial with T \ {∅}. PPP If U ⊆ W is open and not empty and σ ∈ S∗
κ, let τ be a maximal

member of Qσ such that Hστ ∩ U is not empty. Let U ′ be a member of U included in Hστ ∩ U such that
U ′ is not dense in Hστ . Let ξ < κ be such that U ′ = Uξ. Set σ′ = σaξ and τ ′ = τa<1>. Then (σ′, τ ′) ∈ Q
and

f(σ, τ) = U ′ × {x : σ′ ⊆ x} ⊆ U × {x : σ ⊆ x}. QQQ

(g) By Fremlin 08, 514R,

RO(κN) ∼= RO(κN × {0, 1}N ∼= RO↑(P ) ∼= RO↑(Q) ∼= RO↓(T \ {∅}) ∼= RO(W × κN).

(h) All this has been on the assumption that RO(W ) is atomless. For the general case, let V be the set

of atoms in RO(W ), and set W ′ = W \
⋃
V. Then RO(W ′) is atomless, so (a)-(g) tell us that if W ′ is not

empty, RO(W ′ × κN) is isomorphic to RO(κN), and

RO(W × κN) ∼= RO(W ′ × κN) ×
∏

V ∈V

RO(V × κN)

(taking the simple product of the Boolean algebras)

∼= RO(W ′ × κN) ×
∏

V ∈V

RO(κN) ∼= RO(κN)λ

(where λ = #(V) if W ′ 6= ∅, #(V ∪ {W ′}) otherwise)

∼= RO(λ× κN) ∼= RO(κN)

because λ ≤ c(W ) ≤ π(W ) ≤ κ. So we have the general result.

1I Lemma Let X be a metrizable space, κ an infinite cardinal, W a Čech-complete space with regular
open algebra isomorphic to that of κN, and f : W → X a continuous function. Then there are a dense Gδ

subset W ′ of W and continuous functions g : W ′ → κN and h : κN → X such that hg = f↾W ′; moreover,
we can choose g in such a way that it is surjective and g[F ] is not dense for any proper relatively closed set
F ⊆W ′.

proof Express W as
⋂

n∈N Hn where 〈Hn〉n∈N is a sequence of dense open sets in a compact Hausdorff space

Z. Then W is dense in Z, so RO(Z) ∼= RO(W ) ∼= RO(κN); set S∗
κ =

⋃
n∈N κ

n and let 〈Vσ〉σ∈S∗
κ

be a family

in RO(Z) corresponding to the family 〈{x : σ ⊆ x}〉σ∈S∗
κ

in RO(κN, so that {Vσ : σ ∈ S∗
κ} is order-dense

in RO(Z) and 〈Vσaξ〉ξ<κ is always a disjoint family of subsets of Vσ with union dense in Vσ. Because the
topology of Z is regular, {Vσ : σ ∈ S∗

κ} is a π-base for it. In particular, every non-empty open subset of Z
has saturation exactly κ+. Give X a metric ρ inducing its topology. Now, for each n ∈ N, choose a family

D.H.Fremlin



6 Universally Baire-property sets 1I

Vn of open subsets of Z, as follows. V0 = {Z} = {V∅}. Given that Vn is a disjoint family of non-empty
open subsets of Z with dense union, let V ′

n be the family of all non-empty open subsets V of Z such that
(α) there is a V ′ ∈ Vn such that V ⊆ V ′ ∩Hn (β) diam f [W ∩ Vn] ≤ 2−n. V ′

n is a π-base for the topology
of Z, so we can find a disjoint family Vn+1 ⊆ V ′

n such that (i) {V : V ∈ Vn+1, V ⊆ V ′} has cardinal κ for
every V ′ ∈ Vn (ii)

⋃
Vn+1 is dense in Z. Continue.

Of course we can now index each Vn as 〈V ′
σ〉σ∈κn in such a way that 〈V ′

σaξ
〉ξ<κ enumerates {V : V ∈ Vn+1,

V ⊆ V ′
σ} whenever σ ∈ κn. Since every member of Vn is included in Vσ for some σ ∈ κn,

⋃
n∈N Vn is a

π-base for the topology of Z. If α ∈ κN, then V ′
α↾n+1 ⊆ V ′

α↾n ∩ Hn for every n, so Kα =
⋂

n∈N V
′
α↾n is a

non-empty compact subset of W ; and

W ′ =
⋃

α∈κN Kα =
⋂

n∈N

⋃
Vn

is a dense Gδ subset of W . Define g : W ′ → κN by setting g(z) = α whenever z ∈ Kα. Then g is surjective,
and it is continuous because g(z)↾n is constant on each member of Vn. If F ⊂ W ′ is a proper relatively
closed set, there is a σ ∈ S∗

κ such that F ∩ V ′
σ = ∅, in which case g[F ] does not meet {α : σ ⊆ α ∈ κN} and

is not dense.
If α ∈ κN and z, z′ ∈ Kα, then the distance between f(z) and f(z′) must be zero, so we can define

h : κN → X by saying that h(α) = f(z) whenever z ∈ Kα. If α↾n = β↾n = σ, z ∈ Kα and z′ ∈ Kβ , then
both z and z′ belong to Vσ, so (if n ≥ 1)

ρ(h(α), h(β)) = ρ(f(z), f(z′)) ≤ 2−n+1.

This shows that h is continuous. And of course f↾W ′ = hg.

1J Lemma Let W be a topological space and Y a non-empty α-favourable topological space.
(a) If A ⊆W is such that A× Y is meager in W × Y , then A is meager in W .

(a) If A ⊆W is such that A× Y ∈ B̂(W × Y ), then A ∈ B̂(Y ).

proof (a) Let 〈Fn〉n∈N be a sequence of closed nowhere dense subsets of W × Y covering A × Y . Let
σ be a winning strategy for the second player in the Banach-Mazur game on Y . Choose 〈Gn〉n∈N and
〈〈HnG〉G∈Gn

〉n∈N inductively, as follows. The inductive hypothesis will be that

Gn is a disjoint family of open subsets of W with dense union;
Gn+1 refines Gn;
HnG is always a non-empty open subset of Y ;
if G0 ∈ G0, . . . , Gn+1 ∈ Gn+1 and G0 ⊇ . . . ⊇ Gn+1, then Hn+1,Gn+1

⊆ σ(H0G0
, . . . ,HnGn

).

Start by setting G0 = {W} and H0W = Y . For the inductive step, given G ∈ Gn, take Gi to be the unique
member of Gi including G for each i ≤ n, and set H∗

G = σ(H0G0
, . . . ,HnGn

), so that H∗
G is a non-empty

open subset of Y . Let UG be

{U : ∅ 6= U ⊆ G and there is a non-empty open V ⊆ H∗
G

such that (U × V ) ∩ Fn = ∅}.

Then
⋃
UG is dense in G so we have a disjoint family U ′

G in UG with union dense in G. Set Gn+1 =
⋃

G∈Gn
U ′

G;
for U ∈ Gn+1 choose Hn+1,U to be a non-empty open set in Y such that U ×Hn+1,U is disjoint from Fn and
Hn+1,U ⊆ H∗

G where G is the member of Gn including U . Continue.
At the end of the induction, W ′ =

⋂
n∈N

⋃
Gn is comeager in W . Now W ′ is disjoint from A. PPP???

Otherwise, take z ∈ W ′ ∩ A. Let 〈Gn〉n∈N be such that z ∈ Gn ∈ Gn for each n. Then G0 ⊇ G1 ⊇ . . .
so Hn+1,Gn+1

⊆ σ(H0G0
, . . . ,HnGn

) for each n. Because σ is a winning strategy, there is a point y ∈⋂
n∈N HnGn

. But now (z, y) ∈ Gn+1 ∩Hn+1,Gn+1
so (z, y) /∈ Fn for each n, and (z, y) ∈ (A× Y ) \

⋃
n∈N Fn;

which is impossible. XXXQQQ
So A must be meager.

(b) Let G be the family of those open subsets G of W such that for some non-empty H ⊆ Y , (A× Y ) ∩
(G×H) is meager. Then (a) tells us that A∩G is meager for every G ∈ G, so A∩

⋃
G is meager. Similarly,

if G′ is the family of open G ⊆ W such that ((W \ A) × Y ) ∩ (G×H) is meager for some non-empty open
H ⊆ Y ,

⋃
G′ \ A is meager. But as A× Y has the Baire property,

⋃
G ∪

⋃
G′ is dense, so A has the Baire

property.

Topological spaces after forcing
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1K Theorem (see Feng Magidor & Woodin 92, Theorem 2.1) Let X be a metrizable space and

A ⊆ X. Then A ∈ UB̂(X) iff whenever κ is a cardinal and f : κN → X is continuous, then f−1[A] ∈ B̂(κN).

proof Of course all the spaces κN are Čech-complete, so only one direction needs proof. Suppose that
f−1[A] has the Baire property whenever κ is a cardinal and f : κN → X is continuous.

(a) If W is a Čech-complete space with regular open algebra isomorphic to RO(κN), where κ is an infinite

cardinal, and f : W → X is continuous, then f−1[A] ∈ B̂(W ). PPP By 1I, there are a dense Gδ subset W ′ of
W and continuous functions g : W ′ → κN and h : κN → X such that hg = f↾W ′, g is surjective and g[F ]
is not dense for any proper relatively closed set F ⊆ W ′. Now W ′ ∩ f−1[A] = g−1[h−1[A]]. By hypothesis,
h−1[A] has the Baire property in κN. Now if H ⊆ κN is a dense open set, and G ⊆ W ′ is a non-empty
relatively open set, g[W ′ \ G] is not dense and H \ g[W ′ \ G] 6= ∅, that is, G ∩ g−1[H] is non-empty (as g
is surjective). As G is arbitrary, g−1[H] is dense. It follows that g−1[E] is comeager whenever E ⊆ κN is

comeager, and g−1[E] is meager whenever E is meager; consequently g−1[h−1[A]] ∈ B̂(W ′) ⊆ B̂(W ). So

f−1[A] ∈ B̂(W ). QQQ

(b) If W is any Čech-complete space and f : W → X is continuous, then f−1[A] ∈ B̂(W ). PPP Let
κ ≥ π(W ) be an infinite cardinal. Then RO(W × κN) ∼= RO(κN), by 1H, while W × RO(κN) is Čech-
complete. Set g(z, α) = f(z) for z ∈ W , α ∈ κN. Then g−1[A] has the Baire property, by (a). But
g−1[A] = f−1[A] × κN, so f−1[A] has the Baire property, by 1J. QQQ

So A ∈ UB̂(X), as claimed.

2 Basic theory

2A Hausdorff spaces after forcing Let (X,T) be a Hausdorff space and P a forcing notion.

(a) Let Z be the Stone space of the regular open algebra RO(P) of P; in this context I will interpret
Boolean truth values [[φ]] directly as open-and-closed sets in Z. For p ∈ P let p̂ ⊆ Z be the open-and-closed
set corresponding to the regular open set {q : if r is stronger than q then r is compatible with p}. For

subsets S, T of Z I will say that S ⊆∗ T if S \ T is meager. Note that if S, T ∈ B̂(Z) and S 6⊆∗ T , then
there is a p ∈ P such that p̂ ⊆∗ S \ T . Let C−(Z;X) be the space of continuous functions from dense Gδ

subsets of Z to X.
For a function f ⊆ Z ×X let ~f be the P-name

{(ǧ, p) : g ∈ C−(Z;X), p ∈ P, p̂ ⊆∗ {z : z ∈ dom f ∩ dom g, f(z) = g(z)}};

for A ⊆ X let Ã be the P-name

{(~f, p) : f ∈ C−(Z;X), p ∈ P, p̂ ⊆∗ f−1[A]}.

Remark Note that the definitions of ~f and Ã involve the whole set X as well as the pair (P, Z) and the
sets f and A themselves.

It will be some time before I will discuss ~f for anything but functions in C−(Z;X) but I slip the general
formulation in here for future reference.

(b)(i) If f ⊆ Z ×X is a function, g ∈ C−(Z;X) and p ∈ P then p P ǧ ∈ ~f iff (ǧ, p) ∈ ~f . PPP If (ǧ, p) ∈ ~f

then of course p P ǧ ∈ ~f . If p P ǧ ∈ ~f and q is stronger than p, then there are r, q′, h such that

h ∈ C−(Z;X), (ȟ, q′) ∈ ~f , r is stronger than both q and q′, r P ȟ = ǧ;

that is, q′ is compatible with q, h = g and q̂′ ⊆∗ {z : z ∈ dom f ∩ dom g, f(z) = g(z)}. But this means that,
setting D = {z : z ∈ dom f ∩ dom g, f(z) = g(z)}, every non-empty open subset of p̂ includes a non-empty

open set meeting Z \D in a meager set, so p̂ \D is meager and (ǧ, p) ∈ ~f . QQQ

(ii) If f ⊆ Z×X is a function, g ∈ C−(Z;X) and p ∈ P then p P
~f = ~g iff p̂ ⊆∗ {z : z ∈ dom f∩dom g,

f(z) = g(z)}. PPP (α) If p̂ ⊆∗ {z : z ∈ dom f ∩ dom g, f(z) = g(z)}, (ȟ, q′) ∈ ~f and q is stronger than both p
and q′, then

D.H.Fremlin
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q̂ ⊆∗ {z : z ∈ dom f ∩ dom g, f(z) = g(z)} ∩ {z : z ∈ dom g ∩ domh, f(z) = h(z)}

⊆ {z : z ∈ dom g ∩ domh, h(z) = g(z)},

so (ȟ, q) ∈ ~g; the same applies with f and g exchanged so p P
~f = ~g. (β) If p P

~f = ~g and q is stronger

than p, then (ĝ, q) ∈ ~g and q P ǧ ∈ ~g = ~f so there are an r stronger than q such that r P ǧ ∈ ~f . By (i),

(ǧ, r) ∈ ~f and r̂ ⊆∗ {z : z ∈ dom f ∩ dom g, f(z) = g(z)}. As q is arbitrary, p̂ ⊆∗ {z : z ∈ dom f ∩ dom g,
f(z) = g(z)}. QQQ

(iii) If A ∈ UB̂(X), f ∈ C−(Z;X) and p ∈ P, then p P
~f ∈ Ã iff (~f, p) ∈ Ã. PPP If (~f, p) ∈ Ã then of

course p P
~f ∈ Ã. If (~f, p) /∈ Ã then p̂ 6⊆∗ f−1[A]. So there is a q, stronger than p, such that q̂ ∩ f−1[A] is

meager. If (~g, q′) ∈ Ã and r is stronger than both q′ and q then r̂ ∩ f−1[A] and r̂ \ g−1[A] are both meager,

so {z : z ∈ dom f ∩ dom g, f(z) 6= g(z)} is dense in r̂ and r 6 P
~f = ~g. So p 6 P

~f ∈ Ã. QQQ

(iv) Suppose that ∗ is one of the four Boolean operations ∪, ∩, \ and △. If A, B, C ∈ UB̂(X) and

A ∗B = C then P Ã ∗ B̃ = C̃. PPP If p ∈ P and ẋ is a P-name such that p P ẋ ∈ Ã∪ B̃ ∪ C̃, then there are

a q stronger than p and an f ∈ C−(Z;X) such that q P ẋ = ~f ; now

q P ẋ ∈ Ã ∗ B̃ ⇐⇒ q P
~f ∈ Ã ∗ B̃

⇐⇒ q̂ ⊆ [[~f ∈ Ã ∗ B̃]] = [[~f ∈ Ã]] ∗ [[~f ∈ B̃]]

⇐⇒ q̂ ⊆∗ (f−1[A] ∗ f−1[B])

⇐⇒ q̂ ⊆∗ f−1[A ∗B]

⇐⇒ q̂ ⊆∗ f−1[C]

⇐⇒ q P
~f ∈ C̃ ⇐⇒ q P ẋ ∈ C̃.

As p and ẋ are arbitrary, P Ã ∗ B̃ = C̃. QQQ

(v) Let 〈An〉n∈N be a sequence in UB̂(X) with union A. Then P Ã =
⋃

n∈N Ãn. PPP (α) If p ∈ P and

ẋ is a P-name such that p P ẋ ∈ Ã, then there are a q stronger than p and an f ∈ C−(Z;X) such that

q P ẋ = ~f ; now q̂ ⊆∗ f−1[A], while 〈f−1[An]〉n∈N is a sequence in the Baire-property algebra of Z with
union A; so there are an open subset H of Z and an n ∈ N such that H ⊆ q̂ and H ⊆∗ f−1[An]. Let r be
such that r̂ ⊆ H; then

r P ẋ = ~f ∈ Ãn.

As p and ẋ are arbitrary,

P Ã ⊆
⋃

n∈N Ãn.

(β) In the other direction, (iv) tells us that P Ãn ∩ Ã = Ãn for every n ∈ N, so that P

⋃
n∈N Ãn ⊆ Ã. QQQ

(vi) Let 〈Gi〉i∈I be a family in T with union G. Then

P G̃ =
⋃

i∈Ǐ G̃i.
1

PPP As in (v), we can use (iv) to see that

P

⋃
i∈Ǐ G̃i ⊆ G̃.

In the other direction, if p ∈ P and ẋ is a P-name such that p P ẋ ∈ G̃, let q ∈ P and f ∈ C−(Z;X) be

such that q is stronger than p and q P ẋ = ~f . Then q̂ \ f−1[G] is nowhere dense, so there is an i ∈ I such
that q̂ meets f−1[Gi]. As q̂ ∩ f−1[Gi] is relatively open in the comeager set dom f , there is an r stronger

than q such that r̂ ⊆∗ f−1[Gi] and r P ẋ ∈ G̃̌ı . As p and ẋ are arbitrary,

P G̃ ⊆
⋃

i∈Ǐ G̃i. QQQ

1There is something of an abuse of notation here. Strictly speaking, 〈Gi〉i∈I is a subset of I × T; now 〈G̃i〉i∈Ǐ is to be a

suitable P-name for a corresponding subset of Ǐ × T̃, e.g., {((̌ı , G̃i), 11) : i ∈ I}. See Fremlin 08, 5A3Eb.
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(vii) Suppose that A ∈ UB̂(X), p ∈ P and that ẋ is a P-name such that p P ẋ ∈ Ã. Then there is

an f ∈ C−(Z;A) such that p P ẋ = ~f . PPP Note first that there are surely a p0 stronger than p and an
f0 ∈ C−(Z;X) such that

p0 P ẋ = ~f0 ∈ Ã,

so that p̂0 ⊆∗ f−1[A] and A 6= ∅. Fix x0 ∈ A. Next, for every q stronger than p there are an r stronger

than q and an f ∈ C−(Z;X) such that r P
~f = ẋ ∈ Ã, so that r̂ ⊆∗ f−1[A]. We therefore have a maximal

antichain Q ⊆ P such that for every q ∈ Q

—– either q is stronger than p and we have a gq ∈ C−(Z;X) such that q P ẋ = ~gq

—– or q is incompatible with p, in which case take gq to be the constant function with domain
Z and value x0.

Now 〈q̂〉q∈Q is a disjoint family of open subsets of Z with dense union. For q ∈ Q, q̂ ⊆∗ g−1
q [A]; let Eq be a

dense Gδ-subset of q̂ included in g−1
q [A]. Set E =

⋃
q∈QEq; then E is a dense Gδ set in Z. Define f : E → A

by setting f(z) = gq(z) if z ∈ Eq; then f ∈ C−(Z;X) and P
~f ∈ Ã. Also

q P
~f = ~gq = ẋ

whenever q ∈ Q and q is stronger than p, so p P
~f = ẋ, as required. QQQ

(viii) If, in (vii), the set A is compact, then every member of C−(Z;A) will have a (unique) extension
to a member of C(Z;A), because Z is extremally disconnected; so we find that whenever p ∈ P and ẋ is a

P-name such that p P ẋ ∈ Ã, then there is an f ∈ C(Z;A) such that p P ẋ = ~f .

(c) Now set

T̃ = {(G̃, 11) : G ∈ T}.

Then

P T̃ is a topology base on X̃ and generates a Hausdorff topology on X̃.

PPP This is a first-order property so survives translation into the forcing language. More explicitly: suppose
that Ġ and Ḣ are P-names and p ∈ P is such that

p P Ġ, Ḣ ∈ T̃.

Then there are G, H ∈ T and q stronger than p such that

q P Ġ = G̃ and Ḣ = H̃.

In this case

q P G̃ ∩ H̃ = (G ∩H)
∼

∈ T̃

by (b-iv). As p, Ġ and Ḣ are arbitrary,

P T̃ is closed under ∩.

Of course

P X̃ ∈ T̃ and G ⊆ X̃ for every G ∈ T̃,

so

P T̃ is a topology base on X̃.

To see that we have a Hausdorff topology in V P, suppose that ẋ, ẏ are P-names and that p ∈ P is such
that

p P ẋ, ẏ ∈ X̃, ẋ 6= ẏ.

By (b-vii), we have f , g ∈ C−(Z;X) such that

p P ẋ = ~f , ẏ = ~g.

D.H.Fremlin
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Now p̂ ∩ {z : z ∈ dom f ∩ dom g, f(z) = g(z)} has the Baire property and does not essentially include any
open set, so

⋃
G,H∈T,G∩H=∅ p̂ ∩ f

−1[G] ∩ f−1[H]

is relatively comeager in the non-meager Gδ set p̂ ∩ dom f ∩ dom g, and there are disjoint G, H ∈ T such
that p̂ ∩ f−1[G] ∩ f−1[H] is non-meager. Let q, stronger than p, be such that q̂ ⊆∗ (f−1[G] ∩ f−1[H]); then

q P ẋ ∈ G̃ ∈ T̃, ẏ ∈ H̃ ∈ T̃ and G̃ ∩ H̃ = ∅.

As p, ẋ and ẏ are arbitrary,

P T̃ generates a Hausdorff topology on X̃. QQQ

(d)(i) It is perhaps worth noting explicitly that we can use any base for T to define the topology on X̃

in V P. If U is a base for T, set Ũ = {(Ũ , 11) : U ∈ U}. Then

P Ũ is a topology base on X̃ and generates the same topology as T̃.

PPP Suppose that p ∈ P and that U̇ and V̇ are such that

p P U̇ , V̇ ∈ Ũ .

Then there are a q stronger than p and U , V ∈ U such that

q P U̇ = Ũ and V̇ = Ṽ .

Set W = {W : W ∈ U , W ⊆ U ∩ V }; then U ∩ V =
⋃

W∈W W , so (b-iv) and (b-vi) tell us that

P Ũ ∩ Ṽ = (U ∩ V )
∼

=
⋃

W∈W̌ W̃ ,

and accordingly that

q P U̇ ∩ V̇ is a union of members of Ũ .

It is easy to check that

P

⋃
Ũ = X̃,

so

P Ũ is a topology base on X̃.

To check that we get the right topology, we surely have

P Ũ ⊆ T̃.

If p ∈ P and Ġ is a P-name such that p P Ġ ∈ T̃, there are a G ∈ T and a q stronger than p such that

q P Ġ = G̃. Setting W = {U : U ∈ U , U ⊆ G} we now have

q P Ġ = G̃ =
⋃

W∈W̌ W̃ ,

so

q P Ġ belongs to the topology generated by Ũ .

As p and Ġ are arbitrary,

q P the topology generated by T̃ is coarser than the topology generated by Ũ , so the two
are equal.

QQQ

(ii) Similarly, if U is any subbase for T, and we set Ũ = {(Ũ , 11) : U ∈ U}, then

P Ũ generates the same topology as T̃.

PPP Set V = {X} ∪ {U0 ∩ . . . ∩ Un : U0, . . . , Un ∈ U}. Then V is a base for T so

P Ṽ defines the right topology.

But it is easy to check that

Topological spaces after forcing
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P Ṽ = {X̃} ∪ {U0 ∩ . . . ∩Un : U0, . . . , Un ∈ Ũ}, so Ṽ and Ũ define the same topology. QQQ

(e) Using (b-iv), we see that

P F̃ is closed in X̃

whenever F ⊆ X is closed. Using (b-v), we see that

P Ẽ is Borel in X̃

whenever E ⊆ X is Borel. We also find that

P Ã is nowhere dense in X̃

whenever A ∈ UB̂(X) is nowhere dense in X. PPP Suppose that p ∈ P and Ġ is a P-name such that

p P Ġ is a non-empty open subset of X̃.

Then there are a q ∈ P, stronger than p, and a U ∈ T such that

q P Ũ is not empty and included in Ġ.

Let V ∈ T be not empty and included in U \A; then

q P ∅ 6= Ṽ ⊆ Ġ \ Ã.

As p and Ġ are arbitrary,

P if G ⊆ X̃ is a non-empty open set

then there is a non-empty open subset of G \ Ã,

that is,

P Ã is nowhere dense. QQQ

It follows that

P Ã is meager in X̃

whenever A ∈ UB̂(X) is meager in X (note that the meagerness of A can be witnessed by a sequence of
nowhere dense sets which are relatively closed in A, therefore universally Baire-property in X), and that

P Ã has the Baire property in X̃

whenever A ∈ UB̂(X) has the Baire property in X.

(f)(i) For x ∈ X, let ex ∈ C−(Z;X) be the constant function with domain Z and value x, and write x̃
for the P-name ~ex. Set

ϕ̇ = {((x̌, x̃), 11) : x ∈ X},

so that

P ϕ̇ is a function from X̌ to X̃.

Since P x̃ 6= ỹ whenever x, y ∈ X are distinct, P φ̇ is injective.

(ii) If A ∈ UB̂(X) then

P Ǎ = ϕ̇−1[Ã].

PPP If ẋ is a P-name and p ∈ P is such that p P ẋ ∈ X̌, then there are a q stronger than p and an x ∈ X
such that q P ẋ = x̌. In this case

q P ẋ ∈ Ǎ ⇐⇒ q P x̌ ∈ Ǎ

⇐⇒ x ∈ A

⇐⇒ q P x̃ ∈ Ã

(because e−1
x [A] = Z if x ∈ A, ∅ otherwise)
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⇐⇒ q P ϕ̇(x̌) ∈ Ã ⇐⇒ q P ϕ̇(ẋ) ∈ Ã

.

As p and ẋ are arbitrary,

P for every x ∈ X̌, x ∈ Ǎ iff φ̇(x) ∈ Ã. QQQ

(iii) Next, if D ⊆ X is dense,

P ϕ̇[Ď] is dense in X̃.

PPP Suppose that p ∈ P and that Ġ is a P-name such that

p P Ġ is a non-empty open set in X̃.

Then there are a q ∈ P, stronger than p, and f ∈ C−(Z;X), U ∈ T such that

q P
~f ∈ Ũ ⊆ Ġ.

As f−1[U ] is a dense Gδ set in the non-empty open-and-closed set q̂, U 6= ∅; take any x ∈ U ∩ D. Then

P x̃ ∈ Ũ , so

q P ϕ̇(x̌) ∈ Ũ ⊆ Ġ. QQQ

(g)(i) Suppose that every compact subset of X is scattered. Then, in the language of (f),

P X̃ = ϕ̇[X̌].

PPP??? Otherwise, there are a p ∈ P and a P-name ẋ such that

P ẋ ∈ X̃ \ ϕ̇[X̌].

Let f ∈ C−(Z;X) be such that p P ẋ = ~f . Let 〈Wn〉n∈N be a sequence of dense open sets in Z such
that dom f =

⋂
n∈N Wn. Set S∗

2 =
⋃

n∈N{0, 1}
n and choose 〈pσ〉σ∈S∗

2
and 〈Gσ〉σ∈S∗

2
inductively, as follows.

p∅ = p and G∅ = X. Given that σ ∈ S∗
2 , pσ ∈ P is stronger than p and Gσ is an open subset of X including

f [p̂σ], consider f↾p̂σ. Because

pσ P
~f /∈ ϕ̇[X̌],

there must be at least two points in f [p̂σ], and we can find disjoint open subsets Gσa<0> and Gσa<1> of
Gσ included in Gσ and both meeting f [p̂σ]. Now, for each i, p̂σ ∩ f−1[Gσa<i>] is a non-empty relatively
open subset of dom f , so we can find pσa<i>, stronger than pσ, such that dom f ∩ p̂σa<i> ⊆ f−1[Gσa<i>]
and p̂σa<i> ⊆Wn, where n = #(σ). Continue.

At the end of the induction, set K =
⋂

n∈N

⋃
σ∈{0,1}n p̂σ, so that K is a compact subset of dom f and

f [K] is a compact subset of X. For σ ∈ S∗
2 , set Kσ = K ∩ p̂σ, so that f [Kσ] = f [K] ∩ Gσ; in particular,

f [Kσ]∩ f [Kτ ] = ∅ if n ∈ N and σ, τ ∈ {0, 1}n are distinct. We therefore have a function h : f [K] → {0, 1}N

defined by saying that h(x)↾n = σ whenever n ∈ N, σ ∈ {0, 1}n and x ∈ f [Kσ], and h is a continuous
surjection from f [K] onto {0, 1}N, because hf(z) = y whenever y ∈ {0, 1}N and z ∈

⋂
n∈N p̂y↾n. So f [K] is

a non-scattered compact subset of X. XXXQQQ

(ii) In particular, if #(X) < c or X is discrete,

P X̃ = ϕ̇[X̌].

(iii) In fact, if X is discrete, then

P X̃ = ϕ̇[X̌] is discrete.

PPP Set U = {{x} : x ∈ X}. If p ∈ P and ẋ, U̇ are P-names such that p P U̇ ∈ Ũ , then there are

f ∈ C−(Z;X), q stronger than p and U ∈ U such that q P
~f = ẋ ∈ U̇ = Ũ . In this case,

q̂ ⊆∗ f−1[U ] = {z : z ∈ dom f , f(z) = ex(z)},

so
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q P ẋ = ~f = x̃ = ϕ̇(x̌).

As p, U̇ and ẋ are arbitrary, we have

P every non-empty member of Ũ is of the form {y} for some y ∈ ϕ̇[X̌].

Since U is a base for the topology of X we also have

P Ũ is a base for the topology of X̃;

putting these together, we have the result. QQQ

2B Closures and interiors In the context of 2A, suppose that A ∈ UB̂(X). Then

P int Ã = (intA)
∼

, Ã = ϕ̇[Ǎ] = Ã and ∂Ã = (∂A)
∼

,

where ∂A is the topological boundary of A. PPP From 2Ab and 2Ac we know that

P (intA)
∼

is an open subset of Ã, so (intA)
∼

⊆ int Ã.

Now suppose that p ∈ P and ẋ is a P-name such that

p P ẋ ∈ int Ã.

Then there are a q stronger than p, an f ∈ C−(Z;X) and an open set G ⊆ X such that

q P ẋ = ~f ∈ Ũ ⊆ Ã.

In this case U ⊆ A so U ⊆ intA and

q P ẋ = ~f ∈ (intA)
∼

.

As p and ẋ are arbitrary,

P every member of int Ã belongs to (intA)
∼

, so int Ã = (intA)
∼

.

Applying this to X \A, and using 2A(b-iv), we have

P Ã = Ã,

P ∂Ã = Ã \ int Ã = Ã \ (intA)
∼

= (A \ intA)
∼

= (∂A)
∼

.

As for ϕ̇[Ǎ], we have only to repeat the argument of 2A(f-iii). Suppose that p ∈ P and that Ġ is a P-name
such that

p P Ġ is an open set meeting Ã.

Then there are a q stronger than p and an open set G ⊆ X such that

q P G̃ ⊆ Ġ and G̃ ∩ Ã 6= ∅.

So there must be an x ∈ G ∩A, in which case

q P ϕ̇(x̌) ∈ Ġ, so Ġ meets ϕ̇[Ǎ].

As p and Ġ are arbitrary,

P Ã ⊆ ϕ̇[Ǎ] and ϕ̇[Ǎ] = Ã. QQQ

2C Continuous functions, among others Let P be a forcing notion, Z the Stone space of its regular
open algebra, (X,T) and (Y,S) Hausdorff spaces, and X̃, T̃, Ỹ and S̃ the P-names as defined in 2A. Let
φ ⊆ X × Y be a function.

(a) Let φ̃ be the P-name

{((~f,~g), p) : f ∈ C−(Z;X), g ∈ C−(Z;Y ), p ∈ P, p̂ ⊆∗ dom(g ∩ φf)}.
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(Here dom(g ∩ φf) = {z : z ∈ dom f ∩ dom g, g(z) = φf(z)}.2) Then

P φ̃ is a function from a subset of X̃ to Ỹ .

PPP Of course

P φ̃ ⊆ X̃ × Ỹ .

To see that φ̃ is a name for a function, suppose that p ∈ P and that ẋ, ẏ0 and ẏ1 are P-names such that

p P (ẋ, ẏ0) and (ẋ, ẏ1) belong to φ̃.

Then there are a q stronger than p, f0, f1 ∈ C−(Z;X) and g0, g1 ∈ C−(Z;Y ) such that

q P ẋ = ~f0 = ~f1, ẏ0 = ~g0, ẏ1 = ~g1

and

q̂ ⊆∗ dom(g0 ∩ φf0) ∩ dom(g1 ∩ φf1).

In this case,

q̂ ⊆∗ dom(f0 ∩ φf1) ⊆ dom(φf0 ∩ φf1),

so q̂ ⊆∗ dom(g0 ∩ g1) and

q P ẏ0 = ~g0 = ~g1 = ẏ1.

As p, ẋ, ẏ0 and ẏ1 are arbitrary,

P φ̃ is a function. QQQ

(b) Corresponding to 2A(b-vii), we have the following.

(i) If p ∈ P and ẋ, ẏ are P-names such that p P φ̃(ẋ) = ẏ, then there are f ∈ C−(Z;X) and
g ∈ C−(Z;Y ) such that

p P ẋ = ~f and ẏ = ~g,

p̂ ⊆ dom(g ∩ φf).

PPP Argue as in 2A(b-vii), but in place of pairs q, gq take triplets q, fq, gq such that, if q is stronger than p,
then

q P ẋ = ~fq and ẏ = ~gq,

q̂ ⊆∗ dom(gq ∩ φfq). QQQ

(ii) In fact, if p ∈ P and f ∈ C−(Z;X) and g ∈ C−(Z;Y ), then p P φ̃(~f) = ~g iff p̂ ⊆∗ dom(g∩φf). PPP

(α) If p̂ ⊆∗ dom(g∩φf) then ((~f,~g), p) ∈ φ̃ so surely p P (~f,~g) ∈ φ̃ and p P φ̃(~f) = ~g. (β) If p P φ̃(~f) = ~g
then (i) tells us that there are f1 ∈ C−(Z;X), g1 ∈ C−(Z;Y ) such that

p P
~f = ~f1 and ~g = ~g1,

p̂ ⊆∗ dom(g1 ∩ φf1.

But in this case

p̂ ⊆∗ dom(g1 ∩ φf1) ∩ dom(g ∩ g1) ∩ dom(f ∩ f1) ⊆ dom(g ∩ φf),

as required. QQQ

2There is an abuse of notation in the displayed formula. The subformula (~f,~g) must be interpreted in the forcing language,

so that instead of being the simple ordered pair {{~f}, {~f,~g}} it is {({(~f, 11)}, 11), ({(~f, 11), (~g, 11)}, 11)}, or (to make myself

quite clear) {{{{{{~f}, {~f, 11}}}}, {{{{~f}, {~f, 11}}}, 11}}, {{{{{~f}, {~f, 11}}, {{~g}, {~g, 11}}}}, {{{{~f}, {~f, 11}}, {{~g}, {~g, 11}}}, 11}}}.
See the remark following 5A3H in Fremlin 08.
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(c) Next, suppose that A ∈ UB̂(X), A ⊆ domφ, φ↾A is continuous and B ∈ UB̂(Y ). Then A ∩ φ−1[B] ∈

UB̂(X) and

P Ã ∩ φ̃−1[B̃] = (A ∩ φ−1[B])
∼

.

(In particular, P Ã ⊆ dom φ̃.) PPP (α) By 1B,

A ∩ φ−1[B] = (φ↾A)−1[B] ∈ UB̂(A) ⊆ UB̂(X).

(β) Suppose that p ∈ P and that ẋ is a P-name such that p P ẋ ∈ Ã ∩ φ̃−1[B̃]. Then there is a P-name ẏ

such that p P φ̃(ẋ) = ẏ ∈ B̃; let f ∈ C−(Z;X) and g ∈ C−(Z;Y ) be such that

p P ẋ = ~f and ẏ = ~g

and p̂ ⊆∗ dom(g ∩ φf). Then

p̂ \ {z : z ∈ dom f ∩ dom g, f(z) ∈ A, g(z) ∈ B, g(z) = φ(f(z))}

is meager, so p̂ ⊆∗ f−1[A ∩ φ−1[B]] and p P ẋ ∈ (A ∩ φ−1[B])
∼

. As p and ẋ are arbitrary,

P Ã ∩ φ̃−1[B̃] ⊆ (A ∩ φ−1[B])
∼

.

(γ) In the other direction, suppose that p ∈ P and ẋ are such that p P ẋ ∈ (A∩φ−1[B])
∼

. Let f ∈ C−1(Z;X)

be such that p P ẋ = ~f ; then p̂ ⊆∗ f−1[A∩φ−1[B]]. Let Z0 be a Gδ subset of p̂∩f−1[A] such that p̂ ⊆∗ Z0,
and let g : Z0 ∪ (Z \ p̂) → Y be such that g(z) = φf(z) for z ∈ Z0 and g is constant on Z \ p̂. Then
g ∈ C−(Z;Y ) and g(z) ∈ B whenever z ∈ Z0 ∩ f

−1[φ−1[B]] so

p P φ̃(~f) = ~g ∈ B̃

and

p P ẋ = ~f ∈ Ã ∩ φ̃−1[B̃].

As p and ẋ are arbitrary,

P Ã ∩ φ̃−1[B̃] ⊆ (A ∩ φ−1[B])
∼

.

(δ) Applying this with B = Y , we see that

P dom φ̃ = φ̃−1[Ỹ ] ⊇ Ã. QQQ

(d) If A ∈ UB̂(X), A ⊆ domφ and φ↾A is continuous, then

P φ̃↾Ã is continuous.

PPP Suppose that p ∈ P and that Ḣ is a P-name such that p P Ḣ ∈ S̃. Then there are a q stronger than p

and an H ∈ S such that q P Ḣ = H̃. Let G ∈ T be such that A ∩ φ−1[H] = A ∩G. Then (c) tells us that

q P Ã ∩ φ̃−1[Ḣ] = Ã ∩ φ̃−1[H̃] = (A ∩ φ−1[H])
∼

= (A ∩G)
∼

= Ã ∩ G̃ is relatively open in

Ã.

As p and Ḣ are arbitrary,

P Ã∩ φ̃−1[H] is relatively open in Ã for every H ∈ S̃, while S̃ is a base for the topology

of Ỹ , so φ̃↾Ã is continuous. QQQ

(e) If X0, X1, X2 are Hausdorff spaces and φ : X0 → X1, ψ : X1 → X2 are continuous functions, then

P (ψφ)
∼

= ψ̃φ̃.

PPP If p ∈ P and ẋ is a P-name such that p P ẋ ∈ X̃0, then let f ∈ C−(Z;X0) be such that p P ẋ = f̃ . Then

P φ̃(f̃) = (φf)
∼

, ψ̃(φ̃(f̃)) = (ψφf)
∼

= (ψφ)
∼

(f̃),

so

p P ψ̃(φ̃(ẋ)) = (ψφ)
∼

(ẋ).

As p and ẋ are arbitrary,
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P (ψφ)
∼

= ψ̃φ̃. QQQ

(f) If φ is injective, then

P φ̃ is injective.

PPP Suppose that p ∈ P and ẋ0, ẋ1 are such that

p P ẋ0, ẋ1 ∈ dom φ̃ and ẋ0 6= ẋ1.

Let f0, f1 ∈ C−(Z;X) and g0, g1 ∈ C−(Z;Y ) be such that

p P ẋ0 = ~f0 and ẋ1 = ~f1

and

p̂ ⊆∗ dom(g0 ∩ φf0) ∩ dom(g1 ∩ φf1).

Then the Gδ set p̂ ∩ dom(f0 ∩ f1) cannot essentially include any non-empty open set, so must be meager,
and

p̂ ⊆∗ dom(g0 ∩ φf0) ∩ dom(g1 ∩ φf1) \ dom(f0 ∩ f1) ⊆ (Z \ dom(g0 ∩ g1))

because φ is injective. Thus

p P φ̃(ẋ0) = φ̃(~f0) = ~g0 6= ~g1 = φ̃(ẋ1).

As p, ẋ0 and ẋ1 are arbitrary,

P φ̃ is injective. QQQ

(g) If φ is a homeomorphism between X and a set B ∈ UB̂(Y ), then

P φ̃ is a homeomorphism between X̃ and B̃.

PPP From (e), with A = X, together with (c) and (d), we know that

P φ̃ is an injective continuous function from X̃ to Ỹ .

Let G ⊆ X be any open set. Then G is expressible as φ−1[H] for some open H ⊆ Y , so

P G̃ = φ̃−1[H̃] is the inverse image of an open set.

If p ∈ P and Ġ is a P-name such that p P Ġ ∈ T̃, and q stronger than p and G ∈ T are such that q P Ġ = G̃,
then

q P Ġ is the inverse image of an open set.

As q is arbitrary,

p P Ġ is the inverse image of an open set.

As p and Ġ are arbitrary,

P every member of T̃ is the inverse image of an open set, so that X̃ is homeomorphic to

its image in Ỹ .

I still have to check that

P φ̃[X̃] = B̃.

But if p ∈ P and ẏ is a P-name such that p P ẏ ∈ B̃, there is a g ∈ C−(Z;B) such that p P ẏ = ~g; now
f = φ−1g belongs to C−(Z;X) and

P ẏ = ~g = φ̃(~f) ∈ φ̃[X̃].

As p and ẏ are arbitrary,

P φ̃[X̃] = B̃. QQQ

Topological spaces after forcing
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Remark The point of (e) here is that we can discuss subspace topologies without inhibitions, at least on

universally Baire-property sets. If we have a topological space Y and a set X ∈ UB̂(Y ), then the formula of
2Aa forces a formal distinction between the P-name

X̃ = {(~f, p) : f ∈ C−(Z;Y ), p ∈ P, p̂ ⊆∗ f−1[A]}

when X is regarded as a subset of Y , and the P-name

X̃ = {(~f, p) : f ∈ C−(Z;X), p ∈ P}

when X is regarded as a topological space in its own right; indeed the subformula ~f demands different
interpretations in the two cases. But the result just proved shows that for ordinary purposes we can expect
any theorem concerning the topology of X̃ to be indifferent to which interpretation is being used.

2D Lemma Suppose, in the context of 2C, that X = Y and we have a set A ∈ UB̂(X) such that φ(x) = x
for every x ∈ A. Then

P φ̃(x) = x for every x ∈ Ã.

proof Let p ∈ P and ẋ be a P-name such that p P ẋ ∈ Ã. Let q stronger than p and f , g ∈ C−(Z;X) be
such that

q P ẋ = ~f and φ̃(ẋ) = ~g

and q̂ ⊆ dom(g ∩ φf). Then

q̂ ⊆∗ dom(g ∩ φf) ∩ f−1[A] ⊆ dom(g ∩ f),

that is,

q P φ̃(ẋ) = ~g = ~f = ẋ.

This works for a set of q which covers p, so

p P φ̃(ẋ) = ẋ;

as p and ẋ are arbitrary, we have the result.

2E Alternative description of Borel sets Let P, Z and (X,T) be as in §2A.

(a) If Ġ is a P-name such that

P Ġ is an open set in X̃,

consider the open set

W =
⋃

G∈T
[[G̃ ⊆ Ġ]] ×G ⊆ Z ×X.

If Ė, Ġ and Ḣ are P-names such that

P Ġ and Ḣ are open subsets of X̃ and Ė = Ġ ∩ Ḣ,

and WĖ , WĠ and WḢ are the corresponding open subsets of Z × X, then WĖ = WĠ ∩WḢ . PPP We have

WĖ ⊆ WĠ just because [[G̃ ⊆ Ė]] ⊆ [[G̃ ⊆ Ġ]] for every open G ⊆ X. Similarly, WĖ ⊆ WĠ. Now suppose
that (z, x) ∈WĠ ∩WḢ . Then there are open G, H ⊆ X such that x ∈ G ∩H and

z ∈ [[G̃ ⊆ Ġ]] ∩ [[H̃ ⊆ Ḣ]] ⊆ [[(G̃ ∩ H̃) ⊆ Ġ ∩ Ḣ]] = [[(G ∩H)
∼

⊆ Ė]],

so (z, x) ∈WĖ . QQQ

In particular, P Ġ ∩ Ḣ = ∅ iff WĠ and WḢ are disjoint.

(b) For any W ⊆ Z ×X, let ~W be the P-name

{(~f, p) : f ∈ C−(Z;X), p ∈ P, p̂ ⊆∗ {z : (z, f(z)) ∈W}}.

(i) If Ġ is a P-name such that
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P Ġ is an open set in X̃,

WĠ is the corresponding open subset of Z ×X, p ∈ P and f ∈ C−(Z;X), then p P
~f ∈ Ġ iff (~f, p) ∈ ~WĠ.

PPP (i) If p P
~f ∈ Ġ, then for every q stronger than p there are an r stronger than q and a G ∈ T such that

r P
~f ∈ G̃ ⊆ Ġ. In this case r̂ ×G ⊆WĠ and

{z : z ∈ r̂ ∩ dom f , (z, f(z)) /∈W} ⊆ r̂ \ f−1[G]

is meager. As q is arbitrary, {z : z ∈ p̂ ∩ dom f , (z, f(z)) /∈ WĠ} is meager and p̂ ⊆∗ {z : (z, f(z)) ∈ WĠ}.
(ii) If p̂ ⊆∗ {z : z ∈ dom f , (z, f(z)) ∈ WĠ}, then for every q stronger than p there is a G ∈ T such that

q̂ ∩ [[G̃ ⊆ Ġ]] ∩ f−1[G] is non-meager (because the function z 7→ (z, f(z)) : dom f → Z ×X is continuous).

In this case there is an r stronger than q such that r̂ ⊆ [[G̃ ⊆ Ġ]] and r̂ ⊆∗ f−1[G], so that

r P
~f ∈ G̃ ⊆ Ġ.

As q is arbitrary, p P
~f ∈ Ġ. QQQ

(ii) Consequently

P
~WĠ = Ġ.

PPP (α) If p ∈ P and ẋ is a P-name such that p P ẋ ∈ Ġ, then there is an f ∈ C−(Z;X) such that p P ẋ = ~f ;

now (i) tells us that (~f, p) ∈ ~WĠ, so of course p P ẋ = ~f ∈ ~WĠ. As p and ẋ are arbitrary, P Ġ ⊆ ~WĠ. (β)

If p ∈ P and ẋ is a P-name such that p P ẋ ∈ ~WĠ, then there are a q stronger than p and an f ∈ C−(Z;X)

such that q P ẋ = ~f and (~f, q) ∈ ~Wġ. Now (i) tells us that q P ẋ = ~f ∈ Ġ. As p and ẋ are arbitrary,

P
~WĠ ⊆ Ġ. QQQ

(iii) Note that WX̃ = Z ×X and

P X̃ = (Z ×X)
→

.

(iv) Next, observe that if W ∈ UB̂(Z ×X) and f ∈ C−(Z;X), then

[[~f ∈ ~W ]]△{z : (z, f(z)) ∈W} is meager.

PPP Because z 7→ (z, f(z)) : dom f → Z × X is a continuous function from a Čech-complete space to a

Hausdorff space, {z : (z, f(z)) ∈W} ∈ B̂(dom f) ⊆ B̂(Z). Now, for p ∈ P,

p̂ ⊆∗ [[~f ∈ ~W ]] ⇐⇒ p P
~f ∈ ~W

⇐⇒ for every q stronger than p there is an r stronger than q

such that (~f, r) ∈ ~W

⇐⇒ for every q stronger than p there is an r stronger than q

such that r̂ ⊆∗ {z : (z, f(z)) ∈W}

⇐⇒ p̂ ⊆∗ {z : (z, f(z)) ∈W}.

As [[~f ∈ ~W ]] and {z : (z, f(z)) ∈ W} both have the Baire property, and {p̂ : p ∈ P} is a π-base for the
topology of Z, this is enough. QQQ

(c)(i) If p ∈ P, A ∈ UB̂(X) and p̂× A ⊆ W ∈ UB̂(Z ×X), then p P Ã ⊆ ~W . PPP If q is stronger than r

and ẋ is a P-name such that q P ẋ ∈ Ã, there is an f ∈ C−(Z;X) such that q P ẋ = ~f ; now

q̂ ⊆∗ p̂ ∩ f−1[A] ⊆ {z : (z, f(z)) ∈W},

so q P ẋ ∈ ~W . As q and ẋ are arbitrary, p P Ã ⊆ ~W . QQQ

(ii) If W ⊆ Z ×X is open, then

P
~W is open.

PPP Suppose that p ∈ P and that ẋ is a P-name such that p P ẋ ∈ ~W . Let f ∈ C−(Z;X) be such that

p P ẋ = ~f , so that p̂ ⊆∗ {z : (z, f(z)) ∈ W}. Take any z0 ∈ p̂ ∩ dom f such that (z0, f(z0)) ∈ W . Because
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W is open, there are a q stronger than p and an open set G ⊆ X such that (z0, f(z0)) ∈ q̂ ×G ⊆ W . Now
q̂∩ f−1[G] is non-empty and relatively open in the dense Gδ set dom f , so there is an r stronger than q such
that r̂ ⊆∗ f−1[G], that is,

r P ẋ = ~f ∈ G̃.

Also r̂ ×G ⊆W , so r P G̃ ⊆ ~W , by (i). Now

r P ẋ ∈ G̃ ⊆ ~W and ẋ ∈ int ~W .

As p and ẋ are arbitrary,

P
~W ⊆ int ~W and ~W is open. QQQ

(iii) If V ⊆ Z is open-and-closed, A ∈ UB̂(X) and W = V ×A, then

V = [[ ~W = Ã]], Z \ V = [[ ~W = ∅]].

PPP By (i), p P Ã ⊆ ~W whenever p̂ ⊆ V ; similarly, if p̂ ⊆ V , then

p P (X \A)̌ ⊆ ((Z ×X) \W )
→

.

But it is easy to see (cf. (d) below) that

P ((Z ×X) \W )
→

= X̃ \ ~W ,

while of course

P (X \A)
∼

= X̃ \ Ã,

so p P
~W = Ã whenever p̂ ⊆ V . And of course p P

~W = ∅ whenever p̂ ∩ V = ∅, since then p̂ is disjoint
from {z : (z, f(z)) ∈W} for every f ∈ C−(Z;X). So we have the result. QQQ

(d) (Compare 2A(b-iv).) If V1, V2 ∈ UB̂(Z ×X), * is any of the Boolean operations ∪, ∩, \ and △ and
W = V1 ∗ V2, then

P
~W = ~V1 ∗ ~V2.

PPP If p ∈ P and ẋ is a P-name such that p P ẋ ∈ ~W ∪ ~V1 ∪ ~V2, then there is an f ∈ C−(Z;X) such that

p P ẋ = ~f ; now

p P ẋ ∈ ~V1 ∗ ~V2 ⇐⇒ p P
~f ∈ ~V1 ∗ ~V2

⇐⇒ p̂ ⊆ [[~f ∈ ~V1 ∗ ~V2]] = [[~f ∈ ~V1]] ∗ [[~f ∈ ~V2]]

⇐⇒ p̂ ⊆∗ {z : (z, f(z)) ∈ V1} ∗ {z : (z, f(z)) ∈ V2}

⇐⇒ p̂ ⊆∗ {z : (z, f(z)) ∈W}} ⇐⇒ p P ẋ ∈ ~W.QQQ

(d) If 〈Vn〉n∈N is a sequence in UB̂(Z ×X) with union W , then P
~W =

⋃
n∈N

~Wn. PPP As in 2A(b-v). QQQ

(f) If 〈Wi〉i∈I is a family of open subsets of Z × X with union W , then P
~W =

⋃
i∈Ǐ

~Wi. PPP As in
2A(b-vi). QQQ

(g) It follows that if W ⊆ Z ×X is a Borel set, then P
~W is a Borel set in X̃. (Induce on the Borel

class of W .3)

(h)(i) Now suppose that p ∈ P, α < ω1 and that Ė is a P-name such that

p P Ė is a Borel subset of X̃ of class α.

3I am not sure that there is a standard definition of Borel classes in general topological spaces. One I like is in Holický &

Spurný 03, starting from B0(X) the algebra of subsets of X generated by the open sets. But you can pick your own for the
results here.
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Then there is a Borel set W ⊆ Z ×X of class α such that p P Ė = ~W . PPP Induce on α. QQQ

(ii) If p ∈ P and Ė is a P-name such that

p P Ė is a Borel subset of X̃,

then there is a W ∈ UB̂(X) such that p P Ė = ~W . PPP Let Q ⊆ P be a maximal antichain such that for

each q ∈ Q there is a Borel set Wq ⊆ Z × X such that q P Ė = ~Wq. By (i), Q is dense subject to p, so
W =

⋃
q∈QWq ∩ (q̂ ×X) will work. QQQ

(iii) If P is ccc, p ∈ P and Ė is a P-name such that

p P Ė is a Borel set in X̃,

then there is a Borel set W ⊆ Z ×X such that p P Ė = ~W . PPP As (ii), but noting that Q is countable so
W is Borel. QQQ

(i) If W ⊆ Z ×X is open then

P
~W = ~W .

PPP Because W ⊆W and W is closed,

P
~W ⊆ ~W and ~W is closed,

so

P
~W ⊆ ~W .

In the other direction, suppose that p ∈ P and that Ġ is a P-name such that

p P Ġ is an open set meeting ~W .

Then there are a q stronger than p and an open G ⊆ X such that

q P G̃ ⊆ Ġ and G̃ ∩ ~W 6= ∅.

Now

q P G̃ = (q̂ ×G)
→

,

so

q P (W ∩ (q̂ ×G))
→

= ~W ∩ G̃ 6= ∅,

and W meets the open set q̂×G. So W also meets this, and there are r stronger than q and an x ∈ G such
that r̂ × {x} ⊆W . But now

r P x̃ ∈ ~W ∩ G̃ ⊆ ~W ∩ Ġ, so Ġ meets ~W .

As p and Ġ are arbitrary,

P every open set meeting ~W meets ~W , so ~W ⊆ ~W . QQQ

2F Convergent sequences: Lemma Suppose that P is a forcing notion, Z the Stone space of its regular
open algebra, and X a Hausdorff space. Suppose that 〈fn〉n∈N is a sequence in C−(Z;X) and f ∈ C−(Z;X),
p ∈ P are such that

p̂ ⊆∗ {z : f(z) = limn→∞ fn(z) in X}.

Then

p P
~f = limn→∞

~fn in X̃.

proof Suppose that q is stronger than p and that Ġ is a P-name such that

q P Ġ is an open subset of X̃ containing ~f .
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Then there are r stronger than q and an open G ⊆ X such that

r P
~f ∈ G̃ ⊆ Ġ.

Set

W = {z : z ∈ dom f ∩
⋂

n∈N dom fn, limn→∞ fn(z) = f(z) ∈ G};

then r̂ ⊆∗ W . Now

W ⊆
⋃

n∈N

⋂
i≥n f

−1
i [G],

so there is an n ∈ N such that r̂ ∩
⋂

i≥n f
−1
i [G] is non-meager and there is an s stronger than r such that

ŝ ⊆∗
⋂

i≥n f
−1
i [G], that is,

s P
~fi ∈ G̃ ⊆ Ġ for every i ≥ n.

As q and Ġ are arbitrary,

p P limn→∞
~fn = ~f .

2G Supplementing the descriptions of open and closed sets in 2E, we have the following description of
at least some names for compact sets.

Theorem Let X be a Hausdorff space and P a forcing notion, with Stone space Z. If Z0 ⊆ Z is comeager
and V ⊆ Z0 ×X is an usco-compact relation in Z0 ×X, then, in the language of 2E,

P
~V is compact in X̃.

proof Let Ḟ be a P-name and p ∈ P such that

p P Ḟ is an ultrafilter on X̃ containing ~V .

(a) Set

W =
⋃

G⊆X is open [[G̃ /∈ Ḟ ]] ×G.

Then W ⊆ Z × X is open. If z ∈ Z0 ∩ p̂ then V [{z}] 6⊆ W [{z}]. PPP??? Otherwise, because V [{z}] is

compact, there are open sets G0, . . . , Gn ⊆ X such that z ∈ [[G̃i /∈ Ḟ ]] for each i and V [{z}] ⊆
⋃

i≤nGi. Set

G =
⋃

i≤nGi and U = p̂ ∩ [[G̃ /∈ Ḟ ]]; then

P G̃ =
⋃

i≤n G̃i,

so

U = p̂ ∩ infi≤n [[G̃i /∈ Ḟ ]] = p̂ ∩
⋂

i≤n [[G̃i /∈ Ḟ ]]

contains z. Now V is usco-compact, so Z0 ∩ p̂∩U ∩ {z′ : V [{z′}] ⊆ G} is an open neighbourhood of z in Z0

and includes q̂ ∩ Z0 for some q stronger than p. Now

q P
~V ⊆ G̃ /∈ Ḟ ,

which is impossible. XXXQQQ

(b) If z ∈ Z0 ∩ p̂ there is exactly one f0(z) such that (z, f0(z)) ∈ V \W . PPP By (a), there is at least one
such point. ??? If (z, x) and (z, y) belong to V \W and x 6= y, let G, H ⊆ X be open sets containing x, y

respectively. Then P G̃ ∩ H̃ = ∅ so

[[G̃ /∈ Ḟ ]] ∪ [[H̃ /∈ Ḟ ]] ⊇ p̂.

But z cannot belong to either of these sets. XXXQQQ

(c) f0 : Z0 ∩ p̂→ X is continuous. PPP The graph of f0 is a closed subset of V so is itself an usco-compact
relation. QQQ
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(d) Let f ∈ C−(Z;X) be a function extending f0. Since (z, f(z)) ∈ V for every z ∈ p̂ ∩ Z0, p P
~f ∈ ~V .

Also

p P Ḟ → ~f .

PPP Let q stronger than p and a P-name Ġ be such that

q P Ġ is an open set containing ~f .

Then there are an r stronger than q and an open G ⊆ X such that

r P
~f ∈ G̃ ⊆ Ġ.

Now r ⊆∗ f−1[G], so there is an s stronger than r such that Z0∩ ŝ ⊆ f−1[G]; so f(z) ∈ G for every z ∈ Z0∩ ŝ
and [[G̃ /∈ Ḟ ]] does not meet ŝ, that is, s P G̃ ∈ Ḟ . But this means that

s P Ġ ∈ Ḟ .

As q and Ġ are arbitrary,

p P every open set containing ~f belongs to Ḟ ,

that is,

p P
~f = lim Ḟ . QQQ

(e) As p and Ḟ are arbitrary,

P every ultrafilter on X̃ containing ~V has a limit in ~V , and ~V is compact.

2H Theorem Let X be a Hausdorff space, P a forcing notion and Z its Stone space. Set S =
⋃

n≥1 Nn

and let 〈Wσ〉σ∈S be a Souslin scheme in UB̂(Z ×X) with kernel W . Then

P
~W is the kernel of the Souslin scheme 〈 ~Wσ〉σ∈S .

proof (a) Suppose that p ∈ P and that ẋ is a P-name such that p P ẋ ∈ ~W . Let f ∈ C−(Z;X) be such

that p P
~f = ẋ. Then p̂ ⊆∗ {z : (z, f(z)) ∈W}.

For σ ∈ S∗ =
⋃

n∈N Nn set

W ′
σ =

⋃
σ⊆α∈NN

⋂
n≥1Wα↾n ∈ UB̂(Z ×X).

Choose open-and-closed sets Vσ in Z so that

V∅ = Z,

and for every σ ∈ S∗

〈Vσa<i>〉i∈N is a disjoint sequence of subsets of Vσ with union dense in Vσ,

p̂ ∩ Vσ ⊆∗ {z : (z, f(z)) ∈W ′
σ}.

Then we have a P-name α̇ such that

P α̇ ∈ NN and [[σ ⊆ α̇]] = Vσ for every σ ∈ S∗.

Now, for every n ∈ N,

[[~f ∈ ~Wα̇↾n]] = sup
σ∈Nn

[[σ ⊆ α̇]] ∩ [[~f ∈ ~Wσ]]

⊇ sup
σ∈Nn

Vσ ∩ p̂ ∩ Vσ = p̂,

so

P ẋ = ~f ∈
⋂

n∈N
~Wα̇↾n and ẋ belongs to the kernel of 〈 ~Wσ〉σ∈S .

(b) Suppose that p ∈ P and that ẋ is a P-name such that
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p P ẋ is in the kernel of the Souslin scheme 〈 ~Wσ〉σ∈S .

Let f ∈ C−(Z;X) be such that p P ẋ = ~f , and for σ ∈ S∗ set

Vσ = [[~f ∈ ~Wσ]] ∩ [[~f belongs to the kernel of the Souslin scheme 〈 ~Wσaτ 〉τ∈S ]].

Then p̂ ⊆ V∅. Set

M =
⋃

σ∈S∗

(Vσ \
⋃

n∈N

Vσan) ∪
⋃

σ∈S

(Vσ \ {z : (z, f(z)) ∈Wσ}),

so that M is meager. For z ∈ p̂ \ M , there is an α ∈ NN such that z ∈ Vα↾n for every n, and now

(z, f(z)) ∈Wα↾n for every n, so (z, f(z)) ∈W . But this means that p Pẋ = ~f ∈ ~W .

2I Corollary If 〈Aσ〉σ∈S is a Souslin scheme in UB̂(X) with kernel A, then

P Ã is the kernel of 〈Ãσ〉σ∈S .

proof Apply 2H with Wσ = Z ×Aσ.

2J Finding the Boolean value [[ ~W 6= ∅]] Let X be a Hausdorff space, P a forcing notion and Z its

Stone space. We have straightforward formulae for [[f̃ = g̃]] and [[f̃ ∈ ~W ]] when f , g ∈ C−(Z;X) and

W ∈ UB̂(Z ×X). We do not have such elementary methods for finding [[ ~W = ~V ]] = [[(W△V )
→

= ∅]]. Here
I give a handful of partial results.

(a)(i) If W ∈ UB̂(Z ×X) then

[[ ~W 6= ∅]] ⊆∗ W−1[X].

PPP Suppose that p ∈ P and p̂ ⊆ [[ ~W 6= ∅]], that is, p P
~W 6= ∅, that is, there is a P-name ẋ such that

p P ẋ ∈ ~W . Let f ∈ C−(Z;X) be such that p P ẋ = ~f ; Then

p̂ ⊆∗ {z : (z, f(z)) ∈W} ⊆W−1[X].

The union of such sets p̂ is open and dense in [[ ~W 6= ∅]] so [[ ~W 6= ∅]] ⊆∗ W−1[X]. QQQ

(ii) If V , W ∈ UB̂(Z ×X) then

{z : V [{z}] ⊆W [{z}]} ⊆∗ [[~V ⊆ ~W ]].

PPP Apply (i) to V \W . QQQ

(iii) If A ∈ UB̂(X) and W ∈ UB̂(Z ×X) then

{z : A ⊆W [{z}]} ⊆∗ [[Ã ⊆ ~W ]].

PPP By 2E(c-iii) or otherwise, Ã = (Z ×A)
→

. QQQ

(b) If Z0 ⊆ Z is comeager and W ⊆ Z0 × X is usco-compact, then [[ ~W 6= ∅]]△W−1[X] is meager. PPP
Start by observing that W−1[X] is relatively closed in Z0; express it as Z0 ∩ F where F ⊆ Z is closed; set
Z ′ = intF , so that Z ′ is open-and-closed in Z, and Z ′ ∩ Z0 is comeager in Z ′. Set W ′ = W ∩ (Z ′ ×X), so
that W ′ ⊆ (Z0 ∩ Z

′) ×X is usco-compact.
Let V ⊆ W ′ be a minimal relatively closed set such that V −1[X] = Z ′ ∩W−1[X]. Because Z0 ∩ Z ′ is

dense in the extremally disconnected space Z ′, and V ⊆ (Z0 ∩ Z
′) ×X is usco-compact, V is the graph of

a function f0 : Z ′ ∩ Z0 → X, which must be continuous, so there is an f ∈ C−(Z;X) agreeing with f0 on

Z ′ ∩ dom f . Now [[ ~W 6= ∅]] ⊇ [[f̃ ∈ ~W ]] and [[f̃ ∈ ~W ]]△{z : (z, f(z)) ∈W} is meager, so W−1[X] ⊆∗ [[ ~W 6= ∅]]
is meager. With (a-i) this gives the result. QQQ

(c) If W ⊆ Z × X is K-analytic, then [[ ~W 6= ∅]]△W−1[X] is meager. PPP Let R ⊆ NN × (Z × X) be an
usco-compact relation such that R[NN] = W . Then

R′ = {(α, z) : (α, z, x) ∈ R} ⊆ NN × Z
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is usco-compact, therefore closed in NN × Z (use Fremlin 03, 422Dc and 422Df). So W−1[X] = R′[NN]

has the Baire property in Z and there is a B̂(Z)-measurable function h : W−1[X] → NN which is a selector
for R′ (Fremlin 03, 423N). Because NN is second-countable, there is a g ∈ C−(Z; NN) included in h. Set
V = {(z, x) : z ∈ dom g, (g(z), z, x) ∈ R}; then V ⊆ dom g ×X is an usco-compact relation (use Fremlin

03, 422Df again). So (b) tells us that

W−1[X] ⊆∗ V −1[X] ⊆∗ [[~V 6= ∅]] ⊆ [[ ~W 6= ∅]]

and with (a-i) again we have the result. QQQ

(d) If W ⊆ Z ×X is open then [[ ~W 6= ∅]]△W−1[X] is meager. PPP This time, if z ∈W−1[X], there are an

x ∈ X and an open neighbourhood H of z such that H × {x} ⊆ W , Now H ⊆ [[x̃ ∈ ~W ]]. As z is arbitrary,

W−1[X] ⊆ [[ ~W 6= ∅]], which is more than we need. QQQ

2K Examples (a) Let P be a forcing notion and Z its Stone space. Suppose that Z is expressible as
the union of κ nowhere dense zero sets. Set X = [0, 1[

κ
. Then there is a closed set W ⊆ Z ×X such that

W−1[X] = Z but P
~W = ∅. PPP Let 〈Zξ〉ξ<κ be a family of nowhere dense zero sets covering Z, and for each

ξ < κ let fξ ∈ C(Z; [0, 1]) be such that Zξ = f−1
ξ [{1}]. Set W = {(z, x) : z ∈ Z, x ∈ X, x(ξ)− fξ(z) ∈ Z for

every ξ}; then W is closed and W−1[X] = Z. ??? If p ∈ P and p P
~W 6= ∅, there is a g ∈ C−(Z;X) such

that p̂ ⊆∗ {z : (z, g(z)) ∈ W}. Take any z ∈ p̂ ∩ dom g such that (z, g(z)) ∈ W and let ξ < κ be such that
z ∈ Zξ. Then g(z′)(ξ) = fξ(z

′) for every z′ ∈ dom g \ Zξ, which is dense in dom g; so g(z)(ξ) = fξ(z) = 1,

which is impossible. XXX So we must have P
~W = ∅. QQQ

(b) Suppose that A ⊆ [0, 1] is a coanalytic set with no perfect subset and that P is a forcing notion such

that the Stone space Z of P can be covered by ω1 nowhere dense sets. Then there is a set W ∈ UB̂(Z× [0, 1])

such that W−1[/, [0, 1]/, ] = Z but P
~W = ∅. PPP Express Z as

⋃
x∈A Zx where every Zx is closed and

nowhere dense. Set W =
⋃

x∈A Zx × {x}; then W−1[ [0, 1] ] = Z.

If Y is a Čech-complete space and h : Y → Z × [0, 1] is continuous then, because A is coanalytic,

Y0 = h−1[Z × A] ∈ B̂(Y ); let Y1 ⊆ Y0 be a Gδ set such that Y0 \ Y1 is meager. If Y1 is empty, then
h−1[W ] ⊆ Y1 is meager and has the Baire property. Otherwise, π2h↾Y1 is a continuous function from the
Čech-complete space Y1 to A. As A has no perfect subset, there is an x ∈ A such that {y : π2h(y) = x}
is non-meager and has non-empty relative interior Hx ⊆ Y1. In this case, Hx ∩ h−1[W ] = {y : y ∈ Hx,
π1h(y) ∈ Zx} is relatively closed in Hx and has the Baire property in Y1 and Y . The same argument
applies to any non-empty relatively open subset of Y1, so Y2 =

⋃
x∈AHx is dense in Y1, while Y2 ∩ h−1[W ]

has the Baire property in Y ; but h−1[W ] \ Y2 is meager, so h−1[W ] ∈ B̂(Y ). As Y and h are arbitrary,

W ∈ UB̂(Z ×X).

??? If p ∈ P and f ∈ C−(Z; [0, 1]) are such that p P
~f ∈ ~W , then there is a non-meager Gδ set V ⊆

p̂∩ {z : (z, f(z)) ∈W}. Now f↾V : V → A is continuous, so there is an x ∈ A such that V ∩ f−1[{x}] is not
meager. But V ∩ f−1[{x}] ⊆ Zx is nowhere dense. XXX

Thus P
~W = ∅. QQQ

3 Identifying the new spaces
The most pressing problem is to find ways of getting a clear picture of the ‘new’ spaces as topological

spaces. For actual examples it will be easiest to wait for §4 below. Here I put together a handful of basic
techniques.

3A Theorem Let 〈Xi〉i∈I be a family of Hausdorff spaces with product X, and P a forcing notion.
Suppose that J = {i : i ∈ I, Xi is not compact} is countable. Then

P X̃ can be identified with
∏

i∈Ǐ X̃i.

proof (a) For i ∈ I, let πi : X → Xi be the canonical map. For any f ∈ C−(Z;X), let f# be the P-name

{(̌ı , (πif)
→

), 11) : i ∈ I},
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where in this formula each (πif)
→

is to be the P-name corresponding to πif regarded as a member of
C−(Z;Xi). Then

P f
# ∈

∏
i∈Ǐ X̃i

because P ı̌ 6= ̌ whenever i, j ∈ I are distinct. (I hope it is clear that the formula ‘
∏

i∈Ǐ X̃i’ refers to the

P-name {((̌ı , X̃i), 11) : i ∈ I} for a family of topological spaces.)

Let ψ̇ be the P-name

{((~f, f#), 11) : f ∈ C−(Z;X)}.

I claim that ψ̇ is a name for a homeomorphism between X̃ and
∏

i∈Ǐ X̃i. We surely have

P ψ̇ ⊆ X̃ ×
∏

i∈Ǐ X̃i.

(b) Suppose that p ∈ P and that ẋ0, ẋ1, ẏ0, ẏ1 are P-names such that

p P (ẋ0, ẏ0) and (ẋ1, ẏ1) belong to ψ̇.

Let q, stronger than p, and f0, f1 ∈ C−(Z;X) be such that

q P ẋ0 = ~f0, ẏ0 = f#
0 , ẋ1 = ~f1, ẏ1 = f#

1 .

Then

q P ẋ0 = ẋ1 ⇐⇒ q P
~f0 = ~f1

⇐⇒ f0(z) = f1(z) for every z ∈ q̂ ∩ dom f0 ∩ dom f1

⇐⇒ for every i ∈ I, πif0(z) = πif1(z)

for every z ∈ q̂ ∩ dom f0 ∩ dom f1

⇐⇒ for every i ∈ I, πif0(z) = πif1(z)

for every z ∈ q̂ ∩ domπif0 ∩ domπif1

⇐⇒ for every i ∈ I, q P (πif0)
→

= (πif1)
→

⇐⇒ for every i ∈ I, q P f
#
0 (̌ı) = f#

1 (̌ı)

⇐⇒ q P f
#
0 (i) = f#

1 (i) for every i ∈ Ǐ

⇐⇒ q P f
#
0 = f#

1 ⇐⇒ q P ẏ0 = ẏ1.

As q is arbitrary,

p P ẋ0 = ẋ1 iff ẏ0 = ẏ1.

As p, ẋ0, ẏ0, ẋ1 and ẏ1 are arbitrary,

P ψ̇ is an injective function.

(c) Since P ψ̇(~f) = f# for every f ∈ C−(Z;X),

P the domain of ψ̇ is X̃.

In the other direction, suppose that p ∈ P and ẏ is a P-name such that p P ẏ ∈
∏

i∈Ǐ X̃i. Then, for each
i ∈ I,

p P ẏ(̌ı) ∈ X̃i,

so there is an fi ∈ C−(Z;Xi) such that

p P ẏ(̌ı) = ~fi;

moreover, 2A(b-viii) tells us that we can arrange that dom fi = Z for every i ∈ I \J . Set Z0 =
⋂

i∈J dom fi;
because J is countable, Z0 is a dense Gδ set in Z. Set f(z) = 〈fi(z)〉i∈I for z ∈ Z0; then f ∈ C−(Z;X), and
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p P f
#(̌ı) = (πif)

→

= (fi↾Z0)
→

= ~fi = ẏ(̌ı)

for every i ∈ I, so

p P f
#(i) = ẏ(i) for every i ∈ Ǐ,

and

p P ẏ = f# is a value of ψ̇.

As p and ẏ are arbitrary,

P the set of values of ψ̇ is
∏

i∈Ǐ X̃i, and ψ̇ : X̃ →
∏

i∈Ǐ X̃i is a bijection.

(d) Suppose now that 〈Gi〉i∈I is a family such that Gi is an open set in Xi for every i ∈ I, and Gi = Xi

for all but finitely many i; set G =
∏

i∈I Gi, so that G is an open set in X. Then, for any f ∈ C−(Z;X)
and p ∈ P,

p P
~f ∈ G̃ ⇐⇒ p̂ ⊆∗ f−1[G] =

⋂

i∈I

(πif)−1[Gi]

⇐⇒ for every i ∈ I, p̂ ⊆∗ (πif)−1[Gi]

(because (πf
i )−1[Gi] = dom f for all but finitely many i)

⇐⇒ for every i ∈ I, p P f
#(̌ı) ∈ G̃i

⇐⇒ p P f
#(i) ∈ G̃i for every i ∈ Ǐ

⇐⇒ p P f
# ∈

∏

i∈Ǐ

G̃i ⇐⇒ p P ψ̇(~f) ∈
∏

i∈Ǐ

G̃i.

As p and f are arbitrary,

P G̃ = ψ̇−1[
∏

i∈Ǐ G̃i].

(e) Suppose that p ∈ P and that ẋ, Ẇ are P-names such that

p P ẋ ∈ X̃, Ẇ ⊆
∏

i∈Ǐ X̃i is open and ψ̇(ẋ) ∈ Ẇ .

Then

p P there is an open cylinder set in
∏

i∈Ǐ X̃i, determined by coordinates in a finite subset

of Ǐ, containing ψ̇(ẋ) and included in Ẇ .

We therefore have a q stronger than p, a finite set K ⊆ I and a P-name V̇ such that

q P ψ̇(ẋ) ∈ V̇ ⊆ Ẇ and V̇ is an open cylinder set in
∏

i∈Ǐ X̃i, determined by coordinates

in Ǩ.

Accordingly there is a family 〈Ġi〉i∈I of P-names such that Ġi = X̃i for i ∈ I \K and

q P Ġi is an open subset of X̃i containing ψ(ẋ)(i) for every i ∈ Ǩ, and
∏

i∈Ǐ Ġi ⊆ Ẇ .

Now there must be an r stronger than q and a family 〈Gi〉i∈J such that Gi is an open set in Xi and

r P ψ̇(ẋ)(̌ı) ∈ G̃i ⊆ Ġi

for every i ∈ K. Setting Gi = Xi for i ∈ I \K,

r P ψ̇(ẋ)(̌ı) ∈ G̃i ⊆ Ġi

for every i ∈ I; so

r P ψ̇(ẋ)(i) ∈ G̃i ⊆ Ġi for every i ∈ Ǐ,

that is,

r P ψ̇(ẋ) ∈
∏

i∈I G̃i ⊆ V̇ ⊆ Ẇ .

Setting G =
∏

i∈I Gi, (d) above tells us that
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r P ẋ ∈ G̃ ⊆ ψ̇−1[Ẇ ],

and therefore that

r P ẋ ∈ int ψ̇−1[Ẇ ].

As p, ẋ and Ẇ are arbitrary,

P ψ̇ is continuous.

(f) Suppose that p ∈ P and that ẋ, Ġ are P-names such that

P Ġ is an open subset of X̃ and ẋ ∈ Ġ.

Let f ∈ C−(Z;X) be such that p P ẋ = ~f . Taking U to be the family of open cylinder sets in X, we know
that

P Ũ is a base for the topology of X̃,

so there must be a G ∈ U and a q stronger than p such that

q P ẋ = ~f ∈ G̃ ⊆ Ġ.

Now (d) tells us that

P ψ̇[G̃] is open in
∏

i∈Ǐ X̃i,

so we get

q P ψ̇(ẋ) ∈ int ψ̇[Ġ].

As p, ẋ and Ġ are arbitrary (and P ψ̇ is a bijection),

P ψ̇
−1 is continuous,

which completes the proof.

3B Regular open algebras Let P, (X,T) and X̃ be as in §2A.

(a) If G ⊆ X is a regular open set in X, then

P G̃ is a regular open set in X̃.

PPP Of course

P G̃ is an open set in X̃.

Now suppose that p ∈ P and that V̇ is a P-name such that

p P V̇ is an open set in X̃ not included in G̃.

Then

p P there is a V ∈ T̃ such that V ⊆ V̇ but V 6⊆ G̃,

so there are a q stronger than p and an open set V ⊆ X such that

q P Ṽ ⊆ V̇ and Ṽ 6⊆ G̃.

Accordingly V 6⊆ G. But G is supposed to be a regular open set, so W = V \G is non-empty. Now

q P W̃ is a non-empty open subset of V̇ \ G̃, so V̇ 6⊆ G̃.

As p and V̇ are arbitrary,

P every open subset of G̃ is included in G̃, so G̃ is regular. QQQ

(b) Let RO(X) be the regular open algebra of X. Then Write ϑ̇ for the P-name {((Ǧ, G̃), 11) : G ∈
RO(X)}. By (a),

P ϑ̇ is a function from RO(X )̌ to RO(X̃).
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Now

P ϑ̇ is a Boolean homomorphism.

PPP (i) Let p ∈ P and ȧ be a P-name such that

p P ȧ = 0 in RO(X )̌ .

Then

p P ȧ = ∅̌ and ϑ̇(ȧ) = ∅̃ = 0 in RO(X̃).

As p and ȧ are arbitrary,

P ϑ̇(0) = 0.

(ii) Suppose that p ∈ P and that ȧ, ḃ are P-names such that

p P ȧ, ḃ ∈ RO(X )̌ .

Then there are a q stronger than p and G, H ∈ RO(X) such that

q P ȧ = Ǧ and ḃ = Ȟ.

In this case,

q P ȧ ∩ ḃ = (G ∩H )̌ ,

so

q P ϑ̇(ȧ ∩ ḃ) = (G ∩H)
∼

= G̃ ∩ H̃ = ϑ̇(ȧ) ∩ ϑ̇(ḃ) in RO(X̃).

As p, ȧ and ḃ are arbitrary,

P ϑ̇ preserves the Boolean operation ∩ .

(iii) Suppose that p ∈ P and that ȧ, ḃ are P-names such that

p P ȧ and ḃ are complementary elements of RO(X )̌ .

Then there are a q stronger than p and G, H ∈ RO(X) such that

q P ȧ = Ǧ and ḃ = Ȟ, so Ǧ and Ȟ are complementary members of RO(X )̌ , that is, they
are disjoint and no non-zero member of RO(X )̌ can be disjoint from both.

But this means that G and H are disjoint and have union dense in X, so that

P G̃ and H̃ are disjoint and have union dense in X̃, that is, they are complementary in

RO(X̃).

So

q P ϑ̇(ȧ) = G̃ and ϑ̇(ḃ) = H̃ are complementary in RO(X̃).

As p, ȧ and ḃ are arbitrary,

P ϑ̇ preserves complements.

(iv) Putting (i)-(iii) together,

P ϑ̇ is a Boolean homomorphism. QQQ

(c) P ϑ̇ is injective. PPP Suppose that p ∈ P and that ȧ is a P-name such that

p P ȧ is a non-zero member of RO(X )̌ .

Then there are a q stronger than p and a G ∈ RO(X) such that

q P ȧ = Ǧ 6= 0 in RO(X )̌ ,

so that G 6= ∅ and

q P ϑ̇(ȧ) = G̃ 6= 0 in RO(X̃).

As p and ȧ are arbitrary,
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P ϑ̇(a) 6= 0 for every non-zero a ∈ RO(X )̌ and ϑ̇ is injective. QQQ

(d) P ϑ̇[RO(X )̌ ] is order-dense in RO(X̃). PPP Suppose that p ∈ P and that Ġ is a P-name such that

p P Ġ is a non-empty regular open set in X̃.

Then there are a q stronger than p and a non-empty open set G ⊆ X such that

q P G̃ ⊆ Ġ.

Next, there is a non-empty H ∈ RO(X) such that H ⊆ G, in which case

q P ϑ̇(Ȟ) = H̃ is a non-empty member of ϑ̇[RO(X )̌ ] included in Ġ.

As p and Ġ are arbitrary, we have the result. QQQ

3C Corollary For any topological space X,

P RO(X̃) can be identified with the Dedekind completion of RO(X )̌ .

3D Normal bases and the finite-cover uniformity (a) Let X be a set. I will say that a topology
base U on X is normal if

(i) U ∪ V and U ∩ V belong to U for all U , V ∈ U ,
(ii) whenever x ∈ U ∈ U there is a V ∈ U such that U ∪ V = X and x /∈ V ,
(iii) whenever U , V ∈ U and U∪V = X then there are disjoint U ′, V ′ ∈ U such that U∪V ′ = U ′∪V = X.

(b) Let U be a normal topology base on X.

(i) If V ⊆ U is a finite cover of X, there is a finite V∗ ⊆ U , a cover of X, which is a star-refinement of
V. PPP Induce on n = #(V). If n ≤ 1 we can take V∗ = V. For the inductive step to n + 1, fix V0 ∈ V and
set V1 = {V0 ∪ V : V ∈ V \ {V0}}. Then V1 is a subset of U , covers X and has at most n members, so there
is a finite star-refinement V∗

1 of V1 included in U and covering X. For each W ∈ V∗
1 , set

W ′ = W ∩
⋂
{V : V ∈ V \ {V0}, W ⊆ V ∪ V0};

then W ′ ⊇ W \ V0. Accordingly U =
⋃
{W ′ : W ∈ V∗

1} includes X \ V0. Let U1, U2 be disjoint members of
U such that U1 ∪ U = U2 ∪ V0 = X. Now consider

V∗ = {U1} ∪ {W ′ ∩ V0 : W ∈ V∗
1} ∪ {W ′ ∩ U2 : W ′ ∈ V∗

1}.

Then V∗ ⊆ U is finite and
⋃
V∗ = U1 ∪

⋃
{W ′ : W ∈ V∗

1} = X.

We have to check that V∗ is a star-refinement of V. If x ∈ U1, then x /∈ U2, so
⋃
{W : x ∈W ∈ V∗} ⊆ V0.

If x ∈ X \ U1, then there is a V1 ∈ V \ {V0} such that
⋃
{W : x ∈W ∈ V∗

1} ⊆ V1 ∪ V0. Now

⋃
{W : x ∈W ∈ V∗} ⊆

⋃
{W ′ : x ∈W ∈ V∗

1}

⊆
⋃

{W ′ : W ∈ V∗
1 , W ⊆ V1 ∪ V0} ⊆ V1.

So we have what we need. QQQ

(ii) We have a uniformity W on X defined by saying that a subset W of X ×X belongs to W iff there
is a finite subset V of U , covering X, such that WV ⊆ W , where WV =

⋃
V ∈V V × V . PPP (α) If V1, V2 ⊆ U

are finite covers of X, then V = {V1∩V2 : V1 ∈ V1, V2 ∈ V2} covers X and WV ⊆WV1
∩WV2

. So (if X is not
empty) W is a filter on X ×X. (β) If V ⊆ U is a finite cover of X, then W−1

V = WV , so W−1 ∈ W for every
W ∈ W. (γ) If V ⊆ U is a finite cover of X, there is a finite V ′ ⊆ U which covers X and is a star-refinement
of V; now WV′ ◦WV′ ⊆WV . So for any W ∈ W there is a W ′ ∈ W such that W ′ ◦W ′ ⊆W . QQQ

(iii) The topologies TU , TW induced on X by U , W respectively are equal. PPP If x ∈ X and V ⊆ U is
a finite cover of X, then WV [{x}] =

⋃
{V : x ∈ V ∈ V} is open for the topology induced by U ; so TU ⊇ TW .

If x ∈ G ∈ TU there is a U ∈ U such that x ∈ U ⊆ G; now there is a V ∈ U such that x /∈ V and U ∪V = X;
and in this case W{U,V }[{x}] = U ⊆ G. So TU ⊆ TW . QQQ
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(iv) I will call W the finite-cover uniformity derived from U .

(c) The definition in (b-ii) makes it plain that X is totally bounded for the finite-cover uniformity.

(d) Let X be a compact Hausdorff space.

(i) If U is a base for the topology of X closed under ∪ and ∩, then U is a normal topology base.

(ii) If Y ⊆ X is dense, U is a base for the topology of X and UY = {Y ∩U : U ∈ U} is a normal topology
base on Y , then X can be identified with the completion of Y for the finite-cover uniformity induced by UY .

3E Descriptions of X̃ The most important spaces of analysis come to us not as abstract sets but defined
by some more or less straightforward construction, and we shall be very much happier if we can relate the
space X̃, as defined above, to the construction leading to the space X. One reasonably general method leads
through ‘normal topology bases’ as just defined.

Proposition Let P be a forcing notion, X a compact Hausdorff space and U a normal base for the topology
of X. Let Z, X̃, ϕ̇ : X̌ → X̃ be as in §2.

(a)

P Ǔ is a normal topology base on X̌.

(b)

P the embedding ϕ̇ : X̌ → X̃ identifies X̃, with the unique uniformity compatible with
its topology, with the completion of X̌ with the finite-cover uniformity on X̌ generated
by Ǔ .

proof (a) As in 2Ac, we are dealing with a first-order property. In detail: suppose that U̇ and V̇ are

P-names and p ∈ P is such that p P U̇ , V̇ ∈ Ǔ . Then there are U , V ∈ U and q stronger than p such that

q P U̇ = Ǔ and V̇ = V̌ .

In this case, U ∪ V and U ∩ V belong to U and

P (Ǔ ∪ V̌ ) = (U ∪ V )̌ , (Ǔ ∩ V̌ ) = (U ∩ V )̌ belong to Ǔ ,

so

q P U̇ ∪ V̇ , U̇ ∩ V̇ belong to Ǔ .

As p, U̇ and V̇ are arbitrary,

P U ∪ V and U ∩ V belong to Ǔ for all U , V ∈ Ǔ .

If ẋ, U̇ are P-names and p ∈ P is such that p P ẋ ∈ U̇ ∈ Ǔ , then there are q ∈ P, x ∈ X and G ∈ U such
that

q P x̌ = ẋ ∈ U̇ = Ǧ,

so that x ∈ G. Set V = X \ {x}; then

q P V̌ ∈ Ǔ , ẋ /∈ V̌ , U̇ ∪ V̌ = X̃.

As p, ẋ and U̇ are arbitrary,

P if x ∈ U ∈ Ǔ there is a V ∈ Ǔ such that x /∈ V and U ∪ V = X̌.

Finally, if U̇ , V̇ are P-names and p ∈ P is such that

p P U̇ and V̇ belong to Ǔ and their union is X̌,

then there are a q ∈ P, stronger than p, and U , V ∈ U such that

q P U̇ = Ǔ and V̇ = V̌ .

In this case,

q P (U ∪ V )̌ = Ǔ ∪ V̌ = X̌,
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so U ∪ V = X. Because U is a normal topology base, there are disjoint U1, V1 ∈ U such that U1 ∪ V =
U ∪ V1 = X. In this case

q P Ǔ1 ∈ Ǔ , V̌1 ∈ Ǔ , Ǔ1 ∩ V̌1 = ∅, Ǔ1 ∪ V̇ = U̇ ∪ V̌2 = X̌.

So the normality condition 3D(a-iii) is satisfied.

(b) This follows from 2Ad and 3D(d-ii).

3F For certain classes of topological space, we have an alternative route to X̃, as follows.

Proposition Let P be a forcing notion and Z the Stone space of RO(P), which I think of as the algebra of
open-and-closed sets in Z; let X be a non-empty Hausdorff space.

(a)(i) For every f ∈ C−(Z;X) we have a sequentially order-continuous Boolean homomorphism πf :

UB̂(X) → RO(P) defined by saying that πf (A)△f−1[A] is meager for every A ∈ UB̂(X).

(ii) πf (A) = [[~f ∈ Ã]] for any f ∈ C−(Z;X) and A ∈ UB̂(X).
(iii) πf is τ-additive in the sense that if G is a non-empty upwards-directed family of open sets with

union H, then πfH = supG∈G πfG in RO(P).
(iv) If f , g ∈ C−(Z;X) and p ∈ P, then the following are equiveridical:

(α) f and g agree on p̂ ∩ dom f ∩ dom g;
(β) p̂ ⊆∗ dom(f ∩ g);

(γ) for any t and for any q stronger than p, (t, q) ∈ ~f iff (t, q) ∈ ~g;

(δ) p P
~f = ~g;

(ǫ) p̂ ∩ πfA = p̂ ∩ πgA for every A ∈ UB̂(X);
(ζ) there is a base U for the topology of X such that p̂ ∩ πfG = p̂ ∩ πgG for every G ∈ U .

(b)(i) Suppose that X is Čech-complete and that π : Ba(X) → RO(P) is a sequentially order-continuous
Boolean homomorphism which is τ -additive in the sense that π(

⋃
G) = supG∈G πG whenever G ⊆ Ba(X) is

a family of open sets with union in Ba(X). Then there is an f ∈ C−(Z;X) such that πf extends π.
(ii) If X is compact, then for every sequentially order-continuous π : Ba(X) → RO(P) there is an

f ∈ C(Z;X) such that πf extends π.
(iii) If X is Polish, then for every sequentially order-continuous π : Ba(X) → RO(P) there is an

f ∈ C−(Z;X) such that πf extends π.

(c) Suppose that X is Čech-complete and that π : B(X) → RO(P) is a τ -additive sequentially order-
continuous Boolean homomorphism. Then there is an f ∈ C−(Z;X) such that πf extends π.

proof (a)(i) If A ∈ UB̂(X) then f−1[A] ∈ B̂(Z) so there is a unique open-and-closed set πfA ⊆ Z such
that πfA△f

−1[A] is meager.
Now πf is sequentially order-continuous because it corresponds to the composition of the sequentially

order-continuous maps A 7→ f−1[A] : UB̂(X) → B̂(Z) and the canonical map from B̂(Z) to the category
algebra of Z.

(ii) For p ∈ P,

p̂ ⊆ πfA ⇐⇒ p̂ ⊆∗ f−1[A] ⇐⇒ p P
~f ∈ Ã ⇐⇒ p̂ ⊆ [[~f ∈ Ã]];

as {p̂ : p ∈ P} is order-dense in RO(P), this gives the result.

(iii)
⋃

G∈G πfG ⊇
⋃

G∈G f
−1[G] = f−1[H] is dense in πfH.

(iv)(ααα)=⇒(βββ) because dom f ∩ dom g is comeager.

(βββ)=⇒(γγγ) If h ∈ C−(Z;X) and q is stronger than p,

(ȟ, q) ∈ ~f ⇐⇒ q̂ ⊆∗ dom(f ∩ h) ⇐⇒ q̂ ⊆∗ dom(g ∩ h)

(because q̂ \ dom(f ∩ g) is meager)

⇐⇒ (ȟ, q) ∈ ~g.
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(γγγ)=⇒(δδδ) Use 2A(b-i).

(δδδ)=⇒(ǫǫǫ) follows from (ii).

(ǫǫǫ)=⇒(ζζζ) is trivial.

(¬ααα)=⇒(¬ζζζ) Let z ∈ p̂ ∩ dom f ∩ dom g be such that f(z) 6= g(z); let G, H ∈ U be disjoint sets
containing f(z), g(z) respectively. Then p̂ ∩ f−1[G] ∩ g−1[H] is not empty and is the intersection of the
dense Gǫ set dom f ∩ dom g with an open set, so is non-meager, and p̂ ∩ πfG ∩ πgH is non-empty; but
πfG ∩ πfH = ∅, so p̂ ∩ πfH 6= p̂ ∩ πgH.

(b)(i) Set

g =
⋂

G⊆X is a cozero set(πG×X) ∪ (Z × (X \G)).

(ααα) g is a function. PPP??? If (z, x) and (z, y) both belong to g, where x 6= y, let G, H ⊆ X be disjoint
cozero sets containing x, y respectively. Then (z, x) ∈ (πG × X) ∪ (Z × (X \ G)) so z ∈ πG; similarly,
z ∈ πH; but πG ∩ πH = π(G ∩H) is empty. XXXQQQ

(βββ) If G ⊆ X is a cozero set then g−1[G] = πG ∩ dom g. PPP By the definition of g, z ∈ πG whenever
x ∈ G and (z, x) ∈ g, that is, πG ∩ dom g ⊆ g−1[G]. In the other direction, if g(z) ∈ G, there are disjoint
cozero sets H, H ′ such that g(z) ∈ H and X \ G ⊆ H ′. Now x /∈ H ′ so z /∈ πH ′ and z /∈ π(X \ G) and
z ∈ πG. As z is arbitrary, g−1[G] ⊆ πG ∩ dom g. QQQ

It follows that g is continuous.

(γγγ) Express X as
⋂

n∈N Hn where 〈Hn〉n∈N is a sequence of open sets in a compact Hausdorff space
Y . For each n ∈ N, let Gn be the family of those cozero subsets G of X for which there is a zero set F ⊆ Y
such that G ⊆ F ⊆ Hn; then

⋃
Gn = X, so Vn =

⋃
G∈G πG is dense in Z. (This is where I use the hypothesis

that π is τ -additive.) Set V =
⋂

n∈N Vn, so that V is a dense Gδ set in Z. Now V ⊆ dom g. PPP Take z ∈ V
and consider the family E of zero sets F ⊆ Y such that z ∈ π(F ∩X). E is downwards-directed so there is
a y ∈

⋂
E . For each n ∈ N there is a G ∈ Gn such that z ∈ πG so there is an F ∈ E such that F ⊆ Hn and

y ∈ Hn; accordingly y ∈ X. ??? If (z, y) /∈ g, let G ⊆ X be a cozero set such that z /∈ πG and y /∈ X \ G.
Then there is a cozero set H ⊆ Y such that y ∈ H and H ∩ X ⊆ G. Now z ∈ π(X \ G) (recall that Z
is extremally disconnected, so RO(P) is just the algebra of open-and-closed subsets of Z, and its Boolean
operations agree with those of PZ, so z ∈ π(X \H) and Y \H ∈ E ; but this is impossible. XXX Thus g(z) = y
and z ∈ dom g. QQQ

(δδδ) Thus g is a continuous function with a comeager domain, and there is an f ∈ C−(Z;X) such
that f ⊆ g. By (β), f−1[G] = πG∩ dom f for every cozero G ⊆ X, so that πfG = πG for cozero sets G. By
the Monotone Class Theorem, πfE = πE for every E ∈ Ba(X).

(ii) If X is compact, then every open set in Ba(X) is actually a cozero set (Fremlin 03, 4A3Xc) so
is σ-compact, therefore Lindelöf. What this means is that if G is a family of cozero sets and

⋃
G is a cozero

set, then there is a countable G0 ⊆ G with union
⋃

G; as π is sequentially order-continuous,

π(
⋃
G) = supG∈G0

πG = supG∈G πG.

So π is τ -additive and there is an f ∈ C−(Z;X) such that π = πf ↾Ba(X), Because X is compact, f extends
to a member of C(Z;X) with the same property.

(iii) This time, X is hereditarily Lindelöf so we can again apply (i).

(c) By (b), there is an f ∈ C−(Z;X) such that πf extends π↾Ba(X). Because πf and π are both
τ -additive and agree on a base for the topology of X, they agree on the open sets in X and therefore on
B(X).

3G Notation Suppose that X is either compact or Polish, P is a forcing notion and π : Ba(X) → RO(P)
is a sequentially order-continuous Boolean homomorphism. Then 3Fb tells us that we have a P-name π̆

defined by saying that π̆ = ~f whenever f ∈ C−(Z;X) and π ⊆ πf . Now, of course, P π̆ ∈ X̃; moreover,

[[π̆ ∈ F̃ ]] = πF for every Baire set F ⊆ X. The following fact will be useful.
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3H Proposition Suppose that X is either compact or Polish, P is a forcing notion and π, φ : Ba(X) →
RO(P) are sequentially order-continuous Boolean homomorphisms. Then, for any p ∈ P, the following are
equiveridical:

(i) p P π̆ = φ̆;
(ii) p̂ ∩ πE = p̂ ∩ φE for every E ∈ Ba(X);
(iii) there is a base U for the topology of X, consisting of cozero sets, such that p̂∩πU = p̂∩φU for every

U ∈ U .

proof Use 3F(a-iv).

4 Preservation of topological properties

4A Theorem Let P, (X,T) and X̃ be as in §2A.
(a) If X is regular, then

P X̃ is regular.

(b) If X is completely regular, then

P X̃ is completely regular.

(c) If X is compact, then

P X̃ is compact.

(d) If X is separable, then

P X̃ is separable.

(e) If X is metrizable, then

P X̃ is metrizable.

(f) If X is Čech-complete, then

P X̃ is Čech-complete.

(g) If X is Polish, then

P X̃ is Polish.

(h) If X is locally compact, then

P X̃ is locally compact.

(i) If indX ≤ n ∈ N, where indX is the small inductive dimension of X, then

P ind X̃ ≤ n.

(In particular, if X is zero-dimensional then P X̃ is zero-dimensional.)
(j) If X is chargeable, then

P X̃ is chargeable.

proof As in §2A, let Z be the Stone space of RO(P) and C−(Z;X) the set of continuous functions from
dense Gδ subsets of Z to X.

(a) Let ẋ, Ġ be P-names and p ∈ P such that

p P Ġ is an open set in X̃ and ẋ ∈ Ġ.

Then there are q stronger than p, f ∈ C−(Z;X) and U ∈ T such that

q P ẋ = ~f ∈ Ũ ⊆ Ġ.

Now U =
⋃
{V : V ∈ T, V ⊆ U}, while q̂ ⊆∗ f−1[U ], so there are an open set V such that V ⊆ U and an r

stronger than q such that r̂ ⊆∗ f−1[V ]. Set W = X \ V ; then
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r P ẋ ∈ Ṽ , Ṽ ∩ W̃ = ∅, Ġ ∪ W̃ = X̃,

so that

r Pẋ belongs to an open set with closure included in Ġ.

As q is arbitrary,

p P ẋ belongs to an open set with closure included in Ġ;

as p, ẋ and Ġ are arbitrary,

P the topology of X̃ is regular.

(b)(i) Let W be a uniformity on X defining its topology, and W0 the family of those members of W
which are open for the product topology of X ×X. For W ∈ W0 let W̃ be the P-name

{((~f,~g), p) : p ∈ P, f, g ∈ C−(Z;X),

p̂ ⊆∗ {z : z ∈ dom f ∩ dom g, (f(z), g(z)) ∈W}}.

Then we have to check the following:

P W̃ ⊆ X̃ × X̃

for every W ∈ W0;

P W̃0 ∩ W̃1 = (W0 ∩W1)
∼

whenever W0, W1 ∈ W0;

P (W̃ )−1 = (W−1)
∼

for every W ∈ W0;

P W̃0 ◦W̃0 ⊆ W̃

whenever W0, W ∈ W0 and W0 ◦W0 ⊆W . These are all easy. Now, setting

W̃ = {(W̃ , 11) : W ∈ W0},

we have

P W̃ is a filter base on X̃ × X̃, and the filter it generates is a uniformity on X̃.

(ii) Now

P the uniformity generated by W̃ is finer than the given topology on X̃.

PPP Suppose that p ∈ P and that ẋ, Ġ are P-names such that

p P Ġ is open in X̃ and ẋ ∈ Ġ.

Let q, stronger than p, and f ∈ C−(Z;X), G ∈ T be such that

q P ẋ = ~f ∈ G̃ ⊆ Ġ.

Now

G =
⋃
{H : W ∈ W0, H ∈ T, W [H] ⊆ G},

so we have r stronger than q, W ∈ W0 and H ∈ T such that W [H] ⊆ G and r̂ ⊆∗ f−1[H]. Suppose now

that we have s stronger than r and a P-name ẏ such that s P ẏ ∈ W̃ [~f ]. Then we have a t stronger than s

and a g ∈ C−(Z;X) such that t P ẏ = ~g and t̂ ⊆∗ {z : z ∈ dom f ∩ dom g, (f(z), g(z)) ∈W}. Now

t̂ \ g−1[G] ⊇ t̂ \ ({z : (f(z), g(z) ∈W} ∩ f−1[H])

is meager, so t P ẏ ∈ Ġ. As s and ẏ are arbitrary,

r P W̃ [ẋ] ⊆ Ġ.

Topological spaces after forcing



4A prf (e) 35

As q is arbitrary,

p P there is a W in the uniformity such that W [ẋ] ⊆ Ġ.

As p, ẋ and Ġ are arbitrary,

P the topology defined by the uniformity is finer than the given topology on X̃. QQQ

(iii) Next, if W ∈ W0 and f ∈ C−(Z;X) then

P W̃ [{~f}] is open in X̃.

PPP Let p ∈ P and ẏ be such that

p P ẏ ∈ W̃ [{~f}].

Then there are q stronger than p and g ∈ C−(Z;X) such that q̂ ⊆∗ {z : z ∈ dom f∩dom g, (f(z), g(z)) ∈W}
and q P ẏ = ~g. Now W0 is open in X ×X, so whenever (f(z), g(z)) ∈ W0 there are H0, H1 ∈ T such that
(f(z), g(z)) ∈ H0 ×H1 ⊆ W . We can therefore find H0, H1 ∈ T such that H0 ×H1 ⊆ W , and r stronger
than q, such that r̂ ⊆∗ (f−1[H0] ∩ g

−1[H1]). In this case

r P ẏ ∈ H̃1, H̃1 is open and (~f, ż) ∈ W̃ whenever ż ∈ H̃1,

so that

r P ẏ ∈ int W̃ [~f ].

As q is arbitrary,

p P ẏ ∈ int W̃ [~f ];

as p and ẏ are arbitrary,

p P W̃ [~f ] is open. QQQ

(iv) It follows that

P the topology generated by the uniformity is coarser than the given topology on X̃.

PPP This time, take p ∈ P and P-names ẋ, Ġ such that

p P Ġ is open for the topology generated by the uniformity and ẋ ∈ Ġ.

Let q stronger than p and f ∈ C−(Z;X), W ∈ W0 be such that

q P ẋ = ~f and W̃ [{~f}] ⊆ Ġ.

Then (iii) tells us that

q P ẋ ∈ int Ġ;

as q is arbitrary,

p P ẋ ∈ int Ġ;

as p, Ġ and ẋ are arbitrary, we have the result. QQQ

(v) Thus

P the topology of X̃ is generated by a uniformity and is completely regular.

(c) This follows at once from 2G, since if X is compact then Z ×X is usco-compact.

(d) This follows at once from 2A(f-iii), because if D is countable then P Ď is countable.

(e) Use the ideas of (b) to show that

P the topology of X̃ is generated by a uniformity with a countable base.
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(f) If X is homeomorphic to a Gδ subset B of a compact Hausdorff space Y , then the results above tell
us that

P Ỹ is compact, B̃ is a Gδ subset of Ỹ and X̃ is homeomorphic to B̃, therefore Čech-
complete.

(g) A topological space is Polish iff it is separable, metrizable and Čech-complete.

(h) Let U be a base for the topology of X consisting of relatively compact open sets. Then 2Ad tells us
that

P Ũ is an open cover of X̃.

But we also have

P every member of Ũ is relatively compact in X̃.

PPP Suppose that p ∈ P and that U̇ is a P-name such that p P U̇ ∈ Ũ . Then there are a q stronger than p

and a U ∈ U such that q P U̇ = Ũ . Consider K = U and the identity embedding φ : K → X. I think I
need to distinguish for a moment between K, thought of as a topological space standing alone, from itself
thought of as a subspace of X; I write L for the latter incarnation. We know from (c) that

P K̃ is compact,

from 2Ab that

P Ũ ⊆ L̃,

and from 2Cg that

P K̃ is homeomorphic to L̃ with its subspace topology.

So

q P U̇ ⊆ L̃ is relatively compact.

As p and U̇ are arbitrary, we have the result. QQQ
So

P X̃ is covered by a family of relatively compact open sets and is locally compact.

(i) Induce on n. If indX ≤ −1 then X = ∅ so

P X̃ = ∅ and ind X̃ = −1.

For the inductive step to n ≥ 0, suppose that indX ≤ n. Then there is a base U for T such that ind(∂U) < n
for every U ∈ U . Now

P Ũ is a base for the topology of X̃.

If p ∈ P and U̇ is a P-name such that p P U̇ ∈ Ũ , then there are a q stronger than p and a U ∈ U such that

q P U̇ = Ũ . So

q P ind(∂U̇) = ind(∂Ũ) = ind(∂U)
∼

< n

by 2B, the inductive hypothesis and 2Cg. As p and U̇ are arbitrary,

P ind(∂U) < n for every U ∈ Ũ , so ind X̃ ≤ n,

and the induction continues.

(j) Recall that X is ‘chargeable’ if there is an additive functional ν : PX → [0, 1] such that νG > 0
for every non-empty open G ⊆ X. It is easy to check (using Kelley’s theorem, Fremlin 02, 391J) that X
is chargeable iff there is a base U for its topology which is expressible as

⋃
n∈N Un where the intersection

number of each Un is at least 2−n. In this case, writing Ũn = {(Ũ , 11) : U ∈ Un} for each n,

P

⋃
n∈N Ũn is a base for the topology of X̃.
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But we also have, for any n ∈ N,

P the intersection number of Ũn is at least 2−n.

PPP Suppose that p ∈ P, m ∈ N and U̇0, . . . , U̇m−1 are P-names such that

p P U̇i ∈ Ũn for every i < m.

Then there are a q stronger than p and U0, . . . , Um−1 ∈ Un such that

q P U̇i = Ũi for every i < m.

Now there is a J ⊆ m with #(J) ≥ 2−nm such that
⋂

i∈J Ui 6= ∅, in which case

q P J̌ ⊆ m, #(J̌) ≥ 2−nm and
⋂

i∈J̌ U̇i 6= ∅.

As p and U̇0, . . . , U̇m−1 are arbitrary, we have the result. QQQ
So

P X̃ is chargeable.

4B Corollary Let X be a zero-dimensional compact Hausdorff space, and E the algebra of open-and-
closed sets in X. Then

P X̃ can be identified with the Stone space of the Boolean algebra Ě .

proof Note that E is a normal base for the topology of X. By 3Ea and 2Ad,

P Ẽ is a normal base for the topology of X̃,

and of course

P Ẽ is an algebra of subsets of X̃ and X̃ is compact and Hausdorff

by 2A(b-iv) and 4c. It follows at once that

P X̃ is zero-dimensional and Ẽ is its algebra of open-and-closed sets.

Since also

P Ẽ is isomorphic, as Boolean algebra, to Ě ,

we have

P X̃ can be identified with the Stone space of Ě .

4C Proposition Let P be a forcing notion and Z the Stone space of RO(P); let X be a topological
group.

(a) We have a P-name for a group operation on X̃, defined by saying that

P
~f · ~g = ~h

whenever f , g, h ∈ C−(Z;X) and h(z) = f(z)g(z) for every z ∈ dom f ∩ dom g; and now

P X̃ is a topological group with identity ẽ

where e is the identity of X.

(b)(i) For any A ∈ UB̂(X),

P Ã
−1 = (A−1)

∼

.

(ii) For any a ∈ X and B ∈ UB̂(X),

P ã · B̃ = (aB)
∼

, B̃ · ã = (Ba)
∼

.

(iii) For any open set G ⊆ X and A ∈ UB̂(X),

P G̃ · Ã = (GA)
∼

, Ã · G̃ = (AG)
∼

.
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proof a) Let φ : X ×X → X and ψ : X → X be the operations of multiplication and inversion. These are

continuous, so we have corresponding names φ̃, ψ̃ such that

P φ̃ : (X ×X)
∼

→ X̃, ψ̃ : X̃ → X̃ are continuous.

Now the identification

P (X ×X)
∼

≡ X̃

and the definition of φ̃ make it plain that

P φ̃(~f,~g) = ~h

iff {z : z ∈ dom f ∩ dom g ∩ domh, f(z)g(z) = h(z)} is comeager. It is now elementary to check that

P φ̃ acts as a group operation on X̃, with inversion function ψ̃ and identity ẽ.

(b)(i) Because inversion is a homeomorphism, Ã ∈ UB̂(X). The point is just that if f ∈ C−(Z;X) and
g(z) = f(z)−1 for z ∈ dom f , then

P (~f)−1 = ~g,

so that, for any p ∈ P,

p P
~f ∈ Ã−1 ⇐⇒ p P ~g ∈ Ã

⇐⇒ p̂ ⊆∗ g−1[A] = f−1[A−1] ⇐⇒ p P
~f ∈ (A−1)

∼

.

(ii) Note that as x 7→ ax is a homeomorphism, aB certainly belongs to UB̂(X). If ẋ is a P-name and

p ∈ P is such that p P ẋ ∈ X̃, let f ∈ C−(Z;X) be such that p P ẋ = ~f . Set g(z) = a−1f(z) for z ∈ dom f .
Then

p P ~g = ã−1 · ~f .

So

p P ẋ ∈ ã · B̃ ⇐⇒ p P ~g = ã−1 · ~f ∈ B̃

⇐⇒ p̂ ⊆∗ {z : g(z) ∈ B} = {z : f(z) ∈ aB}

⇐⇒ p P ẋ ∈ (aB)
∼

.

As p and ẋ are arbitrary, P ã · B̃ = (aB)
∼

. Similarly, P B̃ · ã = (Ba)
∼

.

(iii)(ααα) Suppose that p ∈ P and ẋ is a P-name such that p P ẋ ∈ G̃ · Ã. Then there must be P-names
ẏ1, ẏ2 such that

p P ẏ1 ∈ G̃, ẏ2 ∈ Ã and ẏ1ẏ2 = ẋ.

Let g1, g2 ∈ C−(Z;X) be such that

p P ẏ1 = ~g1 and ẏ2 = ~g2,

and set f(z) = g1(z)g2(z) for z ∈ dom g1 ∩ dom g2. Then p P ẋ = ~f and

p̂ ⊆∗ g−1
1 [G] ∩ g−1

2 [A] ⊆ f−1[GA],

so p Pẋ ∈ (GA)
∼

. As p and ẋ are arbitrary,

P G̃ · Ã ⊆ (GA)
∼

.

(βββ) Suppose that p ∈ P and that ẋ is a P-name such that p P ẋ ∈ (GA)
∼

. Let f ∈ C−(Z;X) be

such that p P ẋ = ~f . Then p̂ ⊆∗ f−1[GA]. Take any z0 ∈ p̂ ∩ f−1[GA]. Then we can express f(z0) as
y1y2 where y1 ∈ G and y2 ∈ A. Set g(z) = f(z)y−1

2 for z ∈ dom f , so that g ∈ C−(Z;X). Because g is
continuous and G is open, there is a neighbourhood V of z0 such that g(z) ∈ G whenever z ∈ V ∩ dom g.
Let q stronger than p be such that q̂ ⊆ V . Then
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q P ẋ = ~f = ~g · ỹ2 ∈ G̃ · Ã.

As p and ẋ are arbitrary,

P G̃ · Ã ⊇ (GA)
∼

.

(γγγ) Similarly,

P Ã · G̃ = (AG)
∼

.

4D Examples Let P be a forcing notion and Z the Stone space of RO(P).

(a) Suppose that X is a totally ordered set with its order topology. Let ≤̃ be the P-name

{((~f,~g), p) : f, g ∈ C−(Z;X), p ∈ P,

p̂ ⊆∗ {z : z ∈ dom f ∩ dom g, f(z) ≤ g(z)}}.

(i) ≤̃ is a P-name for a total ordering of X̃. PPP Let ẋ, ẏ and ż be P-names, and p ∈ P such that

p P ẋ, ẏ, ż ∈ X̃.

Then there are f , g, h ∈ C−(Z;X) such that

p P ẋ = ~f , ẏ = ~g and ż = ~h.

(α)

p P ẋ = ~f ≤̃ ~f = ẋ.

(β) If

p P ẋ ≤̃ ẏ and ẏ ≤̃ ż,

then

p̂ \ ({z : z ∈ dom f ∩ dom g ∩ domh, f(z) ≤ g(z) ≤ h(z)}

is the union of two meager sets and is meager, so

p P ẋ = ~f ≤̃ ~h = ż.

(γ) If

p P ẋ ≤̃ ẏ and ẏ ≤̃ ẋ,

then

p̂ ⊆∗ {z : z ∈ dom f ∩ dom g, f(z) ≤ g(z), g(z) ≤ f(z)}),

so

p P ẋ = ~f = ~g = ẏ.

(δ) At least one of the Borel sets p̂ ∩ {z : z ∈ dom f ∩ dom g, f(z) ≤ g(z)}, p̂ ∩ {z : z ∈ dom f ∩ dom g,
g(z) ≤ f(z)} is non-meager, suppose the former; then it essentially includes q̂ for some q stronger than p,
and in this case

q P ẋ = ~f ≤̃ ~g = ẏ.

As p, ẋ, ẏ and ż are arbitrary, we have the result. QQQ

(ii) Now

P the order topology defined by ≤̃ is the topology on X̃ generated by T̃.

PPP (α) Suppose that ẋ, U̇ are P-names and that p ∈ P is such that p P ẋ ∈ U̇ ∈ T̃. Then there are q stronger
than p and f ∈ C−(Z;X), U ∈ T such that

q P
~f = ẋ ∈ U̇ = Ũ .
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The open set f−1[U ] is the union of sets of the form f−1[ ]u, v[ ] where u, v ∈ X ∪ {−∞,∞} and ]u, v[ ⊆ U ,
so there are such u, v such that q̂ ∩ f−1[ ]u, v[ ] is non-meager, that is, there is an r stronger than q such
that f [r̂] ⊆ ]u, v[. Now

r P ẋ = ~f ∈ ]ũ, ṽ[ ⊆ Ũ = U̇

(interpreting {x : ũ < x} as X̃ if u = −∞, of course). As p, ẋ and Ġ are arbitrary,

P G is the union of the open intervals it includes, for every G in the topology generated

by T̃,

and

P the topology generated by T̃ is coarser than the order topology.

In the other direction, if ẋ, ẏ are P-names and

p P ẋ, ẏ ∈ X̃, ẋ <̇ ẏ,

take f , g ∈ C−(Z;X) such that

p P
~f = ẋ <̇ ẏ = ~g.

Then there is a u ∈ X such that p̂ ∩ {z : z ∈ dom f ∩ dom g, f(z) < u < g(z)} is not meager, so essentially
includes q̂ for some q stronger than p. In this case, setting G = ]u,∞[ ∈ T,

q P ẏ = ~g ∈ G̃ ⊆
]
~f,∞

[
= ]ẋ,∞[,

where of course we interpret
]
~f,∞

[
and ]ẋ,∞[ in V P. As p, ẋ and ẏ are arbitrary,

P for every x ∈ X̃, ]x,∞[ is the union of the members of the topology generated by T̃

which it includes.

Similarly,

P for every x ∈ X̃, ]−∞, x[ is the union of the members of the topology generated by T̃

which it includes,

and

P the topology generated by T̃ is finer than the order topology. QQQ

(iii) For any f , g ∈ C−1(Z;X), f(z) ≤ g(z) for every z ∈ dom f ∩ dom g ∩ [[~f ≤̃ ~g]]. PPP??? Otherwise,

there is a non-empty open set U ⊆ [[~f ≤̃ ~g]] such that g(z) < f(z) for every z ∈ U ∩ dom f ∩ dom g. Let

p ∈ P be such that p̂ ⊆ U . Then p P
~f ≤̃ ~g so there must be a q compatible with p and f1, g1 ∈ C−(Z;X)

such that

((~f1, ~g1), q) ∈ ≤̃, q P
~f1 = ~f and ~g1 = ~g.

But now p̂ ∩ q̂ is a non-empty open set included in

{z : f1(z) = f(z)} ∩ {z : g1(z) = g(z)} ∩ {z : f1(z) ≤ g1(z)} ∩ {z : g(z) < f(z)}

which is meager. XXXQQQ

(iv) In the language of 2Af,

P ϕ̇[X̌] is cofinal and coinitial with X̃.

PPP Suppose that p ∈ P and a P-name ẋ are such that p P ẋ ∈ X̃. Let f ∈ C−(Z;X) be such that p P ẋ = f̃ .
Take any z0 ∈ p̂ ∩ dom f . If f(z0) is the greatest element of X, then, writing ez0

for the constant function
with value z0,

P f̃≤̃ẽz0
= ϕ̇ž0

and p P ẋ≤̃ϕ̇ž0. Otherwise, take any y > f(z0); then {z : z ∈ p̂∩dom f , f(z) < y} is a non-empty relatively
open set in dom f , so includes q̂ ∩ dom f for some q stronger than p, and

q P ẋ = f̃ ≤ ϕ̇y̌.
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As p and ẋ are arbitrary,

P ϕ̇[X̌] is cofinal with X̃.

The argument for coinitiality is the same, upside down. QQQ

(v) If X is Dedekind complete, then

P X̃ is Dedekind complete.

The point is that a totally ordered set is Dedekind complete iff there is a cofinal-and-coinitial set A such
that [a, b] is compact in the order topology whenever a, b ∈ A and a ≤ b. So 4Ac and (iv) above, with a
little care over subspace topologies and identification of intervals, give the result. QQQ

(b)(i) If X = [0, 1] with its usual topology, then

P X̃, with the topology generated by T̃, can be identified with the unit interval.

PPP By (a) and 4Ac we know that

P X̃ is compact in its order topology,

and therefore that

P X̃ is Dedekind complete and has greatest and least elements.

So all we need to check is that

P if x, y ∈ X̃ and x <̇ y, there is a q ∈ Q̌ such that x <̇ ϕ̇(q) <̇ y,

where ϕ̇ is the map of 2Ae above, and this is a trifling refinement of one of the steps in the proof of (a-ii).
QQQ

(ii) If X = R with its usual topology, then

P X̃, with the topology generated by T̃, can be identified with the real line.

PPP This time, we can use 4Ah to see that

P X̃ is locally compact in its order topology,

and as above we know that

P Q̌ is dense in X̃.

Modifying the argument in 4Ah by taking U to be the set of open intervals with rational endpoints, we see
in fact that

P Q is cofinal and coinitial with X̃ and closed intervals in X̃ with rational endpoints are
compact.

This is plenty. QQQ

(c) Let I be any set, and X = {0, 1}I . Then

P X̃ can be identified, as topological space, with {0, 1}Ǐ .

PPP Put 2A(g-iii) and 3A together. QQQ

(d) If X = NN then

P X̃ can be identified with ŇŇ.

PPP Put 2A(g-iii) and 3A together. QQQ

(e) If X is an n-dimensional manifold, where n ≥ 1, then

P X̃ is an n-dimensional manifold.

PPP Follow the argument of 4Ah, but this time taking U to be the family of open subsets of X which are
homeomorphic to Rn. This time we need to use (c-ii) here and Theorem 3A to see that
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P Ũ is homeomorphic to n-dimensional Euclidean space

for every U ∈ U , so that

P every member of Ũ is homeomorphic to n-dimensional Euclidean space

and therefore that

P X̃ has a base consisting of sets homeomorphic to n-dimensional Euclidean space. QQQ

4E Zero sets: Proposition If X is a topological space and F ⊆ X is a zero set, then

P F̃ is a zero set in X̃.

proof Let φ : X → R be a continuous function such that F = φ−1[{0}]. Let φ̃ be the P-name as defined in
2C, so that

P φ̃ is a continuous function from X̃ to R̃

(2Cd). Now

P F̃ = φ̃−1[{0}].

PPP Suppose that ẋ, ẏ are P-names and p ∈ P is such that

p P φ̃(ẋ) = ẏ.

Let f ∈ C−(Z;X) and g ∈ C−(Z; R) be such that

p P ẋ = ~f and ẏ = ~g

and p̂ ⊆∗ dom(g ∩ φf). Then

p P ẋ ∈ F̃ ⇐⇒ p̂ ⊆∗ f−1[F ] ⇐⇒ p̂ ⊆∗ (φf)−1[{0}]

⇐⇒ p̂ ⊆∗ g−1[{0}] ⇐⇒ p P ~g = 0 ⇐⇒ p P φ̃(ẋ) = 0.

As p, ẋ and ẏ are arbitrary, we have the result. QQQ
Since R̃ is a P-name for the real line (4D(b-ii)), we see that

P F̃ is a zero set.

4F Proposition Let X be a connected Hausdorff space and P a forcing notion. Then
(a) If X is compact,

P X̃ is connected.

(b) If X is analytic,

P X̃ is connected.

proof (a) ??? Otherwise, by Theorem 4Ac, there are p ∈ P and a P-name Ġ such that

p P Ġ is a compact open set in X̃, and is neither ∅ nor X̃.

Now

p P there is a finite subset of T̃ with union Ġ,

so there are a q stronger than p, an n ∈ N and G0, . . . , Gn ∈ T such that

q P Ġ = G̃0 ∪ . . . G̃n;

setting G =
⋃

i≤nGi,

q P Ġ = G̃.

Similarly, there are an r stronger than q and an open set H ⊆ X such that
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r P X̃ \ Ġ = H̃.

But now G and H must be disjoint non-empty open sets in X. XXX

(b) ??? Otherwise, there are p ∈ P and P-names Ġ, Ḣ such that

p P Ġ and Ḣ are disjoint non-empty open sets with union X̃.

Adjusting the names Ġ, Ḣ if necessary, we can suppose that

Z \ p̂ = [[Ġ = X̃]] = [[Ḣ = ∅]],

so that

P Ġ and Ḣ are disjoint open sets with union X̃.

Let WĠ, WḢ be the corresponding open subsets of Z×X as described in §2E, so that they are disjoint (2Eb);
set F = (Z ×X) \ (WĠ ∪WḢ). The projections π1[WĠ], π1[WḢ ] are open subsets of Z both dense in p̂, and
(because X is connected) their intersection includes π1[F ]; so intπ1[F ] is dense in p̂. By the von Neumann-

Jankow selection theorem (Fremlin 03, 423N), π1[F ] ∈ B̂(Z) and there is a selector h0 : π1[F ] → X for

F which is B̂(Z)-measurable. Extending h0 to a function h which is constant on Z \ π1[F ], h : Z → X is

B̂(Z)-measurable.
Because X has a countable network consisting of Souslin-F sets, there is a dense Gδ set E ⊆ Z such that

f = h↾E is continuous and belongs to C−(Z;X). Now consider [[~f ∈ Ġ]]. If q ∈ P is such that q P
~f ∈ Ġ,

then

q̂ ⊆∗ {z : z ∈ E, (z, f(z)) ∈WĠ} ⊆ E \ intπ1[F ] ⊆∗ Z \ p̂.

So p P
~f /∈ Ġ. Similarly,

p P
~f /∈ Ḣ and Ġ ∪ Ḣ 6= X̃,

which is absurd. XXX

4G Corollary Let X be a Hausdorff space such that for any two points x, y ∈ X there is a connected
compact set containing both. (For instance, X might be path-connected.) Then for any forcing notion P,

P X̃ is connected.

proof Let ϕ̇ be the P-name described in 2Af. Then

P any two points of ϕ̇[X̌] belong to the same component of X̃.

PPP Let ẋ, ẏ be P-names and p ∈ P such that

p P ẋ, ẏ belong to ϕ̇[X̌].

Then there are a q stronger than p and x, y ∈ X such that

q P ẋ = x̃ and ẏ = ỹ.

Let K be a connected compact subset of X containing both x and y. Putting 2Cg and 4Fa together, we see
that

P K̃ is a connected subset of X̃,

while

q P ẋ, ẏ ∈ K̃,

so

q P ẋ, ẏ belong to the same component of X̃.

As p, ẋ and ẏ are arbitrary, we have the result. QQQ
Now 2A(f-iii) tells us that

P φ̇[X̌] is dense in X̃,
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so

P X̃ has a dense component and is connected.

Remark Of course the same idea works if we start from an adequate collection of connected Polish sub-
spaces.

4H For completeness, I set out two elementary remarks.

(a) If X is not connected then

P X̃ is not connected.

(For if U is a non-trivial open-and-closed subset of X, then

P Ũ is a non-trivial open-and-closed subset of X̃.)

(b) If X is not compact, then

P X̃ is not compact.

PPP Let 〈Gi〉i∈I be an open cover of X with no finite subcover. Then 2A(b-vi) tells us that

P 〈G̃i〉i∈Ǐ is an open cover of X̃.

??? If p ∈ P is such that

p P X̃ is compact,

then

p P there is a finite set J ⊆ Ǐ such that X̃ =
⋃

i∈J G̃i.

Now there are a q stronger than p and an n ∈ N such that

q P there is a J ∈ [Ǐ]n such that X̃ =
⋃

i∈J G̃i;

in which case there must be an r stronger than q and a J ∈ [I]≤n such that

r P X̃ =
⋃

i∈J̌ G̃i.

But this means that X =
⋃

i∈J Gi, contrary to the choice of 〈Gi〉i∈I . XXX
So we must have

P X̃ is not compact.

4I Metric spaces: Theorem Let (X, ρ) be a metric space.
(a) There is a P-name ρ̃ such that

P ρ̃ is a metric on X̃ defining its topology, and ϕ̇ : X̌ → X̃ is an isometry for ρ̌ and ρ̇.

(b) If (X, ρ) is complete, then

P (X̃, ρ̃) is complete.

proof (a)(i) For f , g ∈ C−(Z;X) define afg ∈ C−(Z; [0,∞[) by setting

afg(z) = ρ(f(z), g(z)) for z ∈ dom f ∩ dom g.

Let ρ̃ be the P-name

{(((~f,~g), ãfg), 11) : f , g ∈ C−(Z;X)}.

Then

P ρ̃ is a function from X̃ × X̃ to the non-negative reals.

PPP (α) Suppose that p ∈ P and that ẋ, ẏ are P-names such that

p P (ẋ, ẏ) ∈ X̃ × X̃.
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Then there are f , g ∈ C−(Z;X) such that

p P ẋ = ~f and ẏ = ~g, so ((ẋ, ẏ), ãfg) ∈ ρ̃, while ãfg is a non-negative real number

(using 4D(b-ii)). (β) Suppose that p ∈ P and that ẋ, ẏ, ȧ and ȧ′ are P-names such that

p P ((ẋ, ẏ), ȧ) and ((ẋ, ẏ), ȧ′) both belong to ρ̃.

Then there are a q stronger than p and f , g, f ′, g′ ∈ C−(Z;X) such that

q P ẋ = ~f = ~f ′, ẏ = ~g = ~g′, ȧ = ãfg and ȧ′ = ãf ′g′ .

In this case,

q̂ ⊆∗ {z : z ∈ dom f ∩ dom f ′, f(z) = f ′(z)}

∩ {z : z ∈ dom g ∩ dom g′, g(z) = g′(z)}

⊆ {z : z ∈ dom afg ∩ dom af ′g′ , afg(z) = af ′g′(z)}

and

q P ȧ = ȧ′. QQQ

(ii) If f , g, h ∈ C−(Z;X), then

afh(z) ≤ afg(z) + agh(z) for every z ∈ dom f ∩ dom g ∩ domh;

it follows at once that

P ρ̃(x,w) ≤ ρ̃(x, y) + ρ̃(y, w) for all x, y, w ∈ X̃.

So we have the triangle inequality.

(iii) If p ∈ P and ẋ, ẏ are P-names such that

p P ẋ = ẏ ∈ X̃,

let f , g ∈ C−(Z;X) be such that

p P ẋ = ~f and ẏ = ~g.

Then

p̂ ⊆∗ {z : z ∈ dom f ∩ dom g, f(z) = g(z)} = {z : z ∈ dom afg, afg(z) = 0},

so

p P ρ̃(ẋ, ẏ) = ãfg = 0.

(iv) In the other direction, if p ∈ P and ẋ, ẏ are P-names such that

p P ẋ, ẏ ∈ X̃ and ρ̃(ẋ, ẏ) = 0,

let f , g ∈ C−(Z;X) be such that

p P ẋ = ~f and ẏ = ~g.

Then

p̂ ⊆∗ {z : z ∈ dom afg, afg(z) = 0} = {z : z ∈ dom f ∩ dom g, f(z) = g(z)},

so

p P ẋ = ẏ.

Putting this together with (ii) and (iii),

P for all x, y ∈ X̃, ρ̃(x, y) = 0 iff x = y,

and

P ρ̃ is a metric on X̃.
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(v) Now suppose that p ∈ P, ǫ > 0 is a rational and ẋ is a P-name such that

p P ẋ0 ∈ X̃.

Then there is an f ∈ C−(Z;X) such that

p P ẋ = ~f .

Let U ⊆ X be an open set of diameter at most ǫ such that f−1[U ] is not empty; then there is a q stronger
than p such that q̂ ⊆∗ f−1[U ]. Now

q P Ũ is an open set containing ẋ.

Suppose that r is stronger than q and ẏ is a P-name such that

r P ẏ ∈ Ũ .

Let ~g be such that

r P ẏ = ~g;

then

r̂ ⊆∗ f−1[U ] ∩ g−1[U ]

⊆ {z : afg(z) is defined and at most ǫ}.

So

r P ρ̃(ẋ, ẏ) ≤ ǫ.

As p and ẋ are arbitrary,

P if x ∈ X̃ there is an open set U containing x such that ρ̃(x, y) ≤ ǫ for every y ∈ U ;

as ǫ is arbitrary,

P the topology induced by ρ̃ is coarser than the standard topology on X̃.

(vi) In the other direction, suppose that p ∈ P and ẋ, Ġ are P-names such that

p P Ġ ⊆ X̃ is open and ẋ ∈ Ġ.

Then there are a q stronger than p and an open G ⊆ X such that

q P ẋ ∈ G̃ ⊆ Ġ;

let f ∈ C−(Z;X) be such that q P ẋ = ~f , so that q̂ ⊆∗ f−1[G]. Let ǫ > 0 be a rational such that q̂ meets
f−1[Hǫ], where Hǫ = {x : ρ(x,X \G) > ǫ}. Let r stronger than q be such that r̂ ⊆∗ f−1[Hǫ]. Now suppose
that s is stronger than r and that ẏ is a P-name such that

s P ẏ ∈ X̃ and ρ̃(ẋ, ẏ) < ǫ.

Let g ∈ C−(Z;X) be such that s P ẏ = ~g. Then

ŝ ⊆∗ {z : z ∈ dom f ∩ dom g, ρ(f(z), g(z)) < ǫ} ∩ f−1[Hǫ] ⊆ g−1[G],

so

s P ẏ ∈ G̃ ⊆ Ġ.

As p, ẋ and Ġ are arbitrary, we see that

P whenever G ⊆ X̃ is open and x ∈ G, there is an ǫ > 0 such that y ∈ G whenever

y ∈ X̃ and ρ̃(x, y) < ǫ;

so, with (v), we have

P the topology defined by ρ̃ is the standard topology on X̃.

(vii) I still have to check the assertion that ϕ̇ is a name for an isometry. But suppose that x, y ∈ X.
Then (in the notation of 2Af) aex,ey

is the constant function with value ρ(x, y), so
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P ρ̃(ϕ̇(x̌), ϕ̇(y̌)) = ρ̃(~ex, ~ey) = ãex,ey
= ρ(x, y)̌ = ρ̌(x̌, y̌).

So

P ϕ̇ : X̌ → X̃ is an isometry.

(b) Now suppose that (X, ρ) is complete. Take p ∈ P, and let ġgg be a P-name such that

p P ġgg is a sequence in X̃ such that ρ̃(ġgg(n+ 1), ġgg(n)) < 2−n for every n ∈ N.

For each n ∈ N let fn ∈ C−(Z;X) be such that

p P ġgg(n) = ~fn.

Then

p̂ ⊆∗
⋂

n∈N{z : z ∈ dom afn,fn+1
, afn+1,fn

(z) < 2−n} = E

say. Set E′ = E ∩ intE, so that E \ E′ is nowhere dense, and E′, like E, is a Gδ set. For z ∈ E′, we have
ρ(fn+1(z), fn(z)) < 2−n for every n, so f(z) = limn→∞ fn(z) is defined in X; for z ∈ Z \ E take f(z) to be
any point of X. (I am passing over the trivial case X = ∅.) Because 〈fn↾E′〉n∈N is uniformly convergent to
f↾E′, f↾E′ and f are continuous, and f ∈ C−(Z;X). Now, for any n ∈ N, ρ(f(z), fn(z)) < 2−n+1 for every
z ∈ E′, so p̂ ⊆∗ {z : z ∈ dom af,fn

, af,fn
(z) < 2−n+1} and

p P ρ̃(ġgg(n), ~f) < 2−n+1.

Accordingly

p P
~f = limn→∞ ġgg(n);

as p and ġgg are arbitrary,

P (X̃, ρ̃) is complete.

4J When studying random and Cohen forcing, among others, it is often useful to know when a name
for a Borel set in X̃ can be represented, in the manner of 2E, by a set W ⊆ Z ×X which factors through
a continuous function from Z to {0, 1}N. Here I collect some simple cases in which this can be done, in
preparation for §8 below.

Proposition Let P be a forcing notion and Z the Stone space of its regular open algebra. Write Ba(Z) for
the Baire σ-algebra of Z. Let X be a Hausdorff space and Σ a σ-algebra of subsets of X including a base
for the topology of X. I will say that a P-name Ė is (Ba,Σ)-representable if there is a W ∈ Ba(Z)⊗̂Σ
such that

P Ė = ~W ,

defining ~W as in 2E.
(a) Suppose that X is second-countable and that

P Ė is a Borel subset of X̃.

If either P is ccc or there is an α < ω1 such that

P Ė is of Borel class at most α,

then Ė is (Ba,Σ)-representable.
(b) Suppose that P is ccc.

(i) If

P Ė is a compact Gδ set

then Ė is (Ba,Σ)-representable.
(ii) If X is compact and

P Ė ∈ Ba(X̃),

then Ė is (Ba,Σ)-representable.
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proof (a)(i) Suppose that

P Ė is open.

Let U ⊆ Σ be a countable base for the topology of X and set

W =
⋃

U∈U [[Ũ ⊆ Ė]] × U ∈ Ba(Z)⊗̂Σ;

then P Ė = ~W so Ė is (Ba,Σ)-representable.

(ii) Inducing on α, we see that if

P Ė is of class at most α,

then Ė is (Ba,Σ)-representable.

(iii) If P is ccc then we can apply (ii).

(b)(i) Let 〈Ġn〉n∈N be a sequence of P-names such that

P Ġn is open for every n and K̇ =
⋂

n∈N Gn.

Let U ⊆ Σ be a base for the topology of X closed under finite unions. Then, in the language of 2A,

P Ũ is a base for the topology of X̃ closed under finite unions.

Fix n ∈ N for the moment. Then

P there is a U ∈ Ũ such that Ė ⊆ U ⊆ Ġn,

so there are a maximal antichain Qn ⊆ P and a family 〈Unq〉q∈Qn
in U such that

q P Ė ⊆ Ũnq ⊆ Ġn

for every q ∈ Qn. Set Wn =
⋃

q∈Qn
q̂ × Unq; then

q P Ė ⊆ Ũnq = ~Wn ⊆ Ġn

for every q ∈ Qn, and

P Ė ⊆ ~Wn ⊆ Ġn.

So if we now set W =
⋂

n∈N Wn, we shall have

P Ė ⊆ ~W ⊆
⋂

n∈N Ġn and Ė = ~W .

But also, because P is ccc, every Qn is countable, so every Wn belongs to Ba(Z)⊗̂Σ and W also does.

(ii) From 4Ac and (i), we see that if

P Ė is a zero set in X̃, therefore a compact Gδ set

then Ė is (Ba,Σ)-representable. Now, writing Baα, for 1 ≤ α < ω1, for the additive classes in the Baire
hierarchy4, then we see by induction on α that if

P Ė ∈ Baα(X̃)

then Ė is (Ba,Σ)-representable. Finally, if

P Ė ∈ Ba(X̃)

then, because P is ccc, there is an α < ω1 such that P Ė ∈ Baα(X̃) and Ė is therefore (Ba,Σ)-representable.

4For any topological space Y , start with Ba1(Y ) the family of cozero sets, Baα+1(Y ) = {
⋃

n∈N(Y \ En) : En ∈ Baα(Y )

for every n}, Baα(Y ) =
⋃

1≤β<α Baβ(Y ) for non-zero limit ordinals α.
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5 Cardinal functions

5A Theorem Let P, (X,T) and X̃ be as in §2A, and θ a cardinal.
(a) If the weight w(X) of X is θ then

P w(X̃) ≤ #(θ̌).5

(b) If the π-weight π(X) of X is θ then

P π(X̃) ≤ #(θ̌).

(c) If the density d(X) of X is θ then

P d(X̃) ≤ #(θ̌).

(d) If the saturation sat(X) of X is θ then

P sat(X̃) ≥ #(θ̌).

proof (a) Apply 2Ad with a base U of cardinal θ.

(b) Let 〈Uξ〉ξ<θ enumerate a π-base for the topology of X. Consider the P-name

ψ̇ = {((ξ̌, Ũξ), 11) : ξ < θ}.

Then

P ψ̇ is a function from θ̌ to T̃.

Now

P {ψ̇(ξ) : ξ < θ̌} is a π-base for the topology of X̃.

PPP Suppose that p ∈ P and that Ġ is a P-name such that

p P Ġ is a non-empty open subset of X̃.

Then

p P there is a G ∈ T̃ such that ∅ 6= G ⊆ Ġ,

so there are a q stronger than p and a G ∈ T such that

q P ∅ 6= G̃ ⊆ Ġ.

In this case, G 6= ∅ so there is a ξ < θ such that ∅ 6= Uξ ⊆ G, in which case

q P ψ̇(ξ̌) = Ũξ is non-empty and included in Ġ.

As p and Ġ are arbitrary,

P every non-empty open subset of X̃ includes a non-empty value of ψ̇,

which is what we need to know. QQQ
Now the result follows at once.

(c) Use 2A(f-iii) with a set D of cardinal θ.

(d) ??? Otherwise, there are a p ∈ P and an ordinal κ such that

p P sat(X̃) = κ̌ < #(θ̌).

Now κ < sat(X), so there is a disjoint family 〈Gξ〉ξ<κ of non-empty open sets in X. But now

P 〈G̃ξ〉ξ<κ̌ is a disjoint family of non-empty open subsets of X̃, so #(κ̌) < sat(X̃). XXX

5B Theorem Let P, Z, (X,T) and X̃ be as in §2, and θ a cardinal.
(a) If X is compact and w(X) = θ, then

5Recall that P θ̌ is an ordinal, but that in many cases P θ̌ is not a cardinal.
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P w(X̃) = #(θ̌).

(b) If X is metrizable and w(X) = θ, then

Pw(X̃) = #(θ̌).

proof (a) Suppose that p ∈ P and that λ̇ is a P-name such that

p P λ̇ ≤ θ̌ is a regular cardinal.

Then there are an ordinal λ and a q stronger than p such that

q P λ̇ = λ̌,

and λ must be a regular cardinal in the ground model, less than or equal to θ. Write I for the unit interval
[0, 1]. Because λ ≤ w(X), there is a continuous function φ : X → Iλ such that whenever ξ < λ there are x,

y ∈ X such that φ(x)↾α = φ(y)↾α but φ(x)(α) 6= φ(y)(α). Let φ̃ be the corresponding P-name defined from
φ by the construction of 2C. By Theorem 3A,

P (Iλ)
∼

can be identified with Ĩ λ̌;

working through the identifications in §§2C and 3A, we have a P-name ψ̃ such that

P ψ̃ : X̃ → Ĩ λ̌ is a continuous function,

and whenever f ∈ C(Z;X) then

P ψ̃(~f) = (φf)# = (〈πξφf〉ξ<λ)
→

.

Now

q P if α < λ̌ there are x, y ∈ X̃ such that ψ̃(x)↾α = ψ̃(y)↾α but ψ̃(x) 6= ψ̃(y).

PPP Let r be stronger than q and α̇ a P-name such that r P α̇ < λ̌. Then there are an s stronger than
r and an ordinal α < λ such that s P α̇ = α̌. Now we have x, y ∈ X such that φ(x)↾α = φ(y)↾α but
φ(x)(α) 6= φ(y)(α). Let ex, ey ∈ C(Z;X) be the corresponding constant functions. Then

P ψ̃(x̃) = (〈πξφex〉ξ<λ)
→

,

so

P ψ̃(x̃)(ξ) = (πξφex)
→

= ~fπξφ(x)

for every ξ < λ, where fπξφ(x) : Z → I is now the constant function with value φ(x)(ξ). But this means that

P ψ̃(x̃)(ξ) = ψ̃(ỹ)(ξ)

for every ξ < α, while

P ψ̃(x̃)(α̌) 6= ψ̃(ỹ)(α̌).

So

s P ψ̃(x̃)↾α̇ = ψ̃(ỹ)↾α̇ but ψ̃(x̃) 6= ψ̃(ỹ).

As r and α̇ are arbitrary, we have the result. QQQ
Because

q P λ̌ is a regular cardinal and Ĩ is the unit interval

(4D(b-i)),

q Pw(X̃) ≥ λ̌ = λ̇.

As p and λ̇ are arbitrary,

P if λ ≤ #(θ) is a regular cardinal, then w(X̃) ≥ λ,

so

Pw(X̃) ≥ #(θ̌).
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Putting this together with Theorem 5Aa,

Pw(X̃) = #(θ̌).

(b) If ρ is a metric on X inducing its topology, then X has a σ-metrically-discrete base, so there is a
sequence 〈Gn〉n∈N such that each Gn is a disjoint family of non-empty open sets and supn∈N θn = θ, where

θn = #(Gn). Now, setting G̃n = {(G̃, 11) : G ∈ Gn} for each n,

P G̃n is a disjoint family of non-empty open sets, so #(θ̌n) = #(G̃n) ≤ w(X̃)

for each n. But as

P θ̌ =
⋃

n∈N θ̌n,

we have

P #(θ̌) = supn∈N #(θ̌n) ≤ w(X̃);

putting this together with 5Ac,

Pw(X̃) = #(θ̌).

5C Theorem (A.Dow) Suppose that GCH is true, and that P is any forcing notion.
(a) Let A be a Dedekind complete Boolean algebra and set κ = π(A). Then

P π(Ǎ) = #(κ̌).

(b) Let X be a regular topological space and set κ = π(X). Then

P π(X̃) = #(κ̌).

(c) Let A be any Boolean algebra and set κ = π(A). Then

P π(Ǎ) = #(κ̌).

proof (a) It is easy to see that

P π(Ǎ) ≤ #(κ̌),

since if A is order-dense in A then

P Ǎ is order-dense in Ǎ.

??? Suppose, if possible, that

¬ P #(κ̌) ≤ π(Ǎ).

Then there must be a p ∈ P and ordinals λ1, λ2 such that

p P π(Ǎ) = λ̌1 < λ̌2 ≤ #(κ̌) and λ̌2 is a regular cardinal.

Of course λ1 is a cardinal and λ2 is a regular cardinal. Note that sat(A) ≤ λ2. PPP If A ⊆ A\{0} is a disjoint
set of size λ then

P Ǎ is a disjoint family in Ǎ \ {0} so #(λ̌) = #(Ǎ) ≤ π(Ǎ)

and

p P #(λ̌) < #(λ̌2)

so λ < λ2. QQQ
It follows that if B ⊆ A is any set of cardinal at most λ2 there is an order-closed subalgebra of A, including

B, of cardinal at most λ2. (This is where we need the continuum hypothesis, to see that 2λ ≤ λ2 for every
λ < λ2.) At the same time, λ2 ≤ κ = π(A). We can therefore find families 〈Bξ〉ξ<λ2

and 〈bξ〉ξ<λ2
such that

〈Bξ〉ξ<λ2
is a non-decreasing family of subalgebras of A, all of cardinal less than λ2,

for each ξ < λ2, bξ ∈ Bξ+1 \ {0} and bξ 6⊇ a for any a ∈ Bξ,
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B =
⋃

ξ<λ2
Bξ is an order-closed subalgebra of A.

For a ∈ A set f(a) = upr(a,B), the smallest element of B including a.

Let Ȧ be a P-name such that

p P Ȧ is an order-dense subset of Ǎ and #(Ȧ) ≤ λ̌1.

Let ġ be the P-name

{((ǎ, ξ), q) : a ∈ A, f(a) ∈ Bξ \
⋃

η<ξ Bη, q P a ∈ Ȧ}.

Then

p P ġ is a function from Ȧ to λ̌2.

Since

p P λ̌2 is a regular cardinal greater than #(Ȧ),

there must be a q stronger than p and a ζ < λ2 such that

q P ġ(a) ≤ ζ̌ for every a ∈ Ȧ.

However,

q P there is some a ∈ Ȧ such that 0 6= a ⊆ b̌ζ̌ ,

so there are an r stronger than q and an a ∈ A \ {0} such that a ⊆ bζ and r P ǎ ∈ Ȧ. As r P ġ(ǎ) ≤ ζ̌,

there are an s stronger than r and a ζ ′ ≤ ζ such that s P ġ(ǎ) = ζ̌ ′; but this means that f(a) ∈ Bζ′ and
bζ includes a non-zero element of Bζ . XXX

So (a) must be true.

(b) Apply (a) to RO(X); since π(RO(X)) = π(X) = κ and

P RO(X )̌ is isomorphic to an order-dense subalgebra of RO(X̃),

we have (using the fact that P X̃ is regular)

P π(X̃) = π(RO(X̃)) = π(RO(X )̌ ) = #(κ̌),

as required.

(c) Apply (b) to the Stone space of A.

5D Proposition Let X be a ccc Hausdorff space, and P a productively ccc forcing notion. Then

P X̃ is ccc.

proof If Z is the Stone space of RO(P) then Z is productively ccc so Z ×X is ccc.

??? Suppose, if possible, that

¬ P X̃ is ccc.

Then there is a p ∈ P such that

p P there is an uncountable disjoint family of non-empty open sets in X̃;

let 〈Ġξ〉ξ<ω1
be a family of P-names such that

p P Ġξ is a non-empty open subset of X̃ and Ġξ ∩ Ġη = ∅ whenever ξ < η < ω1.

By 2Eb we have for each ξ < ω1 an open set Wξ ⊆ Z ×X such that p P Ġξ = ~Wξ. Now (p̂ ×X) ∩Wξ is
never empty, so there are ξ < η < ω such that (p̂×X)∩Wξ ∩Wη 6= ∅. So we have an r stronger than p and
a non-empty open H ⊆ X such that (r̂ ×H) ⊆Wξ ∩Wη. But now

r P ∅ 6= H̃ ⊆ ~Wξ ∩ ~Wη = Ġξ ∩ Ġη,

which is impossible. XXX
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5E Proposition Suppose that X is a hereditarily ccc compact Hausdorff space and that P is a forcing
notion such that ω1 is a precaliber of P. Then

P X̃ is hereditarily ccc.

proof ??? Otherwise, there are a p ∈ P and P-names ẋξ, Ġξ for ξ < ω1 such that

p P Ġξ ⊆ X̃ is open and ẋξ ∈ Ġξ \ Ġη whenever ξ, η < ω1 are distinct.

Let Z be the Stone space of RO(P); for each ξ < ω1 let fξ ∈ C(Z;X) be such that p P ẋξ = ~fξ. Then we
can find an open set Gξ ⊆ X and a pξ stronger than p such that

pξ P f̃ξ ⊆ G̃ξ ⊆ Ġξ.

Now if ξ, η < ω1 are distinct and r is stronger than both pξ and pη,

r P
~fξ /∈ Ġη ⊇ G̃η

and r̂ ∩ f−1
ξ [Gη] must be empty. As r is arbitrary, p̂ξ ∩ p̂η ∩ f−1

ξ [Gη] is empty.

Because ω1 is a precaliber of P, there is a z ∈ Z such that D = {ξ : ξ < ω1, z ∈ p̂ξ} is uncountable. But
now fξ(z) ∈ Gξ \Gη for all distinct ξ, η ∈ D, so {fξ(z) : ξ ∈ D} is not ccc. XXX

6 Radon measures

6A Theorem Let (X,T,Σ, µ) be a Radon measure space, and P a forcing notion. Let µ̃ be the P-name

{((Ã, (µA)̌ ), 11) : A ∈ UB̂(X)}.

Then

P there is a unique Radon measure on X̃ extending µ̃.

Remark Perhaps a note is in order on the interpretation of the formula (µA)̌ . If we take a real number α
to be the set of rational numbers less than or equal to α, then α̌ becomes a P-name for a real number. If,
in this context, we interpret ∞ as the set of all rational numbers, then we can equally regard ∞̌ = Q̌ as a
P-name for the top point of the two-point compactification of the reals.

proof (a) By 1C, every member of UB̂(X) is universally Radon-measurable, so the formula for µ̃ makes
sense. Since we know that

P Ã 6= B̃

whenever A and B are distinct elements of UB̂(X), we have

P µ̃ is a function,

and from 2A we see that

P µ̃ is an additive function from an algebra of subsets of X̃ to [0,∞].

(b) Let Ṫ be the P-name

{(Ã, 11) : A ∈ UB̂(X) is included in an open set of finite measure};

then

P Ṫ is a ring of subsets of X̃.

Let ν̇ be the P-name

{((Ã, (µA)̌ ), 11) : A ∈ UB̂(X) is included in an open set of finite measure}.

Then

P ν̇ : Ṫ → [0,∞[ is additive.
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Let U be the family of open subsets of X of finite measure, so that U is upwards-directed and covers X.
Then

P Ũ ⊆ Ṫ is an upwards-directed family of open sets with union X̃.

By Fremlin 03, 416K, there is a P-name µ̇ such that

P µ̇ is a Radon measure on X̃, µ̇K ≥ ν̇K whenever K ∈ Ṫ is compact, and µ̇G ≤ ν̇G

whenever G ∈ Ṫ is open.

(c) Suppose that A ∈ UB̂(X) is included in an open set of finite measure, and γ1, γ2 are rationals such
that γ1 < µA < γ2. Then there are a compact K ⊆ A such that µK ≥ γ1 and an open set G ⊇ A such that
µG ≤ γ2. In this case K and G are universally Baire-property sets included in open sets of finite measure,
so

P K̃ ∈ Ṫ is a compact subset of Ã and G̃ ∈ Ṫ is an open set including Ã, so γ1 ≤ (µK )̌ =

ν̇K̃ ≤ µ̇K̃ ≤ µ̇∗Ã ≤ µ̇∗Ã ≤ µ̇G̃ ≤ ν̇G̃ = (µG)̌ ≤ γ2.

As γ1 and γ2 are arbitrary,

P µ̇∗Ã = µ̇∗Ã = (µA)̌ ,

so

P µ̇Ã is defined and equal to (µA)̌ = µ̃Ã.

(d) Now take any A ∈ UB̂(X).

(i)

P µ̇ measures Ã ∩ U for every U ∈ Ũ .

PPP Let p ∈ P and U̇ be such that

p P U̇ ∈ Ũ .

Then there are a q stronger than p and a U ∈ U such that

q P U̇ = Ũ ,

in which case

q P Ã ∩ U̇ = (A ∩ U)
∼

∈ dom µ̇. QQQ

Since

P µ̇ is a Radon measure and Ũ is an open cover of X̃,

we have

P µ̇ measures Ã.

(ii) If γ < µA is rational, there is a compact set K ⊆ A such that µK ≥ γ, and now

P K̃ ⊆ Ã and µ̇K̃ ≥ γ, so µ̇Ã ≥ γ.

As γ is arbitrary,

P µ̇Ã ≥ (µA)̌ = µ̃Ã.

(iii) If U ∈ U , then

P µ̇(Ã ∩ Ũ) = µ̇(A ∩ U)
∼

= µ̃(A ∩ U)
∼

≤ µ̃Ã.

So

P µ̇(Ã ∩ U) ≤ µ̃Ã for every U ∈ Ũ .

Since

P µ̇ is a Radon measure and Ũ is an upwards-directed family of open sets with union X̃,
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we have

P µ̇Ã ≤ µ̃Ã.

(iv) Putting these together, we see that

P µ̇Ã = µ̃Ã

for every A ∈ UB̂(X), so that

P µ̇ extends µ̃.

6B Theorem Let P be a forcing notion. Let 〈(Xi,Ti,Σi, µi)〉i∈I be a family of Radon probability spaces
such that J = {i : i ∈ I, Xi is not compact} is countable. Let µ be the product Radon measure on

X =
∏

i∈I Xi. Let µ̇, µ̇i, for i ∈ I, be P-names for Radon measures on X̃, X̃i respectively, defined as in 6A.
Then

P µ̇ can be identified with the Radon product of 〈µ̇i〉i∈Ǐ .

proof We need to begin by checking that

P X̃ can be identified with
∏

i∈Ǐ X̃i;

this is Theorem 3A. Next, consider the base U for the topology of X consisting of open cylinder sets, and
the corresponding name Ũ , so that

P Ũ is a base for the topology of X̃ closed under finite intersections.

If U ∈ U , then U can be expressed as
∏

i∈I Ui where Ui ⊆ Xi is open for every i and K = {i : Ui 6= Xi} is
finite. In this case,

P Ũ is matched with
∏

i∈I Ũi.

Moreover,

P µ̇Ũ = µ̃Ũ = (µU )̌ = (
∏

i∈K µiUi)̌ =
∏

i∈K(µiUi)̌ =
∏

i∈K µ̃iŨi =
∏

i∈I µ̇iŨi, so the

Radon measure µ̇ agrees with the Radon product measure µ̇# on Ũ .

As Ũ is arbitrary,

P µ̇ agrees with µ̇# on Ũ , and as these are both Radon measures they must coincide.

6C I extract a couple of simple facts about quasi-Radon measures for use in the next theorem.

Lemma Let (X,T,Σ, µ) be a quasi-Radon measure space, and (A, µ̄) its measure algebra.

(a) For every E ∈ Σ there is an A ∈ UB̂(X) such that A ⊆ E and E \A is negligible.
(b) If U is any base for T closed under finite unions, then {U• : U ∈ U} is dense in A for the measure-

algebra topology.

proof (a) Let G be the set of open sets of finite measure, and G∗ its union. Let 〈Fi〉i∈I be a maximal disjoint
family of non-empty self-supporting sets all included in members of G. Then X \

⋃
i∈I Fi is negligible, and

every member of G meets only countably many of the Fi. For each i ∈ I, let Ei ⊆ E ∩ Fi be a Borel set

such that (E ∩ Fi) \ Ei is negligible, and set A =
⋃

i∈I Ei. By 1Bd, A ∈ UB̂(X). Of course A ⊆ E, and as
(E \A) ∩ Fi is negligible for every i, E \A is negligible.

(b) Suppose that H ∈ Σ has finite measure, E ∈ Σ and ǫ > 0. Then there is an open set G of finite
measure such that µ(E \ G) ≤ ǫ. There is a closed set F ⊆ G \ H such that µF ≥ µ(G \ H) − ǫ, so that
µ((E△(G \ F )) ∩H) ≤ 2ǫ. Because U is a base for T closed under finite unions, there is a U ∈ U such that
U ⊆ G \ F and µU ≥ µ(G \ F ) − ǫ, so that µ((E△U) ∩H) ≤ 3ǫ. As E, H and ǫ are arbitrary, we have the
result.

6D Theorem Let (X,T,Σ, µ) be a Radon measure space, and (A, µ̄) its measure algebra. Let P be a

forcing notion, and µ̇ a P-name for a Radon measure on X̃ as described in 6A; let (Ȧ, ˙̄µ) be a P-name such
that
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P (Ȧ, ˙̄µ) is the measure algebra of µ̇.

Let ˙̟ be the P-name

{((A•)̌ , Ã•), 11) : A ∈ UB̂(X)}.

Then

P ˙̟ is a measure-preserving Boolean homomorphism from (Ǎ, ˇ̄µ) to (Ȧ, ˙̄µ), and ˙̟ [Ǎ] is

dense in Ȧ for the measure-algebra topology.

proof (a) The first step is to check that

P ˙̟ is a function.

PPP Suppose that p ∈ P and that ȧ, ḃ, ċ are P-names such that

p P (ȧ, ḃ) and (ȧ, ċ) belong to ˙̟ .

Then there are a q stronger than p and A, B ∈ UB̂(X) such that

q P ȧ = (A•)̌ = (B•)̌ , ḃ = Ã• and ċ = B̃•.

In this case, A• = B• in A, so µ(A△B) = 0 and

P µ̇(Ã△B̃) = µ̇(A△B)
∼

= 0,

so

q P ḃ = ċ. QQQ

(b) P dom ˙̟ = Ǎ. PPP If p ∈ P and ȧ is a P-name such that p P ȧ ∈ Ǎ, then there are a q stronger

than p and an a ∈ A such that q P ȧ = ǎ. Now 6C tells us that there is an A ∈ UB̂(X) such that A• = a,
so that

q P (ȧ, Ã•) ∈ ˙̟ . QQQ

(c) It is now elementary to check that

P ˙̟ is a measure-preserving Boolean homomorphism.

(d) As for the density of the range, use 6Cb. Let U be the family of open sets of finite measure in X, so
that U is a base for T, and

P Ũ is a base for the topology of X̃ closed under ∪, so {U• : U ∈ Ũ} is dense in Ȧ.

Since

P ˙̟ ((U•)̌ ) = Ũ•

for every U ∈ U ,

P ˙̟ [Ǎ] ⊇ {U• : U ∈ Ũ} is dense in Ȧ.

6E Proposition (see Džamonja & Kunen 95) Let (X,T,Σ, µ) be a Maharam-type-homogeneous Radon
measure space and κ its Maharam type. Let P be a forcing notion and µ̇ the P-name for a Radon measure
on X̃ derived from µ. Then

P µ̇ is Maharam-type-homogeneous and its Maharam type is #(κ).

proof Let 〈aξ〉ξ<κ be a stochastically independent generating set in the measure algebra A of µ, all of
measure 1

2 . Then, in the language of 6D,

P 〈 ˙̟ (ǎξ)〉ξ<κ is a stochastically independent family of elements of measure 1
2 in the

measure algebra Ȧ of µ̇, and the algebra they generate is dense for the measure metric,
so Ȧ is isomorphic to the measure algebra of the usual measure on {0, 1}κ.
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6F Lemma Let (X,T,Σ, µ) be a Radon measure space, E ∈ UB̂(X) and 〈Ei〉i∈I a family in UB̂(X) such
that E• = supi∈I E

•

i in the measure algebra of µ. Then, for any forcing notion P,

P Ẽ
• = supi∈Ǐ Ẽ

•

i in the measure algebra of µ̇.

proof (a) For each i ∈ I, µ(Ei \ E) = 0 so (in the language of 6A)

P µ̇(Ẽi \ Ẽ) = µ̃(Ei \ E)
∼

= 0.

Accordingly

P supi∈Ǐ Ẽ
•

i ⊆ Ẽ•.

(b) On the other side, writing U for the family of open subsets of X of finite measure, we have

for every U ∈ U and rational ǫ > 0 there is a finite J ⊆ I such that µ(U∩E) ≤ µ(U∩
⋃

i∈J Ei)+ǫ.

So

P for every U ∈ Ũ and rational ǫ > 0 there is a finite J ⊆ Ǐ such that µ̇(U ∩ Ẽ) ≤
µ̇(U ∩

⋃
i∈J Ẽi) + ǫ.

But as

P Ũ is a cover of X̃ by open sets of finite measure,

this is enough to show that

P Ẽ
• ⊆ supi∈I Ẽ

•

i in the measure algebra of µ̇.

6G Theorem Let (X,T,Σ, µ) be a Radon measure space, Y a Hausdorff space and φ : X → Y an almost

continuous function. Let P be a forcing notion. Then, defining φ̃ as in 2C, and taking a P-name µ̇ for a
Radon measure on X̃ as in 6A,

P φ̃ is a µ̇-almost continuous function from a conegligible subset of X̃ to Ỹ .

proof Let 〈Ki〉i∈I be a maximal disjoint family of non-empty self-supporting compact subsets of X such
that φ↾Ki is continuous for every i ∈ I. Then 2C tells us that

P K̃i ⊆ dom φ̃ and φ̃↾K̃i is continuous for every i ∈ Ǐ.

But 6F tells us that

P supi∈Ǐ K̃
•

i = 1 in the measure algebra of µ̇,

and the result follows at once.

6H Theorem Let X be a locally compact Hausdorff group, and µ a left Haar measure on X. Let P be
a forcing notion and µ̇ a P-name for a Radon measure on X̃ as in 6A. Then

P µ̇ is a left Haar measure on X̃

when X̃ is given its topological group structure as in 4C.

proof (a)

p P µ̇(ẋ · Ġ) ≥ µ̇Ġ

whenever ẋ and Ġ are P-names and p ∈ P is such that

p P ẋ ∈ X̃ and Ġ is an open subset of X̃.

PPP Suppose that γ is rational, q is stronger than p and q P γ < µ̇Ġ. Then there are an r stronger than q
and an open G ⊆ X such that

r P G̃ ⊆ Ġ and µ̇G̃ > γ.
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In this case µG > γ, so there is a compact set K ⊆ G such that µK ≥ γ. Let H be an open neighbourhood
of the identity such that HK ⊆ G. Because {xH−1 : x ∈ X} is an open cover of X, there are an s stronger
than r and an x ∈ X such that

s P ẋ ∈ (xH−1)
∼

= x̃H̃−1

(4C(b-i) and (b-ii)). So

s P (xK)
∼

= x̃K̃ ⊆ ẋH̃K̃ = ẋ(HK)
∼

⊆ ẋG̃

(4C(b-iii)) and

s P µ̇(ẋG̃) ≥ µ̇(xK)
∼

= µ(xK )̌ = (µK )̌ ≥ γ.

As q and γ are arbitrary,

p P µ̇(ẋ · Ġ) ≥ µ̇Ġ. QQQ

(b) Since we already know that

P µ̇ is a Radon measure on the Hausdorff topological group X̃,

this is enough to show that

P µ̇ is a left Haar measure on X̃.

6I Theorem Let (X,T,Σ, µ) be a σ-finite Radon measure space and µ̇ a P-name for a Radon measure

on X̃ defined from µ as in 6A. Suppose that W is a Borel set in Z ×X and that ~W is the corresponding
P-name for a subset of X̃, as in 2E. Then there is an f ∈ C−(Z; [0,∞]) such that f(z) = µW [{z}] for every
z ∈ dom f and

P µ̇ ~W = ~f .

proof (a) Suppose that W is open. Then g(z) = µW [{z}] is defined for every z, and g is lower semi-

continuous, so there is an f ∈ C−(Z; [0,∞]) such that f ⊆ g. Also P
~W is open (2E(c-ii)). (α) If γ is

rational, z ∈ dom f and f(z) > γ, then there are an open set U containing z and an open set G ⊆ X such
that µG > γ and U ×G ⊆W . Now there is a q stronger than p such that z ∈ q̂ ⊆ U , so that

q P G̃ ⊆ ~W and µ̇W ≥ µ̇G̃ = (µG)̌ > γ.

Thus z ∈ q̂ ⊆ [[µ̇ ~W > γ]]. As z is arbitrary, f−1[ ]γ,∞] ] ⊆ [[µ̇ ~W > γ]] and

P if ~f > γ then µ̇ ~W > γ;

as γ is arbitrary,

P
~f ≤ µ̇ ~W .

(β) If γ is rational, p ∈ P and p P µ̇ ~W > γ, then let 〈(qi, Gi)〉i∈I run over the set

{(q,G) : q ∈ P, q̂ ×G ⊆W},

and set Wi = q̂i ×Gi for i ∈ I. Then
⋃

i∈I Wi = W , so by 2Eg we have

P
~W =

⋃
i∈Ǐ

~Wi = (
⋃

i∈I Wi)
→

.

There must therefore be a q stronger than p and a finite set J ⊆ I such that

q P µ̇(
⋃

i∈J̌
~Wi) > γ.

But now there is an r stronger than q such that, for every i ∈ J , either r is stronger than qi or r is
incompatible with qi; setting K for the set {i : i ∈ J , r is stronger than qi} and G =

⋃
i∈K Gi, we have

r P

⋃
i∈J̌

~Wi = G̃,

so

r P µ̇G̃ > γ
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and µG > γ. Also q̂ ×G ⊆W so f(z) > γ for every z ∈ q̂ and q P
~f > γ. As p and γ are arbitrary,

P
~f ≥ µ̇ ~W and ~f = µ̇ ~W .

(b) Let G ⊆ X be an open set of finite measure and consider

WG = {W : W ⊆ Z ×G is Borel and satisfies the conclusion of the theorem}.

Then WG is a Dynkin class of subsets of Z×G. PPP (α) ∅ ∈ WG, witnessed by f constant 0. (β) If W ∈ WG,
witnessed by f ∈ C−(Z; [0,∞]), then f(z) ≤ µG for every z ∈ dom f . Set g(z) = µG− f(z) for z ∈ dom f ;
then g witnesses that (Z ×G) \W belongs to WG, because

P ((Z ×G) \W )
→

= (Z ×G)
→

\ ~W = G̃ \ ~W

(2E(c-iii), 2Ed) and P µ̇G̃ = (µG)̌ . (γ) If 〈Wn〉n∈N is a non-decreasing sequence in WG, witnessed by
〈fn〉n∈N in C−(Z;X), and W =

⋃
n∈N Wn, set h(z) = supn∈N fn(z) for z ∈

⋂
n∈N dom fn. Then h is lower

semi-continuous and domh is comeager in the extremally disconnected set Z, so there is a comeager Gδ set
V ⊆ domh such that g = h↾V is continuous. Now

P ~g = supn∈N
~fn = supn∈N µ̇ ~Wn = µ̇(

⋃
n∈N

~Wn) = µ̇ ~W

and g witnesses that W ∈ WG. QQQ
With (a), this is enough to show that W ∩ (Z ×G) ∈ WG for every Borel set W ⊆ Z ×X.

(c) Because µ is σ-finite, there is a non-decreasing sequence 〈Gn〉n∈N of open sets of finite measure with
conegligible union in X. Repeating the argument of (b-γ) just above, we see that if W ⊆ Z ×X is Borel
and X0 =

⋃
n∈N Gn, then W ∩ (Z ×X0) satisfies the conclusion of the theorem. But now

P (W \ (Z ×X0))
→

⊆ (X \X0)
∼

is µ̇-negligible, so µ̇ ~W = µ̇(W ∩ (Z ×X0))
→

,

µW [{z}] = µ(W ∩ (Z ×X0))[{z}] for every z ∈ Z,

so W also does.

6J Corollary Let (X,T,Σ, µ) be a σ-finite Radon measure space, P a forcing notion and µ̇ a corresponding

P-name for a Radon measure on X̃. Suppose that Ė is a P-name such that

P Ė is a µ̇-negligible subset of X̃.

Then there is a Gδ subset W of Z ×X such that

P Ė ⊆ ~W ,

W [{z}] is µ-negligible for every z ∈ Z.

proof Because

P µ̇ is σ-finite

(apply 6G to a suitable sequence 〈En〉n∈N), there is a P-name Ḣ such that

P Ḣ is a µ̇-negligible Gδ set including Ė.

By 2Eh, there is a Gδ set V ⊆ Z ×X such that

P Ḣ = ~V .

By 6I, there is an h ∈ C−(Z;X) such that h(z) = µH[{z}] for z ∈ domh and

P
~h = µ̇Ḣ.

But this means that h(z) = 0 for every z ∈ domh. Set W = V ∩ (domh × X); then ~W = ~V (see the

definition in 2Eb), so P Ė ⊆ ~W , while W is Gδ and has negligible vertical sections.

6K Example We really do need ‘σ-finite’ in the last two results, as the following elementary example
shows. Let P be any atomless forcing notion, so that Z has no isolated points. Let X be Z with its discrete
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topology, and µ counting measure on X. Consider W = {(z, z) : z ∈ Z}. Then W ⊆ Z ×X is closed and

µW [{z}] = 1 for every z. But ~W = ∅ so P µ̇ ~W = 0.
However there may be much more to be said along the lines of 6I; see 12D.

6L Theorem Let P be a forcing notion, 〈Xi〉i∈I a family of Hausdorff spaces, each either Polish or
compact, and µ a Baire probability measure on X =

∏
i∈I Xi. Then there is a P-name µ̇ such that

P µ̇ is a Baire probability measure on
∏

i∈Ǐ X̃i

and whenever J ⊆ I is finite and Gi ⊆ Xi is cozero for each i ∈ J ,

P µ̇{x : x(̌ı) ∈ G̃i ∀ i ∈ J} = (µ{x : x(i) ∈ Gi ∀ i ∈ J})̌ .

proof For each finite J ⊆ I we have a unique Radon probability measure µJ on XJ =
∏

i∈J Xi such that
µJH = µ{x : x↾J ∈ H} for every cozero H ⊆ XJ . By 6A (with 3A) we have a corresponding name µ̇J such
that

P µ̇J is a Radon probability measure on X̃J
∼=

∏
i∈J X̃i and µ̇JH̃ = (µJH )̌ for every

open H ⊆ XJ .

It follows at once that if J ⊆ K ∈ [I]<ω then

P the natural map from X̃K to X̃J is inverse-measure-preserving.

Now 4A tells us that

P for every i ∈ Ǐ, X̃i is either Polish or compact,

so

P Ba(
∏

i∈Ǐ X̃i) =
⊗̂

i∈ǏBa(X̃i)

(Fremlin n05). Using Kolmogorov’s theorem (Fremlin 03, 454D-454G) in V P, we see that there is a
P-name µ̇ such that

P µ̇ is a Baire measure on
∏

i∈Ǐ X̃i such that the canonical map onto every X̃J is inverse-

measure-preserving for µ̇ and µ̇J↾B(X̃J ).

This µ̇ will serve.

6M Theorem Let X be a compact Hausdorff space and P a forcing notion, with Z the Stone space of
its regular open algebra. Let µ̇ be a P-name such that

P µ̇ is a Radon probability measure on X̃.

Then there is a family 〈µz〉z∈Z of Radon probability measures on X such that whenever W ⊆ Z ×X is a
Borel set then

P µ̇ ~W = ~hW ,

where hW (z) = µzW [{z}] for every z ∈ Z.

proof (a) For E ∈ B(X) let fE ∈ C(Z; [0, 1]) be such that

P
~fE = µ̇Ẽ.

Note that fE is uniquely determined by this, so that E 7→ fE : B(X) → C(Z; [0, 1]) is additive. For z ∈ Z,
E 7→ fE(z) : B(X) → [0, 1] is additive, so there is a Radon measure µz on X such that fK(z) ≤ µzK for
every compact K ⊆ X and fG(z) ≥ µzG for every open G ⊆ X; of course µzX = 1.

(b) If W ⊆ Z ×X is open, let gW ∈ C(Z; [0, 1]) be such that P µ̇ ~W = ~gW . Then hW (z) ≤ gW (z) for
every z ∈ Z. PPP Suppose that γ < hW (z). Consider

G = {G : G ⊆ X is open, U ×G ⊆W for some open U ⊆ Z containing z}.

Then G is upwards-directed and has union W [{z}], so there is a G ∈ G such that µzG ≥ γ; let U be an open
neighbourhood of z such that U ×G ⊆W . Then
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U ⊆ [[G̃ ⊆ ~W ]] ⊆ [[µ̇G̃ ≤ µ̇ ~W ]]

(2J(a-iii)) and fG(z) ≤ gW (z) for every z ∈ U (4D(b-iii)). But now

γ ≤ µzG ≤ fG(z) ≤ gW (z).

As γ is arbitrary, hW (z) ≤ gW (z). QQQ

(b) If W ⊆ Z ×X is open, then {z : gW (z) ≤ hW (z)} is comeager. PPP Let n ∈ N. Let V be the family of
finite unions of sets of the form U × G where U ⊆ Z is open-and-closed, G ⊆ X is open and U × G ⊆ W ;

let Ṽ be the P-name {(~V , 11) : V ∈ V}. Then V is an upwards-directed family of open sets with union W , so
by 2Ef we have

P Ṽ is an upwards-directed family of open sets with union ~W , and µ̇ ~W = supV ∈Ṽ µ̇V }.

There are therefore a maximal antichain D ⊆ P and a family 〈Vd〉d∈D in V such that

d P µ̇~Vd ≥ µ̇ ~W − 2−n

for every d ∈ D.

Take d ∈ D and z ∈ d̂. Express Vd as
⋃

i≤n Ui ×Gi where Ui ⊆ Z is open-and-closed and Gi ⊆ X is open

for each i; set J = {i : i ≤ n, z ∈ Ui}, U = d̂ ∩
⋂

i∈J Ui and G =
⋃

i∈J Gi, so that z ∈ U , U ×G ⊆W and

hW (z) ≥ µzG ≥ fG(z) ≥ fG(z).

Also

z ∈ U ⊆ [[~Vd = G̃]] ⊆ [[µ̇ ~W − 2−n ≤ µ̇~Vd = µ̇G̃]]

and gW (z) − 2−n ≤ fG(z). Putting these together,

gW (z) − 2−n ≤ hW (z).

This is true for every z ∈
⋃

d∈D d̂, which is a dense open subset of Z. So {z : gW (z)− 2−n ≤ hW (z)} has
dense interior. As n is arbitrary, {z : gW (z) ≤ hW (z)} is comeager. QQQ

(c) Thus {z : gW (z) = hW (z)} is comeager and ~gW = ~hW . So

P µ̇ ~W = ~gW = ~hW .

And this is true for every open W ⊆ Z ×X. Using the formulae of 2E and the Monotone Class Theorem,
we have

P µ̇ ~W = ~hW

for every Borel set W ⊆ Z ×X, as claimed.

7 Second-countable spaces and Borel functions

7A Theorem Let P be a forcing notion, X a Hausdorff space, Y a second-countable Hausdorff space

and φ : X → Y a UB̂(X)-measurable function.

(a) P φ̃ is a function from X̃ to Ỹ .

(b) If B ∈ UB̂(Y ), then

P φ̃
−1[B̃] = (φ−1[B])

∼

.

(c) If φ is Borel measurable,

P φ̃ is Borel measurable.

proof (a) Suppose that p ∈ P and ẋ are such that p P ẋ ∈ X̃. Let f ∈ C−(Z;X) be such that p P ẋ = ~f .

Then f is (B̂(Z),UB̂(X))-measurable (by the definition of UB̂(X)), so φf is B̂(Z)-measurable and defined
on a comeager subset of Z. Because Y is second-countable, there is a g ∈ C−(Z;Y ) such that dom(g ∩ φf)

is comeager. So ((~f,~g), 11) ∈ φ̃ and

p P φ̃(ẋ) = φ̃(~f) = ~g is defined.
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As p and ẋ are arbitrary,

P dom φ̃ = X̃. QQQ

(b) By 1G, φ−1[B] ∈ UB̂(X), so φ−1[B]
∼

is defined. If p ∈ P and ẋ is a P-name such that p P ẋ ∈ X̃,
let f ∈ C−(Z;X) and g ∈ C−(Z;Y ) be such that

p P ẋ = ~f and φ̃(ẋ) = ~g

and p̂ ⊆∗ dom(g ∩ φf). Then

p P ẋ ∈ φ̃−1[B̃] ⇐⇒ p P ~g ∈ B̃ ⇐⇒ p̂ ⊆∗ g−1[B]

⇐⇒ p̂ ⊆∗ f−1[φ−1[B]] ⇐⇒ p P ẋ ∈ φ−1[B]
∼

.

(c) Let U be a countable base for the topology of Y . Then

P Ũ is a countable base for the topology of Ỹ .

Since

P φ̃
−1[Ũ ] = φ−1[U ]

∼

is a Borel set in X̃

for every U ∈ U (2Ae),

P φ̃
−1[U ] ∈ B(X̃) for every U ∈ Ũ , and φ̃ is Borel measurable.

7B Proposition Let P be a forcing notion, X a Hausdorff space, Y a second-countable Hausdorff space

and 〈φn〉n∈N a sequence of UB̂(X)-measurable functions such that φ(x) = limn→∞ φn(x) is defined for every
x ∈ X. Then

P limn→∞ φ̃n(x) = φ̃(x) for every x ∈ X̃.

proof Let p ∈ P and ẋ be such that p P ẋ ∈ X̃. For each n ∈ N let fn ∈ C−(Z;X) and gn ∈ C−(Z;Y ) be
such that

p P ẋ = ~fn and φ̃n(ẋ) = ~gn

and

p̂ ⊆∗ dom(gn ∩ φnfn).

Set

W = {z : z ∈
⋂

n∈N dom(gn ∩ φnfn), fm(z) = fn(z) for all m, n ∈ N},

so that p̂ ⊆∗ W . For z ∈W ,

g(z) = limn→∞ φnfn(z) = limn→∞ gn(z)

is defined, and g : W → Y is B̂(Z)-measurable, so there is an h ∈ C−(Z;Y ) such that W ⊆∗ dom(g ∩ h).
Now

p̂ ⊆∗ {z : limn→∞ gn(z) = h(z)},

By 2F,

p P ~g = ~h = limn→∞ ~gn = limn→∞ φ̃n(ẋ).

At the same time, for z ∈W ,

g(z) = limn→∞ φnf0(z) = φf0(z),

so

p P φ̃(ẋ) = φ̃(~f0) = ~g = limn→∞ φ̃n(ẋ).

As p and ẋ are arbitrary, we have the result. QQQ
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7C Corollary Let P be a forcing notion, X a Hausdorff space and α a countable ordinal. If φ : X → R

belongs to the αth Baire class, then

P φ̃ belongs to the αth Baire class.

proof Induce on α.

7D Proposition Let X be a Hausdorff space and Φ a set of UB̂(X)-measurable real-valued functions
such that {φ(x) : φ ∈ Φ} is bounded for every x ∈ X. Suppose that p ∈ P and that ẋ is a P-name such that

p P ẋ ∈ X̃. Then there is a P-name α̇ such that p P α̇ ∈ N and p P φ̃(ẋ) ≤ α̇ for every φ ∈ Φ.

proof ??? Otherwise, let f ∈ C−(Z;X) be such that p P ẋ = ~f . There is a q stronger than p such that

whenever r is stronger than q and n ∈ N there are an s stronger than r and a φ ∈ Φ such that s P φ̃(ẋ) > n,
that is, ŝ ⊆∗ {z : z ∈ dom f , φf(z) > n}. So for each n ∈ N we have a maximal antichain Rn and a family
〈φnr〉r∈Rn

such that for each r ∈ Rn either r is incompatible with q or φnr ∈ Φ and r̂ ⊆∗ {z : φnrf(z) > n}.
Now for almost every z ∈ q̂ we have

for every n ∈ N there is an r ∈ Rn such that φnrf(z) > n,

and {φf(z) : φ ∈ Φ} is unbounded above. XXX

Remark Compare §A, Lemma 1 of Todorčević 99.

7E Proposition Let X be an analytic Hausdorff space, P a forcing notion and Z the Stone space of P.

If W ⊆ Z ×X is a Borel set then [[ ~W 6= ∅]]△W−1[X] is meager.

proof (a) If W is open there is a K-analytic V ⊆ Z × X such that (W△V )−1[X] is meager. PPP Let
h : NN → X be a continuous surjection. For each σ ∈ S∗ =

⋃
n∈N NN set Xσ = {h(α) : σ ⊆ α ∈ NN}, so that

Xσ is analytic; set Hσ = int{z : {z} ×Xσ ⊆ W}. Then W =
⋃

σ∈S∗ Hσ ×Xσ. Set V =
⋃

σ∈S∗ Hσ ×Xσ;

then V is K-analytic and (W△V )−1[X] ⊆
⋃

σ∈S∗ Hσ \Hσ is meager. QQQ

(b) Consider the family of those sets W ⊆ Z ×X such that there are K-analytic V1, V2 ⊆ Z ×X such
that (W△V1)

−1[X] and (((Z ×X) \W )△V2)
−1[X] are meager; then W is closed under complements and

countable unions and contains all the open subsets of Z ×X, so includes B(Z ×X).
In particular, if W ⊆ Z ×X is Borel, there is a K-analytic V such that (W△V )−1[X] is meager, so that

[[ ~W 6= ∅]] = [[~V 6= ∅]] differs by a meager set from each of V −1[X] and W−1[X] (using 2Jc).

7F Proposition Let X be a separable metrizable space, P a forcing notion and Z the Stone space of P.

Suppose that W ⊆ Z ×X is K-analytic, and set W+ = {(z, x) : z ∈ Z, x ∈W [{z}]}. Then P
~W =

−−→
W+.

proof (a) Suppose that p ∈ P, ẋ is a P-name such that p P ẋ ∈
−−→
W+ and Ġ is a P-name such that p P Ġ

is an open neighbourhood of ẋ. Then there are a q stronger than p, an f ∈ C−(Z;X) and an open G ⊆ X
such that

q P ẋ = f̃ and f̃ ∈ G̃ and G̃ ⊆ Ġ.

Now

q̂ ⊆∗ {z : f(z) ∈W [{z}] ∩G} ⊆ (W ∩ (Z ×G))−1[X] ⊆∗ [[ ~W ∩ G̃ 6= ∅]]

by 2Jc. So there is a P-name ẏ such that q P ẏ ∈ ~W∩G̃ ⊆ ~W∩Ġ. As p, ẋ and Ġ are arbitrary, P

−−→
W+ ⊆ ~W .

(b) Suppose that p ∈ P and ẋ is a P-name such that p P ẋ ∈ ~W . Let f ∈ C−(Z;X) be such that

p P ẋ = f̃ . Let G be a countable base for the topology of X. Then

{z : z ∈ dom f , f(z) /∈W [{z}]} =
⋃

G∈G{z : f(z) ∈ G, G ∩W [{z}] = ∅}.

For each G ∈ G,

p̂ ∩ {z : f(z) ∈ G, G ∩W [{z}] = ∅} ⊆∗ p̂ ∩ [[ẋ ∈ G̃, G̃ ∩ ~W = ∅]] = ∅,

so p̂∩ {z : z ∈ dom f , f(z) /∈W [{z}]} is meager and p P ẋ ∈
−−→
W+. As p and ẋ are arbitrary, P

~W ⊆
−−→
W+.
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7G Corollary Let X be an analytic separable metrizable space, P a forcing notion and Z the Stone space

of P. Suppose that W ⊆ Z ×X is Borel, and set W+ = {(z, x) : z ∈ Z, x ∈W [{z}]}. Then P
~W =

−−→
W+.

proof As in the proof of 7E, we can find a K-analytic set V to put in the place of W and apply 7F to V .

8 Forcing with quotient algebras
For random and Cohen reals, in the first place, but in other cases too, we have a forcing notion which

is naturally representable as the non-zero elements of a Boolean algebra which comes to us as a quotient
algebra Σ/I where Σ is a σ-algebra of subsets of a set Ω. In this case, it is often helpful to be able to

represent names for members of X̃ by functions from Ω to X. I run through some simple cases in which we
can do this.

8A Definitions A measurable space with negligibles is a triple (Ω,Σ, I) such that Ω is a set, Σ is a
σ-algebra of subsets of Ω, and I is a σ-ideal of subsets of Ω generated by Σ ∩ I. It is non-trivial if Ω /∈ I,
complete if Σ ⊆ I, ω1-saturated if there is no uncountable disjoint family in Σ \ I, that is, the quotient
algebra Σ/Σ ∩ I is ccc. Note that A is always Dedekind σ-complete, so if (Ω,Σ, µ) is ω1-saturated it is
Dedekind complete. If (Ω,Σ, I) is non-trivial, the associated forcing notion is Σ \ I, active downwards.
Note that the regular open algebra of this forcing notion can be identified with the Dedekind completion of

the quotient Boolean algebra A = Σ/Σ ∩ I, and that for E ∈ P the corresponding member Ê of RO(P) is
just the equivalence class E• ∈ A.

(For the general theory of measurable spaces with negligibles, see Fremlin 87.)

8B Proposition Let (Ω,Σ, I) be a non-trivial measurable space with negligibles, and P the associated
forcing notion; set A = Σ/Σ ∩ I.

(a) If X is either compact or Polish, and f : Ω → X is (Σ,Ba(X))-measurable, then there is a P-name ẋ

such that P ẋ ∈ X̃ and, for every F ∈ Ba(X),

[[ẋ ∈ F̃ ]] = f−1[F ]•

in A ⊆ RO(P).

(b) Suppose that A is Dedekind complete and that X is Polish. If ẋ is a P-name such that P ẋ ∈ X̃,
then there is a Σ-measurable function f : Ω → X such that

[[ẋ ∈ F̃ ]] = f−1[F ]•

for every F ∈ B(X).
(c) Still supposing that A is Dedekind complete, let 〈Xi〉i∈I be a family of Polish spaces with product

X, and ẋ a P-name such that P ẋ ∈
∏

i∈Ǐ X̃i. Then there is a (Σ,Ba(X))-measurable function f : Ω → X
such that whenever J ⊆ X is countable and F ⊆

∏
i∈J Xi is a Borel set, then

[[ẋ↾J̌ ∈ F̃ ]] = f−1[{x : x ∈ X, x↾J ∈ F}]•.

proof (a) We have a sequentially order-continuous Boolean homomorphism π : Ba(X) → RO(P) defined
by saying that πF = f−1[F ]• for every F ∈ Ba(X). Let Z be the Stone space of RO(P). By 3Fb, there is a

g ∈ C−(Z;X) such that [[~g ∈ F̃ ]] = πF for every Baire set F ⊆ X. So we can take ẋ = ~g.

(b) Let U be a countable base for the topology of X containing X. For each U ∈ U , let EU ∈ Σ be such

that E•

U = [[ẋ ∈ Ũ ]] in A; arrange that EX = Ω. (This is where we need to suppose that A is Dedekind
complete, so that we can identify it with RO(P).) As in (b-iv) of the proof of 3F, let ρ be a complete metric
defining the topology of X and such that diamX is finite, and for U ∈ U let VU be {V : V ∈ U , V ⊆ U ,
diamV ≤ 1

2 diamU}. Set

B = (
⋃

U∈U

EU \
⋃

V ∈VU

EV ) ∪
⋃

{EU \ EV : U, V ∈ U , U ⊆ V }

∪
⋃

{EU ∩ EV : U, V ∈ U , U ∩ V = ∅}

∈ I.
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Then for ω ∈ Ω \B there is a unique x ∈ X such that ω ∈ EU whenever x ∈ U ∈ U . PPP Choose 〈Un〉n∈N in
U such that ω ∈ EUn

, Un+1 ⊆ Un and diamUn ≤ 2−n diamX for each n; let x be the member of
⋂

n∈N Un.
If U ∈ U and x ∈ U , there is an n ∈ N such that Un ⊆ U , in which case ω ∈ EU . If y ∈ X and y 6= x, there
are n ∈ N, V ∈ U such that y ∈ V and Un ∩ V = ∅, in which case ω /∈ EV . QQQ

So we can define f0 : Ω \B → X by saying that ω ∈ EU whenever f0(ω) ∈ U ∈ U , and any extension f of

f0 to a function which is constant on B will be measurable and have the property that [[ẋ ∈ Ũ ]] = f−1[U ]•

for every U ∈ U , and therefore for every Borel set U ⊆ X.

(c) Choose P-names ẋi such that P ẋi ∈ X̃i for each i ∈ I and P ẋ = 〈ẋi〉i∈Ǐ . By (b), we have

a measurable function fi : Ω → Xi such that f−1
i [F ]• = [[ẋi ∈ F̃ ]] for every Baire set F ⊆ Xi. Setting

f(ω) = 〈fi(ω)〉i∈I for ω ∈ Ω, f : Ω → X is (Σ,Ba(X))-measurable, because Ba(X) =
⊗̂

i∈IB(Xi). If J ⊆ I
is countable, then

[[ẋ↾J̌ ∈ F̃ ]] = f−1[{x : x ∈ X, x↾J ∈ F}]•

whenever F ⊆
∏

i∈J Xi is of the form
∏

i∈J Fi and every Fi is a Baire set; by the Monotone Class Theorem,
the formula is valid for every Borel set F ⊆

∏
i∈J Fi.

8C Notation Suppose that, as in 8B, we have a non-trivial measurable space with negligibles (Ω,Σ, I)
with quotient algebra A and associated forcing notion P, and a topological space X which is either compact

or Polish. If f : Ω → X is (Σ,Ba(X))-measurable, then we can define
−→
f to be the P-name π̆, as defined

in 3F-3G, where πF = f−1[F ]• for F ∈ Ba(X). In this case, P

−→
f ∈ X̃ and [[

−→
f ∈ F̃ ]] = f−1[F ]• for every

F ∈ Ba(X).

When we have a family 〈Xi〉i∈I of spaces with product X, each of the Xi being either Polish or compact,

and a (Σ,Ba(X))-measurable function f : Ω → X, write
⇒
f for the P-name

{(〈
−→
fi 〉i∈Ǐ , 11)},

where fi(ω) = f(ω)(i) for ω ∈ Ω and i ∈ I; of course the subformula 〈
−→
fi 〉i∈Ǐ must be interpreted in the

forcing language, as noted in the footnote to 2A(b-vi).

The content of 8Bb is now expressible by saying that if X is a Polish space and A is Dedekind complete,
ẋ is a P-name and E ∈ P is such that E P ẋ ∈ X̃, then there is a measurable f : Ω → X such that

E P ẋ =
−→
f .

Moving to 8Bc, we see that if ẋ is a P-name such that P ẋ ∈
∏

i∈Ǐ X̃i, there is a (Σ,Ba(X))-measurable

f : Ω → X such that P ẋ =
⇒
f .

I should perhaps remark that if, in 8Ba, X is a non-metrizable compact space, then we can have

(Σ,Ba(X))-measurable functions f , g : Ω → X which are nowhere equal but for which
−→
f = −→g because

f−1[F ]△g−1[F ] ∈ I for every Baire set F ⊆ X. What we do have, for both Polish and compact X, is: if

E ∈ Σ\I and f , g : Ω → Ba(X) are (Σ,Ba)-measurable, then E P

−→
f = −→g iff E\(f−1[F ]△g−1[F ]) ∈ I for

every Baire set F ⊆ X. PPP Let hf , hg ∈ C(Z;X) be the functions defined from the Boolean homomorphisms

πf , πg : Ba(X) → A, so that
−→
f = π̆f = ~hf and −→g = ~hg. Now, for E ∈ Σ \ I,

E P

−→
f = −→g ⇐⇒ E•

\ (πfF △ πgF ) = 0 for every F ∈ Ba(X)

(3H)

⇐⇒ E \ (f−1[F ]△g−1[F ]) ∈ I for every F ∈ Ba(X). QQQ

8D Representing names for sets Let (Ω,Σ, I) be a non-trivial measurable space with negligibles, and
P the associated forcing notion; let A be the quotient Σ/Σ ∩ I. Let 〈Xi〉i∈I be a family of Polish spaces

with product X, and W ⊆ Ω ×X. Write
⇒
W for the P-name
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{(
⇒
f ,E) : E ∈ Σ \ I, f : Ω → X is (Σ,Ba(X))-measurable,

E \ {ω : (ω, f(ω)) ∈W} ∈ I},

defining the P-name
⇒
f as in 8C.

8E Theorem Let (Ω,Σ, I) be a non-trivial measurable space with negligibles, A be the quotient Σ/Σ∩I,
and P the associated forcing notion. Let 〈Xi〉i∈I be a family of Polish spaces with product X.

(a) If W ∈ Σ⊗̂Ba(X), then

P

⇒
W ∈ Ba(

∏
i∈Ǐ X̃i).

(b) Now suppose that (Ω.Σ, I) is ω1-saturated. Let Ẇ be a P-name such that

P Ẇ ∈ Ba(
∏

i∈Ǐ X̃i).

Then there is a W ∈ Σ⊗̂Ba(X) such that P Ẇ =
⇒
W .

proof (a) Let W be the family of those W ∈ Σ⊗̂Ba(X) such that

(α) for every (Σ,Ba(X))-measurable function f : Ω → X, {ω : (ω, f(ω)) ∈W} ∈ Σ;

(β) P

⇒
W ∈ Ba(

∏
i∈Ǐ X̃i).

(i) The key fact is the following: if W ∈ Σ⊗̂Ba(X), f : Ω → X is a (Σ,Ba(X))-measurable function

and E = {ω : (ω, f(ω)) ∈W} ∈ Σ, then E• = [[
⇒
f ∈

⇒
W ]]. PPP Since (if E /∈ I) (

⇒
f ,E) ∈

⇒
W , we surely have

E P

⇒
f ∈

⇒
W , E• ⊆ [[

⇒
f ∈

⇒
W ]].

??? If [[
⇒
f ∈

⇒
W ]] \E• is non-zero, then there must be an E′ ∈ P and a g : Ω → R such that E′

P
⇒g =

⇒
f ,

( ⇒g ,E′) ∈
⇒
W and E′ \ E /∈ I. In this case E′ \ {ω : (ω, g(ω)) ∈ W} ∈ I. Because I is generated by Σ \ I,

there is an E′′ ⊆ E′ \ E such that E′′ ∈ Σ \ I and E′′ is disjoint from {ω : (ω, g(ω)) /∈ W}. Now, however,
recall that as W ∈ Σ⊗̂Ba(X) there is a countable set J ⊆ I such that (ω, x) ∈ W whenever (ω, y) ∈ W ,
x ∈ X and x↾J = y↾J . Take i ∈ J and let fi, gi : Ω → Xi be the corresponding coordinates of f , g
respectively. Then

E′′
P

−→
fi = −→gi ,

so, for any open set G ⊆ Xi, E
′′ ∩ (f−1

i [G]△g−1
i [G]) ∈ I. As Xi is second-countable, E′′ ∩ {ω : fi(ω) 6=

gi(ω)} ∈ I. This is true for every i ∈ J , so

E′′ = E′′ ∩ {ω : (ω, f(ω)) /∈W, (ω, g(ω)) ∈W} ⊆ E′′ ∩
⋃

i∈J{ω : fi(ω) 6= gi(ω)} ∈ I,

which is impossible. XXX So p = 0 and E• = [[
⇒
f ∈

⇒
W ]]. QQQ6

(ii) If W ∈ W then W ′ = (Ω ×X) \W belongs to W. PPP (α) If f : Ω → X is (Σ,Ba(X))-measurable
then

{ω : (ω, f(ω)) ∈W ′} = Ω \ {ω : (ω, f(ω)) ∈W} ∈ Σ.

(β) Suppose that p ∈ P and that ẋ is a P-name such that p P ẋ ∈
∏

i∈Ǐ X̃i. For each i ∈ I let fi : Ω → Xi

be a measurable function such that p P

−→
fi = ẋ(̌ı) (8B-8C). Setting f(ω) = 〈fi(ω)〉i∈I for ω ∈ Ω, f is

(Σ,Ba(X))-measurable; set E = {ω : (ω, f(ω)) ∈W}. Then

[[
⇒
f ∈

⇒
W ′]] = (Ω \ E)• = 1 \ [[

⇒
f ∈

⇒
W ]],

6I don’t know if it is clear what is going on here. If P
⇒
f = ⇒g , then, for each i ∈ I, P

−→
fi = −→gi ; because X is second-

countable and Hausdorff, fi = gi almost everywhere (that is, except on a set belonging to I). But it does not at all follow that

f = g almost everywhere. The point of this argument is that because W is determined by coordinates in a countable subset of
I, we can ignore all the other coordinates.
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so

P

⇒
f ∈

⇒
W ′ ⇐⇒

⇒
f /∈

⇒
W

and

p P ẋ ∈
⇒
W ′ ⇐⇒ ẋ /∈

⇒
W .

As p and ẋ are arbitrary,

P

⇒
W ′ = (

∏
i∈Ǐ X̃i) \

⇒
W ∈ Ba(

∏
i∈Ǐ X̃i). QQQ

(iii) If 〈Wn〉n∈N is a sequence in W then W =
⋃

n∈N Wn belongs to W. PPP (α) If f : Ω → X is
(Σ,Ba(X))-measurable then

{ω : (ω, f(ω)) ∈W} =
⋃

n∈N{ω : (ω, f(ω)) ∈Wn} ∈ Σ.

(β) If p ∈ P and ẋ is such that p P ẋ ∈
∏

i∈Ǐ X̃i, then, as before, there is a (Σ,Ba(X))-measurable function

f such that p P ẋ =
⇒
f . Now

[[
⇒
f ∈

⇒
W ]] = {ω : (ω, f(ω)) ∈W}• = sup

n∈N

{ω : (ω, f(ω)) ∈Wn}
•

= sup
n∈N

[[
⇒
f ∈

⇒
Wn]] = [[

⇒
f ∈

⋃
n∈N

⇒
Wn]]

and

p P ẋ ∈
⇒
W ⇐⇒ ẋ ∈

⋃
n∈N

⇒
Wn;

as p and ẋ are arbitrary,

P

⇒
W =

⋃
n∈N

⇒
Wn ∈ Ba(

∏
i∈Ǐ X̃i). QQQ

(iv) Of course ∅ ∈ W, so W is a σ-subalgebra of Σ⊗̂Ba(X). If E ∈ Σ, j ∈ I and G ⊆ Xj is open, then
W = E × {x : x ∈ X, x(j) ∈ G} belongs to W. PPP (α) If f : Ω → X is (Σ,Ba(X))-measurable then

{ω : (ω, f(ω)) ∈W} = E ∩ f−1
j [Gj ] ∈ Σ,

writing fj(ω) = f(ω)(j) as usual. (β) Let V̇ be a P-name such that

[[V̇ = {x : x ∈
∏

i∈Ǐ X̃i, x(̌) ∈ G̃}]] = E•,

[[V̇ = ∅]] = (Ω \ E)•.

We have

P X̃j is Polish, so G̃ is a cozero set in X̃j and V̇ is a cozero set in
∏

i∈Ǐ X̃i.

If f : Ω → X is (Σ,Ba(X))-measurable, then

[[
⇒
f ∈

⇒
W ]] = (E ∩ f−1

j [G])• = E• ∩ [[
⇒
f (̌) ∈ G̃]] = [[

⇒
f ∈ V̇ ]].

If p ∈ P and ẋ are such that p P ẋ ∈
∏

i∈Ǐ X̃i, let f be a (Σ,Ba(X))-measurable function such that

p P ẋ =
⇒
f . Then

p P ẋ ∈
⇒
W ⇐⇒ p ⊆ [[

⇒
f ∈

⇒
W ]]

⇐⇒ p ⊆ [[
⇒
f ∈ V̇ ]] ⇐⇒ p P ẋ ∈ V̇ ;

as p and ẋ are arbitrary,

P

⇒
W = V̇ ∈ Ba(

∏
i∈Ǐ X̃i). QQQ

(v) So W = Ba(X), as required.
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(b) Let us say that a P-name Ẇ is ‘representable’ if there is some W ∈ Σ⊗̂Ba(X) such that P Ẇ =
⇒
W .

(i)(ααα) If Ẇ is a representable P-name and V̇ is a P-name such that P V̇ = (
∏

i∈Ǐ X̃i) \ Ẇ , then V̇ is

representable. PPP If P Ẇ =
⇒
W then P V̇ = ((Ω ×X) \W )

⇒
, as in (a-ii). QQQ

(βββ) If 〈Ẇn〉n∈N is a sequence of representable names, and Ẇ is a P-name such that P Ẇ =
⋃

n∈N Ẇn,

then Ẇ is representable. PPP See (a-iii). QQQ

(γγγ) If 〈Ẇn〉n∈N is a sequence of representable names, and Ẇ is a P-name such that P Ẇ =
⋂

n∈N Ẇn,

then Ẇ is representable. PPP Put (α) and (β) together. QQQ

(ii) Let Ẇ be a P-name such that P Ẇ ⊆
∏

i∈Ǐ X̃i.

(ααα) Suppose there are j ∈ I, a ∈ A and an open set G ⊆ Xj such that

a = [[Ẇ = {x : x(̌) ∈ G̃}]], 1 \ a = [[Ẇ = ∅]].

Then Ẇ is representable. PPP Let F ∈ Σ be such that F • = a and set W = F × {x : x(j) ∈ G}. Then for
any (Σ,Ba(X))-measurable f : Ω → X,

[[
⇒
f ∈

⇒
W ]] = (F ∩ f−1

j [G])•

= a ∩ [[
−→
fj ∈ G̃]] = [[

⇒
f ∈ Ẇ ]].

As f is arbitrary, 8Bc-8C show that P Ẇ =
⇒
W and Ẇ is representable. QQQ

(βββ) Suppose there are j ∈ I and a P-name Ġ such that

P Ġ is an open set in X̃j and Ẇ = {x : x(̌) ∈ Ġ}.

Then Ẇ is representable. PPP Let 〈Un〉n∈N run over a base for the topology of Xj . For n ∈ N set an =

[[Ũn ⊆ Ġ]] and choose Fn ∈ Σ such that F •

n = an. Set Wn = Fn × {x : x(j) ∈ Un} and W =
⋃

n∈N Wn; then

P Ġ =
⋃
{Ũn : n ∈ N, Ũn ⊆ Ġ},

so

P Ẇ =
⋃

n∈N,Ũn⊆Ġn
{x : x(̌) ∈ Ũn} =

⋃
n∈N

⇒
Wn =

⇒
W

and Ẇ is representable. QQQ

(γγγ) Suppose that

P Ẇ is a basic open cylinder in
∏

i∈Ǐ X̃i.

Then Ẇ is representable. PPP Use (β) and (i-γ). QQQ

(δδδ) Suppose that

P Ẇ is a cozero set.

Then Ẇ is representable. PPP By 4Ag,

P X̃i is Polish for every i ∈ Ǐ.

So

P Ẇ is the union of a sequence of basic open sets,

and we can use (i-β). QQQ

(ǫǫǫ) Suppose that there is an α < ω1 such that

P Ẇ ∈ Baα(
∏

i∈Ǐ X̃i).

Then Ẇ is representable. PPP Induce on α. QQQ

(iii) Finally, suppose that P Ẇ is a Baire set. Because P is ccc, there is an α < ω1 such that

P Ẇ ∈ Baα(
∏

i∈Ǐ X̃i), so Ẇ is representable, as required.
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8F Proposition Let (Ω,Σ, I) be a measurable space with negligibles and P the associated forcing notion.
Let 〈Xi〉i∈I be a family of Polish spaces and µ a Baire probability measure on X =

∏
i∈I Xi; let µ̇ be a

corresponding P-name for a Baire probability measure on
∏

i∈Ǐ X̃i as in 6L. Take W ∈ T⊗̂Ba(X) and define
⇒
W as in 8D. Set f(ω) = µW [{ω}] for ω ∈ Ω. Then f : Ω → [0, 1] is T-measurable, so P

−→
f ∈ [0, 1] (8C,

4Db). Now

P µ̇
⇒
W =

−→
f .

proof Use the method of the proof of 8Ea.

8G Liftings Let (Ω,Σ, I) be a measurable space with negligibles. A lifting for (Ω,Σ, I) is a Boolean
homomorphism θ : A → Σ, where A = Σ/Σ∩I, such that a = (θa)• for every a ∈ A. Note that if (Ω,Σ, µ) is
a complete σ-finite measure space and N (µ) is the null ideal of µ, then (Ω,Σ,N (µ)) has a lifting (Fremlin

02, §341); similarly, if W is a Baire topological space and M is the ideal of meager subsets of W , then

(W, B̂(W ),M) has a lifting.
If θ : A → Σ is a lifting, and Z is the Stone space of A, we have a corresponding map h : Ω → Z defined

by saying that h(ω)(a) = χ(θa)(ω) for ω ∈ Ω and a ∈ A; that is, writing â for the open-and-closed subset of
Z corresponding to a ∈ A, h−1[â] = θa.

If θ : A → Σ is a lifting, the lifting topology Tθ on Ω is the topology generated by the algebra θ[A].
A lifting θ : A → Σ is strong if for every E ∈ Σ \ I there is a non-zero a ∈ A such that θa ⊆ E. (See

Fremlin 03, §453.)

8H Proposition Let (Ω,Σ, I) be a measurable space with negligibles and θ : A → Σ a lifting, where
A = Σ/I. Let Z be the Stone space of A, h : Ω → Z the function associated with θ and Tθ the lifting
topology.

(a)(i) h is continuous for Tθ and the usual topology of Z.
(ii) If W ⊆ Z is a dense open set, h−1[W ] is dense for Tθ.
(iii) If M ⊆ Z is meager, h−1[M ] is meager for Tθ.

(iv) h is (B̂(Ω), B̂(Z))-measurable.
(b) Suppose that (Ω,Σ, I) is complete and ω1-saturated.

(i) Tθ ⊆ Σ.

(ii) Every Tθ-meager set belongs to I and B̂(Ω) ⊆ Σ. So h is (Σ, B̂(Z))-measurable.
(c) Now suppose that (Ω,Σ, I) is complete and ω1-saturated, and that θ is a strong lifting. Then I is the

ideal of Tθ-nowhere-dense sets, and Σ = B̂(Ω).

proof (a)(i) This is immediate from the definition of Tθ, since {â : a ∈ A} is a base for the topology of Z.

(ii) If G ∈ Tθ is non-empty, there is a non-zero a ∈ A such that â ⊆ G. Now â is a non-empty open

subset of Z, so there is a non-zero b ∈ A such that b̂ ⊆ W ∩ â. In this case, θb is a non-empty subset of
W ∩G. As G is arbitrary, h−1[W ] is dense.

(iii)-(iv) follow immediately from (ii).

(b)(i) If E ∈ Tθ, set A = {a : θa ⊆ E}. Then A is upwards-directed; because A is ccc, there is a non-
decreasing sequence 〈an〉n∈N in A such that c = supn∈N an is also the supremum of A. Set E′ =

⋃
n∈N θan ∈

Σ; then E′ ⊆ E =
⋃

a∈A θa ⊆ θc. But also (θc \ E′)• = c \ supn∈N an = 0, so θc \ E′ ∈ I; because (Ω,Σ, I)
is complete, E \ E′ and E belong to Σ.

(ii) If F ⊆ Ω is a nowhere dense closed set, then it belongs to I. PPP Set a = F •. If b ∈ A and θb∩F = ∅,
then a ∩ b = F • ∩ (θb)• = 0 and θa∩θb = ∅; as F is closed, θa ⊆ F ; as F is nowhere dense, a = 0 and F ∈ I.
QQQ

As I is a σ-ideal, every meager set belongs to I. Since I ⊆ Σ and Tθ ⊆ Σ, B̂(Ω) ⊆ Σ. By (a-iv), h is

(Σ, B̂(Z))-measurable.

(c) If E ∈ I, consider its closure E for Tθ. There can be no non-zero a ∈ A such that θa ⊆ E \ E, so
E \ E ∈ I and E ∈ I; so there is no non-zero a such that θa ⊆ E and E is nowhere dense. If E is any
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member of Σ, set F = θE•; then E△F ∈ I so E ∈ B̂(Ω). With (b-ii) this shows that I is just the ideal of

nowhere dense sets and Σ = B̂(Ω).

8I Proposition Let (Ω,Σ, I) be a complete ω1-saturated measurable space with negligibles, and P the
associated forcing notion; suppose that θ : A → Σ is a lifting, where A = Σ/I. Let X be a Hausdorff space,

and ẋ a P-name such that P ẋ ∈ X̃. Then there is a (Σ,UB̂(X))-measurable function g : Ω → X such that

[[ẋ ∈ F̃ ]] = g−1[F ]• for every F ∈ UB̂(X).

proof Let Z be the Stone space of RO(P) ∼= A, and h : Ω → Z the function associated with θ as in 8G-8H.

Let f ∈ C−(Z;X) be such that P ẋ = ~f . Then h−1[Z \ dom f ] ∈ I (put 8H(a-iii) and 8H(b-ii) together).

Let g : Ω → X be any function extending fh. If F ∈ UB̂(X) then f−1[F ] ∈ B̂(Z) so h−1[f−1[F ]] ∈ Σ
(putting 8H(a-iv) and 8H(b-ii) together). Now there is an a ∈ A such that f−1[F ]△â is meager, in which
case h−1[f−1[F ]]△θa ∈ I and

g−1[F ]• = h−1[f−1[F ]]• = a = [[~f ∈ F̃ ]] = [[ẋ ∈ F̃ ]],

as required.

9 Banach spaces

9A Theorem Let X be a normed space, P a forcing notion and Z the Stone space of P.
(a)

P X̃, with its natural linear space structure and norm, is a normed space.

(b) Write X∗
w∗ for the dual of X with its weak* topology. Then we have a P-name for a bilinear duality

between X̃ and (X∗
w∗)

∼

such that

P (g̃|f̃) = (g|f)
∼

whenever g ∈ C−(Z;X∗
w∗) and f ∈ C−(Z;X), writing (g|f)(z) = g(z)(f(z)) for z ∈ dom f ∩ dom g.

(c) Now

P this duality identifies (X∗
w∗)

∼

with the normed space dual of X̃.

proof (a) The checks are straightforward; compare 4C. The algebraic operations are given by the formulae

P f̃ + g̃ = (f + g)
∼

, ãf̃ = (af)
∼

for f , g ∈ C−(Z;X) and a ∈ C−(Z; R), setting (f + g)(z) = f(z) + g(z) for z ∈ dom f ∩ dom g and
(af)(z) = a(z)f(z) for z ∈ dom a ∩ dom f . The norm is given by the formula

P ‖f̃‖ = ‖f‖
∼

,

where ‖f‖(z) = ‖f(z)‖ for z ∈ dom f .

(b)(i) The first thing to check is that for any f ∈ C−(Z;X) and g ∈ C−(Z;X∗
w∗) there is a dense

Gδ set Z0 ⊆ dom f ∩ dom g such that (g|f)↾Z0 is continuous. PPP For n ∈ N, set Vn = {z : z ∈ dom g,
‖g(z)‖ ≤ n}. Then Vn is relatively closed in dom g so V n \ intVn is nowhere dense in Z; set Z0 =
dom f ∩ dom g \

⋃
n∈N V n \ intV n. If z0 ∈ Z0 and ǫ > 0, there is an n ≥ 1 such that z0 ∈ Vn so z0 ∈ intV n.

Now

U = {z : z ∈ Z0, ‖f(z) − f(z0)‖ ≤
ǫ

n
, z ∈ intV n, |g(z)(f(z0)) − g(z0)(f(z0))| ≤ ǫ}

is a neighbourhood of z0, and if z ∈ U then

|g(z)(f(z)) − g(z0)(f(z0))| ≤ |g(z)(f(z)) − g(z)(f(z0))| + |g(z)(f(z0)) − g(z0)(f(z0))|

≤ ‖g(z)‖‖f(z) − f(z0)‖ + ǫ ≤ 2ǫ.

As z0 and ǫ are arbitrary, (g|f)↾Z0 is continuous. QQQ
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(ii) Consequently P (g|f)
∼

∈ R whenever g ∈ C−(Z;X∗
w∗) and f ∈ C−(Z;X). It is now easy to

check that the given formula defines a name for a bilinear duality between X̃ and (X∗
w∗)

∼

.

(c)(i) Note first that we have a P-name for a norm on (X∗
w∗)

∼

given by the formula

P ‖g̃‖ = ‖g‖
∼

whenever g ∈ C−(Z;X∗
w∗). PPP For γ ∈ Q, set Vγ = {z : z ∈ dom g, ‖g(z)‖ ≤ γ}. If Z0 = dom g \

⋃
γ∈Q(V γ \

intV γ), Z0 is a dense Gδ set in Z and ‖g‖↾Z0 is continuous, so P ‖g|
∼

∈ R. The algebraic checks required
are now straightforward. QQQ

Similarly, it is now elementary that

P |(ẏ|ẋ)| ≤ ‖ẏ‖‖ẋ‖ whenever ẋ ∈ X̃ and ẏ ∈ (X∗
w∗)

∼

.

(ii) Next, let K ⊆ X∗
w∗ be the unit ball of X∗

w∗ . Then

P K̃ is a balanced mid-convex set in the unit ball of (X∗
w∗)

∼

.

Also

P ‖x‖ = supy∈K̃(y|x) for every x ∈ X̃.

PPP Suppose that p ∈ P, γ ∈ Q and that ẋ is a P-name such that

p P ẋ ∈ X̃ and ‖ẋ‖ > γ′.

Let f ∈ C−(Z;X) be such that p P ẋ = f̃ . Take any z0 ∈ p̂ ∩ dom f . Then ‖f(z0)‖ > γ, So there is a
y ∈ K such that y(f(z0)) > γ. Let U be a neighbourhood of z0 such that y(f(z)) > γ for z ∈ U ∩ dom f ,
and let q stronger than p be such that q̂ ⊆ U , Then

q P ỹ ∈ K̃ and (ỹ|ẋ) > γ.

As p, ẋ and γ are arbitrary, we have the result. QQQ

(iii) We can also identify the topology of K̃:

P the topology of K̃ corresponds to the weak topology induced by the duality.

PPP(α) Let U be the family of sets of the form {y : y ∈ K, y(x) < γ} where x ∈ X and γ ∈ Q. Then U
generates the topology of K so

P Ũ generates the topology of K̃

(2A(d-ii)). But if U = {y : y ∈ K, y(x) < γ} then

P Ũ = {y : y ∈ K̃, (y|x̃) < γ},

so

P every member of Ũ is open for the weak duality topology on K̃, so the usual topology

on K̃ is weaker than the duality topology.

(β) On the other hand, suppose that p ∈ P and ẏ0, Ġ are P-names such that

p P Ġ is an open subset of K̃ for the duality topology and ẏ0 ∈ Ġ.

Then there are a q stronger than p, an n ∈ N, γ0, . . . , γn ∈ Q and P-names ẋ0, . . . , ẋn such that

q P ẋi ∈ X̃ for each i ≤ n and ẏ0 ∈ {y : y ∈ K̃, (y|ẋi) < γi for every i} ⊆ Ġ.

Let g0 ∈ C−(Z;X∗
w∗) and f0, . . . , fn ∈ C−(Z;X) be such that

q P ẋi = f̃i for each i and ẏ0 = g̃0.

Then q̂ ⊆∗ {z : g0(z)(fi(z)) is defined and less than γi for each i ≤ n}. We can therefore find an open set
U ⊆ K such that

q̂ ∩ {z : g0(z) ∈ U , y(fi(z)) < γi for every i ≤ n and y ∈ U}

is non-meager and essentially includes r̂ for some r stronger than q. In this case,
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r P ẏ0 ∈ Ũ ⊆ Ġ.

As p, ẏ0 and Ġ are arbitrary,

P every weakly open set in K̃ is open for the usual topology of K̃, so the two topologies
coincide. QQQ

(iv) Since we know that

K̃ is compact,

we have

P K̃ acts on X̃ as a mid-convex norming subset of the unit ball of the dual of X̃, and is
compact in the corresponding weak* topology, so acts as the unit ball of the dual of
X̃.

At the same time, P (X∗
w∗)

∼

=
⋃

n∈N nK̃. It follows easily that

P (X∗
w∗)

∼

acts on X̃ as the dual of X̃.

9B Lemma Let X be a normed space, W a Čech-complete topological space, and φ : W → X a function
which is continuous for the weak topology of X. Then there is a comeager set W ′ ⊆ W such that φ↾W ′ is
continuous for the norm topology of X.

proof (a) For each n ∈ N let Wn be
⋃
{G : G ⊆ W is open, diamφ[G] ≤ 2−n}; set W ′ =

⋂
n∈N Wn. Then

φ↾W ′ is norm-continuous.

(b) ??? Suppose, if possible, that W ′ is not comeager in W . Then there is an n ∈ N such that Wn

is not dense. Express W as
⋂

m∈N Hm where 〈Hm〉m∈N is a sequence of dense open sets in a compact

Hausdorff space Z, and set V = Z \ Wn, so that V ⊆ Z is a non-empty open set and W ∩ V is dense
in V . Choose 〈Vσ〉σ∈S∗

2
inductively, where S∗

2 =
⋃

m∈N{0, 1}
m, as follows. V∅ = V . Given that Vσ is a

non-empty open subset of V , then Vσ ∩W is a non-empty relatively open subset of W disjoint from Wn, so
diamφ[Vσ ∩W ] > 2−n; let xσ, x′σ be points of φ[W ∩ Vσ] such that ‖xσ − x′σ‖ > 2−n; let yσ ∈ X∗ be such
that ‖yσ‖ = 1 and |yσ(xσ) − yσ(x′σ)| > 2−n; let Vσa<0> and Vσa<1> be open subsets of Vσ such that

V σa<i> ⊆ Vσ ∩H#(σ) for both i,

|yσ(φ(z)) − yσ(φ(z′))| ≥ 2−n for every z ∈W ∩ Vσa<0> and z′ ∈W ∩ Vσa<1>.

Note that this ensures that ‖φ(z) − φ(z′)‖ ≥ 2−n whenever z ∈W ∩ Vσa<0> and z′ ∈W ∩ Vσa<1>.
At the end of the construction, we have ‖φ(z) − φ(z′)‖ ≥ 2−n whenever σ, τ ∈ S∗

2 are incomparable,
z ∈W ∩ Vσ and z′ ∈W ∩ Vτ . Set

K =
⋂

m∈N

⋃
σ∈{0,1}m Vσ,

so that K ⊆ W is compact. All the K ∩ Vσ are compact and not empty, so we have a Radon probability
measure µ0 on W such that µ0(K ∩ Vσ) = 2−#(σ) for every σ ∈ S∗

2 (Fremlin 03, 416K). Then µ1 = µ0φ
−1

is a Radon measure on X for the weak topology on X (Fremlin 03, 418I), and therefore also for the norm
topology of X (Fremlin 03, 466A). Since µ1φ[K] = µ0φ

−1[φ[K]] = 1, there is a norm-compact set L ⊆ φ[K]
such that

0 < µ1L = µ0φ
−1[L] = µ0(K ∩ φ−1[L]).

For m ∈ N, set Am = {σ : σ ∈ {0, 1}m, Vσ ∩ K ∩ φ−1[L] 6= ∅}. Then #(Am) ≥ 2mµ1L. But note
that for each σ ∈ Am there is an aσ ∈ φ[K ∩ Vσ ∩ L], and that if σ, σ′ are distinct members of Am then
‖aσ − aσ′‖ ≥ 2−n. So L cannot be covered by fewer than 2mµ1L sets of diameter less than 2−n. As this is
true for every m, L is not totally bounded and cannot be norm-compact. XXX

(c) So W ′ is comeager, as required.

9C Theorem Let X be a normed space, P a forcing notion and Z the Stone space of P. Write Xw for
X endowed with its weak topology. Let φ : X → Xw be the identity function, regarded as a continuous
function form the norm and weak topologies of X. Then
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P φ̃ : X̃ → X̃w is surjective,

so

P X̃w can be identified with X̃ with its weak topology.

proof (a) If f ∈ C−(Z;Xw), then applying 9B to the Čech-complete space dom f we have a dense Gδ set
Z0 ⊆ dom f such that f↾Z0 belongs to C−(Z;X); now

P f̃ = ((f↾Z0)φ)
∼

= φ̃((f↾Z0)
∼

) ∈ φ̃[X̃].

Thus P φ̃ is surjective.

(b) Now use the identification of X̃∗ in 9A.

(i) Suppose that p ∈ P and that ẋ, Ġ are P-names such that

p P Ġ is an open subset of X̃ in its weak topology and ẋ ∈ Ġ.

Then there are a q stronger than p, an n ∈ N, rational numbers γ0, . . . , γn, γ
′
0, . . . , γ

′
n and P-names ẏ0, . . . , ẏn

such that

p P ẏ0, . . . , ẏn ∈ X̃∗ and ẋ ∈ {u : u ∈ X̃, γi < ẏi(u) < γ′i ∀ i ≤ n} ⊆ Ġ.

Using 9A, we have f ∈ C−(Z;X) and g0, . . . , gn ∈ C−(Z;X∗
w∗) such that

q P ẋ = f̃ ∈ {u : u ∈ X̃, γi < (g̃i|u) < γ′i ∀ i ≤ n} ⊆ Ġ.

As in the proof of 9A, we can now use the norm-continuity of f and the weak*-continuity of the gi to see
that there are a weakly open subset G of X and an r stronger than q such that

r P f̃ ∈ G̃ ⊆ {u : u ∈ X̃, γi < (g̃i|u) < γ′i ∀ i ≤ n}, so ẋ belongs to the interior of G̃ in

the topology of X̃w.

As p, ẋ and Ġ are arbitrary,

P the weak topology of X̃ is coarser than the topology of X̃w.

(ii) In the other direction, suppose that p ∈ P and that ẋ, Ġ are P-names such that

p P Ġ is an open subset of X̃w and ẋ ∈ Ġ.

Then we have a q stronger than p, a basic weakly open subset G of X and an f ∈ C−(Z;X) such that

q P ẋ = f̃ ∈ G̃ ⊆ Ġ.

Now there are an n ∈ N, rational numbers γ0, . . . , γn, γ
′
0, . . . , γ

′
n and y0, . . . , yn ∈ X∗ such that

G = {x : x ∈ X, γi < yi(x) < γ′i ∀ i ≤ n}.

So

q P ẋ ∈ {u : u ∈ X̃, γi < (ỹi|u) < γ′i ∀ i ≤ n} = G̃ ⊆ Ġ and ẋ belongs to the interior of Ġ

for the weak topology of X̃.

As before, this means that

P the topology of X̃w is coarser than the weak topology of X̃, so the two coincide.

10 Examples

10A Souslin lines and random reals: Proposition Let X be a Souslin line, that is, a ccc Dedekind
complete totally ordered space such that every countable set is nowhere dense. Let P be a random forcing,
that is, P = Σ \N (µ), active downwards, for some semi-finite measure space (Ω,Σ, µ), writing N (µ) for the
null ideal of µ. Then

P X̃ is a Souslin line.

proof (a) By 4Da,
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P X̃ is totally ordered and Dedekind complete and its topology is its order topology.

By 5D,

P X̃ is ccc.

(b) As for separable subspaces of X̃, the fact we need is the following. If p ∈ P has finite measure, and

ẋ is a P-name such that p P ẋ ∈ X̃, there is a nowhere dense closed set F ⊆ X such that p P ẋ ∈ F̃ . PPP

Let f ∈ C−(Z;X) be such that p P ẋ = ~f . p̂ is the Stone space of the subspace measure on p so carries a
non-zero totally finite Radon measure ν for which meager sets are negligible; in particular, ν(p̂∩dom f) > 0.
Consider the subspace measure ν1 on p̂∩dom f ; this is again a non-zero totally finite Radon measure. So the
image measure ν1(f↾p̂)−1 is a Radon measure on X. But the support of any Radon measure on X is nowhere
dense, so there is a nowhere dense closed set F ⊆ X such that ν(p̂ \ f−1[F ]) = 0, that is, p̂ ⊆∗ f−1[F ] and
p P ẋ ∈ F . QQQ

Because every meager subset of X is nowhere dense, we see that whenever p ∈ P has finite measure and
Ȧ is a P-name such that

p P Ȧ is a countable subset of X̃,

there is a closed nowhere dense set F ⊆ X such that

p P Ȧ ⊆ F̃ .

But we also know that

p P F̃ is closed and nowhere dense

(2B). As p and Ȧ are arbitrary (and µ is semi-finite, so the elements of finite measure are dense in P),

P countable subsets of X̃ are nowhere dense, so X̃ is a Souslin line.

10B Kunen’s compact L-space In Kunen 81 there is an example of a non-separable hereditarily
Lindelöf chargeable compact Hausdorff space X, constructed with the aid of the continuum hypothesis; it
is not hard to show that the construction can be performed if we assume that the cofinality of the Lebesgue
null ideal is ω1. This space has the additional property that it is expressible as the union of a non-decreasing
family 〈Xξ〉ξ<ω1

of compact metrizable subspaces. The following proposition shows that at least some
aspects of the construction can be carried over into contexts in which the cofinality of the Lebesgue null
ideal is large.

Proposition Let X be a hereditarily Lindelöf chargeable compact Hausdorff space, of density ω1, in which
every separable subspace is metrizable, and P a forcing notion such that ω1 is a precaliber of P. (For instance,
P could be Fn<ω(I, {0, 1}) for any set I.) Then

P X̃ is a hereditarily Lindelöf chargeable compact Hausdorff space, of uncountable den-
sity, in which every separable subspace is metrizable.

proof (a) By 4Ac, 4Aj and 5Ac,

P X̃ is a chargeable compact Hausdorff space of density at most ω1.

(b) Because d(X) = ω1 and X is first-countable, X is expressible as the union of a strictly increasing
family 〈Xξ〉ξ<ω1

of closed separable subspaces, all of which are metrizable. Now

P 〈X̃ξ〉ξ<ω1
is a strictly increasing family of compact metrizable subspaces of X̃

by 2Ad and 4Ae. The point here is that

P X̃ =
⋃

ξ<ω1
X̃ξ.

PPP??? Otherwise, we have a p ∈ P and a P-name ẋ such that

p P ẋ ∈ X̃ \
⋃

ξ<ω1
X̃ξ.
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Let Z be the Stone space of RO(P) and let f ∈ C(Z;X) be such that p P ẋ = f̃ . Then none of the closed
sets f−1[Xξ] can include p̂, so we have for each ξ < ω1 a pξ stronger than p such that p̂ξ ∩ f−1[Xξ] = ∅.
But as ω1 is a precaliber of P there is a z ∈ Z such that D = {ξ : ξ < ω1, z ∈ p̂ξ} is uncountable, and now
f(z) /∈

⋃
ξ∈D Xξ = X. XXXQQQ

(c) As P is ccc, we have

P ω1 is uncountable;

consequently

P every countable subset of X̃ is included in some X̃ξ, every separable subspace of X̃ is

metrizable, and d(X̃) is the first uncountable cardinal.

(d) Next,

P X̃ is hereditarily ccc

by 5E. Now we have

P X̃ is hereditarily ccc and every separable subspace of X̃ is hereditarily Lindelöf, so X̃
is hereditarily Lindelöf,

which completes the proof.

10C Example Let X ⊆ [0, 1]2 be a Bernstein set. Let P be the partially ordered set of non-negligible
compact subsets of [0, 1], active downwards, so that its regular open algebra is isomorphic to the measure
algebra of Lebesgue measure on [0, 1]. Then X is connected but

P X̃ is not connected.

proof (a) If G and H are disjoint non-empty open subsets of X, then there are x ∈ G, y ∈ H and δ > 0
such that the open balls U(x, δ) and U(y, δ) are disjoint and included in [0, 1]2, and X ∩ U(x, δ) ⊆ G,
X ∩U(y, δ) ⊆ H. Express G, H as G0 ∩X and H0 ∩X where G0, H0 are disjoint open sets in [0, 1]2. Then
[0, 1]2 \ (G0 ∪H0) meets the line segment from x+w to y+w for every w ∈ U(0, 1

2δ), so has cardinal c and
must meet X; thus X 6= G ∪H. As G and H are arbitrary, X is connected.

(b) Every compact subset of X is countable, so 2Ag tells us that

P X̃ = ϕ̇[X̌].

(c) Consider the P-names

Ġ = {(x̃, p) : x ∈ X, p ∈ P, π1(x) > sup p},

Ḣ = {(x̃, p) : x ∈ X, p ∈ P, π1(x) < inf p},

where π1 : [0, 1]2 → [0, 1] is the first-coordinate map (recall that every member of P is actually a compact
non-empty subset of [0, 1]). Then

P Ġ is an open subset of X̃.

PPP Note that if (x̃, p) ∈ Ġ and q is stronger than p, then (x̃, q) ∈ Ġ. Of course P Ġ ⊆ X̃. Suppose that

p ∈ P and that ẋ is a P-name such that p P ẋ ∈ Ġ. Then there are a q stronger than p and an x ∈ X such
that q P ẋ = x̃ and sup q < π1(x). Set U = {y : y ∈ X, sup q < π1(y)}. Then

q P Ũ is an open neighbourhood of ẋ.

Now suppose that r is stronger than q and that ẏ is a P-name such that r P ẏ ∈ Ũ . In this case (by (b))
there are an s stronger than r and a y ∈ X such that s P ẏ = ỹ, in which case y ∈ U , π1(y) > sup s and

s P ẏ = ỹ ∈ Ġ.

As r and ẏ are arbitrary,

q P Ũ ⊆ Ġ so ẋ ∈ int Ġ;
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as p and ẋ are arbitrary,

P Ġ ⊆ int Ġ and Ġ is open. QQQ

Next,

P Ġ is not empty.

PPP If p ∈ P, there is a q stronger than p such that sup q < 1, so that if x is any member of X ∩ ({1} × [0, 1])

then q P x̃ ∈ Ġ. QQQ
Similarly,

P Ḣ is open and not empty.

(d) Of course

P Ġ ∩ Ḣ = ∅.

Also

P Ġ ∪ Ḣ = X̃.

PPP Suppose that p ∈ P and that ẋ is a P-name such that p P ẋ ∈ X̃. Then there are a q stronger than p
and an x ∈ X such that q P ẋ = x̃. Now one of q ∩ [0, π1(x)[, q ∩ ]π1(x), 1] is non-negligible and includes

an r ∈ P; in which case (x̃, r) belongs to one of Ġ, Ḣ and

r P ẋ = x̃ ∈ Ġ ∪ Ḣ.

As p and ẋ are arbitrary, we have the result. QQQ
So Ġ, Ḣ witness that

P X̃ is not connected.

10D Example There are a path-connected separable metrizable space X and a forcing notion P such
that

P X̃ is not path-connected.

proof (a) I start with some general remarks about spaces of the type to be set up, so as to shorten the part
of the argument which must be done in the forcing language. Consider the following situation. X will be a
Hausdorff space expressed as Y0 ∪X1 ∪Y1 ∪X2 where Y0, X1, Y1 and X2 are disjoint and not empty; Y0 and
Y1 are open; X1, X2 and Y0∪X1 are closed; and X1 and X2 are zero-dimensional. There will be a continuous
function ψ : X1 ∪ Y1 → X1 such that ψ(x) = x for x ∈ X1, and a continuous function φ : [0, 1] → X such
that φ(0) ∈ Y0 and φ(1) ∈ X2. In this case, there will be a greatest t0 ∈ [0, 1[ such that φ(t0) ∈ Y0 ∪X1, and
a least t1 ∈ ]t0, 1] such that φ(t1) ∈ X2. For t ∈ [t0, t1[, φ(t) ∈ X1 ∪ Y1, so ψφ↾ [t0, t1[ is continuous; as X1

is totally disconnected, ψφ is constant on [t0, t1[. Moreover, φ(t1) = φ(1). PPP??? Otherwise, there are t2, t3
such that t1 ≤ t2 < t3 ≤ 1, φ(t2) and φ(t3) are different points of X2, and φ(t) ∈ Y1 for t2 < t < t3. In this
case, ψφ(t) is constant for t ∈ ]t2, t3[; let x be the constant value, so that φ(t) belongs to the line segment
from x to α(x) for every t ∈ ]t2, t3[. But this means that φ(t1) = α(x) = φ(t2). XXXQQQ

(b) Now for the actual space X, which will be in the form considered above. X will be a subset of R3. X2

will be a subset of the line segment K2 from (−1, 0, 2) to (1, 0, 2) homeomorphic to the Cantor set. X1 will
be a Bernstein subset of the line segment K1 from (0,−1, 1) to (0, 1, 1). Take any bijection α : X1 → X2; Y1

will be the union of the open line segments from x to α(x) as x runs over X1. Now set y0 = (0, 0, 0), and let
Y0 be the set consisting of y0 together with all the open line segments from y0 to points of X1. If K is the
convex hull of K1 ∪K2, we have a continuous function ψ0 : K \K2 → K1 given by saying that ψ0(x) = y
whenever y ∈ K1, y

′ ∈ K2 and x lies on the line segment from y to y′. Set ψ = ψ0↾X1 ∪ Y1. Then it is easy
to check that X, Y0, X1, Y1, X2 and ψ have the properties listed in (a). Evidently X is path-connected,
because every point of X belongs to a path ending in y0.

(c) This time, let µ be an atomless Radon measure on X2, and let P be the partially ordered set of
non-negligible compact subsets of X2. Putting 2A, 2C, 2D and 4B together we see that
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P X̃ is the disjoint union of Ỹ0, X̃1, Ỹ1 and X̃2; Ỹ0, Ỹ1 ∪ X̃2, Ỹ1, Ỹ0 ∪ X̃1 ∪ Ỹ1, Y1 ∪X2

are open; X̃2 is zero-dimensional; and ψ̃ is a continuous function from X̃1 ∪ Ỹ1 to X̃1

such that ψ̃1(x) = x for every x ∈ X̃1.

(d) Exactly as in 10C, we have

P ϕ̇[X̌1] = X̃1.

It follows that

P X̃1 is zero-dimensional.

PPP Suppose that p ∈ P and that ẋ, U̇ are P-names such that

p P U̇ is a relatively open set in X̃1 and ẋ ∈ U̇ .

Then there must be a q stronger than p, an x ∈ X1 and a relatively open set U ⊆ X1 such that

q P ẋ = x̃ ∈ Ũ ⊆ U̇ .

So x ∈ U . As X1 is zero-dimensional, there is a partition (V1, V2) of X1 into relatively open sets such that
x ∈ V1 ⊆ U . But now

q P ẋ ∈ Ṽ1 ⊆ U̇ and Ṽ1 is relatively open-and-closed in X̃1.

As p, ẋ and U̇ are arbitrary, we have the result. QQQ

(e) Let Z be the Stone space of the regular open algebra of P and f : Z → X2 the canonical map; then

P
~f ∈ X̃2. Note that if p ∈ P then p is actually a compact subset of X, and p P

~f ∈ p̃. Let y0 = (0, 0, 0)
be the apex of Y0. ??? If p ∈ P is such that

p P X̃ is path-connected,

then there is a P-name φ̇ such that

p P φ̇ is a continuous function from the unit interval to X̃, φ̇(0) = ỹ0 and φ̇(1) = ~f .

Now (a) tells us that

p P there are real numbers t0 < t1 and an x ∈ X̃1 such that ψ̃φ̇(t) = x for t0 ≤ t < t1
and φ̇(t1) = ~f .

Let q stronger than p and x ∈ X1 be such that

q P there are real numbers t0 < t1 such that ψ̃φ̇(t) = x̃ for t0 ≤ t < t1 and φ̇(t1) = ~f .

Now consider α(x) ∈ X2. There is an r stronger than q such that α(x) does not belong to the convex hull of
r, just because µ is atomless. So we have disjoint convex relatively open sets U0, V0 ⊆ K2 such that r ⊆ U0

and α(x) ∈ V0. In this case, the sets U = Γ(U0 ∪K1) \K1, V = Γ(V0 ∪K1) \K1 are disjoint relatively open
subsets of K, and U ∩X, V ∩X are disjoint open subsets of X including r and ψ−1[{x}] \ {x} respectively.
So

P Ỹ1 ∩ ψ̃
−1[{x̃}] ⊆ (V ∩X)

∼

.

PPP Suppose that p′ ∈ P and ẏ is a P-name such that

p′ P ẏ ∈ Ỹ1 and ψ̃(ẏ) = x̃.

Then there is a g ∈ C−(Z, Ỹ1) such that p′ P ẏ = ~g, so that

p̂′ ⊆∗ {z : z ∈ dom g, ψg(z) = x} = g−1[V ∩X]

and p′ P ẏ ∈ (V ∩X)
∼

. QQQ
We have

r P
~f ∈ Ũ .

Now there must be rational numbers γ, γ′ such that γ < γ′ ≤ 1 and an s stronger than r such that

s P φ̇(t) ∈ (U ∩X)
∼

for γ ≤ t ≤ γ′, while φ̇(γ) ∈ Ỹ1 and ψ̃φ̇(γ) = x̃ ∈ (V ∩X)
∼

.

But this is impossible, because
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P (U ∩X)
∼

is disjoint from (V ∩X)
∼

. XXX

So

P X̃ is not path-connected,

and we have the required example.

10E I do not know whether any other cardinal functions are preserved in the way that weight, π-weight
and density are. ‘Character’ is not, as the following example (due to A.Dow and G.Gruenhage) shows.

Example There are a first-countable compact Hausdorff space X and a forcing notion P such that

P X̃ is not first-countable.

proof (a) Let S ⊆ ω1 be a stationary set such that ω1 \S is also stationary. Let T be the tree consisting of
subsets of S which are closed in the order topology of ω1, ordered by end-extension, so that p ≤ q iff there
is some α such that p = q ∩ α. Then #(T ) = c, T has no uncountable branches and every element of T has
more than one immediate successor, so there is a first-countable compact Hausdorff space X with a π-base
V isomorphic to T inverted (Todorčević 84, 9.13). Replacing each member of V by the interior of its
closure, if necessary, we can suppose that every member of V is a regular open set. For p ∈ P let Vp be the
corresponding member of V. If we take the forcing notion P to be T itself, acting upwards, {[p,∞[ : p ∈ P}
is an order-dense subset of the regular open algebra RO(P), because T is separative. Now we have an
order-isomorphism between V and {[p,∞[ : p ∈ P} matching Vp with [p,∞[ for every p, and this order-
isomorphism extends to a Boolean isomorphism between the Dedekind complete Boolean algebras RO(X)
and RO(P). We can therefore identify the Stone space Z of RO(P) with the projective cover (projective
resolution, absolute, Gleason space) of X, in the sense of Mill 84; and under this identification the regular
open subset Vp of X is matched with the open-and-closed subset p̂ of Z, for each p ∈ P.

(b) We need a special property of the partially ordered set T or P: if 〈An〉n∈N is any sequence of maximal
up-antichains in T , there is a maximal up-antichain C refining every An, in the sense that for every p ∈ C
and n ∈ N there is a q ∈ An such that qn ≤ p. PPP For each n ∈ N set Tn =

⋃
q∈An

[q,∞[, so that Tn

is a cofinal up-open subset of T ; set Q =
⋂

n∈N Tn. ??? If Q is not cofinal with T , take p0 ∈ T such that
Q ∩ [p0,∞[ = ∅. Let S′ be the set of non-zero limit ordinals belonging to S, so that S′ is stationary, and
for each α ∈ S′ let 〈γαn〉n∈N be a sequence in α with supremum α. For p ∈ T , γ < ω1 and n ∈ N, let
q(p, γ, n) be a member of Tn such that p ≤ q(p, γ, n) and q(p, γ, n) 6⊆ γ. For each α ∈ S′ define a sequence
〈pαn〉n∈N by saying that pα0 = p0 and pα,n+1 = q(pαn, γαn, n) for each n. Consider α′ = sup(

⋃
n∈N pαn).

{α′} ∪
⋃

n∈N pαn is a closed subset of ω1, but cannot belong to T , since if it did it would dominate every
pαn, so belong to every Tn, and we are supposing that there is no such member of T greater than or equal
to p0. So α′ /∈ S, and, in particular, α′ 6= α. Since α′ ≥ γαn for every n, α′ > α, and there is a first nα ∈ N

such that pα,nα+1 6⊆ α.
By the Pressing-Down Lemma, there is a stationary set S1 ⊆ S′ such that nα = nβ = n∗ say for every α,

β ∈ S1, and moreover γαi = γβi = γ∗i say for every α, β ∈ S1 and i ≤ n∗. It follows that pαi = pβi = p∗i say
for every i ≤ n∗ and α, β ∈ S1. But this means that q(p∗n∗ , γ∗n∗ , n∗) 6⊆ α for every α ∈ S1; which is absurd.
XXX

So Q is cofinal with T , and includes a maximal antichain C, which will have the property required. QQQ

(c) Because Z can be identified with the projective cover of X, there is a canonical continuous surjection
f from Z onto X, defined by saying that f(z) ∈ G whenever z ∈ Z, G ⊆ X is a regular open set and
z belongs to the open-and-closed subset of Z corresponding to G. In particular, if p ∈ P and Vp is the

corresponding member of V, f(z) ∈ Vp for every z ∈ p̂. In the language of this note, f belongs to the space

X̃ defined from X and P and p P
~f ∈ (Vp)

∼

for every p ∈ P. Now

P χ(~f, X̃) > ω.

PPP??? Suppose, if possible, otherwise. Then there are p0 ∈ P and a P-name Ẇ such that

p0 P Ẇ ⊆ T̃ is a countable base of neighbourhoods of ~f ;

let 〈U̇n〉n∈N be a sequence of P-names such that
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p0 P U̇n ∈ T for every n and Ẇ = {U̇n : n ∈ N}.

For each n ∈ N we have a maximal antichain An in P and a family 〈Unp〉p∈An
in T such that, for each

p ∈ An, either p is incompatible with p0 or p ≥ p0 and p P U̇n = Ũnp. Let C be a maximal antichain in P

refining every An; take any p ∈ C such that p ≥ p0, so that for each n ∈ N there is a qn ∈ An dominated by
p, and p P U̇n = Ũqnn for every n.

Now take two incompatible extensions p1, p2 of P and consider the corresponding members Vp1
, Vp2

of
V. These are non-empty disjoint open sets, and V is a π-base for a compact Hausdorff topology, so there
are V ′

1 , V ′
2 ∈ V such that V ′

j ⊆ Vpj
for both j; if V ′

j = Vrj
, we have rj ≥ pj for both j. Now

r1 P
~f ∈ (Vr1

)
∼

⊆ Ṽp1
∈ T̃,

so there must be an r′1 ≥ r1 and an m ∈ N such that r′1 P U̇m ⊆ Ṽpj
. But we have r′1 ≥ qm, so r′1 P Ũqmm ⊆

Ṽp1
and Uqmm ⊆ Vp1

. Similarly, there is an n ∈ N such that Uqnn ⊆ Vp2
, so that Uqmm ∩ Uqnn = ∅ and

P Ũqmm is disjoint from Ũqnn.

But we also have

p P
~f ∈ Ũqmm ∩ Ũqnn,

so this is impossible. XXXQQQ

(d) It follows at once that

P X̃ is not first-countable,

and we have the required example.

Remark In view of 4Da above, it is perhaps worth noting that the space X here can be thought of as a
totally ordered set with its order topology and is a Corson compact (see Todorčević 84, 9.14). The same
phenomenon occurs if we start from a Souslin tree in place of the tree T here, and in this case we have a
ccc forcing notion P, at the cost of moving outside ZFC.

10F Example (A.Dow) If b = d = ω2 there are a forcing notion P and

(a) a countable Hausdorff space X of weight ω2 such that Pw(X̃) < #(ω2);

(b) a compact Hausdorff space Y of π-weight ω2 such that P π(Ỹ ) < #(ω2).

proof (a)(i) Set X = [N]<ω with the topology T defined by saying that U ⊆ X is open iff for every I ∈ U
there is an n ∈ N such that I ∪ {m} ∈ U for every m ≥ n.

(ii) For f ∈ NN, n ∈ N and K ⊆ n set

UnKf = {I : I ∈ X, I ∩ n = K and f(i) ≤ j whenever i ∈ I \ n, j ∈ I and i < j}.

Then UnKf is open, and also closed. PPP In fact UnKf is closed for the coarser topology on X induced by the
usual topology of PN. QQQ

If F ⊆ NN is ≤∗-cofinal with NN, then {UnKf : f ∈ F , K ⊆ n ∈ N} is a base for T. PPP Suppose
that I ∈ U ∈ T. Let g : [N]ω → N be such that J ∪ {m} ∈ U whenever J ∈ U and m ≥ g(J), and set
h(m) = max{g(J) : J ⊆ m + 1} for m ∈ N. Let f ∈ F be such that h ≤∗ f , and take n such that I ⊆ n,
g(I) ≤ n and h(m) ≤ f(m) for every m ≥ n. Then I ∈ UnIf ⊆ U . QQQ

So X is zero-dimensional.

(iii) w(X) = π(X) = d. PPP By (a-ii), w(X) ≤ d. Now let V be a π-base for T of size π(X); we
can suppose that V = {UnKf : K ⊆ n ∈ N, f ∈ F} where F ⊆ NN and #(F ) = π(X). For f ∈ F say
that f ′(i) = max(f(i), i + 1) for every i. Take any g ∈ NN. Then there are Kg ⊆ ng ∈ N and fg ∈ F
such that U0∅g ⊇ UngKgfg

. If i ≥ ng, i < j and fg(i) ≤ j then Kg ∪ {i, j} ∈ UngKgfg
so g(i) ≤ j. Thus

g(i) ≤ max(i+ 1, fg(i)) for every i ≥ ng and g ≤∗ f ′g. As g is arbitrary, {f ′ : f ∈ F} is ≤∗-cofinal with NN

and d ≤ #(F ) = π(X). QQQ

(iv) Now suppose that b = d = ω2 and that P is the ω2-Namba forcing notion (A1 below). Then

P w(X̃) = π(X̃) = ω.
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PPP Let 〈fξ〉ξ<ω2
run over a cofinal family in NN such that fξ ≤∗ fη whenever ξ ≤ η < ω2. Set U = {UnKfξ

:

K ⊆ n ∈ N, ξ < ω2}, so that U is a base for T. Let Ȧ be a P-name such that

P Ȧ is a countable cofinal subset of ω2

(Proposition A4). Consider the P-name

V̇ = {(ŨnKfξ
, p) : K ⊆ n ∈ N, ξ < ω2, p P ξ ∈ Ȧ}.

Then

P V̇ is a countable subset of T̃.

Now suppose that p ∈ P and that İ, Ġ are P-names such that

p P Ġ is an open subset of X̃ containing İ.

Because X is countable, there are a q stronger than p, I ∈ X, K ⊆ n ∈ N and ξ < ω2 such that

q P İ = Ĩ ⊆ ŨnKfξ
⊆ Ġ

(I am using 2Ad). It follows that I ∈ UnKfξ
. Now there are η < ω2 and r stronger than q such that

r P ξ ≤ η ∈ Ȧ.

Let m ≥ n be such that fξ(i) ≤ fη(i) for every i ≥ m; then I ∈ UmIfη
⊆ UnKfξ

, so

r P İ = Ĩ ∈ ŨmIfη
∈ V̇ and ŨmIfη

⊆ ŨnKfξ
⊆ Ġ.

As p, İ and Ġ are arbitrary,

P V̇ is a base for the topology of X̃, so w(X̃) ≤ ω.

Since of course

P X̃ is infinite and Hausdorff,

Pw(X̃) = π(X̃) = ω. QQQ

(v) So, in the circumstances of (iv), we have a Hausdorff space X and a forcing notion P such that
w(X) = π(X) = ω2 and

Pw(X̃) = π(X̃) = ω < ω1 = #(ω2)

(using Corollary A3).

(b) Again suppose that b = d = ω2 and that P is the ω2-Namba forcing notion.

(i) Let RO(X) be the regular open algebra of the topological space X described in (a). Then
π(RO(X)) = π(X) = ω2. But

P π(RO(X )̌ ) = ω.

PPP By §3B,

P RO(X )̌ is isomorphic to an order-dense subalgebra of RO(X̃), so π(RO(X )̌ ) =

π(X̃) = ω

((a-iv) above). QQQ

(ii) Let Y be the Stone space of RO(X). Then Y is a compact Hausdorff space and π(Y ) = π(RO(X)) =
ω2. But

P Ỹ is homeomorphic to the Stone space of RO(X )̌

(Corollary 4B), so

P π(Ỹ ) = π(RO(X )̌ ) = ω.

Remark What these show are that in Theorem 5B, we cannot (at least, if we are looking for a theorem in
ZFC) omit the hypothesis that X is compact; and moreover that π-weight need not be preserved in the way
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that weight is, even for compact spaces. In the next proposition, we shall see that the same thing happens
for density. By Theorem 5C, on the other hand, we have a positive result if the generalized continuum
hypothesis is true.

10G Proposition Suppose that there is a set A ⊆ R such that κ = #(A) is a regular cardinal greater
than ω1 and every Lebesgue negligible subset of R meets A in a set of size less than κ. (Such a set exists,
for instance, if there is a Sierpiński set of size κ = ω2, or if κ = m = c > ω1.) Let P be the κ-Namba forcing
notion (A1 below).

(a) If A is the Lebesgue measure algebra, and λ is its centering number, then

P d(Ǎ) = ω < #(λ̌).

(b) If X is the Stone space of A, then its density d(X) is λ, but

P d(X̃) < #(λ̌).

proof (a) Enumerate A as 〈tξ〉ξ<κ. Let θ : A → Σ be a lifting, where Σ is the σ-algebra of Lebesgue
measurable sets (Fremlin 02, §341). For t ∈ R set Ct = {a : a ∈ A, t ∈ θ(a)}, so that Ct is a centered
subset of A. Of course λ ≥ ω1 (Fremlin 08, 524Ne, or otherwise).

Let Ḃ be a P-name such that

P Ḃ is a countable cofinal subset of κ̌.

Consider the P-name

Ḋ = {(Ďtξ+q, p) : p ∈ P, ξ < κ, p P ξ ∈ Ḃ, γ ∈ Q}.

Then

P Ḋ is a countable family of centered subsets of Ǎ.

Also

P

⋃
Ḋ = Ǎ \ {0}.

PPP Suppose that p ∈ P and that ȧ is a P-name such that

p P ȧ is a non-zero member of Ǎ.

Then there are a q stronger than p and an a ∈ A \ {0} such that q P ȧ = ǎ. Consider the non-negligible
measurable set θ(a). The set θ(a) + Q is a conegligible measurable set, so there is a ξ0 < κ such that

tξ ∈ θ(a) + Q for every ξ ≥ ξ0. Now there are r stronger than q and ξ ≥ ξ0 such that r P ξ ∈ Ḃ. Let γ ∈ Q

be such that tξ + γ ∈ θ(a), that is, a ∈ Dtξ+γ . Then

r P ȧ = ǎ ∈ Ďtξ+γ ∈ Ḋ.

As p and ȧ are arbitrary, we have the result. QQQ
So

P d(Ǎ) ≤ ω < ω1 = #(ω1) ≤ #(λ).

(b) The Stone space of any Boolean algebra has density equal to the centering number of the algebra, so
we have d(X) = λ. Now

P d(X̃) = d(Ǎ) = ω < #(λ)

by Corollary 4B and (a) above.

10H Example Suppose that there is a weakly inaccessible cardinal θ. Let X be a topological space such
that c(X) = sat(X) = θ. Let P be the Lévy collapsing order for θ (Kunen 80, VII.8.6). Then

P c(X̃) = ω < #(θ̌).

proof We know that
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P θ̌ is the first uncountable cardinal

(Kunen 80, VII.8.8). ??? Suppose, if possible, that

¬ P X̃ is ccc.

Then there are a p ∈ P and a P-name ġgg such that

p P ġgg is a function from θ̌ to the family of non-empty open sets in X̃ and ġgg(ξ) ∩ ġgg(η) = ∅
whenever ξ < η < θ̌.

Now for each ξ < θ we have a pξ ∈ P, stronger than p, and a non-empty open set Gξ ⊆ X such that

pξ P G̃ξ ⊆ ġgg(ξ).

Let Iξ ⊆ θ × N be the domain of pξ; by the ∆-system lemma, there is a Γ ∈ [θ]θ such that 〈Iξ〉ξ∈Γ is a
∆-system with root I say. Now there is a function q : I → θ such that Γ′ = {ξ : ξ ∈ Γ, pξ↾I = q} has
cardinal θ. But now pξ and pη are compatible for all ξ, η ∈ Γ′, so 〈Gξ〉ξ∈Γ′ is disjoint and sat(X) > θ. XXX

So

P c(X̃) = ω,

as required.

10I Examples (a) Let µ be Dieudonné’s measure on X = ω1, and P a forcing which collapses ω1 to ω,
that is,

P ω̌1 is countable.

Note that as all the compact subsets of X are countable,

P X̃ = ϕ̇[X̌]

(2Ag). We still have a P-name µ̃ as defined in 6A, but since

P µ̃X̃ = 1, µ̃{ξ} = 0 for every ξ ∈ X̃

there is no way to turn it into the name of a countably additive measure.

(b) Let X be the right-facing Sorgenfrey line and µ Lebesgue measure, so that µ is a locally finite σ-finite
quasi-Radon measure on X. Let P be simple Cohen forcing, expressed as the set of functions from finite
subsets of N to Z. Again define µ̃ as in 6A. Again, every compact subset of X is countable, so

P X̃ = ϕ̇[X̌].

Consider the P-name

ġgg = {((n, [2−ni, 2−n(i+ 1)]), p) : p ∈ P, n ∈ dom p, p(n) = i},

where in the formula here the interval [2−ni, 2−n(i+ 1)] is of course to be interpreted in V P. Then

P µ̃ġgg(n) = 2−n for every n ∈ N, while X̃ =
⋂

n∈N

⋃
m≥n ġgg(m).

So again we have

P µ̃ has no extension to a measure on X̃.

10J Example (J.Hart, K.Kunen) Let X be the long line [0, ω1] with a top point added (that is, X is the
one-point compactification of ω1× [0, 1[ when this is given the order topology defined from the lexicographic
ordering). Then X is compact and Hausdorff and connected but not path-connected. If P is any forcing
which collapses ω1, then

P X̃ is totally ordered, compact, connected and has countable weight, so is homeomorphic
to the unit interval, and in particular is path-connected.

10K Example (Džamonja & Kunen 95) Let P be a well-pruned Souslin tree, active upwards. Then
there is a compact Hausdorff space X such that every Radon measure on X has metrizable support, but
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P X̃ has a subspace homeomorphic to {0, 1}ω1 .

In the language of Fremlin 08, §533, MahR(X) = {0, ω} but

P MahR(X̃) 6= {0, ω}.

proof (a) I begin by noting that because P is ccc,

P ω̌1 is uncountable.

(b) Let X be the set of functions x ⊆ P × {0, 1} such that domx is a totally ordered subset of P and
p ∈ domx whenever q ∈ domx and q is stronger than p. Then X is a closed subset of P(P × {0, 1}) with
its usual topology, so is a compact Hausdorff space. Now every Radon measure µ on X has metrizable
support, so has countable Maharam type. PPP For p ∈ P, set Gp = {x : x ∈ X, p ∈ domx}. Then Gp is an
open-and-closed subset of X, and Gp ⊆ Gq whenever p is stronger than q in P, while Gp ∩Gq = ∅ if p and q
are incompatible in P. For ǫ > 0, let Aǫ be {p : p ∈ P, µGp ≥ ǫ}. Then Aǫ is a subtree of P, and every level
of Aǫ is finite; consequently Aǫ is countable. It follows that A =

⋃
ǫ>0Aǫ is a countable subtree of P. Set

F = X \
⋃

p∈P\AGp; then F is a closed conegligible subset of X, and includes the support of µ. However F

is homeomorphic to a subset of P(A× {0, 1}), so is metrizable. QQQ
Set

V =
⋂

p∈P((Z \ p̂) ×X) ∪ (Z ××{x : x ∈ X, p ∈ domx}.

Then V is a closed subset of Z ×X, so

P
~V is a closed subset of X̃.

(c) Let rank : P → ω1 be the rank function of P, and Z the Stone space of RO(P). For ξ < ω1 let Hξ be
the open set

{x : x ∈ X, otp(domx) > ξ} = {x : there is some p ∈ domx such that rank p ≥ ξ},

and define a function φξ : Hξ → {0, 1} by saying that φξ(x) = x(p) when p ∈ domx and rank p = ξ. Let φ̃ξ

be the corresponding P-name for a function as defined in 2C. Because φξ is continuous,

P φ̃ξ : H̃ξ → {0, 1} is continuous.

Note that

P
~V ⊆ H̃ξ.

PPP If f ∈ C(Z;X), p ∈ P and p̂ ⊆∗ {z : (z, f(z)) ∈ V }, let q stronger than p be such that rank q ≥ ξ
(remember that P is supposed to be well-pruned). If z ∈ q̂ and (z, f(z)) ∈ V , then q ∈ dom f(z) so

f(z) ∈ Hξ. Thus q P
~f ∈ H̃ξ. QQQ

(d) We therefore have a P-name φ̇ such that

P φ̇ : ~V → {0, 1}ω1 is continuous and φ̇(x)(ξ) = φ̃ξ(x) for every x ∈ ~V and ξ < ω1.

Now

P φ̇ is surjective.

PPP Suppose that I ∈ [ω1]
<ω and w ∈ {0, 1}I . Let ξ < ω1 be such that I ⊆ ξ, and set U =

⋃
p∈P,rank p=ξ p̂, so

that U is a dense open subset of Z. For z ∈ U define f(z) ∈ X by saying that

dom f(z) = {p : p ∈ P, z ∈ p̂},

f(z)(p) = w(η) if z ∈ p̂ and rank p = η ∈ I,

= 0 if z ∈ p̂ and rank p /∈ I.

Then f : U → X is continuous so P
~f ∈ ~V , while

{z : φη(f(z)) = w(η) for every η ∈ I} ⊇
⋃

p∈P,rank p≥ξ p̂
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is dense, so

P w ⊆ φ̇(~f).

As w is arbitrary,

P φ̇[~V ] is dense in {0, 1}ω1 and φ̇ is surjective. QQQ

(e) Also

P φ̇ is injective.

PPP Suppose that f , g ∈ C(Z,X) and that p ∈ P is such that

p̂ ⊆∗ {z : (z, f(z)) ∈ V , (z, g(z)) ∈ V and f(z) 6= g(z)}.

Then there must be a (q0, i0) ∈ P × {0, 1} and a q stronger than p such that q̂ is included in one of
{z : (q0, i0) ∈ f(z)}, {z : (q0, i0) ∈ g(z)}, and is disjoint from the other; suppose it is included in the
former. Because {z : (z, f(z)) ∈ V } is closed and essentially includes q̂, we have (z, f(z)) ∈ V for every
z ∈ q̂, and q, q0 ∈ dom f(z) for every z ∈ q̂; accordingly q0 is weaker than q. Similarly, for any z ∈ q̂,
q ∈ dom g(z), so q0 ∈ dom g(z); as (q0, i0) /∈ g(z), g(z)(q0) 6= f(z)(q0). But this means that if ξ = rank q0
then φξ(f(z)) 6= φξ(g(z)) for every z ∈ q̂ and

q P φ̃ξ(~f) 6= φ̃ξ(~g) so φ̇(~f) 6= φ̇(~g). QQQ

Putting these together,

P
~V is a subspace of X̃ homeomorphic to {0, 1}ω1 .

Remark I have gone to some trouble to express the ideas of Džamonja & Kunen 95 in the language of
this note. Readers may find that the original version gives hints as to how the formulations here can be
related to other approaches to forcing; in particular, to models built from generic filters.

11 Possibilities

Here I collect some conjectures which look as if they might sometime be worth exploring.

11B Let X, Y be Hausdorff spaces, P a forcing notion and Z the Stone space of RO(P).

(a) If Z0 ⊆ Z is comeager and h : Z0 ×X → Y is continuous, then

P
~h is a continuous function from X̃ to Ỹ .

11D Let X, Y be Hausdorff spaces and P a forcing notion.

(a) If R ⊆ X × Y is an usco-compact relation, then

P R̃ ⊆ X̃ × Ỹ is usco-compact.

(b) If X is K-analytic then

P X̃ is K-analytic.

(c) If X is analytic then

P X̃ is analytic.

11G Let P be a forcing notion and Z the Stone space of its regular open algebra.

(a) If X is a K-analytic Hausdorff space, Y is a compact metrizable space and ḣ is a P-name such that

P ḣ is a continuous function from X̃ to Ỹ ,
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then there is a function h : X → Y such that

P ḣ = ~h.

(b) If X is a K-analytic Hausdorff space, α < ω1 and Ė is a P-name such that

P Ė ∈ Baα(X̃),

then there are a comeager set Z0 ⊆ Z and a W ∈ Baα(Z0 ×X) such that

P Ė = ~W .

12 Problems

12A Suppose that addN = κ < addM, where N , M are the Lebesgue null ideal and the ideal of
meager subsets of R. Then there is a family 〈Eξ〉ξ<κ of Borel subsets of [0, 1] such that A =

⋃
ξ<κEξ is

not Lebesgue measurable, therefore not universally Baire-property, by 1C. But if Z is any Polish space and
f : Z → [0, 1] is continuous, f−1[A] has the Baire property in Z (cf. Matheron Solecki & Zelený p05).

However, we can still ask: is there an example in ZFC of a Polish space X and a set A ⊆ X such that

f−1[A] ∈ B̂(Z) whenever Z is Polish and f : Z → X is continuous, but A /∈ UB̂(X)?

12B In Theorem 5C, is there a corresponding result for topological density, or for centering numbers of
Boolean algebras?

12C In Corollary 7C, do we have a converse? that is, can φ̃ belong to a Baire class lower than the first
Baire class containing φ?

12D In Theorem 6I, what can can we do for non-Borel sets W ⊆ Z ×X? Maybe we can reach a class

closed under Souslin’s operation. What about arbitrary W ∈ UB̂(Z ×X)?

12E In Proposition 3F, are there any other natural classes of topological space for which 3Fb or 3Fc
will be valid? What about analytic Hausdorff spaces?

12F In Theorem 2G, can we characterize those V ⊆ Z ×X for which P
~V is compact?

12G In Proposition 8I, can we characterize those (Σ,UB̂(X))-measurable functions g for which there is

a P-name ẋ such that [[ẋ ∈ F̃ ]] = g−1[F ]• for every F ∈ UB̂(X)?

12H In Theorem 4A, can we add
if X is a Hausdorff k-space, then P X̃ is a k-space,

if X is compact, Hausdorff and path-connected, then P X̃ is path-connected?

Acknowledgements Correspondence with A.Dow, G.Gruenhage and J.Pachl; conversations with M.R.Burke,
I.Farah, F.D.Tall, A.W.Miller, J.Hart, K.Kunen and S.Todorčević; hospitality of M.R.Burke, the Fields In-
stitute and A.W.Miller.

Appendix: Namba forcing

For Example 10F we need a classic forcing notion. It is discussed at length in Shelah 82. In Fremlin

n86 I wrote out my own version of the following theorem, itself derived from notes taken by G.Gruenhage at a
lecture by M.Magidor. As Fremlin n86 exists only as photocopies-of-photocopies-of-typescript I reproduce
the argument here with a different set of typos.
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A1 Let X be a set and I a proper ideal of subsets of X. Consider the forcing notion P defined by saying
that P is the set of those p ⊆

⋃
n∈N X

n such that

σ↾n ∈ p whenever σ ∈ p and n ∈ N

there is an element stem(p) of p such that for every σ ∈ p
either σ ⊆ stem(p)
or stem(p) ⊆ σ and {x : σa<x> ∈ p} /∈ I,

where, for σ ∈ Xn and x ∈ X, σa<x> = σ ∪ {(n, x)} ∈ Xn+1; and that p is stronger than q if p ⊆ q. I will
call this the (X, I)-Namba forcing notion; when X = κ is an infinite cardinal and I = [κ]<κ I will call
it the κ-Namba forcing notion.

Note that if p is stronger than q then stem(p) ⊇ stem(q).

A2 Theorem Let X be a set, I a proper ideal of subsets of X with additivity and saturation greater
than ω1, and P the (X, I)-Namba forcing notion. If S ⊆ ω1 is stationary then

P Š is stationary in ω̌1.

Remark As for any forcing notion,

P ω̌1 is a non-zero limit ordinal.

We do not yet know that

P ω̌1 is a cardinal

(this will be considered in A3 below), so we need to say: if α is an ordinal, a subset A of α is ‘stationary’
if it meets every relatively closed subset of α which is cofinal with α. If α is a non-zero limit ordinal of
countable cofinality, this can happen only if sup(α \A) < α, of course.

proof (a) For σ ∈
⋃

n∈N X
n set

Iσ = {τ : τ ∈
⋃

n∈N X
n and either τ ⊆ σ or σ ⊆ τ}.

Then Iσ ∈ P and p ∩ Iσ ∈ P whenever σ ∈ p ∈ P.
It will be convenient to fix here on a ladder system on ω1, that is, a family 〈θ(ζ, n)〉ζ∈Ω,n∈N, where Ω

is the set of non-zero countable limit ordinals, such that 〈θ(ζ, n)〉n∈N is a strictly increasing sequence with
supremum ζ for each ζ ∈ Ω.

Suppose that p ∈ P and that Ċ is a P-name such that

p P Ċ is a closed cofinal subset of ω̌1.

For each r ∈ P stronger than p set Cr = {β : β < ω1, r P β̌ ∈ Ċ}. Note that (α) Cr is always a closed
subset of ω1 (β) Cr ⊆ Cr′ if r′ is stronger than r (γ) if r is stronger than p and α < ω1 then there is an r′

stronger than r such that Cr′ 6⊆ α.

(b) Whenever q is stronger than p and α < ω1 there is an r stronger than q such that stem(r) = stem(q)
and Cr 6⊆ α. PPP Set

s = {stem(r) : r ∈ P, r ⊆ q, Cr 6⊆ α},

q∗ = {σ : σ ∈ q, σ↾n /∈ s for every n ∈ N}.

??? If q∗ ∈ P there is an r stronger than q∗ such that Cr 6⊆ α; but in this case stem(r) ∈ q∗ ∩ s. XXX So
q∗ /∈ P. Next, if σ is a proper initial segment of stem(q), then σ cannot be equal to stem(r) for any r stronger
than q, so σ ∈ q∗; and σ↾n ∈ s whenever σ ∈ s and n ∈ N.

??? If stem(q) /∈ s then stem(q) ∈ q∗. So there must be a σ ∈ q∗ such that stem(q) ⊆ σ and {x : σa<x> ∈
q∗} = {x : σa<x> /∈ s} belongs to I. In this case, A = {x : σa<x> ∈ q \ q∗} does not belong to I. For
each x ∈ A choose qx ∈ P such that stem(qx) = σa<x> and Cqx

6⊆ α. As add I > ω1, there is a β < ω1

such that B = {x : x ∈ A, β ∈ Cqx
\α} /∈ I. Set r =

⋃
x∈B qx. Then r ∈ P and stem(r) = σ. If r′ is stronger

than r there is some x ∈ B such that r′ is compatible with qx, so there is an r′′ stronger than r′ such that
r′′ P β̌ ∈ Ċ; accordingly r P β̌ ∈ Ċ, β ∈ Cr \ α and σ ∈ s. But σ is supposed to belong to q∗ which is
disjoint from s. XXX
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So stem(q) ∈ s, as claimed. QQQ

(c) Let R be the set of pairs (r, g) such that r ∈ P is stronger than p and g : r → ω1 is such that

whenever stem(r) ⊆ σ ∈ r then g(σ) ∈ Cr∩Iσ
, g(σ) < g(τ) whenever τ ∈ r properly extends

σ, and {x : σa<x> ∈ r, g(σa<x>) ≥ α} /∈ I for every α < ω1.

Then for any q stronger than p there is a pair (r, g) ∈ R such that r is stronger than q and stem(r) = stem(q).
PPP Use (b) repeatedly, as follows. Set k = #(stem(q)) and take q0 stronger than q such that stem(q0) =
stem(q) and Cq0

6= ∅; take g(σ) ∈ Cq0
for initial segments σ of stem(q).

Given that qn ∈ P is stronger than q, stem(qn) = stem(q) and that g(σ) has been defined when σ ∈ qn
and #(σ) ≤ k + n, then for each σ ∈ qn ∩Xk+n set

Aσ = {x : σa<x> ∈ qn ∩Xk+n+1}.

Then Aσ /∈ I; let fσ : Aσ → ω1 be such that fσ(x) > g(σ) for every τ ∈ Aσ and {x : x ∈ Aσ, fσ(x) ≥ α} /∈ I
for every α < ω1. For each τ ∈ qn ∩Xk+n+1 use (b) to find rτ ∈ P and g(τ) such that stem(rτ ) = τ and
g(τ) ∈ Crτ

6⊆ fτ↾k+n(τ(k + n)). Now set qn+1 =
⋃
{rτ : τ ∈ qn ∩ Xk+n+1}. Then qn+1 ∈ P, qn+1 ⊆ qn,

qn+1 ∩Xk+n+1 = qn ∩Xk+n+1, stem(qn+1) = stem(q), and g(τ) ∈ Crτ
= Cqn+1∩Iτ

and g(τ) > g(τ↾k + n)

whenever τ ∈ qn+1 ∩X
k+n+1.

So if we set r =
⋂

n∈N qn, we shall have r ∩ Xk+n = qn ∩ Xk+n for every n, r ∈ P is stronger than q,

stem(r) = stem(q) and r = dom g. If stem(r) ⊆ σ ∈ r, and x ∈ Aσ, then g(σa<x>) ≥ fσ(x) > g(σ), so
{x : σa<x> ∈ r, g(σa<x>) ≥ α} /∈ I for every α < ω1. Also g(τ) ∈ Cq0

⊆ Cr if τ is an initial segment of
stem(r) = stem(q), while for any other member of r we have g(τ) ∈ Crτ

⊆ Cr∩Iτ
. So we have a suitable r.

QQQ

(d) Take (r, g) ∈ R, and set k = #(stem(r)). For ζ ∈ Ω let Wrgζ be the set of those w ∈ XN such that
w↾n ∈ r and θ(ζ, n) ≤ g(w↾k+n+1) < ζ for every n ∈ N. For σ ∈ r let Ωrgσ be the set of those ζ ∈ Ω such
that whenever h :

⋃
n∈N X

n → I is a function there is a w ∈ Wrgζ such that σ ⊆ w and w(n) /∈ h(w↾n) for
n ≥ #(σ). Then

A = {x : σa<x> ∈ r, ζ ∈ Ωr,g,σa<x>}

does not belong to I for any ζ ∈ Ωrgσ. PPP??? Otherwise, for each x ∈ X \ A choose hx :
⋃

n∈N X
n → I

such that there is no w ∈ Wrgζ such that σa<x> ⊆ w and w(n) /∈ hx(w↾n) for n ≥ #(σ) + 1. Define
h :

⋃
n∈N X

n → I by setting

h(τ) = A if τ = σ,

= hx(τ) if τ properly extends σ and x = τ(#(σ)),

= ∅ if σ 6⊆ τ.

As ζ ∈ Ωrgσ, there is supposed to be a w ∈Wrgζ such that σ ⊆ w and w(n) /∈ h(w↾n) for n ≥ #(σ); but in
this case, setting x = w(n) ∈ X \A, w /∈ hx(w↾n) for n ≥ #(σ) + 1. XXXQQQ

(e) Recall that we were given a stationary set S in the statement of the theorem. Take (r, g) ∈ R. Then
S meets Ωr,g,stem(r). PPP Set k = #(stem(r)). Again because add I > ω1, there is an h :

⋃
n∈N X

n → I such
that whenever ζ ∈ Ω \ Ωr,g,stem(r) there is no w ∈ Wrgζ such that stem(r) ⊆ w and w /∈ h(w↾n) for n ≥ k.
Choose 〈συ〉υ∈

⋃
n∈N

ωn
1

so that

σ∅ = stem(r),

whenever n ∈ N, υ ∈ ωn
1 , συ ∈ r ∩ ωk+n

1 and α < ω1, then συa<α> = σa
υ <x> for some x such

that x /∈ h(συ) and g(σa
υ <x>) ≥ α.

Because S is stationary, there is a ζ ∈ S ∩ Ω such that g(συ) < ζ for every υ ∈
⋃

n∈N ζ
n. Set υn =

〈θ(ζ, i)〉i<n for each n; then we have a w ∈ XN such that w↾k + n = συn
for each n. Now

g(w↾k + n+ 1) = g(συn+1
) ∈ ζ \ υn+1(n) ⊆ ζ \ θ(ζ, n)

for each n, so w ∈ Wrgζ , while w(n) /∈ h(w↾n) for n ≥ k. By the choice of h, ζ must belong to Ωr,g,stem(r).
QQQ

(f) If (r, g) ∈ R and S ⊆ ω1 is stationary, there is an r′, stronger than r, such that Cr′ ∩ S is non-empty.
PPP Take ζ ∈ S ∩ Ωr,g,stem(r). Set
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r′ = {σ : stem(r) ⊆ σ ∈ r, ζ ∈ Ωrgσ} ∪ {stem(r)↾n : n ∈ N}.

Then (d)-(e) tell us that r′ ∈ P. Also, setting k = #(stem(r)) as usual,

g(σ) ∈ Cr∩Iσ
) ⊆ Cr′∩Iσ

∩ ζ \ θ(ζ, n)

whenever n ∈ N and σ ∈ r′ ∩Xk+n. Now if n ∈ N and r1 is stronger than r′, there is an r2 stronger than
r1 such that Cr2

meets ζ \ θ(ζ, n), that is, r2 P Ċ meets (ζ \ θ(ζ, n))∨. So r′ P Ċ meets (ζ \ θ(ζ, n))∨. As

this is true for every n, and r′ P Ċ is closed, r′ P ζ̌ ∈ Ċ and ζ ∈ Cr′ ∩ S. QQQ

(g) We are nearly home. For any q stronger than p there are an (r, g) ∈ R such that r is stronger than q

and an r′ stronger than r such that Cr′ ∩ S is non-empty, so surely r′ P Š ∩ Ċ 6= ∅. But this means that

p P Š ∩ Ċ 6= ∅. As p and Ċ are arbitrary,

P Š is stationary,

as required.

A3 Corollary If X is a set, I is a proper ideal of subsets of X which is ω2-additive and not ω1-saturated,
and P is the (X, I)-Namba forcing notion, then

P ω̌1 is a cardinal.

proof Take any stationary set S ⊆ ω1 such that ω1 \ S is uncountable. Then

P ω̌1 \ Š is cofinal with ω̌1 and for every cofinal subset A of ω̌1 there is a ζ ∈ Š such that
ζ = sup(ζ ∩A).

But this implies that

P cf ω̌1 6= ω,

so

P ω̌1 is the first uncountable ordinal.

A4 Proposition If κ is an infinite cardinal and P is the κ-Namba forcing notion,

P cf κ̌ = ω.

proof Let ḟ be the P-name

{((n, ξ), p) : p ∈ P, n < #(stem(p)), stem(p)(n) = ξ}.

Then

P ḟ : ω → κ̌ is a function and ḟ [ω] is cofinal with κ̌}.
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