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1 Foundations
1A Definitions (See FREMLIN 04, §392.) Let 2 be a Boolean algebra.

(a)(i) A submeasure on 2 is a functional v : 2 — [0, oo[ such that
v is subadditive, that is, v(aub) < wva + vb for all a, b € 2,
0y =0, wva <vbwhenever a Cbel

(ii) Let v be a submeasure on 2. v is exhaustive if lim,_, . va, = 0 for every disjoint sequence
(an)nen in 2A. v is uniformly exhaustive if for every ¢ > 0 there is an n € N such that inf,cava < €
for every disjoint set A C 2 of size greater than n. v is strictly positive if va > 0 for every non-zero
a € A. v is countably subadditive if v(sup,,cy an) < > 0" va, whenever (a,)nen is a sequence in A with
a supremum in 2. v is a Maharam submeasure if lim,,_, o, va, = 0 whenever (a,)ncn is a non-increasing
sequence in 2 with infimum 0. v is atomless if whenever a € 2l and va > 0 there is a b C a such that vb > 0
and v(a\b) > 0. v is unital if vly = 1. v is additive if v(aub) = va + vb for all disjoint a, b C A. v is
completely additive if it is additive and inf,c 4 va = 0 whenever A is a non-empty downwards-directed
set in 2 with infimum 0 (see FREMLIN 04, 326J). v is pathological if it is non-zero and there is no non-zero
additive functional p on 2 such that 0 < pa < va for every a € . v is a Ramsey submeasure (ZAPLETAL
P06) if inf,, cpen v(am Uay,) < sup, oy va, for every sequence (an)nen in 2. v is diffuse (Farah) if for every
€ > 0 there is a finite partition D of the identity such that vd < e for every d € D.

(iii) If p and v are two submeasures on 2, I say that p is absolutely continuous with respect to v
if for every € > 0 there is a 4 > 0 such that pa < € whenever va < 6.

(b) 2l is a Maharam algebra (VELICKOVIC 05) if it is Dedekind complete and there is a strictly positive
Maharam submeasure on 2. 2l is a measurable algebra (FREMLIN 04, §391) if it is Dedekind complete
and there is a strictly positive additive Maharam submeasure on 2. (For an example of a Maharam algebra
which is not measurable, see TALAGRAND 06 or FREMLIN N0G.) 2l is chargeable if it has a strictly positive
additive submeasure (FREMLIN 04, 391X). If 2 is Dedekind o-complete, I will say that it is nowhere
measurable if no non-zero principal ideal of 2l is a measurable algebra.

(c) A is weakly (o, 00)-distributive (FREMLIN 04, §316) if for every sequence (C,,),en of partitions of
unity in 2 there is a partition D of unity in 2 such that {c: ¢ € C},, cnd # 0} is finite for every n € N and
every d € D. 2 is weakly o-distributive if for every sequence (C,,)nen of countable partitions of unity in
2 there is a partition D of unity in 2 such that {c¢: ¢ € C), cnd # 0} is finite for every n € N and every
d € D. Note that every weakly (o, co)-distributive algebra is weakly o-distributive, and that a ccc weakly
o-distributive algebra is weakly (o, co)-distributive.

If x is any cardinal, 2 is weakly (k,oo)-distributive if whenever (C¢)ec, is a family of partitions of
unity in 2, there is a partition D of unity such that {c¢ : ¢ € C¢, cnd # 0} is finite for every d € D and
¢ < k. Now the weak distributivity wdistr(2) of 2 is the least cardinal x such that 2 is not weakly
(k, 0o)-distributive. (If there is no such cardinal, write wdistr() = co.)

(d) 2 is o-finite-cc (condition (ii) of HORN & TARSKI 48, Theorem 2.4) if there is a sequence (A, )nen
of sets with union 2 such that no infinite subset of any A4,, is disjoint; it is c-bounded-cc (condition (ii)’ of
HORN & TARSKI 48, p. 482) if there is a sequence (A4;,)nen of sets with union 2 such that no A, includes
a disjoint set of size greater than n. For cardinals k, A and 6, say that (k, A\, <) is a precaliber triple of
2 if for every family (ag¢)e<, in AT =2\ {0} there is a I' € [k]* such that infees ae # 0 for every I € [I']<9
(see FREMLIN 087, §511). T will say that (k,\,60) is a precaliber triple of 2 if (k,\, <) is a precaliber
triple of 2(. [If (w1,w1,n) is a precaliber triple of 2, 2 is said to have property K, ]

I will examine a further chain condition on a Boolean algebra in §§2D and 6A:
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(*) A= U, ey An where every infinite subset of every A,, has an infinite centered subset.

(e) A sequence (a,)nen in A order*-converges to a € A (FREMLIN 04, §8367 and 392) if there is a
partition C' of unity in 2 such that {n : ¢n(a, A a) # 0} is finite for every ¢ € C. The order-sequential
topology on 2 (FREMLIN 04, §392; compare BALCAR GL.OWCZYNSKI & JECH 98) is the topology for which
a set F' C 2 is closed iff @ € F whenever (a,)nen is a sequence in F' order*-converging to a.

1B Elementary remarks (a)(i) Any Maharam submeasure is sequentially order-continuous. I Let p
be a Maharam submeasure on a Boolean algebra 2. (a) If (a,)nen is non-decreasing and has supremum a,
then (a\ ay)nen is non-increasing and has infimum 0; now

pan, < pa < pan + pla\ an)
for each n, so
limy, o0 [pta — pan| < limy, o0 p(a\ an) = 0.

(8) If {ap)nen is non-increasing and has infimum a, then (a, \ a)nen is non-increasing and has infimum 0;
now

limy, o0 |pa — pa, | < limg, oo p(a, \a) =0. Q

(ii) A Maharam submeasure on a Dedekind o-complete Boolean algebra is exhaustive (FREMLIN 04,
392Hc).

(iii) Any Boolean algebra with a strictly positive exhaustive submeasure (in particular, any Maharam
algebra) is o-finite-cc therefore ccc.

(b) If 2 is a Boolean algebra and v is an exhaustive submeasure on 20 which is sequentially order-
continuous on the left (that is, va = sup,,cy va,, whenever (a,)nen is a non-decreasing sequence in 2 with
supremum a) then v is a Maharam submeasure. P If (a,,),en is a non-increasing sequence in 2 with infimum
0, then va, = lim; o v(a, \ a;) for each n, so we can choose a strictly increasing sequence (ny)ren such
that v(an, \ @ny,,) > van, —27F for each k; now

limy, o0 vy = My 00 Van, = limg o0 (Van, \ an, ) =0. Q

(c) Let 2 be a Boolean algebra. (i) If 2 is o-finite-cc then any subalgebra of 2 is o-finite-cc. (If (A )nen
witnesses that 2 is o-finite-cc, and B is a subalgebra of 2, then (A4,, NB),en will witness that B is o-finite-
cc.) (ii) If A has an order-dense o-finite-cc subalgebra B, then 2 is o-finite-cc. (If (B,)nen Witnesses that
B is o-finite-cc, set A, = {a:a €, b C a for some b € B,} for each n; then (A,),cn will witness that 2 is
o-finite-cc.) (iii) If 2 has an order-dense weakly (o, 00)-distributive subalgebra 9B then 2l is weakly (o, 00)-
distributive. (If (C),)nen is a sequence of partitions of unity in 2, then for each n € N we can find a partition
of unity C/, in B refining C,,. Now there is a partition D of unity in B such that {c:c € C/,, cnd # 0} is
finite for every n € N and d € D; in this case, D is still a partition of unity in 2 and {c: ¢ € C,, cnd # 0}
is finite for every n € Nand d € D.)

1C Lemma Let 2 be a Dedekind o-complete Boolean algebra and v an atomless Maharam submeasure
on .

(a) If a € A and 0 < v < va there is a b € A such that b C a and vb =~.

(b) v is diffuse.

proof (a)(i) Note first that if § > 0, ¢ € 2 and ve > 0 then there is a d C ¢ such that 0 < vd < 4. P
Choose (¢, )nen inductively so that cg = ¢, ¢pa1 C ¢, Vent1 > 0 and v(cy, \ ¢pe1) > 0 for every n. By 1Ba,
v is exhaustive. So lim, .o ¥(¢n \ ¢n+1) = 0, and we can take d = ¢, \ ¢,+1 for an appropriate n. Q

(ii) Choose (by,)nen inductively, as follows. by = 0. Given that b, C a, set v, = sup{vec: b, CcC aq,
ve < v} and choose by41 such that by, C b,q1 C a, vb,y1 < v and vbyy1 > 7, — 27", Set b = sup,,ey bn;
then (b\ b, )nen is non-increasing and has infimum 0, so lim, . v(b\ b,) = 0 and vb = lim,,_, o, vb,, < 7.

If b c b Caandvb <+, then vb = vb. P? Otherwise, there is an n € N such that vb < vb’' —27". But
observe that b, € b and vb < v, so vb, > vb —27". XQ



? Suppose, if possible, that vb < 7. Let D be a maximal disjoint family in 2 such that 0 < vd <~y —vb
and bnd = 0 for every d € D. Because v is exhaustive, D must be countable; let (d,)nen run over
D U {0}. By the last remark, we can induce on n to see that v(bu sup,;,, d;) = vb for every n € N. Set
b* = bu sup;cy di; then

vb* = lim, o v(bU sup;<,, b;) = vb <,

and v(a\b*) > va — vb* > 0. By (a), there is a d C a\ b* such that 0 < vd < v — vb*. So we ought to have
put d into D. X
Thus vb = 7, as required.

(b) Let Ay C A be a maximal disjoint set such that va = € for every a € Ap. Because v is exhaustive
(1B(a-ii)), Ao is finite. Set ¢ =1\ sup Ay; by (a), vc < e. So we can take A = Ay U {c}.

1D Proposition Let 2 be a weakly (o, c0)-distributive Boolean algebra and v : 2l — [0, oo a functional
such that vb < va whenever b C a. Set
pa = inf{sup.co ve : C C 2 is non-empty and upwards-directed and sup C' = a}.

(a) pb < pa whenever b C a in 2.

(b) If va > 0 for every non-zero a € 2 then pa > 0 for every non-zero a € 2.

(c) p is sequentially order-continuous on the left, that is, pa = sup,cy @, whenever (a,)ney is a non-
decreasing sequence with supremum a.

(d) If v is subadditive, so is p.

(e) If v is an exhaustive submeasure, u is a Maharam submeasure.

(f) If v is a uniformly exhaustive submeasure, so is p.
(g) If v is additive, p is countably additive.

proof (a) If b C a and C is an upwards-directed set with supremum a, then {bnc: c € C} is an upwards-
directed set with supremum b; so ub < pa.

(b) If pa = 0, then for each n € N we can find a non-empty upwards-directed set C,, such that sup C,, = a
and suppec, vb < 27", Set
C = {c: there is some n € N such that for every m > n

there is a b € C,, such that bDc}.

Then C' is upwards-directed and (because 2 is weakly (¢, co)-distributive) sup C' = a. But vc = 0 for every
¢ € C so (because v is strictly positive) C = {0} and a = 0. Thus p is strictly positive.

(c) Suppose that (a,)nen is a non-decreasing sequence in 2 with supremum a, then of course pa >
SUp, ey Han. Now suppose that o > sup, ¢y pan. For each n € N, we have a non-empty upwards-directed
set B, such that sup B,, = a,, and vb < « for every b € B,,. Set

C = {c: there is some n € N such that for every m > n
there is a b € B, such that b2 c}.
Then (as in (b)) C is upwards-directed and supC = a. So pa < sup.ccve < a. As a is arbitrary,
[ = SUp,, cn Un,.-

(d) If a, ' € A, B is a non-empty upwards-directed set with supremum a, and B’ is a non-empty
upwards-directed set with supremum o', then C = {bud’ : b € B, I/ € B’} is a non-empty upwards-directed
set with supremum aua’. If v is subadditive,

plava’) < supeegve < pa+ pa's
thus p is subadditive.

(e) If v is an exhaustive submeasure, then p is exhaustive, because p < v. By 1Bb, p is a Maharam
submeasure.

(f) If v is uniformly exhaustive, so is p, because p < v.



(g) If v is additive and a, @’ € 2 are disjoint, then plaua’) > pa + pa’. B If C' is non-empty, upwards
directed and has supremum a, then B = {cna:c € C} and B’ = {cnd’ : ¢ € C} are upwards-directed with
suprema a, a’ respectively. So

pa + pa’ < supyep Vb + supy e Vb = supyep yep V(DU < sup.cove.

because C' is upwards-directed. As C' is arbitrary, pa + pa’ < plaua’). Q But we know already that
1 is subadditive, so it must be additive. Now it is actually countably additive because it is a Maharam
submeasure.

1E Proposition Let 2 be a Boolean algebra and p a strictly positive exhaustive Maharam submeasure
on 2.

(a) p is order-continuous.

(b) © has a unique extension to a strictly positive Maharam submeasure i on the Dedekind completion
A of 2, so 2 is a Maharam algebra.

(¢)(i) i is uniformly exhaustive iff p is.

(ii) 4 is additive iff p is.

proof (a) Because p is strictly positive and exhaustive, 2 is ccc (1Baf(iii)); because u is sequentially order-
continuous (1Baf(i)), p is order-continuous (FREMLIN 04, 316Fc).

(b) For d € A, set ud = inf{ua : d C a € A}. Then [ extends p, and jid < jid" whenever d C d’' in A. If
d, d’ € 2 then

p(dud) =inf{ua: (dud) ca€ U} <inf{ulavd):dcacA, d cad €A}
<inf{pa+pad :dcaec, d cad €A} =nd+ pd.

Thus [ is a submeasure. If d € A is non-zero, there is a non-zero a € 2 such that a C d, in which case
fid > pa > 0; so i is strictly positive. If (d,)nen is a non-increasing sequence in A with infimum 0, then
A={a:a € add, for some n € N} is downwards-directed and has infimum 0 in 2 and therefore in 2.
Because p is order-continuous,

inf,en fid, = infaca pa = 0.
As (dp)nen is arbitrary, (i is a Maharam submeasure. By 1Ba(ii) (or otherwise), it is exhaustive.

(c) (i) If p is uniformly exhaustive and € > 0, let n € N be such that min;<,, pa; < € whenever ao, ... ,a, €
2 are disjoint. If now dy,... ,d, € A are disjoint and n > 0, we have [id; = sup{fia : a € A, a C d;} for
each 4, because [i is order-continuous, by (a) here (or otherwise). Take a; C d; such that fia; > [id; —n; then
ag, - - - ,ap are disjoint, so

min; <y, fid; < 1+ min;<, fla; < 1+ ming<, fla; <7+ €.

As n and € are arbitrary, fi is uniformly exhaustive.
In the other direction, if 4 is uniformly exhaustive then p = i[2 must be uniformly exhaustive.

(ii) If p is additive and d, d’ € 2 are disjoint, set A = {a : a € A, a Cd} and A" = {a : a € X,
acd}. Then A, A" and B = {aud :a € A, o' € A’} are upwards-directed with suprema d, d’ and dud’
respectively. So

fi(du d’) = supycp pb = SUP4e 4 o1 ar (@ U A) = SUPge g arcar pa+ pa’ = fid + fd’.

As d and d’ are arbitrary, ji is additive.
In the other direction, if { is additive then p = ]2 must be additive.

1F Proposition (a) Let 2 be a Dedekind o-complete Boolean algebra. Then it is nowhere measurable
iff the only completely additive functional on 2 is the zero functional.

(b) Let 2 be a Maharam algebra, not {0}, and v a strictly positive Maharam submeasure on 2(. Then v
is pathological iff 2 is nowhere measurable.
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proof (a) Suppose that 2( is nowhere measurable, and that v is a non-negative completely additive functional
on A. By the Hahn decomposition theorem (FREMLIN 04, 3260), there is an element a = [v > 0] of 2 such
that vb > 0if 0 # b Ca and vb < 0if bna = 0. Now v[%, witnesses that 2, is measurable, so a = 0 and
v=0.

Conversely, if 20 is not nowhere measurable, let a € AT be such that 2, is a measurable algebra. Let
w:2A, — [0, 1] be a strictly positive measure, and set vb = u(anbd) for b € A; then v is a non-zero completely
additive functional on 2.

(b) (i) If A is nowhere measurable and p is an additive functional such that 0 < pa < va for every a € 2,
then p must be completely additive. B If {a,),en is a non-increasing sequence with infimum 0,

limy, o0 Han = inanN Hay, < inanN va, = 0.

So p is countably additive; because 2 is ccc, p is completely additive. Q By (a), p = 0; as u is arbitrary, v
is pathological.

(ii) If 2 is not nowhere measurable, let y be a non-zero non-negative completely additive functional on
2A; re-scaling p, we may suppose that pl = v1. Set C = {c: vec < pc}, and let D C C be a maximal disjoint
set; set b = sup D. Then either b = 0 or vb < )", ., vd < > ,cppd = pb. So b # 1; setting a = 1\ b, we
have puc < ve for every ¢ € U,. Now take p'c = u(anc) for every ¢ € 2; then p' is a non-zero non-negative
additive functional and p’ < v, so v is not pathological.

1G Lemma (CHRISTENSEN 78) Let v be a pathological unital submeasure on a Boolean algebra 2.
Then for every € > 0 there is a non-empty finite family (b;);c; in 2 such that vb; < € for every i € I and
sup;c s b; = 1 whenever J C I and #(J) > e#(I).

proof ? Suppose, if possible, otherwise. Set C' = {1\ b: vb < €¢}. Then C has intersection number at least
€, so there is an additive functional p : 2 — [0, 1] such that pl =1 and pc > € for every ¢ € C' (FREMLIN
04, 3911).

Choose (b, )nen inductively, as follows. Given (b;);<p, set

0n = sup{ub: bnb; = 0 for every i < n, vb < eub},
and take b,, such that b, nb; = 0 for every i < n, vb < eub and ub,, > %571. Note that (b, )nen is disjoint;
set b;, = sup;_,, b; for each n; then
Vb, < 30155 vbi < €315y pbi = b, < e

for every n, so u(1\ b)) > e for every n.

Set Aa = limy, o0 pi(a\ b),) for a € A. Then A is a finitely additive functional and A1 > e. Because v is
pathological, there is an a € 2 such that va < eda. If n € N, then a\ ¥}, is disjoint from b; for each i < n,
while

v(a\b),) <wva < ela < eu(a\bl).
So p(a\b.,) <4, and
Aa < 6, < 2uby,.

And this has to be true for every n, so >~ ub, = 0o, which is impossible. X

1H Proposition A simple product of a countable family of Maharam algebras is a Maharam algebra.

proof Let (2;);c1 be a countable family of Maharam algebras and 2 its simple product. Then 2 is Dedekind
complete (FREMLIN 04, 315De). For each i € I, let v; be a strictly positive Maharam submeasure on
2;; let (e;)icr be a family of strictly positive real numbers such that ), ;e < oo. Set v({ai)icr) =
> ier min(e;, via;) for (a;)ier € 2; it is easy to verify that v is a strictly positive Maharam submeasure on
2A, so that 2 is a Maharam algebra.

1I The Loomis-Sikorski representation: Theorem (a) Let X be a set, ¥ a o-algebra of subsets
of X, and y a Maharam submeasure on ¥. Then A = X/~ ![{0}] is a Maharam algebra, with a strictly
positive Maharam submeasure [i defined by setting pE* = pFE for every E € X.



(b) Let 2 be a Maharam algebra, and X its Stone space; write Ba(X) for the Baire o-algebra of X, and
M(X) for the ideal of meager subsets of X. Then
(i) every member of M(X) is included in a nowhere dense zero set;
(ii) A = Ba(X)/Ba(X) N M(X);
(iii) there is a Maharam submeasure p on Ba(X) such that p=1[{0}] = Ba(X) N M(X).

proof (a) Vér. fac.

(b) Because 2 is weakly (o, c0)-distributive, every meager set in X is nowhere dense (FREMLIN 04,
316I). Because 2 and X are ccc, every nowhere dense set in X is included in a nowhere dense zero set.
P If E is nowhere dense, let G be a maximal disjoint family of cozero sets not meeting FE; then G is
countable so | JG is cozero, and its complement is a nowhere dense zero set including E. @ Consequently
A= Ba(X)/Ba(X)NM(X) (see the proof of 314L in FREMLIN 04).

Let m : Ba(X) — 2 be the corresponding Boolean homomorphism. Then 7 is sequentially order-
continuous (FREMLIN 04, 313Pb). Let & be a strictly positive Maharam submeasure on 2; then p = fir is
a Maharam submeasure on Ba(X) and x~1[{0}] = Ba(X) N M(X).

1J Maharam-algebra topologies (a) Let 2 be a Dedekind o-complete Boolean algebra, p a strictly
positive countably subadditive submeasure on 2 and v a Maharam submeasure on 2. Then v is absolutely
continuous with respect to . P? Otherwise, there is a sequence (a,)nen in 2 and € > 0 such that pa, < 27"
and va, > € for every n. Set b, = sup,,>,, @m; then pb, < 27"+ for every n € N. Set b = inf,,cx by,; then
wb=0s0b=0. As (by)nen is non—incregsing, lim,, s~ vb, = 0; but vb, > va, > € for every n. XQ

(b) If 2 is a Boolean algebra and p is a strictly positive submeasure on 2, then we have a metric p on
2 defined by setting p(a,b) = u(a Ad) for all a, b € A. If A is a Maharam algebra and p is a Maharam
submeasure, the topology generated by p is the order-sequential topology of 2. B (i) Suppose that F' C 2
is closed for the order-sequential topology and that a € 2 belongs to the p-closure of F. Then there is a
sequence {an)nen in F such that p(a, & a) < 27" for every n € N. Set b, = sup,,,>,, @m & a for each n; then
{bp)nen is non-increasing and has infimum 0. So (a,)nen order*-converges to a and a € F. As a is arbitrary,
F is p-closed. (ii) Suppose that F is p-closed and that (a,)nen is a sequence in F which order*-converges
to a € A. Again set b, = sup,,>,, am A a for each n; again, (b,),en is non-increasing and has infimum
0. So inf,enp(an,a) < inf,en pb, = 0and a € F. As (an)nen and a are arbitrary, F' is closed for the
order-sequential topology. Q

1K Modular functionals Recall that a real-valued functional f on a lattice P is called supermodular
if f(pVaq)+ fpAqg) > f(p)+ f(q) for all p, ¢ € P; submodular (also strongly subadditive when P is a
Boolean algebra and f is non-negative) if f(pV q) + f(p A q) < f(p) + f(q) for all p, ¢ € P; and modular
if it is both supermodular and submodular. Now we have the following fact.

Proposition (a) A supermodular submeasure is uniformly exhaustive.
(b) A submodular exhaustive submeasure is uniformly exhaustive.

proof (a) Let 2 be an algebra of sets and v a supermodular submeasure on 2. Identifying 2 with the
lattice of open-and-closed sets in its Stone space, Theorem 413P in FREMLIN 03 tells us that there is an
additive p : A — [0, 00 such that pa > va for every a € 2; now p is uniformly exhaustive so v also is.

(b)(i) If 2A is a Boolean algebra and v is a non-zero submodular submeasure on 2, there is a non-zero
additive p : 2 — [0, oo[ such that pa < va for every a € A. P Set v/'a =v1—v(1\a) for a € A. Tt is easy to
check that v/ : 2 — [0, 00[ is order-preserving and supermodular, while ©’0 = 0. Again applying FREMLIN
03, 413P, in the Stone space of 2, we have an additive functional p : 2 — [0, 00 such that ul = v'1 = vl
and pa > v'a for every a € 2. Now

pa=pl —p(lva) <vl—v/(1\a) =va
for every a € 2.

(ii) If 2 is a Dedekind complete Boolean algebra with a strictly positive submodular Maharam sub-
measure, there is a non-zero ¢ € 2 such that the principal ideal 2. is a measurable algebra. I Let v be
a strictly positive submodular Maharam submeasure on (. By (i), there is a non-zero additive functional



won 2 such that u < v; it follows that p is countably additive, therefore completely additive (since 2 is
cce). Let ¢ be the support of p (FREMLIN 02, 3260); then puc > 0 and ul%. is strictly positive, so 2. is
measurable. Q

(iii) It follows immediately that if 2 is a Dedekind complete Boolean algebra with a strictly positive
submodular Maharam submeasure, it is itself a measurable algebra.

(iv) Now suppose only that 2 is a Boolean algebra with a submodular exhaustive submeasure v. Set
I ={a:va=0}, €=2/I; then we have a submodular exhaustive submeasure 7 on € defined by setting
va* = va for every a € 2. Let € be the metric completion of € and ¥ the continuous extension of 7 to
a as in FREMLIN 02, 393B; then ¥ is a strictly positive submodular Maharam submeasure on & so € is a
measurable algebra and ¥ is uniformly exhaustive. Accordingly 7 and v are uniformly exhaustive.

1L Proposition (ZAPLETAL P06, 4.3.12) Let v be a Ramsey submeasure on a Boolean algebra 2. If
(an)nen is a sequence in A and sup,,cy va, < 7, there is an infinite set I C N such that v(sup;c;n, @) < v
for every n € N.

proof Let (y,)nen be a strictly increasing sequence such that v9 = sup,cyva, and 7, < 7 for every n.
Choose (in)nen, (¢n)nen and (Jn)nen inductively, as follows. Jy = N, ¢g = 0. Given that v(c, Ua;) < 7,
for every j € J,, then, because v is a Ramsey submeasure, any infinite subset of .J,, contains distinct
i, j such that v(c, uUa; Ua;j) < Yny1. By Ramsey’s theorem, there is an infinite J,1; C J, such that
vicp,Ua;Ua;) < ypgq for all i, j € J,. Take i,, € J41 \ n and set ¢,41 = ¢, Ua;,; continue.

Now set I = {i,, : n € N}.

1M The lattice of submeasures Let 2l be a Boolean algebra and M the set of submeasures on 2.

(a) If (ui)ier is a family in M, then it is bounded above in M iff sup;c; ;1 is finite, and in this case its
supremum g is given by pa = sup;c; pia for every a € 2 (counting sup @ as 0).
Consequently M is a Dedekind complete lattice.

(b) If (u;)icr is a non-empty family in M, its infimum g is given by
pa =1inf{}_;  ; pia; : J C I is finite, @ C sup;c ; a;}
for every a € 2.

(c) If 2 is Dedekind o-complete and p, v are two Maharam submeasures on 2[ such that g A v = 0, there
is a ¢ € A such that puc = v(1\c¢) = 0. P For each n € N there is an a,, € A such that pa, +v(1\a,) <27
set ¢ = inf,en SUP,, >, m- Q

2 Sequences in Maharam algebras

2A Lemma Let 2 be a ccc Boolean algebra, and (a,)nen a sequence in 2. Then
either there is an infinite I C N such that (a;);c; order*-converges to 0
or there are a non-zero d € 2 and an infinite I C N such that sup;c;dna; = d for every infinite J C I.

proof 7 Suppose, if possible, otherwise. Choose inductively families (I¢)e<y,, in [N]“ and (c¢)ecw, in AT
as follows. Iy = N. Given (I,)),<¢ such that I, \ I is finite whenever ( < n < £, we are supposing that
(ai)icr, does not order*-converge to 0. Set C¢ = {c:c €, {i:i € I¢, a;nc # 0} is finite}. Then C¢ does
not include any partition of unity; as ¢ € C¢ whenever ¢ C ¢ € C¢, it follows that there is a b € AT such
that bnc = 0 for every ¢ € C¢. Now there must be an infinite J¢1; C I¢ such that b is not the supremum
of {bna; : i € Ir11}; let ¢e C b be a non-zero element such that cg na; = 0 for every i € I¢y1. Note that
now I, \ I is finite whenever { < n < £ + 1, so that the induction continues. At non-zero countable limit
ordinals &, let Iz € [N] be such that I¢ \ I, is finite for every n < ¢, and carry on.

Now observe that because I¢ \ I, is finite, C;, € C¢ whenever n < {. I,41 is constructed so that
cn € Cy41, and therefore ¢, Nncg = 0 whenever 7 < §. But this means that we have an uncountable disjoint
family (ce)e<w, in AT, and A is not cce. X

2B Theorem (VELICKOVIC 05, Theorem 2) If 2 is an atomless Maharam algebra, there is a sequence
(@n)nen in A such that sup,c; an, =1 and inf,cr a, = 0 for every infinite I C N.
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proof (a) Fix a strictly positive Maharam submeasure v on 2. Before embarking on the main argument, let
me note a simple fact. If {a,),en is a sequence in 2 order*-converging to 0, lim,,_, o va, = 0. I Let C be a
partition of unity in 2 such that {n : a,, nc # 0} is finite for every n € N. Then C' is countable; enumerate
it as (ck)ken. Set by, = 1\ sup,«,, ¢k for each m € N; then (b,,) men is non-increasing and has infimum 0, so
lim,, 00 by, = 0. But each b, includes all but finitely many of the a,,, so lim,_,~ va, = 0. @ Turning this
round: if (a,)nen is a sequence in A such that inf,,en va, > 0, it can have no subsequence order*-converging
to 0, so by Lemma 2A there are a non-zero d € 2 and an infinite / C N such that d = sup;c; d na; for every
infinite J C I.

(b) Let us say that a Boolean algebra 2l splits reals if there is a sequence (a,)nen in 2 such that
sup,cr an = 1 and inf,er a,, = 0 for every infinite / C N. Now if 2 is a Maharam algebra, the set of those
d € 2 such that the principal ideal 24 generated by d splits reals is order-dense in . PP Let a € AT,

(i) If v A, is uniformly exhaustive, then 2(, is measurable (KALTON & ROBERTS 83, or FREMLIN
04, 3927J). Let i be a probability measure on 2,; because 2,, like 2, is atomless, there is a stochastically
independent family (a,),en in A, with fa, = % for every n, and now (a,)nen witnesses that 2, splits reals.

(ii) If v 2A, is not uniformly exhaustive, let (b,,;);<nen be a family of elements of 2, such that (b,;)i<n

is disjoint for each n and € = inf;<,en vby; is greater than 0. Let (fe)e<w, be a family in [, cy{0,... ,n}
such that {n : fe(n) = f,(n)} is finite whenever n < { < wy. 7 If for every { < wy and I € [N} there is a
J € [I]* such that infic s b; 5, (i) # 0, choose (I¢)¢<w, inductively so that I¢ € [N], I\ I, is finite for every
n <&, and c¢ = infier, by g (i) # 0 for every £ < w;. Then whenever n < ¢ the set I¢ N I, is infinite, so there
is an i € I¢ NI, such that f¢(i) # f,(i); now ceney C by g5 Nby g, ;) = 0. But this means that we have
an uncountable disjoint family in 2A,, which is impossible, because every Maharam algebra is ccc (FREMLIN
04, 3921). X

Thus we have a £ < w; and an infinite I C N such that inf;c;d; = 0 for every infinite J C I, where
di = bi j.(s) for i € I. Next, applying (a) to (d;)icr, we have an infinite K C I and a d # 0 such that
d = sup,;c ; d; for every infinite J C K. But this means that (dnd;);cx witnesses that 2 splits reals; while
dC a.

As a is arbitrary, we have the result. Q

(c) Let D C A be a partition of unity such that 2, splits reals for every d € D; choose sequences (agn )neN
in 2y witnessing this. Set a,, = supg¢cp aqn for each n. If I C N is infinite, then

SUP,cs On = SUDgep SUPpe1 Gdn = SUPp D = 1,
while
dninfyera, =infyerag, =0
for every d € D, so inf,er a,, = 0. Thus (a,)nen witnesses that 2 splits reals, as claimed.

Remark More generally, a ccc Dedekind complete Boolean algebra splits reals iff no non-trivial principal
ideal is sequentially compact in the order-sequential topology; see BALCAR JECH & PAZAK P04, §4.

2C Corollary (ZAPLETAL P06, 4.3.23) If 2 is a Boolean algebra and v is a non-zero diffuse exhaustive
submeasure on 2, v is not Ramsey.

proof (a) ? Suppose first that 2( is a non-trivial Maharam algebra and that v is a diffuse Ramsey strictly
positive Maharam submeasure on 2. Because v is diffuse, 2 can have no atom. Let (a,)nen be a sequence
in A as in 2B. Set v,, = (% + 27711 for each n, and choose (¢, )nen and (i,)nen inductively, as follows.
co = 1. Given that ve, > vy,

SUD, >, v(Cn N SUPjerm Qi) = V(Cp N SUP;ef Q) = VCn > Y

for every infinite I C N\ n, so Proposition 1L tells us that sup;-,, v(c, Na;) > yn; take i, > n such that
v(cnNa;,) > Ynt1, and set ¢pp1 = ¢y Na;, . Continue.
We now find that

¢ =infpenc, C infhena;, =0

while



ve = lim,_, ve, =0. X

(b) Thus the result is true in the special case in which v is a strictly positive Maharam submeasure
on a Maharam algebra. Now suppose that v is just a strictly positive diffuse exhaustive submeasure on a
non-trivial Boolean algebra 2. Let 20 be the metric completion of A, and & the canonical extension of v to
5[, as in FREMLIN 02, 393B. Then 7 is a Maharam submeasure, and is still diffuse. By (a), it is not Ramsey;
let (an)nen be a sequence in 2l such that

v(amuan) >y >v" > vay

for all distinct m, n € N. For each n € N we can find an a/, € 2 such that 2(a], A a,) < 2(y—+/), and now
(a),)nen witnesses that v is not Ramsey.

(c) Finally, for the case in which v is not strictly positive, let I be the ideal {a : va = 0}, B the quotient
/I and v/ the submeasure on 9B defined by setting v'a* = va for every a € 2. Then v/ is diffuse, exhaustive
and strictly positive, so is not Ramsey. If (a,),en is such that (a?),en witnesses that v/ is not Ramsey,
(an)nen witnesses that v is not Ramsey, as required.

2D Lemma Let 2 be a Boolean algebra and v an exhaustive submeasure on 2. Let (a,)nen be a
sequence in 2 such that inf, cyva, > 0. Then there is an infinite I C N such that {a, : n € I} is centered.

first proof Set I = {a : va = 0}. Then I < 2. On the quotient algebra 2A/I we have an exhaustive
submeasure 7 defined by saying that va® = va for every a € 2 (see FREMLIN 04, 392Xd). » is strictly
positive. We can therefore embed (2/I,7) in (B, 7) where B is a Dedekind complete Boolean algebra and
v is a strictly positive Maharam submeasure on 8 (FREMLIN 04, 393B). Working in 9B, inf,en 7as, > 0, so
b = inf,ensup,,s, a5, # 0; now take I C N to be maximal such that bn inf;c;ny, af # 0 for every n. In this
case (a;)ic; is centered in 9B so {a; : i € I} is centered in 2A.

second proof For any m € N and € > 0 there is an n € N such that v(sup,,<;<j @ \ SUP,,<;jcp @) < € for ev-
ery k € N. P? Otherwise, choose (ny)ren so that ng = m and vey, > € where ¢, = SUPp, <icnpyy @i\ SUPp<icn, Gi
for every k. Then (ci)ren is disjoint, so v is not exhaustive. X Q

Set 6 = %infneN va,. Choose a strictly increasing sequence (mg)ren in N, a non-increasing sequence
(ck)ren in 2, and ag;, for i, k € N, as follows. mg = 0 and ag; = a; for every i. Given that vag, > (1+27%)§
for every n > my, let my41 be such that v(sup,,, ., <ic; @ki \ SUPy, <icmy, ., ki) < 27k=15 for every I. Set
Ck = SUDy,, <jcmyy, Oki AN Qkt1,i = Gk N Ck for i > my41. Then vagy1,; > vag —v(ag \ cx) > (1 +27F1)5
for every i > myy1, so the induction continues.

Now (cy)ren is a non-increasing sequence of non-zero elements, so is centered; and c; C sup,,, <; <mpgs @i
for every k. Taking a maximal centered family C' containing every c, the set I = {i : a; € C'} must meet
[my, myy1[ for every k, so is infinite; and {a; : i € I'} is centered.

Remark Thus any Boolean algebra with a strictly positive exhaustive submeasure has the property (*) of
1Ad. Compare 2E, 2H below.

2E Proposition Let 2 be a Boolean algebra, v an exhaustive submeasure on 2, and (a;);en a sequence in
2 such that inf;en va; > 0. Then for every k € N there are an I € [N]¥ and a § > 0 such that v(inf;cya;) > §
for every J € [I]*.

proof Induce on k. The cases k = 0, k = 1 are trivial. For the inductive step to k+1, let M € [N]* and § > 0
be such that v(inf;c s a;) > § for every J € [M]¥. ? Suppose, if possible, that for every I € [M]* and vy > 0
there is a J € [[]*T! such that v(inf;cya;) < 7. Using Ramsey’s theorem repeatedly, we can find (I,,)nen
such that Iy = M, I, € [[,]¥, rn, = min[l, ¢ I,,,1 and v(infieya;) < 277726 for every J € [I,]F+!. Set
I={r,:neN}. If J €[I]* and minJ = r,, then J U {r,} € [[,]**!, so v(inficsa;i na,, ) <2726, for
every m < n. It follows that v(inf;c; a; N sup,, ., ar,,) < 36 and v(inf;c; a; \ sup,, ., ar, ) > 30. But this
means that ve, > %5 where ¢, = a,, \ Sup,, ., ar,, for each n. As (c,)nen is disjoint, this is impossible. X

Thus we can find v > 0 and I € [M]¥ such that v(inf;c s a;) > 7 for every J € [I]¥*! and the induction
continues.
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2F Proposition Let s be a regular uncountable cardinal, and v an exhaustive submeasure on a Boolean
algebra 2(. Suppose that (a¢)e<, is a family in 2 such that infe<, vag > 0. Then for every n € N there are
a stationary set S C x and a ¢ > 0 such that v(inf;cy a;) > § for every J € [S]".

proof Induce on n. The cases n = 0, n = 1 are trivial. For the inductive step to n + 1 > 2, write
cy = infieya; for J € [k]<“. We know from the inductive hypothesis that there are a stationary set S C &
and a 0 > 0 such that vcy > 30 for every J € [S]". For each £ € S, choose m(§) € N and (Jei)icm(e) as
follows. Given (Jg;)i<;, where j € N, choose, if possible, Je; € [S N E]™ such that v(cy,, ney,,) < 276 for
every i < j and v(agncy,;) < 277§; if this is not possible, set m(¢) = j and stop. Now the point is that
we always do have to stop. PP? Otherwise, set d; = c,,, for each i € N. Because J¢; € [S]™, vd; > 36 for
each i; also v(d; nd;) < 27%6 for i < j; so vd; > 0, where dj = d; \ sup,_; d; for each j. But now (d)en is
disjoint and v is not exhaustive. XQ

At the end of the process, we have m(§) and (Je;);<m(e) for each £ € S. By the Pressing-Down Lemma,
there are 7 and (J;);< such that 8" = {€: € € S, m(§) = m, Je; = J; for every i <} is stationary in .
? Suppose, if possible, that I € [S']"*! and ver < 27™6. Set € = max I, J =TI\ {¢},n=minl € J. Then
J € [SNE™. For each i < m =m(),

vicyneg,) <viagney,) =viayney,,) <279,
while
viagney) =ver < 2-mg.

But this means that we could have extended the sequence (Jg;)i<sm by setting Jezs = J. X
So S’ and 27§ provide the next step in the induction.

2G Corollary If 2 is a Boolean algebra with a strictly positive exhaustive submeasure, then (k, k,n) is
a precaliber triple of 2 for every regular uncountable cardinal x and every n € N.

2H Proposition Let 2 be a Dedekind o-complete Boolean algebra and v a Maharam submeasure on
2A. Let (an)nen be a sequence in 2 and ¢ = inf,enva,. Then for any ¢’ < d there is a strictly increasing
sequence (mg)ken in N such that v(infrensup,,, <p<m, ., an) = 0"

proof If §’ < 0 this is trivial; suppose that 0 < §’ < §. Repeat the argument of the ‘second proof’ of Lemma
2C, but this time requiring vag, > 0 for every n > my, where (0;)ren is a strictly decreasing sequence in
[07,0]. Then vey, > dy, for every k, so v(infrencg) > &',

3 The theorems of Balcar-Gléwczynski-Jech, Balcar-Jech-Pazak and Todorcéevié

3A Lemma (BALCAR GLOWCYNSKI & JECH 98) Let 2l be a ccc Dedekind complete weakly (o, 00)-
distributive Boolean algebra, endowed with its order-sequential topology. For A C 2, set \/,(A) = {0} and
Vo1 (A) ={avb:aec A, beV,(A)} for n € N. Then for every open set G containing 0 there is an open
set H containing 0 such that \/;(H) C \/,(G).

proof 7 Otherwise, choose H,, a,, b, and ¢, inductively, as follows. Hy C G is to be an open neighbourhood
of 0 such that [0,a] C Hy whenever a € Hy (FREMLIN 04, 392Mc). Given that H,, is an open set containing
0, we are supposing that \/;(H,) € \/4(G); choose ay, by, ¢, € H such that a, Ub, Uc, ¢ \/,(G), and set

H ={a:a,alsan, arb, and a A ¢, all belong to Hy,},

so that H/, is an open set containing 0. Let H,, 1 be an open neighbourhood of 0, included in H/, such that
[0,a] C Hy,41 for every a € H,11. Continue.

Set F' = ﬂneNﬁn and a* = inf,eysup;>, ai. Then a*uc € F for every c € F. PP For m <n € N,
SUP,,,<j<n @ Ub € Hyy, for every b € H, 1 (induce downwards on m). So sup,,<;<, a;Uc € H,, for every
c € F. Letting n — oo, cU sup,,<; a; € H,, for every c € F, m € N. Next, forany b€ A, {a:anbe€ H,,}
is a closed set including H,,, so anb € H,, for every a € H,,; that is, [0,a] C H,, for every a € H,,. As
a* C sup;s,, a;- cua* € H,, for every ¢ € F. As m is arbitrary, cua* € F for every c€ F. Q

Similarly, setting b* = inf,cnsup;s,, b; and ¢* = inf, ey sup;s,, ¢;, cub* and cuc* belong to F for every
c € F. Sod=a*ub*uc* belongs to F. For each n € N, a, ub,uc, ¢ \/,(Ho); but [0,a] C \/,(Ho)
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for every a € \/,(Ho), 50 sup;>, a; Ub;uc; & \/,(Ho). Accordingly d = inf,ensup;, a; Ub; Uc; does not
belong to int(\/,(Ho)). But \/y(Ho) = {a Ab:a, b€ Hy} is an open set including Hy, so d € F'\ Ho; which
is impossible. X

3B Theorem (BALCAR GLOWCYKSKI & JECH 98) Let 2 be a Dedekind complete ccec Boolean algebra
in which the order-sequential topology is Hausdorff. Then 2( is a Maharam algebra.

proof (a) 2 is weakly (o, 00)-distributive. B Let (A, ),en be a sequence of maximal antichains in 2, and
set

D={d:de {a:a€ A,, and # 0} is finite for every n € N}.

Take any ¢ € 27. Let G, H be disjoint open sets containing 0, ¢ respectively. Choose {c¢,)nen inductively,
as follows. ¢y = ¢. Given ¢, € H, let (ani)ien be a sequence running over A,,, and set ¢,; = SUD; < j Cn N Qni;
then (cnj>j€N order*-converges to c,, so there is a j, such that Cnj, € H; set cpq1 = cpj,, and continue.
This gives us a non-increasing sequence (Cn)nen in H. Set d = inf,ency; then d ¢ G so d # 0, while
d C sup;<; an; for each n, sod € D.
As ¢ is arbitrary, D is order-dense in 2 and includes a maximal antichain. As (A, ),cn is arbitrary, 2 is
weakly (o, 0o)-distributive. Q

(b) For any a € AT there is a sequence (Hy)nen of neighbourhoods of 0 such that a ¢ sup((,,cy Hn)-
P For A C 2 and n € N, define \/, (4) as in 3A. Let Hp be a neighbourhood of 0 such that Hp and
{aab:be Hy} are disjoint; by FREMLIN 04, 392Mc again, we may suppose that [0,b] C Hy for every
b € Hy, in which case [0,b] C \/,(Hy) for every b € \/5(Hy), while a ¢ \/,(Hp). By Lemma 3A, we can
choose neighbourhoods H,, of 0, for n > 1, such that H,1 C H, and \/;(H,41) C \/,(H,) for every n.
But this will ensure that \/,(H,42) € Vo (Hy) for every n, so that \/ow (Har) C V,(Ha2) for every k > 1.

Set F' = (), cny Hn- Then

V2k (F) - V2k (HQk) - \/2(H2)

for every k > 1. Since sup F' is the limit of a sequence in ;> Vo (F),

sup I € \/,(Hz) C V3(H2) C Vy(Ho)

and cannot include a. Q

(c) Now consider the set D of those d € 2 such that there is a sequence (H,,)nen of neighbourhoods of
0 such that dn sup((),cn Hn) = 0. By (b), D is order-dense, so includes a maximal antichain A. Now A is
countable, so there is a sequence (H,,)nen of neighbourhoods of 0 such that dn sup([),,cy Hn) = 0 for every
d € A; but this means that [,y H, = {0}. By FREMLIN 04, 3920, 2 is a Maharam algebra.

3C Theorem (TODORCEVIC P04) Let 2 be a o-finite-cc weakly (o, 0o)-distributive Dedekind complete
Boolean algebra. Then 2l is a Maharam algebra.

proof (BALCAR N04) (a)(i) Suppose that 2 # {0}. Let (A, )nen be a sequence of sets, with union 2A*, such
that no A, includes any infinite disjoint set. For each n, set By, =, <, Uuca,, [a, 1], so that B, includes
no infinite disjoint subset. Now there is an n such that 1 is in the interior of B,, for the order-sequential
topology. P? Otherwise, there is for each n € N a sequence (by,;);cn in 2\ B, which is order*-convergent to
1 (FREMLIN 04, 392Mb). By FREMLIN 04, 392Ma, there is a sequence (k(n))nen in N such that (b, 1(n))nen
order*-converges to 1. As 1 # 0, there must be an m € N such that ¢ = infi>, b; ;) # 0. There is an n
such that ¢ € A,,, in which case b; ;) € By C B; for every i > max(m,n). XQ

(ii) Set H = int B,,. Then there is a ¢ € H such that for every d € A one of ¢cnd, c\d ¢ H. P
? Otherwise, we can choose a sequence (¢;);en in H such that ¢g = 1 and, for each i € N, ¢;41 C ¢; and
¢i\ Ci+1 € H. But in this case (¢; \ ¢;+1)ien is a disjoint sequence in By, which is impossible. XQ

(iii) 0 and 1 can be separated by open sets. I Take H and ¢ from (ii). Then Gy = {d : ¢\ d € H} and
G1 ={d:ecnd € H} are disjoint open sets containing 0 and 1 respectively. Q

(b) Tt follows that 2 is actually Hausdorff in the order-sequential topology. PP Let ag, a1 € 2 be such that
b = a1 \ ap is non-zero. Consider the principal ideal ;. Like 2, this is o-finite-cc, weakly (o, co)-distributive
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and Dedekind complete. By (a), there are disjoint subsets U, V of 2, open for the order-sequential topology
of 2, such that 0 € U and b € V. Now the function a — anb : A — 2 is continuous for the order-sequential
topologies (use FREMLIN 04, 3A3Pb), so G ={a:anbe U} and H = {a:anb € V} are open. Now G
and H are open sets in 2 containing ag, a1 respectively. As ag and a; are arbitrary, 2 is Hausdorff. Q

By Theorem 3B, 2l is a Maharam algebra.

3D Lemma (QUICKERT 02) Let 2 be a Boolean algebra, and Z be the family of countable subsets I of
AT for which there is a partition C of unity such that {a:a € I, anc # 0} is finite for every ¢ € C.

(a) Z is an ideal of P2 including [A]<“.

(b) If A C AT is such that AN T is finite for every I € Z, and B = {b: b2 a for some a € A}, then BN [
is finite for every I € 7.

(c) If A is cce, then there is no uncountable B C 2 such that [B]<* C T.

(d) If 2 is ccc and weakly (o, 0o)-distributive, Z is a P-ideal, that is, if (I, )nen is any sequence in Z
there is an I € Z such that I, \ I is finite for every n € N.

proof (a) Of course every finite subset of 2 belongs to Z. If Iy, I € Z and J C Ip U I, then J € [/A]=.
For each j, we have a partition C; of unity in 2 such that {a : @ € I;, anc # 0} is finite for every c € C}.
Set C ={conecy:co € Coy, c1 € C1}; then C is a partition of unity in 2 and {a : a € J, anc # 0} is finite
for every c € C.

(b) ? Otherwise, set J = BNI €Z. Foreach b € J, let a, € A be such that a, C b. Let C be a partition
of unity such that {b : b € J, bnc # 0} is finite for every ¢ € C; then {ay : b € J, apnc # 0} is finite
for every ¢ € C, so {ap : b € J} belongs to Z and must be finite. There is therefore an a € A such that
K ={b:be J, a=ap} is infinite; but in this case there is a ¢ € C such that anc # 0 and bnec # 0 for
every be K. X

(c) Let 2 be the Dedekind completion of 2 (FREMLIN 04, 314T). Let (be)e<yw, be a family of distinct
elements of B and set d = infe<w, SUPg<; <y, by, taken in 2. Then (because A is cce, see FREMLIN 04,
316Xf) d = SUPg < <y, by for some &; in particular, d # 0. Next, we can find a strictly increasing sequence
(€n)nen in wy such that d C supg <, ¢ ., by for every n € N. Set I = {b, : n < sup,eyén} € [B]=. It C'is
any partition of unity in 2, there must be some ¢ € C such that cnd # 0, and now {a:a € I, anc # 0} is
infinite. So I ¢ 7. Q

(d) For each n € N, let C,, be a partition of unity such that {a : a € I,,, anc # 0} is finite for every
¢ € Cy. Let D be a partition of unity such that {c: c € C,, cnd # 0} is finite for every d € D and n € N.
Then

{ara€l,, and# 0} CU.co, crazola: a € In, anc # 0}

is finite for every d € D and n € N. Let (dp)nen be a sequence running over D U {(} and set I = |J,,y{a:
a€l,,and; =0 for every i < n}. Then

I NI CUicla:a€l,, and; # 0}
is finite for each n. Also
{a:acl and, #0} CU;, . {a:a €l and, # 0}
is finite for each n, so I € Z.

Remark In this context, Z is called Quickert’s ideal.

3E Lemma (BALCAR JECH & PAZAK P03) Let 2 be a weakly (o, 0o)-distributive ccc Dedekind complete
Boolean algebra, and suppose that 2" is expressible as | J wen Dk where no infinite subset of any Dy belongs
to Quickert’s ideal Z. Then 2 is a Maharam algebra.

proof The point is that if (a,)nen is a sequence in 2 which order*-converges to 0, then {a, : n € N} € T
(FREMLIN 04, 392La). So no sequence in any Dy can order*-converge to 0. Because 2 is weakly (o, 00)-
distributive and ccc, 0 does not belong to the closure Dy of D for the order-sequential topology on 2
(FREMLIN 04, 392Mb). So A" = J,cn Dk is Fy and {0} is Gs for the order-sequential topology. By
FREMLIN 04, 3920, 2{ is a Maharam algebra.
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3F Todorcevié’s P-ideal dichotomy This is the statement
whenever X is a set and Z is a P-ideal of countable subsets of X, then
either there is a B € [X]*! such that [B]=* C T
or X is expressible as | J,, .y Xn where ZNPX,, C [X,]<¢ for every n € N.
This is a consequence of the Proper Forcing Axiom, and is also relatively consistent with the generalized
continuum hypothesis (TODORCEVIC 00).

3G Theorem (BALCAR JECH & PAzAK P03) If Todorcevié’s P-ideal dichotomy is true, then every
Dedekind complete ccc weakly (o, 0o)-distributive Boolean algebra is a Maharam algebra.

proof Let 2 be a Dedekind complete ccc weakly (o, 0o)-distributive Boolean algebra. Let Z be Quickert’s
ideal on 2; then Z is a P-ideal (3Dd). By 3Dc, there is no B € []“! such that [B]<* C Z. We are assuming
that Todorcevié’s P-ideal dichotomy is true; so 21 must be expressible as | D,, where no infinite subset
of any D,, belongs to Z. By 3E, 2 is a Maharam algebra.

neN

3H Theorem (JECH L04) Let 2 be a Boolean algebra. Then the following are equiveridical:
(1) the Dedekind completion of 2 is a Maharam algebra,;
(ii) there is a family S of sequences in 2 such that

(@) {an)nen is order*-convergent to 0 for every (a,)nen € S;

(8) if ({ank)ren)nen is a sequence in S then (any)nen € S;

(7) every sequence which order*-converges to 0 has a subsequence in S.

proof (i)=-(ii) If the Dedekind completion of 2 is a Maharam algebra, then 2 itself has a strictly positive
Maharam submeasure v. Let S be the set of all sequences (a,)nen such that va, < 27" for every n; then
S satisfies the conditions of (ii). I If (a,)nen is a sequence in 2 which is not order*-convergent to 0, there
is a non-zero ¢ € 2 such that ¢ = sup,>,, cna; for every n. In this case,

oo
0 <vc=sup,,>, v(en SUP, <i<m a;) < Yo, va;

for every n, and Yo va; = 00, 50 {ap)nen ¢ S. This shows that S satisfies (). The others are elementary.

Q

(ii)=(i) Given S C AN satisfying the conditions in (ii), let A,, be the set {a, : {(ax)ren € S} for each n.

Mnen An = {0}. P By (), the constant sequence with value 0 belongs to S, so 0 € A, for every n. If
a € A, for every n, then for each n € N we have a sequence (ani)ren € S such that @ = ayy,; now the
constant sequence (an,)nen belongs to S, by (8), so is order*-convergent to 0, by (a), and a = 0. Q

2 is o-finite-cc. P? If (a)ren is a disjoint sequence in 2 \ A, then it is order*-convergent to 0, so has
a subsequence belonging to S which must enter A,,. X So (A \ A,)nen witnesses that 2 is o-finite-cc. Q

2 is weakly (o, 00)-distributive. I Let (Cy,)nen be a sequence of partitions of unity in 2. Set CJ =
{infi<, ¢; : ¢; € C; for i < n}, so that €], is a partition of unity refining C,,, and C}, ;| refines C;, for each
n. Let (cur)ken be a sequence running over Cj, U {0}. Set ¢}, = 1\ supy,, Cnk, s0 that (c},,,)men is non-
increasing and has infimum 0. As (cj,,,,)men is order*-convergent to 0, it has a subsequence (¢}, ., ;) )ien
belonging to S. Consider the sequence <C'/n,,m(n,n)>n€N € S. This is order*-convergent to 0 so there is a
partition D of unity such that {n : dn c;’m(n’n) # 0} is finite for each d € D. So, given d € D and j € N,

there is an n > j such that dn c;l’m(n’n) =0, in which case d C SUp; ., (n,n) Cni and

{c:ceCj,dnc#0} C U {c:ceCy, cney # 0}

i<m(n,n)

= U {c:ceC},0#cp Cc}

i<m(n,n)

is finite. As (Cy)nen is arbitrary, 2 is weakly (o, co)-distributive. Q
Now the Dedekind completion of 2 is still weakly (o, co)-distributive (1B(c-iii)) and o-finite-cc (1B(c-ii)),
so is a Maharam algebra by Todorcevié’s theorem 3C.

4 Products of submeasures
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4A Construction There seems to be no satisfactory general method of constructing products of sub-
measures. However the following method may turn out to be useful.

(a) Let 2 and B be Boolean algebras with submeasures p, v respectively. On the free product 2A ® B
(FREMLIN 04, §315), we have a functional A defined by saying that whenever ¢ € A ® 9B is of the form
sup;e; a; @ b; where (a;);cr is a finite partition of unity in 2, then

Ac = minmax({u(supa;)} U {vd; :i € I\ J})
JET ieJ

=min{e: e >0, u(sup{a; : i € I, vb; > €}) < €}.

P Every ¢ € A ® B can be expressed in this form (FREMLIN 04, 315Na). Of course this can be done in
many different ways. But if ¢ = sup; ¢ ; a; ®b/; is another expression of the same kind, then b; = b, whenever
ainaj #0. So

sup{a; : i € I, vb; >6}:sup{aima; iel, jed, aima;;ﬁo, vb; > €}
=sup{a;naj;:i€l,jecJ ana; #0, vb; > e}

=sup{aj : j € J, vb} > ¢}

for any €, and the two calculations for A\ give the same result. Q
Note that A(a ® b) = min(ua, vb) for all ¢ € 2 and b € B.

(b) In the context of (a), A is a submeasure.

P By definition, Ac > 0 for every ¢ € 2 ® B; and if ¢ = 0 then it is 1 ® 0 and Ac = 0.

If ¢, ¢’ are two members of % ® B, express them in the forms ¢ = sup;c; a; ® b; and ¢’ = sup;¢; a; @ b
where (a;)icr and (a)jc s are partitions of unity in 2. Set K = {(4,7) : a; na} # 0} C I xJ, aj; = a; naj for
(4,7) € K; then (a;) (i j)ex is a partition of unity in 2, ¢ = sup; ek a;; @b; and ¢’ = sup; ;e a;; @b;. Set
a=Ac, B=N, L={(i,5): (i,5) € K,vb; > a}, L' ={(i,§) : (i,j) € K, vb; > B}, e = sup{ai; : (i,5) € L}
and e’ = sup{a;; : (i,7) € L'}; then pe < a and pe’ < B. So p(eve’) < a+ fB;but eve’ =sup(; jerur ai;
and

V(biub;-) §ubi+ub;- <a+p

for all (i,5) € K\ (LUL"). So AMcucd) <a+p.
If ¢ C ¢, then b; C b} for every (i,7) € K. So vb; < 8 for every (i,j) € K \ L' and Ac < S.
Thus A is subadditive and order-preserving and is a submeasure. Q

(¢) In this context, I will write A = v x v. I note that only in exceptional, and usually trivial, cases will
1 X v be matched with v x p by the canonical isomorphism between 2 ® 8 and B ® 2; this product is not
‘commutative’. It is however ‘associative’, in the following sense. Let (21, p1), (o, p2), As, u3) be Boolean
algebras endowed with submeasures. Set

A2 = pi1 X f2,  Aa2)3 = A2 X 13, A2z = fig X [3,  A123) = i1 X Aa3.
Then the canonical isomorphisms between (21 ® A2) @ A, A; @ A; ® A3 and (A ® (Az ® A3) (FREMLIN
04, 315K) identify )\(12)3 with )\1(23).

P Take any d € 2 ® Ao ® A3. Express d as sup;c; a; ® e; where (a;);¢cr is a partition of unity in 2
and e; € Ay ® A3 for each i; express each e; as Sup,c g, bij @ c;; where <bij>j€]i is a partition of unity in
2y and ¢;; € A for i € I, j € J;. In this case, (a; ® b;j)icr jes, is a partition of unity in 2; ® 2y and
d = supjer,je, @i ® bij @ ¢ij.

Let € > 0. Fori e I, set J] ={j:j € J; pscij > €}, e, = sup;e s bij. Then A23(Supje s, bij ® cij) < €
iff poe] < e Set I' = {i : poej > €}; then Ay(ag)d < € iff py(sup;ep a;) < e From the other direction, set
[ =supl{a; ®b;; : i € I, j € Jj}; then Aqg)sd < € iff \iof < e. But f = sup,cra; ® ¢f, so Ao f < e iff
pi(sup;eps a;) < e.

As € and d are arbitrary, A(12)3 = A1(23), as claimed. Q

(d) Returning to the notation of (a)-(b): if i and v are exhaustive, so is A\. B Let (¢, )nen be a sequence
in A ® B such that Ac, > € > 0 for every n. For each n, express ¢, as SUpP;cg, Ani @ bni where (aniYier, 1s
a partition of unity; set I}, = {i : i € I,,, vbn; > €}, an, = sup;c;s an;; then pa, > e. By Lemma 2D, there
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is an infinite J C N such that {a, : n € J} is centered. Let D C 2 be a maximal centered family including
{an : n € J}; then for every n € J there is an 4,, € I], such that a,;, € D. But now observe that vb, ;, > €
for every n € J, so there must be distinct m, n € J such that b, ;,, Nby i, # 0; as ami,, Nan,i, is also
NON-ZET0, Cmy Ny 7# 0. AS (¢p)nen is arbitrary, A is exhaustive. Q

(e) We can extend the construction to infinite products, as follows. Let I be a totally ordered set and
((2;, p;)Yier a family of Boolean algebras endowed with unital submeasures. For a finite set J = {ig,... ,%n}
where ig < ... <, in I, let A; be the product submeasure (.(pi, X f1i,) X ... ) X i, on €5 = @ ;Aj;
for definiteness, on €y = {0,1} take Ay to be the unital submeasure. Using (c) repeatedly, we see that if J,
K e [I<% and j < k for every j € J, k € K, then the identification of €,k with €; ® €x (FREMLIN 04,
315K) matches Ajux with Aj X Ag. Moreover, if K € [I]<¥ and J is any subset of K (not necessarily an
initial segment) and € : €5 — €k is the canonical embedding corresponding to the identification of €k
with €; ® €x\ s, then A\; = Agejx; this is also an easy induction on #(K). What this means is that for
any subset M of I we have a submeasure Ay on €y = J{esm €y : J € [M]<“}, being the unique functional
such that Apregpr = Ay for every J € [M]<“. Finally, if L, M are subsets of I with [ < m for every [ € L
and m € M, then Apups can be identified with Az, X Aps.

Unhappily it is not clear that we can get new exhaustive submeasures this way. If I is any infinite totally
ordered set, and for each i € I we set ; = P{0,1} with 1;{0} = v;{1} = 1;{0,1} = 1, then &),; ; can be
identified with the algebra £ of open-and-closed subsets of {0,1}!, and A\; with the submeasure on £ which
gives every non-empty set the submeasure 1; which is about as far from exhaustive as it could well be.

(f) Turning now to products of Maharam algebras, it is easy to see, in (a), that if y and v are strictly
positive so is p X v. At this point it is worth observing that if u, u' are submeasures on 2, v and v’ are
submeasures on B, y is absolutely continuous with respect to p’ and v is absolutely continuous with respect
to v/, then u x v is absolutely continuous with respect to p’ @ v/. P For any € > 0 there is a § > 0 such
that pa < e whenever p/a < 6 and vb < e whenever v'b < 4. If now ¢ € A® B and (1’ x v')(c) < 6, we have
¢ =sup;e; a; ® b; and J C I such that (a;)icr is a partition unity, p/(sup,;c;a;) < 6 and v'b; < 6 for every
i€ I\ J;s0 pu(sup;eya;) <eandwvb; <eforeveryiel\Jand (uxv)(c)<e Q

Now suppose that (2;);cs is a family of non-trivial Maharam algebras, where I is a finite totally ordered
set. Then we can take a strictly positive unital Maharam submeasure p; on each 2;, form an exhaustive
submeasure A on €5 = ),; U, and use A to construct a metric completion EI which is a Maharam
algebra, as in FREMLIN 04, 393B. If we change each p; to puf, where p} is another strictly positive Maharam
submeasure on 2;, then every p. is absolutely continuous with respect to p; (FREMLIN 04, 393E), so the
corresponding A’ will be absolutely continuous with respect to A, and vice versa; in which case the metrics
on € are uniformly equivalent and we get the same completion ¢ 7 up to Boolean algebra isomorphism. We
can therefore think of QI as ‘the’” Maharam algebra free product of the family (2;);cs of Boolean algebras;
as before, we shall have an isomorphism between ¢ J®€ x and ¢ Jur whenever J, K C I and j < k for every
jeJ, ke K.

(g) I should perhaps have remarked already that if 4 and v, in (a), are additive and unital, then we have
an additive function A’ on 2 ® B such that A'(a ® b) = pa - vb for every a € 2 and b € B (FREMLIN 04,
326Q). Now if we take A as constructed in (a), each of A\, X' is absolutely continuous with respect to the
other. P If ¢ € A® B, express ¢ as sup;c; a; ® b; where (a;);cr is a finite partition of unity. Thenpu(sup{a; :
vb; > Ac}) < Ac, 80 Ne =) . pa;-vb; is at most 2Ac. On the other hand, u(sup{a; : vb; > VNe)) <
so Ae < NS Q

What this means is that if (2, ) and (2B, v) are probability algebras, then their Maharam algebra free
product, regarded as a Boolean algebra, is identical to their probability algebra free product as defined in
FREMLIN 04, §326. Now this extends to finite products, as in (f) here.

4B Representing products of Maharam algebras: Theorem Let X and Y be sets, with o-algebras
¥ and T and Maharam submeasures p and v defined on 3, T respectively. Set Z = p~1[{0}], J = v~1[{0}],
A=3/7 and B =T/J, and write fi, v for the strictly positive Maharam submeasures on 2 and B induced
by p and v as in 1I above. Let ¥®&T be the o-algebra of subsets of X x Y generated by {ExF:Eex,
FeT}.
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(a) (Compare FREMLIN 03, 418T.) Give B the topology induced by the metric (b, ') — v(bAb)L. If
W € ©®T then W[{z}] € T for every € X and the function 2 — W[{z}]* : X — 9B is Y-measurable and
has separable range. Consequently 2 — vW[{z}] : X — [0, 00[ is X-measurable.

(b) For W € ¥®T set

AW =inf{e:e >0, p{z : vW[{z}] > €} <€}
Then ) is a Maharam submeasure on ©®T, and
AH{OY = {W . W € 2QT, {z: W[{z}] ¢ J} € I}.

(c) € = Z@T/A~[{0}] is a Maharam algebra with a strictly positive Maharam submeasure X induced by
A.

(d) 2 ® B can be embedded in € by mapping £* ® F* to (E x F)* forall E€ X, F € T.

(e) This embedding identifies (€, ) with the metric completion A®%B of (A ® B, i x 7) as described in
4AfL.

proof (a) Write W for the set of those W C X x Y such that W[{z}] € T for every x € X and z —
W[{z}]* : X — 9B is X-measurable and has separable range. Then ¥ ® T (identified with the algebra of
subsets of X X Y generated by {E x F: E € 3, F € T}) is included in W.

If (Wp)nen is a non-decreasing sequence in W with union W, then W € W. P Of course W[{z}] =
Unen Whl{z}] belongs to T for every x € X. Set f,(x) = W,[{z}]* for n € Nand 2 € X. For each z € X,
W[{z}]\ W, [{x}] is a non-increasing sequence with empty intersection, so lim,, o V(W [{z}\W,[{z}]) =0
and (fn(x))nen converges to f(z) = W[{z}]* in B. By FREMLIN 03, 418B, f is measurable. Also D =
{fn(z): z € X, n € N} is a separable subspace of B including f[X]. So W e W. Q

Similarly, (), cy Wn € W for any non-increasing sequence (Wp)nen in W. W therefore includes the
o-algebra generated by ¥ ® T (FREMLIN 00, 136G), which is &T.

Now z — vW[{z}] = vW[{z}]* is measurable because 7 : B — R is continuous.

(b) Of course ) = 0 and A\W < AW’ if W, W’ € X®T and W € W'. If Wy, Wy € £&T have union W,
A7 = a7 and AWy = as, then

{z : vW[{z}] > a1 + az} C{z: vWi[{z}] > a1} U{z : vW[{z}] > aa},

so, setting a = a1 + ao,
plz c vWi{z}] > af < p{z: vWi[{z}] > a1} + p{x : vWs[{z}] > a2} < a1 + a2 = ¢,

and AW < «. Thus A is monotonic and subadditive.

If now (W, )nen is a non-increasing sequence in YT with empty intersection, and € > 0, set E, = {z :
vW,[{z}] > €} for each n. Then (E,),en is non-increasing; moreover, for any = € X, (W,[{z}])nen is a
non-increasing sequence in T with empty intersection, so lim, ;. VW, [{z}] = 0 and x & [, o En. There
is therefore an n such that puF, < e and A\W,, < e. As (W,)nen and € are arbitrary, A is a Maharam
submeasure.

Finally, for W € ¥®T,

MW =0 <= p{x:vW[{z}] >27"} <27" for every n € N
— pf{z:vW[{x}] >27™} <27" for every m, n € N
— p{z:vW[{z}] >0} <27" for every n € N
= p{z:vWi{z}] >0} =0 < {z: W[{z}|¢ T} €.

(c) Put (b) together with Theorem 11I.

(d) If either A or B is {0}, this is trivial. Otherwise, we have a Boolean homomorphism E — (E xY)* :
Y — ¢ with kernel Z, so there is a corresponding Boolean homomorphism E* — (ExY)* : 2 — €. Similarly
we have a Boolean homomorphism F* — (X x F)* : 8 — €. Accordingly we have a Boolean homomorphism
¢ : A®B — € defined by saying that

Lthat is, its order-sequential topology (1Jb).
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QB @F*)=(ExY) n(X x F)* = (E x F)*

for E € ¥ and F € T. Now ¢ is injective. PP If ¢ € A ® B is non-zero, there are £ € ¥, ' € T such that
0#E*®F* Ce. Inthiscase, E¢ Z and F ¢ J so A(E X F) > 0 and

ge2$(E* @ F*)=(Ex F)* #0. Q

(e) Mge) = (ux v)(e) for every e € A ® B. P Express e as sup;c;a; ® b; where (a;);es is a finite
partition of unity in 2 and b; € *B for each i. For each i, we can express a;, b; as E?, F? where E; € X
and F; € T; moreover, we can do this in such a way that (E;);cs is a partition of X. In this case, pe = W*
where W = J,; E;i x Fj, so that, for € > 0,

p{z : vW{z}] > e} = u(U{E;:i € I, vF; > €}) = i(sup{a; : i € I, Ub; > €}).
Accordingly

(nx v)(e) =inf{e: a(supf{a; : i € I, vb; > €}) < ¢}
=inf{e: p{z: vW[{z}] > €} <€} = AW = AW* = X\(¢e). Q

Next, ¢[A ® B] is dense in € for the metric induced by A. P Let © be the metric closure of ¢[A ® B]
andset V={V:V e X®T, V* € ®}. Then V includes ¥ ® T and is closed under unions and intersections
of monotonic sequences, so is the whole of ¥&T, and ® = €, as required. @ But this means that we can
identify ¢ with the metric completion of ¢[A ® B] and with ADB.

4C The robust o-bounded-cc (a) Let 2 be a Boolean algebra and u a strictly positive submeasure
on 2A. I will say that (2, 1) is robustly o-bounded-cc if 2" can be expressed as Unen An where for each
n € N there are m € N, § > 0 such that whenever ay, ... ,a,, € A, then there are distinct 7, j < m such
that p(a; naj;) > 4.

(b) Observe that if 2( is a Boolean algebra and p is a strictly positive additive functional on 2, then
(A, p) is robustly o-finite-cc. B Set A,, = {a : pa > n%ll} for each n € N. If ag,... ,any1 € Ay, then

+2 +1
Ziﬂﬂl < Dm0 pai < gl + p(SUp; i< @i N ag),

so there must be distinct ¢, j < n+ 1 such that p(a; na;) > %

Q

(c) If u, v are two strictly positive submeasures on 2, each absolutely continuous with respect to the
other, then (2L, 1) is robustly o-bounded-cc iff (2, v) is.

4D Proposition Let 2 be a o-bounded-cc Maharam algebra, and p a strictly positive Maharam sub-
measure on 2. Then (2, ) is robustly o-bounded-cc.

proof Let (A, )nen, (Mn)nen be such that AT = Unen An and no A,, includes any disjoint set of size greater
than m,,. For n € N set A}, = |J{[a,1] : a € A,,}; then A/, includes no disjoint set of size greater than m,,.
For n, k € N set

Bor ={a:a €A a\be A, whenever ub < 27%}.

Then Un,keN B, = 2AT. P? Otherwise, there is an a € A such that for every n € N there is a b,, such
that pb, < 27" 2ua and a\ b, ¢ A),. Set a’ = a\ sup,cy bp; then pa’ > 0 but o’ ¢ J,, oy An- XQ

Set d,p = form,n e N. If n, k € Nand ag, ... ,am, € By, then there are distinct ¢, j < m,,

1
2k (my,+1)
such that p(a;na;) > 0pr. PT Otherwise, set by = sup;<,, ;. @ina; for each 7. Then ub; < 2% so
a; \ b; € A}, for each i < m,,. But (a; \ b;)i<m,, is disjoint. XQ
So (Bnk)n,ken Witnesses that (2, u) is robustly o-bounded-cc.

4E Proposition Suppose that 2 and B are o-bounded-cc Maharam algebras. Then their Maharam
algebra free product € is o-bounded-cc.
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proof (a) We may suppose throughout that neither 2 nor 8 is {0}. Express 2 and B as quotients of
(X,%,p) and (Y, T,v) as in 1Ib. Then we can identify € with the quotient of (X x Y, X ® T, X) where A is
defined as in Theorem 4B. Let (A,,)nen, (Bn)nen witness that (2, i) and (9B, ) are robustly o-bounded-cc
(Proposition 4D); for each n € N let m,,, m,, € N and 6, ¢/, > 0 be appropriate parameters as required in
the definition 4Ca. Set

En={E:EeX, E*c€A,}, F,={F:FeT, F*e€B,}

for each n. Then J, oy & = {F : p > 0} and U,y Fr = {F : vF > 0}.

(b) If W € ¥®T and AW > 0, there is an F € T such that vF > 0 and p{z : v(F\ W[{z}]) <n} >0
for every n > 0. P By Theorem 4Ba, z — W[{z}]* is measurable and has separable range. Set E = {z :
W{z}]* # 0}, D = {W[{z}]* : « € E}; then pE > 0 and D is separable. As D is Lindel6f, there isa b e D
such that p{x : W[{z}]* € U} > 0 for every open neighbourhood U of b. Take F' € T such that F* = b;
then vF > 0. If n > 0, then U = {0’ : (b \ ¥') < n} is a neighbourhood of b, so

pla : v(FAW{z}]) <nt = pl{e: W[{a}]* €U} > 0. Q

(c) For k, I € N, let Wy, be the set of those W € YT for which there are E € &, F € F; such that
v(F\ W[{z}]) < 34, for every z € E. By (b), every W € S®T such that AW > 0 belongs to Wy, for some
k1

(d) Take k, I € N. Let m > 1 be so large that whenever S C [m + 1]? there is either an I € [m + 1]™++!
such that [I12 € S or a J € [m + 1]™*! such that [J]2N S = 0. Then if Wy,... ,W,, € Wy, there are
distinct ¢, j < m such that A(W; N W;) > 0. P For each i < m choose E; € & and F; € F; such that
v(F; \ Wi[{z}]) < 30) for every € E;. Consider S = {{i,j} i <j<m, wW(E;NE;) <&} If I Cm+1
and #(I) = my + 1 there must be distinct ¢, j € I such that p(E;NE;) > 6, so that {i,j} ¢ S. Accordingly
there is a set J C m + 1 such that #(J) =m; + 1 and [J]* N S = 0. Let i, j be distinct members of .J such

that v(F; N F;) > ¢;. Then
V(W W) [{}] = v(Wille}] A W, ) = w(F 1 Fy) — 267 > Loy
for every x € E; N E;. So
AWi N W) > min(u(E; 0 E;),56) > 0. Q
Accordingly, setting Cj; = {W* : W € Wy} for k, | € N, (Cyi)x1en Witnesses that (€, ) is o-bounded-cc.

4F Definitions (FREMLIN 087, §527) Suppose that Z <« PX and J < PY are ideals of subsets of sets
X, Y respectively.

(a) T will write Z x J for their skew product {W : W C X x Y, {z: W[{z}] ¢ J} €Z}. and I x J
for {W W C X xVY,{y: W-{y}] ¢ Z} € J}; these are ideals of subsets of X x Y.

(b) If A is a family of subsets of X x Y, write Z x J, Z xp J for the ideals generated by (Z x J) N A,
(Z % J) N A respectively.

4G Proposition Let X be a set, 3 a o-algebra of subsets of X, u: ¥ — [0, 0o a Maharam submeasure,
and N (u) the null ideal of u, that is, the ideal of subsets of X generated by u=![{0}]. Let uz, be Lebesgue
measure on [0, 1].

(a) If V() x555, N(ur) € N(p) x N(pz) then p is uniformly exhaustive.

(b) If p is uniformly exhaustive then N (u) Xgov N(un) = N(p) xgg5, N(uL).

proof (a) 7 Otherwise, there are an € > 0 and a family (E;;);en, j<2i in X such that pFE;; > € for all ¢ and
J and (Ejj) <o is disjoint for each i. Let (Fjj);en j<2: be a family in ¥z such that uFj; = 27 for all ¢ and
Jj and ;o Fiyj = [0,1] for each i. Set

W = ﬂkEN UiZk,j<2’i Eij X Fij S Z@EL

Forany x € X, set K, ={i:x ey E;j}, and for i € K, define f(x,4) by saying that x € E; ¢, ;); then

j<an
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Wiz} = Nien UieKm\k F; f(z,i) € N(pr)

because Y. p E; f(a) Is finite. So W € N(u) Xygy,, N(ur). For any t € [0,1], i € N choose g(t, i) such
that t € Fi,g(t,i); then

pWH{t}] > N(ﬂkeN Uizk E; g(t.4)) = infren M(Uizk Ei g(t.i)) 2> €
So W & N(p) ¥pgs, N(ur). X

(b) The quotient 2l = X /N (1) has a strictly positive uniformly exhaustive submeasure, so is a measurable
algebra; there is therefore a totally finite measure v with domain ¥ and the same null ideal as u. Now we
can use Fubini’s theorem to see that N'(v) xg55 N(ur) and N (v) @555, N(prz) are both the null ideal of
the product measure v X ur.

5 Forcing

5A Proposition Suppose that 2 and € are Boolean algebras such that
(i) A is weakly (o, 00)-distributive, has a strictly positive exhaustive submeasure and is not {0};
(ii) IFy ‘€ has a strictly positive exhaustive submeasure’.

Then € has a strictly positive exhaustive submeasure.

proof Replacing 2l by its completion, if necessary, we may suppose that 2 is a Maharam algebra (Prop.
1E), with a strictly positive Maharam submeasure v. Let f1 be an 2-name for a strictly positive exhaustive
submeasure on €. For c € €, set

Ae=inf{e: e € Q, € >0, v([uc > €]) <€}

Now A is a submeasure. PP If ¢ = 0 then [pc> 0] = 0 and Ae = 0. If ¢ C ¢’ then [uc > €] C [uc’ > €] for
every € >0 and A\c < A\c'. If ¢, ¢/ € € and § > 0, there are ¢, ¢ € Q such that

e<A+6, v([pe>¢€])<e € <A +6, v([ud >€]) <€
Now if a = 1\ ([uc > €] u [’ > €'7),
alk ‘e <e&pc <€,
soalk ‘a(cud) < e+ €, that is,
[p(cuc) > e+ €] C [pe>eulpd > €];

consequently AM(cu ) < Ae+ Ad + 245 as §, ¢ and ¢’ are arbitrary, A is subadditive. Q

A is strictly positive. B If ¢ € €%, then 1y = [fic > 0] = sup, ¢ [f2¢ > 27™], so there must be some n € N
such that v([ac >27"]) > 2™ and Ae > 27". Q

Finally, A is exhaustive. I* Suppose that (¢,)nen is a sequence in € such that A¢, > € for every n, where
€ > 0 is rational. Set a,, = [ic, > €]; then va, > € for every n. Set a = inf,ensup,,>,, am; then va > € so
a # 0. Now B

a Ik ‘for every n € N there is an m > n such that pc, > €’;
since fi is a name for an exhaustive submeasure,
a Ik ‘there are distinct m, n € N such that ¢, n¢, # 0.
So there are distinct m, n € N and a non-zero a’ C a such that
a lFf‘cpmne, #0.
But since the objects ¢, ¢, are in the ground model, ¢, Nne¢, # 0 in the real world, and (¢,)nen is not
disjoint. Q
5B Corollary Suppose that 2 is a non-zero Maharam algebra and € is a Dedekind complete Boolean
algebra such that
Iy ‘the Dedekind completion of € is a Maharam algebra’.
Then € is a Maharam algebra.
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proof Since

-y ‘the Dedekind completion of € has a strictly positive exhaustive submeasure’,

we surely have
- ‘€ has a strictly positive exhaustive submeasure’.

By Proposition 5A; € has a strictly positive exhaustive submeasure; in particular, it is ccc. Also 2, being
weakly (o, co)-distributive, is weakly o-distributive, and

- ‘€ is weakly o-distributive’,

so € is weakly o-distributive; as it is ccc, € is weakly (o, 00)-distributive. Now Proposition 1E tells us that
¢ is a Maharam algebra.

5C Pre-ordered sets (In the following paragraphs, all pre-ordered sets will be active upwards; that is to
say, p < ¢ will mean that ¢ is stronger than p. In the language of FREMLIN 087, this would be represented by
adding the word ‘upwards’ to each definition.) Let P be a pre-ordered set (‘p.o.set’ in KUNEN 80), that is,
a set with a reflexive transitive relation <. I will say that P is ‘Maharam’, or ‘measurable’, or ‘chargeable’,
or ‘weakly o-distributive’; or ‘o-finite-cc’, or ‘o-bounded-cc’, or ‘weakly (o, 0co)-distributive’; if its regular
open algebra is. The last three have reasonably simple translations:
P is o-finite-cc iff it is expressible as (J,,cyy An where no A,, includes any infinite antichain;
P is o-bounded-cc iff it is expressible as |J,,cy An Where no A, includes any antichain with
more than n members;
P is weakly (o, co)-distributive iff whenever (A, )nen is a sequence of maximal antichains in
P, then there is a maximal antichain B such that {a : a € A, a is compatible with b} is finite
for every n € N.
Theorems 3C and 3G tell us that P is Maharam iff it is weakly (o, co)-distributive and o-finite-cc, and that
if Todorcevié’s P-ideal dichotomy is true, then P is Maharam iff it is weakly (o, 0o)-distributive and cce. 1
note that P is measurable iff it is weakly (o, 00)-distributive and chargeable (FREMLIN 04, 391D). We can
translate Kelley’s criterion (FREMLIN 04, 391J) as follows:
P is chargeable iff it is expressible as | J,,cy An where for every n € N and every non-empty
finite indexed family (p;);er in A, there is a J C I such that #(J) > 27"#(I) and {p; : i € J}
has an upper bound in P.
Now we have the following result.

5D Theorem Let P be a pre-ordered set'and Q a P-name for a pre-ordered set.
(a) If P is weakly o-distributive and I-p ‘Q is weakly o-distributive’, then P * () is weakly o-distributive.
(b) (I.Farah) If P is Maharam and IFp ‘Q is Maharam’, then P x @ is Maharam.

proof (a) The point is that P is weakly o-distributive iff it is w*”-bounding, so we can use (for instance)
Theorem 6.3.5 of BARTOSZYNSKI & JUDAH 95.

(b) For p € P, let p = int [p, oo[ be the corresponding element of the regular open algebra RO(P). By
Proposition 2H, we can express P as a union UneN A,, where for any sequence (pj)jen in any A, there are
a strictly increasing sequence (k;)ieny in N and a p € P such that p C supy, <; ki p; for every i. At the
same time,

IFp ‘Q is o-finite-cc’,
so there is a sequence (Bn)neN of P-names for subsets of Q such that
IFp LUnEN Bn = Q and there is no infinite antichain in Bn’
for every n. Set
Conn ={(p:4) :p € A, pIF G € By

for m, n € N. Then Um neN Cyn 18 cofinal with P * Q Also no C,,,, includes an infinite antichain. I Let
((pi, di))ien be a sequence in Cp,,. Because p; € A, for every i, we have a p € P and a strictly increasing
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sequence (k;);jen such that p C SUDk, <<,y p; for every j. We can therefore find maximal antichains A;,
for j € N, such that if p" € A} either p’ is incompajcible with p or p < p’ and there is an i € kjq1 \ k;
with p; < p. Let ¢; be a P-name for a member of () such that whenever p’ € A’ and p < p’ there is an
1€ k‘j+1 \kJ such that p; < p’ and

P IE g =4,
so that
plF ‘¢, € B,
There must therefore be distinct 7, 7' such that
plF ‘¢; and ¢, are compatible’.
But now there must be a p’ > p and i € kj41 \ kj, ¢’ € kjrp1 \ kjr such that p > p;, p’ > p; and
p'IF¢; = ¢ and ¢}, = gi’;
in which case i # 1 and (p;,¢;) and (py, ¢,) are compatible. Q
So P x @ is o-finite-cc; by Theorem 3C and (a) above, it is Maharam.

Remark Of course there is an alternative proof working with the regular open algebras RO(P) and RO(Q)
and Maharam submeasures and using Proposition 1E.

5E The Tukey ordering If P and @) are pre-ordered sets, a function ¢ : P — @ is a Tukey function
if {p: f(p) < q} is bounded above in P for every ¢ € Q. If there is a Tukey function from P to @, I write
P <1 Q. (See FREMLIN 087, §513.)

5F Proposition Let P and @ be pre-ordered sets such that P <1 Q. If Q is chargeable, so is P.

proof Let ¢ : P — @ be a Tukey function, and express @ as |J,,cy Bn where for every n € N and every
finite indexed family (g;)ier in By, there is a J C I such that #(J) > 27"#(I) and {g; : ¢ € J} has an
upper bound in Q. Set A, = ¢~1[B,] for each n; then P = Unen An, and for every n € N and every finite
indexed family (p;)icsr in A,, there is a J C I such that #(J) > 27"#(I) and {¢(p;) : © € J} has an upper
bound in @, so {p; : ¢ € J} has an upper bound in P.

6 Examples

6A Proposition (S.Todorcevié¢) Let RO(X) be the regular open algebra of the space X described in
FREMLIN 04, 391N (‘Gaifman’s example’; see GAIFMAN 64). Then RO(X) has the property (*) defined in
1Ad.

proof I recall the definition of X from FREMLIN 04. Enumerate as (I, )ncn the set of half-open intervals
[¢,¢'[ in R with ¢, ¢ € Q and g < ¢’. For each n € N let 7, be a disjoint family of non-trivial subintervals of
I,,. Let X be the set of those z € {0, 1}® such that for each n the set {J : J € J,,, z(t) = 1 for some t € J}
has at most n + 1 members, with its compact Hausdorff zero-dimensional topology inherited from {0, 1}¥.
For each n € N let G,, be the set of those regular open subsets G of X for which there are K, L € [R]<¥

such that (i) taking &, to be the finite subalgebra of subsets of R generated by {I; : i < n}, any two distinct
points ¢, u of K U L belong to different atoms of &, (i) {z : z € X, z(t) = 1 for every ¢t € K, z(t) = 0 for
every t € L} is non-empty and included in G. Then every non-empty regular open subset of X belongs to
some G,,. Now suppose that n € N and we are given a sequence (Gp)ren in G,. For each k € N let K}, Ly
be finite sets witnessing that Gy, € G,,. Let (k,).en be a strictly increasing sequence such that

forevery re Nand E €&, Ky, NE #£0iff K, N E # 0,

forevery re Nand E € &, Ly, NE # 0 iff Ly, N E # 0,

whenever m € N and r > L%J—1andJGJmthenK;C NJ #0iff Ky, nJ=0.

r+1
(At each stage we have to choose k, belonging to an infinite set belonging to a given finite partition of
the previous infinite set.) Now set z(t) = 1 if t € U,y Kk, , O otherwise. For m € N, r € N set Jp,, =
{J:J € Tn, JNKy, #0}; for m €N, set I, = U,ey Tmr- Then T i1 = T if 7 > [2] — 1, while
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H#(Tmr) < #(K,) < n for all m and r. In particular, if m < 2n, T = Tmo for every r; as {z : z(t) =1
for t € Kj,} meets X, #(J),) < m for such m. If (I +1)n <m < (I +2)n, where I > 1, then Jnr = T
for every r > [, so

#(j;n) = #(Urgl TImr) <+ 1Dn < m.

What this means is that #({J : J € T, z(t) = 1 for some ¢t € J}) < m for every m € N, and z € X. I
have still to confirm that x € Gy, for every r. But, given r, then if ¢t € K}, we certainly have z(¢) = 1; while
if u € Ly, then there is an atom E of &, containing u, E must contain a point of Ly, F cannot contain any
point of K, and therefore does not contain any point of |,y Kk, , so x(u) = 0. Thus z € Gy, for every r,
and {G, : r € N} is centered in RO(X).

Remark Recall that RO(X) is o-n-linked for every n (FREMLIN 04, 391Yh); in particular, it is o-bounded-
cc.

seN

6B Remark GrowczYNsKI 91 presents the following example. Starting from a two-valued-measurable
cardinal k we can find a ccc forcing to give us a model in which k¥ < ¢ = m. This gives us an wy-saturated
o-ideal Z of Pk such that the quotient 2 = Pk/Z is ccc, Dedekind complete, weakly (o, 00)-distributive,
has Maharam type w and is not a Maharam algebra. Since Martin’s axiom is true, 2 satisfies Knaster’s
condition; by Theorem 3B, or otherwise, it is not o-finite-cc.

7 Rank functions for exhaustive submeasures

7A Definitions Suppose that 2 is a Boolean algebra and v an exhaustive submeasure on 2. For € > 0,
say that a <. bifa C band v(b\ a) > e. Then <. is a well-founded relation on 2; for a € 2, write r.(a) for the
height of the relation restricted to the principal ideal 2, generated by a, that is, rc(a) = sup, - _,(re(b) +1).

7B Elementary facts Let 2 is a Boolean algebra with an exhaustive submeasure v and associated rank
functions r. for ¢ > 0.

(a)
rs(a) < r(b) whenever v(a\b) <J —e.
P Induce on r.(b). If r(b) = 0, then vb < € so va < § and rs(a) = 0. For the inductive step to r¢(b) = &,

if cCa and v(a\c) > 6 then v(b\c) > € and r(bnec) < & Also v(c\b) < § — € so, by the inductive
hypothesis, r5(c) # rs(bnc) < &; as ¢ is arbitrary, rs(a) < £ and the induction continues. @ In particular,

re(a) <reb)ifach, rs(a) <rea)if e <d.

(b) For a € A let T") be the set of all decreasing strings 7 = (ap,ai,...,an) where ag = a and
v(a; \ aiy1) > € for i < n; for such 7, set s.(7) = rc(a,). Then Te(a) is a tree with no infinite branches. If
oc Te(a) then

Se(0) =sup{sc(r)+1:7¢€ T properly extends o}
(induce on s.(0)).

(c) If a, b € A are disjoint and € > 0, then r.(aub) > rc(a) + rc(b), the latter being the ordinal sum. I
Induce on r¢(b). If r(b) = 0, the result is immediate from (a) above. For the inductive step to r.(b) = &,
we have for any 7 < € a ¢ C b such that v(b\¢) > e and n < r.(c) < . Now r(auc) > rc(a) +n, by the
inductive hypothesis, and v((aub)\ (auc)) > €, s0 r.(aub) > r.(a)+n; as n is arbitrary, r.(a ub) > r.(a)+£
and the induction continues. Q

(d) If v/ is another exhaustive submeasure on 2 with rank functions 77, and va < av’a for every a € 2,
where o > 0, then 74¢(a) > 7.(a) for every a € 2 and € > 0 (induce on r.(a), as usual).

7C Proposition Let 2 be a Boolean algebra with a strictly positive exhaustive submeasure v, and 2 the
metric completion of 2 under the metric (a,b) — v(a A b) (FREMLIN 04, 393B), so that v extends naturally
to a Maharam submeasure # on 2. For ¢ > 0 let re : A — On and 7 : 2l — On be the rank functions
associated with v and © respectively. Then whenever a € 2 and 0 < € < 9,
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rs(a) < 75(a) < re(a) < 7Fe(a).

proof (a) To see that r.(a) < #.(a), induce on #.(a). If #.(a) = 0 then va = Pa < € and r.(a) = 0. For
the inductive step to 7c(a) = &, if b € A and b C a and v(a\b) > ¢, then D(a\b) > € so 7(b) < & by
the inductive hypothesis, r.(b) < &; as b is arbitrary, r.(a) < £ and the induction proceeds. @ Similarly,
rs(a) < 75(a).

(b) For the middle inequality, let T\ C U,>, A" and T(S(a) C Uns1 A" be the trees constructed by the
method in §7B. For cach ¢ € 2 choose a;(c) € 2, for i € N, such that ¥(cAa;(c)) < 2772(§ — €) (and

a;(c) = cif c € A). For 7 = (co,... ,cn) € T(;(a), set 7/ = (bo,... ,by) € AT where b; = inf;<; a;(c;) for
each j <n. Then b;; C b; for j < m; moreover, by = ¢y = a and

p(bj 1 ej) < Sy o(ei paile;)) <

(0—¢)

N | =

for j < n, so
v(bj\bjt1) 2 D(cj\cjp1) — (0 —€) > €
for j < m, and 7’ € Te(a). The construction ensures that if o, 7 € Téa) and 7 extends o, then 7 extends

o'. Tt follows at once that, defining s, : T = On and 3 : Té(a) — On as in §7A, §5(7) < se(7’) for every

TE Té(a) (induce on s(7'), as usual). In particular,

P5(a) = 35({a)) < se((a)) = re(a),

as required.

7D Corollary If, in §7A, we set r}(a) = supss.rs(a) for a € A and € > 0, then we shall still have the
results

ri(a) < rf(b) whenever v(a\b) < —e,

r¥(aub) > r¥(a) + r.(b) whenever anb =0,

and moreover, in the context of §7C, rj(a) is the same, for a € A, whether calculated in 2 or in the metric
completion 2.

7E The rank of a Maharam algebra Note that the rank function r. associated with an exhaustive
submeasure v depends only on the set {a : va > €}. In particular, if 4 and v are exhaustive submeasures on
a Boolean algebra 2 and pa < € whenever va < §, then ré”)(a) < r((;y)(a) for every a € 2. If 2 is a Maharam
algebra, then any two Maharam submeasures on 2l are mutually absolutely continuous, so we get the same
value for r}(1) from either; I will call this the Maharam submeasure rank of 2, Mhsm(2(). Note that if
a € A then Mhsm(2,) < Mhsm(2).

If A is a measurable algebra, Mhsm(2) < w, because if p is a unital additive functional and ¢ > 0,

then 7" )(1) <1 More generally, for any uniformly exhaustive submeasure v and any € > 0, ré”)(l) is the
€

maximal size of any disjoint set consisting of elements of submeasure greater than e.

7F Reductions of submeasures Let 2 be a Boolean algebra, and v : 20 — [0, oo[ a submeasure.
(a) For a € 2, set
va = inf, ey sup{min;<, va; : ag, ... ,a, C a are disjoint}.

Then 7 is a submeasure. I Of course 70 = 0 and va < vb whenever a C b. If a, b € A and € > 0, then there
are ng, n1 € N such that whenever (¢;);cs is a disjoint family in A, then #({i : v(c; na) > va + €}) < ng
and #({i : v(c;nb) > b+ €}) < ny. So

#{i:v(ein(aubd)) > va+ b+ 2€}) < ng + nq.

It follows that o(aub) < Da + Db+ 2¢; as €, a and b are arbitrary, ¥ is a submeasure. Q
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(b) Of course 7a < va for every a € 2; in particular, 7 is exhaustive, or Maharam, if v is. Observe that
va = 0 iff v[2, is uniformly exhaustive. So if 2 is a Maharam algebra which is nowhere measurable and v
is a strictly positive Maharam submeasure on 2, then ¥ is also strictly positive.

(c) In this context I will call 7 the reduction of v.

7G Proposition (FREMLIN & KUPKA N90) Let 2 be a Boolean algebra and v an exhaustive submeasure
on 2 with reduction o. Let r., 7c be the associated rank functions. Then

re(a) > w-7e(a)
for every a € 2, € > 0.

proof Induce on 7(a). If #.(a) = 0, the result is trivial. For the inductive step to 7.(a) =& + 1, take b C a
such that ob > e and 7.(a\ b) = £. Then for every n € N there are disjoint by, ... ,b, C b such that vb; > €
for every 4, and r.(b) > w; by the inductive hypothesis, r.(a\b) > w-&; by B¢, re(a) > w-{+w =w-(£+1),
and the induction proceeds. The inductive step to non-zero limit £ is elementary.

7TH Theorem (J.Kupka) Let v be a pathological submeasure on a Boolean algebra 2, with reduction .
Then va > %Va for every a € 2.

proof (a) Since v[2, is also a pathological submeasure, and 7%, is the reduction of v[2,, it is enough
to consider the case a = 1; and since the operation of reduction commutes with scalar multiplication of the
submeasures, it is enough to consider the case v1 = 1.

(b) ? Suppose, if possible, that vl < % Take v such that 71 < v < % Let n > 1 be such that there is
no disjoint family (a;);<, in A with va; > « for every i < n. Then we see that

Zie[ V(ai) <n +’Y#(I)
for every disjoint family (a;);cs in 2L
Set

1-3y £ e

e=—2=>0, 5:min(18,n)>0.

By 1G, there is a non-empty finite family (b;);c; in 2 such that vb; < ¢ for every i € I and sup;c; b, =1
whenever J C I and #(J) > 6#(I). Note that we can repeat copies of (b;);cs if necessary, so that we can

assume that #(I) = m is at least % We must have sup;c;b; =1 so

TE>md > Y vbi > 1
and n < em.
Set I = [em], k = [6m]. Then
3<k<I<m, 18km <e*m? <2,

so there is an R C I x I such that #(R) = 3m (in fact, #(R[{i}]) = 3 for every ¢ € I) and #(R[E]) > #(E)
for every E € [I]<F (KALTON & ROBERTS 83, or FREMLIN 04, 392D). For E C I set

cg = inficp(1\b;) N inficp\ g bi;
observe that cg = 0 when #(E) > k, so that
sup{cg : E € [I|5*} = 1.
For E € [I]=F take an injective function fg : E — [ such that fz C R. Set
aij =sup{cg i € E € [I|5*, fg(i) = j}
for i € I, j < I. Then, for any particular j <, (ai;)ier is disjoint (because every fg is injective), so
Siervaij < n+y#({izay #0}) < n+##(R{G).
Accordingly
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Y vlai) Snl+y ) #RTGY) < nlem + 1) +1#(R)

iel,j<l i<l
< nem + em + 3ym = m(3vy + (n + 1)e).
On the other hand, for each ¢ € I,

1\b;=sup{cg:i€ ECI}
=sup{cg :i € F € [I]5*} = supayj,
Jj<li
S0
1=v1<w(b)+v(l\b;) <5+ vay.

Now, summing over ¢ € I,

m < md + Z vai; <m(d+3y+ (n+1e)
iel,j<l
<mBy+ (n+2)e) <m(3y+1—3vy) =m,
which is impossible. X
So we have the result.

Remark Of course this result includes the Kalton-Roberts theorem, since it shows that no uniformly
exhaustive submeasure can be pathological.

7J Theorem Suppose that 2 is a non-measurable Maharam algebra. Then Mhsm(2() is at least the
ordinal power w®.

proof Let a € 2T be such that the principal ideal 2, is nowhere measurable. Let v be a strictly positive
Maharam submeasure on 2,, 7 its reduction, and re, 7. the associated rank functions. As observed in 7Fb,
U is strictly positive. If

a < Mhsm(2(,) = sup,s.g Te(a) = sup,.q 7e(a)
(as noted in 7E), then there is an € > 0 such that 7¢(a) > «, in which case
Mhsm(,) > re(a) > w-7e(a) > w -«
by 7G. Since Mhsm(%(,,) is surely infinite, Mhsm(2() > Mhsm(2(,) > w™ for every n, and Mhsm(2) > w*.

7K Proposition Suppose that 2 and 8 are Boolean algebras with exhaustive submeasures u, v respec-
tively, and that A = p X v as constructed in §4. Then r.(a ® b) is at least the ordinal product 7.(b) - r.(a)
for all a € 2, b€ B and € > 0.

proof (a) I show first that if pa > € then r.(a ® b) > r.(b). P Induce on r.(b). If r.(b) = 0, the result is
trivial. For the inductive step to r.(b) = £ > 0, for every n < & there is a b’ C b such that r.(b') > n and
v(b\V') > ¢ now r.(a ® b’") > n, by the inductive hypothesis, and A(a ® (b\ ') = min(ua, v(b\')) > ¢, so
re(a ®b) > n; as n is arbitrary, r.(a ® b) > £ and the induction proceeds. Q

(b) Now induce on rc(a). If rc(a) = 0 the result is trivial. For the inductive step to r.(a) = & > 1,
observe that for every n < £ there is an o’ C a such that r.(a’) > n and u(a\ da’) > €. Now

re(a®@b) >r(ad @b)+r((a\a)@0b)
(7Bc¢)
> re(b) -1+ 7(b)
(by the inductive hypothesis and (a) above)
=7e(b) - (n+1);
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as 7 is arbitrary, r.(a ® b) > r¢(b) - £ and the induction continues.

8 Strategically weakly (o, c0)-distributive algebras
8A Definitions Let 2 be a Boolean algebra.

(a) Consider the following infinite game I'yq(2A). (This is called ‘Ggsn’ in JECH 84 and ‘GY," in Do-
BRINEN 03; see also GREY 82.) I plays ap € 2T and a maximal antichain Ay C 2(. In the position
(ag, Ag, - .. ,an, Ay), II plays a non-zero a,+1 C a, meeting only finitely many members of A,,. In the po-
sition (ag, Ao, - .- , @n, An, ant1), I plays a maximal antichain A, 1. I wins if inf,cya, = 0; otherwise II
wins. (If 2 = {0}, so that I has no first move, II wins.)

2 is strategically weakly (o, c0)-distributive if IT has a winning strategy in Iyq(2); 2 is tacti-
cally weakly (o,o00)-distributive if II has a winning tactic, that is, a winning strategy o such that
o(ag, Ao, ... ,an, An) = 7(an, Ay,) for some function 7.

*

(b) A variant of the above game is I'} ;(2), defined as follows. This time, I starts with an antichain
Ag C 2. In the position (Ag,ag, A1,... ,an_1, Ay), II plays a, meeting only finitely many members of A,.
In the position (Ag,...,An,ay), I plays an antichain A,41. II wins if {(a,)nen is order*-convergent to 1;
otherwise I wins. 2 is strongly strategically weakly (o, oo)-distributive if IT has a winning strategy in
T4 ().

T.Jech has suggested the following variant of I'},; (). In this game, I plays sequences order*-convergent
to 0, and II must choose a term in each sequence as it appears; II wins if the sequence of his choices is again
order*-convergent to 0. It is easy to see that for ccc algebras this game is equivalent to I'} ;(2), in the sense
that a winning strategy for either player in one game can be used to generate a winning strategy for the
same player in the other game.

8B Proposition (a) A tactically weakly (o,00)-distributive Boolean algebra is strategically weakly
(0, 00)-distributive. A strategically weakly (o, oo)-distributive Boolean algebra is weakly (o, co)-distribu-
tive. A strongly strategically weakly (o, co)-distributive Boolean algebra is strategically weakly (o, c0)-
distributive.

(b)(JECH 84) If A is a ccc Boolean algebra, then 2 is weakly (o, oc0)-distributive iff T has no winning
strategy in I'ywq(2() iff T has no winning tactic in I'yq(21).

(c) Let 2 be a Boolean algebra and B an order-dense subalgebra of 2. Then B is strategically (resp.
tactically, resp. strongly strategically) weakly (o, oo)-distributive iff 2 is.

(d) A principal ideal of a strategically (resp. tactically, resp. strongly strategically) weakly (o, co)-dis-
tributive Boolean algebra is again strategically (resp. tactically) weakly (o, co)-distributive.

(e) A regularly embedded subalgebra of a strategically (resp. tactically, resp. strongly strategically) weakly
(0, 00)-distributive Boolean algebra is again strategically (resp. tactically) weakly (o, co)-distributive.

proof (a) Trivial.

(b) (i) If A is not weakly (o, co)-distributive, then I has a winning tactic. I» There are a non-zero ag € 2
and a sequence {C),),en of maximal antichains such that inf,cy a, = 0 whenever each a,, for n > 1, meets
only finitely many elements of C,,_;. We may suppose that C), 1 refines C,, for each n. I starts with ay.
Given a,, I plays A,, = Cf where k € N is minimal such that {c: ¢ € Cy, a,, nc # 0} is infinite; this must
be possible if a,, C ag is non-zero. In any play of the game, we must have A,, refining C,, for each n, so I
wins. Q

(ii) If T has a winning strategy, and 2l is ccc, then 2 is not weakly (o, co)-distributive. I Consider
all the plays in I'yq(21) in which I follows his strategy and II always plays a,11 = a, N sup I, for some
finite I,, C A,,. There are only countably many such plays; let C be the countable set of maximal antichains
occurring in any of them. If Jo € [C]<¥ for each C' € C, consider the play in which I follows his strategy
and II plays a,4+1 = a, N sup Ja, at each move. Then

0 =inf ey an 2 infoec ag N sup Jo;
as (Jo)cec is arbitrary, ag and C witness that 21 is not weakly (o, co)-distributive. Q

(c)(i) Suppose that 2 is strategically weakly (o, co)-distributive. Let o be a winning strategy for II in
T'wa(2A). Then there is a winning strategy ¢’ for IT in T'yq(2() such that o'(ag, Ao, . .. , an, A,) always belongs



27

to the subalgebra generated by Ao U...U A, U {ag,...,a,}; just enlarge values of o slightly if necessary.
Now apply ¢’ directly to positions in T'yq(2B) to get a winning strategy in I'yq(B).

(ii) Similarly, if o is a winning strategy for IT in I'yq(B), then for each maximal antichain A C 2
let A’ C B be a maximal antichain refining A, for each a € AT let a’ € BT be such that a’ C a, and set
o'(ag, Ao, ... ,an, Ap) = olag, Ay, a1, Al ... ,an, A}) whenever aq,... ,a, all belong to B.

(iii) The same tricks work for tactically weakly (o, co)-distributive and strongly strategically weakly
(0, 00)-distributive algebras.

(d) Elementary.

(e) Use the argument of (c-i) above.

8C Proposition A Maharam algebra is tactically weakly (o, 00)-distributive and strongly strategically
weakly (o, 0o)-distributive.

proof Let v be a strictly positive Maharam submeasure on .
(a) Given a € A" and a maximal antichain A C 2, choose 7(a, A) such that 0 # 7(a, A) C a, 7(a, A)
meets only finitely many members of A and v(7(a, A)) > % where n is the least integer greater than V—la

Then 7 is a winning tactic for II in Tyq(2).

(b) Given a position (Ao, ao,. .. ,Ay) in I'k ,(A), let (A, ao, ... ,An) be an element ¢ of A such that
{a:a€ A, anc# 0} is finite and v(1\ ¢) < 27". Then o is a winning strategy for II in I'} 4 ().

Remark Note that in (b) the strategy for II is defined from n and A,,; so with a trifling adaptation (except
in the trivial case of finite 2, take a,, such that v(1\a,) < $v(1\a,_1)) can be defined from a,_1 and A,.

8D Proposition (DOBRINEN 03) If Jensen’s {) is true, there is a Souslin algebra which is not strategically
weakly (o, co)-distributive.

proof I use the construction of a Souslin tree (wy,<) in KUNEN 80, I1.7.8. Start from a {-sequence
(An)a<w,- Set Is = {(w-B) +n:n € N} for B < wy. The new element in the construction is a bijection
h:wp = [w1]<Y x [N]<“. Let C be the set of those non-zero limit ordinals v < wy such that f, = h[y] is
a function from [y]<“ to [N]<“; then C is a closed cofinal subset of w;. I Of course C is closed, because
the union of a non-decreasing sequence of functions is a function. To see that it is unbounded, note that if
f o [wi]<Y — [NJ<¥ is any function then f = h[A] for some A C w;y and that {y: fI[7]<* = h[ANA]} C C
is uncountable. Q

Let ¢/ C C be the set of those members of C' which are the suprema of strictly increasing sequences
of limit ordinals; for v € C’ choose a such a sequence (f,)nen of limit ordinals with supremum ~y. Set
Ky, ={0y:i<n}, Ly, ={w- 0y, +i:1 € f,(K,,)} for n € N. Now construct < inductively so that

(i) for each f < wi, <p =<N(w- S X w- P) is a tree ordering on w - J;

(ii) for f<wiandn €N, w-f+n<dw-(B+1)+miff [m/2] =n;

(iii) if @ < wy is a limit ordinal and £ € w - « then there is an n € N such that { <w - o + n;

(iv) if @ < wy is a limit ordinal and A, is a maximal up-antichain for <, then for every n € N

there is a £ € A, such that £ qw - o + n;

(v) (the new bit) if v € C" and n € I, then there is an n € N such that £ 4n for any £ € L.
To see that there is no obstacle to (v), note that when we come to v € C’, and need to choose a <,-branch
passing through a given { < w -+ to have a continuation, we first move to & >, & such that (if A, is a
maximal up-antichain for <) there is a ¢ € A, such that { <, &. Next, taking m such that & < w6,
there must be infinitely many members of Iy above {1, so we can find & € Iy, .., \ Ly mq1; assign any
branch through &5 for continuation.

As in KuNEN 80, this process builds an ever-branching Souslin tree. Let 2 be the corresponding regular
open algebra (FREMLIN 087, §514), so that 2 is ccc and weakly (o, 0o)-distributive. Let o be a strategy for
IT in T'yq(2A). For o < wy, let D, C 2A be the maximal antichain {[¢,00]: € € I, }. (Because our tree is ever-
branching, all the sets [¢, oo are regular open sets for the up-topology.) Define f : [w;]<* — [N]<% as follows.

v,m+1
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f(0) = 0. Given that K C w; is a non-empty finite set, express it as {ag, ... , @, } where ap < a1 < ... < Q.
Set ap = 1 and a;41 = 0(ag, Doy, - - - ,aj, Dy;) for j <m. Set f(K) = {i: amy1n [w- am +1i,00[ # 0}.

Let A C w; be such that f = h[A]. Because (A, )a<w, 18 a {-sequence and C” is a closed cofinal subset
of wyq, there is a v € C” such that AN~y = A,. Now consider the play of the game I'y,q(2() in which I plays
(1, Dg.,) for his first move and Dy_,, Dy, ,, ... thereafter; let ai, as... be the responses of II following his
strategy o. Then f,(K,n) = f(Kyn), 80 any1n [€,00[ = 0 whenever £ € Iy, \ L,,. But the construction
of 4,41 ensured that for every n € I, there must be some n such that the predecessor of 1 in Iy, does not
belong to L., and ap41 N [, 00[ = 0. So inf,ena, =0, I wins and o is not a winning strategy.

Thus 2 is not strategically weakly (o, co)-distributive.

Remark See Problem 9K.

8E Example (Jech) Let S C w; be a stationary set such that w; \ S is also stationary, and let P be the
set of subsets of S which are closed in the order topology of w;, ordered by end-extension (that is, for p,
g€ P, p<qiff p=g¢gn¢& for some £ < wy). Let A be the regular open algebra of P. Then 2 is weakly
(o, 00)-distributive but not strategically weakly (o, 0o)-distributive.

proof (a) ? If A is strategically weakly (o, 0o)-distributive then player IT has a winning strategy in Iyq(21).
For each o < wy, let Q, be the cofinal subset {p : p € P, supp > «a} of P, and fix a maximal antichain
Co C Qq; then A, = {[p,00[: p € Cy} is a maximal antichain in 2. (The partial order on P is separative,
so A, C 2.) Consider plays of the game T'yq(2() in which I starts with ag = P and plays only antichains of
the form A,, while IT follows his strategy. For each such play (P, Aq,, 61, Aays---), set D, ={p:p € A,,,
any10 [p,00[ # 0} and v, = sup,cp, supp; note that -, is determined by ag, ... ,an. So the set

Q ={v:m(ag,...,a,) <~y whenever n € N and «ayg, ... ,a, <~}

is a closed cofinal set in wy and there is a non-zero limit ordinal & € Q\S. Let (v, )nen be a strictly increasing
sequence with supremum « and consider the corresponding play of I'yq(2). For the corresponding sequence
(Dy)nen, we have o, < supp < « for every n € N, p € D,,. But now we are supposed to have a non-zero
a € 2 such that a C UpEDn [p, oo[ for every n € N. If p* € P is such that [p*, 00[ C a, then for each n € N
there is a p € D,, such that p* and p are compatible in P, that is, one is included in the other. As every
extension of p* is compatible with some member of D,,, we cannot have p* C p, and instead we have p C p*,
so that p* meets a \ ay,. As p* is closed, « € p*; but p* is supposed to be a subset of S. X

(b) ? If 2 is not weakly (o, 00)-distributive then player I has a winning strategy in I'yq(2(). Let < be a
well-ordering of P. This time, consider plays (ag, Ag, a1, A1,...) in Tyq(2A) in which T follows his strategy
and II always plays a move of the form a,4+1 = [p, U {an}, 0o[ where p,, is the <-least member of P such
that [py,,o0[ is included in some a,, N a where a € A, and «,, € S is such that o, > supp. This time,
let @ be the set of those @ < wy such that whenever («;);<, are permitted selections by II when playing
according to the recipe just described, then he will be able to continue with a,, < a. Again @ is a closed
cofinal set, so there is an non-zero & € N S such that S N« is cofinal with a. Let (8,)nen be a strictly
increasing sequence in S with supremum «. Then II will be able to play by selecting «,, with 8, < a,, < «
for each n. (At the nth move, given («;);<n, he will have the option of selecting some «/, < . Now he can
amend this to a, = max(c,, 8,).) But now, if we look at the corresponding p,, such that II’s move a,;
was [p, U {an},00[, we must have p, U {a,} C pny1 for each n, so that p* = J, oy pn U {a} belongs to P,
and [p*, o0 C a,, for every n; in which case II wins the play, which is supposed to be impossible. X

8F Theorem A Dedekind o-complete strongly strategically weakly (o, 0o)-distributive Boolean algebra
is a Maharam algebra.

proof Let 2 be a Dedekind o-complete strongly strategically weakly (o, co)-distributive Boolean algebra.

(a) I begin by checking that 2 is ccc. I Let A be an antichain in 2, and consider the play of I'} ;(2) in
which I plays A at every move. If II plays ag, a1, ... then sup, cya, = 1, while each a,, meets only finitely
many members of A; so A is countable. As A is arbitrary, 2 is ccc. Q

(b) If 2 # {0}, then 0 and 1 can be separated by open sets. I Let o be a winning strategy for II in
I 4(2), regarded as a function on finite strings of antichains in 2. Choose antichains Ag, Ap, A1, A7, ...
as follows. Ay = A = {1}. Given A; and A} for i < n, set
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D, ={d:0(4,...,As, A) C d for some antichain A},

D), ={d:o(Ay,...,A],A) Cdfor some antichainA}.

no

If there is an element of D,, with a complement in D;,, choose such a d,, and antichains A, 1, A}, such

that o(Ao, ..., An, Any1) C dy and o(Ap, ... , A}, A} L) C 1\ dy; otherwise stop.

? 1If the process here continued indefinitely, we should have a sequence (d)nen in 2 such that both
(dn)nen and (1\ dp)nen are order*-convergent to 1; but in this case (d,)nen is also order*-convergent to 0
and 0 = 1, contrary to hypothesis. X So the process terminates at some stage with 1\d ¢ D], for every
de D,.

? If 1 does not belong to the interior of D,, for the order-sequential topology of 2, then (because 2
is certainly weakly (o, co)-distributive, and we have just seen that it is ccc) there is a sequence (b;);en in
A\ D,, which is order*-convergent to 1. Let A be a maximal antichain in 2 such that {a: a € A, a\b; # 0}
is finite for every a € A. Then b; D o(Ay, ..., An, A) for all but finitely many 4, that is, b; € D,, for all but
finitely many 4, which is absurd. X

Thus 1 € int D,,; similarly, 1 € int D], and 0 € int{1\ d : d € D}, }. But we stopped at a point which made
these sets disjoint. Q

(c) Applying (b) to principal ideals of 2, as in the proof of Theorem 3C, we see that the order-sequential
topology of 2 is Hausdorff, so that 2 is Maharam.

9 Cardinal Functions
9A Galois-Tukey connections (see FREMLIN 087, §512)

(a) A supported relation is a triple (A, R, B) where A and B are sets and R is a relation.
If R is a relation I write R’ for the relation {(a,I) : a € R7![I]}. (If you don’t like proper classes,
interpret each occasion of this notation by cutting it down to a suitable set.)

(b) If (A, R, B) is a supported relation then cov(A, R, B) is the least cardinal of any I C B such that
A C R7I] (taken as oo if A € R71[B]). add(A, R, B) is the smallest cardinal of any I C A such that
I € R7Y[{b}] for any b € B (or oo if there is no such I).

(c) If (A,R,B) and (C, S, D) are supported relations a Galois-Tukey connection from (A, R, B) to
(C,S,D) is a pair (¢,1) where ¢ : A — C and ¢ : D — B are functions and (a,(d)) € R whenever a € A,
d € D and (¢(a),d) € S. T will write (4, R, B) <a1 (5,5, D) if there is a Galois-Tukey connection from
(A, R, B) to (C, S, D).

(d) If (A,R,B) <cer (C,S,D) then cov(4,R,B) < cov(C,S,D) and add(C,S,D) < add(A,R,B)
(FREMLIN 087, 512D).

9B Proposition Let 2 be a Maharam algebra, 7(2) its Maharam type and d(2l) its topological density
in its order-sequential topology. Then 7(2) < d(2() < max(w, 7(2)).

proof If D C 2 is topologically dense, then every element of 2 is expressible as inf,, ey sup,,,~,, @ for some
sequence (a,)neny in D, so D T-generates 2 and 7(2A) < #(D); accordingly 7(2) < d(). If D C A 7-
generates 2A, let B be the subalgebra of A generated by D and B its topological closure. Then B is
order-closed (because 2 is ccc), so is the whole of 2, and d(2) < #(B) < max(w,#(D)); accordingly
d(2) < max(w, 7(2A)).

9C The localization relation (FREMLIN 087, §521) Let S be the family of sets S C N x N such that
#(S[{n}]) < 2" for every n € N. For f € N¥, S € S say that f C* S if {n: f(n) ¢ S[{n}]} is finite. Now
(NN, C* 8) is the localization relation.

9D Theorem (compare FREMLIN 087, 523J) Let 2( be a Maharam algebra with countable Maharam
type, not {0}. Then (A", 2>’ [AT]=¥) gqr (NN, C*,S).

proof (a) Fix a strictly positive Maharam submeasure p on 2 such that p1 = 1, and a countable subalgebra
D C 2 which is dense for the order-sequential topology; let (a,)nen run over D.
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(b) For Se€ S,de D\ {0}, n € N set
Yan(S) = d\ sup,,>, sup{a; : (m,i) € S, pa; < 272" ?vd}.
Then
Whan(S) > pd — 320 272 ud > 0,
50 Yan () 7 0; set (S) = {Pan(S) : d € D\ {0}, n € N} € [AF]=.

(c) For a € A% choose ¢(a) € NN as follows. Start by taking d,, € D, for m € N, such that u(d,, A a) <
272m=4,4 for every j; then certainly ud,, > %ua for every m, so that if m > n then

(1(dm \ A1) < 272" 3pa < 2722 pd,.
Take ¢(a) so that ag ) = di \ dig1 for every i.

(d) (¢,%) is a Galois-Tukey correspondence from (AF,2’, [2A+]=¢) to (NN, C*,S). P Suppose that
a € AT and S € S are such that ¢(a) C* S; let n € N be such that ¢(a)(m) € S[{m}] for m > n. Let
(dm)men be the sequence constructed in the definition of ¢(a) as described in (c), and set d = d,,. Then

¢dn(s) - d\ SUmen(dm \ dm+1) c infmZn dm ca.

So a2 ’¥(S). Q
Accordingly (A, 27, [AF]=¥) <qr (NN, C*,S).

9E Corollary Let 20 be a Maharam algebra with countable Maharam type, and A the Lebesgue null
ideal. Then 7(A) < cfN.

proof

7(2A) = cov(AT, 2,AT) < max(w, cov(AT, 27, [AT]=¥)) < max(w, cov(NY, C*,S))
(putting 9Ad and 9D together)
= cov(NN, C* S) = cf \V

by FREMLIN 087, 521M.

9F Theorem Let 2 be a Maharam algebra with countable Maharam type, and N the Lebesgue null
ideal. Then wdistr(2() > add \V.

proof Fix a strictly positive Maharam submeasure 1 on A, a countable topologically dense subalgebra
D C 2 and a sequence (a,)nen running over D. For any partition of unity C' C 2 choose fo € NV as
follows. Let C’ = {c: 1\ ¢ meets only finitely many members of C'}. Choose ¢, € C’ such that uc, < 8"
for every m; for each n, choose a sequence {(d,;);cn in D such that ¢, C sup;s,, dn; and pud,; < 4—t.9—n-1
for every i. Set ¢, = sup,,«; d,; for each i, so that ¢, € D and uc, < 47, while Sup; s, ¢; 2 ¢, belongs to C’
for every n. Now choose fc(i) so that ¢, = () for each i. N

If Kk < addN and (C¢)ecy is a family of partitions of unity in 2, then there is an S € S such that
fo. €* S for every &, because add(NY, C*,S) = add N (FREMLIN 087, 521M). Set by = 1,

bnt1 = SUp,,>, sup{a; : (m,i) € S, pa; <4™™}
for each n; then b, < ano:n 27m = 27"+ for every n, so B = {b, \ b,11 : n € N} is a partition of unity.
Also, given £ < &, there is an n € N such that fc,(m) € S[{m}] for every m > n. Since u(afCE (m)) < 4™

for every m, it follows that if m > n then sup;,, fe, (i) C bypy1 and by4q € Cé. Thus every member

of B meets only finitely many members of C¢; and this is true for every £ < k. As (C¢)ecy is arbitrary,
wdistr(2() > add .

9G Proposition Let 2l be a Dedekind o-complete Boolean algebra with a non-zero atomless Maharam
submeasure p. Then d(2) > Meountable = cOv. M, where M is the ideal of meager subsets of R.
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proof We can suppose that y1 = 1. Then for each n € N we have a finite partition A, of unity in 2 such
that pa < 2772 for every a € A,,. Enumerate A,, as (@ni)ick(n)-

Suppose that k < cov. M and (Ce¢)e<, is a family of maximal centered subsets of 2. Then a € C¢ whenever
§<k,c€C¢and cCa. For{ <rkandn €N, CeN A, #0;let fe(n) < k(n) be such that a, r,(n) € C.
Because k£ < Meountable, there is an f € NN such that £ N fe # 0 for every £ < k (FREMLIN 087, 521Rb); we
may suppose that f(n) < k(n) for every n; set a = sup,,cy @n, f(n)- Then a € C¢ for every £ < k and pa < 1.
So 1\a € AT\ U, Ce.

As (C¢)e<y is arbitrary, d(2) > cov M.

10 Topological submeasures

10A Definitions (a) Let u be a submeasure defined on an algebra ¥ of subsets of a set X, and K a
family of sets. I say that p is inner regular with respect to K if whenever E € ¥ and € > 0 there is a
K € KU {0} such that K € ¥, K C E and u(E\ K) <e.

(b) A submeasure p defined on an algebra of sets is (countably) compact if it is inner regular with
respect to some (countably) compact family of sets.

(¢) Now suppose that X is a Hausdorff space. Then a submeasure p defined on a o-algebra 3 of subsets
of X is a Radon submeasure if (i) ¥ contains every open set (ii) whenever E C F' € ¥ and pF = 0 then
E € ¥ (iii) p is inner regular with respect to the compact sets.

10B Remarks These definitions are of course based on the corresponding notions for measures; see
FrREMLIN 03, §§412, 416 and 451. But watch out for the translations; thus the definition of ‘inner regular’
for submeasures matches the definition for totally finite measures, but not the definition for general measures,
which of course need not be exhaustive.

10C Proposition (a) Suppose that p is an exhaustive submeasure defined on an algebra ¥ of sets, and
that K is a family of sets such that KUL € IC whenever K, L € K are disjoint and pF = sup{uK : K € KNX,
K C E} for every E € . Then p is inner regular with respect to K.

(b) Suppose that u is a countably compact submeasure defined on a o-algebra ¥ of sets. Then p is a
Maharam submeasure.

(¢) Any Radon submeasure is a Maharam submeasure.

proof (a) 7 Otherwise, there are F € 3 and € > 0 such that pu(E \ K) > € whenever K € ¥ N K NPE.
Choose (K,)nen inductively so that K, € SNK, K, € E\ U,., K; and pK, > p(E\U,_, K;) — %€ for
every n. Then (J,_, K; € K so ukK, > %e for every n; but u was supposed to be exhaustive. X

(b) Let £ C ¥ be a countably compact class such that g is inner regular with respect to K. Let
(En)nen be a non-increasing sequence in ¥ with infimum () in X; since ¥ is a o-algebra, (), oy En = 0. 2 If
inf,en wE, =~ > 0, then for each n € N choose K,, € XNK such that K,, C E,, and u(E, \ K,) < 27" 1.
Then

M(ﬂ Kz) > MEn - ZM(En \ Kz) > MEn - ZM(Ez \ Kz)
0 =0

i<n i=
n
>y=) 27"y >0
i=0
and ﬂign K; # 0 for every n. But (), cnKn € (,eny En is empty and K is supposed to be countably

compact. X

(c) Immediate from the definitions and (b).

10D Theorem Let X be a Hausdorff space and K the family of compact subsets of X. Let ¢ : K — [0, 00|
be a bounded functional such that

() 0 =0 and K < (K UL) < oK + ¢L for all K, L € K;
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(8) whenever K € K and € > 0 there is an L € K such that L C X \ K and ¢K’ < e whenever
K’ € K is disjoint from K U L;
(v) whenever K, L € K and K C L then ¢L < ¢K +sup{¢pK' : K' e K, K’ C L\ K}.
Then there is a unique Radon submeasure defined on an algebra of subsets of X and extending ¢.

proof (a) For A C X write ¢, A = sup{¢K : K C A is compact}. Then ¢, extends ¢. Also ¢.(, ey Gn) <
Yo ¢+Gh for every sequence (G )nen of open subsets of X. P If K C J,, .y Gn is compact, it is expressible
as Uign K; where n € N and K; C G; is compact for every i < n. Q

(b) Let X be the family of subsets E of X such that for every € > 0 there is a K C X such that K N E
and K \ E are both compact and ¢.(X \ K) <e. Then X is an algebra of subsets of X including IC. P (i)
Of course X \ E € ¥ whenever E € 3. (ii) If E, F € ¥ and € > 0, let K, L C X be such that KNE, K\ E,
LNF and L\ F are all compact and ¢, (X \ K), ¢.(X \ L) are both at most £e. Then (K N L) N (EUF)
and (KNL)\ (EUF) are both compact, and ¢,(X \ (K N L)) <e. Aseis arbitrary, EUF € X. (iii) By
hypothesis (8), K C 2. Q

(c) X is a o-algebra of subsets of X. I Let (E,)nen be a sequence in ¥ with intersection E, and € > 0.
For each n € N let K,, C X be such that K,, N E,, and K, \ E,, are compact and ¢.(X \ K,) < 27 "¢; set
K = ,en Kn. Set L = (,,en Kn N Ey, so that L C E is compact, and let L' € X \ L be a compact set
such that ¢ (X \ (LUL")) <e¢set K/ = KN(LUL'). Then ¢.(X \ K') < 3e. As L’ N L = () there is an
n € N such that L' N, ., K; N E; is empty. Now

KA1 € Uyen(X\ (K M E) (1 Ki € Upen X\ B € X\ F,
so K'NE=KNLand K'\ E=KnNLare compact. As e is arbitrary, £ € . Q
(d) Set = ¢, [X. Then p is subadditive. I Suppose that F, FF € ¥ and K C FU F is compact. Let

€ > 0. Then there are Ly, Ly € K such that L1 N E, L1 \ E, Ly N F and Ly \ F are all compact, while
¢(X \ L1) and ¢.(X \ Lg) are both at most e. Set K1 = L1 N E and Ko = Ly N F, so that

PK < (KUK UKs) < ¢(K1 UK3) + ¢ (K \ (K1 UK>))

(by hypothesis (7))
< OK 1+ oKy + ¢ (X \ (L1 N L2)) < g B+ ¢ F + 2e.

As e and K are arbitrary, ¢.(FUF) < ¢.E + ¢ F. Q

(e)f ECFeXand uF =0then E € 3. P Let ¢ > 0. Let K C X be such that K N F and K \ F are
both compact and ¢.(X \ K) <e. If L€ K and LN K C F then ¢,(L\ K) < € so

(LUKNF))<e+dp(KNF)=ce

Accordingly ¢, (X \ (K\ F)) <e. But (K\ F)NE and (K \ F) \ E are both compact. As € is arbitrary,
EFeX. Q

(f) p is inner regular with respect to K. P If E € ¥ and € > 0, let K C X be such that KNFE and K\ F
are both compact and ¢, (X \ K) <e. f Le K and L C F\ K then ¢L < ¢ (X \ K) <e€; 50 w(E\ K) <e.
Q

(g) Every open set belongs to X. P Let G C X be open, and € > 0. Applying (8) with K = 0
we have an L € K such that ¢.(X \ L) < e. Next, there is an L' € K, disjoint from L \ G, such that
o (X\N(L\G)UL)) <e. Set L =LN((L\G)UL'). Then L"NG =LNL and L\ G =L\ G are
compact and ¢.(X \ L") < 2¢. Q

(h) So p is a Radon submeasure. To see that it is unique, let 4 be another Radon submeasure with the
same properties, and ¥’ its domain. If E € ¥ there are sequences (K}, )nen, (Ln)nen of compact sets such
that K,, CE, L, C X\ E and pu(F\ K,,) + p((X \ E) \ L) < 27" for every n. Set F' = J, .y Kn and
F" =, en Ln; then F'U F’ belongs to ¥ N X' and

neN

(XN (FUF)) = ¢ (X \(FUF')) = pu(X\ (FUF))
< inf p(X\ (K U Ly)) =0.
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Consequently F\ F € ¥/ and F € ¥/,
The same works with g and g’ interchanged, so ¥ = ¥/ and p/ = ¢.[X = pu.

10E Theorem Let X be a zero-dimensional compact Hausdorff space and B the algebra of open-and-
closed subsets of X. Let v : B — [0,00[ be an exhaustive submeasure. Then there is a unique Radon
submeasure on X extending v.

proof (a) Let K be the family of compact subsets of X and for K € K set ¢K = inf{vE : K C E € B}.
Then ¢ satisfies the conditions of Theorem 10D.

P(a) Of course ¢f) = 0 and ¢K < ¢L whenever K C Lin K. f K C E € B and L C F € B, then
KULCEUFe®Bandv(EUF)<vE+vF, so ¢ is subadditive. Q

(B) The point is that for every K € K and € > 0 there is an E € B8 such that K C E and vF < ¢
whenever F' € B and F C E \ K; since otherwise we could find a disjoint sequence (Fj,)pen in B with
vF, > € for every n. But now L = X \ F is compact and disjoint from K, and every compact subset of
X\ (KUL)=F\K is included in a member of B included in F \ K; so sup{¢K’' : K’ C X\ (KUL) is
compact} < e.

(7) If K and L are compact and K C L and € > 0, take F € B such that K C E and vE < ¢K + .
Set K'=L\E. If Fe®B and F O K', then EUF D L, so

¢L<v(EUF)<vE+vF <¢K +e+VF.
As F is arbitrary, ¢L < ¢K + ¢K' +¢. Q

(b) There is therefore a Radon submeasure p extending ¢ and v.

(c) If ¢ is another Radon submeasure extending v, then p/[IC = ¢. P Of course 'K < ¢K for every
KeK. ?2IfKeKande>0and /K +¢ < ¢K, let E € B be such that K C E and ¢L < € whenever
L C F\ K is compact, as in (a-8) above. Then

W (E\K)=sup{y/L:LC FE\ K is compact}
<sup{¢L: L C E\ K is compact} < e

and
vE=pE<e+ K <uK <puFE=vE. XQ
By the guarantee of uniqueness in 10D, u' = p.

10F Theorem Let X be a topological space, G the family of cozero subsets of X and Ba(X) the Baire
o-algebra of X. If ¢ : G — [0, 00[ is a functional, then 1 can be extended to a Maharam submeasure with
domain Ba(X) iff
(o) YG < ¢ H whenever G, H € G and G C H,
(B) Y(Unen Gn) < ZZO:O Y@, for every sequence (Gp)nen in G,

(7) limy,—,00 ¥G,, = 0 for every non-increasing sequence (G, )nen in G with empty intersection.
In this case, the extension is unique.

proof (a) If ¢ can be extended to a Maharam submeasure, then the conditions are surely satisfied, using
1B(a-i) for (B8). So for most of the rest of the proof I suppose that the conditions are satisfied and seek to
construct a Maharam submeasure on Ba(X) extending ).

(b) Let £ be the family of those sets E C X such that for every e > 0 there are a cozero set G O E and
a zero set F' C F such that (G \ F) <e.

(i) Zero sets belong to £. P If FF C X is a zero set, there is a non-increasing sequence (G, )nen in G
with intersection F'; now (7) tells us that inf,en Gy, \ FF =0. Q

() IfEc&then X\EcE PIHFCECGthen X\GCX\ECX\F. Q
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(iii) If Ey, Eq € € then Eg UE; € €. P Given € > 0, let Fy C Ey, F1 C E; be zero sets and Go 2 Ey,
G1 2 E; cozero sets such that ¥(Go \ Fo) + ¥ (G1 \ F1) < € now G = GgU G is a cozero set, F' = Fy U F}
is a zeroset, F C EgUE; C G and ¥(G \ F) < € (using (a) and (3)). Q
Consequently £ is an algebra of subsets of X.

(iv) If (Gp)nen is a disjoint sequence in G then lim, o G, = 0 (apply (7) to (U;s,, Gi)nen). So if
(Gp)nen 18 a sequence of cozero sets, (F,)nen is a sequence of zero sets and G411 C F, C G, for every
N, limy, 00 liMy, 00 (G \ Fr) = 0. P2 Otherwise, we have an € > 0 and a strictly increasing sequence
(nk)ren such that (Gy, \ Fn,,,) > € for every k. But now (G, \ Fh,,.,)ken is disjoint sequence of sets
on which 9 takes values greater than or equal to ¢. XQ

(v) If (Ep)nen is a non-increasing sequence in & then £ = (), .y E, belongs to £&. P Let € > 0. For
each n € N take a zero set F,, C F,, and a cozero set G,, 2 E,, such that ¢(G,, \ F,,) < 27 "e. Choose zero
sets F), cozero sets G, such that

Fn+1 c G;«Hﬂ - F7’1+1 - Gn+1 N G;l

for every n. Set F' =, ey Fim- There is a strictly increasing sequence (ng)ren such that ¢(G),, \Fy,) < 27Fe
for all k, m € N. Now I’ C F is a zero set, G = G, 2 E is a cozero set, and

G\F c UkeNGnk \Fnk UUKENG’/nk \F/zk+17
so (G \ F) < de, by (B) in its full strength. As € is arbitrary, £ € £. Q
Thus € is a o-algebra of subsets of X, and includes Ba(X).
(c) For E € &, set

uE = inf{)G : G is a cozero set including E'}.

(i) p extends ¥ (by («)); in particular, u) = 0 (by (7).
(ii) If FEy, By € & and Ey C E; then ,U,EO < [LEl

(iii) If E, E’ € & then u(Fo U Ey) < pEo+ pEy. P If € > 0, we have cozero sets Gg 2 Ey, G1 2 E;
such that vGo + VG, < puEy + pFE1 + €; now Gg U Gy is a cozero set including Ey U Eq, so

u(Eo U EL) <9(GoUGy) <9YGo+9Gy + € < pby+ pEy + 6. Q
Thus p is a submeasure.

(iv) If (E,)nen is a non-increasing sequence in £ with empty intersection, then inf,enypE, = 0. P
Take any € > 0, and repeat the construction of (b-v) above. At the end, we have a cozero set G = G,
including E,,,, while F' must be empty, so

wEkn, <YG <4de. Q
Thus p is a Maharam submeasure, and p[Ba(X) is an extension of the type we seek.

(d) As for uniqueness, suppose that v is any Maharam submeasure on Ba(X) extending ¢. If FF C X is
a zero set, then it is the intersection of a non-increasing sequence of cozero sets, so vF = pF. If E € Ba(X)
and € > 0, there are a zero set F' C F and a cozero set G 2 F such that ¥(G \ F) < ¢; now both pF and
vE belong to [uF, uG] and this interval has length at most €, so [uE — vE| < e. As FE and € are arbitrary,
v agrees with p on Ba(X).

Remark If ¢ is a modular functional (that is, ¥(GU H) +¢(GN H) = vG + ¢ H for all G, H € G), then
1 will be a measure; cf. FREMLIN 03, 413Xq.

10G Example I refer to Talagrand’s example of an exhaustive submeasure v which is not uniformly
exhaustive, as described in FREMLIN NO6. v is defined on the algebra of open-and-closed subsets of a
compact space X = [], oy 7T, where each T}, is finite, and is invariant under permutations of each T;,; so
we can give X a group structure under which it is a compact metrizable abelian group and v is translation-
invariant. Let 7 be the Radon submeasure on X extending v; then v is translation-invariant. Let p be the
Haar probability measure on X.
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As noted in §X of FREMLIN NOG6, there is no non-trivial uniformly exhaustive submeasure dominated by
v. Consequently, writing B for the o-algebra of Borel subsets of X, (u[B) A (v[B) = 0 and there must
be a Borel set £ C X such that vE = 0 and u(X \ E) = 0 (1M). Consider W = {(z,y) : z, y € X,
ry € E}. Then pW([{z}] = 1 for every x € X, while vW ~![{y}] = 0 for every y € X. In particular,
We (N®w) xN(p)\ (N() x M(u)), while (X, p) is isomorphic, as measure space, to [0, 1] with Lebesgue
measure; compare 4Ga.

11 Problems

11A A long-outstanding problem is: is every o-finite-cc Boolean algebra in fact o-bounded-cc? It is easy
to show that every Maharam algebra is o-finite-cc, and that every measurable algebra is o-bounded-cc. But
is every Maharam algebra o-bounded-cc? (See 4D-4E.)

11B Let (A, )nen be a sequence of Maharam algebras and p, a unital Maharam submeasure on 2,
for each n. Must there be a Maharam algebra 20 with a Maharam submeasure p such that (0, gu,) is
isometrically isomorphic to a subalgebra of (2, i) for every n?

11C Is there a strictly positive exhaustive submeasure on Gaifman’s algebra, that is, the regular open
algebra RO(X) described in Proposition 6A7

11D(a) Let € be a Boolean algebra and 2l a o-finite-cc Boolean algebra, not {0}. Suppose that Ik ‘€ is
o-finite-cc’, in the sense that we have a sequence 6, of functions from € to 2 (interpret 0,,(c) as [¢ € Sn]])
such that
sup, ey On(c) = 1 for every c € €;
for any n € N and any disjoint sequence (cg)ren in €, (0, (ck))ken order*-converges to 0 in 2L
Must € be o-finite-cc?
(b) Repeat (a) for ‘c-bounded-cc’.
11E Is there any general bound for the ordinals Mhsm(2l) for Maharam algebras 2? Note that TA-
LAGRAND 06 describes a countable algebra B with a strictly positive exhaustive submeasure which is not

uniformly exhaustive; for any € > 0, r(1) must be countable; taking the metric completion of 9B, we obtain
a Maharam algebra 2( such that w* < Mhsm(2() < wy, by §§7C-7D and 7J.

11F A measurable algebra of cardinal ¢ or less is o-linked, indeed o-n-linked for every n > 2 (Dow &
STEPRANS 94, or FREMLIN 087, 5230f). Note that the linking number of any Maharam algebra 2 is at
most max(w,7(2)); in particular, there is a non-measurable Maharam algebra which is o-linked, therefore
o-bounded-cc. But is every Maharam algebra of size ¢ necessarily o-linked?

11G Let B, be the measure algebra of the usual measure on {0, 1}*, and 2 a non-measurable Maharam
algebra. Must it be true that B, \ {1} g7 2A\ {1}?

11H Write S* for |J,cn{0,1}". For A C S*, set E4 = {z : x € {0,1}", {n: [n € A} is infinite}. For
any ideal Z < PS*, write &7 for the ideal of the Borel o-algebra B({0, 1} generated by {E4 : A € Z}.
Find a combinatorial characterization of those p-ideals Z of P.S* such that B({0,1}")/&z is ccc and weakly
(0, 00)-distributive.

111 In Theorem 7H, can we improve on the factor %?
11J Is it possible for a Souslin algebra to be strategically weakly (o, co)-distributive?
11K In Glowczyriski’s example (see 6B) can 2 be strategically weakly (o, co)-distributive?

11L Let A be an atomless Maharam algebra of countable Maharam type, not {0}. Must we have
wdistr () = add N and/or w(A) = ¢f N and/or d(A) = non N7 (See §9.)
11M Let 2 be a non-zero atomless Maharam algebra. Does it necessarily have an atomless closed

subalgebra which is a measurable algebra?

11N Let p be a non-zero Radon submeasure on an algebra X of subsets of [0,1]. Does u have a lifting?
that is, is there a Boolean homomorphism ¢ : ¥ — 3 such that (i) u(EA@(E)) = 0 for every E € ¥ (ii)
{E:¢E =0} ={F: uE =0}?
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