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1 Foundations

1A Definitions (See Fremlin 04, §392.) Let A be a Boolean algebra.

(a)(i) A submeasure on A is a functional ν : A → [0,∞[ such that

ν is subadditive, that is, ν(a ∪ b) ≤ νa+ νb for all a, b ∈ A,
ν0A = 0, νa ≤ νb whenever a ⊆ b ∈ A.

(ii) Let ν be a submeasure on A. ν is exhaustive if limn→∞ νan = 0 for every disjoint sequence
〈an〉n∈N in A. ν is uniformly exhaustive if for every ǫ > 0 there is an n ∈ N such that infa∈A νa < ǫ
for every disjoint set A ⊆ A of size greater than n. ν is strictly positive if νa > 0 for every non-zero
a ∈ A. ν is countably subadditive if ν(supn∈N an) ≤ ∑∞

n=0 νan whenever 〈an〉n∈N is a sequence in A with
a supremum in A. ν is a Maharam submeasure if limn→∞ νan = 0 whenever 〈an〉n∈N is a non-increasing
sequence in A with infimum 0. ν is atomless if whenever a ∈ A and νa > 0 there is a b ⊆ a such that νb > 0
and ν(a \ b) > 0. ν is unital if ν1A = 1. ν is additive if ν(a ∪ b) = νa + νb for all disjoint a, b ⊆ A. ν is
completely additive if it is additive and infa∈A νa = 0 whenever A is a non-empty downwards-directed
set in A with infimum 0 (see Fremlin 04, 326J). ν is pathological if it is non-zero and there is no non-zero
additive functional µ on A such that 0 ≤ µa ≤ νa for every a ∈ A. ν is a Ramsey submeasure (Zapletal

p06) if infm<n∈N ν(am ∪ an) ≤ supn∈N νan for every sequence 〈an〉n∈N in A. ν is diffuse (Farah) if for every
ǫ > 0 there is a finite partition D of the identity such that νd ≤ ǫ for every d ∈ D.

(iii) If µ and ν are two submeasures on A, I say that µ is absolutely continuous with respect to ν
if for every ǫ > 0 there is a δ > 0 such that µa ≤ ǫ whenever νa ≤ δ.

(b) A is a Maharam algebra (Veličković 05) if it is Dedekind complete and there is a strictly positive
Maharam submeasure on A. A is a measurable algebra (Fremlin 04, §391) if it is Dedekind complete
and there is a strictly positive additive Maharam submeasure on A. (For an example of a Maharam algebra
which is not measurable, see Talagrand 06 or Fremlin n06.) A is chargeable if it has a strictly positive
additive submeasure (Fremlin 04, 391X). If A is Dedekind σ-complete, I will say that it is nowhere
measurable if no non-zero principal ideal of A is a measurable algebra.

(c) A is weakly (σ,∞)-distributive (Fremlin 04, §316) if for every sequence 〈Cn〉n∈N of partitions of
unity in A there is a partition D of unity in A such that {c : c ∈ Cn, c ∩ d 6= 0} is finite for every n ∈ N and
every d ∈ D. A is weakly σ-distributive if for every sequence 〈Cn〉n∈N of countable partitions of unity in
A there is a partition D of unity in A such that {c : c ∈ Cn, c ∩ d 6= 0} is finite for every n ∈ N and every
d ∈ D. Note that every weakly (σ,∞)-distributive algebra is weakly σ-distributive, and that a ccc weakly
σ-distributive algebra is weakly (σ,∞)-distributive.

If κ is any cardinal, A is weakly (κ,∞)-distributive if whenever 〈Cξ〉ξ<κ is a family of partitions of
unity in A, there is a partition D of unity such that {c : c ∈ Cξ, c ∩ d 6= 0} is finite for every d ∈ D and
ξ < κ. Now the weak distributivity wdistr(A) of A is the least cardinal κ such that A is not weakly
(κ,∞)-distributive. (If there is no such cardinal, write wdistr(A) = ∞.)

(d) A is σ-finite-cc (condition (ii) of Horn & Tarski 48, Theorem 2.4) if there is a sequence 〈An〉n∈N

of sets with union A such that no infinite subset of any An is disjoint; it is σ-bounded-cc (condition (ii)′ of
Horn & Tarski 48, p. 482) if there is a sequence 〈An〉n∈N of sets with union A such that no An includes
a disjoint set of size greater than n. For cardinals κ, λ and θ, say that (κ, λ,<θ) is a precaliber triple of
A if for every family 〈aξ〉ξ<κ in A

+ = A \ {0} there is a Γ ∈ [κ]λ such that infξ∈I aξ 6= 0 for every I ∈ [Γ]<θ

(see Fremlin 08?, §511). I will say that (κ, λ, θ) is a precaliber triple of A if (κ, λ,<θ+) is a precaliber
triple of A. [If (ω1, ω1, n) is a precaliber triple of A, A is said to have property Kn.]

I will examine a further chain condition on a Boolean algebra in §§2D and 6A:
1
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(*) A =
⋃

n∈N
An where every infinite subset of every An has an infinite centered subset.

(e) A sequence 〈an〉n∈N in A order*-converges to a ∈ A (Fremlin 04, §§367 and 392) if there is a
partition C of unity in A such that {n : c ∩ (an △ a) 6= 0} is finite for every c ∈ C. The order-sequential
topology on A (Fremlin 04, §392; compare Balcar G lowczyński & Jech 98) is the topology for which
a set F ⊆ A is closed iff a ∈ F whenever 〈an〉n∈N is a sequence in F order*-converging to a.

1B Elementary remarks (a)(i) Any Maharam submeasure is sequentially order-continuous. PPP Let µ
be a Maharam submeasure on a Boolean algebra A. (α) If 〈an〉n∈N is non-decreasing and has supremum a,
then 〈a \ an〉n∈N is non-increasing and has infimum 0; now

µan ≤ µa ≤ µan + µ(a \ an)

for each n, so

limn→∞ |µa− µan| ≤ limn→∞ µ(a \ an) = 0.

(β) If 〈an〉n∈N is non-increasing and has infimum a, then 〈an \ a〉n∈N is non-increasing and has infimum 0;
now

limn→∞ |µa− µan| ≤ limn→∞ µ(an \ a) = 0. QQQ

(ii) A Maharam submeasure on a Dedekind σ-complete Boolean algebra is exhaustive (Fremlin 04,
392Hc).

(iii) Any Boolean algebra with a strictly positive exhaustive submeasure (in particular, any Maharam
algebra) is σ-finite-cc therefore ccc.

(b) If A is a Boolean algebra and ν is an exhaustive submeasure on A which is sequentially order-
continuous on the left (that is, νa = supn∈N νan whenever 〈an〉n∈N is a non-decreasing sequence in A with
supremum a) then ν is a Maharam submeasure. PPP If 〈an〉n∈N is a non-increasing sequence in A with infimum
0, then νan = limi→∞ ν(an \ ai) for each n, so we can choose a strictly increasing sequence 〈nk〉k∈N such
that ν(ank

\ ank+1
) ≥ νank

− 2−k for each k; now

limn→∞ νan = limk→∞ νank
= limk→∞(νank

\ ank+1
) = 0. QQQ

(c) Let A be a Boolean algebra. (i) If A is σ-finite-cc then any subalgebra of A is σ-finite-cc. (If 〈An〉n∈N

witnesses that A is σ-finite-cc, and B is a subalgebra of A, then 〈An ∩B〉n∈N will witness that B is σ-finite-
cc.) (ii) If A has an order-dense σ-finite-cc subalgebra B, then A is σ-finite-cc. (If 〈Bn〉n∈N witnesses that
B is σ-finite-cc, set An = {a : a ∈ A, b ⊆ a for some b ∈ Bn} for each n; then 〈An〉n∈N will witness that A is
σ-finite-cc.) (iii) If A has an order-dense weakly (σ,∞)-distributive subalgebra B then A is weakly (σ,∞)-
distributive. (If 〈Cn〉n∈N is a sequence of partitions of unity in A, then for each n ∈ N we can find a partition
of unity C ′

n in B refining Cn. Now there is a partition D of unity in B such that {c : c ∈ C ′
n, c ∩ d 6= 0} is

finite for every n ∈ N and d ∈ D; in this case, D is still a partition of unity in A and {c : c ∈ Cn, c ∩ d 6= 0}
is finite for every n ∈ N and d ∈ D.)

1C Lemma Let A be a Dedekind σ-complete Boolean algebra and ν an atomless Maharam submeasure
on A.

(a) If a ∈ A and 0 ≤ γ ≤ νa there is a b ∈ A such that b ⊆ a and νb = γ.
(b) ν is diffuse.

proof (a)(i) Note first that if δ > 0, c ∈ A and νc > 0 then there is a d ⊆ c such that 0 < νd ≤ δ. PPP
Choose 〈cn〉n∈N inductively so that c0 = c, cn+1 ⊆ cn, νcn+1 > 0 and ν(cn \ cn+1) > 0 for every n. By 1Ba,
ν is exhaustive. So limn→∞ ν(cn \ cn+1) = 0, and we can take d = cn \ cn+1 for an appropriate n. QQQ

(ii) Choose 〈bn〉n∈N inductively, as follows. b0 = 0. Given that bn ⊆ a, set γn = sup{νc : bn ⊆ c ⊆ a,
νc ≤ γ} and choose bn+1 such that bn ⊆ bn+1 ⊆ a, νbn+1 ≤ γ and νbn+1 ≥ γn − 2−n. Set b = supn∈N bn;
then 〈b \ bn〉n∈N is non-increasing and has infimum 0, so limn→∞ ν(b \ bn) = 0 and νb = limn→∞ νbn ≤ γ.

If b ⊆ b′ ⊆ a and νb′ ≤ γ, then νb′ = νb. PPP??? Otherwise, there is an n ∈ N such that νb < νb′ − 2−n. But
observe that bn ⊆ b and νb ≤ γ, so νbn ≥ νb′ − 2−n. XXXQQQ
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??? Suppose, if possible, that νb < γ. Let D be a maximal disjoint family in A such that 0 < νd ≤ γ − νb
and b ∩ d = 0 for every d ∈ D. Because ν is exhaustive, D must be countable; let 〈dn〉n∈N run over
D ∪ {0}. By the last remark, we can induce on n to see that ν(b ∪ supi≤n di) = νb for every n ∈ N. Set
b∗ = b ∪ supi∈N di; then

νb∗ = limn→∞ ν(b ∪ supi≤n bi) = νb < γ,

and ν(a \ b∗) ≥ νa− νb∗ > 0. By (a), there is a d ⊆ a \ b∗ such that 0 < νd ≤ γ − νb∗. So we ought to have
put d into D. XXX

Thus νb = γ, as required.

(b) Let A0 ⊆ A be a maximal disjoint set such that νa = ǫ for every a ∈ A0. Because ν is exhaustive
(1B(a-ii)), A0 is finite. Set c = 1 \ supA0; by (a), νc < ǫ. So we can take A = A0 ∪ {c}.

1D Proposition Let A be a weakly (σ,∞)-distributive Boolean algebra and ν : A → [0,∞[ a functional
such that νb ≤ νa whenever b ⊆ a. Set

µa = inf{supc∈C νc : C ⊆ A is non-empty and upwards-directed and supC = a}.

(a) µb ≤ µa whenever b ⊆ a in A.
(b) If νa > 0 for every non-zero a ∈ A then µa > 0 for every non-zero a ∈ A.
(c) µ is sequentially order-continuous on the left, that is, µa = supn∈N an whenever 〈an〉n∈N is a non-

decreasing sequence with supremum a.
(d) If ν is subadditive, so is µ.
(e) If ν is an exhaustive submeasure, µ is a Maharam submeasure.
(f) If ν is a uniformly exhaustive submeasure, so is µ.
(g) If ν is additive, µ is countably additive.

proof (a) If b ⊆ a and C is an upwards-directed set with supremum a, then {b ∩ c : c ∈ C} is an upwards-
directed set with supremum b; so µb ≤ µa.

(b) If µa = 0, then for each n ∈ N we can find a non-empty upwards-directed set Cn such that supCn = a
and supb∈Cn

νb ≤ 2−n. Set

C = {c : there is some n ∈ N such that for every m ≥ n

there is a b ∈ Cm such that b ⊇ c}.
Then C is upwards-directed and (because A is weakly (σ,∞)-distributive) supC = a. But νc = 0 for every
c ∈ C so (because ν is strictly positive) C = {0} and a = 0. Thus µ is strictly positive.

(c) Suppose that 〈an〉n∈N is a non-decreasing sequence in A with supremum a, then of course µa ≥
supn∈N µan. Now suppose that α > supn∈N µan. For each n ∈ N, we have a non-empty upwards-directed
set Bn such that supBn = an and νb ≤ α for every b ∈ Bn. Set

C = {c : there is some n ∈ N such that for every m ≥ n

there is a b ∈ Bm such that b ⊇ c}.
Then (as in (b)) C is upwards-directed and supC = a. So µa ≤ supc∈C νc ≤ α. As α is arbitrary,
µa = supn∈N µan.

(d) If a, a′ ∈ A, B is a non-empty upwards-directed set with supremum a, and B′ is a non-empty
upwards-directed set with supremum a′, then C = {b ∪ b′ : b ∈ B, b′ ∈ B′} is a non-empty upwards-directed
set with supremum a ∪ a′. If ν is subadditive,

µ(a ∪ a′) ≤ supc∈C νc ≤ µa+ µa′;

thus µ is subadditive.

(e) If ν is an exhaustive submeasure, then µ is exhaustive, because µ ≤ ν. By 1Bb, µ is a Maharam
submeasure.

(f) If ν is uniformly exhaustive, so is µ, because µ ≤ ν.
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(g) If ν is additive and a, a′ ∈ A are disjoint, then µ(a ∪ a′) ≥ µa + µa′. PPP If C is non-empty, upwards
directed and has supremum a, then B = {c ∩ a : c ∈ C} and B′ = {c ∩ a′ : c ∈ C} are upwards-directed with
suprema a, a′ respectively. So

µa+ µa′ ≤ supb∈B νb+ supb′∈B′ νb′ = supb∈B,b′∈B′ ν(b ∪ b′) ≤ supc∈C νc.

because C is upwards-directed. As C is arbitrary, µa + µa′ ≤ µ(a ∪ a′). QQQ But we know already that
µ is subadditive, so it must be additive. Now it is actually countably additive because it is a Maharam
submeasure.

1E Proposition Let A be a Boolean algebra and µ a strictly positive exhaustive Maharam submeasure
on A.

(a) µ is order-continuous.
(b) µ has a unique extension to a strictly positive Maharam submeasure µ̂ on the Dedekind completion

Â of A, so Â is a Maharam algebra.
(c)(i) µ̂ is uniformly exhaustive iff µ is.

(ii) µ̂ is additive iff µ is.

proof (a) Because µ is strictly positive and exhaustive, A is ccc (1Ba(iii)); because µ is sequentially order-
continuous (1Ba(i)), µ is order-continuous (Fremlin 04, 316Fc).

(b) For d ∈ Â, set µ̂d = inf{µa : d ⊆ a ∈ A}. Then µ̂ extends µ, and µ̂d ≤ µ̂d′ whenever d ⊆ d′ in Â. If

d, d′ ∈ Â then

µ̂(d ∪ d′) = inf{µa : (d ∪ d′) ⊆ a ∈ A} ≤ inf{µ(a ∪ a′) : d ⊆ a ∈ A, d′ ⊆ a′ ∈ A}
≤ inf{µa+ µa′ : d ⊆ a ∈ A, d′ ⊆ a′ ∈ A} = µ̂d+ µ̂d′.

Thus µ̂ is a submeasure. If d ∈ Â is non-zero, there is a non-zero a ∈ A such that a ⊆ d, in which case

µ̂d ≥ µa > 0; so µ̂ is strictly positive. If 〈dn〉n∈N is a non-increasing sequence in Â with infimum 0, then

A = {a : a ∈ A, a ⊇ dn for some n ∈ N} is downwards-directed and has infimum 0 in Â and therefore in A.
Because µ is order-continuous,

infn∈N µ̂dn = infa∈A µa = 0.

As 〈dn〉n∈N is arbitrary, µ̂ is a Maharam submeasure. By 1Ba(ii) (or otherwise), it is exhaustive.

(c)(i) If µ is uniformly exhaustive and ǫ > 0, let n ∈ N be such that mini≤n µai ≤ ǫ whenever a0, . . . , an ∈
A are disjoint. If now d0, . . . , dn ∈ Â are disjoint and η > 0, we have µ̂di = sup{µ̂a : a ∈ A, a ⊆ di} for
each i, because µ̂ is order-continuous, by (a) here (or otherwise). Take ai ⊆ di such that µ̂ai ≥ µ̂di− η; then
a0, . . . , an are disjoint, so

mini≤n µ̂di ≤ η + mini≤n µ̂ai ≤ η + mini≤n µ̂ai ≤ η + ǫ.

As η and ǫ are arbitrary, µ̂ is uniformly exhaustive.
In the other direction, if µ̂ is uniformly exhaustive then µ = µ̂↾A must be uniformly exhaustive.

(ii) If µ is additive and d, d′ ∈ A are disjoint, set A = {a : a ∈ A, a ⊆ d} and A′ = {a : a ∈ A,
a ⊆ d′}. Then A, A′ and B = {a ∪ a′ : a ∈ A, a′ ∈ A′} are upwards-directed with suprema d, d′ and d ∪ d′

respectively. So

µ̂(d ∪ d′) = supb∈B µb = supa∈A,a′∈A′ µ(a ∪ a′) = supa∈A,a′∈A′ µa+ µa′ = µ̂d+ µ̂d′.

As d and d′ are arbitrary, µ̂ is additive.
In the other direction, if µ̂ is additive then µ = µ̂↾A must be additive.

1F Proposition (a) Let A be a Dedekind σ-complete Boolean algebra. Then it is nowhere measurable
iff the only completely additive functional on A is the zero functional.

(b) Let A be a Maharam algebra, not {0}, and ν a strictly positive Maharam submeasure on A. Then ν
is pathological iff A is nowhere measurable.
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proof (a) Suppose that A is nowhere measurable, and that ν is a non-negative completely additive functional
on A. By the Hahn decomposition theorem (Fremlin 04, 326O), there is an element a = [[ν > 0]] of A such
that νb > 0 if 0 6= b ⊆ a and νb ≤ 0 if b ∩ a = 0. Now ν↾Aa witnesses that Aa is measurable, so a = 0 and
ν = 0.

Conversely, if A is not nowhere measurable, let a ∈ A+ be such that Aa is a measurable algebra. Let
µ : Aa → [0, 1] be a strictly positive measure, and set νb = µ(a ∩ b) for b ∈ A; then ν is a non-zero completely
additive functional on A.

(b)(i) If A is nowhere measurable and µ is an additive functional such that 0 ≤ µa ≤ νa for every a ∈ A,
then µ must be completely additive. PPP If 〈an〉n∈N is a non-increasing sequence with infimum 0,

limn→∞ µan = infn∈N µan ≤ infn∈N νan = 0.

So µ is countably additive; because A is ccc, µ is completely additive. QQQ By (a), µ = 0; as µ is arbitrary, ν
is pathological.

(ii) If A is not nowhere measurable, let µ be a non-zero non-negative completely additive functional on
A; re-scaling µ, we may suppose that µ1 = ν1. Set C = {c : νc < µc}, and let D ⊆ C be a maximal disjoint
set; set b = supD. Then either b = 0 or νb ≤ ∑

d∈D νd <
∑

d∈D µd = µb. So b 6= 1; setting a = 1 \ b, we
have µc ≤ νc for every c ∈ Aa. Now take µ′c = µ(a ∩ c) for every c ∈ A; then µ′ is a non-zero non-negative
additive functional and µ′ ≤ ν, so ν is not pathological.

1G Lemma (Christensen 78) Let ν be a pathological unital submeasure on a Boolean algebra A.
Then for every ǫ > 0 there is a non-empty finite family 〈bi〉i∈I in A such that νbi ≤ ǫ for every i ∈ I and
supi∈J bi = 1 whenever J ⊆ I and #(J) ≥ ǫ#(I).

proof ??? Suppose, if possible, otherwise. Set C = {1 \ b : νb ≤ ǫ}. Then C has intersection number at least
ǫ, so there is an additive functional µ : A → [0, 1] such that µ1 = 1 and µc ≥ ǫ for every c ∈ C (Fremlin

04, 391I).
Choose 〈bn〉n∈N inductively, as follows. Given 〈bi〉i<n, set

δn = sup{µb : b ∩ bi = 0 for every i < n, νb ≤ ǫµb},

and take bn such that bn ∩ bi = 0 for every i < n, νb ≤ ǫµb and µbn ≥ 1
2δn. Note that 〈bn〉n∈N is disjoint;

set b′n = supi<n bi for each n; then

νb′n ≤ ∑n−1
i=0 νbi ≤ ǫ

∑n−1
i=0 µbi = ǫµb′n ≤ ǫ

for every n, so µ(1 \ b′n) ≥ ǫ for every n.
Set λa = limn→∞ µ(a \ b′n) for a ∈ A. Then λ is a finitely additive functional and λ1 ≥ ǫ. Because ν is

pathological, there is an a ∈ A such that νa < ǫλa. If n ∈ N, then a \ b′n is disjoint from bi for each i < n,
while

ν(a \ b′n) ≤ νa ≤ ǫλa ≤ ǫµ(a \ b′n).

So µ(a \ b′n) ≤ δn and

λa ≤ δn ≤ 2µbn.

And this has to be true for every n, so
∑∞

n=0 µbn = ∞, which is impossible. XXX

1H Proposition A simple product of a countable family of Maharam algebras is a Maharam algebra.

proof Let 〈Ai〉i∈I be a countable family of Maharam algebras and A its simple product. Then A is Dedekind
complete (Fremlin 04, 315De). For each i ∈ I, let νi be a strictly positive Maharam submeasure on
Ai; let 〈ǫi〉i∈I be a family of strictly positive real numbers such that

∑
i∈I ǫi < ∞. Set ν(〈ai〉i∈I) =∑

i∈I min(ǫi, νiai) for 〈ai〉i∈I ∈ A; it is easy to verify that ν is a strictly positive Maharam submeasure on
A, so that A is a Maharam algebra.

1I The Loomis-Sikorski representation: Theorem (a) Let X be a set, Σ a σ-algebra of subsets
of X, and µ a Maharam submeasure on Σ. Then A = Σ/µ−1[{0}] is a Maharam algebra, with a strictly
positive Maharam submeasure µ̄ defined by setting µ̄E• = µE for every E ∈ Σ.
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(b) Let A be a Maharam algebra, and X its Stone space; write Ba(X) for the Baire σ-algebra of X, and
M(X) for the ideal of meager subsets of X. Then

(i) every member of M(X) is included in a nowhere dense zero set;
(ii) A ∼= Ba(X)/Ba(X) ∩M(X);
(iii) there is a Maharam submeasure µ on Ba(X) such that µ−1[{0}] = Ba(X) ∩M(X).

proof (a) Vér. fac.

(b) Because A is weakly (σ,∞)-distributive, every meager set in X is nowhere dense (Fremlin 04,
316I). Because A and X are ccc, every nowhere dense set in X is included in a nowhere dense zero set.
PPP If E is nowhere dense, let G be a maximal disjoint family of cozero sets not meeting E; then G is
countable so

⋃G is cozero, and its complement is a nowhere dense zero set including E. QQQ Consequently
A ∼= Ba(X)/Ba(X) ∩M(X) (see the proof of 314L in Fremlin 04).

Let π : Ba(X) → A be the corresponding Boolean homomorphism. Then π is sequentially order-
continuous (Fremlin 04, 313Pb). Let µ̄ be a strictly positive Maharam submeasure on A; then µ = µ̄π is
a Maharam submeasure on Ba(X) and µ−1[{0}] = Ba(X) ∩M(X).

1J Maharam-algebra topologies (a) Let A be a Dedekind σ-complete Boolean algebra, µ a strictly
positive countably subadditive submeasure on A and ν a Maharam submeasure on A. Then ν is absolutely
continuous with respect to µ. PPP??? Otherwise, there is a sequence 〈an〉n∈N in A and ǫ > 0 such that µan ≤ 2−n

and νan ≥ ǫ for every n. Set bn = supm≥n am; then µbn ≤ 2−n+1 for every n ∈ N. Set b = infn∈N bn; then
µb = 0 so b = 0. As 〈bn〉n∈N is non-increasing, limn→∞ νbn = 0; but νbn ≥ νan ≥ ǫ for every n. XXXQQQ

(b) If A is a Boolean algebra and µ is a strictly positive submeasure on A, then we have a metric ρ on
A defined by setting ρ(a, b) = µ(a△ b) for all a, b ∈ A. If A is a Maharam algebra and µ is a Maharam
submeasure, the topology generated by ρ is the order-sequential topology of A. PPP (i) Suppose that F ⊆ A

is closed for the order-sequential topology and that a ∈ A belongs to the ρ-closure of F . Then there is a
sequence 〈an〉n∈N in F such that µ(an △ a) ≤ 2−n for every n ∈ N. Set bn = supm≥n am △ a for each n; then
〈bn〉n∈N is non-increasing and has infimum 0. So 〈an〉n∈N order*-converges to a and a ∈ F . As a is arbitrary,
F is ρ-closed. (ii) Suppose that F is ρ-closed and that 〈an〉n∈N is a sequence in F which order*-converges
to a ∈ A. Again set bn = supm≥n am △ a for each n; again, 〈bn〉n∈N is non-increasing and has infimum
0. So infn∈N ρ(an, a) ≤ infn∈N µbn = 0 and a ∈ F . As 〈an〉n∈N and a are arbitrary, F is closed for the
order-sequential topology. QQQ

1K Modular functionals Recall that a real-valued functional f on a lattice P is called supermodular
if f(p∨ q) + f(p∧ q) ≥ f(p) + f(q) for all p, q ∈ P ; submodular (also strongly subadditive when P is a
Boolean algebra and f is non-negative) if f(p ∨ q) + f(p ∧ q) ≤ f(p) + f(q) for all p, q ∈ P ; and modular
if it is both supermodular and submodular. Now we have the following fact.

Proposition (a) A supermodular submeasure is uniformly exhaustive.
(b) A submodular exhaustive submeasure is uniformly exhaustive.

proof (a) Let A be an algebra of sets and ν a supermodular submeasure on A. Identifying A with the
lattice of open-and-closed sets in its Stone space, Theorem 413P in Fremlin 03 tells us that there is an
additive µ : A → [0,∞[ such that µa ≥ νa for every a ∈ A; now µ is uniformly exhaustive so ν also is.

(b)(i) If A is a Boolean algebra and ν is a non-zero submodular submeasure on A, there is a non-zero
additive µ : A → [0,∞[ such that µa ≤ νa for every a ∈ A. PPP Set ν′a = ν1− ν(1 \ a) for a ∈ A. It is easy to
check that ν′ : A → [0,∞[ is order-preserving and supermodular, while ν′0 = 0. Again applying Fremlin

03, 413P, in the Stone space of A, we have an additive functional µ : A → [0,∞[ such that µ1 = ν′1 = ν1
and µa ≥ ν′a for every a ∈ A. Now

µa = µ1 − µ(1 \ a) ≤ ν1 − ν′(1 \ a) = νa

for every a ∈ A.

(ii) If A is a Dedekind complete Boolean algebra with a strictly positive submodular Maharam sub-
measure, there is a non-zero c ∈ A such that the principal ideal Ac is a measurable algebra. PPP Let ν be
a strictly positive submodular Maharam submeasure on A. By (i), there is a non-zero additive functional
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µ on A such that µ ≤ ν; it follows that µ is countably additive, therefore completely additive (since A is
ccc). Let c be the support of µ (Fremlin 02, 326O); then µc > 0 and µ↾Ac is strictly positive, so Ac is
measurable. QQQ

(iii) It follows immediately that if A is a Dedekind complete Boolean algebra with a strictly positive
submodular Maharam submeasure, it is itself a measurable algebra.

(iv) Now suppose only that A is a Boolean algebra with a submodular exhaustive submeasure ν. Set
I = {a : νa = 0}, C = A/I; then we have a submodular exhaustive submeasure ν̄ on C defined by setting

ν̄a• = νa for every a ∈ A. Let Ĉ be the metric completion of C and ν̂ the continuous extension of ν̄ to

Ĉ, as in Fremlin 02, 393B; then ν̂ is a strictly positive submodular Maharam submeasure on Ĉ, so Ĉ is a
measurable algebra and ν̂ is uniformly exhaustive. Accordingly ν̄ and ν are uniformly exhaustive.

1L Proposition (Zapletal p06, 4.3.12) Let ν be a Ramsey submeasure on a Boolean algebra A. If
〈an〉n∈N is a sequence in A and supn∈N νan < γ, there is an infinite set I ⊆ N such that ν(supi∈I∩n ai) ≤ γ
for every n ∈ N.

proof Let 〈γn〉n∈N be a strictly increasing sequence such that γ0 = supn∈N νan and γn < γ for every n.
Choose 〈in〉n∈N, 〈cn〉n∈N and 〈Jn〉n∈N inductively, as follows. J0 = N, c0 = 0. Given that ν(cn ∪ aj) ≤ γn
for every j ∈ Jn, then, because ν is a Ramsey submeasure, any infinite subset of Jn contains distinct
i, j such that ν(cn ∪ ai ∪ aj) ≤ γn+1. By Ramsey’s theorem, there is an infinite Jn+1 ⊆ Jn such that
ν(cn ∪ ai ∪ aj) ≤ γn+1 for all i, j ∈ Jn. Take in ∈ Jn+1 \ n and set cn+1 = cn ∪ ain ; continue.

Now set I = {in : n ∈ N}.

1M The lattice of submeasures Let A be a Boolean algebra and M the set of submeasures on A.

(a) If 〈µi〉i∈I is a family in M, then it is bounded above in M iff supi∈I µi1 is finite, and in this case its
supremum µ is given by µa = supi∈I µia for every a ∈ A (counting sup ∅ as 0).

Consequently M is a Dedekind complete lattice.

(b) If 〈µi〉i∈I is a non-empty family in M, its infimum µ is given by

µa = inf{∑i∈J µiai : J ⊆ I is finite, a ⊆ supi∈J ai}
for every a ∈ A.

(c) If A is Dedekind σ-complete and µ, ν are two Maharam submeasures on A such that µ∧ ν = 0, there
is a c ∈ A such that µc = ν(1 \ c) = 0. PPP For each n ∈ N there is an an ∈ A such that µan +ν(1 \ an) ≤ 2−n;
set c = infn∈N supm≥n am. QQQ

2 Sequences in Maharam algebras

2A Lemma Let A be a ccc Boolean algebra, and 〈an〉n∈N a sequence in A. Then
either there is an infinite I ⊆ N such that 〈ai〉i∈I order*-converges to 0
or there are a non-zero d ∈ A and an infinite I ⊆ N such that supi∈J d ∩ ai = d for every infinite J ⊆ I.

proof ??? Suppose, if possible, otherwise. Choose inductively families 〈Iξ〉ξ<ω1
in [N]ω and 〈cξ〉ξ<ω1

in A
+

as follows. I0 = N. Given 〈Iη〉η≤ξ such that Iη \ Iζ is finite whenever ζ ≤ η ≤ ξ, we are supposing that
〈ai〉i∈Iξ does not order*-converge to 0. Set Cξ = {c : c ∈ A, {i : i ∈ Iξ, ai ∩ c 6= 0} is finite}. Then Cξ does
not include any partition of unity; as c ∈ Cξ whenever c ⊆ c′ ∈ Cξ, it follows that there is a b ∈ A

+ such
that b ∩ c = 0 for every c ∈ Cξ. Now there must be an infinite Iξ+1 ⊆ Iξ such that b is not the supremum
of {b ∩ ai : i ∈ Iξ+1}; let cξ ⊆ b be a non-zero element such that cξ ∩ ai = 0 for every i ∈ Iξ+1. Note that
now Iη \ Iζ is finite whenever ζ ≤ η ≤ ξ + 1, so that the induction continues. At non-zero countable limit
ordinals ξ, let Iξ ∈ [N]ω be such that Iξ \ Iη is finite for every η < ξ, and carry on.

Now observe that because Iξ \ Iη is finite, Cη ⊆ Cξ whenever η ≤ ξ. Iη+1 is constructed so that
cη ∈ Cη+1, and therefore cη ∩ cξ = 0 whenever η < ξ. But this means that we have an uncountable disjoint
family 〈cξ〉ξ<ω1

in A+, and A is not ccc. XXX

2B Theorem (Veličković 05, Theorem 2) If A is an atomless Maharam algebra, there is a sequence
〈an〉n∈N in A such that supn∈I an = 1 and infn∈I an = 0 for every infinite I ⊆ N.
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proof (a) Fix a strictly positive Maharam submeasure ν on A. Before embarking on the main argument, let
me note a simple fact. If 〈an〉n∈N is a sequence in A order*-converging to 0, limn→∞ νan = 0. PPP Let C be a
partition of unity in A such that {n : an ∩ c 6= 0} is finite for every n ∈ N. Then C is countable; enumerate
it as 〈ck〉k∈N. Set bm = 1 \ supk≤m ck for each m ∈ N; then 〈bm〉m∈N is non-increasing and has infimum 0, so
limm→∞ νbm = 0. But each bm includes all but finitely many of the an, so limn→∞ νan = 0. QQQ Turning this
round: if 〈an〉n∈N is a sequence in A such that infn∈N νan > 0, it can have no subsequence order*-converging
to 0, so by Lemma 2A there are a non-zero d ∈ A and an infinite I ⊆ N such that d = supi∈J d ∩ ai for every
infinite J ⊆ I.

(b) Let us say that a Boolean algebra A splits reals if there is a sequence 〈an〉n∈N in A such that
supn∈I an = 1 and infn∈I an = 0 for every infinite I ⊆ N. Now if A is a Maharam algebra, the set of those
d ∈ A such that the principal ideal Ad generated by d splits reals is order-dense in A. PPP Let a ∈ A

+.

(i) If ν↾Aa is uniformly exhaustive, then Aa is measurable (Kalton & Roberts 83, or Fremlin

04, 392J). Let µ̄ be a probability measure on Aa; because Aa, like A, is atomless, there is a stochastically
independent family 〈an〉n∈N in Aa with µ̄an = 1

2 for every n, and now 〈an〉n∈N witnesses that Aa splits reals.

(ii) If ν↾Aa is not uniformly exhaustive, let 〈bni〉i≤n∈N be a family of elements of Aa such that 〈bni〉i≤n

is disjoint for each n and ǫ = infi≤n∈N νbni is greater than 0. Let 〈fξ〉ξ<ω1
be a family in

∏
n∈N

{0, . . . , n}
such that {n : fξ(n) = fη(n)} is finite whenever η < ξ < ω1. ??? If for every ξ < ω1 and I ∈ [N]ω there is a
J ∈ [I]ω such that infi∈J bi,fξ(i) 6= 0, choose 〈Iξ〉ξ<ω1

inductively so that Iξ ∈ [N]ω, Iξ \ Iη is finite for every
η < ξ, and cξ = infi∈Iξ bi,fξ(i) 6= 0 for every ξ < ω1. Then whenever η < ξ the set Iξ ∩ Iη is infinite, so there
is an i ∈ Iξ ∩ Iη such that fξ(i) 6= fη(i); now cξ ∩ cη ⊆ bi,fξ(i) ∩ bi,fη(i) = 0. But this means that we have
an uncountable disjoint family in Aa, which is impossible, because every Maharam algebra is ccc (Fremlin

04, 392I). XXX
Thus we have a ξ < ω1 and an infinite I ⊆ N such that infi∈J di = 0 for every infinite J ⊆ I, where

di = bi,fξ(i) for i ∈ I. Next, applying (a) to 〈di〉i∈I , we have an infinite K ⊆ I and a d 6= 0 such that
d = supi∈J di for every infinite J ⊆ K. But this means that 〈d ∩ di〉i∈K witnesses that Ad splits reals; while
d ⊆ a.

As a is arbitrary, we have the result. QQQ

(c) Let D ⊆ A be a partition of unity such that Ad splits reals for every d ∈ D; choose sequences 〈adn〉n∈N

in Ad witnessing this. Set an = supd∈D adn for each n. If I ⊆ N is infinite, then

supn∈I an = supd∈D supn∈I adn = supD = 1,

while

d ∩ infn∈I an = infn∈I adn = 0

for every d ∈ D, so infn∈I an = 0. Thus 〈an〉n∈N witnesses that A splits reals, as claimed.

Remark More generally, a ccc Dedekind complete Boolean algebra splits reals iff no non-trivial principal
ideal is sequentially compact in the order-sequential topology; see Balcar Jech & Pazák p04, §4.

2C Corollary (Zapletal p06, 4.3.23) If A is a Boolean algebra and ν is a non-zero diffuse exhaustive
submeasure on A, ν is not Ramsey.

proof (a) ??? Suppose first that A is a non-trivial Maharam algebra and that ν is a diffuse Ramsey strictly
positive Maharam submeasure on A. Because ν is diffuse, A can have no atom. Let 〈an〉n∈N be a sequence
in A as in 2B. Set γn = ( 1

2 + 2−n−1)ν1 for each n, and choose 〈cn〉n∈N and 〈in〉n∈N inductively, as follows.
c0 = 1. Given that νcn ≥ γn,

supm≥n ν(cn ∩ supi∈I∩m ai) = ν(cn ∩ supi∈I ai) = νcn ≥ γn

for every infinite I ⊆ N \ n, so Proposition 1L tells us that supi≥n ν(cn ∩ ai) ≥ γn; take in ≥ n such that
ν(cn ∩ ain) ≥ γn+1, and set cn+1 = cn ∩ ain . Continue.

We now find that

c = infn∈N cn ⊆ infn∈N ain = 0

while
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νc = limn→∞ νcn = 0. XXX

(b) Thus the result is true in the special case in which ν is a strictly positive Maharam submeasure
on a Maharam algebra. Now suppose that ν is just a strictly positive diffuse exhaustive submeasure on a

non-trivial Boolean algebra A. Let Â be the metric completion of A, and ν̂ the canonical extension of ν to

Â, as in Fremlin 02, 393B. Then ν̂ is a Maharam submeasure, and is still diffuse. By (a), it is not Ramsey;

let 〈an〉n∈N be a sequence in Â such that

ν̂(am ∪ an) ≥ γ > γ′ ≥ ν̂an

for all distinct m, n ∈ N. For each n ∈ N we can find an a′n ∈ A such that ν̂(a′n △ an) ≤ 1
4 (γ − γ′), and now

〈a′n〉n∈N witnesses that ν is not Ramsey.

(c) Finally, for the case in which ν is not strictly positive, let I be the ideal {a : νa = 0}, B the quotient
A/I and ν′ the submeasure on B defined by setting ν′a• = νa for every a ∈ A. Then ν′ is diffuse, exhaustive
and strictly positive, so is not Ramsey. If 〈an〉n∈N is such that 〈a•

n〉n∈N witnesses that ν′ is not Ramsey,
〈an〉n∈N witnesses that ν is not Ramsey, as required.

2D Lemma Let A be a Boolean algebra and ν an exhaustive submeasure on A. Let 〈an〉n∈N be a
sequence in A such that infn∈N νan > 0. Then there is an infinite I ⊆ N such that {an : n ∈ I} is centered.

first proof Set I = {a : νa = 0}. Then I ⊳ A. On the quotient algebra A/I we have an exhaustive
submeasure ν̄ defined by saying that ν̄a• = νa for every a ∈ A (see Fremlin 04, 392Xd). ν̄ is strictly
positive. We can therefore embed (A/I, ν̄) in (B, ν̄) where B is a Dedekind complete Boolean algebra and
ν̄ is a strictly positive Maharam submeasure on B (Fremlin 04, 393B). Working in B, infn∈N ν̄a

•

n > 0, so
b = infn∈N supm≥n a

•

m 6= 0; now take I ⊆ N to be maximal such that b ∩ infi∈I∩n a
•

i 6= 0 for every n. In this
case 〈ai〉•i∈I is centered in B so {ai : i ∈ I} is centered in A.

second proof For any m ∈ N and ǫ > 0 there is an n ∈ N such that ν(supn≤i<k ai \ supm≤i<n ai) ≤ ǫ for ev-
ery k ∈ N. PPP??? Otherwise, choose 〈nk〉k∈N so that n0 = m and νck > ǫ where ck = supnk≤i<nk+1

ai \ supm≤i<nk
ai

for every k. Then 〈ck〉k∈N is disjoint, so ν is not exhaustive. XXXQQQ
Set δ = 1

2 infn∈N νan. Choose a strictly increasing sequence 〈mk〉k∈N in N, a non-increasing sequence

〈ck〉k∈N in A, and aki, for i, k ∈ N, as follows. m0 = 0 and a0i = ai for every i. Given that νakn ≥ (1+2−k)δ
for every n ≥ mk, let mk+1 be such that ν(supmk+1≤i<l aki \ supmk≤i<mk+1

aki) ≤ 2−k−1δ for every l. Set

ck = supmk≤i<mk+1
aki and ak+1,i = aki ∩ ck for i ≥ mk+1. Then νak+1,i ≥ νaki−ν(aki \ ck) ≥ (1+2−k−1)δ

for every i ≥ mk+1, so the induction continues.
Now 〈ck〉k∈N is a non-increasing sequence of non-zero elements, so is centered; and ck ⊆ supmk≤i<mk+1

ai
for every k. Taking a maximal centered family C containing every ck, the set I = {i : ai ∈ C} must meet
[mk,mk+1[ for every k, so is infinite; and {ai : i ∈ I} is centered.

Remark Thus any Boolean algebra with a strictly positive exhaustive submeasure has the property (*) of
1Ad. Compare 2E, 2H below.

2E Proposition Let A be a Boolean algebra, ν an exhaustive submeasure on A, and 〈ai〉i∈N a sequence in
A such that infi∈N νai > 0. Then for every k ∈ N there are an I ∈ [N]ω and a δ > 0 such that ν(infi∈J ai) ≥ δ
for every J ∈ [I]k.

proof Induce on k. The cases k = 0, k = 1 are trivial. For the inductive step to k+1, let M ∈ [N]ω and δ > 0
be such that ν(infi∈J ai) ≥ δ for every J ∈ [M ]k. ??? Suppose, if possible, that for every I ∈ [M ]ω and γ > 0
there is a J ∈ [I]k+1 such that ν(infi∈J ai) < γ. Using Ramsey’s theorem repeatedly, we can find 〈In〉n∈N

such that I0 = M , In+1 ∈ [In]ω, rn = min In /∈ In+1 and ν(infi∈J ai) ≤ 2−n−2δ for every J ∈ [In]k+1. Set
I = {rn : n ∈ N}. If J ∈ [I]k and min J = rn, then J ∪ {rm} ∈ [Im]k+1, so ν(infi∈J ai ∩ arm) ≤ 2−m−2δ, for
every m < n. It follows that ν(infi∈J ai ∩ supm<n arm) ≤ 1

2δ and ν(infi∈J ai \ supm<n arm) ≥ 1
2δ. But this

means that νcn ≥ 1
2δ where cn = arn \ supm<n arm for each n. As 〈cn〉n∈N is disjoint, this is impossible. XXX

Thus we can find γ > 0 and I ∈ [M ]ω such that ν(infi∈J ai) ≥ γ for every J ∈ [I]k+1, and the induction
continues.
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2F Proposition Let κ be a regular uncountable cardinal, and ν an exhaustive submeasure on a Boolean
algebra A. Suppose that 〈aξ〉ξ<κ is a family in A such that infξ<κ νaξ > 0. Then for every n ∈ N there are
a stationary set S ⊆ κ and a δ > 0 such that ν(infi∈J ai) ≥ δ for every J ∈ [S]n.

proof Induce on n. The cases n = 0, n = 1 are trivial. For the inductive step to n + 1 ≥ 2, write
cJ = infi∈J ai for J ∈ [κ]<ω. We know from the inductive hypothesis that there are a stationary set S ⊆ κ
and a δ > 0 such that νcJ ≥ 3δ for every J ∈ [S]n. For each ξ ∈ S, choose m(ξ) ∈ N and 〈Jξi〉i<m(ξ) as

follows. Given 〈Jξi〉i<j , where j ∈ N, choose, if possible, Jξj ∈ [S ∩ ξ]n such that ν(cJξj
∩ cJξi

) ≤ 2−iδ for

every i < j and ν(aξ ∩ cJξj
) ≤ 2−jδ; if this is not possible, set m(ξ) = j and stop. Now the point is that

we always do have to stop. PPP??? Otherwise, set di = cJξi
for each i ∈ N. Because Jξi ∈ [S]n, νdi ≥ 3δ for

each i; also ν(di ∩ dj) ≤ 2−iδ for i < j; so νd′j ≥ δ, where d′j = dj \ supi<j di for each j. But now 〈d′j〉j∈N is
disjoint and ν is not exhaustive. XXXQQQ

At the end of the process, we have m(ξ) and 〈Jξi〉i<m(ξ) for each ξ ∈ S. By the Pressing-Down Lemma,

there are m̃ and 〈J̃i〉i<m̃ such that S′ = {ξ : ξ ∈ S, m(ξ) = m̃, Jξi = J̃i for every i < m̃} is stationary in κ.
??? Suppose, if possible, that I ∈ [S′]n+1 and νcI ≤ 2−m̃δ. Set ξ = max I, J = I \ {ξ}, η = min I ∈ J . Then
J ∈ [S ∩ ξ]n. For each i < m̃ = m(ξ),

ν(cJ ∩ cJξi
) ≤ ν(aη ∩ cJξi

) = ν(aη ∩ cJηi
) ≤ 2−iδ,

while

ν(aξ ∩ cJ) = νcI ≤ 2−m̃δ.

But this means that we could have extended the sequence 〈Jξi〉i<m̃ by setting Jξm̃ = J . XXX
So S′ and 2−m̃δ provide the next step in the induction.

2G Corollary If A is a Boolean algebra with a strictly positive exhaustive submeasure, then (κ, κ, n) is
a precaliber triple of A for every regular uncountable cardinal κ and every n ∈ N.

2H Proposition Let A be a Dedekind σ-complete Boolean algebra and ν a Maharam submeasure on
A. Let 〈an〉n∈N be a sequence in A and δ = infn∈N νan. Then for any δ′ < δ there is a strictly increasing
sequence 〈mk〉k∈N in N such that ν(infk∈N supmk≤n<mk+1

an) ≥ δ′.

proof If δ′ ≤ 0 this is trivial; suppose that 0 < δ′ < δ. Repeat the argument of the ‘second proof’ of Lemma
2C, but this time requiring νakn ≥ δk for every n ≥ mk, where 〈δk〉k∈N is a strictly decreasing sequence in
[δ′, δ]. Then νck ≥ δk for every k, so ν(infk∈N ck) ≥ δ′.

3 The theorems of Balcar-G lówczyński-Jech, Balcar-Jech-Pazák and Todorčević

3A Lemma (Balcar G lówcyński & Jech 98) Let A be a ccc Dedekind complete weakly (σ,∞)-
distributive Boolean algebra, endowed with its order-sequential topology. For A ⊆ A, set

∨
0(A) = {0} and∨

n+1(A) = {a ∪ b : a ∈ A, b ∈ ∨
n(A)} for n ∈ N. Then for every open set G containing 0 there is an open

set H containing 0 such that
∨

3(H) ⊆ ∨
2(G).

proof ??? Otherwise, choose Hn, an, bn and cn inductively, as follows. H0 ⊆ G is to be an open neighbourhood
of 0 such that [0, a] ⊆ H0 whenever a ∈ H0 (Fremlin 04, 392Mc). Given that Hn is an open set containing
0, we are supposing that

∨
3(Hn) 6⊆ ∨

2(G); choose an, bn, cn ∈ H such that an ∪ bn ∪ cn /∈ ∨
2(G), and set

H ′
n = {a : a, a△ an, a△ bn and a△ cn all belong to Hn},

so that H ′
n is an open set containing 0. Let Hn+1 be an open neighbourhood of 0, included in H ′

n, such that
[0, a] ⊆ Hn+1 for every a ∈ Hn+1. Continue.

Set F =
⋂

n∈N
Hn and a∗ = infn∈N supi≥n ai. Then a∗ ∪ c ∈ F for every c ∈ F . PPP For m ≤ n ∈ N,

supm≤i≤n ai ∪ b ∈ Hm for every b ∈ Hn+1 (induce downwards on m). So supm≤i≤n ai ∪ c ∈ Hm for every

c ∈ F . Letting n → ∞, c ∪ supm≤i ai ∈ Hm for every c ∈ F , m ∈ N. Next, for any b ∈ A, {a : a ∩ b ∈ Hm}
is a closed set including Hm, so a ∩ b ∈ Hm for every a ∈ Hm; that is, [0, a] ⊆ Hm for every a ∈ Hm. As
a∗ ⊆ supi≥m ai. c ∪ a

∗ ∈ Hm for every c ∈ F . As m is arbitrary, c ∪ a∗ ∈ F for every c ∈ F . QQQ
Similarly, setting b∗ = infn∈N supi≥n bi and c∗ = infn∈N supi≥n ci, c ∪ b

∗ and c ∪ c∗ belong to F for every
c ∈ F . So d = a∗ ∪ b∗ ∪ c∗ belongs to F . For each n ∈ N, an ∪ bn ∪ cn /∈ ∨

2(H0); but [0, a] ⊆ ∨
2(H0)
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for every a ∈ ∨
2(H0), so supi≥n ai ∪ bi ∪ ci /∈

∨
2(H0). Accordingly d = infn∈N supi≥n ai ∪ bi ∪ ci does not

belong to int(
∨

2(H0)). But
∨

2(H0) = {a△ b : a, b ∈ H0} is an open set including H0, so d ∈ F \H0; which
is impossible. XXX

3B Theorem (Balcar G lówcyński & Jech 98) Let A be a Dedekind complete ccc Boolean algebra
in which the order-sequential topology is Hausdorff. Then A is a Maharam algebra.

proof (a) A is weakly (σ,∞)-distributive. PPP Let 〈An〉n∈N be a sequence of maximal antichains in A, and
set

D = {d : d ∈ A, {a : a ∈ An, a ∩ d 6= 0} is finite for every n ∈ N}.

Take any c ∈ A
+. Let G, H be disjoint open sets containing 0, c respectively. Choose 〈cn〉n∈N inductively,

as follows. c0 = c. Given cn ∈ H, let 〈ani〉i∈N be a sequence running over An, and set cnj = supi≤j cn ∩ ani;
then 〈cnj〉j∈N order*-converges to cn, so there is a jn such that cnjn ∈ H; set cn+1 = cnjn , and continue.

This gives us a non-increasing sequence 〈cn〉n∈N in H. Set d = infn∈N cn; then d /∈ G so d 6= 0, while
d ⊆ supi≤jn

ani for each n, so d ∈ D.
As c is arbitrary, D is order-dense in A and includes a maximal antichain. As 〈An〉n∈N is arbitrary, A is

weakly (σ,∞)-distributive. QQQ

(b) For any a ∈ A
+ there is a sequence 〈Hn〉n∈N of neighbourhoods of 0 such that a 6⊆ sup(

⋂
n∈N

Hn).
PPP For A ⊆ A and n ∈ N, define

∨
n(A) as in 3A. Let H0 be a neighbourhood of 0 such that H0 and

{a△ b : b ∈ H0} are disjoint; by Fremlin 04, 392Mc again, we may suppose that [0, b] ⊆ H0 for every
b ∈ H0, in which case [0, b] ⊆ ∨

2(H0) for every b ∈ ∨
2(H0), while a /∈ ∨

2(H0). By Lemma 3A, we can
choose neighbourhoods Hn of 0, for n ≥ 1, such that Hn+1 ⊆ Hn and

∨
3(Hn+1) ⊆ ∨

2(Hn) for every n.
But this will ensure that

∨
4(Hn+2) ⊆ ∨

2(Hn) for every n, so that
∨

2k(H2k) ⊆ ∨
2(H2) for every k ≥ 1.

Set F =
⋂

n∈N
Hn. Then

∨
2k(F ) ⊆ ∨

2k(H2k) ⊆ ∨
2(H2)

for every k ≥ 1. Since supF is the limit of a sequence in
⋃

k≥1

∨
2k(F ),

supF ∈ ∨
2(H2) ⊆ ∨

3(H2) ⊆ ∨
2(H0)

and cannot include a. QQQ

(c) Now consider the set D of those d ∈ A such that there is a sequence 〈Hn〉n∈N of neighbourhoods of
0 such that d ∩ sup(

⋂
n∈N

Hn) = 0. By (b), D is order-dense, so includes a maximal antichain A. Now A is
countable, so there is a sequence 〈Hn〉n∈N of neighbourhoods of 0 such that d ∩ sup(

⋂
n∈N

Hn) = 0 for every
d ∈ A; but this means that

⋂
n∈N

Hn = {0}. By Fremlin 04, 392O, A is a Maharam algebra.

3C Theorem (Todorčević p04) Let A be a σ-finite-cc weakly (σ,∞)-distributive Dedekind complete
Boolean algebra. Then A is a Maharam algebra.

proof (Balcar n04) (a)(i) Suppose that A 6= {0}. Let 〈An〉n∈N be a sequence of sets, with union A
+, such

that no An includes any infinite disjoint set. For each n, set Bn =
⋃

m≤n

⋃
a∈Am

[a, 1], so that Bn includes
no infinite disjoint subset. Now there is an n such that 1 is in the interior of Bn for the order-sequential
topology. PPP??? Otherwise, there is for each n ∈ N a sequence 〈bni〉i∈N in A\Bn which is order*-convergent to
1 (Fremlin 04, 392Mb). By Fremlin 04, 392Ma, there is a sequence 〈k(n)〉n∈N in N such that 〈bn,k(n)〉n∈N

order*-converges to 1. As 1 6= 0, there must be an m ∈ N such that c = infi≥m bi,k(i) 6= 0. There is an n
such that c ∈ An, in which case bi,k(i) ∈ Bm ⊆ Bi for every i ≥ max(m,n). XXXQQQ

(ii) Set H = intBn. Then there is a c ∈ H such that for every d ∈ A one of c ∩ d, c \ d /∈ H. PPP
??? Otherwise, we can choose a sequence 〈ci〉i∈N in H such that c0 = 1 and, for each i ∈ N, ci+1 ⊆ ci and
ci \ ci+1 ∈ H. But in this case 〈ci \ ci+1〉i∈N is a disjoint sequence in Bn, which is impossible. XXXQQQ

(iii) 0 and 1 can be separated by open sets. PPP Take H and c from (ii). Then G0 = {d : c \ d ∈ H} and
G1 = {d : c ∩ d ∈ H} are disjoint open sets containing 0 and 1 respectively. QQQ

(b) It follows that A is actually Hausdorff in the order-sequential topology. PPP Let a0, a1 ∈ A be such that
b = a1 \ a0 is non-zero. Consider the principal ideal Ab. Like A, this is σ-finite-cc, weakly (σ,∞)-distributive
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and Dedekind complete. By (a), there are disjoint subsets U , V of Ab, open for the order-sequential topology
of Ab, such that 0 ∈ U and b ∈ V . Now the function a 7→ a ∩ b : A → Ab is continuous for the order-sequential
topologies (use Fremlin 04, 3A3Pb), so G = {a : a ∩ b ∈ U} and H = {a : a ∩ b ∈ V } are open. Now G
and H are open sets in A containing a0, a1 respectively. As a0 and a1 are arbitrary, A is Hausdorff. QQQ

By Theorem 3B, A is a Maharam algebra.

3D Lemma (Quickert 02) Let A be a Boolean algebra, and I be the family of countable subsets I of
A

+ for which there is a partition C of unity such that {a : a ∈ I, a ∩ c 6= 0} is finite for every c ∈ C.
(a) I is an ideal of PA including [A]<ω.
(b) If A ⊆ A+ is such that A ∩ I is finite for every I ∈ I, and B = {b : b ⊇ a for some a ∈ A}, then B ∩ I

is finite for every I ∈ I.
(c) If A is ccc, then there is no uncountable B ⊆ A such that [B]≤ω ⊆ I.
(d) If A is ccc and weakly (σ,∞)-distributive, I is a P-ideal, that is, if 〈In〉n∈N is any sequence in I

there is an I ∈ I such that In \ I is finite for every n ∈ N.

proof (a) Of course every finite subset of A belongs to I. If I0, I1 ∈ I and J ⊆ I0 ∪ I1, then J ∈ [A]≤ω.
For each j, we have a partition Cj of unity in A such that {a : a ∈ Ij , a ∩ c 6= 0} is finite for every c ∈ Cj .
Set C = {c0 ∩ c1 : c0 ∈ C0, c1 ∈ C1}; then C is a partition of unity in A and {a : a ∈ J , a ∩ c 6= 0} is finite
for every c ∈ C.

(b) ??? Otherwise, set J = B ∩ I ∈ I. For each b ∈ J , let ab ∈ A be such that ab ⊆ b. Let C be a partition
of unity such that {b : b ∈ J , b ∩ c 6= 0} is finite for every c ∈ C; then {ab : b ∈ J , ab ∩ c 6= 0} is finite
for every c ∈ C, so {ab : b ∈ J} belongs to I and must be finite. There is therefore an a ∈ A such that
K = {b : b ∈ J , a = ab} is infinite; but in this case there is a c ∈ C such that a ∩ c 6= 0 and b ∩ c 6= 0 for
every b ∈ K. XXX

(c) Let Â be the Dedekind completion of A (Fremlin 04, 314T). Let 〈bξ〉ξ<ω1
be a family of distinct

elements of B and set d = infξ<ω1
supξ≤η<ω1

bη, taken in Â. Then (because Â is ccc, see Fremlin 04,
316Xf) d = supξ≤η<ω1

bη for some ξ; in particular, d 6= 0. Next, we can find a strictly increasing sequence

〈ξn〉n∈N in ω1 such that d ⊆ supξn≤η<ξn+1
bη for every n ∈ N. Set I = {bη : η < supn∈N ξn} ∈ [B]≤ω. If C is

any partition of unity in A, there must be some c ∈ C such that c ∩ d 6= 0, and now {a : a ∈ I, a ∩ c 6= 0} is
infinite. So I /∈ I. QQQ

(d) For each n ∈ N, let Cn be a partition of unity such that {a : a ∈ In, a ∩ c 6= 0} is finite for every
c ∈ Cn. Let D be a partition of unity such that {c : c ∈ Cn, c ∩ d 6= 0} is finite for every d ∈ D and n ∈ N.
Then

{a : a ∈ In, a ∩ d 6= 0} ⊆ ⋃
c∈Cn,c∩d 6=0{a : a ∈ In, a ∩ c 6= 0}

is finite for every d ∈ D and n ∈ N. Let 〈dn〉n∈N be a sequence running over D ∪ {∅} and set I =
⋃

n∈N
{a :

a ∈ In, a ∩ di = 0 for every i ≤ n}. Then

In \ I ⊆ ⋃
i≤n{a : a ∈ In, a ∩ di 6= ∅}

is finite for each n. Also

{a : a ∈ I, a ∩ dn 6= 0} ⊆ ⋃
i<n{a : a ∈ Ii, a ∩ dn 6= 0}

is finite for each n, so I ∈ I.

Remark In this context, I is called Quickert’s ideal.

3E Lemma (Balcar Jech & Pazák p03) Let A be a weakly (σ,∞)-distributive ccc Dedekind complete
Boolean algebra, and suppose that A+ is expressible as

⋃
k∈N

Dk where no infinite subset of any Dk belongs
to Quickert’s ideal I. Then A is a Maharam algebra.

proof The point is that if 〈an〉n∈N is a sequence in A which order*-converges to 0, then {an : n ∈ N} ∈ I
(Fremlin 04, 392La). So no sequence in any Dk can order*-converge to 0. Because A is weakly (σ,∞)-
distributive and ccc, 0 does not belong to the closure Dk of Dk for the order-sequential topology on A

(Fremlin 04, 392Mb). So A
+ =

⋃
k∈N

Dk is Fσ and {0} is Gδ for the order-sequential topology. By
Fremlin 04, 392O, A is a Maharam algebra.
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3F Todorčević’s P-ideal dichotomy This is the statement

whenever X is a set and I is a P-ideal of countable subsets of X, then

either there is a B ∈ [X]ω1 such that [B]≤ω ⊆ I
or X is expressible as

⋃
n∈N

Xn where I ∩ PXn ⊆ [Xn]<ω for every n ∈ N.

This is a consequence of the Proper Forcing Axiom, and is also relatively consistent with the generalized
continuum hypothesis (Todorčević 00).

3G Theorem (Balcar Jech & Pazák p03) If Todorčević’s P-ideal dichotomy is true, then every
Dedekind complete ccc weakly (σ,∞)-distributive Boolean algebra is a Maharam algebra.

proof Let A be a Dedekind complete ccc weakly (σ,∞)-distributive Boolean algebra. Let I be Quickert’s
ideal on A; then I is a P-ideal (3Dd). By 3Dc, there is no B ∈ [A]ω1 such that [B]≤ω ⊆ I. We are assuming
that Todorčević’s P-ideal dichotomy is true; so A must be expressible as

⋃
n∈N

Dn where no infinite subset
of any Dn belongs to I. By 3E, A is a Maharam algebra.

3H Theorem (Jech l04) Let A be a Boolean algebra. Then the following are equiveridical:
(i) the Dedekind completion of A is a Maharam algebra;
(ii) there is a family S of sequences in A such that

(α) 〈an〉n∈N is order*-convergent to 0 for every 〈an〉n∈N ∈ S;
(β) if 〈〈ank〉k∈N〉n∈N is a sequence in S then 〈ann〉n∈N ∈ S;
(γ) every sequence which order*-converges to 0 has a subsequence in S.

proof (i)⇒(ii) If the Dedekind completion of A is a Maharam algebra, then A itself has a strictly positive
Maharam submeasure ν. Let S be the set of all sequences 〈an〉n∈N such that νan ≤ 2−n for every n; then
S satisfies the conditions of (ii). PPP If 〈an〉n∈N is a sequence in A which is not order*-convergent to 0, there
is a non-zero c ∈ A such that c = supi≥n c ∩ ai for every n. In this case,

0 < νc = supm≥n ν(c ∩ supn≤i≤m ai) ≤
∑∞

i=n νai

for every n, and
∑∞

i=0 νai = ∞, so 〈an〉n∈N /∈ S. This shows that S satisfies (α). The others are elementary.
QQQ

(ii)⇒(i) Given S ⊆ AN satisfying the conditions in (ii), let An be the set {an : 〈ak〉k∈N ∈ S} for each n.⋂
n∈N

An = {0}. PPP By (γ), the constant sequence with value 0 belongs to S, so 0 ∈ An for every n. If
a ∈ An for every n, then for each n ∈ N we have a sequence 〈ank〉k∈N ∈ S such that a = ann; now the
constant sequence 〈ann〉n∈N belongs to S, by (β), so is order*-convergent to 0, by (α), and a = 0. QQQ

A is σ-finite-cc. PPP??? If 〈ak〉k∈N is a disjoint sequence in A \An, then it is order*-convergent to 0, so has
a subsequence belonging to S which must enter An. XXX So 〈A \An〉n∈N witnesses that A is σ-finite-cc. QQQ

A is weakly (σ,∞)-distributive. PPP Let 〈Cn〉n∈N be a sequence of partitions of unity in A. Set C ′
n =

{infi≤n ci : ci ∈ Ci for i ≤ n}, so that C ′
n is a partition of unity refining Cn, and C ′

n+1 refines C ′
n for each

n. Let 〈cnk〉k∈N be a sequence running over C ′
n ∪ {0}. Set c′nm = 1 \ supk<m cnk, so that 〈c′nm〉m∈N is non-

increasing and has infimum 0. As 〈c′nm〉m∈N is order*-convergent to 0, it has a subsequence 〈c′n,m(n,i)〉i∈N

belonging to S. Consider the sequence 〈c′n,m(n,n)〉n∈N ∈ S. This is order*-convergent to 0 so there is a

partition D of unity such that {n : d ∩ c′n,m(n,n) 6= 0} is finite for each d ∈ D. So, given d ∈ D and j ∈ N,

there is an n ≥ j such that d ∩ c′n,m(n,n) = 0, in which case d ⊆ supi<m(n,n) cni and

{c : c ∈ Cj , d ∩ c 6= 0} ⊆
⋃

i<m(n,n)

{c : c ∈ Cj , c ∩ cni 6= 0}

=
⋃

i<m(n,n)

{c : c ∈ Cj , 0 6= cni ⊆ c}

is finite. As 〈Cn〉n∈N is arbitrary, A is weakly (σ,∞)-distributive. QQQ
Now the Dedekind completion of A is still weakly (σ,∞)-distributive (1B(c-iii)) and σ-finite-cc (1B(c-ii)),

so is a Maharam algebra by Todorčević’s theorem 3C.

4 Products of submeasures
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4A Construction There seems to be no satisfactory general method of constructing products of sub-
measures. However the following method may turn out to be useful.

(a) Let A and B be Boolean algebras with submeasures µ, ν respectively. On the free product A ⊗ B

(Fremlin 04, §315), we have a functional λ defined by saying that whenever c ∈ A ⊗ B is of the form
supi∈I ai ⊗ bi where 〈ai〉i∈I is a finite partition of unity in A, then

λc = min
J⊆I

max({µ(sup
i∈J

ai)} ∪ {νbi : i ∈ I \ J})

= min{ǫ : ǫ ≥ 0, µ(sup{ai : i ∈ I, νbi > ǫ}) ≤ ǫ}.
PPP Every c ∈ A ⊗ B can be expressed in this form (Fremlin 04, 315Na). Of course this can be done in
many different ways. But if c = supj∈J a

′
j ⊗ b′j is another expression of the same kind, then bi = b′j whenever

ai ∩ a
′
j 6= 0. So

sup{ai : i ∈ I, νbi > ǫ} = sup{ai ∩ a′j : i ∈ I, j ∈ J, ai ∩ a
′
j 6= 0, νbi > ǫ}

= sup{ai ∩ a′j : i ∈ I, j ∈ J, ai ∩ a
′
j 6= 0, νb′j > ǫ}

= sup{a′j : j ∈ J, νb′j > ǫ}
for any ǫ, and the two calculations for λ give the same result. QQQ

Note that λ(a⊗ b) = min(µa, νb) for all a ∈ A and b ∈ B.

(b) In the context of (a), λ is a submeasure.
PPP By definition, λc ≥ 0 for every c ∈ A⊗B; and if c = 0 then it is 1 ⊗ 0 and λc = 0.
If c, c′ are two members of A⊗B, express them in the forms c = supi∈I ai ⊗ bi and c′ = supj∈J a

′
j ⊗ b′j

where 〈ai〉i∈I and 〈a′j〉j∈J are partitions of unity in A. Set K = {(i, j) : ai ∩ a
′
j 6= 0} ⊆ I×J , a′′ij = ai ∩ a

′
j for

(i, j) ∈ K; then 〈a′′ij〉(i,j)∈K is a partition of unity in A, c = sup(i,j)∈K a′′ij⊗bi and c′ = sup(i,j)∈K a′′ij⊗b′j . Set

α = λc, β = λc′, L = {(i, j) : (i, j) ∈ K, νbi > α}, L′ = {(i, j) : (i, j) ∈ K, νb′j > β}, e = sup{aij : (i, j) ∈ L}
and e′ = sup{aij : (i, j) ∈ L′}; then µe ≤ α and µe′ ≤ β. So µ(e ∪ e′) ≤ α+ β; but e ∪ e′ = sup(i,j)∈L∪L′ a′′ij
and

ν(bi ∪ b
′
j) ≤ νbi + νb′j ≤ α+ β

for all (i, j) ∈ K \ (L ∪ L′). So λ(c ∪ c′) ≤ α+ β.
If c ⊆ c′, then bi ⊆ b′j for every (i, j) ∈ K. So νbi ≤ β for every (i, j) ∈ K \ L′ and λc ≤ β.
Thus λ is subadditive and order-preserving and is a submeasure. QQQ

(c) In this context, I will write λ = µ⋉ ν. I note that only in exceptional, and usually trivial, cases will
µ⋉ ν be matched with ν ⋉ µ by the canonical isomorphism between A⊗B and B⊗A; this product is not
‘commutative’. It is however ‘associative’, in the following sense. Let (A1, µ1), (A2, µ2), A3, µ3) be Boolean
algebras endowed with submeasures. Set

λ12 = µ1 ⋉ µ2, λ(12)3 = λ12 ⋉ µ3, λ23 = µ2 ⋉ µ3, λ1(23) = µ1 ⋉ λ23.

Then the canonical isomorphisms between (A1 ⊗ A2) ⊗ A3, A1 ⊗ A2 ⊗ A3 and (A1 ⊗ (A2 ⊗ A3) (Fremlin

04, 315K) identify λ(12)3 with λ1(23).
PPP Take any d ∈ A1 ⊗ A2 ⊗ A3. Express d as supi∈I ai ⊗ ei where 〈ai〉i∈I is a partition of unity in A1

and ei ∈ A2 ⊗ A3 for each i; express each ei as supj∈Ji
bij ⊗ cij where 〈bij〉j∈Ji

is a partition of unity in
A2 and cij ∈ A3 for i ∈ I, j ∈ Ji. In this case, 〈ai ⊗ bij〉i∈I,j∈Ji

is a partition of unity in A1 ⊗ A2 and
d = supi∈I,j∈Ji

ai ⊗ bij ⊗ cij .
Let ǫ > 0. For i ∈ I, set J ′

i = {j : j ∈ Ji, µ3cij > ǫ}, e′i = supj∈J ′

i
bij . Then λ23(supj∈Ji

bij ⊗ cij) ≤ ǫ

iff µ2e
′
i ≤ ǫ. Set I ′ = {i : µ2e

′
i > ǫ}; then λ1(23)d ≤ ǫ iff µ1(supi∈I′ ai) ≤ ǫ. From the other direction, set

f = sup{ai ⊗ bij : i ∈ I, j ∈ J ′
i}; then λ(12)3d ≤ ǫ iff λ12f ≤ ǫ. But f = supi∈I ai ⊗ e′i, so λ12f ≤ ǫ iff

µ1(supi∈I′ ai) ≤ ǫ.
As ǫ and d are arbitrary, λ(12)3 = λ1(23), as claimed. QQQ

(d) Returning to the notation of (a)-(b): if µ and ν are exhaustive, so is λ. PPP Let 〈cn〉n∈N be a sequence
in A ⊗B such that λcn > ǫ > 0 for every n. For each n, express cn as supi∈In

ani ⊗ bni where 〈ani〉i∈In is
a partition of unity; set I ′n = {i : i ∈ In, νbni > ǫ}, an = supi∈I′

n
ani; then µan > ǫ. By Lemma 2D, there
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is an infinite J ⊆ N such that {an : n ∈ J} is centered. Let D ⊆ A be a maximal centered family including
{an : n ∈ J}; then for every n ∈ J there is an in ∈ I ′n such that an,in ∈ D. But now observe that νbn,in > ǫ
for every n ∈ J , so there must be distinct m, n ∈ J such that bm,im ∩ bn,in 6= 0; as am,im ∩ an,in is also
non-zero, cm ∩ cn 6= 0. As 〈cn〉n∈N is arbitrary, λ is exhaustive. QQQ

(e) We can extend the construction to infinite products, as follows. Let I be a totally ordered set and
〈(Ai, µi)〉i∈I a family of Boolean algebras endowed with unital submeasures. For a finite set J = {i0, . . . , in}
where i0 < . . . < in in I, let λJ be the product submeasure (.(µi0 ⋉ µi1) ⋉ . . . ) ⋉ µin on CJ =

⊗
j∈J Aj ;

for definiteness, on C∅ = {0, 1} take λ∅ to be the unital submeasure. Using (c) repeatedly, we see that if J ,
K ∈ [I]<ω and j < k for every j ∈ J , k ∈ K, then the identification of CJ∪K with CJ ⊗ CK (Fremlin 04,
315K) matches λJ∪K with λJ ⋉ λK . Moreover, if K ∈ [I]<ω and J is any subset of K (not necessarily an
initial segment) and εJK : CJ → CK is the canonical embedding corresponding to the identification of CK

with CJ ⊗ CK\J , then λJ = λKεJK ; this is also an easy induction on #(K). What this means is that for
any subset M of I we have a submeasure λM on CM =

⋃{εJMCJ : J ∈ [M ]<ω}, being the unique functional
such that λMεJM = λJ for every J ∈ [M ]<ω. Finally, if L, M are subsets of I with l < m for every l ∈ L
and m ∈M , then λL∪M can be identified with λL ⋉ λM .

Unhappily it is not clear that we can get new exhaustive submeasures this way. If I is any infinite totally
ordered set, and for each i ∈ I we set Ai = P{0, 1} with νi{0} = νi{1} = νi{0, 1} = 1, then

⊗
i∈I Ai can be

identified with the algebra E of open-and-closed subsets of {0, 1}I , and λI with the submeasure on E which
gives every non-empty set the submeasure 1; which is about as far from exhaustive as it could well be.

(f) Turning now to products of Maharam algebras, it is easy to see, in (a), that if µ and ν are strictly
positive so is µ ⋉ ν. At this point it is worth observing that if µ, µ′ are submeasures on A, ν and ν ′ are
submeasures on B, µ is absolutely continuous with respect to µ′ and ν is absolutely continuous with respect
to ν ′, then µ ⋉ ν is absolutely continuous with respect to µ′ ⊗ ν ′. PPP For any ǫ > 0 there is a δ > 0 such
that µa ≤ ǫ whenever µ′a ≤ δ and νb ≤ ǫ whenever ν ′b ≤ δ. If now c ∈ A⊗B and (µ′ ⋉ ν ′)(c) ≤ δ, we have
c = supi∈I ai ⊗ bi and J ⊆ I such that 〈ai〉i∈I is a partition unity, µ′(supi∈J ai) ≤ δ and ν ′bi ≤ δ for every
i ∈ I \ J ; so µ(supi∈J ai) ≤ ǫ and νbi ≤ ǫ for every i ∈ I \ J and (µ⋉ ν)(c) ≤ ǫ. QQQ

Now suppose that 〈Ai〉i∈I is a family of non-trivial Maharam algebras, where I is a finite totally ordered
set. Then we can take a strictly positive unital Maharam submeasure µi on each Ai, form an exhaustive

submeasure λ on CI =
⊗

i∈I Ai, and use λ to construct a metric completion ĈI which is a Maharam
algebra, as in Fremlin 04, 393B. If we change each µi to µ′

i, where µ′
i is another strictly positive Maharam

submeasure on Ai, then every µ′
i is absolutely continuous with respect to µi (Fremlin 04, 393E), so the

corresponding λ′ will be absolutely continuous with respect to λ, and vice versa; in which case the metrics

on CI are uniformly equivalent and we get the same completion ĈI up to Boolean algebra isomorphism. We

can therefore think of ĈI as ‘the’ Maharam algebra free product of the family 〈Ai〉i∈I of Boolean algebras;

as before, we shall have an isomorphism between ĈJ⊗̂ĈK and ĈJ∪K whenever J , K ⊆ I and j < k for every
j ∈ J , k ∈ K.

(g) I should perhaps have remarked already that if µ and ν, in (a), are additive and unital, then we have
an additive function λ′ on A ⊗ B such that λ′(a ⊗ b) = µa · νb for every a ∈ A and b ∈ B (Fremlin 04,
326Q). Now if we take λ as constructed in (a), each of λ, λ′ is absolutely continuous with respect to the
other. PPP If c ∈ A⊗B, express c as supi∈I ai ⊗ bi where 〈ai〉i∈I is a finite partition of unity. Thenµ(sup{ai :

νbi > λc}) ≤ λc, so λ′c =
∑

i∈I µai ·νbi is at most 2λc. On the other hand, µ(sup{ai : νbi >
√
λ′c}) ≤

√
λ′c,

so λc ≤
√
λ′c. QQQ

What this means is that if (A, µ) and (B, ν) are probability algebras, then their Maharam algebra free
product, regarded as a Boolean algebra, is identical to their probability algebra free product as defined in
Fremlin 04, §326. Now this extends to finite products, as in (f) here.

4B Representing products of Maharam algebras: Theorem Let X and Y be sets, with σ-algebras
Σ and T and Maharam submeasures µ and ν defined on Σ, T respectively. Set I = µ−1[{0}], J = ν−1[{0}],
A = Σ/I and B = T/J , and write µ̄, ν̄ for the strictly positive Maharam submeasures on A and B induced
by µ and ν as in 1I above. Let Σ⊗̂T be the σ-algebra of subsets of X × Y generated by {E × F : E ∈ Σ,
F ∈ T}.
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(a) (Compare Fremlin 03, 418T.) Give B the topology induced by the metric (b, b′) 7→ ν̄(b△ b′)1. If
W ∈ Σ⊗̂T then W [{x}] ∈ T for every x ∈ X and the function x 7→ W [{x}]• : X → B is Σ-measurable and
has separable range. Consequently x 7→ νW [{x}] : X → [0,∞[ is Σ-measurable.

(b) For W ∈ Σ⊗̂T set

λW = inf{ǫ : ǫ > 0, µ{x : νW [{x}] > ǫ} ≤ ǫ}.

Then λ is a Maharam submeasure on Σ⊗̂T, and

λ−1[{0}] = {W : W ∈ Σ⊗̂T, {x : W [{x}] /∈ J } ∈ I}.

(c) C = Σ⊗̂T/λ−1[{0}] is a Maharam algebra with a strictly positive Maharam submeasure λ̄ induced by
λ.

(d) A⊗B can be embedded in C by mapping E• ⊗ F • to (E × F )• for all E ∈ Σ, F ∈ T.
(e) This embedding identifies (C, λ̄) with the metric completion A⊗̂B of (A ⊗B, µ̄ ⋉ ν̄) as described in

4Af.

proof (a) Write W for the set of those W ⊆ X × Y such that W [{x}] ∈ T for every x ∈ X and x 7→
W [{x}]• : X → B is Σ-measurable and has separable range. Then Σ ⊗ T (identified with the algebra of
subsets of X × Y generated by {E × F : E ∈ Σ, F ∈ T}) is included in W.

If 〈Wn〉n∈N is a non-decreasing sequence in W with union W , then W ∈ W. PPP Of course W [{x}] =⋃
n∈N

Wn[{x}] belongs to T for every x ∈ X. Set fn(x) = Wn[{x}]• for n ∈ N and x ∈ X. For each x ∈ X,
W [{x}]\Wn[{x}] is a non-increasing sequence with empty intersection, so limn→∞ ν(W [{x}]\Wn[{x}]) = 0
and 〈fn(x)〉n∈N converges to f(x) = W [{x}]• in B. By Fremlin 03, 418B, f is measurable. Also D =

{fn(x) : x ∈ X, n ∈ N} is a separable subspace of B including f [X]. So W ∈ W. QQQ
Similarly,

⋂
n∈N

Wn ∈ W for any non-increasing sequence 〈Wn〉n∈N in W. W therefore includes the

σ-algebra generated by Σ ⊗ T (Fremlin 00, 136G), which is Σ⊗̂T.
Now x 7→ νW [{x}] = ν̄W [{x}]• is measurable because ν̄ : B → R is continuous.

(b) Of course λ∅ = 0 and λW ≤ λW ′ if W , W ′ ∈ Σ⊗̂T and W ⊆W ′. If W1, W2 ∈ Σ⊗̂T have union W ,
λW1 = α1 and λW2 = α2, then

{x : νW [{x}] > α1 + α2} ⊆ {x : νW1[{x}] > α1} ∪ {x : νW2[{x}] > α2},

so, setting α = α1 + α2,

µ{x : νW [{x}] > α} ≤ µ{x : νW1[{x}] > α1} + µ{x : νW2[{x}] > α2} ≤ α1 + α2 = α,

and λW ≤ α. Thus λ is monotonic and subadditive.
If now 〈Wn〉n∈N is a non-increasing sequence in Σ⊗̂T with empty intersection, and ǫ > 0, set En = {x :

νWn[{x}] ≥ ǫ} for each n. Then 〈En〉n∈N is non-increasing; moreover, for any x ∈ X, 〈Wn[{x}]〉n∈N is a
non-increasing sequence in T with empty intersection, so limn→∞ νWn[{x}] = 0 and x /∈ ⋂

n∈N
En. There

is therefore an n such that µEn ≤ ǫ and λWn ≤ ǫ. As 〈Wn〉n∈N and ǫ are arbitrary, λ is a Maharam
submeasure.

Finally, for W ∈ Σ⊗̂T,

λW = 0 ⇐⇒ µ{x : νW [{x}] ≥ 2−n} ≤ 2−n for every n ∈ N

⇐⇒ µ{x : νW [{x}] ≥ 2−m} ≤ 2−n for every m, n ∈ N

⇐⇒ µ{x : νW [{x}] > 0} ≤ 2−n for every n ∈ N

⇐⇒ µ{x : νW [{x}] > 0} = 0 ⇐⇒ {x : W [{x}] /∈ J } ∈ I.

(c) Put (b) together with Theorem 1I.

(d) If either A or B is {0}, this is trivial. Otherwise, we have a Boolean homomorphism E 7→ (E× Y )• :
Σ → C with kernel I, so there is a corresponding Boolean homomorphism E• 7→ (E×Y )• : A → C. Similarly
we have a Boolean homomorphism F • 7→ (X×F )• : B → C. Accordingly we have a Boolean homomorphism
φ : A⊗B → C defined by saying that

1that is, its order-sequential topology (1Jb).



17

φ(E• ⊗ F •) = (E × Y )• ∩ (X × F )• = (E × F )•

for E ∈ Σ and F ∈ T. Now φ is injective. PPP If e ∈ A ⊗B is non-zero, there are E ∈ Σ, F ∈ T such that
0 6= E• ⊗ F • ⊆ e. In this case, E /∈ I and F /∈ J so λ(E × F ) > 0 and

φe ⊇ φ(E• ⊗ F •) = (E × F )• 6= 0. QQQ

(e) λ̄(φe) = (µ ⋉ ν)(e) for every e ∈ A ⊗ B. PPP Express e as supi∈I ai ⊗ bi where 〈ai〉i∈I is a finite
partition of unity in A and bi ∈ B for each i. For each i, we can express ai, bi as E•

i , F •

i where Ei ∈ Σ
and Fi ∈ T; moreover, we can do this in such a way that 〈Ei〉i∈I is a partition of X. In this case, φe = W •

where W =
⋃

i∈I Ei × Fi, so that, for ǫ > 0,

µ{x : νW [{x}] > ǫ} = µ(
⋃{Ei : i ∈ I, νFi > ǫ}) = µ̄(sup{ai : i ∈ I, ν̄bi > ǫ}).

Accordingly

(µ⋉ ν)(e) = inf{ǫ : µ̄(sup{ai : i ∈ I, ν̄bi > ǫ}) ≤ ǫ}
= inf{ǫ : µ{x : νW [{x}] > ǫ} ≤ ǫ} = λW = λ̄W • = λ̄(φe). QQQ

Next, φ[A ⊗ B] is dense in C for the metric induced by λ̄. PPP Let D be the metric closure of φ[A ⊗ B]
and set V = {V : V ∈ Σ⊗T, V • ∈ D}. Then V includes Σ⊗T and is closed under unions and intersections
of monotonic sequences, so is the whole of Σ⊗̂T, and D = C, as required. QQQ But this means that we can
identify C with the metric completion of φ[A⊗B] and with A⊗̂B.

4C The robust σ-bounded-cc (a) Let A be a Boolean algebra and µ a strictly positive submeasure
on A. I will say that (A, µ) is robustly σ-bounded-cc if A+ can be expressed as

⋃
n∈N

An where for each
n ∈ N there are m ∈ N, δ > 0 such that whenever a0, . . . , am ∈ An then there are distinct i, j < m such
that µ(ai ∩ aj) ≥ δ.

(b) Observe that if A is a Boolean algebra and µ is a strictly positive additive functional on A, then

(A, µ) is robustly σ-finite-cc. PPP Set An = {a : µa ≥ µ1

n+1
} for each n ∈ N. If a0, . . . , an+1 ∈ An, then

n+2

n+1
µ1 ≤ ∑n+1

i=0 µai ≤ µ1 + µ(supi<j≤n+1 ai ∩ aj),

so there must be distinct i, j ≤ n+ 1 such that µ(ai ∩ aj) ≥ 2µ1

(n+2)(n+1)2
. QQQ

(c) If µ, ν are two strictly positive submeasures on A, each absolutely continuous with respect to the
other, then (A, µ) is robustly σ-bounded-cc iff (A, ν) is.

4D Proposition Let A be a σ-bounded-cc Maharam algebra, and µ a strictly positive Maharam sub-
measure on A. Then (A, µ) is robustly σ-bounded-cc.

proof Let 〈An〉n∈N, 〈mn〉n∈N be such that A+ =
⋃

n∈N
An and no An includes any disjoint set of size greater

than mn. For n ∈ N set A′
n =

⋃{[a, 1] : a ∈ An}; then A′
n includes no disjoint set of size greater than mn.

For n, k ∈ N set

Bnk = {a : a ∈ A, a \ b ∈ A′
n whenever µb ≤ 2−k}.

Then
⋃

n,k∈N
Bnk = A

+. PPP??? Otherwise, there is an a ∈ A
+ such that for every n ∈ N there is a bn such

that µbn ≤ 2−n−2µa and a \ bn /∈ A′
n. Set a′ = a \ supn∈N bn; then µa′ > 0 but a′ /∈ ⋃

n∈N
An. XXXQQQ

Set δnk =
1

2k(mn+1)
for m, n ∈ N. If n, k ∈ N and a0, . . . , amn

∈ Bnk, then there are distinct i, j ≤ mn

such that µ(ai ∩ aj) ≥ δnk. PPP??? Otherwise, set bi = supj≤mn,j 6=i ai ∩ aj for each i. Then µbi ≤ 2−k so
ai \ bi ∈ A′

n for each i ≤ mn. But 〈ai \ bi〉i≤mn
is disjoint. XXXQQQ

So 〈Bnk〉n,k∈N witnesses that (A, µ) is robustly σ-bounded-cc.

4E Proposition Suppose that A and B are σ-bounded-cc Maharam algebras. Then their Maharam
algebra free product C is σ-bounded-cc.
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proof (a) We may suppose throughout that neither A nor B is {0}. Express A and B as quotients of
(X,Σ, µ) and (Y,T, ν) as in 1Ib. Then we can identify C with the quotient of (X × Y,Σ ⊗ T, λ) where λ is
defined as in Theorem 4B. Let 〈An〉n∈N, 〈Bn〉n∈N witness that (A, µ̄) and (B, ν̄) are robustly σ-bounded-cc
(Proposition 4D); for each n ∈ N let mn, m′

n ∈ N and δn, δ′n > 0 be appropriate parameters as required in
the definition 4Ca. Set

En = {E : E ∈ Σ, E• ∈ An}, Fn = {F : F ∈ T, F • ∈ Bn}
for each n. Then

⋃
n∈N

En = {E : µE > 0} and
⋃

n∈N
Fn = {F : νF > 0}.

(b) If W ∈ Σ⊗̂T and λW > 0, there is an F ∈ T such that νF > 0 and µ{x : ν(F \W [{x}]) < η} > 0
for every η > 0. PPP By Theorem 4Ba, x 7→ W [{x}]• is measurable and has separable range. Set E = {x :
W [{x}]• 6= 0}, D = {W [{x}]• : x ∈ E}; then µE > 0 and D is separable. As D is Lindelöf, there is a b ∈ D
such that µ{x : W [{x}]• ∈ U} > 0 for every open neighbourhood U of b. Take F ∈ T such that F • = b;
then νF > 0. If η > 0, then U = {b′ : ν̄(b \ b′) < η} is a neighbourhood of b, so

µ{x : ν(F \W [{x}]) < η} = µ{x : W [{x}]• ∈ U} > 0. QQQ

(c) For k, l ∈ N, let Wkl be the set of those W ∈ Σ⊗̂T for which there are E ∈ Ek, F ∈ Fl such that
ν(F \W [{x}]) ≤ 1

3δ
′
l for every x ∈ E. By (b), every W ∈ Σ⊗̂T such that λW > 0 belongs to Wkl for some

k, l.

(d) Take k, l ∈ N. Let m ≥ 1 be so large that whenever S ⊆ [m+ 1]2 there is either an I ∈ [m+ 1]mk+1

such that [I]2 ⊆ S or a J ∈ [m + 1]ml+1 such that [J ]2 ∩ S = ∅. Then if W0, . . . ,Wm ∈ Wkl there are
distinct i, j ≤ m such that λ(Wi ∩Wj) > 0. PPP For each i ≤ m choose Ei ∈ Ek and Fi ∈ Fl such that
ν(Fi \Wi[{x}]) ≤ 1

3δ
′
l for every x ∈ Ei. Consider S = {{i, j} : i < j ≤ m, µ(Ei ∩ Ej) < δk}. If I ⊆ m + 1

and #(I) = mk +1 there must be distinct i, j ∈ I such that µ(Ei∩Ej) ≥ δk, so that {i, j} /∈ S. Accordingly
there is a set J ⊆ m+ 1 such that #(J) = ml + 1 and [J ]2 ∩ S = ∅. Let i, j be distinct members of J such
that ν(Fi ∩ Fj) ≥ δ′l. Then

ν(Wi ∩Wj)[{x}] = ν(Wi[{x}] ∩Wj [{x}]) ≥ ν(Fi ∩ Fj) − 2

3
δ′l ≥

1

2
δ′l

for every x ∈ Ei ∩ Ej . So

λ(Wi ∩Wj) ≥ min(µ(Ei ∩ Ej),
1

3
δ′l) > 0. QQQ

Accordingly, setting Ckl = {W • : W ∈ Wkl} for k, l ∈ N, 〈Ckl〉k,l∈N witnesses that (C, λ̄) is σ-bounded-cc.

4F Definitions (Fremlin 08?, §527) Suppose that I ⊳ PX and J ⊳ PY are ideals of subsets of sets
X, Y respectively.

(a) I will write I ⋉ J for their skew product {W : W ⊆ X × Y , {x : W [{x}] /∈ J } ∈ I}. and I ⋊ J
for {W : W ⊆ X × Y , {y : W−1[{y}] /∈ I} ∈ J }; these are ideals of subsets of X × Y .

(b) If Λ is a family of subsets of X × Y , write I ⋉Λ J , I ⋊Λ J for the ideals generated by (I ⋉ J ) ∩ Λ,
(I ⋊ J ) ∩ Λ respectively.

4G Proposition Let X be a set, Σ a σ-algebra of subsets of X, µ : Σ → [0,∞[ a Maharam submeasure,
and N (µ) the null ideal of µ, that is, the ideal of subsets of X generated by µ−1[{0}]. Let µL be Lebesgue
measure on [0, 1].

(a) If N (µ) ⋉Σ⊗̂ΣL
N (µL) ⊆ N (µ) ⋊N (µL) then µ is uniformly exhaustive.

(b) If µ is uniformly exhaustive then N (µ) ⋉Σ⊗̂ΣL
N (µL) = N (µ) ⋊Σ⊗̂ΣL

N (µL).

proof (a) ??? Otherwise, there are an ǫ > 0 and a family 〈Eij〉i∈N,j<2i in Σ such that µEij ≥ ǫ for all i and

j and 〈Eij〉j<2i is disjoint for each i. Let 〈Fij〉i∈N,j<2i be a family in ΣL such that µFij = 2−i for all i and
j and

⋃
j<2i Fij = [0, 1] for each i. Set

W =
⋂

k∈N

⋃
i≥k,j<2i Eij × Fij ∈ Σ⊗̂ΣL.

For any x ∈ X, set Kx = {i : x ∈ ⋃
j<2n Eij}, and for i ∈ Kx define f(x, i) by saying that x ∈ Ei,f(x,i); then
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W [{x}] =
⋂

k∈N

⋃
i∈Kx\k

Fi,f(x,i) ∈ N (µL)

because
∑

i∈Kx
µFi,f(x,i) is finite. So W ∈ N (µ) ⋉Σ⊗̂ΣL

N (µL). For any t ∈ [0, 1], i ∈ N choose g(t, i) such
that t ∈ Fi,g(t,i); then

µW−1[{t}] ≥ µ(
⋂

k∈N

⋃
i≥k Ei,g(t,i)) = infk∈N µ(

⋃
i≥k Ei,g(t,i)) ≥ ǫ.

So W /∈ N (µ) ⋊Σ⊗̂ΣL
N (µL). XXX

(b) The quotient A = Σ/N (µ) has a strictly positive uniformly exhaustive submeasure, so is a measurable
algebra; there is therefore a totally finite measure ν with domain Σ and the same null ideal as µ. Now we
can use Fubini’s theorem to see that N (ν)⋉Σ⊗̂ΣL

N (µL) and N (ν)⋊Σ⊗̂ΣL
N (µL) are both the null ideal of

the product measure ν × µL.

5 Forcing

5A Proposition Suppose that A and C are Boolean algebras such that
(i) A is weakly (σ,∞)-distributive, has a strictly positive exhaustive submeasure and is not {0};

(ii) 
A ‘Č has a strictly positive exhaustive submeasure’.
Then C has a strictly positive exhaustive submeasure.

proof Replacing A by its completion, if necessary, we may suppose that A is a Maharam algebra (Prop.
1E), with a strictly positive Maharam submeasure ν. Let µ̇ be an A-name for a strictly positive exhaustive
submeasure on C. For c ∈ C, set

λc = inf{ǫ : ǫ ∈ Q, ǫ ≥ 0, ν([[µ̇c > ǫ]]) ≤ ǫ}.

Now λ is a submeasure. PPP If c = 0 then [[µ̇c > 0]] = 0 and λc = 0. If c ⊆ c′ then [[µ̇c > ǫ]] ⊆ [[µ̇c′ > ǫ]] for
every ǫ > 0 and λc ≤ λc′. If c, c′ ∈ C and δ > 0, there are ǫ, ǫ′ ∈ Q such that

ǫ ≤ λc+ δ, ν([[µ̇c > ǫ]]) ≤ ǫ, ǫ′ ≤ λc′ + δ, ν([[µ̇c′ > ǫ′]]) ≤ ǫ′.

Now if a = 1 \ ([[µ̇c > ǫ]] ∪ [[µ̇c′ > ǫ′]]),

a 
 ‘µ̇c ≤ ǫ& µ̇c′ ≤ ǫ′’,

so a 
 ‘µ̇(c ∪ c′) ≤ ǫ+ ǫ′’, that is,

[[µ̇(c ∪ c′) > ǫ+ ǫ′]] ⊆ [[µ̇c > ǫ]] ∪ [[µ̇c′ > ǫ′]];

consequently λ(c ∪ c′) ≤ λc+ λc′ + 2δ; as δ, c and c′ are arbitrary, λ is subadditive. QQQ
λ is strictly positive. PPP If c ∈ C

+, then 1A = [[µ̇c > 0]] = supn∈N [[µ̇c > 2−n]], so there must be some n ∈ N

such that ν([[µ̇c > 2−n]]) > 2−n and λc ≥ 2−n. QQQ
Finally, λ is exhaustive. PPP Suppose that 〈cn〉n∈N is a sequence in C such that λcn > ǫ for every n, where

ǫ > 0 is rational. Set an = [[µ̇cn ≥ ǫ]]; then νan ≥ ǫ for every n. Set a = infn∈N supm≥n am; then νa ≥ ǫ so
a 6= 0. Now

a 
 ‘for every n ∈ N there is an m ≥ n such that µ̇cm ≥ ǫ’;

since µ̇ is a name for an exhaustive submeasure,

a 
 ‘there are distinct m, n ∈ N such that cm ∩ cn 6= 0’.

So there are distinct m, n ∈ N and a non-zero a′ ⊆ a such that

a′ 
 ‘cm ∩ cn 6= 0’.

But since the objects cm, cn are in the ground model, cm ∩ cn 6= 0 in the real world, and 〈cn〉n∈N is not
disjoint. QQQ

5B Corollary Suppose that A is a non-zero Maharam algebra and C is a Dedekind complete Boolean
algebra such that


A ‘the Dedekind completion of Č is a Maharam algebra’.

Then C is a Maharam algebra.
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proof Since


A ‘the Dedekind completion of Č has a strictly positive exhaustive submeasure’,

we surely have


A ‘Č has a strictly positive exhaustive submeasure’.

By Proposition 5A, C has a strictly positive exhaustive submeasure; in particular, it is ccc. Also A, being
weakly (σ,∞)-distributive, is weakly σ-distributive, and


A ‘Č is weakly σ-distributive’,

so C is weakly σ-distributive; as it is ccc, C is weakly (σ,∞)-distributive. Now Proposition 1E tells us that
C is a Maharam algebra.

5C Pre-ordered sets (In the following paragraphs, all pre-ordered sets will be active upwards; that is to
say, p ≤ q will mean that q is stronger than p. In the language of Fremlin 08?, this would be represented by
adding the word ‘upwards’ to each definition.) Let P be a pre-ordered set (‘p.o.set’ in Kunen 80), that is,
a set with a reflexive transitive relation ≤. I will say that P is ‘Maharam’, or ‘measurable’, or ‘chargeable’,
or ‘weakly σ-distributive’, or ‘σ-finite-cc’, or ‘σ-bounded-cc’, or ‘weakly (σ,∞)-distributive’, if its regular
open algebra is. The last three have reasonably simple translations:

P is σ-finite-cc iff it is expressible as
⋃

n∈N
An where no An includes any infinite antichain;

P is σ-bounded-cc iff it is expressible as
⋃

n∈N
An where no An includes any antichain with

more than n members;
P is weakly (σ,∞)-distributive iff whenever 〈An〉n∈N is a sequence of maximal antichains in

P , then there is a maximal antichain B such that {a : a ∈ An, a is compatible with b} is finite
for every n ∈ N.

Theorems 3C and 3G tell us that P is Maharam iff it is weakly (σ,∞)-distributive and σ-finite-cc, and that
if Todorčević’s P-ideal dichotomy is true, then P is Maharam iff it is weakly (σ,∞)-distributive and ccc. I
note that P is measurable iff it is weakly (σ,∞)-distributive and chargeable (Fremlin 04, 391D). We can
translate Kelley’s criterion (Fremlin 04, 391J) as follows:

P is chargeable iff it is expressible as
⋃

n∈N
An where for every n ∈ N and every non-empty

finite indexed family 〈pi〉i∈I in An, there is a J ⊆ I such that #(J) ≥ 2−n#(I) and {pi : i ∈ J}
has an upper bound in P .

Now we have the following result.

5D Theorem Let P be a pre-ordered set and Q̇ a P -name for a pre-ordered set.
(a) If P is weakly σ-distributive and 
P ‘Q̇ is weakly σ-distributive’, then P ∗ Q̇ is weakly σ-distributive.

(b) (I.Farah) If P is Maharam and 
P ‘Q̇ is Maharam’, then P ∗ Q̇ is Maharam.

proof (a) The point is that P is weakly σ-distributive iff it is ωω-bounding, so we can use (for instance)
Theorem 6.3.5 of Bartoszyński & Judah 95.

(b) For p ∈ P , let p̂ = int [p,∞[ be the corresponding element of the regular open algebra RO(P ). By
Proposition 2H, we can express P as a union

⋃
n∈N

An where for any sequence 〈pj〉j∈N in any An there are
a strictly increasing sequence 〈ki〉i∈N in N and a p ∈ P such that p̂ ⊆ supki≤j<ki+1

p̂j for every i. At the
same time,


P ‘Q̇ is σ-finite-cc’,

so there is a sequence 〈Ḃn〉n∈N of P -names for subsets of Q̇ such that


P ‘
⋃

n∈N
Ḃn = Q̇ and there is no infinite antichain in Ḃn’

for every n. Set

Cmn = {(p, q̇) : p ∈ Am, p 
 ‘q̇ ∈ Ḃn’

for m, n ∈ N. Then
⋃

m,n∈N
Cmn is cofinal with P ∗ Q̇. Also no Cmn includes an infinite antichain. PPP Let

〈(pi, q̇i)〉i∈N be a sequence in Cmn. Because pi ∈ An for every i, we have a p ∈ P and a strictly increasing
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sequence 〈kj〉j∈N such that p̂ ⊆ supkj≤i<kj+1
p̂i for every j. We can therefore find maximal antichains A′

j ,

for j ∈ N, such that if p′ ∈ A′
j either p′ is incompatible with p or p ≤ p′ and there is an i ∈ kj+1 \ kj

with pi ≤ p′. Let q̇′j be a P -name for a member of Q̇ such that whenever p′ ∈ A′
j and p ≤ p′ there is an

i ∈ kj+1 \ kj such that pi ≤ p′ and

p′ 
 ‘q̇′j = q̇i’,

so that

p 
 ‘q̇′j ∈ Ḃn’.

There must therefore be distinct j, j′ such that

p 
 ‘q̇′j and q̇′j′ are compatible’.

But now there must be a p′ ≥ p and i ∈ kj+1 \ kj , i′ ∈ kj′+1 \ kj′ such that p ≥ pi, p
′ ≥ pi′ and

p′ 
 ‘q̇′j = q̇i and q̇′j′ = q̇i′ ’;

in which case i 6= i′ and (pi, q̇
′
i) and (pi′ , q̇

′
i′) are compatible. QQQ

So P ∗ Q̇ is σ-finite-cc; by Theorem 3C and (a) above, it is Maharam.

Remark Of course there is an alternative proof working with the regular open algebras RO(P ) and RO(Q̇)
and Maharam submeasures and using Proposition 1E.

5E The Tukey ordering If P and Q are pre-ordered sets, a function φ : P → Q is a Tukey function
if {p : f(p) ≤ q} is bounded above in P for every q ∈ Q. If there is a Tukey function from P to Q, I write
P 4T Q. (See Fremlin 08?, §513.)

5F Proposition Let P and Q be pre-ordered sets such that P 4T Q. If Q is chargeable, so is P .

proof Let φ : P → Q be a Tukey function, and express Q as
⋃

n∈N
Bn where for every n ∈ N and every

finite indexed family 〈qi〉i∈I in Bn, there is a J ⊆ I such that #(J) ≥ 2−n#(I) and {qi : i ∈ J} has an
upper bound in Q. Set An = φ−1[Bn] for each n; then P =

⋃
n∈N

An, and for every n ∈ N and every finite
indexed family 〈pi〉i∈I in An, there is a J ⊆ I such that #(J) ≥ 2−n#(I) and {φ(pi) : i ∈ J} has an upper
bound in Q, so {pi : i ∈ J} has an upper bound in P .

6 Examples

6A Proposition (S.Todorčević) Let RO(X) be the regular open algebra of the space X described in
Fremlin 04, 391N (‘Gaifman’s example’; see Gaifman 64). Then RO(X) has the property (*) defined in
1Ad.

proof I recall the definition of X from Fremlin 04. Enumerate as 〈In〉n∈N the set of half-open intervals
[q, q′[ in R with q, q′ ∈ Q and q < q′. For each n ∈ N let Jn be a disjoint family of non-trivial subintervals of
In. Let X be the set of those x ∈ {0, 1}R such that for each n the set {J : J ∈ Jn, x(t) = 1 for some t ∈ J}
has at most n+ 1 members, with its compact Hausdorff zero-dimensional topology inherited from {0, 1}R.

For each n ∈ N let Gn be the set of those regular open subsets G of X for which there are K, L ∈ [R]<ω

such that (i) taking En to be the finite subalgebra of subsets of R generated by {Ii : i < n}, any two distinct
points t, u of K ∪ L belong to different atoms of En (ii) {x : x ∈ X, x(t) = 1 for every t ∈ K, x(t) = 0 for
every t ∈ L} is non-empty and included in G. Then every non-empty regular open subset of X belongs to
some Gn. Now suppose that n ∈ N and we are given a sequence 〈Gk〉k∈N in Gn. For each k ∈ N let Kk, Lk

be finite sets witnessing that Gk ∈ Gn. Let 〈kr〉r∈N be a strictly increasing sequence such that

for every r ∈ N and E ∈ En, Kkr
∩ E 6= ∅ iff Kk0

∩ E 6= ∅,
for every r ∈ N and E ∈ En, Lkr

∩ E 6= ∅ iff Lk0
∩ E 6= ∅,

whenever m ∈ N and r ≥ ⌊m
n
⌋ − 1 and J ∈ Jm then Kkr+1

∩ J 6= ∅ iff Kkr
∩ J = ∅.

(At each stage we have to choose kr belonging to an infinite set belonging to a given finite partition of
the previous infinite set.) Now set x(t) = 1 if t ∈ ⋃

r∈N
Kkr

, 0 otherwise. For m ∈ N, r ∈ N set Jmr =
{J : J ∈ Jm, J ∩Kkr

6= ∅}; for m ∈ N, set J ′
m =

⋃
r∈N

Jmr. Then Jm,r+1 = Jmr if r ≥ ⌊m
n
⌋ − 1, while
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#(Jmr) ≤ #(Kkr
) ≤ n for all m and r. In particular, if m < 2n, Jmr = Jm0 for every r; as {x : x(t) = 1

for t ∈ Kk0
} meets X, #(J ′

m) ≤ m for such m. If (l + 1)n ≤ m < (l + 2)n, where l ≥ 1, then Jmr = Jml

for every r ≥ l, so

#(J ′
m) = #(

⋃
r≤l Jmr) ≤ (l + 1)n ≤ m.

What this means is that #({J : J ∈ Jm, x(t) = 1 for some t ∈ J}) ≤ m for every m ∈ N, and x ∈ X. I
have still to confirm that x ∈ Gkr

for every r. But, given r, then if t ∈ Kkr
we certainly have x(t) = 1; while

if u ∈ Lkr
then there is an atom E of En containing u, E must contain a point of Lk0

, E cannot contain any
point of Kk0

and therefore does not contain any point of
⋃

s∈N
Kks

, so x(u) = 0. Thus x ∈ Gkr
for every r,

and {Gkr
: r ∈ N} is centered in RO(X).

Remark Recall that RO(X) is σ-n-linked for every n (Fremlin 04, 391Yh); in particular, it is σ-bounded-
cc.

6B Remark G lowczyński 91 presents the following example. Starting from a two-valued-measurable
cardinal κ we can find a ccc forcing to give us a model in which κ < c = m. This gives us an ω1-saturated
σ-ideal I of Pκ such that the quotient A = Pκ/I is ccc, Dedekind complete, weakly (σ,∞)-distributive,
has Maharam type ω and is not a Maharam algebra. Since Martin’s axiom is true, A satisfies Knaster’s
condition; by Theorem 3B, or otherwise, it is not σ-finite-cc.

7 Rank functions for exhaustive submeasures

7A Definitions Suppose that A is a Boolean algebra and ν an exhaustive submeasure on A. For ǫ > 0,
say that a ≺ǫ b if a ⊆ b and ν(b \ a) > ǫ. Then ≺ǫ is a well-founded relation on A; for a ∈ A, write rǫ(a) for the
height of the relation restricted to the principal ideal Aa generated by a, that is, rǫ(a) = supb≺ǫa

(rǫ(b) + 1).

7B Elementary facts Let A is a Boolean algebra with an exhaustive submeasure ν and associated rank
functions rǫ for ǫ > 0.

(a)

rδ(a) ≤ rǫ(b) whenever ν(a \ b) ≤ δ − ǫ.

PPP Induce on rǫ(b). If rǫ(b) = 0, then νb ≤ ǫ so νa ≤ δ and rδ(a) = 0. For the inductive step to rǫ(b) = ξ,
if c ⊆ a and ν(a \ c) > δ then ν(b \ c) > ǫ and rǫ(b ∩ c) < ξ. Also ν(c \ b) ≤ δ − ǫ so, by the inductive
hypothesis, rδ(c) 6= rδ(b ∩ c) < ξ; as c is arbitrary, rδ(a) ≤ ξ and the induction continues. QQQ In particular,

rǫ(a) ≤ rǫ(b) if a ⊆ b, rδ(a) ≤ rǫ(a) if ǫ ≤ δ.

(b) For a ∈ A let T
(a)
ǫ be the set of all decreasing strings τ = (a0, a1, . . . , an) where a0 = a and

ν(ai \ ai+1) > ǫ for i < n; for such τ , set sǫ(τ) = rǫ(an). Then T
(a)
ǫ is a tree with no infinite branches. If

σ ∈ T
(a)
ǫ then

sǫ(σ) = sup{sǫ(τ) + 1 : τ ∈ T
(a)
ǫ properly extends σ}

(induce on sǫ(σ)).

(c) If a, b ∈ A are disjoint and ǫ > 0, then rǫ(a ∪ b) ≥ rǫ(a) + rǫ(b), the latter being the ordinal sum. PPP
Induce on rǫ(b). If rǫ(b) = 0, the result is immediate from (a) above. For the inductive step to rǫ(b) = ξ,
we have for any η < ξ a c ⊆ b such that ν(b \ c) > ǫ and η ≤ rǫ(c) < ξ. Now rǫ(a ∪ c) ≥ rǫ(a) + η, by the
inductive hypothesis, and ν((a ∪ b) \ (a ∪ c)) > ǫ, so rǫ(a ∪ b) > rǫ(a)+η; as η is arbitrary, rǫ(a ∪ b) ≥ rǫ(a)+ξ
and the induction continues. QQQ

(d) If ν ′ is another exhaustive submeasure on A with rank functions r′ǫ, and νa ≤ αν ′a for every a ∈ A,
where α > 0, then rαǫ(a) ≥ r′ǫ(a) for every a ∈ A and ǫ > 0 (induce on r′ǫ(a), as usual).

7C Proposition Let A be a Boolean algebra with a strictly positive exhaustive submeasure ν, and Â the
metric completion of A under the metric (a, b) 7→ ν(a△ b) (Fremlin 04, 393B), so that ν extends naturally

to a Maharam submeasure ν̂ on Â. For ǫ > 0 let rǫ : A → On and r̂ǫ : Â → On be the rank functions
associated with ν and ν̂ respectively. Then whenever a ∈ A and 0 < ǫ < δ,
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rδ(a) ≤ r̂δ(a) ≤ rǫ(a) ≤ r̂ǫ(a).

proof (a) To see that rǫ(a) ≤ r̂ǫ(a), induce on r̂ǫ(a). If r̂ǫ(a) = 0 then νa = ν̂a ≤ ǫ and rǫ(a) = 0. For
the inductive step to r̂ǫ(a) = ξ, if b ∈ A and b ⊆ a and ν(a \ b) > ǫ, then ν̂(a \ b) > ǫ so r̂ǫ(b) < ξ; by
the inductive hypothesis, rǫ(b) < ξ; as b is arbitrary, rǫ(a) ≤ ξ and the induction proceeds. QQQ Similarly,
rδ(a) ≤ r̂δ(a).

(b) For the middle inequality, let T
(a)
ǫ ⊆ ⋃

n≥1 A
n and T̂

(a)
δ ⊆ ⋃

n≥1 Â
n be the trees constructed by the

method in §7B. For each c ∈ Â choose ai(c) ∈ A, for i ∈ N, such that ν̂(c△ ai(c)) ≤ 2−i−2(δ − ǫ) (and

ai(c) = c if c ∈ A). For τ = (c0, . . . , cn) ∈ T̂
(a)
δ , set τ ′ = (b0, . . . , bn) ∈ A

n+1 where bj = infi≤j ai(ci) for
each j ≤ n. Then bj+1 ⊆ bj for j < n; moreover, b0 = c0 = a and

ν̂(bj △ cj) ≤
∑j

i=0 ν̂(ci △ ai(ci)) ≤ 1

2
(δ − ǫ)

for j ≤ n, so

ν(bj \ bj+1) ≥ ν̂(cj \ cj+1) − (δ − ǫ) > ǫ

for j < n, and τ ′ ∈ T
(a)
ǫ . The construction ensures that if σ, τ ∈ T̂

(a)
δ and τ extends σ, then τ ′ extends

σ′. It follows at once that, defining sǫ : T
(a)
ǫ → On and ŝδ : T̂

(a)
δ → On as in §7A, ŝδ(τ) ≤ sǫ(τ

′) for every

τ ∈ T̂
(a)
δ (induce on sǫ(τ

′), as usual). In particular,

r̂δ(a) = ŝδ(〈a〉) ≤ sǫ(〈a〉) = rǫ(a),

as required.

7D Corollary If, in §7A, we set r∗ǫ (a) = supδ>ǫ rδ(a) for a ∈ A and ǫ ≥ 0, then we shall still have the
results

r∗δ (a) ≤ r∗ǫ (b) whenever ν(a \ b) ≤ δ − ǫ,

r∗ǫ (a ∪ b) ≥ r∗ǫ (a) + rǫ(b) whenever a ∩ b = 0,

and moreover, in the context of §7C, r∗δ (a) is the same, for a ∈ A, whether calculated in A or in the metric

completion Â.

7E The rank of a Maharam algebra Note that the rank function rǫ associated with an exhaustive
submeasure ν depends only on the set {a : νa > ǫ}. In particular, if µ and ν are exhaustive submeasures on

a Boolean algebra A and µa ≤ ǫ whenever νa ≤ δ, then r
(µ)
ǫ (a) ≤ r

(ν)
δ (a) for every a ∈ A. If A is a Maharam

algebra, then any two Maharam submeasures on A are mutually absolutely continuous, so we get the same
value for r∗0(1) from either; I will call this the Maharam submeasure rank of A, Mhsm(A). Note that if
a ∈ A then Mhsm(Aa) ≤ Mhsm(A).

If A is a measurable algebra, Mhsm(A) ≤ ω, because if µ is a unital additive functional and ǫ > 0,

then r
(µ)
ǫ (1) <

1

ǫ
. More generally, for any uniformly exhaustive submeasure ν and any ǫ > 0, r

(ν)
ǫ (1) is the

maximal size of any disjoint set consisting of elements of submeasure greater than ǫ.

7F Reductions of submeasures Let A be a Boolean algebra, and ν : A → [0,∞[ a submeasure.

(a) For a ∈ A, set

ν̌a = infn∈N sup{mini≤n νai : a0, . . . , an ⊆ a are disjoint}.

Then ν̌ is a submeasure. PPP Of course ν̌0 = 0 and ν̌a ≤ ν̌b whenever a ⊆ b. If a, b ∈ A and ǫ > 0, then there
are n0, n1 ∈ N such that whenever 〈ci〉i∈I is a disjoint family in A, then #({i : ν(ci ∩ a) ≥ ν̌a + ǫ}) ≤ n0
and #({i : ν(ci ∩ b) ≥ ν̌b+ ǫ}) ≤ n1. So

#({i : ν(ci ∩ (a ∪ b)) ≥ ν̌a+ ν̌b+ 2ǫ}) ≤ n0 + n1.

It follows that ν̌(a ∪ b) ≤ ν̌a+ ν̌b+ 2ǫ; as ǫ, a and b are arbitrary, ν̌ is a submeasure. QQQ
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(b) Of course ν̌a ≤ νa for every a ∈ A; in particular, ν̌ is exhaustive, or Maharam, if ν is. Observe that
ν̌a = 0 iff ν↾Aa is uniformly exhaustive. So if A is a Maharam algebra which is nowhere measurable and ν
is a strictly positive Maharam submeasure on A, then ν̌ is also strictly positive.

(c) In this context I will call ν̌ the reduction of ν.

7G Proposition (Fremlin & Kupka n90) Let A be a Boolean algebra and ν an exhaustive submeasure
on A with reduction ν̌. Let rǫ, řǫ be the associated rank functions. Then

rǫ(a) ≥ ω · řǫ(a)

for every a ∈ A, ǫ > 0.

proof Induce on řǫ(a). If řǫ(a) = 0, the result is trivial. For the inductive step to řǫ(a) = ξ + 1, take b ⊆ a
such that ν̌b > ǫ and řǫ(a \ b) = ξ. Then for every n ∈ N there are disjoint b0, . . . , bn ⊆ b such that νbi > ǫ
for every i, and rǫ(b) ≥ ω; by the inductive hypothesis, rǫ(a \ b) ≥ ω ·ξ; by 7Bc, rǫ(a) ≥ ω ·ξ+ω = ω · (ξ+1),
and the induction proceeds. The inductive step to non-zero limit ξ is elementary.

7H Theorem (J.Kupka) Let ν be a pathological submeasure on a Boolean algebra A, with reduction ν̌.
Then ν̌a ≥ 1

3νa for every a ∈ A.

proof (a) Since ν↾Aa is also a pathological submeasure, and ν̌↾Aa is the reduction of ν↾Aa, it is enough
to consider the case a = 1; and since the operation of reduction commutes with scalar multiplication of the
submeasures, it is enough to consider the case ν1 = 1.

(b) ??? Suppose, if possible, that ν̌1 < 1
3 . Take γ such that ν̌1 < γ < 1

3 . Let n ≥ 1 be such that there is
no disjoint family 〈ai〉i≤n in A with νai ≥ γ for every i ≤ n. Then we see that

∑
i∈I ν(ai) ≤ n+ γ#(I)

for every disjoint family 〈ai〉i∈I in A.
Set

ǫ =
1−3γ

n+3
> 0, δ = min(

ǫ2

18
,
ǫ

n
) > 0.

By 1G, there is a non-empty finite family 〈bi〉i∈I in A such that νbi ≤ δ for every i ∈ I and supi∈J bi = 1
whenever J ⊆ I and #(J) ≥ δ#(I). Note that we can repeat copies of 〈bi〉i∈I if necessary, so that we can

assume that #(I) = m is at least
3

δ
. We must have supi∈I bi = 1 so

mǫ

n
≥ mδ ≥ ∑

i∈I νbi ≥ 1

and n ≤ ǫm.
Set l = ⌈ǫm⌉, k = ⌊δm⌋. Then

3 ≤ k ≤ l ≤ m, 18km ≤ ǫ2m2 ≤ l2,

so there is an R ⊆ I × l such that #(R) = 3m (in fact, #(R[{i}]) = 3 for every i ∈ I) and #(R[E]) ≥ #(E)
for every E ∈ [I]≤k (Kalton & Roberts 83, or Fremlin 04, 392D). For E ⊆ I set

cE = infi∈E(1 \ bi) ∩ infi∈I\E bi;

observe that cE = 0 when #(E) > k, so that

sup{cE : E ∈ [I]≤k} = 1.

For E ∈ [I]≤k take an injective function fE : E → l such that fE ⊆ R. Set

aij = sup{cE : i ∈ E ∈ [I]≤k, fE(i) = j}
for i ∈ I, j < l. Then, for any particular j < l, 〈aij〉i∈I is disjoint (because every fE is injective), so

∑
i∈I νaij ≤ n+ γ#({i : aij 6= 0}) ≤ n+ γ#(R−1[{j}]).

Accordingly
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∑

i∈I,j<l

ν(aij) ≤ nl + γ
∑

j<l

#(R−1[{j}]) ≤ n(ǫm+ 1) + γ#(R)

≤ nǫm+ ǫm+ 3γm = m(3γ + (n+ 1)ǫ).

On the other hand, for each i ∈ I,

1 \ bi = sup{cE : i ∈ E ⊆ I}
= sup{cE : i ∈ E ∈ [I]≤k} = sup

j<l

aij ,

so

1 = ν1 ≤ ν(bi) + ν(1 \ bi) ≤ δ +
∑

j<l νaij .

Now, summing over i ∈ I,

m ≤ mδ +
∑

i∈I,j<l

νaij ≤ m(δ + 3γ + (n+ 1)ǫ)

≤ m(3γ + (n+ 2)ǫ) < m(3γ + 1 − 3γ) = m,

which is impossible. XXX
So we have the result.

Remark Of course this result includes the Kalton-Roberts theorem, since it shows that no uniformly
exhaustive submeasure can be pathological.

7J Theorem Suppose that A is a non-measurable Maharam algebra. Then Mhsm(A) is at least the
ordinal power ωω.

proof Let a ∈ A
+ be such that the principal ideal Aa is nowhere measurable. Let ν be a strictly positive

Maharam submeasure on Aa, ν̌ its reduction, and rǫ, řǫ the associated rank functions. As observed in 7Fb,
ν̌ is strictly positive. If

α < Mhsm(Aa) = supǫ>0 rǫ(a) = supǫ>0 řǫ(a)

(as noted in 7E), then there is an ǫ > 0 such that řǫ(a) ≥ α, in which case

Mhsm(Aa) ≥ rǫ(a) ≥ ω · řǫ(a) ≥ ω · α
by 7G. Since Mhsm(Aa) is surely infinite, Mhsm(A) ≥ Mhsm(Aa) ≥ ωn for every n, and Mhsm(A) ≥ ωω.

7K Proposition Suppose that A and B are Boolean algebras with exhaustive submeasures µ, ν respec-
tively, and that λ = µ ⋉ ν as constructed in §4. Then rǫ(a ⊗ b) is at least the ordinal product rǫ(b) · rǫ(a)
for all a ∈ A, b ∈ B and ǫ > 0.

proof (a) I show first that if µa > ǫ then rǫ(a ⊗ b) ≥ rǫ(b). PPP Induce on rǫ(b). If rǫ(b) = 0, the result is
trivial. For the inductive step to rǫ(b) = ξ > 0, for every η < ξ there is a b′ ⊆ b such that rǫ(b

′) ≥ η and
ν(b \ b′) > ǫ; now rǫ(a⊗ b′) ≥ η, by the inductive hypothesis, and λ(a⊗ (b \ b′)) = min(µa, ν(b \ b′)) > ǫ, so
rǫ(a⊗ b) > η; as η is arbitrary, rǫ(a⊗ b) ≥ ξ and the induction proceeds. QQQ

(b) Now induce on rǫ(a). If rǫ(a) = 0 the result is trivial. For the inductive step to rǫ(a) = ξ > 1,
observe that for every η < ξ there is an a′ ⊆ a such that rǫ(a

′) ≥ η and µ(a \ a′) > ǫ. Now

rǫ(a⊗ b) ≥ rǫ(a
′ ⊗ b) + rǫ((a \ a′) ⊗ b)

(7Bc)

≥ rǫ(b) · η + rǫ(b)

(by the inductive hypothesis and (a) above)

= rǫ(b) · (η + 1);
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as η is arbitrary, rǫ(a⊗ b) ≥ rǫ(b) · ξ and the induction continues.

8 Strategically weakly (σ,∞)-distributive algebras

8A Definitions Let A be a Boolean algebra.

(a) Consider the following infinite game Γwd(A). (This is called ‘Gfin’ in Jech 84 and ‘Gω
<ω’ in Do-

brinen 03; see also Grey 82.) I plays a0 ∈ A
+ and a maximal antichain A0 ⊆ A. In the position

(a0, A0, . . . , an, An), II plays a non-zero an+1 ⊆ an meeting only finitely many members of An. In the po-
sition (a0, A0, . . . , an, An, an+1), I plays a maximal antichain An+1. I wins if infn∈N an = 0; otherwise II
wins. (If A = {0}, so that I has no first move, II wins.)

A is strategically weakly (σ,∞)-distributive if II has a winning strategy in Γwd(A); A is tacti-
cally weakly (σ,∞)-distributive if II has a winning tactic, that is, a winning strategy σ such that
σ(a0, A0, . . . , an, An) = τ(an, An) for some function τ .

(b) A variant of the above game is Γ∗
wd(A), defined as follows. This time, I starts with an antichain

A0 ⊆ A. In the position (A0, a0, A1, . . . , an−1, An), II plays an meeting only finitely many members of An.
In the position (A0, . . . , An, an), I plays an antichain An+1. II wins if 〈an〉n∈N is order*-convergent to 1;
otherwise I wins. A is strongly strategically weakly (σ,∞)-distributive if II has a winning strategy in
Γ∗
wd(A).

T.Jech has suggested the following variant of Γ∗
wd(A). In this game, I plays sequences order*-convergent

to 0, and II must choose a term in each sequence as it appears; II wins if the sequence of his choices is again
order*-convergent to 0. It is easy to see that for ccc algebras this game is equivalent to Γ∗

wd(A), in the sense
that a winning strategy for either player in one game can be used to generate a winning strategy for the
same player in the other game.

8B Proposition (a) A tactically weakly (σ,∞)-distributive Boolean algebra is strategically weakly
(σ,∞)-distributive. A strategically weakly (σ,∞)-distributive Boolean algebra is weakly (σ,∞)-distribu-
tive. A strongly strategically weakly (σ,∞)-distributive Boolean algebra is strategically weakly (σ,∞)-
distributive.

(b)(Jech 84) If A is a ccc Boolean algebra, then A is weakly (σ,∞)-distributive iff I has no winning
strategy in Γwd(A) iff I has no winning tactic in Γwd(A).

(c) Let A be a Boolean algebra and B an order-dense subalgebra of A. Then B is strategically (resp.
tactically, resp. strongly strategically) weakly (σ,∞)-distributive iff A is.

(d) A principal ideal of a strategically (resp. tactically, resp. strongly strategically) weakly (σ,∞)-dis-
tributive Boolean algebra is again strategically (resp. tactically) weakly (σ,∞)-distributive.

(e) A regularly embedded subalgebra of a strategically (resp. tactically, resp. strongly strategically) weakly
(σ,∞)-distributive Boolean algebra is again strategically (resp. tactically) weakly (σ,∞)-distributive.

proof (a) Trivial.

(b)(i) If A is not weakly (σ,∞)-distributive, then I has a winning tactic. PPP There are a non-zero a0 ∈ A

and a sequence 〈Cn〉n∈N of maximal antichains such that infn∈N an = 0 whenever each an, for n ≥ 1, meets
only finitely many elements of Cn−1. We may suppose that Cn+1 refines Cn for each n. I starts with a0.
Given an, I plays An = Ck where k ∈ N is minimal such that {c : c ∈ Ck, an ∩ c 6= 0} is infinite; this must
be possible if an ⊆ a0 is non-zero. In any play of the game, we must have An refining Cn for each n, so I
wins. QQQ

(ii) If I has a winning strategy, and A is ccc, then A is not weakly (σ,∞)-distributive. PPP Consider
all the plays in Γwd(A) in which I follows his strategy and II always plays an+1 = an ∩ sup In for some
finite In ⊆ An. There are only countably many such plays; let C be the countable set of maximal antichains
occurring in any of them. If JC ∈ [C]<ω for each C ∈ C, consider the play in which I follows his strategy
and II plays an+1 = an ∩ sup JAn

at each move. Then

0 = infn∈N an ⊇ infC∈C a0 ∩ sup JC ;

as 〈JC〉C∈C is arbitrary, a0 and C witness that A is not weakly (σ,∞)-distributive. QQQ

(c)(i) Suppose that A is strategically weakly (σ,∞)-distributive. Let σ be a winning strategy for II in
Γwd(A). Then there is a winning strategy σ′ for II in Γwd(A) such that σ′(a0, A0, . . . , an, An) always belongs
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to the subalgebra generated by A0 ∪ . . . ∪ An ∪ {a0, . . . , an}; just enlarge values of σ slightly if necessary.
Now apply σ′ directly to positions in Γwd(B) to get a winning strategy in Γwd(B).

(ii) Similarly, if σ is a winning strategy for II in Γwd(B), then for each maximal antichain A ⊆ A

let A′ ⊆ B be a maximal antichain refining A, for each a ∈ A
+ let a′ ∈ B

+ be such that a′ ⊆ a, and set
σ′(a0, A0, . . . , an, An) = σ(a′0, A

′
0, a1, A

′
1, . . . , an, A

′
n) whenever a1, . . . , an all belong to B.

(iii) The same tricks work for tactically weakly (σ,∞)-distributive and strongly strategically weakly
(σ,∞)-distributive algebras.

(d) Elementary.

(e) Use the argument of (c-i) above.

8C Proposition A Maharam algebra is tactically weakly (σ,∞)-distributive and strongly strategically
weakly (σ,∞)-distributive.

proof Let ν be a strictly positive Maharam submeasure on A.

(a) Given a ∈ A
+ and a maximal antichain A ⊆ A, choose τ(a,A) such that 0 6= τ(a,A) ⊆ a, τ(a,A)

meets only finitely many members of A and ν(τ(a,A)) >
1

n
where n is the least integer greater than

1

νa
.

Then τ is a winning tactic for II in Γwd(A).

(b) Given a position (A0, a0, . . . , An) in Γ∗
wd(A), let σ(A0, a0, . . . , An) be an element c of A such that

{a : a ∈ An, a ∩ c 6= 0} is finite and ν(1 \ c) ≤ 2−n. Then σ is a winning strategy for II in Γ∗
wd(A).

Remark Note that in (b) the strategy for II is defined from n and An; so with a trifling adaptation (except
in the trivial case of finite A, take an such that ν(1 \ an) ≤ 1

2ν(1 \ an−1)) can be defined from an−1 and An.

8D Proposition (Dobrinen 03) If Jensen’s ♦ is true, there is a Souslin algebra which is not strategically
weakly (σ,∞)-distributive.

proof I use the construction of a Souslin tree (ω1, ⊳) in Kunen 80, II.7.8. Start from a ♦-sequence
〈Aα〉α<ω1

. Set Iβ = {(ω · β) + n : n ∈ N} for β < ω1. The new element in the construction is a bijection
h : ω1 → [ω1]<ω × [N]<ω. Let C be the set of those non-zero limit ordinals γ < ω1 such that fγ = h[γ] is
a function from [γ]<ω to [N]<ω; then C is a closed cofinal subset of ω1. PPP Of course C is closed, because
the union of a non-decreasing sequence of functions is a function. To see that it is unbounded, note that if
f : [ω1]<ω → [N]<ω is any function then f = h[A] for some A ⊆ ω1 and that {γ : f↾[γ]<ω = h[A ∩ γ]} ⊆ C
is uncountable. QQQ

Let C ′ ⊆ C be the set of those members of C which are the suprema of strictly increasing sequences
of limit ordinals; for γ ∈ C ′ choose a such a sequence 〈θγn〉n∈N of limit ordinals with supremum γ. Set
Kγn = {θγi : i ≤ n}, Lγn = {ω · θγn + i : i ∈ fγ(Kγn)} for n ∈ N. Now construct ⊳ inductively so that

(i) for each β < ω1, ⊳β = ⊳ ∩ (ω · β × ω · β) is a tree ordering on ω · β;
(ii) for β < ω1 and n ∈ N, ω · β + n ⊳ ω · (β + 1) +m iff ⌊m/2⌋ = n;
(iii) if α < ω1 is a limit ordinal and ξ ∈ ω · α then there is an n ∈ N such that ξ ⊳ ω · α+ n;
(iv) if α < ω1 is a limit ordinal and Aα is a maximal up-antichain for ⊳α then for every n ∈ N

there is a ξ ∈ Aα such that ξ ⊳ ω · α+ n;
(v) (the new bit) if γ ∈ C ′ and η ∈ Iγ then there is an n ∈ N such that ξ 6⊳ η for any ξ ∈ Lγn.

To see that there is no obstacle to (v), note that when we come to γ ∈ C ′, and need to choose a ⊳γ-branch
passing through a given ξ < ω · γ to have a continuation, we first move to ξ1 ⊲γ ξ such that (if Aγ is a
maximal up-antichain for ⊳γ) there is a ζ ∈ Aγ such that ζ ⊳γ ξ1. Next, taking m such that ξ1 ≤ ω · θγm,
there must be infinitely many members of Iθγ,m+1

above ξ1, so we can find ξ2 ∈ Iθγ,m+1
\Lγ,m+1; assign any

branch through ξ2 for continuation.
As in Kunen 80, this process builds an ever-branching Souslin tree. Let A be the corresponding regular

open algebra (Fremlin 08?, §514), so that A is ccc and weakly (σ,∞)-distributive. Let σ be a strategy for
II in Γwd(A). For α < ω1, let Dα ⊆ A be the maximal antichain {[ξ,∞[ : ξ ∈ Iα}. (Because our tree is ever-
branching, all the sets [ξ,∞[ are regular open sets for the up-topology.) Define f : [ω1]<ω → [N]<ω as follows.
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f(∅) = ∅. Given thatK ⊆ ω1 is a non-empty finite set, express it as {α0, . . . , αm} where α0 < α1 < . . . < αm.
Set a0 = 1 and aj+1 = σ(a0, Dα0

, . . . , aj , Dαj
) for j ≤ m. Set f(K) = {i : am+1 ∩ [ω · αm + i,∞[ 6= 0}.

Let A ⊆ ω1 be such that f = h[A]. Because 〈Aα〉α<ω1
is a ♦-sequence and C ′ is a closed cofinal subset

of ω1, there is a γ ∈ C ′ such that A ∩ γ = Aγ . Now consider the play of the game Γwd(A) in which I plays
(1, Dθγ0

) for his first move and Dθγ1
, Dθγ2

, . . . thereafter; let a1, a2 . . . be the responses of II following his
strategy σ. Then fγ(Kγn) = f(Kγn), so an+1 ∩ [ξ,∞[ = 0 whenever ξ ∈ Iθγn

\ Lγn. But the construction
of ⊳γ+1 ensured that for every η ∈ Iγ there must be some n such that the predecessor of η in Iθγn

does not
belong to Lγn and an+1 ∩ [η,∞[ = 0. So infn∈N an = 0, I wins and σ is not a winning strategy.

Thus A is not strategically weakly (σ,∞)-distributive.

Remark See Problem 9K.

8E Example (Jech) Let S ⊆ ω1 be a stationary set such that ω1 \ S is also stationary, and let P be the
set of subsets of S which are closed in the order topology of ω1, ordered by end-extension (that is, for p,
q ∈ P , p ≤ q iff p = q ∩ ξ for some ξ < ω1). Let A be the regular open algebra of P . Then A is weakly
(σ,∞)-distributive but not strategically weakly (σ,∞)-distributive.

proof (a) ??? If A is strategically weakly (σ,∞)-distributive then player II has a winning strategy in Γwd(A).
For each α < ω1, let Qα be the cofinal subset {p : p ∈ P , sup p ≥ α} of P , and fix a maximal antichain
Cα ⊆ Qα; then Aα = {[p,∞[ : p ∈ Cα} is a maximal antichain in A. (The partial order on P is separative,
so Aα ⊆ A.) Consider plays of the game Γwd(A) in which I starts with a0 = P and plays only antichains of
the form Aα, while II follows his strategy. For each such play (P,Aα0

, a1, Aα1
, . . . ), set Dn = {p : p ∈ Aαn

,
an+1 ∩ [p,∞[ 6= ∅} and γn = supp∈Dn

sup p; note that γn is determined by α0, . . . , αn. So the set

Q = {γ : γn(α0, . . . , αn) < γ whenever n ∈ N and α0, . . . , αn < γ}
is a closed cofinal set in ω1 and there is a non-zero limit ordinal α ∈ Q\S. Let 〈αn〉n∈N be a strictly increasing
sequence with supremum α and consider the corresponding play of Γwd(A). For the corresponding sequence
〈Dn〉n∈N, we have αn ≤ sup p < α for every n ∈ N, p ∈ Dn. But now we are supposed to have a non-zero

a ∈ A such that a ⊆ ⋃
p∈Dn

[p,∞[ for every n ∈ N. If p∗ ∈ P is such that [p∗,∞[ ⊆ a, then for each n ∈ N

there is a p ∈ Dn such that p∗ and p are compatible in P , that is, one is included in the other. As every
extension of p∗ is compatible with some member of Dn, we cannot have p∗ ⊂ p, and instead we have p ⊆ p∗,
so that p∗ meets α \ αn. As p∗ is closed, α ∈ p∗; but p∗ is supposed to be a subset of S. XXX

(b) ??? If A is not weakly (σ,∞)-distributive then player I has a winning strategy in Γwd(A). Let 4 be a
well-ordering of P . This time, consider plays (a0, A0, a1, A1, . . . ) in Γwd(A) in which I follows his strategy
and II always plays a move of the form an+1 = [pn ∪ {αn},∞[ where pn is the 4-least member of P such
that [pn,∞[ is included in some an ∩ a where a ∈ An, and αn ∈ S is such that αn > sup p. This time,
let Q be the set of those α < ω1 such that whenever 〈αi〉i<n are permitted selections by II when playing
according to the recipe just described, then he will be able to continue with αn < α. Again Q is a closed
cofinal set, so there is an non-zero α ∈ Q ∩ S such that S ∩ α is cofinal with α. Let 〈βn〉n∈N be a strictly
increasing sequence in S with supremum α. Then II will be able to play by selecting αn with βn ≤ αn < α
for each n. (At the nth move, given 〈αi〉i<n, he will have the option of selecting some α′

n < α. Now he can
amend this to αn = max(α′

n, βn).) But now, if we look at the corresponding pn such that II’s move an+1

was [pn ∪ {αn},∞[, we must have pn ∪ {αn} ⊆ pn+1 for each n, so that p∗ =
⋃

n∈N
pn ∪ {α} belongs to P ,

and [p∗,∞[ ⊆ an for every n; in which case II wins the play, which is supposed to be impossible. XXX

8F Theorem A Dedekind σ-complete strongly strategically weakly (σ,∞)-distributive Boolean algebra
is a Maharam algebra.

proof Let A be a Dedekind σ-complete strongly strategically weakly (σ,∞)-distributive Boolean algebra.

(a) I begin by checking that A is ccc. PPP Let A be an antichain in A, and consider the play of Γ∗
wd(A) in

which I plays A at every move. If II plays a0, a1, . . . then supn∈N an = 1, while each an meets only finitely
many members of A; so A is countable. As A is arbitrary, A is ccc. QQQ

(b) If A 6= {0}, then 0 and 1 can be separated by open sets. PPP Let σ be a winning strategy for II in
Γ∗
wd(A), regarded as a function on finite strings of antichains in A. Choose antichains A0, A′

0, A1, A′
1, . . .

as follows. A0 = A′
0 = {1}. Given Ai and A′

i for i ≤ n, set
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Dn = {d : σ(A0, . . . , An, A) ⊆ d for some antichain A},

D′
n = {d : σ(A′

0, . . . , A
′
n, A) ⊆ d for some antichainA}.

If there is an element of Dn with a complement in D′
n, choose such a dn and antichains An+1, A′

n+1 such
that σ(A0, . . . , An, An+1) ⊆ dn and σ(A′

0, . . . , A
′
n, A

′
n+1) ⊆ 1 \ dn; otherwise stop.

??? If the process here continued indefinitely, we should have a sequence 〈dn〉n∈N in A such that both
〈dn〉n∈N and 〈1 \ dn〉n∈N are order*-convergent to 1; but in this case 〈dn〉n∈N is also order*-convergent to 0
and 0 = 1, contrary to hypothesis. XXX So the process terminates at some stage with 1 \ d /∈ D′

n for every
d ∈ Dn.

??? If 1 does not belong to the interior of Dn for the order-sequential topology of A, then (because A

is certainly weakly (σ,∞)-distributive, and we have just seen that it is ccc) there is a sequence 〈bi〉i∈N in
A \Dn which is order*-convergent to 1. Let A be a maximal antichain in A such that {a : a ∈ A, a \ bi 6= 0}
is finite for every a ∈ A. Then bi ⊇ σ(A0, . . . , An, A) for all but finitely many i, that is, bi ∈ Dn for all but
finitely many i, which is absurd. XXX

Thus 1 ∈ intDn; similarly, 1 ∈ intD′
n and 0 ∈ int{1 \ d : d ∈ D′

n}. But we stopped at a point which made
these sets disjoint. QQQ

(c) Applying (b) to principal ideals of A, as in the proof of Theorem 3C, we see that the order-sequential
topology of A is Hausdorff, so that A is Maharam.

9 Cardinal Functions

9A Galois-Tukey connections (see Fremlin 08?, §512)

(a) A supported relation is a triple (A,R,B) where A and B are sets and R is a relation.
If R is a relation I write R ′′′ for the relation {(a, I) : a ∈ R−1[I]}. (If you don’t like proper classes,

interpret each occasion of this notation by cutting it down to a suitable set.)

(b) If (A,R,B) is a supported relation then cov(A,R,B) is the least cardinal of any I ⊆ B such that
A ⊆ R−1[I] (taken as ∞ if A 6⊆ R−1[B]). add(A,R,B) is the smallest cardinal of any I ⊆ A such that
I 6⊆ R−1[{b}] for any b ∈ B (or ∞ if there is no such I).

(c) If (A,R,B) and (C, S,D) are supported relations a Galois-Tukey connection from (A,R,B) to
(C, S,D) is a pair (φ, ψ) where φ : A→ C and ψ : D → B are functions and (a, ψ(d)) ∈ R whenever a ∈ A,
d ∈ D and (φ(a), d) ∈ S. I will write (A,R,B) 4GT (S, S,D) if there is a Galois-Tukey connection from
(A,R,B) to (C, S,D).

(d) If (A,R,B) 4GT (C, S,D) then cov(A,R,B) ≤ cov(C, S,D) and add(C, S,D) ≤ add(A,R,B)
(Fremlin 08?, 512D).

9B Proposition Let A be a Maharam algebra, τ(A) its Maharam type and d(A) its topological density
in its order-sequential topology. Then τ(A) ≤ d(A) ≤ max(ω, τ(A)).

proof If D ⊆ A is topologically dense, then every element of A is expressible as infn∈N supm≥n am for some
sequence 〈an〉n∈N in D, so D τ -generates A and τ(A) ≤ #(D); accordingly τ(A) ≤ d(A). If D ⊆ A τ -
generates A, let B be the subalgebra of A generated by D and B its topological closure. Then B is
order-closed (because A is ccc), so is the whole of A, and d(A) ≤ #(B) ≤ max(ω,#(D)); accordingly
d(A) ≤ max(ω, τ(A)).

9C The localization relation (Fremlin 08?, §521) Let S be the family of sets S ⊆ N× N such that
#(S[{n}]) ≤ 2n for every n ∈ N. For f ∈ NN, S ∈ S say that f ⊆∗ S if {n : f(n) /∈ S[{n}]} is finite. Now
(NN,⊆∗,S) is the localization relation.

9D Theorem (compare Fremlin 08?, 523J) Let A be a Maharam algebra with countable Maharam
type, not {0}. Then (A+,⊇ ′′′, [A+]≤ω) 4GT (NN,⊆∗,S).

proof (a) Fix a strictly positive Maharam submeasure µ on A such that µ1 = 1, and a countable subalgebra
D ⊆ A which is dense for the order-sequential topology; let 〈an〉n∈N run over D.
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(b) For S ∈ S, d ∈ D \ {0}, n ∈ N set

ψdn(S) = d \ supm≥n sup{ai : (m, i) ∈ S, µai ≤ 2−2m−2νd}.

Then

µψdn(S) ≥ µd−∑∞
m=n 2−m−2µd > 0,

so ψdn(S) 6= 0; set ψ(S) = {ψdn(S) : d ∈ D \ {0}, n ∈ N} ∈ [A+]≤ω.

(c) For a ∈ A
+ choose φ(a) ∈ NN as follows. Start by taking dm ∈ D, for m ∈ N, such that µ(dm △ a) ≤

2−2m−4µa for every j; then certainly µdm ≥ 1
2µa for every m, so that if m ≥ n then

µ(dm \ dm+1) ≤ 2−2m−3µa ≤ 2−2m−2µdn.

Take φ(a) so that aφ(a)(i) = di \ di+1 for every i.

(d) (φ, ψ) is a Galois-Tukey correspondence from (A+,⊇ ′′′, [A+]≤ω) to (NN,⊆∗,S). PPP Suppose that
a ∈ A

+ and S ∈ S are such that φ(a) ⊆∗ S; let n ∈ N be such that φ(a)(m) ∈ S[{m}] for m ≥ n. Let
〈dm〉m∈N be the sequence constructed in the definition of φ(a) as described in (c), and set d = dn. Then

ψdn(S) ⊆ d \ supm≥n(dm \ dm+1) ⊆ infm≥n dm ⊆ a.

So a ⊇ ′′′ψ(S). QQQ
Accordingly (A+,⊇ ′′′, [A+]≤ω) 4GT (NN,⊆∗,S).

9E Corollary Let A be a Maharam algebra with countable Maharam type, and N the Lebesgue null
ideal. Then π(A) ≤ cfN .

proof

π(A) = cov(A+,⊇,A+) ≤ max(ω, cov(A+,⊇ ′′′, [A+]≤ω)) ≤ max(ω, cov(NN,⊆∗,S))

(putting 9Ad and 9D together)

= cov(NN,⊆∗,S) = cfN

by Fremlin 08?, 521M.

9F Theorem Let A be a Maharam algebra with countable Maharam type, and N the Lebesgue null
ideal. Then wdistr(A) ≥ addN .

proof Fix a strictly positive Maharam submeasure µ on A, a countable topologically dense subalgebra
D ⊆ A and a sequence 〈an〉n∈N running over D. For any partition of unity C ⊆ A choose fC ∈ NN as
follows. Let C ′ = {c : 1 \ c meets only finitely many members of C}. Choose cn ∈ C ′ such that µcn < 8−n

for every n; for each n, choose a sequence 〈dni〉i∈N in D such that cn ⊆ supi≥n dni and µdni ≤ 4−i · 2−n−1

for every i. Set c′i = supn≤i dni for each i, so that c′i ∈ D and µc′i ≤ 4−i, while supi≥n c
′
i ⊇ cn belongs to C ′

for every n. Now choose fC(i) so that c′i = afC(i) for each i.
If κ < addN and 〈Cξ〉ξ<κ is a family of partitions of unity in A, then there is an S ∈ S such that

fCξ
⊆∗ S for every ξ, because add(NN,⊆∗,S) = addN (Fremlin 08?, 521M). Set b0 = 1,

bn+1 = supm≥n sup{ai : (m, i) ∈ S, µai ≤ 4−m}
for each n; then µbn+1 ≤ ∑∞

m=n 2−m = 2−n+1 for every n, so B = {bn \ bn+1 : n ∈ N} is a partition of unity.
Also, given ξ < κ, there is an n ∈ N such that fCξ

(m) ∈ S[{m}] for every m ≥ n. Since µ(afCξ
(m)) ≤ 4−m

for every m, it follows that if m ≥ n then supi≥m afCξ
(i) ⊆ bm+1 and bm+1 ∈ C ′

ξ. Thus every member

of B meets only finitely many members of Cξ; and this is true for every ξ < κ. As 〈Cξ〉ξ<κ is arbitrary,
wdistr(A) ≥ addN .

9G Proposition Let A be a Dedekind σ-complete Boolean algebra with a non-zero atomless Maharam
submeasure µ. Then d(A) ≥ mcountable = covM, where M is the ideal of meager subsets of R.
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proof We can suppose that µ1 = 1. Then for each n ∈ N we have a finite partition An of unity in A such
that µa ≤ 2−n−2 for every a ∈ An. Enumerate An as 〈ani〉i<k(n).

Suppose that κ < covM and 〈Cξ〉ξ<κ is a family of maximal centered subsets of A. Then a ∈ Cξ whenever
ξ < κ, c ∈ Cξ and c ⊆ a. For ξ < κ and n ∈ N, Cξ ∩ An 6= ∅; let fξ(n) < k(n) be such that an,fξ(n) ∈ Cξ.

Because κ < mcountable, there is an f ∈ NN such that f ∩ fξ 6= ∅ for every ξ < κ (Fremlin 08?, 521Rb); we
may suppose that f(n) < k(n) for every n; set a = supn∈N an,f(n). Then a ∈ Cξ for every ξ < κ and µa < 1.

So 1 \ a ∈ A+ \⋃ξ<κ Cξ.

As 〈Cξ〉ξ<κ is arbitrary, d(A) ≥ covM.

10 Topological submeasures

10A Definitions (a) Let µ be a submeasure defined on an algebra Σ of subsets of a set X, and K a
family of sets. I say that µ is inner regular with respect to K if whenever E ∈ Σ and ǫ > 0 there is a
K ∈ K ∪ {∅} such that K ∈ Σ, K ⊆ E and µ(E \K) ≤ ǫ.

(b) A submeasure µ defined on an algebra of sets is (countably) compact if it is inner regular with
respect to some (countably) compact family of sets.

(c) Now suppose that X is a Hausdorff space. Then a submeasure µ defined on a σ-algebra Σ of subsets
of X is a Radon submeasure if (i) Σ contains every open set (ii) whenever E ⊆ F ∈ Σ and µF = 0 then
E ∈ Σ (iii) µ is inner regular with respect to the compact sets.

10B Remarks These definitions are of course based on the corresponding notions for measures; see
Fremlin 03, §§412, 416 and 451. But watch out for the translations; thus the definition of ‘inner regular’
for submeasures matches the definition for totally finite measures, but not the definition for general measures,
which of course need not be exhaustive.

10C Proposition (a) Suppose that µ is an exhaustive submeasure defined on an algebra Σ of sets, and
that K is a family of sets such that K∪L ∈ K whenever K, L ∈ K are disjoint and µE = sup{µK : K ∈ K∩Σ,
K ⊆ E} for every E ∈ Σ. Then µ is inner regular with respect to K.

(b) Suppose that µ is a countably compact submeasure defined on a σ-algebra Σ of sets. Then µ is a
Maharam submeasure.

(c) Any Radon submeasure is a Maharam submeasure.

proof (a) ??? Otherwise, there are E ∈ Σ and ǫ > 0 such that µ(E \K) > ǫ whenever K ∈ Σ ∩ K ∩ PE.
Choose 〈Kn〉n∈N inductively so that Kn ∈ Σ ∩ K, Kn ⊆ E \⋃i<nKi and µKn ≥ µ(E \⋃i<nKi) − 1

2ǫ for

every n. Then
⋃

i<nKi ∈ K so µKn ≥ 1
2ǫ for every n; but µ was supposed to be exhaustive. XXX

(b) Let K ⊆ Σ be a countably compact class such that µ is inner regular with respect to K. Let
〈En〉n∈N be a non-increasing sequence in Σ with infimum ∅ in Σ; since Σ is a σ-algebra,

⋂
n∈N

En = ∅. ??? If

infn∈N µEn = γ > 0, then for each n ∈ N choose Kn ∈ Σ∩K such that Kn ⊆ En and µ(En \Kn) ≤ 2−n−1γ.
Then

µ(
⋂

i≤n

Ki) ≥ µEn −
n∑

i=0

µ(En \Ki) ≥ µEn −
n∑

i=0

µ(Ei \Ki)

≥ γ −
n∑

i=0

2−i−1γ > 0

and
⋂

i≤nKi 6= ∅ for every n. But
⋂

n∈N
Kn ⊆ ⋂

n∈N
En is empty and K is supposed to be countably

compact. XXX

(c) Immediate from the definitions and (b).

10D Theorem Let X be a Hausdorff space and K the family of compact subsets of X. Let φ : K → [0,∞[
be a bounded functional such that

(α) φ∅ = 0 and φK ≤ φ(K ∪ L) ≤ φK + φL for all K, L ∈ K;
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(β) whenever K ∈ K and ǫ > 0 there is an L ∈ K such that L ⊆ X \K and φK ′ ≤ ǫ whenever
K ′ ∈ K is disjoint from K ∪ L;

(γ) whenever K, L ∈ K and K ⊆ L then φL ≤ φK + sup{φK ′ : K ′ ∈ K, K ′ ⊆ L \K}.

Then there is a unique Radon submeasure defined on an algebra of subsets of X and extending φ.

proof (a) For A ⊆ X write φ∗A = sup{φK : K ⊆ A is compact}. Then φ∗ extends φ. Also φ∗(
⋃

n∈N
Gn) ≤∑∞

n=0 φ∗Gn for every sequence 〈Gn〉n∈N of open subsets of X. PPP If K ⊆ ⋃
n∈N

Gn is compact, it is expressible
as

⋃
i≤nKi where n ∈ N and Ki ⊆ Gi is compact for every i ≤ n. QQQ

(b) Let Σ be the family of subsets E of X such that for every ǫ > 0 there is a K ⊆ X such that K ∩ E
and K \ E are both compact and φ∗(X \K) ≤ ǫ. Then Σ is an algebra of subsets of X including K. PPP (i)
Of course X \E ∈ Σ whenever E ∈ Σ. (ii) If E, F ∈ Σ and ǫ > 0, let K, L ⊆ X be such that K ∩E, K \E,
L ∩ F and L \ F are all compact and φ∗(X \K), φ∗(X \ L) are both at most 1

2ǫ. Then (K ∩ L) ∩ (E ∪ F )
and (K ∩ L) \ (E ∪ F ) are both compact, and φ∗(X \ (K ∩ L)) ≤ ǫ. As ǫ is arbitrary, E ∪ F ∈ Σ. (iii) By
hypothesis (β), K ⊆ Σ. QQQ

(c) Σ is a σ-algebra of subsets of X. PPP Let 〈En〉n∈N be a sequence in Σ with intersection E, and ǫ > 0.
For each n ∈ N let Kn ⊆ X be such that Kn ∩ En and Kn \ En are compact and φ∗(X \Kn) ≤ 2−nǫ; set
K =

⋂
n∈N

Kn. Set L =
⋂

n∈N
Kn ∩ En, so that L ⊆ E is compact, and let L′ ⊆ X \ L be a compact set

such that φ∗(X \ (L ∪ L′)) ≤ ǫ; set K ′ = K ∩ (L ∪ L′). Then φ∗(X \K ′) ≤ 3ǫ. As L′ ∩ L = ∅ there is an
n ∈ N such that L′ ∩⋂

i≤nKi ∩ Ei is empty. Now

K ∩ L′ ⊆ ⋃
i≤n(X \ (Ki ∩ Ei)) ∩

⋂
i≤nKi ⊆

⋃
i≤nX \ Ei ⊆ X \ E,

so K ′ ∩ E = K ∩ L and K ′ \ E = K ∩ L′ are compact. As ǫ is arbitrary, E ∈ Σ. QQQ

(d) Set µ = φ∗↾Σ. Then µ is subadditive. PPP Suppose that E, F ∈ Σ and K ⊆ E ∪ F is compact. Let
ǫ > 0. Then there are L1, L2 ∈ K such that L1 ∩ E, L1 \ E, L2 ∩ F and L2 \ F are all compact, while
φ∗(X \ L1) and φ∗(X \ L2) are both at most ǫ. Set K1 = L1 ∩ E and K2 = L2 ∩ F , so that

φK ≤ φ(K ∪K1 ∪K2) ≤ φ(K1 ∪K2) + φ∗(K \ (K1 ∪K2))

(by hypothesis (γ))

≤ φK1 + φK2 + φ∗(X \ (L1 ∩ L2)) ≤ φ∗E + φ∗F + 2ǫ.

As ǫ and K are arbitrary, φ∗(E ∪ F ) ≤ φ∗E + φ∗F . QQQ

(e) If E ⊆ F ∈ Σ and µF = 0 then E ∈ Σ. PPP Let ǫ > 0. Let K ⊆ X be such that K ∩ F and K \ F are
both compact and φ∗(X \K) ≤ ǫ. If L ∈ K and L ∩K ⊆ F then φ∗(L \K) ≤ ǫ so

φ(L ∪ (K ∩ F )) ≤ ǫ+ φ(K ∩ F ) = ǫ.

Accordingly φ∗(X \ (K \ F )) ≤ ǫ. But (K \ F ) ∩ E and (K \ F ) \ E are both compact. As ǫ is arbitrary,
E ∈ Σ. QQQ

(f) µ is inner regular with respect to K. PPP If E ∈ Σ and ǫ > 0, let K ⊆ X be such that K ∩E and K \E
are both compact and φ∗(X \K) ≤ ǫ. If L ∈ K and L ⊆ E \K then φL ≤ φ∗(X \K) ≤ ǫ; so µ(E \K) ≤ ǫ.
QQQ

(g) Every open set belongs to Σ. PPP Let G ⊆ X be open, and ǫ > 0. Applying (β) with K = ∅
we have an L ∈ K such that φ∗(X \ L) ≤ ǫ. Next, there is an L′ ∈ K, disjoint from L \ G, such that
φ∗(X \ ((L \ G) ∪ L′)) ≤ ǫ. Set L′′ = L ∩ ((L \ G) ∪ L′). Then L′′ ∩ G = L ∩ L′ and L′′ \ G = L \ G are
compact and φ∗(X \ L′′) ≤ 2ǫ. QQQ

(h) So µ is a Radon submeasure. To see that it is unique, let µ′ be another Radon submeasure with the
same properties, and Σ′ its domain. If E ∈ Σ there are sequences 〈Kn〉n∈N, 〈Ln〉n∈N of compact sets such
that Kn ⊆ E, Ln ⊆ X \ E and µ(E \ Kn) + µ((X \ E) \ Ln) ≤ 2−n for every n. Set F =

⋃
n∈N

Kn and
F ′ =

⋃
n∈N

Ln; then F ∪ F ′ belongs to Σ ∩ Σ′ and

µ′(X \ (F ∪ F ′)) = φ∗(X \ (F ∪ F ′)) = µ(X \ (F ∪ F ′))

≤ inf
n∈N

µ(X \ (Kn ∪ Ln)) = 0.
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Consequently E \ F ∈ Σ′ and E ∈ Σ′.
The same works with µ and µ′ interchanged, so Σ = Σ′ and µ′ = φ∗↾Σ = µ.

10E Theorem Let X be a zero-dimensional compact Hausdorff space and B the algebra of open-and-
closed subsets of X. Let ν : B → [0,∞[ be an exhaustive submeasure. Then there is a unique Radon
submeasure on X extending ν.

proof (a) Let K be the family of compact subsets of X and for K ∈ K set φK = inf{νE : K ⊆ E ∈ B}.
Then φ satisfies the conditions of Theorem 10D.

PPP(ααα) Of course φ∅ = 0 and φK ≤ φL whenever K ⊆ L in K. If K ⊆ E ∈ B and L ⊆ F ∈ B, then
K ∪ L ⊆ E ∪ F ∈ B and ν(E ∪ F ) ≤ νE + νF , so φ is subadditive. QQQ

(βββ) The point is that for every K ∈ K and ǫ > 0 there is an E ∈ B such that K ⊆ E and νF ≤ ǫ
whenever F ∈ B and F ⊆ E \ K; since otherwise we could find a disjoint sequence 〈Fn〉n∈N in B with
νFn ≥ ǫ for every n. But now L = X \ E is compact and disjoint from K, and every compact subset of
X \ (K ∪ L) = E \K is included in a member of B included in E \K; so sup{φK ′ : K ′ ⊆ X \ (K ∪ L) is
compact} ≤ ǫ.

(γγγ) If K and L are compact and K ⊆ L and ǫ > 0, take E ∈ B such that K ⊆ E and νE ≤ φK + ǫ.
Set K ′ = L \ E. If F ∈ B and F ⊇ K ′, then E ∪ F ⊇ L, so

φL ≤ ν(E ∪ F ) ≤ νE + νF ≤ φK + ǫ+ νF .

As F is arbitrary, φL ≤ φK + φK ′ + ǫ. QQQ

(b) There is therefore a Radon submeasure µ extending φ and ν.

(c) If µ′ is another Radon submeasure extending ν, then µ′↾K = φ. PPP Of course µ′K ≤ φK for every
K ∈ K. ??? If K ∈ K and ǫ > 0 and µ′K + ǫ < φK, let E ∈ B be such that K ⊆ E and φL ≤ ǫ whenever
L ⊆ E \K is compact, as in (a-β) above. Then

µ′(E \K) = sup{µ′L : L ⊆ E \K is compact}
≤ sup{φL : L ⊆ E \K is compact} ≤ ǫ

and

νE = µ′E ≤ ǫ+ µ′K < µK ≤ µE = νE. XXXQQQ

By the guarantee of uniqueness in 10D, µ′ = µ.

10F Theorem Let X be a topological space, G the family of cozero subsets of X and Ba(X) the Baire
σ-algebra of X. If ψ : G → [0,∞[ is a functional, then ψ can be extended to a Maharam submeasure with
domain Ba(X) iff

(α) ψG ≤ ψH whenever G, H ∈ G and G ⊆ H,
(β) ψ(

⋃
n∈N

Gn) ≤ ∑∞
n=0 ψGn for every sequence 〈Gn〉n∈N in G,

(γ) limn→∞ ψGn = 0 for every non-increasing sequence 〈Gn〉n∈N in G with empty intersection.

In this case, the extension is unique.

proof (a) If ψ can be extended to a Maharam submeasure, then the conditions are surely satisfied, using
1B(a-i) for (β). So for most of the rest of the proof I suppose that the conditions are satisfied and seek to
construct a Maharam submeasure on Ba(X) extending ψ.

(b) Let E be the family of those sets E ⊆ X such that for every ǫ > 0 there are a cozero set G ⊇ E and
a zero set F ⊆ E such that ψ(G \ F ) ≤ ǫ.

(i) Zero sets belong to E . PPP If F ⊆ X is a zero set, there is a non-increasing sequence 〈Gn〉n∈N in G
with intersection F ; now (γ) tells us that infn∈NGn \ F = 0. QQQ

(ii) If E ∈ E then X \ E ∈ E . PPP If F ⊆ E ⊆ G then X \G ⊆ X \ E ⊆ X \ F . QQQ
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(iii) If E0, E1 ∈ E then E0 ∪E1 ∈ E . PPP Given ǫ > 0, let F0 ⊆ E0, F1 ⊆ E1 be zero sets and G0 ⊇ E0,
G1 ⊇ E1 cozero sets such that ψ(G0 \ F0) + ψ(G1 \ F1) ≤ ǫ; now G = G0 ∪G1 is a cozero set, F = F0 ∪ F1

is a zero set, F ⊆ E0 ∪ E1 ⊆ G and ψ(G \ F ) ≤ ǫ (using (α) and (β)). QQQ
Consequently E is an algebra of subsets of X.

(iv) If 〈Gn〉n∈N is a disjoint sequence in G then limn→∞ ψGn = 0 (apply (γ) to 〈⋃i≥nGi〉n∈N). So if

〈Gn〉n∈N is a sequence of cozero sets, 〈Fn〉n∈N is a sequence of zero sets and Gn+1 ⊆ Fn ⊆ Gn for every
n, limn→∞ limm→∞ ψ(Gn \ Fm) = 0. PPP??? Otherwise, we have an ǫ > 0 and a strictly increasing sequence
〈nk〉k∈N such that ψ(Gnk

\ Fnk+1
) ≥ ǫ for every k. But now 〈Gn2k

\ Fn2k+1
〉k∈N is disjoint sequence of sets

on which ψ takes values greater than or equal to ǫ. XXXQQQ

(v) If 〈En〉n∈N is a non-increasing sequence in E then E =
⋂

n∈N
En belongs to E . PPP Let ǫ > 0. For

each n ∈ N take a zero set Fn ⊆ En and a cozero set Gn ⊇ En such that ψ(Gn \ Fn) ≤ 2−nǫ. Choose zero
sets F ′

n, cozero sets G′
n such that

Fn+1 ⊆ G′
n+1 ⊆ F ′

n+1 ⊆ Gn+1 ∩G′
n

for every n. Set F =
⋂

m∈N
Fm. There is a strictly increasing sequence 〈nk〉k∈N such that ψ(G′

nk
\F ′

m) ≤ 2−kǫ
for all k, m ∈ N. Now F ⊆ E is a zero set, G = G′

n0
⊇ E is a cozero set, and

G \ F ⊆ ⋃
k∈N

Gnk
\ Fnk

∪⋃
k∈N

G′
nk

\ F ′
nk+1

,

so ψ(G \ F ) ≤ 4ǫ, by (β) in its full strength. As ǫ is arbitrary, E ∈ E . QQQ
Thus E is a σ-algebra of subsets of X, and includes Ba(X).

(c) For E ∈ E , set

µE = inf{ψG : G is a cozero set including E}.

(i) µ extends ψ (by (α)); in particular, µ∅ = 0 (by (γ)).

(ii) If E0, E1 ∈ E and E0 ⊆ E1 then µE0 ≤ µE1.

(iii) If E, E′ ∈ E then µ(E0 ∪ E1) ≤ µE0 + µE1. PPP If ǫ > 0, we have cozero sets G0 ⊇ E0, G1 ⊇ E1

such that ψG0 + ψG1 ≤ µE0 + µE1 + ǫ; now G0 ∪G1 is a cozero set including E0 ∪ E1, so

µ(E0 ∪ E1) ≤ ψ(G0 ∪G1) ≤ ψG0 + ψG1 + ǫ ≤ µE0 + µE1 + ǫ. QQQ

Thus µ is a submeasure.

(iv) If 〈En〉n∈N is a non-increasing sequence in E with empty intersection, then infn∈N µEn = 0. PPP
Take any ǫ > 0, and repeat the construction of (b-v) above. At the end, we have a cozero set G = Gn0

including En0
, while F must be empty, so

µEn0
≤ ψG ≤ 4ǫ. QQQ

Thus µ is a Maharam submeasure, and µ↾Ba(X) is an extension of the type we seek.

(d) As for uniqueness, suppose that ν is any Maharam submeasure on Ba(X) extending ψ. If F ⊆ X is
a zero set, then it is the intersection of a non-increasing sequence of cozero sets, so νF = µF . If E ∈ Ba(X)
and ǫ > 0, there are a zero set F ⊆ E and a cozero set G ⊇ E such that ψ(G \ F ) ≤ ǫ; now both µE and
νE belong to [µF, µG] and this interval has length at most ǫ, so |µE − νE| ≤ ǫ. As E and ǫ are arbitrary,
ν agrees with µ on Ba(X).

Remark If ψ is a modular functional (that is, ψ(G ∪H) + ψ(G ∩H) = ψG+ ψH for all G, H ∈ G), then
µ will be a measure; cf. Fremlin 03, 413Xq.

10G Example I refer to Talagrand’s example of an exhaustive submeasure ν which is not uniformly
exhaustive, as described in Fremlin n06. ν is defined on the algebra of open-and-closed subsets of a
compact space X =

∏
n∈N

Tn, where each Tn is finite, and is invariant under permutations of each Tn; so
we can give X a group structure under which it is a compact metrizable abelian group and ν is translation-
invariant. Let ν̃ be the Radon submeasure on X extending ν; then ν̃ is translation-invariant. Let µ be the
Haar probability measure on X.
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As noted in §X of Fremlin n06, there is no non-trivial uniformly exhaustive submeasure dominated by
ν. Consequently, writing B for the σ-algebra of Borel subsets of X, (µ↾B) ∧ (ν↾B) = 0 and there must
be a Borel set E ⊆ X such that νE = 0 and µ(X \ E) = 0 (1M). Consider W = {(x, y) : x, y ∈ X,
xy ∈ E}. Then µW [{x}] = 1 for every x ∈ X, while νW−1[{y}] = 0 for every y ∈ X. In particular,
W ∈ (N (ν) ⋊N (µ)) \ (N (ν) ⋉N (µ)), while (X,µ) is isomorphic, as measure space, to [0, 1] with Lebesgue
measure; compare 4Ga.

11 Problems

11A A long-outstanding problem is: is every σ-finite-cc Boolean algebra in fact σ-bounded-cc? It is easy
to show that every Maharam algebra is σ-finite-cc, and that every measurable algebra is σ-bounded-cc. But
is every Maharam algebra σ-bounded-cc? (See 4D-4E.)

11B Let 〈An〉n∈N be a sequence of Maharam algebras and µn a unital Maharam submeasure on An

for each n. Must there be a Maharam algebra A with a Maharam submeasure µ such that (An, µn) is
isometrically isomorphic to a subalgebra of (A, µ) for every n?

11C Is there a strictly positive exhaustive submeasure on Gaifman’s algebra, that is, the regular open
algebra RO(X) described in Proposition 6A?

11D(a) Let C be a Boolean algebra and A a σ-finite-cc Boolean algebra, not {0}. Suppose that 
A ‘Č is

σ-finite-cc’, in the sense that we have a sequence θn of functions from C to A (interpret θn(c) as [[č ∈ Ṡn]])
such that

supn∈N θn(c) = 1 for every c ∈ C;
for any n ∈ N and any disjoint sequence 〈ck〉k∈N in C, 〈θn(ck)〉k∈N order*-converges to 0 in A.

Must C be σ-finite-cc?
(b) Repeat (a) for ‘σ-bounded-cc’.

11E Is there any general bound for the ordinals Mhsm(A) for Maharam algebras A? Note that Ta-

lagrand 06 describes a countable algebra B with a strictly positive exhaustive submeasure which is not
uniformly exhaustive; for any ǫ > 0, rǫ(1) must be countable; taking the metric completion of B, we obtain
a Maharam algebra A such that ωω ≤ Mhsm(A) < ω1, by §§7C-7D and 7J.

11F A measurable algebra of cardinal c or less is σ-linked, indeed σ-n-linked for every n ≥ 2 (Dow &

Steprāns 94, or Fremlin 08?, 523Of). Note that the linking number of any Maharam algebra A is at
most max(ω, τ(A)); in particular, there is a non-measurable Maharam algebra which is σ-linked, therefore
σ-bounded-cc. But is every Maharam algebra of size c necessarily σ-linked?

11G Let Bω be the measure algebra of the usual measure on {0, 1}ω, and A a non-measurable Maharam
algebra. Must it be true that Bω \ {1} 4T A \ {1}?

11H Write S∗ for
⋃

n∈N
{0, 1}n. For A ⊆ S∗, set EA = {x : x ∈ {0, 1}N, {n : x↾n ∈ A} is infinite}. For

any ideal I ⊳ PS∗, write EI for the ideal of the Borel σ-algebra B({0, 1}N generated by {EA : A ∈ I}.
Find a combinatorial characterization of those p-ideals I of PS∗ such that B({0, 1}N)/EI is ccc and weakly
(σ,∞)-distributive.

11I In Theorem 7H, can we improve on the factor 1
3?

11J Is it possible for a Souslin algebra to be strategically weakly (σ,∞)-distributive?

11K In G lowczyński’s example (see 6B) can A be strategically weakly (σ,∞)-distributive?

11L Let A be an atomless Maharam algebra of countable Maharam type, not {0}. Must we have
wdistr(A) = addN and/or π(A) = cfN and/or d(A) = nonN ? (See §9.)

11M Let A be a non-zero atomless Maharam algebra. Does it necessarily have an atomless closed
subalgebra which is a measurable algebra?

11N Let µ be a non-zero Radon submeasure on an algebra Σ of subsets of [0, 1]. Does µ have a lifting?
that is, is there a Boolean homomorphism φ : Σ → Σ such that (i) µ(E△φ(E)) = 0 for every E ∈ Σ (ii)
{E : φE = ∅} = {E : µE = 0}?
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