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1. A perfect set (P.Erdős & S.Kakutani) Choose 〈In〉n≥1 as follows. I1 = {[0, 1]}. Given that In is a

family of (n − 1)! non-overlapping closed intervals of length
1

n!
, divide each member of In into n + 1 closed

intervals of equal length, discard one, and keep the rest for In+1.
Set Kn =

⋃
In for each n, so that 〈Kn〉n≥1 is a non-increasing sequence of compact sets and the Lebesgue

measure µKn of Kn is
1

n
for each n ≥ 1. Set K =

⋂
n≥1 Kn, so that K is a compact Lebesgue negligible set.

2. Proposition (Elekes & Steprāns 04, Theorem 1.2) Let E be any uncountable analytic set in R,
and K the set of §1. Then there is an x ∈ R such that (E + x) ∩ K is uncountable.

proof It is enough to consider the case in which E is a non-empty compact set without isolated points.
Construct 〈Qn〉n∈N and 〈Jn〉n∈N as follows. Start with Q0 = {q0} where q0 is any point of E. Observe that
the construction of I5 kept four out of five subintervals of each interval in I4, so that I5 necessarily has a

pair of contiguous intervals, and the interior of K5 has a component of length at least
2

5!
. There is therefore

a closed interval J0, of length
1

5!
, such that q0 +J0 ⊆ int K5; we may arrange that q0 +a0 is irrational, where

a0 = min J0.

Now suppose that we have Qn and Jn, where Qn ⊆ E, #(Qn) = 1 + ⌊
n

4
⌋, Jn is a closed interval of length

1

(n+5)!
, Qn+Jn ⊆ int Kn+5, and q+an is irrational for every q ∈ Qn, where an = min Jn. For q ∈ Qn, let Jq

be the set of subintervals of members of In+5 which were rejected when constructing In+6, but meet q +Jn.
As q + Jn meets just two of the intervals in In+5 (this is where it is useful to know that q + an is irrational,
while every interval in In+5 has rational endpoints), #(Jq) ≤ 2 and {Jn ∩ (I − q) : q ∈ Q, I ∈ Jq} consists

of at most 2#(Qn) intervals of length at most
1

n+6
µJn. It follows that H = Jn \

⋃
{I − q : q ∈ Q, I ∈ Jq}

has at most 2#(Q) + 1 components and has measure at least (1−
2#(Qn)

n+6
)µJn. As 4#(Qn) + 1 ≤ n + 5, one

of the components of H has length greater than
µJn

n+6
and there must be a closed interval Jn+1, of length

1

(n+6)!
, such that Jn+1 ⊆ H and q + an+1 is irrational for every q ∈ Qn, where an+1 = min Jn+1. Now

observe that Qn +Jn+1 does not meet any of the subintervals of members of In+5 which were rejected when
forming In+6, so that Qn + Jn+1 ⊆ intKn+6.

If n + 1 is not a multiple of 4, so that ⌊
n+1

4
⌋ = ⌊

n

4
⌋, set Qn+1 = Qn. Otherwise, take a loneliest member

q of Qn (that is, one for which the distance from q to Qn \ {q} is maximal) and choose q′ ∈ E \Q such that
|q′ − q| ≤ 2−n and q′ + Jn+1 ⊆ int Kn+6; set Qn+1 = Qn ∪ {q′}. Continue.

At the end of the construction, let x be the single point of
⋂

n∈N
Jn, and set Q =

⋃
n∈N

Qn. Then Q ⊆ E

has no isolated points and x + Q ⊆ K. So (E + x) ∩ K ⊇ Q + x is uncountable.

3. Proposition (Elekes & Steprāns 04, Theorem 2.1) Suppose that, in the construction of §1, the

discarded intervals are always the right-hand ones of each group, so that K = {
∑∞

n=3
kn

n!
: 0 ≤ kn ≤ n − 2

for each n ≥ 3}1. Let cfN be the cofinality of the Lebesgue null ideal N . Then there is a set A ⊆ R, with
cardinality at most cfN , such that A + K = R.

1See Erdős & Kakutani 57.
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proof (Elekes & Steprāns 04) Define α ∈ NN by setting α(0) = 0, α(n) = ⌊
n−1

2
⌋ for n ≥ 1. As in

Fremlin 08, 522L, set

S(α) = {S : S ⊆ N × N, #(S[{n}]) ≤ α(n) for every n ∈ N};

for f ∈ NN and S ∈ S(α), say that f ⊆∗ S if {n : n ∈ N, (n, f(n)) /∈ S} is finite. Say that f ⊆ S if
(n, f(n)) ∈ S} for every n ∈ N. For S ∈ S(α) set S′ = {(n, i) : (n, i) ∈ S, i ≤ n − 1} ∪ {(0, 0)} and

QS = {
∑∞

n=4
f(n)

n!
: f ∈ NN, f ⊆ S′}.

Then there is an xS ∈ R such that xS + QS ⊆ K. PPP For each n ≥ 4, S′[{n}] is a subset of {0, . . . , n − 1}
with less than n

2 members, so there is a jn < n such that neither jn nor jn − 1 belongs to S′[{n}]; allow
jn = 0, but only if there is no alternative, in which case n is odd and S′[{n}] = {1, 3, . . . , n − 2}, so that

n − 1 /∈ S′[{n}]. Set j′n = n − 1 − jn. Now set xS =
∑∞

n=4
j′

n

n!
. In this case, if f ⊆ S′, j′n + f(n) is neither

j′n + jn = n − 1 or j′n + jn − 1 = n − 2; at the same time, j′n + f(n) ≤ 2n − 3, because either jn > 0 or
f(n) < n − 1. So

xS +
∑∞

n=4
f(n)

n!
=

∑∞

n=4
j′

n+f(n)

n!
=

∑∞

n=3
kn

n!
,

where, for each n ≥ 4, kn < n is one of j′n + f(n), j′n + f(n) + 1, j′n + f(n) − n or j′n + f(n) − n + 1, while

k3 is either 0 or 1. But this means that 0 ≤ kn ≤ n − 2 for every n, so that xS +
∑∞

n=4
f(n)

n!
∈ K. As f is

arbitrary, we have a suitable xS . QQQ

Observe next that, by 522L and 522M of Fremlin 08, (NN,⊆∗,S(α)) ∼=GT (N ,⊆,N ). There is therefore
a set T ⊆ S(α), of size cfN , such that for every f ∈ NN there is a T ∈ T such that f ⊆∗ T . We may suppose
that S ∈ T whenever T ∈ T , S ∈ S(α) and S△T is finite; in which case, we see that for every f ∈ NN

there is a T ∈ T such that f ⊆ T . Set A0 = {−xT : T ∈ T }. If z ∈ [0, 1
6 ], there is an f ∈ NN such that

f(0) = f(1) = f(2) = f(3) = 0, f(n) < n for every n ≥ 4, and z =
∑∞

n=4
f(n)

n!
. Let T ∈ T be such that

f ⊆ T ; then z ∈ QT so xT + z ∈ K and z ∈ A0 + K.

Thus A0 + K ⊇ [0, 1
6 ]; setting A = A0 + Q, #(A) ≤ cfN and A + K = R.

4. Translates of the Cantor set: Proposition The union of fewer than c translates of the Cantor
set C always has inner measure 0.

proof (a) Let L be a compact set of positive Lebesgue measure. Write B for {3nk : n, k ∈ Z}. For
n ≥ 1 and j < 9 let Dnj be the closed set of those z ∈ R such that the fractional part of z has a j in
the nth place of (one of) its 9-ary expansions. (Take an expansion of a negative number to be of the form
m + 0·d1d2 . . . where m ∈ Z and d1, d2, . . . < 9.) Note that if t ∈ R and n ≥ 1 then C + t does not meet
every Dnj . PPP Let J be a component of [0, 1] \ C of length 3 · 9−n, then J + 9 · 9−nk does not meet C for
any k ∈ Z. Now there must be a j ≤ 8 such that J + t covers one of the intervals comprising Dnj , in which
case Dnj ⊆

⋃
k∈Z

(J + t + 9 · 9−nk) is disjoint from C + t. QQQ

Choose ni for i ∈ N and y(σ), for σ ∈ 9i =
∏

j<i 9, as follows. y(∅) is to be any density point of L \ B.

Given that y(σ) is a density point of L \ B for every σ ∈ 9i, let ni ≥ 1 be such that ni > nj for every j < i
and, setting Aσ = [y(σ), y(σ) + 10 · 9−ni ] for σ ∈ 9i, the 9-ary expansions of any y ∈ Aσ agree with those

of y(σ) down to the njth place for every j < i, and moreover µ(Aσ \ L) <
1

90
µAσ. Now Aσ must include

an interval Iσj of Dnij for each j < 9, and µ(Iσj ∩ L) > 0, so we can find a density point yσa<j> of L \ B
contained in Iσj for each j. Continue. Observe that the effect of this construction is that if i < #(σ) then
yσ ∈ Dni,σ(i).

(b) (Compare Gruenhage & Levy 02) There is a family R of subsets of N, of cardinal c, which is
independent in the sense that

⋂
i≤n Ri \

⋃
j≤m Sj is infinite whenever R0, . . . , Rn, S0, . . . , Sm are distinct

elements of R. PPP By Fremlin 03, 491P, we can actually find such a family for which the asymptotic
density of

⋂
i≤n Ri \

⋃
j≤m Sj is 2−m−n−2 whenever R0, . . . , Rn, S0, . . . , Sm are distinct elements of R. QQQ
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Index R as 〈Rjξ〉j<8,ξ<c. For ξ < c, define xξ ∈ 9N by setting xξ(i) = #({j : i ∈ Rjξ}) for each i. Now set
zξ = limn→∞ y(xξ↾n) for each ξ. Then zξ ∈ L ∩ Dni,xξ(i) for every ξ < c, i ∈ N.

If ξ0, . . . , ξ8 < c are distinct, then there is an i ∈ N such that, for j < 8 and m < 9, i ∈ Rjξm
⇐⇒ j < m;

so that xξm
(i) = m for each m, and zξm

∈ Dnim. Thus if t ∈ R the translate C + t cannot contain all the
zξm

. Turning this round, we see that {ξ : zξ ∈ C + t} has at most 8 members, for every t ∈ R. So if we have
any set Q ⊆ R of cardinal less than c, there is a ξ < c such that zξ ∈ L \ (Q + C).

As L is arbitrary, the result is proved.

Remark Gruenhage’s result that R is not covered by fewer than c translates of C has been strengthened
by Darji & Keleti 03. I do not know whether their methods can be applied to the refinement here. See
§7 below for a case essentially identical to the one of this proposition.

5. Corollary There is a set A ⊆ R such that A has full outer measure for µ but #(C ∩ (A + t)) < c for
every t ∈ R. If the uniformity nonN of Lebesgue measure is c, then ν(C ∩ (A + t)) = 0 for every t ∈ R,
where ν is the usual measure on the Cantor set C.

proof Enumerate R as 〈tξ〉ξ<c and the compact sets of non-zero Lebesgue measure as 〈Lξ〉ξ<c. By Proposition
4, we can choose aξ ∈ Lξ \

⋃
η<ξ C + tη for each ξ; now set A = {aξ : ξ < c}.

6. Proposition (M.Elekes) If the covering number and cofinality of the Lebesgue null ideal are equal,
there is a set A ⊆ R such that A has full outer measure for µ but #(C ∩ (A + t)) ≤ 8 for every t ∈ R.

proof (a) Take the sets Dnj , for n ≥ 1 and j ≤ 8, as in the proof of §4. Set κ = cfN = covN , where N
is the Lebesgue null ideal. Let 〈Eξ〉ξ<κ enumerate a coinitial subset of Σ \ N , where Σ is the σ-algebra of
Lebesgue measurable sets. (Recall that ci(Σ \ N ) = cfN , see Fremlin 08, 524Pb.) Then there is a family
〈xξ〉ξ<κ such that

xξ ∈ Eξ for every ξ < κ,
if η0 < η1 < . . . < ηk < κ and j0, . . . , jk ≤ 8 then there are infinitely many n ≥ 1 such that

xηi
∈ Dnji

for every i ≤ k.

PPP Choose xξ inductively; the inductive hypothesis will of course be that

if η0 < η1 < . . . < ηk < ξ and j0, . . . , jk ≤ 8 then there are infinitely many n ≥ 1 such that
xηi

∈ Dnji
for every i ≤ k.

Start by taking x0 ∈ E0 such that {n : n ≥ 1, x0 ∈ Dnj} is infinite for every j ≤ 8; this is possible
because 〈Dnj ∩ [0, 1]〉n∈N is stochastically independent for every j, so that for each j the set {x : x ∈ Dnj for
infinitely many n} is conegligible. When we come to choose ξ, for ξ > 0, then for each pair ηηη = (η0, . . . , ηk),
jjj = (j0, . . . , jk), where k ∈ N, η0 < . . . < ηk < ξ and j0, . . . , jk ≤ 8, set

Iηηη,jjj = {n : n ≥ 1, xηi
∈ Dnji

for every i ≤ k}.

For any j ≤ 8,

Fηηη,jjj,j = {x : {n : n ∈ Iηηη,jjj , x ∈ Dnj} is infinite}

is conegligible. Because #(ξ) < covN , we can therefore find an xξ ∈ Eξ such that xξ ∈ Fηηη,jjj,j whenever
η0 < . . . < ηk < ξ and j0, . . . , jk, j ≤ 8 (by Fremlin 08, 524Pc, or otherwise, Eξ cannot be covered by
fewer than covN negligible sets), and the induction will proceed. QQQ

(b) Set A = {xξ : ξ < κ}. Because A meets every Eξ, A has full outer measure. If t ∈ R and
η0 < . . . < η8 < κ, then there is an n ∈ N such that xηi

∈ Dni for every i ≤ 8; but there is an i ≤ 8 such that
C + t does not meet Dni (see part (a) of the proof of §4), so xηi

/∈ C + t. This shows that #(A∩ (C + t)) ≤ 8
for every t ∈ R; of course it follows that #(C ∩ (A + t)) ≤ 8 for every t.

7. Proposition (a) Set K = {
∑∞

i=0 5−i−1ǫi : ǫi ∈ {0, 1, 3, 4} for every i ∈ N}, the ‘middle fifth Cantor
set’. Then the union of fewer than c translates of K always has inner Lebesgue measure 0.

(b) Set K ′ = {
∑∞

i=0 5−i−1ǫi : ǫi ∈ {0, 4} for every i ∈ N}, the ‘middle three-fifths Cantor set’. Then
there is a set A ⊆ R, of full outer Lebesgue measure, such that K ′ meets every translate of A in at most
one point.
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(c) (M.Elekes) There are a Radon probability measure ν̃ on R and a set A of full outer Lebesgue measure
such that ν(A + t) = 0 for every t ∈ R.

proof (a) A trifling variation on the method used in §4 deals with this case also. Let L be a compact set
of positive Lebesgue measure. Write B for {5nk : n, k ∈ Z}. For n ≥ 1 and j < 25 let Dnj be the closed set
of those z ∈ R such that the fractional part of z has a j in the nth place of (one of) its 25-ary expansions.
Note that if t ∈ R and n ≥ 1 then K + t does not meet every Dnj . Choose ni for i ∈ N and y(σ), for
σ ∈ 25i, as follows. y(∅) is to be any density point of L \ B. Given that y(σ) is a density point of L \ B for
every σ ∈ 25i, let ni ≥ 1 be such that ni > nj for every j < i and, setting Aσ = [y(σ), y(σ) + 26 · 25−ni ] for
σ ∈ 25i, the 9-ary expansions of any y ∈ Aσ agree with those of y(σ) down to the njth place for every j < i,

and moreover µ(Aσ \ L) <
1

650
µAσ, for every σ ∈ 25i. Now, for each σ ∈ 25i, Aσ must include an interval

Iσj of Dnij for each j < 25, and µ(Iσj ∩L) > 0, so we can find a density point yσa<j> of L \B contained in
Iσj for each j. Continue. Observe that the effect of this construction is that if i < #(σ) then yσ ∈ Dni,σ(i).

Again take a fully independent family R of subsets of N of cardinal c, and index it as 〈Rjξ〉j<24,ξ<c. For
ξ < c, define xξ ∈ 25N by setting xξ(i) = #({j : i ∈ Rjξ}) for each i. Now set zξ = limn→∞ y(xξ↾n) for each
ξ. Then zξ ∈ L ∩ Dni,xξ(i) for every ξ < c, i ∈ N.

If ξ0, . . . , ξ24 < c are distinct, then there is an i ∈ N such that, for j < 24, m < 25, i ∈ Rjξm
⇐⇒ j < m;

so that xξm
(i) = m for each m, and zξm

∈ Dnim. Thus if t ∈ R the translate K + t cannot contain all the
zξm

, and {ξ : zξ ∈ K + t} has at most 24 members, for every t ∈ R. So if we have any set Q ⊆ R of cardinal
less than c, there is a ξ < c such that zξ ∈ L \ (Q + K), and Q + K cannot cover L. As L is arbitrary, the
result is proved.

(b) The point is that K ′ − K ′ ⊆ K + (K − 1). PPP Setting Fnj =
⋃

k∈N
5−n−1[j + 5k, j + 5k + 1] for

n ∈ N, we have K ′ = [0, 1] ∩
⋂

n∈N
(Fn0 ∪ Fn4), while K = [0, 1] ∩

⋂
n∈N

(Fn0 ∪ Fn1 ∪ Fn3 ∪ Fn4) and
K − 1 = [−1, 0] ∩

⋂
n∈N

(Fn0 ∪ Fn1 ∪ Fn3 ∪ Fn4) . Since

Fn0 − Fn0 ⊆ Fn0 ∪ Fn4,

Fn0 − Fn4 ⊆ Fn0 ∪ Fn1,

Fn4 − Fn0 ⊆ Fn3 ∪ Fn4,

Fn4 − Fn4 ⊆ Fn0 ∪ Fn4

for every n,

K ′ − K ′ ⊆ [−1, 1] ∩
⋂

n∈N
(Fn0 ∪ Fn1 ∪ Fn3 ∪ Fn4) ⊆ K ∪ (K − 1). QQQ

Now let 〈Lξ〉ξ<c run over the non-negligible compact subsets of R. Choose 〈xξ〉ξ<c such that

xξ ∈ Lξ \
⋃

η<ξ((K + xη) ∪ (K + xη − 1))

for every ξ < c; this is possible by (a). Then xξ /∈ (K ′ −K ′) + xη, that is, xξ −K ′ and xη −K ′ are disjoint,
whenever η < ξ; turning this round, no translate of K ′ can contain xξ for more than one ξ. So we can set
A = {xξ : ξ < c}.

(c) We have only to take the set A of (b) and the image ν̃ of the usual measure on {0, 1}N under the
function z 7→

∑∞

n=0 4 · 5−n−1z(n).

8 Remark Recall that in any Polish group X, a set D is said to be Haar null if there are a universally
measurable set E ⊇ D and a non-zero Radon measure ν on X such that ν(xEy) = 0 for all x, y ∈ X
(Fremlin 03, 444Ye). If X is locally compact, then the Haar null sets are just those which are neglible for
the Haar measures on X. Now the set A of §7(b)-(c) above is such that ν̃(x + A + y) = 0 for all x, y ∈ R,
but is not Haar null. If either nonN = c or covN = cfN , as in §§5-6, then we get an example witnessed by
the usual measure on the Cantor set.
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