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1. A perfect set (P.Erdés & S.Kakutani) Choose (Z,,),>1 as follows. Z1 = {[0, 1]}. Given that Z,, is a
family of (n — 1)! non-overlapping closed intervals of length %, divide each member of Z,, into n + 1 closed

intervals of equal length, discard one, and keep the rest for 7, 1.
Set K,, = |JZ, for each n, so that (K,,),>1 is a non-increasing sequence of compact sets and the Lebesgue

measure K, of K, is % for each n > 1. Set K = ﬂn21 K, so that K is a compact Lebesgue negligible set.

2. Proposition (ELEKES & STEPRANS 04, Theorem 1.2) Let E be any uncountable analytic set in R,
and K the set of §1. Then there is an x € R such that (E 4+ ) N K is uncountable.

proof It is enough to consider the case in which E is a non-empty compact set without isolated points.
Construct (Qn)nen and (Jp,)nen as follows. Start with Qo = {qo} where g is any point of E. Observe that
the construction of Z5 kept four out of five subintervals of each interval in Z4, so that Z5 necessarily has a

pair of contiguous intervals, and the interior of K5 has a component of length at least % There is therefore

a closed interval Jy, of length é, such that gg + Jy C int K5; we may arrange that gy + ag is irrational, where
ap = min Jy.
Now suppose that we have @Q,, and J,,, where Q,, C E, #(Q,) =1+ L%j, J is a closed interval of length

(71_,_;5)', Qn+J, Cint K, 45, and g+a, is irrational for every ¢ € @, where a,, = min J,,. For ¢ € @5, let J,
be the set of subintervals of members of Z,,, 5 which were rejected when constructing Z,, g, but meet ¢+ J,,.
As g+ J,, meets just two of the intervals in Z,, 45 (this is where it is useful to know that g + a,, is irrational,

while every interval in 7,45 has rational endpoints), #(J,) <2 and {J, N (I —¢q) : ¢ € Q, I € J,} consists
of at most 2#(Q),) intervals of length at most n%_ﬁan. It follows that H = J, \U{I —q¢:¢ € Q, I € J4}

has at most 2#(Q) + 1 components and has measure at least (1 — %ﬁ:))ujn. As 44#(Q,)+1 < n+5, one

of the components of H has length greater than : _‘{_Té

and there must be a closed interval J,41, of length

ﬁ, such that J,11 € H and q + a,41 is irrational for every ¢ € @, where a,,+1 = minJ,1. Now
observe that @, + J,+1 does not meet any of the subintervals of members of 7,, 5 which were rejected when
forming Z,,y¢, so that @, + Jp+1 C int K, 1¢.
nTHj = Lg], set Qn+1 = Qn. Otherwise, take a loneliest member
q of @, (that is, one for which the distance from ¢ to @, \ {¢} is maximal) and choose ¢’ € E'\ @ such that
|q/ - Q| < 27" and q/ + Jn+1 Cint Ky set Qny1 = Qn U {q/}' Continue.

At the end of the construction, let x be the single point of [, .y J/n, and set Q = {J,,cy @n- Then Q C E

has no isolated points and # + Q C K. So (E + x) N K 2 @ + z is uncountable.

If n + 1 is not a multiple of 4, so that |

3. Proposition (ELEKES & STEPRANS 04, Theorem 2.1) Suppose that, in the construction of §1, the

discarded intervals are always the right-hand ones of each group, so that K = {>°° i 0<k, <n—-2

n=3 pl
for each n > 3}!. Let cf A be the cofinality of the Lebesgue null ideal N'. Then there is a set A C R, with
cardinality at most cf N, such that A + K = R.

1See ErRDOS & KAKUTANI 57.



proof (ELEKES & STEPRANS 04) Define a € NN by setting «(0) = 0, a(n) = Ln; | forn >1. Asin
FrREMLIN 08, 5221, set
S ={8: 8 CNxN, #(S[{n}]) < a(n) for every n € N};

for f € N¥ and S € S, say that f C* Sif {n: n € N, (n,f(n)) ¢ S} is finite. Say that f C S if
(n, f(n)) € S} for every n € N. For S € S(®) set ' = { n,i):(n,3) € 5,1 <n—-1}U{(0,0)} and

Qs = (o, W fent, fCs

Then there is an g € R such that zg + Qs € K. P For each n > 4, S’[{n}] is a subset of {0,... ,n — 1}
with less than & members, so there is a j,, < n such that neither j, nor j, — 1 belongs to S’[{n}]; allow
jn = 0, but only if there is no alternative, in which case n is odd and S'[{n}] = {1,3,... ,n — 2}, so that

n—1¢ S'[{n}]. Set ji, =n—1—j,. Now set xg = ZZO:ZL%. In this case, if f C 5, jI, + f(n) is neither

g+ idn=n—1or j, 4+ j, — 1 =mn—2; at the same time, j/, + f(n) < 2n — 3, because either j, > 0 or
f(n) <nm—1. So

00 oo J! o kn
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n! n!’
where, for each n > 4, k, < n is one of 5, + f(n), j,, + f(n) + 1, j,, + f(n) —n or j/, + f(n) —n+ 1, while
ks is either 0 or 1. But this means that 0 < k,, < n — 2 for every n, so that zg + > -, fin) €EK. As fis

arbitrary, we have a suitable zg. Q

Observe next that, by 522 and 522M of FREMLIN 08, (NN, C* S(®)) =g (N, C, V). There is therefore
aset T C S of size ¢f N, such that for every f € NN there is a T € T such that f C* T. We may suppose
that S € 7 whenever T € 7, S € S(® and SAT is finite; in which case, we see that for every f € NN
there is a 7' € T such that f C T. Set Ay = {—ar : T € T}. If z € [0, ], there is an f € N" such that

f(0) = f(1) = f(2) = f(3) =0, f(n) < n for every n > 4, and z = 2214%. Let T € T be such that

fCT;thenze Qrsoxr+z€ Kand z € Ay + K.
Thus Ag + K 2 [0, ¢]; setting A = Ay + Q, #(A) < cfN and A+ K =R.

4. Translates of the Cantor set: Proposition The union of fewer than ¢ translates of the Cantor
set C always has inner measure 0.

proof (a) Let L be a compact set of positive Lebesgue measure. Write B for {3"k : n, k € Z}. For
n > 1and j <9 let Dy; be the closed set of those z € R such that the fractional part of z has a j in
the nth place of (one of) its 9-ary expansions. (Take an expansion of a negative number to be of the form
m + 0-dydy ... where m € Z and dy,ds,... < 9.) Note that if ¢ € R and n > 1 then C + ¢ does not meet
every D,,;. P Let J be a component of [0,1] \ C of length 3-97", then J + 9- 97"k does not meet C for
any k € Z. Now there must be a j < 8 such that J +t covers one of the intervals comprising D,,;, in which
case Dy C Upep(J +14+9-97"k) is disjoint from C' +¢. Q

Choose n; for i € N and y(o), for o € 9" = [1;.;9, as follows. y(0) is to be any density point of L \ B.
Given that y(o) is a density point of L\ B for every o € 9, let n; > 1 be such that n; > n; for every j < i
and, setting A, = [y(o),y(o) + 10-97"] for o € 9%, the 9-ary expansions of any y € A, agree with those

of y(o) down to the n;th place for every j < ¢, and moreover (A4, \ L) < %,uAa. Now A, must include

an interval I,; of Dy, ; for each j < 9, and pu(I,; N L) > 0, so we can find a density point y,~; of L\ B
contained in I,; for each j. Continue. Observe that the effect of this construction is that if i < #(¢) then
Yo € Dni,o(i)-

(b) (Compare GRUENHAGE & LEVY 02) There is a family R of subsets of N, of cardinal ¢, which is
independent in the sense that ﬂl<n R\ Uj<m S; is infinite whenever Ry, ..., Ry, So,... , Sy are distinct
elements of R. P By FREMLIN 03, 491P, we can actually find such a famlly for which the asymptotic
density of (,,, Ri \ U;<,, Sj s 27™ 7" 2 whenever Ry,...,R,,So,..., S, are distinct elements of R. Q
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Index R as (Rj¢)j<s¢<c. For £ <, define z¢ € 9V by setting z¢(i) = #({j : i € Rj¢}) for each i. Now set
ze = lim,, oo y(z¢[n) for each & Then z¢ € LN Dy, 4, () for every £ < ¢, i € N.

If &, ... , & < c are distinct, then there is an ¢ € N such that, for j < 8and m < 9,¢ € Rje,, <= 7 <my
so that x¢ (i) = m for each m, and z¢,, € Dy,r,. Thus if ¢t € R the translate C' + ¢ cannot contain all the
2¢,,. Turning this round, we see that {£ : ze € C' +t} has at most 8 members, for every ¢ € R. So if we have
any set () C R of cardinal less than ¢, there is a { < ¢ such that ze € L\ (Q + C).

As L is arbitrary, the result is proved.

Remark Gruenhage’s result that R is not covered by fewer than ¢ translates of C' has been strengthened
by DARJI & KELETI 03. I do not know whether their methods can be applied to the refinement here. See
87 below for a case essentially identical to the one of this proposition.

5. Corollary There is a set A C R such that A has full outer measure for p but #(C N (A +1t)) < ¢ for
every t € R. If the uniformity non N of Lebesgue measure is ¢, then v(C N (A +t)) = 0 for every t € R,
where v is the usual measure on the Cantor set C.

proof Enumerate R as (t¢)¢<. and the compact sets of non-zero Lebesgue measure as (L¢)¢<.. By Proposition
4, we can choose a¢ € L¢ \ U, . C + 1, for each & now set A = {a¢ : { < c}.

6. Proposition (M.Elekes) If the covering number and cofinality of the Lebesgue null ideal are equal,
there is a set A C R such that A has full outer measure for p but #(C' N (A +1t)) < 8 for every ¢t € R.

proof (a) Take the sets D,;, for n > 1 and j < 8, as in the proof of §4. Set k = ¢fN = cov N, where N
is the Lebesgue null ideal. Let (E¢)e, enumerate a coinitial subset of ¥\ N/, where ¥ is the o-algebra of
Lebesgue measurable sets. (Recall that ci(X \ N) = ¢f N, see FREMLIN 08, 524Pb.) Then there is a family
(®e)e<w such that
x¢ € B for every £ < k,
ifng <m < ...<mp <k and jo,...,J5k < 8 then there are infinitely many n > 1 such that
Ty, € Dy, for every i < k.
PP Choose z¢ inductively; the inductive hypothesis will of course be that
ifng<m <...<mp <&and jo,...,Jr < 8 then there are infinitely many n > 1 such that
Ty, € Dy, for every i < k.
Start by taking xy € Ey such that {n : n > 1, g € D,,;} is infinite for every j < 8; this is possible
because (D,,; N[0, 1]) e is stochastically independent for every j, so that for each j the set {z : € D,,; for
infinitely many n} is conegligible. When we come to choose &, for £ > 0, then for each pair n = (1, ... , M%),
= (o, ,Jk), where k e N, o < ... <m <& and jo,...,jk <8, set

Iyj ={n:n>1, x, € Dy for every i <k}.
For any j <8,
Fyjj={xz:{n:nel,; =€ D,;}is infinite}
is conegligible. Because #(§) < covN, we can therefore find an z¢ € E¢ such that z¢ € F, ; ; whenever

N < ...<ng <& and jo,...,JkJ <8 (by FREMLIN 08, 524Pc, or otherwise, E¢ cannot be covered by
fewer than cov A\ negligible sets), and the induction will proceed. Q

(b) Set A = {z¢ : £ < k}. Because A meets every E¢, A has full outer measure. If ¢ € R and
Mo < ...<1mng < K, then there is an n € N such that x,, € D,,; for every ¢ < 8; but there is an i < 8 such that
C +1t does not meet D,,; (see part (a) of the proof of §4), so z,, ¢ C'+t. This shows that #(AN(C+1t)) <8
for every ¢ € R; of course it follows that #(C N (A +t)) < 8 for every .

7. Proposition (a) Set K = {>"7~ 5 "¢ : ¢; € {0,1,3,4} for every i € N}, the ‘middle fifth Cantor
set’. Then the union of fewer than ¢ translates of K always has inner Lebesgue measure 0.

(b) Set K/ = {>°2,5 " te; : ¢ € {0,4} for every i € N}, the ‘middle three-fifths Cantor set’. Then
there is a set A C R, of full outer Lebesgue measure, such that K’ meets every translate of A in at most
one point.



(c) (M.Elekes) There are a Radon probability measure 7 on R and a set A of full outer Lebesgue measure
such that v(A 4+ t) =0 for every ¢t € R.

proof (a) A trifling variation on the method used in §4 deals with this case also. Let L be a compact set
of positive Lebesgue measure. Write B for {5"k : n, k € Z}. For n > 1 and j < 25 let D,,; be the closed set
of those z € R such that the fractional part of z has a j in the nth place of (one of) its 25-ary expansions.
Note that if ¢ € R and n > 1 then K + ¢ does not meet every D,;. Choose n; for ¢ € N and y(o), for
o € 25%, as follows. y(0) is to be any density point of L\ B. Given that y(o) is a density point of L\ B for
every o € 25%, let n; > 1 be such that n; > n; for every j < i and, setting A, = [y(o),y(o) + 26 - 257 "] for
o € 25%, the 9-ary expansions of any y € A, agree with those of y(c) down to the n;th place for every j < i,

and moreover (A, \ L) < %,U,AU, for every o € 25°. Now, for each o € 25!, A, must include an interval

I of Dy, ; for each j < 25, and u(I,; N L) > 0, so we can find a density point y,~ ;> of L\ B contained in
I, for each j. Continue. Observe that the effect of this construction is that if i < #(o) then y, € Dy, 5(;)-

Again take a fully independent family R of subsets of N of cardinal ¢, and index it as (Rj¢)j<24,e<c. For
¢ < ¢, define ¢ € 25" by setting x¢(i) = #({j : i € Rj¢}) for each i. Now set z¢ = lim,, o0 y(z¢[n) for each
§. Then 2¢ € LN D,y 4. (i) for every § <c, i € N.

If &, ... ,&a < c are distinct, then there is an ¢ € N such that, for j < 24, m < 25,71 € Rj¢,, <= j<m;
so that z¢ (i) = m for each m, and z¢,, € Dy, . Thus if ¢t € R the translate K + ¢ cannot contain all the
2e,., and {{ : z¢ € K +t} has at most 24 members, for every ¢t € R. So if we have any set @ C R of cardinal
less than c, there is a £ < ¢ such that z¢ € L\ (Q + K), and @ + K cannot cover L. As L is arbitrary, the
result is proved.

(b) The point is that K’ — K’ C K + (K —1). P Setting F,; = ey 5" '[j + bk, j + 5k + 1] for
n € N, we have K’ = [0,1] N, cy(Fno U Fra), while K = [0,1] N[, cn(Fro U Fr1 U Fiu3 U Fpy) and
K—-1= [71, 0} n mnEN(Fno U Fnl U an U Fn4) . Since

FnO_FnOanOUFn47
FnO_Fn4anOUFn17
Fn4_Fn0an3UFn47

Fry = Fry © Fro U Frg
for every n,
K - K Cl-1,1]N,en(FroUFn UF3UF,) CKU(K-1). Q
Now let (L¢)e<, run over the non-negligible compact subsets of R. Choose (z¢)s<. such that
ze € Le \ U< (K + ay) U (K + 2y — 1))

for every £ < ¢; this is possible by (a). Then z¢ ¢ (K’ — K') + x,,, that is, ¢ — K" and z,, — K’ are disjoint,
whenever 1 < &; turning this round, no translate of K’ can contain z¢ for more than one £. So we can set
A={ze: &<}

(c) We have only to take the set A of (b) and the image ¥ of the usual measure on {0, 1} under the
function z — > 02 j4- 57" 1z(n).

8 Remark Recall that in any Polish group X, a set D is said to be Haar null if there are a universally
measurable set £ O D and a non-zero Radon measure v on X such that v(zEy) = 0 for all z, y € X
(FREMLIN 03, 444Ye). If X is locally compact, then the Haar null sets are just those which are neglible for
the Haar measures on X. Now the set A of §7(b)-(c) above is such that 7(x + A+ y) =0 for all z, y € R,
but is not Haar null. If either non N' = ¢ or cov.N' = cf N, as in §§5-6, then we get an example witnessed by
the usual measure on the Cantor set.
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