On results of M.Elekes and G.Gruenhage

D.H.FREMLIN

University of Essex, Colchester, England

1. A perfect set (P.Erdős & S.Kakutani) Choose $\langle \mathcal{I}_n \rangle_{n \geq 1}$ as follows. $\mathcal{I}_1 = \{[0, 1]\}$. Given that \mathcal{I}_n is a family of (n-1)! non-overlapping closed intervals of length $\frac{1}{n!}$, divide each member of \mathcal{I}_n into n+1 closed intervals of equal length, discard one, and keep the rest for \mathcal{I}_{n+1} .

Set $K_n = \bigcup \mathcal{I}_n$ for each n, so that $\langle K_n \rangle_{n \ge 1}$ is a non-increasing sequence of compact sets and the Lebesgue measure μK_n of K_n is $\frac{1}{n}$ for each $n \ge 1$. Set $K = \bigcap_{n \ge 1} K_n$, so that K is a compact Lebesgue negligible set.

2. Proposition (ELEKES & STEPRĀNS 04, Theorem 1.2) Let E be any uncountable analytic set in \mathbb{R} . and K the set of §1. Then there is an $x \in \mathbb{R}$ such that $(E + x) \cap K$ is uncountable.

proof It is enough to consider the case in which E is a non-empty compact set without isolated points. Construct $\langle Q_n \rangle_{n \in \mathbb{N}}$ and $\langle J_n \rangle_{n \in \mathbb{N}}$ as follows. Start with $Q_0 = \{q_0\}$ where q_0 is any point of E. Observe that the construction of \mathcal{I}_5 kept four out of five subintervals of each interval in \mathcal{I}_4 , so that \mathcal{I}_5 necessarily has a pair of contiguous intervals, and the interior of K_5 has a component of length at least $\frac{2}{5!}$. There is therefore a closed interval J_0 , of length $\frac{1}{5!}$, such that $q_0 + J_0 \subseteq \operatorname{int} K_5$; we may arrange that $q_0 + a_0$ is irrational, where $a_0 = \min J_0.$

Now suppose that we have Q_n and J_n , where $Q_n \subseteq E$, $\#(Q_n) = 1 + \lfloor \frac{n}{4} \rfloor$, J_n is a closed interval of length

 $\frac{1}{(n+5)!}$, $Q_n + J_n \subseteq \text{int } K_{n+5}$, and $q + a_n$ is irrational for every $q \in Q_n$, where $a_n = \min J_n$. For $q \in Q_n$, let \mathcal{J}_q be the set of subintervals of members of \mathcal{I}_{n+5} which were rejected when constructing \mathcal{I}_{n+6} , but meet $q + J_n$. As $q + J_n$ meets just two of the intervals in \mathcal{I}_{n+5} (this is where it is useful to know that $q + a_n$ is irrational, while every interval in \mathcal{I}_{n+5} has rational endpoints), $\#(\mathcal{J}_q) \leq 2$ and $\{J_n \cap (I-q) : q \in Q, I \in \mathcal{J}_q\}$ consists of at most $2\#(Q_n)$ intervals of length at most $\frac{1}{n+6}\mu J_n$. It follows that $H = J_n \setminus \bigcup \{I - q : q \in Q, I \in \mathcal{J}_q\}$ has at most 2#(Q) + 1 components and has measure at least $(1 - \frac{2\#(Q_n)}{n+6})\mu J_n$. As $4\#(Q_n) + 1 \le n+5$, one of the components of H has length greater than $\frac{\mu J_n}{n+6}$ and there must be a closed interval J_{n+1} , of length

 $\frac{1}{(n+6)!}$, such that $J_{n+1} \subseteq H$ and $q + a_{n+1}$ is irrational for every $q \in Q_n$, where $a_{n+1} = \min J_{n+1}$. Now observe that $Q_n + J_{n+1}$ does not meet any of the subintervals of members of \mathcal{I}_{n+5} which were rejected when forming \mathcal{I}_{n+6} , so that $Q_n + J_{n+1} \subseteq \operatorname{int} K_{n+6}$.

If n+1 is not a multiple of 4, so that $\lfloor \frac{n+1}{4} \rfloor = \lfloor \frac{n}{4} \rfloor$, set $Q_{n+1} = Q_n$. Otherwise, take a loneliest member q of Q_n (that is, one for which the distance from q to $Q_n \setminus \{q\}$ is maximal) and choose $q' \in E \setminus Q$ such that $|q'-q| \leq 2^{-n}$ and $q'+J_{n+1} \subseteq \operatorname{int} K_{n+6}$; set $Q_{n+1} = Q_n \cup \{q'\}$. Continue. At the end of the construction, let x be the single point of $\bigcap_{n \in \mathbb{N}} J_n$, and set $Q = \bigcup_{n \in \mathbb{N}} Q_n$. Then $Q \subseteq E$

has no isolated points and $x + Q \subseteq K$. So $(E + x) \cap K \supseteq \overline{Q} + x$ is uncountable.

3. Proposition (ELEKES & STEPRANS 04, Theorem 2.1) Suppose that, in the construction of §1, the discarded intervals are always the right-hand ones of each group, so that $K = \{\sum_{n=3}^{\infty} \frac{k_n}{n!} : 0 \le k_n \le n-2\}$ for each $n \geq 3$ ¹. Let cf \mathcal{N} be the cofinality of the Lebesgue null ideal \mathcal{N} . Then there is a set $A \subseteq \mathbb{R}$, with cardinality at most $cf \mathcal{N}$, such that $A + K = \mathbb{R}$.

¹See Erdős & Kakutani 57.

proof (ELEKES & STEPRĀNS 04) Define $\alpha \in \mathbb{N}^{\mathbb{N}}$ by setting $\alpha(0) = 0$, $\alpha(n) = \lfloor \frac{n-1}{2} \rfloor$ for $n \geq 1$. As in FREMLIN 08, 522L, set

$$\mathcal{S}^{(\alpha)} = \{ S : S \subseteq \mathbb{N} \times \mathbb{N}, \, \#(S[\{n\}]) \le \alpha(n) \text{ for every } n \in \mathbb{N} \} \}$$

for $f \in \mathbb{N}^{\mathbb{N}}$ and $S \in \mathcal{S}^{(\alpha)}$, say that $f \subseteq^* S$ if $\{n : n \in \mathbb{N}, (n, f(n)) \notin S\}$ is finite. Say that $f \subseteq S$ if $(n, f(n)) \in S\}$ for every $n \in \mathbb{N}$. For $S \in \mathcal{S}^{(\alpha)}$ set $S' = \{(n, i) : (n, i) \in S, i \leq n-1\} \cup \{(0, 0)\}$ and

$$Q_S = \{\sum_{n=4}^{\infty} \frac{f(n)}{n!} : f \in \mathbb{N}^{\mathbb{N}}, f \subseteq S'\}.$$

Then there is an $x_S \in \mathbb{R}$ such that $x_S + Q_S \subseteq K$. **P** For each $n \geq 4$, $S'[\{n\}]$ is a subset of $\{0, \ldots, n-1\}$ with less than $\frac{n}{2}$ members, so there is a $j_n < n$ such that neither j_n nor $j_n - 1$ belongs to $S'[\{n\}]$; allow $j_n = 0$, but only if there is no alternative, in which case n is odd and $S'[\{n\}] = \{1, 3, \ldots, n-2\}$, so that $n - 1 \notin S'[\{n\}]$. Set $j'_n = n - 1 - j_n$. Now set $x_S = \sum_{n=4}^{\infty} \frac{j'_n}{n!}$. In this case, if $f \subseteq S', j'_n + f(n)$ is neither $j'_n + j_n = n - 1$ or $j'_n + j_n - 1 = n - 2$; at the same time, $j'_n + f(n) \leq 2n - 3$, because either $j_n > 0$ or f(n) < n - 1. So

$$x_S + \sum_{n=4}^{\infty} \frac{f(n)}{n!} = \sum_{n=4}^{\infty} \frac{j'_n + f(n)}{n!} = \sum_{n=3}^{\infty} \frac{k_n}{n!}$$

where, for each $n \ge 4$, $k_n < n$ is one of $j'_n + f(n)$, $j'_n + f(n) + 1$, $j'_n + f(n) - n$ or $j'_n + f(n) - n + 1$, while k_3 is either 0 or 1. But this means that $0 \le k_n \le n-2$ for every n, so that $x_S + \sum_{n=4}^{\infty} \frac{f(n)}{n!} \in K$. As f is arbitrary, we have a suitable x_S . **Q**

Observe next that, by 522L and 522M of FREMLIN 08, $(\mathbb{N}^{\mathbb{N}}, \subseteq^*, \mathcal{S}^{(\alpha)}) \cong_{\mathrm{GT}} (\mathcal{N}, \subseteq, \mathcal{N})$. There is therefore a set $\mathcal{T} \subseteq \mathcal{S}^{(\alpha)}$, of size cf \mathcal{N} , such that for every $f \in \mathbb{N}^{\mathbb{N}}$ there is a $T \in \mathcal{T}$ such that $f \subseteq^* \mathcal{T}$. We may suppose that $S \in \mathcal{T}$ whenever $T \in \mathcal{T}, S \in \mathcal{S}^{(\alpha)}$ and $S \triangle T$ is finite; in which case, we see that for every $f \in \mathbb{N}^{\mathbb{N}}$ there is a $T \in \mathcal{T}$ such that $f \subseteq T$. Set $A_0 = \{-x_T : T \in \mathcal{T}\}$. If $z \in [0, \frac{1}{6}]$, there is an $f \in \mathbb{N}^{\mathbb{N}}$ such that f(0) = f(1) = f(2) = f(3) = 0, f(n) < n for every $n \ge 4$, and $z = \sum_{n=4}^{\infty} \frac{f(n)}{n!}$. Let $T \in \mathcal{T}$ be such that $f \subseteq T$; then $z \in Q_T$ so $x_T + z \in K$ and $z \in A_0 + K$.

Thus $A_0 + K \supseteq [0, \frac{1}{6}]$; setting $A = A_0 + \mathbb{Q}$, $\#(A) \leq \operatorname{cf} \mathcal{N}$ and $A + K = \mathbb{R}$.

4. Translates of the Cantor set: Proposition The union of fewer than \mathfrak{c} translates of the Cantor set C always has inner measure 0.

proof (a) Let L be a compact set of positive Lebesgue measure. Write B for $\{3^n k : n, k \in \mathbb{Z}\}$. For $n \geq 1$ and j < 9 let D_{nj} be the closed set of those $z \in \mathbb{R}$ such that the fractional part of z has a j in the *n*th place of (one of) its 9-ary expansions. (Take an expansion of a negative number to be of the form $m + 0 \cdot d_1 d_2 \ldots$ where $m \in \mathbb{Z}$ and $d_1, d_2, \ldots < 9$.) Note that if $t \in \mathbb{R}$ and $n \geq 1$ then C + t does not meet every D_{nj} . **P** Let J be a component of $[0, 1] \setminus C$ of length $3 \cdot 9^{-n}$, then $J + 9 \cdot 9^{-n}k$ does not meet C for any $k \in \mathbb{Z}$. Now there must be a $j \leq 8$ such that J + t covers one of the intervals comprising D_{nj} , in which case $D_{nj} \subseteq \bigcup_{k \in \mathbb{Z}} (J + t + 9 \cdot 9^{-n}k)$ is disjoint from C + t. **Q**

Choose n_i for $i \in \mathbb{N}$ and $y(\sigma)$, for $\sigma \in 9^i = \prod_{j < i} 9$, as follows. $y(\emptyset)$ is to be any density point of $L \setminus B$. Given that $y(\sigma)$ is a density point of $L \setminus B$ for every $\sigma \in 9^i$, let $n_i \ge 1$ be such that $n_i > n_j$ for every j < iand, setting $A_{\sigma} = [y(\sigma), y(\sigma) + 10 \cdot 9^{-n_i}]$ for $\sigma \in 9^i$, the 9-ary expansions of any $y \in A_{\sigma}$ agree with those of $y(\sigma)$ down to the n_j th place for every j < i, and moreover $\mu(A_{\sigma} \setminus L) < \frac{1}{90}\mu A_{\sigma}$. Now A_{σ} must include an interval $I_{\sigma j}$ of $D_{n_i j}$ for each j < 9, and $\mu(I_{\sigma j} \cap L) > 0$, so we can find a density point $y_{\sigma^- < j>}$ of $L \setminus B$ contained in $I_{\sigma j}$ for each j. Continue. Observe that the effect of this construction is that if $i < \#(\sigma)$ then $y_{\sigma} \in D_{n_i,\sigma(i)}$.

(b) (Compare GRUENHAGE & LEVY 02) There is a family \mathcal{R} of subsets of \mathbb{N} , of cardinal \mathfrak{c} , which is independent in the sense that $\bigcap_{i\leq n} R_i \setminus \bigcup_{j\leq m} S_j$ is infinite whenever $R_0, \ldots, R_n, S_0, \ldots, S_m$ are distinct elements of \mathcal{R} . **P** By FREMLIN 03, 491P, we can actually find such a family for which the asymptotic density of $\bigcap_{i\leq n} R_i \setminus \bigcup_{j\leq m} S_j$ is 2^{-m-n-2} whenever $R_0, \ldots, R_n, S_0, \ldots, S_m$ are distinct elements of \mathcal{R} . **Q**

Index \mathcal{R} as $\langle R_{j\xi} \rangle_{j<8,\xi<\mathfrak{c}}$. For $\xi < \mathfrak{c}$, define $x_{\xi} \in 9^{\mathbb{N}}$ by setting $x_{\xi}(i) = \#(\{j : i \in R_{j\xi}\})$ for each i. Now set $z_{\xi} = \lim_{n \to \infty} y(x_{\xi} \mid n)$ for each ξ . Then $z_{\xi} \in L \cap D_{n_i, x_{\xi}(i)}$ for every $\xi < \mathfrak{c}$, $i \in \mathbb{N}$.

If $\xi_0, \ldots, \xi_8 < \mathfrak{c}$ are distinct, then there is an $i \in \mathbb{N}$ such that, for j < 8 and m < 9, $i \in R_{j\xi_m} \iff j < m$; so that $x_{\xi_m}(i) = m$ for each m, and $z_{\xi_m} \in D_{n_im}$. Thus if $t \in \mathbb{R}$ the translate C + t cannot contain all the z_{ξ_m} . Turning this round, we see that $\{\xi : z_{\xi} \in C + t\}$ has at most 8 members, for every $t \in \mathbb{R}$. So if we have any set $Q \subseteq \mathbb{R}$ of cardinal less than \mathfrak{c} , there is a $\xi < \mathfrak{c}$ such that $z_{\xi} \in L \setminus (Q + C)$.

As L is arbitrary, the result is proved.

Remark Gruenhage's result that \mathbb{R} is not covered by fewer than \mathfrak{c} translates of C has been strengthened by DARJI & KELETI 03. I do not know whether their methods can be applied to the refinement here. See §7 below for a case essentially identical to the one of this proposition.

5. Corollary There is a set $A \subseteq \mathbb{R}$ such that A has full outer measure for μ but $\#(C \cap (A+t)) < \mathfrak{c}$ for every $t \in \mathbb{R}$. If the uniformity non \mathcal{N} of Lebesgue measure is \mathfrak{c} , then $\nu(C \cap (A+t)) = 0$ for every $t \in \mathbb{R}$, where ν is the usual measure on the Cantor set C.

proof Enumerate \mathbb{R} as $\langle t_{\xi} \rangle_{\xi < \mathfrak{c}}$ and the compact sets of non-zero Lebesgue measure as $\langle L_{\xi} \rangle_{\xi < \mathfrak{c}}$. By Proposition 4, we can choose $a_{\xi} \in L_{\xi} \setminus \bigcup_{\eta < \xi} C + t_{\eta}$ for each ξ ; now set $A = \{a_{\xi} : \xi < \mathfrak{c}\}$.

6. Proposition (M.Elekes) If the covering number and cofinality of the Lebesgue null ideal are equal, there is a set $A \subseteq \mathbb{R}$ such that A has full outer measure for μ but $\#(C \cap (A + t)) \leq 8$ for every $t \in \mathbb{R}$.

proof (a) Take the sets D_{nj} , for $n \ge 1$ and $j \le 8$, as in the proof of §4. Set $\kappa = cf\mathcal{N} = \operatorname{cov}\mathcal{N}$, where \mathcal{N} is the Lebesgue null ideal. Let $\langle E_{\xi} \rangle_{\xi < \kappa}$ enumerate a coinitial subset of $\Sigma \setminus \mathcal{N}$, where Σ is the σ -algebra of Lebesgue measurable sets. (Recall that $\operatorname{ci}(\Sigma \setminus \mathcal{N}) = \operatorname{cf}\mathcal{N}$, see FREMLIN 08, 524Pb.) Then there is a family $\langle x_{\xi} \rangle_{\xi < \kappa}$ such that

 $x_{\xi} \in E_{\xi}$ for every $\xi < \kappa$, if $\eta_0 < \eta_1 < \ldots < \eta_k < \kappa$ and $j_0, \ldots, j_k \le 8$ then there are infinitely many $n \ge 1$ such that $x_{\eta_i} \in D_{nj_i}$ for every $i \le k$.

P Choose x_{ξ} inductively; the inductive hypothesis will of course be that

if $\eta_0 < \eta_1 < \ldots < \eta_k < \xi$ and $j_0, \ldots, j_k \leq 8$ then there are infinitely many $n \geq 1$ such that $x_{\eta_i} \in D_{nj_i}$ for every $i \leq k$.

Start by taking $x_0 \in E_0$ such that $\{n : n \ge 1, x_0 \in D_{nj}\}$ is infinite for every $j \le 8$; this is possible because $\langle D_{nj} \cap [0,1] \rangle_{n \in \mathbb{N}}$ is stochastically independent for every j, so that for each j the set $\{x : x \in D_{nj} \text{ for} infinitely many n\}$ is conegligible. When we come to choose ξ , for $\xi > 0$, then for each pair $\boldsymbol{\eta} = (\eta_0, \ldots, \eta_k)$, $\boldsymbol{j} = (j_0, \ldots, j_k)$, where $k \in \mathbb{N}, \eta_0 < \ldots < \eta_k < \xi$ and $j_0, \ldots, j_k \le 8$, set

$$I_{\boldsymbol{\eta},\boldsymbol{j}} = \{n : n \ge 1, x_{\eta_i} \in D_{nj_i} \text{ for every } i \le k\}.$$

For any $j \leq 8$,

$$F_{\boldsymbol{\eta},\boldsymbol{j},\boldsymbol{j}} = \{x : \{n : n \in I_{\boldsymbol{\eta},\boldsymbol{j}}, x \in D_{nj}\} \text{ is infinite}\}$$

is conegligible. Because $\#(\xi) < \operatorname{cov} \mathcal{N}$, we can therefore find an $x_{\xi} \in E_{\xi}$ such that $x_{\xi} \in F_{\eta,j,j}$ whenever $\eta_0 < \ldots < \eta_k < \xi$ and $j_0, \ldots, j_k, j \leq 8$ (by FREMLIN 08, 524Pc, or otherwise, E_{ξ} cannot be covered by fewer than $\operatorname{cov} \mathcal{N}$ negligible sets), and the induction will proceed. **Q**

(b) Set $A = \{x_{\xi} : \xi < \kappa\}$. Because A meets every E_{ξ} , A has full outer measure. If $t \in \mathbb{R}$ and $\eta_0 < \ldots < \eta_8 < \kappa$, then there is an $n \in \mathbb{N}$ such that $x_{\eta_i} \in D_{ni}$ for every $i \leq 8$; but there is an $i \leq 8$ such that C + t does not meet D_{ni} (see part (a) of the proof of §4), so $x_{\eta_i} \notin C + t$. This shows that $\#(A \cap (C+t)) \leq 8$ for every $t \in \mathbb{R}$; of course it follows that $\#(C \cap (A+t)) \leq 8$ for every t.

7. Proposition (a) Set $K = \{\sum_{i=0}^{\infty} 5^{-i-1} \epsilon_i : \epsilon_i \in \{0, 1, 3, 4\}$ for every $i \in \mathbb{N}\}$, the 'middle fifth Cantor set'. Then the union of fewer than \mathfrak{c} translates of K always has inner Lebesgue measure 0.

(b) Set $K' = \{\sum_{i=0}^{\infty} 5^{-i-1} \epsilon_i : \epsilon_i \in \{0, 4\}$ for every $i \in \mathbb{N}\}$, the 'middle three-fifths Cantor set'. Then there is a set $A \subseteq \mathbb{R}$, of full outer Lebesgue measure, such that K' meets every translate of A in at most one point.

(c) (M.Elekes) There are a Radon probability measure $\tilde{\nu}$ on \mathbb{R} and a set A of full outer Lebesgue measure such that $\nu(A + t) = 0$ for every $t \in \mathbb{R}$.

proof (a) A triffing variation on the method used in §4 deals with this case also. Let L be a compact set of positive Lebesgue measure. Write B for $\{5^nk : n, k \in \mathbb{Z}\}$. For $n \ge 1$ and j < 25 let D_{nj} be the closed set of those $z \in \mathbb{R}$ such that the fractional part of z has a j in the nth place of (one of) its 25-ary expansions. Note that if $t \in \mathbb{R}$ and $n \ge 1$ then K + t does not meet every D_{nj} . Choose n_i for $i \in \mathbb{N}$ and $y(\sigma)$, for $\sigma \in 25^i$, as follows. $y(\emptyset)$ is to be any density point of $L \setminus B$. Given that $y(\sigma)$ is a density point of $L \setminus B$ for every $\sigma \in 25^i$, let $n_i \ge 1$ be such that $n_i > n_j$ for every j < i and, setting $A_{\sigma} = [y(\sigma), y(\sigma) + 26 \cdot 25^{-n_i}]$ for $\sigma \in 25^i$, the 9-ary expansions of any $y \in A_{\sigma}$ agree with those of $y(\sigma)$ down to the n_j th place for every j < i, and moreover $\mu(A_{\sigma} \setminus L) < \frac{1}{650}\mu A_{\sigma}$, for every $\sigma \in 25^i$. Now, for each $\sigma \in 25^i$, A_{σ} must include an interval $I_{\sigma j}$ of $D_{n_i j}$ for each j < 25, and $\mu(I_{\sigma j} \cap L) > 0$, so we can find a density point $y_{\sigma^- < j^>}$ of $L \setminus B$ contained in $I_{\sigma j}$ for each j. Continue. Observe that the effect of this construction is that if $i < \#(\sigma)$ then $y_{\sigma} \in D_{n_i,\sigma(i)}$.

Again take a fully independent family \mathcal{R} of subsets of \mathbb{N} of cardinal \mathfrak{c} , and index it as $\langle R_{j\xi} \rangle_{j<24,\xi<\mathfrak{c}}$. For $\xi < \mathfrak{c}$, define $x_{\xi} \in 25^{\mathbb{N}}$ by setting $x_{\xi}(i) = \#(\{j : i \in R_{j\xi}\})$ for each i. Now set $z_{\xi} = \lim_{n \to \infty} y(x_{\xi} \upharpoonright n)$ for each ξ . Then $z_{\xi} \in L \cap D_{n_i, x_{\xi}(i)}$ for every $\xi < \mathfrak{c}$, $i \in \mathbb{N}$.

If $\xi_0, \ldots, \xi_{24} < \mathfrak{c}$ are distinct, then there is an $i \in \mathbb{N}$ such that, for j < 24, m < 25, $i \in R_{j\xi_m} \iff j < m$; so that $x_{\xi_m}(i) = m$ for each m, and $z_{\xi_m} \in D_{n_im}$. Thus if $t \in \mathbb{R}$ the translate K + t cannot contain all the z_{ξ_m} , and $\{\xi : z_{\xi} \in K + t\}$ has at most 24 members, for every $t \in \mathbb{R}$. So if we have any set $Q \subseteq \mathbb{R}$ of cardinal less than \mathfrak{c} , there is a $\xi < \mathfrak{c}$ such that $z_{\xi} \in L \setminus (Q + K)$, and Q + K cannot cover L. As L is arbitrary, the result is proved.

(b) The point is that $K' - K' \subseteq K + (K - 1)$. **P** Setting $F_{nj} = \bigcup_{k \in \mathbb{N}} 5^{-n-1} [j + 5k, j + 5k + 1]$ for $n \in \mathbb{N}$, we have $K' = [0,1] \cap \bigcap_{n \in \mathbb{N}} (F_{n0} \cup F_{n4})$, while $K = [0,1] \cap \bigcap_{n \in \mathbb{N}} (F_{n0} \cup F_{n1} \cup F_{n3} \cup F_{n4})$ and $K - 1 = [-1,0] \cap \bigcap_{n \in \mathbb{N}} (F_{n0} \cup F_{n1} \cup F_{n3} \cup F_{n4})$. Since

$$F_{n0} - F_{n0} \subseteq F_{n0} \cup F_{n4},$$

$$F_{n0} - F_{n4} \subseteq F_{n0} \cup F_{n1},$$

$$F_{n4} - F_{n0} \subseteq F_{n3} \cup F_{n4},$$

$$F_{n4} - F_{n4} \subseteq F_{n0} \cup F_{n4}$$

for every n,

$$K' - K' \subseteq [-1,1] \cap \bigcap_{n \in \mathbb{N}} (F_{n0} \cup F_{n1} \cup F_{n3} \cup F_{n4}) \subseteq K \cup (K-1).$$
 Q

Now let $\langle L_{\xi} \rangle_{\xi < \mathfrak{c}}$ run over the non-negligible compact subsets of \mathbb{R} . Choose $\langle x_{\xi} \rangle_{\xi < \mathfrak{c}}$ such that

 $x_{\xi} \in L_{\xi} \setminus \bigcup_{\eta < \xi} ((K + x_{\eta}) \cup (K + x_{\eta} - 1))$

for every $\xi < \mathfrak{c}$; this is possible by (a). Then $x_{\xi} \notin (K' - K') + x_{\eta}$, that is, $x_{\xi} - K'$ and $x_{\eta} - K'$ are disjoint, whenever $\eta < \xi$; turning this round, no translate of K' can contain x_{ξ} for more than one ξ . So we can set $A = \{x_{\xi} : \xi < \mathfrak{c}\}.$

(c) We have only to take the set A of (b) and the image $\tilde{\nu}$ of the usual measure on $\{0,1\}^{\mathbb{N}}$ under the function $z \mapsto \sum_{n=0}^{\infty} 4 \cdot 5^{-n-1} z(n)$.

8 Remark Recall that in any Polish group X, a set D is said to be **Haar null** if there are a universally measurable set $E \supseteq D$ and a non-zero Radon measure ν on X such that $\nu(xEy) = 0$ for all $x, y \in X$ (FREMLIN 03, 444Ye). If X is locally compact, then the Haar null sets are just those which are neglible for the Haar measures on X. Now the set A of §7(b)-(c) above is such that $\tilde{\nu}(x + A + y) = 0$ for all $x, y \in \mathbb{R}$, but is not Haar null. If either non $\mathcal{N} = \mathfrak{c}$ or $\operatorname{cov} \mathcal{N} = \operatorname{cf} \mathcal{N}$, as in §§5-6, then we get an example witnessed by the usual measure on the Cantor set.

Acknowledgments Conversations with M.Elekes; hospitality of the Fields Institute at the University of Toronto.

References

Ciesielski K. & Pawlikowsi J. [03] 'Covering Property Axiom CPA_{cube} and its consequences', Fund. Math. 176 (2003) 63-75.

Darji U.B. & Keleti T. [03] 'Covering \mathbb{R} with translates of a compact set', Proc. Amer. Math. Soc. 131 (2003) 2593-2596 (http://www.cs.elte.hu/analysis/keleti/papers/translates.ps).

Elekes M. & Steprāns J. [04] 'Less than 2^{\u03c6} many translates of a compact nullset may cover the real line', Fund. Math. 181 (2004) 89-96 (http://www.renyi.hu/~emarci/translates2.ps).

Erdős P. & Kakutani S. [57] 'On a perfect set'. Colloq. Math. 4 (1957) 195-196.
Fremlin D.H. [03] Measure Theory, Vol. 4: Topological Measure Spaces. Torres Fremlin, 2003.
Fremlin D.H. [08] Measure Theory, Vol. 5: Set-theoretic measure theory. Torres Fremlin, 2008.
Gruenhage G. & Levy R. [02] 'Covering ^ωω by special Cantor sets', Comment. Math. Univ. Carolinae 43

(2002) 497-509 (http://web6.duc.auburn.edu/~gruengf/papers/levrev02.pdf).