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Fair rents

D.H.Fremlin

University of Essex, Colchester, England

The problem Seven students are sharing a house with seven bedrooms. The total rent is fixed, and they
have to agree on (i) the rent for each bedroom (ii) an allocation of the rooms. Is there a division of the rent,
and an allocation of the rooms, such that every student is satisfied with what she has, in the sense that (at
the given prices) she doesn’t want to move to one of the other rooms?

Subject to appropriate conditions, the answer is ‘yes’.

The model Suppose we have n bedrooms, where n ≥ 1, and n students. The set of possible rent
divisions can be represented as a set of vectors p = (p1, . . . , pn) where each pj is greater than or equal to
0, and p1 + . . . + pn = 1; pj is the proportion of the total rent assigned to room j. The set of possible
room allocations can be represented by the set Sn of permutations of {1, . . . , n}; ρ ∈ Sn corresponds to the
allocation in which each student i gets the room ρ(i). For 1 ≤ i, j ≤ n, let Cij be the set of prices p under
which student i would find room j acceptable, in the sense that no other room would be positively preferred
at those prices.

The theorem Let P be the set of all real n-vectors p such that p1 + . . . + pn = 1 and pj ≥ 0 for every
j. For 1 ≤ i, j ≤ n let Cij be a subset of P . Suppose that

(i) Ci1 ∪ . . . ∪ Cin = P for every i;
(ii) every Cij is closed.

Then there are p ∈ P and ρ ∈ Sn such that

(†) p ∈ Ci,ρ(i) for every i such that pρ(i) > 0.

Interpretation of the clauses (i), (ii) and (†) (i) says just that for any student i, and for any price
vector p, there is at least one acceptable room; the student won’t abandon the group and go to live elsewhere
if given her choice of room at those prices.

(ii) says that if you have a price vector p which is not in Cij , so that student i would definitely resent
being given room j at that price, and you vary p to a nearly identical vector p′, then she will still reject
the room at the price p′. As the price vector moves around P , we expect the student’s preferred rooms to
change; the assumption (ii) is that at the switch points she will accept any of the rooms which she would
have accepted at prices close to the switch point.

As for the conclusion, (†) says that anyone who doesn’t like the result can walk out without the others
having to pay extra. If, for instance, one of the rooms has a dead rat under the floor, there may be no way
of making the occupant happy; but we can ensure that at least the paying residents are content with what
they’ve got.

A scrap of notation It will save space if I write

C ′

ij = Cij ∪ {p : p ∈ P , pj = 0}
for i, j ≤ n. Note that C ′

ij is closed, because Cij is. Also (†) can now be re-phrased as ‘p ∈ C ′

i,ρ(i) for every

i’.

Strategy of the proof The proof is in two main stages. The first, algebraic-geometric, step is to show
(using assumption (i) only) that, for any δ > 0, we can find a permutation ρ ∈ Sn and price vectors
p(1), . . . ,p(n), all within δ of each other, such that p(i) ∈ C ′

i,ρ(i) for every i. Then a limiting argument,

using assumption (ii), will show that we can find a fixed ρ and a single vector p such that p ∈ C ′

i,ρ(i) for

every i.

The distance between two price vectors I said above that I should be looking for price vectors
‘within δ of each other’. This doesn’t make sense without a notion of distance between members of P . Lots
of formulae can be used here, and (for interesting reasons) it won’t matter which we choose; but the pictures
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will be more helpful, and the calculations easier, if I say that the distance d(p,q) between two price vectors

p and q will be
√

∑n
i=1(pi − qi)2, matching ordinary Euclidean distance in two or three dimensions.

Step 1: part A The set P can be thought of as an n − 1-dimensional simplex with n vertices. The
vertices are the n points at which we have pj = 1 for some j, that is, all the rent is loaded onto one of the
rooms; opposite each vertex is a facet on which pj = 0; the facet is itself an n − 2-dimensional simplex.
In one dimension, that is, when n = 2, we have a line segment; in two dimensions (n = 3), a triangle;
in three dimensions (n = 4) a tetrahedron. Our first task is to subdivide P into smaller simplexes, all
of diameter at most δ, and simultaneously to assign each vertex of the subdivision to a student in such a
way that every small simplex has every vertex assigned to a different student. (For the moment we are
simply ignoring the students’ preferences. Those will turn up in part B.) We can do this by the following
procedure. Start with the subdivision K0 consisting of the simplex P alone, and assign each of the vertices
of P to a different student. Next, given a subdivision Kr in which every simplex has all its vertices assigned
to different students, take (one of) the longest edge(s) in the complex and divide it in three equal parts.
Suppose the edge runs from v to w; let x and y be the intermediate points, so that v, x, y and w are in
order along the edge. Assign the new vertex x to the same student who has vertex w, and the new vertex y
to the same student who has vertex v. Take each simplex Q of the subdivision Kr which has v and w for two
of its vertices and cut it into three smaller simplexes Q′, Q′′ and Q′′′; if Q has vertices v,w,u(1), . . . ,u(n−2),
then

Q′ will have vertices v,x,u(1), . . . ,u(n−2),

Q′′ will have vertices x,y,u(1), . . . ,u(n−2),

Q′′′ will have vertices y,w,u(1), . . . ,u(n−2).

In this way we obtain a subdivision Kr+1 in which every student still owns just one vertex of each simplex.
So long as we always split the longest edge at each stage, we can be sure that every edge will be split, and
for large enough r all the simplexes of Kr will be very small1.

I give diagrams of a couple of stages in the process if n = 3, so that P is an equilateral triangle. I have
decorated the vertices to indicate their owners.

Step 1: part B Having got our subdivision Kr and an assignment of each vertex v of Kr to a student

f(v) where 1 ≤ f(v) ≤ n, choose a room g(v) for each vertex, as follows. If v is in the interior of P , that
is, if vj > 0 for every j, then take g(v) such that v ∈ Cf(v),g(v); this is possible by condition (i). Otherwise,

there must be at least one j ≤ n such that vj = 0 but vj+ > 0, where j+ = j + 1 if j < n and j+ = 1 if
j = n; take such a j for g(v). Observe that this ensures that v ∈ C ′

f(v),g(v) for every v. But it also ensures

something else:

(‡) if v∗ is a vertex of P , and v is a vertex of Kr lying in the facet of P opposite v∗, then
g(v) 6= g(v∗).

(For there is a j such that v∗j = 1, and in this case g(v∗) = j−, where j− = j − 1 if j > 1, n if j = 1; while

vj = 0 so g(v) 6= j−.)

1see Appendix 1
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At this point I need to call on a remarkable fact which is the key to the whole proof.

Sperner’s Lemma (Sperner 28) Let P be an n − 1-dimensional simplex, where n ≥ 2, and K a
subdivision of P ; write V for the set of vertices of K. Suppose we have a function g : V → {1, . . . , n} such
that

(‡) whenever v∗ is a vertex of P , and v ∈ V lies in the facet of P opposite v∗, then g(v) 6= g(v∗).

Let L be the set of simplexes K of K such that g takes a different value on each vertex of K. Then L has
an odd number of members.

proof Induce on n.

base step If n = 2, so that P is just a line segment, then K must be just a dissection of P into
intervals, and the vertices of K are points spread along P . Now we are told that g takes just the values 1
and 2 and that it takes different values at the two ends, as

So g must switch values an odd number of times (five, in the example here) as we move from one end to the
other; and each switch corresponds to a member of L.

inductive step Suppose that we know that the result is true for n, and that we are given an n-
dimensional simplex P , with a subdivision K and a function from the vertices of K to {1, . . . , n + 1}
satisfying the condition (‡). Then whenever we have two vertices of P , each lies in the facet opposite the
other, so g takes a different value on each vertex, and (because P has n + 1 vertices) g takes every value
just once. Let v∗ be the vertex of P such that g(v∗) = n + 1, and let P ′ be the facet of P opposite v∗.
Then K traces out a subdivision K′ of P ′ (the simplexes of K′ are those facets of the simplexes of K which
lie in P ′). The vertices of K′ are just the vertices of K which lie in P ′, and for every such vertex v we have
g(v) 6= n + 1, that is, g(v) ≤ n. So the restriction of g to the set V ′ of vertices of K′ is a function from
V ′ to {1, . . . , n}. Moreover, if v is a vertex of P ′ and v′ ∈ V ′ lies in the facet of P ′ opposite v, then v is
a vertex of P and v ∈ V lies in the facet of P opposite v, so g(v′) 6= g(v); thus g↾V ′ satisfies (‡). By the
inductive hypothesis, the set L′ of simplexes in K′ such that g takes a different value on each vertex, has an
odd number of members.

Now turn back to the subdivision K. Say that a facet of a simplex in K is a door if g takes all the values
1, . . . , n on the n vertices of that facet. Consider the set R of pairs (K,K ′) where K is a simplex of K, K ′

is a facet of K and K ′ is a door. Given a door K ′,

—– if it lies in the interior of P there are just two simplexes K ∈ K such that (K,K ′) ∈ R,
one on each side of K ′;

—– if it lies in the boundary of P then it is a facet of just one simplex of K, and belongs to
L′. PPP For every vertex v of P ′, g(v) ≤ n is equal to g(v′) for some vertex v′ of K ′, so v′ cannot
be in the facet of P opposite v. Thus the facet of P including K ′ must be P ′, and K ′ ∈ L′. QQQ

What this shows is that #(R) ≡ #(L′) mod 2, and #(R) is odd. On the other hand, looking at the
relation R from the other side, take a simplex K in K. Then

—– if g takes all the values 1, . . . , n+1 on the vertices of K, that is, K ∈ L, then exactly one
facet of K is a door;

—– if g takes the values 1, . . . , n on the vertices of K, but not the value n + 1, then exactly
two facets of K are doors (being the facets of K opposite the two vertices of K on which g takes
the same value);

—– in all other cases, K has no doors.

So #(R) ≡ #(L) mod 2 and #(L) is odd. Thus the induction proceeds.

Step 1: part C Returning to the main argument, we see that the function g constructed in part B
satisfies the conditions of Sperner’s Lemma. So there must be an odd number of simplexes in Kr on whose
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vertices g takes every value; in particular, there is at least one; call it K. But now observe that (by the
construction in part A) f also takes every value on the set VK vertices of K. So f↾VK and g↾VK and
ρ = g ◦(f↾VK)−1 are bijections; and if i ≤ n and p(i) ∈ VK is such that f(p(i)) = i, then p(i) ∈ C ′

i,ρ(i). Thus

we have price vectors p(1), . . . ,p(n) as called for, and Step 1 is complete.

Step 2 We can perform Step 1 for any δ > 0. In particular, suppose we have done it for δ = 2−k for each
k, obtaining permutations ρk and price vectors p(k,i) such that

p(k,i) ∈ C ′

i,ρk(i)
, d(p(k,i),p(k,j)) ≤ 2−k

whenever k ∈ N and 1 ≤ i ≤ n. By the Bolzano-Weierstrass theorem2 we can find a strictly increasing
sequence 〈kl〉l∈N such that

liml→∞ p
(kl,i)
j = p

(i)
j for all i, j ≤ n,

liml→∞ ρkl
(i) = ρ(i) for all i ≤ n.

Because

|p(kl,i)
j − p

(kl,i
′)

j | ≤ d(p(kl,i),p(kl,i
′)) ≤ 2−kl ≤ 2−l

for all i, i′, j and l, p
(i)
j = p

(i′)
j = pj say for all i, i′ and j, and we have a single limit price vector p. Because

every ρkl
(i) is an integer, so is every ρ(i), and there is an l0 such that ρkl

(i) = ρ(i) whenever l ≥ l0 and
i ≤ n; that is, ρ = ρkl

∈ Sn for every l ≥ l0. This means that

p(kl,i) ∈ C ′

i,ρl(i)
= C ′

i,ρ(i)

for every l ≥ l0 and i ≤ n. But now recall hypothesis (ii) of the theorem: every Cij , and therefore every

C ′

ij , is closed. So p = liml→∞ p(kl,i) ∈ C ′

i,ρ(i) for each i, and p and ρ satisfy (†).

Practicalities Unfortunately, while the theorem guarantees that a solution to the original problem exists,
the proof does not give us a clear idea of how to find it. Step 1 is reasonably ‘constructive’; that is, given
δ > 0, and provided that the students can decide what they want at any particular price without dithering,
we can follow doors to find appropriate simplexes by asking at most one question for each vertex of Kr, and
generally much fewer. (We start on the edge of P joining the vertices at which p2 = 1 and p3 = 1, so that
the values of g are 1 and 2, and look for a pair of adjacent vertices of Kr on which g changes. This now
gives us a door at dimension 1 from which we can look for a triangle in the face {p : pj = 0 unless j = 2, 3
or 4} on which g takes all three values 1, 2 and 3; this is a door at dimension 2 from which we look for a
tetrahedron which will be a door at dimension 3, and so on.) The problem is that while this (together with
the calculations in Appendix 1) gives us a way to specify in advance how much data we shall need in order to
get an approximate solution p(1), . . . ,p(n) of neighbouring vectors with p(i) ∈ C ′

i,ρ(i) for every i, it doesn’t

tell us anything about how the successive approximate solutions will be spread around P , and leaves open
the possibility that the approximation we get for δ = 10−6 is half way across P from any approximation
valid for δ = 10−7. So if your friends want to get a computer to allocate rooms for them, they had better
agree in advance that they don’t care about odd pennies, and that close enough will be good enough. On
the other hand, the theorem does assure you that if after an evening of wrangling you seem nowhere near
a solution acceptable to everyone, it’s either because someone is being obstructive (by refusing to name a
preferred room at some price), or because someone is jumping at trifles (by refusing to accept a limiting
solution when they accepted the approximations), or because you’re looking in the wrong part of P .

Something you might have noticed The argument here does not suppose that people are consistent
in their choices. It allows someone to say, for instance, that at price vector p only room j will do, but that
at price vector q, with qj < pj and qk > pk, only room k will do. Ordinarily this would seem very odd. But
of course this is because we are talking of monetary rents, and (by definition) money is what you can’t have
too much of. If payments were in cabbages, you might feel that under certain circumstances you would be
glad to have the landlord take some more.

For other ‘envy-free allocation’ problems see Su 99, from which most of the ideas above are cribbed.

2see Appendix 2.
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Appendix 1: the subdivision process in step 1, part A I said that ‘for large enough r all the
simplexes of Kr will be very small’. Perhaps a little more explanation is called for. The problem is that
when we move from Kr to Kr+1, the original edge (v,w) is divided into definitely shorter pieces, but we
simultaneously introduce many new edges (u,x) and (u,y) without looking at their lengths, and we had
better make sure that they too are usefully shorter than (v,w). In fact, if the edge (v,w) has length c, that

is, d(v,w) = c, then the new edges all have length at most c
√

7
9 . PPP Of course

d(v,x) = d(x,y) = d(y,w) =
c

3
≤ c

√

7
9 .

As for d(u,x), consider the triangle (u,v,w); set a = d(u,v), b = d(u,w), B = ûvw and s = d(u,x). Then
the cos rule tells us that

s2 = a2 +
c
2

9
− 2ac

3
cosB, b2 = a2 + c2 − 2ac cosB.

Eliminating cosB, we get

s2 =
2

3
a2 +

1

3
b2 − 2

9
c2.

But a, b ≤ c, because c is (one of) the longest edge(s) of Kr, so s2 ≤ 7
9c

2 and s ≤ c
√

7
9 . Similarly,

d(u,y) ≤ c
√

7
9 . QQQ

For each r, let cr be the length of the longest edge in Kr, so that 〈cr〉r∈N is a non-increasing sequence

and has a limit c∗ say. Then c∗ ≤ cr

√

7
9 for every r. PPP Let m be the number of edges of Kr of length

greater than cr

√

7
9 . Then each of the moves Kr → Kr+1 → Kr+2 → . . . will subdivide one of these edges

until they have all gone (because all the new edges introduced will have length at most cr

√

7
9 ). So after m

moves, when we have reached Kr+m, they will all have disappeared. Now c∗ ≤ cr+m ≤ cr

√

7
9 . QQQ As r is

arbitrary, c∗ ≤ c∗
√

7
9 and c∗ = 0.

Remarks The following questions arise in this context.
1. The set P of price vectors, as described above, is a regular n− 1-dimensional simplex; all its edges are

the same length
√
2. The simplexes in Kr come in many different shapes; I believe that, as r increases, we

get new shapes at each level (except, of course, in the trivial cases n = 1 and n = 2). What restrictions are
there on the shapes of the simplexes which appear? It is easy to see that for any simplex K in any Kr, the
ratio of the longest side to the shortest side is at most 3. But is there (for given n) a non-zero lower bound
to the angles of the triangles which appear?

2. Even if the process described here gives indefinitely thin triangles as the subdivision proceeds, is there
some alternative way of subdividing a simplex into small simplexes for which thin triangles do not appear,
but there is still a way to assign ownership of the vertices so that every small simplex is shared between all
n owners? Note that if n = 3 this is easy, using equilateral triangles throughout, starting with
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But this method doesn’t work for a tetrahedron.
3. More advanced still, we have the following. Suppose we start with an equilateral triangle and use

the trisection method to generate subdivisions Kr as above. For large r, we have an abundant collection
of triangles, and we can ask for the distribution of their shapes. Here the ‘shape’ of a triangle is most
naturally described by a triple (θ, φ, ψ) where θ ≥ φ ≥ ψ ≥ 0 and θ + φ + ψ = π; the set of shapes is
itself a triangle T in three-dimensional space. [Alternatively, we can describe it by a pair (a, b) such that
0 ≤ b ≤ a ≤ 1 ≤ a+ b, taking the side lengths of the triangle to be 1 ≥ a ≥ b. This is easier to generalize to
higher dimensions.] I conjecture that there is a well-defined probability measure ν on T which is the limit,
as r → ∞, for the narrow topology, of the ‘empirical’ measures νr, where νr gives a mass to each point in
T equal to the proportion of triangles in Kr with that shape.

Appendix 2: the Bolzano-Weierstrass theorem This is the following:

If 〈x(k)〉k∈N is a sequence in m-dimensional Euclidean space which is bounded in the sense that

there is someM such that |x(k)i | ≤M for every k ∈ N and every i ≤ m, then it has a subsequence

〈x(kl)〉l∈N which is convergent in the sense that xi = liml→∞ x
(kl)
i is defined for every i ≤ m.

The standard proof is by induction on m; see almost any first course in analysis except my own. In the

application here (Step 2 above), we need all the p
(kl,i)
j and all the ρkl

(i) to converge, so we are working with

m = n2 + n.
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