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Four problems in measure theory

D.H.Fremlin

University of Essex, Colchester, England

1 The control measure problem

1A The problem Let X be a set and Σ an algebra of subsets of X. Let ν : Σ → [0,∞[ be a function
such that

(i) ν∅ = 0
(ii) νE ≤ νF whenever E, F ∈ Σ and E ⊆ F
(iii) ν(E ∪ F ) ≤ νE + νF whenever E, F ∈ Σ

(ν is a submeasure)
(iv) limn→∞ νEn = 0 whenever 〈En〉n∈N is a disjoint sequence in Σ

(ν is exhaustive). Does there necessarily exist a functional µ : Σ → [0,∞[ which is additive, that is,
µ(E ∪ F ) = µE + µF whenever E, F ∈ Σ are disjoint, and such that ν is absolutely continuous with
respect to µ, that is, for every ε > 0 there is a δ > 0 such that νE ≤ ε whenever µE ≤ δ?

This was for many years one of the classic outstanding problems of measure theory. It was important
because it is equivalent to a large number of questions in apparently different topics. I will present one of
these in 1I-1K below. Here I will try to give one major theorem, due to Kalton & Roberts 83, and some
examples. The (negative, as expected) solution may be found in Talagrand 08, my own note Fremlin
n08, or in the web version of Fremlin 02, §394.

1B Definitions We shall need the following ideas.

(a) A submeasure ν on an algebra Σ is uniformly exhaustive if for every ε > 0 there is an n ∈ N such
that mini≤n νEi ≤ ε whenever E0, . . . , En ∈ Σ are disjoint.

(b) If A is a family of sets, its intersection number is the greatest number δ ≥ 0 such that whenever
〈Ai〉i∈I is a finite family in A (with repetitions allowed), there is a J ⊆ I, with #(J) ≥ δ#(I), such that⋂

i∈J Ai 6= ∅.

1C Kelley’s theorem Let X be a non-empty set and A a family of subsets of X with intersection
number δ. Then there is a finitely additive functional µ : PX → [0, 1] such that µX = 1 and µA ≥ δ for
every A ∈ A.

proof If A has the finite intersection property, let F be an ultrafilter on X including A, and set µC = 1 if
C ∈ F , 0 otherwise; this works. Otherwise, on the linear space `∞(X) of bounded real-valued functions on
X define a functional p by setting

p(u) = (1− δ) inf{
n∑

i=0

αi : α0, . . . , αn ≥ 0, |u| ≤
n∑

i=0

αiχ(X \Ai)

for some A0, . . . , An ∈ A}.
Because A does not have the finite intersection property, p(u) is well-defined. It is easy to see that p is
a seminorm. Also p(χX) ≥ 1. PPP??? Otherwise, we have α0, . . . , αk ≥ 0 and A0, . . . , Ak ∈ A such that
(1 − δ)

∑k
i=0 αi < 1 and χX ≤ ∑k

i=0 αiχ(X \ Ai). Increasing the αi fractionally if necessary, we may
suppose that they are all rational; say αi = ri/m where ri ∈ N, m ∈ N \ {0}. Set n =

∑k
i=0 ri and set

Bj = Ai for 0 ≤ i ≤ k,
∑

l<i rl ≤ j <
∑

l≤i rl. Then χX ≤ ∑n−1
j=0

1

m
χ(X \ Bj), while (1 − δ)

∑n−1
j=0

1

m
< 1.

But there must be a set J ⊆ {0, . . . , n− 1} such that #(J) ≥ δn and
⋂

j∈J Bj 6= ∅. Take x ∈ ⋂
j∈J Bj ; then

we have
1
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1 = χX(x) ≤
n∑

j=0

1

m
χ(X \Bj)(x) ≤ n−#(J)

m
≤ n(1−δ)

m
< 1,

which is impossible. XXXQQQ
There is therefore a linear functional h : `∞(X) → R such that h(χX) = 1 and h(u) ≤ p(u) for every u ∈

`∞(X). Set λ0D = h(χD) for D ⊆ X; then λ0 : PX → R is an additive functional, λ0X = 1, λ0D ≤ p(χX)
for every D ⊆ X and λ0D ≤ 1 − δ whenever A ∈ A and D ⊆ X \ A. Set λ1C = sup{λ0D : D ⊆ C} for
C ⊆ X; it is easy to check that λ1 : PX → [0,∞[ is additive, and λ1(X) ≥ 1, λ1(X \ A) ≤ 1 − δ for every

A ∈ A. Set µC = 1

λ1X
λ1C for C ⊆ X; then µ : PX → [0, 1] is additive, µX = 1 and µ(X \ A) ≤ 1− δ for

every A ∈ A. But this means that µA ≥ δ for every A ∈ A.

1D Lemma Suppose that k, l, m ∈ N are such that 3 ≤ k ≤ l ≤ m and 18mk ≤ l2. Let L, M be sets
of sizes l, m respectively. Then there is a set R ⊆ M × L such that (i) each vertical section of R has just
three members (ii) #(R[I]) ≥ #(I) whenever I ∈ [M ]≤k; so that for every I ∈ [M ]≤k there is an injective
function f : I → L such that (x, f(x)) ∈ R for every x ∈ I.
notation [M ]≤k = {I : I ⊆M, #(I) ≤ k}, [M ]k = {I : I ⊆M, #(I) = k}, R[I] = {y : ∃ x ∈ I, (x, y) ∈ R}.
proof (a) We need to know that n! ≥ 3−nnn for every n ∈ N; this is immediate from the inequality

∑n
i=2 ln i ≥

∫ n

1
lnx dx = n lnn− n+ 1 for every n ≥ 2.

(b) Let Ω be the set of those R ⊆M ×L such that each vertical section of R has just three members, so
that

#(Ω) = #([L]3)m =
( l!

3!(l−3)!

)m.

Let us regard Ω as a probability space with the uniform probability.
If J ∈ [L]n, where 3 ≤ n ≤ k, and x ∈M , then

Pr(R[{x}] ⊆ J) = #([J ]3)

#([L]3)

(because R[{x}] is a random member of [L]3)

= n(n−1)(n−2)

l(l−1)(l−2)
≤ n3

l3
.

So if I ∈ [M ]n and J ∈ [L]n, then

Pr(R[I] ⊆ J) =
∏

x∈I

Pr(R[{x}] ⊆ J)

(because the sets R[{x}] are chosen independently)

≤ n3n

l3n
.

Accordingly

Pr(there is an I ⊆M such that #(R[I]) < #(I) ≤ k)
≤ Pr(there is an I ⊆M such that 3 ≤ #(R[I]) ≤ #(I) ≤ k)

(because if I 6= ∅ then #(R[I]) ≥ 3)
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≤
k∑

n=3

∑

I∈[M ]n

∑

J∈[L]n

Pr(R[I] ⊆ J) ≤
k∑

n=3

#([M ]n)#([L]n)n3n

l3n

=
k∑

n=3

m!

n!(m−n)!

l!

n!(l−n)!

n3n

l3n
≤

k∑
n=3

mnlnn3n

n!n!l3n
≤

k∑
n=3

mnnn32n

l2n

(using (a))

=
k∑

n=3

(9mn

l2

)n ≤
k∑

n=3

1

2n
< 1.

There must therefore be some R ∈ Ω such that #(R[I]) ≥ #(I) whenever I ⊆M and #(I) ≤ k.

(c) If now I ∈ [M ]≤k, the restriction RI = R∩ (I ×L) has the property that #(RI [I ′]) ≥ #(I ′) for every
I ′ ⊆ I. By Hall’s Marriage Lemma there is an injective function f : I → L such that (x, f(x)) ∈ RI ⊆ R
for every x ∈ I.

1E Lemma Let Σ be an algebra of subsets of X and ν : Σ → [0,∞[ a uniformly exhaustive submeasure.
Then for any ε ∈ ]0, ν1] the set Eε = {E : νE ≥ ε} has intersection number greater than 0.

proof (a) If νX = 0 this is trivial, so we may assume that νX > 0; since neither the hypothesis nor
the conclusion is affected if we multiply ν by a positive scalar, we may suppose that νX = 1. Because
ν is uniformly exhaustive, there is an r ≥ 1 such that whenever 〈Gi〉i∈I is a disjoint family in Σ then
#({i : νGi >

1
5ε}) ≤ r, so that

∑
i∈I νGi ≤ r + 1

5ε#(I). Set δ = ε/5r, η = 1
74δ

2, so that

δ − η ≥ 1
18 (δ − η)2 ≥ 1

18 (δ2 − 2η) = 4η.

(b) Let 〈Ei〉i∈I be a non-empty finite family in Eε. Let m be any multiple of #(I) greater than or equal
to 1/η. Then there are integers k, l such that

3η ≤ k

m
≤ 4η ≤ 1

18
(δ − η)2, δ − η ≤ l

m
≤ δ,

in which case

3 ≤ k ≤ l ≤ m, 18mk ≤ m2(δ − η)2 ≤ l2.

(c) Take a set M of the form I × S where #(S) = m/#(I), so that #(M) = m. For q = (i, s) ∈ M set
Hq = Ei. Let L be a set with l members. By Lemma 1D, there is a set R ⊆M ×L such that every vertical
section of R has just three members and whenever Q ∈ [M ]≤k there is an injective function fQ : Q → L
such that (q, fQ(q)) ∈ R for every q ∈ Q.

For Q ⊆M set

bQ =
⋂

q∈QHq \
⋃

q∈M\QHq,

so that 〈bQ〉Q⊆M is a partition of X into members of Σ. For q ∈M , j ∈ L set

Gqj =
⋃{bQ : q ∈ Q ∈ [M ]≤k, fQ(q) = j}.

If p, q are distinct members of M and j ∈ L then

Gpj ∩Gqj =
⋃{bQ : p, q ∈ Q ∈ [M ]≤k, fQ(p) = fQ(q) = j} = ∅,

because every fQ is injective. Set

mj = #({q : q ∈M, Gqj 6= ∅})
for each j ∈ L. Note that Gqj = ∅ if (q, j) /∈ R, so

∑
j∈Lmj ≤ #(R) = 3m.

We have
∑

q∈M νGqj ≤ r + 1

5
εmj

for each j, by the choice of r; so
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∑

q∈M,j∈L

νGqj ≤ rl + 1

5
ε
∑

j∈L

mj ≤ rl + 3

5
mε

≤ (rδ + 3

5
ε)m = 4

5
εm < εm

by the choice of l and δ. There must therefore be some q ∈M such that

ν(
⋃

j∈LGqj) ≤
∑

j∈L νGqj < ε ≤ νHq,

and Hq cannot be included in
⋃

j∈LGqj =
⋃{bQ : q ∈ Q ∈ [M ]≤k}.

But as
⋃{bQ : q ∈ Q ⊆ M} is just Hq, there must be an Q ⊆ M , of cardinal greater than k, such that

bQ 6= ∅.
Recall now that M = I × S, and that

k ≥ 3ηm = 3η#(I)#(S).

The set J = {i : ∃ s, (i, s) ∈ Q} must therefore have more than 3η#(I) members, since Q ⊆ J ×S. But also
H(i,s) = Ei for each (i, s) ∈ Q, so that

⋂
i∈J Ei ⊇ bQ 6= ∅.

(d) As 〈Ei〉i∈I is arbitrary, the intersection number of Eε is at least 3η > 0.

1F The Kalton-Roberts theorem Let Σ be an algebra of subsets of X, and ν : Σ → [0,∞[ a
uniformly exhaustive submeasure. Then there is an additive functional µ : Σ → [0,∞[ such that ν is
absolutely continuous with respect to µ.

proof If νX = 0 this is trivial. Otherwise, for each n, En = {a : νa ≥ 2−nνX} has intersection number
δn > 0. By 1C, there is a finitely additive functional µn : PX → [0, 1] such that µnX = 1 and µnE ≥ δn for
every E ∈ En. Set µH =

∑∞
n=0 2−nµnH for H ∈ Σ; then µ : Σ → [0, 2] is finitely additive and νE < 2−n

whenever µE < 2−nδn. So ν is absolutely continuous with respect to µ.

1G Example The following example, taken from Talagrand 80, shows that most of the natural routes
to a positive answer to the question in 1A are blocked.

Fix n ≥ 1, and let I be the set {0, 1, . . . , 2n− 1}, X = [I]n, so that X is a finite set. For each i ∈ I set
Ai = {a : i ∈ a ∈ X}. For E ⊆ X set

νE = 1

n+1
inf{#(J) : J ⊆ I, E ⊆

⋃

i∈J

Ai}

= 1

n+1
inf{#(J) : a ∩ J 6= ∅ for every a ∈ E}.

It is elementary to check that ν : PX → [0,∞[ is a submeasure, therefore (because PX is finite) a Maharam
submeasure.

The essential properties of ν are twofold: (i) νX = 1; (ii) for any non-negative additive functional µ such
that µE ≤ νE for every E ⊆ X, µX ≤ 2

n+1 . PPP (i)(α) If J ⊆ I and #(J) ≤ n, there is an a ∈ [I \ J ]n,
so that a ∈ X \⋃

i∈J Ai and X 6⊆ ⋃
i∈J Ai. This means that X cannot be covered by fewer than n + 1 of

the sets Ai, so that νX must be at least 1. (β) On the other hand, if J ⊆ I is any set of cardinal n + 1,
a ∩ J 6= ∅ for every a ∈ X, so that X =

⋃
i∈J Ai and νX ≤ 1. (ii) Every member of X belongs to just n of

the sets Ai, so

nµX =
∑

i∈I µAi ≤ #(I)

n+1
= 2n

n+1
,

and µX ≤ 2
n+1 . QQQ

1H Example For the next example, I present a much deeper idea from Roberts 93.

Let B be the algebra of open-and-closed subsets of {0, 1}N. Then for any ε > 0 we can find a submeasure
ν : B → [0, 1] such that



5

(i) for every n ∈ N there is a disjoint sequence Sn0, . . . , Snn in B such that νSni = 1 for every i ≤ n;
(ii) if 〈En〉n∈N is any disjoint sequence in B then lim supn→∞ νEn ≤ ε.

proof (a) For each n ∈ N let In be the finite set {0, . . . , n}, given its discrete topology; set X =
∏

n∈N In,
with the product topology; let C be the algebra of subsets of X generated by sets of the form Sij = {x :
x(i) = j}, where i ∈ N and j ≤ i. Note that X is compact and Hausdorff and that every member of C is
open-and-closed (because all the Sij are). Also C is atomless, countable and non-zero, so is isomorphic to
B. It will therefore be enough if I can describe a submeasure ν : C → [0, 1] with the properties (i) and (ii)
above, and this is what I will do.

(b) For each n ∈ N let An be the set of non-empty members of C determined by coordinates in {0, . . . , n};
note that An is finite. For k ≤ l ∈ N, say that E ∈ C is (k, l)-thin if for every A ∈ Ak there is an A′ ∈ Al

such that A′ ⊆ A \E. Note that if k′ ≤ k ≤ l ≤ l′ then Ak′ ⊆ Ak and Al ⊆ Al′ , so any (k, l)-thin set is also
(k′, l′)-thin.

Say that every E ∈ C is (k, 0)-small for every k ∈ N, and that for k, r ∈ N a set E ∈ C is (k, r+1)-small if
there is some l ≥ k such that E is (k, l)-thin and (l, r)-small. Observe that E is (k, 1)-small iff it is (k, l)-thin
for some l ≥ k, that is, there is no member of Ak included in E. Observe also that if E is (k, r)-small then
it is (k′, r)-small for every k′ ≤ k.

Write S = {Sij : j ≤ i ∈ N}.
(c) Suppose that E ∈ C and k ≤ l ≤ m are such that E is both (k, l)-thin and (l,m)-thin. Then whenever

A ∈ Ak, S ∈ S and A ∩ S 6= ∅, there is an A′ ∈ Am such that A′ ⊆ A \E and A′ ∩ S 6= ∅. PPP Take S = Sni

where i ≤ n. (i) If n ≤ l, then A ∩ S ∈ Al; because E is (l,m)-thin, there is an A′ ∈ Am such that
A′ ⊆ (A ∩ S) \ E. (ii) If n > l, there is an A′ ∈ Al such that A′ ⊆ A \ E, because E is (k, l)-thin; now
A′ ∈ Am, and A′ ∩ S is non-empty because A′ is determined by coordinates less than n. QQQ

(d) It follows that if S ∈ S, k ∈ N, A ∈ Ak, A ∩ S 6= ∅, r ∈ N and E0, . . . , Er−1 are (k, 2r)-small, then
A∩ S is not covered by E0, . . . , Er−1. PPP Induce on r. The case r = 0 demands only that A∩ S should not
be covered by the empty sequence, that is, A ∩ S 6= ∅, which is one of the hypotheses. For the inductive
step to r + 1, we know that for each j ≤ r there are lj , mj such that k ≤ lj ≤ mj and Ej is (k, lj)-thin and
(lj ,mj)-thin and (mj , 2r)-small. Rearranging E0, . . . , Er if necessary we may suppose that mr ≤ mj for
every j ≤ r; set m = mr. By (c), there is an A′ ∈ Am such that A′ ∩ S 6= ∅ and A′ ⊆ A \ Er. Now every
Ej , for j < r, is (mj , 2r)-small, therefore (m, 2r)-small, so by the inductive hypothesis A′ ∩ S 6⊆ ⋃

j<r Ej .
Accordingly A ∩ S 6⊆ ⋃

j≤r Ej and the induction continues. QQQ

(e) Now suppose that 〈En〉n∈N is a disjoint sequence in C. Then for any k ∈ N there are l, n∗ ∈ N such
that En is (k, l)-thin for every n ≥ n∗. PPP Consider Gn =

⋃
j≥nEj for each n ∈ N. Then every Gn is open

and
⋂

n∈NGn = ∅. If A ∈ Ak, then A, with its subspace topology, is compact, so Baire’s theorem (3A3G)
tells us that there is an nA such that GnA ∩ A is not dense in A; let lA be such that A \ GnA includes a
member of AlA . Set n∗ = max{nA : A ∈ Ak}, l = max{lA : A ∈ Ak}. If n ≥ n∗, A ∈ Ak there is an
A′ ∈ AlA ⊆ Al such that

A′ ⊆ A \GnA
⊆ A \ En.

As A is arbitrary, En is (k, l)-thin. QQQ
It follows at once that for any r ∈ N we can find n∗r , k0 < k1 < . . . < kr ∈ N such that En is (kj , kj+1)-thin

for every j < r and n ≥ n∗r ; so that En is (0, r)-small for every n ≥ n∗r .

(f) Take an integer r ≥ 1/ε. Let U be the set of (0, 2r)-small members of C. Set

νE = 1

r
min{m : E ⊆ E1 ∪ . . . ∪ Em for some E1, . . . , Em ∈ U}

if E can be covered by r or fewer members of U , 1 otherwise. It is easy to check that ν : C → [0, 1] is a
submeasure. By (d), no member of S can be covered by r or fewer members of U , so νSni = 1 whenever
i ≤ n ∈ N. By (e), if 〈En〉n∈N is any disjoint sequence in C, En belongs to U for all but finitely many n, so
that νEn ≤ 1

r ≤ ε for all but finitely many n. Thus ν has the required properties.

1I An equivalent problem Consider the question
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Let X be a set, Σ an algebra of subsets of X, and ν : Σ → [0,∞[ a non-zero exhaustive
submeasure. Does there necessarily exist a non-zero additive functional µ : Σ → [0,∞[ such that
µ is absolutely continuous with respect to ν?

It is very striking that asking for an additive functional which will dominate ν (in the sense of 1A) should
come to the same thing as asking for an additive functional dominated by ν. Here I will briefly sketch what
I think are the essential reasons for this coincidence. The details may be found in Fremlin 02, §393.

1J Boolean algebras defined from submeasures (a) If X is a set, Σ an algebra of subsets of X,
and ν : Σ → [0,∞[ a submeasure, then I = {E : νE = 0} is an ideal of the Boolean algebra Σ, that is,

∅ ∈ I,
E ∪ F ∈ I for all E, F ∈ I,
E ∈ I whenever E ∈ Σ and E ⊆ F ∈ I.

We therefore have an equivalence relation

E ∼ F ⇐⇒ E4F ∈ I
on Σ, and can form a quotient Boolean algebra A = Σ/I made up of the equivalence classes under Σ with
Boolean operations defined by

E• ∪ F • = (E ∪ F )•, E• ∩ F • = (E ∩ F )•,

E• \ F • = (E \ F )•, E• 4 F • = (E4F )•,

E• ⊆ F • ⇐⇒ E \ F ∈ I
(Fremlin 02, §312). Moreover, it is easy to see that νE = νF whenever E ∼ F , so that we have a functional
ν̄ : A → [0,∞[ defined by setting

ν̄E• = νE for every E ∈ Σ.

This will be a submeasure in the sense that

ν̄0 = 0, ν̄a ≤ ν̄b whenever a ⊆ b, ν̄(a ∪ b) ≤ ν̄a+ ν̄b for all a, b ∈ A.

Moreover, ν̄ is exhaustive in the sense that limn→∞ ν̄an = 0 whenever 〈an〉n∈N is a sequence in A such that
am ∩ an = 0 for every m, n ∈ N, since in this case, if an = E•

n for every n, ν̄an = ν(En \
⋃

i<nEi) → 0
as n → ∞. The difference between ν and ν̄ is that ν̄ is strictly positive, that is, if a ∈ A \ {0}, so that
a = E• for some E ∈ Σ \ I, then ν̄a = νE > 0.

(b) This means that if we set

ρ(a, b) = ν̄(a4 b) for a, b ∈ A,

then ρ is a metric on A. (For the triangle inequality we need check only that a4 c ⊆ (a4 b) ∪ (b4 c) for all
a, b, c ∈ A.) It is elementary now to confirm that for all four Boolean operations ∗ = ∪ , ∩ , \ and 4 ,

ρ(a ∗ a′, b ∗ b′) ≤ ρ(a, b) + ρ(a′, b′)

because

(a ∗ a′)4 (b ∗ b′) ⊆ (a4 b) ∪ (a′ 4 b′),

while

|ν̄a− ν̄b| ≤ max(ν̄a− ν̄(a ∩ b), ν̄b− ν̄(a ∩ b)) ≤ ρ(a, b)

for all a, b, a′, b′ ∈ A. Thus the Boolean operations, and ν̄, are uniformly continuous.

(c) Suppose now we complete A under the metric ρ to form a complete metric space (Â, ρ̂). Then the
Boolean operations extend to Â, and this is still a Boolean algebra; moreover, ν̄ extends to a functional
ν̂ : Â → [0,∞[. Because

ν̂(a ∩ b) ≤ ν̂b, ν̂(a ∪ b) ≤ ν̂a+ ν̂b, ν̂a = ρ̂(a, 0)

for all a, b ∈ Â, ν̂ is still a strictly positive submeasure on Â.
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More surprising is the fact that ν̂ is still exhaustive. (This requires a slightly deeper argument; see
Fremlin 03, 393B.) It follows that if 〈an〉n∈N is a non-increasing sequence in Â, it is a Cauchy sequence
for ρ̂, and has a limit. For any b ∈ Â, the sets

{c : c ⊆ b} = {c : ρ̂(c, c ∩ b) = 0}, {c : b ⊆ c} = {c : ρ̂(b, c ∩ b) = 0}
are closed; it follows that a = infn∈N an in the partially ordered set Â. Turning this round, if 〈an〉n∈N
is a non-decreasing sequence in Â with infimum 0, then it converges topologically to 0, so limn→∞ ν̄an =
limn→∞ ρ(an, 0) = 0; ν̂ is a Maharam submeasure. At the same time, we see that Â is Dedekind
σ-complete, that is, any countable subset of Â has a supremum and infimum in Â.

(d) There is more. Because Â has a strictly positive exhaustive submeasure, it must be ccc, that is, every
disjoint set is countable. This means that if A ⊆ Â is a non-empty downwards-directed set with infimum 0,
there is a non-increasing sequence in A with infimum 0 (Fremlin 02, 316E), so that infa∈A ν̂a = 0. Because
ν̂ is sequentially order-continuous, we find also that Â is weakly (σ,∞)-distributive, that is,

whenever 〈An〉n∈N is a sequence of non-empty downwards-directed sets in Â all with infimum
0, then

B = {b : ∀ n ∈ N ∃ a ∈ An, a ⊆ b}
has infimum 0.

(For given ε > 0 we can find an ∈ An such that ν̂an ≤ 2−nε; now b = supn∈N an belongs to B and ν̂b ≤ 2ε.)

(e) The remaining facts we need are the following.

(i) Any Boolean algebra A is isomorphic to some algebra of sets. (Fremlin 02, §311.)

(ii) If A is a Dedekind σ-complete Boolean algebra, and µ, ν two Maharam submeasures on A such
that µa = 0 whenever νa = 0, then µ is absolutely continuous with respect to ν. (Copy the standard proof
for the case when A is a σ-algebra of sets and µ, ν are both countably additive measures.)

(iii) If A is a Boolean algebra, and µ : A → [0,∞[ is an additive functional, and we set

νb = inf{supa∈A µa : A ⊆ A is a non-empty upwards-directed set with supremum b}
for every b ∈ A, then ν is an order-continuous additive functional (Fremlin 02, 362Bd); and if A is weakly
(σ,∞)-distributive and µ is strictly positive, so is ν (Fremlin 02, 391D).

(iv) If A is a Boolean algebra, and a ∈ A, then the principal ideal Aa = {b : b ⊆ a}, with the inherited
operations ∪ , ∩ and 4 , is a Boolean algebra in its own right (Fremlin 02, 312D); and if A is weakly
(σ,∞)-distributive, so is Aa.

1K We are now ready to look at the statements which I claim are equiveridical. Consider the statements
(†) whenever X is a set, Σ is an algebra of subsets of X, and ν is an exhaustive submeasure

on Σ, then there is an additive functional µ : Σ → [0,∞[ such that ν is absolutely continuous
with respect to µ;

(‡) whenever X is a set, Σ is an algebra of subsets of X, and ν is a non-zero exhaustive
submeasure on Σ, then there is a non-zero additive functional µ : Σ → [0,∞[ such that µ is
absolutely continuous with respect to ν.

proof that (†) ⇒ (‡)(†) ⇒ (‡)(†) ⇒ (‡) Suppose that (†) is true. Let X be a set, Σ an algebra of subsets of X, and ν a
non-zero exhaustive submeasure on Σ. Build A, µ̄, Â and ν̂ as in 1J. Now ν̂ is an exhaustive submeasure
on Â. Â is constructed as an abstract Boolean algebra, but it is isomorphic to an algebra of sets (1J(e-i)),
so (†) tells us that there is an additive functional µ : Â → [0,∞[ such that ν̂ is absolutely continuous with
respect to µ. In particular, because ν̂ is strictly positive, so is µ. Now 1J(e-iii) tells us that there is an
order-continuous additive functional µ1 : Â → [0,∞[ which is still strictly positive; as µ1 is a Maharam
submeasure, it is absolutely continuous with respect to ν̂ (1J(e-ii)). We have a natural homomorphism
E 7→ E• : Σ → A ⊆ Â; setting µ2E = µ1E

• for E ∈ Σ, it is easy to check that µ2 is an additive functional
and is absolutely continuous with respect to ν. Also µ2E = 0 iff νE = 0, so µ2 is non-zero.
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proof that (‡) ⇒ (†)(‡) ⇒ (†)(‡) ⇒ (†) Suppose that (‡) is true. Let X be a set, Σ an algebra of subsets of X, and ν a non-zero
exhaustive submeasure on Σ. Build A, µ̄, Â and ν̂ as in 1J. Now ν̂ is an exhaustive submeasure on Â. It
follows that if ν̂ is non-zero then there is a non-zero additive functional absolutely continuous with respect
to ν̂; but we need a little more. Let D ⊆ Â be the set of those d ∈ Â such that there is a strictly positive
additive functional on the principal ideal Âd. Then every non-zero a ∈ Â includes a non-zero member of D.
PPP If a ∈ Â \ {0}, then ν̂¹Âa is a non-zero exhaustive submeasure on Âa. By (‡), there is a non-zero additive
functional λ : Âa → [0,∞[ which is absolutely continuous with respect to ν̂. Now B = {b : λb = λa} is
a downwards-directed set and infb∈B ν̂b > 0, so B cannot have infimum 0 (1Jd); let d be a non-zero lower
bound for B. If 0 6= c ⊆ d, then a \ c /∈ B so λc > 0; thus λ¹Âd is strictly positive and d ∈ D. QQQ

By Zorn’s lemma, there is a maximal disjoint subset D1 of D. For each d ∈ D1, let λd : Âd → [0,∞[ be
a strictly positive additive functional. Because Â is ccc (1Jd), D1 is countable; let 〈εd〉d∈D1 be a summable
family of strictly positive real numbers. Set

µa =
∑

d∈D1

εd

1+λdd
λd(a ∩ d)

for every a ∈ Â. Then µ : Â → [0,∞[ is additive. If µa = 0 then a ∩ d = 0 for every d ∩D1, so a cannot
include any member of D and must be zero; thus µ is strictly positive. Once again, we have an order-
continuous strictly positive additive functional µ1 on Â, and a corresponding additive functional µ2 on Σ.
This time, we use 1J(e-ii) to see that ν̄ is absolutely continuous with respect to µ1, so that ν is absolutely
continuous with respect to µ2.

Basic references: Fremlin 02, §§391-394, and Talagrand 08.
Origin of problem: Maharam 47.
Further reading: Kalton 89, Roberts 93.
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2 The lifting problem

2A Liftings Let (X,Σ, µ) be a measure space. A lifting for µ is a Boolean homomorphism φ : Σ → Σ
(that is, a function such that φX = X, φ(E ∩ F ) = φE ∩ φF and φ(E4F ) = φE4φF for all E, F ∈ Σ),
such that φE = ∅ whenever µE = 0 and µ(E4φE) = 0 for every E ∈ Σ.

For any measure space (X,Σ, µ) we have an equivalence relation ∼ on Σ defined by saying that E ∼ F
if µ(E4F ) = 0. The measure algebra of (X,Σ, µ) is (A, µ̄) where A is the set of equivalence classes in
Σ under ∼ and µ̄E• = µE for every E ∈ Σ. We have a Boolean algebra structure on A defined by saying
that E• ∩ F • = (E ∩ F )•, E• ⊆ F • iff µ(E \ F ) = 0, etc. Now if φ : Σ → Σ is a lifting, we have a Boolean
homomorphism θ : A → Σ defined by setting θE• = φE for every E ∈ Σ, and (θa)• = a for every a ∈ A; θ
is a right inverse of the canonical Boolean homomorphism E 7→ E•.

2B Theorem (Maharam 58) If (X,Σ, µ) is a probability space which is complete, that is, E ∈ Σ
whenever E ⊆ F ∈ Σ and µF = 0, then µ has a lifting.

I will not give a proof here; the general argument depends on a thorough understanding of Boolean
algebras and the martingale theorem; see Fremlin 02, §341.

2C Maharam’s theorem It helps to know the following. First, we say that a probability space (X,Σ, µ)
is Maharam homogeneous, with Maharam type κ (where κ is a cardinal), if there is a stochastically
independent family 〈Eξ〉ξ<κ of measurable sets of measure 1

2 such that, writing Σ0 for the σ-algebra generated
by {Eξ : ξ < κ}, every member of Σ differs by a negligible set from some member of Σ0. Now Maharam’s
theorem (Maharam 42, or Fremlin 02, §331) is: for every probability space (X,Σ, µ), there is a partition
of X into countably many measurable sets E of non-zero measure such that the normalized subspace measure
on E is Maharam homogeneous.

The relevance of this theorem is the following fact.

2D Proposition Let κ be a cardinal such that νκ¹Baκ has a lifting, where νκ is the usual measure on
{0, 1}κ and Baκ is the σ-algebra of Baire subsets of {0, 1}κ, that is, the σ-algebra generated by the sets
Hξ = {z : z ∈ {0, 1}κ, z(ξ) = 1}. Then every Maharam probability space (X,Σ, µ) of Maharam type κ has
a lifting.

proof Let 〈Eξ〉ξ<κ and Σ0 be as in the definition 2C. Define f : X → {0, 1}κ by setting f(x)(ξ) = χEξ(x)
for x ∈ X, ξ < κ; then Eξ = f−1[Hξ] for every ξ and Σ0 = {f−1[H] : H ∈ Baκ}; also µf−1[H] = νκH for
every H ∈ Baκ. Let ψ : Baκ → Baκ be a lifting for νκ¹Baκ. Then we can define φ : Σ → Σ by saying that
φE = f−1[ψH] whenever E ∈ Σ, H ∈ Baκ and µ(E4f−1[H]) = 0, and φ is a lifting for µ.

2E Corollary The following are equiveridical:
(i) every probability measure has a lifting;
(ii) νκ¹Baκ has a lifting for every cardinal κ.

proof Proposition 2D tells us that if (ii) is true then every Maharam homogeneous probability measure has
a lifting; now Maharam’s theorem quickly gives the result.

2F Filtrations The best results known for non-complete probability spaces are based on the following
method. First, if P is any partially ordered set, we say that it has countable cofinality if there is a
countable set Q ⊆ P which is cofinal with P , that is, for every p ∈ P there is a q ∈ Q such that p ≤ q.
Next, if A is a Boolean algebra, a tight ω1-filtration for A (Geschke 02) is a family 〈aξ〉ξ<ζ in A, for
some ordinal ζ, such that, writing Aα for the subalgebra of A generated by {aξ : ξ < α}, (i) Aζ = A (ii) for
every α < ζ and a ∈ Aα+1, the set {b : b ∈ Aα, b ⊆ a} has countable cofinality.

Now the theorem is the following.

2G Theorem Let (X,Σ, µ) be a measure space such that µX > 0, and suppose that its measure algebra
has a tight ω1-filtration. Then µ has a lifting.

proof Let 〈aξ〉ξ<ζ be a tight ω1-filtration in A; write Aα for the subalgebra of A generated by {aξ : ξ < α}.
Define Boolean homomorphisms θα : Aα → Σ inductively, as follows. Start with A0 = {0, 1}, θ00 = ∅,
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θ01 = X. (This is where we need to know that µX > 0, so that 0 6= 1 in A.) Given θα, let B, B′ ⊆ Aα be
countable sets such that B is cofinal with {b : b ∈ Aα, b ⊆ aα} and B′ is cofinal with {b : b ∈ Aα, b ⊆ 1 \ aα}.
Choose any E ∈ Σ such that E• = aα and set

Eα = (E ∪⋃
b∈B θαb) \

⋃
b∈B′ θαb.

Because B and B′ are both countable, Eα ∈ Σ. Because they are cofinal with {b : b ∈ Aα, b ⊆ aα} and
{b : b ∈ Aα, b ⊆ 1 \ aα} respectively, θb ⊆ Eα whenever {b : b ∈ Aα and b ⊆ aα, while θb ∩ Eα = ∅ whenever
{b : b ∈ Aα and b ⊆ 1 \ aα. This means that we can define a Boolean homomorphism θα+1 : Aα+1 → Σ by
setting

θα+1((b ∩ aα) ∪ (c \ aα)) = (θαb ∩ Eα) ∪ (θαc \ Eα

for all b, c ∈ Aα.
This is the inductive step to a successor ordinal. For the inductive step to a non-zero limit ordinal α ≤ ζ,

Aα =
⋃

ξ<α Aξ and we can define θα by setting θαa = θξa whenever ξ < α and a ∈ Aξ.
An easy induction now shows that a = (θαa)• whenever α ≤ κ and a ∈ Aα, so that θζ : A → Σ is a lifting

for µ.

2H Proposition (a) (Mokobodzki 75) Suppose that the continuum hypothesis is true. If (X,Σ, µ) is
a probability space with a measure algebra of cardinal at most c+ = ω2, then its measure algebra is tightly
ω1-filtered, so µ has a lifting.

(b) (T.J.Carlson) If we add ω2 Cohen reals to a model of the generalized continuum hypothesis, then in
the resulting model the Lebesgue measure algebra is tightly ω1-filtered, so µL¹B has a lifting, where B is
the Borel σ-algebra of [0, 1] and µL is Lebesgue measure.

Remark It is easy to prove that ([0, 1],B, µL¹B) is isomorphic to ({0, 1}ω,Baω, νω¹Baω) (cf. Fremlin 01,
254K).

2I Theorem (Shelah 83) It is relatively consistent with ZFC to suppose that µL¹B has no lifting.

2J Problem Is there a probability space without a lifting?

Remark By 2E, it is enough to consider ({0, 1}κ,Baκ, νκ¹Baκ) where κ is a cardinal. Since Mokobodzki’s
theorem deals with κ ≤ ω2 when c = ω1, the key case to consider seems to be κ = ω3. Here I note that it is
a theorem of Geschke 02 that a probability algebra of cardinal ω3 or more cannot be tightly ω1-filtered.

2K Further questions. Let B be the algebra of Borel subsets of [0, 1] and µL Lebesgue measure on R.

(a) Shelah’s construction of a model in which µL¹B has no lifting is interesting and important. But there
are many well-known models in which c > ω1 (e.g., random real models or models of Martin’s axiom), and
in none of these, except Cohen’s original model of not-CH, do we know whether µL¹B has a lifting. For
instance, it seems quite possible that whenever c > ω2 then µL¹B has no lifting.

(b) A.H.Stone noted that even when c = ω1, so that we have a lifting for µL¹B, the methods available
give no control over the Borel classes of φE, as E runs over B. So he asked: is it possible to have a lifting
φ of µL¹B such that all the lifted sets φE are of bounded Borel class?

(c) Can there be a lifting φ for µ(2)
L ¹B2, where B2 is the algebra of Borel subsets of [0, 1]2 and µ

(2)
L is

Lebesgue measure on R2, which respects coordinates, i.e., is such that if E, F ∈ B then φ(E × F ) is of
the form E′ × F ′?

(d) Even for complete probability spaces there remain some puzzles. For instance: let µ be the measure
on {0, 1} such that µ{0} = 1

3 , µ{1} = 2
3 , and let λ be the (completed) product of countably many copies of

µ, so that λ is a probability measure on {0, 1}N. Is there a lifting φ for λ which respects coordinates in the
sense that φE is determined by coordinates in J whenever E ∈ domλ is determined by coordinates in J?

Basic reference: Fremlin 02, §§341, 344-346.
Further reading: Shelah 83, Just 92, Burke 93, Geschke 02.
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3 Radon spaces

3A Definition A Hausdorff space X is Radon if every totally finite Borel measure on X is tight (that
is, µE = sup{µK : K ⊆ E is closed and compact} whenever µ measures E).

3B Basic facts (a) A complete metric space X is Radon iff κ = w(X) is measure-free (that is, any
probability measure on κ with domain Pκ gives positive measure to some singleton). In particular, any
Polish space is Radon.

(b) If X is a Hausdorff space, the set of subsets of X which are Radon spaces in the subspace topologies
is closed under Souslin’s operation.

(c) ω1 and ω1 + 1, with their order topologies, are not Radon.

(d) For a set I, [0, 1]I is Radon iff {0, 1}I is Radon iff I is countable.

(e) A hereditarily Lindelöf K-analytic Hausdorff space is Radon; in particular, the split interval is Radon.

(f) If X is a Banach space with an equivalent Kadec norm (e.g., a weakly K-countably determined Banach
space, or a Banach lattice with an order-continuous norm), then X is a Radon space in its weak topology
iff w(X) is measure-free.

(g) If X is an Eberlein compact, it is a Radon space iff w(X) is measure-free.

3C Proposition (a) In a Radon Hausdorff space, countably compact sets are compact.
(b) Any Radon compact Hausdorff space is countably tight.

proof (a) Let X be a Radon Hausdorff space and C ⊆ X a countably compact set. Let E be a non-empty
family of relatively closed subsets of C with the finite intersection property; let E∗ ⊇ E be a maximal family
of relatively closed subsets of C with the finite intersection property. Then E∗ is closed under countable
intersections. PPP??? Otherwise, there is a sequence 〈En〉n∈N in E∗ with intersection E /∈ E∗. By the maximality
of E∗, there must be F0, . . . , Fm ∈ E∗ such that F0 ∩ . . .∩Fm ∩E = ∅. But now {Fi : i ≤ m} ∪ {Ei : i ∈ N}
is a countable family of relatively closed subsets of C which has the finite intersection property and empty
intersection; which contradicts the hypothesis that C is countably compact. XXXQQQ

Set

Σ = {A : A ⊆ X, there is an E ∈ E∗ such that either E ⊆ A or E ∩A = ∅}.
Because E∗ is closed under countable intersections, Σ is a σ-algebra of subsets of X and we have a measure
µ0 with domain Σ defined by setting µ0A = 1 if A includes some member of E∗, 0 otherwise. If F ⊆ X is
closed, then either F ∩ C ∈ E∗ and µ0F = 1, or there are F0, . . . , Fm ∈ E∗ such that F ∩⋂

i≤m Fi = ∅ and
µ0F = 0. So every closed set, therefore every Borel set, belongs to Σ, and the restriction µ of µ0 to the
Borel σ-algebra B(X) is a Borel measure on X.

Since µX > 0 and X is a Radon space, there is a compact set K ⊆ X such that µK > 0. Now K cannot
be covered by any finite family of negligible open sets, and is therefore not covered by the family of all
negligible open sets. Let x ∈ K be such that every open set containing x has non-zero measure. ??? If E ∈ E∗
and x /∈ E, then µ{x} = 0 and µ(X \ {x}) > 0; so there is a compact set L ⊆ X \ {x} such that µL > 0.
But now there must be an F ∈ E∗ such that F ⊆ L, so that X \ L is a negligible open set containing x. XXX
Thus x ∈ ⋂ E∗ ⊆ ⋂ E and E has non-empty intersection. As E is arbitrary, C is compact.

(b) If X is a Radon compact Hausdorff space and A ⊆ X, set C =
⋃{B : B ⊆ A is countable}. Then

D ⊆ C for every countable set D ⊆ C, so every sequence in C has a cluster point and C is countably
compact. By (i), C is compact, therefore closed, and must be the closure of A. As A is arbitrary, X is
countably tight.

3D Questions (a) Is the continuous image of a Radon compact Hausdorff space always Radon?
(b)(P.J.Nyikos) Is every Radon compact Hausdorff space sequentially compact? (If 2t > c, yes, because

in this case countably tight compact Hausdorff spaces are sequentially compact.)
(c) Is there a pair of Radon spaces with a product which is not Radon? (If either there is an atomlessly-

measurable cardinal or m = c, yes; see Wage 80 and Fremlin prW.)
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(d) Is there a Banach space with weight ω1 which is not Radon when given its weak topology? There is
certainly a space with weight c which is not Radon (Fremlin 03, 466Ia).

(e) If c is measure-free, is `∞ a Radon space in its weak topology?

Basic reference: Fremlin 03, §434; also §§466-467.
Original source: Schwartz 73.
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4 The vector-valued McShane integral

4A Vector-valued gauge integrals Let X be a set, C a family of subsets of X, T ⊆ [X × C]<ω a non-
empty set of ‘tagged partitions’, F a filter on T and U a normed space. For ttt ∈ T , setWttt =

⋃{C : (x,C) ∈ ttt},
the footprint of ttt. If δ ⊆ X × PX, say that ttt ∈ T is δ-fine if ttt ⊆ δ. If R ⊆ PX, say that ttt is R-filling if
X \Wttt ∈ R.

For f : X → U , ν : C → R and ttt ∈ T , set Sttt =
∑

(x,C)∈ttt νC · f(x). Now set

Iν,F (f) = limttt→F Sttt(f)

if this is defined in X for the norm topology. Then Iν,F is a linear functional defined on a linear subspace
of UX , a gauge integral for U -valued functions.

4B Definitions It will be helpful to have some further terminology, following Fremlin 01 and Fremlin
03.

(a) Let (X,Σ, µ) be a measure space.

(i) I say that µ is inner regular with respect to a family K of sets if µE = sup{µK : K ∈ K ∩ Σ,
K ⊆ E} for every E ∈ Σ. (Thus a ‘tight’ measure is one which is inner regular with respect to the closed
compact sets.)

Similarly, µ is outer regular with respect to a family H of sets if µE = inf{µH : H ∈ H ∩ Σ, H ⊇ E}
for every E ∈ Σ.

(ii) I will write Σf for {E : E ∈ Σ, µE <∞}. Now (X,Σ, µ) is semi-finite if µ is inner regular with
respect to Σf .

(iii) (X,Σ, µ) is locally determined if it is semi-finite and A ∈ Σ whenever A ⊆ X is such that
A ∩ E ∈ Σ for every E ∈ Σ such that µE <∞.

(iv) (X,Σ, µ) is totally finite if µX <∞.

(v) (X,Σ, µ) is atomless if whenever E ∈ Σ and µE > 0 then there is an F ∈ Σ such that F ⊆ E,
µF > 0 and µ(E \ F ) > 0.

(c) Let (X,Σ, µ) be a measure space and T a topology on X.

(i) µ is a topological measure if it measures every open set (and therefore every Borel set).

(ii) µ is τ-additive if µ(
⋃G) = supG∈G µG whenever G is a non-empty upwards-directed family in

T ∩ Σ with union in T ∩ Σ.

(iii) µ is effectively locally finite if µE = sup{µ(G ∩ E) : G ∈ T ∩ Σ, µG <∞} for every E ∈ Σ.

(iv) µ is a quasi-Radon measure if it is a complete locally determined τ -additive effectively locally
finite topological measure on X which is inner regular with respect to the closed sets. (Remark: on a regular
topological space, any τ -additive effectively locally finite topological measure which is inner regular with
respect to the Borel sets is inner regular with respect to the closed sets; see Fremlin 03, 414Mb.)

(d)(i) If X and Y are topological spaces, µ is a measure on X and φ : X → Y is a function, I say that
φ is measurable if µ measures φ−1[H] for every open set H ⊆ Y , and almost continuous if µ is inner
regular with respect to {K : K ⊆ X, φ¹K is continuous}.

(ii) If (X,Σ, µ) and (Y,T, ν) are measure spaces, a function φ : X → Y is inverse-measure-preserv-
ing if µf−1[F ] is defined and equal to νF for every F ∈ T.

4C The McShane integral Let (X,T,Σ, µ) be a quasi-Radon measure space. Let T = T (X,Σf ) be the
family of finite subsets ttt of X×Σf such that C ∩C ′ is empty whenever (x,C), (x′, C ′) are distinct members
of ttt. Let ∆ = ∆(X,T) be the set of all neighbourhood gauges on X, that is, families δ ⊆ X × PX such
that, for each x ∈ X, {C : (x,C) ∈ δ} is of the form PG for some open set G containing x. Note that
δ1 ∩ δ2 ∈ ∆ for all δ1, δ2 ∈ ∆. For any H ∈ Σf and η > 0, let RHη be the set {F : F ∈ Σ, µ(F ∩H) ≤ η}.
Let F be the filter on T generated by sets of the form
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{ttt : ttt ∈ T is δ-fine and REη-filling}
where δ runs over ∆, E over Σf and η over ]0,∞[. (Because µ is an effectively locally finite τ -additive
topological measure, there is indeed such a filter; see part (a) of the proof of 4E below.) The corresponding
functional Iµ,F = McS

∫
dµ is the McShane integral for vector-valued functions defined on X.

4D Remarks The definition here matches that of Bongiorno di Piazza & Musial 00; it differs
significantly from that in Fremlin 95, and even more from that in Gordon 90 and Fremlin & Mendoza
94, but coincides with the earlier definitions in the contexts in which they were set out. For the identification
of the integral here with that of Fremlin 95, see Bongiorno di Piazza & Musial 00 or Fremlin prET.
Rather than appeal to these, I will repeat some of the theorems of Fremlin 95 in the new formulation.

4E Saks-Henstock Lemma (compare Fremlin 03, 482B) Let (X,T,Σ, µ) be a quasi-Radon measure
space, U a Banach space, and f : X → U a McShane integrable function. Define T as in 4C. Then we
have a unique additive function F : Σ → U such that F (X) = McS

∫
fdµ and for every ε > 0 there are a

neighbourhood gauge δ on X, an H ∈ Σf and an η > 0 such that whenever ttt ∈ T is δ-fine, Wttt ⊆ E ∈ Σ and
µ(H ∩ E \Wttt) ≤ η, then ‖Sttt(f)− F (E)‖ ≤ ε.

proof (a) For any E ∈ Σ, let TE be the set of those tagged partitions ttt ∈ T such that, for (x,C) ∈ ttt, C ⊆ E
whenever x ∈ E and C ⊆ X \ E whenever x ∈ X \ E. Set RHη = {E : E ∈ Σ, µ(E ∩H) ≤ η}, as in 4C.
Then for any neighbourhood gauge δ on X, H ∈ Σf , η > 0 and finite E ⊆ Σ, there is a δ-fine RHη-filling
ttt ∈ ⋂

E∈E TE . PPP Replacing E by the set of atoms in the finite algebra of sets which it generates, if necessary,
it is enough to consider the case in which E is a partition of X. For x ∈ X set Gx =

⋃{C : (x,C) ∈ δ}, so
that Gx is an open set containing x. For each E ∈ E , {Gx : x ∈ E} is an open cover of H ∩ E, so there is

a finite set IE ⊆ E such that µ(H ∩ E \⋃
x∈IE

Gx) ≤ η

#(E)
(see Fremlin 03, 414E; I am passing over the

trivial case E = X = ∅). Enumerate IE as 〈x(E, i)〉i<nE
, and set C(E, i) = H ∩ E ∩Gx(E,i) \

⋃
j<iGx(E,j)

for i < nE . Then ttt = {(x(E, i), C(E, i)) : E ∈ E , i < nE} has the required properties. QQQ

(b) We therefore have a filter F∗ on T generated by the sets

{ttt : ttt is δ-fine}
for neighbourhood gauges δ,

{ttt : ttt is RHη-filling}
for H ∈ Σf and η > 0, and the sets TE for E ∈ Σ. For E ∈ Σ and ttt ∈ T , set tttE = {(x,C) : (x,C) ∈ ttt,
x ∈ E}. Then

F (E) = limttt→F∗ StttE
(f)

is defined in U for every E ∈ Σ. PPP Let ε > 0. Then there are a neighbourhood gauge δ and H ∈ Σf , η > 0
such that ‖Sttt(f)− McS

∫
fdµ‖ ≤ ε for every δ-fine, RH,2η-filling ttt ∈ T . Now suppose that sss, ttt ∈ TE are δ-fine

and RHη-filling. In this case, set ttt′ = sssE ∪ tttX\E . Then ttt′ is δ-fine and RH,2η-filling. So

‖SsssE
(f)− StttE

(f)‖ = ‖Sttt′E (f)− StttE
(f)‖ = ‖Sttt′(f)− Sttt(f)‖ ≤ 2ε.

As {ttt : ttt ∈ TE is δ-fine and RHη-filling} belongs to F∗, and U is complete, this is enough to show that
limttt→F∗ StttE (f) is defined in U . QQQ

(c) To see that F is additive, observe that if E, E′ ∈ Σ are disjoint, and ttt ∈ TE ∩ TE′ , then StttE∪E′ (f) =
StttE

(f) + StttE′ (f); taking the limit along F∗, F (E ∪ E′) = F (E) + F (E′).
As for McS

∫
fdµ, this is just the limit of Sttt(f) along the smaller filter on T generated by the gauges and

the residual families, so must be equal to F (X).

(d) Now for the approximating property claimed for F . Given ε > 0, take a neighbourhood gauge δ, an
H ∈ Σf and an η > 0 such that ‖Sttt(f)− McS

∫
fdµ‖ ≤ 1

3ε for every δ-fine RH,2η-filling ttt. Suppose that ttt ∈ T
is δ-fine, E ⊇Wttt and µ(H ∩E \Wttt) ≤ η. Then (using the technique in (a)) we can find a δ-fine sss ∈ T such
that Wsss ⊆ X \E and µ((H \E) \Wsss) ≤ η. At the same time, there is a δ-fine RHη-filling uuu ∈ TE such that
‖F (E)− SuuuE

(f)‖ ≤ 1
3ε. In this case, both ttt ∪ sss and uuuE ∪ sss are δ-fine and RH,2η-filling. So
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‖F (E)− Sttt(f)‖ ≤ ‖F (E)− SuuuE (f)‖+ ‖SuuuE∪sss(f)− Sttt∪sss(f)‖
≤ 1

3
ε+ ‖SuuuE∪sss(f)− McS

∫
fdµ‖+ ‖ McS

∫
fdµ− Sttt∪sss(f)‖ ≤ ε

as required.

(e) Of course this requirement determines F completely. So the proof is complete.

4F Theorem Let (X,T,Σ, µ) be a quasi-Radon measure space and f : X → R a McShane integrable
function. Let F : Σ → R be the Saks-Henstock indefinite integral as defined in 4E. Then the f is integrable
in the ordinary sense, and

∫
E
fdµ = F (E) for every E ∈ Σ.

proof For each m ∈ N, choose a neighbourhood gauge δm on X, an Hm ∈ Σf and an ηm ∈ ]0, 2−m] such
that ‖F (E)− Sttt(f)‖ ≤ 2−m whenever ttt ∈ T is δm-fine, Wttt ⊆ E ∈ Σ and µ(Hm ∩ E \Wttt) ≤ ηm.

(a) f is measurable. PPP??? If not, then, because µ is complete and locally determined, there are a set
E0 ∈ Σf and α < β in R such that A = {x : x ∈ E0, f(x) ≤ α} and B = {x : x ∈ E0, f(x) ≥ β} both
have outer measure µE0 > 0 (see Fremlin 03, 413G). Take any m ∈ N. Set Gx =

⋃{C : (x,C) ∈ δm}
for each x ∈ X; then

⋃
x∈AGx is an open set including A, so µ(E0 ∩

⋃
x∈AGx) = µE0 and there is a finite

sequence 〈xi〉i<n in A such that µ(E0 \
⋃

i<nGxi) ≤ ηm. Set Ci = E0 ∩ Gxi \
⋃

j<iGxj for each i < n,
ttt = {(xi, Ci) : i < n}. Then Wttt =

⋃
i<n Ci ⊆ E0 and µ(E0 \Wttt) ≤ ηm ≤ 2−m, while ttt is δm-fine. So

F (E0) ≤ Sttt + 2−m ≤ αµWttt + 2−m ≤ αµE0 + 2−m(1 + |α|).
Similarly, F (E0) ≥ βµE0−2−m(1+|β|), so (β−α)µE0 ≤ 2−m(2+|α|+|β|). Asm is arbitrary, (β−α)µE0 = 0,
which is impossible. XXXQQQ

(b) Now set V = {x : f(x) ≥ 0}. Then
∫

V
fdµ ≤ F (V )+3. PPP??? Otherwise, we can find a simple function

g such that 0 ≤ g ≤ f+ and
∫
g dµ ≥ F (V ) + 3. Express g as

∑n
i=0 αiχEi where E0, . . . , En are disjoint

measurable sets of finite measure and αi ≥ 0 for every i. Let η ∈ ]0, η0] be such that ηmaxi≤n αi ≤ 1. Then
we can find a δ0-fine ttt ∈ ⋂

i≤n TEi ∩TV (as defined in the proof of 4E) such that µ((H0∪
⋃

i≤nEi)\Wttt) ≤ η.
In this case, setting sss = {(x,C) : (x,C) ∈ ttt, x ∈ V }, sss is δ0-fine and µ(V ∩H0 \Wsss) ≤ η0, so

F (V ) ≥ Ssss(f)− 1 ≥
n∑

i=0

αiµ(Ei ∩Wsss)− 1

(because if (x,C) ∈ sss, then f(x) ≥ 0, while if C ∩ Ei 6= ∅ then C ⊆ Ei and x ∈ Ei)

≥
n∑

i=0

αiµEi − 2 > F (V ),

which is impossible. XXXQQQ
Similarly,

∫
X\V f ≥ F (X \ V )− 3, so f is integrable in the usual sense.

(c) For the identification between F and the ordinary indefinite integral of f , take any m ∈ N. Then
we can find H ∈ Σf and η > 0 such that H ⊇ Hm, η ≤ 1

2ηm and
∫

E
|f | ≤ 2−m whenever µ(E ∩ H) ≤ η.

Let k ∈ N be such that µ{x : x ∈ H, |f(x)| ≥ 2k} ≤ η and 2−kµH ≤ 2−m, and for −4k ≤ i ≤ 4k set
Ei = {x : x ∈ H, 2−ki ≤ f(x) < 2−k(i + 1)}. Now suppose that E ∈ Σ. Then we can find a δm-fine
RHη-filling ttt ∈ ⋂

|i|≤4k TE∩Ei . Taking sss = {(x,C) : (x,C) ∈ ttt, x ∈ ⋃
|i|≤4k E ∩ Ei}, sss is δm-fine, Wsss ⊆ E

and

µ(Hm ∩ E \Wsss) ≤ µ(H ∩ E \⋃
|i|≤4k Ei) + µ(H ∩⋃

|i|≤4k Ei \Wttt) ≤ 2η ≤ ηm.

So |F (E) − Ssss(f)| ≤ 2−m. On the other hand, whenever (x,C) ∈ sss and y ∈ C, there is some i such that
x ∈ Ei and C ⊆ Ei, so that |f(x)− f(y)| ≤ 2−k; accordingly
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|Ssssf −
∫

Wsss

fdµ| ≤
∑

(x,C)∈sss

|f(x)µC −
∫

C

fdµ| ≤
∑

(x,C)∈sss

2−kµC

= 2−kµWsss ≤ 2−kµH ≤ 2−m.

Finally, because µ(H \ ⋃
|i|≤4k Ei) and µ(E ∩ H ∩ ⋃

|i|≤4k Ei \ Wsss) ≤ µ(E ∩ H \ Wttt) are both at most
η, | ∫

E
fdµ − ∫

Wsss
fdµ| ≤ 2−m+1. Putting these together, |F (E) − ∫

E
fdµ| ≤ 2−m+2; as m is arbitrary,

F (E) =
∫

E
fdµ.

4G Theorem Let (X,T,Σ, µ) be a quasi-Radon measure space, U and V Banach spaces, and P : U → V
a continuous linear operator. If f : X → U is McShane integrable, so is Pf : X → V , and McS

∫
Pfdµ =

P (McS
∫
fdµ). Moreover, if F : Σ → U is the Saks-Henstock indefinite integral of f , then PF : Σ → V is the

Saks-Henstock indefinite integral of Pf .

proof We have only to note that for every tagged partition ttt we shall have Sttt(Pf) = P (Sttt(f)), and take
appropriate limits.

4H Theorem Let (X,T,Σ, µ) be a quasi-Radon measure space, U a Banach space, and f : X → U a
McShane integrable function. Then f is Pettis integrable, and its Saks-Henstock indefinite integral is its
indefinite Pettis integral.

proof Let F be the Saks-Henstock indefinite integral of f . Applying 4G to linear operators h ∈ U∗, we see
that hf is McShane integrable, with Saks-Henstock indefinite integral hF . By 4F,

∫
E
hfdµ is defined and

equal to h(F (E)) for every E ∈ Σ, h ∈ U∗; but this is just the definition of Pettis integrability and indefinite
Pettis integral.

4I Theorem Let (X,T,Σ, µ) be a quasi-Radon measure space in which µ is outer regular with respect
to the open sets, and U a Banach space. If f : X → U is Bochner integrable, then f is McShane integrable.

proof (a) Suppose first that f is of the form χE0 ·u where E0 ∈ Σf , so that f(x) = u if x ∈ E0, 0 otherwise.
Let ε > 0. Because µ is inner regular with respect to the closed sets and outer regular with respect to the
open sets, there are a closed set E1 ⊆ E0 and an open set G ⊇ E0 such that µ(G \ E1) ≤ ε. Let δ be the
neighbourhood gauge

{(x,C) : x ∈ X, C ⊆ X, x ∈ G⇒ C ⊆ G, x /∈ E1 ⇒ C ∩ E1 = ∅}.
If ttt ∈ T = T (X,Σf ) is δ-fine and RE0ε-filling, set sss = {(x,C) : (x,C) ∈ ttt, x ∈ E0}, so that Sttt(f) = µWsss · u.
Also

E0 \Wsss ⊆ (E0 \Wttt) ∪ (E0 \ E1)

because C ∩ E1 = ∅ if (x,C) ∈ ttt and x /∈ E0, while

Wsss \ E0 ⊆ G \ E0

because C ⊆ G if (x,C) ∈ ttt and x ∈ E0. Accordingly

µ(E04Wsss) ≤ µ(E0 \Wttt) + µ(E0 \ E1) + µ(G \ E0) ≤ 2ε,

and

‖Sttt(f)− B
∫
fdµ‖ = ‖µWsss · u− µE0 · u‖ ≤ 2ε‖u‖.

As ε is arbitrary, McS
∫
fdµ is defined and equal to B

∫
fdµ.

(b) It follows at once that McS
∫
fdµ = B

∫
fdµ for every ‘simple’ function f : X → U , that is, a measurable

function taking finitely many values such that {x : f(x) 6= 0} has finite measure.

(c) Now observe that if f : X → U is a measurable function and γ >
∫ ‖f‖dµ, there is a neighbourhood

gauge δ on X such that ‖Sttt(f)‖ ≤ γ for every δ-fine tagged partition ttt. PPP Set E = {x : f(x) 6= 0}; then
E is covered by a sequence of sets of finite measure, so there is a g0 : X → [0,∞[ such that g0(x) > ‖f(x)‖
for every x ∈ E and

∫
g dµ < γ. Because µ is outer regular with respect to the open sets, there is a
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lower semi-continuous function g : X → [0,∞] such that g0 ≤ g and
∫
g dµ ≤ γ (Fremlin 03, 412W).

Set Gx = {y : g(y) > ‖f(x)‖} for x ∈ E, X for x ∈ X \ E; then δ = {(x,C) : x ∈ X, C ⊆ Gx} is a
neighbourhood gauge on X. Let ttt ∈ T be any δ-fine tagged partition. Then for each (x,C) ∈ ttt we have
either f(x) = 0 or g(y) > ‖f(x)‖ for every y ∈ C, so

‖Sttt(f)‖ ≤ ∑
(x,C)∈ttt ‖f(x)‖µC ≤ ∑

(x,C)∈ttt

∫
C
g dµ ≤ γ. QQQ

(d) Now let f : X → U be any Bochner integrable function, and ε > 0. Then there is a simple function
f0 : X → U such that

∫ ‖f−f0‖dµ ≤ ε. By (b), there are a neighbourhood gauge δ1 on X, an H ∈ Σf and an
η > 0 such that ‖Sttt(f0)− B

∫
f0dµ‖ ≤ ε for every δ1-fine RHη-filling ttt ∈ T . By (c), there is a neighbourhood

gauge δ2 such that ‖Sttt(f − f0)‖ ≤ 2ε for every δ2-fine ttt ∈ T . Now δ = δ1 ∩ δ2 is a neighbourhood gauge on
X, and if ttt ∈ T is δ-fine and RHη-filling then

‖Sttt(f)− B
∫
fdµ‖ ≤ ‖Sttt(f − f0)‖+ ‖Sttt(f0)− B

∫
f0dµ‖+ ‖ B

∫
f0dµ− B

∫
fdµ‖ ≤ 4ε.

As ε is arbitrary, McS
∫
fdµ is defined and equal to B

∫
fdµ.

4J Corollary Let (X,T,Σ, µ) be a quasi-Radon measure space in which µ is outer regular with respect
to the open sets, and U a separable Banach space. Then the Pettis, Bochner and McShane integrals coincide
for bounded functions from X to U .

proof Because U is separable, the Pettis and Bochner integrals coincide (); now 4I and 4H tell us that
(because µ is outer regular) the McShane integral agrees with both.

4K The problem Can the McShane integral be described in terms of the measure space (X,Σ, µ) without
reference to the topology? I have been able to show that if U = `∞ and X is the union of a sequence of
open sets of finite measure then the McShane integral always coincides with the Birkhoff integral (Fremlin
n92), so the topology is irrelevant. Di Piazza & Preiss p03 give examples of spaces U of arbitrarily large
weight for which the McShane and Pettis integrals must coincide, so again the McShane integral cannot
depend on the topology. But for arbitrary U , I do not know whether we can have two topologies S, T on
[0, 1] for both of which Lebesgue measure is quasi-Radon but the McShane integrals for U -valued functions
are different.

4L Lemma Let (X,Σ, µ) be an atomless totally finite measure space, and G0, . . . , Gn ∈ Σ. Suppose
that α0, . . . , αn ≥ 0 are such that

∑
i∈I αi ≤ µ(

⋃
i∈I Gi) for every I ⊆ n + 1. Then there are disjoint

E0, . . . , En ∈ Σ such that Ei ⊆ Gi for every i and µEi = αi for every i.

proof Bollobás & Varopoulos 75, or use the max-flow min-cut theorem.

4M Lemma Let (X,T,Σ, µ) be an atomless totally finite quasi-Radon measure space, U a Banach space,
f : X → U a McShane integrable function with McS

∫
fdµ = w and ε > 0. Then there are an η > 0 and a

family 〈Gx〉x∈X in T such that x ∈ Gx for every x and ‖w −∑
i<n αif(xi)‖ ≤ ε whenever xi ∈ X, αi ≥ 0

are such that
∑

i<n αi ≥ µX − η and
∑

i∈J αi ≤ µ(
⋃

i∈J Gxi) for every J ⊆ n.

proof Let δ ∈ ∆(X,T), η > 0 be such that ‖w − Sttt(f)‖ ≤ ε whenever ttt ∈ T = T (X,Σ) is δ-fine and
µWttt ≥ µX − η. Set Gx =

⋃{C : (x,C) ∈ δ} for each x ∈ X, so that Gx is open and δ = {(x,C) : x ∈ X,
C ⊆ Gx}. Suppose that xi ∈ X, αi ≥ 0 are such that

∑
i<n αi ≥ µX − η and

∑
i∈J αi ≤ µ(

⋃
i∈J Gxi) for

every J ⊆ n. By Lemma 4L, there are disjoint measurable Fi ⊆ Gxi , for i < n, such that µFi = αi for each
i. So ttt = {(xi, Fi) : i < n} belongs to T and is δ-fine, and µWttt =

∑
i<n αi ≥ µX − η. Accordingly

‖w −∑
i<n αif(xi)‖ = ‖w − Sttt(f)‖ ≤ ε.

As xi and αi are arbitrary, we have appropriate Gx and η.

4N Theorem Suppose that (X,T,Σ, µ) and (Y,S,T, ν) are atomless quasi-Radon probability spaces,
and φ : X → Y an almost continuous inverse-measure-preserving function. If U is a Banach space and
f : Y → U is McShane integrable, then fφ : X → Y is McShane integrable, with the same integral.
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proof Write w for McS
∫
f dν. Let ε > 0. By Lemma 4M, there are an η > 0 and a family 〈Hy〉y∈Y in S such

that y ∈ Hy for every y and ‖w−∑
i<n αif(yi)‖ ≤ ε whenever yi ∈ Y , αi ≥ 0 are such that

∑
i<n αi ≥ 1−3η

and
∑

i∈J αi ≤ ν(
⋃

i∈J Hyi
) for every J ⊆ n.

For each n ∈ N, let Kn ⊆ X be a closed set such that φ¹Kn is continuous and µ(X \Kn) ≤ 2−n min(η, ε).
For x ∈ X, let nx ∈ N be such that nx ≤ ‖f(φ(x))‖ < nx + 1 and take Gx ∈ T such that x ∈ Gx and
Knx

∩ Gx ⊆ φ−1[Hφ(x)]. Let δ be the neighbourhood gauge {(x,C) : x ∈ X, C ⊆ Gx}. Suppose that
sss ∈ T (X,Σ) is δ-fine and such that µWsss ≥ 1− η. Set

sss′ = {(x,E ∩Knx
) : (x,E) ∈ sss}.

so that sss′ ∈ T (X,Σ) is δ-fine. Then

‖Ssss(fφ)− Ssss′(fφ)‖ ≤
∑

(x,E)∈sss

‖f(x)‖µ(E \Knx
)

=
∞∑

n=0

∑
(x,E)∈sss
nx=n

‖f(x)‖µ(E \Knx
)

≤
∞∑

n=0

(n+ 1)µ(X \Kn) ≤
∞∑

n=0

2−n(n+ 1)ε = 4ε,

µ(Wsss \Wsss′) ≤
∑

(x,E)∈sss

µ(E \Knx)

=
∞∑

n=0

∑
(x,E)∈sss
nx=n

µ(E \Knx)

≤
∞∑

n=0

µ(X \Kn) ≤
∞∑

n=0

2−nη = 2η.

Enumerate sss′ as 〈(xi, Ei)〉i<n. Then
∑

i∈J µEi ≤ µ(
⋃

i∈J φ
−1[Hφ(xi)]) = ν(

⋃
i∈J Hφ(xi))

for any J ⊆ n, while
∑

i<n µEi = µWsss′ ≥ µWsss − 2η ≥ 1− 3η.

So

‖w − Ssss′(fφ)‖ = ‖w −∑
i<n µEi · f(φ(xi))‖ ≤ ε,

and ‖w − Ssss(fφ)‖ ≤ 5ε. As ε is arbitrary, McS
∫
fφ dµ = w, as required.

remark The hypothesis ‘atomless’ can be omitted; see Fremlin prET.

4O The following fact will be useful below (in the special case X = [0, 1], for which the proof can be
shortened a good deal), and seems to be interesting in itself.

Lemma Let (X,T,Σ, µ) be a σ-finite quasi-Radon measure space with countable Maharam type, and ε > 0.
Then there is an order-preserving function ψ : Σ → T such that µ(E\ψE) = 0 and µ(ψE\E) ≤ εmin(1, µE)
for every E ∈ Σ, while ψE = ψF if E4F is negligible.

Remark Of course the phrase ‘ψE = ψF if E4F is negligible’ tells us that really we are dealing with a
function defined on the measure algebra.

proof (a) Consider first the case in which X = {0, 1}N with its usual topology and µ is a probability
measure. Let C be the family of all sets C of the form {x : x ∈ X, x¹n = z} where n ∈ N and z ∈ {0, 1}n.
For E ∈ Σ set

ψE =
⋃{C : C ∈ C, µ(E ∩ C) ≥ 1

1+ε
µC}.
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Then ψE is always open. By Lévy’s martingale theorem (Fremlin 01, 275I), applied to the finite σ-algebras
Σn = {E : E ∈ Σ is determined by coordinates < n}, E\ψE is negligible for every E ∈ Σ. Clearly ψE ⊆ ψF
whenever E ⊆ F , and ψE = ψF if E4F is negligible. To estimate µ(ψE), note that C is an inverted tree.

So if we set A = {C : C ∈ C, µ(E ∩ C) ≥ 1

1+ε
µC} and look at the set A1 of maximal elements of A, these

are disjoint and their union is ψE; so that

µ(ψE) =
∑

C∈A1
µC ≤ ∑

C∈A1
(1 + ε)µ(E ∩ C) ≤ (1 + ε)µE.

So µ(ψE \ E) ≤ εµE.

(b) Evidently the result of (a) applies to any totally finite Radon measure on {0, 1}N. Now let (X,T,Σ, µ)
be any quasi-Radon probability measure with countable Maharam type. Because µ has countable Maharam
type, there is a sequence 〈En〉n∈N in Σ such that {E•

n : n ∈ N} generates the measure algebra A of µ; because
µ is σ-finite, A is ccc and is the σ-subalgebra of itself generated by {E•

n : n ∈ N}. This means that, writing
Σ0 for the σ-algebra of sets generated by {En : n ∈ N}, every member of Σ differs by a negligible set from
some member of Σ0. Define f : X → {0, 1}N by setting f(x)(n) = (χEn)(x) for all x ∈ X, n ∈ N. Then f
is measurable; because {0, 1}N is separable and metrizable, and µ is inner regular with respect to the closed
sets, f is almost continuous (Fremlin 03, 418J).

Because µ is effectively locally finite, it is inner regular with respect to the family K of measurable sets K
included in open sets of finite measure such that f¹K is continuous. Because µ is σ-finite, there is a disjoint
sequence 〈Kn〉n∈N in K such that

⋃
n∈NKn is conegligible. For each n ∈ N, there is an open set Gn ⊇ Kn of

finite measure; again because µ is inner regular with respect to the closed sets, we can find a non-increasing
sequence 〈Gni〉i∈N of open sets including Kn such that µ(Gni \Kn) ≤ 2−n−i−2ε for each i ∈ N.

(c) For each n ∈ N, we have a Radon measure νn on {0, 1}N defined by setting νnF = µ(Kn ∩ f−1[F ])
for every Borel set F ⊆ {0, 1}N; let Tn be the domain of νn. Write S for the topology of {0, 1}N, and let
ψn : Tn → S be an order-preserving function such that

νn(F \ ψnF ) = 0, νn(ψniF \ F ) ≤ 2−n−2εmin(1, νnF )

for every F ∈ Tn, and ψnF = ψnF
′ whenever νn(F4F ′) = 0. Then we can define ψ : Σ → T by setting

ψE = ∅ if µE = 0,

=
⋃

n∈N
(Gni \Kn) ∪ (Kn ∩ f−1[ψnF ])

whenever i = min{j : j ∈ N, µE ≥ 2−j} and F is a Borel subset of {0, 1}N such that µ(E4f−1[F ])) = 0.
Because E is equivalent to the inverse image of a Borel set, we can always find such an F ; because ψnF =
ψnF

′ whenever νn(F4F ′) = 0, it won’t matter which we take. Because ψnF is open and f¹Kn is continuous
for every n, ψE will be open. Because

⋃
n∈NKn is conegligible and F \ψnF is always νn-negligible, E \ψE

is µ-negligible.

Consider µ(ψE \ E). If µE = 0, this is zero, as ψE = 0. Otherwise, set i = min{j : µE ≥ 2−j}, so that
min(1, µE) ≥ 2−i. Then
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µ(ψE \ E) ≤
∞∑

n=0

µ(Gni \Kn) + µ(Kn ∩ f−1[ψnF ] \ E)

≤
∞∑

n=0

2−n−i−2ε+ µ(Kn ∩ f−1[ψnF ] \ f−1[F ])

= 2−i−1ε+
∞∑

n=0

νn(ψnF \ F )

≤ 2−i−1ε+
∞∑

n=0

2−n−2εmin(1, νnF )

≤ 1

2
εmin(1, µE) + 1

2
ε

∞∑
n=0

min(2−n−1, µ(Kn ∩ E))

≤ 1

2
εmin(1, µE) + 1

2
εmin(1, µE) = εmin(1, µE),

which is what we need. Finally, if E ⊆ E′ and µE = 0, of course ψE ⊆ ψE′. If µE > 0, then for any
corresponding F and F ′ we must have νn(F \ F ′) = 0 for every n, so that ψnF = ψn(F ∩ F ′) ⊆ ψnF

′; at
the same time, if i = min{j : µE ≥ 2−j} and i′ = min{j : µE ≥ 2−j}, then i ≥ i′ so Gni ⊆ Gni′ for every
n. Assembling these, we have ψE ⊆ ψE′, as required.

4P Problem ET Let µL be Lebesgue measure on [0, 1]. Consider the statement
(†) whenever 〈Gx〉x∈[0,1] is a family of open subsets of R such that µL(A \⋃

x∈AGx) = 0 for
every A ⊆ [0, 1], and ε > 0, there is a family 〈Hx〉x∈[0,1] of open sets such that x ∈ Hx for every
x ∈ [0, 1] and µL(

⋃
x∈AHx \

⋃
x∈AGx) ≤ ε for every A ⊆ [0, 1].

If this is true, we have the following result.

4Q Proposition Let T be the usual topology on [0, 1], and S another topology on [0, 1] with respect to
which Lebesgue measure µL on [0, 1] is quasi-Radon. Let U be a Banach space, and IT, IS the U -valued
McShane integrals. Then IS extends IT, and if (†) in 4P is true, then IS = IT.

proof (a) Write Σ for the σ-algebra of Lebesgue measurable subsets of [0, 1]. The identity map ι from
([0, 1],Σ) to ([0, 1],T) is measurable; because T is separable and metrizable, and µL is inner regular with
respect to the S-closed sets, ι is almost continuous (Fremlin 03, 418J), so every IT-integrable function is
IS-integrable with the right integral (Proposition 4N).

(b) Now suppose that (†) is true, U is a Banach space and f : [0, 1] → U is such that w = IS(f) is
defined. Let ε > 0. Then there are an η > 0 and a family 〈Wx〉x∈[0,1] in S such that ‖w−∑

i<n αif(xi)‖ ≤ ε
whenever xi ∈ [0, 1], αi ≥ 0 are such that

∑
i<n αi ≥ 1− 5η and

∑
i∈J αi ≤ µL(

⋃
i∈J Wxi) for every J ⊆ n.

For each n ∈ N, let ψn : Σ → T be an order-preserving function such that E \ ψnE is negligible and
µL(ψnE \ E) ≤ 2−nη for every E ∈ Σ (4O). Set An = {x : x ∈ [0, 1], n ≤ ‖f(x)‖ < n + 1} for n ∈ N. For
x ∈ An, set Gx = ψnWx. Then µL(A \⋃

x∈AGx) = 0 for every A ⊆ [0, 1]. PPP {Wx : x ∈ A} ⊆ S; because
µL is a τ -additive topological measure for S, there is a countable A′ ⊆ A such that

⋃
x∈AWx \

⋃
x∈A′Wx

is negligible. But now

A \⋃
x∈AGx ⊆ (

⋃
x∈AWx \

⋃
x∈A′Wx) ∪⋃

x∈A′Wx \Gx

is negligible. QQQ So (†) tells us that for each n ∈ N we have a family 〈W ′
nx〉x∈[0,1] in T such that x ∈ W ′

nx

for every x and µL(
⋃

x∈AW
′
nx \

⋃
x∈AGx) ≤ 2−nη for every A ⊆ [0, 1]. Set

δ′ =
⋃

n∈N{(x,C) : x ∈ An, C ⊆W ′
nx},

so that δ′ is a T-neighbourhood gauge on [0, 1].
If A ⊆ An, then µL(

⋃
x∈AW

′
nx \

⋃
x∈AWx) ≤ 2−n+1η. PPP
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⋃

x∈A

W ′
nx \

⋃

x∈A

Wx ⊆ (
⋃

x∈A

W ′
nx \

⋃

x∈A

Gx) ∪ (
⋃

x∈A

Gx \
⋃

x∈A

Wx)

⊆ (
⋃

x∈A

W ′
nx \

⋃

x∈A

Gx) ∪ (ψn(
⋃

x∈A

Wx) \
⋃

x∈A

Wx)

because ψn is order-preserving; but each item in the last expression has measure at most 2−nη. QQQ
Let ttt ∈ T be δ′-fine and such that µLWttt ≥ 1− η. For each n ∈ N, set

Hn =
⋃

(x,E)∈ttt,x∈An
W ′

nx \
⋃

(x,E)∈ttt,x∈An
Wx,

so that µLHn ≤ 2−n+1η. Set α(x,E) = µL(E \Hn) when (x,E) ∈ ttt and x ∈ An. Then for any sss ⊆ ttt,

∑

(x,E)∈sss

α(x,E) =
∞∑

n=0

∑
(x,E)∈sss
x∈An

µL(E \Hn)

= µL(
⋃

n∈N
(

⋃
(x,E)∈sss
x∈An

E \Hn))

≤ µL(
⋃

n∈N
(

⋃
(x,E)∈sss
x∈An

W ′
nx \Hn))

≤ µL(
⋃

n∈N

⋃
(x,E)∈sss
x∈An

Wx) = µL(
⋃

(x,E)∈sss

Wx).

Also

∑

(x,E)∈ttt

(µLE − α(x,E)) =
∞∑

n=0

∑
(x,E)∈ttt
x∈An

µL(E ∩Hn)

≤
∞∑

n=0

µLHn ≤ 4η,

so
∑

(x,E)∈ttt α(x,E) ≥ 1 − 5η. By the choice of 〈Wx〉x∈[0,1] and η, ‖w − ∑
(x,E)∈ttt α(x,E)f(x)‖ ≤ ε. On the

other hand

‖Sttt(f)−
∑

(x,E)∈ttt

α(x,E)f(x)‖ ≤
∞∑

n=0

∑
(x,E)∈ttt
x∈An

(n+ 1)|µLE − α(x,E)|

=
∞∑

n=0

(n+ 1)
∑

(x,E)∈ttt
x∈An

µL(E ∩Hn)

≤
∞∑

n=0

(n+ 1)µLHn

≤
∞∑

n=0

2−n+1(n+ 1)η = 8η ≤ 8ε.

So ‖w − Sttt(f)‖ ≤ 9ε. As ε is arbitrary, IT(f) = w; as f is arbitrary, IS = IT.

4R Remarks (a) It is easy to show that if 〈Gx〉x∈[0,1] is any family of relatively open subsets of [0, 1]
such that A\⋃x∈AGx is negligible for every A ⊆ [0, 1], and S is the topology on [0, 1] generated by the usual
topology and {{x} ∪Gx : x ∈ [0, 1]}, then Lebesgue measure is τ -additive for S, therefore quasi-Radon. So
families of this kind can be taken as representative of neighbourhood gauges for topologies on [0, 1] which
are compatible in this sense with Lebesgue measure.
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(b) Suppose that 〈Gx〉x∈[0,1] is a family of relatively open subsets of [0, 1] such that lim supη↓0
1

2η
µL(Gx∩

[x − η, x + η]) > 0 for every x ∈ [0, 1]. Then A′ = A \ ⋃
x∈AGx is negligible for every A ⊆ [0, 1]. PPP??? If

not, then there is an x ∈ A′ such that limη↓0
1

2η
µ∗L(A′ ∩ [x − η, x + η]) = 1 (Fremlin 01, 261D). But as

A′ ∩Gx = ∅ this is impossible. XXXQQQ (Compare Fremlin 03, 453Xk.)
Even for families of this kind I have not been able to determine whether (†) is true.

Basic references: Fremlin 03, §§481-482, Fremlin 95, Fremlin prET.
Further reading: Fremlin n92.
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