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Four problems in measure theory
D.H.FREMLIN

University of Essex, Colchester, England

1 The control measure problem

1A The problem Let X be a set and ¥ an algebra of subsets of X. Let v : ¥ — [0, 00][ be a function

such that

(i) vh =0

(ii) vE < vF whenever E, F € Y and EC F

(iii) W EUF) <vE + vF whenever E, FF € ¥
(v is a submeasure)

(iv) limy,— o0 ¥E,, = 0 whenever (E,,),¢n is a disjoint sequence in X
(v is exhaustive). Does there necessarily exist a functional p : ¥ — [0, 00[ which is additive, that is,
w(EUF) =puE + puF whenever E, F € ¥ are disjoint, and such that v is absolutely continuous with
respect to p, that is, for every € > 0 there is a § > 0 such that vE < e whenever uF < §7

This was for many years one of the classic outstanding problems of measure theory. It was important
because it is equivalent to a large number of questions in apparently different topics. I will present one of
these in 1I-1K below. Here I will try to give one major theorem, due to KALTON & ROBERTS 83, and some
examples. The (negative, as expected) solution may be found in TALAGRAND 08, my own note FREMLIN
NO8, or in the web version of FREMLIN 02, §394.

1B Definitions We shall need the following ideas.

(a) A submeasure v on an algebra ¥ is uniformly exhaustive if for every € > 0 there is an n € N such
that min;<, vE; < € whenever Ey, ..., [, € ¥ are disjoint.

(b) If A is a family of sets, its intersection number is the greatest number ¢ > 0 such that whenever
(A;)icr is a finite family in A (with repetitions allowed), there is a J C I, with #(J) > §#(I), such that

mieJ A # 0.

1C Kelley’s theorem Let X be a non-empty set and A a family of subsets of X with intersection
number §. Then there is a finitely additive functional p : PX — [0,1] such that uX = 1 and pA > ¢ for
every A € A.

proof If A has the finite intersection property, let F be an ultrafilter on X including A, and set uC =1 if
C € F, 0 otherwise; this works. Otherwise, on the linear space £°°(X) of bounded real-valued functions on
X define a functional p by setting

p(u) = (1 —9) inf{Zai DOy 0 >0, |ul < Z%‘X(X\Ai)
i=0

i=0
for some Ao, ..., A, € A}.
Because A does not have the finite intersection property, p(u) is well-defined. It is easy to see that p is
a seminorm. Also p(xX) > 1. P? Otherwise, we have ag,... ,ar > 0 and Ay,...,Ar € A such that
(1-19) Zf:o a; < 1 and xX < Zf:o a;x(X \ A;). Increasing the «a; fractionally if necessary, we may
suppose that they are all rational; say o; = r;/m where r; € N, m € N\ {0}. Set n = Zf:o r; and set
By =A; for 0<i <k, X, <5 < Yyem Then xX < 720 —x(X \ By), while (1 - 6) X0 — < 1.
But there must be a set J C {0,... ,n— 1} such that #(J) > dn and (), ; B; # 0. Take z € [;; By; then

we have

jeJ

1



which is impossible. XQ

There is therefore a linear functional h : £°°(X) — R such that h(xX) =1 and h(u) < p(u) for every u €
0> (X). Set \oD = h(xD) for D C X; then A\g : PX — R is an additive functional, Ay X = 1, \gD < p(xX)
for every D C X and A\gD < 1— ¢ whenever A € A and D C X \ A. Set \yC = sup{\gD : D C C} for
C C X; it is easy to check that Ay : PX — [0, 00[ is additive, and A;(X) > 1, A (X \ A) <1 -6 for every

Ae A Set uC = ﬁ)\lc for C' C X; then p: PX — [0,1] is additive, uX =1 and pu(X \ 4) <1 -6 for
1
every A € A. But this means that pA > § for every A € A.

1D Lemma Suppose that k, I, m € N are such that 3 < k <1 < m and 18mk < [2. Let L, M be sets
of sizes [, m respectively. Then there is a set R C M x L such that (i) each vertical section of R has just
three members (i) #(R[I]) > #(I) whenever I € [M]=*; so that for every I € [M]=* there is an injective
function f: I — L such that (x, f(x)) € R for every x € I.

notation [M|SF ={I: T C M, #(I) <k}, [M|F ={I:1C M, #(I)=k}, R[I[|={y:3x I, (x,y) € R}.
proof (a) We need to know that n! > 37"n" for every n € N; this is immediate from the inequality

Z;L:ani Zflnlnzdx:nlnnfnJrl for every n > 2.

(b) Let Q be the set of those R C M x L such that each vertical section of R has just three members, so
that

#(Q) = #L)™ = (g™

Let us regard €2 as a probability space with the uniform probability.
If J € [L]", where 3 <n <k, and x € M, then

Pr(R[{z}] C J) = £

(because R[{z}] is a random member of [L]?)
_ n(n—1)(n—2) n;’
—1)(—2) — "

So if I € [M]™ and J € [L]", then

Pr(R[I] C J) = [ [ Pr(RI{z}] € J)
zel
(because the sets R[{x}] are chosen independently)
n31L
— [3n "

A

Accordingly

Pr(there is an I C M such that #(R[I]) < #(I) < k)
< Pr(there is an I C M such that 3 < #(R[I]) < #(I) <k)
(because if I # () then #(R[I]) > 3)



k
3n
<> >° Pr(RUICJ) < Y #(MM#(L" 5
n=3Ie[M]" Je[L]" n=3
k ml ll an k mnln 3n mnnn32n
- Z:g n!(mfn)!n!(lfn)!ﬁin < — nlnll3n Z

(using (a))

There must therefore be some R € 2 such that #(R[I]) > #(I) whenever I C M and #

(1) <
(c) If now I € [M]=F, the restriction R; = RN (I x L) has the property that #(R;[I']) > #
I' C I. By Hall’s Marriage Lemma there is an injective function f : I — L such that (z, f
for every = € I.

#(I') for every
(r)) e Rr C R

1E Lemma Let ¥ be an algebra of subsets of X and v : ¥ — [0, oo[ a uniformly exhaustive submeasure.
Then for any € € ]0,v1] the set & = {E : vE > €} has intersection number greater than 0.

proof (a) If vX = 0 this is trivial, so we may assume that ¥X > 0; since neither the hypothesis nor
the conclusion is affected if we multiply v by a positive scalar, we may suppose that vX = 1. Because
v is uniformly exhaustive, there is an r > 1 such that whenever (G;);c; is a disjoint family in ¥ then
#({i:vG; > te}) <r, sothat Y, vG; <1+ te#(I). Set 6 = ¢/br, n = =702, so that

§—n>L(6—n)?2> L0220 =4

(b) Let (E;);cr be a non-empty finite family in &. Let m be any multiple of #(I) greater than or equal
to 1/n. Then there are integers k, I such that

3n§

in which case
3<k<I<m, 18mk<m2(—n)?<I%

(c) Take a set M of the form I x S where #(S) = m/#(I), so that #(M) = m. For ¢ = (i,s) € M set
H, = FE;. Let L be a set with [ members. By Lemma 1D, there is a set R € M x L such that every vertical
section of R has just three members and whenever Q € [M]<F there is an injective function fg : Q — L
such that (g, fo(q)) € R for every g € Q.

For Q C M set

bQ = ﬂqu Hq \ quM\Q qu
so that (bg)gcas is a partition of X into members of ¥. For ¢ € M, j € L set

Ggj=U{bg:qeQ € [M]Ska folq) =7}
If p, q are distinct members of M and j € L then
Gpj N qu = U{bQ ‘D, g€ Q € [M]Skv fQ(p) = fQ(q) :]} = Q)a

because every fg is injective. Set

m; =#{q:q€ M, Gg; #0})
for each j € L. Note that Gg; = 0 if (¢,5) ¢ R, s0 3o, m; < #(R) = 3m.

We have
1
dgem VGaj ST+ zem;

for each j, by the choice of r; so
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< (ré+ %e)m = %em <em

by the choice of [ and §. There must therefore be some ¢ € M such that
V(UjeL Ggj) < ZjGL vGq; < e <vHg,

and H, cannot be included in

UjeL Gqj = U{bq : ¢ € Q € [M]=F}.
But as [J{bg : ¢ € Q C M} is just H,, there must be an Q@ C M, of cardinal greater than k, such that

bg # 0.
Recall now that M =1 x S, and that

k > 3nm = 3n#(1)#(S).
The set J = {i:3 s, (i,$) € Q} must therefore have more than 3n#(I) members, since Q@ C J x S. But also
H; s = E; for each (i,s) € Q, so that (,c; E; 2 bg # 0.

(d) As (E;)ieq is arbitrary, the intersection number of & is at least 3n > 0.

1F The Kalton-Roberts theorem Let ¥ be an algebra of subsets of X, and v : ¥ — [0,00] a
uniformly exhaustive submeasure. Then there is an additive functional p : ¥ — [0,00[ such that v is
absolutely continuous with respect to p.

proof If vX = 0 this is trivial. Otherwise, for each n, &, = {a : va > 27"vX} has intersection number
dn > 0. By 1C, there is a finitely additive functional p, : PX — [0, 1] such that p,, X =1 and p, E > 6, for
every E € &,. Set pH = > °° 27", H for H € ¥; then p : ¥ — [0,2] is finitely additive and vE < 27"
whenever uE < 27"§,,. So v is absolutely continuous with respect to u.

1G Example The following example, taken from TALAGRAND 80, shows that most of the natural routes
to a positive answer to the question in 1A are blocked.

Fix n > 1, and let T be the set {0,1,...,2n — 1}, X = [I]", so that X is a finite set. For each ¢ € I set
A;={a:i€ae€ X} For EC X set

1 .
vE = ——inf{#(J): JC I EC UJAi}
i€

= %H inf{#(J) :anJ # ( for every a € E}.

It is elementary to check that v : PX — [0, 00[ is a submeasure, therefore (because PX is finite) a Maharam
submeasure.

The essential properties of v are twofold: (i) vX = 1; (ii) for any non-negative additive functional p such
that puE < vE for every E C X, pX < n%_l P (i)(a) If J C T and #(J) < n, there is an a € [T\ J|",
so that a € X \ U,c; 4i and X & |J;c; Ai. This means that X cannot be covered by fewer than n + 1 of
the sets A;, so that ¥X must be at least 1. (3) On the other hand, if J C I is any set of cardinal n + 1,
anJ # 0 for every a € X, so that X = J,c; A; and vX < 1. (ii) Every member of X belongs to just n of
the sets A;, so

_ o #U) _ 20
n:uX_ZiEI:u’A’L S n+1 _n+17

andqunLH.Q

1H Example For the next example, I present a much deeper idea from ROBERTS 93.

Let B be the algebra of open-and-closed subsets of {0, 1}!. Then for any ¢ > 0 we can find a submeasure
v:%B — [0,1] such that



(i) for every m € N there is a disjoint sequence Sy, ... , Spn in B such that vS,; = 1 for every i < n;
(ii) if (E,)nen is any disjoint sequence in 98 then limsup,,_, . vE, <e.

proof (a) For each n € N let I,, be the finite set {0,... ,n}, given its discrete topology; set X =[], oy In
with the product topology; let € be the algebra of subsets of X generated by sets of the form S;; = {m :
x(i) = j}, where i € N and j < 4. Note that X is compact and Hausdorff and that every member of € is
open-and-closed (because all the §;; are). Also € is atomless, countable and non-zero, so is isomorphic to
B. It will therefore be enough if I can describe a submeasure v : € — [0, 1] with the properties (i) and (ii)
above, and this is what I will do.

(b) For each n € N let A, be the set of non-empty members of € determined by coordinates in {0, ... ,n};
note that A, is finite. For k <1 € N, say that F € € is (k,[)-thin if for every A € Ay there is an A’ € A,
such that A’ C A\ E. Note that if ¥’ < k <[ <1’ then Ays C Ay and A; C Ay, so any (k,)-thin set is also
(k’,1")-thin.

Say that every E € €is (k,0)-small for every k € N, and that for k, r € Naset F € €is (k,r+1)-small if
there is some [ > k such that F is (k,[)-thin and (I, r)-small. Observe that E is (k, 1)-small iff it is (k,{)-thin
for some | > k, that is, there is no member of Ay included in E. Observe also that if F is (k,r)-small then
it is (k’,r)-small for every k' < k.

Write § = {Sij 1< € N}

(c) Suppose that E € € and k <1 < m are such that E is both (k,)-thin and (I, m)-thin. Then whenever
A€ Ay, SeSand ANS # 0, there is an A’ € A, such that A’ C A\ E and A’ NS # (. P Take S = Sy,
where i« < n. (i) If n <[, then AN S € A;; because E is (I,m)-thin, there is an A’ € A,, such that
A C(ANnS)\ E. (ii) If n > [, there is an A’ € A; such that A’ C A\ E, because E is (k,[)-thin; now
A" € A, and A’ N S is non-empty because A’ is determined by coordinates less than n. Q

(d) Tt follows that if S € S, ke N, Ae Ay, ANS #0, r e Nand Ey,...,E,._; are (k,2r)-small, then
ANS is not covered by Ey,...,FE._1. P Induce on r. The case r = 0 demands only that AN .S should not
be covered by the empty sequence, that is, A NS # (), which is one of the hypotheses. For the inductive
step to r + 1, we know that for each j < r there are I;, m; such that k <1; <'m; and Ej is (k,lj)—thin and
(I;,m;)-thin and (mj;,2r)-small. Rearranging Ey, ..., E, if necessary we may suppose that m, < m; for
everyj < r; set m = m,. By (c), there is an A’ € A, such that A’NS # () and A’ C A\ E,. Now every

, for j < r, is (my,2r)-small, therefore (m,2r)-small, so by the inductive hypothesis A’'NS Z |J
Accordlngly ANS Z Y, i<, £j and the induction continues. Q

j<7‘

(e) Now suppose that (E,),en is a disjoint sequence in €. Then for any k € N there are I, n* € N such
that £, is (k,l)-thin for every n > n*. P Consider G, = s, E; for each n € N. Then every G, is open
and (,cyGn = 0. If A € Ay, then A, with its subspace topology, is compact, so Baire’s theorem (3A3G)
tells us that there is an n4 such that G, , N A is not dense in A; let [4 be such that A\ G,,, includes a
member of A;,. Set n* = max{ns : A € A}, | = max{ly : A € Ai}. If n > n*, A € Aj there is an
A’ € A, C A such that

A’ C A\ G,, C A\ E,.

As A is arbitrary, F, is (k,l)-thin. Q
It follows at once that for any r € N we can find n}, ko < k1 < ... <k, € Nsuch that E, is (k;, k;j41)-thin
for every j < r and n > n}; so that E, is (0,r)-small for every n > n.

(f) Take an integer r > 1/e. Let U be the set of (0, 2r)-small members of €. Set
uE:%min{m:EgElu...UEm for some Ey,... ,E, €U}

if E can be covered by r or fewer members of U, 1 otherwise. It is easy to check that v : € — [0,1] is a
submeasure. By (d), no member of S can be covered by r or fewer members of U, so vS,,; = 1 whenever
1 <n €N. By (e), if (E,)nen is any disjoint sequence in €, E,, belongs to U for all but finitely many n, so
that vE,, < % € for all but finitely many n. Thus v has the required properties.

1T An equivalent problem Consider the question



Let X be a set, ¥ an algebra of subsets of X, and v : ¥ — [0,00[ a non-zero exhaustive
submeasure. Does there necessarily exist a non-zero additive functional p : ¥ — [0, oo[ such that
1 is absolutely continuous with respect to v?

It is very striking that asking for an additive functional which will dominate v (in the sense of 1A) should
come to the same thing as asking for an additive functional dominated by v. Here I will briefly sketch what
I think are the essential reasons for this coincidence. The details may be found in FREMLIN 02, §393.

1J Boolean algebras defined from submeasures (a) If X is a set, ¥ an algebra of subsets of X,
and v : ¥ — [0, 00[ a submeasure, then Z = {E : vE = 0} is an ideal of the Boolean algebra X, that is,
0ez,
FUFeZforall E, Fel,
FE €7 whenever E€ Y and EC FeT.

We therefore have an equivalence relation
E~F < EAFeT

on ¥, and can form a quotient Boolean algebra 2 = ¥ /7 made up of the equivalence classes under ¥ with
Boolean operations defined by

E*UF*=(EUF), E*nF*=(ENF),
E*\F*=(E\F)*, E*AF*=(EAF),

E*CcF* < E\FeZ

(FREMLIN 02, §312). Moreover, it is easy to see that vE = vF whenever E ~ F', so that we have a functional
7 : A — [0, 00[ defined by setting

vE* = vE for every E € X.
This will be a submeasure in the sense that
v0=0, ©va<vbwheneveraCb, v(aub)<wva+vbforalla,bel

Moreover, ¥ is exhaustive in the sense that lim,,_, ., 7a,, = 0 whenever (a,)nen is a sequence in 2 such that
am Nay = 0 for every m, n € N, since in this case, if a,, = E}, for every n, va, = v(E, \ U,., Ei) — 0
as n — oo. The difference between v and 7 is that ¥ is strictly positive, that is, if a € 2\ {0}, so that
a = E* for some E € ¥\ Z, then va = vE > 0.

(b) This means that if we set
pla,b) = v(arb) for a, b e A,

then p is a metric on 2. (For the triangle inequality we need check only that a A ¢ C (a A b)u (b A ¢) for all
a, b, c € A.) It is elementary now to confirm that for all four Boolean operations x = u, n, \ and A,

plaxa ,bxb") < p(a,b)+ p(a’,b')
because
(axa)A(bxb) C(anb)u(ad Al),
while
|Pa — vb| < max(va — v(anb),vb—v(anb)) < p(a,b)
for all a, b, a’, b’ € 2. Thus the Boolean operations, and 7, are uniformly continuous.

(c) Suppose now we complete 2 under the metric p to form a complete metric space (il, p). Then the
Boolean operations extend to 2, and this is still a Boolean algebra; moreover, 7 extends to a functional
v : A — [0, 00[. Because

v(ianbd) <vb, D(audb) <Da+Db, Pa= pa,0)

for all a, b € §l, U is still a strictly positive submeasure on 2.



More surprising is the fact that © is still exhaustive. (This requires a slightly deeper argument; see
FREMLIN 03, 393B.) It follows that if (a,)nen i a non-increasing sequence in 2L, it is a Cauchy sequence
for p, and has a limit. For any b € 2, the sets

{c:iccb}={c:plc,end) =0}, {c:bCc} ={c:p(b,cndb) =0}

are closed; it follows that a = inf,cna, in the partially ordered set 2. Turning this round, if (a,)nen
is a non-decreasing sequence in 2 with infimum 0, then it converges topologically to 0, so lim,, .~ Va, =
lim,, o p(an,0) = 0; ¥ is a Maharam submeasure. At the same time, we see that 2l is Dedekind
o-complete, that is, any countable subset of A has a supremum and infimum in 2A.

(d) There is more. Because 2 has a strictly positive exhaustive submeasure, it must be ccc, that is, every
disjoint set is countable. This means that if A C Ais a non-empty downwards-directed set with infimum 0,
there is a non-increasing sequence in A with infimum 0 (FREMLIN 02, 316E), so that inf,c 4 7a = 0. Because
U is sequentially order-continuous, we find also that A is weakly (o, 00)-distributive, that is,

whenever (A, ) en is a sequence of non-empty downwards-directed sets in 2 all with infimum
0, then

B={b:YneN3Jac A, acb}

has infimum 0.
(For given € > 0 we can find a,, € A,, such that pa,, <2 "€ now b = sup,,cy a, belongs to B and b < 2e.)

(e) The remaining facts we need are the following.
(i) Any Boolean algebra 2l is isomorphic to some algebra of sets. (FREMLIN 02, §311.)

(ii) If 2 is a Dedekind o-complete Boolean algebra, and p, v two Maharam submeasures on 2 such
that pa = 0 whenever va = 0, then  is absolutely continuous with respect to v. (Copy the standard proof
for the case when 2 is a o-algebra of sets and pu, v are both countably additive measures.)

(iii) If 2 is a Boolean algebra, and p : 2 — [0, 00[ is an additive functional, and we set
vb = inf{sup,c 4 pa : A C A is a non-empty upwards-directed set with supremum b}

for every b € 2, then v is an order-continuous additive functional (FREMLIN 02, 362Bd); and if A is weakly
(0, 00)-distributive and p is strictly positive, so is v (FREMLIN 02, 391D).

(iv) If A is a Boolean algebra, and a € 2, then the principal ideal 2, = {b: b C a}, with the inherited
operations U, N and A, is a Boolean algebra in its own right (FREMLIN 02, 312D); and if 2 is weakly
(0, 00)-distributive, so is 2,.

1K We are now ready to look at the statements which I claim are equiveridical. Consider the statements
(1) whenever X is a set, ¥ is an algebra of subsets of X, and v is an exhaustive submeasure
on ¥, then there is an additive functional p : ¥ — [0, 00 such that v is absolutely continuous
with respect to u;
(1) whenever X is a set, ¥ is an algebra of subsets of X, and v is a non-zero exhaustive
submeasure on X, then there is a non-zero additive functional p : ¥ — [0, 00[ such that p is
absolutely continuous with respect to v.

proof that () = (1) Suppose that (1) is true. Let X be a set, X an algebra of subsets of X, and v a
non-zero exhaustive submeasure on Y. Build 2, f, 2l and # as in 1J. Now # is an exhaustive submeasure
on 2. A is constructed as an abstract Boolean algebra, but it is isomorphic to an algebra of sets (1J(e-i)),
so (1) tells us that there is an additive functional p : A— [0, 00| such that ¥ is absolutely continuous with
respect to p. In particular, because ¥ is strictly positive, so is u. Now 1J(e-iii) tells us that there is an
order-continuous additive functional p; : A — [0, o[ which is still strictly positive; as p1 is a Maharam
submeasure, it is absolutely continuous with respect to © (1J(e-ii)). We have a natural homomorphism
E— E*: X —>AC §l; setting puo B = p1 E* for £ € X, it is easy to check that s is an additive functional
and is absolutely continuous with respect to v. Also pusF = 0 iff vE = 0, so us is non-zero.



proof that () = (f) Suppose that (1) is true. Let X be a set, 3 an algebra of subsets of X, and v a non-zero
exhaustive submeasure on X. Build 2, j, 2 and ¥ as in 1J. Now # is an exhaustive submeasure on 2. It
follows that if o is non-zero then there is a non-zero additive functional absolutely continuous with respect
to U; but we need a little more. Let D C 2 be the set of those d € 2 such that there is a strictly positive
additive functional on the principal ideal QAld. Then every non-zero a € 2l includes a non-zero member of D.
Plfac ﬁ\ {0}, then 79, is a non-zero exhaustive submeasure on 2,. By (1), there is a non-zero additive
functional A : 2, — [0, o[ which is absolutely continuous with respect to 7. Now B = {b : \b = Aa} is
a downwards-directed set and infyep 26 > 0, so B cannot have infimum 0 (1Jd); let d be a non-zero lower
bound for B. If 0 # ¢ C d, then a\ ¢ ¢ B so Ac > 0; thus )\fé\[d is strictly positive and d € D. Q

By Zorn’s lemma, there is a maximal dleomt subset D1 of D. For each d € Dy, let A\ : Qld — [0, 00[ be
a strictly positive additive functional. Because 2 is ccc (1Jd), Dy is countable; let (eq)aep, be a summable
family of strictly positive real numbers. Set

€
a=4ep, Tr;dd)\d(a nd)

for every a € 2. Then W A — [0, 00 is additive. If ua = 0 then and = 0 for every dn Dy, so a cannot
include any member of D and must be zero; thus p is strictly positive. Once again, we have an order-
continuous strictly positive additive functional p; on ﬁ, and a corresponding additive functional pus on X.
This time, we use 1J(e-ii) to see that o is absolutely continuous with respect to w1, so that v is absolutely
continuous with respect to ps.

Basic references: FREMLIN 02, §§391-394, and TALAGRAND 08.
Origin of problem: MAHARAM 47.
Further reading: KALTON 89, ROBERTS 93.



2 The lifting problem

2A Liftings Let (X,X%, 1) be a measure space. A lifting for u is a Boolean homomorphism ¢ : ¥ — 3
(that is, a function such that ¢X = X, ¢(FNF) = oEN@F and ¢(EAF) = ¢EAGF for all E, F € X),
such that ¢E = () whenever uF = 0 and u(EAQE) =0 for every E € X.

For any measure space (X, Y, 1) we have an equivalence relation ~ on ¥ defined by saying that £ ~ F
it y(EAF) = 0. The measure algebra of (X,X, 1) is (A, &) where 2 is the set of equivalence classes in
3 under ~ and gF* = pE for every E € ¥. We have a Boolean algebra structure on 2 defined by saying
that E*nF* = (ENF)*, E* C F* iff u(E\ F) =0, etc. Now if ¢ : ¥ — ¥ is a lifting, we have a Boolean
homomorphism 6 : A — ¥ defined by setting 0E* = ¢F for every E € X, and (fa)* = a for every a € 2; 0
is a right inverse of the canonical Boolean homomorphism F — E°.

2B Theorem (MAHARAM 58) If (X, X, ) is a probability space which is complete, that is, F € ¥
whenever £ C F' € ¥ and pF = 0, then p has a lifting.

I will not give a proof here; the general argument depends on a thorough understanding of Boolean
algebras and the martingale theorem; see FREMLIN 02, §341.

2C Maharam’s theorem It helps to know the following. First, we say that a probability space (X, X, )
is Maharam homogeneous, with Maharam type « (where x is a cardinal), if there is a stochastically
independent family (E¢)¢<,. of measurable sets of measure % such that, writing Xy for the o-algebra generated
by {E¢ : £ < Kk}, every member of X differs by a negligible set from some member of 3. Now Maharam’s
theorem (MAHARAM 42, or FREMLIN 02, §331) is: for every probability space (X, X, 1), there is a partition
of X into countably many measurable sets E of non-zero measure such that the normalized subspace measure
on F is Maharam homogeneous.

The relevance of this theorem is the following fact.

2D Proposition Let k be a cardinal such that v, [Ba, has a lifting, where v,; is the usual measure on
{0,1}* and Ba, is the o-algebra of Baire subsets of {0,1}", that is, the o-algebra generated by the sets
He ={z:2€{0,1}", 2(§) = 1}. Then every Maharam probability space (X, X, 1) of Maharam type  has
a lifting.

proof Let (E¢)¢<.. and Xy be as in the definition 2C. Define f : X — {0,1}" by setting f(z)(§) = xFe(x)
for x € X, £ < k; then Ee = f~1[H] for every ¢ and Xo = {f~[H] : H € Ba,}; also uf '[H] = v, H for
every H € Ba,. Let ¢ : Ba,, — Ba, be a lifting for v, [Ba,. Then we can define ¢ : ¥ — X by saying that
¢E = f~[¢H] whenever E € &, H € Ba, and u(EAf~1[H]) =0, and ¢ is a lifting for .

2E Corollary The following are equiveridical:
(i) every probability measure has a lifting;
(ii) vx [ Bay has a lifting for every cardinal .

proof Proposition 2D tells us that if (ii) is true then every Maharam homogeneous probability measure has
a lifting; now Maharam’s theorem quickly gives the result.

2F Filtrations The best results known for non-complete probability spaces are based on the following
method. First, if P is any partially ordered set, we say that it has countable cofinality if there is a
countable set () C P which is cofinal with P, that is, for every p € P there is a ¢ € () such that p < q.
Next, if 2 is a Boolean algebra, a tight wq-filtration for 2 (GESCHKE 02) is a family (a¢)e<c in A, for
some ordinal ¢, such that, writing 2, for the subalgebra of 2 generated by {a¢ : £ < a}, (i) A = A (ii) for
every a < ¢ and a € U441, the set {b:b € A, b C a} has countable cofinality.

Now the theorem is the following.

2G Theorem Let (X, X, 1) be a measure space such that X > 0, and suppose that its measure algebra
has a tight w;-filtration. Then p has a lifting.

proof Let (a¢)e<c be a tight wq-filtration in 2; write 2, for the subalgebra of 2 generated by {a¢ : { < a}.
Define Boolean homomorphisms 6, : 2, — ¥ inductively, as follows. Start with 2y = {0,1}, 6,0 = 0,
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6ol = X. (This is where we need to know that uX > 0, so that 0 # 1 in .) Given 6,, let B, B’ C 2, be
countable sets such that B is cofinal with {b:b € 2, b C a,} and B’ is cofinal with {b: b€ Ay, b C 1\ an}.
Choose any E € X such that E* = a, and set

E, = (E U UbeB eab) \ UbeB/ Oab.

Because B and B’ are both countable, E, € ¥. Because they are cofinal with {b: b € 2,, b C a,} and
{b:beA,, bC 1\a,} respectively, 0b C E,, whenever {b:b € 2, and b C a,, while 60N E, = 0 whenever
{b:beA, and b C 1\ a,. This means that we can define a Boolean homomorphism 6,1 : Ao41 — X by
setting

Our1((bnag)u(c\ay)) = (0abN EL) U (Buc\ Eqy

for all b, c € A,.

This is the inductive step to a successor ordinal. For the inductive step to a non-zero limit ordinal o < (,
Ao = U, e and we can define 0, by setting 0oa = Oca whenever { < o and a € .

An easy induction now shows that a = (6,a)* whenever o < k and a € U,, so that 6 : A — ¥ is a lifting
for p.

2H Proposition (a) (MOKOBODZKI 75) Suppose that the continuum hypothesis is true. If (X, X, ) is
a probability space with a measure algebra of cardinal at most ¢t = ws, then its measure algebra is tightly
ws-filtered, so p has a lifting.

(b) (T.J.Carlson) If we add ws Cohen reals to a model of the generalized continuum hypothesis, then in
the resulting model the Lebesgue measure algebra is tightly wi-filtered, so uy[B has a lifting, where B is
the Borel o-algebra of [0, 1] and py, is Lebesgue measure.

Remark It is easy to prove that ([0, 1], B, uz,[B) is isomorphic to ({0,1}%, Bay,, v, [Ba,) (cf. FREMLIN 01,
254K).

21 Theorem (SHELAH 83) It is relatively consistent with ZFC to suppose that ur,[B has no lifting.

2J Problem Is there a probability space without a lifting?

Remark By 2E, it is enough to consider ({0,1}*, Bay, v, [Ba,) where & is a cardinal. Since Mokobodzki’s
theorem deals with x < wy when ¢ = wq, the key case to consider seems to be k = w3. Here I note that it is
a theorem of GESCHKE 02 that a probability algebra of cardinal w3 or more cannot be tightly w-filtered.

2K Further questions. Let B be the algebra of Borel subsets of [0, 1] and u7, Lebesgue measure on R.

(a) Shelah’s construction of a model in which gy, [B has no lifting is interesting and important. But there
are many well-known models in which ¢ > w; (e.g., random real models or models of Martin’s axiom), and
in none of these, except Cohen’s original model of not-CH, do we know whether uy[B has a lifting. For
instance, it seems quite possible that whenever ¢ > wy then uy [ B has no lifting.

(b) A.H.Stone noted that even when ¢ = wq, so that we have a lifting for py,[B, the methods available
give no control over the Borel classes of ¢ F, as E runs over B. So he asked: is it possible to have a lifting
¢ of pr [ B such that all the lifted sets ¢ E are of bounded Borel class?

(c) Can there be a lifting ¢ for M(LQ) [ By, where By is the algebra of Borel subsets of [0,1]? and u(LQ) is
Lebesgue measure on R?, which respects coordinates, i.e., is such that if E, F' € B then ¢(E x F) is of
the form E' x F'?

(d) Even for complete probability spaces there remain some puzzles. For instance: let u be the measure
on {0,1} such that 4{0} = 3, u{1} = 2, and let A be the (completed) product of countably many copies of
u, so that \ is a probability measure on {0, 1}V, Is there a lifting ¢ for A\ which respects coordinates in the
sense that ¢F is determined by coordinates in J whenever F € dom A is determined by coordinates in J?

Basic reference: FREMLIN 02, §6341, 344-346.
Further reading: SHELAH 83, JUST 92, BURKE 93, GESCHKE 02.
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3 Radon spaces

3A Definition A Hausdorff space X is Radon if every totally finite Borel measure on X is tight (that
is, uE = sup{uK : K C E is closed and compact} whenever y measures FE).

3B Basic facts (a) A complete metric space X is Radon iff K = w(X) is measure-free (that is, any
probability measure on x with domain Pk gives positive measure to some singleton). In particular, any
Polish space is Radon.

(b) If X is a Hausdorff space, the set of subsets of X which are Radon spaces in the subspace topologies
is closed under Souslin’s operation.

(¢) wy and wy + 1, with their order topologies, are not Radon.
(d) For a set I, [0, 1] is Radon iff {0,1} is Radon iff I is countable.
(e) A hereditarily Lindeldf K-analytic Hausdorff space is Radon; in particular, the split interval is Radon.

(f) If X is a Banach space with an equivalent Kadec norm (e.g., a weakly K-countably determined Banach
space, or a Banach lattice with an order-continuous norm), then X is a Radon space in its weak topology
iff w(X) is measure-free.

(g) If X is an Eberlein compact, it is a Radon space iff w(X) is measure-free.

3C Proposition (a) In a Radon Hausdorff space, countably compact sets are compact.
(b) Any Radon compact Hausdorff space is countably tight.

proof (a) Let X be a Radon Hausdorff space and C' C X a countably compact set. Let £ be a non-empty
family of relatively closed subsets of C' with the finite intersection property; let £ O £ be a maximal family
of relatively closed subsets of C' with the finite intersection property. Then £* is closed under countable
intersections. *? Otherwise, there is a sequence (E,, )nen in £* with intersection E ¢ £*. By the maximality
of £*, there must be Fy, ..., F,, € £ such that FoN...NF, NE =0. But now {F; : i <m}U{FE;:i €N}
is a countable family of relatively closed subsets of C' which has the finite intersection property and empty
intersection; which contradicts the hypothesis that C' is countably compact. XQ
Set

Y ={A:ACX, there is an E € £* such that either E C Aor EN A = (}.

Because £* is closed under countable intersections, ¥ is a og-algebra of subsets of X and we have a measure
o with domain ¥ defined by setting pgA = 1 if A includes some member of £*, 0 otherwise. If FF C X is
closed, then either FNC € £ and poF = 1, or there are Fy, ..., F,, € £ such that FN(),.,, F; =0 and
puoF = 0. So every closed set, therefore every Borel set, belongs to ¥, and the restriction p of g to the
Borel g-algebra B(X) is a Borel measure on X.

Since X > 0 and X is a Radon space, there is a compact set K C X such that uK > 0. Now K cannot
be covered by any finite family of negligible open sets, and is therefore not covered by the family of all
negligible open sets. Let € K be such that every open set containing x has non-zero measure. 7 If £ € £*
and x ¢ E, then p{x} = 0 and u(X \ {z}) > 0; so there is a compact set L C X \ {x} such that uL > 0.
But now there must be an F' € £* such that F C L, so that X \ L is a negligible open set containing z. X
Thus 2 € ((€* C € and £ has non-empty intersection. As & is arbitrary, C' is compact.

(b) If X is a Radon compact Hausdorff space and A C X, set C = [J{B : B C A is countable}. Then
D C C for every countable set D C C, so every sequence in C has a cluster point and C is countably
compact. By (i), C is compact, therefore closed, and must be the closure of A. As A is arbitrary, X is
countably tight.

3D Questions (a) Is the continuous image of a Radon compact Hausdorff space always Radon?

(b)(P.J.Nyikos) Is every Radon compact Hausdorff space sequentially compact? (If 2' > ¢, yes, because
in this case countably tight compact Hausdorff spaces are sequentially compact.)

(c) Is there a pair of Radon spaces with a product which is not Radon? (If either there is an atomlessly-
measurable cardinal or m = ¢, yes; see WAGE 80 and FREMLIN PRW.)
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(d) Is there a Banach space with weight w; which is not Radon when given its weak topology? There is
certainly a space with weight ¢ which is not Radon (FREMLIN 03, 4661a).
(e) If ¢ is measure-free, is £>° a Radon space in its weak topology?

Basic reference: FREMLIN 03, §434; also §5466-467.
Original source: SCHWARTZ 73.
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4 The vector-valued McShane integral

4A Vector-valued gauge integrals Let X be a set, C a family of subsets of X, T C [X x C]<“ a non-
empty set of ‘tagged partitions’, F a filter on 7" and U a normed space. Fort € T, set Wy = | J{C : (z,C) € t},
the footprint of t. If § C X x PX, say that t € T is d-fine if t C 4. If R C PX, say that t is R-filling if
X\W; e R.

For f: X = U,v:C—Randt €T, set Sy =3, o) VC - f(z). Now set

L, 7(f) = lim¢— 7 Se (f)

if this is defined in X for the norm topology. Then I,  is a linear functional defined on a linear subspace
of UX, a gauge integral for U-valued functions.

4B Definitions It will be helpful to have some further terminology, following FREMLIN 01 and FREMLIN
03.

(a) Let (X, X, 1) be a measure space.

(i) I say that p is inner regular with respect to a family K of sets if uFE = sup{puK : K € LN,
K C E} for every E € 3. (Thus a ‘tight’ measure is one which is inner regular with respect to the closed
compact sets.)
Similarly, u is outer regular with respect to a family H of sets if uF = inf{uH : He HNX, H O E}
for every FE € 3.

(ii) I will write %7 for {F: E € ¥, uE < oo}. Now (X, %, ) is semi-finite if y is inner regular with
respect to 27

(iii) (X,X%, ) is locally determined if it is semi-finite and A € ¥ whenever A C X is such that
ANE €Xfor every E € ¥ such that uF < oo.

(iv) (X, X, ) is totally finite if uX < oo.

(v) (X,%, ) is atomless if whenever E € ¥ and pE > 0 then there is an F' € ¥ such that F' C E,
wF > 0and u(E\ F) > 0.

(c) Let (X, X, u) be a measure space and T a topology on X.
(i) p is a topological measure if it measures every open set (and therefore every Borel set).

(ii) p is T-additive if u(|JG) = supgeg pG whenever G is a non-empty upwards-directed family in
TN Y with union in TN X.

(iii) p is effectively locally finite if uF = sup{u(GNE): G € TN, uG < oo} for every E € X.

(iv) p is a quasi-Radon measure if it is a complete locally determined 7-additive effectively locally
finite topological measure on X which is inner regular with respect to the closed sets. (Remark: on a regular
topological space, any 7-additive effectively locally finite topological measure which is inner regular with
respect to the Borel sets is inner regular with respect to the closed sets; see FREMLIN 03, 414Mb.)

(d)(i) If X and Y are topological spaces, u is a measure on X and ¢ : X — Y is a function, I say that
¢ is measurable if ;i measures ¢~ 1[H] for every open set H C Y, and almost continuous if x is inner
regular with respect to {K : K C X, ¢ K is continuous}.

(ii) If (X, %, p) and (Y, T, v) are measure spaces, a function ¢ : X — Y is inverse-measure-preserv-
ing if uf~1[F] is defined and equal to vF for every F € T.

4C The McShane integral Let (X, %, Y, i) be a quasi-Radon measure space. Let T' = T(X, %7) be the
family of finite subsets ¢ of X x X/ such that C N C” is empty whenever (z,C), (z’,C’) are distinct members
of t. Let A = A(X, %) be the set of all neighbourhood gauges on X, that is, families § C X x PX such
that, for each z € X, {C : (z,C) € ¢} is of the form PG for some open set G containing . Note that
81 N6y € A for all 61, 65 € A. For any H € ©f and n > 0, let Run be theset {F: F e X, u(FNnH) <n}
Let F be the filter on T generated by sets of the form
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{t :t € T is 6-fine and R, -filling}

where § Tuns over A, E over ©/ and n over ]0,00[. (Because p is an effectively locally finite 7-additive
topological measure, there is indeed such a filter; see part (a) of the proof of 4E below.) The corresponding
functional I, = MESdy is the McShane integral for vector-valued functions defined on X.

4D Remarks The definition here matches that of BONGIORNO DI Pi1AzzA & MUsSIAL 00; it differs
significantly from that in FREMLIN 95, and even more from that in GORDON 90 and FREMLIN & MENDOZA
94, but coincides with the earlier definitions in the contexts in which they were set out. For the identification
of the integral here with that of FREMLIN 95, see BONGIORNO DI P1AzzA & MUsIAL 00 or FREMLIN PRET.
Rather than appeal to these, I will repeat some of the theorems of FREMLIN 95 in the new formulation.

4E Saks-Henstock Lemma (compare FREMLIN 03, 482B) Let (X, T, %, 1) be a quasi-Radon measure
space, U a Banach space, and f : X — U a McShane integrable function. Define T as in 4C. Then we
have a unique additive function F' : ¥ — U such that F(X) = Mfsfdu and for every € > 0 there are a
neighbourhood gauge 6 on X, an H € ¥/ and an 7 > 0 such that whenever t € T is é-fine, Wy C E € ¥ and
u(H N E\ W) <1, then [Sy(f) — F(B)] < e.

proof (a) For any E € ¥, let T be the set of those tagged partitions ¢ € T such that, for (z,C) €t,C C F
whenever x € E and C C X \ E whenever x € X \ E. Set Ry, ={F : E € X, uy(ENH) < n}, as in 4C.
Then for any neighbourhood gauge § on X, H € ¥/, 5 > 0 and finite & C X, there is a d-fine R p,-filling
t € (gee Te- P Replacing £ by the set of atoms in the finite algebra of sets which it generates, if necessary,
it is enough to consider the case in which £ is a partition of X. For z € X set G, = |J{C : (z,C) € ¢}, so
that G, is an open set containing z. For each F € £, {G,, : x € E} is an open cover of H N E, so there is

a finite set Iy C E such that u(H NE\U,¢;, Gz) < % (see FREMLIN 03, 414E; I am passing over the

trivial case & = X = ). Enumerate I as (2(E,1))icny, and set C(E,i) = HNEN Gypi \Ujci Gue.j)
for i <ng. Thent = {(z(E,i),C(E,i)): E € £, i < ng} has the required properties. Q

(b) We therefore have a filter F* on T' generated by the sets
{t :tis é-fine}
for neighbourhood gauges 0,
{t : t is Ry, filling}
for H € ¥ and n > 0, and the sets T for E € ¥. For E € S and t € T, set tg = {(z,C) : (z,C) € t,
x € E}. Then
F(E) =limg_ 7~ St (f)

is defined in U for every E € ¥. P Let € > 0. Then there are a neighbourhood gauge 6 and H € &/, >0
such that ||S¢(f) — MES fdu|| < e for every d-fine, Ry 2,-filling ¢ € T. Now suppose that s, t € T are d-fine
and Rp,-filling. In this case, set t' = sp Utx\g. Then ¢’ is é-fine and Ry 2,-filling. So

195 (f) = St (F)l = 15, (f) = Seu (F) = 156 (f) = Se(f)I] < 2e.

As {t : t € Tg is o-fine and Ry, -filling} belongs to F*, and U is complete, this is enough to show that
limg_, 7+ St (f) is defined in U. Q

(c) To see that F' is additive, observe that if E, E’ € ¥ are disjoint, and ¢t € T N T/, then Sy, ., (f) =
Sty (f) + St,, (f): taking the limit along F*, F(EUE') = F(E) + F(E').

As for MEs fdp, this is just the limit of S¢(f) along the smaller filter on 7' generated by the gauges and
the residual families, so must be equal to F(X).

(d) Now for the approximating property claimed for F. Given € > 0, take a neighbourhood gauge 4, an
H € %7 and an n > 0 such that ||Sy(f) — Mfs fdpu|| < %€ for every d-fine Ry 2,-filling t. Suppose that t € T
is 0-fine, E D Wy and p(H N E\ W) <. Then (using the technique in (a)) we can find a d-fine s € T' such
that W, C X \ E and p((H \ E) \ Ws) < n. At the same time, there is a d-fine R, -filling u € Tg such that
| F(E) — Sus (f)|l < 3¢ In this case, both ¢ Us and ug U's are d-fine and Ry 2,-filling. So
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IE(E) ~ S < IF(E) ~ Sup (1) + [Susn(1) — Secu(S)]
< et ISupunlf) — Mis faul + [ s i~ Seca(7)] < €

as required.

(e) Of course this requirement determines F' completely. So the proof is complete.

4F Theorem Let (X,%, X, 1) be a quasi-Radon measure space and f : X — R a McShane integrable
function. Let F': ¥ — R be the Saks-Henstock indefinite integral as defined in 4E. Then the f is integrable
in the ordinary sense, and [, fdu = F(E) for every E € .

proof For each m € N, choose a neighbourhood gauge 6,, on X, an H,, € £/ and an 7,, € ]0,27™] such
that ||F(E) — Se(f)]] < 27™ whenever t € T is d,,,-fine, W; C E € ¥ and p(H,, N E\ W) < .

(a) f is measurable. P? If not, then, because p is complete and locally determined, there are a set
Ey € ¥f and a < B in R such that A = {x : z € Ey, f(z) < a} and B = {z : x € Ey, f(x) > 3} both
have outer measure uFEy > 0 (see FREMLIN 03, 413G). Take any m € N. Set G, = J{C : (z,C) € 6, }
for each = € X; then (J,. 4 G, is an open set including A, so u(Eo NJ,c 4 G=) = pEo and there is a finite
sequence (z;)i<n in A such that p(Eo \ U, Gz;) < m- Set C; = Eo N Gy, \ U;; Ga; for each i < n,
t = {(z;,C;) i <n}. Then Wy = J,.,, Ci C Ep and p(Ep \ Wy) <1 <27™, while ¢ is §,,,-fine. So

F(Eg) <S¢ 427" <auWy +27™ < apky +27™(1 + |al).

Similarly, F(Ey) > BuEo—2""(1+]|3]), so (B—a)uEy < 2™ (24 |a|+|8|). As mis arbitrary, (6—a)uEy = 0,
which is impossible. XQ

(b) Now set V = {z : f(z) > 0}. Then [, fdu < F(V)+3. P? Otherwise, we can find a simple function
g such that 0 < g < f* and [gdu > F(V) + 3. Express g as >.._, a;xE; where Ey, ..., E, are disjoint
measurable sets of finite measure and «; > 0 for every i. Let ) € ]0, 9] be such that nmax;<, a; < 1. Then
we can find a dp-fine t € (", ,, T, NTv (as defined in the proof of 4E) such that p((HyU UZ<_n E)\Wy) <n.
In this case, setting s = {(z,C) : (x,C) € ¢, x € V'}, 5 is do-fine and u(V N Hy \ W) < 10, 50

F(V) > Se(f) =12 > aw(E;nWs) — 1
i=0
(because if (x,C) € s, then f(z) > 0, while if CN E; # () then C C E; and z € E;)

> ZaiMEi 2> F(V),
i=0

which is impossible. XQ
Similarly, fX\V f>F(X\V)—3,so f is integrable in the usual sense.

(c) For the identification between F' and the ordinary indefinite integral of f, take any m € N. Then
we can find H € ¥/ and n > 0 such that H D H,,, n < %nm and fE |f] < 2™ whenever u(EN H) < n.
Let k € N be such that u{z : z € H, |f(z)] > 2¥} < n and 27FuH < 27 and for —4F < i < 4F set
Ei={x:2¢€ H,2% < f(r) < 27%@ +1)}. Now suppose that E € ¥. Then we can find a §,,-fine
Ry filling t € ﬂli\gM‘ Tgng,. Taking s = {(z,C) : (z,C) €t, z € U|i|S4’“ ENE;}, sis dp-fine, Wy C F
and

p(Hy NE\Ws) < p(HNE'\ U|z'|§4k Ei) 4+ p(H N U\i|§4k Ei\ Wt) < 21 < .

So |F(E) — Ss(f)] < 27™. On the other hand, whenever (z,C) € s and y € C, there is some i such that
r € E; and C C E;, so that |f(x) — f(y)| < 27%; accordingly
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|SSf_‘/Ws fdpl < Z |f(x)uC’—/cfdu| < ( Z 27k uC

(z,C)es z,C)€Es
=27 kW, <2 kuH < 27™,

Finally, because u(H deqn By) and p(E N H O U jeqn B \ Ws) < u(EN H\ W) are both at most
li|<4 li|<4

n, | [ fdp — st fdu| < 27+ Putting these together, |F(E) — [, fdu| < 27™%2; as m is arbitrary,

F(E) = [, fdp.

4G Theorem Let (X, %, %, 1) be a quasi-Radon measure space, U and V Banach spaces, and P : U — V
a continuous linear operator. If f : X — U is McShane integrable, so is Pf : X — V, and MSP fdu =
P(Mfs fdy). Moreover, if F: ¥ — U is the Saks-Henstock indefinite integral of f, then PF : ¥ — V is the
Saks-Henstock indefinite integral of Pf.

proof We have only to note that for every tagged partition ¢ we shall have S(Pf) = P(S¢(f)), and take
appropriate limits.

4H Theorem Let (X,%,%, 1) be a quasi-Radon measure space, U a Banach space, and f: X — U a
McShane integrable function. Then f is Pettis integrable, and its Saks-Henstock indefinite integral is its
indefinite Pettis integral.

proof Let F' be the Saks-Henstock indefinite integral of f. Applying 4G to linear operators h € U*, we see
that hf is McShane integrable, with Saks-Henstock indefinite integral hF. By 4F, [ p hfdu is defined and
equal to h(F(E)) for every E € X, h € U*; but this is just the definition of Pettis integrability and indefinite
Pettis integral.

41 Theorem Let (X, T, %, 1) be a quasi-Radon measure space in which u is outer regular with respect
to the open sets, and U a Banach space. If f : X — U is Bochner integrable, then f is McShane integrable.

proof (a) Suppose first that f is of the form xEy-u where Fy € ©f, so that f(x) = u if € Ey, 0 otherwise.
Let € > 0. Because p is inner regular with respect to the closed sets and outer regular with respect to the
open sets, there are a closed set E; C Ey and an open set G D Ej such that u(G \ Ey) < e. Let 6 be the
neighbourhood gauge

{(z,C):ze X, CCX,2eG=>CCG,x¢ E,=CnNE, =0}

Ift € T =T(X,%7) is §-fine and Ry, -filling, set s = {(x,C) : (z,C) € t, v € Ey}, so that Sg(f) = uWs - u.
Also

Eg\Ws C(Eo\ Wy) U (Ep\ Ev)
because C N E; = 0 if (z,C) € t and = ¢ Ey, while
Ws\ Eo CG\ Ep
because C C G if (z,C) € t and z € Ey. Accordingly
(EoAWs) < pu(Eo \ W) + u(Eo \ Er) + u(G\ Eo) < 2,
and
15e(f) = § fapull = [6Ws - u — pEo - ul| < 2e|lul.
As € is arbitrary, MES fdu is defined and equal to ¥ fdu.

(b) It follows at once that MEsS fdu = ¥ fdu for every ‘simple’ function f : X — U, that is, a measurable
function taking finitely many values such that {z : f(x) # 0} has finite measure.

(c) Now observe that if f : X — U is a measurable function and v > [ || f||du, there is a neighbourhood
gauge 0 on X such that [|S¢(f)]] < v for every d-fine tagged partition t. P Set £ = {z : f(z) # 0}; then
E is covered by a sequence of sets of finite measure, so there is a gg : X — [0, oo[ such that go(z) > || f(x)]|
for every # € E and [gdp < 7. Because p is outer regular with respect to the open sets, there is a
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lower semi-continuous function g : X — [0, 00] such that go < g and [gdu < v (FREMLIN 03, 412W).
Set G, = {y : gly) > ||f(@)||} for x € E, X for x € X \ E; then § = {(z,C) : z € X, C C G,} is a
neighbourhood gauge on X. Let t € T be any J-fine tagged partition. Then for each (z,C) € t we have
either f(x) =0 or g(y) > || f(z)] for every y € C, so

15D < X ocpee 1F@INC < Sooyee frngdi < 7. Q

(d) Now let f: X — U be any Bochner integrable function, and € > 0. Then there is a simple function
fo: X — Usuch that [||f— folldu < e. By (b), there are a neighbourhood gauge 6; on X, an H € ¥/ and an
n > 0 such that ||S¢(fo) — ¥ fodu| < € for every §;-fine Rp,,-filling ¢ € T. By (c), there is a neighbourhood
gauge Oz such that ||S¢(f — fo)|| < 2e for every da-fine t € T. Now § = §; N J3 is a neighbourhood gauge on
X, and if t € T' is 0-fine and R g,,-filling then

ISe(f) — F fdull < Se(f = fo)ll + [1Se(fo) — ¥ fodpll + 1|  fodp — § fdp|| < 4e.
As € is arbitrary, MES fdu is defined and equal to ¥ fdu.

4J Corollary Let (X, %, 3, 1) be a quasi-Radon measure space in which p is outer regular with respect
to the open sets, and U a separable Banach space. Then the Pettis, Bochner and McShane integrals coincide
for bounded functions from X to U.

proof Because U is separable, the Pettis and Bochner integrals coincide (); now 4I and 4H tell us that
(because p is outer regular) the McShane integral agrees with both.

4K The problem Can the McShane integral be described in terms of the measure space (X, X, u) without
reference to the topology? I have been able to show that if U = ¢>° and X is the union of a sequence of
open sets of finite measure then the McShane integral always coincides with the Birkhoff integral (FREMLIN
N92), so the topology is irrelevant. D1 P1AzzA & PREISS P03 give examples of spaces U of arbitrarily large
weight for which the McShane and Pettis integrals must coincide, so again the McShane integral cannot
depend on the topology. But for arbitrary U, I do not know whether we can have two topologies &, ¥ on
[0, 1] for both of which Lebesgue measure is quasi-Radon but the McShane integrals for U-valued functions
are different.

4L Lemma Let (X, X, 1) be an atomless totally finite measure space, and Gy, ... ,G, € X. Suppose
that ao,...,a, > 0 are such that ), ;a; < p(lU;c; Gi) for every I C n+ 1. Then there are disjoint

Ey,... ,E, € ¥ such that F; C G; for every ¢ and uF; = «; for every i.

proof BOLLOBAS & VAROPOULOS 75, or use the max-flow min-cut theorem.

4M Lemma Let (X, T, X, 1) be an atomless totally finite quasi-Radon measure space, U a Banach space,
f: X — U a McShane integrable function with MgS fdy = w and € > 0. Then there are an n > 0 and a
family (G.)zex in T such that x € G, for every x and ||w — >, a;f(2;)]| < e whenever z; € X, o; > 0
are such that >, a; > pX —nand ), ;o < p(U;c; Ge,) for every J C n.

proof Let § € A(X,%), n > 0 be such that ||w — Si(f)|| < € whenever t € T = T(X,X) is é-fine and
uWy > uX —n. Set G, = J{C : (z,C) € 6} for each z € X, so that G, is open and ¢ = {(z,C) : x € X,
C C G} Suppose that x; € X, a; > 0 are such that » , _, a; > puX —nand Y, ;o < p(lU;e; Ge,) for
every J C n. By Lemma 4L, there are disjoint measurable F; C G,,, for i < n, such that uF; = «; for each
i. Sot = {(x;, F;) : i <n} belongs to T and is o-fine, and pWs =3, _, a; > puX — 1. Accordingly

lw =2 cn aif (@) = llw = Se(f)ll < e

As x; and «; are arbitrary, we have appropriate G, and 7.

4N Theorem Suppose that (X, %, %, u) and (Y, S, T, v) are atomless quasi-Radon probability spaces,
and ¢ : X — Y an almost continuous inverse-measure-preserving function. If U is a Banach space and
f:Y — U is McShane integrable, then f¢: X — Y is McShane integrable, with the same integral.
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proof Write w for MES f dv. Let € > 0. By Lemma 4M, there are an 7 > 0 and a family (H,),cy in & such
that y € H, for every y and [[w—3_,_, aif(y:)|| < € whenever y; € Y, a; > 0 are such that ), a; > 1-3n
and ). ;o < v(U;e s Hy,) for every J Cn.

For each n € N, let K,, C X be a closed set such that ¢[ K, is continuous and p(X \ K,) < 27" min(7n, ¢).
For z € X, let n, € N be such that n, < [|f(¢(2))] < ny + 1 and take G, € T such that z € G, and
Ky, NGy C ¢ [Hy(y]. Let & be the neighbourhood gauge {(z,C) : © € X, C C G,}. Suppose that
s € T(X,Y) is §-fine and such that uWs > 1 —n. Set

s ={(z,ENK,,): (z,FE) € s}.
so that 8’ € T'(X, %) is 0-fine. Then

1Ss(f8) = S (fA) < > f@)p(E\ Kn,)

(a: E)es

—Z > IF@In(EN\ Kn,)

n=0 (z,E)€s

ng=n

< i(n—i— DX\ K,) < i?‘”(n—i— 1)e = 4e,
n=0 n=0
w(Ws \ W) Z w(E\ K,,)
(r E)es
= Z > wE\Ky,)

n=0 (z,E)€s
ng=n

(oo} oo
<> X \E,) <Y 27" =2,
n=0 n=0

Enumerate 8" as ((z;, E;))i<n- Then
Dics hE < p(Use s ¢_1[H¢(zi)]) = v(Uies Ho(n)
for any J C n, while
Y ien M = pWe > pWy — 21 > 1 — 3n).
So
lw = Ssr (fO) = [lw =30y nEi - fo(zi))]| < e,
and ||w — Ss(f¢)|| < 5e. As € is arbitrary, MES f¢ dp = w, as required.
remark The hypothesis ‘atomless’ can be omitted; see FREMLIN PRET.
40 The following fact will be useful below (in the special case X = [0,1], for which the proof can be
shortened a good deal), and seems to be interesting in itself.

Lemma Let (X, %, X, 1) be a o-finite quasi-Radon measure space with countable Maharam type, and € > 0.
Then there is an order-preserving function ¢ : ¥ — ¥ such that p(E\¢E) = 0 and p(¢E\E) < emin(1, uF)
for every E € ¥, while Y E = ¢ F if EAF is negligible.

Remark Of course the phrase ‘WE = ¢ F if EAF is negligible’ tells us that really we are dealing with a
function defined on the measure algebra.

proof (a) Consider first the case in which X = {0,1}" with its usual topology and p is a probability
measure. Let C be the family of all sets C' of the form {x : z € X, z[n = z} where n € N and z € {0,1}".
For F € ¥ set

wE=J{C:CeC, WENC) > %ﬂw}.
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Then ¢ E is always open. By Lévy’s martingale theorem (FREMLIN 01, 2751), applied to the finite o-algebras
¥, ={FE : E € X is determined by coordinates < n}, E\¢F is negligible for every E € ¥. Clearly v E C ¢ F
whenever £ C F, and v E = ¢ F if EAF is negligible. To estimate p(¢E), note that C is an inverted tree.

Soifweset A={C:CeC, u(ENC) > %ﬂuC} and look at the set A; of maximal elements of A, these

are disjoint and their union is ¢ F; so that

HOE) = Yo, 1O < Soea, L+ u(ENC) < (1+ k.

So u(YE\ E) < euE.

(b) Evidently the result of (a) applies to any totally finite Radon measure on {0, 1}. Now let (X, %, %, )
be any quasi-Radon probability measure with countable Maharam type. Because p has countable Maharam
type, there is a sequence (E,,),ecn in ¥ such that {E;, : n € N} generates the measure algebra 2 of u; because
w is o-finite, 2 is ccc and is the o-subalgebra of itself generated by {E? : n € N}. This means that, writing
Yo for the o-algebra of sets generated by {E, : n € N}, every member of ¥ differs by a negligible set from
some member of ¥g. Define f : X — {0,1} by setting f(x)(n) = (xE,)(z) for all z € X, n € N. Then f
is measurable; because {0,1}" is separable and metrizable, and y is inner regular with respect to the closed
sets, f is almost continuous (FREMLIN 03, 418J).

Because p is effectively locally finite, it is inner regular with respect to the family /C of measurable sets K
included in open sets of finite measure such that f[K is continuous. Because p is o-finite, there is a disjoint
sequence (K, )nen in K such that [ J, oy Ko is conegligible. For each n € N, there is an open set G, 2 K, of
finite measure; again because p is inner regular with respect to the closed sets, we can find a non-increasing
sequence (G;)ien of open sets including K, such that u(G,; \ K,) < 27" " 2¢ for each i € N.

(c) For each n € N, we have a Radon measure v, on {0, 1} defined by setting v, F = u(K, N f~1[F])
for every Borel set FF C {0,1}"; let T,, be the domain of v,,. Write & for the topology of {0, 1}, and let
¥y, : T, — & be an order-preserving function such that

Un(F\YnF) =0, vn(WniF \F) <2 2emin(1,v,F)

for every F' € T,,, and ¥, F = 1, F/ whenever v, (FAF') = 0. Then we can define ¢ : ¥ — T by setting

VE =0 if uE = 0,
= | (Gui \ Kn) U (Ko f [0 F))

neN

whenever i = min{j : j € N, uE > 277} and F is a Borel subset of {0, 1} such that u(EAf~1[F])) = 0.
Because E is equivalent to the inverse image of a Borel set, we can always find such an F'; because ¢, F' =
Y F' whenever v, (FAF') = 0, it won’t matter which we take. Because v, F' is open and f[K,, is continuous
for every n, v E will be open. Because |, . Ky, is conegligible and F'\ ¢, F' is always v,,-negligible, E\ v E
is p-negligible.

neN

Consider u(vE \ E). If uE = 0, this is zero, as 9 E = 0. Otherwise, set i = min{j : u£ > 277}, so that
min(1, uE) > 27% Then
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PWE\E) <> p(Gi\ Kp) + p(Kp 0 f 7 [0 F] \ E)

n=0

< D27 ek p(Ka 0 f T [ FIN fTF)

n=0

=271+ Y vn(PnF\ F)

n=0

oo
<27 et Z 27" 2emin(1, v, F)

n=0
1. 1 o= . one
< Eemm(l,uE)—FEeZ%mm@ L (K, N E))
< %emin(l,uE) + %emin(l,uE) = emin(l, uF),

which is what we need. Finally, if E C E’ and uF = 0, of course v F C ¢E'. If uE > 0, then for any
corresponding F' and F’ we must have v, (F \ F') = 0 for every n, so that ¢, F = ¥, (FNF') C ¢, F'; at
the same time, if i = min{j : p£ > 277} and i/ = min{j : uE > 277}, then i > i’ so Gp; C G for every
n. Assembling these, we have »E C ¢ E’, as required.

4P Problem ET Let p, be Lebesgue measure on [0, 1]. Consider the statement
(f) whenever (G)zeo,1) is a family of open subsets of R such that pup(A\ J,c4 Gz) = 0 for
every A C [0,1], and € > 0, there is a family (H,)c[,1] of open sets such that € H, for every
€ [0,1] and pr(Uyen He \ Uyea Gz) < € for every A C [0, 1].
If this is true, we have the following result.

4Q Proposition Let ¥ be the usual topology on [0, 1], and & another topology on [0, 1] with respect to
which Lebesgue measure py, on [0, 1] is quasi-Radon. Let U be a Banach space, and Iz, Ig the U-valued
McShane integrals. Then Ig extends Iz, and if (f) in 4P is true, then Ig = Is.

proof (a) Write ¥ for the o-algebra of Lebesgue measurable subsets of [0,1]. The identity map ¢ from
([0,1],%) to ([0,1],%) is measurable; because ¥ is separable and metrizable, and py, is inner regular with
respect to the G-closed sets, ¢ is almost continuous (FREMLIN 03, 418J), so every Iz-integrable function is
Is-integrable with the right integral (Proposition 4N).

(b) Now suppose that (1) is true, U is a Banach space and f : [0,1] — U is such that w = Ig(f) is
defined. Let € > 0. Then there are an 1 > 0 and a family (W, ),cjo,1) in & such that [[w =37, a;f(x;)| < e
whenever z; € [0,1], a; > 0 are such that ), a; >1—5npand ), ;a; < pur(U;c; We,) for every J C n.

For each n € N, let ¢, : ¥ — ¥ be an order-preserving function such that E \ ¢, E is negligible and
pr(UnE\ E) < 27"y for every E € ¥ (40). Set A, = {x :z € [0,1], n < ||f(z)|| < n+ 1} for n € N. For
v € Ay, set Gy = Y, Wy, Then pp(A\ Uyey Go) = 0 for every A C[0,1]. B {W, : x € A} C &; because
pr is a T-additive topological measure for &, there is a countable A" C A such that J,c 4 Wa \ Uzear We
is negligible. But now

A \ UzGA G1 g (U:EGA Ww \ UzGA’ Wa:) U U:I:GA’ W1 \ Gl‘

is negligible. @ So (1) tells us that for each n € N we have a family (W} ,).cjo,1) in ¥ such that x € W),
for every x and pr(Uyea Wie \ Ugea Ge) < 27" for every A C [0,1]. Set

0 =Upent(@,C) iz e Ay, CCW,},

so that ¢’ is a T-neighbourhood gauge on [0, 1].
If AC Ay, then pr(Uyes Wihe \Upea Wa) <277 P
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Uwe\NUwec(Uwia\ U Gau . U wa)

T€EA T€EA z€A z€A z€A z€A
c(Um\ U G u@aldwa)\ | W)
T€A z€A TEA z€A

because 1, is order-preserving; but each item in the last expression has measure at most 27"n. Q
Let t € T be ¢'-fine and such that uyW; > 1 — 7. For each n € N, set

H, = U(gch)et,zeAn lezz \ U(:c,E)et,mGAn We,
so that ppH, <2 "ty Set a(, gy = pr(E\ Hy,) when (z,E) €t and 2 € A,,. Then for any s C t,

Y wm =Y, Y, n(E\H)

(z,E)€Es n=0 (z,E)€s
TEAR

=KL U U E\ Hy))

neN (z E)es
€An

ey w

neN (z,E)es
TEAD
L(U U Wa) = pr( U W)
neN (‘.TT’EEXEB (z,E)€Es

Also

Y wE—a@r) =, Y, m(ENH,

(z,E)et n=0 (z,B)ct
zEAp

oo
< Z prHn < 4n,
n=0

SO X (s myet Mo B) = 1 — 5n. By the choice of (Wy)ieo,1) and 0, |lw — 32, pye @, m) f(2)]| < €. On the
other hand

1Se(H) = > rf(@) ||<Z S 4+ )|pLE - aq,p)

(z,E)et n=0 (ieEA)it
=> (n+1) Y pL(ENH,)
(m,EA)Et
TEAp

< Z 27" (n + 1)n = 8n < 8e.
n=0

So |lw — Se(f)|| < 9e. As € is arbitrary, Iz(f) = w; as f is arbitrary, Ig = Ix.

4R Remarks (a) It is easy to show that if (G;)ae0,1) is any family of relatively open subsets of [0, 1]
such that A\|J,. 4 G+ is negligible for every A C [0, 1], and & is the topology on [0, 1] generated by the usual
topology and {{z} UG, : « € [0,1]}, then Lebesgue measure is m-additive for &, therefore quasi-Radon. So
families of this kind can be taken as representative of neighbourhood gauges for topologies on [0, 1] which
are compatible in this sense with Lebesgue measure.
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(b) Suppose that (G.).co,1) is a family of relatively open subsets of [0, 1] such that limsup,, |, %,uL (GzN

[z —n,z +n]) > 0 for every z € [0,1]. Then A’ = A\ |J,c4 G- is negligible for every A C [0,1]. P? If
not, then there is an x € A’ such that lim, o %uz(A’ N[z —mn,xz+mn]) =1 (FREMLIN 01, 261D). But as

A’ NG, = 0 this is impossible. XQ (Compare FREMLIN 03, 453Xk.)
Even for families of this kind I have not been able to determine whether (7) is true.

Basic references: FREMLIN 03, §§481-482, FREMLIN 95, FREMLIN PRET.
Further reading: FREMLIN N92.
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