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1. Banach limits and Banach density

1A Write P for the set of all non-negative additive functionals v : PN — [0,1] such that ¥N = 1 and
v is translation-invariant, that is, v{n + k : n € I} = vI for every k € N and every I C N. For I C N,
the upper Banach density of I is d*(I) = sup,cp vI. Because P is closed in [0, 1]”N, therefore compact,
the supremum is always attained. d is a submeasure. If v/ is the same for every v € P, this common
value is the Banach density ds(I). Note that, for any I, inf,cp vl =1 — d5(N\ I); so ds(I) is defined iff
d*(I)+ di(N\I) =1.

If 0 : PN — [0,1] is any additive functional such that ON = 1, and vy € P, and we set vI = f0(I+ j)vo(dj)
for I C N (following the notation of FREMLIN 02, 363Lf), then v € P. Similarly, if we write I —' j for
{i:ieN,i+jel} and v'I=f0(I ' jvo(dj) for I C N, we again obtain a member v/ of P.

1B Definition For z, y € RY set (zxy)(n) = > i z(i)y(n —i) = > itjen ®(D)y(j) for n € N. Then *
is bilinear, commutative and associative, and |z * y||1 < ||z||1||yll1, [|2 * ¥Ylloo < [|2]/1]|¥|lco for all z, y € RY.
If z € RY its variation Vary(z) is > o |z(i + 1) — z(2)].

1C Lemma If I C N,
ds(I) = inf{||z * XI||oo rxe (Y, e =1}

= inf sup— #(Iﬂ [k, k 4+ m])
m2>1pcN ™M

= 1nf hmsup #(Iﬂ [k, k + m][)

k—o0

= lim sup—#([ N[k, k +m[)

m—00 LeN

= lim supl#(lﬂ [mk, mk + m])
m— 00 keNm

= inf Sup{z rw € (), flally =1, Var(z) < 6}.
el

Remark See 3B below for a more general result.
proof Set
= inf{[lz* xI||o : x € (€1)7F, [|2]ly =1},

Yo = inf,,>1 Suppeny — #(I N[k, kK +m[),
Y2 = infp,>1 imsupy,_, o, — #(I N[k, k+m]),
vy = limsup,, o SUpgey — #(I N[k, k +ml),
v3 = inf,>1 supgey %#(I N [mk, mk + m[),

V3 = limsup,, . Supgey — #(I N [mk, mk + m]),
1



1a = b0 sup{ Siey #(0) : 2 € (€)%, el = 1, Varu(e) < 6.
Note that v4 = limsup,,,_, . ||Tm * XI||co, where z,, = %Xm for m > 1.

(a) d%(I) < A,. PP Suppose that v € P. Then

m—1

vl =

x
m

y(]_|_j) :][xm * xI dv < lim sup(x,, * XI)(k)

=0 k—oo

:limsup%#({n:nel, E<n<k+m}).

k—o0
This is true for every m, so vI < 49; as v is arbitrary, d*(I) < 42. Q
(b) Of course 42 <72 <3 <75 < 7.

(c) ¥4 < 1. P Take € > 0. There is an x € (¢1)T such that ||z|; <1 and ||z * xI||cc <71 + €. There is
ay € ({1)* such that ||ly|ls =1, {i : y(i) # 0} is finite and ||z — y||; < e. Let r > 1 be such that y(i) = 0 for
i > r. Then for any m > 1 we have

(g xy — ) ()| = | Z Tm(Dy(j) —zm(k)|=0ifr<k<mork>m+r
i+j=k

< — otherwise.

L
m
80 [l +y — s < 22, and [ * g XT = # X1 ||oo < 2. Also

[ 25 XT = @ty % Xl oo < [lom * 2 — 2 xylly < [lz —ylh <

SO ||y * @ *x xI — T * X || 0o <et X Accordingly
m
2 2 2
”xm*XIHoo§€+i+”xm*x*>d”oo§€+i+||I*XI||oo§’Yl+2€+i.

Letting m — oo, v5 < 1 + 2¢; as € is arbitrary, 74 < v1. Q

(d) 1 < d*(I). P Let € > 0. Suppose that ig,... i, € N. Set z(i) = H%#({j :1=1;}) fori € N, so

that x € (/)™ and ||z|; = 1. Then ||z * xI|/oc > 71, 50 there is an n € N such that (z * xI)(n) > v — e,
that is, #({j : n—i; € I}) > (r+1)(y1 —€), that is, #({j : n € [ +14;}) > (r +1)(71 —€). As g, ... ,i, are
arbitrary, there is an additive functional § : PN — [0, 1] such that 6N = 1 and 6(I + j) > 1 — € for every
j € N (FREMLIN 02, 391F). Take any vy € P and set vJ = f0(J + i)vy(di) for J C N. Then v € P, and

y —e<infjen0( +j) <vI <di().
As e is arbitrary, v1 < d%(I). Q

(e) Sodi(I) =~v1 =72 =75 =73 = 75. But as 7 and 5 are equal, they must both be lim,,, o SUp;cy %#(Iﬂ

[k, k + m([); and similarly both 3 and ~5 are equal to limy, . SUp,ey %#(I N [mk, mk + m]).

(£) 2 <. PForm>1,keNset ynr(i) = % if k <i < k+m, 0 otherwise. Then y,,, € (/1)F,
2 . .
|ymill1 = 1 and Varn(yme) < o Also vo = infen SUPgen D ies Ymr(i). So 72 <71 Q

(g) v4 < d:(I). P? Otherwise, we can find a sequence (x,)nen in (£1)T such that ||x,|/; = 1 for every
n, limy, o Varn(z,) = 0 and lim, o > ;o7 n(i) > dj(I). Let F be a non-principal ultrafilter on N, and
define v : PN — [0, 1] by setting vJ = lim, .z Y, ; 2, (j) for every J C N. Of course v is a non-negative
additive functional and vN = 1. If J C N, then



(] +1) = v = lim > (i) =) wali) = |T}Ln1fzxn(i+1)—2xn(i)|

ieJ+1 ieJ e ieJ
< 1i i +1) — 20(6)] < lim Vi — 0.
_ngglxn(ﬂr ) = ()] < lim Var(z,)

K2

Sov e P. But vI =lim,_. Ziel xn (1) > di(1).

1D Corollary (a) If I C N and m > 1, then d*(I) < %limsuplﬁm #{iiel,ml<i<m(l+1)}).
(b) If I CN, m > 1 are such that k = lim;_,ooc #({i : ¢ € I, ml <4 <m(l +1)}) is defined, then d,(I) is
defined and equal to %

proof (a) Set k = limsup; . #{i:47 € I, ml < i < m(l+1)}). Then there is an Iy € N such that
#{iziel,mi<i<m(l+1)}) <kforeveryl>ly. Let r>ly. Set z, = %x(rm), where in x(rm) I am
< m(lo+2)+kr

interpreting rm as the set of its predecessors in N. Then (z, x xI)(n) = %#([ Nn —rm,n)) —

for every m. (The interval NN |n — rm,n] must consist of at most r intervals of the form [ml, m(l + 1)[, with
[ > lp, together with at most m(lp+1) points at the left and m points at the right.) So d*(I) < ||z, *xI|lec <
l0+2

- 4 % Letting r — oo, we have the result.

k

(b) In this case, d*(]) < — and dX(N\ I) < %7 so ds(I) is defined and equal to %

3=

1E Corollary (a) If I C N then d*(I) = inf{ds(J) : I C J and ds(J) is defined}.

(b) If I, I' C N are disjoint and d*(I) + d*(I') < 1, then there is a J such that I C J C N\ I’ and d4(J)
is defined.
proof (a) Take any v > d%(I). Then there is an m > 1 such that #(I N[k, k + m[) < ym for every k. Let
J C Nbesuchthat I CJand #({n:necJ, ml<n<m(l+1)}) = |ym] for every l. Then d4(J) is defined
and dg(J) < ~. As v is arbitrary, we have the result.

(b) This time, take 7 such that d%(I) <y < 1—d%(I'), and m > 1 such that #(I N[k, k +m[) <~ym and
#(I'N[k,k 4+ m[) < (1—v)m for every k. Let J C N be such that I C J C N\I" and #(JN[ml,m(l+1)[) =
|ym] for every [; this works.

1F Corollary Suppose that I C N is infinite and that J is any subset of N. Let (n;);cn be the increasing
enumeration of I, and set M = {n; : i € J}.

(a) d:(M) < d2(1)d5 ().

(b) If T has Banach density, then d*(M) = ds(I)d%(J).

(c) If J has Banach density, then d*(M) = d%(I)ds(J).

(d) If both I and J have Banach density, then so has M, and ds(M) = ds(I)ds(J).
proof (a) Take any o' > a > d*(I) and 8 > d%(J). Then there is an mg > 1 such that #(I N[k, k + m[) <
am and #(J N[k, k + m[) < fm whenever m > mg and k € N. Set f(k) = min{i : n; > k} for k£ € N. Then

FE) = f(k) = #I N[k F]) < alk' — k)

whenever k +mgy < k’. Let m; > myg be such that (o/ — a)mg < my. Then
#M Ok E+m]) =#{i:i€J k<n <k+m})=#(JN[f(k), f(k+m)])
< Bmax(mq, f(k+m) — f(k)) < Bmax(mg,am) < Ba’m
whenever m > my and k € N. Accordingly d*(M) < o'f; as a, o and § are arbitrary, d5(M) < d*(I)d%(J).

(b) Of course d*(M) < di(I)d:i(J) = ds(I)d%(J). Take any a < ds(I) and B < ds(J). Then di(N\ I) <
1 — « so there is an my € N such that #(I N [k, k +m]) > am for every k € N and m > my. Take any
m > mg; then



fk+m)— f(k)=#IN[k,k+m]) > am
for every k. Next, f[N] = N, so there is a k such that

#M N[k, k+m]) = #(J 0 [f(k), f(k) +m[) = Bm
> B(f(k+m) — f(k)) = Bam.
Thus supkeN%#(J N[k, k+m]) > af. This is true for every m > my, so d*(M) > af; as o and (3 are
arbitrary, di(M) > ds(I)d%(J) and we have equality.

(c) This time, d*(M) < di(I)d%(J) = di(I)ds(J). Set JJ =N\ J, M’ ={n; : i € J'}. Then di(M') <
d*(I)ds(J') = di(I)(1 — dg(J")). Since M UM' =1, d*(I) < d*(M) + d%(M’); putting these together, we
must have d*(M) = d¥(I)ds(J) exactly.

(d) Applying (c) to I and J' = N\ J, we see that d*(I\ M) = ds(I)(1 —ds(J)). Now M, I\ M and N\ I
cover N and their upper Banach densities sum to 1, so they must all have Banach densities.

1G Remarks (a) Writing D, for the domain of d,,
NeD,, iflI,JeDsandC Jthen J\Ie€ Dy, 0€D,,

ifI,JeDsand INJ =0 then IUJ € Dy and ds(I U J) = ds(I) + ds(J).

It follows that if Z C D; and INJ € 7 for all I, J € Z, then the subalgebra of PN generated by Z is included
in Dy (FREMLIN 02, 313Ga). But note that D, itself is not a subalgebra of PN.

(b) Writing d* for upper asymptotic density, d for density, Z <1 PN for the asymptotic density ideal and
D C PN for the domain of d (FREMLIN 03, §491), we have d*(a) < d%(I) for every I C N. P

d*(a) = limsup %#(a nm)

m—00

< limsupsup%#({n nel,k<n<k+m}=d:;(a)Q

m—oo keN

So Z, C Z, D DO D, and d extends d.

1H Proposition Let v : PN — [0, 1] be an additive functional such that N = 1. Then the following are
equiveridical:

(i) v e P

(i) vI < d%(I) for every I C N;

(iii) vI = ds(I) whenever I € D;,.
proof (i)=-(ii) and (ii)=-(iii) are trivial.

(iii)=-(ii) is immediate from 1E(a).

(i) & (iii)=(i) Assume that (ii) and (iii) are both true, and take any I C N. Set Ky = {2i : i € N},
K1 = N\KO Then VK() = VKl = %

? If vI > v(I + 1) then there is a j such that v(I N K;) > v((I N K;)+1). Set j/ =1 — j, so that
1/J>%. But for any I € N and m > 1,

£ NI+ m]) = #((INK;) A1 +m]) + %K N[ 1+m])

—#((INK;) +1)N[1,14m])
<1+ #(K; n[l,1+m[),

sodi(J)<3. X
? If vI < v(I + 1) then there is a j such that v(I N K;) < v(INK;)+ k). Set j/ =1—-j, J =
(I+1)NK;)U(K;\I). Then vJ > . But for any [ € N and m > 1,



#((IN[LI+m]) =#(INK;) +k)N[LT+m]) +#(K; N[l 1+ m])
—#((INK;)N[l,l+m])
<14+ #(K; N[, 1+ m]),

(I +1); as I is arbitrary, (i) is true.

1I Construction For K € [N]<%, set ng = >, 2°. Then K  n is a bijection from [N]<“ to N. For
any set I C N, set A = {ng : K € [N]<¥, #(I N K) is even}. Now if Iy, ... ,I, C N are infinite and almost
disjoint, there is an m € N such that #({n:n € ;. Az, 2™ <n <2™(I+1)}) = 2™~ for every [ € N.
P Tor j <, take i; € I; \ Uy<, gz Ik Set m =1+ max;<, i;. If I € N, then 2™ = ny, where LNm = (.
Set M = {i:i <m,i#i; for every j <r}. Then

{n:ne ﬂa1j72ml§n<2m(l+l)}
Jj<r
={nkg: K € [N]*¥, K\m =L, #(K N 1;) is even for every j <r}

U N{nx:EnM =M, K\m=L,i; € Kiff #((M'UL)NI;) is odd}
M'CM j<r

has 2#(M) = 9m="=1 members. Q

So if we take an almost disjoint family (/¢)¢<. of infinite subsets of N and set A; = Ay, for every &,
then (Ag)e<. will have the property that whenever &, ... ,§, < ¢ are distinct, there is an m € N such that
#({n:neNc. Ag,;, 2M <n <2™(1+1)}) = 277"~ for every | € N, so that Ag, N...N Ag, has Banach
density 2771

1J Theorem Take any v € P, and let u be the corresponding measure on SN. Then p is Maharam
homogeneous, with Maharam type c.

proof Writing Eg for the open-and-closed subset of SN corresponding to A¢ as defined in 1I, the family
<E€>£<C is, with respect to u, a stochastically independent family of cardinal ¢. So the homogeneous prob-
ability algebra 2B, of Maharam type ¢ is isomorphic to a subalgebra of the measure algebra 2 of u. At the
same time, because SN has weight ¢, 2 is isomorphic to a subalgebra of B, (FREMLIN 02, 332N). So 2 and
B, are isomorphic (FREMLIN 02, 332Q)).

1K Theorem Suppose that I C N and d%(I) > 0. Then for any finite set J C N there are k e N, [ > 1
such that k4 [J C I. In particular, I includes arbitrarily long arithmetic progressions.

proof Set ¢ = %d:([); suppose that r > 2 is such that J C r. By Szemerédi’s theorem (SZEMEREDI 75,
or FREMLIN 03, 497L') there is an mg > 1 such that whenever m > mgy, A C m and #(A) > em there is
an arithmetic progression of length r in A. Let m > mg, k € N be such that %#(I N[k, k+m[) > ¢ and
consider A = (I N[k, k 4+ m[) — m; then there is an arithmetic progression of length r in A, so there is an
arithmetic progression of length r in A 4+ m, that is, there are k € N, [ > 1 such that k +1li € A+m C I for
every i < r, in which case of course k +[J C 1.

1L Banach density on Z (a) We can translate 1C into a result about subsets of Z if we make the
following changes. First, let Pz be the set of translation-invariant non-negative additive functionals v :
PZ — [0,1] such that vZ = 1, and for I C Z set d;(I) = sup,cp, vI. (It is easy to check that this agrees
with the definition in 1A if I C N.) Now, for any I C Z,

ILater editions only.



dg(I) = inf{llx*xflloo rx € C(Z)F, ||zl =1}

= inf sup— #(Iﬂ [k, k +m[)
m>1 ey ™M

= mf hmsupm#(lﬁ [k, k + m|)

|k|—o0

= lim sup—#([ﬁ [k, k +m])

= lim supl#(lﬂ [mk, mk 4+ m])

m— 00 ke m

= mf bup{z sz e M), ||z =1, V%r(x) <4}
el

(use the arguments of 1C, nearly unchanged). It is worth noting that
4z (1) = max(d(I N N), d((—1) N N))
(using the new version

infp,>1 lim sup)y, oo %#(I N[k, k+m])

of 42 in the proof of 1C, or otherwise).

(b) Following SOLECKI 05, we have a further characterization: for any set I C Z,

. . I+k)NJ
dx(I) = inf je[z<w, 720 SUDgez %
P Set
. I+k)NJ
v5 = 1an€[Z]<w’J¢@ SUpgcz, %
Then

inf{[le* xIloc : 2 € £1(Z)7F, |21 =1} < 76

< inf su i+ k).
€l (2)*, ||zl =1 keg Z

1M Translation-invariant functionals in (¢*°)* (a) In the L-space (¢*°)* (see FREMLIN 02, 356N),
we can consider the set V of functionals f such that f(Tz) = f(z) for every z € £°°, where (Tx)(i) = x(i+1)
for z € ¢*° and ¢ € N. This is a weak*-closed Riesz subspace of (¢>°)*. PP V is a linear subspace just because
T : £° — { is a linear operator, and it is weak*-closed because f — f(z), f — f(Tx) are weak*-continuous
for every z. If f € V and z > 0 in £*°, then Tz > 0 and

[fI(Tx) = sup f(y)

ly|<T=x

(FREMLIN 02, 356B)

= sup  f(y) = sup f(med(—T=z,y,Tx))
—Tzx<y<Tzx yeL>

(where med(u,v,w) = (u Av) V (u Aw) V (v Aw), as in FREMLIN 02, 3A11c?)

= sup f(med(—Tx,Ty,Tx))
yeL>

(because T is surjective)
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= ysel?o)o f(T(med(*x, Y, x)))

(because T is a Riesz homomorphism)
= sup f(med(—z,y,z)) = sup f(y) = |f[(x).

yeLe> ly|<z

As z is arbitrary, | f| € V; as f is arbitrary, V is a Riesz subspace (FREMLIN 02, 352Ic). Q
Accordingly V', with its inherited normed Riesz space structure, is an L-space (FREMLIN 02, 3540).

(b) Set Vit ={f:feV,f>0,]|f|]l =1} Then f+ fx is a bijection between V;* and P. P In the
language of FREMLIN 02, §363, £>° = L*°(PN) so the L-space (£>°)* = (£*°)~ = L>°(PN)~ is identified with
the L-space M of bounded additive functionals on N by the map f — fx : (¢*°)* — M. Now f € (£*)*
is non-negative iff fx € M is non-negative (FREMLIN 02, 363Eb), and for such f we have | f]| = f(xN), so
{f:f>0,|lfll =1} corresponds to {v : v > 0, vN = 1}. As for translation-invariance, T'(x(I + 1)) = xI
for every I C N. So if f € (£°°)* corresponds to v = fx € M,

fT=f < fTx=fx
— f(T(xI)) = f(xI) for every I CN
— f(x(I+1)) = f(x) for every I CN
<= v(I+1)=vl for every I CN
v(I+k)=vlforevery I CN k€N

<= v is translation-invariant.

—

Putting these together, v € P iff f € V™. Q

Accordingly P inherits the structure of the weak*-compact convex set V1+. Explicitly: if vg, 11 € P and
a € [0,1], we have v = avg+ (1 —a)vy € P, with vI = avgl + (1 — a)v [ for every I C N; the corresponding
topology on P is that inherited from the product topology of R”N (if we give N its discrete topology, this
is the ‘narrow topology’ of FREMLIN 03, 437J); P is compact and the convex-combination operation

v,V a)—av+(1—a)/ : Px Px|[0,1] — P

is continuous; and P is the closed convex hull of its extreme points, by the Krein-Mil’'man theorem.

1IN Extreme points of P Give P its convex structure as described in 1M. Let E be the set of extreme
points of P.

(a) Just because V, as described in 1M, is an L-space, an f € Vfr is an extreme point of Vl+ iff it is
‘atomic’ in V' in the sense that whenever g € V and 0 < g < f then g is a multiple of f. P (i) If f is an

1
1 (£_ ) both belong t
17—gy f —9) both belong to

VT In this case (because V is an L-space) ||g|| + ||f — g|l = 1, so f is a convex combination of f; and fa,
and both must be equal to f; consequently ¢ is a multiple of f. (ii) If f is not an extreme point, express it
as af; + (1 —a)fy where f1, fo € V{7, 0 < a < 1 and neither f; nor f is equal to f. Then af; < f but af)
is not a multiple of f. Q

Consequently || f —g|| = 2 whenever f, g are distinct extreme points of V;*. P f Ag must be a multiple of
both f and g; as neither can be a multiple of the other, fAg =0, |f—g| = f4+gand ||f—g| = |f|+]g]l = 2.

Q
Translated into terms of P, this amounts to saying that if v € P and v/ € E'\ {v}, then

infren(vl +v'(N\I)) = (wAV)N=0, sup;cyvl—-vIi=1

extreme point and 0 < g < f, then either g =0o0r g — f or f; = ﬁg, fo=

(see FREMLIN 02, 362A-362B for the structure of the L-space of bounded finitely additive functionals on
PN).

(b) Let (vn)nen be a sequence of distinct elements of E. Then (v,,),en cannot be convergent in P for the
weak* /narrow topology on P. P? Otherwise, let v € P be its limit. Choose (Ij)kren, (0k)ken and (ng)ren
inductively, as follows. Iy = N. Given that vi; > %, set 0 = %(yIk - %), and let nj be such that n; # n;
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for all j < k, v, I, > vk — 6 and v, # v, so that (v — vy, )Ty = v = §+25k and there is an Iy C Iy
such that vl — vn, L1 > % + 6k; in particular, v 1 > % Continue.
At the end of the induction, set Jy = Iy \ Ix41 for each k. Then

Unidk = Vny Ak — Uny Iop1 2 v — 0 — Uny Iyt

2
> v — vp g1 — 6 2 3

So if we set J = UkeN Jar, we shall have v,, J > % for even k and v,, J < % for odd k; in which case
(VUn, )ken cannot converge to v. XQ

2. The Banach density ideal

2A Definition Set Z, = {I : I C N, d*(I) = 0}. Then Z, is an ideal of PN, the Banach density ideal.
Write 35 for the quotient Boolean algebra PN/Z;, the Banach density algebra. The functionals dg and
d* descend naturally to 35 if we set

di(I*) = d:(I), ds(I*) = ds(I) whenever ds(I) is defined.

2B Lemma (Farah) Suppose that (a,)nen is a non-increasing sequence in 3,. Set v = infpen di(an).
Then there is an a € 35 such that d;(a) =+ and a C a,, for every n.

proof Take I,, C PN such that I = a, and I,,11 C I, for every n. Choose (k;)nen, (Kn)nen as follows.
Given that K is a finite set for every j < n, let k,, be such that Uj<n K; Ck, and #(K,,) > (v —27")n,
where K,, = I, N [kn, k,, +n[. Continue. Set I = J,, .y Kn, so that I'\ I,, is finite for every n, a = I* C a,
for every n, and

ds(a) = d3(I) > limsup,, ., +#(K,) > 7.

2C Proposition (a) d? is a strictly positive Maharam submeasure on 3.

(b) There is a corresponding metric p on 3, defined by saying that p(a,b) = d*(a A b) for all a, b € 3.
Under this metric, the Boolean operations U, n, A and \ and the function d* : 3, — [0, 1] are uniformly
continuous.

(¢c) 35 is not complete under its metric p.

proof (a) d; is a strictly positive submeasure just because d is a submeasure and Z, = {I : d}(I) = 0}.
By 2B, d} is a Maharam submeasure.

(b) FREMLIN 02, 393B.

(c) Define K,, C 3", for n € N, by setting Ko = 0, K11 = {3"i+j :j € Ky, i < 2} U {j,}, where
Jjn =min(N\ K,). Then #(K,) = (3" —1)/2 for each n. Set I, = {3"i+j:1 €N, j € K.}, ap, = I, € 35,
so that dy(I,) = 1(1—-37"), and dy(an+1 & an) = 2-37""1 for every n. Now (a,)nen is a Cauchy sequence
in 3. ? If it has a limit a € 3, then di(a) = lim, oo d%(a,) = 4. Let I C N be such that I* = a.
Then di(I) = %, so there is an m € N such that #(I N[k, k +m[) < m for every k € N. Next, a,, C a, so
I, \I € Z,, and there must be an [ € N such that (1, \ I)N[3™,3™(l + 1)] is empty. But now observe that
n C K, for every n, so that {3"™1+i:i < n} C I,,, and #(IN[3™I, 3™ + m]) = #(I,,N[3", 3™ + m]) = m.
X

Remark Part (¢) can be regarded as a special case of Proposition 2 in DOWNAROWICZ & IWANIK 88.

2D Proposition (a) Z, is a Borel subset of PN.
(b) Z; is not a p-ideal.

proof (a)



Z,={I: inf Supi#({n:nef, kE<n<k+m}) =0}
m21geN ™

:m U ﬂ%{x:#({n:nel,k§n<k+m})§%

I1>1m>1keN
is Fgg (: Hg)

(b) Set I; = {2" —j : n € N, 2™ > j} for each j. Then I; € Z; for every j. Let F be any non-
principal ultrafilter on N and set 0(I) = 1 if {n : 2" € I} € F, 0 otherwise. Take any vy € P and set
vI =F0(I + j)vo(dj) for every I C N. Then v € P. If I C N is such that I\ I; is finite for every j, then
0(I+j) =1 for every j and di(I) =vI =1 and I ¢ Z,. Thus Z; cannot be a p-ideal.

2E Proposition 3, is weakly o-distributive.

proof ? Otherwise, we have an a € 3, \ {0} and a double sequence (@mn)m nen such that a,,, C a for all
m and n, (amn)nen 1S a non-increasing sequence with infimum 0 for every m, and sup,, cy U, f(m) = a for
every f : N — N. Set v = d*(a). By 2C(a), inf,en d’(amn) = 0 for each m; choose f : N — N such that
A% (em, (m)) < 272y for every m. Setting ¢, = SUp,,<,, €m, f(m): da(cn) < 37 s0 di(a\ c) > 3 for every
n. But {a\ ¢;)nen is non-increasing and is supposed to have infimum 0 in 35. X

2F Lemma Let 2 be an atomless Dedekind o-complete Boolean algebra and v a strictly positive Maharam
submeasure on 2.

(a) If a € A and 0 < < va then there is a d C a such that vd = .

(b) For every € > 0 there is a finite partition of unity A C 2 such that va < € for every a € A.

proof (a) First note that if b € A\ {0} and § > 0 there is a ¢ C b such that 0 < ve < §. P Choose (by,)nen
inductively by setting by = b and for each n € N taking b,11 C b, such that b,,1 and b, \ b,+1 are both
non-zero. Then (by, \ bp+1)nen is a disjoint sequence in A\ {0}; as v is exhaustive (FREMLIN 02, 392Hc),
there is some n such that v(b, \ b,+1) < J; as v is strictly positive, v(b, \ bp+1) > 0. Q

Now let 2, be the principal ideal of 2 generated by a. Let B C 2, be a maximal upwards-directed set
such that vb < v for every b € B. 2 is Dedekind complete and v is order- continuous (see FREMLIN 02, 3921,
and its proof); set d = sup B, so that vd <. ? If vd < ~, there is a b C a\ d such that 0 < vb < v — vd,
in which case v(bud) < and we ought to have added bud to B. X So we have an appropriate d.

(b) Let Ag C 2 be a maximal disjoint set such that va = € for every a € Ay. Because v is exhaustive,
Ay is finite. Set ¢ = sup Ag. By (a), v(1\c) < € set A= Ay U{1\c}.

2G Proposition No atomless Dedekind o-complete Boolean algebra can be regularly embedded in 3.

proof 7 Suppose otherwise. Then there is an atomless order-closed subalgebra 2l of 3, which is Dedekind
o-complete. Now d*[2 is a strictly positive Maharam submeasure on 2. By 2F(b), we can find for each
n € N a finite partition of unity A,, in 2\ {0} such that d*(a) < 27" for every a € A,; let Z,, be a partition
of N such that A, ={I*: I €Z,}.
Choose {Ip)nen and {Ly)nen in PN as follows. Start with Ly = N and Iy = (). Suppose that we have
chosen I,, and L,, such that
Ir e, di(l,) <

<22l di(Ly) >0,

i1+ j € I, whenever ¢ € L, and j < n.

As 7,42 is a finite cover of N, there is an I € 7,40 such that d*({i: ¢ € L, i+n € I}) > 0; set [,y = [, UT
and L,y1 ={i:i € L,, i+ n € I}, and continue.

At the end of the induction, observe that a = sup,,cy I, ought to be defined in 2, with d}(a) < %. Let
I C N be such that I* = a, so that d%(I) < 3. If n € N, then d (I, \I) =0, so dX({i: i+ j € I,,\ I for some
j <n})=0, and there is a k € L,, such that k+ j ¢ I, \ I for every j < n. But this means that k+j € I
for every j < n. Thus sup,cy #(I N [k, k + n[) = n. As this is true for every n, di(1) =1. X
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2H Proposition Write Z for the ideal of subsets of N with zero asymptotic density, and 3 for the quotient
PN/Z. Then we have a canonical sequentially order-continuous Boolean homomorphism 7 : 3, — 3, defined
by saying that wI* = I° for every I C N, where I* is the equivalence class of I in 3; = PN/Z,, and I° is
the equivalence class of I in 3 = PN/Z.

proof Because I — I° is a Boolean homomorphism with kernel Z O Z, (1Gb), the formula gives us a
Boolean homomorphism. Now suppose that (a,)nen is a non-increasing sequence in 3 with infimum 0. For
each n € N take I,, C N such that I} = a,. Then, writing d* for upper asymptotic density,

. * < *
inf d*(In) < inf d ()

(1G(D))
=0

(2C(a)). But this means that if I C N and I° C wa,, for every n, d*(I) = 0 and I € Z and I° = 0. Thus
infpenyma, = 0in 3. As (an)nen is arbitrary, 7 is sequentially order- continuous.

21 Proposition (FARAH 04, 1.4) There is a sequence (K, )nen of subsets of PN such that every I, is
compact for the usual topology on PN and

Zs=Npent! : I SN, I'\ U;<,, K is finite for some Ko, ..., Ky, € Ky}
for every m € N.
proof Fix m € N. For r, n € N set
Knr={I:ITCN\r, #(IN[kk+1]) < n%—l for every [ > r and every k € N}.
Then K, is compact. For n € N set KC,, = |J,.cy Knr; because every neighbourhood of 0 includes all but

finitely many of the IC,,,., KC;, is compact. For n € N write
I,={I:TCN, T\ Uigm K; is finite for some Ky, ..., K, € K,}.

If I € Z, and n € N, then there is an r € N such that #(I N[k, k+1[) < n%rl for every I > r, and now
I\r e, and I\ (I\r)is finite; accordingly I € Z,,. Thus Z; C (), cyZn-

On the other hand, if I € [, o Zn, then I € Z,. P Let € > 0. Let n be such that 2¢(m + 1) < n. Then
there are Ko, ... , K,, € K,, such that I\Uigm K is finite. Let r; be such that K; € IC,,, for each ¢ < m, and

set r = max;<,, r;; then #(K, N[k, k+1[) < %4—1 for every | > r and every k € N. Set s = #(I \ U,,, Ki);

then #(I N[k, k+1]) < n%_ll +s < %l + s for every | > r and every k € N. So if we take ' > r such that

2s < er', then #(I Nk, k+1[) < el for every [ > r’ and every k € N. As ¢ is arbitrary, [ € Z,. Q
Thus Z, = (,,cn Zn, as claimed.
2J Remark In the language of FARAH 04, Z is ‘strongly countably determined’ by (K,,)nen. Under the
Proper Forcing Axiom this means that homomorphisms into 3, from other quotients PN/J are strikingly
constrained. In fact
Theorem [PFA] For every Boolean homomorphism 7 : PN — 3, there are a continuous
function F' : PN — PN and a non-meager ideal K < PN such that F(I)* = n(I*) for every
Iek.

2K Proposition 3, = 3?.

proof Set L, = {2"(2i+1) : i € N}, d, = L}, € 3,. Because lim,, oo d5(N\U,<,, Lj) =0, 35 = [[,,en(3s)d.-
But of course every (35)q4, is isomorphic to 3, just because, for J C N, J € Z, iff {2"(2i4+1):i € J} € Z,.

n
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2L Lemma Suppose that I C N and that 0 < 8’ < v < d*(I) and mg € N. Then there is an m > my
such that, setting K = {k : k € N, #(I N 2™k, 2™(k +1)[ > 2™~} and J = I N U,cp 27K, 2™ (k +1)],
di(J) = 5"
proof Set 8 = d%(I) and let o > 8 be such that (1 — %) > 3. Let m > myg be such that sup,cn#(I N
[k, k + 2™[) < 2™«. Define K, J by the formulae given. Suppose that [ > m. Then there is a k* such that
#I N[22 (k* + 1)[) > 2'8. Set L = {k:2""k* <k <2"™(k* +1)}. Then

2= " #UN2"k2™k+1))+ > #IN[2"k27(k+1))

keLNK ke L\K
<2Ma#(LNK) +2"y#(L\ K)
=2"a#(L) = 2"(a = N#(L\ K) =2'a — 2" (a — 1) #(L\ K).

=y

So #(L\ K) < 21””%. Consequently

#(JI N[22k +1)[) > 2my# (LN K) = 2m(2™ — #(L\ K))

m(ol—m _ ogl-ma=By _ ol 1 _a=f 1t
> 22 =2y oty - 20y > 9l

As [ is arbitrary, d*(J) > @', as claimed.

2M Theorem Suppose that ¢ € 35 is non-zero. Then there is a non-zero d C ¢ such that the principal
ideal (35)q generated by d is isomorphic to 3.

proof (a) Choose (In)nen, (Mn)nen, (Yn)neNs (Kn)nen, ("n)nen as follows. Start with I such that I§ = c.
Given that d*(I,) > 0, set 8, = (1 —27""1)d*(I,,) and take v, € |3,,d%(I,)[. By Lemma 2L, we can find
an m, such that m, > m; for every i < n and dj(I N Upcg, 2™k, 27" (k + 1)[) > Bn, where K, = {k :
#(I, n[2mk, 2™ (k 4+ 1)) > 2™"~,}. Take r, such that r, > r; for every ¢ < n and r, = 2™~k for some
k>1+minK,, and set I, 1 = 1IN (1, UUpeg, 277k, 2™ (k + 1)[); then d5(I+1) > B, > 0. Continue.

(b) We find that if i < n and 2™k > r; and I, N [2™ik,2™i(k 4 1)[ is not empty, then #(I, N
2™k, 2mi(k + 1)) > 2™i7y;. P Induce on n. For m = i+ 1, this is just the construction of I;;;.
For the inductive step to n + 1 where n > 4, if I,11 N [2™ik,2™i(k+ 1)[ is not empty, then either
2mi(k+1) < r, or r, < 2™k, because r, is a multiple of 2™ which is a multiple of 2. In the for-
mer case, L,y1 N[27M1k, 2™ (k+ 1)[ = I, N [2™k, 2™ (k + 1)[ has at least 2"i~; members, by the inductive
hypothesis. In the latter case, [2™ik, 2™ (k + 1)[ must meet [2"" k', 2™ (k' + 1)[ for some k' € K,,. But in
this case [2™ik,2™i(k 4+ 1)[ C [2m~k', 2™ (k' + 1) and Ip,41 N [2™k, 2™ (kK + 1) = L, N [2™ik, 2™ (k + 1)]
again has at least 2™i~; members. Q

(c) Set J = N,en In-
(i) di(J) > 0. P Set v* = di(Io) [1,,en(1 —27"71) > 0. Then v* <, for every n € N. For n € N, set
k, = min K,,. Because (r;);cn is non-decreasing, I, N [2""k,, 2™ (k, + 1)[ C I; for every i > n, and
BT 027 270 (o + 1)) = (L 0 270k, 27 (k4 1)) > 27y > 270
As limy, 00 2™ = 00, di(J) > v* > 0. Q Set d = J*, so that 0 # d C c.
(ii) Because (I, )nen is non-decreasing, (b) tells us that if i € Nand 2™k > r; and JN[2™k, 2™ (k + 1)]
is not empty, then #(J N [2™ik, 2™ (k 4+ 1)[) > 2™i~;.
(d) Let f: N — J be the increasing enumeration of J.

(1) di(f[M]) < di(M) for every M C N. P If o > di(M), there is an m € N such that #(M N
[k,k +m[) < am for every k. Now if k € N, L = f~![[k,k + m[] is an interval with at most m members,
so #(fIM] N[k, k+m[) =#(LNK) < am. As k is arbitrary, d*(f[M]) < a; as « is arbitrary, d*(f[M]) <
d;(M). Q
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(i) dr(f[M)) > iv*d:(M) for every M C N. P Set § = +d*(M). If § = 0 we can stop. Otherwise, take

any n such that 2™»~* > 1. Then [2™n~, | > 2™~y so thereis a k > r, such that #(MNL) > 2mn 15,
where L={j:j €N,k <j<k+[2™v,]}. Now L is an interval in N with |2+, | members. Also f[L] C
[rn,00[. So f[L] cannot properly include J N [27~k, 2™ (k 4 1)[ for any k such that J N [2™"k, 27 (k + 1)]
is non-empty, and f[L] must be covered by two intervals [2"nk,2™(k + 1)[, [2™k',2™~ (K’ + 1)[. Since
#(f[M N L)) =#(MNL)>2m+1§y, one of these intervals must contain at least 2 §v,, points of f[M].
But this means that we have found an interval of length 2™~ containing at least 2™»§v* points of f[M].
Since this can be done for any n large enough, d*(f[M]) > 6v*, as claimed. Q

(e) Now f induces an isomorphism between PN and PJ which takes Z; to Z; N PJ, so induces an
isomorphism between 34 and (3s)q.

2N Corollary The automorphism group Aut 3, has no outer automorphisms.

proof In the language of FREMLIN 02, 3, has many involutions, so we can use FREMLIN 02, 384D.

20 Corollary Writing SS for the Dedekind completion of 35 (FREMLIN 02, 314U), 35 is a homogeneous
Boolean algebra; its automorphism group is simple and has no outer automorphisms.

proof (a) Let C be the set of those ¢ € 3g such that the pr1nc1pa1 ideal (3;). is isomorphic to 35. By 2M,
C is order-dense in 3, and therefore in 33 Take any non-zero a € 33 Then there is a partition of unity Cy
in (35)11 consisting of members of C' (FREMLIN 02, 313K). Next, there is a partition of unity C; in 34 such
that Cy C Oy C C. If #(C1) > #(Cp), note first that because 3, = DY we can replace one of the members
of C1 \ Cy by a countably infinite subset of C; next, we can replace one of the members of Cy by a copy
of C1, still lying within C. In this way, we obtain CO, C1 C C, with #(C{) = #(C}) = k say, which are
partitions of unity in (3 )e and 33 respectively. Since (33)0 = :’)\g for every c € C, (:’)\S)a = 35 = Es. As a is
arbitrary, 35 is homogeneous.

(b) By FREMLIN 02, 381T and 383G, Aut 3, is simple and has no outer automorphisms.

2P The shift on 3; (a) We have a Boolean automorphism ¢ : 35 — 3, defined by saying that
PY(I*) = (I + 1) forevery I CN. PIf I, J C Nand I* = J° then {+1)AJ+1) = (IAJ)+1
belongs to Zs, so (I +1)* = (J + 1)*; so the formula defines a function ¢ : 35 — 35. If I, J C N then
(TUJ)+1 = (I+1H)U(J+1),sop(I*UJ*) = ¢I*uypJe. If I C Nthen (N\I)+1)A(N\(I+1)) = {0} belongs
to Z4, so Y(1\I*) = 1\ ¢I*. Thus ¢ is a Boolean homomorphism. If I ¢ Z; then d5(I +1) = d%(I) # 0
and I + 1 ¢ Z,; so v is injective. If I C N set J = (I'\ {0}) — 1; then ¢pJ* = I*. So ¢ is surjective and is a
Boolean automorphism. Q

(b) If 6 : 3, — [0,1] is an additive functional such that #1 = 1, then the following are equiveridical:
(i) 00 = 6;
(ii) fa < dZ(a) for every a € 3;
(iii) fa = ds(a) for every a such that dy(a) is defined.
P Apply 1H to the functional I — 6I°. Q

3. Well-distributed sequences

3A Definitions (a) If z € £* is such that fzdv is the same for every v € P, I will call this common
value WDL,_, « 2(4), the well-distributed limit of z.

(b) A Fglner sequence of subsets of N is a sequence (I,;,)men of finite non-empty subsets of N such
#(L, Ak + I,,)) =0 for every k € N.

that lim,,

1
#(Im)

3B Theorem (a) If z € £°°, then



k+m

sup][zdu = 1imsupsupL Z 2(i)

vEP m—oo keN M+l —x

= inf{supZaiz(k—&—i) SO, 0 >0, Zai =1}
=0

keN
1 .
) Z z(i) :
i€l

=0
(Im)men is a Fglner sequence of subsets of N}

c . 1 .
= max{lim mfm Z z(i) :

m— 00 A
i€lm

= max{lim sup o

(Im)men is a Fglner sequence of subsets of N}.

(b) If 2 > 0, then sup,cp fzdv = inf{||z * 2| : @ € £}, £ >0, ||2[j; = 1}.
(c) If z € £° and v € R, then the following are equiveridical:
() WDL;_ o 2(7) is defined and equal to ~;

13

(8) for every € > 0 there is an mgy € N such that |77ﬁ Zfi,;n 2(1)] < e for every m > mg and k € N;
m
(7) limy,— o0 ﬁ > ic1,, #(1) is defined and equal to vy for every Fglner sequence (I,,)men of subsets
of N.

proof (a) It is enough to consider the case 0 < z < xN. Set

71 = SUP,ecp fZ dV7

Y2 = lim SUPy,— 00 SUPKeN m+1 Zv:k Z(Z)v

v3 = Inf{supey Yoig @iz(k+1) t g, ... o, >0, D0 oy =1},

74 = sup{limsup #&m) > 2(i) :

1€l

(Im)men is a Fglner sequence of subsets of N}.

Set x,, = %ﬂx(m + 1), so that smpkeNmi+1 Zf:;" (i) = ||Tm * 2||co for each m.

(i) 1 <. PIfve P, meN then
fzdy:fxm*zdug | * 2| o

Letting m — oo, fzdv < ~,; as v is arbitrary, y1 < 72. Q

(ii) v2 < 3. P Let € > 0. Take g, ... ,a, > 0 such that Y ja; =1 and supyey Y r g @iz(k + 1) <

~v3 + €. Then for any k, m € N,

1 k+m 1 m n
i—k i=0 j=0
. m n L n n
STHZZajz(k—i—z—I—j)+m—HZZajz(k+z)
i=0 j=0 i=0 j=0
1 - 1 - +1
. n
i= i=

Taking the supremum over k and the (upper) limit as m — 0o, 72 < 73 + €; as € is arbitary, vo < v3. Q
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(iii) For k, i € N set wi(i) =1 — z(k + ¢). Then there is a positive linear functional f : ¢ — R such
that f(xN) =1 and f(wg) <1 — 3 for every k. P

case 1 Suppose that there are no ag,...,a, > 0 such that Z?:o aiwg > xN. In this case a,s =
{i : w (i) < for every k < n} is non-empty for every n € N, § > 0. Let F be an ultrafilter on N containing
every ang, and set f(v) = lim,_,zv(n) for every v € £°°; then f(wy) = 0 for every k.

case 2 Otherwise, define a seminorm 7 on ¢*° by setting
7(v) =inf{>}_oar o, ... ,an >0, [v] < D), apwy}

for v € £°. Set 8 = 7(xN). T If (1 —~3)3 < 1, take g, ... ,q, > 0 such that x\N < 7' agpw, and
(1—3) > gar < 1. Set o=y _,cu; of course o > 0; set af, = ay /e for each k, so that ) af =1,

éxN <> p_owy and (1 —v3)a < 1. Now, for any i € N,
1 n . n . n .
= <D kmo Wk (d) = 2p—g o (1 — 2(k +14)) =1 =3k agz(k +1)

SO

V3 < SUPjen Do @4 2(i + k) <1 — o

<l—-m3and 1< (1—793)a. X

Thus (1 —v3)8 > 1. By the Hahn-Banach theorem, there is a linear functional g : £°° — R such that
g(xN) = g and |g(v)| < 7(v) for every v € £>°. Since 7 is a Riesz seminorm, g € (£>°)~. Take |g| in (£>°)™;
then |g|(xN) > g(xN) and |g|(v) < 7(v) for every v € £>°. So in fact we must still have |g|(xN) = 3, while

QI

lgl(wi) < 7(wg) < 1 for every k. Set f = %\g| Then f : ¢*° — R is a positive linear functional, f(xN) =1

and f(wg) < 3 < 1 — 3 for every k, as required. Q
(iv) 73 < 71. P Take the functional f from (iii), and set (1) = f(x[I) for each I C N. Then
6 : PN — [0,1] is an additive functional and §(N) = 1. Take any vy € P and set vI = f0(I —' i)vo(di) for
I C N, so that v € P.
Let € > 0. Then there are ag,...,I, C N and ayg,...,a, > 0 such that

Z?:o a;jxl; <z <exN+ Z?:o a;xI;.
Setting zr = YN — wg, so that zx(i) = z(k + ¢) for all k and ¢,
2,(1) < e+ 30 gagxIi(k 4+ i) = e + 2T_g ajx(a; = k)(9)
for every i, and
v3 < 1= flwy) = fz) < e+ 37 ga;0(a; =" k).
Integrating with respect to vy,
v3 < e+ i gav(ay) < e+ fzdv<e+m.
As € is arbitrary, v3 < v1. Q
(v) 72 < 4. P For each m € N, let k,;, be such that

1 Ko+ . 1 k+ . _
mi_‘_lzi:knfn z(1) = suppen mTlZi:;I” z(i) —27™m,

and set I, = {i: kyp < i <k, +m}. Then

1

. 1 Ko+ . . .
Y2 = limsup,,,_, mi_,_lzz:km z(i) = limsup,,_, o mzz'elm 2(1) < .

(vi) There is a Fglner sequence (J,,)nen of subsets of N such that lim,, % > ic,, #(1) is defined

and equal to v4. P For each m € N there is a Fglner sequence (I,)nen of subsets of N such that
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limsup,,_, m > icr,,, #(i) >~4—27™. For all n large enough,

H(Tn Ak + Inn) < 27" # (1) for every k < m,
so there is a first n(m) such that

#( Ly () Ak + Iy nmy) < 27" # (L n(m)) for every k <m,

_
#(Im,n('m)

Set Jm = Ly n(m)- Then (Ji,)men is a Fglner sequence of subsets of N and

Eielm,n(m) 2(i) >y — 27

4 < liminf,, oo ﬁzz‘em z(i) < limsup,,_,

mzz@]m 2(1) < v Q

This shows that

max{limsup,, _, #Zigm 2(4) : (Im)men is a Fglner sequence of subsets of N}

#([m,)
and

max{liminf,, ﬁziem 2(1) : (Im)men is a Fglner sequence of subsets of N}

. 1 .
are both defined and equal to 4 = lim,, o 0.0 Yies, 2(1).

(vii) 74 < 71. P Take (Jp)men from (vi). Let F be a non-principal ultrafilter on N. Set v =

lity_, 7 % for I C N. Then v : PN — [0,1] is additive and »N = 1. If I C N and k € N, then

[#((L+ )N Tn) = #(I O T)| = [F((T 4+ E) 0 Tm) = #((T + K) 0 (Jm + K))]
< [#(ImAD(Tm + K))| = o(#(Jim))
as m — 00, so v(I + k) = vI; thus v € P. As in (iv), it is easy to check that
J[z dv = lim,,_ %Zle, 2(i) = 4,
som <7 Q
(viii) Putting these together, we have the result.
(b) If x € /! and x > 0, then fz x zdv = ||z||;fz dv for every v € P; this is elementary if z is eventually

zero, and the general result follows by continuity. So d*(z) = d%(z * 2) < ||# * 2|l Whenever z € £}, z > 0

and ||z|[; = 1. On the other hand, given k, m € N, ﬁ Zfikm (1) = (Tma1 * 2)(k + m) where z,,41 is
m

defined as in the proof of 1C, so inf{||z * 2||oc : @ € ({1, ||z|1 = 1} < di(2).

(c)(a)=(7y) Suppose that WDL;_, 2(i) = v, and that (I,,)men is a Fglner sequence of subsets of N. Let
F be any non-principal ultrafilter on N. Set vI = lim,,, . r #;I(?i)) for every I C N. Then v : PN — [0, 1]
is additive, and YN =1. If k € N and I C N, then

[#((L + k)N L) = #( 0 In)| = [#(( + k) N L) = #((L+ k) O (I + k)]
as m — 00, SO

#((U+F)N 1)
#(Im)

Thus v € P, and v = fzdv. On the other hand,

= limmﬂ}-w =vl.

v(I + k) =lim,,_r S

. 1 .
fx] dv =vI =lim,,_, 7 mzidm xI(3),
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so fwdv = lim,,_, ﬁ > icr,, w(i) for every w € £°° and, in particular,

. 1
hmmH}-W iel,. z(1 fzdu—

As F is arbitrary, lim,, .« ﬁ Yicr, 2(1) = 7; as (Im)men is arbitrary, (v) is true.

not-(B)=not-(y) If (5) is false, we can find an ¢ > 0 and sequences (k(m))men, ({(Mm))men such that

I(m) >m and |y — l(m1)+1 nggg;i(m) z(i)| > € for every m. Setting I,, = {i : k(m) <i < k(m)+1(m)}, we

have |y — ﬁ > ic1,, | > € for every m. On the other hand, for any k € N,

#InAk+1n)) 2k
#(Im) — #Um)

as m — 00, 80 (In)men is a Fglner sequence, and () is false.
(B)= () If (B) is true, then

— 0

SO 2 (i)

applying (a) to z and —z, we get sup,cpfzdv < < inf,cpfzdv, so WDL,,_. z(n) is defined and equal
to 7.

— i« 1 k+m _ 1
v = limsup,,,_, ., SUPren m—_HZ T z(1) = liminf,, o infrey — p—

Remark Part (b) is Theorem 4.5 of KUIPERS & NIEDERREITER 74, where it is attributed to LORENTZ 48.

3C Definition Let X be a topological space and p a probability measure on X. I say that a sequence
(Tn)nen in X is well-distributed if pF > d%({i : x; € F'}) for every measurable closed set F' C X.
Of course a well-distributed sequence is equidistributed in the sense of FREMLIN 03, §491.

3D Proposition Let X be a topological space, u a probability measure on X and (x;);en a sequence in
X. Write Cp(X) for the space of bounded continuous real-valued functions on X.

(a) (z;)ien is well-distributed iff [ fdu < f f(x;)v(di) for every measurable bounded lower semi-continuous
function f: X — R and every v € P.

(b) If u measures every zero set and (x;);en is well-distributed, then WDL;_ o, f(x;) is defined and equal
to [ fdp for every f € Cy(X).

(c) Suppose that p measures every zero set in X. If WDL;_o f(z;) is defined and equal to [ fdu for
every f € Cp(X), then df({n: x, € F}) < puF for every zero set F C X.

(d) Suppose that X is normal and p measures every zero set and is inner regular with respect to the closed
sets. If WDL, . f(z;) is defined and equal to [ fdu for every f € Cy(X), then (x;);en is well-distributed.

(e) Suppose that u is T-additive and there is a base G for the topology of X, consisting of measurable sets
and closed under finite unions, such that uG < v({i: z; € G}) for every G € G and v € P. Then (z;);en is
well-distributed.

(f) Suppose that X is completely regular and that p measures every zero set and is 7-additive. Then
(z;)ien is well-distributed iff WDL;_,« f(x;) is defined and equal to [ fdu for every f € Cp(X).

(g) Suppose that X is metrizable and that p is a topological measure. Then (x;);cy is well-distributed
iff WDL; o f(z;) is defined and equal to [ fdu for every f € Cy(X).

(h) Suppose that X is compact, Hausdorff and zero-dimensional, and that p is a Radon measure on X.
Then (x;);en is well-distributed iff ds({n : x,, € G}) is defined and equal to uG for every open- and-closed
subset G of X.

proof (a)(i) Suppose that (z;);en is well-distributed. Let f : X — [0,1] be a measurable lower semi-
continuous function and v € P. Take any k > 1. For each j < k set G; = {z : f(z) > %} Then

V{i:l’iGGj}:l—V{ill'iGX\GJ‘}
>1—di({i:azi e X\Gj})>1—pu(X\Gy)

(because (x;);en is well-distributed and X \ G; is a measurable closed set)
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As k is arbitrary, [ fdp < ff(z;)v(di).
The argument above depended on f taking values in [0, 1]. But multiplying by an appropriate positive

scalar we see that [ fdu < liminf, .. %H St f(x;) for every bounded measurable lower semi-continuous

f: X — [0, 00[, and adding a multiple of x X we see that the same formula is valid for all bounded measurable
lower semi-continuous f: X — R.

(ii) Conversely, suppose that [ fdu < f f(z;)v(di) for every bounded measurable lower semi-continuous
f:X —Randevery v € P. Let FF C X be a measurable closed set. Then —xF' is lower semi-continuous,
so —uF < f(=xF)(z;)v(di) = —v{i : x; € F}, that is, v{i : & € F} < pF, for every v € P. Taking the
supremum over v, di({i: x; € F}) < uF. As F is arbitrary, (x;);en is well-distributed.

(b) Apply (a) to the lower semi-continuous functions f and —f.

(c) Recall that if 4 measures every zero set, then every bounded continuous real-valued function is
integrable (FREMLIN 03, 4A3L). Let FF C X be a zero set, and € > 0. Then there is a continuous f : X — R

such that F' = f~1[{0}]. Let § > 0 be such that u{z: 0 < |f(z)] <} <€, and set g = (xX f%|f|)+. Then

g: X — [0,1] is continuous, so

d*({i:2; € F}) < limsupnﬂoo%ﬂzzlzog(xi) = fgdu <plx:|f(z)| <0} < pF +e
As € and F' are arbitrary, we have the result.

(d) Let FF C X be a measurable closed set and € > 0. Because p is inner regular with respect to the
closed sets, there is a measurable closed set F' C X \ F such that pF’ > p(X \ F)) —e. Because X is normal,
there is a continuous function f: X — [0,1] such that xF' < f < x(X \ F’). Let v € P. Then

v{i:x; € F} < ff(x,)y(dz) = ffdu < pu(X\F') <uF +e
As v and F and e are arbitrary, (z;);en is well-distributed.

(e) Let F C X be a measurable closed set, and € > 0. Let G; be the family of members of G disjoint
from F. Then G; is upwards-directed and |JG1 = X \ F; because p is 7-additive, there is a G € Gy such
that uG > u(X \ F) — e. Now, for any v € P,

iz, € F}<1—v{i:z; € G} <1—puG <vF +e.
As v and F and e are arbitrary, (z;);cn is well-distributed.
(f) (i) If (@;);en is well-distributed then (b) tells us that [ fdu = WDL;_. f(x;) for every f € Cy(X).
(ii) Suppose that [ fdu = WDL; . f(z;) for every f € Cy(X). If G C X is a cozero set, we can apply (c)

to its complement to see that uG < v{i : x; € G} for every v € P. So applying (e) with G the family of
cozero sets we see that (x;);en is well-distributed.

(g) Because every closed set is a zero set, this follows at once from (b) and (c).

(h) If (z;);en is well-distributed and G C X is open-and-closed, then d({i : z; € G}) < puG because G
is closed and d*({n : z, ¢ G}) < 1 — uG because G is open; so ds({i : ; € G}) = uG. If the condition is
satisfied, then (e) tells us that (z;);en is well- distributed.
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3E Proposition (a) Suppose that X and Y are topological spaces, p a probability measure on X and
f: X — Y a continuous function. If (z;);cy is a sequence in X which is well-distributed with respect to p,
then (f(2;))ien is well-distributed with respect to the image measure pf 1.

(b) Suppose that (X, ) and (Y, v) are topological probability spaces and f : X — Y is a continuous
inverse-measure-preserving function. If (x;);cn is a sequence in X which is well-distributed with respect to
w, then (f(z;))ien is well-distributed with respect to v.

proof (a) Let FF C Y be a closed set which is measured by puf~t. Then f~1[F] is a closed set in X measured
by p. So

di({i: f(z) € FY) = d;({i s € fHF]}) < pf U F] = pf~H[F].
(ii) Replace ‘uf~1" above by ‘v’

3F Examples (a) For almost every z = (£;);en € [0, 1]Y, (&)ien is equidistributed (FREMLIN 03, 491Eb)
but not well-distributed (because there will be arbitrarily long gaps [k, k 4+ n[ in which every & < %)

(b) For o € R write <a> € [0,1] for its fractional part, so that « — <a> € N. Examining the proof
of Weyl’s Equidistribution Theorem (FREMLIN 01, 281N), we see that if 71,... ,7, are real numbers such
that 1,7y,...,n, are linearly independent over Q, and we set x,, = (<nn;>,...,<nn,>) € [0,1[" for each
n, then (x,,)nen is well-distributed for Lebesgue measure on [0, 1[".

(c) For a space with an equidistributed sequence which has no well-distributed sequence, see 30 below.

3G Proposition The usual measure u of {0,1}¢ has a well-distributed sequence.

proof Take (A¢)e<. from 1I, and set x,(§) = xAe(n) for each n € N, £ € ¢. If V' C {0,1}° is an open-
and-closed set of the form {z : 2| K = u} for some finite K C ¢ and u € {0,1}¥, then d,({i : x; € V})
is defined and equal to pV. Since any open-and-closed set in {0,1}¢ is a finite disjoint union of such basic
sets, ds({i : x; € V}) is defined and equal to uV for every open-and-closed set; by 3D(h), (x;)ien is a
well-distributed sequence in {0, 1}

3H Proposition Let (X, %, X, u) be a topological probability space with a countable network consisting
of measurable sets. Then there is a well-distributed sequence in X.

proof (a) Let £ be a countable network consisting of measurable sets; we may suppose that £ is a subalgebra
of PX. Then there is a Boolean homomorphism 7 : £ — PN such that ds(7FE) is defined and equal to uF
for every E € £. P Let (E,)nen be a sequence running over £ and for n € N let &, be the subalgebra of
& generated by {E; : i < n}. I seek to define 7 as the union of a non-decreasing sequence (m,)nen Where
each 7, : £, — PN is a Boolean homomorphism. The inductive hypothesis will be that ds(7,E) = pE
for every E € £,. Start with 1o X = N, mg) = . Given &, and m,, let A, be the set of atoms of &,.
For each A € A,, m,A has Banach density; by 1F(d), or otherwise, there is an I4 C 7, A with Banach
density equal to p(E, N A). Now set J = |J,c 4 4. By 312N, there is a unique Boolean homomorphism
Tn+1 : Ent1 — PN, extending 7, such that 7,41 F, = J; it is easy to check that m,11 has the properties
required to continue the induction. Q

(b) Now choose x,, € X, for n € N, so that z,, € E; whenever ¢ < n and n € 7E;. (This is always possible
because if J = {i: i <n,n € nE;} thenn € NN(,.,;7E; = (X N(,c; E;i) and X N[, , E; cannot be
empty.) If E € £, then there are 4, j € N such that £ = F; and X \ E = Ej, so that

{n:z, € E;}AnE; C max(i,j) is finite, and ds({n : z, € E}) = ds(7F) = pE.

By 3D(e), {(z;)ien is well-distributed with respect to p and the topology & generated by £. But & is finer
than ¥, so 3E tells us that it is also well-distributed with respect to p and %.

3I Proposition (KUIPERS & NIEDERREITER 74, p. 202, Theorem 3.9) Let X be a completely regular
space and p a Radon probability measure on X. Define 7 : XN — XN by setting (Tz)(i) = z(i + 1)
for x € XN i € N. Then if z € XV is a well-distributed sequence and y € {T*x:k € N} in XV, y is
well-distributed.
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proof Let f € Cy(X)and € > 0. Set v = [ fdu. Then WDL; . f(z;) =7 (3D(g)). Let mo € N be such
that — Z]H'm (z;) € [y — €,7 + €] whenever m > mg and k € N (3B(b)). Now take any m > mg and
ke N. Then there is an r € N such that |f(y;) — f(2r4:)] < € whenever k < i < k + m. In this case,

k+m k+m k+m
m+1 nyz 'Y|_|m7+12f(yi)_ (Trps |+|m7+12fxr+z -
kr+k+m
64‘|miJrl > f@i) =] < 2e
i=r+k

This is true for every m > mg and every k; as € is arbitrary, WDL; o f(y;) = 7; as [ is arbitrary, (y;)ien
is well-distributed.

3J Lemma Let (X, Tpny S,y o)) m<n be a family of 7-additive topological probability spaces, and A
the T-additive product measure on X =[], X,,. For each m € Nlet (v,:)ien be a sequence of topological
probability measures on X,, such that ju,,F' > limsup,_, . vm:F for every closed set F C X,,. For each
i € N, let \; be the c.l.d. product measure of (Vm;)m<n. Then AV > limsup;_, AV for every closed set
vV CX.

Remark The ‘r-additive product measure’ here is supposed to be the one described in FREMLIN 03, §417.
The only properties we shall need of it in this note are that for any family ((X¢, T¢,Xe, pe))eer of 7-
additive topological probability spaces, there is a canonical 7-additive topological probability measure on
X = ng ; X¢ which extends the ordinary (completed) product probability measure.

proof Induce on n. If n = 0 then A; is just the completion of vy; and the result is trivial. For the inductive
step to n > 1, we can identify each A; with the c.l.d. product of A\, and vy;, where X} is the product of
<Vmi>m<n-

Now take a closed set V' C X and ¢ > 0. Because A is 7-additive, there is an open set W C X \ V|
expressible as a finite union of sets of the form Hm<n H,, where H,, C X,, is open for every n, such that
AW >1— AV —e. For each y € X', set f(y) = pmW[{y}], so that \W = [ f(y)N (dy), where X’ is the
product of (ftm)m<n. Each W[{y}] is open, so f(y) < liminf; o vm:W[{y}]. Since there are only finitely
many sets which appear as W[{y}, there is an i¢ € N such that f(y) < vn;W[{y}] + € whenever y € X’ and

i > i4y. Next, there is an iy > ig such that [ f(y)N (dy) < [ f(y)\i(dy) + 2€ for every i > i;. B Take k > =

and for [ < kset Uy = {y : f(y) > é} Then U is a finite union of products of open sets, so is open and
measured by every A;. By the inductive hypothesis there is an i1 > 7o such that NU; < AU, + € for every
I <kandi>iy. Now, for i > iy,
[ Fly)XN (dy) < Zk CNU < et Z’“ o MU < 2e+ [ f(y)Ni(dy). Q
So for all 4 > max(ig, 1), we shall have
AW = [ fy)N(dy) < 2e+ [ fFy)Ni(dy) < 3e+ [ vmiW[{y}IN,(dy) = 3e + AW
Turning this round,
AV > 1= AW +e>1— MW +4de = A(X \ W) +4e > AV + 4e

for every i > i1. As € is arbitrary, AV > limsup,_, ., A;V, and the induction continues.

3K Lemma Let X be a topological space and p a measure on X, and suppose that (t;);en is a well-
distributed sequence in X. For k, m € N let v, be the point-supported measure on X defined by setting

l/mk(E) = 27m#({K K Cm, tk+#(K) € E}

for every E C X. Then for every measurable open set G C X and € > 0 there is an my € N such that
UmkG > uG — € whenever m > mg and k € N.
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proof For m, k € N define x,,; € RY by setting @, (k + 1) = 27™#([m]?) for i < m, 2,1 (i) = 0if i < k
or i > k+m. Then zmp € ((1)F, |2mells = 1 and Vary zppe < 27" sup,c,, #([m]") = am say (because
Tk (1) < (i + 1) ifi<k+ , and @k () > (i + 1) ifizk—l—%). Setting I = {i: t; € X \ G}, we
see that

lim inf inf v,,,G = 1 — lim sup supZ:cmk )>1-d*(X\G)

m—oo keN m—oo keN 77

(1C, because imsup,,, _, o SUPrey Varn(Tme) < limp, o0 i = 0)
21— p(X\G) =pG,

as required.

3L Theorem Let ((X¢, T¢, X¢, pte))eecr be a family of m-additive topological probability spaces, each of
which has a well-distributed sequence. If #(I) < ¢, the T-additive product measure A on X = ngl X¢ has
a well-distributed sequence.

proof (a) For J C I set Z; = [[;c; Z¢ and let \; be the T-additive product measure on Z;. Let (A¢)eer be
an almost-disjoint family of infinite subsets of N. For each & € I, let (t¢;);en be a well-distributed sequence
in X¢. For K € [N]<% set ng = >, 2, as in 1I. Now define (x;)ien in X by setting x,, () = t¢ 4(xnaq)
for ¢ € I and K € [N]<¥

(b) For J € [I]<% and disjoint L, M € [N]<¢ let Vﬁ} be the point-supported measure on Z; defined by
setting
WHW =27 # D p({K : K C L, 2y, 1] € W)
for every W C Z;. Observe that if J, L and M are such that (As N L)¢cs is a disjoint cover of L, then
V(L 1\)4 is just the product of the measures Vﬁ{%L AenM for £ € J, interpreted as measures on X¢ = Zi¢). P
If z € Z;, then for any K C L we have

Tnpon | =2 = te p(knag+#nag) = 2(§) for every £ € J,

SO

vilh(z)) = 2 F D R({K - K C L, 2y 1 = 2})

= H 2 FAOL LUK : K C A N L, te ()4 (vnag) = 2(€)})
geJ

= [[2 # "D #({K : K C A¢n L, Tnagnizonn (§) = 2(6)})
£eJd

= [T Ao ({20 @

ceJ

(c) Now suppose that J € [I]<“ and that W C Z; is open. Then for every € > 0 there is an mg € N
such that whenever L, M € [N]<“ are disjoint, (A¢ N L)¢ec s is a disjoint cover of L and #(A¢ N L) > myg
for every £ € J, then V(L‘B[(W) > AW —e. P? Otherwise, we can find (L, )nen, (Mp)nen in [N]<“ such
that, for each n € N, L, N M,, = 0, (A¢ N Ly)¢ees is a disjoint cover of Ly, #(A¢ N L,) > n for every
¢ € J and I/(J) (W) < AW — ¢ for every n. For £ € J, n € N write ¥¢, for the point-supported measure

ngr];)L A¢M,, > SO that V(L{L)Mn is the product of (D¢, )ec s for each n, by (b). If ¢ € J and G C X¢ is open, then

weG < liminf,, o P¢n G, by 3K, because lim,, .o #(A¢ N Ly,) = co. By 3J, \;W < liminf, l/é‘i)Mn (W);
but this is impossible. XQ

(d) Again suppose that J € [I]<“ and that W C Z; is open. Then for every e > 0 there is an mg € N
such that whenever L, M € [N]<“ are disjoint and there is an L’ C L such that (A¢ N L')¢cy is a disjoint
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cover of L' and #(A¢ N L") > my for every £ € J, then V}j&(W) > AjW —e. PP Take the same mg as in (c).
Suppose that L, L’ and M are as stated. Then

VW =2 # DK K C L, 2oy [J € W)

=2 #UND N 9 F VUK K C L, ey, 1 € WD)
M/CI\L'

= 9 #(I\L) Z Vg'],)Mqu(W)
M/CL\L'

> 9—#(L\L) Z AW —e= AW — ¢,
M/CL\L'

as required. Q

(e) Let W C X be an open set and € > 0. Then there is an m € N such that 2=™#({i: x; € W, 2™ <
1 <2™(4+1)}) > AW — 2¢ for every | € N. PP Because A is T-additive, there are a finite J C I and an open
set W' C Z; such that \;W/ > AW —eand W D {z: 2z € X, z[J € W'}. By (d), there is an mg € N such
that V(LQ[(W’ ) > AyW' — e whenever L, M C N are disjoint finite sets and there is an L’ C L such that
(AeNJ)eey is a disjoint cover of L' and #(A¢NL") > mg for every € € J. Because (A¢)ecr is almost disjoint,
there is an m; € N such that AN A, C m, for all distinct £, n € J. Because every A is infinite, there is an
m > my such that #(Ae Nm \ mq) > mg for every { € J. Now suppose that [ € N. Express 2™ as nps for
M € [N]=¢; then M Nm = 0. Set L =m, L' = Jgc ; Ac N'm \ m1. Then we see that V(LQ[(W') > AW — 2e.
But now

AW =2 <V (W) = 27" #({K : K Cm, @y [J € W'Y
S2TMH#{K K Cm, Tyl €WYE
=2""H{i:2MI << 2™+ 1), x; € W});
as [ is arbitrary, we have the result. Q

(f) This shows that (x;);en is well-distributed in X, which is what we have been looking for.

3M Example Set Y = NU {oo} with the one-point-compactification topology, so that Y is a compact
metrizable space. Give Y the point-supported Radon measure v such that v{n} = 377! for n € N,
p{oo} = 3. For n € N define K,,, j, as in (c) of the proof of 2C, and set I,, = {3""!l + j, : | € N}, so
that (I,,)nen is disjoint and ds(I,,) = 3~ for each n. Set y; = n if i € I,,. (The construction ensures that
UnenIn = N.) Then ds({i : y; = n}) = v{n} for each n, so if £ is the subalgebra of PY generated by
{{n} : n € N} then ds({i : y; € E}) = vE for every E € &; as £ is a base for the topology of Y, (y;)ien is
well-distributed in Y.

Set X =Y x {0,1}, and let u be the point-supported Radon measure such that p{(n,0)} = 37! for
each n and p{(co,1)} = % Then v = pf~t, where f(y,0) = f(y,1) = y for every y € Y. ? Suppose,
if possible, that (x;);en is a sequence in X, well-distributed for p, such that f(z;) = y; for every i. Set
I={i:z; €V}, where V. =Y x {0}. Then d,(I) = pV = %, while d;(I, \ I) = ds({i : &, = (n,1)}) = 0 for
every n. But there is no such I, by the argument in the proof of 2C. X

Remark Thus the claim in Proposition 4 of LOSERT 78B is false.

3N Proposition Let (X,T) be a regular Hausdorff space, and p a Radon probability measure on X
with a well-distributed sequence. Then it has a well-distributed sequence lying within the support of y; in
particular, the support of y is separable.

proof (a) Let (x,)nen be a well-distributed sequence, and Z the support of p. For each m € N, let K,,, C Z
be a compact set of measure greater than 1 — 27", For F C X, set

Am(F) = {k 1k e N, Fn {$27nk+i 1< 2m} 7é 0}
Then d*(A,,(F)) <1 for every closed set F C X \ K. P
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inf supl#(Am(F) N[, 1+ r]) <2™inf supi#({i 2M < i< 2™(l+ 1), 2, € F})
r>1eN " r>11eN 277

=2"di({i:x; € F}) <2™MuF <1. Q

Because {A,,(F) : F C X \ K,, is closed} is upwards-directed, there is a non-principal ultrafilter F,, on N
containing no A,,(F) for closed F C X \ K,;,. Now yp,; = limy 7, Zomp, is defined and belongs to K, for
every i < 2™. T Otherwise, every point of K, belongs to an open set G such that {k : xomp,; ¢ G} € Fpp.
As K, is compact, there is an open G O K such that {k : zomp,; ¢ G} € Fp, that is, Ay (X \ G) € Fp;
but this is impossible. X Q

(b) If F C X is closed and € > 0, there is an r € N such that
#{i: 271 <P <271+ 1), yms € F'}) < 27(uk + 2¢)
whenever m > r and 0 <1 < 2™ ". P Let K C X \ F be a compact set such that u(X \ K) < pF +e.
Because X is regular, there is an open set G 2 F such that G does not meet K, so that uG < pF +e. Let
r be such that #({i : 1 <i <1 +2", 2; € G}) < 2"(uF + 2¢) for every | € N. If now m > r and | < 27",

set J={i:2"1<i<2"(l4+1), ym;i € F}. For every i € J, the set B; = {k : xomp4; € G} belongs to F;
so there is a k € NN (0, ; By, and for this k& we have

#(J) <H#{j:2mk+2"1 < j<2mk+2"(1+ 1), z; € G}) < 2"(uF + 2e),
as required. Q

(c) Let (zn)nen be a re-indexing of (Ymi)men,i<2m in lexicographic order. Then for any closed set F' and
any € > 0 we have r € N such that #({n: 2"l —-1<n < 2"(l+1) =1, z, € F}) < 2"(uF + 2¢) for every
1>1. Sodi({n:z, € F}) < uF +2¢e. As F and € are arbitrary, (z,)nen is well-distributed. And of course
every z, belongs to Z.

30 Corollary There is a Radon probability measure on {0,1}¢ which has an equidistributed sequence
but no well-distributed sequence.

proof Let (X, ) be the Stone space of Lebesgue measure on [0, 1]. Then we can identify X, as topological
space, with a subspace of {0,1}¢; let u be the corresponding Radon probability measure on {0,1}° defined
by setting uFE = v(X N E) whenever the latter is defined. By FREMLIN 03, 491Q, u has an equidistributed
sequence. But X is the support of p and is not separable, so p has no well-distributed sequence, by 3N.

Remark As far as I know, the best previous example was that of LOSERT 79, depending on the continuum
hypothesis.

3P Proposition Let 2 be a subalgebra of 3, such that d,(a) is defined for every a € 2. Then there is a
subalgebra ¥ of PN such that ds(I) is defined for every I € ¥ and (A, ds[2) = (X, ds[X); in particular, 2
is o-centered.

proof Set T ={I:I CN, I* € 2}, so that ds(I) is defined for every I € T. Let X be the Stone space of T
and v the Radon probability measure on X defined by setting vl = ds(I) for every I € T, where TCXis
the open-and-closed set corresponding to I € T. For n € N, set z,,(I) = xI(n) for I € T; then x,, € X. Now
(p)nen is well-distributed for v. P If I € T, dy({n : z,, € I}) = dy(I); by 3De, (x,)ney is well-distributed.

Q
By 3N, there is a well-distributed sequence (z,)nen in the support Z of v. Let £ be the algebra of

open-and-closed subsets of Z. Then V +— V N Z is a surjective Boolean homomorphism from the algebra of
open-and-closed subsets of X onto &, so I — Z N1 is a surjective Boolean homomorphism from T onto £.
Its kernel is

{(I:ZnT=0}={I:vI=0}={I:d,(I)=0},

Ex{I*:TeT}=2L
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On the other hand, the map E — {n : z, € E} is a Boolean isomorphism between £ and a subalgebra ¥ of
PN. Moreover, if I € T, then
do(I*) = dy(I) =vI = dy({n: z, € ZN1T}),
0 (8,ds[X) =2 (2, ds [ ).
Of course X is o-centered, so 2 also is.
4. The set of measures with well-distributed sequences

4A The problem For a given topological space X, to understand the set of topological probability
measures on X which have well-distributed sequences.

4B Lemma Suppose that (a,)nen is a sequence in [0,1] such that > 2 ja, = 1. Then there is a
partition (I,,)nen of N such that ds(U,cp In) = >_,cp, an for every L CN.

proof (a) Consider first the case in which we have «,, = 2~k for each n, where kg < k; < .... Choose
(In)nen inductively by setting 4, = min(N\ U L, I, = {21 + i, : | € N} for each n. Note that we
always have

m<n

#(Im N Qk") < kin—km — 2k"04m

for each m < n, so that 4,, < 2F». It follows that j — 2k € I,,, whenever m < n, j € I,, and j > 2Fn;
consequently I,, N I, = () for m < n. Because i,, € I,,, |, .y I» = N. Finally, for the moment, d(I,) = o,
for every n.

neN

(b) In general, express each non-zero «,, as Z;io Bnj where each 3,; is of the form 2=% for some k.
Re-index (8pj)a,>0,jen as (B;)jen where By > 1 > .... By (a), we have a partition (J;),en of N such that
ds(J;) = Bj for each j. Next, we have a partition (Mp)nen of N such that a, =37, f; for each n. Set
I, = Ujen, Ji for each n; then (In)nen is a partition of N.

IfLCN,set L'=N\L, M=U,cp Mn, M' = U, crr Mn. Then U, In NU;jcpr Jj =0, s0

d:(UneL In < ds(N'\ UjeK Jj) =1- EjeK Bi
for every finite K C M’, and
dy(Uper In < 1- ZjeM’ B = ZjeM Bi =2 ner n-

Similarly, d(U,cr In) < > ncrs @n- As noted in 1A, this shows that d,(UJ
Qy,, as required.

ner In is defined and equal to

nerL

4C Lemma Let X be a topological space and (i, )nen & sequence of topological probability measures
on X, each with a well-distributed sequence (z,;)ien. If (n)nen is a sequence in [0, 1] with sum 1, and p
is any topological measure on X such that uG = > °  a,u,G for every open set G C X, then p has a
well-distributed sequence.

proof Let (I,)nen be a partition of N such that ds(U,,cp, In) = D ,cp, @n for every L C N (4B). For r € N
set Y, = xn; where y € I, and i = #(r N I,).

If F C X is closed and € > 0, take m € N such that ) <e. Then

oo
n=m+1 Qn

di({r:y, € F}) <> di({r:r€ln, yr € F})+di( | In)

n=0 n>m
= iand:({i cxn; € F}) + z": o,
n=0 n=m-+1

(1Fb)

SZanunF—i—eSMF—i—e.

n=0
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As F and € are arbitrary, (y,)ren is well-distributed for pu.

4D Lemma Let (X, %, %, 1) be a compact Radon probability space with a well-distributed sequence.
Then there are a zero-dimensional compact Radon probability space (Z,&,T,v) with a well-distributed
sequence and a continuous inverse-measure-preserving surjection from Z onto X.

proof Let 2 be the set of subsets of X with negligible boundary; then 2 is an algebra of sets (FREMLIN 03,
411Yc and 491Ye). Let (Z,S) be its Stone space. Then Z is a zero-dimensional compact Hausdorff space.
Let v be the Radon probability measure on Z defined by setting vE = uE for every E € 2, where E is the
open-and-closed subset of Z corresponding to E (416Qa).

We have a function f : Z — X defined by saying that f(z) = z iff € E whenever E € 2 and z € E P
Givenz € Z,thenE ={E: F €, z € E} has the finite intersection property so V = ﬂE€5E is non-empty.
If 2, 1 € X are distinct, let h € C'(X) be such that h(xg) < h(z1); then there is an o € Jh(z0), h(x1)[ such
that h=![{a}] is negligible. Setting Fy = {z : h(z) < a} and Fy = {x : h(z) > a}, their boundaries 9Fy and
OF are both included in h~'[{a}], so both Fy and F; belong to 2. Now Fy U F; = X so 130 U F\l = Z and
z € F\j for some j. But in this case V' C F}; and cannot contain both xy and x;. Thus V' must be a singleton
and its single member must be f(z). Q

Now the graph of f is

(Z x X)\Uges E x (X \ E),

which is closed, so f is continuous (because Z and X are compact Hausdorff spaces).

Next, f is surjective. P* If z € X, then there must be a z € Z such that z € H whenever H € 2 is open
and x € H; now = = f(2). Q

f is inverse-measure-preserving. P If F C X is closed, then f~'[F] = ("{H : H € 2 is open, F C H}, so
vf Y F]=inf{uH : F C H € A, H is open} = uF. Now use FREMLIN 03, 412K. Q

So if (zp)nen is a well-distributed sequence for p, we can choose a sequence (z,)nen in Z such that
f(zn) = x, for every n. P If W C Z is closed and e > 0, then there is an H € 2 such that W C H and

o~

vH <vW +e. Now
di{n:zneWH <d:({n:an € HY) < pH = uH = vH < vW +e.

As W and € are arbitrary, (z,)nen is well-distributed for v.

4E Lemma If (X, T, 3, i) is a zero-dimensional compact Radon probability space with a well-distributed
sequence, there are a zero-dimensional atomless compact Radon probability space (Y, &, T, v) with a well-
distributed sequence and a continuous inverse-measure-preserving function f: X — Y.

proof Set Y = X x {0,1}"; use 3L.

4F Lemma Let (A, )nen be a sequence of subsets of N such that ds(A,) = 0 for every n. Then there is
a strictly increasing function f : N — N such that f~1[A,] is finite for each n and d*(f~1[4]) < dZ(A) for
every A C N; consequently d,(f~![A]) = ds(A) whenever ds(A) is defined.

proof Choose (my,)nen in N so that | AN [my, my +2n+ 1 = 0 and m,, +2n+1 < m,, 4 for each n;

Jj<n
Aj) <2n1ﬁ' Set f(i) =m, +i—n?ifn?> <i<(n+1)% Then f: N - N
is strictly increasing and f~![A,] C n? is finite for each n.

Let A C N and € > 0. Set v = d%(A). Then there is an M € N such that #(ANJ) < M + (e +v)#(J)
for every interval J C N. Let n be such that en > 2M. If k > n?, then f[[k,k + n[] is of the form J; U Jo
where J; and Jy are intervals and #(J; + #(J2) = n. So

#(fTHAI N[k k+n[] = #(ANJ1) + #(ANJ2) <2M +n(e+7v) < n(2e+7).

By 1D, d(fY[A]) < 2e +; as € is arbitrary, d*(f~1[A]) < d%(A).
Applying this to A and N\ A we see that d(f~1[A]) = ds(A) whenever the right-hand-side is defined.

this is possible because d3 (U, <,

Remark In the language of §5, f is inverse-Banach-density-preserving; the proof here can be short-circuited
by applying Proposition 5C.



25

4G Proposition Let (X, T, X, 1) be a compact Radon probability space with a well-distributed sequence,
and f : X — [0,00] a lower semi-continuous function such that [ fdu = 1. Then the indefinite-integral
measure defined by f has a well-distributed sequence.

proof (a) Consider first the case in which f = Hivxv where V' is open-and-closed. Let (z,,)nen be well-

distributed for u, and set I = {n : z,, € V'}; then ds(I) = uV. Let (n;);en be the increasing enumeration of
I, and set y;, = x,, for each i. If FF C X is closed, then

p(FNV)y>d:({n:nel, x, € F})=ds(Id:({i:y; € F})

by 1FDb; dividing both sides by ds(I) = puV, vF > di({i : y; € F}); as F is arbitrary, (y;)ien is well-
distributed for v.

(b) Now suppose that X is zero-dimensional. In this case there are a sequence (V,,)nen of open-and-
closed sets of non-zero measure and a sequence (&, )pen in |0, 0o[ such that f =, ZZO:O anXVy. PP Choose
(fn)nen, (gn)nen as follows. fo = f. Given that f, : X — [0,00] is integrable and lower semi-continuous,
set Gp; = {x : fu(z) > 27"} for i € N; then [ fodu < 27" + 572 uGpi; let m, > 1 be such that
[ fadp < 277 4 5 1G5 choose open-and-closed sets Vi, C Gy such that uVi, > pGhpi + !

for
K2 2nmn

each i; set g, = Z?;"l 27" Vy; and fr41 = frn — gn. Continue.

Observe that [ f,41du < 272 for each n, so that f =,e. Y ooy gn. We can therefore take ((ay,, Vi,))nen
to be an enumeration of {(27",V,,;) : m € N, 1 <i < m,}, deleting any terms in which V,;; is empty. (If this
leaves us with only finitely many terms, break one of them up by replacing a (27", V) by (2771 V))1en.)

Q
Now (a) and 4C tell us that v has a well-distributed sequence.

(c) Finally, for the general case, let (Z,6, T, ) be a zero-dimensional compact Radon probability space
with a well-distributed sequence (z,)nen and a continuous inverse-measure-preserving function ¢ : Z — X
(4D). Then f¢ is lower semi-continuous and | f¢d\ = 1, so (b) tells us that there is a sequence (z/,),en in
Z such that d({n : z,, € W}) < [}, fopdX for every closed set W C Z. But in this case

vF = [ fdu= [, . fod\=di({n: =, € 67V [F]} = di({n: ¢(=,) € F})

for every closed set FF C X, and {¢(2],))nen is well-distributed for v.

4H Proposition Let (X, %, 3, u) be a Radon probability space with a well-distributed sequence, and F
a non-negligible measurable set. Then the normalized subspace measure (uF)~ug has an equidistributed
sequence.

proof (a) To begin with (down to the end of (d)) let us suppose that F is compact. Set o =1 — pF and
let (x;);en be a sequence in X which is well-distributed for p. For n > 1, € > 0 and closed F' C X \ F set

An,Fye)={k:keN, #{i:i<n, Tgnti € F}) > nla+¢€)}.
Then d*(A(n, F,¢)) < 1. P? Otherwise, let v € P be such that vA(n, F,e) = 1. Set

VT = f 24 (10 [kn, kn + n[)v(dk)

for each I C N; then v/ € P. But now
at+e<vV{i:z; e F})<d:({i:z; € F}) < uF < q,
which is impossible. XQ
Because {A(n, F,e) : e >0, F C X \ F is closed} is upwards-directed, there is a non-principal ultrafilter

F. on N not containing A(n, F,e). Let K, be the set of those i < n such that y,; = limg_r, Tppti is
defined and belongs to E.

(b) limsup,,_, ., %#(Kn) < pE. P For any € > 0, there is an open set G C X such that ENG = ) and

UG > a—e. Let ng > 1 be such that #({i : i < n, Trnyi € G}) > n(a—2¢) for every k € N, n > ng. Setting
K], =limg_z {i:7 <n, Tgasi € G}, we have #(K),) > n(a — 2¢) and K, N K,, = 0; so
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C#(Ka) <1 —a+ 2= pE + 2

for every n > ng. Q

(c) Suppose that n > 1, F C X and 8 > 0 are such that F' is closed and #({i : i < n, Tgnti € F}) >
(a+B)n for every k € N. Then #({i : i € Ky, yni € F}) > On. P? Otherwise, for every i € n\ K, there is

a closed set F; disjoint from F such that {k : 2gp4; € F;} € F,. Set e =5 — %#({z 21 € Kp, yni € F}) >0,
F' = U;en\k, Fi- Then
I'=NNNiek, 1k Tinti € Fi} \ A(n, F' €
belongs to F,,. But if k € I, then zyy,; € F' for every i € n\ K,,, and
#{i:i € Ky, Thnyi € F}) > #({i:i <n, 2gpes € FUF'})
—#{i:i<n, Tpnyi € F'Y)
> (a+ B)n — (a+ €)n.

So
#li:ie Ky, yni € F}) > kli% #{i:i€e Ky, 2gnti € F})
> (B—en=#({i:ie Kn, yni € F},
which is impossible. X Q

(d) In particular, taking F' = X and § = pE, we have #(K,,) > nuE > 0 for every n > 1. So we have
point-supported measures p,, on F defined by setting pu,D = ﬁ#({z 11 € Ky, Yyni € D}) for every

D C E. Now limsup,,_, . pnF' < Z—g for every closed set F' C E. PP Let € > 0. Then there is a closed set
Fy C X\ F such that u(int Fy) > 1 — puF —e. Now there is an ng such that l#({i 11 < N, Tpyi € Int Fy}) >
n

wu(int Fy) — € whenever n > ng and k € N; by (b), we can suppose also that %#(Kn) < uE + € for n > nyg.
Take n > ng. Then

%#({i 11 <N, Tpngi € Fo}) > 1 — pF — 2
for every k. By (c),
#{i:i€ Ky, yni € Fo}) >n(l —pF —a—2¢) = p(E\ F) — 2,

#({i 10 € Kn, yni € F}) < #(Ky) —n(u(E\ F) - 2¢)
<n(pE +e—u(E\ F)+ 2€¢) = n(uF + 3e),

#{i:yni €F}) pnEF+3e
nF: < .
s #(K.) = 4B

As € is arbitrary, we have the result. Q
By FREMLIN 03, 491D, there is an equidistributed sequence in F.

(e) For the general case, if there is a compact set F' C E with the same measure as F we can apply the
result of (a)-(d) to F. Otherwise, let (F,,)men be a disjoint sequence of compact non-negligible subsets of
E such that E'\ UmeN F,, is negligible. For each m € N let (z,;)icn be a well-distributed sequence for the
normalized subspace measure on Fy,. For n € N let u, be the point-supported probability measure on E
defined by setting

pnD =3, (n—i—l)uE#({Z 21 <n, zmi € D})




27

for D C E. If F C E is relatively closed, then

n—oo n—oo

lim sup p, F' < Z B hmsup—#({ i<n, zm; € F})
m=0

o0

Z wF, u(FﬂFm)

;TE'

m=0

By FREMLIN 03, 491D again, uiE’uE has an equidistributed sequence.

41 Theorem (RINDLER 76) Let X be a separable compact Hausdorff topological group, and p the Haar
probability measure on X. Then p has a well-distributed sequence.

proof Following RINDLER 76, I use what is in effect a refinement of the proof of existence of equidistributed
sequences given in FREMLIN 03, 491H. We can cut a step out by actually quoting that result. Let (y,,)men be
an equidistributed sequence for p; we can suppose that yo = e, the identity of X. Define (z;);cn inductively
by saying that

g = €,
ifi=j5+kn!, wheren € N, 1 <k <nandj<n!, then z; = ypz;.

Then we find that whenever n, k € N and j < nl, 2j4xn = Tgn1z; (induce on k simultaneously for all n, j).

Take f € C(X) and € > 0. For a, b € X, set for(z) = f(axb). Then the function (a,b) — fup: X X X —
C(X) is continuous, so {fa : a, b € X} is compact for the norm topology on C(X). We have

ff ffab = lim; 00 — Zl 0 fab(yz)
for every a, b € X, so there is an n > 1 such that

S50 fanwi) — [ f1 <€

for all a, b € X. In this case, for any £ € N,

n!l—1 n!—1

EDIRLE /f|—|foaxz - [

(where a = Tgn)
n—1(n—-1)!-1

- i, Z Z f axz—i—j(n 1)' /f|

(n—1)!1-1  pn-1

= (njl)! Z ‘% Z f(a$z+j(n 1)' /f|

=0 7=0
(n—=1)!-1  pn-1
1
= (n—1)! ‘; f ayjajz /f|
=0 7=0
(n—1)!—-1
1
<o 2 €=¢
=0

Now suppose that m > %Hf”oon' and [ € N. Then



28

+m kon!—1
(Fle)— [ 1)] < (Flz)— | f)
OMUBEYEIEDY /9l
k1—1 (k+1)n!—1 l+m
Yy (f(xi)—/f)|+\Z(f(xi)—/fﬂ
k=ko 1=kn! i=kin!

(where (kg — 1)n! <l < kon! and kin! <I4+m+1< (k1 + 1)n!)
< 20| flloo + (k1 — Ko)nle + 2n!|[ f]lo
<me+e(m+1)+me<3(m+ 1),

and

LS ) — [ ] < 3e.

m+1
As ¢ is arbitrary, [ f = WDL; . f(x;), by 3A(c-3). By 3Df, (z;);en is well-distributed.

5 Inverse-Banach-density-preserving functions
5A Definition I will say that f : N — N is inverse-Banach-density-preserving if d,(f~[I]) is
defined and equal to ds(I) whenever dy(I) is defined.

5B Theorem Let f : N — N be a function. For an additive functional v : PN — R and I C N, write
(vf=H(I) = v(f~'[I]). Then the following are equiveridical:
(i) f is inverse-Banach-density-preserving;
(i) d2(f[T]) < d2(7) for every I C N;
(iii) d*(f~1[I]) < ds(I) whenever dg(I) is defined,;
(iv) vf~1 € P for every v € P.
If f is injective, we can add
(v) limy, o0 dX(Ay) =0,
where A, = {i:i €N, f(i) + 1 # f(j) whenever |j —i| <n} for n € N.

proof (a)(i)=(iv) Assume (i). Let v € P, and take I C N such that ds(I) is defined. Then
(=) = v(f =) < dy(f7HI]) = do(D).

As we also have (vf1)(N) = 1 and (vf H)(N\I) < ds(N\ 1), (vf~1)(I) = ds(I). As [ is arbitrary,
vf~le P, by 1H.

(b)(iv)=(ii) If (iv) is true and I C N, then
di(f7HI]) = sup,epv(fHI]) = sup,ep(vf~H)(I) < sup,cp vl = di(I).
(c)(il)=(iii) is trivial.
(d) (iii)= (i) Assume (iii). If d4(I) is defined, then d*(f~1[I]) < ds(I) and
di(N\ fHI]) = dg(N\ ) < ds(N\ 1) = 1 —dy(J),
so ds(f1[I]) is defined and equal to d4(I).

(e)(v)=(ii) Suppose that f is injective and that (v) is true. Set B = {i : f(i)+1 € f[N]}, and for i € B set
g(i) = f1(f(i)+1). Take I C N and € > 0. Then there is an m > 1 such that L#(IN[l,1 + m[) < di(I)+e

for every | € N. Let n > 1 be such that d}(A,) < i Set
Cr={i:i €N, ¢g/(i) is defined and |¢7 (i) — i| < jn for 1 < j < k}

for k € N. Then d3(N\ Cy) < 1

for each k. B Let r € N be such that 2mn < er and #(A, N[, +7]) <

% for every [. Take any [ € N. Then
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LI+ VG <20+ ([0 40) < 20 2

Next, for any k > 1,

#((1,1+7[NCp\ Crpr) < #([L1+7[NCL\ g7 [C])
< 2n+#(g7 (L1 + [\ Ck])
(because if I +n <i<l+r—mnandic Cy, then g(i) € [I,l +7])
< 2+ #([11+ [\ Cr)
because g is injective. Inducing on k, we see that

(k+1)

#(1+ [\ Cr) < 2hn + =

for every k. And this is true for every [, so d*(N\ Cy) <

% for every k. Q

Set C' = Cyy,_1, so that |¢7(i) — i| < jn whenever i € C' and j < m; that is, whenever i € C' and j < m
there is an i’ such that |¢ — i'| < jn and f(i') = f(¢) +j. Then dX(N\ C) < e. Let s be so large that
2mn < es and #(C N [l,1 + s[) > (1 — 2¢)s for every .

Take any [ € N. Define Jy, Ji, ... as follows. Given J; for j < k, set

Uy = min(f[[l +mn,l+s —mn[NCI\ U, J5)

if this set is not empty, and Ji = [l, Ik +m[. Stop when f[[l +mn,l+s—mn[NC] €, J;. Note that
the J; are disjoint and that J; C f[[l,] + s[] for every j; while (k + 1)m > #([l + mn,l +s—mn[NC) >
5 — 2mn — 2es. Now consider

k
#(L1+s[N I = #(fILL+s[IND) <D #(I NI +5— (k+1)m
=0

j
< (k+1)m(di(I) +€) + 2mn + 2es
< s(di(I) +€) + 2mn + 2es < s(di(I) + 4e).
As this is true for every I, d*(f~1[I]) < d%(I)+ 4e. As this is true for every I C N and € > 0, (ii) is proved.
(f)—(v)= —(ii) Again taking f to be injective, suppose that (v) is not true; set
0 = limy, 00 d%(Ap) = infen di(Ay) > 0.
Then we can find a sequence (l,,)men in N such that

om

lmt1 > b +m,  f(5) > f(i) + 1 whenever i < l,, + m, j > 41 — 1
for every m € N. Set K, = [lm,lmm +m[ and L, = {i : i € K, f(i) +1 ¢ f[K,]} for each m; then
H#(Ly) > #(AnNKy) > %n; also f(i) + 1 ¢ f[K,.] whenever m, m’' are different and i € K,,.

Define I C N as follows. For each m € N, let .J,,, consist of the first, third, fifth. .. members of f[K,,\ Ly];
now take I = J,,cn Jm U f[Lm]. Then di(I) < 3. P For each i € I, set i’ =i+ 1if i € f[Ly,] for some
m, and otherwise let i’ be the next number above i such that neither ¢ nor i’ — 1 belongs to f[L,,]. Then
i ¢ I for every i € I, and 7 — ¢’ is injective. Also, for any interval J C N, there can be at most two points
i € INJ such that i’ ¢ J. (Note that if K,, \ L, has an odd number of members, then the top member 4
of f[Ky \ L] is put into I; but now ¢’ < l,,,41 — 1 is still safely away from f[K,,+1].) Q But if we look at
7] N Ky, we see that this includes Ly, and also at least [$# (K, \ Lyn)] members of Ky, \ Lp,; so

d3(f 1) 2 msup o (F 710 Ko >>1gnj;p%<#<Lm>+§#<Km\Lm>—1>

= hmsup2 + —#(Lm) % +- > =

m— 00
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So (ii) is false.

5C Proposition Suppose that f : N — N is such that
(*) there is an r > 1 such that for every m > 1 there is an lp € N such that for every [ > Iy

there is a partition of [I,] 4+ m[ into at most r sets J such that f[J is injective and f[J] is an

interval.
Then f is inverse-Banach-density-preserving.
proof Take I C N and v > d*(I). Then there is an ng € N such that #(I N[l,I + n[) < yn whenever n > ng
and [ € N; consequently #(I N K) < ng + v#(K) for every interval K C N. Now take any m > 1. Then
limsup,_, o #(f ] N[, 1 +m[) < rng +ym. P Let Iy be as in (*¥). If [ > Iy, let J be a partition of
[I,1 +m[ into at most r sets such that f[.J is injective and f[J] is an interval for each J € J. Now

#(NLI+m) = #(F ' N )
JeJ
(because J is a partition of [I,] 4+ m][)

= #UNSL)
JeJg
(because f|J is injective for each J)

<Y o+ #(f1)
JeJg
(because f[J] is an interval for each J)

<rng+ Y y#(f[J])

JeJg
(because #(J) <)

=rng + 7 Z #(J) =rng +ym.
JeT

And this is true for every [ > [y. Q

Letting m — oo, we get dX(f~1[I]) <. As I and « are arbitrary, f is inverse-Banach-density-preserving,
by 5B(ii).

5D Examples (a) See 4F.

(b) Define f : N — N by setting

f(i) =i —n? whenever n € N and n? <i < (n+1)2.

Then f is inverse-Banach-density-preserving. I® In 5C, we can take r = 2. Q

(c) Define f : N — N by setting

f@)=Mm+1)—i—1+n! whenever n € Nand n! <i < (n+ 1)L

Then f is an involution, and is inverse-Banach-density-preserving. I® Once again, we can take r = 2 in 5C.

Q
But note that there is a set I such that d(I) is defined but d(f~*(I)) is not. I Set

I'={2i:i e N}U,cn[(n+ 1! =nl, (n+1)![.
Then d(I) = 1 = d.(f7[I]) but *(f~'[I]) = 2. Q
(d) Set K = U,y [2n)% 2n+1)2[, L = Upen [2n+1)2,2n+1)?[. Let (kn)nen, (In)nen be the
increasing enumerations of K, L respectively. Define f : N — N by setting f(2i) = k;, f(2¢ + 1) =
for i € N, so that f is a bijection. If m > 1 and I > m? then f[[l,l+ m[] is made up of at most four

intervals, so 5C tells us that v is inverse-Banach-density-preserving. But if E is the set of even numbers
then d}f[E] =1 > 5 = diF, so f~! is not inverse-Banach-density-preserving.
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6 Amenable groups Some of the ideas of §3, in particular, can be expressed in terms of general groups.

6A Definition Let G be any group. Let Qg C ¢}(G) be the set of functions z : G — [0, 1] such that
{a: z(a) # 0} is finite and ) . 2(a) = 1, that is, the convex hull of {x{a} : a € G}. For any linear space
W, 2 € Qg and f € WE set (2% f)(a) = 2 beG2(b)£0 z(b)f(b~'a) for a € G. Observe that if b € G then
(x{b} * f)(a) = f(b~'a) for every a, that is, x{b} * f = be,f in the sense of FREMLIN 03, 441A. We can use
the same formula to define z; * 2o for z1, 20 € Qg, and now x{a} * x{b} = x{ab} for a, b € G; hence, or
otherwise, (21 * 22) * f = 21 * (22 f) for all 21, 20 € Q¢ and f € W&, (Qg, *) is a semigroup with identity
x{e}, where e is the identity of G, and we can think of * as a semigroup action of Q¢ on W (FREMLIN
03, 449Ya).

6B Lemma Let G be a group and W a locally convex Hausdorff linear topological space.
(a) For every f € WY, there is at most one w € W such that
(*) for every neighbourhood V of w in W and every z € Q¢ there is a 2’ € Q¢ such that
(' xzx f)|G] C V.
We may therefore define a function WDL by saying that, for f € W& WDL(f) is defined and equal to w
iff w satisfies the condition (*).
(b)(i) The domain D of WDL is a linear subspace of W&, and WDL : D — W is a linear operator.
(ii)) If f € D and z € Qg, then z * f € D and WDL(z x f) = WDL(f).
(iii) In particular, WDL(ae; f) is defined and equal to WDL(f) whenever f € D and a € G.
(iv) WDL(f) belongs to the closed convex hull I'(f[G]) of f[G] for every f € D.
(v) If f: G — W is a constant function, then f € D and WDL(f) is the constant value of f.
(¢) Suppose that W’ is another locally convex Hausdorff linear topological space and T : W — W' is a
continuous linear operator. If f € D, then WDL(T'f) is defined and equal to T(WDL(f)).
(d) Suppose that G is abelian.
(i) If w € W and f € WY are such that for every neighbourhood V of w there is a 2z’ € Q¢ such that
(2 * f)[G] €V, WDL(f) is defined and equal to w.
(ii) For f € W&, define f € W& by setting f(a) = f(a™!) for every a € G. Then WDL(f) = WDL(f)
if either is defined.

proof (a) Suppose that w, w’ satisfy the condition and that V', V' are convex neighbourhoods of w, w’
respectively. Then there is a z € Q¢ such that (z * f)[G] C V. Next, there is a 2z’ € Q¢ such that
(/xzx f)[G] CV'. But (2 *zx f)(a) € T((z % f)[G]) CV for every a € G, so V meets V'. As V and V’
are arbitrary, w = w’.

(b)(i) Suppose that f, g € D, with WDL(f) = w; and WDL(g) = we, and z € Q. Let V be a convex
neighbourhood of 0 in W. Then there are a 21 € Q¢ such that (21 % z* f)[G] Cw; +V and a 23 € Q¢ such
that (z2% 21 %2%g)[G] C wy+V for every a € G. In this case, (zaxz1 %2 f)(a) € T((z1 % 2% f)[G]) Cwi1+V
for every a € G, 80 (zaxz1 x 2% (f +¢9))[G] Cw1 +V + w2+ V. As V and z are arbitrary, f + g € D and
WDL(f + g) = w1 + wo.

Thus D is closed under addition and WDL is additive. The check that af € D and WDL(«af) =
a WDL(f) is easy.

(ii) Immediate from the definition, just because * is associative in the right way.
(iii) Special case of (ii).
(iv)-(v) Also immediate from the definition.

(c) The point is that T(z x f) =2 Tf : G — W’ for every z € Qg, because

(T(z % D)) = T((z+ @) =T( Y 20)f0"a) = 3 BTG a)

2(b)#0 2(b)#0
= Y 2T a) = (z+Tf)(a)
z(b)#0

for every a € G. Now take a neighbourhood V of T(WDL(f)), and z € Q¢. Then T~![V] is a neighbourhood
of WDL(f), so there is a 2’ € Q¢ such that (2' * z * f)[G] C T~1[V], that is,
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VT2 x2x ))G]] = (T( * 2 [)G] = (2" 2+ (T))[G].
As V and z are arbitrary, T(WDL(f)) = WDL(T f).
(d)(i) If z € Q¢ and V is a convex neighbourhood of w, take z’ € Q¢ such that (2’ x f)[G] C V. Because
G is abelian, 2/ x 2 = zx 2/, so
(" xzx N)IG] = (2% (2" + )Gl e D((Z'+ HIG]) < T(V) = V.
As V and z are arbitrary, w = WDL(f).
(ii) Because G is abelian, (z * f)™~ for all z € Qg and f € WY, So (i) gives the result.

6C Definition In the context of 6B, I will call WDL(f) the well-distributed limit of f. I will write
wWDL for the well-distributed limit associated with the weak topology of W; of course wWDL extends
WDL.

6D Homomorphic images: Proposition Let Gy, G be groups and ¢ : G; — G2 a surjective
homomorphism. If W is a locally convex Hausdorff linear topological space and f : Go — W is a function,
then WDL(f¢) = WDL(f) if either is defined.

In particular, if G is a group and ¢ : G — G is an automorphism, then WDL(f¢) = WDL(f) whenever
f € WY and WDL(f) is defined.

proof (a) For z € Qc,, ¢ € Ga set 2(c) = 3 cp1pqey 2(a). Then 2 € Qq,. If 21, 22 € Qg,, then
m:21*22~ PIfCGGQ,

(21 % 22)(c) = Z 21(d1)22(d2) = Z Z Z z1(a1)z2(az)

dida=c dide=c ¢(a1)=c1 paz=ca
= Z Z z1(a1)za(az) = Z (21 % 29)(b) = 21 * z2(c). Q
pb=c ajaz=b pb=c

Similarly, for any f: Go — W and z € Qg,, zx fo = (2* f)o. P If a € Gy,

(2% f)dla) = D 2(d) = > > z(b)f(d "¢a)

deGa deGa pb=d

ST 3T 2 f(eh)ga) = ST ST 2(b) f(p(ba))

deGy pb=d deGy ¢pb=d

D 2 f(p(b"a)) = (2% f)(a). Q

beGy

(b)(i) If w = WDL(f¢) is defined, y € Q¢, and V is a neighbourhood of w, let z € Q¢, be such that
2 = y; such exists because ¢ is surjective. Then there is a 2’ € Qg, such that (2’ % z x f¢)[G1] C V. Now
(a) tells us that (2"« 2 f)¢p = 2" x 2 % f¢, so

(27 yx [)Go] = (2% 2% [[O]G1]] = (2" % £ [)9)[G1] = (2" * 2% f9)[G1] C
As y and V are arbitrary, WDL(f) =

(ii) If w = WDL(f) is defined, z € Q¢, and V is a neighbourhood of w, let y € Qg, be such that
(yxZ2x f)[G2] CV. Let 2/ € Qg, be such that 2’ = y; then
(' x 25 fO)Gr] = ((y* 2+ )P)C1] = (y+ 2+ [)[Ga] CV
As z and V are arbitrary, WDL(f¢) = w.

6E Examples (a) If we set f(i) = (—1)% for i € Z, then WDL(f) is defined and equal to 0. P Setting
2(0) = 3, 2(—1) = 2(1) = 1 and 2(i) = 0 for other i € Z, z = f = 0; by 6B(d-i), WDL(f) = 0. Q Thus an
unbounded sequence can have a well-distributed limit in the sense of 6A.

(b) Let G be the free group on two generators a, b. For z € G, let n, € Z be such that x = a"=y where
y is either the identity e or has reduced expression beginning with a power of b. Observe that ng, = n, + 1
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for every z € G. Set f(z) = (—1)"=. If we set zo(e) = 20(a) = 3 and zo(z) = 0 for other z € G, then

zo * f =0, and WDL(z * f) = 0. On the other hand, if we set z1(e) = z1(b) = z1(b™!) = § and 21 (z) = 0
for other € G, then (z1 * f)(z) > % for every z € G. P If x = a™y where y is either the identity e or
has reduced expression beginning with a power of b, and n # 0, then bx = ba™y and b~'z = b~ 'a"y have
reduced expressions beginning with powers of b, so
2 1 1

(21 % f)(w) = 3 +3(=1)" = 5.
If n = 0, express y as b™y’ where 3 is either the identity or has reduced expression beginning with a power
ofa. fm=0thenz =y =y =ecand (21 % f)(z) = 1. If m = +1, then (21 * f)(z) = 2 + 3 f(y/) > &; if
|m| > 2, then again (21 * f)(z) = 1. Q But this means that I'((z1 * f)[G]) and I'((zo * f)[G]) have disjoint
closures; by 6B(b-iv), WDL(f) is undefined.

6F Lemma Let G be a group and W a Banach space. Write ¢*°(G; W) for the set of bounded functions
f G — W with the norm || f|lec = sup,eq ||f(a)|. Set

D={f:fet>(G,W), WDL(f) is defined in W},

Dy, ={f: f € t=(G;W), wWDL(f) is defined in W}.

(i) wWDL : Dy, — W has norm at most 1.
(ii) D and Dy, are || ||oo-closed linear subspaces of £>°(G; W).

proof Elementary.

6G More definitions (a) I think I had better recall a definition from FREMLIN 03. A topological group
G is amenable if whenever X is a compact Hausdorff space and « is a continuous action of G on X then
there is a G-invariant Radon probability measure on X. A locally compact Hausdorff group G, with a left
Haar measure p, is amenable in this sense iff for every finite I C G and € > 0 there is a non-negligible
compact set K C G such that u(KAaK) < euK for every a € I (FREMLIN 03, 4491).

(b) Now suppose that G is a topological group and that W is a locally convex linear topological space.
Let Uw be the set of functions f : G — W which are uniformly continuous for the right uniformity of G
(FREMLIN 03, 4A5H) and such that f[G] is relatively weakly compact in W. Let Py, be the family of linear
operators p : Uy — W such that

p(f) belongs to the closed convex hull I'(f[G]) of f[G],

plasif) = p(f)

whenever a € G and f € Uy .

6H Proposition Let G be an amenable topological group and W a Banach space.
(a) Uw is a closed linear subspace of £>°(G; W).

(b) «; is a continuous action of G on Uy .

(¢) Pw is non-empty.

(d) p(z % f) = p(f) whenever f € Uy, p € Py and z € Qg.

proof (a) is elementary if you have seen weak compactness in Banach spaces before.

(b) For any a € G, the function b — a~'b: G — G is uniformly continuous for the right uniformity. I
(a=tb)(a"te)™t = a=1(bc™1)a = e whenever be™! = e. Q So as;f € Uy whenever f € Uy,. As usual, it
follows that ; is an action of G on Uyy.

Suppose that ag € G, fo € Uy and € > 0. Then there is a neighbourhood H of the identity in G such
that || fo(a) — fo(b)|| < € whenever a, b € G and ab~! € H. Suppose that a € agH ! and that || f — fo|| <e.
Then, for any b € G,

[(as1£)(b) = (ao1fo) (B)Il = [If(a™"b) = fo(ag D)
< e+ |lfo(a™b) = folag )] < 2e
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because (a~'b)(ag b))~ = a"lag € H. As ¢, ap and fy are arbitrary, «; is continuous.

(c) Because G is amenable, there is a positive linear functional py : Ug — R such that po(xG) = 1
and po(ae;f) = p(f) whenever @ € G and f € Ur (FREMLIN 03, 449D /449E). Because pg is positive and
po(xG) = 1, po has norm at most 1. For f € Uy and h € W*, hf € Ur; set ¢s(h) = po(hf). Then
¢y : W* — Ris linear, and ¢7(h) < sup,¢ s M(w). Because f[G] is relatively weakly compact and W is a

Banach space, I'(f[G]) is weakly compact, so there is a (unique) p(f) € I'(f[G]) such that ¢¢(h) = h(p(f))
for every h € W*.
Clearly p : Uy — W is linear. It has norm at most 1 because

Ih(P()] = lo¢(h)] < supye srap [R(w)] < sup,eq [RIII1f (@)l = [[RIH]f]lo
whenever h € W* and f € Uy. If f € Uy, a € G and h € W*, then
h(p(as1f)) = po(h(asf)) = polasi(hf)) = po(hf) = h(p(f))-

Thus we have an appropriate operator p.
(d) If I ={a:z2(a) #0}, 2% f =3,y z(a)as f.

61 Fglner filters Let G be an amenable locally compact Hausdorff group. Let K be the family of
compact subsets of G which are not Haar negligible, and for a € G and € > 0 set

Koe ={K: K € K, u(KAaK) < epuK for every left Haar measure p on G}
={K:K ek, u(KAaK) < euK for some left Haar measure y on G}.
Because G is amenable, {K, : a € G, € > 0} generates a filter on  (FREMLIN 03, 4491(ix)); I will call this

the left Fglner filter of G.
Similarly, the right Fglner filter of G is generated by sets of the form

Kae ={K : K € K, py(KAKa) < epK for every right Haar measure p on G}.

The map a — a~! : G — G exchanges the two filters. If G is abelian, the left and right Fglner filters are
the same, and I will call them just the Fglner filter.

6J Lemma Let G be an amenable locally compact Hausdorff group, K the family of its non-Haar-
negligible compact subsets, and Fg its left Fglner filter. Let ;1 be a Haar measure on G, and F an ultrafilter
on K including F@. Let W be a Banach space.

(a) For f € Uy the weak limit

p(f) = W—limK_,]:MLK fK fdu
is defined, where ﬁK fdu is the Bochner integral of f]K with respect to the subspace measure on K.
(b) p € Pw.
proof (a) Because W is a Banach space and f[G] is relatively weakly compact, the closed convex hull
m is weakly compact. As MLK ﬁK fdp € m for every K € K, and F is an ultrafilter, the limit

p(f) is defined and belongs to I'(f[G]).

(b) Of course p is a linear operator, so we have only to check its translation-invariance. If f € Uy, c € G,
e>0and K € K.-1 , then

;%K fK eofdp = ;%K ﬁ( f(c ta)p(da) = ,%K fflK fa)u(da),

SO

1 1 1 —
Itz Fe e di = e Full < ol fllocp K D E) < el

As K- € F, |Ip(eerf) = ()]l < €llflloc; as ¢, f and € are arbitrary, p € Py .
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6K Theorem Let G be a unimodular amenable locally compact Hausdorff group, I the family of its
non-Haar-negligible compact subsets, and Fg its left Fglner filter. For Banach spaces W, define WDL, Uy
and Py as in 6B and 6G. Let 1 be a Haar measure on G.

(a) If f € Ug,

. . 1
sup,ep, P(f) = inf.eqq SUPeq (2 * f)(a) = limsupy_, x, N—KIK fdu.

(b) For f € Uy and K € K, write fK fdu for the Bochner integral of f| K with respect to the subspace
measure pg on K. If f € Uy and w* € W, the following are equiveridical:
(i) wWDL(f) is defined and equal to w*;

(ii) w-limg 75 ;LLK ¥ fdp is defined and equal to w*;
(iii) p(f) = w* for every p € Py .
(¢) If f: G — W is bounded and uniformly continuous for the right uniformity of G, then

. 1
WDL(f) =tz — fj,
in the sense that if one is defined so is the other, and they are then equal.

proof (a) It is enough to consider the case 0 < f < xG. Set

Y1 = sup,ep, P(f),

Yo = infzeQG SupaeG(z * f)(a’)7
. 1
Y3 = thU.pK_,}‘g MinK fd:u

(i) m <72 PIfpe Prand z € Qg, then p € U has norm at most 1 and p(xG) = 1, so p is
a positive linear functional on the M-space Ug. By 6Hd, p(z = f) = p(f). Since p(z = f) € T'((z * f)[G]),
p(f) =p(z* f) < sup,eq(z * f)(a). As p and z are arbitrary, 71 < 72. Q

(ii) 72 < 73. P Take any € > 0 and £ € Fo. Then there are a finite I C G and a § > 0 such that
LD L =,er Kas, where

Kas ={K: K € K, p(KAaK) < 5uK}.
Take K € L'. Observe that for any ¢ € G,
p(KehaKe) = p(KAaK) < §uK = du(Ke)

for every a € I, so K¢ € L. (This is where I need to suppose that G is unimodular.)

There is a neighbourhood H of the identity e of G such that |f(a) — f(b)| < € whenever ab~! € H. Let
bo, ... ,by € G be such that K C Uign Hb;, and let Ey, ..., E, be a partition of K into Borel sets such that
E; C Hb; for each i < n; then |f(a) — f(b;)| < € for every a € E;. Set o; = ‘:5{ for each i < n. For any
¢ € G, (Bic)i<y is a partition of K¢, and if a € Ejc then a(bic)™ = (ac™1)b; ! € H, so |f(a) — f(bic)| < e.
Accordingly

1 " ;&
g [ = e < g S [ s s

1y du — f(bic)u(E;
Pl /| = f(p(Bie)

1 p—
< (KD geu(Eic) =€

Set z = Y"1, a;x{b; '}. By the definition of 72, there is a ¢ € G such that
Y2 =€ < (zx f)(e) = 2l aif (bic),
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0] that ch fdu > 2 — 2e. Thus suppec, — L fL fdu > vo — 2e. As L is arbitrary, v3 > 72 — 2¢; as € is
arbltrary, 73 2 Y. Q

(iii) 73 < 1. P Let F be an ultrafilter on K including F¢ and such that th_>_7-‘ fK fdu =
Let p € Pg be defined by the formula in Lemma 6J. Then v3 = p(f) < v1. Q

(b)(i)=(iii) Suppose that w* = wWDL(f), and that p € Py. Let € > 0 and h € W*. Then there is
a z € Q¢ such that |h(w*) — h((z * f)(a))| < e for every a € G. Now p(f) = p(z x f) € T'((z * f)[G]), so
[h(w*) — h(p(f))| <e. As h and € are arbitrary, p(f) = w*.

(iii)=-(ii) Suppose that p(f) = w* for every p € Py. Let F be any ultrafilter on K extending Fo.
Set p(g) = w—limKﬁfﬂiKﬁKgdu for ¢ € Uw. Then p € Py (6J). So p(f) = w*. As F is arbitrary,

* : 1
w* = w-limg_, 74 K ¥y fdp.

(ii)=-(i) Suppose that w* = w-limg _, 5, uLK ¥, fdp. Applying 6J with any ultrafilter  extending Fo,

we see that w* = w-limg_, 7, HLK fK as f du for every a € G, and therefore w* = w-limg _, 74 }LLK ﬁK z* fdp
for every z € Qg-.

Let V be any weak neighbourhood of W. Then there are hg, ... ,h, € W* and € > 0 such that V 2 {w:
hi(w) < e+ h;y(w*) for every i < n}. Take any 29 € Q¢, and choose z1,... , 2,41 € Q¢ as follows. Given zy
where k < n, then

K—Fo W

hi(w*) = hk(w—lim%% 2 % fdu)
K

1
— z s hpfdu < inf sup(z*zp*xh
o k*hefdu < zchaeg( k* hef)(a)

by (a). Let z € Qg be such that sup,cq (2 * 21 * hi. f)(a) < hi,(w*) + €, and set 2,1 = 2 * 2;; continue.
At the end, we see that for every k < n we can express 2,41 as z * 241 for some z € Qg, so that

hi((znir  F)(0)) = (znt1 * by f) (D)) < supgeq(zr * hif)(a) < hy(w”) + €

for every b € G and k < n; consequently (z,+1 * f)[G] C V, while 2,41 is also expressible as z % zg for some
z € Qg. As zp and V are arbitrary, wWDL(f) is defined and equal to w*.

(c)(i) Suppose that w* = WDL(f) is defined. Then for any ¢ > 0 there is a z € Q¢ such that
w* — (z* f)(a)|| < € for every a € G. In this case, w* — = z % fdul| < e for every K € K.
K JK
Set I ={c: z(c) # 0}. Then £ =(,..; K1, belongs to Fo. If K € L, then

cel
”;%K%Z fdu——ffdu||<z ol %f “1a)(da) ——%f
1
OGS IRICCOES3 RIBCY
<> A anmMgeufnm,
cel

.1 . . . 1
and [Jw* — K B fdul| < €(1+ || fllo). As € is arbitrary, w* = théf@“—K ¥ fdp.

.. . 1 .
(ii) Suppose that w* = limg_, 7, K ¥y fdp is defined.
() We need to know that for any z € Qg we also have

.1 1
w —th_,ng—Ksz*fdu.
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P For any ce G and € > 0, K1 € Fp. For K € K1 ,

I b eufdn =i b gaull = I b f( autin) = P flap(aa)]

1

ke f st - 2 f @t

KAc 'K
L) flloe < el oo

IN

As € is arbitrary,
. 1
wh = th_,].'g ;1,7K ﬁK Colf d,l,l/
It follows at once that
. 1 1
w* = th_,]:,,)M—K sz* fdu

for every z € Qg. Q
(B) Suppose that zgp € Q¢ and € > 0. Set g = zp * f. Then there are a finite I C G and a § > 0 such
that ||Jw* — uLK ¥, gdu| < € whenever K belongs to £ = (.., Kes. As in (a-ii) above, Ka € £ whenever

KeLandacG.
There is a neighbourhood H of the identity e of G such that ||g(a) — g(b)|| < € whenever ab~! € H. Let
bo,... b, € G besuch that K C | J.. Hb;, and let Ey,..., E, be a partition of K into Borel sets such that

E; C Hb; for each i < n; then ||g(a) — g(b;)|| < € for every a € F;. Set a; = Z]f( for each ¢ < n. For any

i<n

c € G, (E;c)i<n is a partition of Ke¢, and if a € E;c then a(b;c)™! = (ac‘l)b;1 € H, so |lg(a) — g(bc)|| <e.
Accordingly

1 . 1 n
H#(KC) %{ngu - ;Ozig(bic)n < (Ko ;H yiicgdu — g(bic)uEi||

1

= st ) o0~ o]

1 p—
< K Ze,u(Eic) =e.

=0

Set z = Y"1, a;x{b; '}. If c € G, then

1 1 n
1G: 9)(0) = ey $ce 9 00l = iy o 97011 = Eilg cigbio)ll < e

Thus ||(z * 20 * f)(c) — w*|| < 2¢ for every ¢ € G. As € and zp are arbitrary, WDL(f) is defined and equal
to w*.

6L Theorem (compare JUNG PARK & PARK 97%) Let G be a unimodular amenable locally compact
Hausdorff group, and « an action of G on a Banach space W such that
w — asw is a linear operator of norm at most 1 for every a € G,
a — asw : G — W is norm-continuous for every w € W,
{asw : a € G} is relatively weakly compact for every w € W.
For w € W and a € G set g, (a) = a~tew. Then WDL(g,,) is defined, and as WDL(g,,) = WDL(g,,), for
every a € G and w € W.

proof (a) Define Uy as in 6G. Then g, € Uy for every w € W. B Our hypotheses guarantee that g, [G]
is relatively weakly compact. For any € > 0, there is a neighbourhood H of the identity in G such that
|lw — asw|| < € whenever a € H. Now

3] am indebted to A.S.Vernitski for the reference.
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lgw(@) = guw®)]| = lla™ ew — b~ ew]| = [lw — (ab~!)ew| < €
whenever ab~! € H. As e is arbitrary, g,, is uniformly continuous for the right uniformity. Q

(b) Set Wy = {w : w € W, asw = w for every a € G}, and let V be the linear subspace of W generated
by

WoU{w —asw:we W, a€ G}.

Then V is norm-dense in W. P? Otherwise, there are an h € W* and a w € W such that h(v) = 0 for
every v € V and h(w) # 0. Let p be a left Haar measure on G, K the family of non-negligible compact
subsets of GG, and F an ultrafilter on K including the Fglner ultrafilter of G. Let w* be the weak limit

HmKﬁ}-uiK ¥ asw pu(da). We have h(asw) = h(w) for every a € G, so
1 1
Mk oo p(da)) = L [ h(amw) p(da) = hw)

for every K € K, and h(w*) = h(w). On the other hand, for any ¢ € G,

N .
cow® = co( im —
(K—>]-' I

= lim L~ %{(ca)-w w(da) = lim L ?{K asw p(da),

asw u(da))

K—F pK K—F uK

S0
|[w* = cow*|| < limKH}-HLKHwHAL(KAcK) =0
and w* = cow*. As c is arbitrary, w* € Wy and 0 = h(w*) = h(w). XQ
(c) The set
Vi ={w:we W, WDL(g,) is defined and belongs to Wy}

is a norm-closed linear subspace of W. If w € Wy then g, is the constant function with value w, so
WDL(gy) =w and w € V4. If w € W and ¢ € G then w — cow € V;. P For K € K,

1 _ 1 S B
oK ng,c,w dyp = s Ka w — (a” ¢)ow p(da)
1 -1 —1 -1
=—1B a ew—(c"a) wpu(da
K P (¢ a)” sw p(da)

= NLK(%( a”tew p(da) — y{ilK a” ew p(da))
|w|

has norm at most M—KM(KAC_IK). By Theorem 6Kc,

. 1
WDL(.gwfc.uJ = limg ., 74 N7 fK Jw—cow App =0

and w —cow € V1. Q
But this means that V3 O V and V3 = W, as required.

6M Remarks (a) Presumably the ideas above can be adapted to an appropriate class of semigroups to
give a true generalization of Theorem 3B.

(b) An alternative expression of the idea of (*) in 6Ba would be
(1) for every neighbourhood V' of w and every z € Q¢ there is a 2’ € Q¢ such that (2" * 2’ %
zx f)[G] CV for every 2" € Qg.
Put like this, it becomes something we can consider whenever X is a set, W is a Hausdorff space, S is a

semigroup and s is a semigroup action of S on W¥. 6B(b-i) would then become a result about product
actions on Wi x WX 2 (W x Wy)X.
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6N For abelian groups, we can approach from a different direction.

Lemma Let G be an abelian group, W a Hausdorff linear topological space and « an action of G on W such
that w +— asw = T,(w) is a linear operator for every a € G and the family {T, : a € G} is equicontinuous.
For w € W and a € G set g,(a) = a~tew. Then for w, w* € W the following are equiveridical:

(i) WDL(gy,) is defined and equal to w*;

(ii) w* € T'(gy[G]) and asw* = w* for every a € G.
proof (i)=(ii) Suppose that w* = WDL(g,,). By 6B(b-iv), w* € T(g,[G]). If ¢ € G, then
09 (@) = cvaVow = 4~ ecow = gu(ea) = (cgu)(0)
for every a € G. Applying 6Bc to the map u — ceu we see that
cow* = WDL(c¢ogyy) = WDL(gy) = w*
by 6B(b-iii). So w* is G-invariant and (ii) is true.

(ii)=(i) Let V be a convex neighbourhood of w*. Let V; be a closed convex neighbourhood of 0 in W
such that T, (w) € V — w* whenever w € V; and a € G. Let ag,... ,a, € G and «y,... ,a, > 0 be such
that "7 g a; =1 and Y1 aigw(a;) € w* + Vi. Set z =31 a;x{a; '} € Qg. Then, for any a € G,

(2" * gu)(a) = Xilg aigu(aia) = Yoig ai(a™ ea; tow) = a= 131 aia; ' ew),

(24 gu)(a) —w =™ ayfar ow) - w = (3 aula o) — w)

= ha_u((z ai(a; tow)) —w*) € V —w*
i=0
because Y1, a;(a; 'ew) € w* + V4. Thus (z * g,,)[G] C V. As V is arbitrary, WDL(g,,) = w*, by 6B(d-i).

60 Theorem Let G be an abelian group, W a Banach space and « an action of G on W such that
w — asw is a linear operator of norm at most 1 for every a € G. For w € W and a € G, set g,,(a) = a™tew.
If w € W is such that g¢,[G] is relatively weakly compact, then w* = WDL(g,,) is defined and aew* = w*

for every a € G.

proof Set K = I'(g,,[G]); because W is complete, K is weakly compact. Since csg,(a) = g, (ac™!) for every
a € G, cegy|G] = gu|[G] for every ¢ € G, and ceu € K for every u € K. If a € G, set T,w = asw for w € W;
then T, is weakly continuous, so the action of G on K is continuous if we give K its weak topology and G
its discrete topology. As G is abelian, it is amenable in any topology (FREMLIN 03, 449Cf), and there is a
G-invariant probability measure p on K which is Radon for the weak topology. Let w* be the barycenter
of p. Then T,w* is the barycenter of the image measure uT; ! = y (FREMLIN 03, 461B), so asw* = w* for
every a € G. By 6N, w* = WDL(gy,).

Remark I have kept the formula g, (a) = a~'ew from 6L. But in the present context it would be more
natural to look at g, (a) = asw; of course G, [G] = g, [G] and WDL(g,,) = WDL(g,,) if either is defined, by
6B(d-ii), so we get the same results.

7 Problems (a) Is it consistent to suppose that every Radon probability measure on {0,1}*' has a
well-distributed sequence? What if m > w?

(b) If (X,%,%,u) is a compact Radon probability space with a well-distributed sequence and v is a
probability measure on X which is an indefinite-integral measure over u, must v have a well-distributed
sequence? (Compare 4G and FREMLIN 03, 491R..)

(c) In 6K and 6L, do we really need G to be unimodular?

(d)(i) Find a useful characterization of the set E of extreme points of P. (See 1M.) (ii) Is E compact?
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