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Well-distributed sequences and Banach density

D.H.Fremlin

University of Essex, Colchester, England

1. Banach limits and Banach density

1A Write P for the set of all non-negative additive functionals ν : PN → [0, 1] such that νN = 1 and
ν is translation-invariant, that is, ν{n + k : n ∈ I} = νI for every k ∈ N and every I ⊆ N. For I ⊆ N,
the upper Banach density of I is d∗s(I) = supν∈P νI. Because P is closed in [0, 1]PN, therefore compact,
the supremum is always attained. d∗s is a submeasure. If νI is the same for every ν ∈ P , this common
value is the Banach density ds(I). Note that, for any I, infν∈P νI = 1 − d∗s(N \ I); so ds(I) is defined iff
d∗s(I) + d∗s(N \ I) = 1.

If θ : PN → [0, 1] is any additive functional such that θN = 1, and ν0 ∈ P , and we set νI =
∫
θ(I+j)ν0(dj)

for I ⊆ N (following the notation of Fremlin 02, 363Lf), then ν ∈ P . Similarly, if we write I −′ j for
{i : i ∈ N, i+ j ∈ I}, and ν′I =

∫
θ(I −′ j)ν0(dj) for I ⊆ N, we again obtain a member ν′ of P .

1B Definition For x, y ∈ RN set (x ∗ y)(n) =
∑n

i=0 x(i)y(n − i) =
∑

i+j=n x(i)y(j) for n ∈ N. Then ∗

is bilinear, commutative and associative, and ‖x ∗ y‖1 ≤ ‖x‖1‖y‖1, ‖x ∗ y‖∞ ≤ ‖x‖1‖y‖∞ for all x, y ∈ RN.
If x ∈ RN its variation VarN(x) is

∑∞
i=0 |x(i+ 1) − x(i)|.

1C Lemma If I ⊆ N,

d∗s(I) = inf{‖x ∗ χI‖∞ : x ∈ (ℓ1)+, ‖x‖1 = 1}

= inf
m≥1

sup
k∈N

1

m
#(I ∩ [k, k +m[)

= inf
m≥1

lim sup
k→∞

1

m
#(I ∩ [k, k +m[)

= lim
m→∞

sup
k∈N

1

m
#(I ∩ [k, k +m[)

= lim
m→∞

sup
k∈N

1

m
#(I ∩ [mk,mk +m[)

= inf
δ>0

sup{
∑

i∈I

x(i) : x ∈ (ℓ1)+, ‖x‖1 = 1, Var
N

(x) ≤ δ}.

Remark See 3B below for a more general result.

proof Set

γ1 = inf{‖x ∗ χI‖∞ : x ∈ (ℓ1)+, ‖x‖1 = 1},

γ2 = infm≥1 supk∈N

1

m
#(I ∩ [k, k +m[),

γ̂2 = infm≥1 lim supk→∞
1

m
#(I ∩ [k, k +m[),

γ′2 = lim supm→∞ supk∈N

1

m
#(I ∩ [k, k +m[),

γ3 = infm≥1 supk∈N

1

m
#(I ∩ [mk,mk +m[),

γ′3 = lim supm→∞ supk∈N

1

m
#(I ∩ [mk,mk +m[),

1
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γ4 = infδ>0 sup{
∑

i∈I x(i) : x ∈ (ℓ1)+, ‖x‖1 = 1, VarN(x) ≤ δ}.

Note that γ′2 = lim supm→∞ ‖xm ∗ χI‖∞, where xm =
1

m
χm for m ≥ 1.

(a) d∗s(I) ≤ γ̂2. PPP Suppose that ν ∈ P . Then

νI =
1

m

m−1∑

j=0

ν(I + j) = −

∫
xm ∗ χI dν ≤ lim sup

k→∞
(xm ∗ χI)(k)

= lim sup
k→∞

1

m
#({n : n ∈ I, k ≤ n < k +m}).

This is true for every m, so νI ≤ γ̂2; as ν is arbitrary, d∗s(I) ≤ γ̂2. QQQ

(b) Of course γ̂2 ≤ γ2 ≤ γ3 ≤ γ′3 ≤ γ′2.

(c) γ′2 ≤ γ1. PPP Take ǫ > 0. There is an x ∈ (ℓ1)+ such that ‖x‖1 ≤ 1 and ‖x ∗ χI‖∞ ≤ γ1 + ǫ. There is
a y ∈ (ℓ1)+ such that ‖y‖1 = 1, {i : y(i) 6= 0} is finite and ‖x− y‖1 ≤ ǫ. Let r ≥ 1 be such that y(i) = 0 for
i ≥ r. Then for any m ≥ 1 we have

|(xm ∗ y − xm)(k)| = |
∑

i+j=k

xm(i)y(j) − xm(k)| = 0 if r ≤ k ≤ m or k ≥ m+ r

≤
1

m
otherwise.

So ‖xm ∗ y − xm‖1 ≤
2r

m
, and ‖xm ∗ y ∗ χI − xm ∗ χI‖∞ ≤

2r

m
. Also

‖xm ∗ x ∗ χI − xm ∗ y ∗ χI‖∞ ≤ ‖xm ∗ x− xm ∗ y‖1 ≤ ‖x− y‖1 ≤ ǫ,

so ‖xm ∗ x ∗ χI − xm ∗ χI‖∞ ≤ ǫ+
2r

m
. Accordingly

‖xm ∗ χI‖∞ ≤ ǫ+
2r

m
+ ‖xm ∗ x ∗ χI‖∞ ≤ ǫ+

2r

m
+ ‖x ∗ χI‖∞ ≤ γ1 + 2ǫ+

2r

m
.

Letting m→ ∞, γ′2 ≤ γ1 + 2ǫ; as ǫ is arbitrary, γ′2 ≤ γ1. QQQ

(d) γ1 ≤ d∗s(I). PPP Let ǫ > 0. Suppose that i0, . . . , ir ∈ N. Set x(i) =
1

r+1
#({j : i = ij}) for i ∈ N, so

that x ∈ (ℓ1)+ and ‖x‖1 = 1. Then ‖x ∗ χI‖∞ ≥ γ1, so there is an n ∈ N such that (x ∗ χI)(n) ≥ γ1 − ǫ,
that is, #({j : n− ij ∈ I}) ≥ (r+ 1)(γ1 − ǫ), that is, #({j : n ∈ I + ij}) ≥ (r+ 1)(γ1 − ǫ). As i0, . . . , ir are
arbitrary, there is an additive functional θ : PN → [0, 1] such that θN = 1 and θ(I + j) ≥ γ1 − ǫ for every
j ∈ N (Fremlin 02, 391F). Take any ν0 ∈ P and set νJ =

∫
θ(J + i)ν0(di) for J ⊆ N. Then ν ∈ P , and

γ1 − ǫ ≤ infj∈N θ(I + j) ≤ νI ≤ d∗s(I).

As ǫ is arbitrary, γ1 ≤ d∗s(I). QQQ

(e) So d∗s(I) = γ1 = γ2 = γ′2 = γ3 = γ′3. But as γ2 and γ′2 are equal, they must both be limm→∞ supk∈N

1

m
#(I∩

[k, k +m[); and similarly both γ3 and γ′3 are equal to limm→∞ supk∈N

1

m
#(I ∩ [mk,mk +m[).

(f) γ2 ≤ γ4. PPP For m ≥ 1, k ∈ N set ymk(i) =
1

m
if k ≤ i < k + m, 0 otherwise. Then ymk ∈ (ℓ1)+,

‖ymk‖1 = 1 and VarN(ymk) ≤
2

m
. Also γ2 = infm∈N supk∈N

∑
i∈I ymk(i). So γ2 ≤ γ4. QQQ

(g) γ4 ≤ d∗s(I). PPP??? Otherwise, we can find a sequence 〈xn〉n∈N in (ℓ1)+ such that ‖xn‖1 = 1 for every
n, limn→∞ VarN(xn) = 0 and limn→∞

∑
i∈I xn(i) > d∗s(I). Let F be a non-principal ultrafilter on N, and

define ν : PN → [0, 1] by setting νJ = limn→F

∑
i∈J xn(j) for every J ⊆ N. Of course ν is a non-negative

additive functional and νN = 1. If J ⊆ N, then
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|ν(J + 1) − νJ | = | lim
n→F

∑

i∈J+1

xn(i) −
∑

i∈J

xn(i)| = | lim
n→F

∑

i∈J

xn(i+ 1) −
∑

i∈J

xn(i)|

≤ lim
n→F

∑

i∈J

|xn(i+ 1) − xn(i)| ≤ lim
n→V

Var
N

(xn) = 0.

So ν ∈ P . But νI = limn→∞

∑
i∈I xn(i) > d∗s(I).

1D Corollary (a) If I ⊆ N and m ≥ 1, then d∗s(I) ≤
1

m
lim supl→∞ #({i : i ∈ I, ml ≤ i < m(l + 1)}).

(b) If I ⊆ N, m ≥ 1 are such that k = liml→∞ #({i : i ∈ I, ml ≤ i < m(l + 1)}) is defined, then ds(I) is

defined and equal to
k

m
.

proof (a) Set k = lim supl→∞ #({i : i ∈ I, ml ≤ i < m(l + 1)}). Then there is an l0 ∈ N such that

#({i : i ∈ I, ml ≤ i < m(l+ 1)}) ≤ k for every l ≥ l0. Let r ≥ l0. Set xr =
1

rm
χ(rm), where in χ(rm) I am

interpreting rm as the set of its predecessors in N. Then (xr ∗χI)(n) =
1

rm
#(I ∩ ]n− rm, n]) ≤

m(l0+2)+kr

mr

for every n. (The interval N∩ ]n− rm, n] must consist of at most r intervals of the form [ml,m(l + 1)[, with
l ≥ l0, together with at most m(l0+1) points at the left and m points at the right.) So d∗s(I) ≤ ‖xr ∗χI‖∞ ≤
l0+2

r
+

k

m
. Letting r → ∞, we have the result.

(b) In this case, d∗s(I) ≤
k

m
and d∗s(N \ I) ≤

m−k

m
, so ds(I) is defined and equal to

k

m
.

1E Corollary (a) If I ⊆ N then d∗s(I) = inf{ds(J) : I ⊆ J and ds(J) is defined}.
(b) If I, I ′ ⊆ N are disjoint and d∗s(I) + d∗s(I

′) < 1, then there is a J such that I ⊆ J ⊆ N \ I ′ and ds(J)
is defined.

proof (a) Take any γ > d∗s(I). Then there is an m ≥ 1 such that #(I ∩ [k, k +m[) ≤ γm for every k. Let
J ⊆ N be such that I ⊆ J and #({n : n ∈ J , ml ≤ n < m(l+1)}) = ⌊γm⌋ for every l. Then ds(J) is defined
and ds(J) ≤ γ. As γ is arbitrary, we have the result.

(b) This time, take γ such that d∗s(I) < γ < 1− d∗s(I
′), and m ≥ 1 such that #(I ∩ [k, k +m[) ≤ γm and

#(I ′∩ [k, k +m[) ≤ (1−γ)m for every k. Let J ⊆ N be such that I ⊆ J ⊆ N\I ′ and #(J ∩ [ml,m(l + 1)[) =
⌊γm⌋ for every l; this works.

1F Corollary Suppose that I ⊆ N is infinite and that J is any subset of N. Let 〈ni〉i∈N be the increasing
enumeration of I, and set M = {ni : i ∈ J}.

(a) d∗s(M) ≤ d∗s(I)d
∗
s(J).

(b) If I has Banach density, then d∗s(M) = ds(I)d
∗
s(J).

(c) If J has Banach density, then d∗s(M) = d∗s(I)ds(J).
(d) If both I and J have Banach density, then so has M , and ds(M) = ds(I)ds(J).

proof (a) Take any α′ > α > d∗s(I) and β > d∗s(J). Then there is an m0 ≥ 1 such that #(I ∩ [k, k +m[) ≤
αm and #(J ∩ [k, k +m[) ≤ βm whenever m ≥ m0 and k ∈ N. Set f(k) = min{i : ni ≥ k} for k ∈ N. Then

f(k′) − f(k) = #(I ∩ [k, k′[) ≤ α(k′ − k)

whenever k +m0 ≤ k′. Let m1 ≥ m0 be such that (α′ − α)m0 ≤ m1. Then

#(M ∩ [k, k +m[) = #({i : i ∈ J, k ≤ ni < k +m}) = #(J ∩ [f(k), f(k +m)[)

≤ βmax(m0, f(k +m) − f(k)) ≤ βmax(m0, αm) ≤ βα′m

whenever m ≥ m1 and k ∈ N. Accordingly d∗s(M) ≤ α′β; as α, α′ and β are arbitrary, d∗s(M) ≤ d∗s(I)d
∗
s(J).

(b) Of course d∗s(M) ≤ d∗s(I)d
∗
s(J) = ds(I)d

∗
s(J). Take any α < ds(I) and β < ds(J). Then d∗s(N \ I) <

1 − α so there is an m0 ∈ N such that #(I ∩ [k, k +m[) ≥ αm for every k ∈ N and m ≥ m0. Take any
m ≥ m0; then
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f(k +m) − f(k) = #(I ∩ [k, k +m[) ≥ αm

for every k. Next, f [N] = N, so there is a k such that

#(M ∩ [k, k +m[) = #(J ∩ [f(k), f(k) +m[) ≥ βm

≥ β(f(k +m) − f(k)) ≥ βαm.

Thus supk∈N

1

m
#(J ∩ [k, k +m[) ≥ αβ. This is true for every m ≥ m0, so d∗s(M) ≥ αβ; as α and β are

arbitrary, d∗s(M) ≥ ds(I)d
∗
s(J) and we have equality.

(c) This time, d∗s(M) ≤ d∗s(I)d
∗
s(J) = d∗s(I)ds(J). Set J ′ = N \ J , M ′ = {ni : i ∈ J ′}. Then d∗s(M

′) ≤
d∗s(I)ds(J

′) = d∗s(I)(1 − ds(J
′)). Since M ∪M ′ = I, d∗s(I) ≤ d∗s(M) + d∗s(M

′); putting these together, we
must have d∗s(M) = d∗s(I)ds(J) exactly.

(d) Applying (c) to I and J ′ = N \J , we see that d∗s(I \M) = ds(I)(1− ds(J)). Now M , I \M and N \ I
cover N and their upper Banach densities sum to 1, so they must all have Banach densities.

1G Remarks (a) Writing Ds for the domain of ds,

N ∈ Ds, if I, J ∈ Ds and I ⊆ J then J \ I ∈ Ds, ∅ ∈ Ds,

if I, J ∈ Ds and I ∩ J = ∅ then I ∪ J ∈ Ds and ds(I ∪ J) = ds(I) + ds(J).

It follows that if I ⊆ Ds and I∩J ∈ I for all I, J ∈ I, then the subalgebra of PN generated by I is included
in Ds (Fremlin 02, 313Ga). But note that Ds itself is not a subalgebra of PN.

(b) Writing d∗ for upper asymptotic density, d for density, Z ⊳ PN for the asymptotic density ideal and
D ⊆ PN for the domain of d (Fremlin 03, §491), we have d∗(a) ≤ d∗s(I) for every I ⊆ N. PPP

d∗(a) = lim sup
m→∞

1

m
#(a ∩m)

≤ lim sup
m→∞

sup
k∈N

1

m
#({n : n ∈ I, k ≤ n < k +m} = d∗s(a).QQQ

So Zs ⊆ Z, D ⊇ Ds and d extends ds.

1H Proposition Let ν : PN → [0, 1] be an additive functional such that νN = 1. Then the following are
equiveridical:

(i) ν ∈ P ;
(ii) νI ≤ d∗s(I) for every I ⊆ N;
(iii) νI = ds(I) whenever I ∈ Ds.

proof (i)⇒(ii) and (ii)⇒(iii) are trivial.

(iii)⇒(ii) is immediate from 1E(a).

(ii)&(iii)⇒(i) Assume that (ii) and (iii) are both true, and take any I ⊆ N. Set K0 = {2i : i ∈ N},
K1 = N \K0. Then νK0 = νK1 = 1

2 .
??? If νI > ν(I + 1) then there is a j such that ν(I ∩ Kj) > ν((I ∩ Kj) + 1). Set j′ = 1 − j, so that

(I ∩Kj) + 1 = (I + 1) ∩Kj′ and ν(I ∩Kj) > ν((I + 1) ∩Kj′). Set J = (I ∩Kj) ∪ (Kj′ \ (I + 1)). Then
νJ > 1

2 . But for any l ∈ N and m ≥ 1,

#(J ∩ [l, l +m[) = #((I ∩Kj) ∩ [l, l +m[) + #(Kj′ ∩ [l, l +m[)

− #(((I ∩Kj) + 1) ∩ [l, l +m[)

≤ 1 + #(Kj′ ∩ [l, l +m[),

so d∗s(J) ≤ 1
2 . XXX

??? If νI < ν(I + 1) then there is a j such that ν(I ∩ Kj) < ν((I ∩ Kj) + k). Set j′ = 1 − j, J =
((I + 1) ∩Kj′) ∪ (Kj \ I). Then νJ > 1

2 . But for any l ∈ N and m ≥ 1,
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#(J ∩ [l, l +m[) = #(((I ∩Kj) + k) ∩ [l, l +m[) + #(Kj ∩ [l, l +m[)

− #((I ∩Kj) ∩ [l, l +m[)

≤ 1 + #(Kj ∩ [l, l +m[),

so d∗s(J) ≤ 1
2 . XXX

So νI = ν(I + 1); as I is arbitrary, (i) is true.

1I Construction For K ∈ [N]<ω, set nK =
∑

i∈K 2i. Then K 7→ nK is a bijection from [N]<ω to N. For
any set I ⊆ N, set AI = {nK : K ∈ [N]<ω, #(I ∩K) is even}. Now if I0, . . . , Ir ⊆ N are infinite and almost
disjoint, there is an m ∈ N such that #({n : n ∈

⋂
j≤r AIj

, 2ml ≤ n < 2m(l+1)}) = 2m−r−1 for every l ∈ N.

PPP For j ≤ r, take ij ∈ Ij \
⋃

k≤r,k 6=j Ik. Set m = 1 + maxj≤r ij . If l ∈ N, then 2ml = nL where L ∩m = ∅.

Set M = {i : i < m, i 6= ij for every j ≤ r}. Then

{n : n ∈
⋂

j≤r

aIj
, 2ml ≤ n < 2m(l + 1)}

= {nK : K ∈ [N]<ω, K \m = L, #(K ∩ Ij) is even for every j ≤ r}

=
⋃

M ′⊆M

⋂

j≤r

{nK : K ∩M = M ′, K \m = L, ij ∈ K iff #((M ′ ∪ L) ∩ Ij) is odd}

has 2#(M) = 2m−r−1 members. QQQ

So if we take an almost disjoint family 〈Iξ〉ξ<c of infinite subsets of N and set Aξ = AIξ
for every ξ,

then 〈Aξ〉ξ<c will have the property that whenever ξ0, . . . , ξr < c are distinct, there is an m ∈ N such that
#({n : n ∈

⋂
j≤r Aξj

, 2ml ≤ n < 2m(l + 1)}) = 2m−r−1 for every l ∈ N, so that Aξ0
∩ . . . ∩Aξr

has Banach

density 2−r−1.

1J Theorem Take any ν ∈ P , and let µ be the corresponding measure on βN. Then µ is Maharam
homogeneous, with Maharam type c.

proof Writing Âξ for the open-and-closed subset of βN corresponding to Aξ as defined in 1I, the family

〈Âξ〉ξ<c is, with respect to µ, a stochastically independent family of cardinal c. So the homogeneous prob-
ability algebra Bc of Maharam type c is isomorphic to a subalgebra of the measure algebra A of µ. At the
same time, because βN has weight c, A is isomorphic to a subalgebra of Bc (Fremlin 02, 332N). So A and
Bc are isomorphic (Fremlin 02, 332Q).

1K Theorem Suppose that I ⊆ N and d∗s(I) > 0. Then for any finite set J ⊆ N there are k ∈ N, l ≥ 1
such that k + lJ ⊆ I. In particular, I includes arbitrarily long arithmetic progressions.

proof Set ǫ = 1
2d

∗
s(I); suppose that r ≥ 2 is such that J ⊆ r. By Szemerédi’s theorem (Szemerédi 75,

or Fremlin 03, 497L1) there is an m0 ≥ 1 such that whenever m ≥ m0, A ⊆ m and #(A) ≥ ǫm there is
an arithmetic progression of length r in A. Let m ≥ m0, k ∈ N be such that 1

m
#(I ∩ [k, k +m[) ≥ ǫ, and

consider A = (I ∩ [k, k +m[) −m; then there is an arithmetic progression of length r in A, so there is an
arithmetic progression of length r in A+m, that is, there are k ∈ N, l ≥ 1 such that k+ li ∈ A+m ⊆ I for
every i < r, in which case of course k + lJ ⊆ I.

1L Banach density on Z (a) We can translate 1C into a result about subsets of Z if we make the
following changes. First, let PZ be the set of translation-invariant non-negative additive functionals ν :
PZ → [0, 1] such that νZ = 1, and for I ⊆ Z set d∗s(I) = supν∈PZ

νI. (It is easy to check that this agrees
with the definition in 1A if I ⊆ N.) Now, for any I ⊆ Z,

1Later editions only.
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d∗s(I) = inf{‖x ∗ χI‖∞ : x ∈ ℓ1(Z)+, ‖x‖1 = 1}

= inf
m≥1

sup
k∈Z

1

m
#(I ∩ [k, k +m[)

= inf
m≥1

lim sup
|k|→∞

1

m
#(I ∩ [k, k +m[)

= lim
m→∞

sup
k∈Z

1

m
#(I ∩ [k, k +m[)

= lim
m→∞

sup
k∈Z

1

m
#(I ∩ [mk,mk +m[)

= inf
δ>0

sup{
∑

i∈I

x(i) : x ∈ ℓ1(Z)+, ‖x‖1 = 1, Var
Z

(x) ≤ δ}

(use the arguments of 1C, nearly unchanged). It is worth noting that

d∗s(I) = max(d∗s(I ∩ N), d∗s((−I) ∩ N))

(using the new version

infm≥1 lim sup|k|→∞
1

m
#(I ∩ [k, k +m])

of γ̂2 in the proof of 1C, or otherwise).

(b) Following Solecki 05, we have a further characterization: for any set I ⊆ Z,

d∗s(I) = infJ∈[Z]<ω,J 6=∅ supk∈Z

#((I+k)∩J

#(J)
.

PPP Set

γ5 = infJ∈[Z]<ω,J 6=∅ supk∈Z

#((I+k)∩J

#(J)
.

Then

inf{‖x ∗ χI‖∞ : x ∈ ℓ1(Z)+, ‖x‖1 = 1} ≤ γ6

≤ inf
x∈ℓ1(Z)+,‖x‖1=1

sup
k∈Z

∑

i∈I

x(i+ k). QQQ

1M Translation-invariant functionals in (ℓ∞)∗ (a) In the L-space (ℓ∞)∗ (see Fremlin 02, 356N),
we can consider the set V of functionals f such that f(Tx) = f(x) for every x ∈ ℓ∞, where (Tx)(i) = x(i+1)
for x ∈ ℓ∞ and i ∈ N. This is a weak*-closed Riesz subspace of (ℓ∞)∗. PPP V is a linear subspace just because
T : ℓ∞ → ℓ∞ is a linear operator, and it is weak*-closed because f 7→ f(x), f 7→ f(Tx) are weak*-continuous
for every x. If f ∈ V and x ≥ 0 in ℓ∞, then Tx ≥ 0 and

|f |(Tx) = sup
|y|≤Tx

f(y)

(Fremlin 02, 356B)

= sup
−Tx≤y≤Tx

f(y) = sup
y∈ℓ∞

f(med(−Tx, y, Tx))

(where med(u, v, w) = (u ∧ v) ∨ (u ∧ w) ∨ (v ∧ w), as in Fremlin 02, 3A1Ic2)

= sup
y∈ℓ∞

f(med(−Tx, Ty, Tx))

(because T is surjective)

2Later editions only.
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= sup
y∈ℓ∞

f(T (med(−x, y, x)))

(because T is a Riesz homomorphism)

= sup
y∈ℓ∞

f(med(−x, y, x)) = sup
|y|≤x

f(y) = |f |(x).

As x is arbitrary, |f | ∈ V ; as f is arbitrary, V is a Riesz subspace (Fremlin 02, 352Ic). QQQ
Accordingly V , with its inherited normed Riesz space structure, is an L-space (Fremlin 02, 354O).

(b) Set V +
1 = {f : f ∈ V , f ≥ 0, ‖f‖ = 1}. Then f 7→ fχ is a bijection between V +

1 and P . PPP In the
language of Fremlin 02, §363, ℓ∞ ∼= L∞(PN) so the L-space (ℓ∞)∗ = (ℓ∞)∼ ∼= L∞(PN)∼ is identified with
the L-space M of bounded additive functionals on N by the map f 7→ fχ : (ℓ∞)∗ → M . Now f ∈ (ℓ∞)∗

is non-negative iff fχ ∈M is non-negative (Fremlin 02, 363Eb), and for such f we have ‖f‖ = f(χN), so
{f : f ≥ 0, ‖f‖ = 1} corresponds to {ν : ν ≥ 0, νN = 1}. As for translation-invariance, T (χ(I + 1)) = χI
for every I ⊆ N. So if f ∈ (ℓ∞)∗ corresponds to ν = fχ ∈M ,

fT = f ⇐⇒ fTχ = fχ

⇐⇒ f(T (χI)) = f(χI) for every I ⊆ N

⇐⇒ f(χ(I + 1)) = f(χI) for every I ⊆ N

⇐⇒ ν(I + 1) = νI for every I ⊆ N

⇐⇒ ν(I + k) = νI for every I ⊆ N, k ∈ N

⇐⇒ ν is translation-invariant.

Putting these together, ν ∈ P iff f ∈ V +
1 . QQQ

Accordingly P inherits the structure of the weak*-compact convex set V +
1 . Explicitly: if ν0, ν1 ∈ P and

α ∈ [0, 1], we have ν = αν0 +(1−α)ν1 ∈ P , with νI = αν0I+(1−α)ν1I for every I ⊆ N; the corresponding
topology on P is that inherited from the product topology of RPN (if we give N its discrete topology, this
is the ‘narrow topology’ of Fremlin 03, 437J); P is compact and the convex-combination operation

(ν, ν′, α) 7→ αν + (1 − α)ν′ : P × P × [0, 1] → P

is continuous; and P is the closed convex hull of its extreme points, by the Krěın-Mil’man theorem.

1N Extreme points of P Give P its convex structure as described in 1M. Let E be the set of extreme
points of P .

(a) Just because V , as described in 1M, is an L-space, an f ∈ V +
1 is an extreme point of V +

1 iff it is
‘atomic’ in V in the sense that whenever g ∈ V and 0 ≤ g ≤ f then g is a multiple of f . PPP (i) If f is an

extreme point and 0 ≤ g ≤ f , then either g = 0 or g − f or f1 =
1

‖g‖
g, f2 =

1

‖f−g‖
(f − g) both belong to

V +
1 . In this case (because V is an L-space) ‖g‖ + ‖f − g‖ = 1, so f is a convex combination of f1 and f2,

and both must be equal to f ; consequently g is a multiple of f . (ii) If f is not an extreme point, express it
as αf1 + (1−α)f2 where f1, f2 ∈ V +

1 , 0 < α < 1 and neither f1 nor f2 is equal to f . Then αf1 ≤ f but αf1
is not a multiple of f . QQQ

Consequently ‖f−g‖ = 2 whenever f , g are distinct extreme points of V +
1 . PPP f ∧g must be a multiple of

both f and g; as neither can be a multiple of the other, f∧g = 0, |f−g| = f+g and ‖f−g‖ = ‖f‖+‖g‖ = 2.
QQQ

Translated into terms of P , this amounts to saying that if ν ∈ P and ν′ ∈ E \ {ν}, then

infI⊆N(νI + ν′(N \ I)) = (ν ∧ ν′)N = 0, supI⊆N νI − ν′I = 1

(see Fremlin 02, 362A-362B for the structure of the L-space of bounded finitely additive functionals on
PN).

(b) Let 〈νn〉n∈N be a sequence of distinct elements of E. Then 〈νn〉n∈N cannot be convergent in P for the
weak*/narrow topology on P . PPP??? Otherwise, let ν ∈ P be its limit. Choose 〈Ik〉k∈N, 〈δk〉k∈N and 〈nk〉k∈N

inductively, as follows. I0 = N. Given that νIk >
2
3 , set δk = 1

2 (νIk − 2
3 ), and let nk be such that nk 6= nj
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for all j < k, νnk
Ik ≥ νIk − δk and νnk

6= ν, so that (ν− νnk
)+Ik = νIk = 2

3 + 2δk and there is an Ik+1 ⊆ Ik
such that νIk+1 − νnk

Ik+1 ≥ 2
3 + δk; in particular, νIk+1 >

2
3 . Continue.

At the end of the induction, set Jk = Ik \ Ik+1 for each k. Then

νnk
Jk = νnk

Ik − νnk
Ik+1 ≥ νIk − δk − νnk

Ik+1

≥ νIk+1 − νnk
Ik+1 − δk ≥

2

3
.

So if we set J =
⋃

k∈N
J2k, we shall have νnk

J ≥ 2
3 for even k and νnk

J ≤ 1
3 for odd k; in which case

〈νnk
〉k∈N cannot converge to ν. XXXQQQ

2. The Banach density ideal

2A Definition Set Zs = {I : I ⊆ N, d∗s(I) = 0}. Then Zs is an ideal of PN, the Banach density ideal.
Write Zs for the quotient Boolean algebra PN/Zs, the Banach density algebra. The functionals ds and
d∗s descend naturally to Zs if we set

d̄∗s(I
•) = d∗s(I), d̄s(I

•) = ds(I) whenever ds(I) is defined.

2B Lemma (Farah) Suppose that 〈an〉n∈N is a non-increasing sequence in Zs. Set γ = infn∈N d̄
∗
s(an).

Then there is an a ∈ Zs such that d̄∗s(a) = γ and a ⊆ an for every n.

proof Take In ⊆ PN such that I•

n = an and In+1 ⊆ In for every n. Choose 〈kn〉n∈N, 〈Kn〉n∈N as follows.
Given that Kj is a finite set for every j ≤ n, let kn be such that

⋃
j<nKj ⊆ kn and #(Kn) ≥ (γ − 2−n)n,

where Kn = In ∩ [kn, kn + n[. Continue. Set I =
⋃

n∈N
Kn, so that I \ In is finite for every n, a = I• ⊆ an

for every n, and

d̄∗s(a) = d∗s(I) ≥ lim supn→∞
1

n
#(Kn) ≥ γ.

2C Proposition (a) d̄∗s is a strictly positive Maharam submeasure on Zs.

(b) There is a corresponding metric ρ̄ on Zs defined by saying that ρ̄(a, b) = d̄∗s(a△ b) for all a, b ∈ Zs.
Under this metric, the Boolean operations ∪ , ∩ , △ and \ and the function d̄∗s : Zs → [0, 1] are uniformly
continuous.

(c) Zs is not complete under its metric ρ.

proof (a) d̄∗s is a strictly positive submeasure just because d∗s is a submeasure and Zs = {I : d∗s(I) = 0}.
By 2B, d̄∗s is a Maharam submeasure.

(b) Fremlin 02, 393B.

(c) Define Kn ⊆ 3n, for n ∈ N, by setting K0 = ∅, Kn+1 = {3ni + j : j ∈ Kn, i ≤ 2} ∪ {jn}, where
jn = min(N \Kn). Then #(Kn) = (3n − 1)/2 for each n. Set In = {3ni+ j : i ∈ N, j ∈ Kn}, an = I•

n ∈ Zs,
so that ds(In) = 1

2 (1− 3−n), and d̄s(an+1 △ an) = 2 · 3−n−1 for every n. Now 〈an〉n∈N is a Cauchy sequence

in Zs. ??? If it has a limit a ∈ Zs, then d̄∗s(a) = limn→∞ d̄∗s(an) = 1
2 . Let I ⊆ N be such that I• = a.

Then d∗s(I) = 1
2 , so there is an m ∈ N such that #(I ∩ [k, k +m[) < m for every k ∈ N. Next, am ⊆ a, so

Im \ I ∈ Zs, and there must be an l ∈ N such that (Im \ I)∩ [3ml, 3m(l + 1)[ is empty. But now observe that
n ⊆ Kn for every n, so that {3ml+i : i < n} ⊆ Im and #(I∩ [3ml, 3ml +m[) = #(Im∩ [3ml, 3ml +m[) = m.
XXX

Remark Part (c) can be regarded as a special case of Proposition 2 in Downarowicz & Iwanik 88.

2D Proposition (a) Zs is a Borel subset of PN.

(b) Zs is not a p-ideal.

proof (a)
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Zs = {I : inf
m≥1

sup
k∈N

1

m
#({n : n ∈ I, k ≤ n < k +m}) = 0}

=
⋂

l≥1

⋃

m≥1

⋂

k∈N

1

m
{x : #({n : n ∈ I, k ≤ n < k +m}) ≤

1

l

is Fσδ (= ΠΠΠ0
3).

(b) Set Ij = {2n − j : n ∈ N, 2n ≥ j} for each j. Then Ij ∈ Zs for every j. Let F be any non-
principal ultrafilter on N and set θ(I) = 1 if {n : 2n ∈ I} ∈ F , 0 otherwise. Take any ν0 ∈ P and set
νI =

∫
θ(I + j)ν0(dj) for every I ⊆ N. Then ν ∈ P . If I ⊆ N is such that I \ Ij is finite for every j, then

θ(I + j) = 1 for every j and d∗s(I) = νI = 1 and I /∈ Zs. Thus Zs cannot be a p-ideal.

2E Proposition Zs is weakly σ-distributive.

proof ??? Otherwise, we have an a ∈ Zs \ {0} and a double sequence 〈amn〉m,n∈N such that amn ⊆ a for all
m and n, 〈amn〉n∈N is a non-increasing sequence with infimum 0 for every m, and supm∈N am,f(m) = a for

every f : N → N. Set γ = d̄∗s(a). By 2C(a), infn∈N d̄
∗
s(amn) = 0 for each m; choose f : N → N such that

d̄∗s(em,f(m)) ≤ 2−m−2γ for every m. Setting cn = supm≤n em,f(m), d̄
∗
s(cn) ≤ 1

2γ so d̄∗s(a \ cn) ≥ 1
2γ for every

n. But 〈a \ cn〉n∈N is non-increasing and is supposed to have infimum 0 in Zs. XXX

2F Lemma Let A be an atomless Dedekind σ-complete Boolean algebra and ν a strictly positive Maharam
submeasure on A.

(a) If a ∈ A and 0 ≤ γ ≤ νa then there is a d ⊆ a such that νd = γ.
(b) For every ǫ > 0 there is a finite partition of unity A ⊆ A such that νa ≤ ǫ for every a ∈ A.

proof (a) First note that if b ∈ A \ {0} and δ > 0 there is a c ⊆ b such that 0 < νc ≤ δ. PPP Choose 〈bn〉n∈N

inductively by setting b0 = b and for each n ∈ N taking bn+1 ⊆ bn such that bn+1 and bn \ bn+1 are both
non-zero. Then 〈bn \ bn+1〉n∈N is a disjoint sequence in A \ {0}; as ν is exhaustive (Fremlin 02, 392Hc),
there is some n such that ν(bn \ bn+1) ≤ δ; as ν is strictly positive, ν(bn \ bn+1) > 0. QQQ

Now let Aa be the principal ideal of A generated by a. Let B ⊆ Aa be a maximal upwards-directed set
such that νb ≤ γ for every b ∈ B. A is Dedekind complete and ν is order- continuous (see Fremlin 02, 392I,
and its proof); set d = supB, so that νd ≤ γ. ??? If νd < γ, there is a b ⊆ a \ d such that 0 < νb ≤ γ − νd,
in which case ν(b ∪ d) ≤ γ and we ought to have added b ∪ d to B. XXX So we have an appropriate d.

(b) Let A0 ⊆ A be a maximal disjoint set such that νa = ǫ for every a ∈ A0. Because ν is exhaustive,
A0 is finite. Set c = supA0. By (a), ν(1 \ c) < ǫ; set A = A0 ∪ {1 \ c}.

2G Proposition No atomless Dedekind σ-complete Boolean algebra can be regularly embedded in Zs.

proof ??? Suppose otherwise. Then there is an atomless order-closed subalgebra A of Zs which is Dedekind
σ-complete. Now d̄∗s↾A is a strictly positive Maharam submeasure on A. By 2F(b), we can find for each
n ∈ N a finite partition of unity An in A \ {0} such that d̄∗s(a) ≤ 2−n for every a ∈ An; let In be a partition
of N such that An = {I• : I ∈ In}.

Choose 〈In〉n∈N and 〈Ln〉n∈N in PN as follows. Start with L0 = N and I0 = ∅. Suppose that we have
chosen In and Ln such that

I•

n ∈ A, d∗s(In) ≤
1

2
− 2−n−1, d∗s(Ln) > 0,

i+ j ∈ In whenever i ∈ Ln and j < n.

As In+2 is a finite cover of N, there is an I ∈ In+2 such that d∗s({i : i ∈ Ln, i+n ∈ I}) > 0; set In+1 = In∪I
and Ln+1 = {i : i ∈ Ln, i+ n ∈ I}, and continue.

At the end of the induction, observe that a = supn∈N I
•

n ought to be defined in A, with d̄∗s(a) ≤ 1
2 . Let

I ⊆ N be such that I• = a, so that d∗s(I) ≤
1
2 . If n ∈ N, then d∗s(In \ I) = 0, so d∗s({i : i+ j ∈ In \ I for some

j < n}) = 0, and there is a k ∈ Ln such that k + j /∈ In \ I for every j < n. But this means that k + j ∈ I
for every j < n. Thus supk∈N #(I ∩ [k, k + n[) = n. As this is true for every n, d∗s(I) = 1. XXX
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2H Proposition Write Z for the ideal of subsets of N with zero asymptotic density, and Z for the quotient
PN/Z. Then we have a canonical sequentially order-continuous Boolean homomorphism π : Zs → Z, defined
by saying that πI• = I◦ for every I ⊆ N, where I• is the equivalence class of I in Zs = PN/Zs, and I◦ is
the equivalence class of I in Z = PN/Z.

proof Because I 7→ I◦ is a Boolean homomorphism with kernel Z ⊇ Zs (1Gb), the formula gives us a
Boolean homomorphism. Now suppose that 〈an〉n∈N is a non-increasing sequence in Zs with infimum 0. For
each n ∈ N take In ⊆ N such that I•

n = an. Then, writing d∗ for upper asymptotic density,

inf
n∈N

d∗(In) ≤ inf
n∈N

d∗s(In)

(1G(b))

= 0

(2C(a)). But this means that if I ⊆ N and I◦ ⊆ πan for every n, d∗(I) = 0 and I ∈ Z and I◦ = 0. Thus
infn∈N πan = 0 in Z. As 〈an〉n∈N is arbitrary, π is sequentially order- continuous.

2I Proposition (Farah 04, 1.4) There is a sequence 〈Kn〉n∈N of subsets of PN such that every Kn is
compact for the usual topology on PN and

Zs =
⋂

n∈N
{I : I ⊆ N, I \

⋃
i≤mKi is finite for some K0, . . . ,Km ∈ Kn}

for every m ∈ N.

proof Fix m ∈ N. For r, n ∈ N set

Knr = {I : I ⊆ N \ r, #(I ∩ [k, k + l[) ≤
l

n+1
for every l ≥ r and every k ∈ N}.

Then Knr is compact. For n ∈ N set Kn =
⋃

r∈N
Knr; because every neighbourhood of ∅ includes all but

finitely many of the Knr, Kn is compact. For n ∈ N write

In = {I : I ⊆ N, I \
⋃

i≤mKi is finite for some K0, . . . ,Km ∈ Kn}.

If I ∈ Zs and n ∈ N, then there is an r ∈ N such that #(I ∩ [k, k + l[) ≤
l

n+1
for every l ≥ r, and now

I \ r ∈ Kn and I \ (I \ r) is finite; accordingly I ∈ In. Thus Zs ⊆
⋂

n∈N
In.

On the other hand, if I ∈
⋂

n∈N
In, then I ∈ Zs. PPP Let ǫ > 0. Let n be such that 2ǫ(m+ 1) ≤ n. Then

there are K0, . . . ,Km ∈ Kn such that I\
⋃

i≤mKi is finite. Let ri be such that Ki ∈ Knri
for each i ≤ m, and

set r = maxi≤m ri; then #(Ki ∩ [k, k + l[) ≤
l

n+1
for every l ≥ r and every k ∈ N. Set s = #(I \

⋃
i≤mKi);

then #(I ∩ [k, k + l[) ≤
ml

n+1
+ s ≤

ǫl

2
+ s for every l ≥ r and every k ∈ N. So if we take r′ ≥ r such that

2s ≤ ǫr′, then #(I ∩ [k, k + l[) ≤ ǫl for every l ≥ r′ and every k ∈ N. As ǫ is arbitrary, I ∈ Zs. QQQ

Thus Zs =
⋂

n∈N
In, as claimed.

2J Remark In the language of Farah 04, Zs is ‘strongly countably determined’ by 〈Kn〉n∈N. Under the
Proper Forcing Axiom this means that homomorphisms into Zs from other quotients PN/J are strikingly
constrained. In fact

Theorem [PFA] For every Boolean homomorphism π : PN → Zs, there are a continuous
function F : PN → PN and a non-meager ideal K ⊳ PN such that F (I)• = π(I•) for every
I ∈ K.

2K Proposition Zs
∼= ZN

s .

proof Set Ln = {2n(2i+1) : i ∈ N}, dn = L•

n ∈ Zs. Because limn→∞ d∗s(N\
⋃

j≤n Lj) = 0, Zs
∼=

∏
n∈N

(Zs)dn
.

But of course every (Zs)dn
is isomorphic to Zs, just because, for J ⊆ N, J ∈ Zs iff {2n(2i+1) : i ∈ J} ∈ Zs.
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2L Lemma Suppose that I ⊆ N and that 0 ≤ β′ < γ < d∗s(I) and m0 ∈ N. Then there is an m ≥ m0

such that, setting K = {k : k ∈ N, #(I ∩ [2mk, 2m(k + 1)[ ≥ 2mγ} and J = I ∩
⋃

k∈K [2mk, 2m(k + 1)[,
d∗s(J) ≥ β′.

proof Set β = d∗s(I) and let α > β be such that γ(1 −
α−β

α−γ
) ≥ β′. Let m ≥ m0 be such that supk∈N #(I ∩

[k, k + 2m[) ≤ 2mα. Define K, J by the formulae given. Suppose that l ≥ m. Then there is a k∗ such that
#(I ∩

[
2lk∗, 2l(k∗ + 1)

[
) ≥ 2lβ. Set L = {k : 2l−mk∗ ≤ k < 2l−m(k∗ + 1)}. Then

2lβ =
∑

k∈L∩K

#(I ∩ [2mk, 2m(k + 1)[) +
∑

k∈L\K

#(I ∩ [2mk, 2m(k + 1)[)

≤ 2mα#(L ∩K) + 2mγ#(L \K)

= 2mα#(L) − 2m(α− γ)#(L \K) = 2lα− 2m(α− γ)#(L \K).

So #(L \K) ≤ 2l−mα−β

α−γ
. Consequently

#(J ∩
[
2lk∗, 2l(k∗ + 1)

[
) ≥ 2mγ#(L ∩K) = 2mγ(2l−m − #(L \K))

≥ 2mγ(2l−m − 2l−mα−β

α−γ
) = 2lγ(1 −

α−β

α−γ
) ≥ 2lβ′.

As l is arbitrary, d∗s(J) ≥ β′, as claimed.

2M Theorem Suppose that c ∈ Zs is non-zero. Then there is a non-zero d ⊆ c such that the principal
ideal (Zs)d generated by d is isomorphic to Zs.

proof (a) Choose 〈In〉n∈N, 〈mn〉n∈N, 〈γn〉n∈N, 〈Kn〉n∈N, 〈rn〉n∈N as follows. Start with I0 such that I•

0 = c.
Given that d∗s(In) > 0, set βn = (1 − 2−n−1)d∗s(In) and take γn ∈ ]βn, d

∗
s(In)[. By Lemma 2L, we can find

an mn such that mn > mi for every i < n and d∗s(I ∩
⋃

k∈Kn
[2mnk, 2mn(k + 1)[) ≥ βn, where Kn = {k :

#(In ∩ [2mnk, 2mn(k + 1)[) ≥ 2mnγn}. Take rn such that rn ≥ ri for every i < n and rn = 2mnk for some
k ≥ 1 + minKn, and set In+1 = I ∩ (rn ∪

⋃
k∈Kn

[2mnk, 2mn(k + 1)[); then d∗s(In+1) ≥ βn > 0. Continue.

(b) We find that if i < n and 2mik ≥ ri and In ∩ [2mik, 2mi(k + 1)[ is not empty, then #(In ∩
[2mik, 2mi(k + 1)[) ≥ 2miγi. PPP Induce on n. For n = i + 1, this is just the construction of Ii+1.
For the inductive step to n + 1 where n > i, if In+1 ∩ [2mik, 2mi(k + 1)[ is not empty, then either
2mi(k + 1) ≤ rn or rn ≤ 2mik, because rn is a multiple of 2mn which is a multiple of 2mi . In the for-
mer case, In+1 ∩ [2mik, 2mi(k + 1)[ = In ∩ [2mik, 2mi(k + 1)[ has at least 2miγi members, by the inductive
hypothesis. In the latter case, [2mik, 2mi(k + 1)[ must meet [2mnk′, 2mn(k′ + 1)[ for some k′ ∈ Kn. But in
this case [2mik, 2mi(k + 1)[ ⊆ [2mnk′, 2mn(k′ + 1)[ and In+1 ∩ [2mik, 2mi(k + 1)[ = In ∩ [2mik, 2mi(k + 1)[
again has at least 2miγi members. QQQ

(c) Set J =
⋂

n∈N
In.

(i) d∗s(J) > 0. PPP Set γ∗ = d∗s(I0)
∏

n∈N
(1− 2−n−1) > 0. Then γ∗ ≤ γn for every n ∈ N. For n ∈ N, set

kn = minKn. Because 〈ri〉i∈N is non-decreasing, In ∩ [2mnkn, 2
mn(kn + 1)[ ⊆ Ii for every i ≥ n, and

#(J ∩ [2mnkn, 2
mn(kn + 1)[) = #(In ∩ [2mnk, 2mn(k + 1)[) ≥ 2mnγn ≥ 2mnγ∗.

As limn→∞ 2mn = ∞, d∗s(J) ≥ γ∗ > 0. QQQ Set d = J•, so that 0 6= d ⊆ c.

(ii) Because 〈In〉n∈N is non-decreasing, (b) tells us that if i ∈ N and 2mik ≥ ri and J∩[2mik, 2mi(k + 1)[
is not empty, then #(J ∩ [2mik, 2mi(k + 1)[) ≥ 2miγi.

(d) Let f : N → J be the increasing enumeration of J .

(i) d∗s(f [M ]) ≤ d∗s(M) for every M ⊆ N. PPP If α > d∗s(M), there is an m ∈ N such that #(M ∩
[k, k +m[) ≤ αm for every k. Now if k ∈ N, L = f−1[ [k, k +m[ ] is an interval with at most m members,
so #(f [M ] ∩ [k, k +m[) = #(L ∩K) ≤ αm. As k is arbitrary, d∗s(f [M ]) ≤ α; as α is arbitrary, d∗s(f [M ]) ≤
d∗s(M). QQQ
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(ii) d∗s(f [M ]) ≥
1

4
γ∗d∗s(M) for every M ⊆ N. PPP Set δ = 1

4d
∗
s(M). If δ = 0 we can stop. Otherwise, take

any n such that 2mnγ∗ ≥ 1. Then ⌊2mnγn⌋ ≥ 2mn−1γn, so there is a k ≥ rn such that #(M∩L) ≥ 2mn+1δγn

where L = {j : j ∈ N, k ≤ j < k+⌊2mnγn⌋}. Now L is an interval in N with ⌊2mnγn⌋ members. Also f [L] ⊆
[rn,∞[. So f [L] cannot properly include J ∩ [2mnk, 2mn(k + 1)[ for any k such that J ∩ [2mnk, 2mn(k + 1)[
is non-empty, and f [L] must be covered by two intervals [2mnk, 2mn(k + 1)[, [2mnk′, 2mn(k′ + 1)[. Since
#(f [M ∩L]) = #(M ∩L) ≥ 2mn+1δγn, one of these intervals must contain at least 2mnδγn points of f [M ].
But this means that we have found an interval of length 2mn containing at least 2mnδγ∗ points of f [M ].
Since this can be done for any n large enough, d∗s(f [M ]) ≥ δγ∗, as claimed. QQQ

(e) Now f induces an isomorphism between PN and PJ which takes Zs to Zs ∩ PJ , so induces an
isomorphism between Zs and (Zs)d.

2N Corollary The automorphism group AutZs has no outer automorphisms.

proof In the language of Fremlin 02, Zs has many involutions, so we can use Fremlin 02, 384D.

2O Corollary Writing Ẑs for the Dedekind completion of Zs (Fremlin 02, 314U), Ẑs is a homogeneous
Boolean algebra; its automorphism group is simple and has no outer automorphisms.

proof (a) Let C be the set of those c ∈ Zs such that the principal ideal (Zs)c is isomorphic to Zs. By 2M,

C is order-dense in Zs and therefore in Ẑs. Take any non-zero a ∈ Ẑs. Then there is a partition of unity C0

in (Ẑs)a consisting of members of C (Fremlin 02, 313K). Next, there is a partition of unity C1 in Zs such
that C0 ⊆ C1 ⊆ C. If #(C1) > #(C0), note first that because Zs

∼= DN
s we can replace one of the members

of C1 \ C0 by a countably infinite subset of C; next, we can replace one of the members of C0 by a copy
of C1, still lying within C. In this way, we obtain C ′

0, C
′
1 ⊆ C, with #(C ′

0) = #(C ′
1) = κ say, which are

partitions of unity in (Ẑs)a and Ẑs respectively. Since (Ẑs)c
∼= Ẑs for every c ∈ C, (Ẑs)a

∼= Ẑκ
s
∼= Ẑs. As a is

arbitrary, Ẑs is homogeneous.

(b) By Fremlin 02, 381T and 383G, Aut Ẑs is simple and has no outer automorphisms.

2P The shift on Zs (a) We have a Boolean automorphism ψ : Zs → Zs defined by saying that
ψ(I•) = (I + 1)• for every I ⊆ N. PPP If I, J ⊆ N and I• = J•, then (I + 1)△(J + 1) = (I△J) + 1
belongs to Zs, so (I + 1)• = (J + 1)•; so the formula defines a function ψ : Zs → Zs. If I, J ⊆ N then
(I∪J)+1 = (I+1)∪(J+1), so ψ(I•∪J•) = ψI• ∪ ψJ•. If I ⊆ N then ((N\I)+1)△(N\(I+1)) = {0} belongs
to Zs, so ψ(1 \ I•) = 1 \ ψI•. Thus ψ is a Boolean homomorphism. If I /∈ Zs then d∗s(I + 1) = d∗s(I) 6= 0
and I + 1 /∈ Zs; so ψ is injective. If I ⊆ N set J = (I \ {0}) − 1; then ψJ• = I•. So ψ is surjective and is a
Boolean automorphism. QQQ

(b) If θ : Zs → [0, 1] is an additive functional such that θ1 = 1, then the following are equiveridical:

(i) θψ = θ;

(ii) θa ≤ d̄∗s(a) for every a ∈ Zs;

(iii) θa = d̄s(a) for every a such that d̄s(a) is defined.

PPP Apply 1H to the functional I 7→ θI•. QQQ

3. Well-distributed sequences

3A Definitions (a) If z ∈ ℓ∞ is such that
∫
z dν is the same for every ν ∈ P , I will call this common

value WDLi→∞ z(i), the well-distributed limit of z.

(b) A Følner sequence of subsets of N is a sequence 〈Im〉m∈N of finite non-empty subsets of N such

that limm→∞
1

#(Im)
#(Im△(k + Im)) = 0 for every k ∈ N.

3B Theorem (a) If z ∈ ℓ∞, then
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sup
ν∈P

−

∫
z dν = lim sup

m→∞
sup
k∈N

1

m+1

k+m∑

i=k

z(i)

= inf{sup
k∈N

n∑

i=0

αiz(k + i) : α0, . . . , αn ≥ 0,

n∑

i=0

αi = 1}

= max{lim sup
m→∞

1

#(Im)

∑

i∈Im

z(i) :

〈Im〉m∈N is a Følner sequence of subsets of N}

= max{lim inf
m→∞

1

#(Im)

∑

i∈Im

z(i) :

〈Im〉m∈N is a Følner sequence of subsets of N}.

(b) If z ≥ 0, then supν∈P

∫
z dν = inf{‖x ∗ z‖∞ : x ∈ ℓ1, x ≥ 0, ‖x‖1 = 1}.

(c) If z ∈ ℓ∞ and γ ∈ R, then the following are equiveridical:
(α) WDLi→∞ z(i) is defined and equal to γ;

(β) for every ǫ > 0 there is an m0 ∈ N such that |γ−
1

m+1

∑k+m
i=k z(i)| ≤ ǫ for every m ≥ m0 and k ∈ N;

(γ) limm→∞
1

#(Im)

∑
i∈Im

z(i) is defined and equal to γ for every Følner sequence 〈Im〉m∈N of subsets

of N.

proof (a) It is enough to consider the case 0 ≤ z ≤ χN. Set

γ1 = supν∈P

∫
z dν,

γ2 = lim supm→∞ supk∈N

1

m+1

∑k+m
i=k z(i),

γ3 = inf{supk∈N

∑n
i=0 αiz(k + i) : α0, . . . , αn ≥ 0,

∑n
i=0 αi = 1},

γ4 = sup{lim sup
m→∞

1

#(Im)

∑

i∈Im

z(i) :

〈Im〉m∈N is a Følner sequence of subsets of N}.

Set xm =
1

m+1
χ(m+ 1), so that supk∈N

1

m+1

∑k+m
i=k z(i) = ‖xm ∗ z‖∞ for each m.

(i) γ1 ≤ γ2. PPP If ν ∈ P , m ∈ N then
∫
z dν =

∫
xm ∗ z dν ≤ ‖xm ∗ z‖∞.

Letting m→ ∞,
∫
z dν ≤ γ2; as ν is arbitrary, γ1 ≤ γ2. QQQ

(ii) γ2 ≤ γ3. PPP Let ǫ > 0. Take α0, . . . , αn ≥ 0 such that
∑n

i=0 αi = 1 and supk∈N

∑n
i=0 αiz(k + i) ≤

γ3 + ǫ. Then for any k, m ∈ N,

1

m+1

k+m∑

i=k

z(i) =
1

m+1

m∑

i=0

n∑

j=0

αjz(k + i)

≤
1

m+1

m∑

i=0

n∑

j=0

αjz(k + i+ j) +
1

m+1

n∑

i=0

n∑

j=0

αjz(k + i)

≤
1

m+1

m∑

i=0

(γ3 + ǫ) +
1

m+1

n∑

i=0

z(k + i) ≤ γ3 + ǫ+
n+1

m+1
.

Taking the supremum over k and the (upper) limit as m→ ∞, γ2 ≤ γ3 + ǫ; as ǫ is arbitary, γ2 ≤ γ3. QQQ
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(iii) For k, i ∈ N set wk(i) = 1 − z(k + i). Then there is a positive linear functional f : ℓ∞ → R such
that f(χN) = 1 and f(wk) ≤ 1 − γ3 for every k. PPP

case 1 Suppose that there are no α0, . . . , αn ≥ 0 such that
∑n

i=0 αkwk ≥ χN. In this case anδ =
{i : wk(i) ≤ δ for every k ≤ n} is non-empty for every n ∈ N, δ > 0. Let F be an ultrafilter on N containing
every anδ, and set f(v) = limn→F v(n) for every v ∈ ℓ∞; then f(wk) = 0 for every k.

case 2 Otherwise, define a seminorm τ on ℓ∞ by setting

τ(v) = inf{
∑n

k=0 αk : α0, . . . , αn ≥ 0, |v| ≤
∑n

k=0 αkwk}

for v ∈ ℓ∞. Set β = τ(χN). ??? If (1 − γ3)β < 1, take α0, . . . , αn ≥ 0 such that χN ≤
∑n

k=0 αkwk and
(1 − γ3)

∑n
k=0 αk < 1. Set α =

∑n
k=0 αk; of course α > 0; set α′

k = αk/α for each k, so that
∑n

k=0 α
′
k = 1,

1

α
χN ≤

∑n
k=0 α

′
kwk and (1 − γ3)α < 1. Now, for any i ∈ N,

1

α
≤

∑n
k=0 α

′
kwk(i) =

∑n
k=0 α

′
k(1 − z(k + i)) = 1 −

∑n
k=0 α

′
kz(k + i)

so

γ3 ≤ supi∈N

∑n
k=0 α

′
kz(i+ k) ≤ 1 −

1

α
,

1

α
≤ 1 − γ3 and 1 ≤ (1 − γ3)α. XXX

Thus (1 − γ3)β ≥ 1. By the Hahn-Banach theorem, there is a linear functional g : ℓ∞ → R such that
g(χN) = β and |g(v)| ≤ τ(v) for every v ∈ ℓ∞. Since τ is a Riesz seminorm, g ∈ (ℓ∞)∼. Take |g| in (ℓ∞)∼;
then |g|(χN) ≥ g(χN) and |g|(v) ≤ τ(v) for every v ∈ ℓ∞. So in fact we must still have |g|(χN) = β, while

|g|(wk) ≤ τ(wk) ≤ 1 for every k. Set f =
1

β
|g|. Then f : ℓ∞ → R is a positive linear functional, f(χN) = 1

and f(wk) ≤
1

β
≤ 1 − γ3 for every k, as required. QQQ

(iv) γ3 ≤ γ1. PPP Take the functional f from (iii), and set θ(I) = f(χI) for each I ⊆ N. Then
θ : PN → [0, 1] is an additive functional and θ(N) = 1. Take any ν0 ∈ P and set νI =

∫
θ(I −′ i)ν0(di) for

I ⊆ N, so that ν ∈ P .
Let ǫ > 0. Then there are a0, . . . , In ⊆ N and α0, . . . , αn ≥ 0 such that

∑n
j=0 αjχIj ≤ z ≤ ǫχN +

∑n
j=0 αjχIj .

Setting zk = χN − wk, so that zk(i) = z(k + i) for all k and i,

zk(i) ≤ ǫ+
∑n

j=0 αjχIj(k + i) = ǫ+
∑n

j=0 αjχ(aj −
′ k)(i)

for every i, and

γ3 ≤ 1 − f(wk) = f(zk) ≤ ǫ+
∑n

j=0 αjθ(aj −
′ k).

Integrating with respect to ν0,

γ3 ≤ ǫ+
∑n

j=0 αjν(aj) ≤ ǫ+
∫
z dν ≤ ǫ+ γ1.

As ǫ is arbitrary, γ3 ≤ γ1. QQQ

(v) γ2 ≤ γ4. PPP For each m ∈ N, let km be such that

1

m+1

∑km+m
i=km

z(i) ≥ supk∈N

1

m+1

∑k+m
i=k z(i) − 2−m,

and set Im = {i : km ≤ i ≤ km +m}. Then

γ2 = lim supm→∞
1

m+1

∑km+m
i=km

z(i) = lim supm→∞
1

#(Im)

∑
i∈Im

z(i) ≤ γ4.

(vi) There is a Følner sequence 〈Jm〉n∈N of subsets of N such that limm→∞
1

#(Jm)

∑
i∈Jm

z(i) is defined

and equal to γ4. PPP For each m ∈ N there is a Følner sequence 〈Imn〉n∈N of subsets of N such that



15

lim supn→∞
1

#(Imn

∑
i∈Imn

z(i) > γ4 − 2−m. For all n large enough,

#(Imn△(k + Imn) ≤ 2−m#(Imn) for every k ≤ m,

so there is a first n(m) such that

#(Im,n(m)△(k + Im,n(m)) ≤ 2−m#(Im,n(m)) for every k ≤ m,

1

#(Im,n(m)

∑
i∈Im,n(m)

z(i) ≥ γ4 − 2−m.

Set Jm = Im,n(m). Then 〈Jm〉m∈N is a Følner sequence of subsets of N and

γ4 ≤ lim infm→∞
1

#(Jm)

∑
i∈Jm

z(i) ≤ lim supm→∞
1

#(Jm)

∑
i∈Jm

z(i) ≤ γ4. QQQ

This shows that

max{lim supm→∞
1

#(Im)

∑
i∈Im

z(i) : 〈Im〉m∈N is a Følner sequence of subsets of N}

and

max{lim infm→∞
1

#(Im)

∑
i∈Im

z(i) : 〈Im〉m∈N is a Følner sequence of subsets of N}

are both defined and equal to γ4 = limm→∞
1

#(Jm)

∑
i∈Jm

z(i).

(vii) γ4 ≤ γ1. PPP Take 〈Jm〉m∈N from (vi). Let F be a non-principal ultrafilter on N. Set νI =

limm→F
#(I∩Jm)

#(Jm)
for I ⊆ N. Then ν : PN → [0, 1] is additive and νN = 1. If I ⊆ N and k ∈ N, then

|#((I + k) ∩ Jm) − #(I ∩ Jm)| = |#((I + k) ∩ Jm) − #((I + k) ∩ (Jm + k))|

≤ |#(Jm△(Jm + k))| = o(#(Jm))

as m→ ∞, so ν(I + k) = νI; thus ν ∈ P . As in (iv), it is easy to check that

∫
z dν = limm→F

1

#(Jm)

∑
i∈Jm

z(i) = γ4,

so γ4 ≤ γ1. QQQ

(viii) Putting these together, we have the result.

(b) If x ∈ ℓ1 and x ≥ 0, then
∫
x ∗ z dν = ‖x‖1

∫
z dν for every ν ∈ P ; this is elementary if x is eventually

zero, and the general result follows by continuity. So d∗s(z) = d∗s(x ∗ z) ≤ ‖x ∗ z‖∞ whenever x ∈ ℓ1, x ≥ 0

and ‖x‖1 = 1. On the other hand, given k, m ∈ N,
1

m+1

∑k+m
i=k z(i) = (xm+1 ∗ z)(k + m) where xm+1 is

defined as in the proof of 1C, so inf{‖x ∗ z‖∞ : x ∈ (ℓ1)+, ‖x‖1 = 1} ≤ d∗s(z).

(c)(ααα)⇒(γγγ) Suppose that WDLi→∞ z(i) = γ, and that 〈Im〉m∈N is a Følner sequence of subsets of N. Let

F be any non-principal ultrafilter on N. Set νI = limm→F
#(I∩Im)

#(Im)
for every I ⊆ N. Then ν : PN → [0, 1]

is additive, and νN = 1. If k ∈ N and I ⊆ N, then

|#((I + k) ∩ Im) − #(I ∩ Im)| = |#((I + k) ∩ Im) − #((I + k) ∩ (Im + k))|

≤ #(Im△(Im + k)) = o(#(Im))

as m→ ∞, so

ν(I + k) = limm→F
#((I+k)∩Im)

#(Im)
= limm→F

#(I∩Im)

#(Im)
= νI.

Thus ν ∈ P , and γ =
∫
z dν. On the other hand,

∫
χI dν = νI = limm→F

1

#(Im)

∑
i∈Im

χI(i),
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so
∫
w dν = limm→F

1

#(Im)

∑
i∈Im

w(i) for every w ∈ ℓ∞ and, in particular,

limm→F
1

#(Im)

∑
i∈Im

z(i) =
∫
z dν = γ.

As F is arbitrary, limm→∞
1

#(Im)

∑
i∈Im

z(i) = γ; as 〈Im〉m∈N is arbitrary, (γ) is true.

not-(βββ)⇒not-(γγγ) If (β) is false, we can find an ǫ > 0 and sequences 〈k(m)〉m∈N, 〈l(m)〉m∈N such that

l(m) ≥ m and |γ−
1

l(m)+1

∑k(m)+l(m)
i=k(m) z(i)| > ǫ for every m. Setting Im = {i : k(m) ≤ i ≤ k(m) + l(m)}, we

have |γ −
1

#(Im)

∑
i∈Im

| > ǫ for every m. On the other hand, for any k ∈ N,

#(Im△(k+Im))

#(Im)
≤

2k

#(Im)
→ 0

as m→ ∞, so 〈Im〉m∈N is a Følner sequence, and (γ) is false.

(βββ)⇒(ααα) If (β) is true, then

γ = lim supm→∞ supk∈N

1

m+1

∑k+m
i=k z(i) = lim infm→∞ infk∈N

1

m+1

∑k+m
i=k z(i);

applying (a) to z and −z, we get supν∈P

∫
z dν ≤ γ ≤ infν∈P

∫
z dν, so WDLn→∞ z(n) is defined and equal

to γ.

Remark Part (b) is Theorem 4.5 of Kuipers & Niederreiter 74, where it is attributed to Lorentz 48.

3C Definition Let X be a topological space and µ a probability measure on X. I say that a sequence
〈xn〉n∈N in X is well-distributed if µF ≥ d∗s({i : xi ∈ F}) for every measurable closed set F ⊆ X.

Of course a well-distributed sequence is equidistributed in the sense of Fremlin 03, §491.

3D Proposition Let X be a topological space, µ a probability measure on X and 〈xi〉i∈N a sequence in
X. Write Cb(X) for the space of bounded continuous real-valued functions on X.

(a) 〈xi〉i∈N is well-distributed iff
∫
fdµ ≤

∫
f(xi)ν(di) for every measurable bounded lower semi-continuous

function f : X → R and every ν ∈ P .
(b) If µ measures every zero set and 〈xi〉i∈N is well-distributed, then WDLi→∞ f(xi) is defined and equal

to
∫
fdµ for every f ∈ Cb(X).

(c) Suppose that µ measures every zero set in X. If WDLi→∞ f(xi) is defined and equal to
∫
fdµ for

every f ∈ Cb(X), then d∗s({n : xn ∈ F}) ≤ µF for every zero set F ⊆ X.
(d) Suppose that X is normal and µ measures every zero set and is inner regular with respect to the closed

sets. If WDLi→∞ f(xi) is defined and equal to
∫
fdµ for every f ∈ Cb(X), then 〈xi〉i∈N is well-distributed.

(e) Suppose that µ is τ -additive and there is a base G for the topology of X, consisting of measurable sets
and closed under finite unions, such that µG ≤ ν({i : xi ∈ G}) for every G ∈ G and ν ∈ P . Then 〈xi〉i∈N is
well-distributed.

(f) Suppose that X is completely regular and that µ measures every zero set and is τ -additive. Then
〈xi〉i∈N is well-distributed iff WDLi→∞ f(xi) is defined and equal to

∫
fdµ for every f ∈ Cb(X).

(g) Suppose that X is metrizable and that µ is a topological measure. Then 〈xi〉i∈N is well-distributed
iff WDLi→∞ f(xi) is defined and equal to

∫
fdµ for every f ∈ Cb(X).

(h) Suppose that X is compact, Hausdorff and zero-dimensional, and that µ is a Radon measure on X.
Then 〈xi〉i∈N is well-distributed iff ds({n : xn ∈ G}) is defined and equal to µG for every open- and-closed
subset G of X.

proof (a)(i) Suppose that 〈xi〉i∈N is well-distributed. Let f : X → [0, 1] be a measurable lower semi-

continuous function and ν ∈ P . Take any k ≥ 1. For each j < k set Gj = {x : f(x) >
j

k
}. Then

ν{i : xi ∈ Gj} = 1 − ν{i : xi ∈ X \Gj}

≥ 1 − d∗s({i : xi ∈ X \Gj}) ≥ 1 − µ(X \Gj)

(because 〈xi〉i∈N is well-distributed and X \Gj is a measurable closed set)
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= µGj .

Also f −
1

k
χX ≤

1

k

∑k
j=1 χGj ≤ f . So

∫
fdµ−

1

k
≤

1

k

k∑

j=1

µGj ≤
1

k

k∑

j=1

ν{i : xi ∈ Gj}

=
1

k

k∑

j=1

−

∫
χGj(xi)ν(di) ≤ −

∫
f(xi)ν(di).

As k is arbitrary,
∫
fdµ ≤

∫
f(xi)ν(di).

The argument above depended on f taking values in [0, 1]. But multiplying by an appropriate positive

scalar we see that
∫
fdµ ≤ lim infn→∞

1

n+1

∑n
i=0 f(xi) for every bounded measurable lower semi-continuous

f : X → [0,∞[, and adding a multiple of χX we see that the same formula is valid for all bounded measurable
lower semi-continuous f : X → R.

(ii) Conversely, suppose that
∫
fdµ ≤

∫
f(xi)ν(di) for every bounded measurable lower semi-continuous

f : X → R and every ν ∈ P . Let F ⊆ X be a measurable closed set. Then −χF is lower semi-continuous,
so −µF ≤

∫
(−χF )(xi)ν(di) = −ν{i : xi ∈ F}, that is, ν{i : xi ∈ F} ≤ µF , for every ν ∈ P . Taking the

supremum over ν, d∗s({i : xi ∈ F}) ≤ µF . As F is arbitrary, 〈xi〉i∈N is well-distributed.

(b) Apply (a) to the lower semi-continuous functions f and −f .

(c) Recall that if µ measures every zero set, then every bounded continuous real-valued function is
integrable (Fremlin 03, 4A3L). Let F ⊆ X be a zero set, and ǫ > 0. Then there is a continuous f : X → R

such that F = f−1[{0}]. Let δ > 0 be such that µ{x : 0 < |f(x)| ≤ δ} ≤ ǫ, and set g = (χX −
1

δ
|f |)+. Then

g : X → [0, 1] is continuous, so

d∗({i : xi ∈ F}) ≤ lim supn→∞
1

n+1

∑n
i=0 g(xi) =

∫
g dµ ≤ µ{x : |f(x)| ≤ δ} ≤ µF + ǫ.

As ǫ and F are arbitrary, we have the result.

(d) Let F ⊆ X be a measurable closed set and ǫ > 0. Because µ is inner regular with respect to the
closed sets, there is a measurable closed set F ′ ⊆ X \F such that µF ′ ≥ µ(X \F )− ǫ. Because X is normal,
there is a continuous function f : X → [0, 1] such that χF ≤ f ≤ χ(X \ F ′). Let ν ∈ P . Then

ν{i : xi ∈ F} ≤
∫
f(xi)ν(di) =

∫
fdµ ≤ µ(X \ F ′) ≤ µF + ǫ.

As ν and F and ǫ are arbitrary, 〈xi〉i∈N is well-distributed.

(e) Let F ⊆ X be a measurable closed set, and ǫ > 0. Let G1 be the family of members of G disjoint
from F . Then G1 is upwards-directed and

⋃
G1 = X \ F ; because µ is τ -additive, there is a G ∈ G1 such

that µG > µ(X \ F ) − ǫ. Now, for any ν ∈ P ,

ν{i : xi ∈ F} ≤ 1 − ν{i : xi ∈ G} ≤ 1 − µG ≤ νF + ǫ.

As ν and F and ǫ are arbitrary, 〈xi〉i∈N is well-distributed.

(f) (i) If 〈xi〉i∈N is well-distributed then (b) tells us that
∫
fdµ = WDLi→∞ f(xi) for every f ∈ Cb(X).

(ii) Suppose that
∫
fdµ = WDLi→∞ f(xi) for every f ∈ Cb(X). If G ⊆ X is a cozero set, we can apply (c)

to its complement to see that µG ≤ ν{i : xi ∈ G} for every ν ∈ P . So applying (e) with G the family of
cozero sets we see that 〈xi〉i∈N is well-distributed.

(g) Because every closed set is a zero set, this follows at once from (b) and (c).

(h) If 〈xi〉i∈N is well-distributed and G ⊆ X is open-and-closed, then d∗s({i : xi ∈ G}) ≤ µG because G
is closed and d∗s({n : xn /∈ G}) ≤ 1 − µG because G is open; so ds({i : xi ∈ G}) = µG. If the condition is
satisfied, then (e) tells us that 〈xi〉i∈N is well- distributed.
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3E Proposition (a) Suppose that X and Y are topological spaces, µ a probability measure on X and
f : X → Y a continuous function. If 〈xi〉i∈N is a sequence in X which is well-distributed with respect to µ,
then 〈f(xi)〉i∈N is well-distributed with respect to the image measure µf−1.

(b) Suppose that (X,µ) and (Y, ν) are topological probability spaces and f : X → Y is a continuous
inverse-measure-preserving function. If 〈xi〉i∈N is a sequence in X which is well-distributed with respect to
µ, then 〈f(xi)〉i∈N is well-distributed with respect to ν.

proof (a) Let F ⊆ Y be a closed set which is measured by µf−1. Then f−1[F ] is a closed set in X measured
by µ. So

d∗s({i : f(xi) ∈ F}) = d∗s({i : xi ∈ f−1[F ]}) ≤ µf−1[F ] = µf−1[F ].

(ii) Replace ‘µf−1’ above by ‘ν’.

3F Examples (a) For almost every xxx = 〈ξi〉i∈N ∈ [0, 1]N, 〈ξi〉i∈N is equidistributed (Fremlin 03, 491Eb)
but not well-distributed (because there will be arbitrarily long gaps [k, k + n[ in which every ξi ≤

1
2 ).

(b) For α ∈ R write <α> ∈ [0, 1[ for its fractional part, so that α − <α> ∈ N. Examining the proof
of Weyl’s Equidistribution Theorem (Fremlin 01, 281N), we see that if η1, . . . , ηr are real numbers such
that 1, η1, . . . , ηr are linearly independent over Q, and we set xn = (<nη1>, . . . , <nηr>) ∈ [0, 1[

r
for each

n, then 〈xn〉n∈N is well-distributed for Lebesgue measure on [0, 1[
r
.

(c) For a space with an equidistributed sequence which has no well-distributed sequence, see 3O below.

3G Proposition The usual measure µ of {0, 1}c has a well-distributed sequence.

proof Take 〈Aξ〉ξ<c from 1I, and set xn(ξ) = χAξ(n) for each n ∈ N, ξ ∈ c. If V ⊆ {0, 1}c is an open-
and-closed set of the form {x : x↾K = u} for some finite K ⊆ c and u ∈ {0, 1}K , then ds({i : xi ∈ V })
is defined and equal to µV . Since any open-and-closed set in {0, 1}c is a finite disjoint union of such basic
sets, ds({i : xi ∈ V }) is defined and equal to µV for every open-and-closed set; by 3D(h), 〈xi〉i∈N is a
well-distributed sequence in {0, 1}c.

3H Proposition Let (X,T,Σ, µ) be a topological probability space with a countable network consisting
of measurable sets. Then there is a well-distributed sequence in X.

proof (a) Let E be a countable network consisting of measurable sets; we may suppose that E is a subalgebra
of PX. Then there is a Boolean homomorphism π : E → PN such that ds(πE) is defined and equal to µE
for every E ∈ E . PPP Let 〈En〉n∈N be a sequence running over E and for n ∈ N let En be the subalgebra of
E generated by {Ei : i < n}. I seek to define π as the union of a non-decreasing sequence 〈πn〉n∈N where
each πn : En → PN is a Boolean homomorphism. The inductive hypothesis will be that ds(πnE) = µE
for every E ∈ En. Start with π0X = N, π0∅ = ∅. Given En and πn, let An be the set of atoms of En.
For each A ∈ An, πnA has Banach density; by 1F(d), or otherwise, there is an IA ⊆ πnA with Banach
density equal to µ(En ∩ A). Now set J =

⋃
A∈An

IA. By 312N, there is a unique Boolean homomorphism
πn+1 : En+1 → PN, extending πn, such that πn+1En = J ; it is easy to check that πn+1 has the properties
required to continue the induction. QQQ

(b) Now choose xn ∈ X, for n ∈ N, so that xn ∈ Ei whenever i ≤ n and n ∈ πEi. (This is always possible
because if J = {i : i ≤ n, n ∈ πEi} then n ∈ N ∩

⋂
i∈J πEi = π(X ∩

⋂
i∈J Ei) and X ∩

⋂
i∈J Ei cannot be

empty.) If E ∈ E , then there are i, j ∈ N such that E = Ei and X \ E = Ej , so that

{n : xn ∈ Ei}△πEi ⊆ max(i, j) is finite, and ds({n : xn ∈ E}) = ds(πE) = µE.

By 3D(e), 〈xi〉i∈N is well-distributed with respect to µ and the topology S generated by E . But S is finer
than T, so 3E tells us that it is also well-distributed with respect to µ and T.

3I Proposition (Kuipers & Niederreiter 74, p. 202, Theorem 3.9) Let X be a completely regular
space and µ a Radon probability measure on X. Define T : XN → XN by setting (Tx)(i) = x(i + 1)

for x ∈ XN, i ∈ N. Then if x ∈ XN is a well-distributed sequence and y ∈ {T kx : k ∈ N} in XN, y is
well-distributed.
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proof Let f ∈ Cb(X) and ǫ > 0. Set γ =
∫
fdµ. Then WDLi→∞ f(xi) = γ (3D(g)). Let m0 ∈ N be such

that
1

m+1

∑k+m
i=k f(xi) ∈ [γ − ǫ, γ + ǫ] whenever m ≥ m0 and k ∈ N (3B(b)). Now take any m ≥ m0 and

k ∈ N. Then there is an r ∈ N such that |f(yi) − f(xr+i)| ≤ ǫ whenever k ≤ i ≤ k +m. In this case,

|
1

m+1

k+m∑

i=k

f(yi) − γ| ≤ |
1

m+1

k+m∑

i=k

f(yi) − f(xr+i)| + |
1

m+1

k+m∑

i=k

f(xr+i) − γ|

≤ ǫ+ |
1

m+1

r+k+m∑

i=r+k

f(xi) − γ| ≤ 2ǫ.

This is true for every m ≥ m0 and every k; as ǫ is arbitrary, WDLi→∞ f(yi) = γ; as f is arbitrary, 〈yi〉i∈N

is well-distributed.

3J Lemma Let 〈(Xm,Tm,Σm, µm)〉m≤n be a family of τ -additive topological probability spaces, and λ
the τ -additive product measure on X =

∏
m≤nXm. For each m ∈ N let 〈νmi〉i∈N be a sequence of topological

probability measures on Xm such that µmF ≥ lim supi→∞ νmiF for every closed set F ⊆ Xm. For each
i ∈ N, let λi be the c.l.d. product measure of 〈νmi〉m≤n. Then λV ≥ lim supi→∞ λ∗i V for every closed set
V ⊆ X.

Remark The ‘τ -additive product measure’ here is supposed to be the one described in Fremlin 03, §417.
The only properties we shall need of it in this note are that for any family 〈(Xξ,Tξ,Σξ, µξ)〉ξ∈I of τ -
additive topological probability spaces, there is a canonical τ -additive topological probability measure on
X =

∏
ξ∈I Xξ which extends the ordinary (completed) product probability measure.

proof Induce on n. If n = 0 then λi is just the completion of ν0i and the result is trivial. For the inductive
step to n ≥ 1, we can identify each λi with the c.l.d. product of λ′i and νni, where λ′i is the product of
〈νmi〉m<n.

Now take a closed set V ⊆ X and ǫ > 0. Because λ is τ -additive, there is an open set W ⊆ X \ V ,
expressible as a finite union of sets of the form

∏
m≤nHm where Hm ⊆ Xm is open for every n, such that

λW ≥ 1 − λV − ǫ. For each y ∈ X ′, set f(y) = µmW [{y}], so that λW =
∫
f(y)λ′(dy), where λ′ is the

product of 〈µm〉m<n. Each W [{y}] is open, so f(y) ≤ lim infi→∞ νmiW [{y}]. Since there are only finitely
many sets which appear as W [{y}, there is an i0 ∈ N such that f(y) ≤ νmiW [{y}] + ǫ whenever y ∈ X ′ and

i ≥ i0. Next, there is an i1 ≥ i0 such that
∫
f(y)λ′(dy) ≤

∫
f(y)λ′i(dy) + 2ǫ for every i ≥ i1. PPP Take k ≥

1

ǫ

and for l ≤ k set Ul = {y : f(y) >
l

k
}. Then Ul is a finite union of products of open sets, so is open and

measured by every λ′i. By the inductive hypothesis there is an i1 ≥ i0 such that λ′Ul ≤ λ′iUl + ǫ for every
l ≤ k and i ≥ i1. Now, for i ≥ i1,

∫
f(y)λ′(dy) ≤

1

k

∑k−1
l=0 λ

′Ul ≤ ǫ+
1

k

∑k−1
l=0 λ

′
iUl ≤ 2ǫ+

∫
f(y)λ′i(dy). QQQ

So for all i ≥ max(i0, i1), we shall have

λW =
∫
f(y)λ′(dy) ≤ 2ǫ+

∫
f(y)λ′i(dy) ≤ 3ǫ+

∫
νmiW [{y}]λ′i(dy) = 3ǫ+ λiW .

Turning this round,

λV ≥ 1 − λW + ǫ ≥ 1 − λiW + 4ǫ = λi(X \W ) + 4ǫ ≥ λ∗i V + 4ǫ

for every i ≥ i1. As ǫ is arbitrary, λV ≥ lim supi→∞ λiV , and the induction continues.

3K Lemma Let X be a topological space and µ a measure on X, and suppose that 〈ti〉i∈N is a well-
distributed sequence in X. For k, m ∈ N let νmk be the point-supported measure on X defined by setting

νmk(E) = 2−m#({K : K ⊆ m, tk+#(K) ∈ E}

for every E ⊆ X. Then for every measurable open set G ⊆ X and ǫ > 0 there is an m0 ∈ N such that
νmkG ≥ µG− ǫ whenever m ≥ m0 and k ∈ N.
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proof For m, k ∈ N define xmk ∈ RN by setting xmk(k + i) = 2−m#([m]i) for i ≤ m, xmk(i) = 0 if i < k
or i > k +m. Then xmk ∈ (ℓ1)+, ‖xmk‖1 = 1 and VarN xmk ≤ 2−m+1 supi≤m #([m]i) = αm say (because

xmk(i) ≤ xmk(i+ 1) if i < k +
m

2
, and xmk(i) ≥ xmk(i+ 1) if i ≥ k +

m

2
). Setting I = {i : ti ∈ X \G}, we

see that

lim inf
m→∞

inf
k∈N

νmkG = 1 − lim sup
m→∞

sup
k∈N

∑

i∈I

xmk(i) ≥ 1 − d∗(X \G)

(1C, because lim supm→∞ supk∈N VarN(xmk) ≤ limm→∞ αm = 0)

≥ 1 − µ(X \G) = µG,

as required.

3L Theorem Let 〈(Xξ,Tξ,Σξ, µξ)〉ξ∈I be a family of τ -additive topological probability spaces, each of
which has a well-distributed sequence. If #(I) ≤ c, the τ -additive product measure λ on X =

∏
ξ∈I Xξ has

a well-distributed sequence.

proof (a) For J ⊆ I set ZJ =
∏

ξ∈J Zξ and let λJ be the τ -additive product measure on ZJ . Let 〈Aξ〉ξ∈I be

an almost-disjoint family of infinite subsets of N. For each ξ ∈ I, let 〈tξi〉i∈N be a well-distributed sequence
in Xξ. For K ∈ [N]<ω set nK =

∑
i∈K 2i, as in 1I. Now define 〈xi〉i∈N in X by setting xnK

(ξ) = tξ,#(K∩Aξ)

for ξ ∈ I and K ∈ [N]<ω.

(b) For J ∈ [I]<ω and disjoint L, M ∈ [N]<ω let ν
(J)
LM be the point-supported measure on ZJ defined by

setting

ν
(J)
LMW = 2−#(L)#({K : K ⊆ L, xnK∪M

↾J ∈W})

for every W ⊆ ZJ . Observe that if J , L and M are such that 〈Aξ ∩ L〉ξ∈J is a disjoint cover of L, then

ν
(J)
LM is just the product of the measures ν

({ξ})
Aξ∩L,Aξ∩M for ξ ∈ J , interpreted as measures on Xξ ≡ Z{ξ}. PPP

If z ∈ ZJ , then for any K ⊆ L we have

xnK∪M
↾J = z ⇐⇒ tξ,#(K∩Aξ)+#(M∩Aξ) = z(ξ) for every ξ ∈ J ,

so

ν
(J)
L∪M ({z}) = 2−#(L)#({K : K ⊆ L, xnK∪M

↾J = z})

=
∏

ξ∈J

2−#(Aξ∩L)#({K : K ⊆ Aξ ∩ L, tξ,#(K)+#(M∩Aξ) = z(ξ)})

=
∏

ξ∈J

2−#(Aξ∩L)#({K : K ⊆ Aξ ∩ L, xnAξ∩(L∪M)
(ξ) = z(ξ)})

=
∏

ξ∈J

ν
({ξ})
Aξ∩L,Aξ∩M ({z(ξ)}). QQQ

(c) Now suppose that J ∈ [I]<ω and that W ⊆ ZJ is open. Then for every ǫ > 0 there is an m0 ∈ N
such that whenever L, M ∈ [N]<ω are disjoint, 〈Aξ ∩ L〉ξ∈J is a disjoint cover of L and #(Aξ ∩ L) ≥ m0

for every ξ ∈ J , then ν
(J)
LM (W ) ≥ λJW − ǫ. PPP??? Otherwise, we can find 〈Ln〉n∈N, 〈Mn〉n∈N in [N]<ω such

that, for each n ∈ N, Ln ∩Mn = ∅, 〈Aξ ∩ Ln〉ξ∈J is a disjoint cover of Ln, #(Aξ ∩ Ln) ≥ n for every

ξ ∈ J and ν
(J)
LnMn

(W ) < λJW − ǫ for every n. For ξ ∈ J , n ∈ N write ν̂ξn for the point-supported measure

ν
({ξ})
Aξ∩Ln,Aξ∩Mn

, so that ν
(J)
LnMn

is the product of 〈ν̂ξn〉ξ∈J for each n, by (b). If ξ ∈ J and G ⊆ Xξ is open, then

µξG ≤ lim infn→∞ ν̂ξnG, by 3K, because limn→∞ #(Aξ ∩ Ln) = ∞. By 3J, λJW ≤ lim infn→∞ ν
(J)
LnMn

(W );
but this is impossible. XXXQQQ

(d) Again suppose that J ∈ [I]<ω and that W ⊆ ZJ is open. Then for every ǫ > 0 there is an m0 ∈ N
such that whenever L, M ∈ [N]<ω are disjoint and there is an L′ ⊆ L such that 〈Aξ ∩ L

′〉ξ∈J is a disjoint
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cover of L′ and #(Aξ ∩L
′) ≥ m0 for every ξ ∈ J , then ν

(J)
LM (W ) ≥ λJW − ǫ. PPP Take the same m0 as in (c).

Suppose that L, L′ and M are as stated. Then

ν
(J)
LMW = 2−#(L)#({K : K ⊆ L, xnK∪M

↾J ∈W})

= 2−#(L\L′)
∑

M ′⊆L\L′

2−#(L′)#({K : K ⊆ L′, xnK∪M′∪M
↾J ∈W})

= 2−#(L\L′)
∑

M ′⊆L\L′

ν
(J)
L′,M∪M ′(W )

≥ 2−#(L\L′)
∑

M ′⊆L\L′

λJW − ǫ = λJW − ǫ,

as required. QQQ

(e) Let W ⊆ X be an open set and ǫ > 0. Then there is an m ∈ N such that 2−m#({i : xi ∈ W, 2ml ≤
i < 2m(l+ 1)}) ≥ λW − 2ǫ for every l ∈ N. PPP Because λ is τ -additive, there are a finite J ⊆ I and an open
set W ′ ⊆ ZJ such that λJW

′ ≥ λW − ǫ and W ⊇ {x : x ∈ X, x↾J ∈W ′}. By (d), there is an m0 ∈ N such

that ν
(J)
LM (W ′) ≥ λJW

′ − ǫ whenever L, M ⊆ N are disjoint finite sets and there is an L′ ⊆ L such that
〈Aξ∩J〉ξ∈J is a disjoint cover of L′ and #(Aξ∩L

′) ≥ m0 for every ξ ∈ J . Because 〈Aξ〉ξ∈I is almost disjoint,
there is an m1 ∈ N such that Aξ ∩Aη ⊆ m1 for all distinct ξ, η ∈ J . Because every Aξ is infinite, there is an
m ≥ m1 such that #(Aξ ∩m \m1) ≥ m0 for every ξ ∈ J . Now suppose that l ∈ N. Express 2ml as nM for

M ∈ [N]<ω; then M ∩m = ∅. Set L = m, L′ =
⋃

ξ∈J Aξ ∩m \m1. Then we see that ν
(J)
LM (W ′) ≥ λW − 2ǫ.

But now

λW − 2ǫ ≤ ν
(J)
LM (W ′) = 2−m#({K : K ⊆ m, xnK∪M

↾J ∈W ′})

≤ 2−m#({K : K ⊆ m, xnK∪M
∈W})

= 2−m#({i : 2ml ≤ i < 2m(l + 1), xi ∈W});

as l is arbitrary, we have the result. QQQ

(f) This shows that 〈xi〉i∈N is well-distributed in X, which is what we have been looking for.

3M Example Set Y = N ∪ {∞} with the one-point-compactification topology, so that Y is a compact
metrizable space. Give Y the point-supported Radon measure ν such that ν{n} = 3−n−1 for n ∈ N,
µ{∞} = 1

2 . For n ∈ N define Kn, jn as in (c) of the proof of 2C, and set In = {3n+1l + jn : l ∈ N}, so
that 〈In〉n∈N is disjoint and ds(In) = 3−n for each n. Set yi = n if i ∈ In. (The construction ensures that⋃

n∈N
In = N.) Then ds({i : yi = n}) = ν{n} for each n, so if E is the subalgebra of PY generated by

{{n} : n ∈ N} then ds({i : yi ∈ E}) = νE for every E ∈ E ; as E is a base for the topology of Y , 〈yi〉i∈N is
well-distributed in Y .

Set X = Y × {0, 1}, and let µ be the point-supported Radon measure such that µ{(n, 0)} = 3−n−1 for
each n and µ{(∞, 1)} = 1

2 . Then ν = µf−1, where f(y, 0) = f(y, 1) = y for every y ∈ Y . ??? Suppose,
if possible, that 〈xi〉i∈N is a sequence in X, well-distributed for µ, such that f(xi) = yi for every i. Set
I = {i : xi ∈ V }, where V = Y × {0}. Then ds(I) = µV = 1

2 , while ds(In \ I) = ds({i : xi = (n, 1)}) = 0 for
every n. But there is no such I, by the argument in the proof of 2C. XXX

Remark Thus the claim in Proposition 4 of Losert 78b is false.

3N Proposition Let (X,T) be a regular Hausdorff space, and µ a Radon probability measure on X
with a well-distributed sequence. Then it has a well-distributed sequence lying within the support of µ; in
particular, the support of µ is separable.

proof (a) Let 〈xn〉n∈N be a well-distributed sequence, and Z the support of µ. For each m ∈ N, let Km ⊆ Z
be a compact set of measure greater than 1 − 2−m. For F ⊆ X, set

Am(F ) = {k : k ∈ N, F ∩ {x2mk+i : i < 2m} 6= 0}.

Then d∗s(Am(F )) < 1 for every closed set F ⊆ X \K. PPP
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inf
r≥1

sup
l∈N

1

r
#(Am(F ) ∩ [l, l + r[) ≤ 2m inf

r≥1
sup
l∈N

1

2mr
#({i : 2ml ≤ i < 2m(l + r), xi ∈ F})

= 2md∗s({i : xi ∈ F}) ≤ 2mµF < 1. QQQ

Because {Am(F ) : F ⊆ X \Km is closed} is upwards-directed, there is a non-principal ultrafilter Fm on N
containing no Am(F ) for closed F ⊆ X \Km. Now ymi = limk→Fm

x2mk+i is defined and belongs to Km for
every i < 2m. PPP??? Otherwise, every point of Km belongs to an open set G such that {k : x2mk+i /∈ G} ∈ Fm.
As Km is compact, there is an open G ⊇ K such that {k : x2mk+i /∈ G} ∈ Fm, that is, Am(X \ G) ∈ Fm;
but this is impossible. XXXQQQ

(b) If F ⊆ X is closed and ǫ > 0, there is an r ∈ N such that

#({i : 2rl ≤ i < 2r(l + 1), ymi ∈ F}) ≤ 2r(µF + 2ǫ)

whenever m ≥ r and 0 ≤ l < 2m−r. PPP Let K ⊆ X \ F be a compact set such that µ(X \K) ≤ µF + ǫ.
Because X is regular, there is an open set G ⊇ F such that G does not meet K, so that µG ≤ µF + ǫ. Let
r be such that #({i : l ≤ i < l + 2r, xi ∈ G}) ≤ 2r(µF + 2ǫ) for every l ∈ N. If now m ≥ r and l < 2m−r,
set J = {i : 2rl ≤ i < 2r(l + 1), ymi ∈ F}. For every i ∈ J , the set Bi = {k : x2mk+i ∈ G} belongs to Fm;
so there is a k ∈ N ∩

⋂
i∈J Bi, and for this k we have

#(J) ≤ #({j : 2mk + 2rl ≤ j < 2mk + 2r(l + 1), xj ∈ G}) ≤ 2r(µF + 2ǫ),

as required. QQQ

(c) Let 〈zn〉n∈N be a re-indexing of 〈ymi〉m∈N,i<2m in lexicographic order. Then for any closed set F and
any ǫ > 0 we have r ∈ N such that #({n : 2rl − 1 ≤ n < 2r(l + 1) − 1, zn ∈ F}) ≤ 2r(µF + 2ǫ) for every
l ≥ 1. So d∗s({n : zn ∈ F}) ≤ µF + 2ǫ. As F and ǫ are arbitrary, 〈zn〉n∈N is well-distributed. And of course
every zn belongs to Z.

3O Corollary There is a Radon probability measure on {0, 1}c which has an equidistributed sequence
but no well-distributed sequence.

proof Let (X, ν) be the Stone space of Lebesgue measure on [0, 1]. Then we can identify X, as topological
space, with a subspace of {0, 1}c; let µ be the corresponding Radon probability measure on {0, 1}c defined
by setting µE = ν(X ∩E) whenever the latter is defined. By Fremlin 03, 491Q, µ has an equidistributed
sequence. But X is the support of µ and is not separable, so µ has no well-distributed sequence, by 3N.

Remark As far as I know, the best previous example was that of Losert 79, depending on the continuum
hypothesis.

3P Proposition Let A be a subalgebra of Zs such that d̄s(a) is defined for every a ∈ A. Then there is a
subalgebra Σ of PN such that ds(I) is defined for every I ∈ Σ and (A, d̄s↾A) ∼= (Σ, ds↾Σ); in particular, A

is σ-centered.

proof Set T = {I : I ⊆ N, I• ∈ A}, so that ds(I) is defined for every I ∈ T. Let X be the Stone space of T

and ν the Radon probability measure on X defined by setting νÎ = ds(I) for every I ∈ T, where Î ⊆ X is
the open-and-closed set corresponding to I ∈ T. For n ∈ N, set xn(I) = χI(n) for I ∈ T; then xn ∈ X. Now

〈xn〉n∈N is well-distributed for ν. PPP If I ∈ T, ds({n : xn ∈ Î}) = ds(I); by 3De, 〈xn〉n∈N is well-distributed.
QQQ

By 3N, there is a well-distributed sequence 〈zn〉n∈N in the support Z of ν. Let E be the algebra of
open-and-closed subsets of Z. Then V 7→ V ∩Z is a surjective Boolean homomorphism from the algebra of

open-and-closed subsets of X onto E , so I 7→ Z ∩ Î is a surjective Boolean homomorphism from T onto E .
Its kernel is

{I : Z ∩ Î = ∅} = {I : νÎ = 0} = {I : ds(I) = 0},

so

E ∼= {I• : I ∈ T} = A.
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On the other hand, the map E 7→ {n : zn ∈ E} is a Boolean isomorphism between E and a subalgebra Σ of
PN. Moreover, if I ∈ T, then

d̄s(I
•) = ds(I) = νÎ = ds({n : zn ∈ Z ∩ Î}),

so (Σ, ds↾Σ) ∼= (A, d̄s↾A).
Of course Σ is σ-centered, so A also is.

4. The set of measures with well-distributed sequences

4A The problem For a given topological space X, to understand the set of topological probability
measures on X which have well-distributed sequences.

4B Lemma Suppose that 〈αn〉n∈N is a sequence in [0, 1] such that
∑∞

n=0 αn = 1. Then there is a
partition 〈In〉n∈N of N such that ds(

⋃
n∈L In) =

∑
n∈L αn for every L ⊆ N.

proof (a) Consider first the case in which we have αn = 2−kn for each n, where k0 ≤ k1 ≤ . . . . Choose
〈In〉n∈N inductively by setting in = min(N \

⋃
m<n Im, In = {2kn l + in : l ∈ N} for each n. Note that we

always have

#(Im ∩ 2kn) ≤ 2kn−km = 2knαm

for each m < n, so that in < 2kn . It follows that j − 2kn ∈ Im whenever m < n, j ∈ Im and j ≥ 2kn ;
consequently Im ∩ In = ∅ for m < n. Because in ∈ In,

⋃
n∈N

In = N. Finally, for the moment, ds(In) = αn

for every n.

(b) In general, express each non-zero αn as
∑∞

j=0 βnj where each βnj is of the form 2−k for some k.

Re-index 〈βnj〉αn>0,j∈N as 〈βj〉j∈N where β0 ≥ β1 ≥ . . . . By (a), we have a partition 〈Jj〉j∈N of N such that
ds(Jj) = βj for each j. Next, we have a partition 〈Mn〉n∈N of N such that αn =

∑
j∈Mn

βj for each n. Set

In =
⋃

j∈Mn
Jj for each n; then 〈In〉n∈N is a partition of N.

If L ⊆ N, set L′ = N \ L, M =
⋃

n∈LMn, M ′ =
⋃

n∈L′ Mn. Then
⋃

n∈L In ∩
⋃

j∈M ′ Jj = ∅, so

d∗s(
⋃

n∈L In ≤ ds(N \
⋃

j∈K Jj) = 1 −
∑

j∈K βj

for every finite K ⊆M ′, and

d∗s(
⋃

n∈L In ≤ 1 −
∑

j∈M ′ βj =
∑

j∈M βj =
∑

n∈L αn.

Similarly, d∗s(
⋃

n∈L′ In) ≤
∑

n∈L′ αn. As noted in 1A, this shows that ds(
⋃

n∈L In is defined and equal to∑
n∈L αn, as required.

4C Lemma Let X be a topological space and 〈µn〉n∈N a sequence of topological probability measures
on X, each with a well-distributed sequence 〈xni〉i∈N. If 〈αn〉n∈N is a sequence in [0, 1] with sum 1, and µ
is any topological measure on X such that µG =

∑∞
n=0 αnµnG for every open set G ⊆ X, then µ has a

well-distributed sequence.

proof Let 〈In〉n∈N be a partition of N such that ds(
⋃

n∈L In) =
∑

n∈L αn for every L ⊆ N (4B). For r ∈ N
set yr = xni where y ∈ In and i = #(r ∩ In).

If F ⊆ X is closed and ǫ > 0, take m ∈ N such that
∑∞

n=m+1 αn ≤ ǫ. Then

d∗s({r : yr ∈ F}) ≤
m∑

n=0

d∗s({r : r ∈ In, yr ∈ F}) + d∗s(
⋃

n>m

In)

=
m∑

n=0

αnd
∗
s({i : xni ∈ F}) +

n∑

n=m+1

αn

(1Fb)

≤
m∑

n=0

αnµnF + ǫ ≤ µF + ǫ.
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As F and ǫ are arbitrary, 〈yr〉r∈N is well-distributed for µ.

4D Lemma Let (X,T,Σ, µ) be a compact Radon probability space with a well-distributed sequence.
Then there are a zero-dimensional compact Radon probability space (Z,S,T, ν) with a well-distributed
sequence and a continuous inverse-measure-preserving surjection from Z onto X.

proof Let A be the set of subsets of X with negligible boundary; then A is an algebra of sets (Fremlin 03,
411Yc and 491Ye). Let (Z,S) be its Stone space. Then Z is a zero-dimensional compact Hausdorff space.

Let ν be the Radon probability measure on Z defined by setting νÊ = µE for every E ∈ A, where Ê is the
open-and-closed subset of Z corresponding to E (416Qa).

We have a function f : Z → X defined by saying that f(z) = x iff x ∈ E whenever E ∈ A and z ∈ Ê. PPP

Given z ∈ Z, then E = {E : E ∈ A, z ∈ Ê} has the finite intersection property so V =
⋂

E∈E E is non-empty.
If x0, x1 ∈ X are distinct, let h ∈ C(X) be such that h(x0) < h(x1); then there is an α ∈ ]h(x0), h(x1)[ such
that h−1[{α}] is negligible. Setting F0 = {x : h(x) ≤ α} and F1 = {x : h(x) ≥ α}, their boundaries ∂F0 and

∂F1 are both included in h−1[{α}], so both F0 and F1 belong to A. Now F0 ∪ F1 = X so F̂0 ∪ F̂1 = Z and

z ∈ F̂j for some j. But in this case V ⊆ Fj and cannot contain both x0 and x1. Thus V must be a singleton
and its single member must be f(x). QQQ

Now the graph of f is

(Z ×X) \
⋃

E∈A Ê × (X \ E),

which is closed, so f is continuous (because Z and X are compact Hausdorff spaces).

Next, f is surjective. PPP If x ∈ X, then there must be a z ∈ Z such that z ∈ Ĥ whenever H ∈ A is open
and x ∈ H; now x = f(z). QQQ

f is inverse-measure-preserving. PPP If F ⊆ X is closed, then f−1[F ] =
⋂
{Ĥ : H ∈ A is open, F ⊆ H}, so

νf−1[F ] = inf{µH : F ⊆ H ∈ A, H is open} = µF . Now use Fremlin 03, 412K. QQQ
So if 〈xn〉n∈N is a well-distributed sequence for µ, we can choose a sequence 〈zn〉n∈N in Z such that

f(zn) = xn for every n. PPP If W ⊆ Z is closed and ǫ > 0, then there is an H ∈ A such that W ⊆ Ĥ and

νĤ ≤ νW + ǫ. Now

d∗s({n : zn ∈W}) ≤ d∗s({n : xn ∈ H}) ≤ µH = µH = νĤ ≤ νW + ǫ.

As W and ǫ are arbitrary, 〈zn〉n∈N is well-distributed for ν.

4E Lemma If (X,T,Σ, µ) is a zero-dimensional compact Radon probability space with a well-distributed
sequence, there are a zero-dimensional atomless compact Radon probability space (Y,S,T, ν) with a well-
distributed sequence and a continuous inverse-measure-preserving function f : X → Y .

proof Set Y = X × {0, 1}N; use 3L.

4F Lemma Let 〈An〉n∈N be a sequence of subsets of N such that ds(An) = 0 for every n. Then there is
a strictly increasing function f : N → N such that f−1[An] is finite for each n and d∗s(f

−1[A]) ≤ d∗s(A) for
every A ⊆ N; consequently ds(f

−1[A]) = ds(A) whenever ds(A) is defined.

proof Choose 〈mn〉n∈N in N so that
⋃

j≤nAj ∩ [mn,mn + 2n+ 1[ = ∅ and mn + 2n+ 1 ≤ mn+1 for each n;

this is possible because d∗s(
⋃

j≤nAj) <
1

2n+1
. Set f(i) = mn + i− n2 if n2 ≤ i < (n+ 1)2. Then f : N → N

is strictly increasing and f−1[An] ⊆ n2 is finite for each n.
Let A ⊆ N and ǫ > 0. Set γ = d∗s(A). Then there is an M ∈ N such that #(A ∩ J) ≤ M + (ǫ+ γ)#(J)

for every interval J ⊆ N. Let n be such that ǫn ≥ 2M . If k ≥ n2, then f [ [k, k + n[ ] is of the form J1 ∪ J2

where J1 and J2 are intervals and #(J1 + #(J2) = n. So

#(f−1[A] ∩ [k, k + n[ ] = #(A ∩ J1) + #(A ∩ J2) ≤ 2M + n(ǫ+ γ) ≤ n(2ǫ+ γ).

By 1D, d∗s(f
−1[A]) ≤ 2ǫ+ γ; as ǫ is arbitrary, d∗s(f

−1[A]) ≤ d∗s(A).
Applying this to A and N \A we see that ds(f

−1[A]) = ds(A) whenever the right-hand-side is defined.

Remark In the language of §5, f is inverse-Banach-density-preserving; the proof here can be short-circuited
by applying Proposition 5C.
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4G Proposition Let (X,T,Σ, µ) be a compact Radon probability space with a well-distributed sequence,
and f : X → [0,∞] a lower semi-continuous function such that

∫
fdµ = 1. Then the indefinite-integral

measure defined by f has a well-distributed sequence.

proof (a) Consider first the case in which f =
1

µV
χV where V is open-and-closed. Let 〈xn〉n∈N be well-

distributed for µ, and set I = {n : xn ∈ V }; then ds(I) = µV . Let 〈ni〉i∈N be the increasing enumeration of
I, and set yi = xni

for each i. If F ⊆ X is closed, then

µ(F ∩ V ) ≥ d∗s({n : n ∈ I, xn ∈ F}) = ds(I)d
∗
s({i : yi ∈ F})

by 1Fb; dividing both sides by ds(I) = µV , νF ≥ d∗s({i : yi ∈ F}); as F is arbitrary, 〈yi〉i∈N is well-
distributed for ν.

(b) Now suppose that X is zero-dimensional. In this case there are a sequence 〈Vn〉n∈N of open-and-
closed sets of non-zero measure and a sequence 〈αn〉n∈N in ]0,∞[ such that f =a.e.

∑∞
n=0 αnχVn. PPP Choose

〈fn〉n∈N, 〈gn〉n∈N as follows. f0 = f . Given that fn : X → [0,∞] is integrable and lower semi-continuous,
set Gni = {x : fn(x) > 2−ni} for i ∈ N; then

∫
fndµ ≤ 2−n +

∑∞
i=1 µGni; let mn ≥ 1 be such that

∫
fndµ ≤ 2−n+1 +

∑mn

i=1 µGni; choose open-and-closed sets Vni ⊆ Gni such that µVni ≥ µGni +
1

2nmn

for

each i; set gn =
∑mn

i=1 2−nχVni and fn+1 = fn − gn. Continue.
Observe that

∫
fn+1dµ ≤ 2−n+2 for each n, so that f =a.e.

∑∞
n=0 gn. We can therefore take 〈(αn, Vn)〉n∈N

to be an enumeration of {(2−n, Vni) : n ∈ N, 1 ≤ i ≤ mn}, deleting any terms in which Vni is empty. (If this
leaves us with only finitely many terms, break one of them up by replacing a (2−n, V ) by 〈(2−k−n−1, V )〉k∈N.)
QQQ

Now (a) and 4C tell us that ν has a well-distributed sequence.

(c) Finally, for the general case, let (Z,S,T, λ) be a zero-dimensional compact Radon probability space
with a well-distributed sequence 〈zn〉n∈N and a continuous inverse-measure-preserving function φ : Z → X
(4D). Then fφ is lower semi-continuous and

∫
fφ dλ = 1, so (b) tells us that there is a sequence 〈z′n〉n∈N in

Z such that d∗s({n : z′n ∈W}) ≤
∫

W
fφ dλ for every closed set W ⊆ Z. But in this case

νF =
∫

F
fdµ =

∫
φ−1[F ]

fφ dλ ≥ d∗s({n : z′n ∈ φ−1[F ]} = d∗s({n : φ(z′n) ∈ F})

for every closed set F ⊆ X, and 〈φ(z′n)〉n∈N is well-distributed for ν.

4H Proposition Let (X,T,Σ, µ) be a Radon probability space with a well-distributed sequence, and E
a non-negligible measurable set. Then the normalized subspace measure (µE)−1µE has an equidistributed
sequence.

proof (a) To begin with (down to the end of (d)) let us suppose that E is compact. Set α = 1 − µE and
let 〈xi〉i∈N be a sequence in X which is well-distributed for µ. For n ≥ 1, ǫ > 0 and closed F ⊆ X \ E set

A(n, F, ǫ) = {k : k ∈ N, #({i : i < n, xkn+i ∈ F}) ≥ n(α+ ǫ)}.

Then d∗s(A(n, F, ǫ)) < 1. PPP??? Otherwise, let ν ∈ P be such that νA(n, F, ǫ) = 1. Set

ν′I =
∫ 1

n
#(I ∩ [kn, kn+ n[)ν(dk)

for each I ⊆ N; then ν′ ∈ P . But now

α+ ǫ ≤ ν′({i : xi ∈ F}) ≤ d∗s({i : xi ∈ F}) ≤ µF ≤ α,

which is impossible. XXXQQQ
Because {A(n, F, ǫ) : ǫ > 0, F ⊆ X \ E is closed} is upwards-directed, there is a non-principal ultrafilter

Fn on N not containing A(n, F, ǫ). Let Kn be the set of those i < n such that yni = limk→Fn
xkn+i is

defined and belongs to E.

(b) lim supn→∞
1

n
#(Kn) ≤ µE. PPP For any ǫ > 0, there is an open set G ⊆ X such that E ∩G = ∅ and

µG > α− ǫ. Let n0 ≥ 1 be such that #({i : i < n, xkn+i ∈ G}) ≥ n(α−2ǫ) for every k ∈ N, n ≥ n0. Setting
K ′

n = limk→Fn
{i : i < n, xkn+i ∈ G}, we have #(K ′

n) ≥ n(α− 2ǫ) and K ′
n ∩Kn = ∅; so
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1

n
#(Kn) ≤ 1 − α+ 2ǫ = µE + 2ǫ

for every n ≥ n0. QQQ

(c) Suppose that n ≥ 1, F ⊆ X and β > 0 are such that F is closed and #({i : i < n, xkn+i ∈ F}) ≥
(α+β)n for every k ∈ N. Then #({i : i ∈ Kn, yni ∈ F}) ≥ βn. PPP??? Otherwise, for every i ∈ n\Kn there is

a closed set Fi disjoint from E such that {k : xkn+i ∈ Fi} ∈ Fn. Set ǫ = β−
1

n
#({i : i ∈ Kn, yni ∈ F}) > 0,

F ′ =
⋃

i∈n\Kn
Fi. Then

I = N ∩
⋂

i∈n\Kn
{k : xkn+i ∈ Fi} \A(n, F ′, ǫ)

belongs to Fn. But if k ∈ I, then xkn+i ∈ F ′ for every i ∈ n \Kn, and

#({i : i ∈ Kn, xkn+i ∈ F}) ≥ #({i : i < n, xkn+i ∈ F ∪ F ′})

− #({i : i < n, xkn+i ∈ F ′})

> (α+ β)n− (α+ ǫ)n.

So

#{i : i ∈ Kn, yni ∈ F}) ≥ lim
k→Fn

#({i : i ∈ Kn, xkn+i ∈ F})

> (β − ǫ)n = #({i : i ∈ Kn, yni ∈ F},

which is impossible. XXXQQQ

(d) In particular, taking F = X and β = µE, we have #(Kn) ≥ nµE > 0 for every n ≥ 1. So we have

point-supported measures µn on E defined by setting µnD =
1

#(Kn)
#({i : i ∈ Kn, yni ∈ D}) for every

D ⊆ E. Now lim supn→∞ µnF ≤
µF

µE
for every closed set F ⊆ E. PPP Let ǫ > 0. Then there is a closed set

F0 ⊆ X \F such that µ(intF0) ≥ 1−µF −ǫ. Now there is an n0 such that
1

n
#({i : i < n, xkn+i ∈ intF0}) ≥

µ(intF0) − ǫ whenever n ≥ n0 and k ∈ N; by (b), we can suppose also that
1

n
#(Kn) ≤ µE + ǫ for n ≥ n0.

Take n ≥ n0. Then

1

n
#({i : i < n, xkn+i ∈ F0}) ≥ 1 − µF − 2ǫ

for every k. By (c),

#({i : i ∈ Kn, yni ∈ F0}) ≥ n(1 − µF − α− 2ǫ) = µ(E \ F ) − 2ǫ,

#({i : i ∈ Kn, yni ∈ F}) ≤ #(Kn) − n(µ(E \ F ) − 2ǫ)

≤ n(µE + ǫ− µ(E \ F ) + 2ǫ) = n(µF + 3ǫ),

µnF =
#({i:yni∈F})

#(Kn)
≤

µF+3ǫ

µE
.

As ǫ is arbitrary, we have the result. QQQ
By Fremlin 03, 491D, there is an equidistributed sequence in E.

(e) For the general case, if there is a compact set F ⊆ E with the same measure as E we can apply the
result of (a)-(d) to F . Otherwise, let 〈Fm〉m∈N be a disjoint sequence of compact non-negligible subsets of
E such that E \

⋃
m∈N

Fm is negligible. For each m ∈ N let 〈zmi〉i∈N be a well-distributed sequence for the
normalized subspace measure on Fm. For n ∈ N let µn be the point-supported probability measure on E
defined by setting

µnD =
∑∞

m=0
µFm

(n+1)µE
#({i : i ≤ n, zmi ∈ D})
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for D ⊆ E. If F ⊆ E is relatively closed, then

lim sup
n→∞

µnF ≤
∞∑

m=0

µFm

µE
lim sup

n→∞

1

n+1
#({i : i ≤ n, zmi ∈ F})

≤
∞∑

m=0

µFm

µE

µ(F∩Fm)

µFm

=
µF

µE
.

By Fremlin 03, 491D again,
1

µE
µE has an equidistributed sequence.

4I Theorem (Rindler 76) Let X be a separable compact Hausdorff topological group, and µ the Haar
probability measure on X. Then µ has a well-distributed sequence.

proof Following Rindler 76, I use what is in effect a refinement of the proof of existence of equidistributed
sequences given in Fremlin 03, 491H. We can cut a step out by actually quoting that result. Let 〈ym〉m∈N be
an equidistributed sequence for µ; we can suppose that y0 = e, the identity of X. Define 〈xi〉i∈N inductively
by saying that

x0 = e,

if i = j + kn!, where n ∈ N, 1 ≤ k ≤ n and j < n!, then xi = ykxj .

Then we find that whenever n, k ∈ N and j < n!, xj+kn! = xkn!xj (induce on k simultaneously for all n, j).

Take f ∈ C(X) and ǫ > 0. For a, b ∈ X, set fab(x) = f(axb). Then the function (a, b) 7→ fab : X ×X →
C(X) is continuous, so {fab : a, b ∈ X} is compact for the norm topology on C(X). We have

∫
f =

∫
fab = limm→∞

1

m

∑m−1
i=0 fab(yi)

for every a, b ∈ X, so there is an n ≥ 1 such that

|
1

n

∑n−1
i=0 fab(yi) −

∫
f | ≤ ǫ

for all a, b ∈ X. In this case, for any k ∈ N,

|
1

n!

n!−1∑

i=0

f(xi+kn!) −

∫
f | = |

1

n!

n!−1∑

i=0

f(axi) −

∫
f |

(where a = xkn!)

= |
1

n!

n−1∑

j=0

(n−1)!−1∑

i=0

f(axi+j(n−1)!) −

∫
f |

≤
1

(n−1)!

(n−1)!−1∑

i=0

|
1

n

n−1∑

j=0

f(axi+j(n−1)!) −

∫
f |

=
1

(n−1)!

(n−1)!−1∑

i=0

|
1

n

n−1∑

j=0

f(ayjxi) −

∫
f |

≤
1

(n−1)!

(n−1)!−1∑

i=0

ǫ = ǫ.

Now suppose that m ≥
2

ǫ
‖f‖∞n! and l ∈ N. Then
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∣∣
l+m∑

i=l

(f(xi) −

∫
f)

∣∣ ≤
∣∣
k0n!−1∑

i=l

(f(xi) −

∫
f)

∣∣

+

k1−1∑

k=k0

∣∣
(k+1)n!−1∑

i=kn!

(f(xi) −

∫
f)

∣∣ +
∣∣

l+m∑

i=k1n!

(f(xi) −

∫
f)

∣∣

(where (k0 − 1)n! < l ≤ k0n! and k1n! ≤ l +m+ 1 < (k1 + 1)n!)

≤ 2n!‖f‖∞ + (k1 − k0)n!ǫ+ 2n!‖f‖∞

≤ mǫ+ ǫ(m+ 1) +mǫ ≤ 3(m+ 1)ǫ,

and

1

m+1
|
∑l+m

i=l f(xi) −
∫
f | ≤ 3ǫ.

As ǫ is arbitrary,
∫
f = WDLi→∞ f(xi), by 3A(c-β). By 3Df, 〈xi〉i∈N is well-distributed.

5 Inverse-Banach-density-preserving functions

5A Definition I will say that f : N → N is inverse-Banach-density-preserving if ds(f
−1[I]) is

defined and equal to ds(I) whenever ds(I) is defined.

5B Theorem Let f : N → N be a function. For an additive functional ν : PN → R and I ⊆ N, write
(νf−1)(I) = ν(f−1[I]). Then the following are equiveridical:

(i) f is inverse-Banach-density-preserving;
(ii) d∗s(f

−1[I]) ≤ d∗s(I) for every I ⊆ N;
(iii) d∗s(f

−1[I]) ≤ ds(I) whenever ds(I) is defined;
(iv) νf−1 ∈ P for every ν ∈ P .

If f is injective, we can add

(v) limn→∞ d∗s(An) = 0,

where An = {i : i ∈ N, f(i) + 1 6= f(j) whenever |j − i| ≤ n} for n ∈ N.

proof (a)(i)⇒(iv) Assume (i). Let ν ∈ P , and take I ⊆ N such that ds(I) is defined. Then

(νf−1)(I) = ν(f−1[I]) ≤ d∗s(f
−1[I]) = ds(I).

As we also have (νf−1)(N) = 1 and (νf−1)(N \ I) ≤ ds(N \ I), (νf−1)(I) = ds(I). As I is arbitrary,
νf−1 ∈ P , by 1H.

(b)(iv)⇒(ii) If (iv) is true and I ⊆ N, then

d∗s(f
−1[I]) = supν∈P ν(f

−1[I]) = supν∈P (νf−1)(I) ≤ supν∈P νI = d∗s(I).

(c)(ii)⇒(iii) is trivial.

(d)(iii)⇒(i) Assume (iii). If ds(I) is defined, then d∗s(f
−1[I]) ≤ ds(I) and

d∗s(N \ f−1[I]) = d∗s(N \ I) ≤ ds(N \ I) = 1 − ds(I),

so ds(f
−1[I]) is defined and equal to ds(I).

(e)(v)⇒(ii) Suppose that f is injective and that (v) is true. SetB = {i : f(i)+1 ∈ f [N]}, and for i ∈ B set
g(i) = f−1(f(i)+1). Take I ⊆ N and ǫ > 0. Then there is an m ≥ 1 such that 1

m
#(I∩ [l, l +m[) ≤ d∗s(I)+ǫ

for every l ∈ N. Let n ≥ 1 be such that d∗s(An) <
ǫ

m
. Set

Ck = {i : i ∈ N, gj(i) is defined and |gj(i) − i| ≤ jn for 1 ≤ j ≤ k}

for k ∈ N. Then d∗s(N\Ck) ≤
(k+1)ǫ

m
for each k. PPP Let r ∈ N be such that 2mn ≤ ǫr and #(An∩ [l, l + r[) ≤

rnǫ

m
for every l. Take any l ∈ N. Then
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#([l, l + r[ \ C1) ≤ 2n+ #([l, l + r[ ∩An) ≤ 2n+
rǫ

m
.

Next, for any k ≥ 1,

#([l, l + r[ ∩ Ck \ Ck+1) ≤ #([l, l + r[ ∩ C1 \ g
−1[Ck])

≤ 2n+ #(g−1[ [l, l + r[ \ Ck])

(because if l + n ≤ i < l + r − n and i ∈ C1, then g(i) ∈ [l, l + r[)

≤ 2n+ #( [l, l + r[ \ Ck)

because g is injective. Inducing on k, we see that

#([l, l + r[ \ Ck) ≤ 2kn+
rǫ

m
≤

(k+1)rǫ

m

for every k. And this is true for every l, so d∗s(N \ Ck) ≤
(k+1)ǫ

m
for every k. QQQ

Set C = Cm−1, so that |gj(i) − i| ≤ jn whenever i ∈ C and j < m; that is, whenever i ∈ C and j < m
there is an i′ such that |i − i′| ≤ jn and f(i′) = f(i) + j. Then d∗s(N \ C) ≤ ǫ. Let s be so large that
2mn ≤ ǫs and #(C ∩ [l, l + s[) ≥ (1 − 2ǫ)s for every l.

Take any l ∈ N. Define J0, J1, . . . as follows. Given Jj for j < k, set

lk = min(f [ [l +mn, l + s−mn[ ∩ C] \
⋃

j<k Jj)

if this set is not empty, and Jk = [lk, lk +m[. Stop when f [ [l +mn, l + s−mn[ ∩ C] ⊆
⋃

j≤k Jj . Note that

the Jj are disjoint and that Jj ⊆ f [ [l, l + s[ ] for every j; while (k + 1)m ≥ #([l +mn, l + s−mn[ ∩ C) ≥
s− 2mn− 2ǫs. Now consider

#([l, l + s[ ∩ f−1[I]) = #(f [ [l, l + s[ ] ∩ I) ≤
k∑

j=0

#(Jj ∩ I) + s− (k + 1)m

≤ (k + 1)m(d∗s(I) + ǫ) + 2mn+ 2ǫs

≤ s(d∗s(I) + ǫ) + 2mn+ 2ǫs ≤ s(d∗s(I) + 4ǫ).

As this is true for every l, d∗s(f
−1[I]) ≤ d∗s(I) + 4ǫ. As this is true for every I ⊆ N and ǫ > 0, (ii) is proved.

(f)¬(v)⇒ ¬(ii) Again taking f to be injective, suppose that (v) is not true; set

δ = limm→∞ d∗s(Am) = infm∈N d
∗
s(Am) > 0.

Then we can find a sequence 〈lm〉m∈N in N such that

#(Am ∩ [lm, lm +m[) ≥
δm

2
,

lm+1 > lm +m, f(j) > f(i) + 1 whenever i < lm +m, j ≥ lm+1 − 1

for every m ∈ N. Set Km = [lm, lm +m[ and Lm = {i : i ∈ Km, f(i) + 1 /∈ f [Km]} for each m; then

#(Lm) ≥ #(Am ∩Km) ≥
δm

2
; also f(i) + 1 /∈ f [Km′ ] whenever m, m′ are different and i ∈ Km.

Define I ⊆ N as follows. For each m ∈ N, let Jm consist of the first, third, fifth. . . members of f [Km\Lm];
now take I =

⋃
m∈N

Jm ∪ f [Lm]. Then d∗s(I) ≤ 1
2 . PPP For each i ∈ I, set i′ = i + 1 if i ∈ f [Lm] for some

m, and otherwise let i′ be the next number above i such that neither i′ nor i′ − 1 belongs to f [Lm]. Then
i′ /∈ I for every i ∈ I, and i 7→ i′ is injective. Also, for any interval J ⊆ N, there can be at most two points
i ∈ I ∩ J such that i′ /∈ J . (Note that if Km \ Lm has an odd number of members, then the top member i
of f [Km \ Lm] is put into I; but now i′ ≤ lm+1 − 1 is still safely away from f [Km+1].) QQQ But if we look at
f−1[I] ∩Km, we see that this includes Lm and also at least ⌈ 1

2#(Km \ Lm)⌉ members of Km \ Lm; so

d∗s(f
−1[I]) ≥ lim sup

m→∞

1

m
#(f−1[I] ∩Km) ≥ lim sup

m→∞

1

m
(#(Lm) +

1

2
#(Km \ Lm) − 1)

= lim sup
m→∞

1

2
+

1

2m
#(Lm) ≥

1

2
+

δ

4
>

1

2
.
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So (ii) is false.

5C Proposition Suppose that f : N → N is such that

(*) there is an r ≥ 1 such that for every m ≥ 1 there is an l0 ∈ N such that for every l ≥ l0
there is a partition of [l, l +m[ into at most r sets J such that f↾J is injective and f [J ] is an
interval.

Then f is inverse-Banach-density-preserving.

proof Take I ⊆ N and γ > d∗s(I). Then there is an n0 ∈ N such that #(I ∩ [l, l + n[) ≤ γn whenever n ≥ n0

and l ∈ N; consequently #(I ∩K) ≤ n0 + γ#(K) for every interval K ⊆ N. Now take any m ≥ 1. Then
lim supl→∞ #(f−1[I] ∩ [l, l +m[) ≤ rn0 + γm. PPP Let l0 be as in (*). If l ≥ l0, let J be a partition of
[l, l +m[ into at most r sets such that f↾J is injective and f [J ] is an interval for each J ∈ J . Now

#(f−1[I] ∩ [l, l +m[) =
∑

J∈J

#(f−1[I] ∩ J)

(because J is a partition of [l, l +m[)

=
∑

J∈J

#(I ∩ f [J ])

(because f↾J is injective for each J)

≤
∑

J∈J

n0 + γ#(f [J ])

(because f [J ] is an interval for each J)

≤ rn0 +
∑

J∈J

γ#(f [J ])

(because #(J ) ≤ r)

= rn0 + γ
∑

J∈J

#(J) = rn0 + γm.

And this is true for every l ≥ l0. QQQ
Letting m→ ∞, we get d∗s(f

−1[I]) ≤ γ. As I and γ are arbitrary, f is inverse-Banach-density-preserving,
by 5B(ii).

5D Examples (a) See 4F.

(b) Define f : N → N by setting

f(i) = i− n2 whenever n ∈ N and n2 ≤ i < (n+ 1)2.

Then f is inverse-Banach-density-preserving. PPP In 5C, we can take r = 2. QQQ

(c) Define f : N → N by setting

f(i) = (n+ 1)! − i− 1 + n! whenever n ∈ N and n! ≤ i < (n+ 1)!.

Then f is an involution, and is inverse-Banach-density-preserving. PPP Once again, we can take r = 2 in 5C.
QQQ

But note that there is a set I such that d(I) is defined but d(f−1(I)) is not. PPP Set

I = {2i : i ∈ N} ∪
⋃

n∈N
[(n+ 1)! − n!, (n+ 1)![.

Then d(I) = 1
2 = d∗(f

−1[I]) but d∗(f−1[I]) = 3
4 . QQQ

(d) Set K =
⋃

n∈N

[
(2n)2, (2n+ 1)2

[
, L =

⋃
n∈N

[
(2n+ 1)2, (2n+ 1)2

[
. Let 〈kn〉n∈N, 〈ln〉n∈N be the

increasing enumerations of K, L respectively. Define f : N → N by setting f(2i) = ki, f(2i + 1) = li
for i ∈ N, so that f is a bijection. If m ≥ 1 and l ≥ m2 then f [ [l, l +m[ ] is made up of at most four
intervals, so 5C tells us that ν is inverse-Banach-density-preserving. But if E is the set of even numbers
then d∗sf [E] = 1 > 1

2 = d∗sE, so f−1 is not inverse-Banach-density-preserving.
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6 Amenable groups Some of the ideas of §3, in particular, can be expressed in terms of general groups.

6A Definition Let G be any group. Let QG ⊆ ℓ1(G) be the set of functions z : G → [0, 1] such that
{a : z(a) 6= 0} is finite and

∑
a∈G z(a) = 1, that is, the convex hull of {χ{a} : a ∈ G}. For any linear space

W , z ∈ QG and f ∈ WG, set (z ∗ f)(a) =
∑

b∈G,z(b) 6=0 z(b)f(b−1a) for a ∈ G. Observe that if b ∈ G then

(χ{b} ∗ f)(a) = f(b−1a) for every a, that is, χ{b} ∗ f = b•lf in the sense of Fremlin 03, 441A. We can use
the same formula to define z1 ∗ z2 for z1, z2 ∈ QG, and now χ{a} ∗ χ{b} = χ{ab} for a, b ∈ G; hence, or
otherwise, (z1 ∗ z2) ∗ f = z1 ∗ (z2 ∗ f) for all z1, z2 ∈ QG and f ∈WG. (QG, ∗) is a semigroup with identity
χ{e}, where e is the identity of G, and we can think of ∗ as a semigroup action of QG on WG (Fremlin

03, 449Ya).

6B Lemma Let G be a group and W a locally convex Hausdorff linear topological space.
(a) For every f ∈WG, there is at most one w ∈W such that

(*) for every neighbourhood V of w in W and every z ∈ QG there is a z′ ∈ QG such that
(z′ ∗ z ∗ f)[G] ⊆ V .

We may therefore define a function WDL by saying that, for f ∈ WG, WDL(f) is defined and equal to w
iff w satisfies the condition (*).

(b)(i) The domain D of WDL is a linear subspace of WG, and WDL : D →W is a linear operator.
(ii) If f ∈ D and z ∈ QG, then z ∗ f ∈ D and WDL(z ∗ f) = WDL(f).
(iii) In particular, WDL(a•lf) is defined and equal to WDL(f) whenever f ∈ D and a ∈ G.

(iv) WDL(f) belongs to the closed convex hull Γ(f [G]) of f [G] for every f ∈ D.
(v) If f : G→W is a constant function, then f ∈ D and WDL(f) is the constant value of f .

(c) Suppose that W ′ is another locally convex Hausdorff linear topological space and T : W → W ′ is a
continuous linear operator. If f ∈ D, then WDL(Tf) is defined and equal to T (WDL(f)).

(d) Suppose that G is abelian.
(i) If w ∈ W and f ∈ WG are such that for every neighbourhood V of w there is a z′ ∈ QG such that

(z′ ∗ f)[G] ⊆ V , WDL(f) is defined and equal to w.

(ii) For f ∈WG, define f̃ ∈WG by setting f̃(a) = f(a−1) for every a ∈ G. Then WDL(f) = WDL(f̃)
if either is defined.

proof (a) Suppose that w, w′ satisfy the condition and that V , V ′ are convex neighbourhoods of w, w′

respectively. Then there is a z ∈ QG such that (z ∗ f)[G] ⊆ V . Next, there is a z′ ∈ QG such that
(z′ ∗ z ∗ f)[G] ⊆ V ′. But (z′ ∗ z ∗ f)(a) ∈ Γ((z ∗ f)[G]) ⊆ V for every a ∈ G, so V meets V ′. As V and V ′

are arbitrary, w = w′.

(b)(i) Suppose that f , g ∈ D, with WDL(f) = w1 and WDL(g) = w2, and z ∈ QG. Let V be a convex
neighbourhood of 0 in W . Then there are a z1 ∈ QG such that (z1 ∗ z ∗ f)[G] ⊆ w1 + V and a z2 ∈ QG such
that (z2 ∗z1 ∗z ∗g)[G] ⊆ w2 +V for every a ∈ G. In this case, (z2 ∗z1 ∗z ∗f)(a) ∈ Γ((z1 ∗z ∗f)[G]) ⊆ w1 +V
for every a ∈ G, so (z2 ∗ z1 ∗ z ∗ (f + g))[G] ⊆ w1 + V + w2 + V . As V and z are arbitrary, f + g ∈ D and
WDL(f + g) = w1 + w2.

Thus D is closed under addition and WDL is additive. The check that αf ∈ D and WDL(αf) =
αWDL(f) is easy.

(ii) Immediate from the definition, just because ∗ is associative in the right way.

(iii) Special case of (ii).

(iv)-(v) Also immediate from the definition.

(c) The point is that T (z ∗ f) = z ∗ Tf : G→W ′ for every z ∈ QG, because

(T (z ∗ f))(a) = T ((z ∗ f)(a)) = T (
∑

z(b) 6=0

z(b)f(b−1a)) =
∑

z(b) 6=0

z(b)T (f(b−1a))

=
∑

z(b) 6=0

z(b)(Tf)(b−1a) = (z ∗ Tf)(a)

for every a ∈ G. Now take a neighbourhood V of T (WDL(f)), and z ∈ QG. Then T−1[V ] is a neighbourhood
of WDL(f), so there is a z′ ∈ QG such that (z′ ∗ z ∗ f)[G] ⊆ T−1[V ], that is,
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V ⊇ T [(z′ ∗ z ∗ f)[G]] = (T (z′ ∗ z ∗ f))[G] = ((z′ ∗ z ∗ (Tf))[G].

As V and z are arbitrary, T (WDL(f)) = WDL(Tf).

(d)(i) If z ∈ QG and V is a convex neighbourhood of w, take z′ ∈ QG such that (z′ ∗f)[G] ⊆ V . Because
G is abelian, z′ ∗ z = z ∗ z′, so

(z′ ∗ z ∗ f)[G] = (z ∗ (z′ ∗ f))[G] ∈ Γ((z′ ∗ f)[G]) ⊆ Γ(V ) = V .

As V and z are arbitrary, w = WDL(f).

(ii) Because G is abelian, (z ∗ f)∼ = z̃ ∗ f̃ for all z ∈ QG and f ∈WG. So (i) gives the result.

6C Definition In the context of 6B, I will call WDL(f) the well-distributed limit of f . I will write
wWDL for the well-distributed limit associated with the weak topology of W ; of course wWDL extends
WDL.

6D Homomorphic images: Proposition Let G1, G2 be groups and φ : G1 → G2 a surjective
homomorphism. If W is a locally convex Hausdorff linear topological space and f : G2 → W is a function,
then WDL(fφ) = WDL(f) if either is defined.

In particular, if G is a group and φ : G → G is an automorphism, then WDL(fφ) = WDL(f) whenever
f ∈WG and WDL(f) is defined.

proof (a) For z ∈ QG1
, c ∈ G2 set ẑ(c) =

∑
a∈φ−1[{c}] z(a). Then ẑ ∈ QG2

. If z1, z2 ∈ QG1
, then

ẑ1 ∗ z2 = ẑ1 ∗ ẑ2. PPP If c ∈ G2,

(ẑ1 ∗ ẑ2)(c) =
∑

d1d2=c

ẑ1(d1)ẑ2(d2) =
∑

d1d2=c

∑

φ(a1)=c1

∑

φa2=c2

z1(a1)z2(a2)

=
∑

φb=c

∑

a1a2=b

z1(a1)z2(a2) =
∑

φb=c

(z1 ∗ z2)(b) = ẑ1 ∗ z2(c). QQQ

Similarly, for any f : G2 →W and z ∈ QG1
, z ∗ fφ = (ẑ ∗ f)φ. PPP If a ∈ G1,

(ẑ ∗ f)φ(a) =
∑

d∈G2

ẑ(d)f(d−1φa) =
∑

d∈G2

∑

φb=d

z(b)f(d−1φa)

=
∑

d∈G2

∑

φb=d

z(b)f((φb)−1φa) =
∑

d∈G2

∑

φb=d

z(b)f(φ(b−1a))

=
∑

b∈G1

z(b)f(φ(b−1a)) = (z ∗ fφ)(a). QQQ

(b)(i) If w = WDL(fφ) is defined, y ∈ QG2
and V is a neighbourhood of w, let z ∈ QG1

be such that
ẑ = y; such exists because φ is surjective. Then there is a z′ ∈ QG1

such that (z′ ∗ z ∗ fφ)[G1] ⊆ V . Now
(a) tells us that (ẑ′ ∗ ẑ ∗ f)φ = z′ ∗ z ∗ fφ, so

(ẑ′ ∗ y ∗ f)[G2] = (ẑ′ ∗ ẑ ∗ f)[φ[G1]] = ((ẑ′ ∗ ẑ ∗ f)φ)[G1] = (z′ ∗ z ∗ fφ)[G1] ⊆ V .

As y and V are arbitrary, WDL(f) = w.

(ii) If w = WDL(f) is defined, z ∈ QG1
and V is a neighbourhood of w, let y ∈ QG2

be such that
(y ∗ ẑ ∗ f)[G2] ⊆ V . Let z′ ∈ QG1

be such that ẑ′ = y; then

(z′ ∗ z ∗ fφ)[G1] = ((y ∗ ẑ ∗ f)φ)[G1] = (y ∗ ẑ ∗ f)[G2] ⊆ V .

As z and V are arbitrary, WDL(fφ) = w.

6E Examples (a) If we set f(i) = (−1)ii for i ∈ Z, then WDL(f) is defined and equal to 0. PPP Setting
z(0) = 1

2 , z(−1) = z(1) = 1
4 and z(i) = 0 for other i ∈ Z, z ∗ f = 0; by 6B(d-i), WDL(f) = 0. QQQ Thus an

unbounded sequence can have a well-distributed limit in the sense of 6A.

(b) Let G be the free group on two generators a, b. For x ∈ G, let nx ∈ Z be such that x = anxy where
y is either the identity e or has reduced expression beginning with a power of b. Observe that nax = nx + 1
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for every x ∈ G. Set f(x) = (−1)nx . If we set z0(e) = z0(a) = 1
2 and z0(x) = 0 for other x ∈ G, then

z0 ∗ f = 0, and WDL(z0 ∗ f) = 0. On the other hand, if we set z1(e) = z1(b) = z1(b
−1) = 1

3 and z1(x) = 0

for other x ∈ G, then (z1 ∗ f)(x) ≥ 1
3 for every x ∈ G. PPP If x = any where y is either the identity e or

has reduced expression beginning with a power of b, and n 6= 0, then bx = bany and b−1x = b−1any have
reduced expressions beginning with powers of b, so

(z1 ∗ f)(x) =
2

3
+

1

3
(−1)n ≥

1

3
.

If n = 0, express y as bmy′ where y′ is either the identity or has reduced expression beginning with a power
of a. If m = 0 then x = y = y′ = e and (z1 ∗ f)(x) = 1. If m = ±1, then (z1 ∗ f)(x) = 2

3 + 1
3f(y′) ≥ 1

3 ; if
|m| ≥ 2, then again (z1 ∗ f)(x) = 1. QQQ But this means that Γ((z1 ∗ f)[G]) and Γ((z0 ∗ f)[G]) have disjoint
closures; by 6B(b-iv), WDL(f) is undefined.

6F Lemma Let G be a group and W a Banach space. Write ℓ∞(G;W ) for the set of bounded functions
f : G→W with the norm ‖f‖∞ = supa∈G ‖f(a)‖. Set

D = {f : f ∈ ℓ∞(G;W ), WDL(f) is defined in W},

Dw = {f : f ∈ ℓ∞(G;W ), wWDL(f) is defined in W}.

(i) wWDL : Dw →W has norm at most 1.
(ii) D and Dw are ‖ ‖∞-closed linear subspaces of ℓ∞(G;W ).

proof Elementary.

6G More definitions (a) I think I had better recall a definition from Fremlin 03. A topological group
G is amenable if whenever X is a compact Hausdorff space and • is a continuous action of G on X then
there is a G-invariant Radon probability measure on X. A locally compact Hausdorff group G, with a left
Haar measure µ, is amenable in this sense iff for every finite I ⊆ G and ǫ > 0 there is a non-negligible
compact set K ⊆ G such that µ(K△aK) ≤ ǫµK for every a ∈ I (Fremlin 03, 449I).

(b) Now suppose that G is a topological group and that W is a locally convex linear topological space.
Let UW be the set of functions f : G → W which are uniformly continuous for the right uniformity of G
(Fremlin 03, 4A5H) and such that f [G] is relatively weakly compact in W . Let PW be the family of linear
operators p : UW →W such that

p(f) belongs to the closed convex hull Γ(f [G]) of f [G],

p(a•lf) = p(f)

whenever a ∈ G and f ∈ UW .

6H Proposition Let G be an amenable topological group and W a Banach space.
(a) UW is a closed linear subspace of ℓ∞(G;W ).
(b) •l is a continuous action of G on UW .
(c) PW is non-empty.
(d) p(z ∗ f) = p(f) whenever f ∈ UW , p ∈ PW and z ∈ QG.

proof (a) is elementary if you have seen weak compactness in Banach spaces before.

(b) For any a ∈ G, the function b 7→ a−1b : G → G is uniformly continuous for the right uniformity. PPP
(a−1b)(a−1c)−1 = a−1(bc−1)a ≏ e whenever bc−1 ≏ e. QQQ So a•lf ∈ UW whenever f ∈ UW . As usual, it
follows that •l is an action of G on UW .

Suppose that a0 ∈ G, f0 ∈ UW and ǫ > 0. Then there is a neighbourhood H of the identity in G such
that ‖f0(a)− f0(b)‖ ≤ ǫ whenever a, b ∈ G and ab−1 ∈ H. Suppose that a ∈ a0H

−1 and that ‖f − f0‖ ≤ ǫ.
Then, for any b ∈ G,

‖(a•lf)(b) − (a0•lf0)(b)‖ = ‖f(a−1b) − f0(a
−1
0 b)‖

≤ ǫ+ ‖f0(a
−1b) − f0(a

−1
0 b)‖ ≤ 2ǫ
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because (a−1b)(a−1
0 b)−1 = a−1a0 ∈ H. As ǫ, a0 and f0 are arbitrary, •l is continuous.

(c) Because G is amenable, there is a positive linear functional p0 : UR → R such that p0(χG) = 1
and p0(a•lf) = p(f) whenever a ∈ G and f ∈ UR (Fremlin 03, 449D/449E). Because p0 is positive and
p0(χG) = 1, p0 has norm at most 1. For f ∈ UW and h ∈ W ∗, hf ∈ UR; set φf (h) = p0(hf). Then
φf : W ∗ → R is linear, and φf (h) ≤ supw∈f [G] h(w). Because f [G] is relatively weakly compact and W is a

Banach space, Γ(f [G]) is weakly compact, so there is a (unique) p(f) ∈ Γ(f [G]) such that φf (h) = h(p(f))
for every h ∈W ∗.

Clearly p : UW →W is linear. It has norm at most 1 because

|h(p(f))| = |φf (h)| ≤ supw∈f [G] |h(w)| ≤ supa∈G ‖h‖‖f(a)‖ = ‖h‖‖f‖∞

whenever h ∈W ∗ and f ∈ UW . If f ∈ UW , a ∈ G and h ∈W ∗, then

h(p(a•lf)) = p0(h(a•lf)) = p0(a•l(hf)) = p0(hf) = h(p(f)).

Thus we have an appropriate operator p.

(d) If I = {a : z(a) 6= 0}, z ∗ f =
∑

a∈I z(a)a•lf .

6I Følner filters Let G be an amenable locally compact Hausdorff group. Let K be the family of
compact subsets of G which are not Haar negligible, and for a ∈ G and ǫ > 0 set

Kaǫ = {K : K ∈ K, µ(K△aK) ≤ ǫµK for every left Haar measure µ on G}

= {K : K ∈ K, µ(K△aK) ≤ ǫµK for some left Haar measure µ on G}.

Because G is amenable, {Kaǫ : a ∈ G, ǫ > 0} generates a filter on K (Fremlin 03, 449I(ix)); I will call this
the left Følner filter of G.

Similarly, the right Følner filter of G is generated by sets of the form

K̃aǫ = {K : K ∈ K, µ(K△Ka) ≤ ǫµK for every right Haar measure µ on G}.

The map a 7→ a−1 : G → G exchanges the two filters. If G is abelian, the left and right Følner filters are
the same, and I will call them just the Følner filter.

6J Lemma Let G be an amenable locally compact Hausdorff group, K the family of its non-Haar-
negligible compact subsets, and Fø its left Følner filter. Let µ be a Haar measure on G, and F an ultrafilter
on K including Fø. Let W be a Banach space.

(a) For f ∈ UW the weak limit

p(f) = w-limK→F
1

µK
B
∫

K
fdµ

is defined, where B
∫

K
fdµ is the Bochner integral of f↾K with respect to the subspace measure on K.

(b) p ∈ PW .

proof (a) Because W is a Banach space and f [G] is relatively weakly compact, the closed convex hull

Γ(f [G]) is weakly compact. As
1

µK
B
∫

K
fdµ ∈ Γ(f [G]) for every K ∈ K, and F is an ultrafilter, the limit

p(f) is defined and belongs to Γ(f [G]).

(b) Of course p is a linear operator, so we have only to check its translation-invariance. If f ∈ UW , c ∈ G,
ǫ > 0 and K ∈ Kc−1,ǫ, then

1

µK
B
∫

K
c•lf dµ =

1

µK
B
∫

K
f(c−1a)µ(da) =

1

µK
B
∫

c−1K
f(a)µ(da),

so

‖
1

µK
B
∫

K
c•lf dµ−

1

µK
B
∫

K
f dµ‖ ≤

1

µK
‖f‖∞µ(K△c−1K) ≤ ǫ‖f‖∞.

As Kc−1,ǫ ∈ F , ‖p(c•lf) − p(f)‖ ≤ ǫ‖f‖∞; as c, f and ǫ are arbitrary, p ∈ PW .
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6K Theorem Let G be a unimodular amenable locally compact Hausdorff group, K the family of its
non-Haar-negligible compact subsets, and Fø its left Følner filter. For Banach spaces W , define WDL, UW

and PW as in 6B and 6G. Let µ be a Haar measure on G.
(a) If f ∈ UR,

supp∈PR
p(f) = infz∈QG

supa∈G(z ∗ f)(a) = lim supK→Fø
1

µK

∫
K
fdµ.

(b) For f ∈ UW and K ∈ K, write B
∫

K
fdµ for the Bochner integral of f↾K with respect to the subspace

measure µK on K. If f ∈ UW and w∗ ∈W , the following are equiveridical:
(i) wWDL(f) is defined and equal to w∗;

(ii) w-limK→Fø
1

µK
B
∫

K
fdµ is defined and equal to w∗;

(iii) p(f) = w∗ for every p ∈ PW .
(c) If f : G→W is bounded and uniformly continuous for the right uniformity of G, then

WDL(f) = limK→Fø
1

µK
B
∫

K
fdµ

in the sense that if one is defined so is the other, and they are then equal.

proof (a) It is enough to consider the case 0 ≤ f ≤ χG. Set

γ1 = supp∈PR
p(f),

γ2 = infz∈QG
supa∈G(z ∗ f)(a),

γ3 = lim supK→Fø
1

µK

∫
K
fdµ.

(i) γ1 ≤ γ2. PPP If p ∈ PR and z ∈ QG, then p ∈ U∗
R

has norm at most 1 and p(χG) = 1, so p is

a positive linear functional on the M -space UR. By 6Hd, p(z ∗ f) = p(f). Since p(z ∗ f) ∈ Γ((z ∗ f)[G]),
p(f) = p(z ∗ f) ≤ supa∈G(z ∗ f)(a). As p and z are arbitrary, γ1 ≤ γ2. QQQ

(ii) γ2 ≤ γ3. PPP Take any ǫ > 0 and L ∈ Fø. Then there are a finite I ⊆ G and a δ > 0 such that
L ⊇ L′ =

⋂
a∈I Kaδ, where

Kaδ = {K : K ∈ K, µ(K△aK) ≤ δµK}.

Take K ∈ L′. Observe that for any c ∈ G,

µ(Kc△aKc) = µ(K△aK) ≤ δµK = δµ(Kc)

for every a ∈ I, so Kc ∈ L′. (This is where I need to suppose that G is unimodular.)
There is a neighbourhood H of the identity e of G such that |f(a) − f(b)| ≤ ǫ whenever ab−1 ∈ H. Let

b0, . . . , bn ∈ G be such that K ⊆
⋃

i≤nHbi, and let E0, . . . , En be a partition of K into Borel sets such that

Ei ⊆ Hbi for each i ≤ n; then |f(a) − f(bi)| ≤ ǫ for every a ∈ Ei. Set αi =
µEi

µK
for each i ≤ n. For any

c ∈ G, 〈Eic〉i≤n is a partition of Kc, and if a ∈ Eic then a(bic)
−1 = (ac−1)b−1

i ∈ H, so |f(a) − f(bic)| ≤ ǫ.
Accordingly

∣∣ 1

µ(Kc)

∫

Kc

fdµ−
n∑

i=0

αif(bic)
∣∣ ≤ 1

µ(Kc)

n∑

i=0

∣∣
∫

Eic

fdµ− f(bic)µEi

∣∣

=
1

µ(Kc)

n∑

i=0

∣∣
∫

Eic

fdµ− f(bic)µ(Eic)
∣∣

≤
1

µ(Kc)

n∑

i=0

ǫµ(Eic) = ǫ.

Set z =
∑n

i=0 αiχ{b
−1
i }. By the definition of γ2, there is a c ∈ G such that

γ2 − ǫ ≤ (z ∗ f)(c) =
∑n

i=0 αif(bic),
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so that
1

µ(Kc)

∫
Kc
fdµ ≥ γ2 − 2ǫ. Thus supL∈L

1

µL

∫
L
fdµ ≥ γ2 − 2ǫ. As L is arbitrary, γ3 ≥ γ2 − 2ǫ; as ǫ is

arbitrary, γ3 ≥ γ2. QQQ

(iii) γ3 ≤ γ1. PPP Let F be an ultrafilter on K including Fø and such that limK→F
1

µK

∫
K
fdµ = γ3.

Let p ∈ PR be defined by the formula in Lemma 6J. Then γ3 = p(f) ≤ γ1. QQQ

(b)(i)⇒(iii) Suppose that w∗ = wWDL(f), and that p ∈ PW . Let ǫ > 0 and h ∈ W ∗. Then there is

a z ∈ QG such that |h(w∗) − h((z ∗ f)(a))| ≤ ǫ for every a ∈ G. Now p(f) = p(z ∗ f) ∈ Γ((z ∗ f)[G]), so
|h(w∗) − h(p(f))| ≤ ǫ. As h and ǫ are arbitrary, p(f) = w∗.

(iii)⇒(ii) Suppose that p(f) = w∗ for every p ∈ PW . Let F be any ultrafilter on K extending Fø.

Set p(g) = w-limK→F
1

µK
B
∫

K
g dµ for g ∈ UW . Then p ∈ PW (6J). So p(f) = w∗. As F is arbitrary,

w∗ = w-limK→Fø
1

µK
B
∫

K
f dµ.

(ii)⇒(i) Suppose that w∗ = w-limK→Fø
1

µK
B
∫

K
f dµ. Applying 6J with any ultrafilter F extending Fø,

we see that w∗ = w-limK→Fø
1

µK
B
∫

K
a•lf dµ for every a ∈ G, and therefore w∗ = w-limK→Fø

1

µK
B
∫

K
z ∗ f dµ

for every z ∈ QG.
Let V be any weak neighbourhood of W . Then there are h0, . . . , hn ∈W ∗ and ǫ > 0 such that V ⊇ {w :

hi(w) ≤ ǫ+ hi(w
∗) for every i ≤ n}. Take any z0 ∈ QG, and choose z1, . . . , zn+1 ∈ QG as follows. Given zk

where k ≤ n, then

hk(w∗) = hk(w-lim
K→Fø

1

µK
B

∫

K

zk ∗ f dµ)

= lim
K→Fø

1

µK
B

∫

K

zk ∗ hkf dµ ≤ inf
z∈QG

sup
a∈G

(z ∗ zk ∗ hkf)(a)

by (a). Let z ∈ QG be such that supa∈G(z ∗ zk ∗ hkf)(a) ≤ hk(w∗) + ǫ, and set zk+1 = z ∗ zk; continue.
At the end, we see that for every k ≤ n we can express zn+1 as z ∗ zk+1 for some z ∈ QG, so that

hk((zn+1 ∗ f)(b)) = (zn+1 ∗ hkf)(b)) ≤ supa∈G(zk+1 ∗ hkf)(a) ≤ hk(w∗) + ǫ

for every b ∈ G and k ≤ n; consequently (zn+1 ∗ f)[G] ⊆ V , while zn+1 is also expressible as z ∗ z0 for some
z ∈ QG. As z0 and V are arbitrary, wWDL(f) is defined and equal to w∗.

(c)(i) Suppose that w∗ = WDL(f) is defined. Then for any ǫ > 0 there is a z ∈ QG such that

‖w∗ − (z ∗ f)(a)‖ ≤ ǫ for every a ∈ G. In this case, ‖w∗ −
1

µK
B
∫

K
z ∗ f dµ‖ ≤ ǫ for every K ∈ K.

Set I = {c : z(c) 6= 0}. Then L =
⋂

c∈I Kc−1,ǫ belongs to Fø. If K ∈ L, then

‖
1

µK
B

∫

K

z ∗ f dµ−
1

µK
B

∫

K

fdµ‖ ≤
∑

c∈I

z(c)‖
1

µK
B

∫

K

f(c−1a)µ(da) −
1

µK
B

∫

K

f(a)µ(da)‖

=
∑

c∈I

z(c)‖
1

µK
B

∫

c−1K

f(a)µ(da) −
1

µK
B

∫

K

f(a)µ(da)‖

≤
∑

c∈I

z(c)‖f‖∞
µ(K△c−1K)

µK
≤ ǫ‖f‖∞,

and ‖w∗ −
1

µK
B
∫

K
fdµ‖ ≤ ǫ(1 + ‖f‖∞). As ǫ is arbitrary, w∗ = limK→Fø

1

µK
B
∫

K
fdµ.

(ii) Suppose that w∗ = limK→Fø
1

µK
B
∫

K
fdµ is defined.

(ααα) We need to know that for any z ∈ QG we also have

w∗ = limK→Fø
1

µK
B
∫

K
z ∗ f dµ.
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PPP For any c ∈ G and ǫ > 0, Kc−1,ǫ ∈ Fø. For K ∈ Kc−1,ǫ,

‖
1

µK
B

∫

K

c•lfdµ−
1

µK
B

∫

K

fdµ‖ = ‖
1

µK
B

∫

K

f(c−1a)µ(da) −
1

µK
B

∫

K

f(a)µ(da)‖

= ‖
1

µK
B

∫

c−1K

f(a)µ(da) −
1

µK
B

∫

K

f(a)µ(da)‖

≤
µ(K△c−1K)

µK
‖f‖∞ ≤ ǫ‖f‖∞.

As ǫ is arbitrary,

w∗ = limK→Fø
1

µK
B
∫

K
c•lf dµ.

It follows at once that

w∗ = limK→Fø
1

µK
B
∫

K
z ∗ f dµ

for every z ∈ QG. QQQ

(βββ) Suppose that z0 ∈ QG and ǫ > 0. Set g = z0 ∗ f . Then there are a finite I ⊆ G and a δ > 0 such

that ‖w∗ −
1

µK
B
∫

K
g dµ‖ ≤ ǫ whenever K belongs to L =

⋂
c∈I Kcδ. As in (a-ii) above, Ka ∈ L whenever

K ∈ L and a ∈ G.
There is a neighbourhood H of the identity e of G such that ‖g(a) − g(b)‖ ≤ ǫ whenever ab−1 ∈ H. Let

b0, . . . , bn ∈ G be such that K ⊆
⋃

i≤nHbi, and let E0, . . . , En be a partition of K into Borel sets such that

Ei ⊆ Hbi for each i ≤ n; then ‖g(a) − g(bi)‖ ≤ ǫ for every a ∈ Ei. Set αi =
µEi

µK
for each i ≤ n. For any

c ∈ G, 〈Eic〉i≤n is a partition of Kc, and if a ∈ Eic then a(bic)
−1 = (ac−1)b−1

i ∈ H, so ‖g(a) − g(bic)‖ ≤ ǫ.
Accordingly

∥∥ 1

µ(Kc)
B

∫

Kc

g dµ−
n∑

i=0

αig(bic)
∥∥ ≤

1

µ(Kc)

n∑

i=0

∥∥ B

∫

Eic

g dµ− g(bic)µEi

∥∥

=
1

µ(Kc)

n∑

i=0

∥∥ B

∫

Eic

g dµ− g(bic)µ(Eic)
∥∥

≤
1

µ(Kc)

n∑

i=0

ǫµ(Eic) = ǫ.

Set z =
∑n

i=0 αiχ{b
−1
i }. If c ∈ G, then

‖(z ∗ g)(c) −
1

µ(Kc)
B
∫

Kc
g dµ‖ = ‖

1

µ(Kc)
B
∫

Kc
g dµ−

∑n
i=0 αig(bic)‖ ≤ ǫ.

Thus ‖(z ∗ z0 ∗ f)(c) − w∗‖ ≤ 2ǫ for every c ∈ G. As ǫ and z0 are arbitrary, WDL(f) is defined and equal
to w∗.

6L Theorem (compare Jung Park & Park 973) Let G be a unimodular amenable locally compact
Hausdorff group, and • an action of G on a Banach space W such that

w 7→ a•w is a linear operator of norm at most 1 for every a ∈ G,
a 7→ a•w : G→W is norm-continuous for every w ∈W ,
{a•w : a ∈ G} is relatively weakly compact for every w ∈W .

For w ∈ W and a ∈ G set gw(a) = a−1
•w. Then WDL(gw) is defined, and a• WDL(gw) = WDL(gw), for

every a ∈ G and w ∈W .

proof (a) Define UW as in 6G. Then gw ∈ UW for every w ∈ W . PPP Our hypotheses guarantee that gw[G]
is relatively weakly compact. For any ǫ > 0, there is a neighbourhood H of the identity in G such that
‖w − a•w‖ ≤ ǫ whenever a ∈ H. Now

3I am indebted to A.S.Vernitski for the reference.
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‖gw(a) − gw(b)‖ = ‖a−1
•w − b−1

•w‖ = ‖w − (ab−1)•w‖ ≤ ǫ

whenever ab−1 ∈ H. As ǫ is arbitrary, gw is uniformly continuous for the right uniformity. QQQ

(b) Set W0 = {w : w ∈ W , a•w = w for every a ∈ G}, and let V be the linear subspace of W generated
by

W0 ∪ {w − a•w : w ∈W , a ∈ G}.

Then V is norm-dense in W . PPP??? Otherwise, there are an h ∈ W ∗ and a w ∈ W such that h(v) = 0 for
every v ∈ V and h(w) 6= 0. Let µ be a left Haar measure on G, K the family of non-negligible compact
subsets of G, and F an ultrafilter on K including the Følner ultrafilter of G. Let w∗ be the weak limit

limK→F
1

µK
B
∫

K
a•wµ(da). We have h(a•w) = h(w) for every a ∈ G, so

h(
1

µK
B
∫

K
a•wµ(da)) =

1

µK

∫
K
h(a•w)µ(da) = h(w)

for every K ∈ K, and h(w∗) = h(w). On the other hand, for any c ∈ G,

c•w∗ = c•( lim
K→F

1

µK
B

∫

K

a•wµ(da))

= lim
K→F

1

µK
B

∫

K

(ca)•wµ(da) = lim
K→F

1

µK
B

∫

cK

a•wµ(da),

so

‖w∗ − c•w∗‖ ≤ limK→F
1

µK
‖w‖µ(K△cK) = 0

and w∗ = c•w∗. As c is arbitrary, w∗ ∈W0 and 0 = h(w∗) = h(w). XXXQQQ

(c) The set

V1 = {w : w ∈W , WDL(gw) is defined and belongs to W0}

is a norm-closed linear subspace of W . If w ∈ W0 then gw is the constant function with value w, so
WDL(gw) = w and w ∈ V1. If w ∈W and c ∈ G then w − c•w ∈ V1. PPP For K ∈ K,

1

µK
B

∫

K

gw−c•w dµ =
1

µK
B

∫

K

a−1
•w − (a−1c)•wµ(da)

=
1

µK
B

∫

K

a−1
•w − (c−1a)−1

•wµ(da)

=
1

µK

(
B

∫

K

a−1
•wµ(da) − B

∫

c−1K

a−1
•wµ(da)

)

has norm at most
‖w‖

µK
µ(K△c−1K). By Theorem 6Kc,

WDL(gw−c•w) = limK→Fø
1

µK
B
∫

K
gw−c•w dµ = 0

and w − c•w ∈ V1. QQQ
But this means that V1 ⊇ V and V1 = W , as required.

6M Remarks (a) Presumably the ideas above can be adapted to an appropriate class of semigroups to
give a true generalization of Theorem 3B.

(b) An alternative expression of the idea of (*) in 6Ba would be

(†) for every neighbourhood V of w and every z ∈ QG there is a z′ ∈ QG such that (z′′ ∗ z′ ∗
z ∗ f)[G] ⊆ V for every z′′ ∈ QG.

Put like this, it becomes something we can consider whenever X is a set, W is a Hausdorff space, S is a
semigroup and • is a semigroup action of S on WX . 6B(b-i) would then become a result about product
actions on WX

1 ×WX
2

∼= (W1 ×W2)
X .
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6N For abelian groups, we can approach from a different direction.

Lemma Let G be an abelian group, W a Hausdorff linear topological space and • an action of G on W such
that w 7→ a•w = Ta(w) is a linear operator for every a ∈ G and the family {Ta : a ∈ G} is equicontinuous.
For w ∈W and a ∈ G set gw(a) = a−1

•w. Then for w, w∗ ∈W the following are equiveridical:
(i) WDL(gw) is defined and equal to w∗;

(ii) w∗ ∈ Γ(gw[G]) and a•w∗ = w∗ for every a ∈ G.

proof (i)⇒(ii) Suppose that w∗ = WDL(gw). By 6B(b-iv), w∗ ∈ Γ(gw[G]). If c ∈ G, then

c•gw(a) = c•a−1
•w = a−1

•c•w = gw(c−1a) = (c•lgw)(a)

for every a ∈ G. Applying 6Bc to the map u 7→ c•u we see that

c•w∗ = WDL(c•lgw) = WDL(gw) = w∗

by 6B(b-iii). So w∗ is G-invariant and (ii) is true.

(ii)⇒(i) Let V be a convex neighbourhood of w∗. Let V1 be a closed convex neighbourhood of 0 in W
such that Ta(w) ∈ V − w∗ whenever w ∈ V1 and a ∈ G. Let a0, . . . , an ∈ G and α0, . . . , αn ≥ 0 be such
that

∑n
i=0 αi = 1 and

∑n
i=0 αigw(ai) ∈ w∗ + V1. Set z =

∑n
i=0 αiχ{a

−1
i } ∈ QG. Then, for any a ∈ G,

(z′ ∗ gw)(a) =
∑n

i=0 αigw(aia) =
∑n

i=0 αi(a
−1

•a−1
i

•w) = a−1
•

∑n
i=0 αi(a

−1
i

•w),

so

(z ∗ gw)(a) − w∗ = a−1
•

n∑

i=0

αi(a
−1
i

•w) − w∗ = a−1
•((

n∑

i=0

αi(a
−1
i

•w)) − w∗)

= ha−1•((
n∑

i=0

αi(a
−1
i

•w)) − w∗) ∈ V − w∗

because
∑n

i=0 αi(a
−1
i

•w) ∈ w∗ + V1. Thus (z ∗ gw)[G] ⊆ V . As V is arbitrary, WDL(gw) = w∗, by 6B(d-i).

6O Theorem Let G be an abelian group, W a Banach space and • an action of G on W such that
w 7→ a•w is a linear operator of norm at most 1 for every a ∈ G. For w ∈W and a ∈ G, set gw(a) = a−1

•w.
If w ∈ W is such that gw[G] is relatively weakly compact, then w∗ = WDL(gw) is defined and a•w∗ = w∗

for every a ∈ G.

proof Set K = Γ(gw[G]); because W is complete, K is weakly compact. Since c•gw(a) = gw(ac−1) for every
a ∈ G, c•gw[G] = gw[G] for every c ∈ G, and c•u ∈ K for every u ∈ K. If a ∈ G, set Taw = a•w for w ∈W ;
then Ta is weakly continuous, so the action of G on K is continuous if we give K its weak topology and G
its discrete topology. As G is abelian, it is amenable in any topology (Fremlin 03, 449Cf), and there is a
G-invariant probability measure µ on K which is Radon for the weak topology. Let w∗ be the barycenter
of µ. Then Taw

∗ is the barycenter of the image measure µT−1
a = µ (Fremlin 03, 461B), so a•w∗ = w∗ for

every a ∈ G. By 6N, w∗ = WDL(gw).

Remark I have kept the formula gw(a) = a−1
•w from 6L. But in the present context it would be more

natural to look at g̃w(a) = a•w; of course g̃w[G] = gw[G] and WDL(gw) = WDL(g̃w) if either is defined, by
6B(d-ii), so we get the same results.

7 Problems (a) Is it consistent to suppose that every Radon probability measure on {0, 1}ω1 has a
well-distributed sequence? What if m > ω1?

(b) If (X,T,Σ, µ) is a compact Radon probability space with a well-distributed sequence and ν is a
probability measure on X which is an indefinite-integral measure over µ, must ν have a well-distributed
sequence? (Compare 4G and Fremlin 03, 491R.)

(c) In 6K and 6L, do we really need G to be unimodular?

(d)(i) Find a useful characterization of the set E of extreme points of P . (See 1M.) (ii) Is E compact?
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