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Chapter 65

Applications

At long last I turn again to some of the results for which the theory outlined in this volume was developed.
I start with some relatively elementary ideas using nothing more advanced than §624, showing that locally
jump-free virtual local martingales are associated with ‘exponential’ processes of the same kind (651C).
These in turn are associated with identities for integral equations (651G, 651K) and change-of-law results
(651I). Ideas at the same level take us to Lévy’s characterization of Brownian motion (653F); going deeper,
and using the time-changes of §635, we can represent many locally jump-free local martingales in terms of
Brownian motion (653G).

The exponential processes of §651 can be thought of as solutions of a particularly simple kind of stochastic
differential equation. Working very much harder, we find that we have versions of Picard’s theorem, for
integral equations with a Lipschitz condition on the integrand, for both the Riemann-sum integral (654G)
and the S-integral (654L). A twist in the theory of exponential processes, with a refinement inspired by the
theory of financial markets, leads us to the famous Black-Scholes equation (655D).

Version of 11.9.23

651 Exponential processes

Associated with any jump-free integrator is an ‘exponential process’ (651B); if the integrator is a mar-
tingale, the exponential process may be a uniformly integrable martingale (651D-651E). This gives us an
important class of non-negative martingales which we can use in change-of-law results (651J).

651A Notation

651B Theorem Let S be a non-empty sublattice of T . Suppose that vvv is a locally jump-free local
integrator, and uuu a locally moderately oscillatory process, both with domain S. Set zzz = exp(vvv− v↓1−

1
2vvv

∗).
Then zzz is a locally jump-free local integrator, zzz = 1+iivvv(zzz) and iizzz(uuu) = iivvv(uuu×zzz). If vvv is in fact a jump-free
integrator and uuu a moderately oscillatory process, then zzz is a jump-free integrator

651C Corollary Let S be a non-empty sublattice of T , and vvv a locally jump-free virtually local mar-
tingale with domain S. Then zzz = exp(vvv − v↓1− 1

2vvv
∗) is a locally jump-free virtually local martingale.

651D Theorem Let S be a non-empty finitely full sublattice of T and vvv = 〈vσ〉σ∈S a locally jump-
free virtually local martingale. Let zzz = exp(vvv − v↓1 − 1

2vvv
∗) be the associated exponential process. If

supσ∈S E(exp( 12 (vσ − v↓))) is finite, then zzz is a uniformly integrable martingale.

651E Corollary Let S be a non-empty sublattice of T and vvv a locally jump-free virtually local martingale
with domain S. Let zzz = exp(vvv − v↓1− 1

2vvv
∗) be the associated exponential process.

(a) If exp( 12vvv
∗) is ‖ ‖1-bounded, then zzz is a uniformly integrable martingale.

(b) If vvv∗ is an L∞-process, then zzz is a martingale.

651F Corollary If www is Brownian motion, then exp(www − 1
2ιιι)↾Tb is a martingale.

651G Theorem Let S be a non-empty sublattice of T , and vvv, www locally jump-free local integrators with
domain S. Set zzz = exp(vvv − v↓1− 1

2vvv
∗) and yyy = www − [vvv

∗
www]. Then

iiyyy×zzz(uuu) = iiwww(uuu× zzz) + iivvv(uuu× yyy × zzz)

for any locally moderately oscillatory process uuu with domain S.
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2 Applications 651H

651H Corollary Let S be a non-empty sublattice of T , and vvv, www locally jump-free virtually local
martingales. Set zzz = exp(vvv − v↓1− 1

2vvv
∗) and yyy = www − [www

∗
vvv]. Then yyy × zzz is a virtually local martingale.

651I Proposition Let S be a non-empty sublattice of T and vvv = 〈vσ〉σ∈S , www locally jump-free virtually
local martingales such that zzz = exp(vvv−v↓1−

1
2vvv

∗) is a uniformly integrable martingale and limσ↑S(vσ−
1
2v

∗
σ)

is defined in L0, where vvv∗ = 〈v∗σ〉σ∈S . Set yyy = www − [www
∗
vvv]. Then there is a change of law on A rendering yyy a

virtually local martingale.

651J Corollary Let S be a non-empty sublattice of T , uuu a locally moderately oscillatory process such
that γ = ‖uuu‖∞ is finite, and www a locally jump-free virtually local martingale with quadratic variation www∗

such that exp( 12γ
2www∗) is a ‖ ‖1-bounded process. Set yyy = www + iiwww∗(uuu). Then there is a change of law on A

rendering yyy a virtually local martingale.

651K S-integrals: Theorem Suppose that 〈At〉t∈T is right-continuous, and that S is a non-empty
order-convex sublattice of T . Let vvv = 〈vσ〉σ∈S be a jump-free integrator, and xxx an S-integrable process with
domain S. Set zzz = exp(vvv − v↓1− 1

2vvv
∗).

(a)

S
∫

S
xxx dzzz = S

∫

S
xxx× zzz dvvv.

(b) Suppose that www is another jump-free integrator with domain S. Set yyy = www − [vvv
∗
www]. Then

S
∫

S
xxx d(yyy × zzz) = S

∫

S
xxx× zzz dwww + S

∫

S
xxx× yyy × zzz dvvv.

Version of 7.1.23/18.2.23

652 Lévy processes

When defining the Poisson process in 612U, I referred to 455P in Volume 4. §455 is hard work; it is the
longest section in the whole treatise and bristles with technical difficulties. Some of these are exacerbated
by the generality which seemed natural at that point – for instance, it is meant to support the treatment
of multidimensional Brownian motion in Chapter 47. The processes described in the last quarter of §455
take values in Polish groups which need not even be abelian. But these processes have always been the
standard-bearers for the theory of stochastic processes I have set out to describe in the present volume, and
the time has come to link the approaches.

652B Independence (a) If (A, µ̄) is a probability algebra, two subalgebras B, C of A are (stochastically)
independent if µ̄(b ∩ c) = µ̄b · µ̄c whenever b ∈ B and c ∈ C; more generally, a family 〈Bi〉i∈I of subalgebras
of A is independent if µ̄(infi∈J bi) =

∏

i∈J µ̄bi whenever J ⊆ I is finite and bi ∈ Bi for every i ∈ J . Turning

to families in L0 = L0(A), 〈ui〉i∈I is independent if 〈Bi〉i∈I is independent where Bi = {[[ui ∈ E]] : E ⊆ R

is Borel} is the closed subalgebra generated by ui for each i ∈ I. u ∈ L0 is independent of an algebra C ⊆ A

if B and C are independent where B is the closed subalgebra generated by u. More elaborately, a family
〈ui〉i∈I in L0 is independent of C, where C is a subalgebra of A, if B and C are independent, where B is the
smallest closed subalgebra of A including all the subalgebras generated by the ui.

(b) Using the Monotone Class Theorem, we see that if B, C ⊆ A are such that both B and C are closed
under ∩ and µ̄(b ∩ c) = µ̄b · µ̄c for all b ∈ B and c ∈ C, then the closed subalgebras B, C generated by B,
C respectively are independent.

(c) If B is a closed subalgebra of A, the set C = {u : u ∈ L0, u is independent of B} is closed for the
topology of convergence in measure.

652C Definition Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic in-
tegration structure. I will say that a fully adapted process 〈vσ〉σ∈Tf

is a Lévy process if it is locally
near-simple and

c© 2018 D. H. Fremlin

Measure Theory (abridged version)



652G Lévy processes 3

whenever s, t ≥ 0, v(s+t)̌ − vš is independent of As and has the same distribution as vť.

Examples (i) The identity process is a Lévy process.

(ii) Brownian motion, is a Lévy process.

(iii) The standard Poisson process is a Lévy process.

652D Lemma If (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) is a right-continuous real-time stochastic integration
structure and vvv = 〈vσ〉σ∈Tf

a Lévy process, then v0̌ = limt↓0 vť = 0.

652E Proposition Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic in-
tegration structure, and vvv = 〈vτ 〉τ∈Tf

, www = 〈wτ 〉τ∈Tf
two Lévy processes. If vť = wť for every t ≥ 0, then

vvv = www.

652F Classical Lévy processes: Proposition Let Cdlg be the space of càdlàg real-valued functions
on [0,∞[, endowed with its topology of pointwise convergence. Let 〈λt〉t>0 be a family of distributions such
that the convolution λs ∗ λt is equal to λs+t for all s, t > 0, and limt↓0 λtG = 1 for every open subset G of
R containing 0. Let µ̈ be the completion regular quasi-Radon probability measure on Cdlg defined by saying
that

µ̈{ω : ω ∈ Cdlg, ω(s0) ∈ E0, ω(si)− ω(si−1) ∈ Ei for 1 ≤ i ≤ n}

= δ0E0 ·
n
∏

i=1

λsi−si−1
Ei (∗)

whenever 0 = s0 < . . . < sn in [0,∞[ and E0, . . . , En ⊆ R are Borel sets, and Σ̈ its domain. For t ≥ 0, set

Σ̈t = {F : F ∈ Σ̈, ω′ ∈ F whenever ω ∈ F , ω′ ∈ Cdlg and ω′↾[0, t] = ω↾[0, t]},

ˆ̈Σt = {F△A : F ∈ Σ̈t, A ∈ N (µ̈)}

so that 〈 ˆ̈Σt〉t≥0 is a right-continuous filtration of σ-subalgebras of Σ̈. Let (C, ¯̈µ) be the measure algebra of

(Cdlg, Σ̈, µ̈) and set Ct = {E• : E ∈ ˆ̈Σt} for t ≥ 0, so that (C, ¯̈µ, [0,∞[ , 〈Ct〉t≥0) is a right-continuous stochas-
tic integration structure with associated set T of stopping times and family 〈Cτ 〉τ∈T of closed subalgebras.
Setting Xt(ω) = ω(t) for ω ∈ Ω and t ≥ 0, 〈Xt〉t≥0 is progressively measurable and gives rise to a locally
near-simple process uuu = 〈uσ〉σ∈Tf

such that if σ ∈ Tf is represented by a stopping time h : Cdlg → [0,∞[

adapted to 〈 ˆ̈Σt〉t≥0, and Xh(ω) = Xh(ω)(ω) for ω ∈ Cdlg, then uσ = X•

h in L0(µ). Now uuu is a Lévy process,
and the distribution of uť is λt for every t ≥ 0.

652G Sums of stopping times Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a real-time stochastic inte-
gration structure.

(a) If τ ∈ T and s ≥ 0 we have an element τ + š of T defined by saying that

[[τ + š > t]] = [[τ > t− s]] if s ≤ t,

= 1 if s > t.

(b)(i) τ ∨ š ≤ τ + š whenever τ ∈ T and s ≥ 0.
(ii) If τ ∈ T and s, s′ ≥ 0 then τ + (s+ s′)̌ = (τ + š) + š′.
(iii) τ + 0̌ = τ for every τ ∈ T .
(iv) If s, s′ ≥ 0 then š+ š′ = (s+ s′)̌ .
(v) If τ , τ ′ ∈ T and s ≥ 0 then [[τ ≤ τ ′]] ⊆ [[τ + š ≤ τ ′ + š]].
(vi) For any τ ∈ T , {τ + š : s ≥ 0} separates T ∨ τ .
(vii) Suppose that 〈At〉t≥0 is right-continuous. If A ⊆ T , s ≥ 0 and we write A+ š for {σ+ š : σ ∈ A},

then inf(A+ š) = (inf A) + š.
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4 Applications 652H

652H Proposition Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic in-
tegration structure, and vvv = 〈vσ〉σ∈Tf

a Lévy process.
(a) For any s ≥ 0 and τ ∈ Tf , vτ+š − vτ is independent of Aτ and has the same distribution as vš.
(b) For any τ ∈ Tf , 〈vτ+š − vτ 〉s≥0 is independent of Aτ and has the same distribution as 〈vš〉s≥0.

652I Theorem Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic integra-
tion structure, and vvv = 〈vσ〉σ∈Tf

a Lévy process such that Osclln(vvv↾[0̌, τ ]) ∈ L∞(A) for every τ ∈ Tb. Then
vvv↾Tb is an L1-process.

652J Proposition Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic in-
tegration structure, and vvv = 〈vσ〉σ∈Tf

a Lévy process such that vvv↾Tb is an L1-process. Then there is an
α ∈ R such that vvv − αιιι is a local martingale.

652K Theorem Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic inte-
gration structure, and vvv = 〈vσ〉σ∈Tf

a Lévy process. Then vvv is a semi-martingale, therefore a local integrator.

652L Proposition Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic in-
tegration structure, and vvv = 〈vσ〉σ∈Tf

a Lévy process. Then its quadratic variation vvv∗ is a Lévy process.

652M The Cauchy process (a) If t > 0, then we have a distribution λt on R with density function
ξ 7→ t

π(t2+ξ2) , the Cauchy distribution with centre 0 and scale parameter t.

(b)(i) For t > 0 the characteristic function of λt is ξ 7→ e−t|ξ|.

(ii)
∫∞

0

1−cos η

η2
dη =

π

2
.

(c) If s, t > 0 λs ∗ λt = λs+t. We can apply the construction of 652F with the family 〈λt〉t>0 to obtain

a probability space (Cdlg, Σ̈, µ̈), a stochastic integration structure (C, ¯̈µ, [0,∞[ , 〈Ct〉t≥0) and a classical Lévy
process uuu, the Cauchy process.

(d) Writing C([0,∞[) ⊆ Cdlg for the set of continuous functions from [0,∞[ to R, µ̈C([0,∞[) = 0.

652N Alternative description of the Cauchy process Let µ̈ be the probability measure on Cdlg

defined in 652M. Let µ0 be the indefinite-integral measure over µL corresponding to the function ξ 7→
1

πξ2
:

R \ {0} → [0,∞[, µ1 the subspace measure on [0,∞[ induced by µL, and µ = µ0 × µ1 the c.l.d. product
measure on S = R× [0,∞[. Let ν be the Poisson point process on (S, µ) with intensity 1, and µ̈ the measure
on Cdlg described in 652Mc. For ω ∈ Cdlg write Jump(ω) for

{(ξ, t) : ξ ∈ R \ {0}, t > 0, ω(t) = lims↑t ω(s) + ξ}.

Then Jump : Cdlg → PS is inverse-measure-preserving for µ̈ and ν. If E ⊆ S is such that µE is defined and
finite then µ̈{ω : E ∩ Jump(ω) = ∅} = e−µE ; in particular, if t ≥ 0 and α > 0, then

µ̈{ω : Jump(ω) ∩ ([α,∞[× [0, t]) 6= ∅} = 1− e−t/α.

Suppose that µE is defined and finite, and (−ξ, s) ∈ E whenever (ξ, s) ∈ E. SettingXE(ω) =
∑

(ξ,s)∈E∩Jump(ω) ξ,

E(XE) = 0 and E(X2
E) =

∫

E
ξ2µ(dξ) is finite.

For µ̈-almost every ω ∈ Cdlg, Jump(ω) ∩ (R × [0, t]) is countably infinite and can be enumerated as
〈(ξnt(ω), snt(ω))〉n∈N where |ξn+1,t(ω)| < |ξnt(ω)| for every n, for every t > 0. For any particular t > 0,
ω(t) =

∑∞
n=0 ξnt(ω) for µ̈-almost every ω.

652O Third construction for the Cauchy process (a) Write µW = µW2 for two-dimensional Wiener
measure on the space Ω = C([0,∞[ ;R2)0 of continuous functions from [0,∞[ to R

2 starting at zero. For
ω ∈ Ω, write ω0, ω1 for its coordinates in C([0,∞[)0.

Measure Theory (abridged version)



653C Brownian processes 5

(b) For t ≥ 0, let h̃t be the Brownian hitting time to ]t,∞[× R, and set

Z̃t(ω) = ω1(h̃t(ω)) if ω0[[0,∞[ ] = R,

= 0 otherwise.

Then 〈Z̃t〉t≥0 has the same distribution as the process 〈Zt〉t≥0 of 652N, and t 7→ Z̃t(ω) is càdlàg for every
ω ∈ Ω.

(c) Writing Σ for the domain of µW ,

Σt = {E : E ∈ Σ, ω′ ∈ E whenever ω ∈ E, ω′ ∈ Ω and ω′↾[0, t] = ω↾[0, t]},

Σh̃t
= {E : E ∈ Ω, E ∩ {ω : h̃t(ω) ≤ s} ∈ Σs for every s ≥ 0},

Tt = {E△A : E ∈
⋂

s>t Σh̃s
, A ∈ N (µW )}

for t ≥ 0, 〈Tt〉t≥0 is a right-continuous filtration of σ-algebras. Z̃t is Tt-measurable and Z̃s−Z̃t is independent
of Tt whenever 0 ≤ t ≤ s.

(d) Applying the construction of 631D to (Ω,Σ, µW ), 〈Tt〉t≥0 and 〈Z̃t〉t≥0 we get a Lévy process 〈z̃σ〉σ∈Tf

in which the distribution of z̃ť is the Cauchy distribution with scale parameter t for every t ≥ 0.

652Z Problem Is the Cauchy process, as described in 652Mc, a local martingale?

Version of 22.9.20/30.9.23

653 Brownian processes

In 624F, we saw that the quadratic variation of Brownian motion is the identity process. In fact, under
suitable conditions, this characterizes Brownian motion among local martingales (653F). Elaborating on the
argument, we can show that (again under suitable conditions) general locally jump-free local martingales
can be described in terms of Brownian motion and a time-change of the type considered in §635.

653B Distributions (a) If k ≥ 1 and u1, . . . , uk ∈ L0, we have a sequentially order-continuous function
E 7→ [[(u1, . . . , uk) ∈ E]] from the Borel σ-algebra Bk of R

k to A. This leads us to a Borel probability
measure E 7→ µ̄[[u ∈ E]] : Bk → [0, 1]; the completion of this measure is a Radon probability measure νU on
R

k, the distribution of U = (u1, . . . , uk).
If h : Rk → R is a bounded Borel measurable function, then E(h̄(U)) =

∫

h dνU .

(b) We can now speak of the corresponding characteristic function ϕνU
where

ϕνU
(y) =

∫

eiy .xνU (dx) =

∫

cos(y .x)νU (dx) + i

∫

sin(y .x)νU (dx)

= E(cos(η1u1 + . . .+ ηkuk)) + iE(sin(η1u1 + . . .+ ηkuk))

for y = (η1, . . . , ηk) ∈ R
k, the characteristic function of U = (u1, . . . , uk). If now V ∈ (L0)k has the same

characteristic function as U , it must have the same distribution as U .

(c) If u1, . . . , uk are stochastically independent, then the distribution νU of U = (u1, . . . , uk) is the
product of the distributions νui

of ui.

653C Lemma Let S be a non-empty sublattice of T and vvv = 〈vσ〉σ∈S a locally jump-free virtually local
martingale such that its quadratic variation vvv∗ is an L∞-process. Writing v↓ for the starting value of vvv,

zzz1 = sin(vvv − v↓1
(S))× exp( 12vvv

∗), zzz2 = cos(vvv − v↓1
(S))× exp( 12vvv

∗)

are martingales.

c© 2014 D. H. Fremlin
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6 Applications 653D

653D Lemma Let S be a sublattice of T with least element τ and greatest element τ ′, and vvv = 〈vσ〉σ∈S a
locally jump-free virtually local martingale with quadratic variation vvv∗ = 〈v∗σ〉σ∈S . If vτ = 0 and v∗τ ′ = γχ1
for some γ > 0, then vτ ′ has a normal distribution with mean 0 and variance γ and is independent of Aτ .

653E Lemma Let S be a sublattice of T with least element τ and greatest element τ ′, and vvv = 〈vσ〉σ∈S

a locally jump-free virtually local martingale with quadratic variation vvv∗ = 〈v∗σ〉σ∈S , starting from vτ = 0.
If τ = τ0 ≤ . . . ≤ τk in S and v∗τj = γjχ1 for j ≤ k, where 0 = γ0 ≤ γ1 ≤ . . . ≤ γk, then (vτ0 , . . . , vτk) has a

centered Gaussian distribution with covariance matrix 〈γmin(j,l)〉j,l≤k.

653F Theorem Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic inte-
gration structure and vvv = 〈vτ 〉τ∈Tf

a locally jump-free local martingale such that

(α) the quadratic variation of vvv is the identity process,
(β) A is the closed subalgebra of itself defined by {vť : t ≥ 0},
(γ) for each t ≥ 0, At is the closed subalgebra of A defined by {vš : s ≤ t}.

Then (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T , vvv) is isomorphic to Brownian motion.

653G Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T with
a least member, vvv = 〈vτ 〉τ∈S a locally jump-free local martingale such that vminS = 0, and vvv∗ = 〈v∗τ 〉τ∈S

the quadratic variation of vvv. Suppose that for every n ∈ N there is a τ ∈ S such that v∗τ ≥ nχ1A. Let
(C, ν̄, 〈Cr〉r≥0,Q,www) be Brownian motion as described in 612T, again writing Q for the set of stopping times
associated with 〈Cr〉r≥0. Express www as 〈wσ〉σ∈Qf

. Then there are φ, π̂ and Q′ such that

φ : C → A is a measure-preserving Boolean homomorphism,
π̂ : Q → T is a right-continuous lattice homomorphism,
Q′ = {ρ : ρ ∈ Qf , π̂(ρ) ∈ S} is an ideal in Q including the ideal Qb of bounded stopping

times,
taking Tφ : L0(C) → L0(A) to be the f -algebra homomorphism associated with φ and 〈ιρ〉ρ∈Qf

to be the identity process on Qf , vπ̂(ρ) = Tφ(wρ) and v∗π̂(ρ) = Tφ(ιρ) for every ρ ∈ Q′,

if uuu = 〈uτ 〉τ∈S and zzz = 〈zρ〉ρ∈Q′ are locally moderately oscillatory processes such that Tφ(zρ) =
uπ̂(ρ) for every ρ ∈ Q′, then

∫

S∧τ
uuu dvvv = Tφ(

∫

Q∧ρ
zzz dwww) whenever τ ∈ S and ρ ∈ Q′ are such that

v∗τ = Tφ(ιρ).

653I Corollary Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T with
a least member, vvv = 〈vτ 〉τ∈S a locally jump-free local martingale such that vminS = 0, and vvv∗ = 〈v∗τ 〉τ∈S

the quadratic variation of vvv. Suppose that for every n ∈ N there is a τ ∈ S such that v∗τ ≥ nχ1A. Let
(C, ν̄, 〈Cr〉r∈[0,∞[,Q,www) be Brownian motion. Then there are φ and π̂ such that

φ : C → A is a measure-preserving Boolean homomorphism,
π̂ : Q → T is a lattice homomorphism,
if f : R2 → R is continuous, then, taking Tφ : L0(C) → L0(A) to be the f -algebra homomor-

phism associated with φ,
∫

S∧π̂(ρ)
f̄(vvv,vvv∗) dvvv = Tφ(

∫

Q∧ρ
f̄(www,ιιι) dwww) whenever ρ ∈ Qf ∩ π̂−1[S].

653J Corollary Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T with
a least member, vvv = 〈vτ 〉τ∈S a locally jump-free local martingale such that vminS = 0, and vvv∗ = 〈v∗τ 〉τ∈S

the quadratic variation of vvv. Suppose that for every n ∈ N there is a τ ∈ S such that v∗τ ≥ nχ1A. Let
(C, ν̄, 〈Cr〉r∈[0,∞[,Q,www) be Brownian motion. Then there are φ and π̂ such that

φ : C → A is a measure-preserving Boolean homomorphism,
π̂ : Q → T is a lattice homomorphism,
if h : R2 → R is locally bounded and Borel measurable then, taking Tφ : L0(C) → L0(A)

to be the f -algebra homomorphism associated with φ, S
∫

S∧π̂(ρ)
h̄(vvv,vvv∗) dvvv = Tφ( S

∫

Q∧ρ
h̄(www,ιιι) dwww)

whenever ρ ∈ Qf ∩ π̂−1[S].

653K Brownian processes: Definition A Brownian-type process is a locally jump-free virtually
local martingale vvv, defined on a lattice S of stopping times based on a real-time stochastic integration
structure, such that the quadratic variation of vvv is ιιι↾S.

Measure Theory (abridged version)



654F Picard’s theorem 7

Version of 26.9.24

654 Picard’s theorem

The general theory of solutions of ordinary differential equations begins with a classical existence and
uniqueness theorem: if h is a continuous function of two variables which is Lipschitz in the first variable,
then the differential equation

x′(t) = h(x(t), t), x(0) = x⋆

or, equivalently, the integral equation

x(t) = x⋆ +
∫ t

0
h(x(s), s)ds

has a unique solution. In this section I present corresponding results for stochastic integral equations of this
type, first for the Riemann-sum integral (654G) and then for the S-integral (654L).

654B Lemma (a) Let S be a non-empty sublattice of T such that infτ∈S supσ∈S [[τ < σ]] = 0, and
uuu = 〈uσ〉σ∈S a fully adapted process.

(a) If uuu is locally order-bounded, it is order-bounded.
(b) If uuu is locally moderately oscillatory, it is moderately oscillatory.
(c) If uuu is locally near-simple, it is near-simple.

654C Lemma Let S be a sublattice of T and h : Rk → R a continuous function. Then h̄(uuu1, . . . ,uuuk) ∈
Mo-b = Mo-b(S) whenever uuu1, . . . ,uuuk ∈ Mo-b, and h̄ : Mk

o-b → Mo-b is continuous for the ucp topology on
Mo-b.

654D Lemma Let S be a sublattice of T with a greatest element, and define zzz = 〈zσ〉σ∈S by setting
zσ = χ[[σ < maxS]] for σ ∈ S.

(a) Suppose that uuu is a moderately oscillatory process and vvv an integrator. Then

zzz × iivvv(uuu) = zzz × iivvv(zzz × uuu) = zzz × iizzz×vvv(uuu)

and
∫

S
uuu dvvv =

∫

S
zzz × uuu dvvv.

(b) Let www be a process of bounded variation, and www↑ its cumulative variation. Then
∫

S
|d(zzz × www)| ≤

sup |zzz × (www↑ + |www|)|.
(c) Suppose that S has a least member and that www = 〈wσ〉σ∈S is an order-bounded fully adapted process

starting from wminS = 0. Then sup |www| ≤ sup |zzz ×www|+Osclln(www).
(d) Suppose thatwww = 〈wσ〉σ∈S is a fully adapted process and that α ≥ 0 is such that [[σ < maxS]] ⊆ [[|wσ| ≤ α]]

for σ ∈ S. Then www is order-bounded, ‖ sup |zzz ×www|‖∞ ≤ α and ‖www‖∞ ≤ α+ ‖Osclln(www)‖∞.
(e) If uuu ∈ Mmo(S) then uuu< = (zzz × uuu)<.

654E Lemma Let S be a sublattice of T . Write M0
mo for the space of moderately oscillatory processes

uuu = 〈uσ〉σ∈S with starting value 0. For an integrator vvv, write vvv∗ for its quadratic variation. Suppose that
uuu ∈ Mmo = Mmo(S) and that www, www′ ∈ M0

mo are such that www is a virtually local martingale and www′ is of
bounded variation; set vvv = www +www′. Then

‖ sup |iivvv(uuu)|‖2 ≤ 2(
√

‖www∗‖∞ + ‖
∫

S
|dwww′|‖∞)‖ sup |uuu|‖2.

654F Lemma Let S be a sublattice of T with a greatest element. Suppose that h : R
2 → R is a

continuous function and that K ≥ 0 is such that |h(α, β) − h(α′, β)| ≤ K|α − α′| for all α, α′, β ∈ R; let
www = 〈wσ〉σ∈S , www

′ = 〈w′
σ〉σ∈S be processes with domain S such that www is a virtually local martingale, www′ is of

bounded variation and both start fom 0. Write www∗ for the quadratic variation of www, www′↑ for the cumulative
variation of www′, and zzz for 〈χ[[σ < maxS]]〉σ∈S . Suppose that

2K(
√

‖www∗‖∞ + 2‖zzz ×www′↑‖∞) < 1.

Set vvv = www +www′. Then for any uuu⋆, yyy ∈ Mmo = Mmo(S) there is a unique uuu ∈ Mmo such that

uuu = uuu⋆ + iivvv(h̄(uuu,yyy)).
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654G Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T
with a least member. Suppose that h : R2 → R is a continuous function and that K ≥ 0 is such that
|h(α, β) − h(α′, β)| ≤ K|α − α′| for all α, α′, β ∈ R. Let vvv be a locally near-simple local integrator with
domain S. Then for any locally moderately oscillatory processes uuu⋆, yyy with domain S there is a unique
locally moderately oscillatory process uuu with domain S such that

uuu = uuu⋆ + iivvv(h̄(uuu,yyy)).

654H Lemma Suppose that 〈At〉t∈T is right-continuous, and that S = [minS,maxS] is an interval in
T . Define zzz = 〈zσ〉σ∈S by setting zσ = χ[[σ < maxS]] for σ ∈ S. Suppose that xxx ∈ MS-i(S), and that
vvv ∈ Mn-s = Mn-s(S) is an integrator.

(a) zzz × Siivvv(xxx) = zzz × Siizzz×vvv(xxx).
(b) Siivvv(xxx)< = Siivvv(zzz × xxx)<.

654I Lemma Suppose 〈At〉t∈T is right-continuous and that S = [minS,maxS] is an interval in T . Let
M0

n-s be the space of near-simple processes uuu = 〈uσ〉σ∈S with domain S such that uminS = 0. For a near-
simple integrator vvv, write vvv∗ for its quadratic variation. Suppose that www, www′ ∈ M0

n-s are such that www is a
martingale and www′ is of bounded variation; set vvv = www +www′. If xxx ∈ M0

S-i(S), uuu ∈ Mmo(S) and |xxx| ≤ uuu<, then

‖ sup |Siivvv(xxx)|‖2 ≤ 2(
√

‖www∗‖∞ + ‖
∫

S
|dwww′|‖∞)‖ sup |uuu|‖2.

654J Lemma Suppose that 〈At〉t∈T is right-continuous. Let S = [minS,maxS] be an interval in
T . Suppose that h : R2 → R is a locally bounded Borel measurable function and that K ≥ 0 is such that
|h(α, β)−h(α′, β)| ≤ K|α−α′| for all α, α′, β ∈ R; let www = 〈wσ〉σ∈S , www

′ = 〈w′
σ〉σ∈S be near-simple processes

with domain S such that www is a martingale, www′ is of bounded variation and wminS = w′
minS = 0. Write

www∗ for the quadratic variation of www, www′↑ for the cumulative variation of www′, and zzz for 〈χ[[σ < maxS]]〉σ∈S .

Suppose that 2K(
√

‖www∗‖∞+2‖zzz×www′↑‖∞) < 1. Set vvv = www+www′. Then for any xxx⋆, yyy ∈ MS-i = MS-i(S) there
is a unique process xxx ∈ MS-i such that

xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))<.

654K Lemma Suppose that 〈At〉t∈T is right-continuous, and that S ⊆ T is an order-convex sublattice
with a least member. Let h : R2 → R be a locally bounded Borel measurable function. Take processes xxx,
xxx⋆, yyy ∈ MS-i(S) and an integrator vvv ∈ Mn-s(S). Set uuu = Siivvv(h̄(xxx,yyy)) and express uuu as 〈uσ〉σ∈S , uuu< as
〈u<σ〉σ∈S .

Fix τ ∈ S. Set

S ′ = S ∧ τ , xxx′ = xxx↾S ′, vvv′ = vvv↾S ′, yyy′ = yyy↾S ′, xxx′
⋆ = xxx⋆↾S

′,

S ′′ = S ∨ τ , xxx′′ = xxx↾S ′′, vvv′′ = vvv↾S ′′, yyy′′ = yyy↾S ′′ xxx′′
⋆ = xxx⋆↾S ′′ + x̃xx∗

where x̃xx∗ = u<τ1
(S′′) + (uτ − u<τ )1

(S′′)
< .

(a) Siivvv′(h̄(xxx′, yyy′)) = Siivvv(h̄(xxx,yyy))↾S
′, so Siivvv′(h̄(xxx′, yyy′))< = Siivvv(h̄(xxx,yyy))<↾S

′.
(b) xxx′′

⋆ ∈ MS-i(S
′′).

(c) xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))< if and only if

xxx′ = xxx′
⋆ + Siivvv′(h̄(xxx′, yyy′))< and xxx′′ = xxx′′

⋆ + Siivvv′′(h̄(xxx′′, yyy′′))<.

654L Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T with
a least member. Suppose that h : R2 → R is a locally bounded Borel measurable function and that K ≥ 0 is
such that |h(α, β)−h(α′, β)| ≤ K|α−α′| for all α, α′, β ∈ R. Let vvv be a locally near-simple local integrator
with domain S. Then for any locally S-integrable processes xxx⋆, yyy with domain S there is a unique locally
S-integrable process xxx with domain S such that

xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))<.
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655 The Black-Scholes model

This volume is supposed to be an introduction to stochastic integration for a mathematically sophisticated
but otherwise untutored readership. You will find it difficult to persuade anyone else to take your efforts
seriously if you do not have something to say about its most famous applications, starting with Black &

Scholes 73. I will therefore take the space to give a very short account of the simplest model derived by
their method, even though the mathematical content is no more than direct quotes from the work so far,
and all the interesting ideas relate to the theory of financial markets.

655A Stochastic differential equations In §§651 and 653, I expressed every result in terms of integral
equations; so that Theorem 651B, for instance, reads

∫

S
uuu dzzz =

∫

S
uuu× zzz dvvv.

But the mnemonic for it, in the style of §617, would be

dzzz ∼ zzz dvvv,

and some authors are happy to express this in the form
dzzz

dvvv
= zzz. Similarly, where in Theorem 654G I write

uuu = uuu⋆ + iivvv(h̄(uuu,yyy)),

others might write

uminS = u⋆,minS , duuu ∼ duuu⋆ + h̄(uuu,yyy)dvvv

or perhaps

uminS = u⋆,minS ,
duuu

dvvv
=

duuu⋆

dvvv
+ h̄(uuu,yyy).

655B A model of stock prices For the rest of this section, I will suppose that (A, µ̄, [0,∞[ , 〈At〉t≥0,

T , 〈Aτ 〉τ∈T ) is a right-continuous real-time stochastic integration structure and S is a non-empty ideal of
T . Let ιιι be the identity process and www a Brownian-type process on S. Consider the differential equation

duuu ∼ αuuudιιι+ βuuudwww, u0̌ = u⋆

or

uuu = u⋆1+ αiiιιι(uuu) + βiiwww(uuu) = u⋆1+ iiw̃ww(uuu)

where w̃ww = αιιι + βwww and u⋆ ∈ L0(A0). Then w̃ww is a locally jump-free local integrator and its quadratic
variation w̃ww∗ is β2ιιι. So the equation has solution

uuu = u⋆ exp(w̃ww − 1
2β

2ιιι),

which is a locally jump-free local integrator and is unique.

655C A model for options Now suppose that we have an ‘option’ in a ‘stock’ whose value is accurately
modelled by the process uuu. Our objective is to find a rational approach leading to a way of determining
the value vvv of this option. We assume that there is a function h such that vvv = h̄(uuu, ιιι). (If uuu and vvv are
represented by real-valued processes 〈Ut〉t≥0 and 〈Vt〉t≥0 with càdlàg sample paths, we are supposing that
Vt(ω) = h(Ut(ω), t) for most pairs (ω, t).) The terms of the option will give us some information about the
function h; for instance, a call option, allowing us to buy a quantity c of the stock for a strike price x1 at
expiry time t1, will then have value h(x, t1) = cmax(x− x1, 0), because we shall be able to buy the stock at
price x1 and sell it at price x; if x ≤ x1, we just do nothing.

We assume that h is twice continuously differentiable, with partial derivatives h1, h2 and second partial
derivatives h11, . . . , h22. Then

vvv = h̄(u⋆, 0) + iiuuu(h̄1(uuu, ιιι)) + iiιιι(h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι)).
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655D Hedging and a risk-free portfolio Still supposing that there is such a function h, consider a
hedged version of the option. In addition to the option, we ‘hedge’ by a suitably varying quantity ḡ(uuu, ιιι) in
the stock uuu to give us a portfolio ṽvv = vvv− iiuuu(ḡ(uuu, ιιι)) in which the value of vvv is modified by the accumulated
losses and gains of our hedging strategy. The idea of a ‘hedge’ is that we can ‘sell the stock short’, that
is, sell stock we don’t necessarily possess; we take cash now, and promise to buy the stock back soon at

the price then ruling. This is not an option, it is a contract. From the point of view of our counterparty, it
is just like buying real stock. The idea behind this is that if we possess a call option, we stand to make
money if the stock rises in value, and not if it falls; by going short, we hedge our bet to make our prospects
more even.

We allow g to take negative values; this is because we can ‘go long’, that is, buy some stock with the
intention of selling it again if our strategy calls on us to do so. Note that we believe that uuu is jump-free, so
can imagine adjusting the hedge rapidly compared with changes in uuu.

We shall have

ṽvv = h̄(u⋆, 0) + iiuuu(h̄1(uuu, ιιι)− ḡ(uuu, ιιι)) + iiιιι(h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι)).

So if we set g = h1, we get

ṽvv = h̄(u⋆, 0) + iiιιι(h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι)),

dṽvv ∼ (h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι))dιιι.

Now this is ‘risk-free’; for a short time interval [σ, σ′],

ṽσ′ − ṽσ ≏ (h̄2(uσ, σ) +
1

2
β2h̄11(uσ, σ))× (σ′ − σ)

is well approximated by something calculable from knowledge of the stopping times σ, σ′ and the situation
at the starting time σ, but not requiring any foreknowledge of the evolution of uuu or www. Suppose that we can
be sure of being able to borrow, or lend, cash, at an interest rate ρ, with complete safety. We are supposed
to be operating in a perfect market, in which every agent knows just what we know about www and uuu, and
can do the same calculations, so that the process h̄(uuu, ιιι) describes the evolution of the market price, either
buying or selling, of the option. We therefore expect ṽσ′ − ṽσ, the agreed expected profit from holding the
portfolio ṽ from time σ to time σ′, to be very close to the expected income over that time period if we sell
our option and our holding in the stock uuu, and invest the net proceeds in a bond at interest rate ρ.

At this point I need to remark that these net proceeds will not be the current value ṽσ. The process ṽvv
takes past gains and losses into account in the term iiuuu(ḡ(uuu, ιιι)). Our holding at, and immediately after, the
time σ is vσ − ḡ(uσ, σ)× uσ, because if g is positive, that is, we are shorting the stock, we shall have to buy
it back at once to liquidate our position, while if g is negative, that is, we are holding some stock, we will
sell it. So we expect that

ṽσ′ − ṽσ ≏ ρ(vσ − h̄1(uσ, σ)× uσ)× (σ′ − σ),

that is,

dṽvv ∼ ρ(vvv − h̄1(uuu, ιιι)× uuu)dιιι,

and matching the two formulae for dṽvv we get

h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι) = ρ(vvv − uuu× h̄1(uuu, ιιι)) = ρ(h̄(uuu, ιιι)− uuu× h̄1(uuu, ιιι)).

To ensure this, we shall have to have

h2(x, t) +
1

2
β2x2h11(x, t) = ρ(h(x, t)− xh1(x, t))

for all relevant x and t, that is,

∂h

∂t
+

1

2
β2x2∂

2h

∂x2
+ ρx

∂h

∂x
− ρh = 0
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which is the Black-Scholes equation for the evolution of the value h(x, t) of an option in a stock with
price x at time t.
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