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Chapter 56

Choice and determinacy

Nearly everyone reading this book will have been taking the axiom of choice for granted nearly all the
time. This is the home territory of twentieth-century abstract analysis, and the one in which the great
majority of the results have been developed. But I hope that everyone is aware that there are other ways of
doing things. In this chapter I want to explore what seem to me to be the most interesting alternatives. In
one sense they are minor variations on the standard approach, since I keep strictly to ideas expressible within
the framework of Zermelo-Fraenkel set theory; but in other ways they are dramatic enough to rearrange our
prejudices. The arguments I will present in this chapter are mostly not especially difficult by the standards
of this volume, but they do depend on intuitions for which familiar results which are likely to remain valid
under the new rules being considered.

Let me say straight away that the real aim of the chapter is §567, on the axiom of determinacy. The
significance of this axiom is that it is (so far) the most striking rival to the axiom of choice, in that it leads
us quickly to a large number of propositions directly contradicting familiar theorems; for instance, every
subset of the real line is now Lebesgue measurable (567G). But we need also to know which theorems are
still true, and the first six sections of the chapter are devoted to a discussion of what can be done in ZF
alone (§§561-565) and with countable or dependent choice (§566). Actually §§562-565 are rather off the
straight line to §567, because they examine parts of real analysis in which the standard proofs depend only
on countable choice or less; but a great deal more can be done than most of us would expect, and the
methods are instructive.

Going into details, §561 looks at basic facts from real analysis, functional analysis and general topology
which can be proved in ZF. §562 deals with ‘codable’ Borel sets and functions, using Borel codes to keep
track of constructions for objects, so that if we know a sequence of codes we can avoid having to make a
sequence of choices. A ‘Borel-coded measure’ (§563) is now one which behaves well with respect to codable
sequences of measurable sets; for such a measure we have an integral with versions of the convergence
theorems (§564), and Lebesgue measure fits naturally into the structure (§565). In §566, with ZF + AC(ω),
we are back in familiar territory, and most of the results of Volumes 1 and 2 can be proved if we are willing
to re-examine some definitions and hypotheses. Finally, in §567, I look at infinite games and half a dozen of
the consequences of AD, with a postscript on determinacy in the context of ZF + AC.

Version of 8.9.13

561 Analysis without choice

Elementary courses in analysis are often casual about uses of weak forms of choice; a typical argument
runs ‘for every ǫ > 0 there is an a ∈ A such that |a − x| ≤ ǫ, so there is a sequence in A converging to x’.
This is a direct call on the countable axiom of choice: setting An = {a : a ∈ A, |a− x| ≤ 2−n}, we are told
that every An is non-empty, and conclude that

∏
n∈NAn is non-empty. In the present section I will abjure

such methods and investigate what can still be done with the ideas important in measure theory. We have
useful partial versions of Tychonoff’s theorem (561D), Baire’s theorem (561E), Stone’s theorem (561F) and
Kakutani’s theorem on the representation of L-spaces (561H); moreover, there is a direct construction of
Haar measures, regarded as linear functionals (561G).

Unless explicitly stated otherwise, throughout this section (and the next four) I am working entirely
without any form of the axiom of choice.

561A Set theory without choice The most obvious point is that in the absence of choice
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2 Choice and determinacy 561A

the union of a sequence of countable sets need not be countable.

The elementary arguments of 1A1E still give

N ≃ Z ≃ N× N ≃ Q;

N ≃ [N]<ω ≃
⋃

n≥1 N
n ≃ Qr ×Qr

for every integer r ≥ 1. The Schröder-Bernstein theorem survives. Consequently

R ≃ PN ≃ {0, 1}N ≃ P(N× N) ≃ (PN)N ≃ RN ≃ NN.

X 6≃ PX, so R is not countable.
We can still use transfinite recursion. We still have a class On of von Neumann ordinals such that every

well-ordered set is isomorphic to exactly one ordinal and equipollent with exactly one initial ordinal. I will
say that a set X is well-orderable if there is a well-ordering of X. The standard arguments for Zermelo’s
Well-Ordering Theorem now tell us that for any set X the following are equiveridical:

(i) X is well-orderable;
(ii) X is equipollent with some ordinal;
(iii) there is an injective function from X into a well-orderable set;
(iv) there is a choice function for PX \ {∅}

(that is, a function f such that f(A) ∈ A for every non-empty A ⊆ X). What this means is that if we are
given a family 〈Ai〉i∈I of non-empty sets, and X =

⋃
i∈I Ai is well-orderable, then

∏
i∈I Ai is not empty.

Note that while we still have a first uncountable ordinal ω1, it can have countable cofinality. The union
of a sequence of finite sets need not be countable; but the union of a sequence of finite subsets of a given
totally ordered set is countable. Consequently, if γ : ω1 → R is a monotonic function there is a ξ < ω1 such
that γ(ξ + 1) = γ(ξ).

561C Lemma Let E be the set of non-empty closed subsets of NN. Then there is a family 〈fF 〉F∈E such
that, for each F ∈ E , fF is a continuous function from NN to F and fF (α) = α for every α ∈ F .

561D Tychonoff’s theorem Let 〈Xi〉i∈I be a family of compact topological spaces such that I is well-
orderable. For each i ∈ I let Ei be the family of non-empty closed subsets of Xi, and suppose that there is
a choice function for

⋃
i∈I Ei. Then X =

∏
i∈I Xi is compact.

561E Baire’s theorem (a) Let (X, ρ) be a complete metric space with a well-orderable dense subset.
Then X is a Baire space.

(b) Let X be a compact Hausdorff space with a well-orderable π-base. Then X is a Baire space.

561F Stone’s Theorem Let A be a well-orderable Boolean algebra. Then there is a compact Hausdorff
Baire space Z such that A is isomorphic to the algebra of open-and-closed subsets of Z.

561G Haar measure: Theorem Let X be a completely regular locally compact Hausdorff topological
group.

(i) There is a non-zero left-translation-invariant positive linear functional on Ck(X).
(ii) If φ, φ′ are non-zero left-translation-invariant positive linear functionals on Ck(X) then each is a

scalar multiple of the other.

561H Kakutani’s theorem (a) Let U be an Archimedean Riesz space with a weak order unit. Then
there are a Dedekind complete Boolean algebra A and an order-dense Riesz subspace of L0(A), containing
χ1, which is isomorphic to U .

(b) Let U be an L-space with a weak order unit e. Then there is a totally finite measure algebra (A, µ̄)
such that U is isomorphic, as normed Riesz space, to L1(A, µ̄), and we can choose the isomorphism to match
e with χ1.

Measure Theory (abridged version)



562B Borel codes 3

561I Hilbert spaces: Proposition Let U be a Hilbert space.
(a) If C ⊆ U is a non-empty closed convex set then for any u ∈ U there is a unique v ∈ C such that

‖u− v‖ = min{‖u− w‖ : w ∈ C}.
(b) Every closed linear subspace of U is the image of an orthogonal projection, that is, has an orthogonal

complement.
(c) Every member of U∗ is of the form u 7→ (u|v) for some v ∈ U .
(d) U is reflexive.
(e) If C ⊆ U is a norm-closed convex set then it is weakly closed.

Version of 20.10.13

562 Borel codes

The concept of ‘Borel set’, either in the real line or in general topological spaces, has been fundamental
in measure theory since before the modern subject existed. It is at this point that the character of the
subject changes if we do not allow ourselves even the countable axiom of choice. I have already mentioned
the Feferman-Lévy model in which R is a countable union of countable sets; immediately, every subset of R
is a countable union of countable sets and is ‘Borel’ on the definition of 111G. In these circumstances that
definition becomes unhelpful.

An alternative which leads to a non-trivial theory, coinciding with the usual theory in the presence of
AC, is the algebra of ‘codable Borel sets’ (562B). This is not necessarily a σ-algebra, but is closed under
unions and intersections of ‘codable sequences’ (562K). When we come to look for measurable functions,
the corresponding concept is that of ‘codable Borel function’ (562L); again, we do not expect the limit of
an arbitrary sequence of codable Borel functions to be measurable in any useful sense, but the limit of a
codable sequence of codable Borel functions is again a codable Borel function (562Ne). The same ideas can
be used to give a theory of ‘codable Baire sets’ in any topological space (562T).

562A Trees (a) Set S∗ =
⋃

n≥1 N
n. For σ ∈ S∗ and T ⊆ S∗, write Tσ for {τ : τ ∈ S∗, σaτ ∈ T}

(notation: 5A1C).

(b) Let T0 be the family of sets T ⊆ S∗ such that σ↾n ∈ T whenever σ ∈ T and n ≥ 1. Recall from
421N1 that we have a derivation ∂ : T0 → T0 defined by setting

∂T = {σ : σ ∈ S∗, Tσ 6= ∅},

with iterates ∂ξ, for ξ < ω1, defined by setting

∂0T = T , ∂ξT =
⋂

η<ξ ∂(∂
ηT ) for ξ ≥ 1.

Now for any T ∈ T0 there is a ξ < ω1 such that ∂ξT = ∂ηT whenever ξ ≤ η < ω1.

(c) We therefore still have a rank function r : T0 → ω1 defined by saying that r(T ) is the least ordinal
such that ∂r(T )T = ∂r(T )+1T . Now ∂r(T )T is empty iff there is no α ∈ NN such that α↾n ∈ T for every
n ≥ 1.

Let T be the set of those T ∈ T0 with no infinite branch, that is, such that ∂r(T )T = ∅.

(d) For T ∈ T , set AT = {i : <i> ∈ T}. We need a fact not covered in §421: for any T ∈ T ,
r(T ) = sup{r(T<i>) + 1 : i ∈ AT }.

562B Coding sets with trees (a) Let X be a set and 〈En〉n∈N a sequence of subsets of X. Define
φ : T → PX inductively by saying that

φ(T ) =
⋃

i∈AT

Ei if r(T ) ≤ 1,

=
⋃

i∈AT

X \ φ(T<i>) if r(T ) > 1.

1Early editions of Volume 4 used a slightly different definition of iterated derivations, so that the ‘rank’ of a tree was not

quite the same.
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4 Choice and determinacy 562B

I will call φ the interpretation of Borel codes defined by X and 〈En〉n∈N.

(b) Of course φ(∅) = ∅. If we set

T ∗ = {<0>,<0>a<0>,<0>a<0>a<0>,<1>,<1>a<0>}

and

T = {<0>} ∪ {<0>aσ : σ ∈ T ∗},

then

φ(T ∗) = X, φ(T ) = ∅,

while T 6= ∅.

(c) Now suppose that X is a second-countable topological space and that 〈Un〉n∈N, 〈Vn〉n∈N are two
sequences running over bases for the topology ofX. Let φ : T → PX and φ′ : T → PX be the interpretations
of Borel codes defined by 〈Un〉n∈N, 〈Vn〉n∈N respectively. Then there is a function Θ : T → T \ {∅} such
that φ′Θ = φ.

(d) Now say that a codable Borel set in X is one expressible as φ(T ) for some T ∈ T , starting from
some sequence running over a base for the topology of X. I will write Bc(X) for the family of codable Borel
sets of X.

The definition of ‘interpretation of Borel codes’ makes it plain that any σ-algebra of subsets of X con-
taining every open set will also contain every codable Borel set; every codable Borel set is a ‘Borel set’ on
the definition of 111G or 4A3A.

562C (a) For instance, there are functions Θ0 : T → T , Θ1 : T × T → T , Θ2 : T × T → T ,
Θ3 : T × T → T such that, for any interpretation φ of Borel codes,

φ(Θ0(T )) = X \ φ(T ), φ(Θ1(T, T
′)) = φ(T ) ∪ φ(T ′),

φ(Θ2(T, T
′)) = φ(T ) ∩ φ(T ′), φ(Θ3(T, T

′)) = φ(T ) \ φ(T ′)

for all T , T ′ ∈ T .

(b) For any countable set K we have functions Θ̃1, Θ̃2 :
⋃

J⊆K T J → T such that whenever X is a

set, 〈En〉n∈N is a sequence of subsets of X and φ is the corresponding interpretation of Borel codes, then

φ(Θ̃1(τ)) =
⋃

j∈J φ(τ(j)) and φ(Θ̃2(τ)) = X ∩
⋂

j∈J φ(τ(j)) whenever J ⊆ K and τ ∈ T J .

(c) Let X be a regular second-countable space, 〈Un〉n∈N a sequence running over a base for the topology
of X containing ∅, and φ : T → PX the associated interpretation of Borel codes. Then there are functions
Θ′

1, Θ
′
2 : T × T → T such that

φ(Θ′
1(T, T

′)) = φ(T ) ∪ φ(T ′), φ(Θ′
2(T, T

′)) = φ(T ) ∩ φ(T ′),

r(Θ′
1(T, T

′)) = r(Θ′
2(T, T

′)) = max(r(T ), r(T ′))

for all T , T ′ ∈ T .

562D Proposition (a) If X is a second-countable space, then the family of codable Borel subsets of X
is an algebra of subsets of X containing every Gδ set and every Fσ set.

(b) [AC(ω)] Every Borel set is a codable Borel set.

562E Proposition Let X be a second-countable space and Y ⊆ X a subspace of X. Then Bc(Y ) =
{Y ∩ E : E ∈ Bc(X)}.

*562F Theorem (a) If X is a Hausdorff second-countable space and A, B are disjoint analytic subsets
of X, there is a codable Borel set E ⊆ X such that A ⊆ E and B ∩ E = ∅.

(b) Let X be a Polish space. Then a subset E of X is a codable Borel set iff E and X \ E are analytic.

Measure Theory (abridged version)



562N Borel codes 5

562G Resolvable sets: Definition I will say that a subset E of a topological space X is resolvable
if there is no non-empty set A ⊆ X such that A ⊆ A ∩ E ∩A \ E.

562H Proposition Let X be a topological space, and E the set of resolvable subsets of X. Then E is
an algebra of sets containing every open subset of X.

562I Theorem Let X be a second-countable space, 〈Un〉n∈N a sequence running over a base for the
topology of X, and φ : T → Bc(X) the associated interpretation of Borel codes. Let E be the algebra of
resolvable subsets of X. Then there is a function ψ : E → T such that φ(ψ(E)) = E for every E ∈ E .

562J Codable families of sets Let X be a second-countable space and Bc(X) the algebra of codable
Borel subsets of X. Let 〈Un〉n∈N, 〈Vn〉n∈N be sequences running over bases for the topology of X, and
φ : T → Bc(X), φ′ : T → Bc(X) the corresponding interpretations of Borel codes. Let us say that a family
〈Ei〉i∈I is φ-codable if there is a family 〈T (i)〉i∈I in T such that φ(T (i)) = Ei for every i ∈ I. Then 〈Ei〉i∈I

is φ-codable iff it is φ′-codable.
We may therefore say that a family 〈Ei〉i∈I in Bc(X) is codable if it is φ-codable for some interpretation

of Borel codes defined by the procedure of 562B from a sequence running over a base for the topology of X.
Note that any finite family in Bc(X) is codable, and that any family of resolvable sets is codable; also any

subfamily of a codable family is codable. Slightly more generally, if 〈Ei〉i∈I is a codable family in Bc(X), J
is a set, and f : J → I is a function, then 〈Ef(j)〉j∈J is codable. If 〈Ei〉i∈I and 〈Fi〉i∈I are codable families
in Bc(X), then so are 〈X \ Ei〉i∈I , 〈Ei ∪ Fi〉i∈I , 〈Ei ∩ Fi〉i∈I and 〈Ei \ Fi〉i∈I .

562K Proposition Let X be a second-countable space and 〈En〉n∈N a codable sequence in Bc(X). Then
(a)

⋃
n∈NEn,

⋂
n∈NEn belong to Bc(X);

(b) 〈
⋃

i<nEi〉n∈N is a codable family in Bc(X);
(c) 〈En \

⋃
i<nEi〉n∈N is a codable family in Bc(X).

562L Codable Borel functions Let X and Y be second-countable spaces. A function f : X → Y is a
codable Borel function if 〈f−1[H]〉H⊆Y is open is a codable family in Bc(X).

562M Theorem Let X be a second-countable space, 〈Un〉n∈N a sequence running over a base for the
topology of X, and φ : T → Bc(X) the corresponding interpretation of Borel codes.

(a) If Y is another second-countable space, 〈Vn〉n∈N a sequence running over a base for the topology of Y
containing ∅, φY : T → Bc(Y ) the corresponding interpretation of Borel codes, and f : X → Y is a function,
then the following are equiveridical:

(i) f is a codable Borel function;
(ii) 〈f−1[Vn]〉n∈N is a codable sequence in Bc(X);
(iii) there is a function Θ : T → T such that φ(Θ(T )) = f−1[φY (T )] for every T ∈ T .

(b) If Y and Z are second-countable spaces and f : X → Y , g : Y → Z are codable Borel functions then
gf : X → Z is a codable Borel function.

(c) If Y and Z are second-countable spaces and f : X → Y , g : X → Z are codable Borel functions then
x 7→ (f(x), g(x)) is a codable Borel function from X to Y × Z.

(d) If Y is a second-countable space then any continuous function from X to Y is a codable Borel function.

562N Proposition Let X be a second-countable space, and φ : T → Bc(X) the interpretation of Borel
codes associated with some sequence running over a base for the topology of X.

(a) If f : X → R is a function, the following are equiveridical:
(i) f is a codable Borel function;
(ii) the family 〈{x : f(x) > α}〉α∈R is codable;
(iii) 〈{x : f(x) > q}〉q∈Q is codable.

(b) Write T̃ for the set of functions τ : R → T such that

φ(τ(α)) =
⋃

β>α φ(τ(β)) for every α ∈ R,

D.H.Fremlin



6 Choice and determinacy 562N

⋂
n∈N φ(τ(n)) = ∅,

⋃
n∈N φ(τ(−n)) = X.

Then
(i) for every τ ∈ T̃ there is a unique codable Borel function φ̃(τ) : X → R such that φ(τ(α)) = {x :

φ̃(τ)(x) > α} for every α ∈ R;

(ii) every codable Borel function from X to R is expressible as φ̃(τ) for some τ ∈ T̃ .

(c) If 〈τn〉n∈N is a sequence in T̃ such that f(x) = supn∈N φ̃(τn)(x) is finite for every x ∈ X, then f is a
codable Borel function.

(d) If f , g : X → R are codable Borel functions and γ ∈ R, then f + g, γf , |f | and f × g are codable
Borel functions.

(e) If 〈τn〉n∈N is a sequence in T̃ , then there is a codable Borel function f such that lim infn→∞ φ̃(τn)(x) =
f(x) whenever the lim inf is finite.

(f) A subset E of X belongs to Bc(X) iff χE : X → R is a codable Borel function.

562O Remarks (a) For some purposes there are advantages in coding real-valued functions by functions
from Q to T rather than by functions from R to T .

(b) As in 562C, the constructions here are largely determinate. For instance, the function Θ of 562M(a-
iii) can be built by a definite rule from the sequence 〈T (n)〉n∈N provided by the hypothesis (a-ii) there.
What this means is that if we have a family 〈(Yi, 〈Vin〉n∈N, fi)〉i∈I such that Yi is a second-countable space,
〈Vin〉n∈N is a sequence running over a base for the topology of Yi, and fi : X → Yi is a continuous function

for each i ∈ I, then there will be a function Θ̃ : T × I → T such that φ(Θ̃(T, i)) = f−1
i [φi(T )] for every

i ∈ I and T ∈ T , where φi : T → Bc(Yi) is the interpretation of Borel codes corresponding to the sequence
〈Vin〉n∈N.

(c) Similarly, we have a function Θ̃1 : T̃ × T̃ → T̃ such that φ̃(Θ̃1(τ, τ
′)) will always be φ̃(τ)− φ̃(τ ′) for

τ , τ ′ ∈ T̃ . Equally, we have a function Θ̃∗
1 : T̃ N → T̃ N such that

φ̃(Θ̃∗
1(〈τn〉n∈N)(m)) = infn≥m φ̃(τn)

for every m whenever 〈τn〉n∈N is a sequence in T̃ such that infn∈N φ̃(τn) is defined as a real-valued function
on X.

562P Codable Borel equivalence (a) If X is a set, we can say that two second-countable topologies
S, T on X are codably Borel equivalent if the identity functions (X,S) → (X,T) and (X,T) → (X,S)
are codable Borel functions. In this case, S and T give the same families of codable Borel functions and the
same algebra Bc(X).

(b) If (X,T) is a second-countable space and 〈En〉n∈N is any codable sequence in Bc(X), there is a
topology S on X, generated by a countable algebra of subsets of X, such that S and T are codably Borel
equivalent and every En belongs to S.

562Q Resolvable functions Let X be a topological space. I will say that a function f : X → [−∞,∞]
is resolvable if whenever α < β in R and A ⊆ X is a non-empty set, then one of {x : x ∈ A, f(x) ≤ α},
{x : x ∈ A, f(x) ≥ β} is not dense in A.

Examples (a) Any semi-continuous function from X to [−∞,∞] is resolvable.

(b) If f : X → R is such that {x : f(x) > α} is resolvable for every α, then f is resolvable. In particular,
the indicator function of a resolvable set is resolvable.

(c) A function f : R → R which has bounded variation on every bounded set is resolvable.

562R Theorem Let X be a second-countable space, 〈Un〉n∈N a sequence running over a base for the
topology of X, and φ : T → Bc(X) the associated interpretation of Borel codes. Let R be the family of

resolvable real-valued functions on X. Then there is a function ψ̃ : R → T R such that

φ(ψ̃(f)(α)) = {x : f(x) > α}

for every f ∈ R and α ∈ R.

Measure Theory (abridged version)



562Tc Borel codes 7

562S Codable families of codable functions (a) If X and Y are second-countable spaces, a family
〈fi〉i∈I of functions fromX to Y is a codable family of codable Borel functions if 〈f−1

i [H]〉i∈I,H⊆Y is open

is a codable family in Bc(X).

(b) Uniformizing the arguments of 562N, it is easy to check that a family 〈fi〉i∈I of real-valued functions

on X is a codable family of codable Borel functions iff there is a family 〈τi〉i∈I in T̃ such that fi = φ̃(τi) for
every i.

(c) 562Ne can be rephrased as

if 〈fn〉n∈N is a codable sequence of real-valued codable Borel functions on X, there is a codable
Borel function f such that f(x) = lim infn→∞ fn(x) whenever the lim inf is finite,

and 562R implies that

the family of resolvable real-valued functions on X is a codable family of codable Borel func-
tions.

(d) If X, Y and Z are second-countable spaces, 〈fi〉i∈I is a codable family of codable Borel functions
from X to Y , and 〈gi〉i∈I is a codable family of codable Borel functions from Y to Z, then 〈gifi〉i∈I is a
codable family of codable functions from X to Z.

562T Codable Baire sets Start by settling on a sequence running over a base for the topology of RN,
with the associated interpretation φ : T → Bc(R

N) of Borel codes. Let X be a topological space.

(a) A subset E of X is a codable Baire set if it is of the form f−1[F ] for some continuous f : X → RN

and F ∈ Bc(R
N); write Bac(X) for the family of such sets. If E ∈ Bac(X), then a code for E will be a

pair (f, T ) where f : X → RN is continuous, T ∈ T and E = f−1[φ(T )]. A family 〈Ei〉i∈I in Bac(X) is a
codable family if there is a family 〈(fi, T

(i))〉i∈I such that (fi, T
(i)) codes Ei for every i.

(b)(i) Suppose that 〈fi〉i∈I is a countable family of continuous functions from X to RN, and 〈T (i)〉i∈I

a family in T . Then there are a continuous function f : X → RN and a sequence 〈T̂ (i)〉i∈N in T such that

(f, T̂ (i)) codes the same Baire set as (fi, T
(i)) for every i ∈ I.

(ii) It follows that if 〈Ei〉i∈N is a codable sequence in Bac(X) then
⋃

i∈NEi and
⋂

i∈NEi belong to
Bac(X).

(iii) Bac(X) is an algebra of subsets of X. Every zero set belongs to Bac(X).

(iv) If Y is another topological space and g : X → Y is continuous, then 〈g−1[Fi]〉i∈I is a codable
family in Bac(X) for every codable family 〈Fi〉i∈I in Bac(Y ).

(c)(i) A function f : X → R is a codable Baire function if there are a continuous g : X → RN and
a codable Borel function h : RN → R such that f = hg. A family 〈fi〉i∈I of codable Baire functions is a
codable family if there is a family 〈(gi, hi)〉i∈I such that gi : X → RN is a continuous function for every
i ∈ I and 〈hi〉i∈I is a codable family of codable Borel functions from RN to R.

(ii) Suppose that 〈fn〉n∈N is a codable sequence of codable Baire functions from X to R. Then there
are a continuous function g : X → RN and a codable sequence 〈hn〉n∈N of codable Borel functions from RN

to R such that fn = hng for every n ∈ N.

(iii) If 〈fn〉n∈N is a codable sequence of codable Baire functions, there is a codable Baire function f
such that f(x) = lim infn→∞ fn(x) whenever the lim inf is finite.

(iv) The family of codable Baire functions is a Riesz subspace of RX containing all continuous functions
and closed under multiplication.

(v) The family of continuous real-valued functions on X is a codable family of codable Baire functions.

(vi) If E ⊆ X, then E ∈ Bac(X) iff χE : X → R is a codable Baire function.

D.H.Fremlin



8 Choice and determinacy 562Td

(d) If 〈fn〉n∈N is a codable sequence of codable Baire functions from X to R, then 〈f−1
n [H]〉n∈N,H⊆R is open

is codable.

562U Proposition Let (X,T) be a second-countable space. Then there is a second-countable topology
S on X, codably Borel equivalent to T, such that Bc(X) = Bac(X,S) and the codable families in Bc(X)
are exactly the codable families in Bac(X,S).

562V Theorem (a) Let A be a Dedekind σ-complete Boolean algebra, and 〈an〉n∈N a sequence in A.
Then we have an interpretation φ : T → A of Borel codes such that

φ(T ) = sup
i∈AT

ai if r(T ) ≤ 1,

= sup
i∈AT

1 \ φ(T<i>) if r(T ) > 1,

where AT = {i : <i> ∈ T} as usual.
(b) For n ∈ N, set En = {x : x ∈ {0, 1}N, x(n) = 1}. Let A be a Dedekind σ-complete Boolean algebra,

and 〈an〉n∈N a sequence in A. Let φ : T → A and ψ : T → P({0, 1}N) be the interpretations of Borel codes
corresponding to 〈an〉n∈N and 〈En〉n∈N. If T , T

′ ∈ T are such that φ(T ) 6⊆ φ(T ′), then ψ(T ) 6⊆ ψ(T ′).

Version of 3.12.13

563 Borel measures without choice

Having decided that a ‘Borel set’ is to be one obtainable by a series of operations described by a Borel
code, it is a natural step to say that a ‘Borel measure’ should be one which respects these operations
(563A). In regular spaces, such measures have strong inner and outer regularity properties also based on the
Borel coding (563D-563F), and we have effective methods of constructing such measures (563H). Analytic
sets are universally measurable (563I). We can use similar ideas to give a theory of Baire measures on
general topological spaces (563J-563K). In the basic case, of a second-countable space with a codably σ-
finite measure, we have a measure algebra with many of the same properties as in the standard theory
(563M-563N).

The theory would not be very significant if there were no interesting Borel-coded measures, so you may
wish to glance ahead to §565 to confirm that Lebesgue measure can be brought into the framework developed
here.

563A Definitions (a) Let X be a second-countable space and Bc(X) the algebra of codable Borel
subsets of X. I will say that a Borel-coded measure on X is a functional µ : Bc(X) → [0,∞] such that
µ∅ = 0 and µ(

⋃
n∈NEn) =

∑∞

n=0 µEn whenever 〈En〉n∈N is a disjoint codable family in Bc(X).

(b) I will say that a subset of X is negligible if it is included in a set of measure 0. We can now define
the completion of µ to be the natural extension of µ to the algebra {E△A : E ∈ Bc(X), A is µ-negligible}.

(c) I will say that a Borel-coded measure µ is semi-finite if sup{µF : F ⊆ E, µF <∞} = ∞ whenever
µE = ∞.

(d) A Borel-coded measure on X is codably σ-finite if there is a codable sequence 〈En〉n∈N in Bc(X)
such that X =

⋃
n∈NEn and µEn is finite for every n.

563B Proposition Let (X,T) be a second-countable space and µ a Borel-coded measure on X.
(a) Let 〈En〉n∈N be a codable sequence in Bc(X).

(i) µ(
⋃

n∈NEn) ≤
∑∞

n=0 µEn.
(ii) If 〈En〉n∈N is non-decreasing, µ(

⋃
n∈NEn) = limn→∞ µEn.

(iii) If 〈En〉n∈N is non-increasing and µE0 is finite, then µ(
⋂

n∈NEn) = limn→∞ µEn.

c© 2008 D. H. Fremlin
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563F Borel measures without choice 9

(b) µ is τ -additive.
(c) Suppose that T is T1. If E is the algebra of resolvable subsets of X, then µ↾E is countably additive

in the sense that µE =
∑∞

n=0 µEn for any disjoint family 〈En〉n∈N in E such that E = supn∈NEn is defined
in E .

563C Corollary Let X be a second-countable space, µ a Borel-coded measure on X and 〈En〉n∈N a
sequence of resolvable sets in X.

(a)(i)
⋃

n∈NEn is measurable;

(ii) µ(
⋃

n∈NEn) ≤
∑∞

n=0 µEn;

(iii) if 〈En〉n∈N is disjoint, µ(
⋃

n∈NEn) =
∑∞

n=0 µEn;
(iv) if 〈En〉n∈N is non-decreasing, µ(

⋃
n∈NEn) = limn→∞ µEn.

(b)(i)
⋂

n∈NEn is measurable;
(ii) if 〈En〉n∈N is non-increasing and infn∈N µEn is finite, then µ(

⋂
n∈NEn) = limn→∞ µEn.

563D Lemma Let (X,T) be a regular second-countable space and µ : T → [0,∞] a functional such that

µ∅ = 0,
µG ≤ µH if G ⊆ H,
µ is modular,
µ(
⋃

n∈NGn) = limn→∞ µGn for every non-decreasing sequence 〈Gn〉n∈N in T,⋃
{G : G ∈ T, µG <∞} = X.

(a) µ(
⋃

i∈I Gi) ≤
∑

i∈I µGi for every countable family 〈Gi〉i∈I in T.
(b) There is a function π∗ : T× N → T such that

X \G ⊆ π∗(G, k), µ(G ∩ π∗(G, k)) ≤ 2−k

whenever G ∈ T and k ∈ N.
(c) Let φ : T → Bc(X) be an interpretation of Borel codes defined from a sequence running over T. Then

there are functions π, π′ : T × N → T such that

φ(T ) ⊆ π(T, n), X \ φ(T ) ⊆ π′(T, n), µ(π(T, n) ∩ π′(T, n)) ≤ 2−n

for every T ∈ T and n ∈ N.

563E Lemma Let X be a second-countable space and M a non-empty upwards-directed set of Borel-
coded measures on X. For each codable Borel set E ⊆ X, set νE = supµ∈M µE. Then ν is a Borel-coded
measure on X.

563F Proposition Let (X,T) be a second-countable space and µ a Borel-coded measure on X.
(a) For any F ∈ Bc(X), we have a Borel-coded measure µF on X defined by saying that µFE = µ(E∩F )

for every E ∈ Bc(X).
(b) We have a semi-finite Borel-coded measure µsf defined by saying that

µsf(E) = sup{µF : F ∈ Bc(X), F ⊆ E, µF <∞}

for every E ∈ Bc(X).
(c)(i) If µ is locally finite it is codably σ-finite.
(ii) If µ is codably σ-finite, it is semi-finite and there is a totally finite Borel-coded measure ν on X

with the same null ideal as µ.
(iii) If µ is codably σ-finite, there is a non-decreasing codable sequence of codable Borel sets of finite

measure which covers X.
(d) If X is regular then the following are equiveridical:
(i) µ is locally finite;
(ii) µ is semi-finite, outer regular with respect to the open sets and inner regular with respect to the

closed sets;
(iii) µ is semi-finite and outer regular with respect to the open sets.

(e) If X is regular and µ is semi-finite, then µ is inner regular with respect to the closed sets of finite
measure.

D.H.Fremlin



10 Choice and determinacy 563F

(f) If X is Polish and µ is semi-finite, then µ is inner regular with respect to the compact sets.
(g) If µ is locally finite, and ν is another Borel-coded measure on X agreeing with µ on the open sets,

then ν = µ.

563G Proposition Let X be a set and θ : PX → [0,∞] a submeasure.
(a)

Σ = {E : E ⊆ X, θA = θ(A ∩ E) + θ(A \ E) for every A ⊆ X}

is an algebra of subsets of X, and θ↾Σ is additive in the sense that θ(E ∪ F ) = θE + θF in [0,∞] whenever
E, F ∈ Σ are disjoint.

(b) If E ⊆ X and for every ǫ > 0 there is an F ∈ Σ such that E ⊆ F and θ(F \ E) ≤ ǫ, then E ∈ Σ.

563H Theorem Let (X,T) be a regular second-countable space and µ : T → [0,∞] a functional such
that

µ∅ = 0,
µG ≤ µH if G ⊆ H,
mu is modular,
µ(
⋃

n∈NGn) = limn→∞ µGn for every non-decreasing sequence 〈Gn〉n∈N in T,⋃
{G : G ∈ T, µG <∞} = X.

Then µ has a unique extension to a Borel-coded measure on X.

563I Theorem Let X be a Hausdorff second-countable space, µ a codably σ-finite Borel-coded measure
on X, and A ⊆ X an analytic set. Then there are a codable Borel set E ⊇ A and a sequence 〈Kn〉n∈N of
compact subsets of A such that E \

⋃
n∈NKn is negligible. Consequently A is measured by the completion

of µ.

563J Baire-coded measures If X is a topological space, and Bac(X) its algebra of codable Baire
sets, a Baire-coded measure on X will be a function µ : Bac(X) → [0,∞] such that µ∅ = 0 and
µ(
⋃

n∈NEn) =
∑∞

n=0 µEn for every disjoint codable sequence 〈En〉n∈N in Bac(X).

563K Proposition (a) If X and Y are topological spaces, f : X → Y is a continuous function and µ is
a Baire-coded measure on X, then F 7→ µf−1[F ] : Bac(Y ) → [0,∞] is a Baire-coded measure on Y .

(b) Suppose that µ is a Baire-coded measure on a topological space X, and 〈En〉n∈N is a codable family
in Bac(X). Then

(i) µ(
⋃

n∈NEn) ≤
∑∞

n=0 µEn;
(ii) If 〈En〉n∈N is non-decreasing, µ(

⋃
n∈NEn) = limn→∞ µEn;

(iii) If 〈En〉n∈N is non-increasing and µE0 is finite, then µ(
⋂

n∈NEn) = limn→∞ µEn.
(c) Let X be a topological space and M a non-empty upwards-directed family of Baire-coded measures

on X. Set νE = supµ∈M µE for every codable Baire set E ⊆ X. Then ν is a Baire-coded measure on X.

563L Proposition Suppose that X is a topological space; write G for the lattice of cozero subsets of X.
Let µ : G → [0,∞] be such that

µ∅ = 0,
µG ≤ µH if G ⊆ H,
µ is modular,
µ(
⋃

n∈NGn) = limn→∞ µGn whenever 〈Gn〉n∈N is a non-decreasing sequence in G and there
is a sequence 〈fn〉n∈N of continuous functions from X to R such that Gn = {x : fn(x) 6= 0} for
every n,
µG = sup{µH : H ∈ G, H ⊆ G, µH <∞} for every G ∈ G.

Then there is a Baire-coded measure on X extending µ; if µX is finite, then the extension is unique.

563M Measure algebras If µ is either a Borel-coded measure or a Baire-coded measure, we can form
the quotient Boolean algebra A = domµ/{E : µE = 0} and the functional µ̄ : A → [0,∞] defined by setting

Measure Theory (abridged version)



564B Integration without choice 11

µ̄E• = µE for every E ∈ domµ; µ̄ is a strictly positive additive functional from A to [0,∞]. As in §323, we
have a topology and uniformity on A defined by the pseudometrics (a, b) 7→ µ̄(c ∩ (a△ b)) for c ∈ A of finite
measure; if µ is semi-finite, the topology is Hausdorff.

563N Theorem Let X be a second-countable space, and µ a codably σ-finite Borel-coded measure on
X. Let A and µ̄ be as in 563M. Then A is complete for its measure-algebra uniformity, therefore Dedekind
complete.

563Z Problem Suppose we define ‘probability space’ in the conventional way, following literally the
formulations in 111A, 112A and 211B. Is it relatively consistent with ZF to suppose that every probability
space is purely atomic in the sense of 211K?

Version of 9.2.14

564 Integration without choice

I come now to the problem of defining an integral with respect to a Borel- or Baire-coded measure.
Since a Borel-coded measure can be regarded as a Baire-coded measure on a second-countable space, I will
give the basic results in terms of the wider class. I seek to follow the general plan of Chapter 12, starting
from simple functions and taking integrable functions to be almost-everywhere limits of sequences of simple
functions (564A); the concept of ‘virtually measurable’ function has to be re-negotiated (564Ab). The basic
convergence theorems from §123 are restricted but recognisable (564F). We also have versions of two of the
representation theorems from §436 (564H, 564I).

There is a significant change when we come to the completeness of Lp spaces (564K) and the Radon-
Nikodým theorem (564L), where it becomes necessary to choose sequences, and we need a well-orderable
dense set of functions to pick from. Subject to this, we have workable notions of conditional expectation
operator (564Mc) and product measures (564N, 564O).

564A Definitions (a) Given a topological space X and a Baire-coded measure µ on X, I will write
Bac(X)f for the ring of codable Baire sets of finite measure; S = S(Bac(X)f ) will be the linear subspace of
RX generated by {χE : E ∈ Bac(X)f}. S is a Riesz subspace of RX , and also an f -algebra.

(b) I will write L
0 for the space of real-valued functions f defined almost everywhere in X such that

there is a codable Baire function g : X → R such that f =a.e. g.

(c) Let
∫

: S → R be the positive linear functional defined by saying that
∫
χE = µE for every

E ∈ Bac(X)f .

(d) L
1 will be the set of those real-valued functions f defined almost everywhere in X for which there is

a codable sequence 〈hn〉n∈N in S converging to f almost everywhere and such that
∑∞

n=0

∫
|hn+1−hn| <∞;

I will call such functions integrable.

564B Lemma Let X be a topological space and µ a Baire-coded measure on X.
(a) L1 ⊆ L

0.
(b) If 〈hn〉n∈N is a non-increasing codable sequence in S = S(Bac(X)f ) and limn→∞ hn(x) = 0 for almost

every x, then limn→∞

∫
hn = 0.

(c) If 〈hn〉n∈N and 〈h′n〉n∈N are two codable sequences in S such that limn→∞ hn and limn→∞ h′n are
defined and equal almost everywhere, and

∑∞

n=0

∫
|hn+1−hn| and

∑∞

n=0

∫
|h′n+1 −h′n| are both finite, then

limn→∞

∫
hn and limn→∞

∫
h′n are defined and equal.

(d) If 〈hn〉n∈N is a codable sequence in S and
∑∞

n=0

∫
|hn+1−hn| is finite, then 〈hn〉n∈N converges almost

everywhere. In particular, if 〈hn〉n∈N is a non-decreasing codable sequence in S and supn∈N

∫
hn is finite,

〈hn〉n∈N converges a.e.
(e) If 〈hn〉n∈N is a codable sequence in S+ and lim infn→∞

∫
hn = 0, then lim infn→∞ hn = 0 a.e.

c© 2006 D. H. Fremlin
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12 Choice and determinacy 564C

564C Definition Let X be a topological space and µ a Baire-coded measure on X. For f ∈ L
1, define its

integral
∫
f by saying that

∫
f = limn→∞

∫
hn whenever 〈hn〉n∈N is a codable sequence in S = S(Bac(X)f )

converging to f almost everywhere and
∑∞

n=0

∫
|hn+1 − hn| is finite.

564D Lemma Let X be a topological space and 〈fn〉n∈N a codable sequence of codable Baire functions
on X. Let 〈qi〉i∈N be an enumeration of Q ∩ [0,∞[, starting with q0 = 0. Set

f ′n(x) = max{qi : i ≤ n, qi ≤ max(0, fn(x))}

for n ∈ N and x ∈ X. Then 〈f ′n〉n∈N is a codable sequence of codable Baire functions.

564E Theorem Let X be a topological space and µ a Baire-coded measure on X.
(a)(i) If f , g ∈ L

0 and α ∈ R, then f + g, αf , |f | and f × g belong to L
0.

(ii) If h : R → R is a codable Borel function, hf ∈ L
0 for every f ∈ L

0.
(b) If f , g ∈ L

1 and α ∈ R, then
(i) f + g, αf and |f | belong to L

1;
(ii)

∫
f + g =

∫
f +

∫
g,

∫
αf = α

∫
f ;

(iii) if f ≤a.e. g then
∫
f ≤

∫
g.

(c)(i) If f ∈ L
0, g ∈ L

1 and |f | ≤a.e. g, then f ∈ L
1.

(ii) If E ∈ Bac(X) and χE ∈ L
1 then µE is finite.

564F Theorem Let X be a topological space and µ a Baire-coded measure on X. Suppose that 〈fn〉n∈N

is a codable sequence of integrable codable Baire functions on X.
(a) If 〈fn〉n∈N is non-decreasing and γ = supn∈N

∫
fn is finite, then f = limn→∞ fn is defined a.e. and is

integrable, and
∫
f = γ.

(b) If every fn is non-negative and lim infn→∞

∫
fn is finite, then f = lim infn→∞ fn is defined a.e. and

is integrable, and
∫
f ≤ lim infn→∞

∫
fn.

(c) Suppose that there is a g ∈ L
1 such that |fn| ≤a.e. g for every n, and f = limn→∞ fn is defined a.e.

Then
∫
f and limn→∞

∫
fn are defined and equal.

(d) If
∑∞

n=0

∫
|fn+1 − fn| is finite, then f = limn→∞ fn is defined a.e., and

∫
f and limn→∞

∫
fn are

defined and equal.
(e) If

∑∞

n=0

∫
|fn| is finite, then f =

∑∞

n=0 fn is defined a.e., and
∫
f and

∑∞

n=0

∫
fn are defined and

equal.

564G Integration over subsets: Proposition Let X be a topological space and µ a Baire-coded
measure on X.

(a) If f ∈ L
1, the functional E 7→

∫
f × χE : Bac(X) → R is additive and truly continuous with respect

to µ.
(c) If f , g ∈ L

1, then f ≤a.e. g iff
∫
f × χE ≤

∫
g × χE for every E ∈ Bac(X). f =a.e. g iff

∫
f × χE =∫

g × χE for every E ∈ Bac(X).

564H Theorem Let X be a topological space, and f : Cb(X) → R a sequentially smooth positive linear
functional. Then there is a totally finite Baire-coded measure µ on X such that f(u) =

∫
u dµ for every

u ∈ Cb(X).

564I Riesz Representation Theorem Let X be a completely regular locally compact space, and
f : Ck(X) → R a positive linear functional. Then there is a Baire-coded measure µ on X such that

∫
u dµ

is defined and equal to f(u) for every u ∈ Ck(X).

564J The space L1 Let X be a topological space and µ a Baire-coded measure on X.

(a) If f , g ∈ L
1 then f =a.e. g iff

∫
|f − g| = 0.

(b) As in §242, we have an equivalence relation ∼ on L
1 defined by saying that f ∼ g if f =a.e. g. The set

L1 of equivalence classes has a Riesz space structure and a Riesz norm inherited from the addition, scalar
multiplication, ordering and integral on L

1.
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(c) I define
∫

: L1 → R by saying that
∫
f• =

∫
f for every f ∈ L

1. Similarly, we can define
∫
E
u, for

u ∈ L1 and E ∈ Bac(X), by saying that
∫
E
f• =

∫
f × χE for f ∈ L

1.

564K Theorem Let X be a second-countable space and µ a codably σ-finite Borel-coded measure on
X. Then L1(µ) is a separable L-space.

564L Radon-Nikodým theorem Let X be a second-countable space with a codably σ-finite Borel-
coded measure µ. Let ν : Bc(X) → R be a truly continuous additive functional. Then there is an f ∈ L

1(µ)
such that νE =

∫
f × χE for every E ∈ Bc(X).

564M Inverse-measure-preserving functions (a) Let X and Y be second-countable spaces, with
Borel-coded measures µ and ν. Suppose that ϕ : X → Y is a codable Borel function such that µϕ−1[F ] = νF
for every F ∈ Bc(Y ). Then hϕ ∈ SX and

∫
hϕdµ =

∫
h dν for every h ∈ SY , writing SX = S(Bc(X)f ),

SY for the spaces of simple functions. fϕ ∈ L
0(µ) for every f ∈ L

0(ν). 〈hnϕ〉n∈N is a codable sequence
in SX whenever 〈hn〉n∈N is a codable sequence in SY ; fϕ ∈ L

1(µ) whenever f ∈ L
1(ν), and we have a

norm-preserving Riesz homomorphism T : L1(ν) → L1(µ) defined by setting Tf• = (fϕ)• for f ∈ L
1(µ).

(b) If ν is codably σ-finite, we have a conditional expectation operator in the reverse direction. For any
f ∈ L

1(µ), consider the functional λf defined by setting λfF =
∫
f × χ(ϕ−1[F ]) for F ∈ Bc(Y ). This is

additive and truly continuous.
There is a unique vf ∈ L1(ν) such that

∫
F
vf = λfF for every F ∈ Bc(Y ).

We may call vf the conditional expectation of f with respect to the inverse-measure-preserving func-
tion ϕ.

(c) Still supposing that ν is codably σ-finite, λf = λf ′ whenever f , f ′ ∈ L
1(µ) are equal almost

everywhere, so that we have an operator P : L1(µ) → L1(ν) defined by saying that Pf• = vf for every
f ∈ L

1(µ);
∫
F
Pu =

∫
ϕ−1[F ]

u for every u ∈ L1(µ) and F ∈ Bc(Y ). P is linear. It is positive. It is

elementary to check that if T is the operator of (a) above then PT is the identity operator on L1(ν).

(d) Now consider the special case in which Y = X, the topology of Y is the topology generated by a
codable sequence 〈Vn〉n∈N in Bc(X)f , ν = µ↾Bc(Y ) and ϕ is the identity function. In this case, we can
identify L1(ν) with its image in L1(µ) under T , and P becomes a conditional expectation operator of the
kind examined in 242J.

564N Product measures: Theorem Let X and Y be second-countable spaces, and µ, ν semi-finite
Borel-coded measures on X, Y respectively.

(a) There is a Borel-coded measure λ on X × Y such that λ(E × F ) = µE · νF for all E ∈ Bc(X) and
F ∈ Bc(Y ).

(b) If ν is codably σ-finite then we can arrange that
∫∫

f(x, y)ν(dy)µ(dx) is defined and equal to
∫
fdλ

for every λ-integrable real-valued function f .
(c) If µ and ν are both codably σ-finite then λ is uniquely defined by the formula in (a).

564O Theorem Let 〈(Xk, ρk)〉n∈N be a sequence of complete metric spaces, and suppose that we have a
double sequence 〈Uki〉k,i∈N such that {Uki : i ∈ N} is a base for the topology of Xk for each k. Let 〈µk〉n∈N be
a sequence such that µk is a Borel-coded probability measure on Xk for each k. Set X =

∏
k∈NXk. Then X

is a Polish space and there is a Borel-coded probability measure λ on X such that λ(
∏

k∈NEk) =
∏

k∈N µkEk

whenever 〈Ek〉k∈N ∈
∏

k∈N Bc(Xk) and {k : Ek 6= Xk} is finite.

Version of 25.4.14

565 Lebesgue measure without choice

I come now to the construction of specific non-trivial Borel-coded measures. Primary among them is of
course Lebesgue measure on Rr; we also have Hausdorff measures (565N-565O). For Lebesgue measure I
begin, as in §115, with half-open intervals. The corresponding ‘outer measure’ may no longer be countably

D.H.Fremlin



14 Choice and determinacy §565 intro.

subadditive, so I call it ‘Lebesgue submeasure’. Carathéodory’s method no longer seems quite appropriate,
as it smudges the distinction between ‘negligible’ and ‘outer measure zero’, so I use 563H to show that there
is a Borel-coded measure agreeing with Lebesgue submeasure on open sets (565C-565D); it is the completion
of this Borel-coded measure which I will call Lebesgue measure. We have a version of Vitali’s theorem for
well-orderable families (in particular, for countable families) of balls (565F). From this we can prove the
Fundamental Theorem of Calculus in essentially its standard form (565M).

565A Definitions Throughout this section, except when otherwise stated, r ≥ 1 will be a fixed integer.
I will say that a half-open interval in Rr is a set of the form

[a, b[ = {x : x ∈ Rr, a(i) ≤ x(i) < b(i) for i < r}

where a, b ∈ Rr. For a half-open interval I, set λI = 0 if I = ∅ and otherwise λI =
∏r−1

i=0 b(i)− a(i) where
I = [a, b[. Now for A ⊆ Rr set

θA = inf{
∑∞

j=0 λIj : 〈Ij〉j∈N is a sequence of half-open intervals covering A}.

565B Proposition In the notation of 565A,
(a) the function θ : PRr → [0,∞] is a submeasure,
(b) θI = λI for every half-open interval I ⊆ Rr.

Definition I will call the submeasure θ Lebesgue submeasure on Rr.

565C Lemma Let I be the family of half-open intervals in Rr; let θ be Lebesgue submeasure, and set

Σ = {E : E ⊆ X, θA = θ(A ∩ E) + θ(A \ E) for every A ⊆ X}, ν = θ↾Σ.

(a) Let 〈In〉n∈N be a disjoint sequence in I. Then E =
⋃

n∈N In belongs to Σ and νE =
∑∞

n=0 νIn.
(b) Every open set in Rr belongs to Σ.
(c) If G, H ⊆ Rr are open, then νG+ νH = ν(G ∩H) + ν(G ∪H).
(d) If 〈Gn〉n∈N is a non-decreasing sequence of open sets then ν(

⋃
n∈NGn) = limn→∞Gn.

565D Definition Let θ and ν be as in 565C. By 563H, there is a unique Borel-coded measure µ on Rr

such that µG = νG = θG for every open set G ⊆ Rr. I will say that Lebesgue measure on Rr is the
completion µL of µ; the sets it measures will be Lebesgue measurable.

565E Proposition Let I, θ, Σ, ν, µ and µL be as in 565A-565D.
(a) µ is the restriction of θ to the algebra Bc(R

r) of codable Borel sets.
(b) For every A ⊆ Rr,

θA = inf{µLE : E ⊇ A is Lebesgue measurable} = inf{µG : G ⊇ A is open}.

(c) E ∈ Σ and µLE = νE = θE whenever E is Lebesgue measurable.
(d) µL is inner regular with respect to the compact sets and outer regular with respect to the open sets.

565F Vitali’s Theorem Let C be a well-orderable family of non-singleton closed balls in Rr. For I ⊆ C
set

AI =
⋂

δ>0

⋃
{C : C ∈ I, diamC ≤ δ}.

Let T be the family of open subsets of Rr. Then there are functions Ψ : PC → PC and Θ : PC×N → T such
that Ψ(I) ⊆ I, Ψ(I) is disjoint and countable, µL(Θ(I, k)) ≤ 2−k and AI ⊆

⋃
Ψ(I) ∪ Θ(I, k) whenever

I ⊆ C and k ∈ N. In particular,

AI \
⋃
Ψ(I) ⊆

⋂
k∈N Θ(I, k)

is negligible.

565G Proposition Let A ⊆ Rr be any set. Then its Lebesgue submeasure is

θA = inf{
∑∞

n=0 µLBn : 〈Bn〉n∈N is a sequence of closed balls covering A}.
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565H Corollary Lebesgue measure is invariant under isometries.

565I Lemma (a) Writing Ck(R
r) for the space of continuous real-valued functions on Rr with compact

support, Ck(R
r) ⊆ L

1(µL).
(b) There is a countable set D ⊆ Ck(R

r) such that {g• : g ∈ D} is norm-dense in L1(µL).

565J Lemma Suppose that f is an integrable function on Rr, and that
∫
I
f ≥ 0 for every half-open

interval I ⊆ Rr. Then f(x) ≥ 0 for almost every x ∈ Rr.

565K Theorem A monotonic function f : R → R is differentiable almost everywhere.

565L Lemma Suppose that F : R → R is a bounded non-decreasing function. Then
∫
F ′ is defined and

is at most limx→∞ F (x)− limx→−∞ F (x).

565M Theorem Let F : R → R be a function. Then the following are equiveridical:

(i) there is an integrable function f such that F (x) =
∫
]−∞,x[

f for every x ∈ R,

(ii) F is of bounded variation, absolutely continuous on every bounded interval, and
limx→−∞ F (x) = 0,

and in this case F ′ =a.e. f .

565N Hausdorff measures Let (X, ρ) be a metric space and s ∈ ]0,∞[. As in §471, we can define
Hausdorff s-dimensional submeasure θs : PX → [0,∞] by writing

θsA = sup
δ>0

inf{
∞∑

n=0

(diamDn)
s : 〈Dn〉n∈N is a sequence of subsets of X covering A,

diamDn ≤ δ for every n ∈ N},

counting diam ∅ as 0 and inf ∅ as ∞. θs is a submeasure.

565O Theorem Let (X, ρ) be a second-countable metric space, and s > 0. Then there is a Borel-coded
measure µ on X such that µK = θsK whenever K ⊆ X is compact and θsK is finite.

Version of 22.8.14

566 Countable choice

With AC(ω) measure theory becomes recognisable. The definition of Lebesgue measure used in Volume 1
gives us a true countably additive Radon measure; the most important divergence from the standard theory
is the possibility that every subset of R is Lebesgue measurable. With occasional exceptions (most notably,
in the theory of infinite products) we can use the work of Volume 2. In Volume 3, we lose the two best
theorems in the abstract theory of measure algebras, Maharam’s theorem and the Lifting Theorem; but
function spaces and ergodic theory are relatively unaffected. Even in Volume 4, a good proportion of the
ideas can be applied in some form.

566D Exhaustion: Proposition [AC(ω)] (a) Let P be a partially ordered set such that p∨q = sup{p, q}
is defined for all p, q ∈ P , and f : P → R an order-preserving function. Then there is a non-decreasing
sequence 〈pn〉n∈N in P such that limn→∞ f(pn) = supp∈P f(p).

(b) Let (X,Σ, µ) be a measure space and E ⊆ Σ a non-empty set such that supE∈E µE is finite and
E ∪ F ∈ E for every E, F ∈ E . Then there is a non-decreasing sequence 〈Fn〉n∈N in E such that, setting
F =

⋃
n∈N Fn, µF = supE∈E µE and E \ F is negligible for every E ∈ E .

(c) Let (X,Σ, µ) be a measure space and K a family of sets such that

(α) K ∪K ′ ∈ K for all K, K ′ ∈ K,
(β) whenever E ∈ Σ is non-negligible there is a non-negligible K ∈ K ∩ Σ such that K ⊆ E.
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16 Choice and determinacy 566D

Then µ is inner regular with respect to K.
(d)(i) Let (X,Σ, µ) be a semi-finite measure space. Then µ is inner regular with respect to the family of

sets of finite measure.
(ii) Let (X,Σ, µ) be a perfect measure space. Then whenever E ∈ Σ, f : X → R is measurable and

γ < µE, there is a compact set K ⊆ f [E] such that µf−1[K] ≥ γ.

566E Proposition [AC(ω)] Let (X,Σ, µ) be a semi-finite measure space. Write N for the σ-ideal of
µ-negligible sets.

(a) The following are equiveridical:
(i) µ is σ-finite;
(ii) either µX = 0 or there is a probability measure ν on X with the same domain and the same

negligible sets as µ;
(iii) there is a measurable integrable function f : X → ]0, 1];
(iv) either µX = 0 or there is a measurable function f : X → ]0,∞[ such that

∫
fdµ = 1.

(b) If µ is σ-finite, then
(i) every disjoint family in Σ \ N is countable;
(ii) for every E ⊆ Σ there is a countable E0 ⊆ E such that E \

⋃
E0 is negligible for every E ∈ E .

(c) Suppose that µ is σ-finite, (Y,T, ν) is a semi-finite measure space, and φ : X → Y is a (Σ,T)-
measurable function such that µφ−1[F ] > 0 whenever νF > 0. Then ν is σ-finite.

566F Atomless algebras: Lemma [AC(ω)] Let A be a Dedekind σ-complete Boolean algebra, and µ
a positive countably additive functional on A such that µ1 = 1. Suppose that whenever a ∈ A and µa > 0
there is a b ⊆ a such that 0 < µb < µa. Then there is a function f : A × [0, 1] → A such that f(a, α) ⊆ a
and µ̄f(a, α) = min(α, µ̄a) for a ∈ A and α ∈ [0, 1], and α 7→ f(a, α) is non-decreasing for every a ∈ A.

566H Bounded additive functionals: Lemma [AC(ω)] Let A be a Boolean algebra and ν : A → R

an additive functional such that {νan : n ∈ N} is bounded for every disjoint sequence 〈an〉n∈N in A. Then
ν is bounded.

566I Infinite products: Theorem [AC(ω)] Let 〈(Xi,Σi, µi)〉i∈I be a family of perfect probability
spaces such that X =

∏
i∈I Xi is non-empty. Then there is a complete probability measure λ on X such

that
(i) if Ei ∈ Σi for every i ∈ I, and {i : Ei 6= Xi} is countable, then λ(

∏
i∈I Ei) is defined and equal to∏

i∈I µiEi;

(ii) λ is inner regular with respect to
⊗̂

i∈IΣi.

566J Theorem [AC(ω)] (a) Let 〈(Xi,Ti,Σi, µi)〉i∈I be a family of metrizable Radon probability spaces
such that every µi is strictly positive and X =

∏
i∈I Xi is non-empty. Then the product measure on X is a

quasi-Radon measure.
(b) If I is well-orderable then the product measure on {0, 1}I is a completion regular Radon measure.

566L The Loomis-Sikorski theorem [AC(ω)] (a) Let A be a Dedekind σ-complete Boolean algebra.
Then there are a set X, a σ-algebra Σ of subsets of X and a σ-ideal I of Σ such that A ∼= Σ/I.

(b) Let (A, µ̄) be a measure algebra. Then it is isomorphic to the measure algebra of a measure space.

566M Measure algebras: Proposition [AC(ω)] (a) Let A be a measurable algebra.
(i) For any A ⊆ A there is a countable B ⊆ A with the same upper bounds as A.
(ii) A is Dedekind complete.
(iii) If D ⊆ A is order-dense and c ∈ D whenever c ⊆ d ∈ D, there is a partition of unity included in D.

(b) Let (A, µ̄) be a σ-finite measure algebra and B a subalgebra of A such that (B, µ̄↾B) is a semi-finite
measure algebra. Then (B, µ̄↾B) is a σ-finite measure algebra.
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566N Characterizing the usual measure on {0, 1}N: Theorem [AC(ω)] (a) Let (X,Σ, µ) be an
atomless, perfect, complete, countably separated probability space. Then it is isomorphic to {0, 1}N with
its usual measure.

(b) Let (A, µ̄) be an atomless probability algebra of countable Maharam type. Then it is isomorphic to
the measure algebra of the usual measure on {0, 1}N.

(c) An atomless measurable algebra of countable Maharam type is homogeneous.
(d) For any infinite set I, the measure algebra of the usual measure on {0, 1}I is homogeneous.

566O Boolean values: Proposition [AC(ω)] (a) Let B be the algebra of open-and-closed subsets
of {0, 1}N, and B({0, 1}N) the Borel σ-algebra. If A is a Dedekind σ-complete Boolean algebra and π :
B → A is a Boolean homomorphism, π has a unique extension to a sequentially order-continuous Boolean
homomorphism from B({0, 1}N) to A.

(b) Let A be a Dedekind σ-complete Boolean algebra. Then there is a bijection between L0 = L0(A) and
the set Φ of sequentially order-continuous Boolean homomorphisms from the algebra B(R) of Borel subsets
of R to A, defined by saying that u ∈ L0 corresponds to φ ∈ Φ iff [[u > α]] = φ(]α,∞[) for every α ∈ R.

(c) Let (A, µ̄) be a localizable measure algebra. Write Σum for the algebra of universally measurable
subsets of R. Then for any u ∈ L0(A), we have a sequentially order-continuous Boolean homomorphism
E 7→ [[u ∈ E]] : Σum → A such that

[[u ∈ E]] = sup{[[u ∈ F ]] : F ⊆ E is Borel} = sup{[[u ∈ K]] : K ⊆ E is compact}

= inf{[[u ∈ F ]] : F ⊇ E is Borel} = inf{[[u ∈ G]] : G ⊇ E is open}

for every E ∈ Σum, while

[[u ∈ ]α,∞[ ]] = [[u > α]]

for every α ∈ R.

566P Weak compactness: Theorem [AC(ω)] Let U be a Hilbert space. Then bounded sets in U are
relatively weakly compact.

566Q Theorem [AC(ω)] Let U be an L-space. Then a subset of U is weakly relatively compact iff it is
uniformly integrable.

566R Automorphisms of measurable algebras: Theorem [AC(ω)] Let A be a measurable algebra.
(a) Every automorphism of A has a separator.
(b) Every π ∈ AutA is a product of at most three exchanging involutions belonging to the full subgroup

of AutA generated by π.

566T Proposition [AC(ω)] Let I be any set, and X a separable metrizable space. Then the Baire

σ-algebra Ba(XI) of XI is equal to the σ-algebra
⊗̂

IB(X) generated by sets of the form {x : x(i) ∈ E} for
i ∈ I and Borel sets E ⊆ X.

566Z Problem Is it relatively consistent with ZF + AC(ω) to suppose that there is a non-zero atomless
rigid measurable algebra?

Version of 31.10.14

567 Determinacy

So far, this chapter has been looking at set theories which are weaker than the standard theory ZFC,
and checking which of the principal results of measure theory can still be proved. I now turn to an axiom
which directly contradicts the axiom of choice, and leads to a very different world. This is AD, the ‘axiom
of determinacy’, defined in terms of strategies for infinite games (567A-567C). The first step is to confirm
that we automatically have a weak version of countable choice which is enough to make Lebesgue measure
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18 Choice and determinacy §567 intro.

well-behaved (567D-567E). Next, in separable metrizable spaces all subsets are universally measurable and
have the Baire property (567G). Consequently (at least when we can use AC(ω)) linear operators between
Banach spaces are bounded (567H), additive functionals on σ-complete Boolean algebras are countably
additive (567J), and many L-spaces are reflexive (567K). In a different direction, we find that ω1 is two-
valued-measurable (567L) and that there are many surjections from R onto ordinals (567M).

At the end of the section I include two celebrated results in ZFC (567N, 567O) which depend on some of
the same ideas.

567A Infinite games (a) Let X be a non-empty set and A a subset of XN. In the corresponding infinite
game Game(X,A), players I and II choose members of X alternately, so that I chooses x(0), x(2), . . . and
II chooses x(1), x(3), . . . ; a play of the game is an element of XN; player I wins the play x if x ∈ A,
otherwise II wins. A strategy for I is a function σ :

⋃
n∈NX

n → X; a play x ∈ XN is consistent
with σ if x(2n) = σ(〈x(2i + 1)〉i<n) for every n; σ is a winning strategy if every play consistent with σ
belongs to A. Similarly, a strategy for II is a function τ :

⋃
n≥1X

n → X; a play x is consistent with τ if

x(2n+1) = τ(〈x(2i)〉i≤n) for every n; and τ is a winning strategy for II if x /∈ A whenever x ∈ XN and x is
consistent with τ .

(b) A set A ⊆ XN is determined if either I or II has a winning strategy in Game(X,A).

(c) It will sometimes be convenient to describe games with ‘rules’, so that the players are required to
choose points in subsets of X (determined by the moves so far) at each move. Such a description can be
regarded as specifying A in the form (A′∪G)\H, where G is the set of plays in which II is the first to break
a rule, H is the set of plays in which I is the first to break a rule, and A′ is the set of plays in which both
obey the rules and I wins.

(d) Not infrequently the ‘rules’ will specify different sets for the moves of the two players, so that I always
chooses a point in X1 and II always chooses a point in X2; setting X = X1 ∪X2 we can reduce this to the
formalization above.

567B Theorem Let X be a non-empty well-orderable set. Give X its discrete topology and XN the
product topology. If F ⊆ XN is closed then Game(X,F ) is determined.

567C The axiom of determinacy (a) The standard ‘axiom of determinacy’ is the statement

(AD) Every subset of NN is determined.

Evidently it will follow that every subset of XN is determined for any countable set X.

(b) At the same time, it will be useful to consider a weak form of the axiom of countable choice: for any
set X, write AC(X;ω) for the statement

∏
n∈NAn 6= ∅ whenever 〈An〉n∈N is a sequence of non-empty subsets of X.

567D Theorem AD implies AC(R;ω).

567E Consequences of AC(R;ω) Suppose that AC(R;ω) is true.

(a) If a set X is the image of a subset Y of R under a function f , then AC(X;ω) is true.

(b) In particular, taking S∗ =
⋃

n≥1 N
n, AC(PS∗;ω) is true. It follows that (in any second-countable

space X) every sequence of codable Borel sets is codable and the family of codable Borel sets is a σ-algebra,
coinciding with the Borel σ-algebra B(X) on its ordinary definition. Moreover, since B(X) is an image of
PS∗, we have AC(B(X);ω). Similarly, the family of codable Borel functions becomes the ordinary family
of Borel-measurable functions, and we have countable choice for sets of Borel real-valued functions on X.
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(c) Consequently the results of §562-565 give us large parts of the elementary theory of Borel measures
on second-countable spaces. At the same time, if X is second-countable, the union of a sequence of meager
subsets of X is meager, so the Baire-property algebra of X is a σ-algebra.

(d) We also find that the supremum of a sequence of countable ordinals is again countable.

567F Lemma [AC(R;ω)] Suppose that A ⊆ {0, 1}N is a continuous image of a subset B of {0, 1}N such
that (h−1[B] ∩ F ) ∪H ⊆ NN is determined whenever h : NN → {0, 1}N is continuous, F ⊆ NN is closed and
H ⊆ NN is open.

(a) A is universally measurable.
(b) A has the Baire property in {0, 1}N.

567G Theorem [AD] In any Hausdorff second-countable space, every subset is universally measurable
and has the Baire property.

567H Theorem (a) [AD] Let X be a Polish group and Y a topological group which is either separable
or Lindelöf. Then every group homomorphism from X to Y is continuous.

(b) [AD+AC(ω)] Let X be an abelian topological group which is complete under a metric defining its
topology, and Y a topological group which is either separable or Lindelöf. Then every group homomorphism
from X to Y is continuous.

(c) [AD+AC(ω)] Let X be a complete metrizable linear topological space, Y a linear topological space
and T : X → Y a linear operator. Then T is continuous. In particular, every linear operator between
Banach spaces is a bounded operator.

567I Proposition [AC(R;ω)] Let B̂ be the Baire-property algebra of PN. Then every B̂-measurable
real-valued additive functional on PN is of the form a 7→

∑
n∈a γn for some 〈γn〉n∈N ∈ ℓ1.

567J Proposition [AD] A finitely additive functional on a Dedekind σ-complete Boolean algebra is
countably additive.

567K Theorem [AD+AC(ω)] If U is an L-space with a weak order unit, it is reflexive.

567L Theorem [AD] ω1 is two-valued-measurable.

Remark In the present context I will use the formulation ‘an initial ordinal κ is two-valued-measurable if
there is a proper κ-additive 2-saturated ideal I of Pκ containing singletons’, where here ‘κ-additive’ means
that

⋃
η<ξ Jη ∈ I whenever ξ < κ and 〈Jη〉η<ξ is a family in I.

567M Theorem [AD] Let α be an ordinal such that there is a surjection from PN onto α. Then there
is a surjection from PN onto Pα.

567N Theorem [AC] Assume that there is a two-valued-measurable cardinal. Then every coanalytic
subset of NN is determined.

567O Corollary [AC] If there is a two-valued-measurable cardinal, then every PCA subset of any Polish
space is universally measurable.
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