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Chapter 56

Choice and determinacy

Nearly everyone reading this book will have been taking the axiom of choice for granted nearly all the
time. This is the home territory of twentieth-century abstract analysis, and the one in which the great
majority of the results have been developed. But I hope that everyone is aware that there are other ways of
doing things. In this chapter I want to explore what seem to me to be the most interesting alternatives. In
one sense they are minor variations on the standard approach, since I keep strictly to ideas expressible within
the framework of Zermelo-Fraenkel set theory; but in other ways they are dramatic enough to rearrange our
prejudices. The arguments I will present in this chapter are mostly not especially difficult by the standards
of this volume, but they do depend on intuitions for which familiar results which are likely to remain valid
under the new rules being considered.

Let me say straight away that the real aim of the chapter is §567, on the axiom of determinacy. The
significance of this axiom is that it is (so far) the most striking rival to the axiom of choice, in that it leads
us quickly to a large number of propositions directly contradicting familiar theorems; for instance, every
subset of the real line is now Lebesgue measurable (567G). But we need also to know which theorems are
still true, and the first six sections of the chapter are devoted to a discussion of what can be done in ZF
alone (§§561-565) and with countable or dependent choice (§566). Actually §§562-565 are rather off the
straight line to §567, because they examine parts of real analysis in which the standard proofs depend only
on countable choice or less; but a great deal more can be done than most of us would expect, and the
methods are instructive.

Going into details, §561 looks at basic facts from real analysis, functional analysis and general topology
which can be proved in ZF. §562 deals with ‘codable’ Borel sets and functions, using Borel codes to keep
track of constructions for objects, so that if we know a sequence of codes we can avoid having to make a
sequence of choices. A ‘Borel-coded measure’ (§563) is now one which behaves well with respect to codable
sequences of measurable sets; for such a measure we have an integral with versions of the convergence
theorems (§564), and Lebesgue measure fits naturally into the structure (§565). In §566, with ZF + AC(ω),
we are back in familiar territory, and most of the results of Volumes 1 and 2 can be proved if we are willing
to re-examine some definitions and hypotheses. Finally, in §567, I look at infinite games and half a dozen of
the consequences of AD, with a postscript on determinacy in the context of ZF + AC.

Version of 8.9.13

561 Analysis without choice

Elementary courses in analysis are often casual about uses of weak forms of choice; a typical argument
runs ‘for every ǫ > 0 there is an a ∈ A such that |a − x| ≤ ǫ, so there is a sequence in A converging to x’.
This is a direct call on the countable axiom of choice: setting An = {a : a ∈ A, |a− x| ≤ 2−n}, we are told
that every An is non-empty, and conclude that

∏
n∈NAn is non-empty. In the present section I will abjure

such methods and investigate what can still be done with the ideas important in measure theory. We have
useful partial versions of Tychonoff’s theorem (561D), Baire’s theorem (561E), Stone’s theorem (561F) and
Kakutani’s theorem on the representation of L-spaces (561H); moreover, there is a direct construction of
Haar measures, regarded as linear functionals (561G).

Unless explicitly stated otherwise, throughout this section (and the next four) I am working entirely
without any form of the axiom of choice.
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2 Choice and determinacy 561A

561A Set theory without choice In §§1A1 and 2A1 I tried to lay out some of the basic ideas of set
theory without appealing to the axiom of choice except when this was clearly necessary. The most obvious
point is that in the absence of choice

the union of a sequence of countable sets need not be countable

(see the note in 1A1G). In fact Feferman & Levy 63 (see Jech 73, 10.6) described a model of set theory
in which R is the union of a sequence of countable sets. But not all is lost. The elementary arguments of
1A1E still give

N ≃ Z ≃ N× N ≃ Q;

there is no difficulty in extending them to show such things as

N ≃ [N]<ω ≃
⋃

n≥1 N
n ≃ Qr ×Qr

for every integer r ≥ 1. The Schröder-Bernstein theorem survives (the method in 344D is easily translated
back into its original form as a proof of the ordinary Schröder-Bernstein theorem). Consequently we still
have enough bijections to establish

R ≃ PN ≃ {0, 1}N ≃ P(N× N) ≃ (PN)N ≃ RN ≃ NN.

Cantor’s theorem that X 6≃ PX is unaffected, so we still know that R is not countable.
We can still use transfinite recursion; see 2A1B. We still have a class On of von Neumann ordinals such

that every well-ordered set is isomorphic to exactly one ordinal (2A1Dg) and therefore equipollent with
exactly one initial ordinal (2A1Fb). I will say that a set X is well-orderable if there is a well-ordering of
X. The standard arguments for Zermelo’s Well-Ordering Theorem (2A1K) now tell us that for any set X
the following are equiveridical:

(i) X is well-orderable;
(ii) X is equipollent with some ordinal;
(iii) there is an injective function from X into a well-orderable set;
(iv) there is a choice function for PX \ {∅}

(that is, a function f such that f(A) ∈ A for every non-empty A ⊆ X). What this means is that if we are
given a family 〈Ai〉i∈I of non-empty sets, and X =

⋃
i∈I Ai is well-orderable (e.g., because it is countable),

then
∏

i∈I Ai is not empty (it contains 〈f(Ai)〉i∈I where f is a function as in (iv) above).
Note also that while we still have a first uncountable ordinal ω1 (the set of countable ordinals), it can

have countable cofinality (561Ya). The union of a sequence of finite sets need not be countable (Jech 73,
§5.4); but the union of a sequence of finite subsets of a given totally ordered set is countable, because we can
use the total ordering to simultaneously enumerate each of the finite sets in ascending order. Consequently,
if γ : ω1 → R is a monotonic function there is a ξ < ω1 such that γ(ξ+1) = γ(ξ). PPP It is enough to consider
the case in which γ is non-decreasing. Set

An = {ξ : γ(ξ) + 2−n ≤ γ(ξ + 1) ≤ n}.

Then An has at most 2n max(0, n − γ(0)) members, so is finite; consequently
⋃

n∈NAn is countable, and
there is a ξ ∈ ω1 \

⋃
n∈NAn. Of course we now find that γ(ξ + 1) = γ(ξ). QQQ

561B Real analysis without choice In fact all the standard theorems of elementary real and com-
plex analysis are essentially unchanged. The kind of tightening required in some proofs, to avoid explicit
dependence on the existence of sequences, is similar to the adaptations needed when we move to general
topological spaces. For instance, we must define ‘compactness’ in terms of open covers; compactness and
sequential compactness, even for subsets of R, may no longer coincide (561Xc). But we do still have the
Heine-Borel theorem in the form ‘a subset of Rr is compact iff it is closed and bounded’ (provided, of course,
that we understand that ‘closed’ is not the same thing as ‘sequentially closed’); see the proof in 2A2F.

561C Some new difficulties arise when we move away from ‘concrete’ questions like the Prime Number
Theorem and start looking at general metric spaces, or even general subsets of R. For instance, a subset of
R, regarded as a topological space, must be second-countable but need not be separable. However we can
go a long way if we take care. The following is an elementary example which will be useful below.
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561E Analysis without choice 3

Lemma Let E be the set of non-empty closed subsets of NN. Then there is a family 〈fF 〉F∈E such that, for
each F ∈ E , fF is a continuous function from NN to F and fF (α) = α for every α ∈ F .

proof For F ∈ E , set TF = {α↾n : α ∈ F , n ∈ N}. If α ∈ NN \ F then, because F is closed, there is some
n ∈ N such that β↾n 6= α↾n for any β ∈ F , that is, α↾n /∈ TF . For σ ∈ TF define βFσ ∈ NN inductively by
saying that

βFσ(n) = σ(n) if n < #(σ),

= inf{i : there is some α such that βFσ↾n ⊆ α ∈ F and α(n) = i} otherwise,

counting inf ∅ as 0 if necessary. We see that in fact βFσ↾n ∈ TF for every n ∈ N, so that βFσ ∈ F .
We can therefore define fF : NN → NN by setting

fF (α) = α if α ∈ F,

= βF,α↾n for the largest n such that α↾n ∈ TF otherwise.

(Because F is not empty, the empty sequence α↾0 belongs to TF for every α ∈ NN.) We see that fF (α) ∈ F
for all F and α, and fF (α) = α if α ∈ F . To see that fF is always continuous, note that in fact if α ∈ NN \F ,
and n is the largest integer such that α↾n belongs to T , then fF (β) = fF (α) whenever β↾n+ 1 = α↾n+ 1,
so fF is continuous at α. While if α ∈ F , n ∈ N and β↾n = α↾n, then either β ∈ F so fF (β)↾n = fF (α)↾n,
or fF (β) = βFσ where α↾n ⊆ σ ⊆ βFσ, and again fF (β)↾n = βσ↾n = α↾n. So we have a suitable family of
functions.

561D Tychonoff’s theorem It is a classic result (Kelley 50) that Tychonoff’s theorem, in a general
form, is actually equivalent to the axiom of choice. But nevertheless we have useful partial results which do
not depend on the axiom of choice. The following will help in the proofs of 561F and 563I.

Theorem Let 〈Xi〉i∈I be a family of compact topological spaces such that I is well-orderable. For each
i ∈ I let Ei be the family of non-empty closed subsets of Xi, and suppose that there is a choice function for⋃

i∈I Ei. Then X =
∏

i∈I Xi is compact.

proof Since I is well-orderable, we may suppose that I = κ for some initial ordinal κ. Fix a choice function
ψ for

⋃
ξ<κ Ei. For ξ < κ write πξ : X → Xξ for the coordinate map. If X is empty the result is trivial.

Otherwise, let F be any family of closed subsets of X with the finite intersection property. I seek to define
a non-decreasing family 〈Fξ〉ξ≤κ of filters on X such that the image filter πξ[[Fξ+1]] (2A1Ib) is convergent
for each ξ < κ. Start with F0 the filter generated by F . Given Fξ, let Fξ be the set of cluster points of
πξ[[Fξ]]; because Xξ is compact, this is a non-empty closed subset of Xξ, and xξ = ψ(Fξ) is defined. Let
Fξ+1 be the filter on X generated by

Fξ ∪ {π−1
ξ [U ] : U is a neighbourhood of xξ in Xξ}.

For limit ordinals ξ ≤ κ, let Fξ be the filter on X generated by
⋃

η<ξ Fη.

Now Fκ is a filter including F converging to x = 〈xξ〉ξ<κ, and x must belong to
⋂
F . As F is arbitrary,

X is compact.

Remark The point of the condition ‘there is a choice function for
⋃

i∈I Ei’ is that it is satisfied if every Xi

is the unit interval [0, 1], for instance; we could take ψ(E) = minE for non-empty closed sets E ⊆ [0, 1].
You will have no difficulty in devising other examples, using the technique of the proof above, or otherwise.
Note that 561C shows that there is a choice function for the family E of non-empty closed subsets of NN,
since we can use the function F 7→ fF (0) where 〈fF 〉F∈E is the family of functions defined there.

561E Baire’s theorem (a) Let (X, ρ) be a complete metric space with a well-orderable dense subset.
Then X is a Baire space.

(b) Let X be a compact Hausdorff space with a well-orderable π-base. Then X is a Baire space.

proof (a) Let D be a dense subset of X with a well-ordering 4. If 〈Gn〉n∈N is a sequence of dense open
subsets of X, and G is a non-empty open set, define 〈Hn〉n∈N, 〈xn〉n∈N and 〈ǫn〉n∈N inductively, as follows.
H0 = G. Given Hn, xn is to be the 4-first point of Hn. Given xn and Hn, ǫn is to be the first rational
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4 Choice and determinacy 561E

number in ]0, 2−n] such that B(xn, ǫn) ⊆ Hn. (I leave it to you to decide which rational numbers come
first.) Now set Hn+1 = {y : y ∈ Gn, ρ(y, xn) < ǫn}; continue.

At the end of the induction, 〈xn〉n∈N is a Cauchy sequence so has a limit x in X. Since xn ∈ Hn ⊆ Hm

whenever m ≤ n, x ∈ Hn+2 ⊆ Hn+1 ⊆ Gn for every n, and x witnesses that G∩
⋂

n∈NGn is non-empty. As
G and 〈Gn〉n∈N are arbitrary, X is a Baire space.

(b) Let U be a π-base for the topology of X, not containing ∅, with a well-ordering 4. If 〈Gn〉n∈N is a
sequence of dense open subsets of X, and G is a non-empty open set, define 〈Un〉n∈N in U inductively by
saying that

U0 is the 4-first member of U included in G,
Un+1 is the 4-first member of U such that Un+1 ⊆ Un ∩Gn

for each n. Then
⋂

n∈N Un is non-empty and included in G ∩
⋂

n∈NGn.

561F Stone’s Theorem Let A be a well-orderable Boolean algebra. Then there is a compact Hausdorff
Baire space Z such that A is isomorphic to the algebra of open-and-closed subsets of Z.

proof As in 311E, let Z be the set of ring homomorphisms from A onto Z2. Writing B for the set of finite
subalgebras of A, Z =

⋂
B∈B ZB where

ZB = {z : z ∈ ZA
2 , z↾B is a Boolean homomorphism}.

So Z is a closed subset of the compact Hausdorff space {0, 1}A, and is compact. Setting â = {z : z ∈ Z,
z(a) = 1}, the map a 7→ â is a Boolean homomorphism from A to the algebra E of open-and-closed subsets
of Z. If a ∈ A \ {0} and B is a finite subalgebra of A, then the subalgebra C generated by {a} ∪B is still
finite, and there is a Boolean homomorphism w : C → Z2 such that w(a) = 1; extending w arbitrarily to a
member of {0, 1}A, we obtain a z ∈ ZB such that z(a) = 1; as B is arbitrary, there is a z ∈ Z such that
z(a) = 1. So the map a 7→ â is injective. If G ⊆ Z is open and z ∈ G, there must be a finite set A ⊆ A such
that G includes {z′ : z′ ∈ Z, z′↾A = z↾A}; in this case, setting c = inf{a : a ∈ A, z(a) = 1} \ sup{a : a ∈ A,
z(a) = 0}, z ∈ ĉ ⊆ G. It follows that any member of E is of the form â for some a ∈ A, so that a 7→ â is an
isomorphism between A and E.

Because A is well-orderable, ZA
2 and Z have well-orderable bases, and Z is a Baire space, by 561E.

561G Haar measure Now I come to something which demands a rather less sketchy treatment.

Theorem Let X be a completely regular locally compact Hausdorff topological group.
(i) There is a non-zero left-translation-invariant positive linear functional on Ck(X).
(ii) If φ, φ′ are non-zero left-translation-invariant positive linear functionals on Ck(X) then each is a

scalar multiple of the other.

proof (a) Write Φ for {g : g ∈ Ck(X)+, g(e) = ‖g‖∞ = 1} where e is the identity of X. For f ∈ Ck(X)+

and g ∈ Φ, set

⌈f : g⌉ = inf{
n∑

i=0

αi : α0, . . . , αn ≥ 0

and there are a0, . . . , an ∈ X such that f ≤
n∑

i=0

αiai•lg},

writing (a•lg)(x) = g(a−1x) as in 4A5Cc. We have to confirm that this infimum is always defined in [0,∞[.

PPP Set K = {x : f(x) > 0} and U = {x : g(x) > 1
2}, so that K is compact, U is open and U 6= ∅. Then

K ⊆
⋃

a∈X aU , so there are a0, . . . , an ∈ X such that K ⊆
⋃

i≤n aiU . In this case

f ≤
∑n

i=0 2‖f‖∞ai•lg

and ⌈f : g⌉ ≤ 2(n+ 1)‖f‖∞. QQQ
It is now easy to check that

⌈a•lf : g⌉ = ⌈f : g⌉, ⌈f1 + f2 : g⌉ ≤ ⌈f1 : g⌉ + ⌈f2 : g⌉,
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561G Analysis without choice 5

⌈αf : g⌉ = α⌈f : g⌉, ‖f‖∞ ≤ ⌈f : g⌉, ⌈f : h⌉ ≤ ⌈f : g⌉⌈g : h⌉

whenever f , f1, f2 ∈ Ck(X)+, g, h ∈ Φ, a ∈ X and α ∈ [0,∞[. (Compare part (c) of the proof of 441C.)

(b) Fix g0 ∈ Φ, and for g ∈ Φ set

ψg(f) =
⌈f : g⌉

⌈g0 : g⌉

for f ∈ Ck(X). Then

ψg(a•lf) = ψg(f), ψg(f1 + f2) ≤ ψg(f1) + ψg(f2),

ψg(αf) = αψg(f), ψg(f) ≤ ⌈f : g0⌉,

ψg(f) ≤ ψg(h)⌈f : h⌉, 1 ≤ ψg(h)⌈g0 : h⌉

whenever f , f1, f2 ∈ Ck(X)+, h ∈ Φ, a ∈ X and α ≥ 0. For a neighbourhood U of the identity e of X,
write ΦU for the set of those g ∈ Φ such that g(x) = 0 for every x ∈ X \ U ; because X is locally compact
and completely regular, ΦU 6= ∅.

(c)(i) If f0, . . . , fm ∈ Ck(X)+ and ǫ > 0, there is a neighbourhood U of e such that
∑m

j=0 ψg(fj) ≤ ψg(
∑m

j=0 fj) + ǫ

whenever g ∈ ΦU . PPP Set f =
∑m

j=0 fj . Let K be the compact set {x : f(x) 6= 0}, and let f̂ ∈ Ck(X) be

such that χK ≤ f̂ . Let η > 0 be such that

(1 + (m+ 1)η)(ψg(f) + η⌈f̂ : g0⌉) ≤ ψg(f) + ǫ,

and set f∗ = f + ηf̂ . Then we can express each fj as f∗ × hj where hj ∈ Ck(X)+ and
∑m

j=0 hj ≤ χX. Let

U be a neighbourhood of e such that |hj(x) − hj(y)| ≤ η whenever x−1y ∈ U and j ≤ m (compare 4A5Pa).
Take g ∈ ΦU . Let α0, . . . , αn ≥ 0 and a0, . . . , an ∈ X be such that f∗ ≤

∑n
i=0 αiai•lg and

∑n
i=0 αi ≤

⌈f∗ : g⌉ + η. Then, for any x ∈ X and j ≤ m,

fj(x) = f∗(x)hj(x) ≤
∑n

i=0 αig(a−1
i x)hj(x) ≤

∑n
i=0 αig(a−1

i x)(hj(ai) + η)

because if i is such that g(a−1
i x) 6= 0 then a−1

i x ∈ U and hj(x) ≤ hj(ai)+η. So ⌈fj : g⌉ ≤
∑n

i=0 αi(hj(ai)+η).
Summing over j,

∑m
j=0⌈fj : g⌉ ≤

∑n
i=0 αi(1 + (m+ 1)η)

because
∑m

j=0 hj(ai) ≤ 1 for every i. As α0, . . . , αn and a0, . . . , an are arbitrary,
∑m

j=0⌈fj : g⌉ ≤ (1 + (m+ 1)η)⌈f∗ : g⌉ ≤ (1 + (m+ 1)η)(⌈f : g⌉ + η⌈f̂ : g⌉),

and

m∑

j=0

ψg(fi) ≤ (1 + (m+ 1)η)(ψg(f) + ηψg(f̂))

≤ (1 + (m+ 1)η)(ψg(f) + η⌈f̂ : g0⌉) ≤ ψg(f) + ǫ

as required. QQQ

(ii) If f0, . . . , fm ∈ Ck(X)+, M ≥ 0 and ǫ > 0, there is a neighbourhood U of e such that
∑m

j=0 ψg(γjfj) ≤ ψg(
∑m

j=0 γjfj) + ǫ

whenever g ∈ ΦU and γ0, . . . , γm ∈ [0,M ]. PPP Let η > 0 be such that η(1 +
∑m

j=0⌈fj : g0⌉) ≤ ǫ. By (i),
applied finitely often, there is a neighbourhood U of e such that

∑m
j=0 ψg(γjfj) ≤ ψg(

∑m
j=0 γjfj) + η

whenever g ∈ ΦU and γ0, . . . , γm ∈ [0,M ] are multiples of η. Now, given arbitrary γ0, . . . , γm ∈ [0,M ] and
g ∈ ΦU , let γ′0, . . . , γ

′
m be multiples of η such that γ′j ≤ γj < γ′j + η for each j. Then
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6 Choice and determinacy 561G

m∑

j=0

ψg(γjfj) ≤
m∑

j=0

ψg(γ′jfj) + ηψg(fj)

≤ ψg(

m∑

j=0

γ′jfj) + η + η

m∑

j=0

ψg(fj) ≤ ψg(

m∑

j=0

γjfj) + ǫ

as required. QQQ

(d) (We are coming to the magic bit.) Suppose that f ∈ Ck(X)+, ǫ > 0 and that U is a neighbourhood
of e such that |f(x) − f(y)| ≤ ǫ whenever x−1y ∈ U . Then if g ∈ ΦU and γ > ǫ there are α0, . . . , αn ≥ 0
and a0, . . . , an ∈ X such that ‖f −

∑n
i=0 αiai•lg‖∞ ≤ γ. PPP For all x, y ∈ X we have

(f(x) − ǫ)g(x−1y) ≤ f(y)g(x−1y) ≤ (f(x) + ǫ)g(x−1y).

Let η > 0 be such that η(1 + ⌈f :
↔

g⌉) ≤ γ − ǫ, where
↔

g (x) = g(x−1) for x ∈ X. Let V be an open
neighbourhood of e such that |g(x) − g(y)| ≤ η whenever xy−1 ∈ V . Then we have a0, . . . , an such that⋃

i≤n aiV ⊇ {x : f(x) 6= 0}, and h0, . . . , hn ∈ Ck(X)+ such that
∑n

i=0 hi(x) = 1 whenever f(x) > 0, while

hi(x) = 0 if i ≤ n and x /∈ aiV . By (c-ii), there is an h ∈ Φ such that
∑n

i=0 ψh(γif × hi) ≤ ψh(
∑n

i=0 γif × hi) + η

whenever 0 ≤ γi ≤ ⌈g0 :
↔

g⌉ for each i.

Now, for i ≤ n and x, y ∈ X,

hi(y)f(y)(g(a−1
i x) − η) ≤ hi(y)f(y)g(y−1x) ≤ hi(y)f(y)(g(a−1

i x) + η).

Accordingly

(f(x) − ǫ)(x•l
↔

g )(y) = (f(x) − ǫ)g(y−1x) ≤ f(y)g(y−1x) =
n∑

i=0

hi(y)f(y)g(y−1x)

≤
n∑

i=0

hi(y)f(y)(g(a−1
i x) + η) = ηf(y) +

n∑

i=0

hi(y)f(y)g(a−1
i x);

similarly,

(f(x) + ǫ)(x•l
↔

g )(y) ≥
∑n

i=0 hi(y)f(y)g(a−1
i x) − ηf(y).

Fixing x for the moment, and applying the functional ψh to the expressions here (regarded as functions
of y), we get

(f(x) − ǫ)ψh(
↔

g ) ≤ ηψh(f) + ψh(
∑n

i=0 g(a−1
i x)f × hi)

so

f(x) − γ ≤ f(x) − ǫ− η⌈f :
↔

g⌉ ≤ f(x) − ǫ− η
ψh(f)

ψh(
↔

g )

≤ ψh(

n∑

i=0

g(a−1
i x)

ψh(
↔

g )
f × hi) ≤

n∑

i=0

g(a−1
i x)

ψh(
↔

g )
ψh(f × hi) =

n∑

i=0

αig(a−1
i x)

where αi =
ψh(f×hi)

ψh(
↔

g )
. On the other side,

(f(x) + ǫ)ψh(
↔

g ) + ηψh(f) ≥ ψh(
∑n

i=0 g(a−1
i x)f × hi),

so
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561G Analysis without choice 7

f(x) + γ ≥ f(x) + ǫ+ η
ψh(f)

ψh(
↔

g )
+ η

≥ ψh(
n∑

i=0

g(a−1
i x)

ψh(
↔

g )
f × hi) + η ≥

n∑

i=0

g(a−1
i x)

ψh(
↔

g )
ψh(f × hi)

(because
g(a−1

i x)

ψh(
↔

g )
≤ ⌈g0 :

↔

g⌉ for every i)

=

n∑

i=0

αig(a−1
i x).

All this is valid for every x ∈ X; so

‖f −
∑n

i=0 αiai•lg‖∞ ≤ γ. QQQ

(e) For any f ∈ Ck(X)+ and ǫ > 0 there are a γ ≥ 0 and a neighbourhood U of e such that |ψh(f)−γ| ≤ ǫ

for every h ∈ ΦU . PPP Let V be a compact neighbourhood of 0 and K = {x : f(x) + g0(x) > 0}; let f∗ ∈
Ck(X) be such that χ(KV −1V ) ≤ f∗ ≤ χX. Let δ, η > 0 be such that

δ(1 + 2(δ + ⌈f : g0⌉)) ≤ ǫ, δ ≤ 1
2 , η(1 + ⌈f∗ : g0⌉) ≤ δ.

By (d), there are g ∈ ΦV , α0, . . . , αn, β0, . . . , βm ≥ 0 and a0, . . . , an, b0, . . . , bn ∈ X such that

‖f −
∑n

i=0 αiai•lg‖∞ ≤ η, ‖g0 −
∑m

j=0 βjbj•lg‖∞ ≤ η.

We can suppose that all the ai, bj belong to KV −1, since g(a−1x) = 0 if x ∈ K and a /∈ KV −1; consequently

|f −
∑n

i=0 αiai•lg| ≤ ηf∗, |g0 −
∑m

j=0 βjbj•lg| ≤ ηf∗.

Set α =
∑n

i=0 αi, β =
∑m

j=0 βj and γ =
α

β
. (β is non-zero because ‖g0‖∞ = 1 and η‖f∗‖∞ ≤ 1

2 .)

Let U ⊆ V be a neighbourhood of e such that
∑n

i=0 αiψh(ai•lg) ≤ ψh(
∑n

i=0 αiai•lg) + η,

∑m
j=0 βjψh(bj•lg) ≤ ψh(

∑m
j=0 βjbj•lg) + η

for every h ∈ ΦU ((c) above). Take any h ∈ ΦU . Then

|ψh(f) − αψh(g)| = |ψh(f) −
n∑

i=0

αiψh(ai•lg)| ≤ |ψh(f) − ψh(
n∑

i=0

αiai•lg)| + η

≤ ηψh(f∗) + η ≤ η⌈f∗ : g0⌉ + η;

similarly,

|1 − βψh(g)| = |ψh(g0) − βψh(g)| ≤ η(⌈f∗ : g0⌉ + 1).

But this means that

|ψh(f) − γ| ≤ η(1 + ⌈f∗ : g0⌉) + |αψh(g) − γ|

≤ δ + γ|βψh(g) − 1| ≤ δ(1 + γ).

Consequently

γ ≤
ψh(f)+δ

1−δ
≤ 2(δ + ⌈f : g0⌉),

|ψh(f) − γ| ≤ δ(1 + 2(δ + ⌈f : g0⌉)) ≤ ǫ,

as required. QQQ

(f) We are nearly home. Let F be the filter on Φ generated by {ΦU : U is a neighbourhood of e}. By
(e), φ(f) = limh→F ψh(f) is defined for every f ∈ Ck(X)+. From the formulae in (b) we have

D.H.Fremlin



8 Choice and determinacy 561G

φ(a•lf) = φ(f), φ(f1 + f2) ≤ φ(f1) + φ(f2), φ(αf) = αφ(f)

whenever f , f1, f2 ∈ Ck(X)+, a ∈ X and α ≥ 0. By (c-i), we have φ(f1) + φ(f2) ≤ φ(f1 + f2) for all f1,
f2 ∈ Ck(X)+. So φ is additive and extends to an invariant positive linear functional on Ck(X) which is
non-zero because φ(g0) = 1.

(g) As for uniqueness, we can repeat the arguments in (e). Suppose that φ′ is another left-translation-
invariant positive linear functional on Ck(X) such that φ′(g0) = 1, and f ∈ Ck(X)+. Let K be the closure of
{x : f(x) + g0(x) > 0} and V a compact neighbourhood of e; let f∗ ∈ Ck(X∗) be such that χ(KV −1V ) ≤ f∗.
Take ǫ > 0. Let δ, η > 0 be such that

δ ≤
1

2
, δ(1 + 2(φ(f) + 1)) ≤ ǫ, δ(1 + 2(φ′(f) + 1)) ≤ ǫ,

ηφ(f∗) ≤ δ, ηφ′(f∗) ≤ δ.

Then there is a neighbourhood U of e, included in V , such that |f(x) − f(y)| ≤ η and |g0(x) − g0(y)| ≤ η
whenever x−1y ∈ U . By (d), there are g ∈ ΦV , α0, . . . , αn, β0, . . . , βm ≥ 0 and a0, . . . , an, b0, . . . , bm ∈ X
such that

|f(x) −
∑n

i=0 αi(ai•lg)(x)| ≤ η, |g0(x) −
∑m

j=0 βj(bj•lg)(x)| ≤ η

for every x ∈ X; as in (e), we may suppose that every ai, bj belongs to KV −1 so that

|f −
∑n

i=0 αiai•lg| ≤ ηf∗, |g0 −
∑m

j=0 βjbj•lg| ≤ ηf∗.

Consequently, setting α =
∑n

i=0 αi, β =
∑n

i=0 βi and γ = α/β,

|φ(f) − αφ(g)| = |φ(f) −
∑n

i=0 αiφ(ai•lg)| ≤ ηφ(f∗) ≤ δ,

|1 − βφ(g)| = |φ(g0) −
∑m

j=0 βjφ(bj•lg)| ≤ ηφ(f∗) ≤ δ.

So

|φ(f) − γ| ≤ ηφ(f∗) + γ|βφ(g) − 1| ≤ ηφ(f∗)(1 + γ) ≤ δ(1 + γ)

and

γ ≤
φ(f)+δ

1−δ
≤ 2(φ(f) + 1),

|φ(f) − γ| ≤ δ(1 + 2(φ(f) + δ)) ≤ ǫ.

Similarly, |φ′(f) − γ| ≤ ǫ and |φ(f) − φ′(f)| ≤ 2ǫ. As ǫ and f are arbitrary, φ = φ′.

561H Kakutani’s theorem (a) Let U be an Archimedean Riesz space with a weak order unit. Then
there are a Dedekind complete Boolean algebra A and an order-dense Riesz subspace of L0(A), containing
χ1, which is isomorphic to U .

(b) Let U be an L-space with a weak order unit e. Then there is a totally finite measure algebra (A, µ̄)
such that U is isomorphic, as normed Riesz space, to L1(A, µ̄), and we can choose the isomorphism to match
e with χ1.

proof All the required ideas are in Volume 3; but we have quite a lot of checking to do.

(a)(i) The first step is to observe that, for any Dedekind σ-complete Boolean algebra A, the definition of
L0 = L0(A) in 364A gives no difficulties, and that the formulae of 364D can be used to define a Riesz space
structure on L0. PPP I recall the formulae in question:

[[u > α]] = supβ>α [[u > β]] for every α ∈ R,

infα∈R [[u > α]] = 0, supα∈R [[u > α]] = 1,

[[u+ v > α]] = supq∈Q [[u > q]] ∩ [[v > α− q]],

whenever u, v ∈ L0 and α ∈ R,

Measure Theory



561H Analysis without choice 9

[[γu > α]] = [[u > α
γ ]]

whenever u ∈ L0, γ ∈ ]0,∞[ and α ∈ R. The distributive laws in 313A-313B are enough to ensure that u+v
and γu, so defined, belong to L0, and also that u+ v = v+u, u+ (v+w) = (u+ v) +w, γ(u+ v) = γu+ γv
for u, v, w ∈ L0 and γ > 0. Defining 0 ∈ L0 by saying that

[[0 > α]] = 1 if α < 0, 0 if α ≥ 0,

we can check that u+ 0 = u for every u. Defining −u ∈ L0 by saying that

[[−u > α]] = supq∈Q,q>α 1 \ [[u > −q]]

for u ∈ L0 and α ∈ R, we find (again using the distributive laws, of course) that u+ (−u) = 0; we can now
define γu, for γ ≤ 0, by saying that 0 · u = 0 and γu = (−γ)(−u) if γ < 0, and we shall have a linear space.
Turning to the ordering, it is nearly trivial to check that the definition

u ≤ v ⇐⇒ [[u > α]] ⊆ [[v > α]] for every α ∈ R

gives us a partially ordered linear space. It is a Riesz space because the formula

[[u ∨ v > α]] = [[u > α]] ∪ [[v > α]]

defines a member of L0 which must be sup{u, v} in L0. QQQ
We need to know that if A is Dedekind complete, so is L0; the argument of 364M still applies. Note also

that a 7→ χa : A → L0 is order-continuous, as in 364Jc.

(ii) Now suppose that U is an Archimedean Riesz space with an order unit e. Let A be the band
algebra of U (353B). Then we can argue as in 368E, but with the simplification that the maximal disjoint
set C in U+ \ {0} is just {e}, to see that we have an injective Riesz homomorphism T : U → L0(A) defined
by taking [[Tu > α]] to be the band generated by e∧ (u−αe)+ (or, if you prefer, by (u−αe)+, since it comes
to the same thing). We shall have T [U ] order-dense, as before, with Te = χ1.

(b)(i) Again, the bit we have to concentrate on is the check that, starting from a totally finite measure
algebra (A, µ̄), we can define L1(A, µ̄) as in 365A. We have to be a bit careful, because already in Proposition
321C there is an appeal to AC(ω) (see 561Yi(vi)); but I think we need to know very little about measure
algebras to get through the arguments here. Of course another difficulty arises at once in 365A, because I
write

‖u‖1 =
∫∞

0
µ̄[[|u| > α]] dα,

and say that the integration is with respect to ‘Lebesgue measure’, which won’t do, at least until I redefine
Lebesgue integration as in §565. But we are integrating a monotonic function, so the integral can be thought
of as an improper Riemann integral; if you like,

‖u‖1 = limn→∞ 2−n
∑4n

i=1 µ̄[[|u| > 2−ni]] = supn∈N 2−n
∑4n

i=1 µ̄[[|u| > 2−ni]].

Next, we can’t use the Loomis-Sikorski theorem to prove 365C, and have to go back to first principles.
To see that ‖ ‖1 is subadditive, and additive on (L0)+, look first at ‘simple’ non-negative u, expressed as
u =

∑n
i=0 αiχai, and check that

∫
u = ‖u‖1 =

∑n
i=0 αiµ̄ai; now confirm that every element of (L0)+ is

expressible as the supremum of a non-decreasing sequence of such elements, and that ‖ ‖1 is sequentially
order-continuous on the left on (L0)+. (We need 321Be.) This is enough to show that L1 is a solid linear
subspace of L0 with a Riesz norm and a sequentially order-continuous integral. (I do not claim, yet, that
L1 is an L-space, because I do not know, in the absence of countable choice, that every Cauchy filter on L1

converges.)

(ii) Now let U be an L-space with a weak order unit e. As in (a), let A be the band algebra of U and
T : U → L0 an injective Riesz homomorphism onto an order-dense Riesz subspace of L0 with Te = χ1. Now
U is Dedekind complete (354N, 354Ee). Consequently T [U ] must be solid in L0 (353L1).

(iii) For a ∈ A, set µ̄a = ‖T−1(χa)‖. Because the map a 7→ T−1χa is additive and order-continuous
and injective, (A, µ̄) is a measure algebra; indeed, µ̄ is actually order-continuous. So we have a space

1Formerly 353K.
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10 Choice and determinacy 561H

L1 = L1(A, µ̄). Because µ̄ is order-continuous, 364L(a-ii) tells us that ‖w‖1 = supv∈B ‖v‖1 whenever
B ⊆ L0 is a non-empty upwards-directed set in L0 with supremum w in L0.

Writing S ⊆ L0 for the linear span of {χa : a ∈ A}, we see that ‖w‖1 = ‖T−1w‖ for every w ∈ S. Since S
is order-dense in L0 it is order-dense in L1, and T−1[S] is order-dense in U , therefore norm-dense (354Ef).

(iv) Tu ∈ L1 for every u ∈ U+. PPP For n ∈ N set an = [[Tu > 2n]] \ [[Tu > 2n+1]], un = T−1(χan).
Set wn =

∑n
i=0 2iχai for n ∈ N. Then wn ≤ Tu and ‖wn‖1 = ‖T−1wn‖ ≤ ‖u‖ for every n. By 364L(a-i),

w = supn∈N wn is defined in L0, and ‖w‖1 = supn∈N ‖wn‖1 is finite. But Tu ≤ 2w + χ1, so Tu ∈ L1. QQQ

(v) If w ∈ (L1)+ there is a v ∈ U+ such that w = Tv and ‖v‖ = ‖w‖1. PPP Consider A = {u : u ∈ T−1[S],
Tu ≤ w}. This is upwards-directed and norm-bounded, so has a supremum v in U (354N again), and Tv ≥ w′

whenever w′ ∈ S and w′ ≤ w. But S is order-dense in L0 so Tv ≥ w. Because T is order-continuous, (iii)
tells us that

‖Tv‖1 = supu∈A ‖Tu‖1 = supu∈A ‖u‖ = ‖v‖,

while surely ‖w‖1 ≥ supu∈A ‖Tu‖1. So Tv = w. QQQ

(vi) Putting (iv) and (v) together, we see that T [U ] = L1 and that T is a normed Riesz space
isomorphism, as required.

561I Hilbert spaces: Proposition Let U be a Hilbert space.
(a) If C ⊆ U is a non-empty closed convex set then for any u ∈ U there is a unique v ∈ C such that

‖u− v‖ = min{‖u− w‖ : w ∈ C}.
(b) Every closed linear subspace of U is the image of an orthogonal projection, that is, has an orthogonal

complement.
(c) Every member of U∗ is of the form u 7→ (u|v) for some v ∈ U .
(d) U is reflexive.
(e) If C ⊆ U is a norm-closed convex set then it is weakly closed.

proof (a) Set γ = inf{‖u − w‖ : w ∈ C} and let F be the filter on U generated by sets of the form
Fǫ = {w : w ∈ C, ‖u− w‖ ≤ γ + ǫ} for ǫ > 0. Then F is Cauchy. PPP Suppose that ǫ > 0 and w1, w2 ∈ Fǫ.
Then

‖w1 − w2‖
2 = 2‖u− w1‖

2 + 2‖u− w2‖
2 − ‖2u− w1 − w2‖

2 ≤ 4(γ + ǫ)2 − 4γ2

(because
1

2
(w1 + w2) ∈ C)

= 8γǫ+ 4ǫ2.

So

infF∈F diamF = infǫ>0 diamFǫ = 0. QQQ

We therefore have a limit v of F , which is in C because C is closed, and ‖u− v‖ = limw→F ‖u−w‖ = γ.

If now w is any other member of C, ‖u−
1

2
(v + w)‖ ≥ γ so ‖u− w‖ > γ.

(b) Let V be a closed linear subspace of U . By (a), we have a function P : U → V such that Pu is
the unique closest element of V to u, that is, ‖u − Pu‖ ≤ ‖u − Pu + αv‖ for every v ∈ V and α ∈ R. It
follows that (u− Pu|v) = 0 for every v ∈ V , that is, that u− Pu ∈ V ⊥. As u is arbitrary, U = V + V ⊥; as
V ∩ V ⊥ = {0}, P must be the projection onto V with kernel V ⊥, and is an orthogonal projection.

(c) Take f ∈ U∗. If f = 0 then f(u) = (u|0) for every u. Otherwise, set C = {w : f(w) = 0}. Then
C is a proper closed linear subspace of U . Take any u0 ∈ U \ C. Let v0 be the point of C nearest to u0,
and consider u1 = u0 − v0. Then 0 is the point of C nearest to u1, so that (u|u1) = 0 for every u ∈ C. Set

v =
f(u1)

‖u1‖2
u1; then (u|v) = 0 for every u ∈ C, while f(v) = (v|v). So f(u) = (u|v) for every u ∈ U .

(d) From (c) it follows that we can identify U∗ with U and therefore U∗∗ also becomes identified with U .

Measure Theory



561Xn Analysis without choice 11

(e) If C is empty this is trivial. Otherwise, take any u ∈ U \ C. Let v be the point of C nearest to U ,
and set f(w) = (w|u − v) for w ∈ U . Then f(w) ≤ f(v) < f(u) for every w ∈ C. So u does not belong to
the weak closure of C; as u is arbitrary, C is weakly closed.

561X Basic exercises (a) Let X be any set. (i) Show that ℓp(X), for 1 ≤ p ≤ ∞, is a Banach space.
(ii) Show that ℓ1(X)∗ can be identified with ℓ∞(X). (iii) Show that if 1 < p < ∞ and 1

p + 1
q = 1 then

ℓp(X)∗ can be identified with ℓq(X).

(b) Let X be any topological space. Show that Cb(X), with ‖ ‖∞, is a Banach space.

(c) Suppose that there is an infinite subset X of R with no infinite countable subset (Jech 73, §10.1).
Show that X is sequentially closed but not closed, second-countable but not separable, sequentially compact
but not compact, sequentially complete (that is, every Cauchy sequence converges) but not complete. Show
that the topology of R is not countably tight.

>>>(d) (i) Let C be the set of those R ⊆ N × N which are total orderings of subsets of N. Show that C
is a closed subset of P(N × N) with its usual topology. (ii) For ξ < ω1, let Cξ be the set of those R ∈ C
which are well-orderings of order type ξ of subsets of N. Show that Cξ is a Borel subset of P(N×N). (Hint :
induce on ξ.) (iii) Show that there is an injective function from ω1 to the Borel σ-algebra B(R) of R.

(e)(i) Show that every non-empty closed subset of NN has a lexicographically-first member. (ii) Show
that if a T1 topological space X is a continuous image of NN, then there is an injection from X to PN.

(f) Let X be a topological space. (i) Show that if X is separable, then XR is separable. (ii) Show that
if X has a countable network, then XR has a countable network.

(g)(i) Show that a locally compact Hausdorff space is regular. (ii) Show that a compact regular space is
normal.

(h) Let U be a normed space with a well-orderable subset D such that the linear span of D is dense in U .
(i) Show that if V is a linear subspace of U and f ∈ V ∗, there is a g ∈ U∗, extending f , with the same norm
as f . (ii) Show that the unit ball B of U∗ is weak*-compact and has a well-orderable base for its topology.
(iii) Show that if K ⊆ B is weak*-closed then K has an extreme point.

(i) Let (X, ρ) be a separable compact metric space, and G the isometry group of X with its topology of
pointwise convergence (441G). Show that G is compact. (Hint : XN is compact.)

(j) Let X be a regular topological space and A a subset of X. Show that the following are equiveridical:
(i) A is relatively compact in X; (ii) A is compact; (iii) every filter on X containing A has a cluster point.

>>>(k) Let (X,T) be a regular second-countable topological space, and write S for the usual topology
on RN. (i) Show that there are a continuous function f : X → RN and a function φ : T → S such that
G = f−1[φ(G)] for every G ∈ T. (ii) Show that if X is Hausdorff it is metrizable.

>>>(l) Let X be a regular second-countable topological space, C the family of closed subsets of X, and D
the set of disjoint pairs (F0, F1) ∈ C × C. (i) Show that X is normal, and that there is a function ψ : D → C
such that F0 ⊆ intψ(F0, F1) and F1 ∩ ψ(F0, F1) = ∅ whenever (F0, F1) ∈ D. (ii) Show that there is a
function φ : D → C(X) such φ(F0, F1)(x) = 0, φ(F0, F1)(y) = 1 whenever (F0, F1) ∈ D, x ∈ F0 and y ∈ F1.

(m) Let X be a well-orderable discrete abelian group. Show that its dual group, as defined in 445A, is
a completely regular compact Hausdorff group.

(n) Let U be a Riesz space with a Riesz norm. Let ∆ : U+ → [0,∞[ be such that (α) ∆ is non-decreasing,
(β) ∆(αu) = α∆(u) whenever u ∈ U+ and α ≥ 0, (γ) ∆(u + v) = ∆(u) + ∆(v) whenever u ∧ v = 0 (δ)
|∆(u) − ∆(v)| ≤ ‖u− v‖ for all u, v ∈ U+. Show that ∆ has an to a member of U∗.
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12 Choice and determinacy 561Xo

(o) Let U be an L-space. Show that ‖u‖ = sup{f(u) : f ∈ U∗, ‖f‖ ≤ 1} for every u ∈ U .

(p) Let (A, µ̄) be a measure algebra. Show that L1(A, µ̄) is a Dedekind σ-complete Riesz space and a
sequentially complete normed space.

(q) Let A be a Boolean algebra. Show that there are a set X, an algebra E of subsets of X and a
surjective Boolean homomorphism from E onto A. (Hint : 566L.)

(r) Let U be a Hilbert space. (i) Show that a bounded sequence 〈un〉n∈N in U is weakly convergent in
U iff limn→∞(un|um) is defined for every m ∈ N. (ii) Show that the unit ball of U is sequentially compact
for the weak topology. (iii) Show that if T : U → U is a self-adjoint compact linear operator, then T [U ]
is included in the closed linear span of {Tv : v is an eigenvector of T}. (Hint : reduce to the case in
which U is separable, and show that there is then a sequence 〈un〉n∈N in the unit ball B of U such that
limn→∞(Tun|un) = supu∈B(Tu|u).)

(s) In 561C, show that (F, α) 7→ fF (α) : E × NN → NN is continuous if E is given its Vietoris topology
(4A2T) and NN its usual topology.

561Y Further exercises (a) Suppose that there is a sequence 〈An〉n∈N of countable sets such that⋃
n∈NAn = R. Show that cfω1 = ω.

(b)(i) Show that there is a bijection between ω1 and N× ω1. (ii) Show that ω2 is not expressible as the
union of a sequence of countable sets. (iii) Show that Pω1 is not expressible as the union of a sequence of
countable sets. (iv) Show that P(PN) is not expressible as the union of a sequence of countable sets.

(c) Suppose there is a countable family of doubleton sets with no choice function (Jech 73, §5.5). Show
that (i) there is a set I such that {0, 1}I has an open-and-closed set which is not determined by coordinates
in any countable subset of I (ii) there is a compact metrizable space which is not ccc, therefore not second-
countable (iii) there is a complete totally bounded metric space which is neither ccc nor compact (iv) there
is a probability algebra which is not ccc.

(d) Let X be a metrizable space. Show that it is second-countable iff it has a countable π-base iff it has
a countable network.

(e)(i) Let (X, ρ) be a complete metric space. Show that X has a well-orderable dense subset iff it has a
well-orderable base iff it has a well-orderable π-base iff it has a well-orderable network iff there is a choice
function for the family of its non-empty closed subsets. (ii) Let X be a locally compact Hausdorff space.
(α) Show that if it has a well-orderable π-base then it has a well-orderable dense subset. (β) Show that if
it has a well-orderable base then it is completely regular and there is a choice function for the family of its
non-empty closed subsets.

(f) Let X be a metrizable space. Show that every continuous real-valued function defined on a closed
subset of X has an extension to a continuous real-valued function on X.

(g)(i) Show that if A is a Boolean algebra, there is an essentially unique Dedekind complete Boolean

algebra Â in which A can be embedded as an order-dense subalgebra. (ii) Show that if A and B are two
Boolean algebras and π : A → B is an order-continuous Boolean homomorphism, π has a unique extension

to an order-continuous Boolean homomorphism from Â to B̂. (Hint : take Â to be the set of pairs (A,A′)
of subsets of A such that A is the set of lower bounds of A′ and A′ is the set of upper bounds of A.)

(h) Let 〈Ai〉i∈I be a family of Boolean algebras. (i) Show that there is an essentially unique structure
(A, 〈εi〉i∈I) such that (α) A is a Boolean algebra (β) εi : Ai → A is a Boolean homomorphism for every i (γ)
whenever B is a Boolean algebra and φi : Ai → B is a Boolean homomorphism for every i, there is a unique
Boolean homomorphism π : A → B such that πεi = φi for every i. (ii) Show that if νi : Ai → R is additive,
with νi1 = 1, for every i ∈ I, there is a unique additive ν : A → R such that ν(infi∈J εi(ai)) =

∏
i∈J νiai

whenever J ⊆ I is finite and ai ∈ Ai for i ∈ J .
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(i) Suppose that there is an infinite totally ordered set I with no countably infinite subset (Jech 73,
§10.1). Let E be the algebra of subsets of {0, 1}I determined by coordinates in finite sets. (i) Show that
the union of any countable family of finite subsets of I is finite. (ii) Show that E has no countably infinite
subset, so that every finitely additive real-valued functional on E is countably additive. (iii) Show that there
is no infinite disjoint family in E . (iv) Show that E is Dedekind complete. (v) Show that there is a functional
µ1 such that (E , µ1) is a probability algebra and µ1 is order-continuous. (vi) Show that there is a functional
µ2 such that (E , µ2) is a probability algebra and µ2 is not order-continuous.

(j) Let (X, ρ) be a complete metric space with a well-orderable base. Show that a subset of X is compact
iff it is sequentially compact iff it is closed and totally bounded.

561 Notes and comments The arguments of this section will I hope give an idea of the kind of discipline
which will be imposed for the rest of the chapter. Apart from anything else, we have to fix on the correct
definitions. Typically, when defining something like ‘compactness’ or ‘completeness’, the definition to use is
that which is most useful in the most general context; so that even in metrizable spaces we should prefer
filters to sequences (cf. 561Xc).

We can distinguish two themes in the methods I have used here. First, in the presence of a well-ordering
we can hope to adapt the standard attack on a problem; see 561D-561F. Second, if (in the presence of the
axiom of choice) there is a unique solution to a problem, then we can hope that it is still a unique solution
without choice. This is what happens in 561G and also in 561Ia-561Ic. In 561I we just go through the
usual arguments with a little more care. In 561G (taken from Naimark 70) we need new ideas. But in
the key step, part (d) of the proof, the two variables x and y reflect an adaptation of a repeated-integration
argument as in §442. Note that the scope of 561G may be limited if we have fewer locally compact groups
than we expect.

A regular second-countable Hausdorff space is metrizable (561Yf). But it may not be separable (561Xc).
We do not have Urysohn’s Lemma in its usual form, so cannot be sure that a locally compact Hausdorff
space is completely regular; a topological group has left, right and bilateral uniformities, but a uniformity
need not be defined by pseudometrics and a uniform space need not be completely regular. So in such results
as 561G we may need an extra ‘completely regular’ in the hypotheses.

I give a version of Kakutani’s theorem (561H) to show that some of the familiar patterns are distorted in
possibly unexpected ways, and that occasionally it is the more abstract parts of the theory which survive
best. I suppose I ought to remark explicitly that I define ‘measure algebra’ exactly as in 321A: a Dedekind
σ-complete Boolean algebra with a strictly positive countably additive [0,∞]-valued functional. I do not
claim that every σ-finite measure algebra is either localizable or ccc (561Yc), nor that every measure algebra
can be represented in terms of a measure space. I set up a construction of a normed Riesz space L1(A, µ̄),
but do not claim that this is an L-space. However, if we start from an L-space U with a weak order unit,
we can build a measure on its band algebra and proceed to an L1(A, µ̄) which is isomorphic to U (and is
therefore an L-space).

Version of 20.10.13

562 Borel codes

The concept of ‘Borel set’, either in the real line or in general topological spaces, has been fundamental
in measure theory since before the modern subject existed. It is at this point that the character of the
subject changes if we do not allow ourselves even the countable axiom of choice. I have already mentioned
the Feferman-Lévy model in which R is a countable union of countable sets; immediately, every subset of R
is a countable union of countable sets and is ‘Borel’ on the definition of 111G. In these circumstances that
definition becomes unhelpful.

An alternative which leads to a non-trivial theory, coinciding with the usual theory in the presence of
AC, is the algebra of ‘codable Borel sets’ (562B). This is not necessarily a σ-algebra, but is closed under
unions and intersections of ‘codable sequences’ (562K). When we come to look for measurable functions,
the corresponding concept is that of ‘codable Borel function’ (562L); again, we do not expect the limit of
an arbitrary sequence of codable Borel functions to be measurable in any useful sense, but the limit of a
codable sequence of codable Borel functions is again a codable Borel function (562Ne). The same ideas can
be used to give a theory of ‘codable Baire sets’ in any topological space (562T).

D.H.Fremlin



14 Choice and determinacy 562A

562A Trees I review some ideas from §421.

(a) Set S∗ =
⋃

n≥1 N
n. For σ ∈ S∗ and T ⊆ S∗, write Tσ for {τ : τ ∈ S∗, σaτ ∈ T} (notation: 5A1C).

(b) Let T0 be the family of sets T ⊆ S∗ such that σ↾n ∈ T whenever σ ∈ T and n ≥ 1. Recall from
421N2 that we have a derivation ∂ : T0 → T0 defined by setting

∂T = {σ : σ ∈ S∗, Tσ 6= ∅},

with iterates ∂ξ, for ξ < ω1, defined by setting

∂0T = T , ∂ξT =
⋂

η<ξ ∂(∂ηT ) for ξ ≥ 1.

Now for any T ∈ T0 there is a ξ < ω1 such that ∂ξT = ∂ηT whenever ξ ≤ η < ω1. PPP The argument in 421Nd
assumed that ω1 has uncountable cofinality, but we can avoid this assumption, as follows. Let 〈ǫσ〉σ∈S∗ be
a summable family of strictly positive real numbers, and set γT (ξ) =

∑
σ∈∂ξT ǫσ; then γT : ω1 → [0,∞[ is

non-increasing, so 561A tells us that there is a ξ < ω1 such that γT (ξ + 1) = γT (ξ), that is, ∂ξ+1T = ∂ξT .
Of course we now have ∂ηT = ∂ξT for every η ≥ ξ. QQQ

(c) We therefore still have a rank function r : T0 → ω1 defined by saying that r(T ) is the least ordinal
such that ∂r(T )T = ∂r(T )+1T . Now ∂r(T )T is empty iff there is no α ∈ NN such that α↾n ∈ T for every
n ≥ 1. PPP The argument in 421Nf used the word ‘choose’; but we can avoid this by being more specific.
If σ ∈ ∂r(T )T , then we can define a sequence 〈σn〉n∈N by saying that σ0 = σ and, given σn ∈ ∂r(T )T ,
σn+1 = σn

a<i> for the least i such that σn
a<i> ∈ ∂r(T )T ; α =

⋃
n∈N σn will now have α↾n ∈ T for every

n ≥ 1. The argument in the other direction is unchanged. QQQ
Let T be the set of those T ∈ T0 with no infinite branch, that is, such that ∂r(T )T = ∅. Note that if T ∈ T

then r(T ) = 0 iff T = ∅, while r(T ) = 1 iff there is a non-empty set A ⊆ N such that T = {<i> : i ∈ A}.

(d) For T ∈ T , set AT = {i : <i> ∈ T}. We need a fact not covered in §421: for any T ∈ T ,
r(T ) = sup{r(T<i>) + 1 : i ∈ AT }. PPP An easy induction on ξ shows that ∂ξ(Tσ) = (∂ξT )σ for any ξ < ω1,
T ∈ T0 and σ ∈ S∗. So, for T ∈ T and ξ < ω1,

r(T ) > ξ =⇒ ∂ξT 6= ∅

=⇒∃ i, <i> ∈ ∂ξT =
⋂

η<ξ

∂η+1T

=⇒∃ i ∈ AT , ∂
η(T<i>) = (∂ηT )<i> 6= ∅ ∀ η < ξ

=⇒∃ i ∈ AT , r(T<i>) > η ∀ η < ξ

=⇒∃ i ∈ AT , r(T<i>) ≥ ξ;

thus r(T ) ≤ sup{r(T<i>) + 1 : i ∈ AT }. In the other direction, if i ∈ AT and η < ξ = r(T<i>), then

(∂ηT )<i> = ∂η(T<i>) 6= ∅,

so <i> ∈ ∂η+1T ; as η is arbitrary, <i> ∈ ∂ξT and ξ < r(T ); as i is arbitrary, r(T ) ≥ sup{r(T<i>) + 1 : i ∈
AT }. QQQ

562B Coding sets with trees (a) Let X be a set and 〈En〉n∈N a sequence of subsets of X. Define
φ : T → PX inductively by saying that

φ(T ) =
⋃

i∈AT

Ei if r(T ) ≤ 1,

=
⋃

i∈AT

X \ φ(T<i>) if r(T ) > 1.

By 562Ad, this definition is sound. I will call φ the interpretation of Borel codes defined by X and
〈En〉n∈N.

2Early editions of Volume 4 used a slightly different definition of iterated derivations, so that the ‘rank’ of a tree was not
quite the same.
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(b) Of course φ(∅) = ∅. If we set

T ∗ = {<0>,<0>a<0>,<0>a<0>a<0>,<1>,<1>a<0>}

and

T = {<0>} ∪ {<0>aσ : σ ∈ T ∗},

then

φ(T ∗) = (X \ φ(T ∗
<0>)) ∪ (X \ φ(T ∗

<1>))

= (X \ φ({<0>,<0>a<0>})) ∪ (X \ φ({<0>}))

= (X \ (X \ φ({<0>}))) ∪ (X \ φ({<0>})) = X,

φ(T ) = X \ φ(T ∗) = ∅,

while T 6= ∅, which it will be useful to know.

(c) Now suppose that X is a second-countable topological space and that 〈Un〉n∈N, 〈Vn〉n∈N are two
sequences running over bases for the topology ofX. Let φ : T → PX and φ′ : T → PX be the interpretations
of Borel codes defined by 〈Un〉n∈N, 〈Vn〉n∈N respectively. Then there is a function Θ : T → T \ {∅} such
that φ′Θ = φ. PPP Define Θ inductively, as follows. If r(T ) ≤ 1, then φ(T ) =

⋃
i∈AT

Ui is open. If φ(T ) 6= ∅,

set Θ(T ) = {<j> : j ∈ N, Vj ⊆ φ(T )}; then

φ′(Θ(T )) =
⋃
{Vj : j ∈ N, Vj ⊆ φ(T )} = φ(T ).

If φ(T ) = ∅, take Θ(T ) to be any non-empty member of T such that φ′(Θ(T )) = ∅; e.g., that presented in
(b) just above.

For the inductive step to r(T ) > 1, set

Θ(T ) = {<i> : i ∈ AT } ∪ {<i>aσ : i ∈ AT , σ ∈ Θ(T<i>)};

then r(Θ(T )) > 1 and

φ′(Θ(T )) =
⋃

i∈AΘ(T )

X \ φ′(Θ(T )<i>) =
⋃

i∈AT

X \ φ′(Θ(T<i>))

=
⋃

i∈AT

X \ φ(T<i>) = φ(T ),

so the induction continues. QQQ
(There will be a substantial strengthening of this idea in 562Ma.)

(d) Now say that a codable Borel set in X is one expressible as φ(T ) for some T ∈ T , starting from
some sequence running over a base for the topology of X; in view of (c), we can restrict our calculations to
a fixed enumeration of a fixed base if we wish. I will write Bc(X) for the family of codable Borel sets of X.

The definition of ‘interpretation of Borel codes’ makes it plain that any σ-algebra of subsets of X con-
taining every open set will also contain every codable Borel set; so every codable Borel set is indeed a ‘Borel
set’ on the definition of 111G or 4A3A.

As in the argument for (c) just above, it will sometimes be useful to know that every element of Bc(X)
can be coded by a non-empty member of T ; we have only to check the case of the empty set, which is dealt
with in the formula in (b).

562C The point of these codings is that we can define explicit functions on T which will have appropriate
reflections in the coded sets.

(a) For instance, there are functions Θ0 : T → T , Θ1 : T × T → T , Θ2 : T × T → T , Θ3 : T × T → T
such that, for any interpretation φ of Borel codes,

φ(Θ0(T )) = X \ φ(T ), φ(Θ1(T, T ′)) = φ(T ) ∪ φ(T ′),

φ(Θ2(T, T ′)) = φ(T ) ∩ φ(T ′), φ(Θ3(T, T ′)) = φ(T ) \ φ(T ′)

D.H.Fremlin



16 Choice and determinacy 562C

for all T , T ′ ∈ T . PPP Let T ∗ be the tree described in 562Bb, so that φ(T ∗) = X. Set

Θ0(T ) = T ∗ if T = ∅,

= {<0>} ∪ {<0>aσ : σ ∈ T} otherwise;

then

φ(Θ0(T )) = φ(T ∗) = X = X \ φ(T ) if T = ∅,

= X \ φ(Θ0(T )<0>) = X \ φ(T ) otherwise.

Now set

Θ1(T, T ′) = {<0>,<1>} ∪ {<0>aσ : σ ∈ Θ0(T )} ∪ {<1>aσ : σ ∈ Θ0(T ′)},

so that

φ(Θ1(T, T ′)) = (X \ φ(Θ1(T, T ′))<0>) ∪ (X \ φ(Θ1(T, T ′))<1>)

= (X \ φ(Θ0(T ))) ∪ (X \ φ(Θ0(T ′)))

= (X \ (X \ φ(T ))) ∪ (X \ (X \ φ(T ′))) = φ(T ) ∪ φ(T ′).

So we can take

Θ2(T, T ′) = Θ0(Θ1(Θ0(T ),Θ0(T ′))), Θ3(T, T ′) = Θ2(T,Θ0(T ′))

and get

φ(Θ2(T, T ′)) = X \ ((X \ φ(T )) ∪ (X \ φ(T ′))) = φ(T ) ∩ φ(T ′),

φ(Θ3(T, T ′)) = φ(T ) ∩ (X \ φ(T ′)) = φ(T ) \ φ(T ′). QQQ

(b) We can find codes for unions and intersections of sequences, provided the sequences are presented
in the right way; I give a general formulation of the process. For any countable set K we have functions
Θ̃1, Θ̃2 :

⋃
J⊆K T J → T such that whenever X is a set, 〈En〉n∈N is a sequence of subsets of X and φ is the

corresponding interpretation of Borel codes, then φ(Θ̃1(τ)) =
⋃

j∈J φ(τ(j)) and φ(Θ̃2(τ)) = X∩
⋂

j∈J φ(τ(j))

whenever J ⊆ K and τ ∈ T J . PPP Let 〈kn〉n∈N be a sequence running over K ∪ {∅}. For J ⊆ K and τ ∈ T J ,
set A = {n : kn ∈ J , τ(kn) 6= ∅} and

Θ̃1(τ) = {<n> : n ∈ A} ∪ {<n>aσ : n ∈ A, σ ∈ Θ0(τ(kn))},

Θ̃2(τ) = Θ0(Θ̃1(〈Θ0(τ(j))〉j∈J )).

Then

φ(Θ̃1(τ)) = ∅ =
⋃

j∈J

φ(τ(j)) if A = ∅,

=
⋃

n∈A

X \ φ(Θ0(τ(kn))) =
⋃

n∈A

φ(τ(kn)) =
⋃

j∈J

φ(τj) otherwise,

φ(Θ̃2(τ)) = X \
⋃

j∈J

(X \ φ(τj)) = X ∩
⋂

j∈J

φ(τj).QQQ

(c) A more sophisticated version of two of the codings in (a) will be useful in §564. Let X be a regular
second-countable space, 〈Un〉n∈N a sequence running over a base for the topology of X containing ∅, and
φ : T → PX the associated interpretation of Borel codes. Then there are functions Θ′

1, Θ′
2 : T × T → T

such that

φ(Θ′
1(T, T ′)) = φ(T ) ∪ φ(T ′), φ(Θ′

2(T, T ′)) = φ(T ) ∩ φ(T ′),

r(Θ′
1(T, T ′)) = r(Θ′

2(T, T ′)) = max(r(T ), r(T ′))

Measure Theory



562Cc Borel codes 17

for all T , T ′ ∈ T . PPP The point is just that open sets in a regular second-countable space are Fσ. Because of
the slightly awkward form taken by the definition of φ, we need to start with an auxiliary function. Define
T 7→ T̃ : T → T by saying that

T̃ = {<n> : Un ⊆ φ(T )} ∪ {<n>a<i> : Un ⊆ φ(T ), Ui ∩ Un = ∅}

if r(T ) ≤ 1,

= T otherwise .

Then φ(T̃ ) = φ(T ) and r(T̃ ) = max(2, r(T )) for every T (because if r(T ) ≤ 1 there is some n such that

Un = ∅ and <n>a<n> ∈ T̃ ). Note that ˜̃T = T̃ . We also need to fix a bijection n 7→ (in, jn) between N and
N× N.

Now define Θ′
1 by saying that

—– if max(r(T ), r(T ′)) ≤ 1, Θ′
1(T, T ′) = Θ′

1(T ) ∪ Θ′
1(T ′);

—– if max(r(T ), r(T ′)) > 1, then

Θ′
1(T, T ′) = {<2n> : n ∈ AT̃ } ∪ {<2n>aσ : σ ∈ T̃<n>}

∪ {<2n+ 1> : n ∈ AT̃ ′} ∪ {<2n+ 1>aσ : σ ∈ T̃ ′
<n>}.

For Θ′
2 induce on max(r(T ), r(T ′)):

—– if T = T ′ = ∅, Θ′
2(T, T ′) = ∅;

—– if max(r(T ), r(T ′)) = 1,

Θ′
2(T, T ′) = {<n> : Un ⊆ φ(T ) ∩ φ(T ′)};

—– if max(r(T ), r(T ′)) > 1, set A = {n : in ∈ AT̃ , jn ∈ AT̃ ′} and

Θ′
2(T, T ′) = {<n> : n ∈ A} ∪ {<n>aσ : n ∈ A, σ ∈ Θ′

1(T̃<in>, T̃
′
<jn>

)}

(interpreting T̃ ′
<jn>

as ((T ′)∼)<jn>).

These formulae work. I run through the calculations for Θ′
2(T, T ′) when max(r(T ), r(T ′)) > 1. We have

r(T̃ ) ≥ 2 and r(T̃ ′) ≥ 2, so AT̃ , AT̃ ′ and A are non-empty,

r(Θ′
2(T, T ′)) = sup

n∈A
r(Θ′

1(T̃<in>, T̃
′
<jn>)) + 1 = sup

i∈AT̃ ,j∈AT̃ ′

r(Θ′
1(T̃<i>, T̃

′
<j>)) + 1

= sup
i∈AT̃ ,j∈AT̃ ′

max(r(T̃<i>), r(T̃ ′
<j>)) + 1

= max( sup
i∈AT̃

r(T̃<i>) + 1, sup
j∈AT̃ ′

r(T̃ ′
<j>) + 1)

= max(r(T̃ ), r(T̃ ′)) = max(2, r(T ), r(T ′)) = max(r(T ), r(T ′))

and

φ(Θ′
2(T, T ′)) =

⋃

n∈A

X \ φ(Θ′
1(T̃<in>, T̃

′
<jn>))

=
⋃

n∈A

X \ φ(Θ′
1( ˜̃T<in>,

˜̃T ′
<jn>)) =

⋃

n∈A

X \ (φ(T̃<in>) ∪ φ(T̃ ′
<jn>))

=
⋃

n∈A

(X \ φ(T̃<in>)) ∩ (X \ φ(T̃ ′
<jn>))

=
⋃

i∈AT̃ ,j∈AT̃ ′

(X \ φ(T̃<in>)) ∩ (X \ φ(T̃ ′
<jn>))

= (
⋃

i∈AT̃

X \ φ(T̃<in>)) ∩ (
⋃

j∈AT̃ ′

X \ φ(T̃ ′
<jn>))

= φ(T̃ ) ∩ φ(T̃ ′) = φ(T ) ∩ φ(T ′). QQQ
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18 Choice and determinacy 562D

562D Proposition (a) If X is a second-countable space, then the family of codable Borel subsets of X
is an algebra of subsets of X containing every Gδ set and every Fσ set.

(b) [AC(ω)] Every Borel set is a codable Borel set.

proof (a) Let 〈Un〉n∈N be a sequence running over a base for the topology of X, and φ : T → Bc(X) the
corresponding surjection. From 562Ca we see that X \E and E∪E′ belong to Bc(X) for all E, E′ ∈ Bc(X);
since ∅ = φ(∅) belongs to Bc(X), Bc(X) is an algebra of subsets of X.

If E ⊆ X is an Fσ set, there is a sequence 〈Fn〉n∈N of closed sets with union E. Set

T = {<n> : n ∈ N} ∪ {<n>a<i> : n, i ∈ N, Ui ⊆ X \ Fn}.

Then r(T ) = 2, φ(T<n>) = X \ Fn for every n and φ(T ) = E.
Thus every Fσ set belongs to Bc(X); it follows at once that every Gδ set is also a codable Borel set.

(b) We can repeat the argument in (a), but this time in a more general form. If 〈En〉n∈N is any sequence
in Bc(X), then for each n ∈ N choose T (n) ∈ T \ {∅} such that φ(T (n)) = En; set

T = {<n> : n ∈ N} ∪ {<n>aσ : n ∈ N, σ ∈ T (n)};

then
⋃

n∈NX \En = φ(T ) is a codable Borel set. Because Bc(X) is an algebra, this is enough to show that
it is a σ-algebra and therefore equal to the σ-algebra B(X).

562E Proposition Let X be a second-countable space and Y ⊆ X a subspace of X. Then Bc(Y ) =
{Y ∩ E : E ∈ Bc(X)}.

proof Let 〈Un〉n∈N be a sequence running over a base for the topology of X, and set Vn = Y ∩ Un for
each n; let φX : T → Bc(X) and φY : T → Bc(Y ) be the interpretations of Borel codes corresponding to
〈Un〉n∈N, 〈Vn〉n∈N respectively. Then an easy induction on the rank of T shows that φY (T ) = Y ∩ φX(T )
for every T ∈ T . So

Bc(Y ) = φY [T ] = {Y ∩ φX(T ) : T ∈ T } = {Y ∩ E : E ∈ Bc(X)}.

*562F I do not expect to rely on the next result, but it is interesting that two of the basic facts of
descriptive set theory have versions in the new context.

Theorem (a) If X is a Hausdorff second-countable space and A, B are disjoint analytic subsets of X, there
is a codable Borel set E ⊆ X such that A ⊆ E and B ∩ E = ∅.

(b) Let X be a Polish space. Then a subset E of X is a codable Borel set iff E and X \ E are analytic.

proof (a)(i) If either A or B is empty, this is trivial, just because ∅ and X are codable Borel sets; so suppose
otherwise. Let f : NN → X and g : NN → X be continuous functions such that f [NN] = A and g[NN] = B.
Fix an enumeration 〈(jn, kn)〉n∈N of N×N, and a sequence 〈Un〉n∈N running over a base for the topology of
X; let φ be the interpretation of Borel codes defined by 〈Un〉n∈N. For σ ∈ S =

⋃
n∈N Nn set

Aσ = {f(α) : α ∈ NN, αi = jσ(i) for i < #(σ)},

Bσ = {g(α) : α ∈ NN, αi = kσ(i) for i < #(σ)}.

Then A∅ = A and Aσ =
⋃

i∈NAσa<i> for every σ, and similarly for B.

(ii) Still in the setting-up stage, we need general union and intersection operators on T . As in 562Cb,

let Θ̃1, Θ̃2 :
⋃

J⊆N T J → T be such that φ(Θ̃1(τ)) =
⋃

j∈J φ(τ(j)) and φ(Θ̃2(τ)) = X ∩
⋂

j∈J φ(τ(j))

whenever J ⊆ N and τ ∈ T J .

(iii) Set

T = {σ : σ ∈ S∗, there are no i, n ∈ N such that n < #(σ)

and Aσ↾n ⊆ Ui ⊆ X \Bσ↾n}.

If σ ∈ S and n ∈ N then Aσ↾n ⊇ Aσ and Bσ↾n ⊇ Bσ, so σ↾m ∈ T whenever σ ∈ T and m ≥ 1; thus T
belongs to T0 as defined in 562Ab. In fact T ∈ T . PPP??? Otherwise, by 562Ac, there is a γ ∈ NN such that
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γ↾n ∈ T for every n ≥ 1. Set α = 〈γjn〉n∈N, β = 〈γkn
〉n∈N; then f(α) ∈ A and g(β) ∈ B, so f(α) 6= g(β).

Because X is Hausdorff, there are i, j ∈ N such that f(α) ∈ Ui, g(β) ∈ Uj and Ui ∩ Uj = ∅. Because f and
g are continuous, there is an n ≥ 1 such that f(α′) ∈ Ui and g(β′) ∈ Uj whenever α′, β′ ∈ NN, α′↾n = α↾n
and β′↾n = β↾n; that is, such that Aγ↾n ⊆ Ui and Bγ↾n ⊆ Uj . But this means that γ↾n+ 1 /∈ T . XXXQQQ

(iv) We know that 〈∂ξT 〉ξ≤r(T ) is a non-increasing family in T with last member ∅, and moreover that

∂ξT =
⋂

η<ξ ∂
ηT for non-zero limit ordinals ξ ≤ r(T ). So for σ ∈ T there is a unique h(σ) < r(T ) such that

σ ∈ ∂h(σ)T \ ∂(∂h(σ)T ). I seek to define T (σ) ∈ T , for σ ∈ T , such that Aσ ⊆ φ(T (σ)) ⊆ X \Bσ for every σ.
I do this inductively.

(v) If h(σ) = 0, that is, σ ∈ T \∂T , then σa0 /∈ T . So there is a first i ∈ N such that Aσ ⊆ Ui ⊆ X \Bσ.
Set T (σ) = {<i>}, so that φ(T (σ)) = Ui includes Aσ and is disjoint from Bσ.

(vi) Now suppose that we have ξ ≤ r(t) such that ξ ≥ 1 and T (σ) has been defined for every σ ∈ T
with h(σ) < ξ. Take σ ∈ T such that h(σ) = ξ; then σa<n> ∈ T for some, therefore every, n ∈ N, while

h(σa<n>) < ξ and T (σa<n>) is defined for every n ∈ N. Now, for each n, we have Aσa<n> ⊆ φ(T (σa<n>)).

But of course Aσa<n> = Aσa<m> whenever jm = jn. So we have Aσa<n> ⊆
⋂

jm=jn
φ(T (σa<m>)) for each

n, and

Aσ ⊆
⋃

n∈N

⋂
jm=jn

φ(T (σa<m>)) =
⋃

j∈N

⋂
jm=j φ(T (σa<m>)).

Similarly, Bσa<n> = Bσa<m> is disjoint from φ(T (σa<m>)) whenever km = kn, so

Bσ =
⋃

k∈N

⋂
km=k Bσa<m>

is disjoint from
⋂

k∈N

⋃
km=k φ(T (σa<m>)).

On the other hand, for any j, k ∈ N, there is a p ∈ N such that jp = j and kp = k, so that
⋂

jm=j φ(T (σa<m>)) ⊆ φ(T (σa<p>)) ⊆
⋃

km=k φ(T (σa<m>)).

But this means that
⋃

j∈N

⋂
jm=j φ(T (σa<m>)) ⊆

⋂
k∈N

⋃
km=k φ(T (σa<m>)) is disjoint from Bσ.

If therefore we set

T (σ) = Θ̃1(〈Θ̃2(〈T (σa<m>)〉jm=j)〉j∈N)

we shall have Aσ ⊆ φ(T (σ)) ⊆ X \Bσ, and we have a formula defining a suitable tree T (σ) whenever σ ∈ T
and h(σ) = ξ, so we can continue the induction.

(vii) This gives us a family 〈T (σ)〉σ∈T in T . Of course what we are really looking for is a tree T (∅).
But if T is empty, this is because there is an i ∈ N such that A ⊆ Ui ⊆ X \B; in which case Ui is a codable
Borel set separating A from B. While if T is not empty, <n> ∈ T for every n ∈ N, and just as in (vi) we
can set

T (∅) = Θ̃1(〈Θ̃2(〈T (<m>)〉jm=j)〉j∈N)

to obtain a codable Borel set E = φ(T ∅) such that A ⊆ E and B ∩ E = ∅.

(b) If X is empty, this is trivial; suppose henceforth that X is not empty.

(i) If E and X \ E are analytic, then (a) tells us that there is a codable Borel set F including E and
disjoint from X \ E, so that E = F is a codable Borel set. So the rest of this part of the proof will be
devoted to the converse.

Let ρ be a complete metric on X inducing its topology, 〈xn〉n∈N a sequence running over a dense subset
of X, and 〈Un〉n∈N a sequence running over a base for the topology of X; let φ be the interpretation of Borel
codes defined from 〈Un〉n∈N.

(ii) We need to fix on a continuous surjection from a closed subset of NN onto X; a convenient one is
the following. Set

F = {α : α ∈ NN, ρ(xα(n+1), xα(n)) ≤ 2−n for every n ∈ N};

then F ⊆ NN is closed. Define f : F → X by saying that f(α) = limn→∞ xα(n) for every α ∈ NN. If α,

β ∈ NN and α↾n = β↾n where n ≥ 1, then ρ(f(α), f(β)) ≤ 2−n+2, so f is continuous. If x ∈ X, we can
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20 Choice and determinacy *562F

define α ∈ NN by saying that α(n) is to be the least i such that ρ(x, xi) ≤ 2−n−1; then ρ(xα(n), xα(n+1)) ≤
2−n−1 + 2−n−2 ≤ 2−n for every n, so α ∈ F , and of course f(α) = x. So f is surjective.

The next thing we need is a choice function for the set F of non-empty closed subsets of NN; I described
one in 561D. Let g : F → NN be such that g(F ) ∈ F for every F ∈ F .

(iii) There is a family 〈(FT , fT , F
′
T , f

′
T )〉T∈T such that

FT , F ′
T are closed subsets of NN,

fT : FT → φ(T ), f ′T : F ′
T → X \ φ(T ) are continuous surjections

for each T ∈ T . PPP Start by fixing a homeomorphism α 7→ 〈hi(α)〉i∈N : NN → (NN)N. Define the quadruples
(FT , fT , F

′
T , f

′
T ) inductively on the rank of T .

If r(T ) ≤ 1 then φ(T ) is open. Set

FT = {α : α ∈ F , xα(0) ∈ φ(T ), ρ(xα(n), xα(0)) ≤
1

2
ρ(xα(0), X \ φ(T )) for every n ≥ 1}

(interpreting ρ(x, ∅) as ∞ if necessary), and fT = f↾FT . Then FT is a closed subset of NN and ρ(f(α), xα(0)) ≤
1

2
ρ(xα(0), X \ φ(T )), so f(α) ∈ φ(T ), for every α ∈ FT . If x ∈ φ(T ) then we can define α ∈ NN by taking

α(n) = min{i : ρ(xi, x) ≤ min(2−n−1,
1

5
ρ(x,X \ φ(T )))}

for every n, and now we find that α ∈ FT and fT (α) = x. As for F ′
T and f ′T , just set F ′

T = f−1[X \ φ(T )]
and f ′T = f↾F ′

T .
For the inductive step to r(T ) > 1, set AT = {i : <i> ∈ T}, as in 562Ad. We have φ(T ) =

⋃
i∈AT

X \
φ(T<i>) and X \ φ(T ) =

⋂
i∈AT

φ(T<i>), while r(T<i>) < r(T ) for every i ∈ AT . Set

FT =
⋃

i∈AT
{<i>aα : α ∈ F ′

T<i>
},

F ′
T = {α : hi(α) ∈ FT<i>

for every i ∈ AT ,

fT<i>
(hi(α)) = fT<j>

(hj(α)) for all i, j ∈ AT },

fT (<i>aα) = f ′T<i>
(α) whenever i ∈ AT and α ∈ F ′

T<i>
,

f ′T (α) = fT<i>
(hi(α)) whenever i ∈ AT and α ∈ F ′

T .

It is straightforward to confirm that FT and F ′
T are closed, fT : FT → φ(T ) and f ′T : F ′

T → X \ φ(T ) are
continuous and fT [FT ] = φ(T ). To see that f ′T [F ′

T ] = X \ φ(T ), take any x ∈ X \ φ(T ) =
⋂

i∈AT
φ(T<i>).

Then f−1
T<i>

[{x}] is a non-empty closed subset of FT<i>
for each i ∈ AT . Set αi = g(f−1

T<i>
[{x}]), so that

fT<i>
(αi) = x for each i ∈ AT . For i ∈ N \ AT , take αi = 0. Now α = h−1(〈αi〉i∈N) belongs to F ′

T and
f ′T (α) = x. Thus f ′T [F ′

T ] = X \ φ(T ) and the induction continues. QQQ

(iv) In particular, φ(T ) = fT [FT ] is a continuous image of a closed subset of NN for every T ∈ T .

(v) The definition of ‘analytic set’ in 423A refers to continuous images of NN, so there is a final step
to make. If E ⊆ X is a non-empty codable Borel set, it is a continuous image of a closed subset FT of NN;
but 561C tells us that FT is a continuous image of NN, so E also is, and E is analytic.

562G Resolvable sets The essence of the concept of ‘codable Borel set’ is that it is not enough to know,
in the abstract, that a set is ‘Borel’; we need to know its pedigree. For a significant number of elementary
sets, however, starting with open sets and closed sets, we can determine codes from the sets themselves.

Definition (see Kuratowski 66, §12) I will say that a subset E of a topological space X is resolvable if

there is no non-empty set A ⊆ X such that A ⊆ A ∩ E ∩A \ E.

562H Proposition Let X be a topological space, and E the set of resolvable subsets of X. Then E is
an algebra of sets containing every open subset of X.
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proof (a) If G ⊆ X is open and A ⊆ X is non-empty, then either A meets G and A 6⊆ A \G, or A ∩G = ∅
then A 6⊆ A ∩G. So every open set is resolvable.

(b) If E is resolvable and A ⊆ X is not empty, there is an open set G such that A ∩G is not empty but

one of A∩G∩E, A∩G \E is empty. PPP If A 6⊆ A ∩ E take G = X \A ∩ E; otherwise take G = X \A \ E.
QQQ

(c) If E, E′ ⊆ X are resolvable, so is E ∪ E′. PPP Suppose that A ⊆ X is non-empty. Then there is an
open set G such that A∩G is non-empty and disjoint from one of E, X \E. Now there is an open set H such
that A∩G∩H is non-empty and disjoint from one of E′, X \E′. Consequently one of A∩G∩H ∩ (E ∪E′),

A∩G∩H \ (E ∪E′) is empty, and the open set G∩H is disjoint from A ∩ (E ∪ E′)∩A \ (E ∪ E′); in which

case A cannot be included in A ∩ (E ∪ E′) ∩A \ (E ∪ E′). As A is arbitrary, E ∪ E′ is resolvable. QQQ

(d) Immediately from the definition in 562G we see that the complement of a resolvable set is resolvable,
so E is an algebra of subsets of X.

562I Theorem Let X be a second-countable space, 〈Un〉n∈N a sequence running over a base for the
topology of X, and φ : T → Bc(X) the associated interpretation of Borel codes. Let E be the algebra of
resolvable subsets of X. Then there is a function ψ : E → T such that φ(ψ(E)) = E for every E ∈ E .

proof We need to start by settling on functions

Θ′
1 : T × N → T , Θ′

2 : T × T × N → T , Θ̃′
1 : T N → T , Θ̃′

2 : T N → T

such that

φ(Θ′
1(T, n)) = φ(T ) \ Un, φ(Θ′

2(T, T ′, n)) = φ(T ) ∪ (φ(T ′) ∩ Un),

φ(Θ̃′
1(τ)) =

⋃
i∈N φ(τ(i)), φ(Θ̃′

2(τ)) =
⋂

i∈N φ(τ(i))

for T ∈ T , n ∈ N and τ ∈ T N. (We can take Θ̃1 and Θ̃2 directly from 562Cb, and

Θ′
1(T, n) = Θ3(T, {<n>}),Θ′

2(T, T ′, n) = Θ1(T,Θ2(T, {<n>}))

where Θ1, Θ2 and Θ3 are the functions of 562Ca.)

Now, given E ∈ E , define 〈(Fξ, T̃
(ξ), T (ξ), nξ)〉ξ<ω1

inductively, as follows. The inductive hypothesis will

be that Fξ ⊆ X is closed, Fξ ⊆ Fη for every η ≤ ξ, T̃ (ξ), T (ξ) ∈ T , φ(T̃ (ξ)) = Fξ and φ(T (ξ)) = E \Fξ. Start

with F0 = X, T (0) = ∅, T̃ (0) = {<n> : n ∈ N}. For the inductive step to ξ + 1,

—– if Fξ = ∅, set nξ = 0 and (Fξ+1, T̃
(ξ+1), T (ξ+1)) = (Fξ, T̃

(ξ), T (ξ));
—– if there is an n such that ∅ 6= Fξ ∩ Un ⊆ E, let nξ be the least such, and set

Fξ+1 = Fξ \ Unξ
, T̃ (ξ+1) = Θ′

1(T̃ (ξ), nξ), T (ξ+1) = Θ′
2(T (ξ), T̃ (ξ), nξ);

—– otherwise, nξ is to be the least n such that ∅ 6= Fξ ∩ Un ⊆ X \ E, and

Fξ+1 = Fξ \ Unξ
, T̃ (ξ+1) = Θ′

1(T̃ (ξ), nξ) T (ξ+1) = T (ξ).

(Because E is resolvable, these three cases exhaust the possibilities.) It is easy to check that the inductive
hypothesis remains valid at level ξ + 1.

For the inductive step to a non-zero limit ordinal ξ, then if there is an η < ξ such that Fη = ∅, take the first

such η and set nξ = 0 and (Fξ, T
(ξ), T̃ (ξ)) = (Fη, T

(η), T̃ (η)). Otherwise, we must have Fζ ⊆ Fη \ Unη
⊂ Fη

whenever η < ζ < ξ, so that η 7→ nη : ξ → N is injective. Set

τ̃(i) = T̃ (η) if η < ξ and i = nη,

= T̃ (0) if there is no such η,

τ(i) = T (η) if η < ξ and i = nη,

= ∅ if there is no such η;

now set

Fξ =
⋂

η<ξ Fη, T̃ (ξ) = Θ̃′
2(τ̃), T (ξ) = Θ̃′

1(τ).
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Again, it is easy to check that the induction proceeds.
Now, with the family 〈(Fξ, T̃

(ξ), T (ξ), nξ)〉ξ<ω1
complete, observe that 〈nξ〉ξ<ω1

cannot be injective. There

is therefore a first ξ = ξE for which FξE is empty. Set ψ(E) = T (ξE); then φ(ψ(E)) = E \ FξE = E, as
required.

562J Codable families of sets Let X be a second-countable space and Bc(X) the algebra of codable
Borel subsets of X. Let 〈Un〉n∈N, 〈Vn〉n∈N be sequences running over bases for the topology of X, and
φ : T → Bc(X), φ′ : T → Bc(X) the corresponding interpretations of Borel codes. Let us say that a family
〈Ei〉i∈I is φ-codable if there is a family 〈T (i)〉i∈I in T such that φ(T (i)) = Ei for every i ∈ I. Then 562Bc
tells us that 〈Ei〉i∈I is φ-codable iff it is φ′-codable.

We may therefore say that a family 〈Ei〉i∈I in Bc(X) is codable if it is φ-codable for some, therefore
any, interpretation of Borel codes defined by the procedure of 562B from a sequence running over a base for
the topology of X.

Note that any finite family in Bc(X) is codable, and that any family of resolvable sets is codable, because
we can use 562I to provide codes; also any subfamily of a codable family is codable. Slightly more generally,
if 〈Ei〉i∈I is a codable family in Bc(X), J is a set, and f : J → I is a function, then 〈Ef(j)〉j∈J is codable.
If 〈Ei〉i∈I and 〈Fi〉i∈I are codable families in Bc(X), then so are 〈X \Ei〉i∈I , 〈Ei ∪ Fi〉i∈I , 〈Ei ∩ Fi〉i∈I and
〈Ei \ Fi〉i∈I , since we have formulae to transform codes for E, F into codes for X \ E, E ∪ F , E ∩ F and
E \ F .

562K Proposition Let X be a second-countable space and 〈En〉n∈N a codable sequence in Bc(X). Then
(a)

⋃
n∈NEn,

⋂
n∈NEn belong to Bc(X);

(b) 〈
⋃

i<nEi〉n∈N is a codable family in Bc(X);
(c) 〈En \

⋃
i<nEi〉n∈N is a codable family in Bc(X).

proof Let φ : T → Bc(X) be an interpretation of Borel codes defined from a sequence running over a base
for the topology of X; then we have a sequence 〈T (n)〉n∈N in T such that φ(T (n)) = En for every n, and
using 562Bb we can arrange that T (n) 6= ∅ for every n.

(a) Setting

T = {<n> : n ∈ N} ∪ {<n>a<0> : n ∈ N} ∪ {<n>a<0>aσ : n ∈ N, σ ∈ T (n)},

T ′ = {<0>} ∪ {<0>a<n> : n ∈ N} ∪ {<0>a<n>aσ : n ∈ N, σ ∈ T (n)},

we have φ(T ) =
⋃

n∈NEn and φ(T ′) =
⋂

n∈NEn.

(b) Setting

T̂ (n) = {<i> : i < n} ∪ {<i>a<0> : i < n} ∪ {<i>a<0>aσ : i < n, σ ∈ T (i)},

φ(T̂ (n)) =
⋃

i<nEi for every n.

(c) Setting

T ′′ = {<n> : n ∈ N} ∪ {<n>a<0> : n ∈ N} ∪ {<n>a<0>aσ : σ ∈ T (n)}

∪ {<n>a<1> : n ∈ N} ∪ {<n>a<1>a<0> : n ∈ N}

∪ {<n>a<1>a<0>aσ : σ ∈ T̂ (n)},

φ(T ′′) =
⋃

n∈N(En \
⋃

i<nEi).

562L Codable Borel functions Let X and Y be second-countable spaces. A function f : X → Y is a
codable Borel function if 〈f−1[H]〉H⊆Y is open is a codable family in Bc(X).

562M Theorem Let X be a second-countable space, 〈Un〉n∈N a sequence running over a base for the
topology of X, and φ : T → Bc(X) the corresponding interpretation of Borel codes.
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(a) If Y is another second-countable space, 〈Vn〉n∈N a sequence running over a base for the topology of Y
containing ∅, φY : T → Bc(Y ) the corresponding interpretation of Borel codes, and f : X → Y is a function,
then the following are equiveridical:

(i) f is a codable Borel function;
(ii) 〈f−1[Vn]〉n∈N is a codable sequence in Bc(X);
(iii) there is a function Θ : T → T such that φ(Θ(T )) = f−1[φY (T )] for every T ∈ T .

(b) If Y and Z are second-countable spaces and f : X → Y , g : Y → Z are codable Borel functions then
gf : X → Z is a codable Borel function.

(c) If Y and Z are second-countable spaces and f : X → Y , g : X → Z are codable Borel functions then
x 7→ (f(x), g(x)) is a codable Borel function from X to Y × Z.

(d) If Y is a second-countable space then any continuous function from X to Y is a codable Borel function.

proof (a)(i)⇒(ii) is trivial.

(ii)⇒(iii) This is really a full-strength version of 562Bc. Because 〈f−1[Vn]〉n∈N is codable, we have
a sequence 〈T (n)〉n∈N in T such that φ(T (n)) = f−1[Vn] for every n. As in 562C, let Θ0 : T → T and

θ̃1 :
⋃

I⊆N T I → T be such that φ(Θ0(T )) = X\φ(T ) for every T ∈ T and φ(Θ̃1(τ)) =
⋃

i∈I φ(τ(i)) whenever

I ⊆ N and τ ∈ T I . Define Θ : T → T inductively, as follows. Given T ∈ T , set AT = {n : <n> ∈ T}. If

r(T ) = 0 set Θ(T ) = T = ∅. If r(T ) = 1 set Θ(T ) = Θ̃1(〈T (n)〉n∈AT
), so that

φ(Θ(T )) =
⋃

n∈AT
φ(T (n)) =

⋃
n∈AT

f−1[Vn] = f−1[φY (T )].

If r(T ) > 1 set

Θ(T ) = Θ̃1(〈Θ0(Θ(T<n>))〉n∈AT
)

so that

φ(Θ(T )) =
⋃

n∈AT

X \ φ(Θ(T<n>)) =
⋃

n∈AT

X \ f−1[φY (T<n>)]

= f−1[
⋃

n∈AT

Y \ φY (T<n>)] = f−1[φY (T )]

and the induction continues.

(iii)⇒(i) For open H ⊆ Y set ψY (H) = {<n> : Vn ⊆ H}. Taking Θ as above,

φ(Θ(ψY (H)) = f−1[φY (ψY (H))] = f−1[H]

for every H, so 〈φ(Θ(ψY (H)))〉H⊆Y is open is a family of codes for 〈f−1[H]〉H⊆Y is open.

(b) Take 〈Vn〉n∈N, φY and Θ : T → T as in (a). Write U for the topology of Z; then we have a
function θ : U → T such that φY (θ(H)) = g−1[H] for every H ∈ U. Now 〈Θ(θ(H))〉H∈U is a coding for
〈(gf)−1[H]〉H∈U, so gf is codable.

(c) Let 〈Vn〉n∈N, 〈Wn〉n∈N be sequences running over bases for the topologies of Y and Z, and 〈(in, jn)〉n∈N

an enumeration of N × N. Set Hn = Vin ×Wjn ; then 〈Hn〉n∈N is a base for the topology of Y × Z. Let

Θ2 : T ×T → T be such that φ(Θ2(T, T ′)) = φ(T )∩φ(T ′) for all T , T ′ ∈ T (562Ca). Let 〈T (n)〉n∈N, 〈T̂ (n)〉n∈N

be codings for 〈f−1[Vn]〉n∈N, 〈g−1[Wn]〉n∈N. Then 〈Θ2(T (in), T̂ (jn))〉n∈N is a coding for 〈h−1[Hn]〉n∈N, where
h(x) = (f(x), g(x)) for x ∈ X. So h is a codable Borel function.

(d) If f : X → Y is continuous, then 〈f−1[H]〉H⊆Y is open is a family of resolvable sets, therefore codable,
as noted in 562J.

Remark Note in part (a)(ii)⇒(iii) of the proof the function Θ is constructed by a definite process from
〈T (n)〉n∈N; so we shall be able to uniformize the process to define families 〈Θi〉i∈I from families 〈fi〉i∈I , at
least if we can reach a family 〈T (i,n)〉i∈I,n∈N such that T (n,i) codes f−1

i [Vn] for all i ∈ I and n ∈ N.

562N Proposition Let X be a second-countable space, and φ : T → Bc(X) the interpretation of Borel
codes associated with some sequence running over a base for the topology of X.

(a) If f : X → R is a function, the following are equiveridical:
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(i) f is a codable Borel function;
(ii) the family 〈{x : f(x) > α}〉α∈R is codable;
(iii) 〈{x : f(x) > q}〉q∈Q is codable.

(b) Write T̃ for the set of functions τ : R → T such that

φ(τ(α)) =
⋃

β>α φ(τ(β)) for every α ∈ R,

⋂
n∈N φ(τ(n)) = ∅,

⋃
n∈N φ(τ(−n)) = X.

Then
(i) for every τ ∈ T̃ there is a unique codable Borel function φ̃(τ) : X → R such that φ(τ(α)) = {x :

φ̃(τ)(x) > α} for every α ∈ R;

(ii) every codable Borel function from X to R is expressible as φ̃(τ) for some τ ∈ T̃ .

(c) If 〈τn〉n∈N is a sequence in T̃ such that f(x) = supn∈N φ̃(τn)(x) is finite for every x ∈ X, then f is a
codable Borel function.

(d) If f , g : X → R are codable Borel functions and γ ∈ R, then f + g, γf , |f | and f × g are codable
Borel functions.

(e) If 〈τn〉n∈N is a sequence in T̃ , then there is a codable Borel function f such that lim infn→∞ φ̃(τn)(x) =
f(x) whenever the lim inf is finite.

(f) A subset E of X belongs to Bc(X) iff χE : X → R is a codable Borel function.

proof (a)(i)⇒(ii) If f : X → R is codable then of course 〈{x : f(x) > α}〉α∈R is codable, because it is a
subfamily of 〈f−1[H]〉H⊆R is open.

(ii)⇒(iii) Similarly, if 〈{x : f(x) > α}〉α∈R is codable, its subfamily 〈{x : f(x) > q}〉q∈Q is codable.

(iii)⇒(i) If 〈{x : f(x) > q}〉q∈Q is codable, we have a family 〈T (q)〉q∈Q in T coding it. Let 〈(qn, q
′
n)〉n∈N

be an enumeration of {(q, q′) : q, q′ ∈ Q, q < q′}. As in 562C, we have functions

Θ3 : T × T → T , Θ̃1 :
⋃

I⊆Q T I → T , Θ̃2 :
⋃

J⊆N T J → T

such that

φ(Θ3(T, T ′)) = φ(T ) \ φ(T ′), φ(Θ̃1(τ)) =
⋃

q∈I φ(τ(q))),

φ(Θ̃2(τ)) = X ∩
⋂

q∈I φ(τ(j))

for T , T ′ ∈ T , I ⊆ Q and τ ∈ T I . Now for n ∈ N consider

T̂ (n) = Θ̃1(〈Θ3(T (qn), T (r))〉r∈Q,r<q′n),

so that φ(T̂ (n)) = f−1[ ]qn, q
′
n[ ] for every n, and 〈f−1[ ]qn, q

′
n[ ]〉n∈N is codable; by 562Ma, f is a codable

Borel function.

(b) This is elementary; given τ ∈ T̃ we can, and must, set φ̃(τ)(x) = sup{α : x ∈ φ(τ(α))} for every

x ∈ X; and given f we have a coding τ for 〈{x : f(x) > α}〉α∈R which must belong to T̃ and be such that

φ̃(τ) = f .

(c) Given 〈τn〉n∈N as described, and taking Θ̃1 as in (a)(iii)⇒(i) above,

α 7→ Θ̃1(〈τn(α)〉n∈N)

will be a Borel code for f .

(d) Use 562M(b)-(d).

(e) Let

Θ0 : T → T , Θ1 : T × T → T

be such that

φ(Θ0(T )) = X \ φ(T ), φ(Θ1(T, T ′)) = φ(T ) ∪ φ(T ′)

for every T , T ′ ∈ T . Now, given 〈τn〉n∈N as described, set
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τ(α) = Θ̃1(〈Θ̃1(〈Θ̃2(〈τm(q)〉m≥n)〉q∈Q,q>α)〉n∈N)

for α ∈ R. Then

φ(τ(α)) =
⋃

q>α,n∈N

⋂
m≥n{x : fm(x) > q} = {x : lim infn→∞ fn(x) > α}

for each α. We don’t yet have a code for a real-value function defined everywhere in X. But if we set

T = Θ̃1(〈Θ3(τ(−n), τ(n))〉n∈N),

then

φ(T ) =
⋃

n∈N φ(τ(−n)) \ φ(τ(n)) = {x : lim infn→∞ fn(x) is finite}.

So take

τ ′(α) = Θ3(τ(α),Θ0(T )) if α ≥ 0,

= Θ1(τ(α),Θ0(T )) if α < 0;

this will get τ ′ ∈ T̃ such that

φ̃(τ ′)(x) = lim inf
n→∞

fn(x) if this is finite,

= 0 otherwise.

(f) Elementary.

562O Remarks (a) For some purposes there are advantages in coding real-valued functions by functions
from Q to T rather than by functions from R to T ; see 364Af and 556A.

(b) As in 562C, it will be useful to observe that the constructions here are largely determinate. For
instance, the function Θ of 562M(a-iii) can be built by a definite rule from the sequence 〈T (n)〉n∈N provided
by the hypothesis (a-ii) there. What this means is that if we have a family 〈(Yi, 〈Vin〉n∈N, fi)〉i∈I such
that Yi is a second-countable space, 〈Vin〉n∈N is a sequence running over a base for the topology of Yi, and

fi : X → Yi is a continuous function for each i ∈ I, then there will be a function Θ̃ : T × I → T such that
φ(Θ̃(T, i)) = f−1

i [φi(T )] for every i ∈ I and T ∈ T , where φi : T → Bc(Yi) is the interpretation of Borel
codes corresponding to the sequence 〈Vin〉n∈N. (Start from

T (i,n) = {<j> : Uj ⊆ f−1
i [Vin]}

for i ∈ I and n ∈ N, and build Θ̃(T, i) as 562M.)

(c) Similarly, when we look at 562N(d)-(e), we have something better than just existence proofs for codes

for f + g and lim infn→∞ fn. For instance, we have a function Θ̃1 : T̃ × T̃ → T̃ such that φ̃(Θ̃1(τ, τ ′)) will

always be φ̃(τ) − φ̃(τ ′) for τ , τ ′ ∈ T̃ . PPP We need to have

φ(Θ̃(τ, τ ′)(α)) =
⋃

q∈Q φ(τ(q)) \ φ(τ ′(q − α))

for every α, and this is easy to build from a set-difference operator, as in 562Ca, and a general countable-
union operator as built in 562Cb. QQQ Equally, we have a function Θ̃∗

1 : T̃ N → T̃ N such that

φ̃(Θ̃∗
1(〈τn〉n∈N)(m)) = infn≥m φ̃(τn)

for every m whenever 〈τn〉n∈N is a sequence in T̃ such that infn∈N φ̃(τn) is defined as a real-valued function
on X. PPP This time we need

φ(Θ̃1(〈τn〉n∈N)(m)(α)) =
⋃

q∈Q,q>α

(
X \

⋃
n≥m(X \ φ(τn(q)))

)

for all m and α, and once again a complementation operator and a general countable-union operator will
do the trick. QQQ

562P Codable Borel equivalence (a) If X is a set, we can say that two second-countable topologies
S, T on X are codably Borel equivalent if the identity functions (X,S) → (X,T) and (X,T) → (X,S)
are codable Borel functions. In this case, S and T give the same families of codable Borel functions and the
same algebra Bc(X) (562Mb, 562Nf).
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(b) If (X,T) is a second-countable space and 〈En〉n∈N is any codable sequence in Bc(X), there is a
topology S on X, generated by a countable algebra of subsets of X, such that S and T are codably Borel
equivalent and every En belongs to S. PPP Since there is certainly a codable sequence running over a base
for the topology of X, we can suppose that such a sequence has been amalgamated with 〈En〉n∈N, so that
{En : n ∈ N} includes a base for T. Let E be the algebra of subsets of X generated by {En : n ∈ N}
and S the topology generated by E . As E is an algebra, S is zero-dimensional; as E is countable, S is
second-countable.

The identity map (X,S) → (X,T) is continuous, therefore a codable Borel function (562Md). In the
reverse direction, we have a sequence 〈T (n)〉n∈N of codes for 〈En〉n∈N. From these we can build, using our
standard operations, codes TI , for I ∈ [N]<ω, T ′

IJ , for I, J ∈ [N]<ω, and T ′′
K, for K ∈ [[N]<ω × [N]<ω]<ω,

such that

TI codes
⋃

i∈I Ei,
T ′
IJ codes

⋃
i∈I Ei \

⋃
i∈J Ei,

T ′′
K codes

⋃
(I,J)∈K(

⋃
i∈I Ei \

⋃
i∈J Ei).

But of course [[N]<ω × [N]<ω]<ω is countable and the T ′′
K can be enumerated as a sequence 〈T ∗

n〉n∈N coding a
sequence 〈Vn〉n∈N running over E . By 562Ma, the identity map (X,T) → (X,S) is a codable Borel function.
QQQ

Note that S here is necessarily regular; this will be useful at more than one point in the next couple of
sections.

562Q Resolvable functions Let X be a topological space. I will say that a function f : X → [−∞,∞]
is resolvable if whenever α < β in R and A ⊆ X is a non-empty set, then at least one of {x : x ∈ A,
f(x) ≤ α}, {x : x ∈ A, f(x) ≥ β} is not dense in A.

Examples (a) Any semi-continuous function from X to [−∞,∞] is resolvable. PPP If f : X → [−∞,∞] is
lower semi-continuous, A ⊆ X is non-empty, and α < β in R, then U = {x : f(x) > α} is open; if A∩U 6= ∅
then {x : x ∈ A, f(x) ≤ α} is not dense in A; otherwise {x : x ∈ A, f(x) ≥ β} is not dense in A. QQQ

(b) If f : X → R is such that {x : f(x) > α} is resolvable for every α, then f is resolvable. PPP Suppose
that A ⊆ X is non-empty and α < β in R. Set E = {x : f(x) > α}. If A 6⊆ A ∩ E, then {x : x ∈ A,
f(x) ≥ β} is not dense in A. Otherwise {x : x ∈ A, f(x) ≤ α} = A \ E is not dense in A. QQQ

In particular, the indicator function of a resolvable set is resolvable.

(c) A function f : R → R which has bounded variation on every bounded set is resolvable. PPP If A ⊆ R
is non-empty and α < β in R, take y ∈ A. If y is isolated in A, then we have an open set U such that
U ∩ A = {y}, so that one of {x : x ∈ A, f(x) ≤ α}, {x : x ∈ A, f(x) ≥ β} does not contain y and is not
dense in A. Otherwise, y is in the closure of one of A ∩ ]y,∞[, A ∩ ]−∞, y[; suppose the former. For each
n ∈ N set In = [y + 2−n−1, y + 2−n], δn = VarIn(f). We have

∞ > Var]y,y+1](f) =
∑∞

n=0 δn,

so there is an n ∈ N such that δm ≤ 1
4 (β − α) for m ≥ n. Take m > n such that Im ∩ A 6= ∅, and consider

U = int(Im−1 ∪ Im ∪ Im+1). Then VarU (f) ≤ 3
4 (β − α) so U cannot meet both {x : x ∈ A, f(x) ≥ β} and

{x : x ∈ A, f(x) ≥ α}, and one of these is not dense in A. QQQ

562R Theorem Let X be a second-countable space, 〈Un〉n∈N a sequence running over a base for the
topology of X, and φ : T → Bc(X) the associated interpretation of Borel codes. Let R be the family of

resolvable real-valued functions on X. Then there is a function ψ̃ : R → T R such that

φ(ψ̃(f)(α)) = {x : f(x) > α}

for every f ∈ R and α ∈ R.

proof (a) Start by fixing a bijection

k 7→ (nk, qk, q
′
k) : N → N× {(q, q′) : q, q′ ∈ Q, q < q′}.

Next, fix a function Θ∗
1 : T 3 × N → T such that
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φ(Θ∗
1(T, T ′, T ′′, n)) = φ(T ) ∪ (Un \ (φ(T ′) ∪ φ(T ′′)))

for T , T ′, T ′′ ∈ T and n ∈ N, and a function Θ̃∗
1 :

⋃
J⊆N T J → T such that φ(Θ̃∗

1(τ)) =
⋃

i∈J φ(τ(i))

whenever J ⊆ N and τ ∈ T J . (See 562Ca.)

(b) Given f ∈ R, define ζ < ω1 and a family 〈(τξ, τ
′
ξ, kξ)〉ξ≤ζ in T R × T R × N inductively, as follows.

The inductive hypothesis will be that kη 6= kξ whenever η < ξ < ζ. Start with τ0(α) = τ ′0(α) = ∅ for every
α ∈ R.

Inductive step to a successor ordinal ξ + 1 Given τξ and τ ′ξ in T R, then for q < q′ in Q set Fξ(q, q′) =

X \ (φ(τξ(q)) ∪ φ(τ ′ξ(q′))). Now

—– if there is a k ∈ N \ {kη : η < ξ} such that Unk
∩ Fξ(qk, q

′
k) 6= ∅ and f(x) ≥ qk for every

x ∈ Unk
∩ Fξ(qk, q

′
k), take the first such k, and set

τξ+1(α) = τξ(α) for every α ∈ R,

τ ′ξ+1(α) = Θ∗
1(τ ′ξ(α), τξ(qk), τ ′ξ(q′k), nk) if α ≤ qk,

= τ ′ξ(α) if α > qk,

kξ = k;

—– if this is not so, but there is a k ∈ N \ {kη : η < ξ} such that Unk
∩ Fξ(qk, q

′
k) 6= ∅ and

f(x) ≤ q′k for every x ∈ Unk
∩ Fξ(qk, q

′
k), take the first such k, and set

τξ+1(α) = Θ∗
1(τξ(α), τξ(qk), τ ′ξ(q′k), nk) if α ≥ q′k,

= τξ(α) if α < q′k,

τ ′ξ+1(α) = τ ′ξ(α) for every α ∈ R,

kξ = k;

—– and if that doesn’t happen either, set ζ = ξ and stop.

Inductive step to a countable limit ordinal ξ Given 〈(τη, τ
′
η, kη)〉η<ξ, set I = {kη : η < ξ} and define

g : I → ξ by setting g(i) = η whenever η < ξ and kη = i. Now set

τξ(α) = Θ̃∗
1(〈τg(i)(α)〉i∈I), τ ′ξ(α) = Θ̃∗

1(〈τ ′g(i)(α)〉i∈I)

for every α ∈ R.

(c) Now an induction on ξ shows that

φ(τη(α)) ⊆ φ(τξ(α)), φ(τ ′η(α)) ⊆ φ(τ ′ξ(α)),

φ(τξ(α)) ⊆ {x : f(x) ≤ α}, φ(τ ′ξ(α)) ⊆ {x : f(x) ≥ α}

whenever η ≤ ξ, α ∈ R and the codes here are defined. Next, if kη = k is defined, we must have Unk
∩

Fη(qk, q
′
k) 6= ∅ and

—– either f(x) ≥ qk for every x ∈ Unk
∩ Fη(qk, q

′
k) and φ(τ ′η+1(qk)) = φ(τ ′η(qk)) ∪ (Unk

∩
Fη(qk, q

′
k))

—– or f(x) ≤ q′k for every x ∈ Unk
∩Fη(qk, q

′
k) and φ(τη+1(qk)) = φ(τη(qk))∪(Unk

∩Fη(qk, q
′
k)).

In either case, Unk
∩ Fη(qk, q

′
k) must be disjoint from Fξ(qk, q

′
k) for every ξ > η for which Fξ is defined;

consequently we cannot have kξ = k for any ξ > η. The induction must therefore stop.
Fζ(q, q′) = ∅ whenever q, q′ ∈ Q and q < q′. PPP??? Otherwise, because f is resolvable, there is an n ∈ N

such that V = Un ∩Fζ(q, q′) is non-empty and either f(x) ≥ q for every x ∈ V or f(x) ≤ q′ for every x ∈ V .
Let k ∈ N be such that nk = n, qk = q and q′k = q′; then Unk

meets Fζ(qk, q
′
k) so k 6= kη for any η < ζ. But

this means that we ought to have proceeded according to one of the first two alternatives in the single-step
inductive stage, and ought not to have stopped at ζ. XXXQQQ

(d) Now set

τ(α) = Θ̃∗
1(〈τ ′ζ(qn)〉n∈N,qn>α)
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for α ∈ R. Then

φ(τ(α)) =
⋃

n∈N,qn>α

φ(τ ′ζ(qn))

⊆
⋃

n∈N,qn>α

{x : f(x) ≥ qn} ⊆ {x : f(x) > α}

for every α. ??? If α is such that φ(τ(α)) ⊂ {x : f(x) > α}, let x ∈ X and n ∈ N be such that f(x) > q′n >
qn > α and x /∈ φ(τ(α)). Then x /∈ φ(τ ′ζ(qn)); but also f(y) ≤ q′n for every y ∈ φ(τζ(q′n)), so x /∈ φ(τζ(q′n))

and x ∈ Fζ(qn, q
′
n), which is supposed to be impossible. XXX

So we can set ψ̃(f) = τ .

562S Codable families of codable functions (a) If X and Y are second-countable spaces, a family
〈fi〉i∈I of functions fromX to Y is a codable family of codable Borel functions if 〈f−1

i [H]〉i∈I,H⊆Y is open

is a codable family in Bc(X).

(b) Uniformizing the arguments of 562N, it is easy to check that a family 〈fi〉i∈I of real-valued functions

on X is a codable family of codable Borel functions iff there is a family 〈τi〉i∈I in T̃ such that, in the language

there, fi = φ̃(τi) for every i.

(c) In this language, 562Ne can be rephrased as

if 〈fn〉n∈N is a codable sequence of real-valued codable Borel functions on X, there is a codable
Borel function f such that f(x) = lim infn→∞ fn(x) whenever the lim inf is finite,

and 562R implies that

the family of resolvable real-valued functions on X is a codable family of codable Borel func-
tions.

(d) If X, Y and Z are second-countable spaces, 〈fi〉i∈I is a codable family of codable Borel functions
from X to Y , and 〈gi〉i∈I is a codable family of codable Borel functions from Y to Z, then 〈gifi〉i∈I is
a codable family of codable functions from X to Z; this is because the proof of 562Mb gives a recipe for
calculating a code for the composition of codable functions, which can be performed simultaneously on the
compositions gifi if we are given codes for the functions gi and fi.

(e) Extending the remarks in 562O(b)-(c), we see that (for instance) we can define a sequence 〈Φn〉n∈N

such that Φn is a function from T̃ n+1 to T̃ for every n, and φ̃(Φn(〈τi〉i≤n)) =
∑n

i=0 φ̃(τi) whenever

τ0, . . . , τn ∈ T̃ ; so that if 〈fn〉n∈N is a codable sequence of codable Borel functions, then 〈
∑n

i=0 fi〉n∈N

is codable.

562T Codable Baire sets The ideas here can be adapted to give a theory of Baire algebras in general
topological spaces. Start by settling on a sequence running over a base for the topology of RN, with the
associated interpretation φ : T → Bc(R

N) of Borel codes. Let X be a topological space.

(a) A subset E of X is a codable Baire set if it is of the form f−1[F ] for some continuous f : X → RN

and F ∈ Bc(R
N); write Bac(X) for the family of such sets. If E ∈ Bac(X), then a code for E will be a pair

(f, T ) where f : X → RN is continuous, T ∈ T and E = f−1[φ(T )]. A family 〈Ei〉i∈I in Bac(X) is now a
codable family if there is a family 〈(fi, T (i))〉i∈I such that (fi, T

(i)) codes Ei for every i.

(b)(i) Suppose that 〈fi〉i∈I is a countable family of continuous functions from X to RN, and 〈T (i)〉i∈I

a family in T . Then there are a continuous function f : X → RN and a sequence 〈T̂ (i)〉i∈N in T such that

(f, T̂ (i)) codes the same Baire set as (fi, T
(i)) for every i ∈ I. PPP If I is empty, this is trivial. Otherwise, I×N

is countably infinite, so (RN)I ∼= RI×N is homeomorphic to RN; let h : RN → (RN)I be a homeomorphism,
and set f(x) = h−1(〈fi(x)〉i∈I) for each x ∈ N. Then fi = πihf for each i, where πi(z) = z(i) for
z ∈ (RN)I . Now 〈(πih)−1[Vn]〉i∈I,n∈N is a family of open sets in RN, so is codable (562I, or otherwise);

let 〈T (i,n)〉i∈I,n∈N be a family in T such that φ(T (i,n)) = (πih)−1[Vn] whenever n ∈ N and i ∈ I. The
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construction of part (a)(ii)⇒(iii) in the proof of 562M gives us a family 〈Θi〉i∈I of functions from T to T

such that (πih)−1[φ(T )] = φ(Θi(T )) whenever i ∈ I and T ∈ T . So we can take T̂ (i) = Θi(T
(i)), and we

shall have

f−1
i [φ(T (i))] = f−1[(πih)−1[φ(T (i))]] = f−1[φ(Θi(T

(i)))] = f−1[φ(T̂ (i))]

for every i, as required. QQQ

(ii) It follows that if 〈Ei〉i∈N is a codable sequence in Bac(X) then
⋃

i∈NEi and
⋂

i∈NEi belong

to Bac(X). PPP By (i), we have a continuous f : X → RN and a sequence 〈T̂ (i)〉i∈N in T such that

Ei = f−1[φ(T̂ (i))] for every i ∈ N. Now 562K tells us that F =
⋃

i∈N φ(T̂ (i)) and F ′ =
⋂

i∈N φ(T̂ (i)) are

codable, so f−1[F ] =
⋃

i∈NEi and f−1[F ′] =
⋂

i∈NEi belong to Bac(X). QQQ

(iii) In particular, Bac(X) is closed under finite intersections; as it is certainly closed under comple-
mentation, it is an algebra of subsets of X. Every zero set belongs to Bac(X). PPP If g : X → R is continuous,
set f(x)(i) = g(x) for x ∈ X, i ∈ N; then H = {z : z ∈ RN, z(0) = 0} is closed, therefore a codable Borel
set, and g−1[{0}] = f−1[H] is a codable Baire set. QQQ

(iv) If Y is another topological space and g : X → Y is continuous, then 〈g−1[Fi]〉i∈I is a codable family
in Bac(X) for every codable family 〈Fi〉i∈I in Bac(Y ). PPP If 〈(fi, T

(i))〉i∈I codes 〈Fi〉i∈I , then 〈(fig, T
(i))〉i∈I

codes 〈g−1[Fi]〉i∈I . QQQ

(c)(i) A function f : X → R is a codable Baire function if there are a continuous g : X → RN and
a codable Borel function h : RN → R such that f = hg. A family 〈fi〉i∈I of codable Baire functions is a
codable family if there is a family 〈(gi, hi)〉i∈I such that gi : X → RN is a continuous function for every
i ∈ I and 〈hi〉i∈I is a codable family of codable Borel functions from RN to R.

(ii) Suppose that 〈fn〉n∈N is a codable sequence of codable Baire functions from X to R. Then there
are a continuous function g : X → RN and a codable sequence 〈hn〉n∈N of codable Borel functions from RN

to R such that fn = hng for every n ∈ N. PPP Let 〈(gn, h
′
n)〉n∈N be such that gn : X → RN is continuous for

every n, 〈h′n〉n∈N is a codable sequence of codable Borel functions from RN → R, and fn = h′ngn for each n.
Now 〈{x : h′n(x) > q}〉n∈N,q∈Q is a codable family in Bc(R

N); let 〈T ′
nq〉n∈N,q∈Q be a family in T coding it.

By (b-i) above, there are a continuous function g : X → RN and a family 〈T (n,q)〉n∈N,q∈N in T such that

g−1[φ(T (n,q))] = g−1
n [φ(T ′

nq)] = {x : fn(x) > q}

for every n ∈ N and q ∈ Q.
To convert 〈T (n,q)〉n∈N,q∈Q into a code for a sequence of real-valued functions on RN, I copy ideas from

the proof of 562N. Let

Θ0 : T → T , Θ1 : T × T → T ,

Θ3 : T × T → T , Θ̃1 :
⋃

I⊆Q T I → T

be such that

φ(Θ0(T )) = X \ φ(T ), φ(Θ1(T, T ′)) = φ(T ) ∪ φ(T ′),

φ(Θ3(T, T ′)) = φ(T ) \ φ(T ′), φ(Θ̃1(τ)) =
⋃

q∈I φ(τ(q)))

for T , T ′ ∈ T , I ⊆ Q and τ ∈ T I . Now, for α ∈ R and n ∈ N, set

τ ′n(α) = Θ̃1(〈T (n,q)〉q∈Q,q≥α),

T (n) = Θ̃1(〈Θ3(τ ′n(−k), τ ′n(k))〉k∈N),

τn(α) = Θ3(τ ′n(α),Θ0(T (n))) if α ≥ 0,

= Θ1(τ ′n(α),Θ0(T (n))) if α < 0.

We now have a sequence 〈τn〉n∈N in T̃ (as defined in 562N) coding a sequence 〈hn〉n∈N of Borel functions
from RN to R such that fn = hng for every n (see 562Sb). QQQ

D.H.Fremlin



30 Choice and determinacy 562Tc

(iii) If 〈fn〉n∈N is a codable sequence of codable Baire functions, there is a codable Baire function f
such that f(x) = lim infn→∞ fn(x) whenever the lim inf is finite. PPP Take g and 〈hn〉n∈N as in (i); by 562Ne,
there is a codable Borel function h such that h(z) = lim infn→∞ hn(z) whenever z ∈ RN is such that the
lim inf is finite, and f = hg : X → R will serve. QQQ

(iv) The family of codable Baire functions is a Riesz subspace of RX containing all continuous functions
and closed under multiplication. (This time, use (i) and 562Nd.)

(v) The family of continuous real-valued functions on X is a codable family of codable Baire functions.
(For f ∈ C(X), define gf ∈ C(X;RN) by setting gf (x)(n) = f(x) for every x ∈ X and n ∈ N; setting
π0(z) = z(0) for z ∈ RN, 〈(gf , π0)〉f∈C(X) is a family of codes for C(X).)

(vi) If E ⊆ X, then E ∈ Bac(X) iff χE : X → R is a codable Baire function. PPP

E ∈ Bac(X) ⇐⇒ there are a continuous g : X → RN

and an F ∈ Bc(R
N) such that E = g−1[F ]

⇐⇒ there are a continuous g : X → RN

and an F ∈ Bc(R
N) such that χE = (χF )g

⇐⇒ there are a continuous g : X → RN

and a codable Borel function h : RN such that χE = hg

(562Nf, because if χE = hg then χE = (χF )g where F = {y : h(y) > 0})

⇐⇒ χE is a codable Baire function. QQQ

(d) If 〈fn〉n∈N is a codable sequence of codable Baire functions from X to R, then 〈f−1
n [H]〉n∈N,H⊆R is open

is codable. PPP By (c-i), we have a continuous g : X → RN and a codable sequence 〈hn〉n∈N of codable Borel
functions from RN to R such that fn = hng for every n. Let ψ : T → Bc(R) be an interpretation of
Borel codes corresponding to some enumeration of a base for the topology of R. By 562Md, g is codable;
by 562M(a-iii), there is a function Θ : T → T such that g−1[ψ(T )] = φ(Θ(T )) for every T ∈ T . Now
〈h−1

n [H]〉n∈N,H⊆R is open is codable, by the definition in 562S; that is, there is a family 〈TnH〉n∈N,H⊆R is open

in T such that φ(TnH) = h−1
n [H] for all n and H. Now

f−1
n [H] = g−1[h−1

n [H]] = g−1[φ(TnH)] = ψ(Θ(TnH))

for all n and H, so we have a coding of 〈f−1
n [H]〉n∈N,H⊆R is open. QQQ

562U Proposition Let (X,T) be a second-countable space. Then there is a second-countable topology
S on X, codably Borel equivalent to T, such that Bc(X) = Bac(X,S) and the codable families in Bc(X)
are exactly the codable families in Bac(X,S).

proof (a) By 562Pb there is a topology S on X, finer than T, generated by a countable algebra E of
subsets of X, which is codably Borel equivalent to T. Let 〈Un〉n∈N be a sequence running over E . Define
g0 : X → RN by setting g0(x) = 〈χUn(x)〉n∈N for each x ∈ X. Then g0 is continuous. Set Wn = {z : z ∈ RN,
z(n) > 0} for each n, so that Wn ⊆ RN is open and Un = g−1

0 [Wn]; let 〈Vn〉n∈N be a sequence running over
a base for the topology of RN and such that V2n = Wn for every n. Let φ : T → Bc(X), φ′ : T → Bc(R

N)
be the interpretations of Borel codes corresponding to 〈Un〉n∈N, 〈Vn〉n∈N respectively.

(b) We have a function Θ : T → T \ {∅} such that φ(T ) = g−1[φ′(Θ(T ))] for every T ∈ T . PPP Induce
on r(T ). As usual, set AT = {n : <n> ∈ T}. If r(T ) = 0, take Θ(T ) ∈ T \ {∅} such that φ′(Θ(T )) = ∅. If
r(T ) = 1, set Θ(T ) = {<2n> : n ∈ AT }; then

φ′(Θ(T )) =
⋃
{V2n : n ∈ AT }, g−1

0 [φ′(Θ(T ))] =
⋃
{Un : n ∈ AT } = φ(T ).

If r(T ) > 1, set

Θ(T ) = {<i> : i ∈ AT } ∪ {<i>aσ : i ∈ AT , σ ∈ Θ(T<i>)}. QQQ
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This means that if we have any codable family in Bc(X), coded by a family 〈T (i)〉i∈I in T , 〈(g0,Θ(T (i)))〉i∈I

will code the same family in Bac(X,S).

(c) Next, there is a function Φ : C((X,S);RN) × T → T \ {∅} such that g−1[φ′(T ))] = φ(Φ(g, T )) for
every S-continuous g : X → RN and T ∈ T . PPP If r(T ) ≤ 1 and g−1[φ′(T )] is empty take Φ(g, T ) ∈ T \ {∅}
such that φ(Φ(g, T )) = ∅. If r(T ) = 1 and g−1[φ′(T )] is not empty set

Φ(g, T ) = {<n> : Un ⊆ g−1[φ′(T )]}.

If r(T ) > 1 set

Φ(g, T ) = {<i> : i ∈ AT } ∪ {<i>aσ : i ∈ AT , σ ∈ Φ(g, T<i>)}. QQQ

So given any codable family in Bac(X,S), coded by a family 〈(gi, T
(i))〉i∈I in C((X,S);RN)×T , 〈Φ(gi, T

(i))〉i∈I

will code it in Bc(X).

562V A different use of Borel codes will appear when we come to re-examine a result in Volume 3. I will
defer the application to 566O, but the first part of the argument fits naturally into the ideas of this section.

Theorem (a) Let A be a Dedekind σ-complete Boolean algebra, and 〈an〉n∈N a sequence in A. Then we
have an interpretation φ : T → A of Borel codes such that

φ(T ) = sup
i∈AT

ai if r(T ) ≤ 1,

= sup
i∈AT

1 \ φ(T<i>) if r(T ) > 1,

where AT = {i : <i> ∈ T} as usual.
(b) For n ∈ N, set En = {x : x ∈ {0, 1}N, x(n) = 1}. Let A be a Dedekind σ-complete Boolean algebra,

and 〈an〉n∈N a sequence in A. Let φ : T → A and ψ : T → P({0, 1}N) be the interpretations of Borel codes
corresponding to 〈an〉n∈N and 〈En〉n∈N. If T , T ′ ∈ T are such that φ(T ) 6⊆ φ(T ′), then ψ(T ) 6⊆ ψ(T ′).

proof (a) Define φ(T ) inductively on the rank of T , as in 562Ba.

(b) Let 〈T (n)〉n∈N be a sequence running over {T, T ′} ∪ {Tσ : σ ∈ S∗} ∪ {T ′
σ : σ ∈ S∗}. Define 〈cn〉n∈N

inductively, as follows. c0 = φ(T ) \ φ(T ′). Given that cn ∈ A \ {0}, then

—– if r(T (n)) ≤ 1 and there is an i ∈ AT (n) such that cn ∩ ai 6= 0, take the first such i and set
cn+1 = cn ∩ ai;

—– if r(T (n)) > 1 and there is an i ∈ AT (n) such that cn \ φ(T
(n)
<i>) 6= 0, take the first such i

and set cn+1 = cn \ φ(T
(n)
<i>);

—– otherwise, set cn+1 = cn.

Continue.
At the end of the induction, define x ∈ {0, 1}N by saying that x(i) = 1 iff there is an n ∈ N such that

cn ⊆ ai. Now we find that, for every m ∈ N,

—– if x ∈ ψ(T (m)) there is an n ∈ N such that cn ⊆ φ(T (m)),

—– if x /∈ ψ(T (m)) there is an n ∈ N such that cn ∩ φ(T (m)) = 0.

PPP Induce on r(T (m)). If r(T (m)) ≤ 1 then

x ∈ ψ(T (m)) =⇒ there is an i ∈ AT (m) such that x ∈ Ei

=⇒ there are i ∈ AT (m) , n ∈ N such that cn ⊆ ai

=⇒ there is an n ∈ N such that cn ⊆ φ(T (m)),

x /∈ ψ(T (m)) =⇒ x /∈ Ei for every i ∈ AT (m)

=⇒ cm+1 6⊆ ai for every i ∈ AT (m)

=⇒ cm ∩ ai = 0 for every i ∈ AT (m) =⇒ cm ∩ φ(T (m)) = 0.

If r(T (m)) > 1 then
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x ∈ ψ(T (m)) =⇒ there is an i ∈ AT (m) such that x /∈ ψ(T
(m)
<i>)

=⇒ there are i ∈ AT (m) , n ∈ N such that cn ∩ φ(T
(m)
<i>) = 0

(by the inductive hypothesis, because T
(m)
<i> is always equal to T (k) for some k, and r(T

(m)
<i>) < r(T (m)))

=⇒ there is an n ∈ N such that cn ⊆ φ(T (m)),

x /∈ ψ(T (m)) =⇒ x ∈ ψ(T
(m)
<i>) for every i ∈ AT (m)

=⇒ for every i ∈ AT (m) there is an n ∈ N such that cn ⊆ φ(T
(m)
<i>)

=⇒ cm+1 6⊆ 1 \ φ(T
(m)
<i>) for every i ∈ AT (m)

=⇒ cm \ φ(T
(m)
<i>) = 0 for every i ∈ AT (m)

=⇒ cm ∩ φ(T (m)) = 0. QQQ

In particular, since both T and T ′ appear in the list 〈T (m)〉m∈N, cn ∩ φ(T ) 6= 0 and cn ∩ φ(T ′) = 0 for
every n, x ∈ ψ(T ) \ ψ(T ′) and ψ(T ) 6⊆ ψ(T ′).

562X Basic exercises (a) Let X be a regular second-countable space. Show that a resolvable subset
of X is Fσ. (Hint : in the proof of 562I, show that φ(T (ξ)) is always Fσ.)

(b) Let X be a second-countable space and 〈Eni〉n,i∈N a family of resolvable subsets of X. Show that⋂
n∈N

⋃
i∈NEni is a codable Borel set.

(c) Let X be a second-countable space and 〈Ei〉i∈I a codable family in Bc(X). (i) Show that 〈Ei〉i∈J is
codable for every J ⊆ I. (ii) Show that if I is countable and not empty then

⋃
i∈I Ei and

⋂
i∈I Ei are codable

Borel sets. (iii) Show that if h : J × N → I is a function, where J is any other set, then 〈
⋃

n∈NEh(j,n)〉j∈J

is a codable family. (iv) Show that if 〈Fi〉i∈I is another codable family in Bc(X) then 〈Ei ∩ Fi〉i∈I and
〈Ei△Fi〉i∈I are codable families.

(d) Let X and Y be second-countable spaces and f : X → Y a function. Suppose that {F : F ⊆ Y ,
f−1[F ] is resolvable} includes a countable network for the topology of Y . Show that f is a codable Borel
function.

(e) Let X be a second-countable space and 〈Ei〉i∈I a family in Bc(X). (i) Show that {J : J ⊆ I, 〈Ei〉i∈J

is codable} is an ideal of subsets of I. (ii) Show that if every Ei is resolvable then 〈Ei〉i∈I is codable.

(f) Let X be a second-countable space and f : X → R a function. Show that f is a codable Borel
function iff {(x, α) : x ∈ X, α < f(x)} is a codable Borel subset of X × R.

(g) Let X be a topological space and f , g : X → R resolvable functions. (i) Show that f ∨ g and αf are
resolvable for any α ∈ R. (ii) Show that if f is bounded then f + g is resolvable. (iii) Show that if f and g
are bounded, f × g is resolvable. (iv) Show that if f and g are non-negative, then f + g is resolvable. (v)
Show that if h : R → R is continuous and h−1[{α}] is finite for every α ∈ R, then hf is resolvable.

(h) Let f : R → R be such that limt↓x f(t) is defined in [−∞,∞] for every x ∈ R. Show that f is
resolvable.

(i) Let X be a second-countable space and 〈fn〉n∈N a sequence of resolvable real-valued functions on X.
Show that there is a codable Borel function g such that g(x) = limn→∞ fn(x) for any x such that the limit
is defined in R.

(j) Let X be a second-countable space and Y a subspace of X. Show that a family 〈gi〉i∈I in RY is a
codable family of codable Borel functions iff there is a codable family 〈fi〉i∈I of real-valued codable Borel
functions on X such that gi = fi↾Y for every i ∈ I.
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>>>(k) Let X be a second-countable space. Show that every codable family of codable Baire subsets of X
is a codable family of codable Borel subsets of X.

>>>(l) Let X be a regular second-countable space. Show that every codable family of codable Borel subsets
of X is a codable family of codable Baire subsets of X. (Hint : 561Xk.)

562Y Further exercises (a) Let X be a second-countable space, Y a T0 second-countable space and
f : X → Y a function with graph Γ ⊆ X × Y . (i) Show that if f is a codable Borel function, then Γ is a
codable Borel subset of X × Y . (ii) Show that if X and Y are Polish and Γ is a codable Borel subset of
X × Y , then f is a codable Borel function.

(b) Show that there is an analytic subset of NN which is not a codable Borel set. (Hint : 423M.)

(c) Show that if X is a Polish space then a subset of X is resolvable iff it is both Fσ and Gδ.

(d) Let X be a Polish space. Show that a function f : X → R is resolvable iff {x : α < f(x) < β} is Fσ

for all α, β ∈ R.

(e) Let X be a topological space. Let Φ be the set of functions f : X → PN such that {x : n ∈ f(x)}
is open for every n ∈ N. Write B′

c(X) for {f−1[F ] : f ∈ Φ, F ∈ Bc(PN)}; say a family 〈Ei〉i∈I in B′
c(X)

is codable if there is a family 〈(fi, Fi)〉i∈I in Φ × Bc(PN) such that 〈Fi〉i∈I is codable and Ei = f−1
i [Fi]

for every i. (i) Show that if X is second-countable then B′
c(X) = Bc(X) and the codable families on the

definition here coincide with the codable families of 562J. (ii) Develop a theory of codable Borel sets and
functions corresponding to that in 562T.

562 Notes and comments The idea of ‘Borel code’ is of great importance in mathematical logic, for
reasons quite separate from the questions addressed here; see Jech 78, Jech 03 or Kunen 80. (Of course
it is not a coincidence that an approach which is effective in the absence of the axiom of choice should also
be relevant to absoluteness in the presence of choice.) Every author has his favoured formula corresponding
to that in 562Ba. The particular one I have chosen is intended to be economical and direct, but is slightly
awkward at the initial stages, and some proofs demand an extra moment’s attention to the special case of
trees of rank 1. The real motivation for the calculations here will have to wait for §565; Lebesgue measure
can be defined in such a way that it is countably additive with respect to codable sequences of Borel sets,
and there are enough of these to make the theory non-trivial.

Borel codes are wildly non-unique, which is why the concept of codable family is worth defining. But it
is also important that certain sets, starting with the open sets, are self-coding in the sense that from the
set we can pick out an appropriate code. ‘Resolvable’ sets and functions (562G, 562Q) are common enough
to be very useful, and for these we can work with the objects themselves, just as we always have, and leave
the coding until we need it.

The Borel codes described here can be used only in second-countable spaces. It is easy enough to find
variations of the concept which can be applied in more general contexts (562Ye), though it is not obvious
that there are useful theorems to be got in such a way. More relevant to the work of the next few sections is
the idea of ‘codable Baire set’ (562T). Because any codable sequence of codable Baire sets can be factored
through a single continuous function to RN (562T(b-i)), we have easy paths to the elementary results given
here.

Version of 3.12.13

563 Borel measures without choice

Having decided that a ‘Borel set’ is to be one obtainable by a series of operations described by a Borel
code, it is a natural step to say that a ‘Borel measure’ should be one which respects these operations
(563A). In regular spaces, such measures have strong inner and outer regularity properties also based on the

c© 2008 D. H. Fremlin
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Borel coding (563D-563F), and we have effective methods of constructing such measures (563H). Analytic
sets are universally measurable (563I). We can use similar ideas to give a theory of Baire measures on
general topological spaces (563J-563K). In the basic case, of a second-countable space with a codably σ-
finite measure, we have a measure algebra with many of the same properties as in the standard theory
(563M-563N).

The theory would not be very significant if there were no interesting Borel-coded measures, so you may
wish to glance ahead to §565 to confirm that Lebesgue measure can be brought into the framework developed
here.

563A Definitions (a) (Foreman & Wehrung 91) Let X be a second-countable space and Bc(X)
the algebra of codable Borel subsets of X. I will say that a Borel-coded measure on X is a functional
µ : Bc(X) → [0,∞] such that µ∅ = 0 and µ(

⋃
n∈NEn) =

∑∞
n=0 µEn whenever 〈En〉n∈N is a disjoint codable

family in Bc(X).
I will try to remember to say ‘Borel-coded measure’ everywhere in this section, because these are danger-

ously different from the ‘Borel measures’ of §434. Their domains are not necessarily σ-algebras and while
they are finitely additive they need not be countably additive even in the sense of 326I.

(b) As usual, I will say that a subset of X is negligible if it is included in a set of measure 0, which
here must be a codable Borel set; the terms ‘conegligible’, ‘almost everywhere’, ‘null ideal’ will take their
meanings from this. We can now define the completion of µ to be the natural extension of µ to the algebra
{E△A : E ∈ Bc(X), A is µ-negligible}.

(c) Some of the other definitions from the ordinary theory can be transferred without difficulty (e.g.,
‘totally finite’, ‘probability’), but we may need to make some finer distinctions. For instance, I will say that
a Borel-coded measure µ is semi-finite if sup{µF : F ⊆ E, µF < ∞} = ∞ whenever µE = ∞; we no
longer have the ordinary principle of exhaustion (215A), and the definition in 211F, taken literally, may be
too weak. For ‘locally finite’, however, 411Fa can be taken just as it is, since all open sets are measurable.

(d) For ‘σ-finite’ we again have to make a choice. The definition in 211C calls only for ‘a sequence of
measurable sets of finite measure’. Here the following will be more useful: a Borel-coded measure on X
is codably σ-finite if there is a codable sequence 〈En〉n∈N in Bc(X) such that X =

⋃
n∈NEn and µEn is

finite for every n.

563B Proposition Let (X,T) be a second-countable space and µ a Borel-coded measure on X.
(a) Let 〈En〉n∈N be a codable sequence in Bc(X).

(i) µ(
⋃

n∈NEn) ≤
∑∞

n=0 µEn.
(ii) If 〈En〉n∈N is non-decreasing, µ(

⋃
n∈NEn) = limn→∞ µEn.

(iii) If 〈En〉n∈N is non-increasing and µE0 is finite, then µ(
⋂

n∈NEn) = limn→∞ µEn.
(b) µ is τ -additive.
(c) Suppose that T is T1. If E is the algebra of resolvable subsets of X (562H), then µ↾E is countably

additive in the sense that µE =
∑∞

n=0 µEn for any disjoint family 〈En〉n∈N in E such that E = supn∈NEn

is defined in E .

proof (a)(i) Set Fn = En \
⋃

i<nEi for n ∈ N; then 〈Fn〉n∈N is codable (562Kc), so

µ(
⋃

n∈NEn) = µ(
⋃

n∈N Fn) =
∑∞

n=0 µFn ≤
∑∞

n=0 µEn.

(ii) If 〈En〉n∈N is non-decreasing then, in the language of (i), En =
⋃

i≤n Fi for each n, so

limn→∞ µEn = limn→∞

∑n
i=0 µFi = µ(

⋃
n∈NEn).

(iii) Apply (ii) to 〈E0 \ En〉n∈N. (As remarked in 562J, this will be a codable sequence.)

(b) Suppose that G is an upwards-directed family of open sets with union H. Set γ = supG∈G µG. Let
〈Un〉n∈N be a sequence running over a base for the topology of X, and for n ∈ N set

Vn =
⋃
{Ui : i ≤ n, Ui ⊆ G for some G ∈ G}.
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Then 〈Vn〉n∈N is a non-decreasing sequence of open sets with union H. As every Vn is resolvable, 〈Vn〉n∈N

is codable and

µH = limn→∞ µVn ≤ supG∈G µG ≤ µH

by (a-ii).

(c) If 〈En〉n∈N is a disjoint sequence in E with a supremum E in E , then E ⊇
⋃

n∈NEn. If x ∈ E then
{x} is closed, because T is T1, so {x} is resolvable (562H) and E \ {x} ∈ E ; as E \ {x} is not an upper
bound of {En : n ∈ N}, x ∈

⋃
n∈NEn. So E =

⋃
n∈NEn. Now 〈En〉n∈N is codable, as noted in 562J, so

µE = µ(
⋃

n∈NEn) =
∑∞

n=0 µEn.

563C Corollary Let X be a second-countable space, µ a Borel-coded measure on X and 〈En〉n∈N a
sequence of resolvable sets in X.

(a)(i)
⋃

n∈NEn is measurable;

(ii) µ(
⋃

n∈NEn) ≤
∑∞

n=0 µEn;

(iii) if 〈En〉n∈N is disjoint, µ(
⋃

n∈NEn) =
∑∞

n=0 µEn;
(iv) if 〈En〉n∈N is non-decreasing, µ(

⋃
n∈NEn) = limn→∞ µEn.

(b)(i)
⋂

n∈NEn is measurable;
(ii) if 〈En〉n∈N is non-increasing and infn∈N µEn is finite, then µ(

⋂
n∈NEn) = limn→∞ µEn.

proof (a) Use 562I to find a sequence of codes for 〈En〉n∈N, and apply 563B.

(b) follows, because X \ En is resolvable for each n.

563D The next lemma is primarily intended as a basis for Theorem 563H, but it will be useful in 563F.

Lemma Let (X,T) be a regular second-countable space and µ : T → [0,∞] a functional such that

µ∅ = 0,
µG ≤ µH if G ⊆ H,
µ is modular (definition: 413Qc),
µ(
⋃

n∈NGn) = limn→∞ µGn for every non-decreasing sequence 〈Gn〉n∈N in T,⋃
{G : G ∈ T, µG <∞} = X.

(a) µ(
⋃

i∈I Gi) ≤
∑

i∈I µGi for every countable family 〈Gi〉i∈I in T.
(b) There is a function π∗ : T× N → T such that

X \G ⊆ π∗(G, k), µ(G ∩ π∗(G, k)) ≤ 2−k

whenever G ∈ T and k ∈ N.
(c) Let φ : T → Bc(X) be an interpretation of Borel codes defined from a sequence running over T, where

T is the set of subtrees of
⋃

n∈N Nn without infinite branches (562A, 562B). Then there are functions π,
π′ : T × N → T such that

φ(T ) ⊆ π(T, n), X \ φ(T ) ⊆ π′(T, n), µ(π(T, n) ∩ π′(T, n)) ≤ 2−n

for every T ∈ T and n ∈ N.

proof (a) This is elementary. First, µ(G∪H) ≤ µG+µH for all open sets G and H, because µ(G∩H) ≥ 0.
Next, if 〈Gn〉n∈N is a sequence of open sets with union G, then

µG = limn→∞ µ(
⋃

i≤nGi) ≤ limn→∞

∑n
i=0 µGi =

∑∞
n=0 µGn.

Now the step to general countable I is immediate.

(b) Set I = {n : n ∈ N, µUn <∞}; because µ is locally finite, {Un : n ∈ I} is a base for T. Given G ∈ T

and k ∈ N, then for n ∈ I and m ∈ N set

Wnm =
⋃
{Ui : i ≤ m, U i ⊆ Un ∩G}.

Because T is regular,
⋃

m∈NWnm = Un ∩G and µ(Un ∩G) = limm→∞ µWnm. Let mn be the least integer

such that µWnmn
≥ µ(Un ∩G) − 2−k−n−1. Set

π∗(G, k) =
⋃

n∈I Un \Wnmn
∈ T.
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Because Wnm ⊆ Un ∩G for all m and n, while
⋃

n∈I Un = X, π∗(G, k) ⊇ X \G. Now

µ(G ∩ π∗(G, k)) ≤
∑

n∈I µ(G ∩ Un \Wnmn
) ≤

∑∞
n=0 2−k−n−1 = 2−k,

as required.

(c) Define π(T ) and π′(T ) inductively on the rank r(T ) of T .

(i) If r(T ) = 0, set π(T, n) = ∅ and π′(T, n) = X for every n. If r(T ) = 1 then G = φ(T ) is open; set
π(T, n) = G and π′(T, n) = π∗(G,n) for each n.

(ii) For the inductive step to r(T ) > 1, set AT = {i : <i> ∈ T} and T<i> = {σ : <i>aσ ∈ T} for
i ∈ N, as in 562A. Set

π(T, n) =
⋃

i∈AT
π′(T<i>, n+ i+ 2),

π′(T, n) =
⋃

i∈AT
(π(T<i>, n+ i+ 2) ∩ π′(T<i>, n+ i+ 2)) ∪ π∗(π(T, n), n+ 1).

Then

φ(T ) =
⋃

i∈AT
X \ T<i> ⊆

⋃
i∈AT

π′(T<i>, n+ i+ 2) = π(T, n),

X \ φ(T ) =
⋂

i∈AT

φ(T<i>) ⊆ (π(T, n) ∩
⋂

i∈AT

φ(T<i>)) ∪ π∗(π(T, n), n+ 1)

⊆
( ⋃

i∈AT

π′(T<i>, n+ i+ 2) ∩
⋂

i∈AT

π(T<i>, n+ i+ 2)
)
∪ π∗(π(T, n), n+ 1)

⊆
⋃

i∈AT

(
π′(T<i>, n+ i+ 2) ∩ π(T<i>, n+ i+ 2)

)
∪ π∗(π(T, n), n+ 1)

= π′(T, n),

µ(π(T, n) ∩ π′(T, n)) ≤
∑

i∈AT

µ(π(T<i>, n+ i+ 2) ∩ π′(T<i>, n+ i+ 2))

+ µ(π(T, n) ∩ π∗(π(T, n), n+ 1))

≤
∑

i∈AT

2−n−i−2 + 2−n−1 ≤ 2−n

for every n, so the induction continues.

563E Lemma Let X be a second-countable space and M a non-empty upwards-directed set of Borel-
coded measures on X. For each codable Borel set E ⊆ X, set νE = supµ∈M µE. Then ν is a Borel-coded
measure on X.

proof Immediate from the definition in 563Aa.

563F Proposition Let (X,T) be a second-countable space and µ a Borel-coded measure on X.
(a) For any F ∈ Bc(X), we have a Borel-coded measure µF on X defined by saying that µFE = µ(E∩F )

for every E ∈ Bc(X).
(b) We have a semi-finite Borel-coded measure µsf defined by saying that

µsf(E) = sup{µF : F ∈ Bc(X), F ⊆ E, µF <∞}

for every E ∈ Bc(X).
(c)(i) If µ is locally finite it is codably σ-finite.

(ii) If µ is codably σ-finite, it is semi-finite and there is a totally finite Borel-coded measure ν on X
with the same null ideal as µ.

(iii) If µ is codably σ-finite, there is a non-decreasing codable sequence of codable Borel sets of finite
measure which covers X.

(d) If X is regular then the following are equiveridical:
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(i) µ is locally finite;
(ii) µ is semi-finite, outer regular with respect to the open sets and inner regular with respect to the

closed sets;
(iii) µ is semi-finite and outer regular with respect to the open sets.

(e) If X is regular and µ is semi-finite, then µ is inner regular with respect to the closed sets of finite
measure.

(f) If X is Polish and µ is semi-finite, then µ is inner regular with respect to the compact sets.
(g) If µ is locally finite, and ν is another Borel-coded measure on X agreeing with µ on the open sets,

then ν = µ.

proof Fix a sequence 〈Un〉n∈N running over a base for the topology of X.

(a) The point is just that 〈En∩F 〉n∈N is a codable family whenever 〈En〉n∈N is a codable family in Bc(X)
and F is codable. (562J again.)

(b) Writing µF for the Borel-coded measure corresponding to a set F of finite measure, as in (a), we have
an upwards-directed family of measures; by 563E, its supremum µsf is a Borel-coded measure. If E ⊆ X is
a codable Borel set and γ < µsfE, then there is a set F of finite measure such that µ(E ∩ F ) ≥ γ; now

γ ≤ µsf(E ∩ F ) = µ(E ∩ F ) <∞.

(c)(i) Set I = {i : i ∈ N, µUi <∞}; then 〈Ui〉i∈I is a codable family of sets of finite measure covering X.

(ii) Let 〈Hn〉n∈N be a codable sequence of sets of finite measure covering X.

(ααα) If E ∈ Bc(X), then 〈E ∩
⋃

i≤nHi〉n∈N is a non-decreasing codable sequence with union E, so

µE = supn∈N µ(E ∩
⋃

i≤nHi) ≤ sup{µF : F ⊆ E, µF <∞} ≤ µE.

As E is arbitrary, µ is semi-finite.

(βββ) Let 〈ǫn〉n∈N be a sequence of strictly positive real numbers such that
∑∞

n=0 ǫnµHn is finite. Set
νE =

∑∞
n=0 ǫnµ(E ∩Hn) for E ∈ Bc(X). Of course ν∅ = 0 and νX < ∞. If 〈Ek〉k∈N is a disjoint codable

sequence in Bc(X), then 〈Ek ∩Hn〉k∈N is codable for every n, so

ν(
⋃

k∈N

Ek) =

∞∑

n=0

ǫnµ(
⋃

k∈N

Ek ∩Hn) =

∞∑

n=0

∞∑

k=0

ǫnµ(Ek ∩Hn)

=

∞∑

k=0

∞∑

n=0

ǫnµ(Ek ∩Hn) =

∞∑

k=0

νEk.

So ν is a Borel-coded measure.
If E ∈ Bc(X) and µE = 0, then of course νE =

∑∞
n=0 ǫnµ(E ∩ Hn) = 0. Conversely, if νE = 0, then

µ(E ∩Hn) = 0 for every n; but 〈E ∩Hn〉n∈N, like 〈Hn〉n∈N, is codable, so µE = µ(
⋃

n∈NE ∩Hn) = 0. Thus
µ and ν have the same sets of zero measure; it follows at once that they have the same null ideals.

(iii) All we have to note is that if 〈En〉n∈N is a codable sequence of sets of finite measure covering X,
then 〈

⋃
i≤nEi〉n∈N is codable (562Kb), so gives the required non-decreasing witness.

(d)(i)⇒(ii)(ααα) Observe first that µ↾T satisfies the conditions of 563D. PPP The first three are consequences
of the fact that µ : Bc(X) → [0,∞] is additive. If 〈Gn〉n∈N is a non-decreasing sequence in T, it is a codable
sequence of codable Borel sets, by 562I as usual; so µ(

⋃
n∈NGn) = limn→∞ µGn by 563B(a-ii). Finally, we

are assuming that µ is locally finite, so the last condition is satisfied. QQQ
Take an interpretation φ of Borel codes and functions π, π′ : T × N → T as in 563Dc.

(βββ) If E ∈ Bc(X) and µE < γ, take n such that 2−n ≤ γ − µE. There is a T ∈ T such that φ(T ) = E,
and now G = π(T, n) is open, E ⊆ G and

µ(G \ E) ≤ µ(G ∩ π′(T, n)) ≤ 2−n,

so µG ≤ γ.
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(γγγ) If E ∈ Bc(X) and γ < µE, take T ∈ T such that φ(T ) = E and n ∈ N such that 2−n < µE − γ;
now F = X \ π′(T, n) is closed, F ⊆ E and µ(E \ F ) ≤ 2−n, so µF > γ. Next, if we set

Fm = F ∩
⋃
{Ui : i ≤ m, µU i <∞},

〈Fm〉m∈N will be a non-decreasing sequence of closed sets of finite measure with union F . The sets Fm are
all resolvable, so µF = limm→∞ µFm and there is an m such that µFm ≥ γ, while Fm ⊆ E is a set of finite
measure. As E and γ are arbitrary, µ is inner regular with respect to the closed sets and also semi-finite.

(ii)⇒(iii) is trivial.

(iii)⇒(i)(ααα) If x ∈ X then x belongs to some set of finite measure. PPP Set

F =
⋂
{Un : n ∈ N, x ∈ Un} \

⋃
{Un : n ∈ N, x /∈ Un}.

Then F is a codable Borel set, being the difference of Gδ sets (562Da), and the subspace topology on F
is indiscrete. If µF = 0 we can stop. Otherwise, there must be an F ′ ⊆ F such that 0 < µF ′ < ∞; but
F ′ ∈ Bc(F ) = {∅, F} (562E), so F ′ = F and again F has finite measure. QQQ

(βββ) Now as µ is outer regular with respect to the open sets, every set of finite measure is included
in an open set of finite measure. So µ must be locally finite.

(e) Suppose that E ∈ Bc(X) and γ < µE. Then there is an H ∈ Bc(X) such that H ⊆ E and
γ < µH <∞. Consider the Borel-coded measure µH defined from µ and H as in (a). This is totally finite,
so (d) tells us that it is outer regular with respect to the open sets and therefore inner regular with respect
to the closed sets, and there is a closed set F ⊆ H such that µF = µHF ≥ γ. As E and γ are arbitrary, µ
is inner regular with respect to the closed sets of finite measure.

(f) Let ρ be a complete metric on X inducing its topology. If E ∈ Bc(X) and γ < µE, let F ⊆ E be
a closed set such that F ⊆ E and γ < µF < ∞. For each n ∈ N set Jn = {i : diamUi ≤ 2−n}. Define
〈kn〉n∈N, 〈Fn〉n∈N inductively by saying that F0 = F and

kn = min{k : µ(Fn ∩
⋃

i∈Jn∩k Ui) > γ}, Fn+1 = Fn ∩
⋃

i∈Jn∩kn
U i

for each n; set K =
⋂

n∈N Fn ⊆ E. Then µK = limn→∞ µFn ≥ γ. The point is that K is compact. PPP Set

L =
∏

n∈N Jn ∩ kn ⊆ NN. Then L is compact (561D). Set L′ = {α : α ∈ L, F ∩
⋂

i≤n Uα(i) 6= ∅ for every

n}; then L′ is a closed subset of L so is compact. For α ∈ L′, {F ∩ Uα(i) : i ∈ N} generates a filter Fα

on X which is a Cauchy filter because diamUα(i) = diamUα(i) ≤ 2−i for every i; because X is ρ-complete,

f(α) = limFα is defined, and belongs to F ∩
⋂

i∈N Uα(i) ⊆ K. If α, β ∈ L′ and α(i) = β(i), then f(α), f(β)

both belong to Uα(i) so ρ(f(α), f(β)) ≤ 2−i; thus f is continuous and f [L′] is a compact subset of K. On

the other hand, given x ∈ K, we can set α(n) = min{i : i ∈ Jn ∩ kn, x ∈ U i} for each n, and now α ∈ L′

and f(α) = x. So K = f [L′] is compact. (See 561Yj.) QQQ
As E and γ are arbitrary, µ is inner regular with respect to the compact sets.

(g)(i) Consider first the case in which X is regular. In this case both µ and ν must be outer regular with
respect to the open sets, by (d); as they agree on the open sets they must be equal.

(ii) Next, suppose that µX = νX is finite. Let E be the algebra of subsets of X generated by
{Un : n ∈ N}, and S the topology generated by E . As noted in the argument of 562Pb, S is codably Borel
equivalent to the original topology of X, so µ and ν are still Borel-coded measures with respect to S, and
are still locally finite, because S is finer than T; while S is regular. Now any member of E is expressible in
the form E =

⋃
i≤nGi \Hi where the Gi, Hi are open and 〈Gi \Hi〉i≤n is disjoint. So

µE =
∑n

i=0 µGi − µ(Gi ∩Hi) = νE.

More generally, if H ∈ S, there is a non-decreasing sequence 〈En〉n∈N in E with union H; as all the sets in
E are resolvable, 〈En〉n∈N is codable and

µH = supn∈N µEn = νH.

Thus µ and ν agree on S; by (i), they are equal.

(iii) Finally, for the general case, set Vn =
⋃
{Ui : i ≤ n, µUi < ∞} for each n. Because µ is locally

finite,
⋃

n∈N Vn = X. For each n ∈ N let µVn
, νVn

be the Borel-coded measures defined from Vn as in (a).
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Then µVn
and νVn

are totally finite and agree on the open sets, so are equal. Now 〈Vn〉n∈N, being a sequence
of open sets, is codable; so if E ∈ Bc(X) the sequence 〈E ∩ Vn〉n∈N is codable, and

µE = limn→∞ µ(E ∩ Vn) = limn→∞ µVn
E = νE.

So in this case also we have µ = ν.

563G Proposition Let X be a set and θ : PX → [0,∞] a submeasure.
(a)

Σ = {E : E ⊆ X, θA = θ(A ∩ E) + θ(A \ E) for every A ⊆ X}

is an algebra of subsets of X, and θ↾Σ is additive in the sense that θ(E ∪ F ) = θE + θF in [0,∞] whenever
E, F ∈ Σ are disjoint.

(b) If E ⊆ X and for every ǫ > 0 there is an F ∈ Σ such that E ⊆ F and θ(F \ E) ≤ ǫ, then E ∈ Σ.

proof (a) Parts (a)-(c) of the proof of 113C apply unchanged.

(b) Take any A ⊆ X and ǫ > 0. Let F ∈ Σ be such that E ⊆ F and θ(F \ E) ≤ ǫ. Then

θA ≤ θ(A ∩ E) + θ(A \ E) ≤ θ(A ∩ F ) + θ(A \ F ) + θ(F \ E) ≤ θA+ ǫ.

As ǫ is arbitrary, θA = θ(A ∩ E) + θ(A \ E); as A is arbitrary, E ∈ Σ.

563H Theorem Let (X,T) be a regular second-countable space and µ : T → [0,∞] a functional such
that

µ∅ = 0,
µG ≤ µH if G ⊆ H,
mu is modular,
µ(
⋃

n∈NGn) = limn→∞ µGn for every non-decreasing sequence 〈Gn〉n∈N in T,⋃
{G : G ∈ T, µG <∞} = X.

Then µ has a unique extension to a Borel-coded measure on X.

proof (a) For A ⊆ X set θA = inf{µG : A ⊆ G ∈ T}. Then θ is a submeasure on PX (because
µ(G ∪H) ≤ µG+ µH for all G, H ∈ T), extending µ (because µG ≤ µH if G ⊆ H). Set

Σ = {E : E ⊆ X, θA = θ(A ∩ E) + θ(A \ E) for every A ⊆ X}

and ν = θ↾Σ, as in 563G. Let φ : T → Bc(X) be an interpretation of Borel codes and π, π′ : T × N → T

corresponding functions as in 563Dc. Now Bc(X) ⊆ Σ. PPP Given T ∈ T , A ⊆ X and n ∈ N, let G ∈ T be
such that A ⊆ G and µG ≤ θA+ 2−n. Then

θA ≤ θ(A ∩ φ(T )) + θ(A \ φ(T )) ≤ θ(A ∩ π(T, n)) + θ(A ∩ π′(T, n))

≤ µ(G ∩ π(T, n)) + µ(G ∩ π′(T, n))

= µ(G ∩ (π(T, n) ∪ π′(T, n)) + µ(G ∩ π(T, n) ∩ π′(T, n))

≤ µG+ µ(π(T, n) ∩ π′(T, n)) ≤ θA+ 2−n+1.

As A and n are arbitrary, φ(T ) ∈ Σ. QQQ

(b) Let 〈Tn〉n∈N be a sequence in T such that 〈En〉n∈N is disjoint, where En = φ(Tn) for each n; set
E =

⋃
n∈NEn. Then, for any k ∈ N, E ⊆

⋃
n∈N π(Tn, k + n), so

∞∑

n=0

νEn = lim
n→∞

ν(
⋃

i≤n

Ei) ≤ νE ≤ ν(
⋃

n∈N

π(Tn, k + n))

(563Da)

=
∞∑

n=0

νEn + ν(π(Tn, k + n) \ En)

(563Ga)
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≤
∞∑

n=0

νEn + µ(π(Tn, k + n) ∩ π′(Tn, k + n))

≤
∞∑

n=0

νEn + 2−k−n = 2−k+1 +

∞∑

n=0

νEn;

as k is arbitrary,
∑∞

n=0 νEn = νE; as 〈Tn〉n∈N is arbitrary, ν↾Bc(X) is a Borel-coded measure extending µ.

(c) At the same time we see that if λ is any other Borel-coded measure extending µ, we must have
λE ≤ θE = νE for every E ∈ Bc(X). In the other direction,

λ(φ(T )) ≥ λ(π(T, n)) − λ(π(T, n) ∩ π′(T, n))

= µ(π(T, n)) − µ(π(T, n) ∩ π′(T, n)) ≥ ν(φ(T )) − 2−n

for every T ∈ T and n ∈ N, so λE ≥ νE for every E ∈ Bc(X). Thus ν↾Bc(X) is the only Borel-coded
measure extending µ.

563I Theorem Let X be a Hausdorff second-countable space, µ a codably σ-finite Borel-coded measure
on X, and A ⊆ X an analytic set. Then there are a codable Borel set E ⊇ A and a sequence 〈Kn〉n∈N of
compact subsets of A such that E \

⋃
n∈NKn is negligible. Consequently A is measured by the completion

of µ.

proof (a) By 563F(c-ii), there is a totally finite Borel-coded measure on X with the same negligible sets as
µ; so it will be enough to consider the case in which µ itself is totally finite.

If A is empty, the result is trivial. So we may suppose that there is a continuous surjection f : NN → A.
For σ ∈ S =

⋃
n∈N Nn set Iσ = {α : σ ⊆ α ∈ NN}. Fix on a sequence running over a base for the topology

of X and the corresponding interpretation φ : T → Bc(X) of Borel codes.

(b) For σ ∈ S and ξ < ω1 define Eσξ by saying that

Eσ0 = f [Iσ],

Eσ,ξ+1 =
⋃

i∈NEσa<i>,ξ,

Eσξ =
⋂

η<ξ Eση if ξ > 0 is a countable limit ordinal.

Then 〈Eσξ〉ξ<ω1
is a non-increasing family of sets including f [Iσ].

(c) For every ξ < ω1, 〈Eση〉σ∈S,η≤ξ is a codable family of codable Borel sets. PPP It is enough to consider

the case ξ ≥ ω. Because ξ is countable, we have a function Θ̃1 :
⋃

J⊆ξ T
J → T such that φ(Θ̃1(〈Tη〉η∈J)) =⋃

η∈J φ(Tη) for every J ⊆ ξ (562Cb). Also, of course, we have a function Θ0 : T → T such that φ(Θ0(T )) =

X \ φ(T ) for every T ∈ T . Next, all the sets Eσ0 are closed, therefore resolvable. So we have a family
〈Tσ0〉σ∈S in T such that φ(Tσ0) = Eσ0 for every σ. Now we can set

Tσ,η+1 = Θ̃1(〈Tσa<i>,η〉i∈N)

if η < ξ,

Tση = Θ0(Θ̃1(〈Θ0(Tσζ)〉ζ<η))

if η ≤ ξ is a non-zero limit ordinal, and φ(Tση) will be equal to Eση as required. QQQ

(d) Let 〈ǫσ〉σ∈S be a summable family of strictly positive real numbers, and for ξ < ω1 set

γ(ξ) =
∑

σ∈S ǫσµ(Eσξ).

Then γ : ω1 → R is non-increasing. There is therefore a ξ < ω1 such that γ(ξ + 1) = γ(ξ) (561A), that is,
µ(Eσ,ξ+1) = µ(Eσξ) for every σ ∈ S.

(e)(i) Set E = E∅ξ. Of course A = f [I∅] ⊆ E. Now define αn ∈ NN, for n ∈ N, as follows. Given
〈αn(i)〉i<m, set

Gnm =
⋃
{Eσξ : σ ∈ Nm, σ(i) ≤ αn(i) for every i < m},
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Gnmk =
⋃
{Eσa<j>,ξ : σ ∈ Nm, j ≤ k, σ(i) ≤ αn(i) for every i < m},

Then 〈Gnm〉n,m∈N is codable, and limk→∞ µGnmk = µGnm for all m, n ∈ N. PPP By (c), there is a family
〈Tση〉σ∈S,η≤ξ+1 in T such that φ(Tση) = Eση whenever σ ∈ S and η ≤ ξ + 1. This time, we need a function

Θ̃1 :
⋃

J⊆S T J → T such that φ(Θ̃1(〈Tσ〉σ∈J)) =
⋃

σ∈J φ(Tσ) whenever J ⊆ S and 〈Tσ〉σ∈J is a family in T ,

and a function Θ3 : T × T → T such that φ(Θ3(T, T ′)) = φ(T ) \ φ(T ′) for all T , T ′ ∈ T . Setting

T ′
nm = Θ̃3(〈Tσξ〉σ∈Nm, σ(i)≤αn(i)∀i<m),

T ′
nmk = Θ̃3(〈Tσa<j>,ξ〉σ∈Nm, j≤k, σ(i)≤αn(i)∀i<m),

we have φ(T ′
nm) = Gnm and φ(T ′

nmk) = Gnmk for all m, n, k ∈ N. In particular, all the Gnm and Gnmk are
codable Borel sets, and 〈Gnm〉n,m∈N is codable. Moreover, for any particular pair m and n, 〈Gnmk〉k∈N is a
codable sequence; we therefore have limk→∞ µGnmk = µG, where G =

⋃
k∈NGnmk. Next,

G =
⋃
{Eσ,ξ+1 : σ ∈ Nm, σ(i) ≤ αn(i) for every i < m},

so

G△Gnm ⊆
⋃
{Eσξ \ Eσ,ξ+1 : σ ∈ S}.

Since 〈Eσξ \Eσ,ξ+1〉σ∈S is a countable family of negligible sets coded by 〈Θ3(Tσξ, Tσ,ξ+1)〉σ∈S , G△Gnm also
is negligible and

µGnm = µG = limk→∞ µGnmk. QQQ

Take the least αn(m) ∈ N such that µGn,m,αn(m) ≥ µGnm − 2−n−m, and continue.

(ii) Set

Ln = {α : α ∈ NN, α(i) ≤ αn(i) for every i ∈ N}.

Then Ln is compact (561D), and f [Ln] ⊆ A. Also f [Ln] ⊇
⋂

m∈NGnm. PPP If x ∈
⋂

m∈NGnm, then for each
m ∈ N let σm be the lexicographically first member of {σ : σ ∈ Nm, σ(i) ≤ αn(i) for every i < m} such that
x ∈ Eσm,ξ, and let βm ∈ NN be such that σm ⊆ βm and βm(i) = 0 for i ≥ m. Then βm ∈ Ln for every m, so
〈βm〉m∈N has a cluster point α ∈ Ln. ??? If f(α) 6= x, we have an open neighbourhood U of f(α) such that
x /∈ U . Let m ∈ N be such that Iα↾m ⊆ f−1[U ]; then there is a k ≥ m such that α↾m = βk↾m = σk↾m.
Now

x ∈ Eσk,ξ ⊆ Eσk,0 ⊆ f [Iσk
] ⊆ f [Iα↾m] ⊆ U . XXX

So x = f(α) ∈ f [Ln]. QQQ
But 〈Gnm〉m∈N is codable, and Gn0 = E, so we must have

µ(E \ f [Ln]) ≤ µ(E \Gn0) +
∞∑

m=0

µ(Gnm \Gn,m+1)

=

∞∑

m=0

µ(Gnm \Gn,m,αn(m)) ≤
∞∑

m=0

2−n−m = 2−n+1.

(Of course f [Ln] is compact, therefore closed, therefore measurable.)

(f) Set Kn = f [Ln] for each n. Then 〈Kn〉n∈N is a sequence of compact subsets of A; because the Kn

are resolvable, F =
⋃

n∈NKn is a codable Borel set. For each n,

µ(E \ F ) ≤ µ(E \Kn) ≤ 2−n+1;

so E \ F is negligible. Thus E and 〈Kn〉n∈N have the required properties.
Of course it now follows that E \A ⊆ E \ F is negligible, so that the completion of µ measures A.

563J Baire-coded measures Working from 562T, we can develop a theory of Baire measures on
general topological spaces, as follows. If X is a topological space, and Bac(X) its algebra of codable Baire
sets, a Baire-coded measure on X will be a function µ : Bac(X) → [0,∞] such that µ∅ = 0 and
µ(
⋃

n∈NEn) =
∑∞

n=0 µEn for every disjoint codable sequence 〈En〉n∈N in Bac(X).
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563K Proposition (a) If X and Y are topological spaces, f : X → Y is a continuous function and µ is
a Baire-coded measure on X, then F 7→ µf−1[F ] : Bac(Y ) → [0,∞] is a Baire-coded measure on Y .

(b) Suppose that µ is a Baire-coded measure on a topological space X, and 〈En〉n∈N is a codable family
in Bac(X). Then

(i) µ(
⋃

n∈NEn) ≤
∑∞

n=0 µEn;
(ii) If 〈En〉n∈N is non-decreasing, µ(

⋃
n∈NEn) = limn→∞ µEn;

(iii) If 〈En〉n∈N is non-increasing and µE0 is finite, then µ(
⋂

n∈NEn) = limn→∞ µEn.
(c) Let X be a topological space and M a non-empty upwards-directed family of Baire-coded measures

on X. Set νE = supµ∈M µE for every codable Baire set E ⊆ X. Then ν is a Baire-coded measure on X.

proof (a) Use 562T(b-iv).

(b) Recall that, by 562T(b-i), there must be a continuous function f : X → RN and a codable sequence
〈Fn〉n∈N in Bc(R

N) such that En = f−1[Fn] for every n. By (a), F 7→ µf−1[F ] : Bc(R
N) → [0,∞] is a

Borel-coded measure on RN. Applying 563Ba to 〈Fn〉n∈N, we get the result here.

(c) As 563E.

563L Proposition Suppose that X is a topological space; write G for the lattice of cozero subsets of X.
Let µ : G → [0,∞] be such that

µ∅ = 0,
µG ≤ µH if G ⊆ H,
µ is modular,
µ(
⋃

n∈NGn) = limn→∞ µGn whenever 〈Gn〉n∈N is a non-decreasing sequence in G and there
is a sequence 〈fn〉n∈N of continuous functions from X to R such that Gn = {x : fn(x) 6= 0} for
every n,3

µG = sup{µH : H ∈ G, H ⊆ G, µH <∞} for every G ∈ G.

Then there is a Baire-coded measure on X extending µ; if µX is finite, then the extension is unique.

proof (a) Suppose to begin with that µX is finite.

(i) For each continuous f : X → RN, consider the functional G 7→ µf−1[G] for open G ⊆ RN. This
satisfies the conditions of 563H. PPP Only the fourth requires attention. Fix a metric ρ defining the topology
of RN. If 〈Hn〉n∈N is a non-decreasing sequence of open sets in RN with union H, set

hn(z) = min(1, ρ(z,RN \Hn))

for n ∈ N and z ∈ RN, counting ρ(z, ∅) as ∞ if necessary. In this case, setting Gn = f−1[Hn], Gn = {x :
hnf(x) > 0} for each n; so

µf−1[H] = µ(
⋃

n∈NGn) = limn→∞ µGn = limn→∞ µf−1[Hn]. QQQ

There is therefore a unique Borel-coded measure νf on RN such that νfH = µf−1[H] for every open set
G ⊆ RN.

(ii) If f : X → RN is continuous and F ∈ Bc(R
N), then νfF = inf{µG : f−1[F ] ⊆ G ∈ G}. PPP By

563Fd, νf is outer regular with respect to the open sets, so

νfF = inf{νfH : H ⊆ RN is open, F ⊆ H}

= inf{µf−1[H] : H ⊆ RN is open, F ⊆ H} ≥ inf{µG : f−1[F ] ⊆ G ∈ G}.

In the other direction, if G ∈ G and f−1[F ] ⊆ G, take any ǫ > 0. There is an open set H ⊆ RN such that
RN \H ⊆ F and νf (F ∩H) ≤ ǫ. But this means G ∪ f−1[H] = X and

µG ≥ µX − µf−1[H] = νfR
N − νfH ≥ νfF − ǫ.

As ǫ is arbitrary, νfF ≤ G; as G is arbitrary, νfF ≤ inf{µG : f−1[F ] ⊆ G ∈ G}. QQQ

(iii) This means that if we set νE = inf{µG : E ⊆ G ∈ G} for E ∈ Bac(X), we shall have νf−1[F ] =
νfF whenever f : X → RN is continuous and F ∈ Bc(X). It follows that ν is a Baire-coded measure on

3Observe that
⋃

n∈NGn is a cozero set, defined by f : X → R where f(x) = sup
n∈N min(2−n, |fn(x)|) for each x.
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X. PPP Of course ν∅ = 0. If 〈En〉n∈N is a disjoint codable sequence in Bac(X), there are a continuous
f : X → RN and a codable sequence 〈Fn〉n∈N of coded Borel sets in RN such that En = f−1[Fn] for every
n, by 562T(b-i). Set F ′

n = Fn \
⋃

i<n Fi for n ∈ N; then 〈F ′
n〉n∈N is a codable sequence (562Kc), so

ν(
⋃

n∈NEn) = νf (
⋃

n∈N F
′
n) =

∑∞
n=0 νfF

′
n =

∑∞
n=0 νEn. QQQ

Of course ν extends µ.

(iv) As for uniqueness, if ν′ is any other Baire-coded measure on X extending µ, and f : X → RN is a
continuous function, then F 7→ ν′f−1[F ] is a Borel-coded measure on RN which agrees with νf on open sets
and is therefore equal to νf (563Fg); it follows at once that ν′ = ν.

(b) For the general case, let Gf be {H : H ∈ G, µH < ∞}, and for H ∈ Gf define µH : G → [0,∞[
by setting µHG = µ(G ∩ H) for every G ∈ G. Then µH satisfies all the conditions of the proposition.
PPP Everything is elementary; for the hypothesis on non-decreasing sequences in G, note that there is a
continuous function f : X → R such that H = {x : f(x) 6= 0}, so that if 〈fn〉n∈N is a sequence of real-valued
continuous function defining a sequence 〈Gn〉n∈N in G, then 〈fn × f〉n∈N defines 〈Gn ∩H〉n∈N. QQQ

There is therefore a unique Baire-coded measure νH on X extending µH . Now if H, H ′ ∈ Gf and H ⊆ H ′,
νHE = νH′(E ∩H) for every E ∈ Bac(X). PPP The functional E 7→ νH′(E ∩H) is a Baire-coded measure on
X extending µH , so must be equal to νH . QQQ In particular, νHE ≤ νH′E for every codable Baire set E ⊆ X.

Now set νE = sup{νHE : H ∈ Gf} for E ∈ Bac(X). By 563Kc, ν is a Baire-coded measure on X; and
by the final hypothesis of this proposition, ν extends µ.

563M Measure algebras If µ is either a Borel-coded measure or a Baire-coded measure, we can form
the quotient Boolean algebra A = domµ/{E : µE = 0} and the functional µ̄ : A → [0,∞] defined by setting
µ̄E• = µE for every E ∈ domµ; as in 321H, µ̄ is a strictly positive additive functional from A to [0,∞]. As
in §323, we have a topology and uniformity on A defined by the pseudometrics (a, b) 7→ µ̄(c ∩ (a△ b)) for
c ∈ A of finite measure; if µ is semi-finite, the topology is Hausdorff.

563N Theorem Let X be a second-countable space, and µ a codably σ-finite Borel-coded measure on
X. Let A and µ̄ be as in 563M. Then A is complete for its measure-algebra uniformity, therefore Dedekind
complete.

proof (a) There is a codable sequence of sets of finite measure covering X. By 562Pb, we can find a codably
Borel equivalent second-countable topology S on X, generated by a countable algebra E of subsets of X,
for which all these sets are open, so that µ becomes locally finite, while S is regular and second-countable.
Let 〈Hn〉n∈N be a sequence running over E ; note that 〈Hn〉n∈N is codable.

(b) {H• : H ∈ E} is dense in A for the measure-algebra topology. PPP Suppose that a, c ∈ A, ǫ > 0
and µ̄c < ∞. Express a as E• and c as F • where E, F ∈ Bc(X). By 563Fd, there is a G ∈ S such that
E ∩ F ⊆ G and µ(G \ (E ∩ F )) ≤ ǫ. Setting Gn =

⋃
{Hi : i ≤ n, Hi ⊆ G}, 〈Gn ∩ F 〉n∈N is a non-decreasing

codable sequence with union G ∩ F , so there is an n ∈ N such that µ((G \Gn) ∩ F ) ≤ ǫ. In this case

µ̄(c ∩ (a△G•

n)) = µ(F ∩ (E△Gn)) ≤ µ(F ∩ (G \Gn)) + µ(G \ (E ∩ F )) ≤ 2ǫ,

while Gn ∈ E . As a, c and ǫ are arbitrary, we have the result. QQQ

(c) A is complete for the measure-algebra uniformity. PPP Set H̃n =
⋃
{Hi : i ≤ n, µHi < ∞}, cn = H̃•

n

for each n. Let F be a Cauchy filter on A for the measure-algebra uniformity. For each n ∈ N, there is an
A ∈ F such that µ̄(cn ∩ (a△ b)) ≤ 2−n for all a, b ∈ A; there is a b0 ∈ A; and there is an m ∈ N such that
µ̄(cn ∩ (b0 △H•

m)) ≤ 2−n, so that

{a : µ̄(cn ∩ (a△H•

m)) ≤ 2−n+1} ∈ F . (*)

Let mn be the first m for which (*) is true, and set dn = H•

mn
. Note that

µ̄(ci ∩ (di+1 △ di)) ≤ 3 · 2−i

for each i, because there must be an a ∈ A such that µ̄(ci ∩ (a△ di)) ≤ 2−i+1 and µ̄(ci+1 ∩ (a△ di+1)) ≤ 2−i.
Set E =

⋂
n∈N

⋃
i≥nHmi

; because 〈
⋃

i≥nHmi
〉n∈N is codable, E ∈ Bc(X). Set d = E•. If n ∈ N, then

E△Hmn
⊆

⋃
i≥nHmi+1

△Hmi
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and 〈H̃n ∩ (Hmi+1
△Hmi

)〉i∈N is codable, so

µ̄(cn ∩ (d△ dn)) = µ(H̃n ∩ (E△Hmn
)) ≤

∞∑

i=n

µ(H̃n ∩ (Hmi+1
△Hmi

))

≤
∞∑

i=n

3 · 2−i = 6 · 2−n.

Take any c ∈ A such that µ̄c is finite, and ǫ > 0. Express c as F •, where µF <∞. Then 〈F ∩ H̃n〉n∈N is

a non-decreasing codable sequence with union F , so there is an n ∈ N such that µ(F \ H̃n) ≤ ǫ and 2−n ≤ ǫ.
Now

{a : µ̄(c ∩ (a△ d)) ≤ 9ǫ} ⊇ {a : µ̄(cn ∩ (a△ d)) ≤ 8ǫ}

⊇ {a : µ̄(cn ∩ (a△ dn)) ≤ 2ǫ} ∈ F .

As c and ǫ are arbitrary, F → d for the measure-algebra topology; as F is arbitrary, A is complete. QQQ

(d) Now suppose that A ⊆ A is a non-empty set, and B the family of its upper bounds, so that B
is downwards-directed. As in 323D, the filter F(B↓) generated by {B ∩ [0, b] : b ∈ B} is Cauchy for the
measure-algebra uniformity, so has a limit, which is inf B = supA. As A is arbitrary, A is Dedekind
complete.

563X Basic exercises (a) Let X, Y be second-countable spaces, µ a Borel-coded measure on X, and
f : X → Y a codable Borel function. Show that F 7→ µf−1[F ] : Bc(Y ) → [0,∞] is a Borel-coded measure
on Y .

(b) Let X be a regular second-countable space and µ a locally finite Borel-coded measure on X. Show
that for every E ∈ Bc(X) there are an Fσ set F ⊆ E and a Gδ set H ⊇ E such that µ(H \ F ) = 0.

(c) Let X be a regular second-countable space. Show that a function µ is a codable Borel measure on X
iff it is a codable Baire measure on X. (Hint : 562Xk, 562Xl.)

(d) Let X be a topological space. Show that any semi-finite Baire-coded measure on X is inner regular
with respect to the zero sets.

(e) Let X be a zero-dimensional compact Hausdorff space, E the algebra of open-and-closed subsets of
X and µ0 : E → [0,∞[ an additive functional. Show that there is a unique Baire-coded measure on X
extending µ0.

563Z Problem Suppose we define ‘probability space’ in the conventional way, following literally the
formulations in 111A, 112A and 211B. Is it relatively consistent with ZF to suppose that every probability
space is purely atomic in the sense of 211K?

563 Notes and comments The arguments above are generally drawn from those used earlier in this
treatise; the new discipline required is just to systematically respect the self-denying ordinance renouncing
the axiom of choice, as in part (f) of the proof of 563F. This does involve us in deeper analyses at a number
of points. In 563Dc, for instance, we need functions π, π′ defined on T ×N, not Bc(X)×N, because the rank
function of T gives us a foundation for induction. (In 563Db we can use a function π∗ defined on T × N,
but this is because we have canonical codes for open sets.) In 563I we can no longer assume the existence of
measurable envelopes, let alone a whole family of them as used in the standard proof in 431A, and have to
find another construction, watching carefully to make sure that we get not only a countable ordinal ξ but
a codable family of sets Eση leading to the measurable envelopes Eσξ; back in 561A, there was a moment
when we needed to resist the temptation to suppose that a sequence in ω1 must have a supremum in ω1.

Note that we have to distinguish between ‘negligible’ and ‘outer measure zero’. The natural meaning of
the latter is ‘for every ǫ > 0 there is a measurable set E ⊇ A with µE ≤ ǫ’. Even for outer regular measures,
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when a set of outer measure zero must be included in open sets of small measure, we cannot be sure that
there is a sequence of such sets from which we can define a set of measure zero including A (565Xb).

In 563K I have kept the proofs short by quoting results from earlier in the section. But you may find it
illuminating to look for a list of properties of codable families of codable Baire sets which would support
formally independent proofs.

In 563M-563N I am taking care to avoid the phrase ‘measure algebra’ in the formal exposition. The
reason is that the definition in §321 demands a Dedekind σ-complete algebra, and in the generality of 563M
there is no reason to suppose that this will be satisfied. In the special context of 563N, of course, there is
no difficulty.

There is something I ought to point out here. The problem is not that the principal arguments of §§111-
113 and §§121-123 depend on the axiom of choice. If you wish, you can continue to define ‘σ-algebra’,
‘measure’, ‘outer measure’, ‘measurable function’ and ‘integral’ with the same forms of words as used in
Volume 1, and the basic theorems, up to and including the convergence theorems, will still be true. The
problem is that on these definitions the formulae of §§114-115 may not give an outer measure, and we may
have nothing corresponding to Lebesgue measure. It does not quite follow that every probability space
is purely atomic (there is a question here: see 563Z), but clearly we are not going to get a theory which
can respond to any of the basic challenges dealt with in Volume 2 (Fundamental Theorem of Calculus,
geometric measure theory, probability distributions, Fourier series), and I think it more useful to develop a
new structure which can carry an effective version of the Lebesgue theory (see §565).

Version of 9.2.14

564 Integration without choice

I come now to the problem of defining an integral with respect to a Borel- or Baire-coded measure. Since
a Borel-coded measure can be regarded as a Baire-coded measure on a second-countable space (562U), I will
give the basic results in terms of the wider class. I seek to follow the general plan of Chapter 12, starting
from simple functions and taking integrable functions to be almost-everywhere limits of sequences of simple
functions (564A); the concept of ‘virtually measurable’ function has to be re-negotiated (564Ab). The basic
convergence theorems from §123 are restricted but recognisable (564F). We also have versions of two of the
representation theorems from §436 (564H, 564I).

There is a significant change when we come to the completeness of Lp spaces (564K) and the Radon-
Nikodým theorem (564L), where it becomes necessary to choose sequences, and we need a well-orderable
dense set of functions to pick from. Subject to this, we have workable notions of conditional expectation
operator (564Mc) and product measures (564N, 564O).

564A Definitions (a) Given a topological space X and a Baire-coded measure µ on X (563J), I will
write Bac(X)f for the ring of codable Baire sets of finite measure; S = S(Bac(X)f ) will be the linear
subspace of RX generated by {χE : E ∈ Bac(X)f} (see 122Ab, 361D4). Then S is a Riesz subspace of RX ,
and also an f -algebra in the sense of 352W.

(b) I will write L
0 for the space of real-valued functions f defined almost everywhere in X such that

there is a codable Baire function g : X → R such that f =a.e. g.

(c) Let
∫

: S → R be the positive linear functional defined by saying that
∫
χE = µE for every

E ∈ Bac(X)f . (The arguments of 361E-361G still apply, so there is such a functional.)

(d) L
1 will be the set of those real-valued functions f defined almost everywhere in X for which there is

a codable sequence 〈hn〉n∈N in S converging to f almost everywhere and such that
∑∞

n=0

∫
|hn+1−hn| <∞;

I will call such functions integrable.

c© 2006 D. H. Fremlin
4§§361-362 are written on a general assumption of AC. The only essential use of it to begin with, however, is in asserting

that an arbitrary Boolean ring can be faithfully represented as a ring of sets; and even that can be dispensed with for a while
if we work a little harder, as in 361Ya.
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564B Lemma Let X be a topological space and µ a Baire-coded measure on X.
(a) L

1 ⊆ L
0.

(b) If 〈hn〉n∈N is a non-increasing codable sequence in S = S(Bac(X)f ) and limn→∞ hn(x) = 0 for almost
every x, then limn→∞

∫
hn = 0.

(c) If 〈hn〉n∈N and 〈h′n〉n∈N are two codable sequences in S such that limn→∞ hn and limn→∞ h′n are
defined and equal almost everywhere, and

∑∞
n=0

∫
|hn+1−hn| and

∑∞
n=0

∫
|h′n+1 −h′n| are both finite, then

limn→∞

∫
hn and limn→∞

∫
h′n are defined and equal.

(d) If 〈hn〉n∈N is a codable sequence in S and
∑∞

n=0

∫
|hn+1−hn| is finite, then 〈hn〉n∈N converges almost

everywhere. In particular, if 〈hn〉n∈N is a non-decreasing codable sequence in S and supn∈N

∫
hn is finite,

〈hn〉n∈N converges a.e.
(e) If 〈hn〉n∈N is a codable sequence in S+ and lim infn→∞

∫
hn = 0, then lim infn→∞ hn = 0 a.e.

proof (a) If f ∈ L
1, there is a codable sequence 〈hn〉n∈N in S converging almost everywhere to f . Now

562T(c-iii) tells us that there is a codable Baire function g equal to limn→∞ hn wherever this is defined as
a real number, so that f =a.e. g and f ∈ L

0.

(b) Set E = {x : h0(x) > 0}. Take any ǫ > 0. For each n ∈ N set En = {x : hn(x) > ǫ}. Then 〈En〉n∈N

is a non-increasing codable sequence in Bac(X)f (562Td), and
⋂

n∈NEn ⊆ {x : limn→∞ hn(x) 6= 0} is
negligible; also E0 has finite measure. Accordingly limn→∞ µEn = 0 (563K(b-iii)). But

hn ≤ ‖h0‖∞χEn + ǫχE,
∫
hn ≤ ‖h0‖∞µEn + ǫµE

for every n, so lim supn→∞

∫
hn ≤ ǫµE. As ǫ is arbitrary, limn→∞

∫
hn = 0.

(c) Since
∫

is a positive linear functional on the Riesz space S,
∑∞

n=0 |
∫
hn+1 −

∫
hn| ≤

∑∞
n=0

∫
|hn+1 − hn|

is finite, and the limit limn→∞

∫
hn is defined in R. Similarly, limn→∞

∫
h′n is defined. To see that the

limits are equal, set gn = hn − h′n for each n, so that limn→∞ gn = 0 a.e. and
∑∞

n=0

∫
|gn+1 − gn| < ∞.

Then
∫
|gn| ≤

∑∞
m=n

∫
|gm+1 − gm| for every n. PPP For k ≥ n, set fk = (|gn| −

∑k
m=n |gm+1 − gm|)+.

Then 0 ≤ fk ≤ |gk+1| for each k, so 〈fk〉k≥n is a non-increasing codable sequence in S converging to 0
almost everywhere. (To check that 〈fk〉k≥n is codable, use 562T(c-ii) and the idea of 562Se.) By (b),

limn→∞

∫
fk = 0; but

∫
fk ≥

∫
|gn| −

∑k
m=n

∫
|gm+1 − gm| for every k. QQQ

Consequently

| lim
n→∞

∫
hn − lim

n→∞

∫
h′n| = lim

n→∞
|

∫
hn −

∫
h′n| ≤ lim

n→∞

∫
|gn|

≤ lim
n→∞

∞∑

m=n

∫
|gm+1 − gm| = 0

as required.

(d) For k ∈ N let nk ∈ N be the least integer such that
∑∞

i=nk

∫
|hi+1 − hi| ≤ 2−k, and for m ≥ nk set

Gkm = {x :
∑m

i=nk
|hi+1(x) − hi(x)| ≥ 1}.

Then µGkm ≤ 2−k, because χGkm ≤
∑m

i=nk
|hi+1 − hi|, so µGk ≤ 2−k, where Gk =

⋃
m≥nk

Gkm, by

563K(b-i). (Of course we have to check that all the sequences of sets and functions involved here are
codable.) Accordingly, setting E =

⋂
k∈NGk, µE = 0. But observe that if x ∈ X \ E there is a k ∈ N such

that x /∈ Gk and
∑∞

i=nk
|hi+1(x) − hi(x)| ≤ 1; in which case limn→∞ hn(x) is defined.

(e) For k ∈ N let nk be the least integer such that nk > ni for i < k and
∫
hnk

≤ 4−nk . Set Gk =

{x : hnk
(x) ≥ 2−k}; then µGk ≤ 2−k and 〈Gk〉k∈N is codable. So µ(

⋃
k≥nGk) ≤ 2−n+1 for every n and

E =
⋂

n∈N

⋃
k≥nGk is negligible. But E ⊇ {x : lim infn→∞ hn(x) > 0}.

564C Definition Let X be a topological space and µ a Baire-coded measure on X. For f ∈ L
1, define its

integral
∫
f by saying that

∫
f = limn→∞

∫
hn whenever 〈hn〉n∈N is a codable sequence in S = S(Bac(X)f )

converging to f almost everywhere and
∑∞

n=0

∫
|hn+1−hn| is finite. By 564Bc, this definition is sound; and

clearly it is consistent with the previous definition of the integral on S.
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564D Lemma Let X be a topological space and 〈fn〉n∈N a codable sequence of codable Baire functions
on X. Let 〈qi〉i∈N be an enumeration of Q ∩ [0,∞[, starting with q0 = 0. Set

f ′n(x) = max{qi : i ≤ n, qi ≤ max(0, fn(x))}

for n ∈ N and x ∈ X. Then 〈f ′n〉n∈N is a codable sequence of codable Baire functions.

proof Take a sequence running over a base for the topology of RN and the corresponding interpretation
φ : T → Bc(R

N) of Borel codes, as in 562B, and let φ̃ : T̃ → RX be the corresponding interpretation of
codes for real-valued codable Borel functions, as in 562N. By 562T(c-ii), there are a continuous function

g : X → RN and a sequence 〈τn〉n∈N of codes such that fn = φ̃(τn)◦g for every n. We need a sequence
〈τ ′n〉n∈N of codes such that

φ(τ ′n(α)) =
⋃

i≤n
qi>α

⋂

j∈N
qj<qi

φ(τn(qj)) if α ≥ 0,

= X if α < 0;

and this is easy to build using complementation and general union operators as in 562C. Now take f ′n =

φ̃(τ ′n)◦g for each n.

564E Theorem Let X be a topological space and µ a Baire-coded measure on X.
(a)(i) If f , g ∈ L

0 and α ∈ R, then f + g, αf , |f | and f × g belong to L
0.

(ii) If h : R → R is a codable Borel function, hf ∈ L
0 for every f ∈ L

0.
(b) If f , g ∈ L

1 and α ∈ R, then
(i) f + g, αf and |f | belong to L

1;
(ii)

∫
f + g =

∫
f +

∫
g,

∫
αf = α

∫
f ;

(iii) if f ≤a.e. g then
∫
f ≤

∫
g.

(c)(i) If f ∈ L
0, g ∈ L

1 and |f | ≤a.e. g, then f ∈ L
1.

(ii) If E ∈ Bac(X) and χE ∈ L
1 then µE is finite.

proof (a)(i) Use 562T(c-iv).

(ii) We know that f is equal almost everywhere to a product f ′g where g : X → RN is continuous
and f ′ : RN → R is a codable Borel function. Now hf ′ is a codable Borel function, by 562Mb, so hf ′g is a
codable Baire function and hf =a.e. hf

′g belongs to L
0.

(b)(i)-(ii) These proceed by the same arguments as in (a-i). To deal with |f |, we need to note that if
〈hn〉n∈N is any codable sequence in S = S(Bac(X)f ) then

∑∞
n=0

∫
||hn+1| − |hn|| ≤

∑∞
n=0

∫
|hn+1 − hn|.

(iii) If f ≤a.e. g, let 〈fn〉n∈N, 〈gn〉n∈N be codable sequences in S converging almost everywhere to f , g
respectively, and such that

∑∞
n=0

∫
|fn+1 − fn| and

∑∞
n=0

∫
|gn+1 − gn| are finite. Set hn = fn ∧ gn for each

n. Then 〈hn〉n∈N is codable, f =a.e. limn→∞ hn,
∑∞

n=0

∫
|hn+1 − hn| <∞ and∫

f = limn→∞

∫
hn ≤ limn→∞

∫
gn =

∫
g.

(c)(i) Let 〈hn〉n∈N be a codable sequence in S such that g =a.e. limn→∞ hn and
∑∞

n=0

∫
|hn+1 − hn|

is finite. Set h′n = supi≤n h
+
i for each n; then 〈h′n〉n∈N is a non-decreasing codable sequence in S and

supn∈N

∫
h′n is finite, while |f | ≤a.e. g ≤a.e. supn∈N h

′
n. There is a codable Baire function f̃ such that

f =a.e. f̃ . Now f̃+ is a codable Baire function, so 〈f̃+ ∧ h′n〉n∈N is a codable sequence of non-negative
codable Baire functions.

For each n ∈ N consider h′′n where

h′′n(x) = max{qi : i ≤ n, qi ≤ max(0, (f̃+ ∧ h′n)(x)}

for x ∈ X. By 564D, 〈h′′n〉n∈N is a codable sequence; it is non-decreasing and converges a.e. to f̃+ =a.e. f
+.

Because 0 ≤ h′′n ≤ h′n, h′′n ∈ S for each n, and supn∈N

∫
h′′n ≤ supn∈N

∫
h′n is finite; so 564Bd tells us that f+

is integrable.
Similarly, f− is integrable, so f is integrable.
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(ii) Let 〈hn〉n∈N be a codable sequence in S such that χE =a.e. limn→∞ hn and
∑∞

n=0

∫
|hn+1 − hn| is

finite. Set h′n = supi≤n hi for each n; then 〈h′n〉n∈N is a codable sequence in S and supn∈N

∫
h′n is finite. Set

En = {x : h′n(x) > 1
2}; then 〈En〉n∈N is a non-decreasing codable sequence in Bac(X)f . Also E \

⋃
n∈NEn

is negligible, so

µE ≤ µ(
⋃

n∈NEn) = supn∈N µEn = supn∈N

∫
χEn ≤ 2 supn∈N

∫
h′n

is finite.

564F I come now to versions of the fundamental convergence theorems.

Theorem Let X be a topological space and µ a Baire-coded measure on X. Suppose that 〈fn〉n∈N is a
codable sequence of integrable codable Baire functions on X.

(a) If 〈fn〉n∈N is non-decreasing and γ = supn∈N

∫
fn is finite, then f = limn→∞ fn is defined a.e. and is

integrable, and
∫
f = γ.

(b) If every fn is non-negative and lim infn→∞

∫
fn is finite, then f = lim infn→∞ fn is defined a.e. and

is integrable, and
∫
f ≤ lim infn→∞

∫
fn.

(c) Suppose that there is a g ∈ L
1 such that |fn| ≤a.e. g for every n, and f = limn→∞ fn is defined a.e.

Then
∫
f and limn→∞

∫
fn are defined and equal.

(d) If
∑∞

n=0

∫
|fn+1 − fn| is finite, then f = limn→∞ fn is defined a.e., and

∫
f and limn→∞

∫
fn are

defined and equal.
(e) If

∑∞
n=0

∫
|fn| is finite, then f =

∑∞
n=0 fn is defined a.e., and

∫
f and

∑∞
n=0

∫
fn are defined and

equal.

proof (a) Replacing fn by fn − f0 for each n, we may suppose that fn ≥ 0 for each n. Let 〈qi〉i∈N be an
enumeration of Q ∩ [0,∞[ and set

hn(x) = max{qi : i ≤ n, qi ≤ max(0, fn(x))}

for each x ∈ X. Then 〈hn〉n∈N is a codable sequence of codable Baire functions (use 564D again). Moreover,
hn takes only finitely many values, all non-negative, and for α > 0 the set Enα = {x : hn(x) > α} is a
codable Baire set such that χEnα ≤a.e.

1
αfn; by 564Ec, Enα has finite measure; as α is arbitrary, hn ∈ S.

Now 〈hn〉n∈N is non-decreasing, and
∫
hn ≤

∫
fn ≤ γ for every n; so by 564Bd 〈hn〉n∈N converges almost

everywhere to an integrable function f1, with
∫
f1 ≤ γ. Of course f1 =a.e. limn→∞ fn = f ; as f ≥a.e. fn for

every n,
∫
f =

∫
f1 = γ exactly.

(b) By 562T(c-ii) and 562Oc, 〈f ′n〉n∈N is codable, where f ′n = infm≥n fm for every n, and of course∫
f ′n ≤ infm≥n

∫
fm ≤ lim infm→∞

∫
fm

for every n. Now 〈f ′n〉n∈N is non-decreasing, so (a) tells us that
∫

lim infn→∞ fn =
∫

limn→∞ f ′n is defined
and equal to limn→∞

∫
f ′n ≤ lim infn→∞

∫
fn.

(c) Let g′ be a codable Baire function such that g′ =a.e. g, and set f ′n = med(−g′, fn, g
′) for each n; once

again, 562T(c-ii) and the ideas of 562Oc show that 〈g′ + f ′n〉n∈N is codable. So we can use (b) to see that∫
lim infn→∞ g′ + f ′n is defined and is at most lim infn→∞

∫
g′ + f ′n =

∫
g′ + lim infn→∞

∫
fn. Subtracting

g′, we get
∫

lim infn→∞ f ′n ≤ lim infn→∞

∫
fn. Similarly,

∫
lim supn→∞ f ′n ≥ lim supn→∞

∫
fn.

Once again, the sequences 〈fn〉n∈N, 〈f ′n〉n∈N, 〈|f ′n − fn|〉n∈N and 〈{x : f ′n(x) 6= fn(x)}〉n∈N are all
codable. Since all the sets {x : f ′n(x) 6= fn(x)} are negligible, so is their union; but this means that
limn→∞ f ′n =a.e. limn→∞ fn is defined almost everywhere. So (just as in 123C) the integrals are sandwiched,
and

∫
limn→∞ fn = limn→∞

∫
fn.

(d) Of course
∑∞

n=0 |
∫
fn+1 −

∫
fn| is finite, so γ = limn→∞

∫
fn is defined. Next, (a) tells us that

g = |f0|+
∑∞

n=0 |fn+1−fn| is defined a.e. and is integrable (of course this depends on our having a procedure
– induction is allowed – for building a sequence of Baire codes representing 〈|f0| +

∑n
i=0 |fi+1 − fi|〉n∈N out

of a sequence of codes representing 〈fn〉n∈N). Since limn→∞ fn(x) is defined whenever g(x) is defined and
finite, which is almost everywhere, and |fn| ≤a.e. g for every n, (c) gives the result we’re looking for.

(e) Similarly, 〈
∑n

i=0 fi〉n∈N is codable and we can apply (d).
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564G Integration over subsets: Proposition Let X be a topological space and µ a Baire-coded
measure on X.

(a) If f ∈ L
1, the functional E 7→

∫
f × χE : Bac(X) → R is additive and truly continuous with respect

to µ.5

(c) If f , g ∈ L
1, then f ≤a.e. g iff

∫
f × χE ≤

∫
g × χE for every E ∈ Bac(X). So f =a.e. g iff∫

f × χE =
∫
g × χE for every E ∈ Bac(X).

proof (a) If E ∈ Bac(X) then χE is a codable Baire function (use 562Nf), so that f × χE is integrable
(564E(a-i), 564E(c-i)). Because χ : Bac(X) → L

0 is additive, E 7→
∫
f × χE is additive. To see that

it is truly continuous, take ǫ > 0. There is a codable sequence 〈hn〉n∈N in S = S(Bac(X)f ) such that∑∞
n=0

∫
|hn+1 − hn| <∞ and f =a.e. limn→∞ hn. For each n,∫

|f − hn| = limm→∞

∫
|hm − hn| ≤

∑∞
m=n

∫
|hm+1 − hm|,

so there is an n such that
∫
|f − hn| ≤

1
2ǫ. Set E = {x : hn(x) 6= 0} and δ = ǫ/(1 + 2‖hn‖∞). Then E has

finite measure. If F ∈ Bc(X) and µ(E ∩ F ) ≤ δ, then

|
∫
f × χF | ≤

∫
|f − hn| +

∫
|hn| × χF ≤

1

2
ǫ+ ‖hn‖∞µ(E ∩ F ) ≤ ǫ.

As ǫ is arbitrary, the functional is truly continuous.

(b)(i) If f ≤a.e. g and E ∈ Bc(X), then f × χE ≤a.e. g × χE so
∫
f × χE ≤

∫
g × χE.

(ii) If
∫
f × χE ≤

∫
g × χE for every E ∈ Bc(X), let 〈hn〉n∈N be a codable sequence in S such that

f − g =a.e. limn→∞ hn and
∑∞

n=0

∫
|hn+1 − hn| < ∞. For k ∈ N let nk be the least integer such that∑∞

m=nk

∫
|hm+1 − hm| ≤ 2−k. For m, k ∈ N set Emk = {x : hnk

(x) ≥ 2−m}. Then

µEmk ≤ 2m
∫
hnk

× χEmk ≤ 2m
∫

(hnk
− f + g) × χEmk

= 2m lim
i→∞

∫
(hnk

− hi) × χEmk ≤ 2m lim
i→∞

∫
|hnk

− hi| ≤ 2m−k.

Also 〈Emk〉m,k∈N is a codable family in Bac(X), so µ(
⋃

k≥2mEmk) ≤ 2−m+1 for every m and µE = 0, where

E =
⋃

l∈N

⋂
m≥l

⋃
k≥2mEmk.

But for x ∈ X \ E, lim supk→∞ hnk
(x) ≤ 0. Since f − g =a.e. limk→∞ hnk

, f ≤a.e. g.

564H Theorem Let X be a topological space, and f : Cb(X) → R a sequentially smooth positive linear
functional, where Cb(X) is the space of bounded continuous real-valued functions on X. Then there is a
totally finite Baire-coded measure µ on X such that f(u) =

∫
u dµ for every u ∈ Cb(X).

proof (a) For cozero sets G ⊆ X set µ0G = sup{f(u) : u ∈ Cb(X), 0 ≤ u ≤ χG}. Then µ0G =
limn→∞ f(un) whenever G ⊆ X is a cozero set and 〈un〉n∈N is a non-decreasing sequence in Cb(X)+ with
supremum χG in RX . PPP Setting γ = supn∈N f(un), then of course

µ0G ≥ γ = limn→∞ f(un).

On the other hand, if v ∈ Cb(X) and 0 ≤ v ≤ χG, 〈(v − un)+〉n∈N is a non-increasing sequence converging
to 0 pointwise, so

f(v) ≤ f(un) + f(v − un)+ ≤ γ + f(v − un)+ → γ

as n→ ∞. As v is arbitrary, µ0G ≤ γ. QQQ

(b) It follows that µ0 satisfies the conditions of 563L. PPP Of course µ0∅ = 0 and µ0 is monotonic. If G,
H ⊆ X are cozero sets, express them as {x : u(x) > 0} and {x : v(x) > 0} where u, v ∈ Cb(X)+. Set
un = nu ∧ χX, vn = nv ∧ χX for each n; then 〈un〉n∈N, 〈vn〉n∈N are non-decreasing sequences in Cb(X)+

5The definition of ‘truly continuous’ in 232Ab assumed that µ was defined on a σ-algebra. I hope it is obvious that the
same formulation makes sense when the domain of µ is any Boolean algebra.
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converging pointwise to χG, χH respectively. Now 〈un ∧ vn〉n∈N and 〈un ∨ vn〉n∈N are also non-decreasing
sequences in Cb(X)+ converging to χ(G ∩H), χ(G ∪H); so (a) tells us that

µ0(G ∪H) + µ0(G ∩H) = lim
n→∞

f(un ∧ vn) + lim
n→∞

f(un ∨ vn)

= lim
n→∞

f(un ∧ vn + un ∨ vn)

= lim
n→∞

f(un + vn) = µ0G+ µ0H.

As for the penultimate condition in 563L, let 〈Gn〉n∈N be a non-decreasing sequence of cozero sets such that
there is a sequence 〈vn〉n∈N in C(X) such that Gn = {x : vn(x) 6= 0} for each n. Set un = χX ∧n supi≤n |vi|
for each n, and G =

⋃
n∈NGn; then 〈un〉n∈N ↑ χG, so

µ0G = limn→∞ f(un) ≤ limn→∞ µ0Gn ≤ µ0G,

as required. QQQ

(c) We therefore have a Baire-coded measure µ on X extending µ0. Now take any u ∈ Cb(X) such that
0 ≤ u ≤ χX, and n ≥ 1. For each i < n set Gi = {x : u(x) > i

n}; then

1

n

∑n−1
i=0 χGi ≤ u+

1

n
χX,

so

1

n

∑n−1
i=0 µGi ≤

∫
u dµ+

1

n
µX.

Next, setting

vi = u ∧
i+1

n
χX − u ∧

i

n
χX

for i < n, u =
∑n−1

i=0 vi and nvi ≤ χGi for each i, so

f(u) =
∑n−1

i=0 f(vi) ≤
1

n

∑n−1
i=0 µGi ≤

∫
u dµ+

1

n
µX.

As n is arbitrary, f(u) ≤
∫
u dµ. On the other hand, f(χX) = µX =

∫
χX dµ and f(χX−u) ≤

∫
(χX−u)dµ;

so in fact f(u) =
∫
u dµ.

(d) It follows at once that f(u) =
∫
u dµ for every u ∈ Cb(X)+ and therefore for every u ∈ Cb(X), as

required.

564I Riesz Representation Theorem Let X be a completely regular locally compact space, and
f : Ck(X) → R a positive linear functional, where Ck(X) is the space of continuous real-valued functions
with compact support. Then there is a Baire-coded measure µ on X such that

∫
u dµ is defined and equal

to f(u) for every u ∈ Ck(X).

proof We can follow the plan of 564H, with minor modifications.

(a) For open sets G ⊆ X write DG = {u : u ∈ Ck(X), 0 ≤ u ≤ χX, suppu ⊆ G}, where suppu =

{x : u(x) 6= 0}. We need to know that if G, H ⊆ X are open and K ⊆ G∪H, K ′ ⊆ G∩H are compact, there
are u ∈ DG, v ∈ DH such that χK ≤ u∨ v and χK ′ ≤ u∧ v. PPP Because X is completely regular, the family
{int{x : u(x) = 1} : u ∈ DG∪DH} is an open cover of G∪H and has a finite subfamily covering K; because
DG and DH are upwards-directed, we can reduce this finite subfamily to two terms, one corresponding to
u1 ∈ DG and the other to v1 ∈ DH , so that χK ≤ u1 ∨ v1. Next, {int{x : u(x) = 1} : u ∈ DG} is an open
cover of G ⊇ K ′, so we can find a u2 ∈ DG such that χK ′ ≤ u2; similarly, there is a v2 ∈ DH such that
χK ′ ≤ v2; set u = u1 ∨ u2 and v = v1 ∧ v2. QQQ

(b) For cozero G ⊆ X, set µ0G = sup{f(u) : u ∈ DG}. If G, H ⊆ X are cozero sets, u ∈ DG and v ∈ DH ,
then u∨ v ∈ DG∪H and u∧ v ∈ DG∩H ; this is enough to show that µ0G+µ0H ≤ µ0(G∪H) +µ0(G∩H). If
w ∈ DG∪H and w′ ∈ DG∩H , (a) tells us that there are u ∈ DG and v ∈ DH such that u∨v ≥ χ(suppw) ≥ w
and u∧v ≥ χ(suppw′) ≥ w′; this is what we need to show that so that µ0G+µ0H ≥ µ0(G∪H)+µ0(G∩H).
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If 〈Gn〉n∈N is a non-decreasing sequence of cozero sets, defined from a sequence of continuous functions
so that G =

⋃
n∈NGn is a cozero set, then DG =

⋃
n∈NDGn

so that µ0G = supn∈N µ0Gn.

If G is a relatively compact cozero set then µ0G < ∞. PPP There is a w ∈ Ck(X) such that χG ≤ w, so
that µG ≤ f(w). QQQ If G is a cozero set and γ < µ0G, there is a u ∈ DG such that f(u) ≥ γ. Now there is a
v ∈ DG such that χ(supp(u)) ≤ v, so that µ0H ≥ γ, where H = {x : v(x) > 0}; as H is relatively compact,
µ0H is finite. Thus µ0G = sup{µ0H : H ⊆ G is a cozero set, µ0H <∞}.

The other hypotheses of 563L are elementary, so we have a Baire-coded measure on X extending µ0.

(c) If u ∈ Ck(X) and 0 ≤ u ≤ χX and ǫ > 0, let G be a relatively compact cozero set including suppu,
and v ∈ DG such that χ(suppu) ≤ v and f(v) ≥ µG − ǫ. The argument of part (c) of the proof of 564H,
with v in place of χX, shows that f(u) ≤

∫
u dµ+ 1

n

∫
v dµ for every n, so that f(u) ≤

∫
u dµ. On the other

hand,

f(u) = f(v) − f(v − u) ≥ µG− ǫ−

∫
v − u dµ

= µG−

∫
v dµ+

∫
u dµ− ǫ ≥

∫
u dµ− ǫ.

As ǫ is arbitrary, f(u) =
∫
u dµ. Of course it follows at once that f agrees with

∫
dµ on the whole of Ck(X).

564J The space L1 Let X be a topological space and µ a Baire-coded measure on X.

(a) If f , g ∈ L
1 then f =a.e. g iff

∫
|f − g| = 0. PPP If f =a.e. g then |f − g| = 0 a.e. and

∫
|f − g| = 0

by the definition in 564Ad. If
∫
|f − g| = 0, let f1, g1 be codable Baire functions such that f =a.e. f1

and g =a.e. g1 (564Ba); then |f1 − g1| is codable. For each n ∈ N, set En = {x : |f1(x) − g1(x)| ≥ 2−n}.
Then En ∈ Bac(X) and |f1 − g1| ≥ 2−nχEn so µEn =

∫
χEn = 0. But 〈En〉n∈N is a codable sequence so⋃

n∈NEn = {x : f1(x) 6= g1(x)} is negligible and

f =a.e. f1 =a.e. g1 =a.e. g. QQQ

(b) As in §242, we have an equivalence relation ∼ on L
1 defined by saying that f ∼ g if f =a.e. g. The set

L1 of equivalence classes has a Riesz space structure and a Riesz norm inherited from the addition, scalar
multiplication, ordering and integral on L

1.

(c) As in §242, I will define
∫

: L1 → R by saying that
∫
f• =

∫
f for every f ∈ L

1. Similarly, we can
define

∫
E
u, for u ∈ L1 and E ∈ Bac(X), by saying that

∫
E
f• =

∫
f × χE for f ∈ L

1.

564K In order to prove that an L1-space is norm-complete, it seems that we need extra conditions.

Theorem Let X be a second-countable space and µ a codably σ-finite Borel-coded measure on X. Then
L1(µ) is a separable L-space.

proof (Compare 563N.)

(a) There is a codable sequence of sets of finite measure covering X. By 562Pb, we can find a codably
Borel equivalent zero-dimensional second-countable topology on X for which all the these sets are open, so
that µ becomes locally finite. Since this procedure does not change L

1 and L1, we may suppose from the
beginning that X is regular and µ is locally finite. Let 〈Un〉n∈N run over a countable base for the topology
of X containing ∅ and closed under finite unions.

(b) If E ∈ Bc(X)f and ǫ > 0, there is an open G ⊆ X such that E ⊆ G and µ(G \ E) ≤ ǫ, by 563Fd.
Next, G =

⋃
{Un : n ∈ N, Un ⊆ G}, so there is a finite set I ⊆ N such that G′ =

⋃
n∈I Un ⊆ G and

µ(G \G′) ≤ ǫ; now µ(G′△E) ≤ 2ǫ and G′ = Um for some m.

(c) If f ∈ L
1 and ǫ > 0, there is an h ∈ S(Bc(X)f ) such that

∫
|f − h| ≤ ǫ; now there must be an n ∈ N

and a family 〈qi〉i≤n in Q such that
∫
|h−

∑n
i=0 qiχUi| ≤ ǫ. The set D of such rational linear combinations

of the χUi is countable; enumerate it as 〈hn〉n∈N. All the hn are differences of semi-continuous functions,
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therefore resolvable, so 〈hn〉n∈N is a codable sequence; and for any u ∈ L1 and ǫ > 0 there is an n such that
‖u− h•

n‖1 ≤ 2ǫ.

(d) This shows that L1 is separable. To see that it is complete, take a Cauchy filter F on L1. For each
k ∈ N we can take the first nk ∈ N such that {u : ‖u− h•

nk
‖1 ≤ 2−k} belongs to F . Now

∫
|hnk

− hnk+1
| ≤

2−k + 2−k−1 for every k, so the codable sequence 〈hnk
〉k∈N converges a.e. to some f ∈ L

1 (564Fd), and∫
|f − hnk

| ≤ 3 · 2−k for every k. So

f• = limk→∞ h•

nk
= limF .

(e) Thus L1 is norm-complete. We know it is a Riesz space with a Riesz norm, so it is a Banach lattice.
As for the additivity of the norm on the positive cone, we have only to observe that if f , g ∈ L

1 and f•, g•

are non-negative, then

‖f• + g•‖1 = ‖|f |• + |g|•‖1 = ‖(|f | + |g|)•‖1

=

∫
|f | + |g| =

∫
|f | +

∫
|g| = ‖f•‖1 + ‖g•‖1.

564L Radon-Nikodým theorem Let X be a second-countable space with a codably σ-finite Borel-
coded measure µ. Let ν : Bc(X) → R be a truly continuous additive functional. Then there is an f ∈ L

1(µ)
such that νE =

∫
f × χE for every E ∈ Bc(X).

proof (a) Let M be the space of bounded additive functionals on Bc(X); as in 362B, M is an L-space. I
will write L1 for the Riesz space of integrable real-valued codable Borel functions on X. For f ∈ L1 and
E ∈ Bc(X), set νfE =

∫
f × χE; this is defined by 564Ea and 564E(c-i). The map f 7→ νf : L1 → M is

a Riesz homomorphism, and norm-preserving in the sense that ‖νf‖ =
∫
|f | for every f ∈ L1. Accordingly

M1 = {νf : f ∈ L1} is a Riesz subspace of M isomorphic, as normed Riesz space, to L1; in particular, it is
norm-complete, by 564K, therefore norm-closed.

(b) If ν ∈ M+ is truly continuous and ǫ > 0, there are an E ∈ Bc(X)f and a γ > 0 such that
‖(ν − γνχE)+‖ ≤ ǫ. PPP There are E ∈ Bc(X) and δ > 0 such that µE < ∞ and νF ≤ ǫ whenever

µ(E ∩ F ) ≤ δ. Set γ =
‖ν‖

δ
. Then

(ν − γνχE)(F ) = νF −
‖ν‖

δ
µ(F ∩ E)

≤ 0 if µ(F ∩ E) ≥ δ,

≤ ǫ otherwise.

So ‖(ν − γνχE)+‖ ≤ ǫ. QQQ

(c) Suppose that ν ∈M , E ∈ Bc(X)f and γ > 0 are such that 0 ≤ ν ≤ γνχE . Let ǫ > 0. Then there are
an f ∈ L1 and a ν′ ∈M+ such that ‖ν − νf − ν′‖ ≤ ǫ and ν′ ≤ 1

2γνχE . PPP Set α = supF∈Bc(X) νF − 1
2γµF ;

let H ∈ Bc(X) be such that νH − 1
2γµH ≥ α− 1

3ǫ; set f = 1
2γχ(H ∩ E) and ν′ = (ν − νf )+ ∧ 1

2γνχE .

If F ∈ Bc(X) then

(νf − ν)(F ) =
1

2
γµ(F ∩H ∩ E) − νF ≤

1

2
γµ(F ∩H) − ν(F ∩H)

=
1

2
γµH − νH −

1

2
γµ(H \ F ) + ν(H \ F )

(of course µH must be finite, as νH − 1
2γµH is finite)

Measure Theory



564Mb Integration without choice 53

≤ −α+
1

3
ǫ+ α =

1

3
ǫ,

(ν − νf −
1

2
γνχE)(F ) = νF −

1

2
γµ(F ∩ E ∩H) −

1

2
γµ(F ∩ E)

= ν(F ∩ E \H) −
1

2
γµ(F ∩ E \H)

+ ν(F \ E) + ν(F ∩ E ∩H) − γµ(F ∩ E ∩H)

≤ ν(F ∩ E \H) −
1

2
γµ(F ∩ E \H)

(because ν ≤ γνχE)

= ν((F ∩ E) ∪H) −
1

2
γµ((F ∩ E) ∪H) − νH +

1

2
γµH

≤ α− (α−
1

3
ǫ) =

1

3
ǫ.

So ‖(νf − ν)+‖ ≤ 1
3ǫ and ‖(ν − νf − 1

2γνχE)+‖ ≤ 1
3ǫ. But this means that

‖ν − νf − ν′‖ = ‖ν − νf − (ν − νf )+ + ((ν − νf )+ −
1

2
γνχE)+‖

≤ 2‖ν − νf − (ν − νf )+‖ + ‖(ν − νf −
1

2
γνχE)+‖

≤ 2‖(νf − ν)+‖ +
1

3
ǫ ≤ ǫ,

as required. QQQ

(d) Again suppose that ν ∈M , E ∈ Bc(X)f , γ > 0 and ǫ > 0 are such that 0 ≤ ν ≤ γνχE . Then for any
n ∈ N there are an f ∈ L1 and a ν′ ∈ M+ such that ‖ν − νf − ν′‖ ≤ ǫ and ν′ ≤ 2−nγνχE . PPP Induce on n.
QQQ

(e) If ν ∈M+ is truly continuous and ǫ > 0, there is an f ∈ L1 such that ‖ν − νf‖ ≤ ǫ. PPP By (b), there
are an E ∈ Bc(X)f and a γ > 0 such that ‖(ν − γνχE)+‖ ≤ 1

3ǫ. Let n ∈ N be such that 2−nγµE ≤ 1
3ǫ. By

(d), we have an f ∈ L1 and a ν′ ∈ M such that ‖(ν ∧ γνχE) − νf − ν′‖ ≤ 1
3ǫ and 0 ≤ ν′ ≤ 2−nγνχE . But

this means that

‖ν − νf‖ ≤ ‖(ν − γνχE)+‖ + ‖(ν ∧ γνχE) − νf‖

≤
1

3
ǫ+

1

3
ǫ+ ‖ν′‖ ≤

2

3
ǫ+ 2−nγµE ≤ ǫ. QQQ

(f) Since any truly continuous ν ∈M has truly continuous positive and negative parts, the space Mtc of
truly continuous functionals is included in the closure of M1 = {νf : f ∈ L1}. But I noted in (a) that M1 is
norm-isomorphic to L1, so is complete, therefore closed, and must include Mtc.

564M Inverse-measure-preserving functions (a) Let X and Y be second-countable spaces, with
Borel-coded measures µ and ν. Suppose that ϕ : X → Y is a codable Borel function such that µϕ−1[F ] = νF
for every F ∈ Bc(Y ). Then hϕ ∈ SX and

∫
hϕdµ =

∫
h dν for every h ∈ SY , writing SX = S(Bc(X)f ), SY

for the spaces of simple functions. By 562Mb, fϕ ∈ L
0(µ) for every f ∈ L

0(ν). By 562Sd, 〈hnϕ〉n∈N is a
codable sequence in SX whenever 〈hn〉n∈N is a codable sequence in SY ; consequently fϕ ∈ L

1(µ) whenever
f ∈ L

1(ν), and we have a norm-preserving Riesz homomorphism T : L1(ν) → L1(µ) defined by setting
Tf• = (fϕ)• for f ∈ L

1(µ).

(b) If ν is codably σ-finite, we have a conditional expectation operator in the reverse direction, as follows.
For any f ∈ L

1(µ), consider the functional λf defined by setting λfF =
∫
f × χ(ϕ−1[F ]) for F ∈ Bc(Y ).

This is additive and truly continuous. PPP Let ǫ > 0. By 564Ga, there are an E0 ∈ Bc(X) and a δ > 0
such that µE0 < ∞ and

∫
|f | × χE ≤ ǫ whenever E ∈ Bc(X) and µ(E ∩ E0) ≤ 2δ. Next, there is a
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non-decreasing codable sequence 〈Fn〉n∈N in Bc(Y ) such that νFn < ∞ for every n and Y =
⋃

n∈N Fn. In

this case, 〈ϕ−1[Fn]〉n∈N is a non-decreasing codable sequence in Bc(X) with union X, so there is an n such
that µ(E0 \ ϕ

−1[Fn]) ≤ δ. Now suppose that F ∈ Bc(Y ) and ν(F ∩ Fn) ≤ δ. In this case,

µ(E0 ∩ ϕ
−1[F ]) ≤ µ(E0 \ ϕ

−1[Fn]) + µ(ϕ−1[Fn ∩ F ]) ≤ 2δ,

so

|λfF | ≤
∫
|f | × χ(ϕ−1[F ]) ≤ ǫ.

As ǫ is arbitrary, λf is truly continuous. QQQ
There is therefore a unique vf ∈ L1(ν) such that

∫
F
vf = λfF for every F ∈ Bc(Y ). PPP By 564L, there is

a g ∈ L
1(ν) such that λfF =

∫
g × χF for every F ∈ Bc(Y ). By 564Gb, any two such functions are equal

almost everywhere, so have the same equivalence class in L1, which we may call vf . QQQ
We may call vf the conditional expectation of f with respect to the inverse-measure-preserving func-

tion ϕ.

(c) Still supposing that ν is codably σ-finite, we see that λf = λf ′ whenever f , f ′ ∈ L
1(µ) are equal

almost everywhere, so that we have an operator P : L1(µ) → L1(ν) defined by saying that Pf• = vf for
every f ∈ L

1(µ); that is, that
∫
F
Pu =

∫
ϕ−1[F ]

u for every u ∈ L1(µ) and F ∈ Bc(Y ). Because this defines

each Pu uniquely, P is linear. It is positive because if f• ≥ 0 then λf ≥ 0; if now g ∈ L
1(ν) is such that∫

g × χF = λfF ≥ 0 for every F ∈ Bc(X), g ≥ 0 a.e., by 564Gb, and

Pf• = uf = g• ≥ 0.

It is elementary to check that if T is the operator of (a) above then PT is the identity operator on L1(ν).

(d) Now consider the special case in which Y = X, the topology of Y is the topology generated by a
codable sequence 〈Vn〉n∈N in Bc(X)f , ν = µ↾Bc(Y ) and ϕ is the identity function. (Of course this can be
done only when µ is codably σ-finite.) In this case, we can identify L1(ν) with its image in L1(µ) under T ,
and P becomes a conditional expectation operator of the kind examined in 242J.

564N Product measures: Theorem Let X and Y be second-countable spaces, and µ, ν semi-finite
Borel-coded measures on X, Y respectively.

(a) There is a Borel-coded measure λ on X × Y such that λ(E × F ) = µE · νF for all E ∈ Bc(X) and
F ∈ Bc(Y ).

(b) If ν is codably σ-finite then we can arrange that
∫∫

f(x, y)ν(dy)µ(dx) is defined and equal to
∫
fdλ

for every λ-integrable real-valued function f .
(c) If µ and ν are both codably σ-finite then λ is uniquely defined by the formula in (a).

proof (a)(i) Start by fixing sequences 〈Un〉n∈N, 〈Vn〉n∈N running over bases for the topologies of X, Y
respectively containing ∅, and a bijection n 7→ (in, jn) : N → N; then 〈Uin × Vjn〉n∈N runs over a base for
the topology of X × Y containing ∅. Let

φX : T → Bc(X), T̃X ⊆ T R, φ̃X : T̃X → RX ,

φY : T → Bc(Y ),

φ : T → Bc(X × Y ), T̃ ⊆ T R, φ̃ : T̃ → RX×Y

be the interpretations of codes associated with the sequences 〈Un〉n∈N, 〈Vn〉n∈N and 〈Uin × Vjn〉n∈N, as

described in 562B and 562N. Let RX be the space of resolvable real-valued functions on X, and ψ̃X : RX →
T̃X a function such that φ̃X(ψ̃X(f)) = f for ever f ∈ RX , as in 562R. The argument will depend on the

existence of a number of further functions; it may help if I lay them out explicitly. Fix a member τ0 of T̃X .

(ααα) Let Θ′
2 : T × T → T be such that

φ(Θ′
2(T, T ′)) = φ(T ) ∩ φ(T ′), r(Θ′

2(T, T ′)) = max(r(T ), r(T ′))

for all T , T ′ ∈ T (562Cc); now define Θ∗
2 :

⋃
I∈[N]<ω T I → T by setting
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Θ∗
2(〈Ti〉i∈I) = {∅} ∪ {<n> : n ∈ N} if I = ∅,

= Θ′
2(Θ∗

2(〈Ti〉i∈I∩n), Tn) if n = max I.

Then

φ(Θ∗
2(〈Ti〉i∈I)) = (X × Y ) ∩

⋂
i∈I φ(Ti), r(Θ∗

2(〈Ti〉i∈I)) = max(1, supi∈I r(Ti))

whenever I ⊆ N is finite and Ti ∈ T for i ∈ I.

(βββ) Let Θ̃1 : T N → T be such that

φX(Θ̃1(〈Tn〉n∈N)) =
⋃

n∈N φX(Tn)

for every sequence 〈Tn〉n∈N in T (526Cb).

(γγγ) There is a function Θ2 : T̃X × T → T̃X such that

φ̃X(Θ2(τ, T ′)) = (νφY (T ′))χX − φ̃X(τ)

whenever τ ∈ T̃X and T ′ ∈ T is such that ν(φY (T ′)) is finite. PPP Taking Θ0 : T → T such that φX(Θ0(T )) =
X \ φX(T ) for every T ∈ T (562Ca), set

Θ̂(τ, β) = Θ̃1(〈Θ0(τ(β − 2−n))〉n∈N)

for τ ∈ T̃X and β ∈ R, so that Θ̂ is a function from T̃X × R to T and

φX(Θ̂(τ, β)) =
⋃

n∈NX \ φX(τ(β − 2−n)) = {x : φ̃X(τ)(x) < β}

for τ ∈ T̃X and β ∈ R. If ν(φY (T ′)) = ∞, take Θ2(τ, T ′) = τ0 for every τ ∈ T̃X ; otherwise set

Θ2(τ, T ′)(α) = Θ̂(τ, νφY (T ′) − α)

for τ ∈ T̃X , T ′ ∈ T and α ∈ R, so that

φX(Θ2(τ, T ′)(α)) = {x : φ̃X(τ)(x) < νφY (T ′) − α}

= {x : νφY (T ′) − φ̃X(τ)(x) > α}

for every α, Θ2(τ, T ′) ∈ T̃X and φ̃X(Θ2(τ, T ′))(x) = νφY (T ′) − φ̃X(τ)(x) for every x ∈ X. QQQ

(δδδ) Define Θ∗
1 : T̃ N

X → T R by saying that

Θ∗
1(〈τn〉n∈N)(α) = Θ̃1(〈τn(α)〉n∈N)

for every sequence 〈τn〉n∈N in T̃X , so that Θ∗
1(〈τn〉n∈N) ∈ T̃X and

φ̃X(Θ̃1(〈τn〉n∈N)) = supn∈N φ̃X(τn)

whenever 〈τn〉n∈N is a sequence in T̃X such that supn∈N φ̃X(τn) is defined in RX .

(ǫǫǫ) As in 562Ob, we can find a function Θ∗ : T ×X → T such that

φY (Θ∗(T, x)) = {y : (x, y) ∈ φ(T )}

for T ∈ T and x ∈ X.

(ii) If W ⊆ X × Y is open and F ∈ Bc(Y ), x 7→ ν(F ∩W [{x}]) : X → [0,∞] is lower semi-continuous.
PPP Take γ ∈ R and consider G = {x : ν(F ∩ W [{x}]) > γ}. Given x ∈ G let K be {(m,n) : x ∈ Um,
Um × Vn ⊆ W}; then W [{x}] =

⋃
(m,n)∈K Vn. Now 〈Vn〉(m,n)∈K and 〈F ∩ Vn〉(m,n)∈K are codable families

(562J), so there is a finite set L ⊆ K such that ν(
⋃

(m,n)∈L F ∩ Vn) > γ (563B(a-ii)). In this case, H =

X ∩
⋂

(m,n)∈L Um is an open neighbourhood of x included in G, and ν(F ∩W [{x′}]) > γ for every x′ ∈ H.

As x is arbitrary, G is open; as γ is arbitrary, the function is lower semi-continuous. QQQ

(iii) For T , T ′ ∈ T and x ∈ X, set

hTT ′(x) = ν{y : y ∈ φY (T ′), (x, y) ∈ φ(T )} = ν(φY (T ′) ∩ φY (Θ∗(T, x))).

Then there is a function Θ : T × T → T̃X such that

D.H.Fremlin



56 Choice and determinacy 564N

φ̃X(Θ(T, T ′)) = hTT ′

whenever T , T ′ ∈ T are such that νφY (T ′) is finite. PPP If νφY (T ′) = ∞ set Θ(T, T ′) = τ0. For other T ′,
build Θ by induction on the rank of T , as usual. If r(T ) ≤ 1, then φ(T ) is open; by (ii), hTT ′ is lower

semi-continuous, therefore resolvable (562Qa). So we can set Θ(T, T ′) = ψ̃X(hTT ′).
For the inductive step to r(T ) ≥ 2, set AT = {n : <n> ∈ T}, so that

φ(T ) =
⋃

n∈AT

(X × Y ) \ φ(T<n>)

=
⋃

m∈N

(X × Y ) \ ((X × Y ) ∩
⋂

n∈AT∩m

φ(T<n>))

=
⋃

m∈N

(X × Y ) \ φ(Θ∗
2(〈T<n>〉n∈AT∩m))

and

hTT ′(x) = limm→∞ νφY (T ′) − hT (m)T ′(x) = supm∈N νφY (T ′) − hT (m)T ′(x)

for every x, where

T (m) = Θ∗
2(〈T<n>〉n∈AT∩m), φ(T (m)) = (X × Y ) ∩

⋂
n∈AT∩m φ(T<n>)

for m ∈ N. Now r(T (m)) < r(T ) for every m, so each Θ(T (m), T ′) has been defined, and we can speak of
Θ2(Θ(T (m), T ′), T ′) for each m; we shall have

φ̃X(Θ2(Θ(T (m), T ′), T ′))(x) = νφY (T ′) − φ̃X(Θ(T (m), T ′))(x) = νφY (T ′) − hT (m)T ′(x)

= ν{y : y ∈ φY (T ′), (x, y) ∈
⋃

n∈AT∩m

(X × Y ) \ φ(T<n>)}

for m ∈ N and x ∈ X. So if we set

Θ(T, T ′) = Θ∗
1(〈Θ2(Θ(T (m), T ′), T ′)〉m∈N),

we shall have

φ̃X(Θ(T, T ′)) = sup
m∈N

φ̃X(Θ2(Θ(T (m), T ′), T ′))

= sup
m∈N

(νφY (T ′))χX − φ̃X(Θ(T (m), T ′))

= sup
m∈N

(νφY (T ′))χX − hT (m)T ′ = hTT ′ ,

as required for the induction to proceed. QQQ

(iv) Thus we see that hTT ′ ∈ L
0(µ) whenever T , T ′ ∈ T and νφY (T ′) is finite.

(v) Let Bc(Y )f be the ring of subsets of Y of finite measure. For F ∈ Bc(Y )f and W ∈ Bc(X × Y ) we
have T , T ′ ∈ T such that φ(T ) = W and φY (T ′) = F , and now ν(F ∩W [{x}]) = hTT ′(x) for every x ∈ X.
So we have a functional λF : Bc(X × Y ) → [0,∞] defined by saying that

λFW =

∫
ν(F ∩W [{x}])µ(dx) if the integral is defined in R,

= ∞ otherwise.

Of course λF is additive. If E ∈ Bc(X) and F ′ ∈ Bc(Y ), then

λF (E × F ′) = 0 = µE · ν(F ∩ F ′) if ν(F ∩ F ′) = 0,

=

∫
ν(F ∩ F ′)χE dµ = µE · ν(F ∩ F ′) if µE <∞,

= ∞ = µE · ν(F ∩ F ′) if µE = ∞ and ν(F ∩ F ′) > 0.
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(To see that E × F ′ ∈ Bc(X × Y ), use 562Mc.)

(vi) Now suppose that 〈Wn〉n∈N is a codable disjoint sequence in Bc(X × Y ) with union W , and that
F ∈ Bc(Y )f . We surely have λFW ≥

∑∞
n=0 λFWn. If

∑∞
n=0 λFWn is finite, let 〈Tn〉n∈N be a sequence

in T such that φ(Tn) = Wn for each n, and take T ′ ∈ T such that φY (T ′) = F . Then 〈hTnT ′〉n∈N =

〈φ̃X(Θ(Tn, T
′))〉n∈N is a codable sequence of integrable Borel functions, so 564Fe tells us that the sum of

the integrals is the integral of the sum; but

∞∑

n=0

hTnT ′(x) =
∞∑

n=0

ν(φY (T ′) ∩ φY (Θ∗(Tn, x))) = ν(
⋃

n∈N

φY (T ′) ∩ φY (Θ∗(Tn, x)))

= ν(
⋃

n∈N

F ∩Wn[{x}]) = ν(F ∩W [{x}])

for each x, so we have

λFW =

∫
ν(F ∩W [{x}])µ(dx) =

∫ ∞∑

n=0

hTnT ′dµ

=

∞∑

n=0

∫
hTnT ′dµ =

∞∑

n=0

λFWn.

As 〈Wn〉n∈N is arbitrary, λF is a Borel-coded measure.

(vii) If W ∈ Bc(X × Y ) and F ⊆ F ′ in Bc(Y )f , then

λFW =

∫
ν(F ∩W [{x}])µ(dx)

(counting
∫
h dµ as ∞ for a non-negative function h ∈ L

0(µ) \ L1(µ))

=

∫
ν(F ′ ∩ (W ∩ (X × F ))[{x}])µ(dx) = λF ′(W ∩ (X × F )) ≤ λF ′W.

Thus 〈λF (W )〉F∈Bc(Y )f is an upwards-directed family for each W ∈ Bc(X × Y ); let λW be its supremum.
Then λ is a Borel-coded measure on X × Y (563E). Also

λ(E × F ) = λF (E × F ) = µE · νFF = µE · νF

whenever E ∈ Bc(X) and F ∈ Bc(Y )f have finite measure. For other measurable E and F , if either is
negligible then λ(E × F ) = 0, while if one has infinite measure and the other has non-zero measure then
λ(E × F ) = ∞ because µ and ν are both semi-finite.

Observe that the construction ensures that if λW < ∞ and W ⊆ X × F for some F ∈ Bc(Y )f , then
λW =

∫
νW [{x}]µ(dx).

(b) Now suppose that ν is codably σ-finite.

(i) Let 〈Fn〉n∈N be a codable sequence in Bc(Y )f covering Y ; since 〈
⋃

i≤n Fi〉n∈N also is codable, we can

suppose that 〈Fn〉n∈N is non-decreasing. Let 〈T ′
n〉n∈N be a sequence in T such that φY (T ′

n) = Fn for each n.
By 562Mc, as usual, 〈X × Fn〉n∈N is a codable sequence in Bc(X × Y ), so λW = supn∈N λ(W ∩ (X × Fn))
whenever λ measures W .

(ii) Let f : X × Y → [0,∞[ be an integrable codable Borel function. Then
∫∫

f(x, y)ν(dy)µ(dx) is
defined and equal to

∫
fdλ.

PPP(ααα) For n, k ∈ N set

Wnk = {(x, y) : y ∈ Fn, f(x, y) ≥ 2−nk};

then 〈Wnk〉n,k∈N is a codable family in Bc(X×Y ). Let 〈Tnk〉n,k∈N be a family in T such that Wnk = φ(Tnk)
for n, k ∈ N. For n ∈ N, define vn : X × Y → R by setting

vn = 2−n
∑4n

k=1 χWnk;
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then 〈vn〉n∈N is a codable sequence of codable Borel functions on X×Y . Moreover, setting vnx(y) = vn(x, y),
〈vnx〉n∈N is a codable sequence of codable Borel functions on Y , for each x ∈ X. Now set

unk(x) = νWnk[{x}], un(x) =
∫
vn(x, y)ν(dy)

for x ∈ X and n, k ∈ N. Then, in the language of part (a) of this proof,

unk = φ̃X(Θ(Tnk, T
′
n))

for all n and k, so 〈unk〉n,k∈N is a codable family of codable Borel functions on X. Since

un = 2−n
∑4n

k=1 unk

for each n, 〈un〉n∈N is a codable sequence of codable Borel functions on X.

(βββ) Next, for each n ∈ N,

∫
undµ = 2−n

4n∑

k=1

∫
νWnk[{x}]µ(dx) = 2−n

4n∑

k=1

λWnk

(by the final remark in part (a) of the proof)

=

∫
vndλ.

At this point, observe that 〈vn〉n∈N is a non-decreasing codable sequence with limit f . So

limn→∞

∫
undµ = limn→∞

∫
vndλ =

∫
fdλ

is finite; since 〈un〉n∈N also is non-decreasing, u(x) = limn→∞ un(x) is finite for µ-almost all x, and∫
u dµ = limn→∞

∫
undµ =

∫
fdλ

(564Fa). On the other hand, for each x ∈ X, 〈vnx〉n∈N is a non-decreasing codable sequence with limit fx,
where fx(y) = f(x, y) for y ∈ Y ; so

u(x) = limn→∞

∫
vnxdν =

∫
fxdν

for almost all x, and ∫∫
f(x, y)ν(dy)µ(dx) =

∫∫
fxdνµ(dx) =

∫
u dµ =

∫
fdλ. QQQ

(iii) It follows at once, taking the difference of positive and negative parts, that∫∫
f(x, y)ν(dy)µ(dx) =

∫
fdλ

for every λ-integrable codable Borel function f .

(iv) In particular (or more directly), if W ∈ Bc(X × Y ) is λ-negligible, then µ-almost every vertical
section of W is ν-negligible. So starting from a general λ-integrable function f , we move to a codable Borel
function g such that f =a.e. g; now

∫
f(x, y)ν(dy) must be defined and equal to

∫
g(x, y)ν(dy) for almost

every x, and ∫∫
f(x, y)ν(dy)µ(dx) =

∫∫
g(x, y)ν(dy)µ(dx) =

∫
g dλ =

∫
fdλ.

This completes the proof of (b).

(c) Let 〈En〉n∈N, 〈Fn〉n∈N be codable sequences of sets of finite measure covering X, Y respectively; we
may suppose that both sequences are non-decreasing. Then 〈En × Fn〉n∈N = 〈(En × Y ) ∩ (X × Fn)〉n∈N

is a codable sequence (562Mc). Suppose that λ, λ′ are two Borel-coded measures on X × Y agreeing on
measurable rectangles. For each n ∈ N let λn, λ′n be the totally finite measures defined by setting

λnW = λ(W ∩ (En × Fn)), λ′nW = λ′(W ∩ (En × Fn))

for W ∈ Bc(X × Y ). Now, given n, set Wn = {W : W ∈ Bc(X × Y ), λnW = λ′nW}. Then W ∪W ′ ∈ Wn

whenever W , W ′ ∈ Wn are disjoint, and E×F ∈ Wn whenever E ∈ Bc(X) and F ∈ Bc(Y ). So Wn includes
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the algebra of subsets of X × Y generated by {E × F : E ∈ Bc(X), F ∈ Bc(Y )}. In particular, Wn includes
any set of the form

⋃
(i,j)∈K Ui×Vj where K ⊆ N×N is finite. But any open subset of X ×Y is expressible

as the union of a non-decreasing codable sequence of such sets, so also belongs to Wn. By 563Fg, λn = λ′n.
This is true for every n ∈ N. Since

λW = supn∈N λnW , λ′W = supn∈N λ
′
nW

for every W ∈ Bc(X × Y ), λ = λ′, as claimed.

564O Theorem Let 〈(Xk, ρk)〉n∈N be a sequence of complete metric spaces, and suppose that we have a
double sequence 〈Uki〉k,i∈N such that {Uki : i ∈ N} is a base for the topology of Xk for each k. Let 〈µk〉n∈N be
a sequence such that µk is a Borel-coded probability measure on Xk for each k. Set X =

∏
k∈NXk. Then X

is a Polish space and there is a Borel-coded probability measure λ on X such that λ(
∏

k∈NEk) =
∏

k∈N µkEk

whenever 〈Ek〉k∈N ∈
∏

k∈N Bc(Xk) and {k : Ek 6= Xk} is finite.

proof (a)(i) Of course X is Polish; we have a complete metric ρ on X defined by saying that ρ(x, y) =
supk∈N min(2−k, ρk(x(k), y(k))) for x, y ∈ X, and a countable base generated by sets of the form {x : x(k) ∈
Uki}.

(ii) Writing Fk for the family of closed subsets of Xk for k ∈ N, we have a choice function ζ on⋃
k∈N Fk \{∅}. PPP Given a non-empty F ∈

⋃
k∈N Fk, take the first k such that F ∈ Fk, and define 〈Fm〉m∈N,

〈im〉m∈N by saying that

F0 = F ,
im = min{i : i ∈ N, Uki ∩ Fm 6= ∅, diamUki ≤ 2−m}

(taking the diameter as measured by ρk, of course),

Fm+1 = Fm ∩ Ukim

for each m. Now 〈Fm〉m∈N generates a Cauchy filter in Xk which must have a unique limit; take this limit
for ζ(F ). QQQ

(b)(i) Let T =
⊗

k∈N Bc(Xk) be the algebra of subsets of X generated by {{x : x(k) ∈ E} : k ∈ N,
E ∈ Bc(Xk)}. Note that all these sets belong to Bc(X), by 562Md, so T ⊆ Bc(X). Set

C = {
∏

k∈NEk : Ek ∈ Bc(Xk) for every k ∈ N, {k : Ek 6= Xk} is finite},

Co = {
∏

k∈NGk : Gk ⊆ Xk is open for every k ∈ N, {k : Gk 6= Xk} is finite},

Cc = {
∏

k∈N Fk : Fk ⊆ Xk is closed for every k ∈ N, {k : Fk 6= Xk} is finite}.

Then every member of T can be expressed as the union of a finite disjoint family in C. C ∈ Cc for every
C ∈ C, so the closure of any member of T can be expressed as the union of finitely many members of Cc and
belongs to T. The complement of a member of Cc can be expressed as the union of finitely many members
of Co, so any open set belonging to T can be expressed as the union of finitely many members of Co.

(ii) For m ∈ N write Tm =
⊗

k≥m Bc(Xk) for the algebra of subsets of
∏

k≥mXk generated by

sets of the form {x : x(k) ∈ Ek} for k ≥ m and Ek ∈ Bc(Xk). Then we have an additive functional
νm : Tm → [0, 1] defined by saying that νm(

∏
k≥mEk) =

∏∞
k=m µkEk whenever Ek ∈ Bc(Xk) for every

k ≥ m and {k : Ek 6= Xk} is finite (326E). Now if m ∈ N and W ∈ Tm then

νmW =
∫
νm+1{v : <t>av ∈W}µm(dt)

(notation: 5A1C). PPP This is elementary for cylinder sets W =
∏

k≥mEk; now any other member of Tm is
expressible as a finite disjoint union of such sets. QQQ

(c)(i) For open sets W ⊆ X define

λ0W = sup{ν0V : V ∈ T, V ⊆W}.

Then if 〈Wn〉n∈N is a non-decreasing sequence of open sets with union X, limn→∞ λ0Wn = 1. PPP Starting
from the double sequence 〈Uki〉k,i∈N, it is easy to build a sequence 〈Un〉n∈N in Co which runs over a base for

the topology of X. Set W ′
n =

⋃
{Ui : i ≤ n, U i ⊆Wn} for each n; then 〈W ′

n〉n∈N is a non-decreasing sequence
of open sets belonging to T = T0, and

⋃
n∈NW

′
n = X. ??? Suppose, if possible, that limn→∞ ν0W

′
n ≤ 1− 2−l
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for some l ∈ N. Then we can define 〈tk〉k∈N inductively, as follows. The inductive hypothesis will be that
νmVmn ≤ 1 − 2−l−m for every n, where

Vmn = {v : v ∈
∏

k≥mXk, 〈tk〉k<m ∪ v ∈W ′
n}.

In this case, define fmn : Xm → [0, 1] by setting

fmn(t) = νm+1{w : w ∈
∏

k≥m+1Xk, <t>aw ∈ Vmn}.

By (b-ii), νmVmn =
∫
fmndµm for every m, while 〈fmn〉n∈N is non-decreasing.

Because every W ′
n is a finite union of open cylinder sets, so is Vmn, and fmn is lower semi-continuous,

therefore resolvable; so∫
supn∈N fmndµm = supn∈N

∫
fmndµm = limn→∞ νmVmn ≤ 1 − 2−l−m.

The set F = {t : supn∈N fmn(t) ≤ 1 − 2−l−m−1} must be closed and non-empty, and we can set tm = ζ(F ),
where ζ is the choice function of (a-ii). In this case,

Vm+1,n = {w : <tm>
aw ∈ Vmn}, νm+1Vm+1,n = fmn(tm) ≤ 1 − 2−l−m−1

for every n, and the induction continues.

At the end of the induction, however, x = 〈tk〉k∈N belongs to X, so belongs to W ′
n for some n. There must

be an m such that W ′
n is determined by coordinates less than m, and now Vmn =

∏
k≥mXk, so νmVmn = 1;

which is supposed to be impossible. XXX

We conclude that

1 = limn→∞ ν0W
′
n = limn→∞ ν0W ′

n = limn→∞ λ0Wn

because W ′
n is a closed member of T included in Wn for each n. QQQ

(ii) λ0 satisfies the conditions of 563H. PPP

(ααα) Of course λ0∅ = ∅ and λ0W ≤ λ0W
′ whenever W ⊆W ′; also λ0X = 1 is finite.

(βββ) Suppose that 〈Wn〉n∈N is a non-decreasing sequence of open sets in X with union W , and ǫ > 0.
Then there is a closed V ∈ T such that V ⊆ W and ν0V ≥ λ0W − ǫ. Set W ′

n = (X \ V ) ∪Wn for each n;
then 〈W ′

n〉n∈N is a non-decreasing sequence of open sets with union X, so by (i) there are an n ∈ N such
that λ0W

′
n ≥ 1 − ǫ, and a closed V ′ ∈ T such that V ′ ⊆ W ′

n and ν0V
′ ≥ 1 − 2ǫ. Now V ∩ V ′ is a closed

member of T included in Wn and

λ0Wn ≥ ν0(V ∩ V ′) ≥ ν0V − 2ǫ ≥ λ0W − 3ǫ.

As ǫ is arbitrary, λ0W ≤ limn→∞ λ0Wn; the reverse inequality is trivial, so we have equality.

(γγγ) Let W , W ′ ⊆ X be open sets. As in (i), we have non-decreasing sequences 〈Wn〉n∈N, 〈W ′
n〉n∈N

of open members of T such that

W =
⋃

n∈NWn =
⋃

n∈NWn, W ′ =
⋃

n∈NW
′
n =

⋃
n∈NW

′
n.

In this case

W ∩W ′ =
⋃

n∈NWn ∩W ′
n =

⋃
n∈NWn ∩W ′

n,

W ∪W ′ =
⋃

n∈NWn ∪W ′
n =

⋃
n∈NWn ∪W ′

n.

Also

λ0W = limn→∞ λ0Wn ≤ limn→∞ ν0Wn ≤ limn→∞ ν0Wn ≤ λ0W ,

so these are all equal; the same applies to the sequences converging to W ′, W ∩W ′ and W ∪W ′, so

λ0W + λ0W
′ = lim

n→∞
ν0Wn + ν0W

′
n

= lim
n→∞

ν0(Wn ∩W ′
n) + ν0(Wn ∪W ′

n)

= λ0(W ∩W ′) + λ0(W ∪W ′). QQQ
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(d) By 563H, we have a Borel-coded measure λ on X extending λ0. Now λ extends ν0. PPP If C ∈ C
and ǫ > 0, express C as

∏
k∈NEk where Ek ∈ Bc(Xk) for every k and there is an m such that Ek = Xk

for k > m. For each k ≤ m, there is an open set Gk ⊇ Ek such that µkGk ≤ µkEk + ǫ
m+1 (563Fd again);

setting Gk = Xk for k > m and W =
∏

k∈NGk, C ⊆W and

λC ≤ λW = λ0W ≤ ν0W =
∏m

k=0 µkGk ≤ ν0C + ǫ.

As ǫ is arbitrary, λC ≤ ν0C. This is true for every C ∈ C. As both λ and ν0 are additive, λW ≤ ν0W for
every W ∈ T; as λX = ν0X = 1, λ agrees with ν0 on T. QQQ

In particular, λ agrees with ν0 on C, as required.

564X Basic exercises (a) Let X be a second-countable space and µ a Borel-coded measure on X. Let
E ∈ Bc(X) and let µE be the Borel-coded measure on X defined as in 563Fa. Show that

∫
fdµE is defined

and equal to
∫
f × χE dµ for every f ∈ L

1(µ).

(b) Let X be a topological space, µ a Baire-coded measure on X, and f a non-negative integrable real-
valued function defined almost everywhere in X. Set νE =

∫
f × χE for E ∈ Bac(X). Show that ν is a

Baire-coded measure, and that
∫
g dν =

∫
g × f dµ for every ν-integrable g, if we interpret (g × f)(x) as 0

when f(x) = 0 and g(x) is undefined. (Compare 235K.)

(c) Let X be a countably compact topological space. (i) Show that C(X) = Cb(X). (ii) Show that every
positive linear functional f : C(X) → R is sequentially smooth. (iii) Show that a norm-bounded sequence
〈un〉n∈N in the normed space C(X) is weakly convergent to 0 iff it is pointwise convergent to 0. (iv) Prove
this without using measure theory. (Hint : Fremlin 74, A2F. Also see 564Ya.)

(d) Let X be a topological space and µ a Baire-coded measure on X. (i) Describe constructions for
normed Riesz spaces Lp(µ) for 1 < p ≤ ∞. (ii) Show that if X is second-countable, µ is codably σ-finite
and 1 < p < ∞ then Lp(µ) is a Dedekind complete Banach lattice with an order-continuous norm, while
L2(µ) is a Hilbert space.

(e) In 564O, show that λ is uniquely defined. Hence show that we have commutative and associative
laws for the product measure construction.

564Y Further exercises (a) Let X be a topological space and 〈fn〉n∈N a codable sequence of bounded
codable Baire real-valued functions on X such that {

∫
fndµ : n ∈ N} is bounded for every totally finite

Baire-coded measure µ on X. (i) Show that if 〈En〉n∈N is a disjoint codable sequence in Bac(X) and
µ is a Baire-coded measure on X, then limn→∞

∫
fn × χEndµ = 0. (ii) Now suppose in addition that

limn→∞ fn(x) = 0 for every x ∈ X. Show that if µ is a Baire-coded measure on X, then limn→∞

∫
fndµ = 0.

(iii) Use this result to strengthen (iii) of 564Xc to ‘a sequence 〈un〉n∈N in C(X) is weakly convergent to 0
iff it is bounded for the weak topology and pointwise convergent to 0’.

(b) Let X be a locally compact completely regular topological group. Show that there is a non-zero left-
translation-invariant Baire-coded measure on X.

(c) Let I be a set and X = {0, 1}I . Write Z for {0, 1}N. For θ : N → I define gθ : X → Z by setting
gθ(x) = xθ for x ∈ X. Let φ : T → Bc(Z) be an interpretation of Borel codes for subsets of Z defined
from a sequence running over a base for the topology of Z. Let Σ be the family of subsets of X of the
form φ′(θ, T ) = g−1

θ [φ(T )] where θ ∈ IN and T ∈ T ; say that a codable family in Σ is one of the form
〈φ′(θi, Ti)〉i∈I . Show that there is a functional µ : Σ → [0, 1] such that µ∅ = 0, µ(

⋃
n∈NEn) =

∑∞
n=0 µEn

whenever 〈En〉n∈N is a disjoint codable sequence in Σ, and µ{x : x↾J = w} = 2−#(J) whenever J ⊆ I is
finite and w ∈ {0, 1}J .

(d) Suppose there is a disjoint sequence 〈In〉n∈N of doubleton sets such that for every function f with
domain N the set {n : f(n) ∈ In} is finite (Jech 73, 4.4). Set I =

⋃
n∈N In and let Σ be the algebra of

subsets of {0, 1}I determined by coordinates in finite sets. Let λ : Σ → [0, 1] be the additive functional such
that λ{x : z ⊆ x} = 2−k whenever J ∈ [I]k and z ∈ {0, 1}J . Show that there is a sequence 〈En〉n∈N in Σ,
covering {0, 1}I , such that

∑∞
n=0 λEn < 1.
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564 Notes and comments In the definitions of 564A, I follow the principles of earlier volumes in allowing
virtually measurable functions with conegligible domains to be counted as integrable. But you will see
that in 564F and elsewhere I work with real-valued Baire measurable functions defined everywhere. The
point is that while, if you wish to work through the basic theorems of Fourier analysis under the new rules,
you will certainly need to deal with functions which are not defined everywhere, all the main theorems
will depend on establishing that you have sequences of sets and functions which are codable in appropriate
senses. There is no way of coding members of L

0 or L
1 as I have defined them in 564A. What you will

need to do is to build parallel structures, so that associated with each almost-everywhere-summable Fourier
series f(x) = 1

2a0 +
∑∞

k=1 ak cos kx + bk sin kx you have in hand a code τ for a codable Borel function f̃
equal almost everywhere to f , together with a code T for a conegligible codable Borel set E included in
{x : x ∈ dom f , f(x) = f̃(x)}. Provided that associated with every relevant sequence 〈fn〉n∈N you can define
appropriate sequences 〈τn〉n∈N and 〈Tn〉n∈N, you can hope to deduce the reqired properties of 〈fn〉n∈N by
applying 564F to the sequence coded by 〈τn〉n∈N.

Of course there are further significant technical differences between the treatment here and the more
orthodox one I have employed elsewhere. In the ordinary theory, using the axiom of choice whenever
convenient, a measure µ, thought of as a function defined on a σ-algebra of sets, carries in itself all the
information needed to describe the space L

0(µ). In the present context, we are dealing with functions µ
defined on algebras which do not directly code the topologies on which the definition relies. So it would be
safer to write L

0(T, µ). But of course what really matters is the collection of codable families of codable
sets, and perhaps we should be thinking of a different level of abstraction. In the proof of 564N I have tried
to cast the proof in a language which might be adaptable to other ways of coding sets and functions.

From 564K on, most of the results seem to depend on second-countability; it may be that something can
be done with spaces which have well-orderable bases.

In the shift from 564Xc(iii) to 564Ya(iii) I find myself asking for a reason why a weakly bounded sequence
in C(X) should be norm-bounded. As far as I know, there is no useful general result in ZF in this direction.
But in 564Ya I have suggested a method which will serve in this special context.

I offer 564Yc and 564Yd as positive and negative examples. The point is that in 564Yc there may be
few sequences of functions from N to I, so that we get few codable sequences of sets. Of course, if I is
well-orderable then {0, 1}I is compact (561D) and we can use 564H. For well-orderable I, any continuous
real-valued function on {0, 1}I is determined by coordinates in some countable set, so that the methods of
564H and 564Yc will give the same measure.

Version of 25.4.14

565 Lebesgue measure without choice

I come now to the construction of specific non-trivial Borel-coded measures. Primary among them is of
course Lebesgue measure on Rr; we also have Hausdorff measures (565N-565O). For Lebesgue measure I
begin, as in §115, with half-open intervals. The corresponding ‘outer measure’ may no longer be countably
subadditive, so I call it ‘Lebesgue submeasure’. Carathéodory’s method no longer seems quite appropriate,
as it smudges the distinction between ‘negligible’ and ‘outer measure zero’, so I use 563H to show that there
is a Borel-coded measure agreeing with Lebesgue submeasure on open sets (565C-565D); it is the completion
of this Borel-coded measure which I will call Lebesgue measure. We have a version of Vitali’s theorem for
well-orderable families (in particular, for countable families) of balls (565F). From this we can prove the
Fundamental Theorem of Calculus in essentially its standard form (565M).

565A Definitions Throughout this section, except when otherwise stated, r ≥ 1 will be a fixed integer.
As in §115, I will say that a half-open interval in Rr is a set of the form

[a, b[ = {x : x ∈ Rr, a(i) ≤ x(i) < b(i) for i < r}

where a, b ∈ Rr. For a half-open interval I, set λI = 0 if I = ∅ and otherwise λI =
∏r−1

i=0 b(i) − a(i) where
I = [a, b[. Now for A ⊆ Rr set

θA = inf{
∑∞

j=0 λIj : 〈Ij〉j∈N is a sequence of half-open intervals covering A}.

Measure Theory



565C Lebesgue measure without choice 63

565B Proposition In the notation of 565A,
(a) the function θ : PRr → [0,∞] is a submeasure,
(b) θI = λI for every half-open interval I ⊆ Rr.

proof (a) As in parts (a-i) to (a-iii) of the proof of 115D, θ∅ = 0 and θA ≤ θB whenever A ⊆ B. If A,
B ⊆ Rr and ǫ > 0, we have sequences 〈In〉n∈N and 〈Jn〉n∈N of half-open intervals such that

A ⊆
⋃

n∈N In, B ⊆
⋃

n∈N Jn,

∑∞
n=0 λIn ≤ θA+ ǫ,

∑∞
n=0 λJn ≤ θB + ǫ.

Set K2n = In, K2n+1 = Jn for n ∈ N; then A ∪B ⊆
⋃

n∈NKn so

θ(A ∪B) ≤
∑∞

n=0 λKn =
∑∞

n=0 λIn +
∑∞

n=0 λJn ≤ θA+ θB + 2ǫ.

As ǫ is arbitrary, θ(A ∪B) ≤ θA+ θB.

(b) The arguments of 114B/115B/115Db nowhere called on any form of the axiom of choice, so can be
used unchanged.

Definition I will call the submeasure θ Lebesgue submeasure on Rr.

565C Lemma Let I be the family of half-open intervals in Rr; let θ be Lebesgue submeasure, and set

Σ = {E : E ⊆ X, θA = θ(A ∩ E) + θ(A \ E) for every A ⊆ X}, ν = θ↾Σ

(563G).
(a) Let 〈In〉n∈N be a disjoint sequence in I. Then E =

⋃
n∈N In belongs to Σ and νE =

∑∞
n=0 νIn.

(b) Every open set in Rr belongs to Σ.
(c) If G, H ⊆ Rr are open, then νG+ νH = ν(G ∩H) + ν(G ∪H).
(d) If 〈Gn〉n∈N is a non-decreasing sequence of open sets then ν(

⋃
n∈NGn) = limn→∞Gn.

proof (a)(i) If i < r and α ∈ R then {x : x ∈ Rr, x(i) < α} ∈ Σ, as in 115F. So every half-open interval
belongs to Σ. By 565Bb, νI = θI = λI for every I ∈ I.

(ii)(ααα) θE =
∑∞

n=0 νIn. PPP Because 〈In〉n∈N is a sequence in I covering E, θE is at most
∑∞

n=0 λIn ≤∑∞
n=0 νIn. In the other direction,

θE ≥ supn∈N θ(
⋃

i≤n Ii) = supn∈N ν(
⋃

i≤n Ii) = supn∈N

∑
i≤n νIi =

∑∞
n=0 νIn. QQQ

(βββ) E ∈ Σ. PPP Let A ⊆ Rr be such that θA is finite, and ǫ > 0. We have a sequence 〈Jm〉m∈N in I
such that A ⊆

⋃
m∈N Jm and

∑∞
m=0 λJm ≤ θA + ǫ is finite. Let m be such that

∑∞
j=m+1 λJj ≤ ǫ, and set

K =
⋃

j≤m Jj ; then

A ∩ E ⊆ (K ∩ E) ∪
⋃

j>m Jj ,

so

θ(A ∩ E) ≤ θ(K ∩ E) + θ(
⋃

j>m Jj) ≤ θ(K ∩ E) +
∑∞

j=m+1 λJj ≤ θ(K ∩ E) + ǫ.

Similarly, θ(A \ E) ≤ θ(K \ E) + ǫ. Next, by (α) applied to 〈Jj ∩ Ii〉i∈N or otherwise,
∑∞

i=0 ν(Jj ∩ Ii) is
finite for every j, so there is an n ∈ N such that

∑m
j=0

∑∞
i=n+1 ν(Jj ∩ Ii) ≤ ǫ. Set L =

⋃
i≤n Ii; then

K ∩ E ⊆ (K ∩ L) ∪
⋃

j≤m,i>n Jj ∩ Ii,

θ(K ∩ E) ≤ θ(K ∩ L) + θ(
⋃

j≤m,i>n

Jj ∩ Ii)

≤ θ(K ∩ L) +

m∑

j=0

∞∑

i=n+1

ν(Jj ∩ Ii) ≤ θ(K ∩ L) + ǫ.

Assembling these,
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θA ≤ θ(A ∩ E) + θ(A \ E) ≤ θ(K ∩ E) + θ(K \ E) + 2ǫ

≤ θ(K ∩ L) + θ(K \ L) + 3ǫ = θK + 3ǫ

(because we know that L ∈ Σ)

≤ θA+ 3ǫ.

As ǫ is arbitrary, θA = θ(A ∩ E) + θ(A \ E). This was on the assumption that θA was finite; but of course
it is also true if θA = ∞. As A is arbitrary, E ∈ Σ. QQQ

(γγγ) Accordingly νE = θE =
∑∞

n=0 νIn.

(b) Let I0 be the family of dyadic half-open intervals in Rr of the form
[
2−kz, 2−k(z + 1)

[
where k ∈ N,

z ∈ Zr and 1 = (1, . . . , 1). Note that I0 is countable and that if I, J ∈ I0 then either I ⊆ J or J ⊆ I or
I ∩ J = ∅. Also any non-empty subset of I0 has a maximal element.

If G ⊆ Rr is open, set J = {I : I ∈ I0, I ⊆ G} and let J ′ be the set of maximal elements of J . Then
J ′ is disjoint and countable, so by (a-ii) G =

⋃
J =

⋃
J ′ belongs to Σ.

(c) Because ν is additive on Σ,

ν(G ∪H) + ν(G ∩H) = νG+ ν(H \G) + ν(H ∩G) = νG+ νH

for all open sets G, H ⊆ Rr.

(d) This time, let J be
⋃

n∈N{I : I ∈ I0, I ⊆ Gn}; again, let J ′ be the set of maximal elements of J .
Then G =

⋃
J =

⋃
J ′, so

νG =
∑

J∈J ′ νJ = supK⊆J ′ is finite

∑
J∈K νJ ≤ supn∈N νGn = limn→∞ νGn ≤ νG

because 〈Gn〉n∈N is non-decreasing.

565D Definition Let θ and ν be as in 565C. By 563H, there is a unique Borel-coded measure µ on Rr

such that µG = νG = θG for every open set G ⊆ Rr. I will say that Lebesgue measure on Rr is the
completion µL of µ; the sets it measures will be Lebesgue measurable.

565E Proposition Let I, θ, Σ, ν, µ and µL be as in 565A-565D.
(a) µ is the restriction of θ to the algebra Bc(R

r) of codable Borel sets.
(b) For every A ⊆ Rr,

θA = inf{µLE : E ⊇ A is Lebesgue measurable} = inf{µG : G ⊇ A is open}.

(c) E ∈ Σ and µLE = νE = θE whenever E is Lebesgue measurable.
(d) µL is inner regular with respect to the compact sets and outer regular with respect to the open sets.

proof (a) If E ∈ Bc(Rr), then

µE = inf{µG : G ⊇ E is open}

(563Fd)

= inf{θG : G ⊇ E is open} ≥ θE.

Next, if I ⊆ Rr is a half-open interval, it is a codable Borel set and

λI = inf{λJ : J ∈ I, I ⊆ int J} ≥ inf{θ(int J) : J ∈ I, I ⊆ int J}

≥ inf{θG : G ⊇ I is open} = µI ≥ θI = λI.

So µ and λ agree on I. If now E is a codable Borel set and ǫ > 0, there is a sequence 〈In〉n∈N in I such
that E ⊆

⋃
n∈N In and

∑∞
n=0 λIn ≤ θE + ǫ. But every In is resolvable (because it belongs to the algebra of

sets generated by the open sets), so 〈In〉n∈N is a codable sequence (562J) and
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µE ≤ µ(
⋃

n∈N In) ≤
∑∞

n=0 µIn =
∑∞

n=0 λIn ≤ θE + ǫ.

As E and ǫ are arbitrary, µ = θ↾Bc(R
r).

(b) Suppose that A ⊆ Rr. If E ⊇ A is Lebesgue measurable, there are F , H ∈ Bc(Rr) such that
E△F ⊆ H and µH = 0, so that E ⊆ F ∪H and

θA ≤ θ(F ∪H) = µ(F ∪H) = µLE.

So we have

θA ≤ inf{µLE : E ⊇ A is Lebesgue measurable} ≤ inf{µG : G ⊇ A is open}.

In the other direction, given ǫ > 0 there is a sequence 〈In〉n∈N in I, covering A, such that
∑∞

n=0 λIn ≤ θA+ǫ.
As in (a) just above, E =

⋃
n∈N In is a codable Borel set and µE ≤

∑∞
n=0 λIn; now there is an open G ⊇ E

such that µG ≤ µE + ǫ ≤ θA+ 2ǫ. As ǫ is arbitrary,

inf{µG : G ⊇ A is open} ≤ θA

and we have the equalities.

(c) Suppose that E is Lebesgue measurable, A ⊆ Rr and ǫ > 0. By (b), there is an open set G ⊇ A such
that µG ≤ θA+ ǫ. Now

θ(A ∩ E) + θ(A \ E) ≤ θ(G ∩ E) + θ(G \ E) ≤ µL(G ∩ E) + µL(G \ E)

(by (b))

= µLG = µG ≤ θA+ ǫ.

As usual, this is enough to ensure that E ∈ Σ. Now (b) again tells us that µLE = θE = νE.

(d) Of course µ is locally finite, while Rr is a regular topological space. So 563F(d-ii) tells us that µ is
inner regular with respect to the closed sets and outer regular with respect to the open sets; it follows that
µL also is. Next, every closed set is Kσ, while compact sets are resolvable and all sequences of compact sets
are codable, so µF = sup{µK : K ⊆ F is compact} for every closed set F ⊆ Rr; consequently µL is inner
regular with respect to the compact sets.

565F Vitali’s Theorem Let C be a well-orderable family of non-singleton closed balls in Rr. For I ⊆ C
set

AI =
⋂

δ>0

⋃
{C : C ∈ I, diamC ≤ δ}.

Let T be the family of open subsets of Rr. Then there are functions Ψ : PC → PC and Θ : PC×N → T such
that Ψ(I) ⊆ I, Ψ(I) is disjoint and countable, µL(Θ(I, k)) ≤ 2−k and AI ⊆

⋃
Ψ(I) ∪ Θ(I, k) whenever

I ⊆ C and k ∈ N. In particular,

AI \
⋃

Ψ(I) ⊆
⋂

k∈N Θ(I, k)

is negligible.

proof We use the greedy algorithm of 221A/261B, but watching more carefully. Start by fixing on a
well-ordering 4 of C ∪ {∅}. Next, for each n ∈ N, set Un = {x : x ∈ Rr, n < ‖x‖ < n+ 1}, where ‖ ‖ is the
Euclidean norm on Rr. It will be convenient to fix at this point on a family 〈Gkn〉k,n∈N of open sets such
that µLGkn ≤ 2−k−n−2 and {x : ‖x‖ = n} ⊆ Gkn for all k and n; for instance, Gkn could be an open shell
with rational inner and outer radii (except for Gk0, which should be an open ball).6

6Of course we can still use the similarity argument from part (g) of the proof of 261B to check that thin shells have small
measure.
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Now define CInm, for I ⊆ C and m, n ∈ N, by saying that

given 〈CIni〉i<m, CInm is to be the 4-first member of {∅} ∪ (I ∩ PUn) which is disjoint from⋃
i<m CIni and has diameter at least

1

2
sup{diamC : C ∈ {∅} ∪ (I ∩ PUn) is disjoint from

⋃
i<m CIni}.

(I take the diameter of the empty set to be 0, as usual.) Set

Ψ(I) = {CInm : n, m ∈ N} \ {∅}.

Because the Un are disjoint, Ψ(I) is a disjoint subfamily of I, and of course it is countable. Just as in
261B, we find that for each I ⊆ C and n ∈ N we have

AI ∩ Un ⊆
⋃

i<m CIni ∪
⋃

i≥m C ′
Ini,

where for C ∈ C I write C ′ for the open ball with the same centre and six times the radius; ∅′ will be ∅. Just
as in 261B,

∑∞
m=0 µLC

′
Inm ≤ 6rµLB(0, n+ 1) is finite. So, for each k and n, we can take the first mkn such

that
∑∞

i=mkn
µLC

′
Ini ≤ 2−n−k−2. Now set

Θ(I, k) =
⋃

n∈NGkn ∪
⋃

n∈N,i≥mkn
C ′

Ini;

we shall have A \
⋃

Ψ(I) ⊆ Θ(I, k) and

µLΘ(I, k) ≤
∑∞

n=0 µLGkn +
∑∞

n=0

∑∞
i=mkn

µLC
′
Ini ≤ 2−k,

as required.

565G Proposition Let A ⊆ Rr be any set. Then its Lebesgue submeasure is

θA = inf{
∑∞

n=0 µLBn : 〈Bn〉n∈N is a sequence of closed balls covering A}.

proof Let ǫ > 0. Then there is a (non-empty) open set G ⊇ A with µLG ≤ θA+ ǫ. Use Vitali’s theorem,
with C the family of closed balls with rational centres and non-zero rational radii, to see that there is a
disjoint sequence 〈Cn〉n∈N of balls included in G such that µL(A \

⋃
n∈N Cn) = 0 and

∑
n∈N µLCn ≤ θA+ ǫ.

Next, cover A \
⋃

n∈N Cn by a sequence of half-open intervals with measures summing to not more than ǫ,

and expand these to balls with measures summing to not more than ǫrr/2. Interleaving this sequence with
the Cn, we get a sequence 〈Bn〉n∈N of balls, covering A, with

∑∞
n=0 µLBn ≤ θA+ (1 + rr/2)ǫ. So

θA ≥ inf{
∑∞

n=0 µLBn : 〈Bn〉n∈N is a sequence of closed balls covering A}.

The reverse inequality is elementary (563C(a-ii)).

565H Corollary Lebesgue measure is invariant under isometries.

proof We can see from its definition that Lebesgue submeasure is translation-invariant, so Lebesgue measure
also is. Consequently two balls with the same radii have the same measure. Isometries of Rr take closed
balls to closed balls with the same radii, so 565G gives the result.

565I Lemma (a) Writing Ck(Rr) for the space of continuous real-valued functions on Rr with compact
support, Ck(Rr) ⊆ L

1(µL).
(b) There is a countable set D ⊆ Ck(Rr) such that {g• : g ∈ D} is norm-dense in L1(µL).

proof (a) This is elementary; every continuous function is resolvable, therefore a codable Borel function
and belongs to L

0; if in addition it has compact support it is dominated by an integrable function and is
integrable, by 564E(c-i).

(b)(i) Let U be a countable base for the topology of Rr, consisting of bounded sets and closed under
finite unions. Let D0 be the set of functions of the form x 7→ max(0, 1 − 2kρ(x,Rr \ U)) for U ∈ U and
k ∈ N, where ρ is the Euclidean metric on Rr, and D the set of rational linear combinations of members of
D0; then D is a countable subset of Ck(Rr).
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(ii) If E ⊆ Rr is a codable Borel set of finite measure, and ǫ > 0, then by 565Ed there are a compact
set K ⊆ E and an open set G ⊇ E such that µL(G \K) ≤ ǫ. Now there are a U ∈ U such that K ⊆ U ⊆ G
and a g ∈ D0 such that χK ≤ g ≤ χU , so that

∫
|g − χE| ≤ ǫ.

(iii) It follows that whenever f is a simple codable Borel function, in the sense of 564Aa, and ǫ > 0
there is a g ∈ D such that

∫
|f − g| ≤ ǫ.

(iv) If f ∈ L
1 and ǫ > 0 there are a simple codable Borel function g and an h ∈ D such that∫

|f − g| ≤ 1
2ǫ such that

∫
|g − h| ≤ 1

2ǫ, so that
∫
|f − h| ≤ ǫ.

565J Lemma Suppose that f is an integrable function on Rr, and that
∫
I
f ≥ 0 for every half-open

interval I ⊆ Rr. Then f(x) ≥ 0 for almost every x ∈ Rr.

proof (a) Note first that any finite union E of half-open intervals is expressible as a finite disjoint union of
half-open intervals. So

∫
E
f ≥ 0.

(b) Suppose that g is a simple codable Borel function such that
∫
E
g ≤ ǫ whenever E is a finite union

of half-open intervals. Then
∫
g+ ≤ ǫ. PPP Set F = {x : g(x) > 0}, and take any η > 0. Then there are a

compact K ⊆ F and an open G ⊇ F such that µL(G \K) ≤ η. There is a set E, a finite union of half-open
intervals, such that K ⊆ E ⊆ G. In this case,∫

g+ −
∫
E
g ≤

∫
|g × χ(E△F )| ≤ ‖g‖∞µL(G \K),

∫
g+ ≤ ǫ+ η‖g‖∞;

as η is arbitrary, we have the result. QQQ

(c) We know that there is a codable sequence 〈gn〉n∈N of simple codable Borel functions such that
f =a.e. limn→∞ gn and

∑∞
n=0

∫
|gn+1−gn| is finite. Set ǫn =

∑∞
i=n

∫
|gi+1−gi| for each n; then

∫
|f−gn| ≤ ǫn,

because
∫
|gm − gn| ≤ ǫn for every m ≥ n. So if E is a finite union of half-open intervals,∫

E
gn =

∫
gn × χE ≥

∫
f × χE −

∫
|f − gn| ≥ −ǫn;

by (a), applied to −gn,
∫
g−n ≤ ǫn. By 564Be,

f− =a.e. limn→∞ g−n =a.e. lim infn→∞ g−n = 0

almost everywhere, as required.

565K Theorem A monotonic function f : R → R is differentiable almost everywhere.

Remark Of course ‘almost everywhere’ here is with respect to Lebesgue measure on R; in this result and
the next two I am taking r = 1.

proof We can use the ideas in 222A if we refine them using 565F. First, C will be the set of closed non-
trivial intervals with rational endpoints; take Ψ and Θ as in 565F. It will be enough to deal with the case of
non-decreasing f . For a < b in R, set f∗([a, b]) = [f(a), f(b)]. I shall repeatedly use the fact that if I ⊆ C
is disjoint, then

µL(
⋃

C∈I f
∗(C)) =

∑
C∈I µLf

∗(C),

because I is countable and f∗(C) ∩ f∗(C ′) contains at most one point for any distinct C, C ′ ∈ I, and we
can use 563C(a-iv).

(a) Again set

(Df)(x) = lim suph→0
1
h (f(x+ h) − f(x)),

(Df)(x) = lim infh→0
1
h (f(x+ h) − f(x))

for x ∈ R. To see that Df <∞ a.e., set Em = {x : |x| < m, (Df)(x) > 2m(1 + f(m) − f(−m))} and

Im = {[α, β] : α, β ∈ Q, −m < α < β < m,

f(β) − f(α) > 2m(1 + f(m) − f(−m))(β − α)}

= {C : C ∈ C, C ⊆ ]−m,m[ , µLf
∗(C) > 2m(1 + f(m) − f(−m))µLC}
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for each m. Then, in the language of 565F, Em ⊆ AIm
. (If x ∈ Em and δ > 0, then x is an endpoint of a

non-trivial closed interval [α, β] ⊆ ]−m,m[, of length less than δ, such that f(β) − f(α) > 2m(1 + f(m) −
f(−m))(β − α). Now we can expand [α, β] slightly to get an interval [α′, β′] ∈ Im of length at most δ.) So
Em ⊆

⋃
Ψ(Im) ∪ Θ(Im, k) for each k. Ψ(Im) is a countable family of closed sets, and

2m(1 + f(m) − f(−m))
∑

C∈Ψ(Im)

µLC ≤
∑

C∈Ψ(Im)

µLf
∗(C)

= µL

( ⋃

C∈Ψ(Im)

f∗(C)
)
≤ f(m) − f(−m).

So
∑

C∈Ψ(Im) µLC ≤ 2−m. Setting Hm = Θ(Im,m) ∪
⋃
{intC : C ∈ Ψ(Im)}, Hm is open, µHm ≤ 2−m+1

and Em \Q ⊆ Hm.

Set E = {x : (Df)(x) = ∞}, and take any n ∈ N. Then

E \Q ⊆
⋃

m≥nEm \Q ⊆
⋃

m≥nHm.

Now 563C(a-ii) tells us that

µL(
⋃

m≥nHm) ≤
∑∞

m=n µHm ≤ 2−n+1

for each n, so that E \Q is included in a negligible Gδ set and µLE = µL(E \Q) = 0. Thus Df is finite a.e.

(b) To see that Df ≤a.e. Df , we use similar ideas, but with an extra layer of complexity, corresponding

to the double use of Vitali’s theorem. Set F = {x : (Df)(x) < (Df)(x)}. Take any ǫ > 0; because Q is
countable, there is a family 〈ǫmqq′〉m∈N,q,q′∈Q of strictly positive numbers such that

∑
m∈N,q,q′∈Q ǫmqq′ ≤

1
2ǫ.

For q, q′ ∈ Q and m, k ∈ N let Imqk, Jmqk be

{C : C ∈ C, C ⊆ ]−m,m[, µLC ≤ 2−k, µLf
∗(C) ≥ qµLC},

{C : C ∈ C, C ⊆ ]−m,m[, µLC ≤ 2−k, µLf
∗(C) ≤ qµLC}

respectively. For m, k ∈ N and q, q′ ∈ Q set

Gmqq′k =
⋃
{intC : C ∈ Imq′k} ∩

⋃
{intC : C ∈ Jmqk};

then 〈Gmqq′k〉k∈N is a non-increasing sequence of open sets of finite measure. So, setting Fmqq′ =
⋂

k∈NGmqq′k,
we can find a family 〈k(m, q, q′)〉m∈N,q,q′∈Q in N such that

µL(Gm,q,q′,k(m,q,q′) \ Fmqq′) ≤ min(1,
q′−q

q
)ǫmqq′

whenever m ∈ N, q, q′ ∈ Q and 0 < q < q′ (563C(b-ii)). Write Hmqq′ for Gm,q,q′,k(m,q,q′).
If m ∈ N and 0 < q < q′ in Q, set

J ′
mqq′ = {C : C ∈ C, C ⊆ Hmqq′ , µLf

∗(C) ≤ qµLC}.

Then Fmqq′ ⊆ Hmqq′ , so every point of Fmqq′ belongs to the interiors of arbitrarily small intervals belonging
to J ′

mqq′ ; accordingly Fmqq′ \
⋃

Ψ(J ′
mqq′) is negligible.

Now let I ′
mqq′ be the set

{C : C ∈ C, C ⊆ C ′ for some C ′ ∈ Ψ(J ′
mqq′), µLf

∗(C) ≥ q′µLC}.

Then every point of Fmqq′ ∩
⋃

Ψ(J ′
mqq′) \ Q belongs to arbitrarily small members of I ′

mqq′ , so Fmqq′ \⋃
Ψ(I ′

mqq′) is negligible.

Now we come to the calculation at the heart of the proof. If m ∈ N and 0 < q < q′ in Q,

q′µLFmqq′ ≤ q′µL(
⋃

Ψ(I ′
mqq′)) = q′

∑

C∈Ψ(I′

mqq′
)

µLC

≤
∑

C∈Ψ(I′

mqq′
)

µLf
∗(C) = µL

( ⋃

C∈Ψ(I′

mqq′
)

f∗(C)
)
≤ µL

( ⋃

C∈Ψ(J ′

mqq′
)

f∗(C)
)

(because every member of I ′
mqq′ is included in a member of Ψ(J ′

mqq′))
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=
∑

C∈Ψ(J ′

mqq′
)

µLf
∗(C) ≤ q

∑

C∈Ψ(J ′

mqq′
)

µLC

= qµL(
⋃

Ψ(J ′
mqq′) ≤ qµLHmqq′ ≤ qµLFmqq′ + (q′ − q)ǫmqq′ ,

and µLFmqq′ ≤ ǫmqq′ , µLHmqq′ ≤ 2ǫmqq′ . But this means that

F \Q ⊆
⋃

m∈N,q,q′∈Q,0<q<q′ Fmqq′ ⊆
⋃

m∈N,q,q′∈Q,0<q<q′ Hmqq′ ,

which has measure at most
∑

m∈N,q,q′∈Q,0<q<q′ µLHmqq′ ≤ 2
∑

m∈N,q,q′∈Q,0<q<q′ ǫmqq′ ≤ ǫ.

The process described here gives a recipe, starting from ǫ > 0, for finding an open set of measure at most
ǫ including F \ Q. So we can repeat this for each term of a sequence converging to 0 to define a negligible
Gδ set including F \Q, and F must be negligible, as required.

565L Lemma Suppose that F : R → R is a bounded non-decreasing function. Then
∫
F ′ is defined and

is at most limx→∞ F (x) − limx→−∞ F (x).

proof I copy the ideas of 222C. For each n ∈ N, define gn : R → R by setting ank = 2−n+1k(n+ 1) − n for
k ≤ 2n,

gn(x) =
2n−1

n+1
(F (an,k+1) − F (ank)) if k < 2n and ank ≤ x < an,k+1,

= 0 if x < −n or x ≥ n+ 2.

Then gn is a simple Borel measurable function and F ′(x) = limn→∞ gn(x) whenever F ′(x) is defined, which
is almost everywhere, by 565K. Also

∫
gn = F (n + 2) − F (−n). Because the gn are resolvable, 〈gn〉n∈N is

codable; by Fatou’s Lemma (564Fb),∫
F ′ ≤ lim infn→∞

∫
gn = limx→∞ F (x) − limx→−∞ F (x).

565M Theorem Let F : R → R be a function. Then the following are equiveridical:

(i) there is an integrable function f such that F (x) =
∫
]−∞,x[

f for every x ∈ R,

(ii) F is of bounded variation, absolutely continuous on every bounded interval, and
limx→−∞ F (x) = 0,

and in this case F ′ =a.e. f .

proof (a) If f is integrable and F (x) =
∫
]−∞,x[

f for every x ∈ R, take any ǫ > 0. Then there is a g ∈ Ck(R)

such that
∫
|f − g| ≤ ǫ (565Ib). Let x0 be such that g(x) = 0 for x ≤ x0; then

|F (x)| ≤
∫
|f − g| ≤ ǫ

whenever x ≤ x0. Set δ =
ǫ

1+‖g‖∞

. If a0 ≤ b0 ≤ . . . ≤ an ≤ bn and
∑n

i=0 bi − ai ≤ δ, then

n∑

i=0

|F (bi) − F (ai)| =

n∑

i=0

|

∫

[ai,bi[

f | ≤
n∑

i=0

∫

[ai,bi[

|g| +

∫

[ai,bi[

|f − g|

≤
n∑

i=0

(bi − ai)‖g‖∞ +

∫
|f − g| ≤ δ‖g‖∞ + ǫ ≤ 2ǫ.

As ǫ is arbitrary, limx→−∞ F (x) = 0 and F is absolutely continuous on every bounded interval. As for the
variation of F , if a0 ≤ a1 ≤ . . . ≤ an then

n∑

i=1

|F (ai) − F (ai−1)| =

n∑

i=1

|

∫

[ai−1,ai[

f | ≤
n∑

i=1

∫

[ai−1,ai[

|f |

=

∫

[a0,an[

|f | ≤

∫
|f |,
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so Var(F ) ≤
∫
|f | is finite.

Thus (i)⇒(ii).

(b) Moreover, under the conditions of (a), F ′ =a.e. f . PPP Because f is the difference of two non-negative
integrable functions, it is enough to consider the case f ≥ 0 a.e., so that F is non-decreasing. In this case,
applying 565L to the function x 7→ med(F (a), F (x), F (b)), we see that

∫
[a,b[

F ′ ≤
∫
[a,b[

f whenever a ≤ b in

R; also, applying 565L to F itself, F ′ is integrable. Applying 565J to f − F ′, we see that F ′ ≤a.e. f .
Recall that there is a countable subset D of Ck(R) approximating all integrable functions in mean (565Ib).

So there is a sequence 〈gn〉n∈N in D such that
∑∞

n=0

∫
|gn − f | is finite. Set g̃n = supi≤n g

+
i for n ∈ N; then

all the g̃n are continuous, therefore resolvable, and 〈g̃n〉n∈N is a codable sequence of integrable functions.
By 564Fa, g = limn→∞ g̃n is defined a.e. and integrable. Let Gn, G be the indefinite integrals of g̃n,
g respectively. Then the arguments just used show that G′ ≤a.e. g. But note that each Gn, being the
indefinite integral of a continuous function, has G′

n = g̃n exactly, while G′
n ≤ G′ whenever G′ is defined. So

g =a.e. limn→∞ g̃n = limn→∞G′
n ≤a.e. G

′,

and g =a.e. G
′.

At this point observe that
∫

lim infn→∞ |gn− f | = 0, by 564Fb, so f ≤a.e. g, while G−F is the indefinite
integral of the essentially non-negative integrable function g − f . So G′ − F ′ ≤a.e. g − f =a.e. G

′ − f and
f ≤a.e. F

′. So actually f =a.e. F
′, as hoped for. QQQ

(c) Now suppose that F : R → R is of bounded variation and absolutely continuous on every bounded
interval, and that limx→−∞ F (x) = 0. By 224D and 565L, F ′ is integrable; set G(x) =

∫
]−∞,x[

F ′ and

H(x) = F (x) − G(x) for x ∈ R. By (b), H ′ = F ′ − G′ is zero a.e., while H, like F and G, is absolutely
continuous on every bounded interval. But this means that H is constant. PPP Suppose that a < b in R and
ǫ > 0. Let δ ∈ ]0, b− a[ be such that

∑n
i=0 |H(bi) − H(ai)| ≤ ǫ whenever a ≤ a0 ≤ b0 ≤ a1 ≤ b1 ≤ . . . ≤

an ≤ bn ≤ b and
∑n

i=0 bi − ai ≤ δ Set E = {x : x ∈ ]a, b[, H ′(x) = 0}. Let C be the family of non-trivial
closed subintervals [c, d] of ]a, b[ with rational endpoints such that |H(d)−H(c)| ≤ ǫ(d−c); then every point
of E belongs to arbitrarily small members of C. By Vitali’s theorem (565F) there is a disjoint countable
family I ⊆ C such that E \

⋃
I is negligible, so that

∑
I∈I µLI = µL(

⋃
I) = b− a.

Let J ⊆ I be a finite subset such that
∑

I∈J µLI ≥ b− a− δ; express J as 〈[bi, ai+1]〉i<n where 〈bi〉i<n is

strictly increasing. Setting a0 = a and bn = b, we have a = a0 ≤ b0 ≤ . . . ≤ an ≤ bn = b and
∑n

i=0 bi−ai ≤ δ.
So

|H(b) −H(a)| ≤
n∑

i=0

|H(bi) −H(ai)| +

n−1∑

i=0

|H(ai+1) −H(bi)|

≤ ǫ+ ǫ

n−1∑

i=0

(ai+1 − bi) ≤ ǫ(1 + b− a).

As a, b and ǫ are arbitrary, H is constant. QQQ
So F − G is constant. As both F and G tend to 0 at −∞, they are equal. Thus F (x) =

∫
]−∞,x[

F ′ for

every x, and F is an indefinite integral.

565N Hausdorff measures Let (X, ρ) be a metric space and s ∈ ]0,∞[. As in §471, we can define
Hausdorff s-dimensional submeasure θs : PX → [0,∞] by writing

θsA = sup
δ>0

inf{
∞∑

n=0

(diamDn)s : 〈Dn〉n∈N is a sequence of subsets of X covering A,

diamDn ≤ δ for every n ∈ N},

counting diam ∅ as 0 and inf ∅ as ∞. As with Lebesgue submeasure, θs is a submeasure.

565O Theorem Let (X, ρ) be a second-countable metric space, and s > 0. Then there is a Borel-coded
measure µ on X such that µK = θsK whenever K ⊆ X is compact and θsK is finite.
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proof (a) To begin with, suppose that X is compact and θsX is finite.

(i) Let U be a countable base for the topology of X closed under finite unions; let 4 be a well-ordering
of U . Then for any compact K ⊆ X, δ > 0 and ǫ > 0, there are U0, . . . , Un ∈ U such that K ⊆

⋃
i≤n Ui,

diamUi ≤ δ for every i and
∑n

i=0(diamUi)
s ≤ θsK + ǫ. PPP There is a sequence 〈An〉n∈N of subsets of X

such that K ⊆
⋃

n∈NAn, diamAn ≤ 1
2δ for every n and

∑∞
n=0(diamAn)s ≤ θsK + 1

2ǫ. Let 〈ηn〉n∈N be a

sequence in
]
0, 14δ

[
such that

∑∞
n=0(2ηn + diamAn)s ≤ θsK + ǫ.

For each n ∈ N, set Gn = {x : ρ(x,An) < ηn}. Then An is a compact subset of Gn so there is
a 4-first Un ∈ U such that An ⊆ Un ⊆ Gn. Now diamUn ≤ min(δ, diamAn + 2−n−2ǫ) for each n so∑∞

n=0(diamUn)s ≤ θsK + ǫ. But as K is compact there is an n such that K ⊆
⋃

i≤n Ui. QQQ

(ii) As in the proof of 471Da, θs is a ‘metric submeasure’, that is, θs(A∪B) = θsA+ θsB whenever A,
B ⊆ X and ρ(A,B) > 0. (It will be convenient here to say that ρ(A,B) = ∞ if either A or B is empty.) It
follows that θs(

⋃
n∈NKn) =

∑∞
n=0 θsKn whenever 〈Kn〉n∈N is a disjoint sequence of compact subsets of X.

PPP Recall that ρ(K,K ′) > 0 whenever K, K ′ are disjoint compact subsets of X; this is because K ×K ′ is
compact and ρ : X ×X → R is continuous. So

θs(
⋃

n∈NKn) ≥ θs(
⋃

i≤nKi) =
∑n

i=0 θsKi

for every n ∈ N, and θs(
⋃

n∈NKn) ≥
∑∞

n=0 θsKn. In the other direction, let ǫ > 0. Let 4′ be a well-
ordering of

⋃
n∈N Un. Then for each n ∈ N there is a 4′-first finite sequence Un0, . . . , Unmn

in U such

that Kn ⊆
⋃

i≤mn
Uni, diamUni ≤ ǫ for every i and

∑mn

i=0(diamUni)
s ≤ θsKn + 2−nǫ. Now 〈Uni〉n∈N,i≤mn

witnesses that

∞∑

n=0

θsKn + 2ǫ ≥ inf{
∞∑

j=0

(diamDj)
s : 〈Dj〉j∈N is a sequence of subsets of X

covering
⋃

n∈N

Kn, diamDj ≤ ǫ for every j ∈ N}.

As ǫ is arbitrary, θs(
⋃

n∈NKn) ≤
∑∞

n=0 θs(Kn). QQQ

(iii) If G ⊆ X is open and ǫ > 0, there is a compact set K ⊆ G such that θs(G \ K) ≤ ǫ. PPP Set
K0 = {x : ρ(x,X \G) ≥ 1} and for n ≥ 1 set

Kn = {x : 2−n ≤ ρ(x,X \G) ≤ 2n+1}.

Then
∑∞

n=0 θsK2n and
∑∞

n=0 θsK2n+1 are both bounded by θsX < ∞, so there is an n ∈ N such that∑∞
i=n θsKn ≤ ǫ. But this means that θs(

⋃
i≥nKn) ≤ ǫ (apply (ii) to the odd and even terms separately).

Set K =
⋃

i≤nKi; this works. QQQ

(iv) Writing T for the topology of X, θs↾T satisfies the conditions of 563H. PPP Of course it is zero at
∅, monotonic and locally finite. If G, H ∈ T and ǫ > 0, let K ⊆ G, L ⊆ H be compact sets such that
θs(G \K) + θs(H \ L) ≤ ǫ. Then K \H, K ∩ L and L \G are disjoint compact sets and

(G ∪H) \ ((K \H) ∪ (K ∩ L) ∪ (L \G)), (G ∩H) \ (K ∩ L),

G \ ((K \H) ∪ (K ∩ L)), H \ ((L \G) ∪ (K ∩ L))

are all included in (G \K) ∪ (H \ L), so all have submeasure at most ǫ. But this means that θs(G ∪H) +
θs(G ∩H) and θsG + θsH both differ from θs(K \H) + 2θs(K ∩ L) + θs(L \ G) by at most 2ǫ (upwards)
and differ from each other by at most 2ǫ also. As ǫ is arbitrary, we have the modularity condition.

As for the sequential order-continuity, this is elementary; if 〈Gn〉n∈N is a non-decreasing sequence with
union G, and ǫ > 0, there is a compact K ⊆ G such that θs(G \ K) ≤ ǫ; now K ⊆ Gn for some n, and
θsG ≤ θsGn + ǫ. QQQ

(v) So 563H tells us that there is a Borel-coded measure µ on X extending θs↾T. Now µK = θsK for
every compact K ⊆ X. PPP

µK + µ(X \K) = µX = θsX ≤ θsK + θs(X \K) = θsK + µ(X \K),
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so µK ≤ θsK. On the other hand, given ǫ > 0, there is a compact L ⊆ X \K such that θsL ≥ θs(X \K)− ǫ,
and now

θsK = θs(K ∪ L) − θsL ≤ θsX − θs(X \K) + ǫ = µK + ǫ;

as ǫ is arbitrary, µK = θsK. QQQ

(vi) Note that 563H tells us that µ is the only Borel-coded measure extending θs↾T, and must therefore
be the only Borel-coded measure agreeing with θs on the compact sets.

(b) For the general case, let K be {K : K ⊆ X is compact, θsK < ∞}. Then (a) tells us that for
every K ∈ K there is a unique Borel-coded measure µK on K agreeing with θs on the compact subsets of
K. If K, L ∈ K and K ⊆ L, µL↾Bc(K) is a Borel-coded measure on K (563Fa) agreeing with θs on the
compact subsets of K, so µL extends µK . We therefore have a Borel-coded measure µ on X defined by
setting µE = supK∈K µK(E ∩K) for every E ∈ Bc(X) (cf. 563E), and µ agrees with θs on K, as required.

565X Basic exercises (a)(i) Show that Lebesgue submeasure θ and Lebesgue measure are translation-
invariant. (ii) Show that if A ⊆ Rr and α ≥ 0 then θ(αA) = αrθA. (iii) Show that if E ⊆ Rr is measurable
and α ∈ R then αE is measurable.

(b) Suppose that there is a sequence 〈An〉n∈N of countable subsets of [0, 1] with union [0, 1]. (i) Set
A =

⋃
m≤nAm + n. Show that A belongs to the algebra Σ of 565C, that the Lebesgue submeasure of A is

∞, but that A ∩ [0, n] is Lebesgue negligible for every n. (ii) Set B = {2−nx : n ∈ N, x ∈ An}. Show that
B has Lebesgue submeasure 0, but is not Lebesgue negligible.

(c) Let g : R → R be a non-decreasing function. For half-open intervals I ⊆ R define λgI by setting

λg∅ = 0, λg [a, b[ = limx↑b g(x) − limx↑a g(x)

if a < b. For any set A ⊆ R set

θgA = inf{
∑∞

j=0 λgIj : 〈Ij〉j∈N is a sequence of half-open intervals covering A.

Show that θg is a submeasure on PR. Show that there is a Borel-coded measure µg on R agreeing with θg
on open sets.

(d) Apply 564N to relate Lebesgue measure on R2 to Lebesgue measure on R.

(e) Suppose that there is a sequence 〈An〉n∈N of countable sets with union [0, 1]. Show that there is a
set A ⊆ [0, 1]2, with two-dimensional Lebesgue submeasure zero, such that all the vertical sections A[{x}],
for x ∈ [0, 1], have non-zero one-dimensional Lebesgue measure.

(f) Confirm that the principal results of §281 can be proved without the axiom of choice.

565Y Further exercises (a) Show that if X is a second-countable space and µ is a codably σ-finite
Borel-coded measure on X, then there is a non-decreasing function g : R → R such that the Lebesgue-
Stieltjes measure µg of 565Xc has measure algebra isomorphic to that of µ.

(b) Suppose that we are provided with a bijection between B(R) and ω1, but are otherwise not permitted
to use the axiom of choice. (i) Show that every Borel subset of R is Borel-coded. (ii) Show that we can
construct a Borel lifting for Lebesgue measure as defined in 565D.

565 Notes and comments In these five sections I have tried to indicate, without succumbing to the
temptation to re-write the whole treatise, a possible version of Lebesgue’s theory which can be used in plain
ZF. With the Fundamental Theorem of Calculus (565M), the Radon-Nikodým theorem (564L), Fubini’s
theorem (564N) and at least some infinite product measures (564O), it is clear that most of the ideas of
Volume 2 should be expressible in forms not relying on the axiom of choice. We must expect restrictions of
the type already found in the convergence theorems (564F); for versions of the Central Limit Theorem or
the strong law of large numbers or Komlós’s theorem, for instance, we should certainly start by changing
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any hypothesis ‘let 〈fn〉n∈N be a sequence of random variables’ into ‘let 〈fn〉n∈N be a codable sequence of
codable Borel functions’. I am not sure how to approach martingales, but the best chance of positive results
will be with ‘codable martingales’ in which we have a full set of Borel codes for countable sets generating
each of the σ-algebras involved, along the lines of 564Md. If you glance at the formulae of Chapter 28,
you will see that while there are many appeals to the convergence theorems, they are generally applied to
sequences of the form 〈f × gn〉n∈N where f is integrable and the gn are continuous; but this means that
〈gn〉n∈N is necessarily codable (562Qa, 562Sc) so that 〈f × gn〉n∈N will be a codable sequence if f itself is a
codable function.

In Volumes 3 and 4 we encounter much more solid obstacles, and I see no way in which Maharam’s
theorem, or the Lifting Theorem, can be made to work without something approaching the full axiom of
choice, or a strong hypothesis declaring the existence of a well-orderable set at a crucial point. I give an
example of such a hypothesis in the statement of Vitali’s theorem (565F). But in the applications of Vitali’s
theorem later in this section, we can always work with a countable family of balls, for which well-orderability
is not an issue. Separability and second-countability hypotheses can be expected to act in similar ways; so
that, for instance, we have 565Ya, which is a kind of primitive case of Maharam’s theorem.

Version of 22.8.14

566 Countable choice

With AC(ω) measure theory becomes recognisable. The definition of Lebesgue measure used in Volume
1 gives us a true countably additive Radon measure; the most important divergence from the standard
theory is the possibility that every subset of R is Lebesgue measurable (see 567G below). With occasional
exceptions (most notably, in the theory of infinite products) we can use the work of Volume 2. In Volume
3, we lose the two best theorems in the abstract theory of measure algebras, Maharam’s theorem and the
Lifting Theorem; but function spaces and ergodic theory are relatively unaffected. Even in Volume 4, a
good proportion of the ideas can be applied in some form.

566A Nearly all mathematicians working on the topics of this treatise spend most of their time thinking
in the framework of ZFC. When we move to weaker theories, we have a number of alternative strategies
available.

(a) Some of the time, all we have to do is to check that our previous arguments remain valid. In the
present context, moving from full ZF + AC to ZF + AC(ω), this is true of most of Volumes 1 and 2 and
useful fragments thereafter. In particular, for most of the basic theory of the Lebesgue integral countable
choice is adequate. Sometimes, of course, we have to trim our theorems back a bit, as in 566E, 566I, 566M,
566N, 566R and 566Xc.

(b) Some results have to be dropped altogether. For instance, we no longer have a construction of a
non-Lebesgue-measurable subset of R, and the Lifting Theorem disappears.

(c) Some results become so much weaker that they change their character entirely. For instance, the
Hahn-Banach theorem, Baire’s theorem, Stone’s theorem and Maharam’s theorem survive only in sharply
restricted forms (561Xh, 561E, 561F, 566Nb).

(d) Sometimes we find that while proofs rely on the axiom of choice, the results can be proved without it,
or with something much weaker. Of course this is often a reason to regard the original proof as inappropriate.
Some of the ultrafilters in Volume 4 are there just to save a couple of lines of argument, and renouncing
them actually brings ideas into clearer focus. But there are occasions when the less scrupulous approach
makes it a good deal easier for us to develop appropriate intuitions. There is an example in the theory of
the spaces S(A) and L∞(A) in Chapter 36. If we think of S(A) as a quotient of a free linear space (361Ya)
and of L∞(A) as the ‖ ‖∞-completion of S(A), we can prove all the basic results which come from their
identification with spaces of functions on the Stone space of A; but for most of us such an approach would
seriously complicate the process of understanding the nature of the objects being constructed. I used the
representation theorems in the theory of free products (§315, §325) for the same reason.
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On other occasions, we may need new ideas, as in 566F-566H, 566L and 566P-566Q. A deeper example
is in 562V/566O, where I set out alternative routes to the results of 364F and 434T. Here we have quite a
lot of extra distance to travel, but at the same time we see some new territory.

(e) More subtly, it may be useful to re-consider some definitions; e.g., the distinction between ‘ccc’ and
‘countable sup property’ for Boolean algebras (566Xd). I have made an effort in this book to use definitions
which will be appropriate in the absence of the axiom of choice, but in a number of places this would lead
to a division of a concept in potentially confusing ways.

The ordinary theory of cardinals depends so essentially on the existence of well-orderings that it is often
unclear what we can do without them. However some theorems, which appear to involve the theory of infinite
cardinals, can be rescued if we re-interpret the statements. Sometimes the cardinal c can be simply replaced
by R or PN (343I, 491G). Sometimes a statement ‘#(X) ≥ c’ can be replaced by ‘there is an injection from
PN into X’ or ‘there is a surjection from X onto PN’ (344H, 4A2G(j-ii)); similarly, ‘#(X) ≤ c’ might mean
‘there is an injection from X into PN’ or ‘there is a surjection from PN onto X ∪ {∅}’ (4A1O, 4A3Fa).
Of course ‘#(X) = c’ usually becomes ‘there is a bijection between X and PN’ (423L); but it might mean
‘there are an injection from PN into X and a surjection from PN onto X’ (4A3Fb), or the other way round,
or just two surjections.

When dealing with a property which is invariant under equipollence, it may be right to drop the concept
of ‘cardinal’ altogether, and re-phrase a definition in more primitive terms, as in 566Xl.

Elsewhere, as in 2A1Fd and 4A1E, we have results which refer to initial ordinals and hence to well-
orderable sets. But the theory of cardinal functions is so bound up with the idea that cardinal numbers form
a well-ordered class that much greater adjustments are necessary. I offer the following idea for consideration.
For a metric space (X, ρ) and a dense set D ⊆ X, set

U(X, ρ,D) = {{y : y ∈ X, ρ(x, y) < 2−n} : x ∈ D, n ∈ N},

so that U(X, ρ,D) is a base for the topology of X. The existence (in ZF) of this function U corresponds to
the ZFC result that ‘w(X) is at most the cardinal product ω × d(X) for every metrizable space X’.

(f) Another way to preserve the ideas of a theorem in the new environment is to make some small variation
in its hypotheses. For instance, Urysohn’s Lemma, in its usual form, demands DC. So if we are working
with AC(ω) alone, we cannot be sure that compact Hausdorff spaces are completely regular; similarly, there
may be uniformities not definable from pseudometrics. For a general topologist, this is important. But a
measure theorist may be happy to simply add ‘completely regular’ to the hypotheses of a theorem, as in
561G and 566Xk. In §§412-413 I repeatedly mention families K which are closed under disjoint finite unions.
Results starting from this hypothesis tend to depend on DC; but if we take K to be closed under ∪, AC(ω)
may well be enough (566D). A more dramatic change, but one which still leads to interesting results, is in
566I.

566B Volume 1 With countable choice, Lebesgue outer measure becomes an outer measure in the
usual sense, so we can use Carathéodory’s method to define a measure space in the sense of 112A. No
further difficulties arise in the work of Chapters 11 and 12, and we can proceed exactly as before to the
convergence theorems. Indeed all the theorems of Volume 1 are available, with a single exceptional feature:
the construction of non-measurable sets in 134B and 134D, and a non-measurable function in 134Ib. (I will
return to this point in §567.) In particular, the union of countably many countable sets is countable.

566C Volume 2 In Volume 2 also we find that arguments using more than countable choice are the
exception rather than the rule. Naturally, they appear oftener in the more abstract topics of Chapter 21.
One is in 211L; we can no longer be sure that a strictly localizable space is localizable, though a σ-finite
measure space does have to be localizable, since the choice demanded in the proof of 211Ld can then be
performed over a countable index set. There is a similar problem in 213J; a strictly localizable space might
fail to have locally determined negligible sets, and might have a subset without a measurable envelope.
Again, in 214Ia, it is not clear that a subspace of a strictly localizable space must be strictly localizable. In
211P I ask for a non-Borel subset of R, and give an answer involving a non-measurable set; but with AC(ω)
we have a non-Borel analytic set as in 423M. (See also 566Xb.)
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A more important gap arises in the theory of infinite products of probability spaces. The first problem
is that if we have an uncountable family 〈(Xi,Σi, µi)〉i∈I of probability spaces, there is no assurance that∏

i∈I Xi is non-empty. In concrete cases, this is not usually a serious worry. But there is another one.
The proof of 254F makes an appeal to DC. I do not think that there can be a construction of a product
measure on even a sequence of arbitrary probability spaces which does not use some form of dependent
choice. However a partial version, adequate for many purposes (including the essential needs of Chapter
27), can be done with countable choice alone (566I). We can now continue through §254 with the proviso
that every infinite family of probability spaces for which we consider a product measure should be a family
of perfect probability spaces with non-empty product. There will be a difficulty in 254L, concerning the
product of subspaces of full outer measure, where the modification essentially confines it to non-empty
products of conegligible sets. For 254N, it will be helpful to know that (under the conditions of 566I) the
product of perfect spaces is again perfect. The proof of this fact (451Jc) is scattered through Volume 4, but
(given that we have a product probability measure) needs only countably many choices at each step.

When we come to products of probability spaces in Chapter 27, we shall again have to restrict the
applications of the results, but at each point only sufficiently to ensure that we have the product probability
measures discussed.

566D Exhaustion The versions of the principle of exhaustion in 215A all seem to require DC rather
than AC(ω). For many applications, however, we can make do with a weaker result, as follows. I include
some corollaries showing that in many familiar cases we can continue to use the intuitions developed in the
main text.

Proposition [AC(ω)] (a) Let P be a partially ordered set such that p ∨ q = sup{p, q} is defined for all p,
q ∈ P , and f : P → R an order-preserving function. Then there is a non-decreasing sequence 〈pn〉n∈N in P
such that limn→∞ f(pn) = supp∈P f(p).

(b) Let (X,Σ, µ) be a measure space and E ⊆ Σ a non-empty set such that supE∈E µE is finite and
E ∪ F ∈ E for every E, F ∈ E . Then there is a non-decreasing sequence 〈Fn〉n∈N in E such that, setting
F =

⋃
n∈N Fn, µF = supE∈E µE and E \ F is negligible for every E ∈ E .

(c) Let (X,Σ, µ) be a measure space and K a family of sets such that

(α) K ∪K ′ ∈ K for all K, K ′ ∈ K,
(β) whenever E ∈ Σ is non-negligible there is a non-negligible K ∈ K ∩ Σ such that K ⊆ E.

Then µ is inner regular with respect to K.
(d)(i) Let (X,Σ, µ) be a semi-finite measure space. Then µ is inner regular with respect to the family of

sets of finite measure.
(ii) Let (X,Σ, µ) be a perfect measure space. Then whenever E ∈ Σ, f : X → R is measurable and

γ < µE, there is a compact set K ⊆ f [E] such that µf−1[K] ≥ γ.

proof (a) For each n ∈ N, set γn = supp∈P min(n, f(p)− 2−n). Then there is a sequence 〈qn〉n∈N in P such
that f(qn) ≥ γn for each n; set pn = supi≤n qi for each n.

(b) By (a) there is a non-decreasing sequence 〈Fn〉n∈N in E such that supn∈N µFn = supE∈E µE; set
F =

⋃
n∈N Fn.

(c) Because µ is inner regular with respect to K iff it is inner regular with respect to K ∪ {∅}, we may
suppose that ∅ ∈ K. Take F ∈ Σ, and consider E = {K : K ∈ K ∩ Σ, K ⊆ F}. ??? If supE∈E µE < µF , let
〈En〉n∈N be a non-decreasing sequence in E such that µ(E \

⋃
n∈NEn) = 0 for every E ∈ E ((b) above). Set

G =
⋃

n∈NEn; then µG = supn∈N µEn < µF , so µ(F \G) > 0. But now there ought to be a non-negligible
K ∈ K ∩ Σ such that K ⊆ F \G, in which case K ∈ E and µ(K \G) > 0. XXX

(d)(i) Apply (c) with K the family of sets of finite measure.

(ii) Apply (c) to the subspace measure µE and K = {f−1[K] : K ⊆ f [E] is compact}.

566E The problem recurs in parts of 215B, where I list characterizations of σ-finiteness, and in 215C.
It seems equally that a ccc semi-finite measure algebra may fail to be σ-finite, though a σ-finite measure
algebra has to be ccc. We have a stripped-down version of 215B, with one of its fragments used in §235, as
follows:
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Proposition [AC(ω)] Let (X,Σ, µ) be a semi-finite measure space. Write N for the σ-ideal of µ-negligible
sets.

(a) The following are equiveridical:
(i) µ is σ-finite;
(ii) either µX = 0 or there is a probability measure ν on X with the same domain and the same

negligible sets as µ;
(iii) there is a measurable integrable function f : X → ]0, 1];
(iv) either µX = 0 or there is a measurable function f : X → ]0,∞[ such that

∫
fdµ = 1.

(b) If µ is σ-finite, then
(i) every disjoint family in Σ \ N is countable;
(ii) for every E ⊆ Σ there is a countable E0 ⊆ E such that E \

⋃
E0 is negligible for every E ∈ E .

(c) Suppose that µ is σ-finite, (Y,T, ν) is a semi-finite measure space, and φ : X → Y is a (Σ,T)-
measurable function such that µφ−1[F ] > 0 whenever νF > 0. Then ν is σ-finite.

proof (a) Use the methods of 215B.

(b) By (a-ii), we may suppose that µ is totally finite.

(i) If E ⊆ Σ \ N is disjoint, then En = {E : E ∈ E , µE ≥ 2−n} is finite for every n, so E =
⋃

n∈N En is
countable.

(ii) Let H be the set of finite unions of members of E . By 566Db, there is a sequence 〈Hn〉n∈N in H
such that µ(H \

⋃
n∈NHn) = 0 for every H ∈ H. For each n ∈ N, choose a finite set Hn ⊆ E such that

Hn =
⋃
Hn; then E0 =

⋃
n∈N Hn has the required properties.

(c) Again, we may suppose that µ is totally finite. For each m ∈ N let Hm be the set of those F ∈ T such
that νF <∞ and µφ−1[F ] ≥ 2−m. Then any disjoint family in Hm has at most ⌊2mµX⌋ members, so each
Hm has a maximal disjoint subset; choose a sequence 〈Em〉m∈N such that Em is a maximal disjoint subset of
Hm for each m. Then E =

⋃
m∈N Em is a countable family of sets of finite measure in Y . Now Z = Y \

⋃
E

is negligible. PPP??? Otherwise, there is a non-negligible set F of finite measure disjoint from
⋃
E ; now there

is an m such that F ∈ Hm, so that Em was not maximal. XXXQQQ So E ∪ {Z} witnesses that ν is σ-finite.

566F Atomless algebras To make atomless measure spaces and measure algebras recognisable, we need
a more penetrating argument than that previously used in 215D.

Lemma [AC(ω)] Let A be a Dedekind σ-complete Boolean algebra, and µ a positive countably additive
functional on A such that µ1 = 1. Suppose that whenever a ∈ A and µa > 0 there is a b ⊆ a such that
0 < µb < µa. Then there is a function f : A × [0, 1] → A such that f(a, α) ⊆ a and µ̄f(a, α) = min(α, µ̄a)
for a ∈ A and α ∈ [0, 1], and α 7→ f(a, α) is non-decreasing for every a ∈ A.

proof (a) Just as in part (a) of the proof of 215D, we see by induction on n that for every b ∈ A such that
µb > 0 and every n ∈ N, there is a c ⊆ b such that 0 < µc ≤ 2−nµb.

(b) If b ∈ A and µb > 0, there is a c ⊆ b such that 1
3µb < µc ≤ 2

3µb. PPP??? Otherwise, set γ = sup{µc : c ⊆ b,

µc ≤ 2
3µb} and let 〈cn〉n∈N be a sequence in A such that cn ⊆ b and γ − 2−n ≤ µcn ≤ γ for every n. Set

dn = supi≤n ci for each n, and d = supn∈N dn. Inducing on n, we see that µdn ≤ 2
3µb so µdn ≤ 1

3µb for each

n, and µd ≤ 1
3µb. Now by (a) there is an e ⊆ b \ d such that 0 < µe ≤ 1

3µb. In this case, µ(d ∪ e) ≤ 2
3µb, so

γ ≥ µ(d ∪ e) ≥ µe+ supn∈N µcn > γ. XXXQQQ

(c) For each n ∈ N there is a finite partition of unity into elements of measure at most ( 2
3 )n. PPP Induce

on n, using (b) for the inductive step. QQQ

(d) Choose a sequence 〈Ck〉k∈N of finite partitions of unity such that µc ≤ 2−k for every k ∈ N and
c ∈ Cn. Set C =

⋃
k∈N Ck; then C is countable. Moreover, whenever a ∈ A and β > 0, there must be a

c ∈ C such that a ∩ c 6= 0 and µc ≤ β. Let 〈cn〉n∈N be a sequence running over C.

(e) Define 〈fn〉n∈N, 〈gn〉n∈N inductively by saying that, for a ∈ A and α ∈ [0, 1],

f0(a, α) = 0, g0(a, α) = a

Measure Theory



566Gb Countable choice 77

fn+1(a, α) = fn(a, α) ∪ (cn ∩ gn(a, α)) if µ(fn(a, α) ∪ (cn ∩ gn(a, α))) ≤ α,

= fn(a, α) otherwise,

gn+1(a, α) = gn(a, α) if µ(fn(a, α) ∪ (cn ∩ gn(a, α))) ≤ α,

= fn(a, α) ∪ (cn ∩ gn(a, α)) otherwise.

Then

fn(a, α) ⊆ fn+1(a, α) ⊆ gn+1(a, α) ⊆ gn(a, α) ⊆ a,

µfn(a, α) ≤ α, µgn(a, α) ≥ min(µa, α)

for every n ∈ N. Set f(a, α) = supn∈N fn(a, α). Then f(a, α) ⊆ a and µf(a, α) ≤ α whenever a ∈ A and
α ∈ [0, 1].

(f)(i) ??? If a ∈ A and α ∈ [0, 1] are such that µf(a, α) < min(µa, α), set b = infn∈N gn(a, α). Then
f(a, α) ⊆ b and µb ≥ min(µa, α). By (d), there is an n ∈ N such that

cn ∩ b \ f(a, α) 6= 0, µcn ≤ min(µa, α) − µf(a, α).

In this case, µ(fn(a, α) ∪ (cn ∩ gn(a, α))) ≤ min(µa, α) so

f(a, α) ⊇ fn+1(a, α) ⊇ cn ∩ gn(a, α)) ⊇ cn ∩ b,

which is impossible. XXX
So µf(a, α) = min(µa, α) for all a ∈ A and α ∈ [0, 1].

(ii) If a ∈ A and 0 ≤ α ≤ β ≤ 1, then for every n ∈ N

either fn(a, α) = fn(a, β) and gn(a, α) = gn(a, β)
or gn(a, α) ⊆ fn(a, β).

(Induce on n.) So f(a, α) ⊆ f(a, β).
Thus we have a suitable function f .

566G Vitali’s theorem The arguments I presented for Vitali’s theorem in 221A/261B and 471N-471O,
and for the similar result in 472B, involve the inductive construction of a sequence, which ordinarily is a
signal that DC is being used. In 565F I suggested a weaker form of Vitali’s theorem which is adequate for
its most important applications in measure theory. With AC(ω), however, we can get most of the results as
previously stated, if we refine our methods slightly.

(a) In 261B, we have a family I of closed balls in Rr and we wish to choose inductively a disjoint sequence
〈In〉n∈N in I such that

diam In ≥
1

2
sup{diam I : I ∈ I, I ∩

⋃
i<n Ii = ∅}

for every n. We have already reduced the problem to the case in which supI∈I diam I is finite and for any
finite disjoint subset of I there is a member of I disjoint from all of them. Let 〈Gm〉m∈N run over the family
of all open balls with centres in Qr and rational radii. For m ∈ N set Km = I ∩ PGm, and let I ′ ⊆ I be a
countable set such that supI∈I′∩Km

diam I = supI∈Km
diam I for every m ∈ N such that Km is non-empty;

this can be found with countably many choices.
Now, when we come to choose In, we can always pick a member of I ′. PPP If In = {I : I ∈ I, I ∩⋃

i<n Ii = ∅}, γn = supI∈In
diam I and I ∈ In is such that diam I > 1

2γn, there is an m ∈ N such that

I ⊆ Gm ⊆ Rr \
⋃

i<n Ii, in which case there is an I ′ ∈ I ′ ∩ Km such that diam I ′ ≥ 1
2γn, and I ′ is eligible

to be In. QQQ Because I ′ is well-orderable, we can set out a rule for making these choices, and the argument
can proceed as written, without recourse to the devices of §565.

(b) A similar trick can be used in 472B. Here, given a family I of closed balls, we wish to choose a
sequence 〈Bn〉n∈N in I such that the centre of Bn does not belong to

⋃
i<nBi and, subject to this, the

diameter of Bn is nearly as large as it could be. This time, take Km to be the set of members of I with
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centres in Gm, use countably many choices to find a countable set I ′ ⊆ I with adequately large intersections
with every Km, and choose 〈Bn〉n∈N from I ′.

At the next step, in 472C, we have to do this repeatedly, but the same method works; in fact, we can
work inside a fixed family I ′ chosen as above. (See 472Yd.)

(c) The version in 471N-471O is not manageable in quite the same way. If, however, we assume that the
metric spaces there are locally compact and separable, we can use the same idea as in (a) above to limit our
search to countable subfamilies of the given family F .

566H Bounded additive functionals We come to another obstacle in the proof of 231E. The argument
given there relies on DC to show that a countably additive functional is bounded. But we can avoid this,
at the cost of an extra manoeuvre, as follows.

Lemma [AC(ω)] Let A be a Boolean algebra and ν : A → R an additive functional such that {νan : n ∈ N}
is bounded for every disjoint sequence 〈an〉n∈N in A. Then ν is bounded.

proof ??? Suppose, if possible, otherwise. Then there is a sequence 〈bn〉n∈N in Σ such that |νbn| ≥ 2nn for
every n ∈ N. For each n ∈ N, let Bn be the subalgebra of A generated by {bi : i < n}; then Bn has at most
2n atoms, so there must be an atom a of Bn such that |ν(a ∩ bn)| ≥ n. Choose a sequence 〈cn〉n∈N such
that cn is an atom of Bn and |νdn| ≥ n for every n, where dn = cn ∩ bn; note that dn is an atom of Bn+1,
so that if n < m then either dm ⊆ dn or dm ∩ dn = 0. By Ramsey’s theorem (4A1G), there is an infinite
I ⊆ N such that

either 〈dn〉n∈I is disjoint
or dm ⊆ dn whenever m, n ∈ I and n < m.

Now the first alternative is certainly impossible, because {νdn : n ∈ I} is unbounded. So we have the second.
But in this case we can define a strictly increasing sequence 〈nk〉k∈N in I such that nk+1 ≥ k + |νdnk

| for
each k. Set ak = dnk

\ dnk+1
for each k; then 〈ak〉k∈N is disjoint and |νak| ≥ k for each k, so again we have

a contradiction. XXX

566I Infinite products: Theorem [AC(ω)] Let 〈(Xi,Σi, µi)〉i∈I be a family of perfect probability
spaces such that X =

∏
i∈I Xi is non-empty. Then there is a complete probability measure λ on X such

that
(i) if Ei ∈ Σi for every i ∈ I, and {i : Ei 6= Xi} is countable, then λ(

∏
i∈I Ei) is defined and equal to∏

i∈I µiEi;

(ii) λ is inner regular with respect to
⊗̂

i∈IΣi.

proof The only point at which the construction in 254A-254F needs re-examination is in the proof that
the standard outer measure on X gives it outer measure 1.

(a) I recall the definitions. For a cylinder C =
∏

i∈I Ci, set θ0C =
∏

i∈I µiCi; for A ⊆ X, set

θA = inf{
∑∞

n=0 θ0Cn : Cn ∈ C for every n ∈ N, A ⊆
⋃

n∈N Cn};

λ will be the measure defined from θ by Carathéodory’s method.
??? Suppose, if possible, that θX < 1. Then we have a sequence 〈Cn〉n∈N of cylinder sets, covering X,

with
∑∞

n=0 θCn = 1 − 2ǫ where ǫ > 0. Express each Cn as
∏

i∈I Eni where Jn = {i : Eni 6= Xi} is finite; let
J be the countable set

⋃
n∈N Jn; take K = #(J) (identifying N with ω), and a bijection k 7→ ik : K → J .

For each k ∈ K and n ∈ N, set Lk = {ij : j < k} ⊆ J and αnk =
∏

i∈I\Lk
µiEni. If J is finite, L#(J) = J

and αn,#(J) = 1 for every n. We have αn0 = θ0Cn for each n, so
∑∞

n=0 αn0 = 1− 2ǫ. For n ∈ N, k ∈ K and
t ∈ Xik set

fnk(t) = αn,k+1 if t ∈ En,ik ,

= 0 otherwise.

Then ∫
fnkdµik = αn,k+1µikEnik = αnk.
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(b) For each k ∈ K, let hk : Xik → R be the Marczewski functional defined by setting

hk(t) =
∑∞

n=0 3−nχEnik(t)

for t ∈ Xk. Because µk is perfect, there is for each k ∈ K a compact set Q ⊆ hk[Xik ] such that
µikh

−1
k [Q] ≥ 1 − 2−kǫ. Choose 〈Qk〉k∈K such that Qk ⊆ hk[Xik ] is compact and µikh

−1
k [Qk] ≥ 1 − 2−kǫ

for every k ∈ K. Observe that if k ∈ K and n ∈ N then fnk = αnkχEnik is of the form αnkgnhk where
gn : R → [0, 1] is continuous.

(c) Define non-empty sets Fk ⊆ Hk ⊆ Xik inductively, for k ∈ K, as follows. The inductive hypothesis
will be that

∑
n∈Mk

αnk ≤ 1 − 2−k+1ǫ, where Mk = {n : n ∈ N, Fj ⊆ Enij whenever j < k}; of course
M0 = N, so the induction starts. Given that k ∈ K and that

1 − 2−k+1ǫ ≥
∑

n∈Mk
αnk =

∑
n∈Mk

∫
fnkdµik =

∫
(
∑

n∈Mk
fnk)dµik ,

the set

Hk = {t : t ∈ Xik ,
∑

n∈Mk
fnk(t) ≤ 1 − 2−kǫ}

must have measure greater than 2−kǫ and meets h−1
k [Qk]. But observe that

∑
n∈Mk

fnk = g′khk where g′k =∑
n∈Mk

αnkgn is lower semi-continuous, so that Hk = h−1
k [Gk] where Gk = {α : g′k(α) ≤ 1− 2−kǫ} is closed.

Since Hk meets h−1
k [Qk], Qk ∩ Gk is non-empty and has a least member βk; set Fk = h−1

k [{βk}]. Because
Qk ⊆ hk[Xik ], Fk is non-empty.

Examine

Mk+1 = {n : n ∈Mk, Fk ⊆ Enik}.

There certainly is some t∗ ∈ Fk, and because hk↾Fk is constant, Mk+1 = {n : n ∈ Mk, t∗ ∈ Enik}. In this
case

∑
n∈Mk+1

αn,k+1 =
∑

n∈Mk
fnk(t∗) ≤ 1 − 2−kǫ

and the induction proceeds.

(d) At the end of the induction, either finite or infinite, choose tk ∈ Fk for k ∈ K. We are supposing
that X has a member x∗; define x ∈ X by setting x(ik) = tk for k ∈ K and x(i) = x∗(i) for i ∈ I \ J . Then
there is supposed to be an m ∈ N such that x ∈ Cm, so that m ∈ Mk for every k. But at some stage we
shall have Jm ⊆ Lk (allowing k = #(K) if K is finite) and αmk = 1, which is impossible. XXX

566J In particular, 566I applies to all products {0, 1}I and [0, 1]I with their usual measures. For these
we have Kakutani’s theorem that the usual measures are topological measures (415E), which turns out to
be valid with countable choice alone.

Theorem [AC(ω)] (a) Let 〈(Xi,Ti,Σi, µi)〉i∈I be a family of metrizable Radon probability spaces such
that every µi is strictly positive and X =

∏
i∈I Xi is non-empty. Then the product measure on X is a

quasi-Radon measure.
(b) If I is well-orderable then the product measure on {0, 1}I is a completion regular Radon measure.

proof (a)(i) We had better check immediately that every Xi is separable. The point is that because µi is a
totally finite measure inner regular with respect to the compact sets, there is a conegligible Kσ set; because
µi is strictly positive, this is dense; and countable choice is enough to ensure that a compact metrizable space
is second-countable, therefore separable. It follows that

∏
i∈J Xi is separable, therefore second-countable,

for every countable J ⊆ I.

(ii) Because every µi is a Radon measure it is perfect, so we have a product probability measure on
X. Now we can repeat the argument of 416Ua.

(b) Put (a), 561D and G together.

566K Volume 3 Turning to the concerns of Volume 3, the elementary theory of measure algebras is
not radically changed. But Lemma 311D is hopelessly lost; we no longer have Stone spaces, and need to
re-examine any proof which appears to rely on them. Another result which changes is 313K; order-dense
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sets, as defined in 313J, need no longer give rise to partitions of unity. So a localizable measure algebra does
not need to be isomorphic to a simple product of totally finite measure algebras. Similarly, condition (ii) of
316H is no longer sufficient to prove weak (σ,∞)-distributivity. However some of the constructions which
I described in terms of Stone spaces, in particular, the Loomis-Sikorski theorem, the Dedekind completion
of a Boolean algebra, the localization of a semi-finite measure algebra, free products and measure-algebra
free products, can be done by other methods which remain effective with AC(ω) at most; see 566L, 561Yg,
323Xh and 325Yc.

The theory of ccc algebras is rather different (566M, 566Xd). Maharam’s theorem (331I, 332B) is surely
unprovable without something like the full axiom of choice; and the Lifting Theorem (341K) is equally
inaccessible under the rules of this section. We do however have useful special cases of results in Chapters
33 and 34 (566N).

A good start can be made on the elementary theory of Riesz spaces without any form of the axiom of
choice (see 561H), and with AC(ω) we can go a long way, as in 566Q. What is missing is the Hahn-Banach
theorem (for non-separable spaces) and many representation theorems. Similarly, the function spaces of
Chapter 36 are recognisable, provided that (for general Boolean algebras A) we think of S(A) as a quotient
space of the free linear space generated by A, and of L∞(A) as the ‖ ‖∞-completion of S(A). Of course we
have to take care at every point to avoid the use of Stone spaces. One place at which this involves us in
a new argument is in 566O. Most of the arguments of Chapter 24 remain valid, so the basic theory of Lp

spaces in §§365-366 survives. What is perhaps surprising is that if we take the trouble we can still reach the
most important results on weak compactness (566P, 566Q).

In the ergodic theory of Chapter 38, a good proportion of the classical results survive. There are difficulties
with some of the extensions of the classical theory in §§381-382. For instance, the definition of ‘full subgroup’
of the group of automorphisms of a Boolean algebra in 381Be assumes that order-dense sets include partitions
of unity. If not, this definition may fail to be equivalent to the formulation in 381Ia. The latter would seem
to be the more natural one to use. However, the definition as given seems to work for the principal needs of
Chapter 38 (see 381I).

Froĺık’s theorem in the generality 382D-382E needs something approaching AC, and with AC(ω) alone
there seems no hope of getting results for general Dedekind complete algebras along the lines of the main
theorems of §382. For measurable algebras, however, we do have a version of 382Eb (566R).

Many of the later results of Chapter 38 are equally robust, at least in their leading applications to measure
algebras. We have to remember that we do not know that measurable algebras have many involutions, and
even among those which do there is no assurance that 382Q will be true. So in §§383-384 we find ourselves
restricted rather further, to those measurable algebras in which every non-zero element is the support of an
involution; but these include the standard examples (566N).

566L The Loomis-Sikorski theorem [AC(ω)] (a) Let A be a Dedekind σ-complete Boolean algebra.
Then there are a set X, a σ-algebra Σ of subsets of X and a σ-ideal I of Σ such that A ∼= Σ/I.

(b) Let (A, µ̄) be a measure algebra. Then it is isomorphic to the measure algebra of a measure space.

proof (a)(i) Set X = {0, 1}A, and Σ =
⊗̂

A
P({0, 1}). For a ∈ A set â = {x : x ∈ X, x(a) = 1} ∈ Σ. Let I

be the σ-ideal of Σ generated by sets of the form

â△ b△â△b̂, (infn∈N an)̂△⋂
n∈N ân

for a, b ∈ A and sequences 〈an〉n∈N in A, together with the set {x : x(1) = 0}.

(ii) (The key.) â /∈ I for any a ∈ A \ {0}. PPP If E ∈ I then (using AC(ω)) we can find sequences
〈an〉n∈N, 〈bn〉n∈N in A, together with a double sequence 〈cni〉n,i∈N, such that, setting cn = infi∈N cni for each
n,

F = {x : x(1) = 0} ∪
⋃

n∈N

(
ân △ bn△ân△b̂n

)
∪
⋃

n∈N

(
ĉn△

⋂
i∈N ĉni

)

includes E. Let B be the subalgebra of A generated by

{a} ∪ {an : n ∈ N} ∪ {bn : n ∈ N} ∪ {cn : n ∈ N} ∪ {cni : n, i ∈ N}.

Then B is countable, so we can choose inductively a sequence 〈dn〉n∈N in B \ {0} such that d0 = a and, for
each n ∈ N,
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dn+1 ⊆ dn,
either dn+1 ⊆ an or dn+1 ∩ an = 0,
either dn+1 ⊆ bn or dn+1 ∩ bn = 0,
either dn+1 ⊆ cn or there is an i ∈ N such that dn+1 ∩ cni = 0.

Define x ∈ X by saying that

x(d) = 1 if d ⊇ dn for some n ∈ N,

= 0 otherwise.

Then x ∈ â \ F and â 6⊆ E; as E is arbitrary, â /∈ I. QQQ

(iii) Set

Σ0 = {E : E ∈ Σ, E△â ∈ I for some a ∈ A}.

Then Σ0 is closed under symmetric difference and countable intersections and contains X (because X△1̂ ∈
I). So Σ0 is a σ-algebra of sets; as it contains â for every a ∈ A, it is equal to Σ.

(iv) From (ii) we see that â△ b, and therefore â△b̂, do not belong to I for any distinct a, b ∈ A. With
(iii), this tells us that we have a function π : Σ → A defined by setting πE = a whenever E△â ∈ I. Now
πX = 1 and π preserves symmetric difference and countable infima, so is a sequentially order-continuous
Boolean homomorphism; its kernel is I, so A ∼= Σ/I, as required.

(b) This is now easy; we can use the familiar argument of 321J.

566M Measure algebras: Proposition [AC(ω)] (a) Let A be a measurable algebra.
(i) For any A ⊆ A there is a countable B ⊆ A with the same upper bounds as A.
(ii) A is Dedekind complete.
(iii) If D ⊆ A is order-dense and c ∈ D whenever c ⊆ d ∈ D, there is a partition of unity included in D.

(b) Let (A, µ̄) be a σ-finite measure algebra and B a subalgebra of A such that (B, µ̄↾B) is a semi-finite
measure algebra. Then (B, µ̄↾B) is a σ-finite measure algebra.

proof (a) (Cf. 322G, 316E, 322Cc.) Let µ̄ be such that (A, µ̄) is a totally finite measure algebra.

(i) Let A∗ be the set of suprema of finite subsets of A, and set γ = supa∈A∗ µ̄a. There is a sequence
〈an〉n∈N in A∗ such that supn∈N ν̄an = γ; let B ⊆ A be a countable set such that every an is the supremum
of a finite subset of B. Then any upper bound c of B is an upper bound of A. PPP Take d ∈ A. Then
a ∪ an ∈ A∗, so

µ̄(a \ c) ≤ µ̄(a \ an) = µ̄(a ∪ an) − µ̄an ≤ γ − µ̄an

for every n, and µ̄(a \ c) = 0, that is, a ⊆ c. QQQ

(ii) follows at once from (i), since A is Dedekind σ-complete.

(iii) By (i), there is a sequence 〈dn〉n∈N in D with supremum 1; now 〈dn \ supi<n di〉n∈N is a partition
of unity included in D.

(b) (Cf. 322Nc.) Write Bf for the ring {b : b ∈ B, µ̄b < ∞}. Let 〈an〉n∈N be a non-decreasing sequence
in A, with supremum 1, such that µ̄an <∞ for every n. For each n ∈ N, set αn = sup{µ̄(b ∩ an) : b ∈ Bf};
choose a sequence 〈bn〉n∈N in Bf such that µ̄(bn ∩ an) ≥ αn − 2−n for every n. ??? If 1 is not the supremum
of {bn : n ∈ N} in B, let b ∈ B \ {0} be such that b ∩ bn = 0 for every n. Because µ̄↾B is semi-finite, there
is a non-zero b′ ∈ Bf included in b. But now 0 < µ̄b′ = supn∈N µ̄(b′ ∩ an), so there is an n ∈ N such that
µ̄(b′ ∩ an) > 2−n; in which case b′ ∪ bn ∈ Bf and µ̄((b′ ∪ bn) ∩ an) > αn, which is impossible. XXX

566N Characterizing the usual measure on {0, 1}N: Theorem [AC(ω)] (a) Let (X,Σ, µ) be an
atomless, perfect, complete, countably separated probability space. Then it is isomorphic to {0, 1}N with
its usual measure.

(b) Let (A, µ̄) be an atomless probability algebra of countable Maharam type. Then it is isomorphic to
the measure algebra of the usual measure on {0, 1}N.
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(c) An atomless measurable algebra of countable Maharam type is homogeneous.
(d) For any infinite set I, the measure algebra of the usual measure on {0, 1}I is homogeneous.

proof (a) (Cf. 344I.) Write ν for the usual measure on Y = {0, 1}N, and T for its domain.

(i) Let H be a countable subset of Σ separating the points of X, and 〈En〉n∈N a sequence running over
H with cofinal repetitions. Let f : Σ × [0, 1] → Σ and be a function as in 566F. Define g : Σ × N → A by
setting

g(E, n) = f(E ∩En,
1

2
µ̄E) if µ̄(E ∩En) ≥

1

2
µ̄E,

= f(E \ En,
1

2
µ̄E) otherwise .

Define 〈En〉n∈N inductively by saying that E0 = {X} and

En+1 = {g(E, n) : E ∈ En} ∪ {E \ g(E, n) : E ∈ En}

for each n. Then each En is a partition of unity consisting of 2n elements of measure 2−n. Set Gn =⋃
E∈En

g(E, n) for each n, and let Σ0 be the σ-subalgebra of Σ generated by {Gn : n ∈ N}.
For H ∈ Σ and n ∈ N, set

γn(H) = 2−n#({E : E ∈ En, E ∩H 6= ∅ and E 6⊆ H}.

Then γn+1(H) ≤ γn(H) for every n, and γn+1(En) ≤ 1
2γn(En). Since every member of H appears infinitely

often as an En, limn→∞ γn(H) = 0 for every H ∈ H. But this means that if H ∈ H and we set H ′ =
⋃
{E :

E ∈
⋃

n∈N En, E ⊆ H} and H ′′ = X \
⋃
{E : E ∈

⋃
n∈N En, H ∩ E = ∅}, then H ′ and H ′′ both belong to

Σ0, H ′ ⊆ H ⊆ H ′′ and H ′′ \H ′ is negligible.

(ii) Define φ0 : X → Y by setting φ0(x) = 〈χGn(x)〉n∈N for x ∈ Y . Then φ0 is Σ0-measurable.
Consider the image measure µφ−1

0 . This is a topological measure, and because µ is perfect and complete
(and Y is homeomorphic to a subset of R) µφ−1

0 is a Radon measure. If n ∈ N and z ∈ {0, 1}n then
φ−1
0 {y : z ⊆ y ∈ Y } belongs to En and has measure 2−n, so µφ−1

0 and ν agree on such sets; both being
Radon measures, they must be equal.

(iii) Now observe that Σ0 = {φ−1
0 [F ] : F ⊆ Y is Borel}. We have seen that if H ∈ H there are H ′,

H ′′ ∈ Σ0 such that H ′ ⊆ H ⊆ H ′′ and H ′′ \H ′ is negligible. Set X1 = X \
⋃

H∈HH \H ′, so that X1 ⊆ X is
µ-conegligible. Now φ0↾X1 is injective. PPP If x, x′ are distinct members of X0, there is an H ∈ H containing
one and not the other; as neither belongs to H \H ′, H ′ contains one and not the other; as H ′ = φ−1

0 [F ] for
some F ⊆ Y , φ0(x) 6= φ0(x′). QQQ We also find that φ0[X1] is ν-conegligible. PPP Because ν = µφ−1

0 , φ0[X] is
ν-conegligible. For each H ∈ H,

νφ0[H \H ′] = µφ−1
0 [φ0[H \H ′]] ≤ µφ−1

0 [φ0[H ′′ \H ′]] = µ(H ′′ \H ′)

(because H ′′ \H ′ ∈ Σ0 so is the inverse image of a subset of Y )

= 0.

So φ0[
⋃

H∈HH \H ′] is ν-negligible and φ0[X1] is ν-conegligible. QQQ

(iv) It follows that if we set φ1 = φ0↾X1 then the subspace measure νY1
is just the image measure

µX1
φ−1
1 . PPP If F ⊆ Y1 then

µX1
φ−1
1 [F ] = µ(X1 ∩ φ

−1
0 [F ]) = µφ−1

0 [F ] = νF = νY1
F

if any of these is defined. QQQ But as φ1 is a bijection, this means that it is an isomorphism between (X1, µX1
)

and (Y1, νY1
).

(v) There is no reason to suppose that X \X1 and Y \ Y1 are equipollent, so φ1 may not be directly
extendable to an isomorphism between X and Y . However, there is a negligible subset D of Y1 which is
equipollent with R. PPP Let K ⊆ Y1 be a non-negligible compact set. Set S2 =

⋃
n∈N{0, 1}n and define

〈Kz〉z∈S2
inductively, as follows. K∅ = K. Given that z ∈ {0, 1}n and that Kz is a non-negligible compact
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set, take the first m ≥ 2n + 2 such that J = {w : w ∈ {0, 1}m, ν{y : w ⊆ y ∈ Kz} > 0} has more than one
member, let w, w′ be the lexicographically two first members of J , and set

Kza0 = {y : w ⊆ y ∈ Kz}, Kza1 = {y : w′ ⊆ y ∈ Kz};

continue. This will ensure that 0 < νKz ≤ 4−n for every z ∈ {0, 1}n. Set D =
⋂

n∈N

⋃
z∈{0,1}n Kz; then D

is negligible and equipollent with {0, 1}N and R. QQQ

Now set X2 = X1 \φ
−1
1 [D] and Y2 = Y1 \D. φ2 = φ1↾X2 is an isomorphism between the conegligible sets

X2 and Y2 with their subspace measures. Since H separates the points of X, we surely have an injective
function from X \X2 to R, while we also have an injective function from R to φ−1

1 [D] ⊆ X \X2. So X \X2 is
equipollent with R. Similarly, Y \ Y2 is equipollent with R. So φ2 : X2 → Y2 can be extended to a bijection
φ : X → Y , which will be the required isomorphism between (X,Σ, µ) and (Y,T, ν).

(b) (Cf. 331I.) We can use the same idea as in (a). Let 〈an〉n∈N be a sequence running over a τ -generating
set A ⊆ A with cofinal repetitions. Let f : A × [0, 1] → A be a function as in 566F. Define g : A × N → A

by setting

g(a, n) = f(a ∩ an,
1

2
µ̄a) if µ̄(a ∩ an) ≥

1

2
µ̄a,

= f(a \ an,
1

2
µ̄a) otherwise .

Define 〈Bn〉n∈N inductively by saying that B0 = {1} and

Bn+1 = {g(b, n) : b ∈ Bn} ∪ {b \ g(b, n) : b ∈ Bn}

for each n. Then each Bn is a partition of unity consisting of 2n elements of measure 2−n. Let B be the
closed subalgebra of A generated by

⋃
n∈NBn; then B is isomorphic to the measure algebra of the usual

measure on {0, 1}N.
For a ∈ A and n ∈ N, set

γn(a) = 2−n#({b : b ∈ Bn, a ∩ b /∈ {0, b}}).

Then γn+1(a) ≤ γn(a) for every n, and γn+1(an) ≤ 1
2γn(an). Since every member of A appears infinitely

often as an an, limn→∞ γn(a) = 0 for every a ∈ A. But this means that A ⊆ B and B = A. So we have the
required isomorphism.

(c) (Cf. 331N.) If A is such an algebra, any non-zero principal ideal of A is atomless and of countable
Maharam type and supports a probability measure, so must be isomorphic to the measure algebra of the
usual measure on {0, 1}N and to A.

(d) For J ⊆ I, write νJ for the usual measure on {0, 1}J , TJ for its domain and (BJ , ν̄J ) for its measure
algebra. If a ∈ BI is non-zero, then it is of the form E• for some E ∈ TI determined by coordinates
in a countable subset J of I. Identifying {0, 1}I with {0, 1}J × {0, 1}I\J , we have an F ∈ TJ such that
E = F × {0, 1}I\J . Let b ∈ BJ be the equivalence class of F . Now we can think of the probability algebra
free product BJ⊗̂BI\J as the metric completion of the algebraic free product BJ ⊗ BI\J , and as such

isomorphic to BI under an isomorphism which identifies the principal ideal (BI)a with (BJ )b⊗̂BI\J . By
(b), ((BJ )b, ν̄J↾(BJ)b) is isomorphic, up to a scalar multiple of the measure, to (BJ , ν̄J ); so we have

(BI)a ∼= (BJ)b⊗̂BI\J
∼= BJ⊗̂BI\J

∼= BI .

As a is arbitrary, BI is homogeneous.

566O Boolean values: Proposition [AC(ω)] (a) Let B be the algebra of open-and-closed subsets
of {0, 1}N, and B({0, 1}N) the Borel σ-algebra. If A is a Dedekind σ-complete Boolean algebra and π :
B → A is a Boolean homomorphism, π has a unique extension to a sequentially order-continuous Boolean
homomorphism from B({0, 1}N) to A.

(b) Let A be a Dedekind σ-complete Boolean algebra. Then there is a bijection between L0 = L0(A) and
the set Φ of sequentially order-continuous Boolean homomorphisms from the algebra B(R) of Borel subsets
of R to A, defined by saying that u ∈ L0 corresponds to φ ∈ Φ iff [[u > α]] = φ(]α,∞[) for every α ∈ R.
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(c) Let (A, µ̄) be a localizable measure algebra. Write Σum for the algebra of universally measurable
subsets of R. Then for any u ∈ L0 = L0(A), we have a sequentially order-continuous Boolean homomorphism
E 7→ [[u ∈ E]] : Σum → A such that

[[u ∈ E]] = sup{[[u ∈ F ]] : F ⊆ E is Borel} = sup{[[u ∈ K]] : K ⊆ E is compact}

= inf{[[u ∈ F ]] : F ⊇ E is Borel} = inf{[[u ∈ G]] : G ⊇ E is open}

for every E ∈ Σum, while

[[u ∈ ]α,∞[ ]] = [[u > α]]

for every α ∈ R.

proof (a) As in §562, let T be the set of trees without infinite branches in S∗ =
⋃

n≥1 N
n. For n ∈ N set

En = {x : x ∈ {0, 1}N, x(n) = 1} ∈ B and an = πEn ∈ A. Let φ : T → A and ψ : T → B({0, 1}N) be
the corresponding interpretations of Borel codes, as in 562V. Then φ(T ) = φ(T ′) whenever ψ(T ) = ψ(T ′)
(562V), and (using AC(ω)) it is easy to check that ψ[T ] = B({0, 1}N) (cf. 562Db), so we have a function
π̃ : B({0, 1}N) → A defined by saying that π̃(ψ(T )) = φ(T ) for every T ∈ T . Now if 〈Fn〉n∈N is any sequence
of Borel subsets of {0, 1}N, we have a T ∈ T such that Fn = ψ(T<n>) for every n and no T<n> is empty
(see 562Bb). In this case

π̃(
⋃

n∈N

{0, 1}N \ Fn) = π̃(ψ(T )) = φ(T )

= sup
n∈N

1 \ φ(T<n>) = sup
n∈N

1 \ π̃Fn.

So π̃ is a sequentially order-continuous Boolean homomorphism. Since it agrees with π on {En : n ∈ N} it
must agree with π on B.

Of course the extension is unique because if π̃′ : B({0, 1}N → A is any sequentially order-continuous
Boolean homomorphism extending π then {E : π̃′E = π̃E} is a σ-algebra of sets including B and therefore
containing every open set.

(b) (Cf. 364F.) Let E be the algebra of subsets of R generated by sets of the form ]q,∞[ for q ∈ Q.
Then E is an atomless countable Boolean algebra, so is isomorphic to the algebra B; let θ : B → E be an
isomorphism. Define f : {0, 1}N → [−∞,∞] by setting f(x) = sup{q : q ∈ Q, x ∈ θ−1 ]q,∞[}. Then f is
Borel measurable.

Take any u in L0. It is easy to check that we have a Boolean homomorphism π : E → A defined by
saying that π ]q,∞[ = [[u > q]] for every q ∈ Q. By (a), there is a sequentially order-continuous Boolean
homomorphism π̃ : B({0, 1}N) → A extending πθ : B → A. Set φE = π̃(f−1[E]) for E ∈ B(R).

If α ∈ R then

φ(]α,∞[) = π̃{x : f(x) > α} = π̃(
⋃

{θ−1 ]q,∞[ : q ∈ Q, q > α})

= sup{π̃(θ−1 ]q,∞[) : q ∈ Q, q > α}

= sup{π ]q,∞[ : q ∈ Q, q > α}

= sup{[[u > q]] : q ∈ Q, q > α} = [[u > α]].

It follows that

φR = sup
n∈N

π̃(f−1 ]−n,∞[) \ inf
n∈N

π̃(f−1 ]n,∞[)

= sup
n∈N

[[u > −n]] \ inf
n∈N

[[u > n]] = 1,

and therefore that φ ∈ Φ. For the rest of the argument we can follow the method of 364F.

(c) (Cf. 434T.)

(i) To begin with, consider the case in which µ̄ is totally finite. In this case, we have a non-decreasing
function g : R → [0,∞[ defined by saying that g(α) = µ̄1− µ̄[[u > α]]) for α ∈ R. Let νg be the corresponding
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Lebesgue-Stieltjes measure (114Xa), and (C, ν̄g) its measure algebra. Note that g is continuous on the right,
so that νg ]α, β] = µ̄[[u > α]] − µ̄[[u > β]] whenever α ≤ β in R. Let D be the subalgebra of C generated
by {]−∞, α]

•

: α ∈ R}. Then we have a measure-preserving Boolean homomorphism π : D → A defined
uniquely by saying that π(]α,∞[

•

) = [[u > α]] for α ∈ R. Because D is dense in C for the measure-algebra
topology, π has a unique extension to a measure-preserving Boolean homomorphism π̃ : C → A.

Because Σum ⊆ dom νg, we can define [[u ∈ E]] to be π̃E• for E ∈ Σum, and this will give us a sequentially
order-continuous Boolean homomorphism from Σum to A such that [[u ∈ ]α,∞[ ]] = [[u > α]] for every α.
As for the other formulae, they are immediate from the facts that νg is inner regular with respect to the
compact sets and outer regular with respect to the open sets.

(ii) We need to observe that these properties uniquely define [[u ∈ E]]. PPP Let E be the algebra of
subsets of R generated by {]α,∞[ : α ∈ R}. The requirement [[u ∈ ]α,∞[ ]] = [[u > α]] determines the values
of [[u ∈ E]] for E ∈ E . Next, if G ⊆ R is open and K ⊆ G is compact there is an E ∈ E such that K ⊆ E ⊆ G.
Consequently [[u ∈ K]] = inf{[[u ∈ E]] : E ∈ E , E ⊇ K} is fixed for every compact K ⊆ R. Finally, the inner
regularity condition [[u ∈ E]] = sup{[[u ∈ K]] : K ⊆ E is compact} determines [[u ∈ E]] for other E ∈ Σum.
QQQ

(iii) Now turn to the general case of a localizable measure algebra (A, µ̄) and u ∈ L0(A). Let Af be
the ideal of elements of finite measure. Then for each a ∈ Af we have a corresponding homomorphism
E 7→ [[u ∈ E]]a from Σum to the principal ideal Aa. If a ⊆ b ∈ Af , we can use the uniqueness described in
(ii) to see that [[u ∈ E]]a = a ∩ [[u ∈ E]]b for every E. So if we set [[u ∈ E]] = supa∈Af [[u ∈ E]]a, we shall have
[[u ∈ E]]a = a ∩ [[u ∈ E]] whenever a ∈ Af and E ∈ Σum. It is now easy to check that E 7→ [[u ∈ E]] has the
required properties.

566P Weak compactness In the absence of Tychonoff’s theorem, the theory of weak compactness
in normed spaces becomes uncertain. However AC(ω) is enough to give a couple of the principal results
involving classical Banach spaces, starting with Hilbert space.

Theorem [AC(ω)] Let U be a Hilbert space. Then bounded sets in U are relatively weakly compact.

proof If U is finite-dimensional, this is trivial; so let us suppose that U is infinite-dimensional. Let A ⊆ U
be a bounded set, and A its closure for the weak topology; let F0 be a family of weakly closed subsets of A
with the finite intersection property, and F the filter on U generated by F0.

(a) For closed subspaces V of U , let PV : U → V be the orthogonal projection from U onto V (561Ib), and
set γV = lim infu→F ‖PV u‖

2. Because F contains a bounded set, γV ≤ γU < ∞ for every V . If V0, V1 are
orthogonal subspaces of U , then ‖PV0+V1

u‖2 = ‖PV0
u‖2 + ‖PV1

u‖2 for every u ∈ U , so γV0+V1
≥ γV0

+ γV1
.

(b) Set γ = sup{γV : V is a finite-dimensional linear subspace of U}, and choose a sequence 〈Vn〉n∈N

of finite-dimensional subspaces of U such that γ = supn∈N γVn
; because U is infinite-dimensional, we can

do this in such a way that dimVn ≥ n for each n. Let W be the closed linear span of
⋃

n∈N Vn. If V is a

finite-dimensional linear subspace of W⊥, then

γ ≥ γV+Vn
≥ γV + γVn

for every n, so γV = 0.

(c) If F ∈ F , V ⊆ W⊥ is a finite-dimensional linear subspace, and ǫ > 0, then F ∩ {u : ‖PV u‖ ≤ ǫ} is
non-empty. We can therefore extend F to the filter G generated by sets of this type, and limu→G(u|w) = 0
for every w ∈W⊥.

(d) Let 〈en〉n∈N be an orthonormal basis for W . Define 〈Gn〉n∈N as follows. G0 = G. Given that Gn is a
filter on U containing a bounded set, set αn = lim infu→Gn

(u|en), and let Gn+1 be the filter generated by
Gn ∪ {{u : (u|en) < α} : α > αn}; then αn = limu→Gn+1

(u|en). Set H =
⋃

n∈N Gn; then αn = limu→H(u|en)
for each n.

For any n ∈ N,
∑n

i=0 α
2
i =

∑n
i=0 limu→H(u|ei)

2 = limu→H

∑n
i=0(u|ei)

2 ≤ lim supu→H ‖u‖2 <∞

because H contains a bounded set. So
∑∞

n=0 α
2
n is finite and v =

∑∞
n=0 αnen is defined in U .

D.H.Fremlin



86 Choice and determinacy 566P

(e) Now

(v|en) = αn = limu→H(u|en)

for every n; again because H contains a bounded set, (v|w) = limu→H(u|w) for every w ∈W . On the other
hand, if w ∈W⊥,

limu→H(u|w) = limu→G(u|w) = 0 = (v|w).

Since W + W⊥ = U , limu→H(u|w) = (v|w) for every w ∈ U . By 561Ic, v is the limit of H for the weak
topology on U , and must belong to every member of F0.

As F0 is arbitrary, A is weakly compact and A is relatively weakly compact.

566Q Theorem [AC(ω)] Let U be an L-space. Then a subset of U is weakly relatively compact iff it is
uniformly integrable.

proof (a)(i)(ααα) Recall that U is a Banach lattice with an order-continuous norm (354N), so is Dedekind
complete (354Ee) and all its bands are projection bands (353J7); for a band V in U , let PV : U → V be the
band projection onto V .

(βββ) If u ∈ U there is an f ∈ U∗ such that ‖f‖ ≤ 1 and f(u) = ‖u‖. PPP Let V be the band generated by
u+ and W = V ⊥ its band complement. Set f(v) =

∫
PV v−

∫
PW v for v ∈ U . Since ‖v‖ = ‖PV v‖+ ‖PW v‖

for every v ∈ U , ‖f‖ ≤ 1. Also PV u = u+ and PWu = −u− so f(u) =
∫
|u| = ‖u‖. QQQ

(γγγ) If A ⊆ U is weakly bounded it is norm-bounded. PPP??? Otherwise, choose for each n ∈ N a un ∈ A
and fn ∈ U∗ such that ‖un‖ ≥ n, ‖fn‖ = 1 and fn(un) = ‖un‖ ≥ n. For f ∈ U∗ set ρA(f) = supu∈A |f(u)|.

Define 〈nk〉k∈N by setting nk = ⌈2 · 3k(k +
∑k−1

i=0 3k−iρA(fni
))⌉ for each k. Set f =

∑∞
i=0 3−ifni

. Then for
any k ∈ N we have

ρA(f) ≥ f(unk
) =

∞∑

i=0

3−ifni
(unk

)

≥ 3−kfnk
(unk

) −
k−1∑

i=0

3−iρA(fni
) −

∞∑

i=k+1

3−i‖unk
‖

=
1

2·3k
‖unk

‖ −
k−1∑

i=0

3−iρA(fni
) ≥ k. XXXQQQ

(ii) Now let K ⊆ U be a weakly relatively countably compact set. Let A be the band algebra of U .
For V ∈ A set νV = supu∈K ‖PV u‖ (counting sup ∅ as 0). Then ν is a submeasure on A. By (i-γ), K is
norm-bounded and ν is finite-valued; set α = νU = supu∈K ‖u‖.
ν is exhaustive. PPP??? Otherwise, let 〈Vn〉n∈N be a disjoint sequence in A such that ǫ = 1

6 infn∈N νVn is
greater than 0. For each n ∈ N choose un ∈ K and fn ∈ U∗ such that ‖fn‖ ≤ 1 and fn(Pnun) = ‖Pnun‖ ≥ 5ǫ,
where here I write Pn for PVn

. Let v0 be a cluster point of 〈un〉n∈N in U for the weak topology of U . Note
that

∑∞
n=0 ‖Pnu‖ ≤ ‖u‖ for any u ∈ U ; let m ∈ N be such that

∑∞
n=m ‖Pnv0‖ ≤ ǫ. For n ∈ N, set

gn(u) = fn(Pnu) for u ∈ U .
We can now build a strictly increasing sequence 〈nk〉k∈N such that

n0 ≥ m,

∑k−1
i=0 |gni

(unk
)| ≤ ǫ+

∑k−1
i=0 |gni

(v0)|,

‖Pnk
uni

‖ ≤ 2−kǫ whenever i < k

for every k ∈ N. Let v1 be a weak cluster point of 〈unk
〉k∈N, and l ∈ N such that

∑∞
k=l ‖Pnk

v1‖ ≤ ǫ. Set
g =

∑∞
k=l gnk

; this is defined in U∗ because
∑∞

k=l |gnk
(u)| ≤

∑∞
k=l ‖Pnk

u‖ ≤ ‖u‖

7Formerly 353I.
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for every u ∈ U . Of course |g(v1)| ≤ ǫ. On the other hand, for any k ≥ l,

g(unk
) = gnk

(unk
) +

k−1∑

i=l

gni
(unk

) +

∞∑

i=k+1

gni
(unk

)

≥ 5ǫ−
k−1∑

i=0

|gni
(unk

)| −
∞∑

i=k+1

‖Pni
unk

‖

≥ 5ǫ−
k−1∑

i=0

|gni
(v0)| − ǫ−

∞∑

i=k+1

2−iǫ

≥ 4ǫ−
∞∑

n=m

‖Pnv0‖ − 2−kǫ ≥ 2ǫ

and v1 cannot be a weak cluster point of 〈unk
〉k∈N. XXXQQQ

(iii) In fact ν is uniformly exhaustive. PPP??? Otherwise, let ǫ > 0 be such that there are arbitrarily long

disjoint strings in A of elements of submeasure greater than 2ǫ. Set q(n) = ⌈
2nnα

ǫ
⌉ for each n, and choose

a family 〈Vni〉n∈N,i≤q(n) such that 〈Vni〉i≤q(n) is a disjoint family in A for each n and νVni > 2ǫ for all n
and i; adapting the temporary notation of (ii), I set Pni = PVni

for i ≤ q(n). Now choose uni ∈ K such

that ‖Pniuni‖ ≥ 2ǫ for all i and n. Because
∑q(n)

i=0 ‖Pniu‖ ≤ ‖u‖ for every u ∈ U and n ∈ N, we can define
inductively a sequence 〈in〉n∈N such that in ≤ q(n) and ‖Pninumim‖ ≤ 2−nǫ whenever m < n.

Now set

Wmn = Vmim ∩
⋂

m<k≤n V
⊥
kik

, Qmn = PWmn

for m ≤ n,

Wm =
⋂

n≥mWmn, Qm = PWm

for m ∈ N. For any u ∈ U and m ≤ n,

|Pmimu| = Pmim |u| ≤ Qmn|u| +
∑n

k=m+1 Pkik |u|,

‖Pmimu‖ ≤ ‖Qmnu‖ +
∑n

k=m+1 ‖Pkiku‖,

so

‖Qmnumim‖ ≥ ‖Pmimumim‖ −
n∑

k=m+1

‖Pkikumim‖

≥ 2ǫ−
∞∑

k=m+1

2−kǫ ≥ ǫ.

Next, if u ≥ 0, 〈Qmnu〉n≥m is a non-increasing sequence, and its infimum belongs to
⋂

n≥mWmn, so must

be equal to Qmu; accordingly Qmu is the norm-limit of 〈Qmnu〉n≥m. The same is therefore true for every
u ∈ U , and in particular

‖Qmumim‖ = limn→∞ ‖Qmnumim‖ ≥ ǫ.

Consequently νWm ≥ ǫ. But Wm ∩Wn ⊆ V ⊥
nin

∩ Vnin = {0} whenever n > m, so this contradicts (ii). XXXQQQ

(iv) Now take any ǫ > 0. Then there is a u∗ ∈ U+ such that
∫

(|u| − u∗)+ ≤ ǫ for every u ∈ K. PPP
If α ≤ ǫ we can take u∗ = 0 and stop. Otherwise, there is a largest n ∈ N such that there are disjoint
V0, . . . , Vn ∈ A such that νVi > ǫ for every n. Take u0, . . . , un ∈ K such that ‖PVi

ui‖ > ǫ for each i. Let

γ > 0 be such that ‖PVi
ui‖ −

α

γ
> ǫ for every i ≤ n, and set u∗ = γ

∑n
i=0 |ui|. ??? Suppose that u ∈ K is

such that
∫

(|u| − u∗)+ > ǫ. Let W be the band generated by (|u| − u∗)+, so that νW ≥ ‖PWu‖ > ǫ. For

each i ≤ n, set Wi = Vi ∩W⊥; then
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|PWui| ≤
1

γ
PWu∗ ≤

1

γ
|u|, |PWi

ui| ≥ |PVi
ui| −

1

γ
|u|,

νWi ≥ ‖PWi
ui‖ ≥ ‖PVi

ui‖ −
α

γ
> ǫ.

But now W0, . . . ,Wn,W witnesses that n was not maximal. XXX So supu∈K

∫
(|u| − u∗)+ ≤ ǫ, as required. QQQ

As ǫ is arbitrary, K is uniformly integrable. Thus every relatively weakly compact subset of U is uniformly
integrable.

(b)(i) In the reverse direction, suppose to begin with that (A, µ̄) is a totally finite measure algebra, and
that A ⊆ L1 = L1(A, µ̄) is uniformly integrable; let F be a filter on L1 containing A. Write V for the set of
neighbourhoods of 0 for the weak topology Ts(L

1, (L1)∗).8

(ααα) For each n ∈ N let Mn ≥ 0 be such that ‖(|u| − Mnχ1)+‖1 ≤ 2−n for every u ∈ A, and
define sets Kn ⊆ [−Mnχ1,Mnχ1] and filters Fn as follows. F0 = F . Given that Fn contains A, define
φn : L1 → L2 = L2(A, µ̄) by setting φn(u) = med(−Mnχ1, u,Mnχ1) for each u ∈ L1, and consider the filter
φn[[Fn]]. This is a filter on the Hilbert space L2 containing the ‖ ‖2-bounded set [−Mnχ1,Mnχ1], so the
set K∗

n of its Ts(L
2, L2)-cluster points is non-empty, by 566P; as K∗

n is Ts(L
2, L2)-closed, it is Ts(L

2, L2)-
compact. As [−Mnχ1,Mnχ1] is ‖ ‖2-closed and convex, it is Ts(L

2, L2)-closed (561Ie) and includes K∗
n. Set

γn = inf{‖u‖2 : u ∈ K∗
n}. As all the sets {u : ‖u‖2 ≤ α}, for α > γn, are Ts(L

2, L2)-closed and meet K∗
n,

Kn = {u : u ∈ K∗
n, ‖u‖2 ≤ γn} is non-empty.

Suppose that G ∈ V. Because the embedding L2 ⊂→ L1 is norm-continuous, it is weakly continuous, and

G ∩ L2 is a Ts(L
2, L2)-neighbourhood of 0. It follows that x+G meets every member of φn[[Fn]] for every

x ∈ K∗
n; so Kn+G meets every member of φn[[Fn]]. We can therefore extend Fn to the filter Fn+1 generated

by

Fn ∪ {φ−1
n [Kn +G] : G ∈ V}

and continue.

(βββ) Set G =
⋃

n∈N Fn and B = {u : u ∈ L1, ‖u‖1 ≤ 1}. Then for each n ∈ N there is a finite

set J ⊆ L1 such that J + G + 2−n+1B ∈ G for every G ∈ V. PPP Kn is a Ts(L
2, L2)-closed subset of K∗

n,
so is Ts(L

2, L2)-compact; also it is included in the sphere S = {u : ‖u‖2 = γn}. Because ‖ ‖2 is locally
uniformly rotund, it is a Kadec norm (467B) and the norm and weak topologies on S coincide; consequently
Kn is ‖ ‖2-compact. Since ‖ ‖1 and ‖ ‖2 give rise to the same topology on any ‖ ‖∞-bounded set, Kn is
‖ ‖1-compact. There is therefore a finite set J ⊆ Kn such that Kn ⊆ J + 2−nB.

Take any G ∈ V. Then ‖u− φn(u)‖ = ‖(|u| −Mnχ1)+‖ ≤ 2−n for every u ∈ A, so

J +G+ 2−n+1B ⊇ (Kn +G) + 2−nB ⊇ A ∩ φ−1
n [Kn +G] ∈ Fn+1 ⊆ G. QQQ

(γγγ) For each n ∈ N choose a minimal finite set Jn ⊆ L1 such that Jn + G + 2−n+1B ∈ G for every
G ∈ V. Note that (x + G + 2−n+1B) ∩D must be non-empty whenever n ∈ N, x ∈ Jn, G ∈ V and D ∈ G.
PPP??? Otherwise,

(Jn \ {x}) +G′ + 2−n+1B ⊇ (Jn + (G ∩G′) + 2−n+1B) ∩D

belongs to G for every G′ ∈ V, and Jn was not minimal. XXXQQQ

(δδδ) For any n ∈ N and u ∈ Jn there is a v ∈ Jn+1 such that ‖u − v‖1 ≤ 2−n+1 + 2−n. PPP???
Otherwise, by (a-i-β) above, we can choose for each v ∈ Jn+1 an fv ∈ (L1)∗ such that ‖fv‖ = 1 and
fv(v − u) = ‖v − u‖ = 2−n+1 + 2−n + δv where δv > 0; set

G = {w : |fv(w)| < 1
2δv for every v ∈ Jn+1} ∈ V.

Then u+G+ 2−n+1B does not meet Jn+1 +G+ 2−nB, contradicting (γ) here. XXXQQQ

(ǫǫǫ) Because
⋃

n∈N Jn is countable, therefore well-orderable, we can define inductively a sequence

〈un〉n∈N such that un ∈ Jn and ‖un − un+1‖ ≤ 2−n+1 + 2−n for every n. Now 〈un〉n∈N is Cauchy, so has a

8Of course (L1)∗ can be identified with L∞(A), but if you don’t wish to trace through the arguments for this, and confirm
that they can be carried out without appealing to anything more than AC(ω), you can defer the exercise for the time being.
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limit u in L1. If G ∈ V there is an n ∈ N such that u+G ⊇ un + 1
2G+ 2−nB, so u+G meets every member

of G; thus u is a weak cluster point of G and of F . As F is arbitrary, A is relatively weakly compact.

(ii) Now suppose that U is an arbitrary L-space and A ⊆ U is a uniformly integrable set. Then we
can choose a sequence 〈en〉n∈N in U+ such that ‖(|u| − en)+‖ ≤ 2−n for every n ∈ N and u ∈ A. Set

e =
∑∞

n=0
1

1+2n‖en‖
en in U , and let V be the band in U generated by e. Then A ⊆ V , and of course A is

uniformly integrable in V . By 561Hb, we have a totally finite measure algebra (A, µ̄) and a normed Riesz
space isomorphism T : V → L1(A, µ̄); now T [A] is uniformly integrable in L1(A, µ̄), therefore relatively
weakly compact, by (i). But this means that A is relatively weakly compact in V ; as the embedding V ⊂→ U
is weakly continuous, A is relatively weakly compact in U .

This completes the proof.

566R Automorphisms of measurable algebras: Theorem [AC(ω)] Let A be a measurable algebra.
(a) Every automorphism of A has a separator.
(b) Every π ∈ AutA is a product of at most three exchanging involutions belonging to the full subgroup

of AutA generated by π.

proof (a) (Cf. 382Eb.) Take π ∈ AutA. Let µ̄ be such that (A, µ̄) is a totally finite measure algebra. For
a ∈ N set ψ(a) = supn∈Z π

na, so that π(ψ(a)) = ψ(a). Note that if a ∩ ψ(b) = 0 then ψ(a) ∩ ψ(b) = 0. Set
A = {a : a ∈ A, a ∩ πa = 0} and choose a sequence 〈an〉n∈N in A such that

supn∈N µ̄(ψ(an)) = supa∈A µ̄(ψ(a)).

Define 〈bn〉n∈N, 〈cn〉n∈N by saying that

c0 = 0, bn = an \ ψ(cn), cn+1 = bn ∪ cn

for each n. Inducing on n we see that bn and cn belong to A and that ψ(cn+1) ⊇ ψ(an) for every n. Set
c = supn∈N cn; then c ∈ A and ψ(c) ⊇ ψ(an) for every n.

Now c is a separator for π. PPP??? Otherwise, there is a non-zero d ⊆ 1 \ ψ(c) such that d ∩ πd = 0 (381Ei).
In this case d ∪ c ∈ A and

µ̄(ψ(d ∪ c)) > µ̄(ψ(c)) = supn∈N µ̄(ψ(an)) = supa∈A µ̄(ψ(a)),

which is impossible. XXXQQQ

(b) We can now work through the proofs of 382A-382M to confirm that there is no essential use of anything
beyond countable choice there, so long as we suppose that we are working with measurable algebras. (There
is an inductive construction in the proof of 382J. To do this with AC(ω) rather than DC, we need to check
that every element of the construction can be made determinate following an initial countable set of choices;
in the case there, we need to check that the existence assertions of 382D and 382I can be represented as
functions, as in 566Xh and 566Xj.) Since the proof of 382K speaks of the Stone representation theorem,
there seems to be a difficulty here, unless we take the alternative route suggested in 382Yb. But note that
while the general Stone theorem has a strength little short of full AC, the representation of a countable

Boolean algebra B as the algebra of open-and-closed subsets of a compact Hausdorff Baire space can be
done in ZF alone (561F). In part (f) of the proof of 382K, therefore, take B to be a countable subalgebra of
A such that

en, u′n, u′′n, v′l, v
′′
l , dlj , d

′
lj , supp(πφ)k, supp(πφ1)k ∈ B whenever n ∈ N and j, k, l ≥ 1,

c0, c1, suppφ2 ∈ B,
B is closed under the functions π, φ1, φ2, φ and π̃n for n ∈ N,

and let Z be the Stone space of B. Now we can perform the arguments of the rest of the proof in Z to show
that c0 = infn≥1 supp(πφ)n is zero, as required.

566S Volume 4 In Volume 4, naturally, a rather larger proportion of the ideas become inaccessible
without strong forms of the axiom of choice. Since we are missing the most useful representation theorems,
many results have to be abandoned altogether. More subtly, we seem to lose the result that Radon measures
are localizable (416B). Nevertheless, a good deal can still be done, if we follow the principles set out in
566Ae-566Af. Most notably, we have a workable theory of Haar measure on completely regular locally
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compact topological groups, because the Riesz representation theorems of §436 are still available, and we
can use 561G instead of 441C. I should remark, however, that in the absence of Tychonoff’s theorem we
may have fewer compact groups than we expect. And the theory of dual groups in §445 depends heavily on
AC.

The descriptive set theory of Chapter 42 is hardly touched, and enough of the rest of the volume survives
to make it worth checking any point of particular interest. Most of Chapter 46 depends heavily on the
Hahn-Banach theorem and therefore becomes limited to cases in which we have a good grasp of dual spaces,
as in 561Xh. There are some difficulties in the geometric measure theory of arbitrary metric spaces in
§471, but the rest of the chapter seems to stand up. The abstract theory of gauge integrals in §482 is
expressed in forms which need DC at least, but I think that the basic facts about the Henstock integral
(§483) are unaffected. There are some interesting challenges in Chapter 49, but there the eclectic nature of
the arguments means that we cannot expect much of the theory to keep its shape.

566T I give one result which may not be obvious and helps to keep things in order.

Proposition [AC(ω)] Let I be any set, and X a separable metrizable space. Then the Baire σ-algebra

Ba(XI) of XI is equal to the σ-algebra
⊗̂

IB(X) generated by sets of the form {x : x(i) ∈ E} for i ∈ I and
Borel sets E ⊆ X.

proof (a) Every open set in X is a cozero set, so B(X) = Ba(X) and {x : x(i) ∈ E} ∈ Ba(XI) whenever

i ∈ I and E ∈ B(X); accordingly
⊗̂

IB(X) ⊆ Ba(XI).

(b) Fix a sequence 〈Un〉n∈N running over a base for the topology of X. For σ ∈ S =
⋃

J∈[I]<ω NJ set

Cσ = {x : x ∈ X, x(i) ∈ Uσ(i) for every i ∈ domσ} ∈
⊗̂

IB(X).

Then {Cσ : σ ∈ S} is a base for the topology of XI . If W ⊆ XI is a regular open set, there is a countable
set R ⊆ S such that W =

⋃
σ∈R Cσ. PPP Let R∗ be the set of those σ ∈ S such that Cσ ⊆W , and R the set

of minimal members of R∗ (ordering S by extension of functions). Then every member of R∗ extends some
member of R, so

⋃
σ∈R Cσ =

⋃
σ∈R∗ Cσ = W .

For n ∈ N set Rn = {σ : σ ∈ R, #(σ) = n, σ(i) < n for every i ∈ domσ}.
??? Suppose, if possible, that n ∈ N and Rn is infinite. Then there is a sequence 〈σk〉k∈N of distinct

elements of Rn; set Jk = domσk for each k. Let M ⊆ N be an infinite set such that 〈Jk〉k∈M is a ∆-system
with root J say. Then there is a σ ∈ nJ such that M ′ = {k : k ∈M , σk↾J = σ} is infinite.

In this case, however,

Cσ ⊆ int
⋃

k∈M ′ Cσk
⊆ intW = W

and σ ∈ R∗, so that σk /∈ R for k ∈M ′; which is impossible. XXX
Thus every Rn is countable and R =

⋃
n∈NRn is countable. QQQ

(c) This shows that every regular open subset of XI is a countable union of open cylinder sets and belongs

to
⊗̂

IB(X). Consequently every cozero set belongs to
⊗̂

IB(X). PPP If f : XI → R is continuous, then for

each rational q > 0 set Wq = int{x : |f(x)| ≥ q}. Then Wq is a regular open set so belongs to
⊗̂

IB(X).

But now {x : f(x) 6= 0} =
⋃

q∈Q,q>0Wq is the union of countably many sets in
⊗̂

IB(X) and itself belongs

to
⊗̂

IB(X). QQQ

So
⊗̂

IB(X) ⊇ Ba(XI) and the two are equal.

566U Dependent choice If we allow ourselves to use the stronger principle DC rather than AC(ω) alone,
we get some useful simplifications. The difficulties with the principle of exhaustion in §215 and 566D above
disappear, and there is no longer any obstacle to the construction of product measures in 254F, provided
only that we know we have a non-empty product space. So a typical theorem on product measures will now
begin ‘let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces such that X =

∏
i∈I Xi is non-empty’. Later, we

now have Baire’s theorem (both for complete metric spaces and for locally compact Hausdorff spaces) and
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Urysohn’s Lemma (so we can drop the formulation ‘completely regular locally compact topological group’).
The most substantial gap in Volume 4 which is now filled seems to be in the abstract theory of gauge
integrals in §482. But I cannot point to a result which is essential to the structure of this treatise and can
be proved in ZF + DC but not in ZF + AC(ω).

566X Basic exercises (a) [AC(ω)] Let (X, ρ) be a metric space. (i) Show that X is compact iff it is
sequentially compact iff it is countably compact iff it is complete and totally bounded. (ii) Show that if X
is separable then every subspace of X is separable.

(b) [AC(ω)] Show that there is a surjection from R onto its Borel σ-algebra, so that there must be a
non-Borel subset of R.

(c)(i) (Cf. 313K) Let A be a Boolean algebra, and D ⊆ A an order-dense set. Show that a = sup{d :
d ∈ D, d ⊆ a} for every a ∈ A. (ii) (Cf. 322Eb) Let (A, µ̄) be a semi-finite measure algebra. Show that
a = sup{b : b ⊆ a, µ̄b <∞} for every a ∈ A.

(d) Let us say that a Boolean algebra A has the countable sup property if for every A ⊆ A there is a
countable B ⊆ A with the same upper bounds as A. (i) Show that a Dedekind σ-complete Boolean algebra
with the countable sup property is Dedekind complete. (ii) Show that a countably additive functional on a
Boolean algebra with the countable sup property is completely additive.

(e) [AC(ω)] Show that if there is a translation-invariant lifting for Lebesgue measure then there is a
subset of R which is not Lebesgue measurable. (Hint : 345F.)

(f) [AC(ω)] Show that if 1 < p < ∞ and (A, µ̄) is a measure algebra, the unit ball of Lp(A, µ̄) (§366) is
weakly compact. (Hint : part (b) of the proof of 566Q.)

(g) [AC(ω)] (i) Let A be a measurable algebra. Show that the unit ball of L∞ = L∞(A) is compact for
Ts(L

∞, (L∞)×) (definition: 3A5Ea). (ii) Let U be an L-space with a weak order unit. Show that the unit
ball of U∗ is weak*-compact. (Hint : 561Hb.)

(h) Let A be a Dedekind σ-complete Boolean algebra. Show that there is a function f : AutA× A → A

such that if π ∈ AutA and a is a separator for π then a ∩ f(π, a) = 0 and f(π, a) ∪ πf(π, a) ∪ π2f(π, a) is
the support of π. (Hint : 382D.)

(i) Let A be a Dedekind complete Boolean algebra and G a well-orderable subgroup of AutA. Let G∗

be the full subgroup of AutA generated by G. Show that there is a function f : G∗ × G → A such that
〈f(π, φ)〉φ∈G is a partition of unity for each π ∈ G∗ and πa = φa whenever π ∈ G∗, φ ∈ G and a ⊆ f(π, φ).
(Hint : 381I.)

(j) [AC(ω)] Let A be a Dedekind complete Boolean algebra and G a countable subgroup of AutA such
that every member of G has a separator. Let G∗ be the full subgroup of AutA generated by G. Show that
there is a function g : G∗ → A such that g(π) is a separator for π for every π ∈ G∗. (Hint : 566Xi, 382Id.)

(k) [AC(ω)] Let (X,T) be a completely regular locally compact Hausdorff space, and f : Ck(X) → R a
positive linear functional. Show that there is a unique Radon measure µ on X such that f(u) =

∫
u dµ for

every u ∈ Ck(X).

(l) [AC(ω)] Say that a set X is measure-free if whenever µ is a probability measure with domain PX
there is an x ∈ X such that µ{x} > 0. (i) Show that the following are equiveridical: (α) R is not measure-
free; (β) there is a semi-finite measure space (X,PX,µ) which is not purely atomic; (γ) there is a measure
µ on [0, 1] extending Lebesgue measure and measuring every subset of [0, 1]. (ii) Prove 438B for point-finite
families 〈Ei〉i∈I such that the index set I is measure-free.

566Y Further exercises (a) [AC(ω)] Show that if U is an L-space, and 〈un〉n∈N is a bounded sequence
in U , then there are a subsequence 〈vn〉n∈N of 〈un〉n∈N and a w ∈ U such that 〈 1

n+1

∑n
i=0 wi〉n∈N is order*-

convergent to w for every subsequence 〈wn〉n∈N of 〈vn〉n∈N. (Hint : in the proof of 276H, show that we can
find a countably-generated filter to replace the ultrafilter F .)
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(b) [AC(ω)] Let X be a completely regular compact Hausdorff topological group and µ a left Haar
measure on X. Show that if w ∈ L2(µ) then u 7→ u∗w : L2(µ) → C(X) is a compact linear operator. (Hint :
444V.)

(c) [AC(ω)] Let 〈(Xi, 〈Uin〉n∈N)〉i∈I be a family such that Xi is a separable metrizable space and 〈Uin〉n∈N

is a base for the topology of Xi for each i ∈ I. Show that Ba(
∏

i∈I Xi) =
⊗̂

i∈IB(Xi).

(d) [DC] Let U be an inner product space and K ⊆ U a convex weakly compact set. Show that K has
an extreme point.

566Z Problem Is it relatively consistent with ZF + AC(ω) to suppose that there is a non-zero atomless
rigid measurable algebra?

566 Notes and comments In this section I have taken a lightning tour through the material of Volumes 1
to 4, pausing over a rather odd selection of results, mostly chosen to exhibit the alternative arguments which
are available. In the first place, I am trying to suggest something of the quality of the world of measure
theory, and of analysis in general, under this particular set of rules. Perhaps I should say that my real
objective is the next section, with DC rather than AC(ω), because DC is believed to be compatible with
the axiom of determinacy, and ZF + DC + AD is not a poor relation of ZFC, as ZF + AC(ω) sometimes
seems to be, but a potential rival.

I have a second reason for taking all this trouble, which is a variation on one of the reasons for ‘gen-
eralization’ as found in twentieth-century pure mathematics. When we ‘generalize’ an argument, moving
(for example) from metric spaces to topological spaces, or from Lebesgue measure to abstract measures, we
are usually stimulated by some particular question which demands the new framework. But the process
frequently has a lasting value which is quite independent of its motivation. It forces us to re-examine the
nature of the proofs we are using, discarding or adapting those steps which depend on the original context,
and isolating those which belong in some other class of ideas. In the same way, renouncing the use of
AC forces us to look more closely at critical points, and decide which of them correspond to some deeper
principle.

Something I have not attempted to do is to look for models in which my favourite theorems are actually
false. An interesting class of problems is concerned with ‘exact engineering’, that is, finding combinatorial
propositions which will be equivalent, in ZF, to given results which are not provable in ZF. For instance,
Baire’s theorem for complete metric spaces is actually equivalent to DC (Blair 77), while Baire’s theorem
for compact Hausdorff spaces may be weaker (Fossy & Morillon 98). I am not presenting any such
results here. However, if we take Maharam’s theorem as an example of a central result of measure theory
with ZFC which is surely unprovable without a strong form of AC, we can ask just how false it can be; and
I offer 566Z as a sample target.

Version of 31.10.14

567 Determinacy

So far, this chapter has been looking at set theories which are weaker than the standard theory ZFC,
and checking which of the principal results of measure theory can still be proved. I now turn to an axiom
which directly contradicts the axiom of choice, and leads to a very different world. This is AD, the ‘axiom
of determinacy’, defined in terms of strategies for infinite games (567A-567C). The first step is to confirm
that we automatically have a weak version of countable choice which is enough to make Lebesgue measure
well-behaved (567D-567E). Next, in separable metrizable spaces all subsets are universally measurable and
have the Baire property (567G). Consequently (at least when we can use AC(ω)) linear operators between
Banach spaces are bounded (567H), additive functionals on σ-complete Boolean algebras are countably
additive (567J), and many L-spaces are reflexive (567K). In a different direction, we find that ω1 is two-
valued-measurable (567L) and that there are many surjections from R onto ordinals (567M).

At the end of the section I include two celebrated results in ZFC (567N, 567O) which depend on some of
the same ideas.
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567A Infinite games I return to an idea introduced in §451.

(a) Let X be a non-empty set and A a subset of XN. In the corresponding infinite game Game(X,A), play-
ers I and II choose members of X alternately, so that I chooses x(0), x(2), . . . and II chooses x(1), x(3), . . . ;
a play of the game is an element of XN; player I wins the play x if x ∈ A, otherwise II wins. A strategy
for I is a function σ :

⋃
n∈NX

n → X; a play x ∈ XN is consistent with σ if x(2n) = σ(〈x(2i + 1)〉i<n)
for every n, that is, if I uses the function σ to decide his move from the previous moves by his opponent; σ
is a winning strategy if every play consistent with σ belongs to A, that is, if I wins whenever he follows
the strategy σ. Similarly, a strategy for II is a function τ :

⋃
n≥1X

n → X; a play x is consistent with τ if

x(2n+ 1) = τ(〈x(2i)〉i≤n) for every n; and τ is a winning strategy for II if x /∈ A whenever x ∈ XN and x is
consistent with τ .

(b) A set A ⊆ XN is determined if either I or II has a winning strategy in Game(X,A). Note that we
need to know the set X as well as the set A to specify the game in question.

(c) It will sometimes be convenient to describe games with ‘rules’, so that the players are required to
choose points in subsets of X (determined by the moves so far) at each move. Such a description can be
regarded as specifying A in the form (A′∪G)\H, where G is the set of plays in which II is the first to break
a rule, H is the set of plays in which I is the first to break a rule, and A′ is the set of plays in which both
obey the rules and I wins.

(d) Not infrequently the ‘rules’ will specify different sets for the moves of the two players, so that I always
chooses a point in X1 and II always chooses a point in X2; setting X = X1 ∪X2 we can reduce this to the
formalization above.

567B Theorem Let X be a non-empty well-orderable set. Give X its discrete topology and XN the
product topology. If F ⊆ XN is closed then Game(X,F ) is determined.

proof (a) Fix a well-ordering 4 of X. Define 〈Wξ〉ξ∈On by setting

W0 = {w : w ∈
⋃

n∈NX
2n+1, w 6⊆ x for any x ∈ F},

Wξ = {w : w ∈
⋃

n∈N

X2n+1, there is some t ∈ X such that

wa<t>a<u> ∈
⋃

η<ξ

Wη for every u ∈ X}

if ξ > 0. (See 5A1C for the notation here.) If w ∈ W0 then of course wa<t>a<u> ∈ W0 for all t, u ∈ X;
so W0 ⊆W1, and of course that Wξ ⊆Wξ′ whenever 1 ≤ ξ ≤ ξ′ in On. There is therefore an ordinal ζ such
that Wζ+1 = Wζ ; write W for Wζ .

For w ∈W , let r(w) ≤ ζ be the least ordinal such that w ∈Wr(w). If r(w) > 0 then there is some t ∈ X

such that such that wa<t>a<u> ∈
⋃

η<r(w)Wη, that is, r(wa<t>a<u>) < r(w), for every u ∈ X.

Let V be the set of those v ∈
⋃

n∈NX
2n such that there is a u ∈ X such that va<u> /∈W . Observe that

if w ∈
⋃

n∈NX
2n+1 \W then w /∈Wζ+1 so wa<t> ∈ V for every t ∈ X.

(b) Suppose that ∅ ∈ V . Define σ :
⋃

n∈NX
n → X inductively by saying that

σ(∅) is the 4-least member t of X such that the one-element sequence ∅a<t> does not belong
to W ,

if v ∈ Xn+1 and w = (σ(v↾0), v(0), σ(v↾1), v(1), . . . , σ(v↾n), v(n)) ∈ V , take σ(v) to be the
4-least member t of X such that wa<t> /∈W ,

for other v ∈ Xn+1 take σ(v) to be the 4-least member of X.

Then σ is a winning strategy for I. PPP If x is a play consistent with σ, then an induction on n shows that
x↾2n ∈ V and x↾2n + 1 /∈ W for every n. In particular, x↾2n + 1 /∈ W0, that is, there is a member of F
extending x↾2n+ 1, for every n. As F is closed, x ∈ F and I wins the play x. QQQ

(c) Suppose that ∅ /∈ V , that is, w ∈ W for every w ∈ X1. Define τ :
⋃

n≥1X
n → X inductively by

saying

D.H.Fremlin



94 Choice and determinacy 567B

if v ∈ Xn and w = (v(0), τ(v↾1), v(1), τ(v↾2), . . . , v(n − 1)) belongs to W \W0, then τ(v) is
the 4-least t ∈ X such that r(wa<t>a<u>) < r(w) for every u ∈ X,

for other v ∈ Xn, τ(v) is the 4-least member of X.

Then τ is a winning strategy for II. PPP Let x be a play consistent with τ . Then an induction on n tells us
that

x↾2n+ 1 ∈W , if x↾2n+ 1 /∈W0 then r(x↾2n+ 3) < r(x↾2n+ 1)

for every n ∈ N. Since 〈r(x↾2n + 1)〉n∈N cannot be strictly decreasing, there is some n ∈ N such that
x↾2n+ 1 ∈W0 and x /∈ F . Thus II wins the play x. QQQ

(d) Putting (b) and (c) together we see that F is determined.

567C The axiom of determinacy (a) The standard ‘axiom of determinacy’ is the statement

(AD) Every subset of NN is determined.

Evidently it will follow that every subset of XN is determined for any countable set X. (If X ⊆ N, a game
on X can be regarded as a game on N in which there is a rule that the players must always choose points
in X. See also 567Xc.)

(b) At the same time, it will be useful to consider a weak form of the axiom of countable choice: for any
set X, write AC(X;ω) for the statement

∏
n∈NAn 6= ∅ whenever 〈An〉n∈N is a sequence of non-empty subsets of X.

567D Theorem (Mycielski 64) AD implies AC(R;ω).

proof Since we know that R is equipollent with NN, we can look at AC(NN;ω). Let 〈An〉n∈N be a sequence
of non-empty subsets of NN. Set

A = {x : x ∈ NN, 〈x(2n+ 1)〉n∈N /∈ Ax(0)}.

Then I has no winning strategy in Game(N, A), because if σ is a strategy for I in Game(N, A) set k = σ(∅);
there is a point y ∈ Ak, and II need only play x(2n+ 1) = y(n) for each n.

So II has a winning strategy τ say. Define g : N → NN by saying that g(n)(i) = τ(eni) for n, i ∈ N,
where eni ∈ Ni+1, eni(0) = n, eni(j) = 0 for 1 ≤ j ≤ i. If now n ∈ N, I plays (n, 0, 0, . . . ) and II follows the
strategy τ , the resulting play (n, g(n)(0), 0, g(n)(1), 0, . . . ) must not belong to A so g(n) ∈ An.

567E Consequences of AC(R;ω) Suppose that AC(R;ω) is true.

(a) If a set X is the image of a subset Y of R under a function f , then AC(X;ω) is true. PPP If 〈An〉n∈N

is a sequence of non-empty subsets of X, then there is an x ∈
∏

n∈N f
−1[An], and 〈f(x(n))〉n∈N ∈

∏
n∈NAn.

QQQ

(b) In particular, taking S∗ =
⋃

n≥1 N
n as in §562, AC(PS∗;ω) is true. It follows that (in any second-

countable space X) every sequence of codable Borel sets is codable and the family of codable Borel sets is a
σ-algebra, coinciding with the Borel σ-algebra B(X) on its ordinary definition. Moreover, since B(X) is an
image of PS∗, we have AC(B(X);ω), countable choice for collections of Borel sets. Similarly, the family of
codable Borel functions becomes the ordinary family of Borel-measurable functions, and we have countable
choice for sets of Borel real-valued functions on X.

(c) Consequently the results of §562-565 give us large parts of the elementary theory of Borel measures
on second-countable spaces. At the same time, if X is second-countable, the union of a sequence of meager
subsets of X is meager (because we have countable choice for sequences of nowhere dense closed sets), so
the Baire-property algebra of X is a σ-algebra.

(d) We also find that the supremum of a sequence of countable ordinals is again countable. PPP Let
〈ξn〉n∈N be a sequence in ω1. Using AC(R;ω)), we can choose for each n ∈ N a subset 4n of N × N which
is a well-ordering of N with order type max(ω, ξn). Now we have a well-ordering 4 of N2 defined by saying
that (i, j) 4 (i′, j′) if i < i′ or i = i′ and j 4i j

′. In this case, the order type ξ of 4 will be greater than or
equal to every ξn, so that supn∈N ξn ≤ ξ is countable. QQQ
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567F Lemma (see Mycielski & Świerczkowski 64) [AC(R;ω)] Suppose that A ⊆ {0, 1}N is a
continuous image of a subset B of {0, 1}N such that (h−1[B] ∩ F ) ∪ H ⊆ NN is determined whenever
h : NN → {0, 1}N is continuous, F ⊆ NN is closed and H ⊆ NN is open.

(a) A is universally measurable.
(b) A has the Baire property in {0, 1}N.

proof Fix a continuous surjection f : B → A. Let E be the countable algebra of subsets of {0, 1}N

determined by coordinates in finite sets, that is to say, the algebra of open-and-closed subsets of {0, 1}N

(311Xh).

(a)(i) Let µ be a Borel probability measure on {0, 1}N and µ̂ its completion. If Z ⊆ {0, 1}N is closed and
not negligible, then at least one of Z ∩A, Z \A has non-zero inner measure.

PPP Let 〈En〉n∈N enumerate E . Set ǫn = 2−2n−2µZ for n ∈ N. In ({0, 1}× E)N consider the game in which
the players choose (k0,K0), (k1,K1), . . . such that K0 = Z and for each n ∈ N

kn ∈ {0, 1}, Kn ∈ E , µK2n+1 ≤ ǫn.

I wins if y = 〈k2n〉n∈N belongs to B and f(y) /∈
⋃

n∈NK2n+1. Observe that when y ∈ B, f(y) ∈
⋃

n∈NK2n+1

iff there is an m ∈ N such that f(w) ∈
⋃

i<mK2i+1 whenever w ∈ B and w↾m = y↾m; so I wins iff
y ∈ B and at every stage ((k0,K0), . . . , (k2m,K2m)) there is a w ∈ B such that w(i) = k2i for i < m and
f(w) /∈

⋃
i<mK2i+1. So the payoff set D of plays 〈(kn,Kn)〉n∈N won by I is of the form (h−1[B] ∩ F ) ∪H

where h : ({0, 1} × E)N → {0, 1}N is continuous, F ⊆ ({0, 1} × E)N is closed and H ⊆ ({0, 1} × E)N is
open. (Here H is the set of plays which are won because II is the first to break a rule.) Consequently D is
determined.

case 1 Suppose that I has a winning strategy σ. For each play 〈(kn,Kn)〉n∈N consistent with σ,
f(〈k2n〉n∈N) is defined and belongs to A. Since the set of plays consistent with σ is a closed subset of
({0, 1}× E)N, the set C of points obtainable in this way is an analytic subset of Z, therefore measured by µ̂
(563I). ??? If µ̂C = 0, then there is an open set G ⊇ C such that µG < ǫ0 (563Fd). In this case, II can play
in such a way that

K2n+1 ⊆ G, µ(G \
⋃

i≤nK2i+1) < ǫn+1,

if En ⊆ G then En ⊆
⋃

i≤nK2i+1

for every n. But now, taking I’s responses under σ, we have a play of Game({0, 1} × E , D) in which⋃
n∈NK2n+1 = G includes C, so contains f(〈kn〉n∈N), and is won by II; which is supposed to be impossible.

XXX
So in this case µ∗A ≥ µC > 0.

case 2 Suppose that II has a winning strategy τ . For each n ∈ N and u ∈ {0, 1}n, let L(u) be the
second component of τ(〈(u(i), ∅)〉i<n); set G =

⋃
n∈N

⋃
u∈{0,1}n L(u), so that µG ≤

∑∞
n=0 2nǫn < µZ. If

we take any y ∈ B, then we have a play 〈(kn,Kn)〉n∈N of Game({0, 1} × E , D), consistent with τ , in which
k2n = y(n) and K2n = ∅ for each n. Since II wins this play, f(y) must belong to

⋃
n∈NK2n+1 =

⋃
n∈N L(y↾n) ⊆ G.

As y is arbitrary, A ⊆ G and µ∗(Z \A) ≥ µ(Z \G) > 0. QQQ

(ii) Write K for the family of compact sets K ⊆ {0, 1}N such that A ∩K is Borel. If E ⊆ {0, 1}N and
µE > 0, there is a K ∈ K such that K ⊆ E and µK > 0. PPP There is a closed Z ⊆ E such that µZ > 0
(563Fd again). By (i), at least one of µ∗(Z ∩ A), µ∗(Z \ A) is non-zero, and there is a compact set K of
non-zero measure which is included in one of Z ∩A, Z \A. But now K ∈ K. QQQ

Now (because we have countable choice for subsets of K) there is a sequence 〈Kn〉n∈N in K such that
supn∈N µKn = supK∈K µK; setting E = {0, 1}N \

⋃
n∈NKn, E must be negligible, while A \E is a Borel set;

so A is measured by µ̂. As µ is arbitrary, A is universally measurable.

(b)(i) If V ∈ E \ {∅} then either V ∩A is meager or there is a V ′ ∈ E \ {∅} such that V ′ ⊆ V and V ′ \A
is meager. PPP Set U = {E : E ∈ E \ {∅}, E ⊆ V } and let 4 be a well-ordering of U (in order type ω, if you
like). Consider the game on {0, 1} × U in which the players choose (k0, U0), (k1, U1), . . . such that, for each
n ∈ N,
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kn ∈ {0, 1}, Un ∈ U , Un+1 ⊆ Un.

I wins if y = 〈k2n〉n∈N belongs to B and f(y) ∈
⋂

n∈N Un. Because the Un are all open-and-closed, this game
is determined for the same reasons as the game of (a).

case 1 Suppose that I has a winning strategy σ; say that σ2(w) ∈ U is the second component of
σ(w) for each w ∈

⋃
n∈N({0, 1}×U)n. For each n ∈ N let Un be the set of those U ∈ U such that v↾n = v′↾n

for all v, v′ ∈ U . Let (k′, V ′) = σ(∅) be I’s first move when following σ. Let Q be the set of positions in the
game consistent with σ and with II to move, that is, finite sequences

q = 〈(ki, Ui)〉i≤2n ∈ ({0, 1} × U)2n+1

such that (k2m, U2m) = σ(〈(k2i+1, U2i+1)〉i<m) for every m ≤ n and 〈Ui〉i≤2n is non-increasing. For such a
q, set Vq = U2n and

Wq =
⋃
{σ2(〈(k2i+1, U2i+1)〉i<n

a
<(k, U)>) : k ∈ {0, 1}, U ∈ Un, U ⊆ Vq}.

Then Wq is an open subset of Vq; but also it is dense in Vq, because if W ⊆ Vq is open and not empty

there is a U ∈ Un included in W and σ2(〈(k2i+1, U2i+1)〉i<n
a
<(k, U)>) is a non-empty subset of U . Q is

countable, so E =
⋂

q∈QWq ∪ ({0, 1}N \ V q) is comeager in {0, 1}N.

??? If V ′ \ A is not meager, there is an x ∈ E ∩ V ′ \ A. Define 〈(kn, Un)〉n∈N inductively, as follows.
(k0, U0) = (k′, V ′). Given that q = 〈(ki, Ui)〉i≤2n belongs to Q and x ∈ Vq, then x ∈ Wq so there are

k ∈ {0, 1}, U ∈ Un such that x ∈ σ2(〈(k2i+1, U2i+1)〉i<n
a
<(k, U)>); take the lexicographically first such

pair (k, U) for (k2n+1, U2n+1), and set (k2n+2, U2n+2) = σ(〈(k2i+1, U2i+1)〉i≤n). Then q′ = 〈(ki, Ui)〉i≤2n+2

belongs to Q and Vq′ = U2n+2 = σ2(〈(k2i+1, U2i+1)〉i≤n) contains x, so the induction can continue.
At the end of this induction, 〈(kn, Un)〉n∈N will be a play of the game consistent with σ in which the

only point of
⋂

n∈N Un is x and does not belong to A. So either y = 〈k2n〉n∈N does not belong to B or
f(y) /∈

⋂
n∈N Un; in either case, II wins the play; which is supposed to be impossible. XXX

So in this case V ′ \A is meager.

case 2 Suppose that II has a winning strategy τ ; say that τ2(w) is the second component of τ(w)
for each w ∈

⋃
n≥1({0, 1} × U)n. Let Q be the set of objects

q = (〈(ki, Ui)〉i<2n, k)

such that 〈(ki, Ui)〉i<2n is a finite sequence in {0, 1} × U consistent with τ (allowing the empty string when
n = 0) and k ∈ {0, 1}. For such a q, set Vq = U2n−1 (if n > 0) or Vq = V (if n = 0); set

Wq =
⋃
{τ2(〈(k2i, U2i)〉i<n

a
<(k, U)>) : U ∈ U , U ⊆ Vq},

so that Wq is a dense subset of Vq. Q is countable, so E =
⋂

q∈QWq ∪ ({0, 1}N \ V q) is comeager.

??? If there is an x in A ∩ V ∩ E, let y ∈ B be such that f(y) = x, and define 〈(kn, Un)〉n∈N as follows.
Given that q = (〈(ki, Ui)〉i<2n, y(n)) belongs to Q and x ∈ Vq, then x ∈ Wq so there is a U ∈ U such that

x ∈ τ2(〈(k2i, U2i)〉i<n
a
<(y(n), U)>); take the 4-first such U for U2n, set k2n = y(n) and (k2n+1, U2n+1) =

τ(〈(k2i, U2i)〉i≤n), so that q′ = (〈(ki, Ui)〉i≤2n+1, y(n+1)) belongs to Q and Vq′ = U2n+1 = τ2(〈(k2i, U2i)〉i≤n)
contains x.

At the end of this induction, 〈(kn, Un)〉n∈N will be a play of the game consistent with τ in which
f(〈k2n〉n∈N) = x ∈

⋂
n∈N Un, so that I wins, which is supposed to be impossible. XXX

Thus in this case A ∩ V must be meager. QQQ

(ii) Now let G be the union of those V ∈ E such that V \ A is meager; then G \ A is meager. (This
is where we need AC(R;ω).) If V ∈ E and V ⊆ {0, 1}N \G, then V ′ \ A is non-meager for every whenever
V ∈ E \ {∅} and V ′ ⊆ V , so V ∩ A is meager; accordingly G′ ∩ A is meager, where G′ = {0, 1}N \ G. But
this means that G△A ⊆ (G \A) ∪ (G′ ∩A) ∪ (G \G) is meager and A has the Baire property.

567G Theorem [AD] In any Hausdorff second-countable space, every subset is universally measurable
and has the Baire property.

proof Let X be a Hausdorff second-countable space, 〈Un〉n∈N a sequence running over a base for the
topology of X, and A ⊆ X.
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(a) Define g : X → {0, 1}N by setting g(x) = 〈χUn(x)〉n∈N for x ∈ X; then g is injective and Borel mea-
surable. If µ is a Borel probability measure on X, we have a Borel probability measure ν = µg−1↾B({0, 1}N)
on {0, 1}N. By 567Fa, g[A] is measured by the completion ν̂ of ν; let F , H ⊆ {0, 1}N be Borel sets such
that νH = 0 and g[A]△F ⊆ H; then A△g−1[F ] ⊆ g−1[H] is µ-negligible, so A is measured by µ̂. As µ is
arbitrary, A is universally measurable.

(b) Set G =
⋃
{Un : n ∈ N, Un ∩ A has the Baire property}, so that G ∩ A has the Baire property.

(Remember that as we have a bijection between X and a subset of R, we have countable choice for subsets
of X, so that the ideal of meager subsets of X is a σ-ideal and the Baire-property algebra is a σ-algebra.)
Set V = X \ (

⋃
n∈N ∂Un∪G); then G∪V is comeager in X, and A\V has the Baire property. If V is empty,

we can stop. Otherwise, let V be the countable algebra of subsets of V generated by {V ∩Un : n ∈ N}. Since
A ∩ U does not have the Baire property (in X) for any non-empty relatively open subset U of V , V has no
isolated points and V is atomless. So V is isomorphic to the algebra of open-and-closed subsets of {0, 1}N

(316M) and there is a Boolean-independent sequence 〈Vn〉n∈N in V generating V. Define h : V → {0, 1}N by
setting h(x) = 〈χVn(x)〉n∈N for x ∈ V . Then h[V ] is dense in {0, 1}N and h−1[H] is dense in V for every
dense open set H ⊆ {0, 1}N; consequently h−1[M ] is meager in V and in X whenever M ⊆ {0, 1}N is either
nowhere dense or meager. By 567Fb, h[A] has the Baire property in {0, 1}N; express it as H△M where H
is open and M is meager; then A ∩ V = h−1[h[A]] = h−1[H]△h−1[M ] has the Baire property in X, so A
has the Baire property in X, as required.

567H Theorem (a) [AD] Let X be a Polish group and Y a topological group which is either separable
or Lindelöf. Then every group homomorphism from X to Y is continuous.

(b) [AD+AC(ω)] Let X be an abelian topological group which is complete under a metric defining its
topology, and Y a topological group which is either separable or Lindelöf. Then every group homomorphism
from X to Y is continuous.

(c) [AD+AC(ω)] Let X be a complete metrizable linear topological space, Y a linear topological space
and T : X → Y a linear operator. Then T is continuous. In particular, every linear operator between
Banach spaces is a bounded operator.

proof (a)(i) Let f : X → Y be a homomorphism, and V a neighbourhood of the identity in Y . Let W be
an open neighbourhood of the identity in Y such that W−1W ⊆ V . Then there is countable family H of
left translates of W which covers Y . PPP If Y is separable, let D be a countable dense subset of Y , and set
H = {yW : y ∈ D}. If Y is Lindelöf, we have only to note that {yW : y ∈ Y } is an open cover of Y , so has
a countable subcover. QQQ

(ii) Since X is a Baire space (561Ea), and the ideal of meager subsets of X is a σ-ideal (see part (b)
of the proof of 567G), and {f−1[H] : H ∈ H} is a countable cover of X, there is an H ∈ H such that
E = f−1[H] is non-meager. Now E−1E is a neighbourhood of the identity in X. PPP By 567G, E has the
Baire property; let G be a non-empty open set in X such that G \E is meager. Set U = {x : Gx ∩G 6= ∅};
then U is a neighbourhood of the identity in X. If x ∈ U , then

Gx ∩G ⊆ (Ex ∩ E) ∪ (Gx \ Ex) ∪ (G \ E) = (Ex ∩ E) ∪ (G \ E)x ∪ (G \ E).

Since Gx ∩ G is non-meager, while G \ E and (G \ E)x are meager, Ex ∩ E 6= ∅ and x ∈ E−1E. Thus
E−1E ⊇ U is a neighbourhood of the identity. QQQ

(iii) Let y ∈ Y be such that H = yW . If x, z ∈ E, y−1f(x) and y−1f(z) both belong to W , so

f(x−1z) = f(x)−1f(z) ∈W−1yy−1W = W−1W ⊆ V .

Thus f−1[V ] ⊇ E−1E is a neighbourhood of the identity in X. As V is arbitrary, f is continuous at the
identity, therefore continuous.

(b) ??? Otherwise, there is a neighbourhood V of the identity eY of Y such that f−1[V ] is not a neigh-
bourhood of the identity eX of X. Let ρ be a metric on X, defining its topology, under which X is complete.
Then for each n ∈ N we can choose an xn ∈ X such that ρ(xn, eX) ≤ 2−n and f(xn) /∈ V . (This is where we
need AC(ω).) For finite J ⊆ N set uJ =

∏
n∈J xn, starting from u∅ = eX . We can define an infinite I ⊆ N

inductively by saying that

I = {n : whenever J ⊆ I ∩ n then ρ(uJ , uJxn) ≤ 2−#(I∩n)}.
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This will ensure that vK = limn→∞ uK∩n is defined for every K ⊆ I. Note that vK∪{m} = vKxm whenever
m ∈ I and K ⊆ I \ {m} (this is where we need to know that X is abelian).

Give PI its usual topology. Let W be a neighbourhood of eY such that W−1W ⊆ V . By the argument
of (a) above, applied to the map K 7→ f(vK) : PI → Y , there is a y ∈ Y such that E = {K : K ⊆ I,
f(vK) ∈ yW} is non-meager in PI. Looking at the topological group (PI,△), we see that there is a
neighbourhood U of ∅ in PI included in {K△L : K, L ∈ E}. Taking any sufficiently large n ∈ I, we
have {n} ∈ U , so there must be a K ∈ E such that n /∈ K and K ∪ {n} ∈ E. In this case f(vK) ∈ yW ,
f(vK∪{n}) ∈ yW and

f(xn) = f(v−1
K vK∪{n}) = f(vK)−1f(vK∪{n}) ∈W−1W ⊆ V ,

which is impossible. XXX

(c) ??? Otherwise, there is a neighbourhood V of 0 in Y such that T−1[V ] is not a neighbourhood of 0 in
X; we can suppose that αy ∈ V whenever y ∈ V and |α| ≤ 1. Let ρ be a metric on X, defining its topology,
under which X is complete. Let W be a neighbourhood of 0 in Y such that W −W ∈ V . Then for each
n ∈ N we can choose an xn ∈ X \nT−1[V ] such that ρ(xn, 0) ≤ 2−n. Define I ∈ [N]ω and 〈vK〉K⊆I as in (b),
but using additive notation rather than multiplicative. This time we are not supposing that Y is separable.
However, there must be an m ∈ N such that E = {K : T (vK) ∈ mW} is non-meager. As before, we can
find n ∈ I \m and K ∈ E such that n /∈ L and K ∪ {n} ∈ E. So the calculation gives

Txn = TvK∪{n} − TvK ∈ mW −mW ⊆ mV ⊆ nV ,

again contrary to the choice of xn. XXX

567I Proposition [AC(R;ω)] Let B̂ be the Baire-property algebra of PN. Then every B̂-measurable
real-valued additive functional on PN is of the form a 7→

∑
n∈a γn for some 〈γn〉n∈N ∈ ℓ1.

proof As noted in 567Ec, B̂ is a σ-algebra of subsets of PN.

(a)(i) If G ⊆ PN is a dense open set and m ∈ N, there are an m′ > m and an L ⊆ m′ \m such that
{a : a ⊆ N, a ∩ m′ \ m = L} ⊆ G. PPP The set H = {b : b ⊆ N \ m, I ∪ b ∈ G for every I ⊆ m} is a
dense open subset of P(N \m), so there are an m′ > m and an L ⊆ m′ \m such that H ⊇ {b : b ⊆ N \m,
b ∩m′ \m = L}; this pair m′, L works. QQQ

(ii) If G ⊆ PN is comeager, there are a strictly increasing sequence 〈mn〉n∈N in N and sets Ln ⊆
mn+1 \mn, for n ∈ N, such that

G ⊇ {a : a ⊆ N, a ∩mn+1 \mn = Ln for infinitely many n}.

PPP Let 〈Gn〉n∈N be a non-increasing sequence of dense open sets such that G ⊇
⋂

n∈NGn, and choose
〈mn〉n∈N, 〈Ln〉n∈N inductively such that mn < mn+1, Ln ⊆ mn+1 \mn and {a : a ⊆ N, a ∩mn+1 \mn =
Ln} ⊆ Gn for every n. QQQ

(iii) If G ⊆ PN is comeager, and a ⊆ N, then there are b0, b′0, b1, b′1 ∈ G such that

b0 ⊆ b′0, b1 ⊆ b′1, (b′0 \ b0) ∩ (b′1 \ b1) = ∅, (b′0 \ b0) ∪ (b′1 \ b1) = a.

PPP Let 〈mn〉n∈N and 〈Ln〉n∈N be as in (ii). Set

b0 =
⋃

n∈N L2n, b′0 = b0 ∪ (a ∩m0) ∪
⋃

n∈N a ∩m2n+2 \m2n+1,

b1 =
⋃

n∈N L2n+1, b′1 = b1 ∪
⋃

n∈N a ∩m2n+1 \m2n. QQQ

So if ν : PN → R is additive, supa⊆N |νa| ≤ 4 supb∈G |νb|.

(iv) If G ⊆ PN is comeager, there is a disjoint sequence 〈an〉n∈N in G. PPP Take 〈mn〉n∈N and 〈Ln〉n∈N

as in (ii), and set an =
⋃

i∈N L2n(2i+1) for each n. QQQ

(b) If ν : PN → R is additive and B̂-measurable, it is bounded. PPP Let M ∈ N be such that E = {a :
|νa| ≤ M} is non-meager. Then there are an m ∈ N and J ⊆ m such that VmJ \ E is meager, where
VmJ = {a : a ∩ m = J}. For K ⊆ m, a ⊆ N set φK(a) = a△K; then φK is an autohomeomorphism of
PN, so φK [VmJ \E] is meager. Let G be the comeager set PN \

⋃
K⊆m φK [VmJ \E]. Set δ =

∑
i<m |ν{i}|;
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then |νφK(a) − νa| ≤ δ whenever K ⊆ m and a ⊆ N. If b ∈ G, set K = (b ∩ m)△J ; then φK(b) ∈
VmJ \ (VmJ \ E) ⊆ E, so |νb| ≤ M + δ. So (a-iii) tells us that |νa| ≤ 4(M + δ) for every a ⊆ N, and ν is
bounded. QQQ

(c) If ν : PN → R is additive and B̂-measurable and ν{n} = 0 for every n ∈ N, then E = {a : νa ≥ ǫ}
is meager for every ǫ > 0. PPP??? Otherwise, let m ∈ N and J ⊆ m be such that VmJ \ E is meager. Let G
be the comeager set PN \

⋃
K⊆m φK [VmJ \ E], as in (b). This time, νa = νφK(a) whenever K ⊆ m and

a ⊆ N, so νa ≥ ǫ for every a ∈ G. But (a-iv) tells us that there is a disjoint sequence 〈an〉n∈N in G, and
now supn∈N ν(

⋃
i≤n ai) = ∞, contradicting (b). XXXQQQ

(d) If ν : PN → R is additive and B̂-measurable and ν{n} = 0 for every n ∈ N, then ν = 0. PPP By (c),
applied to ν and −ν, G = {a : νa = 0} is comeager. By (a-iii), ν must be identically zero. QQQ

(e) Now suppose that ν is any additive B̂-measurable functional. Set γn = ν{n} for each n. By (b),

〈γn〉n∈N ∈ ℓ1. Setting ν′a = νa −
∑

n∈a γn for a ⊆ N, ν′ is still additive and B̂-measurable, and ν′{n} = 0
for every n, so (d) tells us that ν′ = 0 and νa =

∑
n∈a γn for every a, as required.

567J Proposition [AD] A finitely additive functional on a Dedekind σ-complete Boolean algebra is
countably additive.

proof Let A be a Dedekind σ-complete Boolean algebra, ν a finitely additive functional on A and 〈an〉n∈N a
disjoint sequence in A with supremum a. Set λc = ν(supn∈c an) for c ⊆ N. Then λ is an additive functional

on PN. By 567G, it is B̂(PN)-measurable; by 567I,

νa = λN =
∑∞

n=0 λ{n} =
∑∞

n=0 νan.

567K Theorem [AD+AC(ω)] If U is an L-space with a weak order unit, it is reflexive.

proof By 561Hb, U is isomorphic to L1(A, µ̄) for some totally finite measure algebra (A, µ̄); now U∗ can
be identified with L∞(A). Next, L∞(A)∗ can be identified with the space of bounded finitely additive
functionals on A, as in 363K; by 567J, these are all countably additive. Because we have countable choice,
A is ccc (566M), so countably additive functionals are completely additive and correspond to members of
L1, as in 365Ea. Thus the canonical embedding of U in U∗∗ is surjective.

567L Theorem (R.M.Solovay) [AD] ω1 is two-valued-measurable.

Remark The definition in 541M speaks of ‘regular uncountable cardinals’. In the present context I will
use the formulation ‘an initial ordinal κ is two-valued-measurable if there is a proper κ-additive 2-saturated
ideal I of Pκ containing singletons’, where here ‘κ-additive’ means that

⋃
η<ξ Jη ∈ I whenever ξ < κ and

〈Jη〉η<ξ is a family in I.

proof (a) Let StrI be the set of strategies for player I in games of the form Γ(N, .), that is, StrI is the set
of functions from

⋃
n∈N Nn to N; for σ ∈ StrI and x ∈ NN, let σ ∗ x ∈ NN be the play in which I follows the

strategy σ and II plays the sequence x, that is,

(σ ∗ x)(2n) = σ(x↾n), (σ ∗ x)(2n+ 1) = x(n)

for n ∈ N. Similarly, let StrII be the set of functions from
⋃

n≥1 N
n to N and for τ ∈ StrII, x ∈ NN, n ∈ N

set

(τ ∗ x)(2n) = x(n), (τ ∗ x)(2n+ 1) = τ(x↾(n+ 1)).

We can find bijections g : NN → StrI ∪ StrII and h : NN → WO(N), where WO(N) ⊆ P(N2) is the set
of well-orderings of N. PPP Since S =

⋃
n∈N Nn and S∗ =

⋃
n≥1 N

n are countably infinite, StrI = NS and

StrII = NS∗

are equipollent with NN. As P(N2) ∼ PN ∼ NN, there is an injection from WO(N) to NN. In
the reverse direction, there are an injection from NN to the set F of permutations of N, and an injection
from F to WO(N); so the Schroeder-Bernstein theorem tells us that WO(N) ∼ NN. QQQ

Define f : WO(N) → ω1 by saying that f(4) = otp(N,4) for 4 ∈ WO(N).

(b) For x ∈ NN let Lx ⊆ NN be the smallest set such that
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x ∈ Lx,
whenever y, z ∈ Lx then g(y) ∗ z ∈ Lx,
whenever y ∈ Lx then 〈y(2n)〉n∈N and 〈y(2k(2n+ 1))〉n∈N belong to Lx for every k ∈ N.

Observe that Lx is countable and that Ly ⊆ Lx whenever y ∈ Lx. For x ∈ NN, set Cx = {y : y ∈ NN,
x ∈ Ly}.

(c) For any sequence 〈xn〉n∈N in NN there is an x ∈ NN such that Cx ⊆
⋂

n∈N Cxn
. PPP Set x(0) = 0

and x(2k(2n + 1)) = xk(n) for k, n ∈ N. Then xk ∈ Lx for every k. So if y ∈ Cx and n ∈ N, we have
xn ∈ Lx ⊆ Ly and y ∈ Cxn

. QQQ

Let F be the filter on NN generated by {Cx : x ∈ NN}; then (because AC(R;ω) is true) F is closed under
countable intersections.

(d) Suppose that A ⊆ NN is such that whenever x ∈ A and Ly = Lx then y ∈ A.

(i) If I has a winning strategy in Game(N, A) then A ∈ F . PPP Let σ ∈ StrI be a winning strategy
for I, and consider x = g−1(σ) ∈ NN. Suppose that y ∈ NN and x ∈ Ly, and consider z = σ ∗ y ∈ A. As
z = g(x) ∗ y belongs to Ly, Lz ⊆ Ly; on the other hand, y(n) = z(2n + 1) for every n, so y ∈ Lz and
Ly ⊆ Lz. So Ly = Lz and y ∈ A. As y is arbitrary, Cx ⊆ A and A ∈ F . QQQ

(ii) If II has a winning strategy in Game(N, A) then NN \A ∈ F . PPP Let τ ∈ StrII be a winning strategy
for II, and consider x = g−1(τ) ∈ NN. Suppose that y ∈ NN and x ∈ Ly, and consider z = τ ∗ y ∈ NN \ A.
As before, Lz ⊆ Ly; this time, y(n) = z(2n) for every n so y ∈ Lz and Ly ⊆ Lz. So y /∈ A. As y is arbitrary,
Cx ⊆ NN \A and NN \A ∈ F . QQQ

(e) For x ∈ NN set φ(x) = supy∈Lx
f(h(y)); because Lx is countable, φ(x) < ω1 (567Ed). Let G be

the image filter φ[[F ]]. Because F is closed under countable intersections, so is G. If B ⊆ ω1 then φ−1[B]
satisfies the condition of (d), so that one of φ−1[B], NN \ φ−1[B] belongs to F and one of B, ω1 \B belongs
to G; as B is arbitrary, G is an ultrafilter.

(f) Finally, G does not contain any singletons. PPP If ξ < ω1, there is an x ∈ NN such that f(h(x)) = ξ+1.
Now Cx ∈ F so φ[Cx] ∈ G. If y ∈ Cx then x ∈ Ly so ξ + 1 ≤ φ(y); accordingly ξ /∈ φ[Cx] and {ξ} /∈ G. QQQ
So G (or, if you like, the ideal {ω1 \B : B ∈ G}) witnesses that ω1 is two-valued-measurable.

567M Theorem (Moschovakis 70) [AD] Let α be an ordinal such that there is a surjection from PN
onto α. Then there is a surjection from PN onto Pα.

proof The formulae will run slightly more smoothly if we work with surjections from NN rather than from
PN; of course this makes no difference to the result.

(a) We may suppose that α is uncountable. Let f : NN → α be a surjection. I seek to define inductively
a family 〈gξ〉ξ≤α such that gξ is a surjection from NN onto Pξ for every ξ ≤ α. As in the proof of 567L,
let StrI be the set of functions from

⋃
n∈N Nn to N, and StrII the set of functions from

⋃
n≥1 N

n to N; fix a

surjection h : NN → StrI ∪ StrII. For σ ∈ StrI, τ ∈ StrII and x ∈ NN let σ ∗ x, τ ∗ x be the plays in games on
N as described in the proof of 567L.

(b) Start by setting gn(x) = n ∩ x[N] for x ∈ NN and n ∈ N.

(c) For the inductive step to a non-zero limit ordinal ξ ≤ α, given 〈gη〉η<ξ, then for x ∈ NN set

ηx = f(〈x(4n)〉n∈N), ζx = f(〈x(4n+ 1)〉n∈N),

Ex = gηx
(〈x(4n+ 2)〉n∈N) if ηx < ξ,

= ∅ otherwise,

Fx = gζx(〈x(4n+ 3)〉n∈N) if ζx < ξ,

= ∅ otherwise.

Next, for D ⊆ ξ, set
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AD = {x : x ∈ NN, ηx < ξ, Ex = D ∩ ηx

and either ζx ≤ ηx or ζx ≥ ξ or Fx 6= D ∩ ζx}.

(The idea is that the players are competing to see who can capture the largest initial segment of D with the
pair (ηx, Ex) determined by I’s moves or the pair (ζx, Fx) determined by II’s moves; for definiteness, if neither
correctly defines an initial segment, then II wins, while if they seize the same segment (ηx, Ex) = (ζx, Fx),
then I wins.) Finally, define g : StrI ∪ StrII → Pξ by setting

g(σ) =
⋃
{D : σ is a winning strategy for I in Game(N, AD)} if σ ∈ StrI,

g(τ) =
⋃
{D : τ is a winning strategy for II in Game(N, AD)} if τ ∈ StrII.

We find that g is a surjection onto Pξ. PPP Take any D ⊆ ξ.

case 1 Suppose that I has a winning strategy σ in Game(N, AD). Then D ⊆ g(σ). ??? If D 6= g(σ),
there is a D′, distinct from D, such that σ is a winning strategy for I in Game(N, D′). Let ζ < ξ be such
that D ∩ ζ 6= D′ ∩ ζ. Then there is a z ∈ NN such that f(〈z(2n)〉n∈N) = ζ and gζ(〈z(2n+ 1)〉n∈N) = D ∩ ζ.
In this case, taking x = σ ∗ z, we have x(4n+ 1) = z(2n) and x(4n+ 3) = z(2n+ 1) for every n, so ζx = ζ
and Fx = D∩ ζ. Since x ∈ AD, we have ηx < ξ, Ex = D∩ηx and ζ ≤ ηx. But also x ∈ AD′ , so Ex = D′∩ηx
and D ∩ ζ = D′ ∩ ζ, contrary to the choice of ζ. XXX Thus D = g(σ).

case 2 Suppose that II has a winning strategy τ in Game(N, AD). Then D ⊆ g(τ). ??? If D 6= g(τ),
there is a D′, distinct from D, such that τ is a winning strategy for II in Game(N, D′). Let ζ < ξ be such
that D ∩ ζ 6= D′ ∩ ζ. Again, there is a z ∈ NN such that f(〈z(2n)〉n∈N) = ζ and gζ(〈z(2n+ 1)〉n∈N) = D ∩ ζ.
This time, taking x = τ ∗ z, we have x(4n) = z(2n) and x(4n + 2) = z(2n + 1) for every n, so ηx = ζ and
Ex = D ∩ ηx. Since x /∈ AD, we must have ηx < ζx < ξ and Fx = D ∩ ζx; since also x /∈ AD′ , Fx = D′ ∩ ζx;
so that D ∩ ζ = Fx ∩ ζ = D′ ∩ ζ, which is impossible. XXX Thus D = g(τ).

Thus in either case D ∈ g[StrI ∪ StrII]. As D is arbitrary, g[StrI ∪ StrII] = Pξ. QQQ
Setting gξ = gh, the induction proceeds.

(d) For the inductive step to ξ + 1 where ω ≤ ξ < α, set

hξ(0) = ξ, hξ(n) = n− 1 for n ∈ ω \ {0}, hξ(η) = η if ω ≤ η < ξ,

gξ+1(x) = hξ[gξ(x)] for x ∈ NN.

(e) At the end of the induction, gα is the required surjection onto Pα.

567N Theorem (Martin 70) [AC] Assume that there is a two-valued-measurable cardinal. Then every
coanalytic subset of NN is determined.

proof Let A ⊆ NN be a coanalytic set.

(a) Set S∗ =
⋃

n≥1 N
n. For υ, υ′ ∈ S∗ say that υ 4 υ′ if either υ extends υ′ or there is an n <

min(#(υ),#(υ′)) such that υ↾n = υ′↾n and υ(n) < υ′(n). Then 4 is a total order, and its restriction to Nn

is the lexicographic well-ordering for each n ≥ 1.
For w ∈

⋃
n∈N Nn, set Iw = {x : w ⊆ x ∈ NN}. Fix an enumeration 〈υi〉i∈N of S∗ such that #(υi) ≤ i+ 1

for every i ∈ N.

(b) A′ = NN \A is Souslin-F (423Eb); express it as

A′ =
⋃

y∈NN

⋂
n≥1 Fy↾n

where Fυ is closed for every υ ∈ S∗. Replacing Fυ by
⋂

1≤i≤#(υ) Fυ↾i if necessary, we may suppose that

Fυ ⊆ Fυ′ whenever υ ⊇ υ′, as in 421Cf9.
For x ∈ NN, set

Tx = {υ : υ ∈ S∗, Ix↾#(υ) ∩ Fυ 6= 0},

9Later editions only.
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and define a relation 4x on S∗ by saying that

υ 4x υ
′ ⇐⇒ either υ, υ′ ∈ Tx and υ 4 υ′

or υ ∈ Tx and υ′ /∈ Tx

or υ, υ′ /∈ Tx and i ≤ j where υ = υi, υ
′ = υj .

Then 4x is a total ordering, since it copies the total ordering 4 on Tx and the well-ordering induced by the
enumeration 〈υi〉i∈N on S∗ \ Tx, and puts one below the other.

Note that if n ∈ N, x, y ∈ NN are such that x↾n = y↾n, and i < n, then x↾#(υi) = y↾#(υi), so υi ∈ Tx
iff υi ∈ Ty. Consequently, for i, j < n, υi 4x υj iff υi 4y υj . It follows that for every w ∈ Nn we have a
total ordering 4′

w of n defined by saying that i 4′
w j iff υi 4x υj whenever x ∈ Iw.

(c) If x ∈ NN and 4x is not a well-ordering, then x /∈ A. PPP Let D ⊆ S∗ be a non-empty set with
no 4x-least member. Then D ∩ Tx is an initial segment of D. Since S∗ \ Tx is certainly well-ordered by
4x, D ∩ Tx 6= ∅. Define 〈Dn〉n∈N, 〈y(n)〉n∈N as follows. D0 = D ∩ Tx. Given that Dn is a non-empty
initial segment of D and that υ ⊇ y↾n for every υ ∈ Dn, then y↾n cannot be the least member of D, so
Dn 6= {y↾n}; set y(n) = min{υ(n) : υ ∈ Dn \ {y↾n}},

Dn+1 = {υ : υ ∈ Dn \ {y↾n}, υ(n) = y(n)}.

Because 4x agrees with 4 on Tx, Dn+1 is a non-empty initial segment of D, and the induction continues.
If m, n ∈ N, then there is an υ ∈ Tx such that υ ⊇ y↾ max(m,n), and

Ix↾m ∩ Fy↾n ⊇ Ix↾#(υ) ∩ Fυ 6= ∅.

As m is arbitrary and Fy↾n is closed, x ∈ Fy↾n; as n is arbitrary, x ∈ A′ and x /∈ A. QQQ

(d) Let κ be a two-valued-measurable cardinal, and give N×κ its discrete topology. In (N×κ)N consider
the set F of sequences 〈(x(n), ξ(n))〉n∈N such that

whenever i, j ∈ N, υi ⊂ υj and x ∈ Fυj
, then ξ(2j) < ξ(2i).

Then F is closed for the product topology; by 567B, F is determined.

(e) Suppose I has a winning strategy σ in the game Game(N × κ, F ). Then I has a winning strategy
in Game(N, A). PPP For 〈ki〉i<n ∈ Nn take σ′(〈ki〉i<n) to be the first component of σ(〈(ki, 0)〉i<n). If x is
any play of Game(N, A) consistent with σ′, then for each n set ξ(2n + 1) = 0 and let ξ(2n) be the second
component of σ(〈(x(2i+ 1), 0)〉i<n). Then 〈(x(n), ξ(n))〉n∈N is a play of Game(N× κ, F ) consistent with σ,
so is won by I. ??? If x /∈ A, let y ∈ NN be such that x ∈ Fy↾n for every n ∈ N. Set I = {i : i ∈ N, y ⊇ υi};
then I is infinite, and there is an infinite J ⊆ I such that υi ⊂ υj whenever i, j ∈ J and i < j, while x ∈ Fυj

for every j ∈ J . But now we see that ξ(2j) < ξ(2i) whenever i < j in J , which is impossible. XXX
Thus x ∈ A; as x was arbitrary, σ′ is a winning strategy for I in Game(N, A). QQQ

(f) Suppose II has a winning strategy τ in Game(N×κ, F ). Then II has a winning strategy in Game(N, A).
PPP Fix a normal κ-additive ultrafilter F on κ (541Ma). For w = (k0, . . . , k2n) ∈ N2n+1 consider the function
fw : [κ]n+1 → N defined by saying that fw(J) is to be the first component of τ(〈(k2i, ξi)〉i≤n) where
(ξ0, . . . , ξn) is that enumeration of J such that, for i, j ≤ n, ξi ≤ ξj iff i 4′

w j. Then for each m ∈ N there
is a Cwm ∈ F such that either fw(J) ≤ m for every J ∈ [Cwm]n+1 or fw(J) > m for every J ∈ [Cwm]n+1

(4A1L). Setting C =
⋂

m,n∈N

⋂
w∈N2n+1 Cwm, C ∈ F and every fw is constant on [C]n+1. Let ρ(w) be the

constant value of fw↾[C]n+1.
Define τ ′ :

⋃
n≥1 N

n → N inductively, saying that τ ′(k0, . . . , kn) = ρ(w) whenever w(2i) = ki for i ≤ n

and w(2i + 1) = τ ′(k0, . . . , ki) for i < n. Suppose that x is a play of Game(N, A) consistent with τ ′. ??? If
x ∈ A, then 4x is a well-ordering, by (c). The order type of (S∗,4x) is countable, so is surely less than
otp(C) = κ, and we have a function θ : S∗ → C such that θ(υ) ≤ θ(υ′) iff υ 4x υ

′.
Define 〈ξ(n)〉n∈N by saying that

ξ(n) = θ(υj) if n = 2j is even ,

= the second component of τ((x(0), ξ(0)), (x(2), ξ(2)), . . . , (x(2j), ξ(2j)))

if n = 2j + 1 is odd.
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For i, j ≤ n ∈ N, setting w = x↾2n+ 1, we have ξ(2i), ξ(2j) ∈ C and

ξ(2i) ≤ ξ(2j) ⇐⇒ θ(υi) ≤ θ(υj) ⇐⇒ υi 4x υj ⇐⇒ i 4′
w j.

So

x(2n+ 1) = ρ(w) = fw({ξ(2i) : i ≤ n})

is the first component of τ((x(0), ξ(0)), . . . , (x(2n), ξ(2n))); thus 〈(x(n), ξ(n))〉n∈N is a play of Game(N×κ, F )
consistent with τ , and is won by II. There must therefore be i, j ∈ N such that υi ⊂ υj , x ∈ Fυj

and and
ξ(2i) ≤ ξ(2j). Now υj ∈ Tx and υi 4x υj , so υi 4 υj ; which is impossible. XXX

So x /∈ A; as x is arbitrary, τ ′ is a winning strategy for II in Game(N, A). QQQ

(g) Putting (d), (e) and (f) together, we see that A is determined.

567O Corollary [AC] If there is a two-valued-measurable cardinal, then every PCA (= ΣΣΣ1
2) subset of

any Polish space is universally measurable.

proof (a) Let A ⊆ {0, 1}N be PCA. Then there is a coanalytic subset B of NN × {0, 1}N such that A
is the projection of B. Of course this means that there is a coanalytic subset B′ of {0, 1}N such that
A is a continuous image of B′, since NN × {0, 1}N is homeomorphic to a Gδ subset of {0, 1}N, and any
homeomorphism must carry B to a coanalytic subset of {0, 1}N, by 423Tc. Now (h−1[B′] ∩ F ) ∪ H is
coanalytic whenever h : NN → {0, 1}N is continuous, F ⊆ NN is closed and H ⊆ NN is open; by 567N,
(N, (h−1[B′] ∩ F ) ∪H) is always determined; by 567F, A is measured by the usual measure ν on {0, 1}N.

(b) Now suppose that X is a Polish space, A ⊆ X is a PCA set and µ is a Borel probability measure on
X with completion µ̂. Then there is a Borel measurable function f : {0, 1}N → X such that µ̂ is the image
measure νf−1. PPP Let (A, µ̄) and (B, ν̄) be the measure algebras of µ, ν respectively. Then A has Maharam
type at most w(X) = ω (531Aa), so there is a measure-preserving Boolean homomorphism π : A → B

(332N). Now µ̂ is a Radon measure (433Cb), so there is a function f0 : {0, 1}N → X such that f−1
0 [E]

is measured by ν, and νf−1
0 [E] = µ̂E, whenever E is measured by µ̂ (416Wb). In this case, f0 is almost

continuous (433E) and there is a sequence 〈Kn〉n∈N of compact subsets of {0, 1}N such that limn→∞ νKn = 1
and f0↾Kn is continuous for every n. Fix any x0 ∈ X and set f(z) = f0(z) for z ∈

⋃
n∈NKn, x for other

z ∈ {0, 1}N; then f is Borel measurable and equal ν-a.e. to f0, so f also is inverse-measure-preserving for ν
and µ̂. Finally, because f likewise is almost continuous, the image measure νf−1 on X is a Radon measure
(418I), and must be exactly µ̂ (416Eb). QQQ

Since f−1[A] is PCA (423Td), ν measures f−1[A] and µ̂ measures A. As µ is arbitrary, A is universally
measurable.

567X Basic exercises (a) Let X be a non-empty well-orderable set, with its discrete topology, and
G ⊆ XN an open set. Show that G is determined.

(b) [AC(R;ω)] Let A ⊆ NN be such that {x : <n>ax ∈ A} is determined for every n ∈ N. Show that
NN \A is determined.

(c) Show that AD is true iff every subset of {0, 1}N is determined. (Hint : For x ∈ {0, 1}N set Ix = {n :
x(2n) = 1}, Jx = {n : x(2n + 1) = 1}; set CI = {x : sup Ix > sup Jx}, D = {x : Ix and Jx are both
infinite}. Define f : D → NN by setting f(x)(0) = min Ix, f(x)(2n + 1) = min{k : f(x)(2n) + k ∈ Jx},
f(x)(2n + 2) = min{k : f(x)(2n + 1) + k + 1 ∈ Ix}. Show that if A ⊆ NN and CI ∪ f−1[A] is determined,
then A is determined.)

(d) [AC(R;ω)] (i) Show that the intersection of a sequence of closed cofinal subsets of ω1 is cofinal. (ii)
Show that we have a unique topological probability measure on ω1 which is zero on singletons and inner
regular with respect to the closed sets.

(e) [AD] Show that if f : [0, 1]2 → R is a bounded function, then
∫∫

f(x, y)dxdy and
∫∫

f(x, y)dydx are
defined and equal, where the integrations are with respect to Lebesgue measure on [0, 1].
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(f) [AD] Let µ be a Radon measure on a Polish space X, and E a well-ordered family of subsets of X.
Show that µ(

⋃
E) = supE∈E µE. (Hint : 567Xe.)

(g) [AD+AC(ω)] Show that there are no interesting Sierpiński sets, in the sense that every atomless
probability space has an uncountable negligible subset.

(h) [AD] Show that every semi-finite measure space is perfect.

(i) [AD] Show that if X is a separable Banach space and Y is a normed space then every linear operator
from X to Y is bounded.

(j) [DC] Let I be a set, and B̂ the Baire-property algebra of PI with its usual topology. Show that

every B̂-measurable real-valued finitely additive functional on PI is completely additive. (Hint : remember
to prove that PI is a Baire space.)

(k) [AD] (i) Show that there is no non-principal ultrafilter on N. (ii) Show that {0, 1}R is not compact.

(l) [AD] Show that there is no linear lifting for Lebesgue measure on R. (Hint : 567J.)

(m) [AD] (i) Show that ℓ1(R) is not reflexive. (ii) Show that ℓ1(ω1) is not reflexive.

(n) [AD] (i) Show that there is no injective function from ω1 to R. (ii) Show that there is no family
〈fξ〉ξ<ω1

such that fξ is an injective function from ξ to N for every ξ < ω1. (iii) Show that there is no
function f : ω1 ×N → ω1 such that {f(ξ, n) : n ∈ N} is a cofinal subset of ξ for every non-zero limit ordinal
ξ < ω1. (Hint : 567L.)

(o) (i) Show that there is a set A ⊆ ωN
1 such that Game(ω1, A) is not determined. (Hint : Set II the task

of enumerating x(0); see 567D and 567Xn.) (ii) Show that there is a set A ⊆ (PR)N such that Game(PR, A)
is not determined.

(p) [AD] Show that there is a surjective function from R to B(R), but no injective function from B(R)
to R. (Hint : 567E, 561Xd.)

(q) [AC] Show that if there is a two-valued-measurable cardinal and A ⊆ NN is analytic then A is
determined.

(r) [AC] Suppose that there is a two-valued-measurable cardinal. Show that every PCA subset of R has
the Baire property.

567Y Further exercises (a) Let X be a non-empty set and A ⊆ XN. A quasi-strategy for I in
Game(X,A) is a function σ :

⋃
n∈NX

n → PX \ {∅}; it is a winning quasi-strategy if x ∈ A whenever

x ∈ XN and x(2n) ∈ σ(〈x(2i + 1)〉i<n) for every n. Similarly, a winning quasi-strategy for II is a function
τ :

⋃
n≥1X

n → PX \ {∅} such that x /∈ A whenever x ∈ XN and x(2n+ 1) ∈ τ(〈x(2i)〉i<n) for every n. (i)

Show that if X is any non-empty discrete space and F ⊆ XN is closed then at least one player has a winning
quasi-strategy in Game(X,F ). (ii) Show that DC is true iff there is no game Game(X,A) such that both
players have winning quasi-strategies.

(b) [AD] Show that every uncountable subset of R has a non-empty perfect subset. (Hint : Let A ⊆
{0, 1}N. Enumerate

⋃
n∈N{0, 1}n as 〈υj〉j∈N. For x ∈ NN set

f(x) = υx(0)
a<min(1, x(1))>aυx(2)

a<min(1, x(3))>a . . . .

Consider Game(N, f−1[A]).)

(c) [AD] Let X be an analytic Hausdorff space, and c : PX → [0,∞] a submodular Choquet capacity.
Show that c(A) = sup{c(K) : K ⊆ A is compact} for every A ⊆ X. (Cf. 479Yj.)
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(d) [AC(R;ω)] Let A be a Dedekind σ-complete Boolean algebra, and ν : A → R an additive functional
which is Borel measurable for the order-sequential topology on A. Show that ν is countably additive.

(e) Let Θ be the least ordinal such that there is no surjection from PN onto Θ. (i) [AC(ω)] Show that
cf Θ > ω. (ii) [AD] Show that Θ = ωΘ.

(f) [AC] Suppose that there is a two-valued-measurable cardinal. Show that every uncountable PCA
subset of R has a non-empty perfect subset.

567 Notes and comments The consequences of the axiom of determinacy are so striking that the question
of its consistency is particularly pressing. In fact W.H.Woodin has determined its consistency strength, in
terms of large cardinals (Kanamori 03, 32.16, or Jech 03, 33.27), and this is less than that of the existence
of a supercompact cardinal; so it seems safe enough.

In ZFC, 567B is most naturally thought of as a basic special case of Martin’s theorem that every Borel
subset of XN, for any discrete space X, is determined (Martin 75, or Kechris 95, 20.5). The idea of the
proof is that if II has no winning strategy, then all I has to do is to avoid positions from which II can win.
But for a proof in ZF we need more than this. It would not be enough to show that for every first move by
I, there is a winning strategy for II from the resulting position; we should need to show that these can be
pieced together as a single function τ :

⋃
n≥1X

n → X. Turning this round, AD must imply a weak form

of the axiom of choice (567D; see also 567Xo). In the particular case of 567B, we have a basic set W0 of
winning positions for II with a trivial family 〈τw〉w∈W0

of strategies. (Starting from a position in W0, II can
simply play the 4-least point of X to get a position from which I cannot avoid W0.) From these we can
work backwards to construct a family 〈τw〉w∈W of strategies, where W =

⋃
ξ∈OnWξ; so that if <u> ∈ W

for every u ∈ X, we can assemble these into a winning strategy for II in Game(X,F ).

The central result of the section is I suppose 567G. From the point of view of a real analyst like myself,
as opposed to a logician or set theorist, this is the door into a different world, explored in 567H-567K,
567Xe-567Xm and 567Yb. In 567I we have a result which is already interesting in ZFC. Recall that in ZFC
there are non-trivial additive functionals on PN which are measurable in the sense of §464 (464Jb); none of
them can be Baire-property-measurable.

I have not talked about ‘automatic continuity’ in this book. If you have seen anything of this subject
you will recognise the three parts of 567H as versions of standard results on homomorphisms which are
measurable in some sense. I do not know whether the hypothesis ‘abelian’ is necessary in 567Hb. If you
like, 567J can also be thought of as an automatic-continuity result.

You will see that 567H-567J depend on 567Gb rather than on 567Ga; that is, on category rather than
on measure. It is not clear how much can be proved if we assume, as an axiom, that every subset of R is
Lebesgue measurable (together with AC(ω) at least, of course), rather than that every subset of R has the
Baire property.

In 567L far more is true, at least with AD+DC; ω2, as well as ω1, is two-valued-measurable, and the
filter on ω1 generated by the closed cofinal sets is an ultrafilter (Kanamori 03, §28, or Jech 03, Theorem
33.12). I am not sure what we should think of as a ‘real-valued-measurable cardinal’ in this context. In
the language of 566Xl, AD implies that R is not measure-free, and Lebesgue measure is κ-additive for every
initial ordinal κ (567Xf). For further combinatorial consequences of AD, see Kanamori 03. Note that AD
implies CH in the form ‘every uncountable subset of R is equipollent with R’ (567Yb). But the relationship
of R with ω1 is quite different. ZF is enough to build a surjection from R onto ω1. AD implies that there is
no injection from ω1 into R (567Xn) but that there are surjections from R onto much larger initial ordinals
(567M, 567Ye).

In 567N-567O I return to the world of ZFC; they are in this section because they depend on 567B and
567F. Once again, much more is known about determinacy compatible with AC, and may be found in
Kanamori 03 or Jech 03.
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