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Chapter 56
Choice and determinacy

Nearly everyone reading this book will have been taking the axiom of choice for granted nearly all the
time. This is the home territory of twentieth-century abstract analysis, and the one in which the great
majority of the results have been developed. But I hope that everyone is aware that there are other ways of
doing things. In this chapter I want to explore what seem to me to be the most interesting alternatives. In
one sense they are minor variations on the standard approach, since I keep strictly to ideas expressible within
the framework of Zermelo-Fraenkel set theory; but in other ways they are dramatic enough to rearrange our
prejudices. The arguments I will present in this chapter are mostly not especially difficult by the standards
of this volume, but they do depend on intuitions for which familiar results which are likely to remain valid
under the new rules being considered.

Let me say straight away that the real aim of the chapter is §567, on the axiom of determinacy. The
significance of this axiom is that it is (so far) the most striking rival to the axiom of choice, in that it leads
us quickly to a large number of propositions directly contradicting familiar theorems; for instance, every
subset of the real line is now Lebesgue measurable (567G). But we need also to know which theorems are
still true, and the first six sections of the chapter are devoted to a discussion of what can be done in ZF
alone (§§561-565) and with countable or dependent choice (§566). Actually §5562-565 are rather off the
straight line to §567, because they examine parts of real analysis in which the standard proofs depend only
on countable choice or less; but a great deal more can be done than most of us would expect, and the
methods are instructive.

Going into details, §561 looks at basic facts from real analysis, functional analysis and general topology
which can be proved in ZF. §562 deals with ‘codable’ Borel sets and functions, using Borel codes to keep
track of constructions for objects, so that if we know a sequence of codes we can avoid having to make a
sequence of choices. A ‘Borel-coded measure’ (§563) is now one which behaves well with respect to codable
sequences of measurable sets; for such a measure we have an integral with versions of the convergence
theorems (§564), and Lebesgue measure fits naturally into the structure (§565). In §566, with ZF + AC(w),
we are back in familiar territory, and most of the results of Volumes 1 and 2 can be proved if we are willing
to re-examine some definitions and hypotheses. Finally, in §567, I look at infinite games and half a dozen of
the consequences of AD, with a postscript on determinacy in the context of ZF + AC.
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561 Analysis without choice

Elementary courses in analysis are often casual about uses of weak forms of choice; a typical argument
runs ‘for every € > 0 there is an a € A such that |a — z| < ¢, so there is a sequence in A converging to a’.
This is a direct call on the countable axiom of choice: setting A, = {a:a € A, |a — x| < 27"}, we are told
that every A, is non-empty, and conclude that [], .y A» is non-empty. In the present section I will abjure
such methods and investigate what can still be done with the ideas important in measure theory. We have
useful partial versions of Tychonoff’s theorem (561D), Baire’s theorem (561E), Stone’s theorem (561F) and
Kakutani’s theorem on the representation of L-spaces (561H); moreover, there is a direct construction of
Haar measures, regarded as linear functionals (561G).

Unless explicitly stated otherwise, throughout this section (and the next four) I am working entirely
without any form of the axiom of choice.
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2 Choice and determinacy 561A

561A Set theory without choice In §§1A1 and 2A1 I tried to lay out some of the basic ideas of set
theory without appealing to the axiom of choice except when this was clearly necessary. The most obvious
point is that in the absence of choice

the union of a sequence of countable sets need not be countable

(see the note in 1A1G). In fact FEFERMAN & LEVY 63 (see JECH 73, 10.6) described a model of set theory
in which R is the union of a sequence of countable sets. But not all is lost. The elementary arguments of
1A1E still give

N~Z~NxNx~Q;
there is no difficulty in extending them to show such things as
N~ [N ~{J,5; N ~Q" x Q"

for every integer r > 1. The Schroder-Bernstein theorem survives (the method in 344D is easily translated
back into its original form as a proof of the ordinary Schroder-Bernstein theorem). Consequently we still
have enough bijections to establish

R~ PN~ {0, 1} ~ P(N x N) ~ (PN)N ~ RN ~ NV,

Cantor’s theorem that X 2 PX is unaffected, so we still know that R is not countable.

We can still use transfinite recursion; see 2A1B. We still have a class On of von Neumann ordinals such
that every well-ordered set is isomorphic to exactly one ordinal (2A1Dg) and therefore equipollent with
exactly one initial ordinal (2A1Fb). T will say that a set X is well-orderable if there is a well-ordering of
X. The standard arguments for Zermelo’s Well-Ordering Theorem (2A1K) now tell us that for any set X
the following are equiveridical:

(i) X is well-orderable;

(ii) X is equipollent with some ordinal;

(iii) there is an injective function from X into a well-orderable set;

(iv) there is a choice function for PX \ {0}
(that is, a function f such that f(A) € A for every non-empty A C X). What this means is that if we are
given a family (A;);c; of non-empty sets, and X = (J,; A; is well-orderable (e.g., because it is countable),
then [,.; A; is not empty (it contains (f(A;))ic;r where f is a function as in (iv) above).

Note also that while we still have a first uncountable ordinal wy (the set of countable ordinals), it can
have countable cofinality (561Ya). The union of a sequence of finite sets need not be countable (JECH 73,
§5.4); but the union of a sequence of finite subsets of a given totally ordered set is countable, because we can
use the total ordering to simultaneously enumerate each of the finite sets in ascending order. Consequently,
if v : w1 — R is a monotonic function there is a £ < wy such that y(§+1) = v(§). P It is enough to consider
the case in which v is non-decreasing. Set

Ap = {€:7(0) + 27" < (€ +1) < n).

Then A, has at most 2" max(0,n — v(0)) members, so is finite; consequently (J, oy An is countable, and

there is a £ € w1 \ U, en An- Of course we now find that v(§ +1) = v(£). Q

561B Real analysis without choice In fact all the standard theorems of elementary real and com-
plex analysis are essentially unchanged. The kind of tightening required in some proofs, to avoid explicit
dependence on the existence of sequences, is similar to the adaptations needed when we move to general
topological spaces. For instance, we must define ‘compactness’ in terms of open covers; compactness and
sequential compactness, even for subsets of R, may no longer coincide (561Xc). But we do still have the
Heine-Borel theorem in the form ‘a subset of R” is compact iff it is closed and bounded’ (provided, of course,
that we understand that ‘closed’ is not the same thing as ‘sequentially closed’); see the proof in 2A2F.

561C Some new difficulties arise when we move away from ‘concrete’ questions like the Prime Number
Theorem and start looking at general metric spaces, or even general subsets of R. For instance, a subset of
R, regarded as a topological space, must be second-countable but need not be separable. However we can
go a long way if we take care. The following is an elementary example which will be useful below.
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561E Analysis without choice 3

Lemma Let £ be the set of non-empty closed subsets of NY. Then there is a family (fr)ree such that, for
each F € £, fr is a continuous function from N to F and fr(a) = « for every a € F.

proof For F € £ set Tr = {a|n:a € F, n € N}. If a € NV \ F then, because F is closed, there is some
n € N such that B[n # a|n for any § € F, that is, a[n ¢ Tr. For 0 € Tr define Br, € NV inductively by
saying that

Brs(n) =o(n) if n < #(0),

= inf{i: there is some « such that Sp,[n C a € F and a(n) =i} otherwise,

counting inf () as 0 if necessary. We see that in fact Srs|[n € TF for every n € N, so that 8p, € F.
We can therefore define fr : N¥ — NN by setting

frla)=aif a € F,

= BF,an for the largest n such that a[n € Tr otherwise.

(Because F is not empty, the empty sequence «[0 belongs to T for every a € NY.) We see that fr(a) € F
for all F and @, and fr(a) = aif @ € F. To see that fr is always continuous, note that in fact if « € NN\ F,
and n is the largest integer such that a[n belongs to T, then fr(8) = fr(a) whenever Sln+1=afn+ 1,
so fr is continuous at . While if o« € F', n € N and S[n = a[n, then either 8 € F so fr(8)[n = fr(a)[n,
or fr(8) = Brs where afn C o C Bry, and again fr(8)[n = Bs[n = afn. So we have a suitable family of
functions.

561D Tychonoff’s theorem It is a classic result (KELLEY 50) that Tychonoff’s theorem, in a general
form, is actually equivalent to the axiom of choice. But nevertheless we have useful partial results which do
not depend on the axiom of choice. The following will help in the proofs of 561F and 563I.

Theorem Let (X;);c; be a family of compact topological spaces such that I is well-orderable. For each
i € I let & be the family of non-empty closed subsets of X;, and suppose that there is a choice function for

Uier & Then X = [[,.; X; is compact.

proof Since I is well-orderable, we may suppose that I = « for some initial ordinal x. Fix a choice function
) for U§<H &;. For £ < k write m¢ : X — X¢ for the coordinate map. If X is empty the result is trivial.
Otherwise, let F be any family of closed subsets of X with the finite intersection property. I seek to define
a non-decreasing family (F¢)¢<, of filters on X such that the image filter m¢[[Fei1]] (2A1Ib) is convergent
for each £ < k. Start with F( the filter generated by F. Given F¢, let F¢ be the set of cluster points of
me[[Fe]]; because X¢ is compact, this is a non-empty closed subset of X¢, and xz¢ = 9(F¢) is defined. Let
Fey1 be the filter on X generated by

Fe U {FEI[U] : U is a neighbourhood of z¢ in X¢}.

For limit ordinals £ < &, let F¢ be the filter on X generated by Un<£ Fa-
Now F, is a filter including F converging to & = (x¢)¢<x, and  must belong to (| F. As F is arbitrary,
X is compact.

Remark The point of the condition ‘there is a choice function for | J;.; &’ is that it is satisfied if every X;
is the unit interval [0, 1], for instance; we could take 1(E) = min E for non-empty closed sets E C [0, 1].
You will have no difficulty in devising other examples, using the technique of the proof above, or otherwise.
Note that 561C shows that there is a choice function for the family £ of non-empty closed subsets of NV,
since we can use the function F' +— fr(0) where (fr)pcg is the family of functions defined there.

561E Baire’s theorem (a) Let (X, p) be a complete metric space with a well-orderable dense subset.
Then X is a Baire space.
(b) Let X be a compact Hausdorff space with a well-orderable m-base. Then X is a Baire space.

proof (a) Let D be a dense subset of X with a well-ordering <. If (G, )nen is a sequence of dense open
subsets of X, and G is a non-empty open set, define (H,)nen, (Tn)nen and (€,)nen inductively, as follows.
Hy = G. Given H,, x, is to be the <-first point of H,,. Given z, and H,, €, is to be the first rational
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4 Choice and determinacy 561E

number in ]0,27"] such that B(z,,€e,) € H,. (I leave it to you to decide which rational numbers come
first.) Now set Hy+1 = {y :y € Gn, p(y,2,) < €,}; continue.

At the end of the induction, (z,),en is a Cauchy sequence so has a limit = in X. Since z,, € H,, C H,,
whenever m <n, z € H,,2 C H,11 C G, for every n, and x witnesses that G N ﬂneN G, is non-empty. As
G and (G, )nen are arbitrary, X is a Baire space.

(b) Let U be a m-base for the topology of X, not containing @, with a well-ordering <. If (G, )nen is a
sequence of dense open subsets of X, and G is a non-empty open set, define (U, )nen in U inductively by
saying that

Up is the <-first member of I included in G,
Up1 is the <-first member of U such that U, C U, NG,
for each n. Then ), oy U, is non-empty and included in G N Npen G-

561F Stone’s Theorem Let 2 be a well-orderable Boolean algebra. Then there is a compact Hausdorff
Baire space Z such that 2 is isomorphic to the algebra of open-and-closed subsets of Z.

proof Asin 311E, let Z be the set of ring homomorphisms from 2l onto Z,. Writing B for the set of finite
subalgebras of A, Z = (g5 Z» where

Zy ={z:2 €73, 2B is a Boolean homomorphism}.

So Z is a closed subset of the compact Hausdorff space {0,1}*, and is compact. Setting a = {2 : 2 € Z,
z(a) = 1}, the map a — @ is a Boolean homomorphism from 2 to the algebra € of open-and-closed subsets
of Z. f a € A\ {0} and B is a finite subalgebra of 2, then the subalgebra € generated by {a} U B is still
finite, and there is a Boolean homomorphism w : € — Zs such that w(a) = 1; extending w arbitrarily to a
member of {0,1}*, we obtain a z € Zy such that z(a) = 1; as 9B is arbitrary, there is a z € Z such that
z(a) = 1. So the map a — @ is injective. If G C Z is open and z € G, there must be a finite set A C 2 such
that G includes {7’ : 2’ € Z, 2/ A = z[ A}; in this case, setting c = inf{a: a € A4, z(a) =1} \ sup{a:a € A,
z(a) = 0}, z € ¢ C G. Tt follows that any member of € is of the form @ for some a € 2, so that a — @ is an
isomorphism between 2l and €.
Because 2l is well-orderable, Z3 and Z have well-orderable bases, and Z is a Baire space, by 561E.

561G Haar measure Now I come to something which demands a rather less sketchy treatment.

Theorem Let X be a completely regular locally compact Hausdorff topological group.

(i) There is a non-zero left-translation-invariant positive linear functional on C(X).

(ii) If ¢, ¢’ are non-zero left-translation-invariant positive linear functionals on Cx(X) then each is a
scalar multiple of the other.

proof (a) Write @ for {g: g € Cx(X)™, g(e) = ||g]lco = 1} where e is the identity of X. For f € Cy(X)"
and g € D, set

[f:9] :inf{Zai:ao,... yanp >0
i=0

n
and there are ag, ... ,a, € X such that f < Zaiai-lg},
=0
writing (a+;g)(z) = g(a~'z) as in 4A5Cc. We have to confirm that this infimum is always defined in [0, oco|.
P Set K = {z: f(z) >0} and U = {z : g(z) > 1}, so that K is compact, U is open and U # (). Then
K C U,cx aU, so there are ay,... ,a, € X such that K C Uign a;U. In this case

<3002l fllcaing
and [f:g] <2(n+1)[|f[le- Q

It is now easy to check that

[asif gl =T[f:91, [fi+fa:gl <Tfi:gl+Tfa:g],
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561G Analysis without choice 5
[af:gl=alf:gl, |flle <Tf:gl, [f:hl<T[f:gllg:h]
whenever f, f1, fo € Cx(X)", g, h € ®, a € X and a € [0,00[. (Compare part (c) of the proof of 441C.)
(b) Fix gy € ®, and for g € ® set

_ 1f:g]
(90 : 9]

by (f)

for f € Cr(X). Then
Yolasif) =wg(f),  bg(fi + fo) < Pg(f1) + Yy(fa),

Yglaf) = ay(f),  ¢g(f) < T[S : 90,

wg(f) < "/Jg(h)ff thl, 1< '@/Jg(h)[go :h

whenever f, fi, fo € Cp(X)T, h € &, a € X and a > 0. For a neighbourhood U of the identity e of X,
write @y for the set of those g € ® such that g(x) = 0 for every x € X \ U; because X is locally compact
and completely regular, ®y # ().

(c)(@) If fo,..., fm € Cr(X)T and € > 0, there is a neighbourhood U of e such that
DimoVe(fs) S g(Xoilo fi) €
whenever g € &;. P Set f = Z;-n:o fj. Let K be the compact set {x : f(z) # 0}, and let f e Cr(X) be
such that yK < f Let n > 0 be such that
(14 (m+ D)) (e () + 0[] : go]) < vg(f) + ¢,

and set f* = f +nf. Then we can express each fj as f* x hj where h; € Ci(X)* and Z;n:o hj < xX. Let
U be a neighbourhood of e such that |h;(z) — h;j(y)| < n whenever 7'y € U and j < m (compare 4A5Pa).

Take g € ®y. Let ap,... ,a, > 0 and ag,...,a, € X be such that f* < 3" jaa;49 and Y7 a; <
[f*:g]+n. Then, for any x € X and j < m,

filw) = f*(@)h;(x) < Yig aagla; 2)hy(x) < Yig aiglag @) (h(ai) +n)

because if i is such that g(a; 'x) # 0 then a; 'z € U and h;(z) < hj(a;)+n. So [f;: g] < Sory ai(h;(a:)+n).
Summing over j,

ol fi gl < g ai(l+ (m+1)n)

because -7 hi(a;) < 1 for every i. As ag,...,a, and ag, ... ,a, are arbitrar
3=0""7 ) ) ) ) 3

S olfiigl < A+ (m+ D[ gl < @+ (m+)n)([f: gl +nlf:g])
and

m

ng(f» < (1+ (m+ 1)n) (g (f) + mbg(f))

< (L4 (m+ D) (e (f) +nlf : g0]) < the(f) + e
as required. Q

(1) If fo,... , fm € Cx(X)™, M >0 and € > 0, there is a neighbourhood U of e such that
Z;‘nzo Yg(v; f5) < ¢Q(Z;n:o Vifi) +e

whenever g € ®y and o,...,Ym € [0, M]. B Let n > 0 be such that n(1 + 37" [f; : go]) < e By (i),
applied finitely often, there is a neighbourhood U of e such that

Z;‘nzo Yg(75f5) < 1/’9(2?:0 vifi) +n

whenever g € ®y and 7p, ... ,Vm € [0, M] are multiples of . Now, given arbitrary 7g,... ,vm € [0, M] and
g € ®y, let g, ... ,7,, be multiples of 7 such that v; <; <~} +n for each j. Then
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6 Choice and determinacy 561G

D g (vifi) < g (Vi fi) + mtbe ()
j=0 j=0
<P h) Y ve(f;) <wg(d if) +e
j=0 =0 =0

as required. Q

(d) (We are coming to the magic bit.) Suppose that f € Ci(X)*, € > 0 and that U is a neighbourhood
of e such that |f(z) — f(y)| < € whenever 2=y € U. Then if g € &y and v > ¢ there are ag,... ,a, >0
and ag, ... ,a, € X such that || f — > 1" asa;419]/cc <. P For all z, y € X we have

(f(z) = )g(@"y) < fy)g(a™ly) < (f(z) + g(a™1y).
Let n > 0 be such that n(1 + [f : §]) < v — ¢, where g(x) = g(z~1) for z € X. Let V be an open
neighbourhood of e such that |g(z) — g(y)| < n whenever zy~! € V. Then we have ay, ... ,a, such that
Uicn @iV 2 {2 : f(z) # 0}, and ho,... ,h, € Cx(X)* such that 377" ; hi(z) = 1 whenever f(x) > 0, while
hi(z) =01if i <n and = ¢ a;V. By (c-ii), there is an h € ® such that
Dico Un(vif X hi) < (Xiigvif X hi) +n

whenever 0 < v; < [go : g] for each i.
Now, for i <n and z, y € X,

hi(y) f () (9(a; 'x) —n) < () FW)a(y~ z) < hi(y) f(y)(g(a; "2) +n).
Accordingly

(f(z) =) (za§)(y) = (f(x) —)g(y~'z) < fly)gly ') = Z hi() f(W)g(y ')

=0
<Y R fFW)ga;  x) +n) =nfy) + Y hi(w) f)gla; 'o);
=0 1=0

similarly,
(f(@) + &) () (y) = Yoig hi(y) f(w)gla; 'z) —nf(y).

Fixing z for the moment, and applying the functional ¢}, to the expressions here (regarded as functions
of y), we get

(f(x) = )¥n(9) < mpn(f) +vn(Xisg 9(a; @) f X hi)

SO
f@) =7 < f@) —e—n[f: §1 < fl@) — e — 22l
Tﬂh,(g)
~glar'e) o,y o N~ glar') NN
S wh(izo 'lf)h(?) f X h”L) S ; 1/111(?) wh(f X hl) - ;alg(ai ‘T)
where «; = w On the other side,
¥n(9)
(f(@) + )vn(G) + non(f) > vn(Xig 9(a; ') f x hy),
o)
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561G Analysis without choice 7

¥n(f)
¢IL(§))

f@)+y> flx)+etn +n

_wh< Ao D f i) b > 30 L0 (f x )

?Z)h g ¢h(§)

g(a; ‘x)

D) < [go : g] for every i)

n
= Z aig(a;'x).
i=0

All this is valid for every z € X; so

(because

If = Yo @iaiviglls < 7- Q

(e) For any f € Ci(X)" and € > 0 there are a v > 0 and a neighbourhood U of e such that ¢, (f)—7| <€
for every h € ®y. P Let V be a compact neighbourhood of 0 and K = {z: f(z) 4+ go(x) > 0}; let f* €
Ci(X) be such that y(KV~1V) < f* < xX. Let 8, n > 0 be such that

S1+20+[f:gl))<e <5, nA+[f :g0]) <0
By (d), there are g € ®v, ag,... ,n,Bo,--- ,Bm = 0and ag, ... ,an,bo,...,b, € X such that
If = 2o @iainiglloo <m0 llgo — 22750 Bibjeiglles < -
We can suppose that all the a;, b; belong to KV~ since g(a™'z) =0ifx € K and a ¢ KV ~!; consequently
|f = 2o cuaimgl < nf* 1go — 2270 Bibjeugl < nf*.

Set a=>" joy, = Z _oBjand v = B (B is non-zero because ||golco = 1 and 7| f*|oo < 3.)
Let U C V be a neighbourhood of e such that

St aitn(aing) < Yn(Xi o ciaiag) + m,

S0 Bitn(bieg) < vn(X7mg Bibjerg) +n
for every h € @y ((c) above). Take any h € ®yy. Then

|¢h(f) - O‘¢h( )| = |"r/)h Z%¢h az‘lg)| < W)h —p Zazaz°lg | +1n

1=0 1=0
<nn(f*) +n<nlf* g0l +m
similarly,
11— BYn(9)| = [¥n(g0) — BYn(g)| < n([f* : go] +1).
But this means that

[ (f) = <0+ [f": gol) + [awbn(g) =]
<6 +9BYn(g) — 1] < 6(1+ 7).
Consequently

v < Tl)hl(i);‘s <206+ 1[f:90)s

[n(f) =7 <61 +2(0+[f : 90])) <€,
as required. Q
(f) We are nearly home. Let F be the filter on ® generated by {®y : U is a neighbourhood of e}. By
(), ¢(f) = limp_ 7 (f) is defined for every f € Cr(X)*. From the formulae in (b) we have
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8 Choice and determinacy 561G

plasf) = o(f), o1+ f2) < o(f1) +(f2),  dlaf) = ad(f)

whenever f, f1, f2 € Cx(X)T, a € X and a > 0. By (c-i), we have ¢(f1) + ¢(f2) < ¢(f1 + f2) for all fi,
fo € Cr(X)*. So ¢ is additive and extends to an invariant positive linear functional on Cj(X) which is
non-zero because ¢(gg) = 1.

(g) As for uniqueness, we can repeat the arguments in (e). Suppose that ¢’ is another left-translation-
invariant positive linear functional on Cy(X) such that ¢’(go) = 1, and f € Cx(X)". Let K be the closure of
{z: f(z) + go(z) > 0} and V a compact neighbourhood of ¢; let f* € Cy(X*) be such that x(KV V) < f*.
Take € > 0. Let §, n > 0 be such that

0<L, d1+26(N+1) e A+2AS(H+1) <e

ne(f*) <6, n¢'(f7) <é.

Then there is a neighbourhood U of e, included in V, such that |f(x) — f(y)| < n and |go(z) — go(v)] <
whenever 2~y € U. By (d), there are g € ®v, ag,... ,¥n,B0s--- ,Bm = 0 and ag, ... ,an,bo, ... by € X
such that

(@) = 3ig calaimg) (@) < m,  lgo(@) — 22700 Bj(bjerg) (@) <

for every z € X as in (e), we may suppose that every a;, b; belongs to KV ! so that

|f = 2isoquaimgl < nf* 1go — 2270 Bibjeugl < nf*.
Consequently, setting o= >""" oy, =31, B and v = o/,

16(f) — ag(9)] = |o(f) — 32ip id(aimg)| < no(f*) <9,

1= Bé(g)] = [d(g0) = 32720 Bid(bjnig)l < ne(f*) < 0.
So
[6(f) =1 < no(f*) +7186(9) = 1 <nd(f*) (1 +7) <6(1+7)

and

v < 2 <o)+ 1),

lp(f) — v <61+ 2(a(f) +9)) <e
Similarly, |¢'(f) — | < e and |¢(f) — &' (f)| < 2. As € and f are arbitrary, ¢ = ¢'.

561H Kakutani’s theorem (a) Let U be an Archimedean Riesz space with a weak order unit. Then
there are a Dedekind complete Boolean algebra 2 and an order-dense Riesz subspace of L°(2l), containing
x1, which is isomorphic to U.

(b) Let U be an L-space with a weak order unit e. Then there is a totally finite measure algebra (2, i)
such that U is isomorphic, as normed Riesz space, to L (2, ji), and we can choose the isomorphism to match
e with x1.

proof All the required ideas are in Volume 3; but we have quite a lot of checking to do.

(a) (i) The first step is to observe that, for any Dedekind o-complete Boolean algebra 2L, the definition of
L% = L%(2A) in 364A gives no difficulties, and that the formulae of 364D can be used to define a Riesz space
structure on L°. I I recall the formulae in question:

[u> a] = supgs, [u > ] for every a € R,
infoer [u > a] =0, sup,eg[u>a] =1,

[u+v>a] =sup,qlu>qglnfv>a—q],

whenever u, v € L? and a € R,

MEASURE THEORY



561H Analysis without choice 9

b > a] = [u> 2]

whenever u € LY, v € ]0,00[ and o € R. The distributive laws in 313A-313B are enough to ensure that u+v
and yu, so defined, belong to L, and also that u+v = v+u, u+ (v +w) = (u+v) +w, y(u+v) = yu+yv
for u, v, w € L and v > 0. Defining 0 € L° by saying that

[0>a]=1ifa<0,0if a >0,
we can check that u + 0 = u for every u. Defining —u € L° by saying that
[~u> ] = sup,eq, 40 1\ [ > —d]

for u € L® and o € R, we find (again using the distributive laws, of course) that u + (—u) = 0; we can now
define yu, for v < 0, by saying that 0-u = 0 and yu = (—v)(—u) if v < 0, and we shall have a linear space.
Turning to the ordering, it is nearly trivial to check that the definition

u<v < [u>a] Cv>a] for every « € R
gives us a partially ordered linear space. It is a Riesz space because the formula
[uvv>a]l=[u>a]ulv>a]

defines a member of LY which must be sup{u,v} in L°. Q
We need to know that if 2 is Dedekind complete, so is L?; the argument of 364M still applies. Note also
that a — ya : A — LY is order-continuous, as in 364Jc.

(ii) Now suppose that U is an Archimedean Riesz space with an order unit e. Let 2 be the band
algebra of U (353B). Then we can argue as in 368E, but with the simplification that the maximal disjoint
set C'in U™\ {0} is just {e}, to see that we have an injective Riesz homomorphism 7 : U — L°(2l) defined
by taking [Tu > a] to be the band generated by e A (u— ae)™ (or, if you prefer, by (u— ae)™, since it comes
to the same thing). We shall have T[U] order-dense, as before, with T'e = y1.

(b)(i) Again, the bit we have to concentrate on is the check that, starting from a totally finite measure
algebra (21, i), we can define L' (2, ji) as in 365A. We have to be a bit careful, because already in Proposition
321C there is an appeal to AC(w) (see 561Yi(vi)); but I think we need to know very little about measure
algebras to get through the arguments here. Of course another difficulty arises at once in 365A, because I
write

lully = [, Allul > o] ey,

and say that the integration is with respect to ‘Lebesgue measure’, which won’t do, at least until I redefine
Lebesgue integration as in §565. But we are integrating a monotonic function, so the integral can be thought
of as an improper Riemann integral; if you like,

lully = timyp o0 2773750 Alllul > 2774] = sup,en 2735y Allul > 2774,

Next, we can’t use the Loomis-Sikorski theorem to prove 365C, and have to go back to first principles.
To see that || ||; is subadditive, and additive on (L°)T, look first at ‘simple’ non-negative u, expressed as
w =Y. ,a;xa;, and check that [w = |jully = }.I, ijia;; now confirm that every element of (L°)" is
expressible as the supremum of a non-decreasing sequence of such elements, and that || ||; is sequentially
order-continuous on the left on (L%)*. (We need 321Be.) This is enough to show that L! is a solid linear
subspace of L with a Riesz norm and a sequentially order-continuous integral. (I do not claim, yet, that
L' is an L-space, because I do not know, in the absence of countable choice, that every Cauchy filter on L'
converges. )

(ii) Now let U be an L-space with a weak order unit e. As in (a), let 2 be the band algebra of U and
T :U — LY an injective Riesz homomorphism onto an order-dense Riesz subspace of L% with Te = x1. Now
U is Dedekind complete (354N, 354Ee). Consequently T'[U] must be solid in L° (353L%).

(iii) For a € 2, set jia = ||T~1(xa)|. Because the map a +— T~ !ya is additive and order-continuous
and injective, (2, ) is a measure algebra; indeed, i is actually order-continuous. So we have a space

Formerly 353K.
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10 Choice and determinacy 561H

L' = LY(A,i). Because [i is order-continuous, 364L(a-ii) tells us that |w|; = sup,cp ||v]1 Wwhenever
B C L is a non-empty upwards-directed set in L? with supremum w in L°.

Writing S C L for the linear span of {xa : a € 2}, we see that ||w|/;, = ||T~'w]|| for every w € S. Since S
is order-dense in L? it is order-dense in L', and T~![S] is order-dense in U, therefore norm-dense (354Ef).

(iv) Tu € L! for every u € UT. P For n € N set a,, = [Tu > 2]\ [Tu > 2", u,, = T~ (xan).
Set wy, = Y1 2"xa; for n € N. Then w, < Tu and ||w, |1 = |7 w,|| < |lu| for every n. By 364L(a-i),
W = SUp,,cy Wy, is defined in LY, and ||w||; = sup, ey ||wn 1 is finite. But Tu < 2w + x1, so Tu € L'. Q

(v) Ifw € (L')* thereisav € U* such that w = T'v and ||v|| = ||w||;. P Consider A = {u : u € T[S],
Tu < w}. This is upwards-directed and norm-bounded, so has a supremum v in U (354N again), and Tv > w’
whenever w’ € S and w’ < w. But S is order-dense in L so Tv > w. Because T is order-continuous, (iii)
tells us that

[Tl = supyea [Tulls = supyea [[ull = [lv]l;

while surely ||w|1 > sup,c4 [|Tuli. So Tv=w. Q

(vi) Putting (iv) and (v) together, we see that T[U] = L! and that T is a normed Riesz space
isomorphism, as required.

5611 Hilbert spaces: Proposition Let U be a Hilbert space.

(a) If C C U is a non-empty closed convex set then for any u € U there is a unique v € C such that
[lu —v|| = min{|lu —w|| : w € C}.

(b) Every closed linear subspace of U is the image of an orthogonal projection, that is, has an orthogonal
complement.

(¢) Every member of U* is of the form u +— (u|v) for some v € U.

(d) U is reflexive.

(e) If C C U is a norm-closed convex set then it is weakly closed.

proof (a) Set v = inf{||lu — w|| : w € C} and let F be the filter on U generated by sets of the form
Fo={w:weCl, |lu—w|<~vy+c¢€} for ¢ >0. Then F is Cauchy. P* Suppose that ¢ > 0 and wy, we € F-.
Then

lwi = wa|* = 2lju — wi|* + 2llu — wa|* = [12u — wy —w2|* < 4y +€)* —4y”
(because %(u)l +wq) € O)

= 8vye + 4€>.

So
inf pe F diam F = inf.sgdiam F, = 0. Q
We therefore have a limit v of F, which is in C' because C is closed, and [|u — v| = limy— 7 [|[u — w| = 7.

If now w is any other member of C, ||u — %(v +w)|| > so ||Ju—w| >~.

(b) Let V' be a closed linear subspace of U. By (a), we have a function P : U — V such that Pu is
the unique closest element of V' to w, that is, ||u — Pu|| < ||u — Pu + av|| for every v € V and « € R. It
follows that (u — Pulv) = 0 for every v € V, that is, that u — Pu € V+. As u is arbitrary, U = V + V*; as
V NnV+ = {0}, P must be the projection onto V with kernel V+, and is an orthogonal projection.

(c) Take f € U*. If f = 0 then f(u) = (u|0) for every u. Otherwise, set C' = {w : f(w) = 0}. Then
C' is a proper closed linear subspace of U. Take any ug € U \ C. Let vy be the point of C' nearest to ug,
and consider u; = up — vg. Then 0 is the point of C nearest to up, so that (u|u;) = 0 for every u € C. Set

f(u)

[[ua 12

uy; then (ulv) = 0 for every u € C, while f(v) = (v|v). So f(u) = (u|v) for every u € U.
(d) From (c) it follows that we can identify U* with U and therefore U** also becomes identified with U.
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(e) If C is empty this is trivial. Otherwise, take any u € U \ C. Let v be the point of C nearest to U,
and set f(w) = (wju —v) for w € U. Then f(w) < f(v) < f(u) for every w € C. So u does not belong to
the weak closure of C'; as u is arbitrary, C is weakly closed.

561X Basic exercises (a) Let X be any set. (i) Show that ¢?(X), for 1 < p < oo, is a Banach space.
(i) Show that ¢}(X)* can be identified with ¢>°(X). (iii) Show that if 1 < p < co and % + % =1 then
¢P(X)* can be identified with £2(X).

(b) Let X be any topological space. Show that Cy(X), with || ||ec, is a Banach space.

(¢) Suppose that there is an infinite subset X of R with no infinite countable subset (JECH 73, §10.1).
Show that X is sequentially closed but not closed, second-countable but not separable, sequentially compact
but not compact, sequentially complete (that is, every Cauchy sequence converges) but not complete. Show
that the topology of R is not countably tight.

>(d) (i) Let C be the set of those R C N x N which are total orderings of subsets of N. Show that C
is a closed subset of P(N x N) with its usual topology. (ii) For £ < wq, let C¢ be the set of those R € C
which are well-orderings of order type £ of subsets of N. Show that C¢ is a Borel subset of P(N x N). (Hint:
induce on &.) (iii) Show that there is an injective function from wy to the Borel o-algebra B(R) of R.

(e)(i) Show that every non-empty closed subset of N has a lexicographically-first member. (i) Show
that if a T; topological space X is a continuous image of NV, then there is an injection from X to PN.

(f) Let X be a topological space. (i) Show that if X is separable, then X® is separable. (ii) Show that
if X has a countable network, then X® has a countable network.

(g)(i) Show that a locally compact Hausdorff space is regular. (ii) Show that a compact regular space is
normal.

(h) Let U be a normed space with a well-orderable subset D such that the linear span of D is dense in U.
(i) Show that if V' is a linear subspace of U and f € V*, there is a g € U*, extending f, with the same norm
as f. (ii) Show that the unit ball B of U* is weak*-compact and has a well-orderable base for its topology.
(iii) Show that if K C B is weak™*-closed then K has an extreme point.

(i) Let (X, p) be a separable compact metric space, and G the isometry group of X with its topology of
pointwise convergence (441G). Show that G is compact. (Hint: X" is compact.)

(j) Let X be a regular topological space and A a subset of X. Show that the following are equiveridical:
(i) A is relatively compact in X; (ii) A is compact; (iii) every filter on X containing A has a cluster point.

>(k) Let (X,%) be a regular second-countable topological space, and write & for the usual topology
on RY. (i) Show that there are a continuous function f : X — RY and a function ¢ : T — & such that
G = [71¢(G)] for every G € T. (ii) Show that if X is Hausdorff it is metrizable.

>(1) Let X be a regular second-countable topological space, C the family of closed subsets of X, and D
the set of disjoint pairs (Fy, F1) € C x C. (i) Show that X is normal, and that there is a function ¢ : D — C
such that Fy C inty(Fy, F1) and Fy N (Fo, F1) = O whenever (Fp, F1) € D. (ii) Show that there is a
function ¢ : D — C(X) such ¢(Fy, Fy)(x) =0, ¢(Fo, F1)(y) = 1 whenever (Fy, Fy) € D, x € Fy and y € Fy.

(m) Let X be a well-orderable discrete abelian group. Show that its dual group, as defined in 4454, is
a completely regular compact Hausdorff group.

n) Let e a Riesz space with a Riesz norm. Let A : — |0, 00| be such that (« 1s non-decreasing,
Let U be a Ri ith a Ri Let A:UT 0 b h th A d i

(8) A(au) = aA(u) whenever v € Ut and a > 0, (7) A(u+v) = A(u) + A(v) whenever u A v = 0 (4)
|A(u) — A(w)| < |Ju — v|| for all w, v € UT. Show that A has an to a member of U*.

D.H.FREMLIN



12 Choice and determinacy 561Xo

(o) Let U be an L-space. Show that ||u| = sup{f(u): f € U*, ||f]| < 1} for every u € U.

(p) Let (A, 1) be a measure algebra. Show that L*(2, i) is a Dedekind o-complete Riesz space and a
sequentially complete normed space.

(q) Let 2 be a Boolean algebra. Show that there are a set X, an algebra &£ of subsets of X and a
surjective Boolean homomorphism from & onto 2. (Hint: 566L.)

(r) Let U be a Hilbert space. (i) Show that a bounded sequence (un)nen in U is weakly convergent in
U iff limy,— oo (up |y, is defined for every m € N. (ii) Show that the unit ball of U is sequentially compact
for the weak topology. (iii) Show that if T': U — U is a self-adjoint compact linear operator, then T'[U]
is included in the closed linear span of {Tv : v is an eigenvector of T'}. (Hint: reduce to the case in
which U is separable, and show that there is then a sequence (u,)nen in the unit ball B of U such that
limy, s o0 (T, [tn) = sup, e (Tulu).)

(s) In 561C, show that (F,a) — fr(a): & x NN — NN is continuous if & is given its Vietoris topology
(4A2T) and NV its usual topology.

561Y Further exercises (a) Suppose that there is a sequence (A, )nen of countable sets such that
Unen An = R. Show that cfw; = w.

(b)(i) Show that there is a bijection between w; and N X wy. (ii) Show that wa is not expressible as the
union of a sequence of countable sets. (iii) Show that Pw; is not expressible as the union of a sequence of
countable sets. (iv) Show that P(PN) is not expressible as the union of a sequence of countable sets.

(c) Suppose there is a countable family of doubleton sets with no choice function (JECH 73, §5.5). Show
that (i) there is a set I such that {0,1}! has an open-and-closed set which is not determined by coordinates
in any countable subset of I (ii) there is a compact metrizable space which is not ccc, therefore not second-
countable (iii) there is a complete totally bounded metric space which is neither ccc nor compact (iv) there
is a probability algebra which is not ccc.

(d) Let X be a metrizable space. Show that it is second-countable iff it has a countable 7-base iff it has
a countable network.

(e)(i) Let (X, p) be a complete metric space. Show that X has a well-orderable dense subset iff it has a
well-orderable base iff it has a well-orderable w-base iff it has a well-orderable network iff there is a choice
function for the family of its non-empty closed subsets. (ii) Let X be a locally compact Hausdorff space.
(o) Show that if it has a well-orderable 7-base then it has a well-orderable dense subset. () Show that if
it has a well-orderable base then it is completely regular and there is a choice function for the family of its
non-empty closed subsets.

(f) Let X be a metrizable space. Show that every continuous real-valued function defined on a closed
subset of X has an extension to a continuous real-valued function on X.

(g)(i) Show that if 2 is a Boolean algebra, there is an essentially unique Dedekind complete Boolean
algebra 2 in which 2 can be embedded as an order-dense subalgebra. (ii) Show that if 20 and B are two
Boolean algebras and 7 : % — ‘B is an order- contlnuous Boolean homomorphlsm 7 has a unique extension
to an order-continuous Boolean homomorphism from A to B. (Hint: take 2A to be the set of pairs (A, A")
of subsets of 2 such that A is the set of lower bounds of A’ and A’ is the set of upper bounds of A.)

(h) Let (A;);cr be a family of Boolean algebras. (i) Show that there is an essentially unique structure
(2, (€;)ier) such that («) 2 is a Boolean algebra (8) ¢; : 2; — 2 is a Boolean homomorphism for every i ()
whenever B is a Boolean algebra and ¢; : 2; — B is a Boolean homomorphism for every ¢, there is a unique
Boolean homomorphism 7 : 2 — 9B such that we; = ¢; for every 4. (ii) Show that if v; : 2; — R is additive,
with ;1 = 1, for every i € I, there is a unique additive v : 2 — R such that v(inf;cse;(a;)) = [, 5 via:
whenever J C [ is finite and a; € %; for i € J.

icJ
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(i) Suppose that there is an infinite totally ordered set I with no countably infinite subset (JECH 73,
§10.1). Let & be the algebra of subsets of {0,1}! determined by coordinates in finite sets. (i) Show that
the union of any countable family of finite subsets of I is finite. (ii) Show that £ has no countably infinite
subset, so that every finitely additive real-valued functional on £ is countably additive. (iii) Show that there
is no infinite disjoint family in £. (iv) Show that £ is Dedekind complete. (v) Show that there is a functional
p1 such that (€, p1) is a probability algebra and py is order-continuous. (vi) Show that there is a functional
o such that (&, us) is a probability algebra and ug is not order-continuous.

(j) Let (X, p) be a complete metric space with a well-orderable base. Show that a subset of X is compact
iff it is sequentially compact iff it is closed and totally bounded.

561 Notes and comments The arguments of this section will I hope give an idea of the kind of discipline
which will be imposed for the rest of the chapter. Apart from anything else, we have to fix on the correct
definitions. Typically, when defining something like ‘compactness’ or ‘completeness’, the definition to use is
that which is most useful in the most general context; so that even in metrizable spaces we should prefer
filters to sequences (cf. 561Xc).

We can distinguish two themes in the methods I have used here. First, in the presence of a well-ordering
we can hope to adapt the standard attack on a problem; see 561D-561F. Second, if (in the presence of the
axiom of choice) there is a unique solution to a problem, then we can hope that it is still a unique solution
without choice. This is what happens in 561G and also in 561Ia-561Ic. In 5611 we just go through the
usual arguments with a little more care. In 561G (taken from NAIMARK 70) we need new ideas. But in
the key step, part (d) of the proof, the two variables x and y reflect an adaptation of a repeated-integration
argument as in §442. Note that the scope of 561G may be limited if we have fewer locally compact groups
than we expect.

A regular second-countable Hausdorff space is metrizable (561Yf). But it may not be separable (561Xc).
We do not have Urysohn’s Lemma in its usual form, so cannot be sure that a locally compact Hausdorff
space is completely regular; a topological group has left, right and bilateral uniformities, but a uniformity
need not be defined by pseudometrics and a uniform space need not be completely regular. So in such results
as 561G we may need an extra ‘completely regular’ in the hypotheses.

I give a version of Kakutani’s theorem (561H) to show that some of the familiar patterns are distorted in
possibly unexpected ways, and that occasionally it is the more abstract parts of the theory which survive
best. I suppose I ought to remark explicitly that I define ‘measure algebra’ exactly as in 321A: a Dedekind
o-complete Boolean algebra with a strictly positive countably additive [0, oo]-valued functional. T do not
claim that every o-finite measure algebra is either localizable or ccc (561Y¢), nor that every measure algebra
can be represented in terms of a measure space. I set up a construction of a normed Riesz space L (2, ji),
but do not claim that this is an L-space. However, if we start from an L-space U with a weak order unit,
we can build a measure on its band algebra and proceed to an L'(2l, i) which is isomorphic to U (and is
therefore an L-space).

Version of 20.10.13
562 Borel codes

The concept of ‘Borel set’, either in the real line or in general topological spaces, has been fundamental
in measure theory since before the modern subject existed. It is at this point that the character of the
subject changes if we do not allow ourselves even the countable axiom of choice. I have already mentioned
the Feferman-Lévy model in which R is a countable union of countable sets; immediately, every subset of R
is a countable union of countable sets and is ‘Borel’ on the definition of 111G. In these circumstances that
definition becomes unhelpful.

An alternative which leads to a non-trivial theory, coinciding with the usual theory in the presence of
AC, is the algebra of ‘codable Borel sets’ (562B). This is not necessarily a o-algebra, but is closed under
unions and intersections of ‘codable sequences’ (562K). When we come to look for measurable functions,
the corresponding concept is that of ‘codable Borel function’ (562L); again, we do not expect the limit of
an arbitrary sequence of codable Borel functions to be measurable in any useful sense, but the limit of a
codable sequence of codable Borel functions is again a codable Borel function (562Ne). The same ideas can
be used to give a theory of ‘codable Baire sets’ in any topological space (562T).
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14 Choice and determinacy 562A

562A Trees I review some ideas from §421.
(a) Set §* =, N". For o € 5" and T' C S*, write Ty, for {7 : 7 € 5%, 077 € T'} (notation: 5A1C).

(b) Let 7o be the family of sets T C S* such that o[n € T whenever 0 € T and n > 1. Recall from
421N? that we have a derivation 0 : Tg — 7o defined by setting
T ={o:0€S5* T, #0},
with iterates 9%, for £ < wy, defined by setting
AT =T, &T= (,<¢ 0(O"T) for £ > 1.

Now for any T' € To there is a &€ < w; such that 9T = 9"T whenever £ < 7 < w;. P The argument in 421Nd
assumed that w; has uncountable cofinality, but we can avoid this assumption, as follows. Let {€,),cs+ be
a summable family of strictly positive real numbers, and set yr(§) = >° cger €03 then v 1wy — [0, 00] is
non-increasing, so 561A tells us that there is a ¢ < wy such that yp(& + 1) = vp(€), that is, 91T = 9°T.
Of course we now have "T = 95T for every n > £. Q

(c) We therefore still have a rank function r : 7o — wy defined by saying that r(T) is the least ordinal
such that 9"T = 9"M+1T. Now 0"T)T is empty iff there is no o € NN such that a|n € T for every
n > 1. PP The argument in 421Nf used the word ‘choose’; but we can avoid this by being more specific.
If 0 € "7, then we can define a sequence (o, )nen by saying that o9 = ¢ and, given o, € 9"(1)T,
On+1 = 0, <i> for the least i such that o,,”<i> € IDT: o = UneN o, will now have a[n € T for every
n > 1. The argument in the other direction is unchanged. Q

Let 7 be the set of those T € 7o with no infinite branch, that is, such that 9"(")T = (. Note that if T € T
then r(T) = 0 iff T'= (), while »(T) = 1 iff there is a non-empty set A C N such that T'= {<i> :i € A}.

(d) For T € T, set Ap = {i : <i> € T}. We need a fact not covered in §421: for any T" € T,
r(T) = sup{r(T<;>) +1:i € Ar}. P An easy induction on ¢ shows that 9(T,,) = (9°T), for any £ < wy,
T eTgand o € S*. So, for T € T and £ < wy,

r(T) > &= 0T #0
— 3, <i> e T = (| o"'T
n<§

=di€ 14'1“7 6”(T<Z‘>) = (3"T)<i> ?é @ v n < g

2326 14T7 ’I"(T<i>) >77V77 <§

=3i€ Ar, r(Teix) > &

thus r(T) < sup{r(T<;>) +1:4 € Ar}. In the other direction, if i € Ay and n < £ = r(T<;>), then

(0"T)<i> = 0"(T<i>) # 0,

so <i> € O"HLT; as i is arbitrary, <i> € 9T and & < r(T); as i is arbitrary, r(T) > sup{r(T<;~) +1:i €
Ar}. Q

562B Coding sets with trees (a) Let X be a set and (E,)nen a sequence of subsets of X. Define
¢ : T — PX inductively by saying that

o(T)= |J Eiifr(T) <1,

i€EAT
U X\ ¢(Teis) if r(T) > 1.
i€Ap
By 562Ad, this definition is sound. I will call ¢ the interpretation of Borel codes defined by X and
<En>neN-

2Early editions of Volume 4 used a slightly different definition of iterated derivations, so that the ‘rank’ of a tree was not
quite the same.
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(b) Of course ¢() = 0. If we set
T* = {<0>, <0>"<0>, <0>"<0>"<0>, <1>, <1>"<0>}
and
T={<0>}U{<0>"c:0€T*},
then

(T") = (X\ o(TZ0>)) U (X N\ 9(TZ15))
= (X\ ¢({<0>, <0>7<0>})) U (X \ ¢({<0>}))
= (X\ (X \9({<0>}))) U (X \ o({<0>})) = X,
P(T) = X\ o(T7) =0,
while T # (), which it will be useful to know.

(c¢) Now suppose that X is a second-countable topological space and that (U,)nen, (Vi)nen are two
sequences running over bases for the topology of X. Let ¢ : T — PX and ¢’ : T — PX be the interpretations
of Borel codes defined by (U,)nen, (Va)nen respectively. Then there is a function © : T — T \ {0} such
that ¢'© = ¢. P Define © inductively, as follows. If 7(T') <1, then ¢(T) = ;¢ 4,. Ui is open. If ¢(T) # 0,
set O(T) ={<j>:j €N, V; C¢(T)}; then

¢'(O(T) =U{V; : J €N, V; Co(T)} = o(T).
If (T) = 0, take O(T) to be any non-empty member of 7 such that ¢'(©(T)) = 0; e.g., that presented in

(b) just above.
For the inductive step to r(T) > 1, set

OT) ={<i>: i€ Ar}uU{<i>"o:i€ Ap, 0 € O(T<;>)};
then r(©(T)) > 1 and

gOM)= J X\¢O@)ws)= |J X\¢(OTc))
ieA@(T) i€AT
= | X\ o(Twis) = 6(T),
i€EAT

so the induction continues. Q
(There will be a substantial strengthening of this idea in 562Ma.)

(d) Now say that a codable Borel set in X is one expressible as ¢(T") for some T € T, starting from
some sequence running over a base for the topology of X; in view of (c), we can restrict our calculations to
a fixed enumeration of a fixed base if we wish. I will write B.(X) for the family of codable Borel sets of X.

The definition of ‘interpretation of Borel codes’ makes it plain that any o-algebra of subsets of X con-
taining every open set will also contain every codable Borel set; so every codable Borel set is indeed a ‘Borel
set’ on the definition of 111G or 4A3A.

As in the argument for (c) just above, it will sometimes be useful to know that every element of B.(X)
can be coded by a non-empty member of 7; we have only to check the case of the empty set, which is dealt
with in the formula in (b).

562C The point of these codings is that we can define explicit functions on 7 which will have appropriate
reflections in the coded sets.

(a) For instance, there are functions ©g : 7 =T, 01 : T XT = T,02: T xXT =>T,03: T xT =T

such that, for any interpretation ¢ of Borel codes,

P(©0(T)) = X\ o(T),  $(O:(T,T")) = (T) U H(T"),
P(O:2(T,T")) = o(T) N ¢(T"),  ¢(Os(T,T")) = ¢(T) \ $(T")
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16 Choice and determinacy 562C

for all T, 7" € T. P Let T* be the tree described in 562Bb, so that ¢(7*) = X. Set

Oo(T) =T if T = 0,
= {<0>} U{<0>"0:0 € T} otherwise;

then
(Oo(T)) =p(T") =X =X\ ¢(T) if T =0,
=X\ #(00(T)<0>) = X \ ¢(T) otherwise.
Now set
O1(T,T') = {<0>,<1>}U{<0>"0:0 € Oy(T)} U{<1>"0: 0 € Oy(T")},
so that

P(O1(T, 7)) = (X \ ¢(01(T,T")) <0>) U (X \ ¢(O1(T,T"))<1>)
= (X \ ¢(00(T))) U (X \ ¢(60(T")))
= (X\(X\ (7)) UX\ (X \$(T))) = o(T) U(T").
So we can take
O2(T,T') = ©9(01(00(T),00(T"))), ©3(T,T") = ©2(T,00(1"))
and get
P(O2(T,T")) = X\ (X \ o(T)) U (X \ ¢(17))) = o(T) N p(T"),

¢(O3(T,T")) = o(T) N (X \ o(T")) = 6(T) \ 6(T"). Q

(b) We can find codes for unions and intersections of sequences, provided the sequences are presented
in the right way; I give a general formulation of the process. For any countable set K we have functions
O1, 2 : U e T/ — T such that whenever X is a set, (Ep)nen is a sequence of subsets of X and ¢ is the

corresponding interpretation of Borel codes, then ¢(©1 (7)) = Ujes ¢(7(4)) and P(O2(1)) = XNNjes o(7(5))
whenever J C K and 7 € T7. P Let (k,)nen be a sequence running over K U {(}. For J C K and 7 € T,
set A={n:k,eJ, 7(k,)#0} and

O.1(r)={<n>:nec AlU{<n>"0c:nec A, e Oy(r(ky)},

O2(7) = ©0(01({O0(7(4)))je))-
Then

$(O1(m) =0 =] o(r()) if A=0,

jeJ
= X\ ¢(Oo(1(kn))) = U d(r(ky)) = U #(7;) otherwise,
ncA neA jeJ
$(02(r)) = X\ X\ (1) =X N () o(7)Q
jeJ jed

(c) A more sophisticated version of two of the codings in (a) will be useful in §564. Let X be a regular
second-countable space, (U, )nen @ sequence running over a base for the topology of X containing ), and
¢ : T — PX the associated interpretation of Borel codes. Then there are functions 07, 4 : T x T — T
such that

pO1(T,T") = o(T) Up(T"),  ¢(O5(T,T")) = o(T') N H(T"),
r(OUT,T") = r(©5(T, T")) = max(r(T),r(T"))
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for all T, T/ € T. P The point is just that open sets in a regular second-countable space are F,. Because of
the slightly awkward form taken by the definition of ¢, we need to start with an auxiliary function. Define
Tw— T:T — T by saying that
[={<n>:U, Co(T)}U{<n>"<i>:U, C §(T), U; N U, = 0}
if r(T) <1,

= T otherwise .

Then ¢(T) = ¢(T) and r(T) = max(2, rg )) for every T (because if r(T") < 1 there is some n such that
Up, =0 and <n>"<n> € T) Note that T = T. We also need to fix a bijection n (in, jn) between N and
N x N.
Now define ©) by saying that
i max(r(T), r(T")) < 1, O4(T, T') = ©4(T) U O} (T");
—— if max(r(T),r(T")) > 1, then
OUT, T ={<2n>:nc Az} U{<2n>"0:0 € Tp>}
U{<2n+1>:n€Anlu{<2n+1>"0:0€T,,.}.

For O} induce on max(r(T),r(T")):
— ifT=T' =0, 05T,T") = 0;
— if max(r(T),r(T")) =1,

O (T, T") = {<n>: Uy C ¢(T) N G(T")};
— if max(r(T),r(T")) > 1,set A={n:i, € Aj, jn € Aj, } and
OL(T,T") ={<n>:n€ A U{<n>"0:n€ A o0 €0)(T,~,T.; )}
(interpreting T’<]—n> as (T))<jn>)-
These formulae work. I run through the calculations for ©5(7,T") when max(r(T),r(1")) > 1. We have
r(T) > 2 and r(T") > 2, so A, A7 and A are non-empty,
r(O4(T,T") = sup (0 (T<i,>, T2 o) + 1= sup  #(0) (T, TL;0)) +1
ncA iEA:,'w,jGArf/

= e max(r(Ten), r(Fe)) +1
iGAT,jGAT/

= max(sup 7(T<;s) + 1, sup T(T/<j>> +1)
iEAT JEAF

= max(r(T),r(T")) = max(2, r(T),r(T")) = max(r(T),r(T"))

and

¢(9/2(T7 T,)) = U X\ o(© T<’Ln>7T<j >))

neA

= U X\ O (Tt T ) = | X\ (6Tt =) US(TL;, )
neA neA

— X\ 6,2 0 (X G(TL, )
neA

= U X\ o) n(XN\$(TL,5))

iEAf,jGAT/
=(J X\ o) n( | X\o(TL,2))
i€AL JEAG

=) Ne(I") = $(T) N H(T"). Q
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18 Choice and determinacy 562D

562D Proposition (a) If X is a second-countable space, then the family of codable Borel subsets of X
is an algebra of subsets of X containing every Gy set and every F, set.
(b) [AC(w)] Every Borel set is a codable Borel set.

proof (a) Let (U,)nen be a sequence running over a base for the topology of X, and ¢ : T — B.(X) the
corresponding surjection. From 562Ca we see that X \ E and FUE’ belong to B.(X) for all E, E’' € B.(X);
since ) = ¢(0) belongs to B.(X), B.(X) is an algebra of subsets of X.

If EC X isan F, set, there is a sequence (F),),¢cn of closed sets with union E. Set

T={<n>:neN}U{<n>"<i>:n,ieN, U, CX\F,}

Then r(T) =2, p(T<p>) = X \ F, for every n and ¢(T) = E.

Thus every F, set belongs to B.(X); it follows at once that every Gs set is also a codable Borel set.

(b) We can repeat the argument in (a), but this time in a more general form. If (E,),cn is any sequence
in B.(X), then for each n € N choose T € T \ {0} such that ¢(T™) = E,,; set

T={<n>:neN}u{<n>"0:neN,oecTM}

then (J, oy X \ B, = ¢(T') is a codable Borel set. Because B.(X) is an algebra, this is enough to show that
it is a o-algebra and therefore equal to the o-algebra B(X).

562E Proposition Let X be a second-countable space and ¥ C X a subspace of X. Then B.(Y) =
{YNE:FEe€B.(X)}

proof Let (U,)nen be a sequence running over a base for the topology of X, and set V,, = Y NU, for
each n; let ¢x : T — B.(X) and ¢y : T — B.(Y) be the interpretations of Borel codes corresponding to
(Un)nen, (Va)nen respectively. Then an easy induction on the rank of T shows that ¢y (T) = Y Nox(T)
for every T € T. So

BAY)=oy[T] ={Y Nox(T):TeT}={YNE:EeB.(X)}

*562F 1 do not expect to rely on the next result, but it is interesting that two of the basic facts of
descriptive set theory have versions in the new context.

Theorem (a) If X is a Hausdorff second-countable space and A, B are disjoint analytic subsets of X, there
is a codable Borel set £ C X such that A C F and BN E = 0.
(b) Let X be a Polish space. Then a subset E of X is a codable Borel set iff F and X \ F are analytic.

proof (a)(i) If either A or B is empty, this is trivial, just because () and X are codable Borel sets; so suppose
otherwise. Let f: NN — X and g : NN — X be continuous functions such that f[N] = 4 and g[N"] = B.
Fix an enumeration ((jn, kn))nen of N X N, and a sequence (Up,)nen running over a base for the topology of
X let ¢ be the interpretation of Borel codes defined by (Uy)nen. For o € S =J, oy N™ set

Ao‘ = {f(Ol) tae NNa oy = jo(i) for i < #(0)}5

B, = {g(a) s a € NV, a; = ky( for i < #(a)}.

Then Ay = A and A, = |,y Ag~<i> for every o, and similarly for B.

i€N

~(ii)~Still in the setting-up stage, we need g~eneral union and intersection operators on T. As in 562Cb,
let ©1, ©2 : U cp T7 — T be such that ¢(0,(7)) = Ujes (7(5)) and ¢(O2(7)) = X N ;s ¢(7(5))
whenever J C N and 7€ 7.

(iii) Set
T ={o:0 € 5", there are no i, n € N such that n < #(o)
and Ag[n g Ul g X \ Ba'(n}~

If o € Sand n € N then A,, 2 A, and By, 2 By, so o[m € T whenever ¢ € T and m > 1; thus T’
belongs to Ty as defined in 562Ab. In fact T' € 7. P? Otherwise, by 562Ac, there is a v € NN such that
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*562F Borel codes 19

~vIn € T for every n > 1. Set o = (7, )nen, B = (Vk,)nen; then f(a) € A and g(f) € B, so f(a) # g(p).
Because X is Hausdorff, there are 7, j € N such that f(a) € U;, g(8) € U; and U; N U; = 0. Because f and
g are continuous, there is an n > 1 such that f(a') € U; and g(8’) € U; whenever o/, 8/ € NY, o/|n = aln
and 3'|n = B|n; that is, such that A}, C U; and B,},, C U;. But this means that y[n+1¢ 7. XQ

(iv) We know that (9°T)¢<,(7) is a non-increasing family in 7 with last member (), and moreover that
0T = ,<¢ O"T" for non-zero limit ordinals § < r(T'). So for o € T' there is a unique h(c) < r(T') such that
o € OMIT\ 9(0MO)T). 1seek to define T(?) € T, for o € T, such that A, C ¢(T(?)) C X \ B, for every o.
I do this inductively.

(v) If h(o) =0, that is, o0 € T\IT, then 670 ¢ T. So there is a first i € N such that A, C U; C X\ B,.
Set T(?) = {<i>}, so that ¢(T(?)) = U; includes A, and is disjoint from B,.

(vi) Now suppose that we have £ < r(¢) such that £ > 1 and T(?) has been defined for every o € T
with h(o) < & Take o € T such that h(c) = &; then 0™ <n> € T for some, therefore every, n € N, while
h(o~<n>) < € and T~ <">) is defined for every n € N. Now, for each n, we have A, - C ¢(T(7 <">)).
But oj course Ay~ o> = Ao~ <> Whenever jn, = jn. So we have A,~_,,» C(; _; H(T7"<m>)) for each
n, an

As CUnenN;,zj, 9T <)) = Ujen N, =y 9T <m2)).
Similarly, By~ cps = Boncms is disjoint from (T <™>)) whenever k,, = k,, so

By = Ugen mkmz Borcm>
is disjoint from ﬂkeN Uk —k ¢(T(0A<m>))_

m=

On the other hand, for any j, k € N, there is a p € N such that j, = j and k, = k, so that
ﬂjm:j ¢(T(0A<’rn>)) - ¢(T(U'\<P>)) C Ukm:k ¢(T(o’“<m>)).

But this means that (J;cy (), —; (T <)) € Nyen Up, =1 #(T <)) is disjoint from B,
If therefore we set
T = 01((02({T7 <)), —j)) jen)
we shall have A, C ¢(T(°)) C X \ B,, and we have a formula defining a suitable tree 7(°) whenever o € T

and h(o) = &, so we can continue the induction.

(vii) This gives us a family (T(°)),cz in 7. Of course what we are really looking for is a tree T(®).
But if T is empty, this is because there is an ¢ € N such that A C U; C X \ B; in which case U; is a codable
Borel set separating A from B. While if T is not empty, <n> € T for every n € N, and just as in (vi) we
can set

TO = 0:((02((T<">));, =) jen)
to obtain a codable Borel set E = ¢(T?) such that A C E and BN E = {).
(b) If X is empty, this is trivial; suppose henceforth that X is not empty.

(i) If F and X \ E are analytic, then (a) tells us that there is a codable Borel set F' including E and
disjoint from X \ E, so that E = F is a codable Borel set. So the rest of this part of the proof will be
devoted to the converse.

Let p be a complete metric on X inducing its topology, (x,)nen a sequence running over a dense subset
of X, and (U, )nen a sequence running over a base for the topology of X; let ¢ be the interpretation of Borel
codes defined from (U, )nen.

(ii) We need to fix on a continuous surjection from a closed subset of N¥ onto X; a convenient one is
the following. Set

F={a:aecNN P(Za(nt1)s Tam)) < 27" for every n € N};
then F C NN is closed. Define f : F — X by saying that f(a) = lim, Tqo(n) for every a € NN, If o,
B € NN and afn = B[n where n > 1, then p(f(a), f(8)) < 27"*2 so f is continuous. If z € X, we can
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20 Choice and determinacy *562F

define a € N¥ by saying that a(n) is to be the least i such that p(z,z;) <271 then p(za(n), Tant1)) <
27n=1 4 27n=2 < 97" for every n, so a € F, and of course f(a) = x. So f is surjective.

The next thing we need is a choice function for the set F of non-empty closed subsets of NN: I described
one in 561D. Let g : 7 — NN be such that g(F) € F for every F € F.

iii) There is a family ((Fr, fr, Fr, f7))7eT such that
T JT

Fr, F}. are closed subsets of NV,

fr:Fr — o(T), fir: F. — X \ ¢(T) are continuous surjections

for each T' € T. P Start by fixing a homeomorphism a — (h;(a))ien : NN — (NM)N. Define the quadruples
(Fr, fr, F}., f) inductively on the rank of T
If »(T) <1 then ¢(T) is open. Set

1
Fr={a:aeF, zq0) € 0(T), p(Tam), Ta©) < 50(Ta(), X \ ¢(T)) for every n > 1}

(interpreting p(x, () as oo if necessary), and fr = f[Fr. Then Fr is a closed subset of N and p(f(«), Ta(0)) <
%p(xa(o),X \ ¢(T)), so f(a) € ¢(T), for every a € Fr. If x € ¢(T) then we can define o € NV by taking

a(n) = min{i : p(z;, ) < min(27""L, %p(x,X \ ¢(T)))}
for every n, and now we find that a € Fr and fr(a) = z. As for FJ. and fr., just set Fir, = f71X \ (7))
and fl. = flFp.
For the inductive step to 7(T') > 1, set Ay = {i : <i> € T'}, as in 562Ad. We have ¢(T) = |J
¢(T<i>) and X\ &(T) = ic s, ¢(T<i>), while r(T<;») < 7(T) for every i € Ar. Set

Fr =Ujea 1<i>"a:a € F}<i>},

1€EAT X \

Fr ={a: hi(a) € Fr_,_ for every i € A,
fT<i> (hz(a)) = fT<j> (h‘J(a)) for all ia .7 € AT}v

fr(<i>"a) = fr_,_(a) whenever i € Ap and o € Fr___,

fr(a) = fr_,. (hi(c)) whenever ¢ € Ap and o € Fr..
It is straightforward to confirm that Fp and Fj. are closed, fr : Fr — ¢(T) and f} : Fj, — X \ ¢(T) are
continuous and fr[EFr] = ¢(T). To see that f1.[F] = X \ ¢(T), take any € X \ ¢(T) = Mica, P(T<i>)-
Then f7:<11~> [{z}] is a non-empty closed subset of Fr_,  for each i € Ap. Set oy = g(filw[{z}]), so that
fr,.(a;) = x for each i € Ap. For i € N\ Ap, take a; = 0. Now a = h™'({a;);en) belongs to F}. and
fir(a) = z. Thus fL[Fr] = X \ ¢(T) and the induction continues. Q
(iv) In particular, ¢(T) = fr[Fr] is a continuous image of a closed subset of NY for every T' € T.

(v) The definition of ‘analytic set’ in 423A refers to continuous images of N, so there is a final step
to make. If £ C X is a non-empty codable Borel set, it is a continuous image of a closed subset Fr of NV;
but 561C tells us that Fr is a continuous image of NV, so E also is, and E is analytic.

562G Resolvable sets The essence of the concept of ‘codable Borel set’ is that it is not enough to know,
in the abstract, that a set is ‘Borel’; we need to know its pedigree. For a significant number of elementary
sets, however, starting with open sets and closed sets, we can determine codes from the sets themselves.

Definition (see KURATOWSKI 66, §12) I will say that a subset F of a topological space X is resolvable if
there is no non-empty set A C X such that ACANENA\E.

562H Proposition Let X be a topological space, and £ the set of resolvable subsets of X. Then & is
an algebra of sets containing every open subset of X.
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proof (a) If G C X is open and A C X is non-empty, then either A meets G and A Z A\ G, or ANG =0
then A & AN G. So every open set is resolvable.

(b) If E is resolvable and A C X is not empty, there is an open set G such that AN G is not empty but
oneof ANGNE, ANG\ E isempty. PIf AZ AN E take G = X \ AN E; otherwise take G = X \ A\ E.
Q

(c) If E, E' C X are resolvable, so is F U E’. P Suppose that A C X is non-empty. Then there is an
open set G such that ANG is non-empty and disjoint from one of E, X \ E. Now there is an open set H such
that ANGN H is non-empty and disjoint from one of E’, X \ E’. Consequently one of ANGNHN(EUE'),
ANGNH\ (EUE') is empty, and the open set GN H is disjoint from AN (FU E’)NA\ (E'U E’); in which
case A cannot be included in AN (EUE)NA\ (EUE’). As A is arbitrary, E U E’ is resolvable. Q

(d) Immediately from the definition in 562G we see that the complement of a resolvable set is resolvable,
so £ is an algebra of subsets of X.

5621 Theorem Let X be a second-countable space, (U,)nen & sequence running over a base for the
topology of X, and ¢ : T — B.(X) the associated interpretation of Borel codes. Let £ be the algebra of
resolvable subsets of X. Then there is a function ¢ : € — T such that ¢(¢(E)) = E for every E € .

proof We need to start by settling on functions
O :TxN=T, O,:TxTxN=T, 0 :TV-T, 6,:TN=>T
such that
P(O1(T,n)) = (T)\Un,  ¢(05(T,T",n)) = ¢(T) U ($(T") N Un),

$(O1(7) = Usen ¢(7(0)),  ¢(©5(7)) = Myeny $(7(0))
for T€T,neNand7ecTY. (We can take ©; and O, directly from 562Cb, and
@/1 (Tv TL) = 93(Ta {<n>})7 G/Q(Tv Tlv n) = 61(T7 @2(T7 {<n>}))
where ©1, ©5 and O3 are the functjons of 562Ca.)

Now, given E € &, define ((Fg,T(f),T(g),ng)kQJl inductively, as follows. The inductive hypothesis will
be that Fy C X is closed, Fy C F, for every n < &, T, T®) € T, ¢(T®)) = F; and ¢(T®) = E\ F;. Start
with Fo = X, T(® =, T = {<n> : n € N}. For the inductive step to & + 1,

——if Fr =0, set ng = 0 and (Feyq, TEH), TED) = (B, T T©);
—— if there is an n such that § # Fe N U, C E, let n¢ be the least such, and set
Fepr = Fe\ Uy, TEHD —0)(T®) ng),  TEHD = 04(TE), TO ng);
—— otherwise, n¢ is to be the least n such that ) # F: N U, C X \ E, and
Fei1 = Fe \ Uy, TE+1) — e, (T(f)mg) TE+1) — (&)

(Because F is resolvable, these three cases exhaust the possibilities.) It is easy to check that the inductive
hypothesis remains valid at level £ + 1.

For the inductive step to a non-zero limit ordinal £, then if there is an < £ such that F,, = (), take the first
such 7 and set ng = 0 and (F, T®), T©) = (F,, 7™, T™). Otherwise, we must have F C F, \ Un, C F,
whenever 7 < ¢ < &, so that n +— n, : £ — N is injective. Set

7(i) =T if n < ¢ and i = n,),
= T if there is no such 1,

(i) =T if n < ¢ and i = n,),
= () if there is no such n;

now set

Fe = ﬂy,<g Fy, T® = éé(%)a T® = éll(T)
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Again, it is easy to check that the induction proceeds.

Now, with the family ((F¢, 7, T®) n¢))¢<,, complete, observe that (ng)¢<,, cannot be injective. There
is therefore a first & = £p for which Ft, is empty. Set ¢(E) = T¢#); then ¢p(¢(E)) = E\ F¢, = E, as
required.

562J Codable families of sets Let X be a second-countable space and B.(X) the algebra of codable
Borel subsets of X. Let (Up)nen, (Va)nen be sequences running over bases for the topology of X, and
¢ : T = B(X), ¢ : T — B.(X) the corresponding interpretations of Borel codes. Let us say that a family
(E;)ier is ¢-codable if there is a family (T(");c; in T such that ¢(T)) = E; for every i € I. Then 562Bc
tells us that (E;);cr is ¢-codable iff it is ¢’-codable.

We may therefore say that a family (F;);cr in B.(X) is codable if it is ¢-codable for some, therefore
any, interpretation of Borel codes defined by the procedure of 562B from a sequence running over a base for
the topology of X.

Note that any finite family in B.(X) is codable, and that any family of resolvable sets is codable, because
we can use 5621 to provide codes; also any subfamily of a codable family is codable. Slightly more generally,
if (E;)icr is a codable family in B.(X), J is a set, and f : J — I is a function, then (Ey;));jes is codable.
If (E;)ier and (F});cr are codable families in B.(X), then so are (X \ E;)icr, (E; U Fy)icr, (E; N Fy)ier and
(E; \ Fy)ier, since we have formulae to transform codes for E, F' into codes for X \ E, EUF, ENF and
E\F.

562K Proposition Let X be a second-countable space and (E,,)nen a codable sequence in B.(X). Then

(a) UneN E,, ﬂneN E,, belong to B.(X);
(b) (U;cn Ei)nen is a codable family in B.(X);
(¢) (En \ Ujcn, Ei)nen is a codable family in B.(X).

proof Let ¢ : T — B.(X) be an interpretation of Borel codes defined from a sequence running over a base
for the topology of X; then we have a sequence (T(™), cy in T such that ¢(T") = E,, for every n, and
using 562Bb we can arrange that T(") # () for every n.

(a) Setting
T={<n>:neNjU{<n>"<0>:neN}U{<n>"<0>"c:neN, o ecT™}
T' = {<0>}U{<0>"<n>:n € NJU{<0>"<n>"0c:neN, o € T},
we have ¢(T) = U,y En and ¢(T") = (,cy En-
(b) Setting
T = {<i>:i<n}U{<i>"<0>:i<n}U{<i>"<0>"0c:i<n,oecT®},
P(T™) = Ui<n Es for every n.
(c) Setting
T" = {<n>:neN}U{<n>"<0>:n e N}U{<n>"<0>"0:0 € T™}
U{<n>"<1>:n e N} U{<n>"<1>"<0> :n € N}

U{<n>"<1>"<0>"0:0 € TM},

AT") = Unen(Bn \ Ui <, Ei)-

562L Codable Borel functions Let X and Y be second-countable spaces. A function f: X — Y isa
codable Borel function if (f~'[H]) gcyis open is & codable family in B.(X).

562M Theorem Let X be a second-countable space, (U, )nen a sequence running over a base for the
topology of X, and ¢ : T — B.(X) the corresponding interpretation of Borel codes.
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(a) If Y is another second-countable space, (V,,)nen @ sequence running over a base for the topology of Y
containing 0, ¢y : T — B.(Y) the corresponding interpretation of Borel codes, and f : X — Y is a function,
then the following are equiveridical:

(i) f is a codable Borel function;
(i) (f7'[Va])nen is a codable sequence in B.(X);
(iii) there is a function © : 7 — T such that ¢(0(T)) = f~ ¢y (T)] for every T € T.

(b) If Y and Z are second-countable spaces and f: X - Y, g:Y — Z are codable Borel functions then
gf : X — Z is a codable Borel function.

(¢) 'Y and Z are second-countable spaces and f: X =Y, g: X — Z are codable Borel functions then
x = (f(x),g(x)) is a codable Borel function from X to Y x Z.

(d) If Y is a second-countable space then any continuous function from X to Y is a codable Borel function.

proof (a)(i)=-(ii) is trivial.

(ii)=-(iii) This is really a full-strength version of 562Bc. Because (f~![V,])nen is codable, we have
a sequence (T),cy in T such that ¢(T(™) = f~1[V,] for every n. As in 562C, let Oy : T — T and
01 : Uyen T — T be such that ¢(Oo(T)) = X \¢(T) for every T € T and $(01(7)) = U, ¢(7(i)) whenever
ICNand 7€ T Define®:7T — T inductively, as follows. Given T' € T, set Ar = {n: <n> € T}. If
r(T)=0set O(T) =T =0. If r(T) = 1 set O(T) = O;((T"™),ca,), so that

$(O(T)) = Upea, (T™) =Unea, £ [Val = fH ov (T)].
If r(T) > 1 set

O(T) = ©1((00(O(T<n>)))near)
so that

P(O(T)) = U X\ ¢(O(T<n>)) = U X\ f71[¢Y(T<n>)]

neAr ne€Ar

= Y\ by (Tans)] = oy (D)

necAr
and the induction continues.
(iii)=-(i) For open H CY set ¢y (H) = {<n>:V,, C H}. Taking © as above,
Oy (H)) = f oy Yy (H))| = f~[H]

for every H, so (¢p(O(vy (H))))HCy is open is a family of codes for (f~'[H])rcyis open-

(b) Take (Vp)nen, ¢y and © : T — T as in (a). Write 4 for the topology of Z; then we have a
function 6 : & — T such that ¢y (0(H)) = g~ '[H] for every H € 4. Now (O(0(H)))mey is a coding for
((9f)~'[H])#ey, so gf is codable.

(c) Let (Vi) nen, (Wh)nen be sequences running over bases for the topologies of Y and Z, and ((iy, jn))nen
an enumeration of N x N. Set H,, =V, x W, ; then (H,)nen is a base for the topology of Y x Z. Let
Oy : TxT — T besuch that ¢(02(T,T")) = ¢(T)NG(T") for all T, T" € T (562Ca). Let (T, en, (T, en
be codings for (f [V nen, (97 [Wn])nen. Then (O9(Tin) T0n))), oy is a coding for (h~1[H,])nen, where
h(z) = (f(x),g(z)) for x € X. So h is a codable Borel function.

(d) If f: X — Y is continuous, then (f'[H]) mcy is open i a family of resolvable sets, therefore codable,
as noted in 562J.

Remark Note in part (a)(ii)=-(iii) of the proof the function © is constructed by a definite process from
<T(")>n€N; so we shall be able to uniformize the process to define families (©,);c; from families (f;)ics, at
least if we can reach a family (T(i’")ﬁgmeN such that T codes fi_l[Vn] for all 4 € I and n € N.

562N Proposition Let X be a second-countable space, and ¢ : T — B.(X) the interpretation of Borel
codes associated with some sequence running over a base for the topology of X.

(a) If f: X — R is a function, the following are equiveridical:
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i) f is a codable Borel function;
i

ii) the family ({z : f(x) > a})aecr is codable;
i

iii) ({z: f(x) > ¢})qeq is codable.
Write T for the set of functions 7 : R — 7 such that

P(7(a)) = Upsq @(7(8)) for every a € R,
r]nEN (Z)(T(TL)) = @, UTLGN ¢<T<_n)) =X.

(
(
(
(b)

Then
(i) for every 7 € T there is a unique codable Borel function ¢(7) : X — R such that ¢((a)) = {z :
o(7)(x) > a} for every o € R;
(ii) every codable Borel function from X to R is expressible as ¢(7) for some 7 € T
(c) If (Ty)nen is a sequence in 7 such that f(z) = sup,,cy &(7,)(2) is finite for every z € X, then f is a
codable Borel function.
(d) If f, g : X — R are codable Borel functions and v € R, then f + g, vf, |f| and f X g are codable
Borel functions.
() If (7)) nen is a sequence in 7, then there is a codable Borel function f such that lim inf,,_, gi;(Tn)(x) =
f(x) whenever the lim inf is finite.
(f) A subset E of X belongs to B.(X) iff xE : X — R is a codable Borel function.

proof (a)(i)=(ii) If f : X — R is codable then of course ({z : f(z) > a})acr is codable, because it is a
subfamily of (f ~'[H])icR is open-

(ii)=(iii) Similarly, if ({z : f(z) > a})aer is codable, its subfamily ({z : f(z) > ¢})4eq is codable.

(iii)=(1) If ({x : f() > q})qeq is codable, we have a family (T(9)),cq in T coding it. Let {(¢n, ¢} ))nen
be an enumeration of {(q,¢') : ¢, ¢’ € Q, ¢ < ¢'}. As in 562C, we have functions

O3 :TxT =T, O61:UicoqT' =T, O2:U,cnT/ =T
such that
$(O3(T,T") = H(T)\ &(T"),  ¢(61(7)) = Uyes (7(2))),

$(O2(r)) =X N Nyer 2(7(5))
for T,T" € T,1 CQand 7€ T!. Now for n € N consider
T = 0, ((03(T), T™)) eq.r<q,);

so that ¢(T™) = f~1]qn,q,[] for every n, and (f~![]gn, d"[)nen is codable; by 562Ma, f is a codable
Borel function.

(b) This is elementary; given 7 € T we can, and must, set ¢(7)(z) = sup{a : z € ¢(7(a))} for every
z € X; and given f we have a coding 7 for ({z : f(z) > a})aer which must belong to 7" and be such that

o(r) = f.

(c) Given (7,)nen as described, and taking ©; as in (a)(iii)=(i) above,

o = O1({a () nen)

will be a Borel code for f.

(d) Use 562M(b)-(d).

(e) Let

Op:T—>T, O©1:TxT—=>T
be such that
¢(00(T)) = X\ o(T),  ¢(O1(T,T)) = ¢(T) U H(T")

for every T, T" € T. Now, given (7,)nen as described, set
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T(a) = él(<él(<62((Tm((I)>m2n)>q€@,q>a)>n€N)
for « € R. Then

A(7() = Uysamen Nmsntz t fm(2) > ¢} = {z : liminf, o fo(z) > a}

for each a. We don’t yet have a code for a real-value function defined everywhere in X. But if we set
T = 61((03(1(=n),7(n))) new);
then

H(T) = U,en 2(1(—n)) \ ¢(7(n)) = {x : liminf, o fn(v) is finite}.
So take

7' (a) = O3(1(a), 09(T)) if o > 0,
= 01(7(a),00(T)) if a < 0;
this will get 7/ € 7 such that

&(7')(x) = liminf f,(x) if this is finite,

n—oo

= 0 otherwise.

(f) Elementary.

5620 Remarks (a) For some purposes there are advantages in coding real-valued functions by functions
from Q to 7 rather than by functions from R to 7T; see 364Af and 556A.

(b) As in 562C, it will be useful to observe that the constructions here are largely determinate. For
instance, the function © of 562M (a-iii) can be built by a definite rule from the sequence (7)), cy provided
by the hypothesis (a-ii) there. What this means is that if we have a family ((Yi, (Vin)nen, fi))icr such
that Y; is a second-countable space, (V;,)nen is a sequence running over a base for the topology of Y;, and
f; : X = Y; is a continuous function for each i € I, then there will be a function © : 7 x I — T such that
d(O(T,4)) = ;7 ¢:(T)] for every i € I and T € T, where ¢; : T — B.(Y;) is the interpretation of Borel
codes corresponding to the sequence (Vi )nen. (Start from

IO ={<j>:U; € f;* [Vinl}
for i € I and n € N, and build ©(T), i) as 562M.)
(c) Similarly, when we look at 562N(d)-(e), we have something better than just existence proofs for codes

for f+g a{ld lim i}lfn%oo fn. For instance, we have a function ©; : 7 x T — T such that qz((:)l(T, 7')) will
always be ¢(7) — ¢(7') for 7, 7/ € T. B> We need to have

P(O(7, 7') () = Uyeq ¢(7(0) \ o(7'(q — @)
for every «, and this is easy to build from a set-difference operator, as in 562Ca, and a general countable-
union operator as built in 562Cb. @ Equally, we have a function ©% : 7% — TN such that

qg(éi(<7n>neN)(m)) =infp>m (5(7'71)

for every m whenever (7,)nen is a sequence in T such that inf,en (ZE(Tn) is defined as a real-valued function
on X. P This time we need

$(O1((rn)nem)(m)(@)) = Ugegugsa (X \ Unzm (X \ 6(70(2))))

for all m and «, and once again a complementation operator and a general countable-union operator will
do the trick. Q

562P Codable Borel equivalence (a) If X is a set, we can say that two second-countable topologies
G, T on X are codably Borel equivalent if the identity functions (X,8) — (X, %) and (X, %) — (X, 6)
are codable Borel functions. In this case, G and ¥ give the same families of codable Borel functions and the
same algebra B.(X) (562Mb, 562Nf).
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(b) If (X,%) is a second-countable space and (E,)nen is any codable sequence in B.(X), there is a
topology & on X, generated by a countable algebra of subsets of X, such that & and ¥ are codably Borel
equivalent and every FE, belongs to &. P Since there is certainly a codable sequence running over a base
for the topology of X, we can suppose that such a sequence has been amalgamated with (F,),en, so that
{E, : n € N} includes a base for T. Let £ be the algebra of subsets of X generated by {F, : n € N}
and & the topology generated by £. As £ is an algebra, & is zero-dimensional; as £ is countable, & is
second-countable.

The identity map (X,8) — (X, %) is continuous, therefore a codable Borel function (562Md). In the
reverse direction, we have a sequence (T(™), cy of codes for (Ep)nen. From these we can build, using our
standard operations, codes Ty, for I € [N]<¥ T, for I, J € [N]<¥ and Ty, for £ € [[N]<% x [N]<«¥]<v,
such that

T7 codes U, B,

Ty codes Uics Bi\ Uje ;s Ei,

Ty codes U(I,J)elC(UieI Ei\U,e, Ei)-
But of course [[N]<¢ x [N]<“]<“ is countable and the T}’ can be enumerated as a sequence (T ),ecn coding a
sequence (V) ey running over £. By 562Ma, the identity map (X, %) — (X, &) is a codable Borel function.
Q

Note that & here is necessarily regular; this will be useful at more than one point in the next couple of
sections.

562Q Resolvable functions Let X be a topological space. I will say that a function f : X — [—o0, 0]
is resolvable if whenever & < 8 in R and A C X is a non-empty set, then at least one of {z : z € A,
fl@)<a}l,{x:2z€ A, f(x)> [} is not dense in A.

Examples (a) Any semi-continuous function from X to [—oo, o] is resolvable. P If f : X — [—o00,00] is
lower semi-continuous, A C X is non-empty, and o < 3 in R, then U = {x : f(z) > a} is open; if ANU # 0
then {z: z € A, f(x) < a} is not dense in A; otherwise {x : x € A, f(x) > 8} is not dense in A. Q

(b) If f: X — R is such that {z : f(x) > a} is resolvable for every «, then f is resolvable. I Suppose
that A C X is non-empty and a < S in R. Set F = {z : f(x) > a}. T AZ ANE, then {z : z € A,
f(z) > B} is not dense in A. Otherwise {z : x € A, f(z) < a} = A\ E is not dense in 4. Q

In particular, the indicator function of a resolvable set is resolvable.

(¢) A function f: R — R which has bounded variation on every bounded set is resolvable. P If A C R
is non-empty and o < 8 in R, take y € A. If y is isolated in A, then we have an open set U such that
UNA = {y}, so that one of {z : x € A, f(zx) <a},{r:z e A, f(z) > B} does not contain y and is not
dense in A. Otherwise, y is in the closure of one of A NJy,o0[, AN]—o0,y[; suppose the former. For each
ne€Nset I, =[y+2""1 y+27"], 6, = Vary, (f). We have

00 > Vary, y11)(f) = 2202 Ons
so there is an n € N such that 4,, < %(B — a) for m > n. Take m > n such that I,,, N A # 0, and consider

U = int(ly—1 U Iy Ulpyq). Then Varg(f) < 2(8 — @) so U cannot meet both {z : x € A, f(z) > 8} and

{z:z € A, f(x) > a}, and one of these is not dense in A. Q

562R Theorem Let X be a second-countable space, (U, )nen a sequence running over a base for the
topology of X, and ¢ : T — B.(X) the associated interpretation of Borel codes. Let R be the family of
resolvable real-valued functions on X. Then there is a function ¢ : R — T® such that

S(D(f)(@) = {z: f(a) > a}
for every f € R and o € R.
proof (a) Start by fixing a bijection

ke (ks i, q) - N = Nx{(q,¢") 1 ¢, ¢ € Qg < d'}-
Next, fix a function ©F : 72 x N — T such that
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Y(O1(T,T",T",n)) = $(T) U (Un \ (#(T") U $(T")))
for T, T/, T" € T and n € N, and a function O} : Usen T/ — T such that ¢(©%(r)) = Uics o(7(7))
whenever J C N and 7 € T7. (See 562Ca.)
(b) Given f € R, define ¢ < w; and a family <(TE,T§/,I€E)>§§< in 7% x T® x N inductively, as follows.
The inductive hypothesis will be that k, # k¢ whenever n < ¢ < {. Start with 7(a) = 79(c) = 0 for every
aeR.

Inductive step to a successor ordinal & + 1 Given 7¢ and Té in TR, then for ¢ < ¢’ in Q set Fe(q,q') =

X\ (o(7e(q)) U d(7e(q")))- Now
—— if there is a k € N\ {k, : n < &} such that U,, N Fe(qx,q),) # 0 and f(x) > ¢ for every
x € Uy, N Fe(qr,q),), take the first such &, and set

(
i1 (@) = O7 (i (), e (qn), ¢ (qr), ) if o < g,
(o) if @ > gy,

—— if this is not so, but there is a k € N\ {k, : n < &} such that U,, N Fe¢(qx,q,) # 0 and
f(x) < q, for every x € Uy, N Fe(qr, q;,), take the first such &, and set

TE+1(a) = QT(Tg(a)a T.f(qk), T.f/(q/k)a nk?) ifa> Q;m
= 7e(a) if a <qj,
7éy1(a) = T{(a) for every a € R,
kf = k;
—— and if that doesn’t happen either, set { = ¢ and stop.

Inductive step to a countable limit ordinal § Given ((1y, 7, ky))n<e, set I = {k; : n < &} and define
g : I — & by setting g(i) = n whenever n < £ and k,, = i. Now set

Te(a) = O7 ({rgiy (@)ier),  7i(a) = OF ({1} ;) (@))ier)
for every a € R.

(c) Now an induction on & shows that

d(m(a)) € d(1e(a)),  (my(a)) € ¢(7e()),
P(re(a)) Sz flx) <a},  d(rg(a)) S{z: f(z) = a}

whenever n < ¢, a € R and the codes here are defined. Next, if k,;, = £ is defined, we must have U,, N
Fy(ar, q;;) # 0 and
— either f(x) > qx for every x € Uy, N Fy(qk,q;,) and ¢(7741(qr)) = ¢(7,(qx)) U (Un, N
Fy(ak: q))
or f(x) < g, for every x € Un, N Fy(qr, q) and ¢(7y41(qx)) = &7 (qx))U(Un, NV Fy (ak, a1 ))-
In either case, U,, N F,(qx,q),) must be disjoint from F¢(qx,q;) for every & > n for which F¢ is defined;
consequently we cannot have ks = £ for any £ > 1. The induction must therefore stop.

Fc(q,q'") = 0 whenever ¢, ¢ € Q and ¢ < ¢’. P? Otherwise, because f is resolvable, there is an n € N
such that V' = U, N F¢(q,¢’) is non-empty and either f(z) > ¢ for every z € V or f(x) < ¢ for every z € V.
Let k € N be such that n, = n, & = ¢ and ¢;, = ¢; then U, meets F¢(qx,q),) so k # k, for any n < (. But
this means that we ought to have proceeded according to one of the first two alternatives in the single-step
inductive stage, and ought not to have stopped at (. XQ

(d) Now set

7(a) = éf(<Té(qn)>n€N,qn>a)
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for « € R. Then

¢(r(@) = |J o(ian)

neN,g, >a

c U {e:f@=za)c{e: fl2)>a}

neN,qg, >a

for every a. ? If «v is such that ¢(7(a)) C {z: f(z) > a}, let € X and n € N be such that f(x) > ¢}, >

gn > a and x ¢ ¢(7(«)). Then z ¢ ¢(Té(qn)); but also f(y) < ¢, for every y € ¢(7¢c(q},)), so x & ¢(1¢(q,))
and z € F¢(qyp,q),), which is supposed to be impossible. X

So we can set ¢(f) = 7.

562S Codable families of codable functions (a) If X and Y are second-countable spaces, a family
(f:)ier of functions from X to Y is a codable family of codable Borel functions if (f; ' [H])ic; HCY is open
is a codable family in B.(X).

(b) Uniformizing the arguments of 562N, it is easy to check that a family (f;);cs of real-valued functions

on X is a codable family of codable Borel functions iff there is a family (7;);ec7 in 7 such that, in the language

there, f; = ¢(7;) for every i.

(c) In this language, 562Ne can be rephrased as
if (f.)nen is a codable sequence of real-valued codable Borel functions on X, there is a codable
Borel function f such that f(z) = liminf,, o f,(z) whenever the lim inf is finite,
and 562R implies that
the family of resolvable real-valued functions on X is a codable family of codable Borel func-
tions.

(d) If X, Y and Z are second-countable spaces, (f;);cs is a codable family of codable Borel functions
from X to Y, and (g;)ics is a codable family of codable Borel functions from Y to Z, then (g;fi)ics is
a codable family of codable functions from X to Z; this is because the proof of 562Mb gives a recipe for
calculating a code for the composition of codable functions, which can be performed simultaneously on the
compositions g; f; if we are given codes for the functions g; and f;.

(e) Extending the remarks in 5620(b)-(c), we see that (for instance) we can define a sequence (®,,)nen
such that ®, is a function from 77*! to T for every n, and ¢(®,((7;)i<n)) = Yo ¢(7;) whenever
T0,.-.,Tn € T: so that if (fn)nen is a codable sequence of codable Borel functions, then (3"1 , fi)nen
is codable.

562T Codable Baire sets The ideas here can be adapted to give a theory of Baire algebras in general
topological spaces. Start by settling on a sequence running over a base for the topology of RY, with the
associated interpretation ¢ : 7 — B.(RY) of Borel codes. Let X be a topological space.

(a) A subset E of X is a codable Baire set if it is of the form f~![F] for some continuous f : X — RN
and F € B.(RY); write Ba.(X) for the family of such sets. If E € Ba.(X), then a code for E will be a pair
(f,T) where f : X — RY is continuous, T' € T and E = f~1¢(T)]. A family (E;)ics in Ba.(X) is now a
codable family if there is a family ((fi;, 7)), such that (f;, 7)) codes F; for every i.

(b)(i) Suppose that (f;)icr is a countable family of continuous functions from X to RN, and (7)<,
a family in 7. Then there are a continuous function f : X — RN and a sequence (1));cy in T such that
(f, T™) codes the same Baire set as (f;, T(™) for every i € I. P If I is empty, this is trivial. Otherwise, I x N
is countably infinite, so (RN)! = R/*N is homeomorphic to RY; let h : RN — (RY)! be a homeomorphism,
and set f(x) = h™1((fi(z))icr) for each * € N. Then f; = mhf for each i, where m;(z) = 2(i) for
z € RN Now ((mih) " Va])iernen is a family of open sets in RY, so is codable (5621, or otherwise);
let (T“””}iel’neN be a family in 7 such that ¢(T™) = (m;h)~[V;] whenever n € N and i € I. The
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construction of part (a)(ii)=-(iii) in the proof of 562M gives us a family (©;);cs of functions from 7 to T
such that (m;h) "' [p(T)] = #(O4(T)) whenever i € I and T € T. So we can take T = ©,(T™), and we
shall have
[T = fH () AT = £ 6(Oi(TD))] = f~He(TD))]

for every i, as required. Q

(ii) It follows that if (Ej;);en is a codable sequence in Ba.(X) then J;cy Ei and (), E; belong
to Ba.(X). P By (i), we have a continuous f : X — RY and a sequence (T");cy in T such that
E; = f~Ya(T™)] for every i € N. Now 562K tells us that F = Uien (1) and F' = Mien H(TD) are
codable, so fT![F] = U;cn Bi and f1[F'] = ),y Ei belong to Ba.(X). Q

(iii) In particular, Ba.(X) is closed under finite intersections; as it is certainly closed under comple-
mentation, it is an algebra of subsets of X. Every zero set belongs to Ba.(X). P If g : X — R is continuous,
set f(z)(1) = g(x) for v € X,i€N;then H={z:2¢€RN 20) =0} is closed, therefore a codable Borel
set, and g~ 1[{0}] = f~![H] is a codable Baire set. Q

(iv) If Y is another topological space and g : X — Y is continuous, then (g7 *[F;]);er is a codable family
in Ba.(X) for every codable family (F});er in Ba.(Y). B If ((f;, T™));er codes (Fi)ier, then {(fig, T™))ier
codes (¢ [Fi])ier- Q

(c)(i) A function f: X — R is a codable Baire function if there are a continuous g : X — R and
a codable Borel function h : RN — R such that f = hg. A family (fi);cr of codable Baire functions is a
codable family if there is a family ((g;, h;))ier such that g; : X — RY is a continuous function for every
i € I and (h;);cs is a codable family of codable Borel functions from RY to R.

(ii) Suppose that (fn)nen is a codable sequence of codable Baire functions from X to R. Then there
are a continuous function g : X — RN and a codable sequence (h,,)nen of codable Borel functions from RN
to R such that f,, = h,g for every n € N. P Let ((gn,h’,))nen be such that g, : X — RY is continuous for
every n, (h!),en is a codable sequence of codable Borel functions from RN — R, and f,, = hl, g, for each n.
Now ({z : h},(z) > q})nen,qgeq is a codable family in B.(RY); let (T} )nengeq be a family in 7 coding it.
By (b-i) above, there are a continuous function g : X — RN and a family (7("),cy 4en in T such that

g AT D)) = g, [6(Th,)] = {z + ful@) > ¢}

for every n € N and ¢q € Q.
To convert (T ("’q)>neN,qu into a code for a sequence of real-valued functions on RN, I copy ideas from
the proof of 562N. Let

Oo:T—=T, ©1:TxT—=T,

O3:TxT =T, 61:UcoqT =T
be such that
P(00(T)) = X\ o(T), ¢(0:1(T, 1) = ¢(T) U(T"),

¢(O3(T,T")) = H(T)\ H(T"),  $(01(7)) = Uyes 0(7(q)))
for T,T7" € T,1 CQand 7€ T!. Now,for o € R and n € N, set

() = él (<T(n’q)>q€<@7q2a)a

T = 6,((03(1(—k), 7 (k) ken),

T(@) = O3(7/, (), O (T™)) if @ > 0,
= 0,(7) (), 0o(T"™)) if a < 0.

We now have a sequence (7,)pen in T (as defined in 562N) coding a sequence (hy)nen of Borel functions
from RN to R such that f,, = h,g for every n (see 562Sb). Q

D.H.FREMLIN



30 Choice and determinacy 562Tc

(iii) If (f.)nen is a codable sequence of codable Baire functions, there is a codable Baire function f
such that f(x) = liminf, , fn(z) whenever the lim inf is finite. I® Take g and (hn)nen as in (i); by 562Ne,
there is a codable Borel function h such that h(z) = liminf, o h,(z) whenever z € RY is such that the
liminf is finite, and f = hg : X — R will serve. Q

(iv) The family of codable Baire functions is a Riesz subspace of R* containing all continuous functions
and closed under multiplication. (This time, use (i) and 562Nd.)

(v) The family of continuous real-valued functions on X is a codable family of codable Baire functions.

(For f € C(X), define g; € C(X;RY) by setting g¢(x)(n) = f(x) for every x € X and n € N; setting
mo(2) = 2(0) for z € RN, ((gf,m0)) fec(x) is a family of codes for C(X).)

(vi) If E C X, then F € Ba.(X) iff xE : X — R is a codable Baire function. I

E € Ba.(X) <= there are a continuous g : X — RY

and an F € B.(RY) such that F = ¢ '[F]

<= there are a continuous g : X — RY
and an F € B.(RY) such that YE = (xF)g

<= there are a continuous g : X — RY
and a codable Borel function h : RY such that yE = hg

(562Nf, because if xE = hg then xE = (xF)g where F = {y : h(y) > 0})
<= xF is a codable Baire function. Q

(d) If (fn)nen is a codable sequence of codable Baire functions from X to R, then (f,, ' [H])nen, HCR is open
is codable. P By (c-i), we have a continuous g : X — R" and a codable sequence (h,,)ncn of codable Borel
functions from RY to R such that f, = h,g for every n. Let ¢ : T — B.(R) be an interpretation of
Borel codes corresponding to some enumeration of a base for the topology of R. By 562Md, g is codable;
by 562M (a-iii), there is a function © : 7 — T such that g~ [¢(T)] = #(O(T)) for every T € T. Now
(hyy ' [H])neN,HCR is open is codable, by the definition in 562S; that is, there is a family (T),x )nen HCR is open
in 7 such that ¢(T,,p) = h,,'[H] for all n and H. Now

fotH] = g7 by H] = g7 é(Ton)] = »(O(Thn))

for all n and H, so we have a coding of {f; ' [H])neN, HCR is open- Q

562U Proposition Let (X, %) be a second-countable space. Then there is a second-countable topology
G on X, codably Borel equivalent to ¥, such that B.(X) = Ba.(X, &) and the codable families in B.(X)
are exactly the codable families in Ba.(X,&).

proof (a) By 562Pb there is a topology & on X, finer than ¥, generated by a countable algebra & of
subsets of X, which is codably Borel equivalent to T. Let (U,)nen be a sequence running over £. Define
go : X — RN by setting go(z) = (xUn())nen for each z € X. Then gq is continuous. Set W,, = {z: z € RN,
z(n) > 0} for each n, so that W,, C RY is open and U,, = gy [Wy]; let (V;,)nen be a sequence running over
a base for the topology of RN and such that Vs, = W, for every n. Let ¢ : T — B.(X), ¢’ : T — B.(RY)
be the interpretations of Borel codes corresponding to (U, )nen, (Vi )nen respectively.

(b) We have a function © : T — T \ {0} such that ¢(T") = g~ '[¢/(©(T))] for every T' € T. P Induce
on 7(T). As usual, set Ap = {n:<n>¢eT}. If r(T) =0, take O(T) € T \ {0} such that ¢'(©(T)) = 0. If
r(T) =1, set ©O(T) = {<2n>:n € Ar}; then

¢'(O(T) =U{Van : n € Ar}, g5 [¢'(O(T)] = U{Un : n € Ar} = ¢(T).
If r(T) > 1, set
OT)={<i>:i€ Ar}U{<i>"0:i€ A, 0 € O(T<;>)}. Q
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This means that if we have any codable family in B.(X), coded by a family (T™);c; in T, {(g0, O(T)))ser
will code the same family in Ba (X, S).

(c) Next, there is a function ® : C((X,&);RY) x T — T \ {0} such that g~ '[¢/(T))] = ¢(®(g,T)) for
every &-continuous g: X - RN and T € T. P If 7(T) < 1 and g~ ![¢/(T)] is empty take ®(g,T) € T \ {0}
such that ¢(®(g,T)) = 0. If 7(T) = 1 and g~ *[¢'(T)] is not empty set
(g, T) ={<n>:Un C g~ ¢'(T)]}-
If (T) > 1 set
O(g,T)={<i>:i€ Ar}U{<i>"0:i€ Ap,0 € ®(9,T<;>)}. Q

So given any codable family in Ba.(X, &), coded by a family ((g;, T™))ser in C((X, &); RN T, (®(g:, TD))ier
will code it in B.(X).

562V A different use of Borel codes will appear when we come to re-examine a result in Volume 3. I will
defer the application to 5660, but the first part of the argument fits naturally into the ideas of this section.

Theorem (a) Let 2 be a Dedekind o-complete Boolean algebra, and (a,)nen a sequence in 2[. Then we
have an interpretation ¢ : 7 — 2L of Borel codes such that

&(T) = sup a; if 7(T) <1,
i€EAT
= sup 1\ ¢(T<i>) if r(T) > 1,
i€AT
where Ap = {i : <i> € T} as usual.
(b) For n € N, set E,, = {z : 2 € {0,1}", 2(n) = 1}. Let 2 be a Dedekind o-complete Boolean algebra,

and {a,)nen a sequence in A. Let ¢ : T — A and ¢ : T — P({0,1}Y) be the interpretations of Borel codes
corresponding to {(an)nen and (Ey,)nen. If T, T" € T are such that ¢(T') € ¢(T"), then ¢(T") € ¥(T”).
proof (a) Define ¢(T') inductively on the rank of T, as in 562Ba.
(b) Let (T™), ey be a sequence running over {T,T"} U{T, : 0 € S*}U{T. : 0 € S*}. Define (c,)nen
inductively, as follows. ¢o = ¢(T) \ ¢(T"). Given that ¢, € 2\ {0}, then
—if r(T(")) <1 and there is an ¢ € Ap such that ¢, Nna; # 0, take the first such i and set
Cnt+1 = Cp N A4
——if 7(T™) > 1 and there is an i € Ap) such that ¢, \ qS(ng) # 0, take the first such i
and set ¢,y1 = ¢p \ qb(ng);
—— otherwise, set ¢, 11 = ¢y.
Continue.
At the end of the induction, define z € {0,1} by saying that x(i) = 1 iff there is an n € N such that
¢n C a;. Now we find that, for every m € N,
—— if £ € (T™) there is an n € N such that ¢, € ¢(T™),
——if & ¢ ¢(T™) there is an n € N such that ¢, n¢(T™) = 0.
P Induce on r(T0™). If #(T(™)) < 1 then

z € p(T"™) = there is an i € Ay such that z € E;
= there are i € Ap@my, n € N such that ¢, C a;

— there is an n € N such that ¢, € ¢(T™),

x ¢ p(T"™) = z ¢ E; for every i € Apom)
= Cm41 € a; for every i € Apm)

= ¢ na; =0 for every i € Apim) = ¢ N qS(T(m)) =0.

If 7(T(™)) > 1 then
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z € p(T™) = there is an i € Ay such that z ¢ @[J(Tg;)

= there are i € Apm), n € N such that ¢, N é( <Z>) 0

(by the inductive hypothesis, because T is always equal to T(*) for some k, and r(TU1)) < r(T™))

— there is an n € N such that ¢, ¢ ¢(T™),

¢ P(T™) =z ¢ 1/J(ngn>)) for every i € Apem)

— for every i € Apm) there is an n € N such that ¢, C ¢( <T>))

= Cmy1 €1\ gf)(Tg';) for every i € Apem)
= Cm \ &( <Z>) = 0 for every i € Apem)
— cnno(T™) =0. Q

In particular, since both T' and T” appear in the list (70™),.en, ¢n Nd(T) # 0 and ¢, N p(T") = 0 for
every n, x € Y(T) \ (T") and ¢(T') Z ¢(T").

562X Basic exercises (a) Let X be a regular second-countable space. Show that a resolvable subset
of X is F,. (Hint: in the proof of 5621, show that ¢(7®)) is always F,.)

(b) Let X be a second-countable space and (Ey;)n ien & family of resolvable subsets of X. Show that
Mnen Uien Eni is a codable Borel set.

(c) Let X be a second-countable space and (E;);c; a codable family in B.(X). (i) Show that (E;);c is
codable for every J C I. (ii) Show that if I is countable and not empty then |J;.; £; and [, E; are codable
Borel sets. (iii) Show that if h : J x N — [ is a function, where J is any other set, then (U, cn En(jn))jes
is a codable family. (iv) Show that if (F});cs is another codable family in B.(X) then (E; N F;);er and
(E;AF;);cr are codable families.

(d) Let X and Y be second-countable spaces and f : X — Y a function. Suppose that {F : F C Y,
f7Y[F)] is resolvable} includes a countable network for the topology of Y. Show that f is a codable Borel
function.

(e) Let X be a second-countable space and (F;);cr a family in B.(X). (i) Show that {J : J C I, (E;)ics
is codable} is an ideal of subsets of I. (ii) Show that if every FE; is resolvable then (E;);cs is codable.

(f) Let X be a second-countable space and f : X — R a function. Show that f is a codable Borel
function iff {(z,a) :z € X, a < f(x)} is a codable Borel subset of X x R.

(g) Let X be a topological space and f, g : X — R resolvable functions. (i) Show that fV g and af are
resolvable for any o € R. (ii) Show that if f is bounded then f + g is resolvable. (iii) Show that if f and ¢
are bounded, f X g is resolvable. (iv) Show that if f and g are non-negative, then f + g is resolvable. (v)
Show that if A : R — R is continuous and h=1[{a}] is finite for every o € R, then hf is resolvable.

(h) Let f : R — R be such that lim,, f(¢) is defined in [—o0,00] for every x € R. Show that f is
resolvable.

(i) Let X be a second-countable space and (f,)nen a sequence of resolvable real-valued functions on X.
Show that there is a codable Borel function g such that g(z) = lim,_, fn(2) for any 2 such that the limit
is defined in R.

(j) Let X be a second-countable space and Y a subspace of X. Show that a family (g;)ic; in RY is a
codable family of codable Borel functions iff there is a codable family (f;);cr of real-valued codable Borel
functions on X such that g; = f;|Y for every i € I.
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>(k) Let X be a second-countable space. Show that every codable family of codable Baire subsets of X
is a codable family of codable Borel subsets of X.

>(1) Let X be a regular second-countable space. Show that every codable family of codable Borel subsets
of X is a codable family of codable Baire subsets of X. (Hint: 561Xk.)

562Y Further exercises (a) Let X be a second-countable space, Y a Ty second-countable space and
f: X — Y a function with graph ' C X x Y. (i) Show that if f is a codable Borel function, then I is a
codable Borel subset of X x Y. (ii) Show that if X and Y are Polish and T' is a codable Borel subset of
X x Y, then f is a codable Borel function.

(b) Show that there is an analytic subset of NY which is not a codable Borel set. (Hint: 423M.)
(c) Show that if X is a Polish space then a subset of X is resolvable iff it is both F, and Gs.

(d) Let X be a Polish space. Show that a function f: X — R is resolvable iff {z : o < f(x) < B} is F,,
for all a, B € R.

(e) Let X be a topological space. Let ® be the set of functions f : X — PN such that {z : n € f(x)}
is open for every n € N. Write B.(X) for {f~'[F]: f € ®, F € B.(PN)}; say a family (E;);er in B.(X)
is codable if there is a family ((f;, F;))icr in ® x B.(PN) such that (F;);cr is codable and E; = f[l[Fi]
for every 4. (i) Show that if X is second-countable then B.,(X) = B.(X) and the codable families on the
definition here coincide with the codable families of 562J. (ii) Develop a theory of codable Borel sets and
functions corresponding to that in 562T.

562 Notes and comments The idea of ‘Borel code’ is of great importance in mathematical logic, for
reasons quite separate from the questions addressed here; see JECH 78, JECH 03 or KUNEN 80. (Of course
it is not a coincidence that an approach which is effective in the absence of the axiom of choice should also
be relevant to absoluteness in the presence of choice.) Every author has his favoured formula corresponding
to that in 562Ba. The particular one I have chosen is intended to be economical and direct, but is slightly
awkward at the initial stages, and some proofs demand an extra moment’s attention to the special case of
trees of rank 1. The real motivation for the calculations here will have to wait for §565; Lebesgue measure
can be defined in such a way that it is countably additive with respect to codable sequences of Borel sets,
and there are enough of these to make the theory non-trivial.

Borel codes are wildly non-unique, which is why the concept of codable family is worth defining. But it
is also important that certain sets, starting with the open sets, are self-coding in the sense that from the
set we can pick out an appropriate code. ‘Resolvable’ sets and functions (562G, 562Q) are common enough
to be very useful, and for these we can work with the objects themselves, just as we always have, and leave
the coding until we need it.

The Borel codes described here can be used only in second-countable spaces. It is easy enough to find
variations of the concept which can be applied in more general contexts (562Ye), though it is not obvious
that there are useful theorems to be got in such a way. More relevant to the work of the next few sections is
the idea of ‘codable Baire set’ (562T). Because any codable sequence of codable Baire sets can be factored
through a single continuous function to RY (562T(b-i)), we have easy paths to the elementary results given
here.

Version of 3.12.13

563 Borel measures without choice

Having decided that a ‘Borel set’ is to be one obtainable by a series of operations described by a Borel
code, it is a natural step to say that a ‘Borel measure’ should be one which respects these operations
(563A). In regular spaces, such measures have strong inner and outer regularity properties also based on the

(©) 2008 D. H. Fremlin
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34 Choice and determinacy 8563 intro.

Borel coding (563D-563F), and we have effective methods of constructing such measures (563H). Analytic
sets are universally measurable (563I). We can use similar ideas to give a theory of Baire measures on
general topological spaces (563J-563K). In the basic case, of a second-countable space with a codably o-
finite measure, we have a measure algebra with many of the same properties as in the standard theory
(563M-563N).

The theory would not be very significant if there were no interesting Borel-coded measures, so you may
wish to glance ahead to §565 to confirm that Lebesgue measure can be brought into the framework developed
here.

563A Definitions (a) (FOREMAN & WEHRUNG 91) Let X be a second-countable space and B.(X)
the algebra of codable Borel subsets of X. I will say that a Borel-coded measure on X is a functional
o Be(X) — [0,00] such that 0 = 0 and p(U, ey En) = D opeo 1En whenever (E,)nen is a disjoint codable
family in B.(X).

I will try to remember to say ‘Borel-coded measure’ everywhere in this section, because these are danger-
ously different from the ‘Borel measures’ of §434. Their domains are not necessarily o-algebras and while
they are finitely additive they need not be countably additive even in the sense of 3261.

(b) As usual, I will say that a subset of X is negligible if it is included in a set of measure 0, which
here must be a codable Borel set; the terms ‘conegligible’, ‘almost everywhere’, ‘null ideal’ will take their
meanings from this. We can now define the completion of i to be the natural extension of i to the algebra
{EAA: E € B.(X), A is p-negligible}.

(c) Some of the other definitions from the ordinary theory can be transferred without difficulty (e.g.,
‘totally finite’, ‘probability’), but we may need to make some finer distinctions. For instance, I will say that
a Borel-coded measure y is semi-finite if sup{uF : F C E, uF < oo} = oo whenever uFE = 00; we no
longer have the ordinary principle of exhaustion (215A), and the definition in 211F, taken literally, may be
too weak. For ‘locally finite’, however, 411Fa can be taken just as it is, since all open sets are measurable.

(d) For ‘o-finite’ we again have to make a choice. The definition in 211C calls only for ‘a sequence of
measurable sets of finite measure’. Here the following will be more useful: a Borel-coded measure on X
is codably o-finite if there is a codable sequence (E,),en in B.(X) such that X = |J,,cy En and pk, is
finite for every n.

563B Proposition Let (X, %) be a second-countable space and p a Borel-coded measure on X.
(a) Let (E,)nen be a codable sequence in B.(X).
() 1, e Bu) < 55 1.
(ii) If (Epn)nen is non-decreasing, pu(J, ey En) = limy, o0 pBn.
(iii) If (E})nen is non-increasing and pEy is finite, then pu((),cy En) = limy, o0 1By,
(b) p is T-additive.
(c) Suppose that T is Ty. If £ is the algebra of resolvable subsets of X (562H), then ul& is countably
additive in the sense that pE = Y~  puF, for any disjoint family (E,)nen in € such that E = sup,cy En,
is defined in &.

proof (a)(i) Set F,, = E,, \ U,,, £ for n € N; then (F,),en is codable (562Kc), so
M(UneN EN) = M(UneN Fn) = ZZO:O uk, < Zzo:o uky,.

(ii) If (Ey)nen is non-decreasing then, in the language of (i), £, = U,,, F; for each n, so

i
i

limy, o0 pBp = limy o0 Yoo uFy = (Unen En)-

(iii) Apply (ii) to (Eo \ En)nen. (As remarked in 562J, this will be a codable sequence.)

(b) Suppose that G is an upwards-directed family of open sets with union H. Set v = supgeg uG. Let
(Un)nen be a sequence running over a base for the topology of X, and for n € N set

Vo = U{U; :i <n, U; CG for some G € G}.
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Then (V,,)nen is a non-decreasing sequence of open sets with union H. As every V,, is resolvable, (V,)nen
is codable and
pH = limy, o0 pV, < supgeg pG < pH
by (a-ii).
(c) If (Ey)nen is a disjoint sequence in £ with a supremum E in &, then £ D (J, .y En. If © € E then

{z} is closed, because T is Ty, so {z} is resolvable (562H) and F \ {z} € &; as E \ {x} is not an upper
bound of {E, : n € N}, 2 € J,cny En- S0 E = U, ey En- Now (Ey)nen is codable, as noted in 562J, so

pE = M(UneN E,) = ZZO:O Py,

neN

563C Corollary Let X be a second-countable space, p a Borel-coded measure on X and (F,)nen a
sequence of resolvable sets in X.
(a)(i) U,en Bn is measurable;
(i) (UnEN En) < 3020 nEn;
(iii) if (Ep)nen is disjoint, (U, ey Bn) = Yopeo #bns
(iv) if (Ey)nen is non-decreasing, u(lJ, ey Bn) = limp o0 1By
(b)(i) Nen En is measurable;

(ii) if (E,)nen is non-increasing and inf, ey pFE, is finite, then pu((), oy En) = limy,— 00 nEy.

neN

proof (a) Use 5621 to find a sequence of codes for (E,),en, and apply 563B.

(b) follows, because X \ F,, is resolvable for each n.

563D The next lemma is primarily intended as a basis for Theorem 563H, but it will be useful in 563F.

Lemma Let (X, %) be a regular second-countable space and p : T — [0, 00] a functional such that

uh =0,
uG < uH if GCH,
 is modular (definition: 413Qc),
(Upen Gn) = limy, oo uG,, for every non-decreasing sequence (G )nen in %,
U{G:Ge%, uG < o} =X.

(a) u(U;er Gi) <3 2icr Gy for every countable family (Gi)icr in T.

(b) There is a function 7* : T x N — ¥ such that

X\GCrm(Gk), uGnm (G k) <27"

whenever G € ¥ and k € N.

(¢) Let ¢ : T — B.(X) be an interpretation of Borel codes defined from a sequence running over ¥, where
T is the set of subtrees of | J, . N™ without infinite branches (562A, 562B). Then there are functions m,
7'+ T x N — ¥ such that

o(T) Cm(T,n), X\o(T)Cn'(T,n), pr(T,n)Na'(T,n))<27"
for every T' € 7 and n € N.

neN

proof (a) This is elementary. First, u(GUH) < uG+ pH for all open sets G and H, because u(GNH) > 0.
Next, if (Gp)nen is a sequence of open sets with union G, then

puG = limy, o0 M(Uign Gl) < limy, o0 Z?:Q uG; = Zzozo Gy
Now the step to general countable I is immediate.

(b) Set I ={n:n €N, ulU, < oo}; because y is locally finite, {U,, : n € I'} is a base for T. Given G € ¥
and k € N, then for n € I and m € N set

Wm:U{UZZSm,UZQUan}

Because ¥ is regular, J,,cy Wam = Un NG and p(U, N G) = limy, 00 pWpim. Let my, be the least integer
such that Wy, > u(U, NG) —27F="=1 Set

(G, k) = U,er Un \ Wam, € %.
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Because W, C U, NG for all m and n, while Uner Un =X, 7*(G,k) 2 X \ G. Now
wGNm(G k) <3, e (GNU, \ Wam,) < Z;l.o:o 27kl = o7k,
as required.
(c) Define 7(T') and #'(T) inductively on the rank r(T") of T.

(i) If r(T) =0, set 7(T,n) = 0 and 7'(T,n) = X for every n. If r(T') = 1 then G = ¢(T') is open; set
m(T,n) = G and 7'(T,n) = 7*(G, n) for each n.

(i) For the inductive step to 7(T) > 1, set Ay = {i : <i> € T} and Tw;> = {0 : <i>"0 € T} for
1 € N, as in 562A. Set

(T,n) = UieAT ' (T<is,n+1i+2),

m(T,n) = Ujen, (m(T<is,n+i+2) N7 (T<is,n+i+2)) Un*(n(T,n),n + 1).
Then
AT) = Uica, X \T<i> S Uiea, ™' (T<is,n +i+2) = n(T,n),

X\¢(T)= () ¢(Teis) € (w(T,n)N [ ¢(T<is)) Un*(x(T,n),n+1)

i€EAT i€EAT
C(U 7Tesm+i+2)n () 7#(Twis,n+i+2)) Ur*(w(T,n),n+1)
i€EAT i€EAT
- U (7' (T<is,n+i+2)Na(Teis,n+i+2)) Ur*(x(T,n),n+1)
i€AT
=m'(T,n),

ww(Ton) N’ (Tyn) < Y plr(Teis,n+i+2) N (Teis,n+i + 2))
i€EAT
- p(r(Tym) O (7(T,m), 0+ 1))

< Z 2—n—i—2 +2—n—1 < 9—n
i€AT

for every n, so the induction continues.

563E Lemma Let X be a second-countable space and M a non-empty upwards-directed set of Borel-
coded measures on X. For each codable Borel set £/ C X, set vE = sup,, ¢y pF. Then v is a Borel-coded
measure on X.

proof Immediate from the definition in 563Aa.

563F Proposition Let (X, %) be a second-countable space and p a Borel-coded measure on X.

(a) For any F' € B.(X), we have a Borel-coded measure pp on X defined by saying that upE = p(ENF)
for every E € B.(X).

(b) We have a semi-finite Borel-coded measure ugs defined by saying that

pst(E) = sup{puF : F € B.(X), F CE, uF < o0}

for every E € B.(X).
(¢)(i) If u is locally finite it is codably o-finite.
(i) If p is codably o-finite, it is semi-finite and there is a totally finite Borel-coded measure v on X
with the same null ideal as pu.
(iii) If w is codably o-finite, there is a non-decreasing codable sequence of codable Borel sets of finite
measure which covers X.
(d) If X is regular then the following are equiveridical:
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(i) p is locally finite;
(ii) p is semi-finite, outer regular with respect to the open sets and inner regular with respect to the
closed sets;
(iii) p is semi-finite and outer regular with respect to the open sets.
(e) If X is regular and p is semi-finite, then p is inner regular with respect to the closed sets of finite
measure.
(f) If X is Polish and p is semi-finite, then p is inner regular with respect to the compact sets.
(g) If u is locally finite, and v is another Borel-coded measure on X agreeing with p on the open sets,
then v = p.

proof Fix a sequence (Up)nen running over a base for the topology of X.

(a) The point is just that (E,, N F),cy is a codable family whenever (E,),cn is a codable family in B.(X)
and F is codable. (562J again.)

(b) Writing pp for the Borel-coded measure corresponding to a set F' of finite measure, as in (a), we have
an upwards-directed family of measures; by 563E, its supremum pugs is a Borel-coded measure. If £ C X is
a codable Borel set and v < pgE, then there is a set F' of finite measure such that u(E N F) > ~; now

v < pst(ENF) = p(ENF) <oo.

(c)(d) Set I ={i:i €N, pU; < co}; then (U;)ier is a codable family of sets of finite measure covering X.
(ii) Let (H,)nen be a codable sequence of sets of finite measure covering X.

(@) If E € Be(X), then (ENU,<,

pE = sup, ey (B NU,<,, Hi) < sup{pl: F C E, pF' < oo} < pk.

As FE is arbitrary, p is semi-finite.

H;)nen is a non-decreasing codable sequence with union F, so

(B) Let (€n)nen be a sequence of strictly positive real numbers such that > ° €, uH, is finite. Set
vE =% senu(E N Hy) for E € Bo(X). Of course vf) = 0 and vX < co. If (Ep)ren is a disjoint codable
sequence in B.(X), then (E; N H,)ren is codable for every n, so

v Ex) =Y enn(| Ex N Hy) =D Y enpu(Ex N H,y)
keN n=0 keN n=0 k=0
= Z Z enpt(Ex N Hy) = Z vE)
k=0n=0 k=0

So v is a Borel-coded measure.

If E € B.(X) and pE = 0, then of course vE = Y je,u(E N H,) = 0. Conversely, if vE = 0, then
w(ENHy) = 0 for every n; but (EN Hy)nen, like (Hy)nen, is codable, so uE = pu(|J,,cy E N Hy) = 0. Thus
1 and v have the same sets of zero measure; it follows at once that they have the same null ideals.

(iii) All we have to note is that if (E,),cn is a codable sequence of sets of finite measure covering X,
then (U<, Ei)nen is codable (562Kb), so gives the required non-decreasing witness.

(d)(i)=(ii) () Observe first that p [T satisfies the conditions of 563D. I* The first three are consequences
of the fact that u : B.(X) — [0, o0] is additive. If (G},)nen is a non-decreasing sequence in ¥, it is a codable
sequence of codable Borel sets, by 5621 as usual; so p({J,cy Gn) = limy 00 pGp by 563B(a-ii). Finally, we
are assuming that p is locally finite, so the last condition is satisfied. Q

Take an interpretation ¢ of Borel codes and functions 7, @’ : T x N — ¥ as in 563Dc.

(B) If E € B.(X) and pE < , take n such that 2™ <~ — pE. There is a T' € T such that ¢(T) = E,
and now G = w(T,n) is open, E C G and

WG\ E) < u(G N (T,m)) <277,
so uG < 7.
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(v) If B € B.(X) and v < uE, take T' € T such that ¢(T') = E and n € N such that 27" < uFE — ;
now F'= X\ n'(T,n) is closed, F C E and pu(E \ F) < 27", so uF > ~. Next, if we set

F,=FnU{U; :i<m, uU; < <},

(FrYmen will be a non-decreasing sequence of closed sets of finite measure with union F. The sets F, are
all resolvable, so uF = lim,,—, o 1tF,, and there is an m such that puF,, > v, while F,,, C E is a set of finite
measure. As F and 7 are arbitrary, p is inner regular with respect to the closed sets and also semi-finite.

(ii)=-(iii) is trivial.
(iii)=(i) (@) If z € X then z belongs to some set of finite measure. I Set
F=WU,:neN,zecU,}\U{U,:neN, ¢ U,}.

Then F is a codable Borel set, being the difference of G; sets (562Da), and the subspace topology on F'
is indiscrete. If uF = 0 we can stop. Otherwise, there must be an F’ C F such that 0 < puF’ < oo; but
F' € B.(F)={0,F} (562E), so F’ = F and again F has finite measure. Q

(B) Now as p is outer regular with respect to the open sets, every set of finite measure is included
in an open set of finite measure. So pu must be locally finite.

(e) Suppose that E € B.(X) and v < pFE. Then there is an H € B.(X) such that H C FE and
v < pH < oo. Consider the Borel-coded measure pgy defined from p and H as in (a). This is totally finite,
so (d) tells us that it is outer regular with respect to the open sets and therefore inner regular with respect
to the closed sets, and there is a closed set F' C H such that puF' = ugF > . As E and ~ are arbitrary, p
is inner regular with respect to the closed sets of finite measure.

(f) Let p be a complete metric on X inducing its topology. If F € B.(X) and v < pFE, let F C E be
a closed set such that F' C E and v < uF < oo. For each n € N set J, = {i : diamU; < 27"}. Define
(kn)nens (Fn)nen inductively by saying that Fy = F and

Ky, = min{k : p(F, N UieJ,,mk Ui) >~} Fapr=F,N UieJ"mk" U,
for each n; set K = ﬂnEN F, C E. Then uK = lim,_,o pF;,, > 7. The point is that K is compact. I Set
L=1]],endnNkn C NN, Then L is compact (561D). Set L' = {a: a € L, FN(),-,, Ua(i) # () for every
n}; then L' is a closed subset of L so is compact. For « € L', {F' N Ua(i) NS Nfgenerates a filter F,
on X which is a Cauchy filter because diamﬁa(i) = diam Uy ;) < 27 for every i; because X is p-complete,
f(a) =lim F, is defined, and belongs to F N(;cy Ua) € K. If @, B € L’ and «(i) = B(i), then f(a), f(B)
both belong to Uy so p(f(a), f(B)) < 27% thus f is continuous and f[L'] is a compact subset of K. On

the other hand, given » € K, we can set a(n) = min{i : i € J, Nk,, * € U;} for each n, and now o € L'
and f(a) =z. So K = f[L'] is compact. (See 561Yj.) Q
As E and « are arbitrary, u is inner regular with respect to the compact sets.

(g)(i) Consider first the case in which X is regular. In this case both x4 and v must be outer regular with
respect to the open sets, by (d); as they agree on the open sets they must be equal.

(ii) Next, suppose that uX = vX is finite. Let & be the algebra of subsets of X generated by
{U, : n € N}, and & the topology generated by £. As noted in the argument of 562Pb, & is codably Borel
equivalent to the original topology of X, so u and v are still Borel-coded measures with respect to &, and
are still locally finite, because & is finer than ¥; while & is regular. Now any member of £ is expressible in
the form E = J,.,, Gi \ H; where the G;, H; are open and (G; \ H;)i<, is disjoint. So

More generally, if H € &, there is a non-decreasing sequence (E,, ),y in £ with union H; as all the sets in
& are resolvable, (F,)nen is codable and

i<n

pH = sup,cy B, = vH.
Thus p and v agree on &; by (i), they are equal.
(iii) Finally, for the general case, set V,, = |J{U; : i < n, pU; < oo} for each n. Because p is locally
finite, U, ey Va = X. For each n € N let uy,,, vy, be the Borel-coded measures defined from V,, as in (a).
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Then uy, and vy, are totally finite and agree on the open sets, so are equal. Now (V,),en, being a sequence
of open sets, is codable; so if E € B.(X) the sequence (E N V,)nen is codable, and

pE =lim, oo p(ENV,) = limy, 00 pv, E = vE.

So in this case also we have p = v.

563G Proposition Let X be a set and 6 : PX — [0, 00] a submeasure.
(a)
Y={E:ECX,0A=0ANE)+6(A\E) for every AC X}

is an algebra of subsets of X, and 6]X is additive in the sense that §(E U F) = 0FE + F in [0, oo] whenever
E, F € ¥ are disjoint.
(b) If E C X and for every € > 0 there is an F' € ¥ such that E C F and §(F \ E) < ¢, then F € X.

proof (a) Parts (a)-(c) of the proof of 113C apply unchanged.
(b) Take any A C X and € > 0. Let F' € ¥ be such that E C F' and 6(F \ E) < e. Then
0A<O(ANE)+0(A\E)<OANF)+0(A\F)+0(F\E) <0A+e.
As e is arbitrary, A = (AN E) + (A \ E); as A is arbitrary, F € X.

563H Theorem Let (X,¥) be a regular second-countable space and p : T — [0, 00] a functional such
that
nd =0,
wG < uH if G C H,
mu is modular,
(Upeny Gn) = limy, oo uG,, for every non-decreasing sequence (G )nen in %,
H{G:Ge¥%, uG < 0} = X.
Then p has a unique extension to a Borel-coded measure on X.

proof (a) For A C X set #A = inf{uG : A C G € T}. Then 6 is a submeasure on PX (because
w(GUH) < uG+ pH for all G, H € ), extending u (because uG < pH if G C H). Set

EY={E:ECX,0A=0ANE)+6(A\E) for every AC X}
and v = 0]%, as in 563G. Let ¢ : T — B.(X) be an interpretation of Borel codes and 7, 7’/ : T x N —» ¥
corresponding functions as in 563Dc. Now B.(X) CX. P GivenT € T, AC X and n € N, let G € ¥ be
such that A C G and uG < 0A 4+ 27". Then
A< O(ANG(T))+0(A\ ¢(T)) <O(AN=(T,n))+0(ANT'(T,n))

<u(Gnn(T,n) + pu(Gnr'(T,n))

=pu(GN(x(T,n)Ur'(T,n)) +u(GNr(T,n) 7' (T,n))

< uG + p(n(T,n) N’ (T,n)) <A+ 277+,
As A and n are arbitrary, ¢(T) € £. Q

(b) Let (T},)nen be a sequence in T such that (E,),en is disjoint, where E,, = ¢(T,,) for each n; set
E =U,cn En- Then, for any k € N, E C |,y (T, k + 1), s0

ZyEn = lim I/(U E) <vE< V(U 7(Tn, k+mn))
= n—00 i<n neN
(563Da)
= S Bt (T )\ B)
n=0
(563Ca)
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<Y VB, + p(nw(Tn, ke +n) N (T, ke + 1))

n=0
n=0 n=0

as k is arbitrary, > 2 vE,, = vE; as (T},) nen is arbitrary, v]B.(X) is a Borel-coded measure extending .
(c) At the same time we see that if A is any other Borel-coded measure extending p, we must have
AE < OFE = vE for every E € B,(X). In the other direction,
AG(T)) = M (T, n)) = M (T, n) N 7' (T, n))
= (T, n)) — p(x(T,n) N7'(T,n)) = v($(T)) —27"

for every T € T and n € N, so AE > vE for every E € B.(X). Thus v[B.(X) is the only Borel-coded
measure extending u.

5631 Theorem Let X be a Hausdorff second-countable space, i a codably o-finite Borel-coded measure
on X, and A C X an analytic set. Then there are a codable Borel set £ O A and a sequence (K, ),en of
compact subsets of A such that E\ |J, . K, is negligible. Consequently A is measured by the completion
of u.

neN

proof (a) By 563F(c-ii), there is a totally finite Borel-coded measure on X with the same negligible sets as
w; so it will be enough to consider the case in which p itself is totally finite.

If A is empty, the result is trivial. So we may suppose that there is a continuous surjection f : NN — A,
ForoeS=J,.yN"set I, ={a:0Cac NN}, Fix on a sequence running over a base for the topology
of X and the corresponding interpretation ¢ : T — B.(X) of Borel codes.

(b) For 0 € S and £ < wy define E,¢ by saying that
Eyo = f[IG'L

Eset1 = UieN EU”<i>,Ea
E,c = ﬂn<§ E,, if £ > 0 is a countable limit ordinal.
Then (Ey¢)e<w, is a non-increasing family of sets including f[1,].
(c) For every & < w1, (Egn)oesy<e is a codable family ofNCOdable Borel sets. P It is en01~1gh to consider
the case { > w. Because { is countable, we have a function ©1 : (J;, T/ — T such that ¢(01((T;)nes)) =
U, es #(T) for every J C & (562Cb). Also, of course, we have a function ©g : 7 — 7 such that ¢(©o(T')) =

X \ ¢(T) for every T € T. Next, all the sets Eyo are closed, therefore resolvable. So we have a family
(Tyo)ses in T such that ¢(Ty0) = Eso for every o. Now we can set

Tom1 = O1((Tpm<i> y)ien)
ifn <g,
Toy = ©0(O1((O0(Ti¢))c<n))
if n < ¢ is a non-zero limit ordinal, and ¢(7,,) will be equal to E,, as required. Q
(d) Let (e5)ses be a summable family of strictly positive real numbers, and for £ < w; set

V() = Xoes €oti(Eoc)-

Then v : w; — R is non-increasing. There is therefore a £ < wy such that v(§ + 1) = y(§) (561A), that is,
(B gi1) = p(Eqe) for every o € S.

(e)(i) Set E = Eye. Of course A = f[Iy] C E. Now define o, € N¥, for n € N, as follows. Given
<an(i)>i<m, set

Gnm = U{Eoe : 0 €N, 5(i) < (i) for every i < m},
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Gnmk*U{Ea <j>,£ - co €NT 7j<k 0()<an()f0reveryi<m}a

Then (Gpm)n,men is codable, and limy_ oo uGrmik = 1Gnm for all m, n € N. P By (c), there is a family
(T(m)ges n<é+1 in T such that ¢( n) = Eon whenever o € S and n < £+ 1. This time, we need a function

O : Ujcs T7 = T such that ¢(01((Ts)oer)) = Uyey ¢(T,) whenever J C S and (T, )qe is a family in 7,
and a function O3 : T x T — T such that ¢(O3(T,T")) = ¢(T) \ #(T") for all T, T’ € T. Setting

- 93(< U£>U€Nm,o’( )<an(z)Vz<m)

Tk = (:)3(<Ta“<j>.,£>aeNm,j§k,a(i)gan(i)w<m)7

we have ¢(T},,,,) = Gnm and ¢(T),...) = Gpms for all m, n, k € N. In particular, all the G, and Gpmi are
codable Borel sets, and (Gpm)n,men is codable. Moreover, for any particular pair m and n, (Gpmk)ken is a
codable sequence; we therefore have limg_, oo pGpmr = pG, where G = UkeN Grnmi. Next,

G=U{Ese+1:0€N™, (i) < a,(i) for every i < m},
SO
GAG,, C U{Egg \ E, £+1 10 € S}
Since (Eye \ Eve41)0es is a countable family of negligible sets coded by (O3(Tpe, Tpe41))oes, GAG, also
is negligible and
Take the least a,(m) € N such that uGy, .a,(m) = #Gnm —27"™, and continue.
(ii) Set
L, ={a:aeN" a(i) < a,(i) for every i € N}.
Then L, is compact (561D), and f[L,] € A. Also f[L,] 2,y Gnm- P If v € [, cjy Grm, then for each
m € N let oy, be the lexicographically first member of {o : ¢ € N™, ¢(i) < a, (i) for every i < m} such that
x € B, ¢, and let B, € NY be such that o, C 8, and B,,(i) = 0 for i > m. Then 3, € L,, for every m, so
(Bm)men has a cluster point & € L,,. T If f(a) # x, we have an open neighbourhood U of f(«) such that

x ¢ U. Let m € N be such that I, C f'[U]; then there is a k > m such that a[m = Bx[m = oxm
Now

U EUImE - EUk»O C f[Iak-] - f[Ioz[m] c U. X
SO:L':f(CV)éf[Ln]Q

But (Gpnm)men is codable, and G0 = E, so we must have

(E \ f[ ]) < :u(E \ GnO) + Z /Jf(Gnm \ Gn,erl)

= Z N(Gnm \ Gn m an(m) Z 27T = n+1.

(Of course f[Ly] is compact, therefore closed, therefore measurable.)

(f) Set K,, = f[Ly] for each n. Then (K, )nen is a sequence of compact subsets of A; because the K,
are resolvable, F' = J K, is a codable Borel set. For each n,

WEN\F) < p(B\ Ky) <277

neN

so E \ F is negligible. Thus E and (K, ),en have the required properties.
Of course it now follows that £\ A C E'\ F is negligible, so that the completion of p measures A.

563J Baire-coded measures Working from 562T, we can develop a theory of Baire measures on
general topological spaces, as follows. If X is a topological space, and Ba.(X) its algebra of codable Baire
sets, a Baire-coded measure on X will be a function p : Ba.(X) — [0,00] such that u@) = 0 and
(Upen En) = > opeg 1By for every disjoint codable sequence (Ey)pen in Ba.(X).
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563K Proposition (a) If X and Y are topological spaces, f: X — Y is a continuous function and p is
a Baire-coded measure on X, then F s pf~1[F]: Ba.(Y) — [0, 0] is a Baire-coded measure on Y.

(b) Suppose that p is a Baire-coded measure on a topological space X, and (E,),cn is a codable family
in Ba.(X). Then

(1) 1(Unen En) < 32070 #En;
(ii) If (Epn)nen is non-decreasing, pu(U, ey En) = limy o0 ptfon;
(iii) If (E})nen is non-increasing and pEy is finite, then (), oy En) = limy o0 1By,

(c¢) Let X be a topological space and M a non-empty upwards-directed family of Baire-coded measures
on X. Set vE = sup, ¢y pF for every codable Baire set £ C X. Then v is a Baire-coded measure on X.
proof (a) Use 562T (b-iv).

(b) Recall that, by 562T(b-i), there must be a continuous function f : X — RY and a codable sequence
(Fp)nen in B.(RY) such that E, = f~l[F,] for every n. By (a), F — uf = [F] : B.(RY) = [0,00] is a
Borel-coded measure on RY. Applying 563Ba to (F,)ncn, we get the result here.

(c) As 563E.

563L Proposition Suppose that X is a topological space; write G for the lattice of cozero subsets of X.
Let p: G — [0, 00] be such that
lu’m =0,
uG < uH ifGCH,
1 is modular,
(Uneny Gn) = limy, 00 pGy, whenever (G,)nen is a non-decreasing sequence in G and there
is a sequence (fp)nen of continuous functions from X to R such that G, = {z : f.(x) # 0} for
every n,>
uG =sup{uH : H € G, H C G, uH < oo} for every G € G.
Then there is a Baire-coded measure on X extending p; if 4X is finite, then the extension is unique.

proof (a) Suppose to begin with that pX is finite.

(i) For each continuous f : X — RN, consider the functional G ~ pf~1[G] for open G C RN. This
satisfies the conditions of 563H. I* Only the fourth requires attention. Fix a metric p defining the topology
of RN, If (H,)nen is a non-decreasing sequence of open sets in RN with union H, set

hy(2) = min(1, p(z, RN\ H,))

for n € N and z € RY, counting p(z,0) as oo if necessary. In this case, setting G,, = f~1[H,], G, = {z :
hn f(x) > 0} for each n; so

/'Lf_l[H] = U(UneN Gp) = limy, 00 pGr = limy, o0 Mf_l[Hn]- Q

There is therefore a unique Borel-coded measure v on RYN such that viH = pf~'[H] for every open set
G C RN

(ii) If f : X — RY is continuous and F € B.(RY), then vy F = inf{uG : f~'[F] C G € G}. P By
563Fd, vy is outer regular with respect to the open sets, so
viF =inf{vyH : H C RY is open, F C H}
=inf{uf '[H]: H CRY is open, F C H} > inf{uG : f~'[F] C G € G}.

In the other direction, if G € G and f~![F] C G, take any ¢ > 0. There is an open set H C RY such that
RN\ H C F and vy(F N H) < e. But this means GU f~1[H] = X and

pG > puX —puf HH]) =vRY — v H > v F —e.
As € is arbitrary, v; F < G; as G is arbitrary, veF < inf{uG: f7}[F]C G e€G}. Q

(iii) This means that if we set vE = inf{uG : E C G € G} for E € Ba.(X), we shall have vf~1[F] =
viF whenever f: X — RY is continuous and F € B.(X). It follows that v is a Baire-coded measure on

3Observe that |J,,cjy Gn is a cozero set, defined by f : X — R where f(z) = sup,,cy min(27",|fn(x)|) for each z.
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X. P Of course v = 0. If (E,),en is a disjoint codable sequence in Ba.(X), there are a continuous
f: X — RY and a codable sequence (F},),en of coded Borel sets in RY such that E,, = f~[F,] for every
n, by 562T(b-i). Set F), = F,, \ U,,, Fi for n € N; then (F}),cn is a codable sequence (562Kc), so

V(UneN E,) = Vf(UneN F)) = ZZO:O VfFv/z = fo:o vE,. Q
Of course v extends .

(iv) As for uniqueness, if 2/ is any other Baire-coded measure on X extending y, and f: X — RN is a
continuous function, then F + v/ f~1[F] is a Borel-coded measure on RN which agrees with vy on open sets
and is therefore equal to vy (563Fg); it follows at once that v/ = v.

(b) For the general case, let G/ be {H : H € G, uH < oo}, and for H € G/ define g : G — [0,00]
by setting uyG = p(G N H) for every G € G. Then ppy satisfies all the conditions of the proposition.
P Everything is elementary; for the hypothesis on non-decreasing sequences in G, note that there is a
continuous function f : X — R such that H = {x : f(z) # 0}, so that if (f,)nen is a sequence of real-valued
continuous function defining a sequence (G, )nen in G, then (f, X f)nen defines (G, N H)nen. Q

There is therefore a unique Baire-coded measure vy on X extending juz;. Now if H, H' € Gf and H C H’,
vgE =vg (ENH) for every E € Ba.(X). P The functional E — vy, (E N H) is a Baire-coded measure on
X extending g, so must be equal to vy. Q In particular, vy E < vy E for every codable Baire set £ C X.

Now set vE = sup{vgE : H € G/} for E € Ba.(X). By 563Kc, v is a Baire-coded measure on X; and
by the final hypothesis of this proposition, v extends .

563M Measure algebras If y is either a Borel-coded measure or a Baire-coded measure, we can form
the quotient Boolean algebra 2 = dom p/{E : pnFE = 0} and the functional fi : 2 — [0, o] defined by setting
pE* = pFE for every E € dom y; as in 321H, fi is a strictly positive additive functional from 2 to [0, 00]. As
in §323, we have a topology and uniformity on 2( defined by the pseudometrics (a,b) — fa(cn (a A b)) for
¢ € A of finite measure; if p is semi-finite, the topology is Hausdorff.

563N Theorem Let X be a second-countable space, and p a codably o-finite Borel-coded measure on
X. Let 2l and 71 be as in 563M. Then 2[ is complete for its measure-algebra uniformity, therefore Dedekind
complete.

proof (a) There is a codable sequence of sets of finite measure covering X. By 562Pb, we can find a codably
Borel equivalent second-countable topology & on X, generated by a countable algebra £ of subsets of X,
for which all these sets are open, so that p becomes locally finite, while S is regular and second-countable.
Let (H,)nen be a sequence running over &; note that (H,),en is codable.

(b) {H* : H € &} is dense in A for the measure-algebra topology. P Suppose that a, ¢ € A, € > 0
and fic < oco. Express a as E* and ¢ as F'* where E, F' € B.(X). By 563Fd, there is a G € & such that
ENF CGand p(G\ (ENF)) <e. Setting G,, = U{H; : i <n, H; C G}, (G, F)pen is a non-decreasing
codable sequence with union G N F, so there is an n € N such that u((G \ G,,) N F) < e. In this case

flen(anGr)) = pFN(EAG,)) < W(FN(G\Gy)) + G\ (ENF)) < 2,
while G,, € £. As a, ¢ and ¢ are arbitrary, we have the result. Q

(c) 2 is complete for the measure-algebra uniformity. ® Set H,, = |J{H; : i < n, uH; < oo}, ¢, = H},
for each n. Let F be a Cauchy filter on 2 for the measure-algebra uniformity. For each n € N, there is an
A € F such that i(c,n(aAb)) < 27" for all a, b € A; there is a by € A; and there is an m € N such that
f(enn(bg & HY)) <277 so that

{a:p(enn(an H)) <277} e F ")
Let m,, be the first m for which (*) is true, and set d,, = H;, . Note that
ﬂ(Ci n (di+1 AN dl)) <3 21

for each i, because there must be an a € 2 such that ji(c; n (a & d;)) <277 and fi(eip1 N (a A digq)) <270
Set £ =(,cn UiZn H,,,; because <Ui2n Hyp,,)nen is codable, E € B.(X). Set d = E*. If n € N, then

EAHn,, CUs, H AHp,

mMi41
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and (Hy, N (Hp,,, AHn,))ien is codable, so

oo

Menn(dady,)) = /‘(I:In N(EAHR,)) < ZM(Hn N (Hpm,y OHm,))
<) 327 =6-27"

Take any ¢ € 2 such that fic is finite, and € > 0. Express ¢ as F'*, where pF' < co. Then (F'N ﬁn)neN is
a non-decreasing codable sequence with union F, so there is an n € N such that u(F\ H,) < eand 27" <e.
Now

{a:g(cn(and) <9} D{a:f(cp,n(ard)) <8}
2{a:plecnn(and,)) <2} € F.
As ¢ and € are arbitrary, F — d for the measure-algebra topology; as F is arbitrary, 2 is complete. Q

(d) Now suppose that A C 2 is a non-empty set, and B the family of its upper bounds, so that B
is downwards-directed. As in 323D, the filter F(BJ) generated by {B N [0,b] : b € B} is Cauchy for the
measure-algebra uniformity, so has a limit, which is inf B = sup A. As A is arbitrary, 2 is Dedekind
complete.

563X Basic exercises (a) Let X, Y be second-countable spaces, 1 a Borel-coded measure on X, and
f: X — Y a codable Borel function. Show that F ~ uf~1[F]: B.(Y) — [0,00] is a Borel-coded measure
onY.

(b) Let X be a regular second-countable space and p a locally finite Borel-coded measure on X. Show
that for every E € B.(X) there are an F, set FF C E and a G set H D E such that u(H \ F') = 0.

(c) Let X be a regular second-countable space. Show that a function u is a codable Borel measure on X
iff it is a codable Baire measure on X. (Hint: 562Xk, 562XI.)

(d) Let X be a topological space. Show that any semi-finite Baire-coded measure on X is inner regular
with respect to the zero sets.

(e) Let X be a zero-dimensional compact Hausdorff space, £ the algebra of open-and-closed subsets of
X and po : € — [0,00[ an additive functional. Show that there is a unique Baire-coded measure on X
extending pg.

563Z Problem Suppose we define ‘probability space’ in the conventional way, following literally the
formulations in 111A, 112A and 211B. Is it relatively consistent with ZF to suppose that every probability
space is purely atomic in the sense of 211K?

563 Notes and comments The arguments above are generally drawn from those used earlier in this
treatise; the new discipline required is just to systematically respect the self-denying ordinance renouncing
the axiom of choice, as in part (f) of the proof of 563F. This does involve us in deeper analyses at a number
of points. In 563Dc, for instance, we need functions 7, 7’ defined on 7 x N, not B.(X) x N, because the rank
function of T gives us a foundation for induction. (In 563Db we can use a function 7* defined on T x N,
but this is because we have canonical codes for open sets.) In 5631 we can no longer assume the existence of
measurable envelopes, let alone a whole family of them as used in the standard proof in 431A, and have to
find another construction, watching carefully to make sure that we get not only a countable ordinal £ but
a codable family of sets E,, leading to the measurable envelopes E,¢; back in 561A, there was a moment
when we needed to resist the temptation to suppose that a sequence in w; must have a supremum in wy.
Note that we have to distinguish between ‘negligible’ and ‘outer measure zero’. The natural meaning of
the latter is ‘for every € > 0 there is a measurable set £ O A with uF < €’. Even for outer regular measures,
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when a set of outer measure zero must be included in open sets of small measure, we cannot be sure that
there is a sequence of such sets from which we can define a set of measure zero including A (565Xb).

In 563K I have kept the proofs short by quoting results from earlier in the section. But you may find it
illuminating to look for a list of properties of codable families of codable Baire sets which would support
formally independent proofs.

In 563M-563N I am taking care to avoid the phrase ‘measure algebra’ in the formal exposition. The
reason is that the definition in §321 demands a Dedekind o-complete algebra, and in the generality of 563M
there is no reason to suppose that this will be satisfied. In the special context of 563N, of course, there is
no difficulty.

There is something I ought to point out here. The problem is not that the principal arguments of §§111-
113 and §§121-123 depend on the axiom of choice. If you wish, you can continue to define ‘c-algebra’,
‘measure’, ‘outer measure’, ‘measurable function’ and ‘integral’ with the same forms of words as used in
Volume 1, and the basic theorems, up to and including the convergence theorems, will still be true. The
problem is that on these definitions the formulae of §§114-115 may not give an outer measure, and we may
have nothing corresponding to Lebesgue measure. It does not quite follow that every probability space
is purely atomic (there is a question here: see 563Z), but clearly we are not going to get a theory which
can respond to any of the basic challenges dealt with in Volume 2 (Fundamental Theorem of Calculus,
geometric measure theory, probability distributions, Fourier series), and I think it more useful to develop a
new structure which can carry an effective version of the Lebesgue theory (see §565).

Version of 9.2.14

564 Integration without choice

I come now to the problem of defining an integral with respect to a Borel- or Baire-coded measure. Since
a Borel-coded measure can be regarded as a Baire-coded measure on a second-countable space (562U), T will
give the basic results in terms of the wider class. I seek to follow the general plan of Chapter 12, starting
from simple functions and taking integrable functions to be almost-everywhere limits of sequences of simple
functions (564A); the concept of ‘virtually measurable’ function has to be re-negotiated (564Ab). The basic
convergence theorems from §123 are restricted but recognisable (564F). We also have versions of two of the
representation theorems from §436 (564H, 5641).

There is a significant change when we come to the completeness of LP spaces (564K) and the Radon-
Nikodym theorem (564L), where it becomes necessary to choose sequences, and we need a well-orderable
dense set of functions to pick from. Subject to this, we have workable notions of conditional expectation
operator (564Mc) and product measures (564N, 5640).

564 A Definitions (a) Given a topological space X and a Baire-coded measure g on X (563J), I will
write Ba.(X)f for the ring of codable Baire sets of finite measure; S = S(Ba.(X)/) will be the linear
subspace of R¥ generated by {xE : E € Ba.(X)/} (see 122Ab, 361D*). Then S is a Riesz subspace of R¥,
and also an f-algebra in the sense of 352W.

(b) T will write £° for the space of real-valued functions f defined almost everywhere in X such that
there is a codable Baire function g : X — R such that f =, g.

(c) Let [ : S — R be the positive linear functional defined by saying that [xE = pE for every
E € Ba.(X)?. (The arguments of 361E-361G still apply, so there is such a functional.)

(d) £! will be the set of those real-valued functions f defined almost everywhere in X for which there is
a codable sequence (h,)nen in S converging to f almost everywhere and such that Y [ |41 —hy| < 00;
I will call such functions integrable.

(©) 2006 D. H. Fremlin

466361-362 are written on a general assumption of AC. The only essential use of it to begin with, however, is in asserting
that an arbitrary Boolean ring can be faithfully represented as a ring of sets; and even that can be dispensed with for a while
if we work a little harder, as in 361Ya.
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564B Lemma Let X be a topological space and p a Baire-coded measure on X.

(a) L1 C L0

(b) If (h,)nen is a non-increasing codable sequence in S = S(Ba.(X)f) and lim,, o h,,(z) = 0 for almost
every x, then lim,,_, [ hy, = 0.

(¢) If (hp)nen and (h])nen are two codable sequences in S such that lim, o by and lim,_, o h], are
defined and equal almost everywhere, and Y o [ |hny1 — hy| and Y207 [ |l .y — hZ,| are both finite, then
lim,, o [ Ry, and lim,, o [ k), are defined and equal.

(d) If (hn)nen is a codable sequence in S and > 7 [ |hnq1 — hy| is finite, then (hy),en converges almost
everywhere. In particular, if (h,)nen is a non-decreasing codable sequence in S and sup,,cy [ hy, is finite,
(hn)nen converges a.e.

(e) If (hn)nen is a codable sequence in St and liminf,_,~ [ h, =0, then liminf,_, h, =0 a.e.

proof (a) If f € £!, there is a codable sequence (h,)nen in S converging almost everywhere to f. Now
562T(c-iii) tells us that there is a codable Baire function g equal to lim,,_,~ h, wherever this is defined as
a real number, so that f =,. g and f € £°.

(b) Set E = {x : ho(z) > 0}. Take any € > 0. For each n € N set E,, = {z : h(x) > €}. Then (E,)nen
is a non-increasing codable sequence in Bac(X)! (562Td), and ),y En C {z : limyyo0 hn(z) # 0} is
negligible; also Ejy has finite measure. Accordingly lim, oo pE, = 0 (563K (b-iii)). But

for every n, so limsup,,_, .. [h, < euE. As € is arbitrary, lim, . [ h, = 0.

(c) Since [ is a positive linear functional on the Riesz space S,

Yool husr = [hal < 020 [ |hnsr = Rl
is finite, and the limit lim,_,o [ Ay, is defined in R. Similarly, lim,_,~ [ k!, is defined. To see that the
limits are equal, set g, = hy, — h, for each n, so that lim, o gn = 0 a.e. and >~ [ |gnt1 — gn| < 0.

Then [ |gn| < Yoe_,, [ gms1 — gm| for every n. P For k > n, set fi = (|gn| — Yo, [gmr1 — gm|)*
Then 0 < fr < |gk+1| for each k, so (fi)k>n is a non-increasing codable sequence in S converging to 0

almost everywhere. (To check that (fi)r>n is codable, use 562T(c-ii) and the idea of 562Se.) By (b),

limy, o0 ffk = 0; but ffk > f |gn| - an:nf |gm+1 - gm| for every k. Q
Consequently

| im [ A, — lim /h/n|: lim|/hn—/h;|§ lim/|gn|
n— 00 n—00 n— 00 n—00

o0
< I — =
—= nILH;O Z /Igm+1 gm‘ 0
as required.
(d) For k € N let nj, € N be the least integer such that 3372 [ |hiy1 — il < 27 and for m > ny, set

Grm ={z: 222, [hiv1(2) — hi(@)] > 1}

Then G, < 27, because XGrm < Z;ink |hiy1 — hi|, so uGr < 27% where Gy = Unmsn, Gims by
563K (b-i). (Of course we have to check that all the sequences of sets and functions involved here are
codable.) Accordingly, setting £ = (), oy Gk, uFF = 0. But observe that if x € X \ E there is a k € N such
that = ¢ Gy and Y27 |hiy1(x) — hi(z)| < 1; in which case limy, o0 hin(2) is defined.

(e) For k € N let ny be the least integer such that ny > n; for i < k and [ h,, < 47" . Set Gj, =
{2 : hp(x) > 27%}; then uGy < 27F and (Gy)ren is codable. So #(Upsn Gi) < 2771 for every n and
E =,en Up>n G is negligible. But £ D {z : liminf,, o hn(z) > 0}.

564C Definition Let X be a topological space and 1 a Baire-coded measure on X. For f € £!, define its
integral [ f by saying that [ f = lim, o [ b, whenever (h,),en is a codable sequence in S = S(Ba.(X)/)
converging to f almost everywhere and Y7 o [ |hn41 — hy| is finite. By 564Bc, this definition is sound; and
clearly it is consistent with the previous definition of the integral on S.

MEASURE THEORY



564E Integration without choice 47

564D Lemma Let X be a topological space and (f,)nen a codable sequence of codable Baire functions
on X. Let {g;);en be an enumeration of Q N [0, oo, starting with gg = 0. Set

fl(x) =max{q : i <n, ¢ <max(0, fr(z))}
for n € Nand € X. Then (f])nen is a codable sequence of codable Baire functions.

proof Take a sequence running over a base for the topology of RN and the corresponding interpretation
¢ T — B.(RY) of Borel codes, as in 562B, and let ¢ : T — RX be the corresponding interpretation of
codes for real-valued codable Borel functions, as in 562N. By 562T(c-ii), there are a continuous function
g : X — RY and a sequence (7,,)nen of codes such that f, = qB(Tn)og for every n. We need a sequence
(1] Ynen of codes such that

U ﬂ an] )if a >0,

i<n jeN
qi>o q;<q;

=X if a < 0;

and this is easy to build using complementation and general union operators as in 562C. Now take f/, =
@(7])0g for each n.

564E Theorem Let X be a topological space and p a Baire-coded measure on X.
(a)(i) If f, g € L% and a € R, then f + g, af, |f| and f x g belong to £°.
(ii) If h : R — R is a codable Borel function, hf € £° for every f € £O°.
(b) If f, g € £ and a € R, then
(i) f+g, af and |f| belong to £1;
@) [f+g=[Ff+[9g [Jaf=aff;
(iii) if f <ae g then [f < [g.
(c)(i) If f € £° g€ L and |f| <aw. g, then f € L.
(ii) If £ € Ba.(X) and xyE € £! then uF is finite.

proof (a)(i) Use 562T(c-iv).

(ii) We know that f is equal almost everywhere to a product f’g where g : X — RN is continuous
and f’: RN — R is a codable Borel function. Now hf’ is a codable Borel function, by 562Mb, so hf'g is a
codable Baire function and hf =, .. hf'g belongs to £°.

(b)(i)-(ii) These proceed by the same arguments as in (a-i). To deal with |f|, we need to note that if
(hn)nen is any codable sequence in S = S(Ba.(X)f) then >°07 ) [ ||hns1] = [hall < Yoo [ 1Ant1 — hnl.

(iii) If f <. g, let {fu)nen, (gn)nen be codable sequences in S converging almost everywhere to f, g
respectively, and such that > 7 [ |fot1 — ful and >0~ [ |gn+1 — gn| are finite. Set h, = f,, A g,, for each
n. Then (hp)nen is codable, f =, limy oo b, Yopro [ |hnt1 — hn| < 0o and

JF=lmase [y <limso [90= [ 9.

(c)(i) Let (hn)nen be a codable sequence in S such that g =4 lim, oo by and Y07 o [ g1 — iyl
is finite. Set h] = supl<nh for each n; then (h])nen is a non-decreasing codable sequence in S and
supneth is finite, while |f| <ae. g <ae sup,enhi,. There is a codable Baire function f such that
f =ae. f Now fJr is a codable Baire function, so (fJr A h!)nen is a codable sequence of non-negative
codable Baire functions.

For each n € N consider h where

B! (x) = max{q; : i <n, ¢; < max(0, (fT AR, ()}

for © € X. By 564D, (h!),cn is a codable sequence; it is non-decreasing and converges a.e. to fr=ae f7.
Because 0 < b/ < h;l, !l € S for each n, and sup,,cy [ hl, < sup,cy [ A, is finite; so 564Bd tells us that f*
is integrable.

Similarly, f~ is integrable, so f is integrable.
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(ii) Let (hn)nen be a codable sequence in S such that yE =, o lim,_, h, and ZZOZO S hps1 — byl is
finite. Set hl, = sup;,, h; for each n; then (h],),en is a codable sequence in S and sup,,cy [ k!, is finite. Set
E, = {x: hj,(z) > 1}; then (E,)nen is a non-decreasing codable sequence in Ba.(X)/. Also E\ U, oy En
is negligible, so

1E < p(Unen En) = sup,en pEn = sup, ey [ xEn < 2sup, oy [ b,

is finite.

564F 1 come now to versions of the fundamental convergence theorems.

Theorem Let X be a topological space and p a Baire-coded measure on X. Suppose that (f,)nen is a
codable sequence of integrable codable Baire functions on X.

(a) If (fn)nen is non-decreasing and v = sup,,cy [ fn is finite, then f = lim,,_ o f,, is defined a.e. and is
integrable, and [ f =~.

(b) If every f, is non-negative and liminf,,_, f fn is finite, then f = liminf,, . f, is defined a.e. and
is integrable, and [ f < liminf, o [ fo.

(c) Suppose that there is a g € £L! such that |f,,| <... g for every n, and f = lim, o f,, is defined a.e.
Then [ f and lim,,_, [ f, are defined and equal.

(d) If 3°0° o [ |fat1 — fnl is finite, then f = lim,_,o f;, is defined a.e., and [ f and lim,_,o [ f, are
defined and equal.

(e) If 307 [ |fnl] is finite, then f = 37 f,, is defined a.e., and [ f and > -, [ f, are defined and
equal.

proof (a) Replacing f,, by fn, — fo for each n, we may suppose that f,, > 0 for each n. Let (¢;);en be an
enumeration of Q N [0, co[ and set

hn () = max{g; : i <n, ¢; < max(0, f,(x))}

for each z € X. Then (h,)nen is a codable sequence of codable Baire functions (use 564D again). Moreover,
hy, takes only finitely many values, all non-negative, and for a > 0 the set E,o, = {2 : hp(z) > a} is a
codable Baire set such that xFpa <ae. é fn; by 564Ec, E,, has finite measure; as « is arbitrary, h, € S.

Now (hy,)nen is non-decreasing, and [ h,, < [ f,, < for every n; so by 564Bd (h,,)nen converges almost
everywhere to an integrable function fi, with [ f1 <~. Of course f1 =ae. limy oo fro = f; 88 [ >ae. fon for
every n, [ f= [ fi =~ exactly.

(b) By 562T(c-ii) and 5620c¢, (f; )nen is codable, where f) = inf,,>, f, for every n, and of course

for every n. Now (f}),en is non-decreasing, so (a) tells us that [liminf, ., fn, = [lim, e f;, is defined
and equal to lim,, o [ f}, < liminf, o [ fu.

(c) Let ¢’ be a codable Baire function such that ¢’ =, ¢, and set f; = med(—¢’, f, ¢’) for each n; once
again, 562T(c-ii) and the ideas of 5620c show that (¢’ + f/)nen is codable. So we can use (b) to see that
Jliminf, o ¢’ + f} is defined and is at most liminf, ,o [ ¢ + f, = [ ¢ + liminf, . [ f,. Subtracting
g, we get [liminf, o f, <liminf, , [ f,. Similarly, [limsup,_, . f} > limsup,, . [ fn-

Once again, the sequences (fu)ert, (fihne, {1y — falmer and ({& : f4(z) # fa(@)Pnex are all
codable. Since all the sets {x : f](x) # fn(x)} are negligible, so is their union; but this means that
limy, 00 1 =a.c. limy, oo fr is defined almost everywhere. So (just as in 123C) the integrals are sandwiched,

and flimn_>OO fn=1lim, 00 ffn

(d) Of course >0 | [ fat1 — [ fn| is finite, so v = limy, o [ fn is defined. Next, (a) tells us that
g =|fol +Zzo:0 | fn+1— fn| is defined a.e. and is integrable (of course this depends on our having a procedure
— induction is allowed — for building a sequence of Baire codes representing (| fo| + > i | fi+1 — fil)nen out
of a sequence of codes representing (fy,)nen). Since lim,_, frn(z) is defined whenever g(x) is defined and
finite, which is almost everywhere, and |f,,| <... g for every n, (c) gives the result we’re looking for.

(e) Similarly, (3°", fi)nen is codable and we can apply (d).
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564G Integration over subsets: Proposition Let X be a topological space and p a Baire-coded
measure on X.

(a) If f € £, the functional E +— [ f x xE : Ba.(X) — R is additive and truly continuous with respect
to p.?

(c) If f, g € LY, then f <, g iff [fxxE < [gx xE for every E € Ba.(X). So f =ae g iff
J [ xxE = [gxxE for every E € Ba.(X).

proof (a) If E € Ba.(X) then xE is a codable Baire function (use 562Nf), so that f x xE is integrable
(564E(a-i), 564E(c-i)). Because x : Ba.(X) — L° is additive, E — [ f x xE is additive. To see that
it is truly continuous, take e > 0. There is a codable sequence (hy)nen in S = S(Ba.(X)!) such that
Soot o hng1 — hn| < oo and f =, lim,_o0 hy. For each n,

S = bl = 1imsoo [ | = bl <300, [ Bmt1 — Pl
so there is an n such that [ |f — h,| < 2e. Set E = {x : h,(x) # 0} and 6 = ¢/(1 + 2||hy[|). Then E has
finite measure. If F' € B.(X) and p(E N F) <4, then
[ £ XXEI< [1f =l + [ |hal % XF < Se+ [hallaop( BN F) < e.
As € is arbitrary, the functional is truly continuous.
(b)) If f <ae. g and E € Be(X), then f x xE <qe. g x xEso [ fxxE < [gxxE.

i) If [ fxxE < x xE for every E € B.(X), let {(h,)nen be a codable sequence in S such that
(ii) X gx X y € q

[ =9 =ae limy_oohy and Y07 [ |hny1 — hy| < 00. For k € N let ny be the least integer such that
Sy S g1 = b < 27%. For m, k € N set Epy, = {2 : hy, (2) > 27™}. Then

=2" lim [ (hn, — hi) X xEmr < 2™ lim /|hnk — hy| < 2m7k,
1— 00 71— 00
Also (Emk)m ken is a codable family in Ba.(X), so :“(Ukzmn Epi) < 27+ for every m and uFE = 0, where

E= UleN ﬂle Uk22m Erk.
But for z € X \ E, limsup;,_, . hn, () <0. Since f — g =ae. iMg—yo0 Mnys [ <ace. g-

564H Theorem Let X be a topological space, and f : Cy(X) — R a sequentially smooth positive linear
functional, where C(X) is the space of bounded continuous real-valued functions on X. Then there is a
totally finite Baire-coded measure p on X such that f(u) = [udu for every u € Cp(X).

proof (a) For cozero sets G C X set uoG = sup{f(u) : u € Cp(X), 0 < u < xG}. Then G =
lim,, o0 f(uyn) whenever G C X is a cozero set and (uy,)nen is a non-decreasing sequence in Cp,(X)™ with
supremum G in R¥. P Setting v = sup,,cy f(uy), then of course

poG >y = limy, o0 f(un).

On the other hand, if v € Cp(X) and 0 < v < G, {(v — u,) T )nen is a non-increasing sequence converging
to 0 pointwise, so

f) < flun) + fo—un)® < v+ flo—un)t =y
as n — 00. As v is arbitrary, uoG < 7. Q

(b) Tt follows that po satisfies the conditions of 563L. B Of course pof) = 0 and g is monotonic. If G,
H C X are cozero sets, express them as {z : u(z) > 0} and {z : v(z) > 0} where u, v € Cp(X)T. Set
Uy = nu A xX, v, = nv A xX for each n; then (up)nen, (Vn)nen are non-decreasing sequences in Cp(X)™

5The definition of ‘truly continuous’ in 232Ab assumed that p was defined on a o-algebra. I hope it is obvious that the
same formulation makes sense when the domain of y is any Boolean algebra.
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converging pointwise to xG, xH respectively. Now (u,, A vy )nen and (u, V v,)nen are also non-decreasing
sequences in Cp(X )1 converging to x(G N H), x(GU H); so (a) tells us that

po(GUH) 4+ puo(GNH) = nh—>Holo flun Avy) + nh_)rrgo flun Vo)
= lim f(up A vy 4ty Vop)
n—o0
= lim J(un +vn) = poG + poH.

As for the penultimate condition in 563L, let (G, )nen be a non-decreasing sequence of cozero sets such that
there is a sequence (v,)nen in C'(X) such that Gy, = {z : v, (x) # 0} for each n. Set u, = xX Ansup,,, |vi
for each n, and G = |J,,cj Gn; then (un)nen T XG, so

as required. Q

(c) We therefore have a Baire-coded measure p on X extending . Now take any u € C(X) such that
0 <wu < xX,and n > 1. For each i < n set G; = {x : u(x) > ~}; then

Zl 0 'YGi < u+ XX
SO
ZZ OuG <fudu+ —uX.
Next, setting
Vi :u/\%xX—u/\ixX
fori<n,u= Z?;OI v; and nv; < xG; for each i, so

) = X050 f(0) < 20050 w6 < [udp+ —pX.

Asnis arbitrary, ) < [ udp. On the other hand, f(xX) = puX = [ xX dpand f(xX—u) < [(xX —u)dy;
so in fact f(u fudu

(d) It follows at once that f(u) = [wdp for every u € Cy(X)T and therefore for every u € Cy(X), as
required.

5641 Riesz Representation Theorem Let X be a completely regular locally compact space, and
f: Cp(X) — R a positive linear functional, where Cy(X) is the space of continuous real-valued functions
with compact support. Then there is a Baire-coded measure £ on X such that [udy is defined and equal
to f(u) for every u € Ci(X).

proof We can follow the plan of 564H, with minor modifications.

(a) For open sets G C X write Dg = {u: u € Cx(X), 0 < u < xX, suppu C G}, where suppu =
{z : u(z) # 0}. We need to know that if G, H C X are open and K C GUH, K/ C GNH are compact, there
are u € Dg, v € Dy such that YK < uVwv and YK’ < uAv. P Because X is completely regular, the family
{int{x : u(x) =1} : u € DgUDg} is an open cover of GU H and has a finite subfamily covering K; because
D¢ and Dy are upwards-directed, we can reduce this finite subfamily to two terms, one corresponding to
u; € D¢ and the other to v1 € Dy, so that xK < wu; V vy. Next, {int{z : u(z) = 1} : u € Dg} is an open
cover of G D K', so we can find a uy € Dg such that yK’ < us; similarly, there is a vo € Dy such that
YK’ < wg;set u=wu; Vus and v =1v1 Avs. Q

(b) For cozero G C X, set oG = sup{f(u) : v € Dg}. If G, H C X are cozero sets, u € Dg and v € Dy,
then uVv € Dgug and uAv € Dgnp; this is enough to show that poG + poH < po(GUH) + uo(GNH). If
w € Dgug and w' € Dgnp, (a) tells us that there are u € Dg and v € Dy such that uVv > x(suppw) > w
and uAv > x(suppw’) > w’; this is what we need to show that so that puoG+puoH > uo(GUH)+po(GNH).
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If (Gn)nen is a non-decreasing sequence of cozero sets, defined from a sequence of continuous functions
so that G = UneN n is a cozero set, then Dg = |J,,cy Da,, so that poG = sup,,cy oG-

If G is a relatively compact cozero set then poG < oo. P There is a w € Cj(X) such that xG < w, so
that uG < f(w). Q If G is a cozero set and vy < oG, there is a u € Dg such that f(u) > . Now there is a
v € D¢ such that x(supp(u)) < v, so that poH > v, where H = {x : v(z) > 0}; as H is relatively compact,
woH is finite. Thus poG = sup{uoH : H C G is a cozero set, poH < oo}.

The other hypotheses of 563L are elementary, so we have a Baire-coded measure on X extending py.

(c) fue Cp(X) and 0 < u < xX and € > 0, let G be a relatively compact cozero set including supp u,
and v € D¢ such that y(suppu) < v and f(v) > MG — €. The argument of part (c) of the proof of 564H,
with v in place of xX, shows that f(u) < [udu+ L [vdpu for every n, so that f(u) < [wdp. On the other
hand,

£ = £(0) = flo =) 2 uG — e~ [0

:,uG—/vd,u—i—/udu—ez/ud,u—e.

As e is arbitrary, f(u) = [wdp. Of course it follows at once that f agrees with [ du on the whole of Cy(X).

564J The space L' Let X be a topological space and j a Baire-coded measure on X.

(a) If f, g€ L then f =,c giff [|f—g|=0. PIf f =, gthen |f —g|=0ae. and [|[f—g|=0
by the definition in 564Ad. If f |f — gl =0, let f1, g1 be codable Baire functions such that f =,. fi
and g =, ¢1 (564Ba); then |f; — g1] is codable. For each n € N, set E,, = {x : |fi(z) — ¢g1(x)] > 27"}.
Then E,, € Ba.(X) and |f1 — g1] > 27"xE, so pE, = [ xE, = 0. But (E,),en is a codable sequence so
Unen En = {2 : fi(z) # g1()} is negligible and

f —a.e. fl =a.e. J1 —ae. §- Q

(b) As in §242, we have an equivalence relation ~ on £! defined by saying that f ~ g if f =, g. The set
of equivalence classes has a Riesz space structure and a Riesz norm inherited from the addition, scalar
multiplication, ordering and integral on £1!.

1

(c) As in §242, T will define [ : L' — R by saying that [ f* = [ f for every f € £'. Similarly, we can
define [, u, for u € L' and E € Ba.(X), by saying that [, f* = [ f x xE for f € £'.

564K In order to prove that an L!-space is norm-complete, it seems that we need extra conditions.

Theorem Let X be a second-countable space and p a codably o-finite Borel-coded measure on X. Then
L'(u) is a separable L-space.

proof (Compare 563N.)

(a) There is a codable sequence of sets of finite measure covering X. By 562Pb, we can find a codably
Borel equivalent zero-dimensional second-countable topology on X for which all the these sets are open, so
that p becomes locally finite. Since this procedure does not change £' and L', we may suppose from the
beginning that X is regular and p is locally finite. Let (U, )nen run over a countable base for the topology
of X containing @) and closed under finite unions.

(b) If E € B.(X)? and € > 0, there is an open G C X such that £ C G and u(G \ E) < €, by 563Fd.
Next, G = [J{U, : n € N, U, C G}, so there is a finite set I C N such that G' = (J,,.; U, € G and
w(G\ G") <€ now u(G'AFE) < 2¢ and G' = U, for some m.

(c) If f € £ and € > 0, there is an h € S(B.(X)7) such that [ |f — h| < e; now there must be an n € N
and a family (¢;)i<n in Q such that [ |h— " ¢;xUs;| < e. The set D of such rational linear combinations
of the xU; is countable; enumerate it as (hy)pen. All the h,, are differences of semi-continuous functions,
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therefore resolvable, so (hy)nen is a codable sequence; and for any u € L' and € > 0 there is an n such that
||lw—hell1 < 2e.

(d) This shows that L! is separable. To see that it is complete, take a Cauchy filter F on L!. For each
k € N we can take the first n; € N such that {u: [|u — hj,, [[1 < 27F} belongs to F. Now [ |hy, — hpyyy| <

27k 4 27F=1 for every k, so the codable sequence (h,, )ren converges a.e. to some f € £ (564Fd), and
JIf = hny | <3-27% for every k. So

[ =1lim;_ h%k = lim F.

(e) Thus L' is norm-complete. We know it is a Riesz space with a Riesz norm, so it is a Banach lattice.
As for the additivity of the norm on the positive cone, we have only to observe that if f, g € £' and f*, ¢°
are non-negative, then

1f* =+ gl = I +1gl*le = (LT + 1gD* M2

/\f|+lg| /If\+/|g| = 11l + llg* 1.

564L Radon-Nikodym theorem Let X be a second-countable space with a codably o-finite Borel-
coded measure p. Let v : B.(X) — R be a truly continuous additive functional. Then there is an f € £'(p)
such that vE = [ f x xF for every E € B.(X).

proof (a) Let M be the space of bounded additive functionals on B.(X); as in 362B, M is an L-space. 1
will write £! for the Riesz space of integrable real-valued codable Borel functions on X. For f € £ and
E € B.(X), set vy E = [ f x xFE; this is defined by 564Ea and 564E(c-i). The map f — vy : L} — M is
a Riesz homomorphism, and norm-preserving in the sense that ||vf|| = [ |f]| for every f € £!. Accordingly
My ={vy: fe L'} is a Riesz subspace of M isomorphic, as normed Riesz space, to L'; in particular, it is
norm-complete, by 564K, therefore norm-closed.

(b) If v € M™ is truly continuous and ¢ > 0, there are an E € B.(X)/ and a v > 0 such that
(v — yvye)t| < e P There are E € B.(X) and § > 0 such that pE < oo and vF < e whenever

wWENF)<4. Set v= Il H . Then

(v — yvyp)(F) = vF — ””” W(FNE)
SOifu(FﬂE) >0,
< € otherwise.
o[(v—rre)t|<e Q

(c) Suppose that v € M, E € B.(X)/ and v > 0 are such that 0 < v < yv, 5. Let € > 0. Then there are
an f € L' and a v/ € M such that ||y — vy — 1/'|| <eand v < Jyvyp. PP Set a = SUppeg, (x) VE — IVWF;
let H € B.(X) be such that vH — JyuH > o — 3¢ set f=3yx(HNE) and v/ = (v —vg)T A 3y

If F € B.(X) then

(v = V)(F) = s9u(F N H N E) = vF < Syu(F 0 H) = v(F 0 H)
1 1
=5yl —vH — Syp(H\ F) + v(H \ F)
(of course wH must be finite, as vH — %’}//JH is finite)
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IA

—a+%e+a=%e,
1 1 1
(v —vp = 5xp)(F) =vF = cyu(FOENH) = cyu(F N E)

= v(FNE\H) = Syu(FNE\ H)
+v(F\E)+v(FNENH)—-yuw(FNENH)
<u(FNE\H) = Syu(FNE\ H)
(because v < Y1y )

= v((FNE)UH) = 2yu((F N B) U H) — vH + SyuH

<a-—(a—-z€) = -e
a— (a 36) 3¢

So [|(vy —v)T|| < e and ||(v — vy — 3yvye) T || < e. But this means that

1
v —ve =Vl =lv—vs = (v =vp)" + (v = )" = 5y) 7l

1
<2v—vp = (w—v) I+l — v = 57xe) |

<y — )l +3e<e

as required. Q

(d) Again suppose that v € M, E € B.(X)/, v > 0 and € > 0 are such that 0 < v < yv, 5. Then for any
n € N there are an f € £! and a v/ € M such that ||v —v; — /|| < e and v/ < 27"y, p. P Induce on n.

Q

(e) If v € M is truly continuous and € > 0, there is an f € £! such that ||v — v¢| < e. P By (b), there
are an E € B.(X)! and a v > 0 such that ||(v — yvyg)"|| < 3e. Let n € N be such that 27"yuE < te. By
(d), we have an f € £' and a v/ € M such that ||(v Ayvyg) — vy — V|| < 3¢ and 0 < v/ < 27"yu,p. But
this means that

lv = vell < 1w = xe) "I+ (v Avge) — vyl

< %e + %e + ]V < %e—i— 27"yuE <e. Q

(f) Since any truly continuous v € M has truly continuous positive and negative parts, the space My, of
truly continuous functionals is included in the closure of My = {v; : f € £'}. But I noted in (a) that M; is
norm-isomorphic to L', so is complete, therefore closed, and must include M.

564M Inverse-measure-preserving functions (a) Let X and Y be second-countable spaces, with
Borel-coded measures p and v. Suppose that ¢ : X — Y is a codable Borel function such that ue=![F] = vF
for every F' € B.(Y). Then hy € Sx and [hodu = [ hdv for every h € Sy, writing Sx = S(B.(X)/), Sy
for the spaces of simple functions. By 562Mb, fo € £%(u) for every f € L2(v). By 562Sd, (h,p)nen is a
codable sequence in Sx whenever (h,),en is a codable sequence in Sy; consequently fo € £!(u) whenever
f € L£LY(v), and we have a norm-preserving Riesz homomorphism 7 : L'(v) — L'(u) defined by setting

Tf*=(fe) for feL(n).

(b) If v is codably o-finite, we have a conditional expectation operator in the reverse direction, as follows.
For any f € L'(u), consider the functional \; defined by setting A\;F = [ f x x(¢ '[F]) for F € B.(Y).
This is additive and truly continuous. P Let ¢ > 0. By 564Ga, there are an Ey € B.(X) and a § > 0
such that puEy < oo and [|f| x xE < € whenever E € B,(X) and u(E N Ey) < 25. Next, there is a
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non-decreasing codable sequence (Fy,)nen in B.(Y) such that vF, < oo for every n and Y = |, o Frn- In

this case, (¢ ![F,])nen is a non-decreasing codable sequence in B.(X) with union X, so there is an n such
that u(Eg \ ¢ [F,]) < 6. Now suppose that F' € B.(Y) and v(F N F,) < 4. In this case,

W(Eo N~ [F]) < p(Eo \ ¢ [Fu]) + (o™ ! [F N F]) < 29,

INFL< [l < x(e 2 F]) < e
As e is arbitrary, Ay is truly continuous. Q
There is therefore a unique vy € L*(v) such that [, vy = AfF for every F € B.(Y). P By 564L, there is
a g € L1(v) such that A\fF = [ g x xF for every F' € B.(Y). By 564Gb, any two such functions are equal
almost everywhere, so have the same equivalence class in L', which we may call vr. Q
We may call v¢ the conditional expectation of f with respect to the inverse-measure-preserving func-
tion ¢.

(c) Still supposing that v is codably o-finite, we see that Ay = Ay whenever f, f' € L£!(u) are equal
almost everywhere, so that we have an operator P : L'(u) — L'(v) defined by saying that Pf* = vy for
every f € L(p); that is, that [, Pu = f@,l[F] u for every u € L'(u) and F € B.(Y). Because this defines
each Pu uniquely, P is linear. It is positive because if f* > 0 then Af > 0; if now g € £!(v) is such that
J g xxF =X;F >0 for every F € B.(X), g > 0 a.e., by 564Gb, and

Pf*=ur=g*>0.

It is elementary to check that if 7" is the operator of (a) above then PT is the identity operator on L*(v).

(d) Now consider the special case in which Y = X, the topology of Y is the topology generated by a
codable sequence (V,,)nen in B.(X)?, v = u[B.(Y) and ¢ is the identity function. (Of course this can be
done only when p is codably o-finite.) In this case, we can identify L'(v) with its image in L!(u) under T,
and P becomes a conditional expectation operator of the kind examined in 242J.

564N Product measures: Theorem Let X and Y be second-countable spaces, and u, v semi-finite
Borel-coded measures on X, Y respectively.

(a) There is a Borel-coded measure A on X x Y such that A\(E x F)) = uE - vF for all E € B.(X) and
FeB.(Y).

(b) If v is codably o-finite then we can arrange that [ f(z,y)v(dy)u(dz) is defined and equal to [ fdA
for every A-integrable real-valued function f.

(c) If p and v are both codably o-finite then A is uniquely defined by the formula in (a).

proof (a)(i) Start by fixing sequences (Up)nen, (Va)nen running over bases for the topologies of X, YV
respectively containing ), and a bijection n — (i, J,) : N = N; then (U;, X Vj, )nen runs over a base for
the topology of X x Y containing §). Let

ox T = B.(X), Tx CTX, ¢x:Tx = RX,
¢y:T—>BC(Y),

o:T > B(XxY), TCTE ¢:T—5RXXY

be the interpretations of codes associated with the sequences (U,)nen, (Vo)nen and (U;, X Vj, )nen, as
described in 562B and 562N. Let Rx be the space of resolvable real-valued functions on X, and 1/; x :Rx —
Tx a function such that qNSX(z/NJX(f)) = f for ever f € Rx, as in 562R. The argument will depend on the
existence of a number of further functions; it may help if I lay them out explicitly. Fix a member 7 of Tx.

(o) Let ©4 : T x T — T be such that
P(O5(T,T")) = o(T) N (T"),  r(65(T,T")) = max(r(T), r(T"))
for all T, T € T (562Cc); now define ©3 : ¢ py<w T! — T by setting
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O5((T3)ier) = {0} Uu{<n>:neN}if I =0,
= 05(05((T1)icrrn), Tr) if n = maxI.
Then
P(O3((Ti)ier)) = (X xY) NNy ¢(Th),  7(O5((Ti)ier)) = max(L, sup;e; r(T3))
whenever I C N is finite and T; € 7 for ¢ € I.
(B) Let ©1 : TN — T be such that
¢x (O1((Tn)nen)) = Unen 0x ()
for every sequence (Ty,)nen in T (526Ch).
(7) There is a function O, : Tx x T — Tx such that
dx(02(1,T")) = (vpy (T"))x X — x(7)

whenever 7 € Tx and T' € T is such that v/(¢y (T")) is finite. B Taking ©¢ : T — T such that ¢x (0¢(T)) =
X\ ¢x(T) for every T € T (562Ca), set

O(7,8) = ©1((B(T(8 = 27™)))nen)
for 7 € Tx and S € R, so that © is a function from 7x x R to 7 and
¢x(0(7,8)) = Upen X \ 0x(7(8 —27")) = { : dx (7)(x) < B}
for 7 € Tx and 8 € R. If v(¢y (T")) = oo, take Oy(7,T") = 79 for every 7 € Tx; otherwise set
O(7,T")(a) = O(7, vy (T') — )
for 7€ Tx,T' € T and « € R, so that
¢x(O2(1,T") (@) = {z : dx (7)(x) < vy (T') — o}
= {1 vy (T') — dx(7)(z) > a}
for every a, ©5(1,T") € Tx and ¢x (O2(7,T"))(x) = voy (T') — dx
(6) Define ©% : TX — T® by saying that
07 ((Ta)nen)(@) = O1({Tn(@))nen)
for every sequence (7,,)nen in Tx, so that OF ({7, )nen) € Tx and

6x(01({Tn)nen)) = subPpey Ox (7n)

whenever (7,,)nen is a sequence in Tx such that SUP,eN bx (7,,) is defined in R¥X.
(€) As in 5620b, we can find a function ©* : T x X — T such that
oy (0% (T, 2)) ={y: (z,y) € (1)}

(T)(x) for every z € X. Q

for T €T and z € X.

{) W CX xYisopenand F € B.(Y), z = v(FNWI[{z}]) : X — [0, 00] is lower semi-continuous.
P Take v € R and consider G = {z : v(FNW[{z}]) > v}. Given z € G let K be {(m,n) : z € Uy,
Up x Vi €W} then W[{z}] = U n)ex Vo Now (Vi) nnyex and (F'N V) (mnyex are codable families
(562J), so there is a finite set L C K such that v(U,, e £ N Va) > 7 (563B(a-ii)). In this case, H =
X N Vm,nyer, Um is an open neighbourhood of z included in G, and v(F N W[{a'}]) > v for every 2’ € H.
As x is arbitrary, G is open; as « is arbitrary, the function is lower semi-continuous. Q

(iii) For T, T" € T and x € X, set
hrr(z) =v{y 1y € ¢y (T"), (z,y) € ¢(T)} = v(dy (T") N ¢y (©*(T, 2))).
Then there is a function © : 7 x T — Tx such that
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ox(O(T.T")) = hrr
whenever T, T" € T are such that ve¢y (T”) is finite. P If vy (T") = oo set O(T,T") = 79. For other T”,
build © by induction on the rank of 7', as usual. If r(T') < 1, then ¢(T') is open; by (ii), hrr is lower
semi-continuous, therefore resolvable (562Qa). So we can set O(T,T") = ¥ x (hrr).
For the inductive step to r(T") > 2, set Ap = {n: <n> € T}, so that

o(T) = U (X X Y)\ ¢(Tcn>)

neAr

=@ xym\(xxy)n (] ¢(T<ws))

meN ncArnm

= |J X xY)\ ¢(O3((TcnsInearnm))

meN
and
hrr (2) = limy, 00 vy (T") — hpemy /(€)= supen vy (T') — hpomy i ()
for every z, where
T0" = 03((TensInearrm).  A(T™) = (X X Y) N Nyeapnm #T<n>)

for m € N. Now r(T(™) < r(T) for every m, so each ©(T(™) T’) has been defined, and we can speak of
O2(0(T™) T"),T") for each m; we shall have

0x(02(0(T™), T"),T"))(z) = véy (T") — ox (O(T™, T")(x) = véy (T") — hytmp ()
=viy:yeov(™), (my)e | (X xY)\¢(Twns)}

neArnm
for m € N and z € X. So if we set
O(T, T") = ©1((02(0(T"™, T"),T")) men);
we shall have

ox(O(T,T")) = sup ox (02(6(T"™, T"),T"))

meN

= sup (voy (T")xX — ox (O(T™,T"))
meN

= su%(uqby(T’))XX — hp(myps = hpro,
me

as required for the induction to proceed. Q
(iv) Thus we see that hr € £°(u) whenever T, T" € T and v¢y (T") is finite.

(v) Let B.(Y)? be the ring of subsets of Y of finite measure. For F € B.(Y)f and W € B.(X xY) we
have T, T’ € T such that ¢(T) = W and ¢y (T') = F, and now v(F N W[{z}]) = hpr (x) for every z € X.
So we have a functional A\p : B.(X x Y) — [0, 00] defined by saying that

ApW = /I/(F N W{z}])p(dz) if the integral is defined in R,
= oo otherwise.
Of course Ap is additive. If E € B.(X) and F’ € B.(Y), then
Ap(Ex F')=0=pE - v(FNF)ify(FNF) =0,
= /V(FQF’)XEduz,uE~V(FﬂF’) if pE < oo,
=oc0=pE -v(FNF')if uE = oo and v(FNF') > 0.
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(To see that E x F' € B.(X xY), use 562Mc.)

(vi) Now suppose that (W, )nen is a codable disjoint sequence in B.(X x Y') with union W, and that
F € B.(Y)!. We surely have A\gW > 32 /ApW,. If Y07 ApW, is finite, let (T},),en be a sequence
in 7 such that ¢(T,,) = W,, for each n, and take 7" € T such that ¢y (T") = F. Then (hr, 1/ )neny =
(px(O(T,,,T")))men is a codable sequence of integrable Borel functions, so 564Fe tells us that the sum of
the integrals is the integral of the sum; but

th Z (¢y (T') N ¢y (87 (T, 2))) = v( | dv (T') N oy (O7(T1, 2)))

neN

— UFﬂW{x}]) v(FNWI[{z}])

neN

for each x, so we have

AW = / W(F O W {z}])(dz) = / S ey
n=0

= Z/thT’dﬂ = Z)‘FWn-
n=0 n=0

As (W, )nen is arbitrary, A\g is a Borel-coded measure.

(vii) If W € B.(X x Y) and F C F' in B.(Y)7, then

ARV = / v(F O W {z})u(dz)

(counting [ hdp as oo for a non-negative function h € £%(u) \ £*(p))
= /V(F’ NWN(X x F)){z})u(dx) =Ap(WN (X x F)) < ApW.

Thus (Ap(W)) pep, (v)s is an upwards-directed family for each W € B.(X x Y); let AW be its supremum.
Then X is a Borel-coded measure on X x Y (563E). Also

MEXF)=Ap(EXF)=pE -vpF =uE-vF

whenever £ € B.(X) and F € B.(Y)? have finite measure. For other measurable £ and F, if either is
negligible then A(E x F) = 0, while if one has infinite measure and the other has non-zero measure then
A(E x F) = oo because p and v are both semi-finite.

Observe that the construction ensures that if AW < co and W C X x F for some F' € B.(Y)f, then
AW = [ oW [{z}u(da).

(b) Now suppose that v is codably o-finite.

(i) Let (F,,)nen be a codable sequence in B.(Y)/ covering Y; since (Ui<n Fi)nen also is codable, we can
suppose that (Fy,)nen is non-decreasing. Let (T7,)nen be a sequence in T such that ¢y (7)) = F,, for each n.
By 562Mc, as usual, (X x Fy,)nen is a codable sequence in B.(X x Y), so AW = sup,, ey A(W N (X X F,))
whenever A measures W.

(ii) Let f : X x Y — [0,00[ be an integrable codable Borel function. Then [[ f(z,y)v(dy)u(dz) is
defined and equal to [ fdA.
P(a) For n, k € N set

Wk ={(z,y) :y € Fp, f(z,y) > 27"k};

then (Wik)n ken is a codable family in B.(X xY). Let (Tyk)n, ken be a family in 7 such that W, = ¢(Thr)
for n, k € N. For n € N, define v,, : X x Y — R by setting

Up = 27" 0 X W

D.H.FREMLIN



58 Choice and determinacy 564N

then (v, )nen is a codable sequence of codable Borel functions on X x Y. Moreover, setting v,,.(y) = v, (z,y),
(Unz)nen is a codable sequence of codable Borel functions on Y, for each € X. Now set

wni (@) = vWor[{z}],  un(2) = [ on(@,y)v(dy)
for z € X and n, k € N. Then, in the language of part (a) of this proof,
Unk = 6x (O(Tor, T},))
for all n and k, 80 (unk)n ken is a codable family of codable Borel functions on X. Since
Uy, = 2‘"2{;1 Uk
for each n, (u,)nen is a codable sequence of codable Borel functions on X.

(B) Next, for each n € N,

4m 4n
/undu =27" Z/yWnk[{x}]u(dx) =27" Z MWk
k=1 k=1

(by the final remark in part (a) of the proof)

= /vnd)\.

At this point, observe that (v,,)nen is a non-decreasing codable sequence with limit f. So
limy oo [ tUndp =limy o [vndA = [ fdX

is finite; since (up)nen also is non-decreasing, u(x) = lim, o u,(2) is finite for p-almost all z, and

fud,u = limn_m)fundp = ffd)\

(564Fa). On the other hand, for each € X, (v,.)nen is a non-decreasing codable sequence with limit f,,
where f.(y) = f(z,y) for y € Y; so

u(x) = limy,— o0 fvmdy = ffmdy

for almost all x, and
[ f@,yyv(dy)u(dz) = [[ fodvu(de) = [udp= [ fd). Q
(iii) It follows at once, taking the difference of positive and negative parts, that

[[ F@, y)v(dy)u(de) = [ fdr
for every A-integrable codable Borel function f.
(iv) In particular (or more directly), if W € B.(X x Y) is A-negligible, then p-almost every vertical
section of W is v-negligible. So starting from a general A-integrable function f, we move to a codable Borel

function g such that f =, g¢; now [ f(z,y)v(dy) must be defined and equal to [ g(x,y)r(dy) for almost
every x, and

] fa,y)v(dy)u(de) = [[ gz, y)v(dy)u(d) = [gdr = [ fdX.
This completes the proof of (b).

(c) Let (Ep)nen, (Fn)nen be codable sequences of sets of finite measure covering X, Y respectively; we
may suppose that both sequences are non-decreasing. Then (E, X Fy)neny = (En X Y) N (X X F))nen
is a codable sequence (562Mc). Suppose that A\, X are two Borel-coded measures on X X Y agreeing on
measurable rectangles. For each n € N let A,,, X/, be the totally finite measures defined by setting

MW = AW N (En x F)),  NoW = N(W N (B x F))

for W € B.(X xY). Now, given n, set W,, = {W : W € B.(X xY), \,W =X W}. Then WUW' e W,
whenever W, W/ € W, are disjoint, and E x F € W,, whenever E € B.(X) and F € B.(Y). So W, includes
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the algebra of subsets of X x Y generated by {E x F': E € B.(X), F € B.(Y)}. In particular, W, includes

any set of the form U(M)GK U; x V; where K C N x N is finite. But any open subset of X x Y is expressible

as the union of a non-decreasing codable sequence of such sets, so also belongs to W,,. By 563Fg, A\, = ...
This is true for every n € N. Since

AW = sup, ey MWW, NW =sup,,cy AW
for every W € B.(X xY), A =X, as claimed.

5640 Theorem Let ((Xy, pr))nen be a sequence of complete metric spaces, and suppose that we have a
double sequence (Ug;)k ien such that {Uy; : i € N} is a base for the topology of X}, for each k. Let () nen be
a sequence such that yy, is a Borel-coded probability measure on Xy for each k. Set X = [], .y X&. Then X
is a Polish space and there is a Borel-coded probability measure A on X such that AM(J[,cn Er) = [1ren r Bk
whenever (Eg)ren € [[pen Be(Xx) and {k: By, # Xy} is finite.

proof (a)(i) Of course X is Polish; we have a complete metric p on X defined by saying that p(z,y) =
supy ey min(27%, pi(x(k), y(k))) for x, y € X, and a countable base generated by sets of the form {z : z(k) €
(ii) Writing F, for the family of closed subsets of X} for k € N, we have a choice function ¢ on
Uren Fr \ {0}. P Given a non-empty F' € [J, oy Fk, take the first k such that F' € Fj, and define (Fy,)men,
(im)men by saying that
Fy=F,
im =min{i : i € N, Uy; N Fp, # 0, diam Uy, < 27™}
(taking the diameter as measured by py, of course),
Fm+1 =F,N Ukim
for each m. Now (F},,)men generates a Cauchy filter in X which must have a unique limit; take this limit
for ((F). Q
(b)) Let T = @j.cn Be(Xk) be the algebra of subsets of X generated by {{z : z(k) € E} : k € N,
E € B.(X))}. Note that all these sets belong to B.(X), by 562Md, so T C B.(X). Set

C = {Ilpen B : Ex € Be(Xy) for every k € N, {k: By # Xy} is finite},
Co = {Il1en G : Gk € X} is open for every k € N, {k : G), # X} is finite},

Ce = {IIren Fr : Fx € Xy is closed for every k € N, {k : [}, # X} is finite}.

Then every member of T can be expressed as the union of a finite disjoint family in C. C € C,. for every
C € C, so the closure of any member of T can be expressed as the union of finitely many members of C. and
belongs to T. The complement of a member of C. can be expressed as the union of finitely many members
of C,, so any open set belonging to T can be expressed as the union of finitely many members of C,.

(ii) For m € N write T;, = @5, Be(Xy) for the algebra of subsets of [],,, X generated by
sets of the form {z : x(k) € Ey} for k > m and Ey € B.(Xy). Then we have an additive functional
Vpm : Ty — [0,1] defined by saying that vy, ([],~,, Er) = H;;o:m kB whenever Fy, € B.(Xy) for every
k> m and {k: Ey # X},} is finite (326E). Now if m € N and W € T,, then

U W = fVm+1{U D <t>"v € Wy, (dt)

(notation: 5A1C). PP This is elementary for cylinder sets W =[], Ek; now any other member of T,, is
expressible as a finite disjoint union of such sets. Q

(c)(i) For open sets W C X define
MW =sup{ryV:V €T, VCW}

Then if (W,,)nen is a non-decreasing sequence of open sets with union X, lim, . AgW,, = 1. P Starting
from the double sequence (Ugi)g,ien, it is easy to build a sequence (U, )nen in C, which runs over a base for
the topology of X. Set W/ = |J{U; : i <n, U; C W,,} for each n; then (W), en is a non-decreasing sequence
of open sets belonging to T = Ty, and |J,,cy W,, = X. 7 Suppose, if possible, that lim, o oW, <1 — 2!
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for some [ € N. Then we can define (tx)ren inductively, as follows. The inductive hypothesis will be that
Vi Vinn < 1 — 275 for every n, where
Vinn = {0 10 € [Lism Xis () k<cm Uv € Wi}
In this case, define f,,, : X, — [0, 1] by setting
Frn () = vimp{w cw € [[is g Xk, <t>"w € Vi }.

By (b-ii), ¥ Vinn = [ frndpm for every m, while (fyn)nen is non-decreasing.
Because every W/ is a finite union of open cylinder sets, so is Viun, and fi,, is lower semi-continuous,
therefore resolvable; so

fsupneN S @ptm = SUP,en f Frndptm = 1My s 00 Vi Vi, < 1 — 2717,

The set F = {t : sup,,cyy frmn(t) <1 =277} must be closed and non-empty, and we can set t,, = ((F),
where ( is the choice function of (a-ii). In this case,

Vm+1,n = {U} . <tm>ﬁw S an}7 Vm-i—lvm-&-lm = fmn(tm) S 1-— 2—l—m—1

for every n, and the induction continues.

At the end of the induction, however, x = (tx)ren belongs to X, so belongs to W), for some n. There must
be an m such that W), is determined by coordinates less than m, and now Vi,n = [ 5, Xy 50 v Vi = 1;
which is supposed to be impossible. X

We conclude that

1 = limy, 00 voW/, = lim,, o0 oW/, = lim,, o oWy,
because W/ is a closed member of T included in W,, for each n. Q
(ii) Ao satisfies the conditions of 563H. I
(a) Of course Aol = 0 and AW < AW’ whenever W C W’; also Ao X = 1 is finite.

(B) Suppose that (W, )nen is a non-decreasing sequence of open sets in X with union W, and € > 0.
Then there is a closed V' € T such that V C W and gV > AW —e. Set W) = (X \ V) U W, for each n;
then (W) ),en is a non-decreasing sequence of open sets with union X, so by (i) there are an n € N such
that AgW,) > 1 —¢, and a closed V' € T such that V' C W) and 1oV’ > 1 —2e. Now VNV’ is a closed
member of T included in W,, and

)\0Wn Z Uo(V N V/) Z Z/QV — 2¢ Z )\QW — 3e.
As e is arbitrary, A\gW < lim, o AgW,,; the reverse inequality is trivial, so we have equality.

() Let W, W’ C X be open sets. As in (i), we have non-decreasing sequences (W, )nen, (W) )nen
of open members of T such that

W= UneN Wy = UneNWm W= UneN W;L = UneN sz

In this case
WnW' =U,exnWn W), = U, ey Wn N W),
WUW' =U,ex Wn UW), = U, ey Wn UW).
Also
)\OW = hmn—>oo AOVVn < hmn—)oo VOWn < hmn—>oo VOWn < )\Owa
so these are all equal; the same applies to the sequences converging to W/, W N W’ and W U W', so
oW + )\0W/ = lim yyW,, + Z/QWT/L
n—oo
= lim vo(W, NW,) 4+ vo(W,, UW,)
n—oo
=A(WNW)+X(WUW'). Q
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(d) By 563H, we have a Borel-coded measure A on X extending Ag. Now A extends vg. P If C € C
and € > 0, express C as erN Ey where Ey, € B.(X}) for every k and there is an m such that Ej, = X}
for £k > m. For each k < m, there is an open set Gy 2 Ej such that Gy < ppEx + ﬁﬂ (563Fd again);
setting G, = Xy for k > m and W =[], .y Gk, C € W and

AC < AW = AW < oW =[], eGr < C + €.

As € is arbitrary, A\C' < 1yC. This is true for every C' € C. As both A\ and vy are additive, AW < yyW for
every W € T; as AX = 1yX =1, X agrees with vy on T. Q
In particular, A agrees with vy on C, as required.

564X Basic exercises (a) Let X be a second-countable space and p a Borel-coded measure on X. Let
E € B.(X) and let ug be the Borel-coded measure on X defined as in 563Fa. Show that [ fdug is defined
and equal to [ f x xE dpu for every f € L'(u).

(b) Let X be a topological space, u a Baire-coded measure on X, and f a non-negative integrable real-
valued function defined almost everywhere in X. Set vE = [ f x xE for E € Ba.(X). Show that v is a
Baire-coded measure, and that [gdv = [ g x fdu for every v-integrable g, if we interpret (g x f)(x) as 0
when f(z) =0 and g(z) is undefined. (Compare 235K.)

(c) Let X be a countably compact topological space. (i) Show that C(X) = Cy(X). (ii) Show that every
positive linear functional f : C(X) — R is sequentially smooth. (iii) Show that a norm-bounded sequence
(Un)nen in the normed space C(X) is weakly convergent to 0 iff it is pointwise convergent to 0. (iv) Prove
this without using measure theory. (Hint: FREMLIN 74, A2F. Also see 564Ya.)

(d) Let X be a topological space and p a Baire-coded measure on X. (i) Describe constructions for
normed Riesz spaces LP(u) for 1 < p < oo. (ii) Show that if X is second-countable, p is codably o-finite
and 1 < p < oo then LP(u) is a Dedekind complete Banach lattice with an order-continuous norm, while
L?(u) is a Hilbert space.

(e) In 5640, show that A is uniquely defined. Hence show that we have commutative and associative
laws for the product measure construction.

564Y Further exercises (a) Let X be a topological space and (f,,)nen a codable sequence of bounded
codable Baire real-valued functions on X such that {[ f,du : n € N} is bounded for every totally finite
Baire-coded measure p on X. (i) Show that if (E,),en is a disjoint codable sequence in Ba.(X) and
p is a Baire-coded measure on X, then lim, o [ fn X xE,dp = 0. (i) Now suppose in addition that
lim,,—, 0 fn(x) = 0 for every € X. Show that if y is a Baire-coded measure on X, then lim,,_,o, [ fndp = 0.
(iii) Use this result to strengthen (iii) of 564Xc to ‘a sequence (up)nen in C(X) is weakly convergent to 0
iff it is bounded for the weak topology and pointwise convergent to 0.

(b) Let X be a locally compact completely regular topological group. Show that there is a non-zero left-
translation-invariant Baire-coded measure on X.

(c) Let I be a set and X = {0,1}. Write Z for {0,1}. For § : N — I define gp : X — Z by setting
go(x) = z0 for x € X. Let ¢ : T — B.(Z) be an interpretation of Borel codes for subsets of Z defined
from a sequence running over a base for the topology of Z. Let ¥ be the family of subsets of X of the
form ¢'(0,T) = g, '[#(T)] where 6 € I and T € T; say that a codable family in ¥ is one of the form
(¢'(05,T;))icr. Show that there is a functional p : X — [0,1] such that u@ = 0, (U, ey En) = >opeo iEn
whenever (E,)ney is a disjoint codable sequence in ¥, and p{z : z[J = w} = 27#()) whenever J C T is
finite and w € {0,1}7.

(d) Suppose there is a disjoint sequence (I, )nen of doubleton sets such that for every function f with
domain N the set {n : f(n) € I} is finite (JECH 73, 4.4). Set I = |J,,cy In and let ¥ be the algebra of
subsets of {0, 1} determined by coordinates in finite sets. Let A : ¥ — [0, 1] be the additive functional such
that Mz : 2 C 2} = 2% whenever J € [I]*¥ and z € {0,1}”. Show that there is a sequence (F,)nen in 3,
covering {0, 1}, such that 37 | AE, < 1.
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564 Notes and comments In the definitions of 564 A, I follow the principles of earlier volumes in allowing
virtually measurable functions with conegligible domains to be counted as integrable. But you will see
that in 564F and elsewhere I work with real-valued Baire measurable functions defined everywhere. The
point is that while, if you wish to work through the basic theorems of Fourier analysis under the new rules,
you will certainly need to deal with functions which are not defined everywhere, all the main theorems
will depend on establishing that you have sequences of sets and functions which are codable in appropriate
senses. There is no way of coding members of £% or £! as I have defined them in 564A. What you will
need to do is to build parallel structures, so that associated with each almost-everywhere-summable Fourier
series f(z) = %ao + > pe ak coskx + by sinkz you have in hand a code 7 for a codable Borel function f
equal almost everywhere to f, together with a code T for a conegligible codable Borel set E included in
{z:z €domf, f(x) = f(x)}. Provided that associated with every relevant sequence (f,)nen you can define
appropriate sequences (7,,)nen and (T}, )nen, you can hope to deduce the reqired properties of (fy,)nen by
applying 564F to the sequence coded by (7,,)nen.

Of course there are further significant technical differences between the treatment here and the more
orthodox one I have employed elsewhere. In the ordinary theory, using the axiom of choice whenever
convenient, a measure u, thought of as a function defined on a o-algebra of sets, carries in itself all the
information needed to describe the space £%(u). In the present context, we are dealing with functions p
defined on algebras which do not directly code the topologies on which the definition relies. So it would be
safer to write £9(T,u). But of course what really matters is the collection of codable families of codable
sets, and perhaps we should be thinking of a different level of abstraction. In the proof of 564N I have tried
to cast the proof in a language which might be adaptable to other ways of coding sets and functions.

From 564K on, most of the results seem to depend on second-countability; it may be that something can
be done with spaces which have well-orderable bases.

In the shift from 564Xc(iii) to 564Ya(iii) I find myself asking for a reason why a weakly bounded sequence
in C(X) should be norm-bounded. As far as I know, there is no useful general result in ZF in this direction.
But in 564Ya I have suggested a method which will serve in this special context.

I offer 564Yc and 564Yd as positive and negative examples. The point is that in 564Yc there may be
few sequences of functions from N to I, so that we get few codable sequences of sets. Of course, if I is
well-orderable then {0,1} is compact (561D) and we can use 564H. For well-orderable I, any continuous
real-valued function on {0, 1} is determined by coordinates in some countable set, so that the methods of
564H and 564Yc will give the same measure.

Version of 25.4.14

565 Lebesgue measure without choice

I come now to the construction of specific non-trivial Borel-coded measures. Primary among them is of
course Lebesgue measure on R"; we also have Hausdorff measures (565N-5650). For Lebesgue measure I
begin, as in §115, with half-open intervals. The corresponding ‘outer measure’ may no longer be countably
subadditive, so I call it ‘Lebesgue submeasure’. Carathéodory’s method no longer seems quite appropriate,
as it smudges the distinction between ‘negligible’ and ‘outer measure zero’, so I use 563H to show that there
is a Borel-coded measure agreeing with Lebesgue submeasure on open sets (565C-565D); it is the completion
of this Borel-coded measure which I will call Lebesgue measure. We have a version of Vitali’s theorem for
well-orderable families (in particular, for countable families) of balls (565F). From this we can prove the
Fundamental Theorem of Calculus in essentially its standard form (565M).

565A Definitions Throughout this section, except when otherwise stated, » > 1 will be a fixed integer.
As in §115, I will say that a half-open interval in R” is a set of the form

[a,b[={x:xz €R", a(i) < x(i) < b(z) for i < r}

where a, b € R". For a half-open interval I, set \I = 0 if I = () and otherwise A\I = HZ;& b(i) — a(i) where
I =a,b]. Now for A CR" set

0A =inf{3°72, M : (I;)jen is a sequence of half-open intervals covering A}.
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565B Proposition In the notation of 565A,
(a) the function 6 : PR" — [0, o0] is a submeasure,
(b) I = M for every half-open interval I C R".

proof (a) As in parts (a-i) to (a-iii) of the proof of 115D, () = 0 and A < 6B whenever A C B. If A,
B CR"” and € > 0, we have sequences (I;)nen and (J,)nen of half-open intervals such that

A C UTLEN ny B C UneN ns

SR A, <O0A+e, S A, <OB+e.
Set Kop = I, Kony1 = J, forn € N; then AUB C |J,, o Kn s0
0(AUB) <3 JAK, =307 oA +>00° (AT, < 0A+ 0B + 2e.
As e is arbitrary, (AU B) < A + 6B.

(b) The arguments of 114B/115B/115Db nowhere called on any form of the axiom of choice, so can be
used unchanged.

Definition I will call the submeasure § Lebesgue submeasure on R".

565C Lemma Let Z be the family of half-open intervals in R"; let # be Lebesgue submeasure, and set
Y={E:ECX,0A=0(ANE)+0(A\E) forevery AC X}, v=0%

(563G).
(a) Let (I,)nen be a disjoint sequence in Z. Then E =
(b) Every open set in R” belongs to X.
(c¢) If G, H CR" are open, then vG+vH =v(GNH) +v(GUH).
(d) If (Gn)nen is a non-decreasing sequence of open sets then v(| J

nen In belongs to ¥ and vE =Y (v,

neN Gn) = lim, 00 Gy

proof (a)(i) If i < r and o € R then {z : x € R", z(i) < a} € ¥, as in 115F. So every half-open interval
belongs to . By 565Bb, vI = 01 = A\ for every I € T.

(ii)(a) 0E = 7 vI,. P Because (I,),en is a sequence in Z covering E, 0F is at most Y- (A, <
>0 o vI,. In the other direction,

0E > sup,en 0(U;<,, 1) = suppen ¥(U, <, Li) = SUPnen 2i<, Vi = Yoncovln Q

(B) Ec€X. P Let ACR" be such that A is finite, and € > 0. We have a sequence (J,)men in Z
such that A C {J,,cy Jm and Y27 o XJm < 0A + € is finite. Let m be such that 3272 | AJ; < ¢, and set
K =U,;<,, Jj; then

ANEC(KNE)UUjsp, Ji
S0
0ANE) <OKNE)+ 00U, Jj) SOKNE)+372, A <OKNE) +e

Similarly, 0(A\ E) < (K \ E) + €. Next, by («) applied to (J; N I;);en or otherwise, > o2 v(J; N 1;) is
finite for every j, so there is an n € N such that Z] e (J; NIL) <e Set L =1J;., Li; then

KQEQ(KQL)UU Jj N1,

j>m

1=n—+1 v
j<m,i>n

OENE)<OENL)+6( |J J;nD)

j<m i>n

0(K N L) +Z Z (J;NL)<O(KNL)+e

7j=0i=n+1

Assembling these,
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A<H(ANE)+0(A\E)<OHKNE)+0(K\E)+ 2
<OKNL)+0(K\L)+3e=0K + 3¢
(because we know that L € X)
< HA + 3e.

As e is arbitrary, 0A = (AN E) + 0(A\ E). This was on the assumption that A was finite; but of course
it is also true if 0A = co. As A is arbitrary, F € ¥. Q

() Accordingly vE =0E =3 v,.

(b) Let Zy be the family of dyadic half-open intervals in R” of the form [27%2,27%(z + 1)[ where k € N,
z€Z" and 1 = (1,...,1). Note that Zy is countable and that if I, J € Zy then either I C J or J C I or
INJ ={. Also any non-empty subset of Zy has a maximal element.

If G CR"is open, set J ={I:1 €Ty, I C G} and let J’ be the set of maximal elements of 7. Then
J’ is disjoint and countable, so by (a-ii) G = JJ = |J J’ belongs to X.

(c) Because v is additive on X,

v(GUH)+v(GNH)=vG+v(H\G)+v(HNG)=vG+vH
for all open sets G, H C R".

(d) This time, let J be |J,cn{1 : I € Zo, I € Gy}; again, let J' be the set of maximal elements of J.

Then G=JJ = J’, so
vG = ZJGJ’ vJ = SUPic 7/ is finite Yo sec v <sup,eny VG = limy 0o VG < VG

because (G, )nen is non-decreasing.

565D Definition Let 6 and v be as in 565C. By 563H, there is a unique Borel-coded measure 1 on R”"
such that uG = vG = 0G for every open set G C R”. I will say that Lebesgue measure on R" is the
completion py, of p; the sets it measures will be Lebesgue measurable.

565E Proposition Let Z, 0, X, v, u and py, be as in 565A-565D.
(a) p is the restriction of 6 to the algebra B.(R") of codable Borel sets.
(b) For every A C R",

0A =inf{u,E : E D A is Lebesgue measurable} = inf{uG : G D A is open}.

(¢c) E € ¥ and upF = vE = F whenever E is Lebesgue measurable.
(d) pr is inner regular with respect to the compact sets and outer regular with respect to the open sets.

proof (a) If E € B.(R"), then

pE =inf{puG : G D E is open}
(563Fd)
=inf{0G : G D FE is open} > 0F.

Next, if I C R" is a half-open interval, it is a codable Borel set and

M=inf{\J:Je€Z, ICintJ} >inf{f(intJ): J €Z, I CintJ}
>inf{0G : G D Iisopen} =pul >0I =AI.

So u and X agree on Z. If now E is a codable Borel set and e > 0, there is a sequence (I,)nen in Z such
that E C J, ey In and Y07 o A, < 0F + €. But every I, is resolvable (because it belongs to the algebra of
sets generated by the open sets), so (I,)nen is a codable sequence (562J) and
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pE < p(UnenIn) < >opeoitdn = >0 g My < OE + €.

As F and € are arbitrary, u = 0] B.(R").

(b) Suppose that A C R". If F D A is Lebesgue measurable, there are F, H € B.(R") such that
EAF C H and uH =0, so that E C FU H and

A< OH(FUH)=pu(FUH)=pu,E.
So we have
A <inf{upF : E DO A is Lebesgue measurable} < inf{uG : G D A is open}.

In the other direction, given € > 0 there is a sequence (I,)nen in Z, covering A, such that Y7  AI,, < 0A+e.

As in (a) just above, E = | J, oy In is a codable Borel set and puFE < Y~ ° | AI,; now there is an open G 2 F
such that uG < uF + € < 0A + 2e. As € is arbitrary,

inf{uG : G D Ais open} < 0A

and we have the equalities.

(c) Suppose that E is Lebesgue measurable, A C R" and ¢ > 0. By (b), there is an open set G O A such
that uG < 0A + €. Now

O(ANE)+0(A\E)<OGNE)+0(G\E)<ur(GNE)+ur(G\ E)

(by (b))
=urG = uG < 0A+e.

As usual, this is enough to ensure that £ € ¥. Now (b) again tells us that u, £ = E = vE.

(d) Of course p is locally finite, while R" is a regular topological space. So 563F(d-ii) tells us that u is
inner regular with respect to the closed sets and outer regular with respect to the open sets; it follows that
wr, also is. Next, every closed set is K, while compact sets are resolvable and all sequences of compact sets
are codable, so uF' = sup{uK : K C F is compact} for every closed set F' C R"; consequently g, is inner
regular with respect to the compact sets.

565F Vitali’s Theorem Let C be a well-orderable family of non-singleton closed balls in R". For Z C C
set

Az = Ns=oU{C : C € Z, diam C < 6}

Let T be the family of open subsets of R”. Then there are functions ¥ : PC — PC and © : PC x N — ¥ such
that W(Z) C Z, ¥(Z) is disjoint and countable, ur,(0(Z,k)) < 27% and Az C |J¥(Z) U O(Z, k) whenever
7 C C and k € N. In particular,

Az \UY(T) € Nyen O, k)
is negligible.
proof We use the greedy algorithm of 221A/261B, but watching more carefully. Start by fixing on a
well-ordering < of C U {@}. Next, for each n € N, set U, = {z : 2 € R", n < ||z|| < n + 1}, where ||| is the
Euclidean norm on R”. It will be convenient to fix at this point on a family (G, )k nen of open sets such

that purGrn, < 27872 and {x : ||z|| = n} C G, for all k and n; for instance, G, could be an open shell
with rational inner and outer radii (except for Gyg, which should be an open ball).®

60f course we can still use the similarity argument from part (g) of the proof of 261B to check that thin shells have small
measure.
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Now define Czy,, for Z C C and m, n € N, by saying that

given (Crni)i<m, CInm 18 to be the x-first member of {#} U (Z N PU,) which is disjoint from
U, <m Czni and has diameter at least

5 sup{diam C': C € {0} U(TNPU,,) s disjoint from U, _,,, Czni}-

(I take the diameter of the empty set to be 0, as usual.) Set
U(Z) = {Crnm : n, m € N}\ {0}.

Because the U, are disjoint, U(Z) is a disjoint subfamily of Z, and of course it is countable. Just as in
261B, we find that for each Z C C and n € N we have

AzNU, © Ui<m Czni U Uizm ClIni’
where for C € C I write C’ for the open ball with the same centre and siz times the radius; ()’ will be (). Just

as in 261B, > ur,CY,., < 6"upB(0,n+ 1) is finite. So, for each k and n, we can take the first my, such

nm —

that Y00 pp Oy, <27 "F=2 Now set

O(Z,k) = UneN Gn U UnEN,ikan CTnis
we shall have A\ |J¥(Z) C O(Z,k) and

,UL@(I, k) = 270;;0 'U'LGkn + Z;’:’:O Z?inzkn N’LC/ITM < 27ka

as required.

565G Proposition Let A C R” be any set. Then its Lebesgue submeasure is
0A =inf{} "  purBn : (Bn)nen is a sequence of closed balls covering A}.

proof Let € > 0. Then there is a (non-empty) open set G O A with u;,G < A + e. Use Vitali’s theorem,
with C the family of closed balls with rational centres and non-zero rational radii, to see that there is a
disjoint sequence (Cy,)nen of balls included in G such that pur(A\J,cnCn) =0and 3,y urCp < 0A €.
Next, cover A\ |J,,cyy Cn by a sequence of half-open intervals with measures summing to not more than e,
and expand these to balls with measures summing to not more than er’/2. Interleaving this sequence with
the C,, we get a sequence (B,,)nen of balls, covering A, with Y00/ ur, B, < 0A+ (1+7"/2)e. So

0A > inf{} "  purBn : (Bn)nen is a sequence of closed balls covering A}.
The reverse inequality is elementary (563C(a-ii)).

565H Corollary Lebesgue measure is invariant under isometries.

proof We can see from its definition that Lebesgue submeasure is translation-invariant, so Lebesgue measure
also is. Consequently two balls with the same radii have the same measure. Isometries of R" take closed
balls to closed balls with the same radii, so 565G gives the result.

5651 Lemma (a) Writing Cj(R") for the space of continuous real-valued functions on R” with compact
support, Cr(R™) C L (puz).
(b) There is a countable set D C Cy(R") such that {g*: g € D} is norm-dense in L' (juy).

proof (a) This is elementary; every continuous function is resolvable, therefore a codable Borel function
and belongs to £9; if in addition it has compact support it is dominated by an integrable function and is
integrable, by 564E(c-i).

(b)(i) Let U be a countable base for the topology of R", consisting of bounded sets and closed under
finite unions. Let Dy be the set of functions of the form x + max(0,1 — 2¥p(x, R" \ U)) for U € U and
k € N, where p is the Euclidean metric on R”, and D the set of rational linear combinations of members of
Dy; then D is a countable subset of Cj(R").
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(ii) If E C R" is a codable Borel set of finite measure, and € > 0, then by 565Ed there are a compact
set K C E and an open set G D E such that ur(G\ K) < e. Now there are a U € U such that K CU C G
and a g € Dy such that xK < g < xU, so that [ |g — xE| <e.

(iii) It follows that whenever f is a simple codable Borel function, in the sense of 564Aa, and € > 0
there is a g € D such that [|f —g| <e.

(iv) If f € £ and € > 0 there are a simple codable Borel function g and an h € D such that
J1f =gl < e such that [|g—h| < Je, so that [|f —h| <e.

565J Lemma Suppose that f is an integrable function on R", and that f ;[ = 0 for every half-open
interval I C R". Then f(z) > 0 for almost every z € R".

proof (a) Note first that any finite union E of half-open intervals is expressible as a finite disjoint union of
half-open intervals. So [, f > 0.

(b) Suppose that g is a simple codable Borel function such that |[ £ 9 < € whenever E is a finite union
of half-open intervals. Then [¢g" <e. B Set F = {x : g(z) > 0}, and take any n > 0. Then there are a
compact K C F and an open G D F such that puy(G\ K) <n. There is a set F, a finite union of half-open
intervals, such that K C E C G. In this case,

Jot = J[,9< [lgx X(BEAF)| < lglloonr(G\K), [ g* <e+nllgloes
as 7 is arbitrary, we have the result. Q

(c) We know that there is a codable sequence (g,)nen of simple codable Borel functions such that

J =ae limp oo gn and 307 o [ |gnt1—gn| is finite. Set e, = > [|gir1—gi| for each n; then [ |f—g,| < €,
because f |gm — gn| < €, for every m > n. So if E is a finite union of half-open intervals,

ngn:fgnXXEfoXXEfol*gn‘ZiEnQ
by (a), applied to —gn, [ g, < €,. By 564Be,
f_ =ae. My o0 9y =ae. liminf,, 9n = 0

almost everywhere, as required.

565K Theorem A monotonic function f : R — R is differentiable almost everywhere.

Remark Of course ‘almost everywhere’ here is with respect to Lebesgue measure on R; in this result and
the next two I am taking » = 1.

proof We can use the ideas in 222A if we refine them using 565F. First, C will be the set of closed non-
trivial intervals with rational endpoints; take ¥ and © as in 565F. It will be enough to deal with the case of
non-decreasing f. For a < b in R, set f*([a,b]) = [f(a), f(D)]. I shall repeatedly use the fact that if Z C C
is disjoint, then

ML(chI () = ZCGI prf*(0),

because T is countable and f*(C) N f*(C’) contains at most one point for any distinct C, C’ € Z, and we
can use 563C(a-iv).

(a) Again set
(Df)(x) = limsupy, o 3 (f(z + h) = f(2)),
(Df)(@) = liminfpo  (f(z + h) = f(z))
for z € R. To see that Df < oo a.e., set E,, = {z : |z| < m, (Df)(z) > 2"(1 4+ f(m) — f(—m))} and
In={l,f]:0, €Q, —m << f<m,

f(B) = fla) > 2" (1 + f(m) — f(=m))(8 —a)}
={C:CeC CC]-mm[,pf(C)>2"(1+ f(m) = f(=m))urC}
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for each m. Then, in the language of 565F, E,, C Az, . (If x € E,, and § > 0, then z is an endpoint of a
non-trivial closed interval [, 8] C ]—m,m], of length less than 4, such that f(8) — f(a) > 2™(1 + f(m) —
f(=m))(B — «). Now we can expand [a, (] slightly to get an interval [o/, 8] € Z,,, of length at most §.) So
E, CU¥(Z,)UO(Zy, k) for each k. ¥(Z,,) is a countable family of closed sets, and

271+ f(m) = f(=m)) Y mC< Y unfi(0)

Cev(Zy) CeV(Zy)

(U F©) < fm) - f-m),
CE‘I’(Ivn)
So Y cew(z,) bC <27, Setting Hy, = O(Z,m) U U{int C : C € V(Zy,)}, Hp, is open, pH,y, < 2-m+l
and E,, \ Q C Hpy,.
Set E = {x: (Df)(x) = oo}, and take any n € N. Then
Now 563C(a-ii) tells us that
/’LL(UmZn Hm) S Z;j:n /.th S 2_n+1

for each n, so that £\ Q is included in a negligible Gs set and ppE = pr(E\ Q) = 0. Thus Df is finite a.e.

(b) To see that Df <ae Df, we use similar ideas, but with an extra layer of complexity, corresponding
to the double use of Vitali’s theorem. Set F = {z : (Df)(z) < (Df)(z)}. Take any € > 0; because Q is
countable, there is a family (€mgq/)men,q,¢'eq of strictly positive numbers such that >y . co €mgqr < le.
For ¢, ¢ € Q and m, k € N let Z,qi, Tmgr be

{C :C e Ca CC ]_mvm[a ;U/LC < 2_k7 MLf*(C) > q/jfLC}u

{C :C € Ca c - ]7m7m[a :uLC < 27}2 ,U'Lf*(c) < Q,U'LC}
respectively. For m, k € N and ¢, ¢’ € Q set
Gggr =U{IntC: C € Lygu } N U{int C : C € Tngr 1

then (Gngqk) ken 1S a non-increasing sequence of open sets of finite measure. So, setting Fi,,qq = ﬂkeN Gmgq'k
we can find a family (k(m, q,q"))men,q,¢'c in N such that

/

1L (Gmg,q k(mg,a) \ Fimgg’) < min(l, %)quq’

whenever m € N, ¢, ¢ € Q and 0 < ¢ < ¢ (563C(b-ii)). Write Hyqq for Gu, g0/ k(m.q,a)-
IfmeNand 0<g<¢ inQ, set

. = {C :Ce Ca CC quq’a /-LLf*(O) < C]HLC}

mqq’
Then Fiqqr € Hpngq', 50 every point of Fi,4q belongs to the interiors of arbitrarily small intervals belonging
t0 Jpqqs accordingly Fgq \ U W(J,,,,) is negligible.
Now let Z}, .. be the set

{C:CecC, CCC forsome C' € W(T), ) pf*(C) > ¢ urCl.
Then /every.point .of gy N UY(Thgq) \ Q belongs to arbitrarily small members of Z7, 1, 50 Figqr \
U¥(Z),,,) is negligible.
Now we come to the calculation at the heart of the proof. If m € Nand 0 < ¢ < ¢’ in Q,

q/ﬂLquq’ < qI/'LL(U \I/(I;nqq’)) = q/ Z 'uLC

Ce\P(I;nqq’ )

< > owmlO=m( U ro)y<m U ro)

Cev (T’ Cev(z! ) cev(J’ ;)

maa’) mag’ mag’

y . . /
(because every member of 7,4y 1s included in a member of U( mqq/))
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= Z prf*(C) <q Z pnrC

Cev(T), 0) Cev(T), )

maqq’ maqq’
=qurL (U \Ij(jvlnqq’) < QULquq’ < QULquq/ + (q/ - Q)€'rrzqq’a
and prFrgy < €mgqs LHmqq < 2€mqq . But this means that

FAQC UmeN,q,q’EQ,0<q<q’ Finge © UmeN,q,q’€Q70<q<q’ Hingq'
which has measure at most

Z:meN,q,q’EQ>0<q<q’ prHmgq < 2ijeN,q,q’e(@,0<q<q’ €mgq’ < €.

The process described here gives a recipe, starting from € > 0, for finding an open set of measure at most
€ including F'\ Q. So we can repeat this for each term of a sequence converging to 0 to define a negligible
Gs set including F'\ Q, and F' must be negligible, as required.

565L Lemma Suppose that F': R — R is a bounded non-decreasing function. Then [ F’ is defined and
is at most lim, o0 F(z) — limg o F(2).

proof I copy the ideas of 222C. For each n € N, define g, : R — R by setting anx = 27" k(n + 1) — n for
k<2m

271.71
n+1 (
=0ifx<-—norz>n+2.

gn(z) = Fang+1) — Flank)) it £ < 2" and ank < 2 < ap gt1,

Then g, is a simple Borel measurable function and F'(z) = lim,,_,«, g, (x) whenever F’(z) is defined, which
is almost everywhere, by 565K. Also [ g, = F(n +2) — F(—n). Because the g, are resolvable, (g, )nen is
codable; by Fatou’s Lemma (564Fb),

f F’ <liminf,_ fgn = lim, oo F(z) — limy— oo F(2).

565M Theorem Let F': R — R be a function. Then the following are equiveridical:
(i) there is an integrable function f such that F'(z) = f]foo o J for every z € R,

(if) F is of bounded variation, absolutely continuous on every bounded interval, and
lim, ,_o F(z) =0,
and in this case F' =, f.

proof (a) If f is integrable and F(z) = f]_oo‘x[ f for every x € R, take any € > 0. Then thereis a g € Ci(R)
such that [ |f — g] < e (565Ib). Let zo be such that g(z) = 0 for z < z¢; then

[F)| < [If —gl<e

Ifag<by<...<a, <b,and > ,b; —a; <4, then

fl< / |g|+/ F—g
( ; lai,bi] [ai,bi]

<3 (b - a)llglloe + / 1 — gl < lglloe + € < 2.
1=0

€
1+llglleo

> IFG) -~ Fl =31 [

ai,b;

whenever x < xg. Set § =

As e is arbitrary, lim,, o F(z) = 0 and F is absolutely continuous on every bounded interval. As for the
variation of F', if ag < ay < ... < a, then

n

F(a;) — F(ai—1)| = <
S F(ar) — Flaiy) ;I/[amai[fl 2_:/[ /]

i=1 a;—1,aq(
- [ n< [
[ao,a"[
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so Var(F) < [|f| is finite.
Thus (i)=(ii).

(b) Moreover, under the conditions of (a), F' =, f. PP Because f is the difference of two non-negative
integrable functions, it is enough to consider the case f > 0 a.e., so that F' is non-decreasing. In this case,
applying 565L to the function z — med(F(a), F(x), F(b)), we see that f[a,b[F/ < f[a’b[ f whenever a < b in
R; also, applying 565L to F itself, F’ is integrable. Applying 565J to f — F’, we see that F’ <,.. f.

Recall that there is a countable subset D of Cj(R) approximating all integrable functions in mean (565Ib).
So there is a sequence (gn)nen in D such that > oo [ |g, — f| is finite. Set g, = sup;<,, g; for n € N; then
all the g, are continuous, therefore resolvable, and (g, )nen is a codable sequence ofiintegrable functions.
By 564Fa, g = lim,_,~ g, is defined a.e. and integrable. Let G,, G be the indefinite integrals of g,,
g respectively. Then the arguments just used show that G’ <,. ¢. But note that each G,, being the
indefinite integral of a continuous function, has G/, = g, exactly, while G/, < G’ whenever G’ is defined. So

g =a.e. hmn—)oo gn = hmn—)oo G/n Sa.e. G/7

and g =, G'.

At this point observe that [liminf,, e [g, — f] = 0, by 564Fb, so f <,.. g, while G — F is the indefinite
integral of the essentially non-negative integrable function g — f. So G’ — F' <,e. g — f =ae. G' — f and
f <ae. F'. So actually f =,.. F’, as hoped for. Q

(c) Now suppose that F' : R — R is of bounded variation and absolutely continuous on every bounded
interval, and that lim,_, o, F(z) = 0. By 224D and 565L, F’ is integrable; set G(z) = f]ioo’r[F’ and
H(z) = F(z) — G(z) for z € R. By (b), H = F' — G’ is zero a.e., while H, like F' and G, is absolutely
continuous on every bounded interval. But this means that H is constant. I® Suppose that a < b in R and
€ > 0. Let 6 € ]0,b— a[ be such that >, [H(b;) — H(a;)] < € whenever a < ag <by <a; <b <...<
an <b, <band > b —a; <8 Set E={z:x €la,b], H(z) = 0}. Let C be the family of non-trivial
closed subintervals [c, d] of ]a, b[ with rational endpoints such that |H(d) — H(c)| < e(d — ¢); then every point
of E belongs to arbitrarily small members of C. By Vitali’s theorem (565F) there is a disjoint countable
family Z C C such that E \ |JZ is negligible, so that

Yrerhd =p(UZ) =b—a.
Let J C T be a finite subset such that ;. ; url > b—a — d; express J as ([bi, ait1])i<n where (b;)icy is
strictly increasing. Setting ag = a and b, = b, we havea =ag < by <...<a, <b, =band Z?:o bi—a; <6.
So

H) — H@)| < S Hb) — Ha)| + 3 |Hlai) — Hby)
1=0 =0
n—1
< €+GZ(ai+1 —bi) <e(l+b—a).
1=0

As a, b and € are arbitrary, H is constant. Q
So F' — G is constant. As both F' and G tend to 0 at —oco, they are equal. Thus F(x) = f]ioo w[F’ for

every x, and F is an indefinite integral.

565N Hausdorff measures Let (X, p) be a metric space and s € |0,00[. As in §471, we can define
Hausdorff s-dimensional submeasure 65 : PX — [0, oo] by writing

0sA = sup inf{Z(diam D,,)? : (Dp)nen is a sequence of subsets of X covering A,
>0

n=0
diam D,, < 4 for every n € N},
counting diam () as 0 and inf () as co. As with Lebesgue submeasure, 0 is a submeasure.

5650 Theorem Let (X, p) be a second-countable metric space, and s > 0. Then there is a Borel-coded
measure g on X such that uK = 0,K whenever K C X is compact and 0,K is finite.
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proof (a) To begin with, suppose that X is compact and 6,X is finite.

(i) Let U be a countable base for the topology of X closed under finite unions; let < be a well-ordering
of Y. Then for any compact K C X, § > 0 and € > 0, there are Up,... ,U, € U such that K C |J,.,, Ui,
diam U; < ¢ for every i and > (diamU;)* < 0,K + e. P There is a sequence (A, )nen of subsets of X
such that K C |J, ey An, diam 4,, < 16 for every n and > o7 ((diam A,)* < 6,K + 1e. Let (n,)nen be a
sequence in |0, 36| such that Y7 (2, + diam A,,)* < 0, K + .

For each n € N, set G,, = {z : p(x,4,) < n,}. Then A, is a compact subset of G, so there is
a <-first U, € U such that A, C U, C G,. Now diamU, < min(d,diam 4, + 27" 2¢) for each n so
Yoo o(diam U,)* < 0,K + €. But as K is compact there is an n such that K C {J,.,, U;. Q

(ii) As in the proof of 471Da, 6, is a ‘metric submeasure’, that is, ;(AU B) = 0, A+ 6B whenever A,
B C X and p(A, B) > 0. (It will be convenient here to say that p(A, B) = oo if either A or B is empty.) It
follows that 0 ({, ey Kn) = oo o 05Ky, whenever (K, )nen is a disjoint sequence of compact subsets of X.
P Recall that p(K, K') > 0 whenever K, K’ are disjoint compact subsets of X; this is because K x K’ is
compact and p: X x X — R is continuous. So

GS(UnEN K,) > es(UiSn K;) = Z?:o 05K

for every n € N, and 0s(U, ey Kn) > fozo 0,K,. In the other direction, let ¢ > 0. Let <’ be a well-
ordering of | J,cyU™. Then for each n € N there is a <'-first finite sequence Uy, ... ,Upm, in U such
that K, C U<, Uni, diamU,; < € for every i and Y ;™% (diam U,;)* < 0,K,, 4+ 27"¢. Now (Upi)nen.i<m,
witnesses that

Z 0K, + 2¢ > inf{Z(diam D;)? : (Dj);en is a sequence of subsets of X
n=0 7=0

covering U K,, diam D; < ¢ for every j € N}.
neN
As e is arbitrary, 05(U,cn Kn) < D oneo 0s(Ky). Q
(iii) If G C X is open and € > 0, there is a compact set K C G such that 6,(G \ K) < e. P Set
Ko={x:p(x,X\G) > 1} and for n > 1 set
K,={z:27" <p(z,X \ G) <271}
Then Y 7 05K, and > 05Ks,+1 are both bounded by §,X < oo, so there is an n € N such that

oo, 0K, < e. But this means that 0s(U;>n Kn) < € (apply (ii) to the odd and even terms separately).
Set K = U;<,, Ki; this works. Q

(iv) Writing ¥ for the topology of X, 0] satisfies the conditions of 563H. B Of course it is zero at
(), monotonic and locally finite. If G, H € ¥ and € > 0, let K C G, L C H be compact sets such that
0s(G\K)+0s(H\ L) <e. Then K\ H, KN L and L\ G are disjoint compact sets and

(GUH)\ (K\H)U(KNL)U(L\G)), (GNH)\(KNL),

G\(K\H)U(KNL), H\(L\G)U(KNL))
are all included in (G \ K) U (H \ L), so all have submeasure at most ¢. But this means that 0,(G U H) +
0s(GN H) and 6;G + 6sH both differ from 6,(K \ H) + 205(K N L) + 05(L \ G) by at most 2e (upwards)
and differ from each other by at most 2¢ also. As € is arbitrary, we have the modularity condition.
As for the sequential order-continuity, this is elementary; if (G, )nen is a non-decreasing sequence with
union G, and € > 0, there is a compact K C G such that 05(G \ K) < ¢ now K C G, for some n, and
0:G <0G, +e Q

(v) So 563H tells us that there is a Borel-coded measure p on X extending 05]%. Now uK = §,K for
every compact K C X. P

pE + p(X\K) = pX = 0,X < 0K +0,(X \ K) = 0, K + (X \ K),
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so uK < 0,K. On the other hand, given € > 0, there is a compact L C X \ K such that ;L > 0,(X \ K) —e,
and now

0sK =0,(KUL)—0,L <0, X —0,(X\K)+e=uK+e¢
as € is arbitrary, uK = 0, K. Q

(vi) Note that 563H tells us that p is the only Borel-coded measure extending 6] %, and must therefore
be the only Borel-coded measure agreeing with 6, on the compact sets.

(b) For the general case, let K be {K : K C X is compact, §sK < oo}. Then (a) tells us that for
every K € K there is a unique Borel-coded measure ux on K agreeing with 6, on the compact subsets of
K. IfK,LeKand K C L, up[B.(K) is a Borel-coded measure on K (563Fa) agreeing with 05 on the
compact subsets of K, so uy extends px. We therefore have a Borel-coded measure p on X defined by
setting uF = supgcx i (E N K) for every E € B.(X) (cf. 563E), and p agrees with 6, on K, as required.

565X Basic exercises (a)(i) Show that Lebesgue submeasure 6 and Lebesgue measure are translation-
invariant. (ii) Show that if A C R” and o > 0 then §(aA) = a"0A. (iii) Show that if E C R” is measurable
and o € R then aF is measurable.

(b) Suppose that there is a sequence (A,),en of countable subsets of [0,1] with union [0,1]. (i) Set
A =U,,<n Am + n. Show that A belongs to the algebra ¥ of 565C, that the Lebesgue submeasure of A is
00, but that A N[0, n] is Lebesgue negligible for every n. (i) Set B = {2 "z :n € N, z € A,,}. Show that
B has Lebesgue submeasure 0, but is not Lebesgue negligible.

(c) Let g : R — R be a non-decreasing function. For half-open intervals I C R define A\jI by setting
A =0, N la,b] =limgp g(z) — limgrg g(2)
if a < b. For any set A C R set
04A = inf{3°72 ) A\gI; : (Ij) e is a sequence of half-open intervals covering A.

Show that 6, is a submeasure on PR. Show that there is a Borel-coded measure 1, on R agreeing with 6,
on open sets.

(d) Apply 564N to relate Lebesgue measure on R? to Lebesgue measure on R.

(e) Suppose that there is a sequence (A, ),en of countable sets with union [0,1]. Show that there is a
set A C [0,1]?, with two-dimensional Lebesgue submeasure zero, such that all the vertical sections A[{z}],
for « € [0, 1], have non-zero one-dimensional Lebesgue measure.

(f) Confirm that the principal results of §281 can be proved without the axiom of choice.

565Y Further exercises (a) Show that if X is a second-countable space and p is a codably o-finite
Borel-coded measure on X, then there is a non-decreasing function g : R — R such that the Lebesgue-
Stieltjes measure pg, of 565Xc has measure algebra isomorphic to that of f.

(b) Suppose that we are provided with a bijection between B(R) and wy, but are otherwise not permitted
to use the axiom of choice. (i) Show that every Borel subset of R is Borel-coded. (ii) Show that we can
construct a Borel lifting for Lebesgue measure as defined in 565D.

565 Notes and comments In these five sections I have tried to indicate, without succumbing to the
temptation to re-write the whole treatise, a possible version of Lebesgue’s theory which can be used in plain
ZF. With the Fundamental Theorem of Calculus (565M), the Radon-Nikodym theorem (564L), Fubini’s
theorem (564N) and at least some infinite product measures (5640), it is clear that most of the ideas of
Volume 2 should be expressible in forms not relying on the axiom of choice. We must expect restrictions of
the type already found in the convergence theorems (564F); for versions of the Central Limit Theorem or
the strong law of large numbers or Komlds’s theorem, for instance, we should certainly start by changing
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any hypothesis ‘let (f,)nen be a sequence of random variables’ into ‘let (f,),en be a codable sequence of
codable Borel functions’. I am not sure how to approach martingales, but the best chance of positive results
will be with ‘codable martingales’ in which we have a full set of Borel codes for countable sets generating
each of the o-algebras involved, along the lines of 564Md. If you glance at the formulae of Chapter 28,
you will see that while there are many appeals to the convergence theorems, they are generally applied to
sequences of the form (f X g,)nen where f is integrable and the g, are continuous; but this means that
(gn)nen is necessarily codable (562Qa, 562Sc) so that (f X gn)nen Will be a codable sequence if f itself is a
codable function.

In Volumes 3 and 4 we encounter much more solid obstacles, and I see no way in which Maharam’s
theorem, or the Lifting Theorem, can be made to work without something approaching the full axiom of
choice, or a strong hypothesis declaring the existence of a well-orderable set at a crucial point. I give an
example of such a hypothesis in the statement of Vitali’s theorem (565F). But in the applications of Vitali’s
theorem later in this section, we can always work with a countable family of balls, for which well-orderability
is not an issue. Separability and second-countability hypotheses can be expected to act in similar ways; so
that, for instance, we have 565Ya, which is a kind of primitive case of Maharam’s theorem.

Version of 22.8.14
566 Countable choice

With AC(w) measure theory becomes recognisable. The definition of Lebesgue measure used in Volume
1 gives us a true countably additive Radon measure; the most important divergence from the standard
theory is the possibility that every subset of R is Lebesgue measurable (see 567G below). With occasional
exceptions (most notably, in the theory of infinite products) we can use the work of Volume 2. In Volume
3, we lose the two best theorems in the abstract theory of measure algebras, Maharam’s theorem and the
Lifting Theorem; but function spaces and ergodic theory are relatively unaffected. Even in Volume 4, a
good proportion of the ideas can be applied in some form.

566A Nearly all mathematicians working on the topics of this treatise spend most of their time thinking
in the framework of ZFC. When we move to weaker theories, we have a number of alternative strategies
available.

(a) Some of the time, all we have to do is to check that our previous arguments remain valid. In the
present context, moving from full ZF + AC to ZF + AC(w), this is true of most of Volumes 1 and 2 and
useful fragments thereafter. In particular, for most of the basic theory of the Lebesgue integral countable
choice is adequate. Sometimes, of course, we have to trim our theorems back a bit, as in 566E, 5661, 566M,
566N, 566R, and 566Xc.

(b) Some results have to be dropped altogether. For instance, we no longer have a construction of a
non-Lebesgue-measurable subset of R, and the Lifting Theorem disappears.

(c) Some results become so much weaker that they change their character entirely. For instance, the
Hahn-Banach theorem, Baire’s theorem, Stone’s theorem and Maharam’s theorem survive only in sharply
restricted forms (561Xh, 561E, 561F, 566Nb).

(d) Sometimes we find that while proofs rely on the axiom of choice, the results can be proved without it,
or with something much weaker. Of course this is often a reason to regard the original proof as inappropriate.
Some of the ultrafilters in Volume 4 are there just to save a couple of lines of argument, and renouncing
them actually brings ideas into clearer focus. But there are occasions when the less scrupulous approach
makes it a good deal easier for us to develop appropriate intuitions. There is an example in the theory of
the spaces S(2) and L>(2) in Chapter 36. If we think of S(2() as a quotient of a free linear space (361Ya)
and of L*°(2A) as the || ||co-completion of S(2(), we can prove all the basic results which come from their
identification with spaces of functions on the Stone space of 2; but for most of us such an approach would
seriously complicate the process of understanding the nature of the objects being constructed. I used the
representation theorems in the theory of free products (§315, §325) for the same reason.
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On other occasions, we may need new ideas, as in 566F-566H, 5661, and 566P-566Q. A deeper example
is in 562V /5660, where I set out alternative routes to the results of 364F and 434T. Here we have quite a
lot of extra distance to travel, but at the same time we see some new territory.

(e) More subtly, it may be useful to re-consider some definitions; e.g., the distinction between ‘ccc’ and
‘countable sup property’ for Boolean algebras (566Xd). I have made an effort in this book to use definitions
which will be appropriate in the absence of the axiom of choice, but in a number of places this would lead
to a division of a concept in potentially confusing ways.

The ordinary theory of cardinals depends so essentially on the existence of well-orderings that it is often
unclear what we can do without them. However some theorems, which appear to involve the theory of infinite
cardinals, can be rescued if we re-interpret the statements. Sometimes the cardinal ¢ can be simply replaced
by R or PN (3431, 491G). Sometimes a statement ‘#(X) > ¢’ can be replaced by ‘there is an injection from
PN into X’ or ‘there is a surjection from X onto PN’ (344H, 4A2G(j-ii)); similarly, ‘#(X) < ¢’ might mean
‘there is an injection from X into PN’ or ‘there is a surjection from PN onto X U {0}’ (4A10, 4A3Fa).
Of course ‘#(X) = ¢’ usually becomes ‘there is a bijection between X and PN’ (423L); but it might mean
‘there are an injection from PN into X and a surjection from PN onto X’ (4A3FDb), or the other way round,
or just two surjections.

When dealing with a property which is invariant under equipollence, it may be right to drop the concept
of ‘cardinal’ altogether, and re-phrase a definition in more primitive terms, as in 566XI.

Elsewhere, as in 2A1Fd and 4A1E, we have results which refer to initial ordinals and hence to well-
orderable sets. But the theory of cardinal functions is so bound up with the idea that cardinal numbers form
a well-ordered class that much greater adjustments are necessary. I offer the following idea for consideration.
For a metric space (X, p) and a dense set D C X, set

UX,p,D)={{y:y€ X, plz,y) <27"}:z € D, n € N},

so that U(X, p, D) is a base for the topology of X. The existence (in ZF) of this function U corresponds to
the ZFC result that ‘w(X) is at most the cardinal product w x d(X) for every metrizable space X’.

(f) Another way to preserve the ideas of a theorem in the new environment is to make some small variation
in its hypotheses. For instance, Urysohn’s Lemma, in its usual form, demands DC. So if we are working
with AC(w) alone, we cannot be sure that compact Hausdorff spaces are completely regular; similarly, there
may be uniformities not definable from pseudometrics. For a general topologist, this is important. But a
measure theorist may be happy to simply add ‘completely regular’ to the hypotheses of a theorem, as in
561G and 566Xk. In §§412-413 I repeatedly mention families IC which are closed under disjoint finite unions.
Results starting from this hypothesis tend to depend on DC; but if we take K to be closed under U, AC(w)
may well be enough (566D). A more dramatic change, but one which still leads to interesting results, is in
5661.

566B Volume 1 With countable choice, Lebesgue outer measure becomes an outer measure in the
usual sense, so we can use Carathéodory’s method to define a measure space in the sense of 112A. No
further difficulties arise in the work of Chapters 11 and 12, and we can proceed exactly as before to the
convergence theorems. Indeed all the theorems of Volume 1 are available, with a single exceptional feature:
the construction of non-measurable sets in 134B and 134D, and a non-measurable function in 134Ib. (I will
return to this point in §567.) In particular, the union of countably many countable sets is countable.

566C Volume 2 In Volume 2 also we find that arguments using more than countable choice are the
exception rather than the rule. Naturally, they appear oftener in the more abstract topics of Chapter 21.
One is in 211L; we can no longer be sure that a strictly localizable space is localizable, though a o-finite
measure space does have to be localizable, since the choice demanded in the proof of 211Ld can then be
performed over a countable index set. There is a similar problem in 213J; a strictly localizable space might
fail to have locally determined negligible sets, and might have a subset without a measurable envelope.
Again, in 2141a, it is not clear that a subspace of a strictly localizable space must be strictly localizable. In
211P T ask for a non-Borel subset of R, and give an answer involving a non-measurable set; but with AC(w)
we have a non-Borel analytic set as in 423M. (See also 566Xb.)
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A more important gap arises in the theory of infinite products of probability spaces. The first problem
is that if we have an uncountable family ((X;, ¥;, u;))ier of probability spaces, there is no assurance that
[I;c; Xi is non-empty. In concrete cases, this is not usually a serious worry. But there is another one.
The proof of 254F makes an appeal to DC. I do not think that there can be a construction of a product
measure on even a sequence of arbitrary probability spaces which does not use some form of dependent
choice. However a partial version, adequate for many purposes (including the essential needs of Chapter
27), can be done with countable choice alone (5661). We can now continue through §254 with the proviso
that every infinite family of probability spaces for which we consider a product measure should be a family
of perfect probability spaces with non-empty product. There will be a difficulty in 254L, concerning the
product of subspaces of full outer measure, where the modification essentially confines it to non-empty
products of conegligible sets. For 254N, it will be helpful to know that (under the conditions of 5661) the
product of perfect spaces is again perfect. The proof of this fact (451Jc) is scattered through Volume 4, but
(given that we have a product probability measure) needs only countably many choices at each step.

When we come to products of probability spaces in Chapter 27, we shall again have to restrict the
applications of the results, but at each point only sufficiently to ensure that we have the product probability
measures discussed.

566D Exhaustion The versions of the principle of exhaustion in 215A all seem to require DC rather
than AC(w). For many applications, however, we can make do with a weaker result, as follows. I include
some corollaries showing that in many familiar cases we can continue to use the intuitions developed in the
main text.

Proposition [AC(w)] (a) Let P be a partially ordered set such that p vV ¢ = sup{p, ¢} is defined for all p,
g € P, and f: P — R an order-preserving function. Then there is a non-decreasing sequence (pp,)nen in P
such that lim, o f(pn) = sup,ep f(p)-

(b) Let (X,X, ) be a measure space and € C ¥ a non-empty set such that suppce pF is finite and
EUF €& for every E, F € £. Then there is a non-decreasing sequence (F,)nen in € such that, setting
F =, en Fn, pF = suppee plf and E'\ F is negligible for every F € £.

(c) Let (X,X, 1) be a measure space and K a family of sets such that

(o) KUK’ e K forall K, K' € K,
(8) whenever E € ¥ is non-negligible there is a non-negligible K € X N'Y such that K C E.
Then g is inner regular with respect to K.

(d)(i) Let (X, X, u) be a semi-finite measure space. Then p is inner regular with respect to the family of
sets of finite measure.

(ii) Let (X,X, ) be a perfect measure space. Then whenever F € ¥, f : X — R is measurable and
v < pE, there is a compact set K C f[E] such that puf~[K] > ~.

proof (a) For each n € N, set 7, = sup,,c p min(n, f(p) —27"). Then there is a sequence (g,)nen in P such
that f(gn) > 7 for each n; set p, = sup,,, ¢; for each n.

(b) By (a) there is a non-decreasing sequence (F,)nen in € such that sup, oy pF, = supgee pE; set
F=U,en Fn

(c) Because p is inner regular with respect to K iff it is inner regular with respect to K U {0}, we may
suppose that () € K. Take F' € ¥, and consider € = {K : K e KNXE, K C F}. T If supgee pE < pF, let
(En)nen be a non-decreasing sequence in & such that u(E\ U, oy En) = 0 for every E € £ ((b) above). Set
G = U, en En; then uG = sup,,cy uFE, < pF, so u(F \ G) > 0. But now there ought to be a non-negligible
K € KN ¥ such that K C F'\ G, in which case K € £ and y(K \ G) > 0. X

(d)(i) Apply (c) with K the family of sets of finite measure.
(ii) Apply (c) to the subspace measure up and K = {f~[K]: K C f[E] is compact}.
566E The problem recurs in parts of 215B, where I list characterizations of o-finiteness, and in 215C.
It seems equally that a ccc semi-finite measure algebra may fail to be o-finite, though a o-finite measure

algebra has to be ccc. We have a stripped-down version of 215B, with one of its fragments used in §235, as
follows:
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Proposition [AC(w)] Let (X, X, 1) be a semi-finite measure space. Write N for the o-ideal of p-negligible
sets.
(a) The following are equiveridical:
(i) p is o-finite;
(ii) either uX = 0 or there is a probability measure v on X with the same domain and the same
negligible sets as p;
(iii) there is a measurable integrable function f: X — ]0,1];
iv) either uX = 0 or there is a measurable function f : X — 0, c0[ such that [ fdu = 1.
If i is o-finite, then
i) every disjoint family in ¥\ N is countable;
ii) for every £ C ¥ there is a countable & C & such that E \ |J & is negligible for every E € £.
(¢) Suppose that u is o-finite, (Y, T,v) is a semi-finite measure space, and ¢ : X — Y is a (X, T)-
measurable function such that p¢~![F] > 0 whenever vF > 0. Then v is o-finite.

(
(b)
(
(

proof (a) Use the methods of 215B.
(b) By (a-ii), we may suppose that p is totally finite.

(i) If £ € X\ N is disjoint, then &, = {E: E € £, p > 27"} is finite for every n, so &€ = J,,cn En is
countable.

(ii) Let H be the set of finite unions of members of £. By 566Db, there is a sequence (Hp)nen in H
such that pu(H \ J,cy Hn) = 0 for every H € H. For each n € N, choose a finite set H,, C £ such that
Hy, = JHn; then & = |, cy Hn has the required properties.

(c) Again, we may suppose that u is totally finite. For each m € N let H,,, be the set of those F' € T such
that vF < co and pu¢~1[F] > 27™. Then any disjoint family in #,, has at most |2™uX | members, so each
H.» has a maximal disjoint subset; choose a sequence (£,,)men such that &, is a maximal disjoint subset of
Hon for each m. Then € = |J,,,cn Em is a countable family of sets of finite measure in Y. Now Z =Y \ [J&
is negligible. P? Otherwise, there is a non-negligible set F' of finite measure disjoint from | J&; now there
is an m such that F' € H,,, so that &, was not maximal. XQ So £ U {Z} witnesses that v is o-finite.

566F Atomless algebras To make atomless measure spaces and measure algebras recognisable, we need
a more penetrating argument than that previously used in 215D.

Lemma [AC(w)] Let 2 be a Dedekind o-complete Boolean algebra, and p a positive countably additive
functional on A such that ul = 1. Suppose that whenever a € 21 and pa > 0 there is a b C a such that
0 < pb < pa. Then there is a function f : A x [0,1] — 2 such that f(a,a) C a and ff(a, @) = min(«, fia)
for a € A and « € [0,1], and « — f(a, ) is non-decreasing for every a € .

proof (a) Just as in part (a) of the proof of 215D, we see by induction on n that for every b € 2 such that
ub > 0 and every n € N, there is a ¢ C b such that 0 < pc < 27" ub.

(b) If b € A and pb > 0, thereis a ¢ C b such that %ub < pc < %ub. P? Otherwise, set v = sup{uc: ¢ C b,
pe < %,ub} and let (¢, )nen be a sequence in 2 such that ¢, C b and v — 27" < pc,, < v for every n. Set
dy = sup;<,, ¢; for each n, and d = sup,,cy d,. Inducing on n, we see that ud,, < %ub so pd, < %pb for each
n, and pd < +pub. Now by (a) there is an e C b\ d such that 0 < pe < $ub. In this case, p(dUe) < Zub, so

v = p(dUe) > pe + sup,ey pen > 7. XQ

(c) For each n € N there is a finite partition of unity into elements of measure at most (2)". ¥ Induce
on n, using (b) for the inductive step. Q

(d) Choose a sequence (Cy)ren of finite partitions of unity such that uc < 2% for every k € N and
c € Cp. Set C = |Jyen Ck; then C is countable. Moreover, whenever a € 2 and > 0, there must be a
¢ € C such that anc# 0 and pe < 8. Let (¢ )nen be a sequence running over C.

(e) Define (f,)nen, (gn)nen inductively by saying that, for a € 2 and « € [0, 1],
fola,) =0, go(a,0) =a
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frt1(a, @) = fola, @) u(enngn(a, o)) if p(fr(a, @) u(cn ngnla, @))) < a,
= fn(a, @) otherwise,
gn+1(a, @) = gn(a,a) if p(fn(a,a)u(cnngn(a, a))) < a,
= fu(a,a) U (cy N gn(a,a)) otherwise.

Then

fn(a'7 a) < fn+1(a7 a) C gn+1 (av Oé) c gn(a7 a) C a,

pfn(a, o) <o,  pgn(a, o) > min(ua, o)

for every n € N. Set f(a, ) = sup, ¢y fn(a,a). Then f(a,«) C a and pf(a,a) < o whenever a € 2 and
a€0,1].

(f)(i) ? If a € A and a € [0,1] are such that pf(a,a) < min(pa,«), set b = inf,en gn(a,«). Then
f(a,a) € band pb > min(ua, ). By (d), there is an n € N such that

cn b\ fla,a) #0,  pc, < min(pa, @) — pf(a, ).
In this case, pu(fn(a, @)U (c, Nngn(a,@))) < min(ua, ) so
f(aa a) 2 fn+1(aa Oé) 2¢Cp N gﬂ(a7 a)) 2¢Cp N b7

which is impossible. X
So pf(a, @) = min(pa, a) for all @ € A and « € [0, 1].

(i) f a e A and 0 < o < 8 < 1, then for every n € N
either fn(a,a) = fn(a,B) and g,(a,a) = gn(a, 5)
or gn(av 04) c fn(aaﬁ)-

(Induce on n.) So f(a,a) C f(a,B).

Thus we have a suitable function f.

566G Vitali’s theorem The arguments I presented for Vitali’s theorem in 221A/261B and 471N-4710,
and for the similar result in 472B, involve the inductive construction of a sequence, which ordinarily is a
signal that DC is being used. In 565F I suggested a weaker form of Vitali’s theorem which is adequate for
its most important applications in measure theory. With AC(w), however, we can get most of the results as
previously stated, if we refine our methods slightly.

(a) In 261B, we have a family Z of closed balls in R" and we wish to choose inductively a disjoint sequence
<In>neN in Z such that

diam I,, > = sup{dlamI IezZ, In;.,Li =0}

for every n. We have already reduced the problem to the case in which sup;c;diam [ is finite and for any
finite disjoint subset of Z there is a member of Z disjoint from all of them. Let (G, )men run over the family
of all open balls with centres in Q" and rational radii. For m € N set K,,, = ZNPG,,,, and let Z' C T be a
countable set such that sup;cz/nx  diam I = sup;cx diam I for every m € N such that Ky, is non-empty;
this can be found with countably many choices.

Now, when we come to choose I,,, we can always pick a member of . PUZ, ={I:1T€Z In
Uicn i = 0}, yn = sup;cz, diam I and I € Z, is such that diam I > 2%, there is an m € N such that
IC G SR\ U, Li, in which case there is an I’ € 7' N K0, such that diam I” > 2%“ and I’ is eligible
to be I,,. Q Because 7' is well-orderable, we can set out a rule for making these choices, and the argument
can proceed as written, without recourse to the devices of §565.

(b) A similar trick can be used in 472B. Here, given a family Z of closed balls, we wish to choose a
sequence (Bp)nen in Z such that the centre of B, does not belong to Ui<n B; and, subject to this, the

diameter of B,, is nearly as large as it could be. This time, take K, to be the set of members of Z with
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centres in G, use countably many choices to find a countable set Z' C Z with adequately large intersections
with every K,,, and choose (B, )nen from 7.

At the next step, in 472C, we have to do this repeatedly, but the same method works; in fact, we can
work inside a fixed family Z’ chosen as above. (See 472Yd.)

(¢) The version in 471N-4710 is not manageable in quite the same way. If, however, we assume that the
metric spaces there are locally compact and separable, we can use the same idea as in (a) above to limit our
search to countable subfamilies of the given family F.

566H Bounded additive functionals We come to another obstacle in the proof of 231E. The argument
given there relies on DC to show that a countably additive functional is bounded. But we can avoid this,
at the cost of an extra manoeuvre, as follows.

Lemma [AC(w)] Let 2 be a Boolean algebra and v : 20 — R an additive functional such that {va, : n € N}
is bounded for every disjoint sequence (a,)nen in 2. Then v is bounded.

proof ? Suppose, if possible, otherwise. Then there is a sequence (b,)nen in X such that |vb,| > 2™n for
every n € N. For each n € N, let 98, be the subalgebra of 2 generated by {b; : i < n}; then %, has at most
2" atoms, so there must be an atom a of 9B, such that |v(anb,)| > n. Choose a sequence (c¢,)nen such
that ¢, is an atom of B,, and |vd,| > n for every n, where d,, = ¢, Nnb,; note that d,, is an atom of B,,41,
so that if n < m then either d,, C d,, or d,, nd,, = 0. By Ramsey’s theorem (4A1G), there is an infinite
I C N such that

either (dp)ner is disjoint

or dy, C d, whenever m, n € I and n < m.
Now the first alternative is certainly impossible, because {vd,, : n € I} is unbounded. So we have the second.
But in this case we can define a strictly increasing sequence (ny)ren in I such that ngy; > k + |vd,, | for
each k. Set ap = dp, \d for each k; then (ax)ren is disjoint and |vag| > k for each k, so again we have
a contradiction. X

MNk+1

5661 Infinite products: Theorem [AC(w)] Let ((X;, X, ui))ier be a family of perfect probability
spaces such that X = [[,.; X; is non-empty. Then there is a complete probability measure A on X such
that

(i) if B; € X; for every i € I, and {i : E; # X} is countable, then A(J],c; E;) is defined and equal to
Hie I il .

(ii) A is inner regular with respect to @), ;2.

iel

proof The only point at which the construction in 254A-254F needs re-examination is in the proof that
the standard outer measure on X gives it outer measure 1.

(a) I recall the definitions. For a cylinder C' = [],.; C;, set 0oC = [];c; piCy; for A C X, set

0A = inf{d> " 00Cy : Cp € C for every n € N, A C |J,, oy Cn}:

A will be the measure defined from 6 by Carathéodory’s method.

? Suppose, if possible, that X < 1. Then we have a sequence (Cy)nen of cylinder sets, covering X,
with >°°° ,0C, =1 — 2¢ where € > 0. Express each C,, as [Lic; Eni where J,, = {i: E,; # X;} is finite; let
J be the countable set | J,, o Jn; take K = #(J) (identifying N with w), and a bijection k — iy : K — J.

For each k € K andn € N, set Ly = {i; : j <k} C J and o, = HieI\Lk piEni. If J is finite, Ly = J
and oy, 47y = 1 for every n. We have a0 = 6pC,, for each n, so EZO:O apo=1—2¢. Forn e N, k€ K and
t e X;, set

fnk(t) = On k+1 ifte En,ika
= 0 otherwise.

Then
ffnkdﬂzk = an,kJrl///ikEnik = Qnk-
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(b) For each k € K, let hy : X;,, — R be the Marczewski functional defined by setting

hie(t) = 32020 37" X Eniy (1)

for t € Xj. Because py is perfect, there is for each & € K a compact set @ C hi[X;,] such that
i hi '[Q] > 1 — 27%e. Choose (Qi)rex such that Q. C hi[X;,] is compact and u;, h; '[Qr] > 1 — 27Fe
for every k € K. Observe that if £ € K and n € N then for = anpXEni, is of the form aprgnhir where
gn : R — [0,1] is continuous.

(c) Define non-empty sets Fj, C Hy, C X;, inductively, for k € K, as follows. The inductive hypothesis
will be that ZnEMk Qpp < 1 —27%1e where My, = {n : n € N, F; C E,;; whenever j < k}; of course
My = N, so the induction starts. Given that k € K and that

1—27ktle > ZnEMk QOnk = ZnEMk f fnkdy’ik - I(ZneMk fnk)duik’
the set

Hi={t:te X, Y en, frr(t) <1 =27}

must have measure greater than 2~%¢ and meets h; '[Q]. But observe that > nenr, Jnk = gphi where g; =
> nen, Onkgn is lower semi-continuous, so that Hy = h;, '[Gy] where Gi, = {a : gj(a) < 1—27¢} is closed.
Since Hj, meets h,:l[Qk], Qi N G}, is non-empty and has a least member S3; set Fj, = h,:l[{ﬁk}]. Because
Q1 C hi[X;,], Fi is non-empty.

Examine

Mk—i—l = {n :n € My, Fy, C Enzk}

There certainly is some t* € F}, and because hy[F}, is constant, M1 = {n :n € My, t* € E,; }. In this
case

EnEMk+1 Qn,k+1 = ZneMk far(t*) <1 =27
and the induction proceeds.

(d) At the end of the induction, either finite or infinite, choose ¢, € Fy for k € K. We are supposing
that X has a member z*; define x € X by setting x(ix) = ti for k € K and x(i) = 2*(i) for ¢ € I\ J. Then
there is supposed to be an m € N such that x € C,,, so that m € My, for every k. But at some stage we
shall have J,,, C Ly, (allowing k = #(K) if K is finite) and o, = 1, which is impossible. X

566J In particular, 5661 applies to all products {0,1} and [0, 1] with their usual measures. For these
we have Kakutani’s theorem that the usual measures are topological measures (415E), which turns out to
be valid with countable choice alone.

Theorem [AC(w)] (a) Let ((X;, %, X4, fti))ier be a family of metrizable Radon probability spaces such
that every p; is strictly positive and X = []..; X; is non-empty. Then the product measure on X is a
quasi-Radon measure.

(b) If I is well-orderable then the product measure on {0,1}! is a completion regular Radon measure.

i€l

proof (a)(i) We had better check immediately that every X is separable. The point is that because y; is a
totally finite measure inner regular with respect to the compact sets, there is a conegligible K, set; because
w; is strictly positive, this is dense; and countable choice is enough to ensure that a compact metrizable space
is second-countable, therefore separable. It follows that [],.; X; is separable, therefore second-countable,
for every countable J C I.

(i) Because every p; is a Radon measure it is perfect, so we have a product probability measure on
X. Now we can repeat the argument of 416Ua.

(b) Put (a), 561D and G together.

566K Volume 3 Turning to the concerns of Volume 3, the elementary theory of measure algebras is
not radically changed. But Lemma 311D is hopelessly lost; we no longer have Stone spaces, and need to
re-examine any proof which appears to rely on them. Another result which changes is 313K; order-dense
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sets, as defined in 313J, need no longer give rise to partitions of unity. So a localizable measure algebra does
not need to be isomorphic to a simple product of totally finite measure algebras. Similarly, condition (ii) of
316H is no longer sufficient to prove weak (o, c0)-distributivity. However some of the constructions which
I described in terms of Stone spaces, in particular, the Loomis-Sikorski theorem, the Dedekind completion
of a Boolean algebra, the localization of a semi-finite measure algebra, free products and measure-algebra
free products, can be done by other methods which remain effective with AC(w) at most; see 566L, 561Yg,
323Xh and 325Yc.

The theory of ccc algebras is rather different (566M, 566Xd). Maharam’s theorem (3311, 332B) is surely
unprovable without something like the full axiom of choice; and the Lifting Theorem (341K) is equally
inaccessible under the rules of this section. We do however have useful special cases of results in Chapters
33 and 34 (566N).

A good start can be made on the elementary theory of Riesz spaces without any form of the axiom of
choice (see 561H), and with AC(w) we can go a long way, as in 566Q. What is missing is the Hahn-Banach
theorem (for non-separable spaces) and many representation theorems. Similarly, the function spaces of
Chapter 36 are recognisable, provided that (for general Boolean algebras 2() we think of S(2) as a quotient
space of the free linear space generated by 2, and of L () as the || ||co-completion of S(2). Of course we
have to take care at every point to avoid the use of Stone spaces. One place at which this involves us in
a new argument is in 5660. Most of the arguments of Chapter 24 remain valid, so the basic theory of LP
spaces in §§365-366 survives. What is perhaps surprising is that if we take the trouble we can still reach the
most important results on weak compactness (566P, 566Q)).

In the ergodic theory of Chapter 38, a good proportion of the classical results survive. There are difficulties
with some of the extensions of the classical theory in §§381-382. For instance, the definition of ‘full subgroup’
of the group of automorphisms of a Boolean algebra in 381Be assumes that order-dense sets include partitions
of unity. If not, this definition may fail to be equivalent to the formulation in 381Ia. The latter would seem
to be the more natural one to use. However, the definition as given seems to work for the principal needs of
Chapter 38 (see 381I).

Frolik’s theorem in the generality 382D-382E needs something approaching AC, and with AC(w) alone
there seems no hope of getting results for general Dedekind complete algebras along the lines of the main
theorems of §382. For measurable algebras, however, we do have a version of 382Eb (566R).

Many of the later results of Chapter 38 are equally robust, at least in their leading applications to measure
algebras. We have to remember that we do not know that measurable algebras have many involutions, and
even among those which do there is no assurance that 382Q will be true. So in §§383-384 we find ourselves
restricted rather further, to those measurable algebras in which every non-zero element is the support of an
involution; but these include the standard examples (566N).

566L The Loomis-Sikorski theorem [AC(w)] (a) Let 2 be a Dedekind o-complete Boolean algebra.
Then there are a set X, a o-algebra X of subsets of X and a o-ideal Z of ¥ such that A~ /7.
(b) Let (U, i) be a measure algebra. Then it is isomorphic to the measure algebra of a measure space.

proof (a)(i) Set X = {0,1}*, and ¥ = @Qﬂ)({o7 1}). ForacUseta={r:z€ X, x(a) =1} € &. Let T
be the o-ideal of ¥ generated by sets of the form

Cl/A\bAaA/I;, (inanN an) - AnnGN a’/;
for a, b € A and sequences (a,)nen in 2, together with the set {z : (1) = 0}.

(ii) (The key.) @ ¢ Z for any a € A\ {0}. P If E € 7 then (using AC(w)) we can find sequences
(an)nen, (bn)nen in A, together with a double sequence (cy;)n icn, such that, setting ¢,, = inf;cy ¢p; for each
n’

F={z:2(1) = 0} UU,cn(@n 8 b, AT A) U, en (6D i &nt)
includes E. Let ‘B be the subalgebra of 2 generated by
{a}U{an :n eN}U{b, :neN}tU{c, :neN}U{cy; :n,i € N}.
Then B is countable, so we can choose inductively a sequence (d,,)nen in B\ {0} such that dy = a and, for

each n € N,
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dn+1 - dn,

either d,4+1 C a, or dy41 Nna, =0,

either d,4+1 C b, or d,41 nb, =0,

either d, 41 C ¢, or there is an ¢ € N such that d,, 11 n¢,; =0.
Define x € X by saying that

z(d) =1if d > d, for some n € N,
= 0 otherwise.
Then z € a\ F and a € E; as F is arbitrary, a ¢ Z. Q
(iii) Set
Yo={F:Ee€X, EAa €T for some a € A}.

Then ¥ is closed under symmetric difference and countable intersections and contains X (because X Al e
7). So X is a o-algebra of sets; as it contains a for every a € 2, it is equal to X.

(iv) From (ii) we see that a/A\b7 and therefore aAb, do not belong to Z for any distinct a, b € 2. With
(iil), this tells us that we have a function 7 : ¥ — 2 defined by setting 7F = a whenever EAa € Z. Now
X = 1 and 7 preserves symmetric difference and countable infima, so is a sequentially order-continuous
Boolean homomorphism; its kernel is Z, so 2 = ¥ /7, as required.

(b) This is now easy; we can use the familiar argument of 321J.

566M Measure algebras: Proposition [AC(w)] (a) Let 2 be a measurable algebra.
(i) For any A C 2 there is a countable B C A with the same upper bounds as A.
(ii) 2 is Dedekind complete.
(iii) If D C 2 is order-dense and ¢ € D whenever ¢ C d € D, there is a partition of unity included in D.
(b) Let (2, 1) be a o-finite measure algebra and B a subalgebra of 2 such that (B, i[B) is a semi-finite
measure algebra. Then (B, ] B) is a o-finite measure algebra.

proof (a) (Cf. 322G, 316E, 322Cc.) Let & be such that (2, i) is a totally finite measure algebra.

(i) Let A* be the set of suprema of finite subsets of A, and set v = sup,c 4 fia. There is a sequence
(an)nen in A* such that sup, oy 7a, = 7; let B C A be a countable set such that every a, is the supremum
of a finite subset of B. Then any upper bound ¢ of B is an upper bound of A. P Take d € A. Then
aua, € A*, so

fla\c) < pla\a,) = plavay) — fa, <y — fay,
for every n, and fi(a\ c¢) =0, that is, a C c. Q
(ii) follows at once from (i), since 2 is Dedekind o-complete.

(iii) By (i), there is a sequence (d,)nen in D with supremum 1; now (d,, \ sup;.,, di)nen is a partition
of unity included in D.

(b) (Cf. 322Nc.) Write B7 for the ring {b: b € B, ib < 0o}. Let (an)nen be a non-decreasing sequence
in 2, with supremum 1, such that jia,, < oo for every n. For each n € N, set v, = sup{fi(bna,) : b € B };
choose a sequence (b,)nen in B/ such that (b nay) > ay —27™ for every n. T If 1 is not the supremum
of {b, :n € N} in B, let b € B\ {0} be such that bnb,, = 0 for every n. Because fi|B is semi-finite, there
is a non-zero b’ € B/ included in b. But now 0 < b’ = sup,,cy fi(b' Nay,), so there is an n € N such that
A(b' nay,) > 27" in which case v’ ub,, € BF and ((b' ub,) Nay) > a,, which is impossible. X

566N Characterizing the usual measure on {0,1}": Theorem [AC(w)] (a) Let (X,X, u) be an
atomless, perfect, complete, countably separated probability space. Then it is isomorphic to {0,1}" with
its usual measure.

(b) Let (A, i) be an atomless probability algebra of countable Maharam type. Then it is isomorphic to
the measure algebra of the usual measure on {0, 1}Y.
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(c) An atomless measurable algebra of countable Maharam type is homogeneous.
(d) For any infinite set I, the measure algebra of the usual measure on {0,1} is homogeneous.

proof (a) (Cf. 3441.) Write v for the usual measure on Y = {0,1}Y, and T for its domain.

(i) Let H be a countable subset of ¥ separating the points of X, and (E,)»en @ sequence running over
‘H with cofinal repetitions. Let f : ¥ x [0,1] — 3 and be a function as in 566F. Define g : ¥ x N — 2 by
setting

9(B,n) = f(E A By, 5iE) if ((E 0 Ey) > Ljif,
= f(E\ Ey, %ﬂE) otherwise .

Define (&, )nen inductively by saying that & = {X} and
Enp1={g(E,n): E€&}IU{E\g(E,n): E €&}

for each n. Then each &, is a partition of unity consisting of 2" elements of measure 27". Set G, =
Ugee, 9(E,n) for each n, and let ¥ be the o-subalgebra of ¥ generated by {G, : n € N}.
For H € ¥ and n € N, set

mH)=2"#{E:Ec&, ENH#0and EZ H}.
Then Yp4+1(H) < 7, (H) for every n, and v,41(E,) < £7,,(Ey). Since every member of H appears infinitely
often as an E,,, lim, o v, (H) = 0 for every H € H. But this means that if H € H and we set H' = |J{E :

EcU,enén, ECH} and H' = X \|U{E : E € U,,cyén, HNE = 0}, then H' and H"” both belong to
Yo, H C HC H” and H" \ H' is negligible.

(ii) Define ¢ : X — Y by setting ¢o(z) = (XGn(x))nen for x € Y. Then ¢y is Tp-measurable.
Consider the image measure pg, !, This is a topological measure, and because p is perfect and complete
(and Y is homeomorphic to a subset of R) u¢, ' is a Radon measure. If n € N and z € {0,1}" then

(bal{y : 2 Cy € Y} belongs to &, and has measure 27", so ugbo_l and v agree on such sets; both being
Radon measures, they must be equal.

(iii) Now observe that $g = {¢y'[F] : F C Y is Borel}. We have seen that if H € H there are H’,
H" € Yy such that H' € H C H” and H" \ H' is negligible. Set X1 = X \ Uy cy H \ H', so that X; C X is
u-conegligible. Now ¢ [ X is injective. B If x, 2’ are distinct members of X, there is an H € H containing
one and not the other; as neither belongs to H \ H’', H' contains one and not the other; as H' = (bal[F] for
some F C Y, ¢o(x) # ¢o(z'). Q We also find that ¢o[X;] is v-conegligible. B Because v = u¢y ', ¢o[X] is
v-conegligible. For each H € H,

veolH \ H'] = pgyy '[do[H \ H']] < pebg ' [¢o[H" \ H']] = p(H" \ H')
(because H” \ H' € ¥y so is the inverse image of a subset of Y))
=0.

So ¢olUpey H \ H'] is v-negligible and ¢o[X;] is v-conegligible. Q

(iv) It follows that if we set ¢ = ¢ X; then the subspace measure vy, is just the image measure
px, 67" P If F C Y then

px, 61 [F) = p(Xa Ny ' [F]) = pgg ' [F] = vF = vy, F
if any of these is defined. @ But as ¢; is a bijection, this means that it is an isomorphism between (X7, px,)

and (Yl, Vy, )

(v) There is no reason to suppose that X \ X7 and Y \ Y7 are equipollent, so ¢; may not be directly
extendable to an isomorphism between X and Y. However, there is a negligible subset D of Y; which is
equipollent with R. P Let K C Y; be a non-negligible compact set. Set Sy = J,,cy{0,1}" and define
(K,).es, inductively, as follows. Ky = K. Given that z € {0,1}"™ and that K, is a non-negligible compact
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set, take the first m > 2n + 2 such that J = {w:w € {0,1}™, v{y : w C y € K.} > 0} has more than one
member, let w, w’ be the lexicographically two first members of J, and set

Koo={y:wCyekK.}, K.-i={y:vw Cyeck.}
continue. This will ensure that 0 < vK, < 47" for every z € {0,1}". Set D =,y U.e(0,1yn K3 then D
is negligible and equipollent with {0,1} and R. Q
Now set Xo = X1\ ¢; *[D] and Y5 = Y1\ D. ¢o = ¢ | X5 is an isomorphism between the conegligible sets
X5 and Y, with their subspace measures. Since H separates the points of X, we surely have an injective
function from X \ X5 to R, while we also have an injective function from R to ¢; *[D] € X \ X5. So X \ X5 is

equipollent with R. Similarly, Y\ Y3 is equipollent with R. So ¢2 : Xo2 — Y3 can be extended to a bijection
¢ : X =Y, which will be the required isomorphism between (X, X, u) and (Y, T,v).

(b) (Cf. 3311.) We can use the same idea as in (a). Let (an)nen be a sequence running over a 7-generating
set A C 2 with cofinal repetitions. Let f : 24 x [0,1] — 2 be a function as in 566F. Define g : A x N — 2
by setting

g(a,n) = f(anan, 5jia) if fianan) > Sjia,
= f(a\ an, %ﬂa) otherwise .

Define (B,)nen inductively by saying that By = {1} and
Bpi1={g(b,n):be B,y U{b\g(b,n):be B,}

for each n. Then each B,, is a partition of unity consisting of 2" elements of measure 27". Let B be the
closed subalgebra of 2 generated by (J, oy Bn; then 9B is isomorphic to the measure algebra of the usual
measure on {0, 1}

For a € A and n € N, set

(@) =2""#{b: b€ B,,anb¢ {0,b}}).

Then vn11(a) < yn(a) for every n, and v,41(an) < 37n(an). Since every member of A appears infinitely
often as an a,,, lim,,_,o, v,(a) = 0 for every a € A. But this means that A C B and B = 2. So we have the
required isomorphism.

(c) (Cf. 331N.) If A is such an algebra, any non-zero principal ideal of 2 is atomless and of countable
Maharam type and supports a probability measure, so must be isomorphic to the measure algebra of the
usual measure on {0, 1} and to 2.

(d) For J C I, write v for the usual measure on {0,1}”, T for its domain and (B8, 7;) for its measure
algebra. If a € By is non-zero, then it is of the form E°* for some E € T; determined by coordinates
in a countable subset J of I. Identifying {0,1}! with {0,1}/ x {0,1}\/, we have an F € T; such that
E =F x{0,1}"\7. Let b € B be the equivalence class of F. Now we can think of the probability algebra
free product B ;B 1\ as the metric completion of the algebraic free product B; ® Bp s, and as such
isomorphic to B; under an isomorphism which identifies the principal ideal (B;), with (B;),®B nJ- By
(b), ((B)p, s (B)p) is isomorphic, up to a scalar multiple of the measure, to (B ;,75); so we have

(Br)o X (B))p@Bps 2 B,08Bn 5 =B

As a is arbitrary, B is homogeneous.

5660 Boolean values: Proposition [AC(w)] (a) Let B be the algebra of open-and-closed subsets
of {0,1}N, and B({0,1}Y) the Borel o-algebra. If 2 is a Dedekind o-complete Boolean algebra and 7 :
B — A is a Boolean homomorphism, 7 has a unique extension to a sequentially order-continuous Boolean
homomorphism from B({0, 1}") to 2.

(b) Let 2 be a Dedekind o-complete Boolean algebra. Then there is a bijection between L° = L°(2l) and
the set ® of sequentially order-continuous Boolean homomorphisms from the algebra B(R) of Borel subsets
of R to 2, defined by saying that u € L° corresponds to ¢ € @ iff [u > o] = ¢(Ja, [) for every o € R.
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(c) Let (A, 1) be a localizable measure algebra. Write X, for the algebra of universally measurable
subsets of R. Then for any u € L? = L°(2(), we have a sequentially order-continuous Boolean homomorphism
Ew— [u€ E]: Zym — A such that

[u€ E] =sup{Ju € F]: F C E is Borel} = sup{[u € K] : K C F is compact}
=inf{[u € F]: F D E is Borel} = inf{Ju € G] : G D E is open}
for every E € X, while
[u €la,00[] = [u > o]
for every a € R.

proof (a) As in §562, let 7 be the set of trees without infinite branches in S* = J,,~; N”. For n € N set
E,={z:zc{0,1}N, z(n) =1} € B anda, =7E, €A Let ¢ : T — A and ¢ : T — B({0,1}) be
the corresponding interpretations of Borel codes, as in 562V. Then ¢(T") = ¢(T’) whenever ¢(T') = ¢(T”)
(562V), and (using AC(w)) it is easy to check that ¥[T] = B({0,1}") (cf. 562Db), so we have a function
7 : B({0,1}Y) — 2A defined by saying that 7(y(T)) = ¢(T) for every T € T. Now if (F,),en is any sequence
of Borel subsets of {0,1}", we have a T' € T such that F,, = ¢(T,~) for every n and no T, is empty
(see 562Bb). In this case

(U0, N\ F) = 7(4(T)) = ¢(T)

neN

=supl\ ¢(T<n>) = sup 1\ 7F,.
neN neN
So 7 is a sequentially order-continuous Boolean homomorphism. Since it agrees with = on {E,, : n € N} it
must agree with 7 on B.
Of course the extension is unique because if 7' : B({0,1}Y — 2 is any sequentially order-continuous
Boolean homomorphism extending 7 then {E : 7' E = 7E} is a o-algebra of sets including % and therefore
containing every open set.

(b) (Cf. 364F.) Let & be the algebra of subsets of R generated by sets of the form ]g,o0[ for ¢ € Q.
Then £ is an atomless countable Boolean algebra, so is isomorphic to the algebra 98; let 6 : 8 — £ be an
isomorphism. Define f : {0,1}N — [~o0, 00] by setting f(x) = sup{q: ¢ € Q, x € §7']q,00[}. Then f is
Borel measurable.

Take any v in L°. It is easy to check that we have a Boolean homomorphism 7 : £ — 2 defined by
saying that 7]q, 00 = [u > ¢] for every ¢ € Q. By (a), there is a sequentially order-continuous Boolean
homomorphism 7 : B({0, 1}Y) — 2 extending 70 : B — A. Set ¢F = 7(f~1[E]) for E € B(R).

If @ € R then

Bl 00]) = 7+ f(z) > a} = 70 1gr00] -4 €Q, g > a})
=sup{(0~']q,0[) : ¢ € Q, ¢ > a}
=sup{m]g,00[:q € Q, ¢ > a}
=sup{Ju>q]:q€Q, ¢g>a}=[u>aqa]
It follows that

¢R = sup 7 (f~']=n,00[) \ inf 7(f"]n,00])
neN neN

=sup [u > —n]\ inf Ju >n] =1,
neN neN

and therefore that ¢ € ®. For the rest of the argument we can follow the method of 364F.
(c) (Cf. 434T.)

(i) To begin with, consider the case in which [ is totally finite. In this case, we have a non-decreasing
function g : R — [0, co[ defined by saying that g(a) = il —fJu > af) for a € R. Let v, be the corresponding
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Lebesgue-Stieltjes measure (114Xa), and (&, 7,) its measure algebra. Note that g is continuous on the right,
so that vy ], f] = afu > a] — fJu > B] whenever a < 3 in R. Let ® be the subalgebra of ¢ generated
by {]—o00,a]® : @ € R}. Then we have a measure-preserving Boolean homomorphism 7 : ® — 2 defined
uniquely by saying that 7(Jo, 00[") = [u > o] for a € R. Because D is dense in € for the measure-algebra
topology, 7 has a unique extension to a measure-preserving Boolean homomorphism 7 : € — 2.

Because X,m C dom vy, we can define [u € E] to be 7E* for E € X, and this will give us a sequentially
order-continuous Boolean homomorphism from ¥, to 2 such that [u € Ja,oo[] = [u > o] for every a.
As for the other formulae, they are immediate from the facts that v, is inner regular with respect to the
compact sets and outer regular with respect to the open sets.

(ii) We need to observe that these properties uniquely define Ju € E]. P Let £ be the algebra of
subsets of R generated by {]Ja, oo[ : @ € R}. The requirement [u € Ja, oo[] = [u > o] determines the values
of [u € E] for E € €. Next, if G C Risopen and K C G is compact there is an E € £ such that K C E C G.
Consequently [u € K] =inf{Ju € E] : E € £, E D K} is fixed for every compact K C R. Finally, the inner
regularity condition [u € E] = sup{[u € K] : K C E is compact} determines [u € E] for other E € 3,.
Q

(iii) Now turn to the general case of a localizable measure algebra (A, 1) and u € LO(2A). Let A be
the ideal of elements of finite measure. Then for each a € A/ we have a corresponding homomorphism
E + [u € E], from Y, to the principal ideal ,. If a C b € A/, we can use the uniqueness described in
(ii) to see that [u € E], = an[u € E], for every E. So if we set [u € E] = sup,cqr [u € E]4, we shall have
[u € E]o = an[u € E] whenever a € 2/ and E € .. It is now easy to check that E + [u € E] has the
required properties.

566P Weak compactness In the absence of Tychonoff’s theorem, the theory of weak compactness
in normed spaces becomes uncertain. However AC(w) is enough to give a couple of the principal results
involving classical Banach spaces, starting with Hilbert space.

Theorem [AC(w)] Let U be a Hilbert space. Then bounded sets in U are relatively weakly compact.

proof If U is finite-dimensional, this is trivial; so let us suppose that U is infinite-dimensional. Let A C U
be a bounded set, and A its closure for the weak topology; let Fy be a family of weakly closed subsets of A
with the finite intersection property, and F the filter on U generated by Fy.

(a) For closed subspaces V of U, let Py, : U — V be the orthogonal projection from U onto V' (561Ib), and
set vy = liminf, 7 ||Pyu||?>. Because F contains a bounded set, vy < vy < oo for every V. If Vg, Vi are
orthogonal Subspaces of Ua then ||F)\/'o-‘v-‘/'1ru’||2 = ||]DV0u||2 + ||PV1u||2 for every u € Ua S0 MWo+W; > Wo +V4-

(b) Set v = sup{yy : V is a finite-dimensional linear subspace of U}, and choose a sequence (V,)nen
of finite-dimensional subspaces of U such that v = sup,cy7v,; because U is infinite-dimensional, we can
do this in such a way that dimV,, > n for each n. Let W be the closed linear span of (J, .y Vp. If V is a
finite-dimensional linear subspace of W+, then

Y Z WAV, Z W W,
for every n, so vy = 0.
() If F € F, V C W is a finite-dimensional linear subspace, and € > 0, then F' N {u : || Pyu| < €} is

non-empty. We can therefore extend F to the filter G generated by sets of this type, and lim,,_,¢g(u|w) =0
for every w € W+,

(d) Let {en)nen be an orthonormal basis for W. Define (G,,)nen as follows. Gy = G. Given that G, is a
filter on U containing a bounded set, set oy, = liminf, g (ule,), and let G, 1 be the filter generated by
Gn U{{u: (ulen) < a}:a > ap}; then oy, = limy g, ,, (ulen). Set H = U, ey Gn; then oy, = limy, 3 (ule,)
for each n.

For any n € N,

>ico af = Yico limy, 3 (ule;)® = limy 3 Z?:o(u|ei)2 < limsup, g [[ul* < oo

because H contains a bounded set. So Y-, a2 is finite and v = > 7 aye, is defined in U.
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(e) Now
(vlen) = ap = limy 3 (uley)
for every n; again because H contains a bounded set, (v|w) = lim, % (u|w) for every w € W. On the other
hand, if w € W+,
limy, 3 (u]w) = lim, g (ujw) = 0 = (v|w).

Since W + Wt = U, lim,_,3(ulw) = (v|w) for every w € U. By 561lc, v is the limit of H for the weak
topology on U, and must belong to every member of Fyo.
As Fy is arbitrary, A is weakly compact and A is relatively weakly compact.

566Q Theorem [AC(w)| Let U be an L-space. Then a subset of U is weakly relatively compact iff it is
uniformly integrable.

proof (a)(i)(e) Recall that U is a Banach lattice with an order-continuous norm (354N), so is Dedekind
complete (354Ee) and all its bands are projection bands (353J7); for a band V in U, let Py, : U — V be the
band projection onto V.

(B) Ifu € U thereis an f € U* such that Hf|| < 1land f(u) = ||u||. B Let V be the band generated by
ut and W = V< its band complement. Set fv)=[Pyv— fPWv for v € U. Since ||v|| = ||Pvv| + || Pwv||
for every v € U, || f|| < 1. Also Pyu = u* and PWu =—u"so f(u) = [|u| = |lu]. Q

(v) If A C U is weakly bounded it is norm-bounded. P? Otherw1se, choose foreachn e Nau, € 4
and f, € U* such that ||u,| > n, ||fn|| =1 and f,(un) = ||un|| > n. For f € U* set pa(f) = sup,cq | f(u)].
Define (ny)ren by setting ny = [2 - 3%(k + Zk ' 35ipa(fn,))] for each k. Set f = > o037 fn;. Then for
any k € N we have

pa(f) = f(un,) Zs foui (thny)

>3 kfnk (un,) 23 "pa(fni) = Z 37, |

i=k-+1
1 k—1

= g luni Il = > 37 palfn,) = k. XQ
i=0

(ii) Now let K C U be a weakly relatively countably compact set. Let 2( be the band algebra of U.
For V € 2 set vV = sup, ¢k ||Pvul| (counting sup( as 0). Then v is a submeasure on 2. By (i-y), K is
norm-bounded and v is finite-valued; set o = vU = sup,, ¢ [|ull-

v is exhaustive. B*? Otherwise, let (V},),en be a disjoint sequence in 2 such that e = %infneN vV, is
greater than 0. For each n € N choose u,, € K and f,, € U* such that || f,|| < 1and f,,(Pyun) = || Pounl| > Se,
where here I write P, for Py, . Let vy be a cluster point of (u,)nen in U for the weak topology of U. Note
that >0 ||Poull < |jul| for any u € U; let m € N be such that > 02 ||P,vl| < e. For n € N, set
gn(u) = fr(Ppu) for u e U.

We can now build a strictly increasing sequence (ng)ren such that

n02m7

k—1 k—1
Zi:() |9n; (Un, )| < €+ Zizo |9n; (vo)l,

< 27 k¢ whenever i < k

| Py i,

for every k € N. Let vy be a weak cluster point of (un, )ken, and | € N such that > po, || Py, v1] < €. Set
g = 1) gn,; this is defined in U* because

2zt g (W) < 352 1 Pyul] < lul

"Formerly 3531.
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for every u € U. Of course [g(v1)| < €. On the other hand, for any k > [,

k—1 0
9(un,) = gn, (tn,,) + Z s (Uny ) + Z Ini (Uny,)
i=l i=k+1
k—1 00
> 5€ — Z |g’ﬂi (unk)| - Z ||Pn1unk ”
=0 i=k+1
k—1 00
256—Z|gm(v0)|76— Z 27 "%
1=0 i=k+1

>de— Y [|[Pavoll — 27" > 2e

n=m
and vy cannot be a weak cluster point of (u,, )ren. XQ

(iii) In fact v is uniformly exhaustive. PP? Otherwise, let € > 0 be such that there are arbitrarily long
disjoint strings in 2 of elements of submeasure greater than 2¢. Set g(n) = [M] for each n, and choose
€

a family (Vii)nen,i<q(n) such that (Vii)i<g(n) is a disjoint family in 2 for each n and vV,; > 2¢ for all n
and ¢; adapting the temporary notation of (ii), I set P,; = Py,, for i < ¢(n). Now choose u,; € K such

that || Pysting|| > 2€ for all i and n. Because Y%7 || Pyul| < ||ul| for every u € U and n € N, we can define
inductively a sequence (ip)nen such that i, < g(n) and || Py, tmi,, | < 27 ™€ whenever m < n.
Now set

W = Vit 1 i Vir - Qo = Pi,
for m <mn,
Wi =Npsm Won,  @m = P,
for m € N. For any u € U and m < n,
| P tt] = Py, [u] < Qmnlul + ZZ:mJ,-l Py |ul,

| Pri, ] < [|Qumt]| + ZZ:m-H | Priy, ull s
SO

n

1Quntimin, | = Pyt | =D 1 Prig tmis
k=m+1

o0
> 2¢ — Z 2_k626.
k=m+1

Next, if u > 0, (Qmnu)n>m is a non-increasing sequence, and its infimum belongs to (,,~,, Wmn, so must
be equal to Q.,u; accordingly @, u is the norm-limit of (Qmnt)n>m. The same is therefore true for every
u € U, and in particular

||Qmumi'm H = limn_M)O ||anum7fm,|| Z €.
Consequently vW,, > €. But W,, " W,, C VnJ; N Vyi,, = {0} whenever n > m, so this contradicts (ii). XQ
(iv) Now take any € > 0. Then there is a u* € U™ such that [(Ju| — u*)" < e for every u € K. P

If @ < € we can take u* = 0 and stop. Otherwise, there is a largest n € N such that there are disjoint
Vo, ..., Vi € A such that vV; > € for every n. Take ug,... ,u, € K such that ||Py,u;|| > € for each i. Let

v > 0 be such that ||Py,u;|| — = > e for every i < n, and set u* = y3°1, |u;|. T Suppose that u € K is
v

such that [(Ju| —u*)™ > e. Let W be the band generated by (|u| —u*)*, so that vW > || Py ul| > e. For

each i < n, set W; = V; N W+; then
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1 1 1
|Pwu;| < ;PWU* < ;|u\7 | Pw,ui| > |Py,ui| — ;|u\7

vWi > ||Pw,us|| > || Py,ul] —% > €.

But now Wy, ... ,W,, W witnesses that n was not maximal. X So sup,cr [(|u] —u*)T <, as required. Q
As € is arbitrary, K is uniformly integrable. Thus every relatively weakly compact subset of U is uniformly
integrable.

(b)(i) In the reverse direction, suppose to begin with that (2, ) is a totally finite measure algebra, and
that A C L' = LY(2, i) is uniformly integrable; let F be a filter on L' containing A. Write V for the set of
neighbourhoods of 0 for the weak topology T,(L*, (L1)*).®

(a) For each n € N let M,, > 0 be such that ||(Jju| — M,x1)T|ly < 27" for every u € A, and
define sets K, C [-M,x1, M, x1] and filters F,, as follows. Fy = F. Given that JF, contains A, define
¢+ LY — L2 = L2(2, i) by setting ¢, (u) = med(—M,x1,u, M,x1) for each u € L', and consider the filter
én|[Fn]]. This is a filter on the Hilbert space L? containing the || |o-bounded set [—M,,x1, M, x1], so the
set K* of its T,(L?, L?)-cluster points is non-empty, by 566P; as K is T4(L?, L?)-closed, it is T4(L?, L?)-
compact. As [—M,x1, M, x1] is || ||2-closed and convex, it is T¢(L?, L?)-closed (561Ie) and includes K. Set
Y = inf{||ull2 : w € K}}. As all the sets {u : ||ul]l2 < a}, for a > 7, are T4(L?, L?)-closed and meet K},
K, ={u:ue K}, |lull2 <~v,} is non-empty.

Suppose that G € V. Because the embedding L? S L' is norm-continuous, it is weakly continuous, and
GNL?is a T4(L? L*)-neighbourhood of 0. It follows that z + G meets every member of ¢, [[F,]] for every
x € K}; so K, +G meets every member of ¢,,[[F,,]]. We can therefore extend F,, to the filter F,,+1 generated
by

FoU{o K, +G]: G eV}
and continue.

(B) Set G = UpenFrn and B = {u : uw € L', |lull; < 1}. Then for cach n € N there is a finite
set J C L' such that J + G +27""'B € G for every G € V. P K, is a T,(L?, L?)-closed subset of K},
so is T4(L?, L?)-compact; also it is included in the sphere S = {u : ||ull2 = v,}. Because | ||z is locally
uniformly rotund, it is a Kadec norm (467B) and the norm and weak topologies on S coincide; consequently
K, is || |l2-compact. Since |||1 and ||||2 give rise to the same topology on any || ||co-bounded set, K, is
I ]l1-compact. There is therefore a finite set J C K, such that K,, C J+ 2" "B.
Take any G € V. Then |u — ¢, (u)| = [|(Ju| — M,x1)"|| < 27" for every u € A, so

J+G+2""BD(K,+G)+2"BD AN, K, +Gl€ Foi1 CG. Q
() For each n € N choose a minimal finite set .J, C L! such that J,, + G + 27""'B € G for every

G € V. Note that (z + G + 27" B) N D must be non-empty whenever n € N, x € J,,, G € V and D € G.
P? Otherwise,

(Jo\{z}) + G +27""'BD (J,+ (GNG")+27 " B)ND
belongs to G for every G’ € V, and J,, was not minimal. XQ

(0) For any n € N and u € J,, there is a v € J,11 such that ||u —v|; < 27" 427" P?
Otherwise, by (a-i-3) above, we can choose for each v € J,11 an f, € (L')* such that ||f,|| = 1 and
folv—u) = |jv —ul| =27+ + 277 4§, where §, > 0; set

G ={w:|f,(w)| < 16, for every v € J, 11} € V.
Then u + G + 27" B does not meet J,,+1 + G + 27" B, contradicting () here. XQ
(€) Because |J,cy Jn is countable, therefore well-orderable, we can define inductively a sequence

{(tn)nen such that u, € J, and ||, — upi1] < 27" + 277 for every n. Now (uy,)nen is Cauchy, so has a

80f course (L1)* can be identified with L°°(2l), but if you don’t wish to trace through the arguments for this, and confirm
that they can be carried out without appealing to anything more than AC(w), you can defer the exercise for the time being.
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limit w in L'. If G € V there is an n € N such that u+ G D u,, + %GJr 27" B, so u + G meets every member
of G; thus u is a weak cluster point of G and of F. As F is arbitrary, A is relatively weakly compact.

(ii) Now suppose that U is an arbitrary L-space and A C U is a uniformly integrable set. Then we
can choose a sequence (e,)ney in UT such that ||(ju| — e,)t|| < 27" for every n € N and u € A. Set

e=3 1+2+H6||en in U, and let V' be the band in U generated by e. Then A C V', and of course A is

uniformly integrable in V. By 561Hb, we have a totally finite measure algebra (2, ) and a normed Riesz
space isomorphism T : V — LY(2, i); now T[A] is uniformly integrable in L!(2A, 1), therefore relatively
weakly compact, by (i). But this means that A is relatively weakly compact in V; as the embedding V' S U
is weakly continuous, A is relatively weakly compact in U.

This completes the proof.

566R Automorphisms of measurable algebras: Theorem [AC(w)] Let 2 be a measurable algebra.

(a) Every automorphism of 2 has a separator.

(b) Every m € Aut2l is a product of at most three exchanging involutions belonging to the full subgroup
of Aut 2l generated by .

proof (a) (Cf. 382Eb.) Take m € Aut. Let i be such that (2, ) is a totally finite measure algebra. For
a € N set ¢(a) = sup, ¢z 7"a, so that 7(¢(a)) = 1(a). Note that if anv(b) = 0 then ¢(a) n(b) = 0. Set
A={a:a€ anma =0} and choose a sequence (a,)nen in A such that

sup,,en i(1(an)) = sup,ea (¥ (a)).
Define (by,)nen, {(Cn)nen by saying that

Co = Oa bn = Qp \’l/J(Cn), Cn+1 = bn ucy

for each n. Inducing on n we see that b, and ¢, belong to A and that ¥(c,+1) 2 ¥(ay,) for every n. Set
¢ = sup,,cy Cn; then ¢ € A and ¥(c) 2 ¢ (an) for every n.

Now c is a separator for 7. P? Otherwise, there is a non-zero d C 1\ ¥(c) such that dnnd = 0 (381Ei).
In this case duc € A and

a(p(duc)) > () = sup,en i) (an)) = supge a fi4(a)),
which is impossible. XQ

(b) We can now work through the proofs of 382A-382M to confirm that there is no essential use of anything
beyond countable choice there, so long as we suppose that we are working with measurable algebras. (There
is an inductive construction in the proof of 382J. To do this with AC(w) rather than DC, we need to check
that every element of the construction can be made determinate following an initial countable set of choices;
in the case there, we need to check that the existence assertions of 382D and 382l can be represented as
functions, as in 566Xh and 566Xj.) Since the proof of 382K speaks of the Stone representation theorem,
there seems to be a difficulty here, unless we take the alternative route suggested in 382Yb. But note that
while the general Stone theorem has a strength little short of full AC, the representation of a countable
Boolean algebra B as the algebra of open-and-closed subsets of a compact Hausdorff Baire space can be
done in ZF alone (561F). In part (f) of the proof of 382K, therefore, take B to be a countable subalgebra of
2 such that

€ns Upy Uy, V), V)'y dij, dyj, supp(m¢)¥, supp(n¢1)* € B whenever n € N and j, k, [ > 1,

co, €1, Supp ¢2 € B,

B is closed under the functions 7, ¢1, ¢2, ¢ and 7, for n € N,
and let Z be the Stone space of 8B. Now we can perform the arguments of the rest of the proof in Z to show
that ¢ = inf,,>1 supp(7$)™ is zero, as required.

566S Volume 4 In Volume 4, naturally, a rather larger proportion of the ideas become inaccessible
without strong forms of the axiom of choice. Since we are missing the most useful representation theorems,
many results have to be abandoned altogether. More subtly, we seem to lose the result that Radon measures
are localizable (416B). Nevertheless, a good deal can still be done, if we follow the principles set out in
566Ae-566Af. Most notably, we have a workable theory of Haar measure on completely regular locally
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compact topological groups, because the Riesz representation theorems of §436 are still available, and we
can use 561G instead of 441C. I should remark, however, that in the absence of Tychonoff’s theorem we
may have fewer compact groups than we expect. And the theory of dual groups in §445 depends heavily on
AC.

The descriptive set theory of Chapter 42 is hardly touched, and enough of the rest of the volume survives
to make it worth checking any point of particular interest. Most of Chapter 46 depends heavily on the
Hahn-Banach theorem and therefore becomes limited to cases in which we have a good grasp of dual spaces,
as in 561Xh. There are some difficulties in the geometric measure theory of arbitrary metric spaces in
8471, but the rest of the chapter seems to stand up. The abstract theory of gauge integrals in §482 is
expressed in forms which need DC at least, but I think that the basic facts about the Henstock integral
(§483) are unaffected. There are some interesting challenges in Chapter 49, but there the eclectic nature of
the arguments means that we cannot expect much of the theory to keep its shape.

566T I give one result which may not be obvious and helps to keep things in order.

Proposition [AC(w)] Let I be any set, and X a separable metrizable space. Then the Baire o-algebra

Ba(X) of X! is equal to the o-algebra @ ;B(X) generated by sets of the form {x : z(i) € E} for i € I and
Borel sets £ C X.

proof (a) Every open set in X is a cozero set, so B(X) = Ba(X) and {z : z(i) € E} € Ba(X!) whenever
i €I and E € B(X); accordingly @,B(X) C Ba(X7’).

(b) Fix a sequence (Uy,)nen running over a base for the topology of X. For o0 € S = UJG[I]@ N7 set

Co ={z:2€ X, (i) € Uy(; for every i € domo} € @IB(X).

Then {C, : o € S} is a base for the topology of X?. If W C X7 is a regular open set, there is a countable
set R C S such that W = UgeR C,. P Let R* be the set of those ¢ € S such that C, C W, and R the set
of minimal members of R* (ordering S by extension of functions). Then every member of R* extends some

member of R, so

UaeR Co = UaeR* Co=W.

Forn € Nset R, ={0:0 € R, #(0) =n, o(i) <n for every i € domo}.

? Suppose, if possible, that n € N and R,, is infinite. Then there is a sequence (ok)ren of distinct
elements of R,; set Jy = dom oy, for each k. Let M C N be an infinite set such that (Jg)geas is a A-system
with root J say. Then there is a 0 € n’ such that M’ = {k : k € M, o}|J = o} is infinite.

In this case, however,

Co Cint Upepr Co € ntW =w

and o € R*, so that o, ¢ R for k € M’; which is impossible. X
Thus every R, is countable and R = J,,cy R is countable. Q

(c) This shows that every regular open subset of X7 is a countable union of open cylinder sets and belongs
to ®IB(X). Consequently every cozero set belongs to @IB(X). P If f: X! — R is continuous, then for
each rational ¢ > 0 set W, = int{z : |f(x)| > ¢}. Then W, is a regular open set so belongs to @IB(X).
But now {z : f(z) # 0} = U,cq.4>0 Wq is the union of countably many sets in @IB(X) and itself belongs

to ®,8(X). Q

—

So ®;B(X) 2 Ba(X') and the two are equal.

566U Dependent choice If we allow ourselves to use the stronger principle DC rather than AC(w) alone,
we get some useful simplifications. The difficulties with the principle of exhaustion in §215 and 566D above
disappear, and there is no longer any obstacle to the construction of product measures in 254F, provided
only that we know we have a non-empty product space. So a typical theorem on product measures will now
begin ‘let ((X;, ¥, p14))ics be a family of probability spaces such that X = [[,.; X; is non-empty’. Later, we
now have Baire’s theorem (both for complete metric spaces and for locally compact Hausdorff spaces) and
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Urysohn’s Lemma (so we can drop the formulation ‘completely regular locally compact topological group’).
The most substantial gap in Volume 4 which is now filled seems to be in the abstract theory of gauge
integrals in §482. But I cannot point to a result which is essential to the structure of this treatise and can
be proved in ZF + DC but not in ZF + AC(w).

566X Basic exercises (a) [AC(w)] Let (X, p) be a metric space. (i) Show that X is compact iff it is
sequentially compact iff it is countably compact iff it is complete and totally bounded. (ii) Show that if X
is separable then every subspace of X is separable.

(b) [AC(w)] Show that there is a surjection from R onto its Borel o-algebra, so that there must be a
non-Borel subset of R.

(c)(i) (Cf. 313K) Let A be a Boolean algebra, and D C 2 an order-dense set. Show that a = sup{d :
d € D, dcCa} for every a € 2. (ii) (Cf. 322Eb) Let (2, i) be a semi-finite measure algebra. Show that
a =sup{b: b C a, ib < oo} for every a € 2.

(d) Let us say that a Boolean algebra 2 has the countable sup property if for every A C 2 there is a
countable B C A with the same upper bounds as A. (i) Show that a Dedekind o-complete Boolean algebra
with the countable sup property is Dedekind complete. (ii) Show that a countably additive functional on a
Boolean algebra with the countable sup property is completely additive.

(e) [AC(w)] Show that if there is a translation-invariant lifting for Lebesgue measure then there is a
subset of R which is not Lebesgue measurable. (Hint: 345F.)

(f) [AC(w)] Show that if 1 < p < oo and (2, i) is a measure algebra, the unit ball of LP(2, i) (§366) is
weakly compact. (Hint: part (b) of the proof of 566Q.)

(g) [AC(w)] (i) Let A be a measurable algebra. Show that the unit ball of L> = L>°(2) is compact for
T(L°, (L*°)*) (definition: 3A5Ea). (ii) Let U be an L-space with a weak order unit. Show that the unit
ball of U* is weak*-compact. (Hint: 561Hb.)

(h) Let 2 be a Dedekind o-complete Boolean algebra. Show that there is a function f: AutA x A — A
such that if 7 € Aut? and a is a separator for m then an f(m,a) = 0 and f(r,a) unf(m,a)un?f(r,a) is
the support of 7. (Hint: 382D.)

(i) Let 2 be a Dedekind complete Boolean algebra and G a well-orderable subgroup of Aut2. Let G*
be the full subgroup of Aut®l generated by G. Show that there is a function f : G* x G — 2 such that
(f(m,¢))pec is a partition of unity for each 7 € G* and ma = ¢a whenever 7 € G*, ¢ € G and a C f(7, ¢).
(Hint: 3811.)

(j) [AC(w)] Let A be a Dedekind complete Boolean algebra and G a countable subgroup of Aut 2l such
that every member of G has a separator. Let G* be the full subgroup of Aut2l generated by G. Show that
there is a function g : G* — 2 such that g(r) is a separator for 7 for every m € G*. (Hint: 566Xi, 3821d.)

(k) [AC(w)] Let (X, %) be a completely regular locally compact Hausdorff space, and f : Cx,(X) - R a
positive linear functional. Show that there is a unique Radon measure p on X such that f(u) = [udu for
every u € Ci(X).

(1) [AC(w)] Say that a set X is measure-free if whenever u is a probability measure with domain PX
there is an « € X such that p{z} > 0. (i) Show that the following are equiveridical: («) R is not measure-
free; (8) there is a semi-finite measure space (X, PX, 1) which is not purely atomic; () there is a measure
won [0,1] extending Lebesgue measure and measuring every subset of [0,1]. (ii) Prove 438B for point-finite
families (E;);cr such that the index set I is measure-free.

566Y Further exercises (a) [AC(w)] Show that if U is an L-space, and (u,)nen is a bounded sequence
in U, then there are a subsequence (v, )nen Of (un)neny and a w € U such that (n%rl > or o Winen is order*-
convergent to w for every subsequence (wp)nen Of (U )nen. (Hint: in the proof of 276H, show that we can

find a countably-generated filter to replace the ultrafilter F.)
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(b) [AC(w)] Let X be a completely regular compact Hausdorff topological group and u a left Haar
measure on X. Show that if w € L?(u) then u — uxw : L?(u) — C(X) is a compact linear operator. (Hint:
444V.)

(c) [AC(w)] Let ((Xi, (Uin)nen))ier be a family such that X; is a separable metrizable space and (Uip)nen
is a base for the topology of X; for each i € I. Show that Ba(][,c; X:) = &, B(X:).

(d) [DC] Let U be an inner product space and K C U a convex weakly compact set. Show that K has
an extreme point.

566Z Problem Is it relatively consistent with ZF + AC(w) to suppose that there is a non-zero atomless
rigid measurable algebra?

566 Notes and comments In this section I have taken a lightning tour through the material of Volumes 1
to 4, pausing over a rather odd selection of results, mostly chosen to exhibit the alternative arguments which
are available. In the first place, I am trying to suggest something of the quality of the world of measure
theory, and of analysis in general, under this particular set of rules. Perhaps I should say that my real
objective is the next section, with DC rather than AC(w), because DC is believed to be compatible with
the axiom of determinacy, and ZF 4+ DC + AD is not a poor relation of ZFC, as ZF + AC(w) sometimes
seems to be, but a potential rival.

I have a second reason for taking all this trouble, which is a variation on one of the reasons for ‘gen-
eralization’ as found in twentieth-century pure mathematics. When we ‘generalize’ an argument, moving
(for example) from metric spaces to topological spaces, or from Lebesgue measure to abstract measures, we
are usually stimulated by some particular question which demands the new framework. But the process
frequently has a lasting value which is quite independent of its motivation. It forces us to re-examine the
nature of the proofs we are using, discarding or adapting those steps which depend on the original context,
and isolating those which belong in some other class of ideas. In the same way, renouncing the use of
AC forces us to look more closely at critical points, and decide which of them correspond to some deeper
principle.

Something I have not attempted to do is to look for models in which my favourite theorems are actually
false. An interesting class of problems is concerned with ‘exact engineering’, that is, finding combinatorial
propositions which will be equivalent, in ZF, to given results which are not provable in ZF. For instance,
Baire’s theorem for complete metric spaces is actually equivalent to DC (BLAIR 77), while Baire’s theorem
for compact Hausdorff spaces may be weaker (Fossy & MORILLON 98). T am not presenting any such
results here. However, if we take Maharam’s theorem as an example of a central result of measure theory
with ZFC which is surely unprovable without a strong form of AC, we can ask just how false it can be; and
I offer 5667 as a sample target.

Version of 31.10.14

567 Determinacy

So far, this chapter has been looking at set theories which are weaker than the standard theory ZFC,
and checking which of the principal results of measure theory can still be proved. I now turn to an axiom
which directly contradicts the axiom of choice, and leads to a very different world. This is AD, the ‘axiom
of determinacy’, defined in terms of strategies for infinite games (567A-567C). The first step is to confirm
that we automatically have a weak version of countable choice which is enough to make Lebesgue measure
well-behaved (567D-567E). Next, in separable metrizable spaces all subsets are universally measurable and
have the Baire property (567G). Consequently (at least when we can use AC(w)) linear operators between
Banach spaces are bounded (567H), additive functionals on o-complete Boolean algebras are countably
additive (567J), and many L-spaces are reflexive (567K). In a different direction, we find that w is two-
valued-measurable (567L) and that there are many surjections from R onto ordinals (567M).

At the end of the section I include two celebrated results in ZFC (567N, 5670) which depend on some of
the same ideas.
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567A Infinite games I return to an idea introduced in §451.

(a) Let X be a non-empty set and A a subset of X. In the corresponding infinite game Game(X, A), play-
ers I and IT choose members of X alternately, so that I chooses x(0),z(2),... and II chooses z(1),z(3),...;
a play of the game is an element of X"; player I wins the play = if x € A, otherwise II wins. A strategy
for Iis a function o : |J,cy X™ — X; a play € X" is consistent with o if z(2n) = o((z(2i + 1))i<n)
for every n, that is, if I uses the function o to decide his move from the previous moves by his opponent; o
is a winning strategy if every play consistent with o belongs to A, that is, if I wins whenever he follows
the strategy o. Similarly, a strategy for II is a function 7 : |J,,~; X" — X; a play z is consistent with 7 if
z(2n+1) = 7((x(2i))i<n) for every n; and 7 is a winning strategy for I if ¢ A whenever z € X" and z is
consistent with 7.

(b) A set A C XV is determined if either I or II has a winning strategy in Game(X, A). Note that we
need to know the set X as well as the set A to specify the game in question.

(¢) Tt will sometimes be convenient to describe games with ‘rules’, so that the players are required to
choose points in subsets of X (determined by the moves so far) at each move. Such a description can be
regarded as specifying A in the form (A’ UG)\ H, where G is the set of plays in which II is the first to break
a rule, H is the set of plays in which I is the first to break a rule, and A’ is the set of plays in which both
obey the rules and I wins.

(d) Not infrequently the ‘rules’ will specify different sets for the moves of the two players, so that I always
chooses a point in X7 and II always chooses a point in X5; setting X = X; U X5 we can reduce this to the
formalization above.

567B Theorem Let X be a non-empty well-orderable set. Give X its discrete topology and X the
product topology. If F C X" is closed then Game(X, F') is determined.

proof (a) Fix a well-ordering < of X. Define (W¢)econ by setting
Wo ={w:we,cy X", w & x for any z € F},

We={w:we U X2+ there is some ¢ € X such that
neN

wo<t>"<u> € U W, for every v € X}
n<§

if £ > 0. (See 5A1C for the notation here.) If w € Wy then of course w™<t>"<u> € Wy for all ¢, u € X;
so Wy € Wi, and of course that Wy C W whenever 1 < ¢ < & in On. There is therefore an ordinal ¢ such
that Wy = We; write W for We.

For w € W, let r(w) < ¢ be the least ordinal such that w € W.(,). If r(w) > 0 then there is some ¢t € X
such that such that w™<t>"<u> € U, ., (,p) Wy, that is, r(w™<t>"<u>) < r(w), for every u € X.

Let V be the set of those v € J,,cyy X*" such that there is a u € X such that v~ <u> ¢ W. Observe that
if we J,ey X"\ W then w ¢ Weiq so w™<t> e V for every t € X.

(b) Suppose that () € V. Define o : [,y
a(() is the <-least member ¢ of X such that the one-element sequence ()~ <t> does not belong
to W,
if v € X" and w = (0(v]0),v(0),0(v[1),v(1),... ,0(vIn),v(n)) € V, take o(v) to be the
<-least member ¢ of X such that w™<t> ¢ W,
for other v € X" take o(v) to be the <-least member of X.
Then o is a winning strategy for I. I If z is a play consistent with o, then an induction on n shows that
x2n € V and z[2n + 1 ¢ W for every n. In particular, x[2n + 1 ¢ W, that is, there is a member of F
extending x[2n + 1, for every n. As F is closed, x € F and I wins the play z. Q

X"™ — X inductively by saying that

(c) Suppose that § ¢ V, that is, w € W for every w € X*. Define 7 : U,>1 X™ — X inductively by
saying

D.H.FREMLIN



94 Choice and determinacy 567B

if v e X" and w = (v(0),7(v[1),v(1),7(v[2),... ,v(n — 1)) belongs to W \ Wy, then 7(v) is
the <-least ¢ € X such that r(w™<t>"<u>) < r(w) for every u € X,
for other v € X" 7(v) is the <-least member of X.
Then 7 is a winning strategy for II. * Let x be a play consistent with 7. Then an induction on n tells us
that

x2n+1e W, ifz2n+1¢ Wy then r(z2n+3) < r(z[2n+1)

for every n € N. Since (r(z2n + 1)),en cannot be strictly decreasing, there is some n € N such that
x[2n+1€ Wy and « ¢ F. Thus IT wins the play z. Q

(d) Putting (b) and (c) together we see that F' is determined.

567C The axiom of determinacy (a) The standard ‘axiom of determinacy’ is the statement
(AD) Every subset of NY is determined.

Evidently it will follow that every subset of X is determined for any countable set X. (If X C N, a game
on X can be regarded as a game on N in which there is a rule that the players must always choose points
in X. See also 567Xc.)

(b) At the same time, it will be useful to consider a weak form of the axiom of countable choice: for any
set X, write AC(X;w) for the statement

[1.cn An # 0 whenever (A,,)nen is a sequence of non-empty subsets of X.

567D Theorem (MYCIELSKI 64) AD implies AC(R;w).

proof Since we know that R is equipollent with N¥ we can look at AC(NY;w). Let (A, )nen be a sequence
of non-empty subsets of N¥. Set

A={z:xeNY (2(2n + 1))nen & Az}

Then I has no winning strategy in Game(N, A), because if o is a strategy for I in Game(N, A) set k = o(0);
there is a point y € Ay, and II need only play x(2n + 1) = y(n) for each n.

So II has a winning strategy 7 say. Define g : N — NN by saying that g(n)(i) = 7(en;) for n, i € N,
where e,; € N*t1 ¢,:(0) = n, e,;(j) =0 for 1 < j <i. If now n € N, I plays (n,0,0,...) and II follows the
strategy 7, the resulting play (n,g(n)(0),0, g(n)(1),0,...) must not belong to A so g(n) € A,.

567E Consequences of AC(R;w) Suppose that AC(R;w) is true.

(a) If a set X is the image of a subset Y of R under a function f, then AC(X;w) is true. P If (A, )nen
is a sequence of non-empty subsets of X, then there is an 2 € [, oy f7YAL], and (f(x(n)))nen € IT.cn An-

Q

(b) In particular, taking S* = (J,,~; N as in §562, AC(PS*;w) is true. It follows that (in any second-
countable space X) every sequence of codable Borel sets is codable and the family of codable Borel sets is a
o-algebra, coinciding with the Borel o-algebra B(X) on its ordinary definition. Moreover, since B(X) is an
image of PS*, we have AC(B(X);w), countable choice for collections of Borel sets. Similarly, the family of
codable Borel functions becomes the ordinary family of Borel-measurable functions, and we have countable
choice for sets of Borel real-valued functions on X.

(c) Consequently the results of §562-565 give us large parts of the elementary theory of Borel measures
on second-countable spaces. At the same time, if X is second-countable, the union of a sequence of meager
subsets of X is meager (because we have countable choice for sequences of nowhere dense closed sets), so
the Baire-property algebra of X is a o-algebra.

(d) We also find that the supremum of a sequence of countable ordinals is again countable. I Let
(€n)nen be a sequence in wy. Using AC(R;w)), we can choose for each n € N a subset <,, of N x N which
is a well-ordering of N with order type max(w,,). Now we have a well-ordering < of N? defined by saying
that (¢,7) < (¢/,7") if i <@’ or i =4' and j <; j'. In this case, the order type & of < will be greater than or
equal to every &,, so that sup,,cy &, < € is countable. Q
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567F Lemma (see MYCIELSKI & SWIERCZKOWSKI 64) [AC(R;w)] Suppose that A C {0,1}V is a
continuous image of a subset B of {0,1}" such that (h~![B] N F) U H C NV is determined whenever
h: NN — {0, 1}V is continuous, F' € NV is closed and H C NV is open.

(a) A is universally measurable.

(b) A has the Baire property in {0, 1}%.

proof Fix a continuous surjection f : B — A. Let £ be the countable algebra of subsets of {0, 1}"
determined by coordinates in finite sets, that is to say, the algebra of open-and-closed subsets of {0, 1}
(311Xh).

(a)(i) Let i be a Borel probability measure on {0, 1} and /i its completion. If Z C {0,1}" is closed and
not negligible, then at least one of Z N A, Z\ A has non-zero inner measure.

P Let (E,),en enumerate €. Set €, = 272727 for n € N. In ({0,1} x &)Y consider the game in which
the players choose (ko, Ko), (k1, K1), ... such that Ky = Z and for each n € N

k, €{0,1}, K,€€&, uKoni1 <ep.

I wins if y = (k2n)nen belongs to B and f(y) ¢ U, ey Kant1. Observe that when y € B, f(y) € U, ey Kont1
iff there is an m € N such that f(w) € |,.,, K2i41 whenever w € B and w[m = y[m; so I wins iff
y € B and at every stage ((ko, Ko),- .. , (kam, Kom)) there is a w € B such that w(i) = kg; for i < m and
f(w) & U;cpn K2it1. So the payoff set D of plays ((ky, Kp))nen won by Iis of the form (h='[B] N F)U H
where h : ({0,1} x &)N — {0,1}V is continuous, F' C ({0,1} x &)Y is closed and H C ({0,1} x &) is
open. (Here H is the set of plays which are won because II is the first to break a rule.) Consequently D is
determined.

case 1 Suppose that I has a winning strategy o. For each play ((k,, K,))nen consistent with o,
f({kan)nen) is defined and belongs to A. Since the set of plays consistent with ¢ is a closed subset of
({0,1} x &)N, the set C of points obtainable in this way is an analytic subset of Z, therefore measured by /i
(5631). 7 If 4C = 0, then there is an open set G 2 C such that uG < ¢y (563Fd). In this case, II can play
in such a way that

K2n+1 g Ga M(G \ Uzgn K2i+1) < €n+1,

if En g G then En g U K2i+1

i<n
for every m. But now, taking I’s responses under o, we have a play of Game({0,1} x £, D) in which
Unen Kony1 = G includes C, so contains f((kn)nen), and is won by II; which is supposed to be impossible.
X

So in this case ps A > uC > 0.

case 2 Suppose that II has a winning strategy 7. For each n € N and u € {0,1}", let L(u) be the
second component of 7({(u(i), 0))i<n); set G = U, en Uyeqo,1y» L(w), so that uG < Yo o2, < pZ. If
we take any y € B, then we have a play ((kn, Kp))nen of Game({0,1} x £, D), consistent with 7, in which
kan = y(n) and Ky, = 0 for each n. Since II wins this play, f(y) must belong to

UneN Kopy1 = UneNL(yFn) caG.
As y is arbitrary, A C G and u.(Z\ A) > u(Z\G) > 0. Q

(ii) Write K for the family of compact sets K C {0, 1} such that AN K is Borel. If £ C {0,1}" and
uE > 0, there is a K € K such that K C E and u/K > 0. P There is a closed Z C E such that uZ > 0
(563Fd again). By (i), at least one of u.(Z N A), u.(Z \ A) is non-zero, and there is a compact set K of
non-zero measure which is included in one of ZN A, Z\ A. But now K € K. Q
Now (because we have countable choice for subsets of KC) there is a sequence (K, )nen in K such that
sup,en Ky = supgex pk; setting E = {0, 13N\ U, ey Kn, E must be negligible, while A\ E is a Borel set;
so A is measured by fi. As u is arbitrary, A is universally measurable.

(b)(3) If V € £\ {0} then either V' N A is meager or there is a V/ € £\ {0} such that V/ CV and V' \ 4
is meager. P Set U = {E : E € £\ {0}, E CV} and let < be a well-ordering of U (in order type w, if you
like). Consider the game on {0, 1} x U in which the players choose (ko,Up), (k1,U1), ... such that, for each
n €N,
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kn €{0,1}, Up €U, Unpss CU,.

I wins if y = (k2,)nen belongs to B and f(y) € (,,cy Un- Because the U, are all open-and-closed, this game
is determined for the same reasons as the game of (a).

case 1 Suppose that I has a winning strategy o; say that oo(w) € U is the second component of
o(w) for each w € |J,,cn({0, 1} xU)". For each n € N let U, be the set of those U € U such that v[n =v'[n
for all v, v' € U. Let (k', V') = o(0) be Is first move when following o. Let @ be the set of positions in the
game consistent with ¢ and with II to move, that is, finite sequences

q = ((ki, Ui))i<an € ({0,1} x U)*>"*1

such that (kam, Usm) = 0({(k2i+1, U2i11))i<m) for every m < n and (U;)i<2n is non-increasing. For such a
q, set V; = Us, and

Wq = U{O’g(<(l€2i+1, U2i+1)>i<nﬁ<<ka U)>) ke {0, 1}, U e Z/{n, U - V;J}

Then W, is an open subset of V,; but also it is dense in Vj, because if W C V, is open and not empty
there is a U € U, included in W and o2({(k2i+1, U2i+1))i<n” <(k,U)>) is a non-empty subset of U. Q is
countable, so £/ = (.o W U ({0, 13N\ V,) is comeager in {0, 1},

? If V' \ A is not meager, there is an € ENV’\ A. Define ((ky,U,))nen inductively, as follows.
(ko,Up) = (K',V'). Given that ¢ = ((k;,U;))i<2n belongs to @ and =z € V,, then z € W, so there are
k € {0,1}, U € U, such that x € oo({(kait+1,Usit+1))icn  <(k,U)>); take the lexicographically first such
pair (k‘, U) for (k2n+1, U2n+1), and set (k2n+2, U2n+2) = O'(<(k2i+1, U2i+1)>i§n)~ Then q’ = <(ki, Ui)>i§2n+2
belongs to Q and Vi = Uapto = 02({(k2i+1, Uzi+1))i<n) contains z, so the induction can continue.

At the end of this induction, ((k,,U,))nen will be a play of the game consistent with ¢ in which the
only point of (), .y Uy is 2 and does not belong to A. So either y = (k2,)nen does not belong to B or
J(W) ¢ N,en Un; in either case, I wins the play; which is supposed to be impossible. X

So in this case V' \ A is meager.

case 2 Suppose that II has a winning strategy 7; say that 72(w) is the second component of 7(w)
for each w € {J,,5,({0,1} x U)". Let Q be the set of objects

q = (((k:,Ui))i<on, k)

such that ((k;,U;))i<2n is a finite sequence in {0,1} x U consistent with 7 (allowing the empty string when
n=0) and k € {0,1}. For such a ¢, set V; = Uzp—1 (if n > 0) or V, =V (if n = 0); set

Wy = U{m2(((k2i, U2i))icn” <(k,U)>) : U €U, U C Vg },

so that W, is a dense subset of V. @ is countable, so E'= (1, Wy U ({0, 1N\ V) is comeager.

? If there is an ¢ in ANV NE, let y € B be such that f(y) = z, and define {(k,,,U,,))nen as follows.
Given that ¢ = (((ki, Ui))i<2n,y(n)) belongs to Q and = € V,, then x € W, so there is a U € U such that
x € To(((kai, Uai))icn <(y(n),U)>); take the x-first such U for Us,, set kg, = y(n) and (kopt1, Usni1) =
7(((k2i, Uzi))i<n), so that ¢ = (((ki, Us))i<an+1, y(n+1)) belongs to Q and Vi = Uapy1 = Ta({(k2i, U2i))i<n)
contains x.

At the end of this induction, ((ky,Un))neny will be a play of the game consistent with 7 in which
J((k2n)nen) = @ € [),,cn Un, so that I wins, which is supposed to be impossible. X

Thus in this case ANV must be meager. Q

(ii) Now let G be the union of those V' € £ such that V' \ A is meager; then G \ A is meager. (This
is where we need AC(R;w).) If V. € £ and V C {0,1}V\ G, then V' \ A is non-meager for every whenever
Ve &\{0} and V' C V, so VN A is meager; accordingly G’ N A is meager, where G’ = {0,1} \ G. But
this means that GAA C (G \ A) U (G' N A) U (G \ G) is meager and A has the Baire property.

567G Theorem [AD] In any Hausdorff second-countable space, every subset is universally measurable
and has the Baire property.

proof Let X be a Hausdorff second-countable space, (U,)nen a sequence running over a base for the
topology of X, and A C X.
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(a) Define g : X — {0, 1} by setting g(z) = (xUn(%))nen for € X; then g is injective and Borel mea-
surable. If y is a Borel probability measure on X, we have a Borel probability measure v = ug~![B({0, 1})
on {0,1}. By 567Fa, g[A] is measured by the completion ¥ of v; let F', H C {0,1} be Borel sets such
that vH = 0 and g[A]JAF C H; then AAg~![F] C g~ ![H] is p-negligible, so A is measured by fi. As pu is
arbitrary, A is universally measurable.

(b) Set G = | J{U, : n € N, U,, N A has the Baire property}, so that G N A has the Baire property.
(Remember that as we have a bijection between X and a subset of R, we have countable choice for subsets
of X, so that the ideal of meager subsets of X is a o-ideal and the Baire-property algebra is a o-algebra.)
Set V = X\ (U,eny OUn UG); then GUV is comeager in X, and A\ V has the Baire property. If V is empty,
we can stop. Otherwise, let V be the countable algebra of subsets of V' generated by {V NU, : n € N}. Since
ANU does not have the Baire property (in X) for any non-empty relatively open subset U of V| V' has no
isolated points and V is atomless. So V is isomorphic to the algebra of open-and-closed subsets of {0, 1}
(316M) and there is a Boolean-independent sequence (V;,),en in V generating V. Define h : V — {0,1}" by
setting h(z) = (XVn(2))nen for x € V. Then h[V] is dense in {0,1}" and h~'[H] is dense in V for every
dense open set H C {0, 1}Y; consequently h~1[M] is meager in V and in X whenever M C {0, 1} is either
nowhere dense or meager. By 567Fb, h[A] has the Baire property in {0, 1}"; express it as HAM where H
is open and M is meager; then ANV = h~'[h[A]] = h~}[H]|Ah~![M] has the Baire property in X, so A
has the Baire property in X, as required.

567H Theorem (a) [AD] Let X be a Polish group and Y a topological group which is either separable
or Lindelof. Then every group homomorphism from X to Y is continuous.

(b) [AD4+AC(w)] Let X be an abelian topological group which is complete under a metric defining its
topology, and Y a topological group which is either separable or Lindel6f. Then every group homomorphism
from X to Y is continuous.

(¢) [AD4+AC(w)] Let X be a complete metrizable linear topological space, Y a linear topological space
and T : X — Y a linear operator. Then T is continuous. In particular, every linear operator between
Banach spaces is a bounded operator.

proof (a)(i) Let f: X — Y be a homomorphism, and V' a neighbourhood of the identity in Y. Let W be
an open neighbourhood of the identity in Y such that W—'W C V. Then there is countable family H of
left translates of W which covers Y. PP If Y is separable, let D be a countable dense subset of Y, and set
H={yW :y € D}. If Y is Lindelof, we have only to note that {yW :y € Y} is an open cover of Y, so has
a countable subcover. Q

(ii) Since X is a Baire space (561Ea), and the ideal of meager subsets of X is a o-ideal (see part (b)
of the proof of 567G), and {f~'[H] : H € H} is a countable cover of X, there is an H € H such that
E = f~'[H] is non-meager. Now E~'FE is a neighbourhood of the identity in X. P By 567G, E has the
Baire property; let G be a non-empty open set in X such that G \ E is meager. Set U = {z : Gz N G # 0};
then U is a neighbourhood of the identity in X. If € U, then

GrNGC (EzNE)U(Gz\Ex)U(G\E)=(EzNE)U(G\ E)xU(G\E).
Since Gz N G is non-meager, while G \ E and (G \ E)z are meager, Ex N E # () and € E~'E. Thus
E~'E D U is a neighbourhood of the identity. Q
(iii) Let y € Y be such that H = yW. If z, z € E, y~ ' f(z) and y~ ! f(2) both belong to W, so
fla™'2) = fla) fl2) e W lyy ' W =WW C V.
Thus f~![V] D E~'E is a neighbourhood of the identity in X. As V is arbitrary, f is continuous at the

identity, therefore continuous.

(b) 7 Otherwise, there is a neighbourhood V of the identity ey of Y such that f~1[V] is not a neigh-
bourhood of the identity ex of X. Let p be a metric on X, defining its topology, under which X is complete.
Then for each n € N we can choose an x,, € X such that p(x,,ex) < 27" and f(z,) ¢ V. (This is where we
need AC(w).) For finite J C N set uy =[], ; Zn, starting from uy = ex. We can define an infinite ] C N
inductively by saying that

I = {n: whenever J C I Nn then p(uy,usz,) < 2-#UIMM1,

neJ
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This will ensure that vx = lim,, o Ugr, is defined for every K C I. Note that VKU{m} = VKTm whenever
m € I and K C I\ {m} (this is where we need to know that X is abelian).

Give PI its usual topology. Let W be a neighbourhood of ey such that W—'W C V. By the argument
of (a) above, applied to the map K — f(vi) : PI — Y, there is a y € Y such that £ = {K : K C I,
f(vk) € yW} is non-meager in PI. Looking at the topological group (PI,A), we see that there is a
neighbourhood U of ) in PI included in {KAL : K, L € E}. Taking any sufficiently large n € I, we
have {n} € U, so there must be a K € F such that n ¢ K and K U{n} € E. In this case f(vg) € yW,
f(0xgay) € YW and

f2n) = fog vrumy) = for) 7 fukumy) € WTIW CV,
which is impossible. X

(c) 7 Otherwise, there is a neighbourhood V of 0 in Y such that T~1[V] is not a neighbourhood of 0 in
X; we can suppose that ay € V whenever y € V and |a| < 1. Let p be a metric on X, defining its topology,
under which X is complete. Let W be a neighbourhood of 0 in Y such that W — W € V. Then for each
n € N we can choose an z,, € X \nT~![V] such that p(z,,0) < 27" Define I € [N]* and (vi)xcr as in (b),
but using additive notation rather than multiplicative. This time we are not supposing that Y is separable.
However, there must be an m € N such that £ = {K : T(vkg) € mW?} is non-meager. As before, we can
find n € I\ m and K € E such that n ¢ L and K U {n} € E. So the calculation gives

Tz, =Tvguny — Tvg € mW —mW CmV CnV,

again contrary to the choice of z,,. X

5671 Proposition [AC(R;w)| Let B be the Baire-property algebra of PN. Then every B-measurable
real-valued additive functional on PN is of the form a > Zn€a Yn for some (v, )nen € 1.

proof As noted in 567Ec, Bisa o-algebra of subsets of PN.

(a)(i) If G C PN is a dense open set and m € N, there are an m’ > m and an L C m’ \ m such that
{a:aCN,anm\m=L} CG. P Theset H={b:bC N\m, ITUb € G for every I C m} is a
dense open subset of P(N \ m), so there are an m’ > m and an L C m/ \ m such that H D {b: b C N\ m,
bNm'\ m = L}; this pair m’, L works. Q

(ii) If G C PN is comeager, there are a strictly increasing sequence (m,)nen in N and sets L,, C
Mpt1 \ My, for n € N, such that

G2{a:aCN, aNmpy41 \ my, = L, for infinitely many n}.

P Let (Gn)nen be a non-increasing sequence of dense open sets such that G 2 [,y Gn, and choose
(mp)nen, (Ln)nen inductively such that m,, < m,41, Ly, € myy1 \my, and {a: a €N, aNmy1 \ my, =
L,} CG, for every n. Q

(iii) If G C PN is comeager, and a C N, then there are by, bf, b1, b} € G such that
bo C by, by by, (bh \bo) N (V) \b1) =0, (b \bo)U(by\b1)=a.
P Let (my)nen and (L, )pen be as in (ii). Set
bo = Upen L2n, by =boU (aNmg) U, ey @ N manio \ Many1,
b1 = Upen Lony1, 0y =b1UU,cyaNmanyt \ ma,. Q
So if v : PN — R is additive, sup,cy [va| < 4supyeq [vh].

(iv) If G C PN is comeager, there is a disjoint sequence (a,)nen in G. P Take (my,)nen and (Ly)nen
as in (ii), and set a, = ;e Lon (2i41) for each n. Q

(b) If v : PN — R is additive and B\—measurauble7 it is bounded. P Let M € N be such that E = {a :
lva] < M} is non-meager. Then there are an m € N and J C m such that V,,; \ E is meager, where
Ving ={a:anm = J}. For K C m, a C N set ¢x(a) = aAK; then ¢x is an autohomeomorphism of
PN, 50 ¢x [Vins \ E] is meager. Let G be the comeager set PN\ U c,, x[Vims \ E]. Set § =3, |[v{i}];
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then |v¢i(a) — val] < § whenever K C m and a C N. If b € G, set K = (bNm)AJ; then ¢x(b) €
Vind \ (Vims \ E) C E, so [vb] < M + 6. So (a-iii) tells us that |va| < 4(M + 9) for every a C N, and v is
bounded. Q

(c) If v : PN — R is additive and B-measurable and v{n} = 0 for every n € N, then E = {a : va > ¢}
is meager for every € > 0. PP? Otherwise, let m € N and J C m be such that V,,,; \ E is meager. Let G
be the comeager set PN\ Uyc,, ?x[Vins \ E], as in (b). This time, va = véx(a) whenever K C m and
a C N, so va > € for every a € G. But (a-iv) tells us that there is a disjoint sequence (a,)nen in G, and
now sup,,en ¥(U,<,, i) = 00, contradicting (b). XQ

(d) If v : PN — R is additive and B-measurable and v{n} = 0 for every n € N, then v = 0. P By (c),
applied to v and —v, G = {a : va = 0} is comeager. By (a-iii), ¥ must be identically zero. Q

(e) Now suppose that v is any additive B-measurable functional. Set 7y, = v{n} for each n. By (b),
(Yn)nen € L. Setting v'a = va — Y, ., v for a C N, v/ is still additive and B-measurable, and v'{n} =0
for every n, so (d) tells us that v/ =0 and va =} ., ¥ for every a, as required.

567J Proposition [AD] A finitely additive functional on a Dedekind o-complete Boolean algebra is
countably additive.

proof Let 2 be a Dedekind o-complete Boolean algebra, v a finitely additive functional on 2 and (a,)nen a
disjoint sequence in 2 with supremum a. Set A¢ = v(sup,,¢. an) for ¢ C N. Then ) is an additive functional

on PN. By 567G, it is g(PN)—measurable; by 5671,
va=AN=>" Mn}=>" van.

567K Theorem [AD+AC(w)] If U is an L-space with a weak order unit, it is reflexive.

proof By 561Hb, U is isomorphic to L(2l, 1) for some totally finite measure algebra (2, ji); now U* can
be identified with L (2(). Next, L>(2()* can be identified with the space of bounded finitely additive
functionals on 2, as in 363K; by 567J, these are all countably additive. Because we have countable choice,
A is cce (566M), so countably additive functionals are completely additive and correspond to members of
L', as in 365Ea. Thus the canonical embedding of U in U** is surjective.

567L Theorem (R.M.Solovay) [AD] w; is two-valued-measurable.

Remark The definition in 541M speaks of ‘regular uncountable cardinals’. In the present context I will
use the formulation ‘an initial ordinal s is two-valued-measurable if there is a proper x-additive 2-saturated
ideal Z of Pk containing singletons’, where here ‘k-additive’ means that Un <¢Jn € T whenever { < K and
(Jn)n<e is a family in 7.

proof (a) Let Str; be the set of strategies for player I in games of the form T'(N,.), that is, Stry is the set
of functions from (J,, .y N" to N; for o € Stry and x € NN let o * 2 € NN be the play in which I follows the
strategy o and II plays the sequence z, that is,

(ocxx)(2n) =0o(zln), (oxz)2n+1)=z(n)
for n € N. Similarly, let Stry; be the set of functions from J,,~; N™ to N and for 7 € Stry, o € NN neN
set B
(Tx2)(2n) =x(n), (rxx)2n+1)=7(x](n+1)).

We can find bijections g : N¥ — StryUStryy and A : NY¥ — WO(N), where WO(N) C P(N?) is the set
of well-orderings of N. P Since S = (J,,yN" and S* = [J,5, N" are countably infinite, Str; = N9 and
Strip = N5 are equipollent with NY. As P(N2) ~ PN ~ N, there is an injection from WO(N) to NN. In
the reverse direction, there are an injection from N¥ to the set F' of permutations of N, and an injection

from F to WO(N); so the Schroeder-Bernstein theorem tells us that WO(N) ~ NN, Q
Define f: WO(N) — w; by saying that f(x) = otp(N, x) for x € WO(N).

(b) For x € NV let L, C N¥ be the smallest set such that
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x € Ly,

whenever y, z € L, then g(y) *x 2z € Ly,

whenever y € L, then (y(2n)),en and (y(2%(2n + 1)))nen belong to L, for every k € N.
Observe that L, is countable and that L, C L, whenever y € L,. For x € NN, set C, = {y 1y € NN,
x € Ly}

(c) For any sequence (zn)nen in NV there is an # € N¥ such that Cp C ),y Ca,,- P Set 2(0) = 0
and z(2%(2n + 1)) = zx(n) for k, n € N. Then z; € L, for every k. So if y € C, and n € N, we have
Tn €L, CLyandy e Cy,. Q

Let F be the filter on N generated by {C, : € N}; then (because AC(R;w) is true) F is closed under
countable intersections.

(d) Suppose that A C NV is such that whenever x € A and L, = L, then y € A.

(i) If T has a winning strategy in Game(N, A) then A € F. P Let ¢ € Str; be a winning strategy
for I, and consider x = g~1(0) € NY. Suppose that y € NN and z € Ly, and consider z = o xy € A. As
z = g(z) * y belongs to L,, L, C L,; on the other hand, y(n) = z(2n + 1) for every n, so y € L, and
L,CL, SoLy,=L,andyec A Asyisarbitrary, C; CAand Aec F. Q

(ii) If II has a winning strategy in Game(N, A) then N¥\ A € F. P Let 7 € Stryy be a winning strategy
for II, and consider x = g~*(7) € NY. Suppose that y € N¥ and x € L,, and consider z = 7 xy € N\ A.
As before, L, C L,; this time, y(n) = z(2n) for every nsoy € L, and L, C L,. Soy ¢ A. As y is arbitrary,
C, CNY\Aand NN\ Ac F. Q
(e) For z € NN set ¢(z) = sup,cp f(h(y)); because L, is countable, ¢(x) < wy (567Ed). Let G be
the image filter @[[F]]. Because F is closed under countable intersections, so is G. If B C w; then ¢~}[B]
satisfies the condition of (d), so that one of ¢—1[B], NN\ ¢~![B] belongs to F and one of B, w; \ B belongs
to G; as B is arbitrary, G is an ultrafilter.

(f) Finally, G does not contain any singletons. I If £ < wy, there is an # € NN such that f(h(z)) = &+ 1.
Now C, € Fso ¢[Cy] € G. If y € Cp then x € L, so { + 1 < ¢(y); accordingly & ¢ ¢[C,] and {{} ¢ G. Q
So G (or, if you like, the ideal {w; \ B : B € G}) witnesses that w; is two-valued-measurable.

567M Theorem (MoscHOVAKIS 70) [AD] Let « be an ordinal such that there is a surjection from PN
onto a. Then there is a surjection from PN onto Pa.

proof The formulae will run slightly more smoothly if we work with surjections from N¥ rather than from
PN; of course this makes no difference to the result.

(a) We may suppose that a is uncountable. Let f : NN — a be a surjection. I seek to define inductively
a family (ge)e<q such that ge is a surjection from NN onto P¢ for every € < a. As in the proof of 567L,
let Str; be the set of functions from UneN N™ to N, and Stry the set of functions from Un21 N™ to N; fix a

surjection h : NN — Str; U Stry. For o € Stry, 7 € Strip and o € NN let o % 2, 7% 2 be the plays in games on
N as described in the proof of 567L.

(b) Start by setting g, () = nNxz[N] for z € NN and n € N.

(c) For the inductive step to a non-zero limit ordinal ¢ < a, given (g, ),<¢, then for z € NV set

e = f((2(4n))nen), G = f({z(4n + 1))nen),

E, = gnw(<x(4n + 2)>n€N) if Ny < 67

= () otherwise,
Fy = g¢, ((2(4n 4 3))nen) if G2 <&,

= () otherwise.

Next, for D C &, set
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Ap={z:xeNV n, <& E,=DnNn,
and either ¢, <n, or (, > & or F, # DN}
(The idea is that the players are competing to see who can capture the largest initial segment of D with the
pair (1, E,) determined by I's moves or the pair ({,, F;;) determined by II's moves; for definiteness, if neither

correctly defines an initial segment, then II wins, while if they seize the same segment (7., E.) = (s, Fi),
then I wins.) Finally, define g : Str; U Str;; — P& by setting

g(o) = U{D : o is a winning strategy for I in Game(N, Ap)} if o € Stry,

g(t) =U{D : 7 is a winning strategy for IT in Game(N, Ap)} if 7 € Stryy.
We find that g is a surjection onto P¢. P Take any D C &.

case 1 Suppose that I has a winning strategy o in Game(N, Ap). Then D C g(o). ? If D # g(o),
there is a D’, distinct from D, such that o is a winning strategy for I in Game(N, D). Let ¢ < £ be such
that DN ¢ # D' N¢. Then there is a 2 € NY such that f((z(2n))nen) = ¢ and g¢((2(2n + 1))nen) = DN C.
In this case, taking © = o * z, we have x(4n + 1) = 2(2n) and xz(4n + 3) = 2(2n + 1) for every n, so { = ¢
and F, = DN(. Since x € Ap, we have 1, <&, E, = DN, and ¢ < 1n,. But also x € Ap/, so E, = D'N1n,
and D N ¢ = D' N¢, contrary to the choice of (. X Thus D = g(o).

case 2 Suppose that IT has a winning strategy 7 in Game(N, Ap). Then D C g(7). T If D # g(7),
there is a D', distinct from D, such that 7 is a winning strategy for IT in Game(N, D). Let ¢ < £ be such
that DN ¢ # D' N¢. Again, there is a z € N such that f((z(2n))nen) = ¢ and g¢((2(2n+1))nen) = D NC.
This time, taking = 7 % z, we have z(4n) = z(2n) and x(4n + 2) = z(2n + 1) for every n, so 1, = ¢ and
E,=DnNmn,. Since x ¢ Ap, we must have n, < (, < § and F, = D N {,; since also x ¢ Ap:, F, = D' N (y;
so that DN ¢ = F, N¢ = D' N{, which is impossible. X Thus D = g(7).

Thus in either case D € g[Str; UStryr]. As D is arbitrary, g[Str; U Str] = P¢. Q
Setting g¢ = gh, the induction proceeds.

(d) For the inductive step to £ + 1 where w < £ < a, set
he(0) =&, he(n) =n—1forn e w\ {0}, he(n) =nif w <n <&,

ge+1(x) = helge(2)] for 2 € N™.

(e) At the end of the induction, g, is the required surjection onto Pa.

567N Theorem (MARTIN 70) [AC] Assume that there is a two-valued-measurable cardinal. Then every
coanalytic subset of NV is determined.

proof Let A C NN be a coanalytic set.

(a) Set S* = {J,,»; N™. For v, v/ € S* say that v < v’ if either v extends v or there is an n <
min(#(v), #(v")) such that vin = v'[n and v(n) < v'(n). Then < is a total order, and its restriction to N™
is the lexicographic well-ordering for each n > 1.

For w € |,y N™, set I, = {z : w C x € NV}, Fix an enumeration (v;);en of S* such that #(v;) <i+1
for every i € N.

(b) A’ = NV\ A is Souslin-F (423Eb); express it as

Al = UyeNN mn21 Fyn
where F,, is closed for every v € S*. Replacing F,, by ﬂlgz‘g#(v) F,1i if necessary, we may suppose that

F, C F,» whenever v D v/, as in 421Cf°.
For z € NV, set

TT = {U HEORS S*a Ix[#(v) mE1 7& 0}7
9Later editions only.

D.H.FREMLIN



102 Choice and determinacy 567N

and define a relation <, on S* by saying that

v =<,V <= eitherv, v €Ty, and v <’

orveT, and v' ¢ T,
or v, v ¢ T, and i < j where v = v;, v' = v;.

Then =, is a total ordering, since it copies the total ordering < on T, and the well-ordering induced by the
enumeration (v;);en on S* \ T,,, and puts one below the other.

Note that if n € N, z, y € N¥ are such that 2[n = y[n, and i < n, then z[#(v;) = y[#(v;), so v; € T,
iff v; € T)). Consequently, for 4, 7 < n, v; <, v; iff v; <y v;. It follows that for every w € N™ we have a
total ordering </, of n defined by saying that i </, j iff v; <, v; whenever z € I,,.

(c) If z € N and <, is not a well-ordering, then = ¢ A. P Let D C S* be a non-empty set with
no <,-least member. Then D N T, is an initial segment of D. Since S* \ T} is certainly well-ordered by
<z, DNT, # 0. Define (Dy)nen, (y(n))nen as follows. Dy = D NT,. Given that D, is a non-empty
initial segment of D and that v O y[n for every v € D,,, then y[n cannot be the least member of D, so
Dy # {yln}: set y(n) = min{v(n) : v € D\ {yln}},

Dpi1={v:ve Dy\{yln}, v(n) =yn)}.
Because <, agrees with < on T, D,,+1 is a non-empty initial segment of D, and the induction continues.

If m, n € N, then there is an v € T, such that v D y| max(m,n), and

Lopm N Fypn 2 Lnpso) N Fy # 0.
As m is arbitrary and Fy,, is closed, x € Fy,; as n is arbitrary, € A’ and z ¢ A. Q

N

(d) Let k be a two-valued-measurable cardinal, and give N x  its discrete topology. In (N x )" consider

the set F' of sequences ((z(n),£(n)))nen such that
whenever 4, j € N, v; C v; and © € F,,, then §(2j) < £(2i).
Then F is closed for the product topology; by 567B, F' is determined.

(e) Suppose I has a winning strategy o in the game Game(N x k, F'). Then I has a winning strategy
in Game(N, A). P For (k;);<, € N™ take o/((k;)i<n) to be the first component of o({(k;,0))i<n). If x is
any play of Game(N, A) consistent with ¢’, then for each n set £(2n + 1) = 0 and let £(2n) be the second
component of o({(x(2i +1),0))i<n). Then {(x(n),£(n)))nen is a play of Game(N x k, F') consistent with o,
soiswon by I. 7 If z ¢ A, let y € N¥ be such that € F,},, for every n € N. Set [ = {i:i € N, y D v;};
then [ is infinite, and there is an infinite J C I such that v; C v; whenever 4, j € J and i < j, while z € F,,
for every j € J. But now we see that £(2j) < £(2¢) whenever ¢ < j in J, which is impossible. X

Thus x € A; as © was arbitrary, ¢’ is a winning strategy for I in Game(N, A4). Q

(f) Suppose IT has a winning strategy 7 in Game(Nx x, F'). Then II has a winning strategy in Game(N, A).

P Fix a normal k-additive ultrafilter 7 on x (541Ma). For w = (ko, ... , ka,) € N>"*! consider the function
fw ¢ [£]""' — N defined by saying that f,(J) is to be the first component of 7({(ka;,&;))i<n) Where
(&o,- .. ,&y) is that enumeration of J such that, for i, j <n, & < ¢&; iff i ), j. Then for each m € N there

is a Cyp € F such that either f,(J) < m for every J € [Coum|" ! or fi,(J) > m for every J € [Cypn]™ ™t
(4A1L). Setting C' =, ,en Nwenzn+1 Cwm, C € F and every f,, is constant on [C]" . Let p(w) be the
constant value of f,,[[C]**1.

Define 7" : {J,,»; N™ = N inductively, saying that 7/(ko,... ,k,) = p(w) whenever w(2i) = k; for i < n
and w(2i + 1) = 7/(ko, ... , k;) for i < n. Suppose that z is a play of Game(N, A) consistent with 7/. 2 If
x € A, then <, is a well-ordering, by (c¢). The order type of (S*, <) is countable, so is surely less than
otp(C) = k, and we have a function 6 : S* — C such that 6(v) < (V') iff v g, V.

Define (£(n))nen by saying that

&(n) = 6(v;) if n=2j is even ,
= the second component of 7((z(0),£(0)), (x(2),£(2)),. .., (x(24),£(25)))
if n =25+ 1is odd.
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For i, j < n € N, setting w = 22n + 1, we have £(2i), £(2j) € C and
£(21) <£(2)) <= 0(v;) <O(vj) <= v <L V; = i<, 7.
So
220+ 1) = p(w) = fu({€(23) 11 < n})
is the first component of 7((x(0),£(0)), ... , (x(2n),&(2n))); thus ((z(n),&(n)))nen is a play of Game(Nx x, F')
consistent with 7, and is won by II. There must therefore be i, j € N such that v; C v;, * € F,, and and

£(24) < £(27). Now v; € T, and v; <¢ vj, s0 v; < v;; which is impossible. X
So x ¢ A; as x is arbitrary, 7’ is a winning strategy for II in Game(N, 4). Q

(g) Putting (d), (e) and (f) together, we see that A is determined.

5670 Corollary [AC] If there is a two-valued-measurable cardinal, then every PCA (= 1) subset of
any Polish space is universally measurable.

proof (a) Let A C {0,1}" be PCA. Then there is a coanalytic subset B of NN x {0,1}" such that A
is the projection of B. Of course this means that there is a coanalytic subset B’ of {0,1}Y such that
A is a continuous image of B’, since N¥ x {0,1}" is homeomorphic to a Gs subset of {0,1}Y, and any
homeomorphism must carry B to a coanalytic subset of {0,1}, by 423Tc. Now (h~![B’] N F)U H is
coanalytic whenever h : NN — {0, 1} is continuous, F C NN is closed and H C N is open; by 567N,
(N, (h1[B’|N F) U H) is always determined; by 567F, A is measured by the usual measure v on {0, 1}".

(b) Now suppose that X is a Polish space, A C X is a PCA set and p is a Borel probability measure on
X with completion fi. Then there is a Borel measurable function f : {0,1} — X such that j is the image
measure vf 1. P Let (2, ji) and (B, ) be the measure algebras of y, v respectively. Then 2 has Maharam
type at most w(X) = w (531Aa), so there is a measure-preserving Boolean homomorphism 7 : 2 — B
(332N). Now /i is a Radon measure (433Cb), so there is a function fo : {0,1}¥ — X such that f;'[E]
is measured by v, and vf; '[E] = iE, whenever E is measured by i (416Wb). In this case, fo is almost
continuous (433E) and there is a sequence (K,,),en of compact subsets of {0, 1} such that lim,, ;. vK,, = 1
and fo| K, is continuous for every n. Fix any xo € X and set f(z) = fo(2) for 2 € U, cpy Kn, @ for other
z € {0,1}; then f is Borel measurable and equal v-a.e. to fy, so f also is inverse-measure-preserving for v
and fi. Finally, because f likewise is almost continuous, the image measure vf~! on X is a Radon measure
(4181), and must be exactly ji (416Eb). Q

Since f~1[A4] is PCA (423Td), v measures f~'[A] and i measures A. As y is arbitrary, A is universally
measurable.

567X Basic exercises (a) Let X be a non-empty well-orderable set, with its discrete topology, and
G C XN an open set. Show that G is determined.

(b) [AC(R;w)] Let A C NY be such that {x : <n>"z € A} is determined for every n € N. Show that
NN\ A4 is determined.

(c) Show that AD is true iff every subset of {0, 1} is determined. (Hint: For x € {0,1}" set I, = {n :
x(2n) =1}, Jpy = {n : z(2n+ 1) = 1}; set Ct = {x : supl, > supJ,}, D = {z : I, and J, are both
infinite}. Define f : D — N by setting f(x)(0) = minI,, f(z)(2n + 1) = min{k : f(z)(2n) + k € J,},
f(x)(2n +2) = min{k : f(x)(2n + 1) + k+ 1 € I,}. Show that if A C NY and CyU f~![A] is determined,
then A is determined.)

(d) [AC(R;w)] (i) Show that the intersection of a sequence of closed cofinal subsets of w; is cofinal. (ii)
Show that we have a unique topological probability measure on w; which is zero on singletons and inner

regular with respect to the closed sets.

(e) [AD] Show that if f:[0,1]> — R is a bounded function, then [[ f(z,y)dzdy and [[ f(x,y)dydz are
defined and equal, where the integrations are with respect to Lebesgue measure on [0, 1].
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(f) [AD] Let i be a Radon measure on a Polish space X, and £ a well-ordered family of subsets of X.
Show that u(J€&) = supgee pE. (Hint: 567Xe.)

(g) [AD4+AC(w)] Show that there are no interesting Sierpinski sets, in the sense that every atomless
probability space has an uncountable negligible subset.

(h) [AD] Show that every semi-finite measure space is perfect.

(i) [AD] Show that if X is a separable Banach space and Y is a normed space then every linear operator
from X to Y is bounded.

(j) [DC] Let I be a set, and B the Baire-property algebra of PI with its usual topology. Show that

every B-measurable real-valued finitely additive functional on PI is completely additive. (Hint: remember
to prove that PI is a Baire space.)

(k) [AD] (i) Show that there is no non-principal ultrafilter on N. (ii) Show that {0, 1}® is not compact.
(1) [AD] Show that there is no linear lifting for Lebesgue measure on R. (Hint: 567J.)
(m) [AD] (i) Show that £!(R) is not reflexive. (ii) Show that ¢!(w;) is not reflexive.

(n) [AD] (i) Show that there is no injective function from w; to R. (ii) Show that there is no family
(fe)e<w, such that fe is an injective function from £ to N for every ¢ < w;. (iii) Show that there is no
function f :w; x N — wy such that {f(¢,n) : n € N} is a cofinal subset of £ for every non-zero limit ordinal
& < wy. (Hint: 567L.)

(o) (i) Show that there is a set A C W} such that Game(w;, A) is not determined. (Hint: Set II the task
of enumerating x(0); see 567D and 567Xn.) (ii) Show that there is a set A C (PR)N such that Game(PR, A)
is not determined.

(p) [AD] Show that there is a surjective function from R to B(R), but no injective function from B(R)
to R. (Hint: 567E, 561Xd.)

(a) [AC] Show that if there is a two-valued-measurable cardinal and A C NY is analytic then A is
determined.

(r) [AC] Suppose that there is a two-valued-measurable cardinal. Show that every PCA subset of R has
the Baire property.

567Y Further exercises (a) Let X be a non-empty set and A C X". A quasi-strategy for I in
Game(X, A) is a function o : {J, oy X™ — PX \ {0}; it is a winning quasi-strategy if 2 € A whenever
r € XN and z(2n) € o({(x(2i + 1));<n) for every n. Similarly, a winning quasi-strategy for II is a function
7: U, X™ = PX \ {0} such that z ¢ A whenever z € X" and x(2n + 1) € 7((x(2i))i<n) for every n. (i)
Show that if X is any non-empty discrete space and F' C X" is closed then at least one player has a winning
quasi-strategy in Game(X, F'). (ii) Show that DC is true iff there is no game Game(X, A) such that both
players have winning quasi-strategies.

(b) [AD] Show that every uncountable subset of R has a non-empty perfect subset. (Hint: Let A C
{0, 1}". Enumerate [J,,c{0,1}" as (v;)jen. For z € NV set

f(x) = vg0)” <min(1, 2(1))>"vz2) " <min(1,2(3))>"....
Consider Game(N, f~1[A]).)

(c) [AD] Let X be an analytic Hausdorff space, and ¢ : PX — [0, 00] a submodular Choquet capacity.
Show that ¢(A) = sup{c(K) : K C A is compact} for every A C X. (Cf. 479Y].)
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(d) [AC(R;w)] Let A be a Dedekind o-complete Boolean algebra, and v : 2 — R an additive functional
which is Borel measurable for the order-sequential topology on 2(. Show that v is countably additive.

(e) Let © be the least ordinal such that there is no surjection from PN onto 0. (i) [AC(w)] Show that
cf® > w. (ii) [AD] Show that © = we.

(f) [AC] Suppose that there is a two-valued-measurable cardinal. Show that every uncountable PCA
subset of R has a non-empty perfect subset.

567 Notes and comments The consequences of the axiom of determinacy are so striking that the question
of its consistency is particularly pressing. In fact W.H.Woodin has determined its consistency strength, in
terms of large cardinals (KANAMORI 03, 32.16, or JECH 03, 33.27), and this is less than that of the existence
of a supercompact cardinal; so it seems safe enough.

In ZFC, 567B is most naturally thought of as a basic special case of Martin’s theorem that every Borel
subset of XY, for any discrete space X, is determined (MARTIN 75, or KECHRIS 95, 20.5). The idea of the
proof is that if IT has no winning strategy, then all I has to do is to avoid positions from which IT can win.
But for a proof in ZF we need more than this. It would not be enough to show that for every first move by
I, there is a winning strategy for II from the resulting position; we should need to show that these can be
pieced together as a single function 7 : (J,,~; X™ — X. Turning this round, AD must imply a weak form
of the axiom of choice (567D; see also 567)_(0). In the particular case of 567B, we have a basic set Wy of
winning positions for IT with a trivial family (7, )wew, of strategies. (Starting from a position in Wy, II can
simply play the <-least point of X to get a position from which I cannot avoid Wy.) From these we can
work backwards to construct a family (7,)wew of strategies, where W = (J;cq,, We; so that if <u> € W
for every u € X, we can assemble these into a winning strategy for II in Game(X, F).

The central result of the section is I suppose 567G. From the point of view of a real analyst like myself,
as opposed to a logician or set theorist, this is the door into a different world, explored in 567H-567K,
567Xe-567Xm and 567Yb. In 5671 we have a result which is already interesting in ZFC. Recall that in ZFC
there are non-trivial additive functionals on PN which are measurable in the sense of §464 (464Jb); none of
them can be Baire-property-measurable.

I have not talked about ‘automatic continuity’ in this book. If you have seen anything of this subject
you will recognise the three parts of 567H as versions of standard results on homomorphisms which are
measurable in some sense. I do not know whether the hypothesis ‘abelian’ is necessary in 567Hb. If you
like, 567J can also be thought of as an automatic-continuity result.

You will see that 567H-567J depend on 567Gb rather than on 567Ga; that is, on category rather than
on measure. It is not clear how much can be proved if we assume, as an axiom, that every subset of R is
Lebesgue measurable (together with AC(w) at least, of course), rather than that every subset of R has the
Baire property.

In 567L far more is true, at least with AD4+DC; ws, as well as wy, is two-valued-measurable, and the
filter on w; generated by the closed cofinal sets is an ultrafilter (KANAMORI 03, §28, or JECH 03, Theorem
33.12). I am not sure what we should think of as a ‘real-valued-measurable cardinal’ in this context. In
the language of 566X1, AD implies that R is not measure-free, and Lebesgue measure is k-additive for every
initial ordinal x (567Xf). For further combinatorial consequences of AD, see KANAMORI 03. Note that AD
implies CH in the form ‘every uncountable subset of R is equipollent with R’ (567Yb). But the relationship
of R with wy is quite different. ZF is enough to build a surjection from R onto wy. AD implies that there is
no injection from wj into R (567Xn) but that there are surjections from R onto much larger initial ordinals
(567M, 567Ye).

In 567N-5670 I return to the world of ZFC; they are in this section because they depend on 567B and
567F. Once again, much more is known about determinacy compatible with AC, and may be found in
KANAMORI 03 or JECH 03.

D.H.FREMLIN



106 References

Version of 28.4.23
References for Volume 5

Argyros S.A. & Kalamidas N.D. [82] ‘The K, property on spaces with strictly positive measure’, Cana-
dian J. Math. 34 (1982) 1047-1058. [525T.]

Argyros S.A. & Tsarpalias A. [82] ‘Calibers of compact spaces’, Trans. Amer. Math. Soc. 270 (1982)
149-162. [525N.]

Babiker A.G. [76] ‘On uniformly regular topological measure spaces’, Duke Math. J. 43 (1976) 775-789.
[533Xd.]

Balcar B. & Franék F. [82] ‘Independent families in complete Boolean algebras’, Trans. Amer. Math. Soc.
274 (1982) 607-618. [515H.]

Balcar B., Jech T. & Pazdk T. [05] ‘Complete ccc Boolean algebras, the order sequential topology, and
a problem of von Neumann’, Bull. London Math. Soc. 37 (2005) 885-898. [§539 intro., 539E, 539L, 539N,
§539 notes, 555K.]

Balcar B., Jech T. & Zapletal J. [97] ‘Semi-Cohen Boolean algebras’, Ann. Pure & Applied Logic 87
(1997) 187-208. [§515 notes, §547 notes.]

Balcar B. & Vojtas P. [77] ‘Refining systems on Boolean algebras’, pp. 45-58 in LACHLAN SREBNY &
ZARACH 77. [515E.]

Bar-Hillel Y. [70] Mathematical Logic and Foundations of Set Theory. North-Holland, 1970.

Bartoszynski T. [84] ‘Additivity of measure implies additivity of category’, Trans. Amer. Math. Soc. 281
(1984) 209-213. [Chap. 52 intro., 522Q, §524 notes.]

Bartoszyniski T. [87] ‘Combinatorial aspects of measure and category’, Fund. Math. 127 (1987) 225-239.
5225

Bartoszynski T. & Judah H. [89] ‘On the cofinality of the smallest covering of the real line by meager
sets’, J. Symbolic Logic 54 (1989) 828-832. [522V.]

Bartoszyniski T. & Judah H. [95] Set Theory: on the structure of the real line. A. XK. Peters, 1995. [522R,
§522 notes, 526M, §528 notes, 534Q, §534 notes, 5461, 553C, 554Ya, 5A1Q.]

Bartoszynski T. & Shelah S. [92] ‘Closed measure zero sets’, Ann. Pure & Applied Logic 58 (1992) 93-110.
[526M.]

Baumgartner J.E., Taylor A.D. & Wagon S. [77] ‘On splitting stationary subsets of large cardinals’, J.
Symbolic Logic 42 (1977) 203-214. [§541 notes, §544 notes.]

Bell M.G. [81] ‘On the combinatorial principle P(c)’, Fundamenta Math. 114 (1981) 149-157. [§517 notes.]

Benedikt M. [98] ‘Ultrafilters which extend measures’, J. Symbolic Logic 63 (1998) 638-662. [538M,
538Xm, §538 notes.]

Benedikt M. [99] ‘Hierarchies of measure-theoretic ultrafilters’, Annals of Pure and Applied Logic 97
(1999) 203-219. [538H.]

Blair C.E. [77] ‘The Baire category theorem implies the principle of dependent choice’, Bull. Acad. Polon.
Sci. (Math. Astron. Phys.) 25 (1977) 933-934. [§566 notes.]

Blass A. & Laflamme C. [89] ‘Consistency results about filters and the number of inequivalent growth
types’, J. Symbolic Logic 54 (1989) 50-56. [5A6Ib, 5A6J.]

Booth D. [70] ‘Ultrafilters on a countable set’, Ann. Math. Logic 2 (1970) 1-24. [517R.]

Borel E. [1919] ‘Sur la classification des ensembles de mesure nulle’, Bull. Soc. Math. France 47 (1919)
97-125. [§534 intro.]

Brendle J. [00] Inner model theory and large cardinals. Research report, March 2000. [528N, 529F-529H.]

Brendle J. [06] ‘Cardinal invariants of the continuum and combinatorics on uncountable cardinals’, Annals
of Pure and Applied Logic 144 (2006) 43-72. [529F, 529H.]

Burke M.R. [93] ‘Liftings for Lebesgue measure’, pp. 119-150 in JUDAH 93. [§535 notes.]

Burke M.R. [n05] ‘Non-null sets of minimal cofinality’, note of 2.3.05. [523K.]

Burke M.R. & Magidor M. [90] ‘Shelah’s pcf theory and its applications’, Ann. Pure and Applied Logic
50 (1990) 207-254. [513J, §5A2 intro..)

Burke M.R. & Shelah S. [92] ‘Linear liftings for non-complete probability spaces’, Israel J. Math. 79
(1992) 289-296. [§535 notes.]

(©) 2008 D. H. Fremlin

MEASURE THEORY



References 107

Carlson T.J. [84] ‘Extending Lebesgue measure to infinitely many sets’, Pacific J. Math. 115 (1984) 33-45.
[652N, §552 notes.]

Carlson T.J. [93] ‘Strong measure zero and strongly meager sets’, Proc. Amer. Math. Soc. 118 (1993)
577-586. [534R ]

Carlson T., Frankiewicz R. & Zbierski P. [94] ‘Borel liftings of the measure algebra and the failure of the
continuum hypothesis’, Proc. Amer. Math. Soc. 120 (1994) 1247-1250. [§535 notes, 5541.]

Choksi J.R. & Fremlin D.H. [79] ‘Completion regular measures on product spaces’, Math. Ann. 241 (1979)
113-128. [532L]

Cichori J. & Pawlikowski J. [86] ‘On ideals of subsets of the plane and on Cohen reals’, J. Symbolic Logic
51 (1986) 560-569. [527F.]

Comfort W.W. & Negrepontis S. [74] The Theory of Ultrafilters. Springer, 1974. [538F, 538Yb.]

Comfort W.W. & Negrepontis S. [82] Chain Conditions in Topology. Cambridge U.P.; 1982. [516 notes.]

Cummings J. [92] ‘A model in which GCH holds at successors but fails at limits’, Trans. Amer. Math.
Soc. 329 (1992) 115-142. [525Z]

Dellacherie C., Meyer P.A. & Weil M. (eds.) [73] Séminaire de Probabilités VII. Springer, 1973 (Springer
Lecture Notes in Mathematics 321).

Devlin K.J. [84] Constructibility. Springer, 1984. [5A6D.]

Dow A. & Steprans J. [94] ‘The o-linkedness of the measure algebra’, Canad. Math. Bulletin 37 (1994)
42-45. [524L]

Dzamonja M. & Kunen K. [93] ‘Measures on compact HS spaces’, Fundamenta Math. 143 (1993) 41-54.
[§531 notes.]

Dzamonja M. & Plebanek G. [04] ‘Precalibre pairs of measure algebras’, Topology Appl. 144 (2004) 67-94.
[525L.]

Engelking R. [89] General Topology. Heldermann, 1989 (Sigma Series in Pure Mathematics 6). [§5A4.]
Erdés P., Hajnal A., Maté A. & Rado R. [84] Combinatorial Set Theory: Partition Relations for Cardinals.
Akadémiai Kiadd, 1984 (Disquisitiones Math. Hung. 13). [5A1F, 5A1H, 5A6F ]

Farah I. [00] Analytic Quotients. Mem. Amer. Math. Soc. 148 (2000). [5A6H.]

Farah I. [03] ‘How many algebras P(N)/Z are there?’, Illinois J. Math. 46 (2003) 999-1033. [§556 notes.]

Farah I. [06] ‘Analytic Hausdorfl gaps II: the density zero ideal’, Israel J. Math. 154 (2006) 235-246.
[556S.)

Farah I. & Velickovié B. [06] “Von Neumann’s problem and large cardinals’, Bull. London Math. Soc. 38
(2006) 907-912. [539Q).]

Feferman S. & Lévy A. [63] ‘Independence results in set theory by Cohen’s method’, Notices Amer. Math.
Soc. 10 (1963) 53. [561A.]

Fleissner W.G. [91] ‘Normal measure axiom and Balogh’s theorems’, Topology and its Appl. 39 (1991)
123-143. [555N.]

Foreman M. [10] ‘Ideals and generic elementary embeddings’, pp. 885-1147 in FOREMAN & KANAMORI
10, vol. 2. [547Z.]

Foreman M. & Kanamori A. [10] Handbook of Set Theory. Springer, 2010.

Foreman M. & Wehrung F. [91] ‘The Hahn-Banach theorem implies the existence of a non-Lebesgue
measurable set’, Fundamenta Math. 138 (1991) 13-19. [563A.]

Foreman M. & Woodin W. [91] ‘The generalized continuum hypothesis can fail everywhere’, Annals of
Math. 133 (1991) 1-35. [525Z.]

Fossy J. & Morillon M. [98] ‘The Baire category property and some notions of compactness’; J. London
Math. Soc. (2) 57 (1998) 1-19. [§566 notes.]

Freese R. & Nation J.B. [78] ‘Projective lattices’, Pacific J. Math. 75 (1978) 93-106. [§518 notes.]

Freiling C. [86] ‘Axioms of symmetry; throwing darts at the real number line’; J. Symbolic Logic 51 (1986)
190-200. [537K.]

Fremlin D.H. [74] Topological Riesz Spaces and Measure Theory. Cambridge U.P., 1974. [564Xc.]

Fremlin D.H. [77] ‘Uncountable powers of R can be almost Lindeléf’, Manuscripta Math. 22 (1977) 77-85.
[533J.]

Fremlin D.H. [84a] Consequences of Martin’s Aziom. Cambridge U.P., 1984. [§511 notes, §517 notes,
§531 notes.]

D.H.FREMLIN



108 References

Fremlin D.H. [84b] ‘On the additivity and cofinality of Radon measures’, Mathematika 31 (1984) 323-335.
[§524 notes.]

Fremlin D.H. [87] Measure-additive Coverings and Measurable Selectors. Dissertationes Math. 260 (1987).
[551A.]

Fremlin D.H. [88] ‘Large correlated families of positive random variables’, Math. Proc. Cambridge Phil.
Soc. 103 (1988) 147-162. [5258S.]

Fremlin D.H. [91] ‘The partially ordered sets of measure theory and Tukey’s ordering,” Note di Matematica
11 (1991) 177-214. [§524 notes, 526B, 5261, 527J, 529C, 529D, 534L.]

Fremlin D.H. [93] ‘Real-valued-measurable cardinals’, pp. 151-304 in JUDAH 93. [§537 notes, §541 notes,
§544 notes, §545 notes, §5A2 intro..]

Fremlin D.H. [97] ‘On compact spaces carrying Radon measures of uncountable Maharam type’, Funda-
menta Math. 154 (1997) 295-304. [531T.]

Fremlin D.H. [03] ‘Skew products of ideals’, J. Applied Analysis 9 (2003) 1-18. [§527 notes.]

Fremlin D.H. & Grekas S. [95] ‘Products of completion regular measures’, Fundamenta Math. 147 (1995)
27-37. [532D.]

Fremlin D.H. & Miller A.W. [88] ‘On some properties of Hurewicz, Menger and Rothberger’, Fund. Math.
129 (1988) 17-33. [534Q.]

Fremlin D.H., Natkaniec T. & Rectaw I. [00] ‘Universally Kuratowski-Ulam spaces’, Fundamenta Math.
165 (2000) 239-247. [§527 notes.]

Friedman S.D. & Koepke P. [97] ‘An elementary approach to the fine structure of L, Bull. Symbolic Logic
3 (1997) 453-468. [5A6D.]

Fuchino S., Geschke S., Shelah S. & Soukup L. [01] ‘On the weak Freese-Nation property of complete
Boolean algebras’, Ann. Pure Appl. Logic 110 (2001) 89-105. [518K.]

Fuchino S., Geschke S. & Soukup L. [01] ‘On the weak Freese-Nation property of P(w)’, Arch. Math.
Logic 40 (2001) 425-435. [522U, §522 notes.]

Fuchino S., Koppelberg S. & Shelah S. [96] ‘Partial orderings with the weak Freese-Nation property’,
Ann. Pure and Applied Logic 80 (1996) 35-54. [518A, 518G, 518Yb, §518 notes, 522U.]

Fuchino S. & Soukup L. [97] ‘More set theory around the weak Freese-Nation property’, Fundamenta
Math. 154 (1997) 159-176. [518I, 518K.]

Galvin F. [80] ‘Chain conditions and products’, Fundamenta Math. 108 (1980) 33-48. [§553 notes.]

Galvin F., Mycielski J. & Solovay R.M. [79] ‘Strong measure zero sets’, Notices Amer. Math. Soc. 26
(1979) A280. [534K.]

Gandy R.O. & Hyland J.M.E. [77](eds.) Logic Colloquium ’76. North-Holland, 1977.

Geschke S. [02] ‘On tightly x-filtered Boolean algebras’, Algebra Universalis 47 (2002) 69-93. [518P, 518S,
§535 notes.]

Gitik M. & Shelah S. [89] ‘Forcings with ideals and simple forcing notions’, Israel J. Math. 68 (1989)
129-160. [543E, 547F ]

Gitik M. & Shelah S. [93] ‘More on simple forcing notions and forcings with ideals’, Annals of Pure and
Applied Logic 59 (1993) 219-238. [542E, 543E, 547F ]

Gitik M. & Shelah S. [01] ‘More on real-valued measurable cardinals and forcing with ideals’, Israel J.
Math. 124 (2001) 221-242. [548E.]

Gléwezynski W. [91] ‘Measures on Boolean algebras’, Proc. Amer. Math. Soc. 111 (1991) 845-849. [555K.]

Gléwezyriski W. [08] ‘Outer measure on Boolean algebras’, Acta Univ. Carolinae (Math. et Phys.) 49
(2008) 3-8. [555K.]

Goldstern M., Judah H. & Shelah S. [93] ‘Strong measure zero sets without Cohen reals’, J. Symbolic
Logic 58 (1993) 1323-1341. [§534 notes.]

Haydon R.G. [77] ‘On Banach spaces which contain ¢(7) and types of measures on compact spaces’,
Israel J. Math. 28 (1977) 313-324. [531E, 531L.]

Hodges W., Hyland M., Steinhorn C. & Truss J. [96] (eds.) Logic: from Foundations to Applications,
European Logic Colloquium, 1993. Clarendon, 1996.

Humke P.D. & Laczkovich M. [05] ‘Symmetrically approximately continuous functions, consistent density
theorems, and Fubini type inequalities’, Trans. Amer. Math. Soc. 357 (2005) 31-44. [537Q, §537 notes.]

Thoda J.I. [88] ‘Strong measure zero sets and rapid filters’, J. Symbolic Logic 53 (1988) 393-402. [534Q.]

MEASURE THEORY



References 109

Jech T. [73] The Aziom of Choice. North-Holland, 1973. [561A, 561Xc, 561Y¢, 561Yi, 564Yd.]

Jech T. [78] Set Theory. Academic, 1978 (ISBN 0123819504). [Intro., 553H, 5550, §555 notes, §562
notes, §5A1, 5A6B.]

Jech T. [03] Set Theory, Millennium Edition. Springer, 2003 (ISBN 3540440852). [§521 notes, §555 notes,
§562 notes, §567 notes, §5A1, 5A3N, 5A3P, 5A6B.]

Judah H. [93] (ed.) Proceedings of the Bar-Ilan Conference on Set Theory and the Reals, 1991. Amer.
Math. Soc. (Isracl Mathematical Conference Proceedings 6), 1993.

Judah H. & Repicky M. [95] ‘Amoeba reals’, J. Symbolic Logic 60 (1995) 1168-1185. [528N.]

Just W. [92] ‘A modification of Shelah’s oracle-c.c., with applications’, Trans. Amer. Math. Soc. 329
(1992) 325-356. [527M.]

Just W. & Weese M. [96] Discovering Modern Set Theory I. Amer. Math. Soc., 1996 (Graduate Studies
in Mathematics 8). [Intro..]

Just W. & Weese M. [97] Discovering Modern Set Theory II. Amer. Math. Soc., 1997 (Graduate Studies
in Mathematics 18). [5A1B, 5A1F, 5A1H.]

Kanamori A. [03] The Higher Infinite. Springer, 2003. [§541 notes, §555 notes, §567 notes, 5A1H, 5A6B,
5A6F .

Kechris A.S. [95] Classical Descriptive Set Theory. Springer, 1995. [5A1D, §567 notes.]

Keisler H.J. & Tarski A. [64] ‘From accessible to inaccessible cardinals’, Fundamenta Math. 53 (1964)
225-308; errata Fundamenta Math. 57 (1965) 119. [§541 intro., §541 notes.]

Kelley J.L. [50] ‘The Tychonoff product theorem implies the axiom of choice’, Fundamenta Math. 37
(1950) 75-76. [561D.]

Koppelberg S. [75] ‘Homomorphic images of o-complete Boolean algebras’, Proc. Amer. Math. Soc. 51
(1975) 171-175. [515L.]

Koppelberg S. [89] General Theory of Boolean Algebras, vol. 1 of MONK 89. [§515 notes.]

Koppelberg S. & Shelah S. [96] ‘Subalgebras of Cohen algebras need not be Cohen’, pp. 261-275 in
HoODGES HYLAND STEINHORN & TRUSS 96. [§515 notes, §547 notes.)

Kraszewski J. [01] ‘Properties of ideals on the generalized Cantor spaces’, J. Symbolic Logic 66 (2001)
1303-1320. [523G, 523H, 523J, §523 notes.]

Kumar A. [13] ‘Avoiding rational distances’, Real Analysis Exchange 38 (2012/13), 493-498. [548Xb.]

Kumar A. & Shelah S. [17] ‘A transversal of full outer measure’, Advances in Math. 321 (2017) 475-485.
[547P, 547Q), §548 intro., 548C.]

Kunen K. [80] Set Theory. North-Holland, 1980. [Intro., 511A, §521 notes, §522 notes, §541 notes, 551Q,
§551 notes, 556F, §562 notes, Appendix intro., §5A1, §5A3, 5A6B.]

Kunen K. [81] ‘A compact L-space under CH’, Topology and its Appl. 12 (1981) 283-287. [§531 notes.)

Kunen K. [84] ‘Random and Cohen reals’, pp. 887-911 in KUNEN & VAUGHAN 84. [§554 notes.]

Kunen K. [n70] ‘II} reflection at the continuum’, note of January 1970. [543C, 544C, 544E, 544F

Kunen K. & Mill J.van [95] ‘Measures on Corson compact spaces’, Fundamenta Math. 147 (1995) 61-72.
5310.]

Kunen K. & Vaughan J.E. [84] (eds.) Handbook of Set-Theoretic Topology. North-Holland, 1984.

Kuratowski K. [66] Topology, vol. I. Academic, 1966. [562G.]

Lachlan A., Srebny M. & Zarach A. [77] (eds.) Set Theory and Hierarchy Theory. Springer, 1977 (Lecture
Notes in Math. 619).

Larson P. [09] ‘The filter dichotomy and medial limits’, J. Math. Logic 9 (2009) 159-165. [538S.]

Larson P., Neeman I. & Shelah S. [10] ‘Universally measurable sets in generic extensions’, Fundamenta
Math. 208 (2010) 173-192. [5530.]

Laver R. [76] ‘On the consistency of Borel’s conjecture’, Acta Math. 137 (1976) 151-169. [534Q).]

Laver R. [87] ‘Random reals and Souslin trees’, Proc. Amer. Math. Soc. 100 (1987) 531-534. [553M.]

Levinski J.-P., Magidor M. & Shelah S. [90] ‘Chang’s conjecture for R,’, Israel J. Math. 69 (1990) 161-172.
[PAGF.]

Levy A. [71] ‘The sizes of the indescribable cardinals’, pp. 205-218 in SCOTT 71. [§541 notes, §544 notes.]

Lipecki Z. [09] ‘Semivariations of an additive function on a Boolean ring’, Colloquium Math. 117 (2009)
267-279. [552Xe.]

D.H.FREMLIN



110 References

Maharam D. [1947] ‘An algebraic characterization of measure algebras’, Ann. Math. 48 (1947) 154-167.
[539P.]

Makowsky J.A. & Ravve E.V. (eds.) [98] Logic Colloquium ’95. Springer, 1998 (Lecture Notes in Logic
11).

Martin D.A. [70] ‘Measurable cardinals and analytic games’, Fundamenta Math. 66 (1970) 287-291.
[567N]

Martin D.A. [75] ‘Borel determinacy’, Ann. of Math. (2) 102 (1975) 363-371. [§567 notes.]

Martin D.A. & Solovay R.M. [70] ‘Internal Cohen extensions’, Ann. Math. Logic 2 (1970) 143-178. [Chap.
52 intro., §528 intro., §528 notes.]

Matrai T. [p09] ‘More cofinal types of definable directed orders’, 2009 (https://citeseerx.ist.psu.edu/viewdoc/su
[526L, §526 notes.]

Meyer P.-A. [73] ‘Limites médiales d’aprés Mokobodzki’, pp. 198-204 in DELLACHERIE MEYER & WEIL
73. [538Y1]

Meyer P.A. [75] (ed.) Séminaire de Probabilités IX. Springer, 1975 (Lecture Notes in Mathematics 465).

Miller A.W. [80] ‘There are no Q-points in Laver’s model for the Borel conjecture’; Proc. Amer. Math.
Soc. 78 (1980) 103-106. [§538 notes.]

Miller A.W. [81] ‘Some properties of measure and category’, Trans. Amer. Math. Soc. 266 (1981) 93-114.
522J.]

Miller A.W. [82] ‘The Baire category theorem and cardinals of countable cofinality’, J. Symbolic Logic
47 (1982) 275-288. [552G, 552XDb.]

Mokobodzki G. [75] ‘Rélévement borélien compatible avec une classe d’ensembles négligeables. Applica-
tion & la désintégration des mesures’, pp. 437-442 in MEYER 75. [5351.]

Mokobodzki G. [77] ‘Désintegration des mesures et relevements Boreliens de sous-espaces de L™= (X, B, i),
Lab. d’Analyse Fonctionnelle, Univ. Paris VI (?). [535E, §535 notes.]'°

Monk J.D. [89] (ed.) Handbook of Boolean Algebra. North-Holland, 1989.

Moore J.T. [05] ‘Set mapping reflection’, J. Math. Logic 5 (2005) 87-98. [5170.]

Moschovakis Y.N. [70] ‘Determinacy and prewellorderings of the continuum’, pp. 24-62 in BAR-HILLEL
70. [567M.]

Mycielski J. [64] ‘On the axiom of determinateness’, Fund. Math. 53 (1964) 205-224. [567D.]

Mycielski J. & Swierczkowski S. [64] ‘On the Lebesgue measurability and the axiom of determinateness’,
Fund. Math. 54 (1964) 67-71. [567F.]

Naimark M.A. [70] Normed Rings. Wolters-Noordhoff, 1970. [§561 notes.]

Neumann J.von [1931] ‘Algebraische Reprisentanten der Funktionen “bis auf eine Menge vom Masse
Null”’, Crelle’s J. Math. 165 (1931) 109-115. [535G.]

Neumann J.von & Stone M.H. [1935] ‘The determination of representative elements in the residual classes
of a Boolean algebra’, Fundamenta Math. 25 (1935) 353-378. [§535 notes.]

Pawlikowski J. [86] ‘Why Solovay real produces Cohen real’, J. Symbolic Logic 51 (1986) 957-968. [552G,
552H.]

Pelczy'nski A. [68] ‘On Banach spaces containing L'(p), Studia Math. 30 (1968) 231-246. [531Ye.]

Perovié¢ Z. & Velickovi¢ B. [18] ‘Ranks of Maharam algebras’, Advances in Math. 330 (2018) 253-279.
[539V ]

Plebanek G. [95] ‘On Radon measures on first-countable compact spaces’, Fundamenta Math. 148 (1995)
159-164. [5310.]

Plebanek G. [97] ‘Non-separable Radon measures and small compact spaces’, Fundamenta Math. 153
(1997) 25-40. [531L, 531M, 531V ]

Plebanek G. [00] ‘Approximating Radon measures on first-countable compact spaces’, Colloquium Math.
86 (2000) 15-23. [533H, 533Yc.]

Plebanek G. [02] ‘On compact spaces carrying Radon measures of large Maharam type’, Acta Univ.
Carolinae 43 (2002) 87-99. [531U.]

Plebanek G. & Sobota D. [15] ‘Countable tightness in the spaces of regular probability measures’, Fund.
Math. 229 (2015) 159-169. [531U.]

10T have not been able to locate this paper; I believe it was a seminar report. I took notes from it in 1977.

MEASURE THEORY



References 111

Pol R. [82] ‘Note on the spaces P(S) of regular probability measures whose topology is determined by
countable subsets’, Pacific J. Math. 100 (1982) 185-201. [533Ya.]
Prikry K. [75] ‘Ideals and powers of cardinals’, Bull. Amer. Math. Soc. 81 (1975) 907-909. [555N.]

Quickert S. [02] ‘CH and the Saks property’, Fundamenta Math. 171 (2002) 93-100. [539L.]

Raisonnier J. & Stern J. [85] ‘The strength of measurability hypotheses’, Israel J. Math. 50 (1985) 337-349.
[Chap. 52 intro., 522Q.]

Rothberger F. [1938a] ‘Eine Aquivalenz zwischen der kontinuumhypothese unter der Existenz der Lusin-
schen und Sierpinschischen Mengen’, Fundamenta Math. 30 (1938) 215-217. [522G.]

Rothberger F. [1938b] ‘Eine Verschiarfung der Eigenschaft C’, Fundamenta Math. 30 (1938) 50-55. [§534
notes.]

Rothberger F. [1941] ‘Sur les familles indénombrables de suites de nombres naturels et les problémes
concernant la propriété C’, Proc. Cambridge Phil. Soc. 37 (1941) 109-126. [534R..]

Scott D.S. [71] (ed.) Aziomatic Set Theory. Amer. Math. Soc., 1971 (Proceedings of Symposia in Pure
Mathematics XIII, vol. 1).

Shelah S. [82] Proper Forcing. Springer, 1982 (Lecture Notes in Mathematics 940). [§538 notes.]

Shelah S. [83] ‘Lifting problem of the measure algebra’, Israel J. Math. 45 (1983) 90-96. [§535 notes.]

Shelah S. [84] ‘Can you take Solovay inaccessible away?’, Israel J. Math. 48 (1984) 1-47. [§522 notes.]

Shelah S. [92] ‘Cardinal arithmetic for skeptics’, Bull. Amer. Math. Soc. 26 (1992) 197-210. [5A2D.]

Shelah S. [94] Cardinal Arithmetic. Oxford U.P., 1994. [5A2D, 5A2G.]

Shelah S. [96] ‘Further cardinal arithmetic’, Israel J. Math. 95 (1996) 61-114. [5421.]

Shelah S. [98a] Proper and Improper Forcing. Springer, 1998. [§538 notes.]

Shelah S. [98b] ‘There may be no nowhere dense ultrafilter’, pp. 305-324 in MAKOVSKY & RAVVE 98.
[538H, §538 notes.]

Shelah S. [00] ‘Covering of the null ideal may have countable cofinality’, Fundamenta Math. 166 (2000)
109-136. [§522 notes.]

Shelah S. [03] ‘The null ideal restricted to some non-null set may be N;-saturated’, Fundamenta Math.
179 (2003) 97-129. [ §548 notes.]

Shelah S. & Steprans J. [05] ‘Comparing the uniformity invariants of null sets for different measures’,
Advances in Math. 192 (2005) 403-426. [534Za.]

Shipman J. [90] ‘Cardinal conditions for strong Fubini theorems’, Trans. Amer. Math. Soc. 321 (1990)
465-481. [537K.]

Solecki S. & Todorcevié S. [04] ‘Cofinal types of topological directed orders’; Ann. Inst. Fourier 54 (2004)
1877-1911. [513K, 5130, 513Yi.]

Solecki S. & Todorcevi¢ S. [10] ‘Avoiding families and Tukey functions on the nowhere-dense ideal’, J.
Inst. Math. Jussieu 9 (2010) 1-31. [526L.]

Solovay R.M. [66] ‘New proof of a theorem of Gaifman and Hales’, Bull. Amer. Math. Soc. 72 (1966)
282-284. [514Xi.]

Solovay R.M. [70] ‘A model of set theory in which every set of reals is Lebesgue measurable’, Annals of
Math. 92 (1970) 1-56. [§522 notes.]

Solovay R.M. [71] ‘Real-valued measurable cardinals’, pp. 397-428 in ScoTT 71. [541J, 541P, 541Ya, §541
notes, 555D, 5550.]

Talagrand M. [84] Pettis Integral and Measure Theory. Mem. Amer. Math. Soc. 307 (1984). [536C.]

Talagrand M. [08] ‘Maharam’s problem’, Annals of Math. 168 (2008) 981-1009. [539A.]

Tarski A. [1945] ‘Ideale in volstandigen Mengenkérpen II’, Fundamenta Math. 33 (1945) 51-65. [541P.]

Todorcevi¢ S. [85] ‘Remarks on chain conditions in products’, Compositio Math. 55 (1985) 295-302.
537G.]

Todorcevié¢ S. [87] ‘Partitioning pairs of countable ordinals’, Acta Math. 159 (1987) 261-294. [554Yc.]

Todorcevié¢ S. [00] ‘A dichotomy for P-ideals of countable sets’, Fundamenta Math. 166 (2000) 251-267.
[5A6G.]

Tornquist A. [11] ‘On the pointwise implementation of near-actions’, Trans. Amer. Math. Soc. 363 (2011)
4929-4944. [535Yc.]

Truss J.K. [77] ‘Sets having calibre X;’, pp. 595-612 in GANDY & HYLAND 77. [522].]

D.H.FREMLIN



112 References

Truss J.K. [88] ‘Connections between different amoeba algebras’, Fund. Math. 130 (1988) 137-155. [Chap.
52 intro., 528A, 528Da, 528K, §528 notes.]

Tukey J.W. [1940] Convergence and Uniformity in Topology. Princeton U.P.; 1940 (Ann. Math. Studies
1). [613F, §513 notes.]

Ulam S. [1930] ‘Zur Masstheorie in der allgemeinen Mengenlehre’, Fundamenta Math. 16 (1930) 140-150.
[§541 intro., §541 notes.]

Velickovié¢ B. [92] ‘Forcing axioms and stationary sets’, Advances in Math. 94 (1992) 256-284. [5170.]

Velickovié¢ B. [05] ‘CCC forcing and splitting reals’, Israel J. Math. 147 (2005) 209-221. [§539 intro., 539E,
539N]

Vojtas P. [93] ‘Generalized Galois-Tukey connections between explicit relations on classical objects of real
analysis’, pp. 619-643 in JUDAH 93. [512A.]

Wimmers E. [82] ‘The Shelah P-point independence theorem’, Israel J. Math. 43 (1982) 28-48. [§538
notes.]

Zakrzewski P. [92] ‘Strong Fubini theorems from measure extension axioms’, Comm. Math. Univ. Caroli-
nae 33 (1992) 291-297. [544J.]

MEASURE THEORY



