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Chapter 52
Cardinal functions of measure theory

From the point of view of this book, the most important cardinals are those associated with measures
and measure algebras, especially, of course, Lebesgue measure and the usual measure v; of {0,1}/. In
this chapter I try to cover the principal known facts about these which are theorems of ZFC. I start with
a review of the theory for general measure spaces in §521, including some material which returns to the
classification scheme of Chapter 21, exploring relationships between (strict) localizability, magnitude and
Maharam type. §522 examines Lebesgue measure and the surprising connexions found by BARTOSZYNSKI
84 and RAISONNIER & STERN 85 between the cardinals associated with the Lebesgue null ideal and the
corresponding ones based on the ideal of meager subsets of R. §523 looks at the measures v; for uncountable
sets I, giving formulae for the additivities and cofinalities of their null ideals, and bounds for their covering
numbers, uniformities and shrinking numbers. Remarkably, these cardinals are enough to tell us most of
what we want to know concerning the cardinal functions of general Radon measures and semi-finite measure
algebras (§524). These three sections are heavily dependent on the Galois-Tukey connections and Tukey
functions of §§512-513. Precalibers do not seem to fit into this scheme, and the relatively partial information
I have is in §525. The second half of the chapter deals with special topics which can be approached with
the methods so far developed. In §526 I return to the ideal of subsets of N with asymptotic density zero,
seeking to locate it in the Tukey classification. Further o-ideals which are of interest in measure theory are
the ‘skew products’ of §527. In §528 I examine some interesting Boolean algebras, the ‘amoeba algebras’
first introduced by MARTIN & SOLOVAY 70, giving the results of TRUSS 88 on the connexions between
different amoeba algebras and localization posets. Finally, in §529, I look at a handful of other structures,
concentrating on results involving cardinals already described.
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521 Basic theory

In the first half of this section (down to 521L) I collect facts about the cardinal functions add, cf, non,
cov, shr and shr™ when applied to the null ideal N(11) of a measure j, and also the 7-weight of a measure. In
particular I look at their relations with the constructions introduced earlier in this treatise: measure algebras
and function spaces (521B), subspace measures (521F), direct sums (521G), inverse-measure-preserving
functions and image measures (521H), products (521J), perfect measures (521K) and compact measures
(521L). The list is long just because I have four volumes’ worth of miscellaneous concepts to examine; nearly
all the individual arguments are elementary.

In the second half of the section, I give a handful of easy results which may clarify some patterns from
earlier volumes. In 521M-521P I look again at ‘strict localizability’ as considered in Chapter 21, importing
the concept of ‘magnitude’ of a measure space from §332, hoping to throw light on the examples of §216. In
521E I consider the topological densities of measure algebras. In 521R-521S I explore possibilities for the
‘countably separated’ measure spaces of §§343-344, examining in particular their Maharam types. Finally,
in 521T, I review some measures which arose in §464 while analyzing the L-space £°°(I)*.

521A Proposition Let (X, X, u) be a measure space.
(a) If £ C ¥ and #(€) < add p then [JE€ € ¥ and

w(UJE) = sup{u(J&) : & C & is finite}.
(b) wy < add p < add N (p).
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2 Cardinal functions of measure theory 521A

(c) If p is the measure defined by Carathéodory’s method from an outer measure 6 on X, then add u =
add N (p).
(d) If p is complete and locally determined, add p = add V().

proof (a) Induce on #(&). If £ is finite, the result is trivial. For the inductive step to #(&) = k > w,
enumerate & as (Eg)ecy. For each § < &, set He = E¢ \ U, By for each £ < k. Then the inductive
hypothesis tells us that He € ¥ for every £. Set E = |J& = U§<,‘£ H¢; because (He)ec, is disjoint, and
k< addp, E € ¥ and

E=Y puHe= sup H)<  sup U
g Z;M ¢ ICnisﬁnite‘u(gLEJI &) SOQSisﬁniteM(U) 0

(b) By the definition of ‘measure’ (112A), p is wi-additive. Suppose that A C N (u) and #(A) < add p.
For each A € A, choose a measurable negligible £4 O A. Then (a) tells us that E' = [J,. 4 Fa has measure
zero, so | J A C E is negligible. As A is arbitrary, add A (u) > add p.

(¢) Now suppose that p is defined by Carathéodory’s method from 6. Let (E;);cr be a disjoint family in
%, where #(I) < add N (p), with union E.

Let A C X be any set. Then 6(ANE)=>._;0(ANE;). P Of course

iel

0(ANE)> suip O(AN(JE)= sup Y 0(ANE)
JCI is finite icJ JCI is finite icJ
(induce on #(J), using the fact that 6B = 0(B N E;) + 6(B \ E;) for every B C X and i € J)
=> 0(ANE).
i€l

If }°,c; 0(ANE;) is infinite, we can stop. Otherwise, recalling that N'(p) = 071[{0}], J = {i : ANE; ¢ N'(u)}
is countable, and J;c p\ y A N E; is negligible, because #(I) < add N (u); so

0(ANE) = 0(ANU;c, Bi) < Y, 0(ANE;) = Y, 0(AN E;)

and we have equality. Q
It follows that (AN E)+6(A\ E) < 0A. P For any finite J C I,

O(A\E)+> 6(ANE;) =0(A\ E)+0(An ] E)
ieJ ieJ
<0(A\|J E)+0An | E) = 0A.
ieJ ieJ
Taking the supremum over J, we have the result. Q
As A is arbitrary, £ € ¥; and setting A = E, we see that uE = Y, uE;. As (Ej)er is arbitrary,
add u > add M () and the two additivities are equal.

(d) Now this follows immediately from (c), by 213C.

521B Proposition Let (X, X, 1) be a measure space and (2, i) its measure algebra.

(a) If £ C ¥ and #(€) < add p, then (|J&)® =supgee £° and (X N E)* =infree E° in A

(b) Suppose that A C [—o0, 00]¥ is a non-empty family of ¥-measurable functions with #(A) < add p,
and that g(x) = sup;c 4 f(x) in [~o0, oc] for every f € A. Then g is ¥-measurable.

(c) Write £O for the family of pu-virtually measurable real-valued functions defined almost everywhere in
X, and L° for the corresponding space of equivalence classes, as in §241. Suppose that A C £° is such that
0 < #(A) < addp and {f* : f € A} is bounded above in L°. Set g(x) = supsca f(x) whenever this is
defined in R; then g € £° and ¢* = Supse f* in IO,

(d)(i) If, in (b), A consists of non-negative integrable functions and is upwards-directed, then [ gdu =
SUPfea f fdp.
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521D Basic theory 3

(i) If, in (b), f1 A fo = 0 a.e. for all distinct fi, fo € A, then [gdu=3",c, [ fdp.

proof (a) As in 521Aa, |J€ € %, and of course (| J&)* is an upper bound for {E*: E € £}. If F € ¥ and
F* is an upper bound for {E* : E € £}, then, applying 521Aa to {E\ F : E € £}, we see that [JE\ F' is
negligible, so (|J&)* € F*. Thus (|J&)* is the least upper bound of {E* : E € £}.

Applying this to {X \ E: E € £} we see that (X N(&)* = infgee E*.

(b) For any a € R,

{z:9(x) > a} :UfeA{x cflx)>aleX
by 521Aa.

(c) Take any h € LY such that f* < h* for every f € A. For each f € A, let E; be a conegligible
measurable subset of {z : z € dom fNdom A, f(x) < h(z)} such that f[E} is measurable. Set = (.4 E;
then F is measurable and g is defined everywhere in F and ¢g[F is measurable (as in (b)). Also E is
conegligible, so g € £°, and of course f* < g* for every f € A, while g* < h*. But this argument works
for every h such that h* is an upper bound for {f* : f € A}, so g* must be actually the supremum of
{f*:feA}

(d)(i) If supse 4 [ fdp is infinite, this is trivial. Otherwise, {f* : f € A} is bounded above in L' and
therefore in LY. By (c), g* is its supremum in L°, therefore in L'; so

J9=[g"=suwpscn [ [ =supsea [ f,
as in 365Df.

(ii) Apply (i) to A* = {sup [ : I € [A]<¥}.

521C Just because null ideals are o-ideals of sets, we can read off some of the elementary properties
of their cardinal functions from 511J. But the presence of a measure gives us a new way to use shrinking
numbers, which will be useful later.

Proposition Let (X, %, i) be a measure space, and A C X.
(a) If v < u* A there is a B C A such that #(B) < shr™ N'(u) and p*B > 7.
(b) There is a B C A such that #(B) < max(w,shr M (u)) and pu*B = u*A.

proof (a) Set x = shrt V(1). Let £ be the family of those measurable subsets of X such that there is a
B € [AN E]<% with u*B = pE. Then &€ is closed under finite unions (132Ed). ? If u*B < ~ for every
B € [A]<", then pE < v for every E € £. By 215Ab, there is a non-decreasing sequence (E,)nen in € such
that E'\ |, cy En is negligible for every E € £. Now pu(J, ey En) <7 <p*Aand A" = A\ |, oy En is not
negligible. Let B € [A']<" be a non-negligible set. Then p*B < « is finite, so B has a measurable envelope
F (132Ee), which belongs to &; but F'\ ,,cy En 2 B is not negligible. X' So we have a B € [A]<" with

w*B >, as required.

(b) If p*A = 0 take B = ). Otherwise, let (y,)nen be a sequence in [0, u*A[ with supremum p*A.
For each n € N, (a) tells us that there is a set B,, C A such that #(B,) < shr(p) and p*B, > 7,; set

B = U, en Bn-

521D Proposition Let (X, X, 1) be a measure space and (2, i) its measure algebra.

(a) m(A) < 7(p) < max(mw(A),cfN (1)) (definitions: 511Dc, 511Gb).

(b) If uX > 0, then non N () < ().

(c) If (X, X, ) has locally determined negligible sets (definition: 2131), then shr N'(u) < 7(p).

(d) Suppose that there is a topology ¥ on X such that (X,%, %, u) is a quasi-Radon measure space.
Then, writing 2" for 2\ {0}, the partially ordered sets (X \ N (u), 2) and (2A",D) are Tukey equivalent and
7(1) = m(2N).
proof Let H C X\ M(u) be a coinitial set with cardinal 7(pu).

(a)(i) If a € 2 is non-zero, there is an E' € ¥ such that E* = a, and now F is not negligible, so there is
an H € H such that H C E and 0 # H* C a. Thus {H* : H € H} is coinitial with 24" and witnesses that

m(A) < #(H) = 7(p).

D.H.FREMLIN



4 Cardinal functions of measure theory 521D

(ii) Let B C AT be a coinitial set with cardinal (), and £ a cofinal subset of N'(u) of size cf N ().
For b € B, let F}, € ¥ be such that F = b, and consider G = {F, \ E:be B, E € £}. Then G C £\ N(p)
is coinitial with X\ M (u). P If uF > 0, there is a b € B such that b € F*. In this case, F}, \ F is negligible,
so there is an E € € such that F, \F C Fand FO F,\E€G. Q
It follows that 7(p) < #(G) < #(BxE) is at most the cardinal product 7(2)-cf N (1) < max(w, 7(A), cf N ().
But if ¢f A (p) is finite it is 1, so in fact 7(u) < 7(A) - f N (p) = max(m(A), TN (1)).

(b) For each H € H choose zy € H. Then A = {xy : H € H} must meet every non-negligible measurable
set, so (as uX > 0) cannot itself be negligible. Thus

non N () < #(A) < #(H) = 7(n).

(c) Suppose that B C X is non-negligible. Because (X, ¥, 1) has locally determined negligible sets there
is an E € ¥ such that uE > 0 and B N E is not negligible, and now B N E has a measurable envelope
F say (132Ee again). Set H' = {H : H € H, BN H # 0} and for H € H' choose xg € BN H; set
A= {xyg : H € H'}, sothat A C B and #(A4) < m(u). ? If A is negligible, then F'\ A includes a
non-negligible measurable set so includes a member H of H. As uH > 0 and F' is a measurable envelope
of B, H meets B and belongs to H', and xg € AN H. X Thus A is not negligible. As B is arbitrary,
shr V' (p) < m(p).

(d) For E € £\ N () let Fg be a closed non-negligible subset of E and set ¢(F) = Fp, € AT; for a € AT,
let 9(a) be a self-supporting measurable set such that ¢ (a)® = a (414F). Then if ¢(F) D a, ¥(a) \ Fg is
negligible so £ D Fgr 2 ¢(a). Thus (¢,v) is a Galois-Tukey connection and (X \ N (u), 2,2\ N (1)) <aT
(A, 2, 27).

Moreover, if 1)(a) 2 E, then a 2 ¢(E), so (1), ¢) also is a Galois-Tukey connection and (A%,2, A7) <aT
(EAN (W), 2, 2\ N ().

Thus (X\N (1), 2, X \N (1)) =t (AT,2,AT), that is, (X\N (1), 2) =1 (AT,2). By 513E(e-i), inverted,

m(p) = cl(E\N(p)) = ci(AF) = 7(2A).

521E It will be useful later in the chapter to be able to calculate the topological density of measure-
algebra topologies.

Proposition Let (2, i) be a semi-finite measure algebra.
(a) Give 2 its measure-algebra topology (323A).
(i) If 9B is a subalgebra of 2, it is topologically dense iff it T-generates 2, that is, 2 is the order-closed
subalgebra of itself generated by ‘B.
(ii) If 2 is finite, then its topological density is #(20); if 2 is infinite, its topological density is equal to
its Maharam type 7(21).
(b) Let 217 be the set of elements of 21 with finite measure, with its strong measure-algebra topology
(323Ad). Then the topological density of 2/ is #(A/) = #(21) if A is finite, and max(c(A), 7(A)) if A is
infinite.

proof (a)(i)(a) Suppose that 9B is topologically dense. Let € be the order-closed subalgebra of 2 generated
by B. If a € Af and ¢ € 2, there is a b € € such that bna = cna. P For each n € N, there is an
an € B such that fi(an (an, Ac)) < 27" Set b = infpensup,,>, am € €; then bNa = cna (apply 323F to
(anan)nen). Q

It follows that 2/ C ¢. P If ¢ € A/, then whenever ¢ C a € A/ there is a b, € € such that by na = c.
Now (because fi is semi-finite) ¢ = inf{b, :cCa c A/} € ¢. Q

Finally, again because [ is semi-finite,

c=sup{la:acU acclec
for every c € A, and A = €. Thus B 7-generates 2.
(B) Suppose that B 7-generates 2. Then the topological closure of 9B is order-closed (323D(c-i))
and a subalgebra (323B), so must be 2, and B is topologically dense.

MEASURE THEORY



521F Basic theory 5

(ii) (@) If A is finite, this is trivial, just because the measure-algebra topology is Hausdorff (323Ga).
So let us henceforth suppose that 2 is infinite, so that both 7(2) and the topological density d<(2() of 2 are
infinite.

(B) Let A C A be a set with cardinal 7(2() which 7-generates 2, and let 8 be the subalgebra of
2 generated by A. Then #(B) = #(A) = 7(A) (331Gc), and B is topologically dense in 2, by (i); so
dz(A) < 7(A).

() Let A C 2 be a topologically dense set with cardinal dz(2(), and B the subalgebra of 2 generated
by A. Then 9B is topologically dense, so it 7-generates 2, and

T(A) < #(B) = #(A) = ds(A);
with (), this means that we have equality, as claimed.

(b)(i) The case of finite A is again trivial; suppose that 2 is infinite. Let (a;);cr be a partition of unity
in 2 consisting of non-zero elements of finite measure.

(ii) The topological density dyop (A7) is at most max(c(2),7(2A)). P For each i, the topological density
of ™A,,, with its measure-algebra topology, is at most max(w,7(™As,)) < 7(A) ((a) above and 514Ed); let
B; C 2,, be a dense subset of this size or less. Set B = |J,c; Bi, D = {sup B’ : B’ € [B]<“}. Then the metric
closure D of D in 2/ is closed under u and includes 2, for every i. If now a € %/, a = sup;c;ana; € D.
So

diop (A7) < #(D) < max(w, #(I), 7(A)) < max(c(A), 7(A)). Q

(iii) ¢(A) < diop(2AT). P Let (b)) jes be any disjoint family in 2. For each j, let b € b; be a non-zero
element of non-zero finite measure. Set G; = {a : a € A/, plaaby) < by} for j € J. Then (Gj)jes
is a disjoint family of non-empty open sets in 2Af, so #(J) < dtop(Qlf) (bA4Ba). As (b;)jcs is arbitrary,
c(2A) < diop(A). Q

(iv) 7(A) < diop(AS). P Let A C 2/ be a dense set with cardinal diop (7). Let B be the order-closed
subalgebra of 2 generated by B = AU {a; : ¢ € I'}. For any ¢ € I, set A; = {ana; : a € A}. Now A; is
topologically dense in 2(,, (use 3A3Eb), so the order-closed subalgebra of 2, it generates is the whole of
2,, (323H); by 314H, A,, = {bna; : b € B}. Asa; € A C B, B includes A,,. As sup;c;a, =1, B =A.
Thus

T(A) < F£(B) < max(w, #(1), deop(A)) = drop (A7)
(using (iii) for the last equality). Q
(v) Putting these together, we have the result.

521F Proposition Let (X, X, 1) be a measure space, A a subset of X and p4 the subspace measure on
A.
a) N(ua) <t N(p), so add N (pa) > add N () and cf N (pa) < cf N ().
b) (A, €, N(MA)) <ar (X, €, N (1)), so non N'(p4) > nonN(p) and cov N (na) < cov N ().
c) add pg > add p.
d) shr NV (pa) < shr NV (p) and shr™ M (pa) < shr™ M (p).
e) If either A € ¥ or (X, %, u) has locally determined negligible sets, m(pua) < m(p).
(f) If pa is semi-finite, then 7(ua) < 7(p).

proof (a) Because N(ua) = PANN (1) (214Cb), the embedding N'(ua) S N (p) is a Tukey function, and
N(pa) <t N(1). By 513Ee, add N (pa) > add N (p) and cf N'(pa) < cf N (p).

(b) Next, setting ¢p(z) = x for z € A and Y(F) = FN A for F € N(u), (¢,v) witnesses that (4, €
aN(MA)) <GT (X7 67-/\/‘(:“)) By 512D and 512Ed7

non N (pa) = add(4, €, N(pa)) > add(X, €, N (1)) = non N (),

(
(
(
(
(

cov N (pa) = cov(A, e, N(pa)) < cov(X, €, N(pn)) = cov N (p).

D.H.FREMLIN



6 Cardinal functions of measure theory 521F

(c) If (Fe)esw is a disjoint family in ¥4 = dom pa, where £ < add p, then for each { < k we have an
E¢ € ¥ such that Fy = AN E¢ and paFe = pLe (214Ca). Set Ef = E¢ \ U, o £y for £ < k; then Ef €
for each £, and (E¢)e<y is disjoint. Set E'= ., B¢ =Ue.,, Be and F = ANE =J,_, F¢. Then

E£<n pale < paF < pkb = E§<m /‘Eé < Z£<n ple = Z§<m pake,
and we have equality. As (F¢)¢<, is arbitrary, add pa > add p.

(d) It B € PA\ N(11a), there is a C C B such that C ¢ N (u) and #(C) < shr M (p) (resp. #(C) <
shrt NV (1)); now C ¢ N(p14); as B is arbitrary, shr A'(ua) < shr N'(u) (resp. shrt N(pua) < shrt N ().

(e) Let H C ¥\ N (i) be a coinitial set with cardinal 7(u). Set G = {HNA: H € H} \N (). Then paG
is defined and non-zero for every G € G. Now G is coinitial with dom pig \ N (p4). P If paB > 0, there is
an ¥ € ¥ such that B=FENA. If A€ X, then B € ¥ and there is an H € ‘H such that H C B, while of
course H € G. If (X, X, u) has locally determined negligible sets, then, as in the proof of 521Dc, there is a

non-negligible set F' € 3 which is a measurable envelope of a subset of B. Now there is an H € H included
in F N E, in which case H N A is included in B and belongs to G. Q So

m(na) < #(G) < #(H) = n(p).

(f) Writing 2, 24 for the measure algebras of u and g4, we have a Boolean homomorphism 7 : 24 — 244
defined by saying that 7E* = (F N A)* for every E € ¥. (The point is just that F N A € N(4) whenever
F € N(p).) Now 7 is order-continuous. I Suppose that C' C 2 is non-empty and downwards-directed and
infC =0in 2. 2 If b € Ay is a non-zero lower bound of 7[C], then, because v, is semi-finite, there is a
G € dompuy such that 0 < psG < oo and G* Cb. Let E € ¥ be such that G = EN A and pFE = puaG
(214Ca). Then E* cannot be a lower bound of C; let a € C be such that E*\ a # 0. In this case, there is
an F € ¥ such that FF C E and F* = E*\ q, so that 7F* is disjoint from 7a2b, and FNG = (FNA) NG
must be negligible. We know that puF > 0, so u(E \ F') < pE; but also G \ (E'\ F) is negligible, so

waG =p*G < W(E\F) < pE = uaG. X

It follows that inf 7[C] = 0 in A 4; as C is arbitrary, 7 is order-continuous. Q

Now let B C 2 be such that B 7-generates A and #(B) = 7(2(). Writing B for the order-closed subalgebra
of A4 generated by 7[B], we see that 7~ 1[B] is an order-closed subalgebra of 2 including B, so must be the
whole of 2, and A4 = 7[A] = B. Accordingly

T(pa) = 7(Aa) < #(w[B]) < #(B) = 7(A) = 7(1),

as claimed.

521G Proposition Let ((X;,%;, u;))iesr be a non-empty family of measure spaces with direct sum
(X,3, ). Then

add V' (p) = minger add M (p;), add g = min;ey add py,
cov (1) = supye; cov A (s),  momAf(s) = minser non (),
shr N (1) = supje shr N (i), shr™ N(p) = supgep s N (i),

(1) < max(w, sup,e; 7(:), min{A : (1) < 24})
and 7(p) is the cardinal sum ), m(u;). If I is finite, then
cf N (1) = max;er cf N (14).

proof Concerning each of add A'(u), add p, cov N (1), non N'(u), shr NV (u) and shr™ AV (u), 521F provides

an inequality in one direction. The reverse inequalities are equally straightforward, especially if we note that

N(u) = TLie; N (us), so that 512Hc is relevant. For 7(u), 514Ef provides the formula at once if we note that

the measure algebra of p is isomorphic to the simple product of the measure algebras of the y; (cf. 322M).
As for 7(u), if for each i € I we choose a coinitial set H; of 3; \ N (p;) with cardinal 7(p;), then

H={Hx{i}:i€el, HeH;}

MEASURE THEORY



521H Basic theory 7

is coinitial with ¥\ NV (u) and witnesses that m(u) < >, m(u). (As in 214L, T am thinking of X as
Uier Xi x {i}.) Conversely, if H is coinitial with ¥\ NV (1) and for each i € I we set H; = {H : H x {i} € H},
we shall have H; coinitial with ¥; \ M(p;), so that

Doicr (i) <D i #(Hi) < #(H) = 7(p)
and w(p) =32 (i)

521H Proposition Let (X, 3, u) and (Y, T, v) be measure spaces, and f : X — Y an inverse-measure-
preserving function.
(a)(i) (X,e,N(n) <ar (Y,€,N(v)), so non N () > non N (v) and cov N (i) < cov N (v).
(ii) If there is a topology on Y such that v is a topological measure inner regular with respect to the
closed sets, then 7(v) < ().
(iii) If v is o-finite, then 7(v) < 7(w).
(b) If v is the image measure pf !, then add v > add p. If, moreover, p is complete, N'(v) < N (1), so
add N (u) < add N (v) and cf V(i) > cf N (v); also shr N (u) > shr N (v) and shrt NV (i) > shrt NV (v).

proof (a)(i) Set ¥(F) = f~[F] for F € N'(v). Then (f,) is a Galois-Tukey connection from (X, €, N(u))
to (Y, €, N (v)), so

cov N () = cov(X, €, N (1)) < cov(Y, €,N(v)) = cov N (v),

non N (p) = add(X, €, V() > add(Y, €, N (v)) = non N (v)
(512D, 512Ed again).

(ii) Let H be a coinitial subset of ¥ \ N (u) with cardinal m(u). Set G = {f[H] : H € H}. Because v
is a topological measure, G C T; and if H € H, then

vflH] = pf~ [f[H]] > pH > 0,

s0 G CT\N(v). If F € T\ N(v), there is a closed set F’ C F such that 0 < vF’" = pf~[F']; there is an
H € H such that H C f~'[F’]; now G = f[H] belongs to G and is included in F’ C F. So G is coinitial
with T\ M(v) and

m(v) < #(G) < #(H) = ().

(iii) Let (A, ) and (B, 7) be the measure algebras of p, v respectively. Then we have a sequentially
order-continuous measure-preserving Boolean homomorphism 7 : 8 — 2 defined by setting nF* = f~1[F]*
for every F' € domv (324M). If 2 is finite then B must be finite with #(B) < #(2(), and consequently
7(B) < 7(2A) (331Xc, or otherwise). So let us suppose that 2 is infinite.

Writing 2, B7 for the respective ideals of elements of finite measure, 7[87 is a function from B/ to Af
which is an isometry for the measure metrics on B/ and 21/, So the topological density diop(B/) is equal
to diop(7[B7]) and less than or equal to dyop(AF) (5A4B(h-ii)).

Observe next that (28, 7) is o-finite because v is, and that (2, i) therefore also is (324Kd). So we get

7(v) = 7(B) < max(w, ¢(B), 7(B)) = max(w, dtop(%f))
(521Eb)
< max(w, dtop(%f)) = max(w, C(Ql)’ T(Ql)) = T(QL) = T(U)7

as required.
(b) If (F¢)e<y is a disjoint family in T, where x < add p, then (f~[F¢])e<, is a disjoint family in ¥, so
v(\J Fo) = pf U Bl = w(UU £ 1FD = D nf M FD = ) v
E<k (<K E<k E<k E<k

As (Fe)e<y, is arbitrary, addv > add p.
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8 Cardinal functions of measure theory 521H

Now suppose that g is complete. In this case, F' € T whenever F' C Y and f~![F] € N(p), so that N'(v)
is precisely {F : F C Y, f~}[F] € N(p)}. It is now easy to check that F — f~1[F] : N(v) — N(n) is a
Tukey function. So add V' (v) > add N (i) and c¢f N (v) < cfN(u), by 513Ee again.

Take any non-negligible A C Y. Then f~1[A] ¢ N (u), so there is a set B C f~1[A] such that #(B) <
shr NV(p) and B ¢ N(p). In this case, f[B] C A, f[B] ¢ N(v) and #(f[B]) < shrN(u). As A 'is
arbitrary, shr N'(v) < shr A(u). The same argument, with < instead of < at appropriate points, shows that
shrt V(v) < shr™ M(p).

5211 Corollary Let (X, X, i) be an atomless strictly localizable measure space. Then non N (1) > non A/
and cov N (u) < cov N, where NV is the null ideal of Lebesgue measure on R.

proof (a) If uX = 0 this is trivial.

b) If 0 < uX < oo, let v be the completion of the normalized measure L . Then v is complete and
1 <M
o

atomless, so by 343Cb there is an inverse-measure-preserving function from (X, v) to ([0, 1], u1), where
is Lebesgue measure on [0,1]. Also N(v) = N(u). By 521Ha, non N (v) > non N (p1) and cov N (v) <
covN (p1). Now ([0,1], M (p1)) is isomorphic to (R,N). I Take a bijection A : R — [0,1] such that
h(z) = 3(1+tanhz) for # € R\ Q; then h is a suitable isomorphism. @ So non N (1) = non N (v) > non N/
and cov N (p) < cov V.

(c) If X has infinite measure, let (X;);c; be a decomposition of X into sets of finite measure. For each
1 € I let p; be the subspace measure on X;. Then every p; is atomless, so, putting (b) and 521G together,

non N (u) = min;e; non N'(p;) > non NV,

cov N () = sup;er cov N (p;) < cov V.

521J For product spaces the situation is more complicated, because the product measure introduces
‘new’ negligible sets which are not directly definable in terms of the null ideals of the factors. In the next
three sections, however, we shall find out quite a lot about the cardinal functions of Radon measures, and
this information, when it comes, can be used to give results about general products of probability measures.

Proposition Let ((X;,%;, ;))icr be a non-empty family of probability spaces with product (X, X, ).
(a)
non N (p) > sup;cynon N (p;),  cov N (p) < minger cov N (p;),

add g = add NV (p) < minjer add N (i), N (p) > sup;ep cf N (i),
shr N (1) > supjep shr N (i), shr™ N(p) > supgep s N (ui),

m(p) = sup;ep m(pi).

(b) Set k = #({i:i €I, %; #{0,X;}}. Then []=* <1 N(p); consequently add p = add N'(p2) is wy if &
is uncountable, while cf N'(u) is at least cf[x]<*.

(¢) Now suppose that I is countable and that we have for each ¢ € I a probability space (Y;, T;,v;) and an
inverse-measure-preserving function f; : X; — Y; which represents an isomorphism of the measure algebras
of pu; and v;. Let (Y, T,v) be the product of {(Y;, T;,v;))icr- Then

N () <o N (W) x Tl N (a)-
Consequently
add NV (p) > min(add N (v), min;e;y add N (1)),
and if I is finite
cfN (1) < max(cf N (v), max;ey cf N (1;)).
(d) If I is finite, then
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521J Basic theory 9
non N (p) = max;ey non N (u;),  covN(u) = min;ey cov N ().

proof (a) Note that add 4 = add N (1) by 521Ad. Now with one exception the inequalities are immediate
if we apply 521H to the canonical maps from X to X;. The odd one out is the last, because we do not have
a simple general result concerning the m-weight of an image measure. But in the present case we can argue
as follows. Let H C ¥\ M(u) be a coinitial set with cardinal w(u), and take ¢ € I. Then we can identify
(X, 3, p) with (X',%, 1) x (Xz,ZZ,,uz) where (X',%', 1t/) is the product of the family ((Xj;, Ej,luj)>je]7j;éi
(254N). If H € H, (X \ H = [pf(X;\ H[{2'}])i'(dz’) (252D) is less than 1, so there is an 27; € X’ such
that pf (X, \ Hl{zy}]) < 1, (i)« [{xH}] > 0 and there is a Gy € ; \ N'(u;) such that Gy C H[{a'; }].
Set G = {GH : H e H}. If wi >0, then p(X’ x F) > 0 and there is an H € H included in X’ x F; in
which case Gy C H[{z;}] C F. So G is coinitial with ¥; \ N'(u;) and

(i) < #(G) < #(H) < n(p).

As i is arbitrary, sup;c; (@) < w(p), as claimed.

(b)(i) If & < w then the constant function with value () is a Tukey function from [£]<% to N'(1z). Otherwise,
set J={i:i€1,%; #{0,X;}} and for i € J choose a non-empty C; € ¥; such that u;C; < % Index J as
(ign)e<nnen and for § < k set B¢ = {x : 2(i¢,) € Cj,,, for every n € N}, so that uFe =[], cn tic, Cie,, = 0.
Define ¢ : [k]=% — N (i) by setting ¢ K = Ugex Ee for countable K C k. Then ¢ is a Tukey function. I If
E € N(n), there is a negligible E' O E which is determined by coordinates in a countable set I’ (2540c).
Set L ={{: & <K, igy € I' for some n € N}; then L is countable. If £ < k and E¢ C E’, E¢ is determined
by coordinates in {i¢, : n € N}; as neither E¢ nor X \ E’ is empty, this must meet I’, and £ € L. So
{K : K € [r]=¥, K C E} is bounded above by L € [k]<“. As E is arbitrary, ¢ is a Tukey function. Q
Accordingly [k]=¥ <1 N ().

(ii) Tt follows that add NV'(u) < add[x]=* < wy if & is uncountable, and that cf N (i) > cf[x] =¥

(c)(i) Recall that any inverse-measure-preserving function f between measure spaces induces a measure-
preserving Boolean homomorphism F* ~ (f~![F])* between the measure algebras (324M). For i € I
and C € %; choose ¢;(C) € T; such that (f;'[;(C)])* = C* in the measure algebra of y;, that is,
CAfTMi(C)] € N(pi). Next, for E € N(u) and n € N, choose a family (Cgpmi)men,icr such that
Cenmi € i for every m € Nand i € I, E C U, ,en[Lic; Conmi, and 3 o T icr #6Crnmi < 2775 set

O(E) = (Moen Unmen [icr ©i(Canmi)s (U nen(Cenmi \ fi 10i(Canmi)]))ier)-

Because

V( ﬂ U le(CEan < lnf Z HVﬂyZ)z CEnnw

neNmeNiel meN el

lnf Z H/J'zCEnmz - 0

mEN el

¢ is a function from N (v) to N (v) x [[;c; N (ps)-

Now ¢ is a Tukey function. B Suppose that W € N (v) and that E; € N (p;) for every ¢ € I. Define
f: X =Y by setting f(z) = (fi(2(2)))ier for z € X; then f is inverse-measure-preserving (254H). So
V = fHW]U U {z : 2(i) € E;} is negligible. (Thls is where we need to know that I is countable.)
Suppose that £ € N (p) is such that ¢(F) < (W, (E;);cr); take z € E such that z(i) ¢ E; for every i € I,
and n € N. Then there is an m € N such that z € Hiel CEnmi. For each i € I,
so fi(x(i)) € Yi(Cenma); thus f(x) € [[;c; ¥i(CEnmi). As n is arbitrary,

f(z) € nneN UmeN Hie[ ¥i(Cenmi) W
and z € V. As z is arbitrary, E C V. As (W, (E;);c1) is arbitrary, ¢ is a Tukey function. Q
So N () <1 N () X Ties N (1)

(ii) Accordingly
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10 Cardinal functions of measure theory 521J

add N (p) > add(N (v) x [];c; N (1)) = min(add NV (v), min;er add N (p;))
and
cf N (1) < (N (v) x [T;e; N (i) = max(cfN (v), maxier cf N (u;))
if 1 is finite.

(d)(i) For each i € I let A; C X; be a non-negligible set with cardinal non N'(y;). Then A = [],.; A;
is not negligible (251Wm), while #(A) < max(w, max;c;y non N (y;)). If all the non A (p;) are finite, then
they are all equal to 1, and A is a singleton. So we must in any case have #(A) = max;c;r non M (p;), and
non N (p) < max;ey non N (p;). By (a), we have equality.

(ii) Suppose that I = {0,1}, and that £ is a cover of X = X x X; by negligible sets. For each F € &,
set Cp = {z : x € Xy, E[{z}] ¢ N(u1)}; then Cg is negligible. If #(£) < covN(uo), then there is an
z € Xo \ Ugee Cp; in which case {E[{z}] : E € £} witnesses that cov N (u1) < #(&). So #(&) must be at
least min(cov N (up),cov N (u1)). As & is arbitrary, cov N () > min(cov N (uo), cov N (u1)).

Now an induction on #(I) (using the associative law 254N) shows that cov N (u) > minger cov N (1)
whenever I is finite. Using (a) again, we have equality here also.

Remark The simplest applications of (¢) here will be when the p; are Maharam-type-homogeneous, so that
we can take the v; to be the usual measures on powers {0,1}" of {0, 1}, and v will be isomorphic to the usual
measure on {0, 1}" where & is the cardinal sum ) ;_; #;. The cardinal functions of these measures are dealt
with in §523. For non-homogeneous p; we shall still be able to arrange for the v; to be completion regular
Radon measures on dyadic spaces, so that the product measure v is again a Radon measure Y (532F), and
(once we have identified its measure algebra — see 334E, 334Ya) approachable by the methods of §524.

521K I turn now to ‘perfect’ and ‘compact’ measure spaces. (See §451 for the basic theory of these.)

Proposition Let (X, X, 1) be a perfect semi-finite measure space which is not purely atomic. Then

add NV (p) <addN, cfN(p) > cfN,

shr NV (p) > shr NV, shet N (p) > shet NV, w(p) > 7(ur)

where N is the null ideal of Lebesgue measure on R and py, is Lebesgue measure on R.

proof (a) Suppose first that p is a complete atomless probability measure. Then there is a function f : X —
[0, 1] which is inverse-measure-preserving for p and Lebesgue measure 11 on [0, 1] (343Cb again); and in fact
1 is the image measure pf~'. PP By 4510, puf~! is a Radon measure; since it extends p; it must actually
be equal to w1, by 415H. Q So add N (x) < add N (p1), cfN(p) > cf N (p1), shr N (p) > shr N(pq), and
shrt V(i) > shr™ M (pp) and 7(p) > (1), by 521H. As in the proof of 5211, ([0, 1], N'(111)) is isomorphic
to (R, ). Of course iy is not isomorphic to py. But py, is isomorphic to a direct sum of countably many
copies of p1, so by 521G we know that 7(pur) is the cardinal product w - m(u1); as 7(pq) is surely infinite,
this is 7(p1) again. So we have the result in the special case.

(b) Now suppose that (X, X, i) is any semi-finite perfect measure space which is not purely atomic. Then
the completion fi of p is still a semi-finite perfect measure which is not purely atomic (212Gd, 451G(c-i)),
and M (u) = N(f2) (212Eb). Because i is semi-finite and not purely atomic, there is a set E € ¥ of non-zero

finite measure such that the subspace measure fip is atomless. Set v = #iEﬂE, so that v is an atomless
complete perfect probability measure on E, while N'(v) = N (ug). Putting (a) together with 521F, we get
add NV(u) = add V(i) < add N (fig) = add N (v) < add N

and similarly for cf, shr and shr™.

521L Proposition (a) Let (X, X, 1) be a strictly localizable measure space and (Y, T, v) a locally compact
semi-finite measure space, and suppose that they have isomorphic measure algebras. Then (X, €, N (1)) <aT
(Y, €,N(v)); consequently covN(u) < covN (v) and non N (v) < non N ().
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5210 Basic theory 11

(b) Let (X,X,u) be a Maharam-type-homogeneous compact probability space with Maharam type k.
Then cov N (u) = cov N, and non N (u) = non Ny, where N, is the null ideal of the usual measure v, on
{0,1}%.

(c) Let (X,X, 1) be a compact strictly localizable measure space with measure algebra 2. Then

d(2) = min{#(A) : A C X has full outer measure}.

proof (a) This follows immediately from 521Ha, because by 343B there is an inverse-measure-preserving
function from X to Y.

(b) The point is that v, is a compact measure (342Jd, 451Ja), so that we can apply (a) in both directions
to see that cov N (u) = cov N, and non N (1) = non N,.

(c) The case pX = 0 is trivial; suppose that uX > 0. Let K be a compact class such that p is inner
regular with respect to K.

(i) Suppose that (Ce¢)ecqa) is a family of centered sets in 2 covering AT. For each £ < d(2A), set
Ke ={K : K € KNnX, K* € C¢}; then K¢ has the finite intersection property so there is a point
ze € XNKe. Set A={ae: {<dA)} K e LN and KNA=0, then K ¢ ;g0 Ke s0 K* =0 it
follows that every measurable subset of X \ A is negligible and A has full outer measure, while #(A4) < d(2).

(ii) Let 7 be the completion of p, 3 its domain and 6 : A — 3 a lifting (341K, 212Gb, 322Da). Take
any A C X of full outer measure for p; then it also has full outer measure for ji (212Eb). For « € A, set
Cy={a:a €U € ba}; then (Cy) eca is a family of centered sets in 2 with union AT, so d(2A) < #(A).

521M Proposition Let (X, Y, 1) be a complete locally determined measure space of magnitude at most
add p. Then it is strictly localizable.

proof Write k for add . Let (2, ) be the measure algebra of u. Then there is a partition of unity
D C 2 consisting of elements of finite measure; as #(D) < ¢(A) < &, there is a family (a¢)¢<, running
over DU {0}. For each § < &, choose E¢ € ¥ such that Ef = a¢, and set F¢ = E¢ \ U, . Ey. Because
E:\ Fe = Un<£ E: N E, is the union of fewer than add u negligible sets, it is negligible, and F¢ € X, with
F¢ = ag. Now (F¢)e<y is a disjoint family of sets of finite measure. If &' € ¥ and pE > 0, there is some
¢ < k such that E*nag # 0, and now pu(E N F¢) > 0. Thus (F¢)e<, satisfies the condition of 2130a, and u
is strictly localizable.

521N Proposition Let (X, X, 1) be a complete locally determined localizable measure space of magni-
tude at most ¢. Then it is strictly localizable.

proof Again let (2, ) be the measure algebra of u, and take a partition of unity D C A consisting
of elements of finite measure; as #(D) < ¢(2A) < ¢, there is an injective function h : D — PN. This
time, because 2 is Dedekind complete, we can set b, = sup{d : d € D, n € h(d)} for each n € N. If
d € D, then d = inf,epn(g) b \ SUP,en\p(q) bn- So if we choose E, € X such that E} = b, for each n,
and set Fy = ﬂneh(d) E,\ UneN\h(d) E, for d € D, (Fg)qep will be a disjoint family in ¥ and F; = d
for every d. Now pFy; = fid is always finite; and if F € ¥ is non-negligible, there is a d € D such that
0+# a(E*nd) = u(ENF,). Thus (Fg)4ep satisfies the condition of 2130a, and p is strictly localizable.

5210 Proposition (a) If (X, ¥, ;1) is a semi-finite measure space, its magnitude is at most max(w, 2#(X)).

(b) If (X, X, u) is a strictly localizable measure space, its magnitude is at most max(w, #(X)).

(¢) There is an infinite semi-finite measure space (X, ¥, ) with magnitude 2#(X),

(d) If (A;)ier is a disjoint family of subsets of X and #(I) > max(w, mag(y)) then there is an ¢ € I such
that X \ A; has full outer measure.

proof (a)-(b) These are elementary. If (X, X, u) is semi-finite, with measure algebra 2, then
o(A) < #(A) < H#(D) < #(PX) =270,
If w is strictly localizable, with decomposition (X;);er, then (X?);cs is a partition of unity in 2 consisting

of elements of finite measure, so
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() < max(w, #({i:i €I, uX; > 0})) < max(w, #(X))
by 332E.

(c) Let (X¢)e<w, be a disjoint family of sets such that #(X¢) = #(P(U, < Xy)) for every { < wi; for
each ¢, let he : P(U, ¢ Xy) — X¢ be an injection. Set X = |J;, X¢. For A C X define fa : w1 — X
by setting f(§) = he(ANU, ¢ Xy) for each & let J4 be fa[wi] and pa the countable-cocountable measure
on Jy. Observe that #(J4) = wy for every A C X, and that if A B C X are distinct then J4 N Jp is
countable. So if we set uE = ),y pa(E N Ja) whenever E C X is such that £ N J4 is countable or
cocountable in J4 for every A, then p will be a complete locally determined measure on X. Since uJ4 =1
and p(J4 N Jp) =0 whenever A, B C X are distinct, g has magnitude 2#(X),

(d) ? Otherwise, there is for each i € I a measurable set F; of non-zero measure such that F; C A;.
Again writing 2 for the measure algebra of u, (F?);cr is a disjoint family in 20\ {0} so #(I) < ¢(A) <
max(w, mag(p)). X

521P Proposition (a) If 2* < 2 whenever ¢ < A < s and cf A > w, then the magnitude mag u of yu is
at most max(w, #(X)) for every localizable measure space (X, %, u).
(b) Suppose that 2¢ = 2. Then there is a localizable measure space (Y, T,v) with #(Y) = ¢ and
— ¢t
magy = ct.

Remark TgX, for once, is obscure; 2° here is #(P(ct)), not (2)F.

proof (a) If magpu < w we can stop. Otherwise, set kK = magu. Let (2, 1) be the measure algebra of p,
so that k = ¢(2) and there is a disjoint family (ag¢)e<, in AT (332F). If /i is the c.l.d. version of p, we can
identify 2 with the measure algebra of i (322DDb).

case 1 If k < ¢, i is strictly localizable (521N), so has a lifting 6 (341K again); but now (fa¢)e<, is a
disjoint family of non-empty subsets of X, so #(X) > k.

case 2 If s > ¢, of course X is uncountable (5210a). For § < r, choose E¢ € ¥ such that Ef = ag.
? If #(X) < kK, there is a set Y C X such that #(Y") has uncountable cofinality and Iy = {¢ : £ < &,
1 (Ee NY) > 0} has cardinal greater than max(c,#(X)). P If cf(#(X)) is uncountable, take ¥ = X.
Otherwise, let (Y,,)nen be an increasing sequence of subsets of X, with union X, such that #(Y;,) is an
uncountable successor cardinal less than #(X) for every n. If £ < k, there is some n such that E; NY,, is
non-negligible, that is, £ € Iy, . So the non-decreasing sequence (Iy, )nen has union &, and there is some
n € N such that #(Iy, ) > max(c,#(X)). Now we can take Y =Y,,. Q
For every J C Iy, set by = supgc;ae and let F; € X be such that F5 =0b;. If J, K C Iy are distinct,
thereis a ¢ € JAK, in which case ag C by A bk, Ee\ (FyAFk) is negligible and Y N (F;AF) is non-empty.
Thus J — Y N F;:Ply — PY is injective, and

o#(ly) < 9#(Y) < 9#(X) < o#(Iy),

Setting A = max(c, #(Y)), ' = #(Iy) we now have ¢ < A < ¥/, cf A > w and 2* = 2% which is supposed
to be impossible. X
So in this case also we have #(X) > k.

(b)(i) Set I = Pct and X = {0,1}) = {0,1}?". Putting 5A4Be and 5A4C(a-ii) together, we see that
there is a set Y C X, with cardinal at most ¢* = ¢, which meets every non-empty Gs subset of X. In
particular, if K C I is countable and x € X there is a y € Y such that y[IC = z[K.

(ii) Let u be the complete locally determined localizable measure on X described in 216E, with C' = ¢*.
Then Y has full outer measure in X. P (I follow the notation and argument of 216E.) If uE > 0, then, by
the argument of part (g) of the proof of 216E, there are a v < ¢ and a K € [[| such that F,x C E,
where Fyi = {z: 2| K = 2,[K}. But Y was chosen to meet every such set. As E is arbitrary, Y has full
outer measure. Q

(iii) magp = ¢*. P In the language of 216E, we have a family (Gy,}), <.+ of p-atoms of measure
1, each pair with negligible intersection, and every non-negligible measurable set meets some Gy, in a
non-negligible set. Q
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(iv) Now let v be the subspace measure on Y. By 214le, v is complete, locally determined and
localizable. By 3221, we can identify the measure algebras of y and v, so magry = magpu = ¢*, while

#Y)=c

521Q Free products We have some simple calculations associated with the measure algebra free prod-
ucts of §325.

Proposition (a) Let (2, i) and (%8, 7) be semi-finite measure algebras and (€, \) their localizable measure
algebra free product. Then

c(€) < max(w, c(2A), c(B)),

7(€) < max(w, 7(A), 7(B)).

(b) Let ((;, [1;))ies be a family of probability algebras, and (€, \) their probability algebra free product.
Then

7(€) < max(w, #(I),sup;c; 7(2)).

proof (a)(i) Let A C A, B C B be partitions of unity consisting of elements of finite measure (322Ea).
Then C ={a®b:a € A, b€ B} is a disjoint family in €, and

supC =sup{(a®@1)n(1®b):ac€ A, be B} =(supa®1)n(supl ®b)
acA beB

(313Bc)

=(supA®1)n(1®@supB)
(325Da)

—(1e)n(l®l) =1

that is, C' is a partition of unity. As every member of C has finite measure,
c(€) < max(w, #(C)) = max(w, #(A), #(B)) = max(w, c(A), c(B))
by 332E.
(ii) As for Maharam types, I am just repeating the result stated and proved in 334B.
(b) This is 334D.

521R Proposition If (X, ¥, ;1) is any measure space, its Maharam type is at most 2#(X).

proof If 2 is the measure algebra of p,
T(A) < #(A) < #(X) < #(PX) = 270

521S Proposition (a) A countably separated measure space has Maharam type at most 2°.
(b) There is a countably separated quasi-Radon probability space with Maharam type 2° .
(¢) A countably separated semi-finite measure space has magnitude at most 2° .

(d) There is a countably separated semi-finite measure space with magnitude 2°.

proof Set k =2°.

(a) If (X, %, p) is countably separated, there is an injective function from X to R (343E), so #(X) < ¢;
now use 521R.

(b) As in (b-i) of the proof of 521P, there is a set ¥ C X = {0, 1}*, with cardinal ¢, which meets every
non-empty Gy subset of X, and therefore has full outer measure for the usual measure v,; of X.

In [0,1] let (Cy)yecy be a disjoint family of sets of full outer measure for Lebesgue measure p1 on [0, 1]
(419I), and set C = {(y,t) : y € Y, t € Cy,} € Z = X x [0,1]. Now C has full outer measure for the
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14 Cardinal functions of measure theory 5218

product measure A on Z. P Suppose that W C Z and AW > 0. Then [ puyW[{z}v.(dz) > 0 (252D),
so {z : puW[{z}] > 0} has non-zero measure and meets Y. Taking y € Y such that p;W[{y}] > 0,
{y} x (Cy N W[{y}]) is a non-empty subset of CNW. Q

The measure algebra 2l of the subspace measure A\¢ on C' can therefore be identified with the measure
algebra of A (322Jb), and has Maharam type k. Because (Cy)ycy is disjoint, each horizontal section of C' is
a singleton and C' is separated by the measurable sets C'N (X x [0, ¢]) for ¢ € QN [0, 1]. Thus A¢ is countably
separated.

If we give Z the product topology, then A is a Radon measure (417T, or otherwise), so A¢ is quasi-Radon
for the subspace topology (415B).

(c) As in (a), #(X) < ¢, so we can use 5210a.

(d)(i) The first step is to build a measure space of magnitude 2° and cardinal ¢, as follows. Let h :
¢ = ([(J5¥)2 be a surjection; take its two components to be hy and hy. For D C ¢ set Fp = {£: ¢ <,
ha(€) = DN hy(€)}. For I € [¢]S¥ set Ay ={¢:&< ¢, I € hy(€)}, and set A = [J{PA; : I € [c]S*}; note
that A is a o-ideal of subsets of ¢.

IfDCc, Fp ¢ A PIf I €[]S, there is a £ < ¢ such that h(§) = (I,IN D), Now £ € Fp \ Ar; as I is
arbitrary, Fp ¢ A. Q So we can define a measure vp on ¢ by saying that

VD(E):lingcandFD\EGA,
=0if ECcand FpNE € A,

undefined otherwise,

and vpFp = 1.

If D, D' C ¢ are distinct, Fp N Fpr € A. P Take n € DAD'. If £ € Fp N Fpr, then DN hy(§) = he() =
D'n hl(f), son ¢ hl(g) and & € A{U}' Thus Fp N Fp C A{’]} cA Q

Soifweset v =73 . Vp, as defined in 234G, v is a measure on ¢ such that vFp = 1 and v(FpNFp/) =0
for all distinct D, D’ C ¢. Also v is semi-finite, because if vE > 0 there is a D C ¢ such that vpE > 0, in
which case v(ENFp) =vp(ENFp) =1. So v is a semi-finite measure on ¢ with magnitude #(Pc) = 2°.
Because every vp is complete, so is v (234Ha).

(ii) Asin (b), let (Ce)e<. be a disjoint family of subsets of [0, 1] all with full outer measure for Lebesgue
measure pq. Set Z = ¢x [0, 1] with its c.l.d. product measure A = vx 1, and C = {(§,t) : { < ¢, t € Ce} C Z.
Then C has full outer measure, by the argument of (b) above. So, as in (b), the measure algebra 2 of the
subspace measure Ac on C' can be identified with the measure algebra of A. The map E — C N (E x [0, 1])
induces a measure-preserving homomorphism from the measure algebra of v to 2, so magAc = ¢(2) is at
least 2¢; by (c), it is exactly 2°. Also as in (b), A¢ is countably separated.

521T In §464 I looked at the L-space M of bounded additive functionals on PI for infinite sets I, of
which I = N is of course by far the most important, and found a band decomposition of M as M, ® (M, N
M) @ Mpum, where M, consists of the ‘completely additive’ functionals (and may be identified with ¢*(1)),
M., consists of the ‘measurable’ functionals (that is, those integrated by the usual measure on PI), and
Mpnm = ML consists of the ‘purely non-measurable’ functionals. Any non-negative functional § € M can
be identified with a Radon measure pg on the Stone-Cech compactification 31 (464P). The purely atomic
measures on I correspond to members of M. Among the others, the general rule is that ‘simple’ measures
must correspond to functionals in Mpnm; see 464Pa and 464Xa. The next proposition, strengthening 464Qb,
shows that this rule is followed by Maharam types.

Proposition Let I be a set, and suppose that a non-zero § € (M, N M)t as defined in §464, corresponds
to the Radon measure pg on BI. Let v be the usual measure on PI. Then the Maharam type of ug is at
least cov NV (v).

proof Of course I has to be infinite, since not every additive functional on PI is completely additive; so
cov N (v) is not co. By 464Qc, we know that

{(a,b) :a,bC I, 0a =201, 0(anb) =01}
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is conegligible for the product measure v x v on (PI)2. Set
Ay={a:aC1, a= %7 {b:0(and) = i@]} is v-conegligible};

then Aq is v-conegligible. Now take a set A C Ay which is maximal subject to the requirement that
0(aNb) = 161 for all distinct a, b € A. If a is any subset of I, then either a € A, or a ¢ Ay, or there is a
be A\ {a} such that 8(a Nb) # +61; so PI is the union of

1
(PI\ Ao)UUpeata:0(and) # ZGI}
and cov N (v) <1+ #(A). As cov N (v) is surely infinite, it is in fact less than or equal to #(A).
Now consider the open-and-closed sets @ C 31 for a € A. If a, b € A are distinct,
po(@Lb) = pg(alsb) = 0(alsb) = 101 > 0.

So in the measure algebra 2 of ug, {a* : a € A} is a discrete set with cardinal at least cov N (v), and the
topological density of 2 is at least cov N (v) (5A4B(h-ii) again). By 521E, 7(ug) = 7(™A) > cov N (v).

521X Basic exercises (a) Let B(R) be the Borel o-algebra of R, and u the restriction of Lebesgue
measure to B(R). Show that add p = wy. (Hint: if ¢ = wy, [R]** € B(R); if ¢ > wy, [R]“* N B(R) = ; or use
423M and 423R!.)

(b) Let (X, 3, 1) be a semi-finite locally compact measure space. Show that add p is the least cardinal
of any set £ C 3 such that | J& ¢ %, or oo if there is no such €. (Hint: 451Q.)

(c) Let (X,X%,u) be a complete locally determined measure space, and k a cardinal such that k <
cov N (ug) for every non-negligible measurable set F C X, writing g for the subspace measure. Suppose
that A C X is such that both A and X \ A are expressible as the union of at most £ members of ¥. Show
that A € 3.

>(d)(i) Find a probability space (X, X, 1), with measure algebra 2, such that 7(2) < 7 (u). (ii) Find a
probability space (X, X, u), with null ideal A (), such that ¢f N (u) < w(u). (iii) Find a probability space
(X, 3, p) such that 7(u) < cf N (). (Hint: 513X(q-iii).)

(e) Let (X, %, 1) be a measure space and v an indefinite-integral measure over p. Show that add N (v) >
add N (), cf N (v) < ef N'(p), non N'(v) > non N (p), cov NV (v) < cov N (p), shr N'(v) < shr N(p), shr NV (v) <
shr™ N (u), w(v) < m(p), 7(v) < 7(u).

(f) Let (X, X, 1) be a semi-finite measure space which is not purely atomic. Show that 7(p) > m(ur),
where pr, is Lebesgue measure on R.

(g) Let (X, X, 1) be an atomless measure space with locally determined negligible sets (definition: 213I).
Show that non A (1) > non N, where A is the null ideal of Lebesgue measure.

(h) Let (X, %, ) and (Y, T, v) be complete locally determined measure spaces, neither of measure 0, and
% v the c.l.d. product measure on X x Y. Show that

non N (p X v) = max(non N (1), non N'(v)),
cov N (u x v) < min(cov N (), cov N (v))

with equality if either u or v is strictly localizable,

add(p x v) = add N (g x v) < min(add M (u), add N (v)),
cfN (u x v) > max(cf N (1), cfN(v)),
shr (1 x v) > max(shr N'(u), shr N'(v)),

TFormerly 423Q.
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16 Cardinal functions of measure theory 521Xh
shr™ M (p x v) > max(shr™ NV (u), shr™ N (v)),
m(p X v) 2 max(mw(p), 7(v)).

(i) Let (X, X, ) be a probability space, and p" the product measure on X. (i) Show that X has a set of
full outer measure with cardinal at most non V' (uV). (ii) Show that if A € S\ N (u) and #(A) < cov N (uV),
then there is a countable set which meets every member of A.

(j) Show that the direct sum of ¢ or fewer countably separated measure spaces is countably separated.

(k) Show that 2¢ < 2" iff every countably separated complete locally determined localizable measure
space is strictly localizable. (Hint: 521P, 5218, 252Yp.)

(1) Show that if (X,X, u) is a purely atomic countably separated semi-finite measure space then its
magnitude is at most max(w, #(X)) and its Maharam type is countable.

(m) Suppose that 2% < ¢ for every k < ¢. Show that there is a countably separated semi-finite measure
space with magnitude 2¢ .

(n) For a measure space (X, ¥, ) with null ideal N (u), write heov(p) for inf ges ar(u) cov(E, N (p)).
(Count inf () as oo, as usual.) Show that if (X,3, ) and (Y, T,v) are semi-finite measure spaces, neither
having zero measure, with c.l.d. product (X x Y, A, A), then hcov(A) = min(hcov(u), heov(v)).

521Y Further exercises (a) Find a probability space (X, X, 1), a set Y and a function f : X — Y such
that, setting v = pf~1, add N (p) > add N (v), cfN'(n) < cf N (v), shr N(p) < shr N(v) and 7m(p) < 7(v).

(b) Find a strictly localizable measure space (X,3, u), a set Y, and a function f : X — Y such that,
setting v = pf !, v is semi-finite and 7(u) < 7(v).

(c) Let (X, %, ) and (Y, T,v) be localizable measure spaces, and suppose that max(mag(v), 7(v)) < c.
Show that the c.l.d. product measure on X x Y is localizable.

(d) Show that there is a probability space (X, %, u) with Maharam type greater than #(X). (Hint:
5231b.)

(e) Let k be an infinite cardinal. Let us say that a measure space (X, X, 1) is k-separated if there is a
family £ C ¥, with cardinal at most &, separating the points of X. (i) Show that there is a disjoint family
A of subsets of {0,1}", all of full outer measure for the usual measure of {0,1}", such that #(A) = 2". (ii)
Show that every k-separated measure space has Maharam type at most 227, and that there is a k-separated
quasi-Radon probability space with Maharam type 22" . (iii) Show that every semi-finite x-separated measure
space has magnitude at most 227, and that there is a semi-finite k-separated measure space with magnitude
greater than 2%. (iv) Suppose that ¢ < & < X and 2% = 2*. Show that the usual measure on {0,1}* is
k-separated.

521 Notes and comments The cardinal functions of an ideal can be thought of as measures of the
‘complexity’ of that ideal. In a measure space, it is natural to suppose that a subspace measure (at least,
on a measurable subspace) will be ‘simpler’ than the original measure; in 521F we see that the additivity
and uniformity tend to rise and the covering number, cofinality, shrinking number and m-weight tend to
fall. Similarly, an image measure ought to be simpler than its parent; but here, while additivity rises and
cofinality and shrinking number fall, uniformity falls and covering number rises (521H). Also there is a trap
if the original measure is not complete (521Ya), and m-weight is more complicated (521H(a-ii)). There is
a similar problem concerning topological m-weight, which led to the concept of network weight (5A4Ai,
5A4Bc); and just as network weight matches topological weight for compact Hausdorff spaces (5A4C(a-i)),
an appropriate hypothesis on our measures can make their m-weights more coherent (521H(a-ii)).

Direct sums should not be more complex than their most complex component; 521G confirms this preju-
dice except in respect of cofinality. Since we are looking, in effect, at the cofinality of a product of partially
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522B Cichon’s diagram 17

ordered sets, we can expect at least as many difficulties as are to be found in pcf theory (§5A2). We should
like to be able to bound the complexity of a product in terms of the complexities of the factors; here there
seem to be some interesting questions, and 521J and 521Xh are, I hope, only a start.

Consider the statement

() ‘mag p < #(X) for every localizable measure space (X, %, i) .

From 521P we see that the generalized continuum hypothesis implies (f), and also that there are simple
models of set theory in which (}) is false (KUNEN 80, VIIL.4.7; JECH 03, 15.18). I do not know whether
there is a natural combinatorial statement equiveridical with (f). If we amend (f) to

‘mag u < #(X) for every countably separated localizable measure space (X, %, i)’

we find ourselves with a statement equiveridical with ‘2¢ = 2¢" (cf. 521Xk).

I give space to ‘countably separated’ measures because these can be identified with the topological mea-
sures on subsets of R, and I do not think it is immediately apparent just how complicated these can be. In
fact, as shown by the proofs of parts (b) and (d) in 5218, most of the phenomena which can arise in any mea-
sure space with cardinal less than or equal to ¢ can appear in countably separated measure spaces. In 521Sb
I add ‘quasi-Radon’ to show that the very strong restrictions on countably separated Radon probability
measures (522Wa) depend on their perfectness, not on their 7-additivity.

The constructions in 5210c¢ and 521Sd both depend on almost-disjoint families of sets. Those described
here are elementary. In many models of set theory, we have much more striking results, of which 521Xm is
a simple example.

Some new considerations intrude rather abruptly in 521T, but the argument here is both elementary and
important, quite apart from its use in helping us to understand the classification scheme in §464.

Version of 11.7.23
522 Cichont’s diagram

In this section I describe some extraordinary relationships between the cardinals associated with the
ideals of meager and negligible sets in the real line. I concentrate on the strikingly symmetric pattern of
Cichoii’s diagram (522B); the first half of the section is taken up with proofs of the facts encapsulated in
this diagram. I include a handful of results characterizing some of the most important cardinals here (522C,
5228S), notes on Martin cardinals associated with the diagram (522T) and the Freese-Nation number of PN
(522U), and a brief discussion of cofinalities (522V).

522A Notation In this section, I will use the symbols M and N for the ideals of meager and negligible
subsets of R respectively. Associated with these we have the eight cardinals add M, cov. M, non M, cf M,
add V, cov N, non N and cf N. In addition we have two cardinals associated with the partially ordered set
NY: the bounding number b = add,, N¥ (see 513H for the definition of add,,, and 522C for alternative
descriptions of b) and the dominating number 0 = cfN; and finally I should include ¢ itself as an eleventh
cardinal in the list to be examined here. I use the notions of Galois-Tukey connection and Tukey function,
and the associated relations <gT, =gT and <, as described in §§512-513.

522B Cichon’s diagram The diagram itself is the following:

covN — non M — ofM — cfN — ¢

b — D

w; — add N — add M — cov M —— non N

The cardinals here increase from bottom left to top right; that is,

(©) 2003 D. H. Fremlin
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18 Cardinal functions of measure theory 522B

w; <addN <addM <b<d<cfM <cfN <,
etc. In addition, we have two equalities:
add M = min(b,cov M), cf M = max(d,non M).

In the rest of this section I will prove all the inequalities declared here, seeking to demonstrate reasons for
the remarkable symmetry of the diagram. I will make heavy use of the ideas of §512. Of course many of
the elementary results can be proved directly without difficulty; but for the most interesting part of the
argument (522K-522Q below) Tukey functions seem to be the right way to proceed.

I start with the easiest results. It will be helpful to have descriptions of b and 0 in terms of other partially
ordered sets.

522C Lemma (i) On N¥ define a relation <* by saying that f <* g if if {n : f(n) > g(n)} is finite.
Then <* is a pre-order on N; add(NV, <*) = b and cf(NN, <*) = .

(i) On N¥ define a relation < by saying that f < g if either f < g or {n : g(n) < f(n)} is finite. Then
= is a partial order on N¥, add(NY, <) = b and cf(NV, <) = .

(iii) (NN, <*) =p (NN <).
proof (a) The checks that <* is a pre-order and that =< is a partial order are elementary. Write ¢ for the
identity map from N¥ to itself.

(b) For f € N¥ and A C N say that f <’ A if there is a g € A such that f < g (see 512F). Now
(NN, <’ [NN]=@) gop (NN, <* NN). P For g € NV set ¢(g) = {h:g <* h <* g} € [NN]“. If f <* g, then
f<fVvge(g),sof<"(g). Thus (1,v) is a Galois-Tukey connection and (NV, <’/ [NN]=@) gqp (NN, <*
NY). Q

(c) (NN, <* NY) gxor (NN <,NY). P If f, g € N¥ and f < g, then f <* g; so (1,¢) is a Galois-Tukey
connection from (NV, <* NN) to (NN, < NV), as in 512Cd. Q

(d) If A C NV is countable, there is a ¥(A) € NY such that g < 1(A) for every g € A. P If A is empty,
this is trivial. Otherwise, let (g, )nen be a sequence running over A, and set ¥(A)(¢) = 1 + max,<; gn(¢) for
every 1 € N. Q

It follows that (NN, < NV) qp (NN </ [NN]=«). P If A € [NN]=% and f <’ A, then there is some
g € A such that f < g, so that f < (A). Thus (:,9) is a Galois-Tukey connection from (NV, < NV) to
(N, <’ [NY]=). @

(e) Putting (b)-(d) together, we see that
(NN, <7 [NN]=%) =gp (NN, <* NN) =¢p (NY, <, NV).

In particular, (NY, <*) = (NV, <) (513Ea). By 512D,

add(NN, <’ [NN]=«) = add(NN, <* NV) = add(NV, <, NV),

cov(NN, <’ [NN]=¢) = cov(NN, <* NN) = cov(NN, < NN).
But by 513Ia we have

add(NV, <’ [NN]2%) = add,,(NN) = b,

so b = add(NV, <*) = add(NY, <). In the other direction,

0 = of NN = cov(NY, <, NV) < max(w, cov(NV, <’ [NN]s@))

(512Gf)

< max(w, cov(NY, < NNV))
(512Ge)

= max(w,?) = 0.
So
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2 = cov(N¥, </, [NF]=%) = cf(N¥, <*) = ef(N", ),

and the proof is complete.

522D Proposition b <0.
proof Use 511He and 522C.

522E Proposition add N < cov N, add M < cov M, non M < c¢f M and non N < cf N.
proof We need only observe that both M and N are proper ideals of PR with union R, and use 511Jc.

522F Proposition w; < add A and cfN < c.

proof Of course w; < add A because N is a o-ideal of sets. As for c¢f A, we know that the family of
negligible Borel sets is cofinal with N (134Fb) and has at most ¢ members (Fa), so cf N < c.

522G Proposition (ROTHBERGER 19384) cov A < non M and cov.M < nonN.
proof The point is just that there is a comeager negligible set £ C R. I* Enumerate Q as (g,,)nen, and set
E= ﬂnEN UmZn ]Qn - 2—n7 qn + 2—77,[ Q

Because z — a + x and x — a — x are measure-preserving homeomorphisms, a + F is negligible and a — F
is comeager for every a € R. Let A C R be a non-meager set with cardinal non M. Then AN (a — E) # 0
for every a € R, that is, {z + E : x € A} covers R; so cov.N < #(A) = non M.

For the other inequality, note that FF = R\ E is conegligible and meager; so the same argument shows
that cov. M < non N.

522H Proposition add M < b and 0 < cf M.

proof (a) Start by choosing a countable base U for the topology of R, not containing @), and enumerate it
as (Ug)ren. For each k € N let (Vi)ien be a disjoint sequence of non-empty open subsets of Uy; finally,
enumerate Vi N Q as (xp;)ien for each k, [ € N.

(b) Fix f € N¥ for the moment. Set Ei(f) = {2 : | € N, i < f(I)} C Uy for each k € N. This is
nowhere dense because if G is a non-empty open set, either G N J;cy Var = 0 and G N Eg(f) = 0, or there is
an [ such that G NV, is non-empty, in which case GNVy N Eg(f) is finite and G\ Ex(f) 2 GN Vi \ Ex(f)
is non-empty.

Now choose (kp)nen, (In)nen inductively as follows. Given (ki)i<n, U;<,, Ek,(f) is nowhere dense, so
there is an I, € N such that U; C U, \ Uicn Er. (f). Now if U, € U,<,, Ui,, set k, = 0; otherwise, take k,
such that Uy, C U, \ U,<,, Ui;, and continue. At the end of the induction, set ¢(f) = U,,cn Ek, -

The construction ensures that U;, N Ey, = @ for all m and n, so that U, is always a non-empty open
subset of U, \ ¢(f); accordingly ¢(f) is nowhere dense. If G C R is a non-empty open set meeting ¢(f),
there is a k € N such that Ey(f) C GN¢(f). P Let n € N be such that U,, C G and U,, N ¢(f) # 0. Then

there is an i € N such that U, N Ey, (f) # 0; as B, (f) N Uy, is empty for every j, U, € U, -, Ui, and
Ekn(f) g Uk:n g Un g G7

j<n

so we can take k = k,,. Q

(c) In the other direction, given M € M, choose a sequence (F,,(M))nen of closed nowhere dense closed
sets covering M. For k, I, n € N set garni(l) = min{j : zp; ¢ F,(M)}. Since add(NV, <) = add,,(NY, <
) > wy (522C(ii) with 513Ib, or use the construction in part (d) of the proof of 522C), {gnrsnk : 1, k € N} is
bounded above in (NV, <); take (M) € NN such that gy < (M) for all n and k.

(d) Now (¢, ) is a Galois-Tukey connection from (NN, < NV) to (M, C, M). P Suppose that f € NN and
M € M are such that ¢(f) C M. Because ¢(f) is closed and not empty and included in | J, oy Fr (M), Baire’s
theorem (3A3G or 4A2Ma) tells us that there are n € N and an open set G such that §) # GNeo(f) C F,(M).
By the last remark in (b), there is a k € N such that Ei(f) C GN@(f). But this means that, for any [ € N,
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zrpi € GN@(f) for every ¢ < f(1), while if j = garni(l) then xr; € GNO(f). So f(I) < gani(l) for every I,
and f < guak 2 P(M). Q

(e) So in fact ¢ is a Tukey function from (NV, <) to (M, C) (513Ea). It follows at once that
add M < add(NN, <), cf(NN <) < cf M
(513Ee), that is, add M < b and ? < ¢f M, by 522C(ii).

5221 Proposition b < non M and cov. M < 0.

proof Again Let < be the partial order on NV described in 522C(ii). Then (R\Q, €, M) <gT (N¥, <, NV).
P Let ¢ : R\ Q — N¥ be a homeomorphism (4A2Ub?). For f € N¥ set Ky = {g : g < f}; then K/ is
compact, so ¢~ [Ky| is compact. Because ¢~![K] is disjoint from Q, it is nowhere dense. Set

(f) =U{¢ ' [K,] : g € NY, {n: g(n) # f(n)} is finite}}.
Because there are only countably many functions eventually equal to f, ¢ (f) € M.

Suppose that x € R\ Q and f € NV are such that ¢(x) < f. Set g = ¢(z) V f; then g(n) = f(n) for
all but finitely many n, and ¢(z) < g, so z € ¢ '[K,] C ¢(f). This shows that (¢,1) is a Galois-Tukey
connection from (R \ Q, €, M) to (NN, <, N¥) so that (R\ Q,€, M) <cr (NY, <,NY). Q

It follows (using 522C(ii) and 512D) that

b = add(N¥, <, NY) < add(R\ Q, €, M)
=min{#(A): ACR\Q, A ¢ M} <nonM,

9 = cov(N", 2,N") > cov(R\ Q, €, M) = min{#(A) : AC M, R\ QC | JA}
=min{#(AU{Q}): AC M, R = J(AU{Q})} > cov M.

522J Theorem (see TRUSS 77 and MILLER 81) add M = min(b, cov.M) and c¢f M = max(d, non M).
proof My aim this time is to prove that
(M, S, M) <ar (R, €, M)+ x (N, <, [NF]=),
defining <’ as in the proof of 522H and x as in 512I.

(a) Let (¢,)nen be a sequence running over Q with cofinal repetitions. For f € NV, set

E;=R \ ﬂneN Umzn}qm _ Q—f(m), Gm + 9—f(m) [7

so that Ey is a meager set disjoint from Q. Observe that if (H,),cn is any sequence of closed sets disjoint
from Q, then there is an f € N¥ such that {J, .y Hn, € Ey. P For each n € N, let f(n) be such that
]qn — 27 g, + 27/ [ does not meet Umgn H, Q

For M € M, choose a sequence (F, (M)),en of nowhere dense closed sets covering M. For x € R, if
QN (Upen Fu(M) — x) is not empty, set pas(z)(n) = 0 for every n € N; otherwise, take py(z) = f for
some f € NN such that Ey D (U, ey Fn(M) — 2. Now set ¢(M) = (U,eny Fn(M) + Q,par). This defines
¢: M — M x (NNE,

(b) In the other direction, define 1 : R x [NN]<% — M by setting ¢(z, B) = Uep(@+Ey) for x € R and
B € [NN]=%. Now (¢,) is a Galois-Tukey connection from (M, C, M) to (R, €, M)+ x (NN, </ [NN]=w),
P (R, €, M)+ = (M, R), s0

(R, €, M)+ x (NN, <, [NN]=¢) = (M x (NY)¥, T, R x [NF]=%),

where ((M,p), (z,B)) € T iff x ¢ M and p(z) < g for some g € B. Now suppose that M € M and (x B)

R x [NN]=% are such that (¢(M), (z,B)) € T. Then = ¢ |J,,cpy Fu(M) +Q, so QN (U, ey Fn (M) — 2) =0,
while pys(z) < g for some g € B. But this means that

2Later editions only.
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Ey2Ep ) 2 Upen Fn(M) =22 M —2, M CE;+xCy(r,B).
As M and (z, B) are arbitrary, (¢,v) is a Galois-Tukey connection, as claimed. Q
(¢) Tt follows that

cf M = cov(M,C, M)
(512Ea, as before)
< cov((R, e, M)+ x (NN, </ [NN]=))
= max(cov(R, €, M)+, cov(NY, </ [NN]=))
(512Jb)
= max(add(R, €, M),?) = max(non M, d)

by 512Ed and the calculation in part (e) of the proof of 522H. On the other hand

min(cov M, b) = min(cov M, add(NY, </, [NN]=))
= min(cov(R, €, M), add(NY, <’ [NN]=+))
— min(add(R, €, M)*, add(N", <’, [NN]=+))
= add((R, €, M)* x (NN, <’ [NN]=@))
(512Jc)
< add(M, S, M)
((b) above and 512Db)
= add M

(512Ea, as ever). Since we already know from 522E and 522H that add M < min(b,cov. M) and that
max(d, non M) < cf M, we have the result.

522K Localization The last step in proving the facts announced in 522B depends on the following
construction. Let I be any set. Write Sy for the family of sets S C N x I such that each vertical section
S[{n}] has at most 2" members. For f € IN and S C N x [ say that f C* Sif {n:n €N, (n, f(n)) ¢ S} is
finite; that is, f\ S is finite, if we identify f with its graph. I will say that the supported relation (I, C*, S;)
is the I-localization relation. By far the most important case (and the only one needed in this section)
is when [ is countably infinite; when I = N I will generally write S rather than Sy.

Members of Sy, or similar sets, are sometimes called slaloms. The particular formula ‘#(S[{n}]) < 2™’
is convenient for the results of this section, but it is worth knowing that all functions diverging to oo give
rise to equivalent partially ordered sets.

*522L Lemma Let I be an infinite set. For any o € NN write
S(a) {8: S CNxI, #(S[{n}]) < a(n) for every n € N}.

Then (IV, Q*,S}a)) =qr (IV, g*,S}B)) whenever a, 8 € NN and lim,, ;o a(n) = lim,, . 3(n) = oco.

proof Let g € NY be a strictly increasing sequence such that 3(n) < a(i) whenever n € N and i > g(n),
and let hy, : I — I90F\9() he a bijection for each n. Define ¢ : IN — IV by setting qb(f)( ) =
Y (flg(n+1)\ g(n)) for f € I and n € N. Define 1/J:S§ﬁ) — P(N x I) by setting ¢(S) = U i)es fn(9),
identifying each h,, (i) € I9+\9(") C (g(n+1)\g(n))x I with a subset of Nx I. Now for g(n) < j < g(n+1),
BS)Y] = {hai)J) - i € S[{n}]} has at most () < a(j) members, while $(S)[{7}] = 0 for § < g(0), s
P(S) € S}a) for every S € S}ﬁ)

If felVand S € S;B) and ¢(f) C* S, then there is an ng € N such that ¢(f)(n) € S[{n}] for every
n > ng. So
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fla(n+1)\ g(n) = hn(o(f)(n)) € ¥(S)
for every n > ng, (m, f(m)) € ¥(S) for every m > g(ng) and f C* ¢(S). This means that (¢,1)) is a
Galois-Tukey connection from (N, g*,S}“)) to (NN, g*,Sﬁﬁ)). Similarly, (NN, g*,S}ﬁ)) <ar (NN, Q*,S§a))
and the two supported relations are equivalent.

522M Proposition Let (NY, C* S) be the N-localization relation. Then (NN, C* S) =q1 (N, C,N).

proof (a) Let (G;j)ijen be a stochastically independent family of open subsets of [0,1] such that the
Lebesgue measure uG;; of Gy is 27% for all 4, j € N. For f € NY, set ¢(f) = Mnen Upmsn Gm,f(m)- Then
o(f) is negligible. B

For each E € N, choose a non-empty compact self-supporting set Kr C [0,1]\ £ (416Dc). Let (Wgyn)nen
enumerate a base for the relative topology on K not containing (; because K is self-supporting, no Wg,
is negligible. Set

Igni={j:jeN, Wg, NGy =0}
for n, ¢ € N. Then
Eioio 2_i#(IEni) = E{MG”‘ : i, ] (S N, Gij n WEn = @}

is finite, by the Borel-Cantelli lemma (273K). For each n, let k(E,n) € N be such that 27 #(Ig,;) < 277!
for i > k(E,n), and set

Y(E) =U,ent(d) 14, j €N, i > k(E,n), j € Ipn:}-
Then

#{ij: G evE < Y #p)< Y, 2 <Y

neEN,k(E,n)<i neN,k(E,n)<i

for every i € N, so ¢(E) € S.

Now (¢,1) is a Galois-Tukey connection from (N¥,C* S) to (N, C,N). P Suppose that f € NY¥ and
E € N are such that ¢(f) € E. Then Kp N(),enyUpmsn Gm.fm) = 0. By Baire’s theorem, there is
some m € N such that (J;~,, Giru) N Kg is not dense in Kg, that is, there is an n € N such that
Wen NV Uism Gigi) = 0 so f(i) € Ign; for every @ > m. But this means that (i, f(i)) € ¢(E) for every
1 > max(m, k(E,n)), so that f C* ¢(F). As f and E are arbitrary, we have the result. Q

Thus (NY, C*S) <aT (N, S, N).

(b) Let H be the family of finite unions of bounded open intervals in R with rational endpoints. Then
‘H is countable. For each n € N, let (H,;);eny be an enumeration of {H : H € ‘H, uH < 47 "}. Now for
cach E € N there is an f € N¥ such that £ C (,cxy Upusn Hm,f(m)- P For each n € N, let (Jni)ien
be a sequence of open intervals with rational endpoints such that E C UZEN Jns and Z;’io pJp < 27771
Re-enumerating (Jyi)nen,ien as (J;)ien, we have a sequence of open intervals with rational endpoints such
that ;o pJ; <1 and E C |J,s,, J; for every n. Let (k(n)),en be a strictly increasing sequence such that
k(0) = 0 and Zfik(n) pJ; < 47" for every n € N. Then V,, = Uk(n)<i<k(ns1) Ji belongs to H and has
measure at most 4~" for each n, so we can define f € NN by saying that H,, ¢(ny = Vi for each n, and we
shall have an appropriate function. Q

We can therefore find a function ¢ : N' — N such that £ C (,cyU
In the reverse direction, define

H,, s(5)(m) for every E € N.

m>n

Y(S) = Npen U{Hmi : m > n, (m,i) € S}
for S € S; because
Z(m,i)es pHp; < anozo 2M4T™ < oo,

P(S) e N.
Now (¢,%) is a Galois-Tukey connection from (N, C,N) to (N¥,C* S). P If E € A and S € S are such
that ¢(E) C* S, then
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EC mnEN UmZn Hm1¢(E)(m) c nnEN Umzn,(m,i)es Hpy = T/J(S) Q
So (N, S, N) <ar (NN, C* ' 8) and the proof is complete.

522N Lemma Let X be a topological space with a countable m-base. Then there is for each n € N a
countable family U, of open subsets of X such that every dense open subset of X includes some member of
U, and NV # 0 for every V € [Uy,]=".

proof Induce on n. Start by taking U to be a countable 7-base for the topology of X which is closed under
finite unions. Set Uy = {@}. For the inductive step to n+ 1, let (H;);cn be a sequence running over U,,, and
set

Ty ={J T Ci, Ny, Hy # 0}
for i € N,
U1 ={UUH,; :ie N, Uecl, UN(,.; Hj # 0 whenever J € J;}.

Then U, 41 is a countable family of open sets. If G C X is a dense open set, let ¢ € N be such that H; C G.
Then J; is finite, so we can find a U € U such that U C G and U N ﬂjeJ U; # 0 for every J € J;; then
U U H; belongs to U, +1 and is included in G. If YV C U, 11 and #(V) < n+1, then if V is empty we certainly
have 1V # 0. Otherwise, express V as {Uy U Hyx) : k < n} where Uy N[;c; H; # 0 whenever J € Ji();
do this in such a way that i(k) < i(n) for every k < n. By the inductive hypothesis, (", ,, Hix) # 0; if
i(k) = i(n) for some k < n, then of course ), .,, Hyu) # 0; otherwise, U, N (., Hi(xy # 0. In either case,
(V is non-empty. So U,,+1 has the required properties and the induction continues.

jeJ

5220 Proposition Let (NN, C* S) be the N-localization relation. Then (M, C, M) <gr (NY, C* S).

proof Let (U,),en enumerate a m-base for the topology of R not containing (). By 522N, there is for each
n € N a countable family V,, of open subsets of U, such that (\V # ( for every V € [V,,]=2?" and every dense
open subset of U, includes some member of V,,. Enumerate V,, as (Vi )men-

For each M € M, let (F,,(M))nen be a non-decreasing sequence of nowhere dense sets covering M, and
let (M) € N¥ be such that F,,(M) NV, g(aryn) = 0 for every n. In the other direction, for S € S set

Q/J(S) =R \ mnEN Umzn(Um N mieS[{m}] Vmﬂ)a

then because (;cg((m}) Vimi is non-empty for every n, U, (Un N N;eg(gmy) Vmi) is a dense open set for
every n, and ¥(S) is meager.

Now (¢, ) is a Galois-Tukey connection from (M, C, M) to (NN, C* S). P Suppose that M € M and
S € S are such that ¢(M) C* S. Let n € N be such that ¢(M)(k) € S[{k}] for every k > n. Then

Fon (M) O Niesipny Vi € Fr(M) 0 Vi =0
whenever k > max(m,n), so
Fm<M) CR \ UkZmax(m,n) niGS[{k}} Vies C ’(/}(S>
for every m, and M C ¢(S). Q
So we have the result.
522P Corollary M <1 N.
proof Putting 522M and 5220 and 512Cb together, we see that (M,C, M) <agr (N,C,N), that is,
M =1t N.
522Q Theorem (BARTOSZYNSKI 84, RAISONNIER & STERN 85) add A < add M and cf M < cfN.
proof 522P 513Ee.

522R The exactness of Cichon’s diagram The list of inequalities displayed in Cichon’s diagram is
complete in the following sense: it is known that all assignments of the values w1, ws to the eleven cardinals
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of the diagram which are allowed by the diagram together with the two equalities add M = min(b, cov. M),
cf M = max(d,non M) are relatively consistent with the axioms of ZFC. So, for instance, it is possible to
have

wi = addN = covN = add M = b = non M,

covM =0 =cfM =nonN =cfN =c¢ = ws.

In §8552 and 554 below I will describe forcing constructions exhibiting a few of these combinations; for the
rest, I refer you to BARTOSZYNSKI & JUDAH 95, §§5.2, 7.5 and 7.6. I remark also that not all the forcing
methods used are effective beyond ws, so that if we allow ¢ = w3 then some puzzles remain.

522S The cardinals non M, cov M All the cardinals in Cichori’s diagram appear in many different
ways in set-theoretic real analysis. But add A, the additivity of Lebesgue measure, the bounding number
b, and cov M, the Novdk number of R, seem to be particularly important. The additivity of measure will
play a large role in the next section. Here I will give two striking characterizations of cov.M and a dual
characterization of non M.

Theorem (a) n(R) = cov.M = Mcountable-

(b) (BARTOSZYNSKI 87) cov.M is the least cardinal of any set A C N such that for every g € N there
is an f € A such that f(n) # g(n) for every n € N.

(c) (BARTOSZYNSKI 87) non M is the least cardinal of any set A C N¥ such that for every g € NV there
is an f € A such that {n: f(n) = g(n)} is infinite.

proof (a) Because R is a Baire space, the Novak number n(R) is equal to cov.M (512Eb). By 517P(d-ii)
or 517P(d-iii), n(R) = Mcountable-

(b) Let x be the smallest cardinal of any A C N¥ such that for every g € NY there is an f € A such that
fNg=0, identifying the functions f and g with their graphs in N x N.

(i) covM < k. P Suppose that A C NY and that #(A) < cov.M. Set P = U,hen N7, ordered
by extension of functions. Then P is a non-empty countable partially ordered set. For each f € A set
Qr={p:pe P, pnf+#0}; then Qy is cofinal with P. Set Q = {Q; : f € A}. Then

#(Q) S #(A) < COVM = Mcountable S mT(P)a

so there is an upwards-linked R C P meeting every member of Q. Now go = [JR C N x N is a function;
taking g € NY to be any extension of go to the whole of N, g N f # 0 for every f € A.

As A is arbitrary, this shows that < > cov M. Q

In particular, x > wy, as can also be seen by elementary arguments.

(ii) Let (K, )nen be any sequence of non-empty countable sets, and write F' for the set of all functions
f such that dom f is an infinite subset of N and f(n) € K, for every n € dom f. Then if A € [F]<" there is
a g € [,,en Kn such that fNg # 0 for every f € A. B For each n € N, let F,, be [ J{[[;c; Ki : I € [N]"*!}.
For f € F and n € N take any (n + 1)-element subset of f and call it ps(n), so that p;(n) € F,,. Now each
F,, is countably infinite, and

A'={ps: f € A} C [Tey P =NV

has cardinal less than s, so there is a ¢ € [],,cy Fn such that ¢ Npy # 0 for every f € A.

Now choose (i) ren inductively so that i, € dom ¢(k)\{i; : j < k} for each k € N, and take g € [, cn Kn
such that g(ix) = ¢(k)(ix) for every k. Then for any f € A there is a k € N such that ¢(k) = ps(k) C f, so
that g(ix) = f(ix) and f N g # 0, as required. Q

(iii) If A C N¥ and f; € N¥ and #(A) < &, then there is a function g € NY such that g(0) > 0,
g(n+1) > fo(g(n)) for every n and {n: f(g(n)) < g(n+ 1)} is infinite for every f € A. P For f € A set

F1(0)=0, f(n)=maxic, f(i), [f*(n+1)=n+f(f(f*(n))

for each n, so that f < f, f and f* are non-decreasing, and f* is unbounded. Consider B = {f*IN\n:
f € A, n € N}; then #(B) < max(#(A),w) < k, so by (ii) (or otherwise) there is an h € NY meeting every
member of B. Now AN f* is infinite for every f € A. Set
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g(0) =1+ n(0), g(n+1)=1+max;<,41h(i) +maxi<n fo(g(i))

for n € N, so that h(n) < g(n) and fo(g(n)) < g(n + 1) for every n, and g is non-decreasing.
? Suppose, if possible, that f € A is such that {n : f(g(n)) < g(n + 1)} is finite. Let ng € N be such
that f(g(n)) > g(n + 1) for every n > ng. If i > ng then

Fg(i) = f(g()) = g(i + 1),
so if i > ng and j € N are such that f*(j) > g(4), then

£ +1) 2 FUEG)) = F(F90) = Flali+1)) > g(i +2)

because f is non-decreasing. But f* is unbounded; taking k such that f*(k) > g(ng), we have f*(k + i) >

g(ng+2i) for every i € N; because both f* and g are non-decreasing, this means that f*(n) > g(n) whenever

n > max(k, 2k — ng). But there must be such an n with f*(n) = h(n) < g(n), so this is impossible. X
Thus g has the required property. Q

(iv) Now suppose that P is a countable partially ordered set, Q is a family of cofinal subsets of P with
#(Q) < K, and pg € P. Let (p;)i>1 be such that (p;);en runs over P with cofinal repetitions. Let f € NN
be a strictly increasing function such that whenever n € N and ¢ < n then there is a j € f(n) \ n such
that p; < p;. For each @ € Q let fo € NN be a strictly increasing function such that whenever n € N and
i < n thereis a j € fo(n)\ n such that p; < p; € Q. By (iii), we can find g € N¥ such that g(0) > 0,
g(n+1) > f(g(n)) for every n and Ig = {n: g(n+1) > fo(g(n))} is infinite for every Q € Q.

For each n € N, set J, = g(n+ 1) \ g(n), and let ®,, be the set of functions h : g(n) — J, such that
pi < pp(iy for every i < g(n); because g(n + 1) > f(g(n)) this is non-empty. For Q € Q and n € I let
pq(n) € ®,, be such that py, (n)s) € Q for every i < g(n); such a function exists because g(n+1) > fo(g(n)).
Now all the ®,, are countable (indeed finite), so (i) tells us that there is a ¢ € [, oy n such that ¢ N ¢q
is non-empty for every @ € Q.

Define (in)nen by setting ig = 0 and i,41 = ¢(n)(in) for n € N; because dom¢(n) = g(n) > 0 and
¢(n)(i) < g(n + 1) whenever i < g(n), i, is well-defined for each n. Because ¢(n) € @, for each n,
Pi,, < Pi,,, for each n. If Q € Q there is some n such that ¢(n) = ¢g(n), so that

Pins1 = Po(n)(in) = Poq(n)(in) € Q-
But this means that R = {p;, : k € N} is an upwards-linked (indeed, totally ordered) subset of P meeting

every member of Q and containing py. As pg and Q are arbitrary, m"(P) > k. As P is arbitrary, Mcountable >
Kk and kK = Meountable = cOV. M, as claimed.

(c) Write \ for the least cardinal of any set A C N¥ such that for every g € NN there is an f € A such
that f N g is infinite. Of course A is infinite.

(i) Let Ap C R be a non-meager set with cardinal non M. Then Ag\ Q is not a meager subset of R and
therefore is not a meager subset of R \ Q, since any subset of R\ Q which is nowhere dense in R\ Q is also
nowhere dense in R. So R\ Q has a non-meager subset with cardinal non M. But R\ Q is homeomorphic
to NN (4A2Ub again), so there is a non-meager set A C NY with cardinal non M.

Now take any g € NY. Then ([, {f : f € NY, f(i) = g(i)} is a dense open subset of N for every n € N,
S0

{f : f € NNa f ﬂg is inﬁnite} = ﬂneN UiZn{f : f(Z) = g(Z)}
is a dense Gy set and meets A; that is, there is an f € A such that fNg is infinite. Accordingly A < non M.

(ii) Let A C NN be a set with cardinal A such that for every g € NN there is an f € A such that fNg
is infinite. Write Sy for (J, {0, 1}™.

(a) Thereisaset A1 CN N with cardinal at most A, such that whenever g € NN and D C N is infinite,
there is an f € Ay such that f N gD is infinite. I For n € N set F,, = Ule[N]n+1 N’. Because each F), is
countably infinite, there is a family H C [],, oy Fr, with cardinal A, such that for every ¢ € [], o F thereisa
¢ € H such that ¢nip is infinite. For ¢ € H define ky € NY by setting ky(n) = min(dom ¢(n)\{ke (i) : i < n})
for each n, so that ks € NY is injective, and choose f, € NN such that fy(ks(n)) = ¢(n)(kes(n)) for every n.
Now suppose that g € N¥ and D € N¥ is infinite. Define ¢ € [], .y F by taking ¥ (n)(i) = g(i) whenever
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it € D and #(D Ni) < n. We know that there is a ¢ € H such that K = {n : ¢(n) = ¢(n)} is infinite, and
that for every n € K
ky(n) € dom ¢(n) = domy(n) C D,
fo(ks(n)) = ¢(n)(ky(n)) = ¥(n)(ky(n)) = g(ky(n)).
As ky[K] is an infinite subset of D, f, N gD is infinite. So we can take A1 = {fy:¢p € H}. Q

(B) Because S, is countably infinite, we can copy A onto a set Ay C SY, with cardinal A, such that
for every 1 € SY there is a ¢ € Ay such that ¢ N4 is infinite. For each ¢ € Ay let hy € NN be a strictly
increasing function such that hy (k) + #(¢(n)) < hy(k + 2) whenever k € N and hy(k) < n < hy(k+1).

(7) For ¢ € Ay and f € Ay define 24y, ysr € {0, 1} by saying (in the notation of 5A1C) that

x¢f:0'6\0'f.-., y¢f:70“7-f...,
where
or = O(f(k)) if he(2k) < f(k) < he(2k + 1),
= <0> otherwise,
7 = ¢(f(k)) if hy(2k +1) < f(k) < he(2k +2),
= <0> otherwise.
Note that

#(ok) < he(2k +2) — he(2k),  #(mi) < he(2k + 3) — he(2k + 1)
for every k. Write
Az ={wpr: ¢ € Ag, f € M} U{ysy: 0 € Ay, f € Ar}
so that A3 C {0,1}" has cardinal at most .

(8) As is a non-meager subset of {0,1}. P Let H be a dense Gs subset of {0,1}". Then we can
express H as [ G, where (G,,)nen is a non-increasing sequence of dense open subsets of {0,1}Y. For
each n,

neN

G = Nin Nregoym iz 12 €40, W e e Gyl

is a dense open subset of {0,1}" so there is an v, € Sy such that {x : v, C = € {0,1}} C G,. Let
¢ € Ay be such that C = {n :n € N, ¢(n) = v, } is infinite. Set Dy = {k : C N hy(2k + 1) \ hy(2k) # 0},
Dy = {k:CnNhg(2k+ 2) \ hy(2k + 1) # 0}; then at least one of Dy, D; is infinite.

Suppose that Dy is infinite. For k € Dy set ny = min(C N hg(2k + 1) \ hg(2k)). Then there is an f € A;
such that

Eo={k: ke Dy, f(k) =n}

is infinite. In this case, for k € Ey, hg(2k) < f(k) < he(2k + 1) so #(o(f(k))) < he(2k +2) — he(2k) and
or = ¢(f(k)) = ¢(nk) = vn,. Accordingly o 'op ... € Gy, .

At the same time, writing 7 for o; ...” op_1,

#(1) < 0 ho(2i +2) = ho(20) < hy(2K) <
and
Top =T Uy 04 ] oo

belongs to G, . Since (ng)ken is strictly increasing, s belongs to G,, for infinitely many n and therefore
belongs to H.

Similarly, if D; is infinite, we can set my = min(C Nhy(2k+2)\ hy(2k+1)) for k € Dy, take f € Ay such
that By = {k : k € Dy, f(k) =my} is infinite, and for k € E; see that #(75 ..." 7k—1) < my and 7 = Upy,

so that y4r € Gyy,,. Thus in either case we have a member of A3 belonging to H; as H is arbitrary, As is
non-meager. Q
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(€) Finally, let 6 : {0, 1} — [0, 1] be the standard surjection defined by setting 6(z) = > ;2 27 "1z (i)
for z € {0,1}N. Then 6 is continuous and irreducible, so the inverse image of a dense open subset of [0, 1]
is a dense open subset of {0,1}", and #[A3] is non-meager in [0, 1]. As the interior of [0,1] in R is dense in
[0,1], §[As] is non-meager in R and

non M < #(0[As]) < #(As) < A
Together with (i) above, this shows that non M = A, as claimed.

522T Martin numbers Following the identification of cov. M with mcountable, We can amalgamate the
diagrams in 522B and 5170Db, as follows:

covN — non M — cfM — cfN — ¢
| |
b — D
| |
addN — add M — cov.M — non N/
| |
Mo linked —— P
wp—m —  mg —— Mpew,

proof The two new inequalities to be proved are m,_jinkeq < add N and p < add M.
(a) Let S be the (N, co)-localization poset’

{p:p SN XN, #(p[{n}]) < 2" for every n, sup, ey #(p[{n}]) < oo},
ordered by C. For p € §* set ||p|| = max,en #(p[{n}]). Then S is o-linked upwards. P If p, ¢ € S,
[pll < n, llgll < n and p[{i}] = ¢[{i}] for every i < n, then pUg € §. So for any n € N and (J;)i<n €
IL Sn[N]SQI we have an upwards-linked set
{p:pe 8=, |p|l <n, pl{i}] = J; for every i < n};

as there are only countably many such families (J;);<,, S is o-linked upwards. Q

Accordingly my_jinked < mT(S>). Next, m'(S§*) < add(NV, C*,S), where (NV, C*,S) is the N-localization
relation. P Suppose that A C NN and #(A) < m'(S*). For each f € A, set Q; = {p : p € S,
fC*pt IfpeS™®and |p| =n, thenp C pU{(4 f(9)) : ¢ > n} € Qy; so Qy is cofinal with S>. As
#({Qy : f € A}) < m(8%), there is an upwards-directed R C S meeting Q; for every f € A. Set
S =JR. For each n € N, {p[{n}] : p € R} is an upwards-directed family of subsets of N, all of size at most
2", with union S[{n}]. So #(S[{n}]) < 2"; as n is arbitrary, S € S. If f € A, thereis ap € RN Qy, and
now f C*p CS. As A is arbitrary, we have the result. Q

Now

Molinked < MM (S®) < add(NY, C*,8) = add(WV, C, N)
(522M, 512Db)
= add W,

as required.

(b)(i) Let U be a countable base for the topology of R, not containing . Consider the set P of pairs
(0, F) where o € |J,,cny U™ and F' C R is nowhere dense, together with the relation < where (o, F') < (o, F”)
if o/ extends o, F D F and FNo'(i) = ) whenever i € dom o’ \ domo. Then < is a partial order on P. P
If (0,F) < (¢/,F'") < (¢”,F") then we surely have 0 C ¢’ C¢” and F C F' C F”. If i € dom¢” \ domo,
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then either i € domo’ \ domo and ¢” (i) = ¢’/ (i) must be disjoint from F', or i € dom¢” \ dom ¢’ and & ()
must be disjoint from F’ O F. Thus in either case F'No” (i) = 0); as i is arbitrary, (o, F) < (¢, F"). Thus
< is transitive. Evidently it is also reflexive and anti-symmetric, so it is a partial order. Q

(ii) (P, <) is o-centered upwards. P If (o, Fp),..., (0, F)) are members of P with a common first
member, then they have a common upper bound (o,|J,, F;) in P. So for any n € N and o € U" the
set {(0, F) : F C R is nowhere dense} is upwards-centered in P; as |J,, . U™ is countable, P is o-centered
upwards. Q

(iii) For each V € U and n € N set
Quv ={(0,F): (0, F) € P, VN U, <;cdomo o(1) # 0}

Then Qv is cofinal with P. P If (0,F) € P, set m = max(n,domo) + 1, and take U € U such that
U CV\F. Setting

o'(i) = o(i) for i < domoa,

=U for domo <i<m,

we find that (0, F) < (¢, F) € Qnv. Q
For each nowhere dense set H C R,
Qu=A{(0,F):(0,F)e P,HCF}
is cofinal with P. P For any (o, F) € P, we have (0,F) < (0, FUH) € Q. Q
(iv) Now suppose that A C M and #(A) < p. Then each member of A is covered by a sequence
of nowhere dense sets, so there is a family H of nowhere dense sets with the same union as A and with
#(H) < max(w, #(A)). In this case
Q={Quv:neN,Veldlu{Qy:HecH}
is a family of cofinal subsets of P and
#(Q) < max(w, #(A)) < p < m'(P).

There is therefore an upwards-directed R C P meeting every member of Q. If (o, F) and (o', F’) belong
to R, they must be upwards-compatible in P, and in particular ¢ and ¢’ have a common extension; we
therefore have a function ¢ = U(UyF)GRO' from a subset of N to 4. If n € N and V' € U, then there is a
(0,F) € RN Qnv, so that there is some ¢ > n such that ¢(i) = o(i) meets V. As V is arbitrary, the open
set Wi = Uicdom o.i>n @(7) is dense; as n is arbitrary, M = R\ (1, oy Wy, is meager. Now H C M for every
H e H. P Thereisa (0,F) € RNQYy. Set n = domo. If i € dome¢ \ n, there is a (¢, F') € R such
that ¢ € domo’; because R is upwards-directed, we may suppose that (o, F') < (¢, F’). But in this case
¢(i) = o’(i) must be disjoint from F' and therefore from H. As i is arbitrary, HNW, =0 and H C M. Q
As H is arbitrary, | JA=JH C M. As A is arbitrary, add M > p, as claimed.

Remark In fact m'(S*) is exactly equal to add \; see 528N.

*522U FN(PN) For any cardinal which is known to lie between w; and ¢, it is natural, and often
profitable, to try to locate it on Cichori’s diagram. For the Freese-Nation number of PN, which appeared
more than once in §518, we have the following results.

Proposition (FUCHINO KOPPELBERG & SHELAH 96, FUCHINO GESCHKE & SOUKUP 01) (a) FN(PN) > b.
(b) FN(PN) > cov .
(¢) f FN(PN) = w; then shr M = wy, so

m = Mg = Mpey, = Melinked = P = add N =add M = b = covN = non M = w;.

(d) If FN(PN) = w; and £ > Meountable is such that cf[k]<% < k < ¢, then k = ¢. So if FN(PN) = w; and
Meountable < W, then

Mcountable = non N =0 =cfM =cfN =c.
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(e) There is a set A C R with cardinal meountable such that every meager set meets A in a set with cardinal
less than FN*(PN).

proof (a) Let <* and < be the pre-order and partial order on N¥ described in 522C, so that b = add(NV, <).
Write  for FN(PN); by 518D, k = FN(NY <) and we have a Freese-Nation function ¢ : N — [NN]<¥ for
<. For f € N¥, set 9(f) = U{d(g) : g <* f <* g}; then #(¥(f)) < k.

? Suppose, if possible, that £ < b. Choose a family (f¢)e<, in NY inductively, as follows. Given (f,),<¢
where § < &, |J, ¢ ¥(fy) has cardinal at most & < b, so has a <-upper bound f{; now set f¢(i) = f¢(i) + 1
for every i, and continue.

Next choose (he)e<r in ¢(f) as follows. For each £ < k, fe € ¢(fe) (511Hh) so fe € ¥(fe), fe < fi. and
fe 2 fs. Soif we set ge = fe A fi then ge <* fe <* g¢ while g¢ < f.. There is therefore an he € ¢(g¢) No(fi)
such that g¢ < he < fi. Now if n <& < &, hy € ¢(g,) € ¥(fy) so hy = f{. Accordingly

{i: he(i) < (i)} C{i = he(d) < fe()} U {i = fe(i) < (i)}
C{i s he(i) < fe(} Uiz (i) < hy(i)}
C{i:ge() < fe(D} U{i: fE(D) < hy(i)}
(

is finite and h¢ # h,,. But this means that {h¢ : £ < k} has cardinal x and #(4(f.)) = &, contrary to the
choice of ¢. X
Thus b < k = FN(PN), as claimed. In particular, FN(PN) is uncountable.

(b) (i) We need to know the following fact: if £ is a family of non-negligible Lebesgue measurable subsets
of R, and #(&) < cov N, there is a countable set meeting every member of £. PP For each £ € £, R\ (Q+ F)
is negligible (439Eb), so there is an * € RN (5. Q + E; now Q + = is countable and meets every member
of £. Q

(ii) Set k = FN(PN). If C is the family of closed sets in R, then (C, C) = (%, D), so FN(C) = FN(%) = &
(518D). Let f : C — [C]<" be a Freese-Nation function.

(iii) ? If k < cov N, write K for the set of infinite successor cardinals A < s, and for A € K set
Dy ={z: 2z eR, #(f({z})) < A}. As R = J,cx Dx, there must be some A\ € K such that Dy cannot
be covered by « negligible sets. Choose (M¢)e<x and (Hep)e<anen inductively, as follows. M = ). Given
that M C C and #(M¢) < k, (i) tells us that there is a countable set A¢ C R meeting every non-negligible
member of Mg; let (He,)nen be a sequence of closed subsets of R\ Ag such that |, . Hen is conegligible.
Now set

neN

M5+1 = ME U {Hgn ne N} UUFGMg f(F) € [C]SH.

At non-zero limit ordinals £ < A, set M, = Un<€ M,,.

By the choice of A, there is an € Dy which does not belong to any negligible set belonging to M), nor
to any of the sets R\ |J,cn Hen for £ < Ao Now #(My N f({z})) < A; because A is regular, there is a £ < A
such that MxN f({z}) C M¢. Let n € N be such that € He,,. Then there must be an F' € f({z})N f(Hepn)
such that © € F' C Hg,. In this case, Hep, € Mey1 and F' € Mgyo € My, so in fact F' € M. Because x € F,
F cannot be negligible, so A¢ N F # (0; but He,, was chosen to be disjoint from A¢. X

(iv) Thus k > cov. N, as claimed.
(c) Let A C R be a non-meager set.

(i) By 518D, FN(T) = wi, where T is the topology of R. Let f : T — [T]S“ be a Freese-Nation
function. There is a set M such that
(o) whenever G € M N % then f(G) C M,
(8) whenever t € M NR then R\ {t} € M;
(v) whenever G C M is a countable family of dense open subsets of R, M N AN NG is
non-empty;
(0) #(M) < wr.
PP Build a non-decreasing family (M¢)¢<., of countable sets as follows. My = (). Given that M is countable,
let M¢y1 be a countable set including M, such that
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(o) whenever G € Mg NT then f(G) C Meyq;

(B) whenever t € M NR then R\ {t} € M¢iq;

(7) Meg1 NMANN{G : G € M is a dense open subset of R} is not empty.
For countable limit ordinals £ > 0, set Mg = Un<£ M,,. At the end of the construction, set M = U5<w1 M.
Q

(i) If H C R is an open set, there is a countable family G C M N% such that M NRN(NG C H CNG.
PSet G={G:G e f(H)N M, H C G}; then certainly H C (|G and G is countable. If t € M NR\ H,
then H C R\ {t} so thereisa G € f(H)N f(R\ {¢t}) such that H C G C R\ {¢}; since R\ {t} € M, G € M;
and t ¢ G. As t is arbitrary, M NRNGC H. Q

(iii) Now consider B = AN M. Then #(B) < w;. ? If B is meager, let (H,)nen be a sequence of
dense open sets such that BN, .y Hy = 0. For each n € N, let G,, be a countable family of dense open sets
belonging to M such that M NRN G, € H, (using (ii)). Set G = U, ey Gn; then G C M is a countable
family of dense open sets, so there is a t € M N AN[\G, by condition (v) in the specification of M. But
now t € MNANNG, C H, for each n, sot € BN(),cy Hn, which is impossible. X

Thus A has a non-meager subset with cardinal at most wy; as A is arbitrary, shr M = w.

(d)(i) Again let T be the topology of R and f : T — [T]<“ a Freese-Nation function. This time, we can
find a set M such that
(1) for every g € NY there is an h € M N NN such that g(n) # h(n) for every n € N;
() whenever G € M N T then f(G) C M;
(B) M N [M]=¥ is cofinal with [M]<%;
() whenever D € M is countable, then there is a double sequence (G;;); jen belonging to M
such that every G;; belongs to T, (G;;)jen is disjoint for each ¢ € N and whenever G € D is an
open subset of R with infinite complement, there is an ¢ € N such that G;; \ G is non-empty for
every j € N;
(6) whenever (Gj;); jen € M is a double sequence of open subsets of R, and h € M NN, then
Uien Giniy € M;
() #(M) = £.
P Build a non-decreasing family (Mg)¢<,, of sets with cardinal & as follows. Start with a set My C NV
such that # (M) = x and for every g € NN there is an h € Mj such that g(n) # h(n) for every n € N (using
522Sb). Given that # (M) = K, then cf[M¢]<¥ = k. Let M1 2 M be such that
(o) whenever G € Mg NT then f(G) C Meyq;
(B) Mey1 N[M¢]=¥ is cofinal with [M¢]<%;
(v) whenever D € M, is countable, then there is a double sequence (G;;); jen € Me41 such
that every G;; is an open set in R, (G;;) en is disjoint for each ¢ € N and whenever G € D is an
open subset of R with infinite complement, there is an i € N such that G;; \ G is non-empty for
every j € N;
(8) whenever (Gy;); jen € Mg is a double sequence of open subsets of R, and h € Mg N NN,
then U,cn Gingi) € Mea;
(6) #(Mesr) = .
For limit ordinals £ > 0, set Mg = Un<§ M,,. At the end of the construction, set M = U£<w1 Me. Then

M0 [M]=2 = Uy, Merr N [Me]=
is cofinal with (J,_,,, [M]=% = [M]=%, and it is easy to see that the other conditions are satisfied. Q

(ii) 7 Now suppose, if possible, that there is a t € R such that R\ I ¢ M for any finite set I containing
t. Set

G={G:Ge MnfR\{t}), t ¢ G}.

Then G is a countable subset of M and R\ G is infinite for every G € G. Let D € M be a countable set
including G. Then we have a double sequence (G;)i jen € M such that (G;j) en is a disjoint sequence of
open sets for each ¢ € N and whenever G € D is an open subset of R with infinite complement, there is an
i € N such that G;; \ G is non-empty for every j € N. In particular, this last clause is true for every G € G.
For each i € N choose ¢(i) € N such that ¢ ¢ G;; for any j # g(i); let h € M NN be such that h(i) # g(i)
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for every i, and set H = (J;cy Gi,n(i) € M; note that t ¢ H. Now there is a G € f(H) N f(R\ {t}) such that
HCGandt¢ G. As f(H) C M, G e M,so G €§. But this means that G; 5;) € G for every i € N; and
we chose (Gj)i jen so that this could not be so. X

Thus Z={I:1¢€ [R]<¥ R\ I € M} covers R. As #(Z) < #(M) < k, #(R) < x and k = ¢, as claimed.

(iii) Finally, if Mcountable < Ww, then we can take kK = Meountable, by DAIF(e-iv), and get Mcountable =
L.=c.

(e) Because FN(T) = FN(PN), 518E tells us that there is a set A C R, with cardinal n(R) = Mcountable;
such that #(A N F) < FN*(%T) = FN*(PN) for every nowhere dense set F' C R. As FN*(PN) certainly has
uncountable cofinality, A meets every meager set in a set with cardinal less than FN*(PN).

522V Cofinalities For any cardinal associated with a mathematical structure, we can ask whether
there are any limitations on what that cardinal can be. The commonest form of such limitations, when they
appear, is a restriction on the possible cofinalities of the cardinal. I run through the known results concerning
the cardinals of Cichoni’s diagram. Most are elementary, but part (f) requires a substantial argument.

Proposition (a) cfc > p.
(b) add NV, add M and b are regular.
(c) cf(cfN) > add N, cf(cf M) > add M and cfo > b.
(d) cf(non ') > add N, cf(non M) > add M.
(e) If of M = Mcountable then cf(cf M) > non M; if ¢f N = cov N, then cf(cfA) > nonN.
(f) (BARTOSZYNSKI & JUDAH 89) cf(Meountable) = add N.

proof (a) If w < k < p then 2% = ¢, by 517Rb, so cfc¢ > « by 5A1Fd.

(b) Use 513C(a-i); to see that b is regular, use its characterization as the additivity of a partially ordered
set in 522C(ii).

(c) Use 513C(a-ii); this time, we need to know that d is the cofinality of a partially ordered set for which
b is the additivity.

(d)-(e) 513Cb with 522Sa,

(f)(i) Write M; for the ideal of meager subsets of NN, where N is given its usual topology. Let
(NN, C*,S) be the N-localization relation (522K), and set S(© = {S: S € S, lim,, o0 2 "#(S[{n}]) = 0}. I
will write finint and disj for the relations {(4, B) : AN B is finite}, {(4, B) : AN B = (}}. Following the
same mild abuse of notation as in 512Aa and elsewhere, I will write (S(®), finint, NV) and (NV,disj, NY)
for the supported relations (S, Ry, NV) and (NN, Ry, NV), where

Ry ={(S,f):Se€8Y, feNY {n:(n, f(n)) € S} is finite},
Ry ={(f,9): f, g € NN, f(n) # g(n) for every n}.

(ii) (o) (NN, e, M) <ar (S©, finint, NY). P For f € NV, set ¢(f) = f (identifying f with its
graph, as usual); for g € NV, set ¢0(g) = {h : h € N, h N g is finite}. Then ¢(f) € S for every f € NV,
and 9(g) € M for every g € NV, because all the sets {h : hN g C n} are nowhere dense. If f, g € NV
and (¢(f),g) € finint, then f N g is finite so f € ¥(g); thus (¢,9) is a Galois-Tukey connection from
(NN e, M1) to (S, finint,NV). Q

(B) (SO, finint, NV) g7 (NN, disj, NV). P Let (I,,),en be a partition of N such that #(1,,) = 2"
for each n. For n € N, let 6,, : NI» — N be a bijection. For S € SV, choose ¢(S) € NN such that whenever
(n,i) € S then ¢(S) N6, 1(i) # 0, where once again both the function ¢(S) and the function 6,1(i) are
identified with their graphs; this is possible because on each set I, there are at most 2" functions with
domain I, that ¢(S) has to meet. For g € NV, define 9(g) € NY by saying that ¥(g)(n) = 0,(g[1,) for
every n.

Now suppose that S € S and g € NN are such that S N1)(g) is infinite. Then there is certainly an n
such that (n,1(g)(n)) € S. In this case,

0 # o(S) N0, (¥(g)(n) = &(S) N gl L,
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so ¢(S) N g is non-empty. Turning this round, if (¢(5), g) € disj then (5,1 (g)) € finint; that is, (¢,v) is
a Galois-Tukey connection from (S, finint,NV) to (NN, disj, NV). Q

(’)’) COV(S(O)7 finint, NN) = Mcountable- P

Meountable = N(NY) = cov M,
(517Pd)
= cov(NN, e, M) < COV(S(O)7 finint,NN)
(512Da and («) above)
< cov(NY, disj, NV)
((8) above)

= Mcountable

(522Sb, with 522Sa). Q

(iii) Suppose that £ < add N and that (S¢)¢<, is any family in SO Then there is an S* € S such

that S¢ \ S* is finite for every £ < k. P For £ < k, n € N let f¢(n) € N be such that #(S¢[{i}]) < 202"
for every i > fe(n). Because k < add N < b, there is an f € N¥ such that {n : f¢(n) > f(n)} is finite for
every £ < k (522C(ii)); of course we may suppose that f(0) = 0 and that f is strictly increasing and that
f(n) > 2n for every n. Set J,, = f(n+1)\ f(n) for each n. For each £ < &, let m¢ be such that fe(n) < f(n)
for every n > mg; set S = {(4,7) : (4,5) € S¢, i > f(me)}. Then Sg\ S{ is finite and #(S¢[{i}]) < 27"
whenever i € J,,.

For each n € N, let KC,, be the family of those sets K C J,, x N such that #(K[{i}]) < 2/72" for every
i € Jn, and 0, : K, — N a bijection; set he(n) = 0, (5S¢ N (J, x N)) for each £ < &.

By 522M, add(NY, C*,S) = add NV is greater than k, so there is an S € S such that hg C* S for every
§ < k. Set 8" =U, jyes 0,1(4). For any n € N and i € J,,, #(0;,1(j)[{i}]) < 2!72" for every j € N, so that
S*[{i}] = Un jyes On ' (7)[{i}] has cardinal at most 2~". This means that S* € SO,

Take any { < k. As hg C* S, there is some m € N such that (n, he(n)) € S, that is, (n, 0,(S¢N(J, xN))) €
S, for every n > m. But this means that Sé N (Jn x N) C §* for every n > m, so S\ S is finite; it follows
at once that S¢ \ S* is finite. Thus we have a suitable S*. Q

(iv) 7 Now suppose, if possible, that cf(Mcountaple) = & < add N. By (ii-y), there is a set A C NN of
size Meountable such that for every S € S there is an f € A such that SN f is finite. Express A as U§<H Ae

where #(A¢) < Meountable for every £ < k. By (ii-y) again, we can find for each { < k an S¢ € S guch
that S¢ N f is infinite for every f € A¢. By (iii), there is an S* € SO such that Se \ S* is finite for every
& < k. But this means that S* N f must be infinite for every f € A¢ and every £ < x; which contradicts the
choice of A. X

So we are forced to conclude that cf(meountable) > add N, as stated.

522W Other spaces All the theorems above refer to the specific o-ideals M and N of subsets of R
or the specific partially ordered set NY. Of course the structures involved appear in many other guises. In
particular, we have the following results.

(a)(i) Let (X,3, ) be an atomless countably separated (definition: 343D) o-finite perfect (definition:
342K) measure space of non-zero measure, and A (p) the null ideal of p. Then (X, N (p)) is isomorphic to
(R,N); in particular, add N'(u) = add N, cov N (u) = covN, non N () = non N and cf N (u) = cfN. P
The first thing to note is that because p is o-finite there is a probability measure v on X with the same
measurable sets and the same negligible sets as p (215B(vii)); and of course v is still atomless, countably
separated and perfect. Next, the completion 7 of v is again atomless, countably separated and perfect
(212Gd, 343H(vi), 451G(c-i)) and has the same negligible sets as v (212Eb). In the same way, starting
from Lebesgue measure instead of 1, we have a complete atomless countably separated perfect probability

measure A on R with the same negligible sets as Lebesgue measure. But now (X, ) and (R, \) are isomorphic
(3441), so that (X, N(u)) and (R, ) are isomorphic. Q
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(ii) The most important examples of spaces satisfying the conditions of (i) are Lebesgue measure on the
unit interval and the usual measure on {0, 1}". But the ideas go much farther. On a Hausdorff space with a
countable network (e.g., any separable metrizable space, or any analytic Hausdorff space), any topological
measure is countably separated (433B). So any non-zero atomless Radon measure on such a space will have a
null ideal isomorphic to A. (The measure will be o-finite because it is a locally finite measure on a Lindelof
space, and perfect by 416Wa.)

(iii) As we shall see in §523, there are many more measure spaces (X, u) for which M (u) is close
enough to A to have the same additivity and cofinality, and even uniformity and covering number match in
a number of interesting cases.

(b)(i) Similarly, the structure (R, M) is duplicated in any non-empty Polish space X without isolated
points, in the sense that (X, B(X), M(X)) = (R, B, M), where B and B(X) are the Borel o-algebras of R
and X respectively, and M(X) is the ideal of meager subsets of X. P Note first that NY, with its usual
topology, has an uncountable nowhere dense closed set; e.g., {f : f(2n) = 0 for every n}. Now we know that
X has a dense G; set X; homeomorphic to NN (5A4Le), and X; must also have an uncountable nowhere
dense closed set F1; since X7 \ F} is again a non-empty Polish space without isolated points (4A2Qd), it too
has a dense G4 set X5 homeomorphic to NN, and X5 is a dense G4 set in X with uncountable complement.
Similarly, R has a dense G4 subset H which is homeomorphic to NY¥ and has uncountable complement.

Let M(X5), M(H) be the ideals of meager subsets of X5 and H when they are given their subspace
topologies. Because X5 is dense, a closed subset of X is nowhere dense in X iff its intersection with X5 is
nowhere dense in Xo; accordingly M (X3) is precisely {MNXs : M € M(X)}. Similarly, M(H) ={MNH :
M e M}.

Consider the complements X \ X5, R\ H. These are uncountable Borel subsets of Polish spaces. They
are therefore Borel isomorphic (424G, 424Cb); let ¢ : X \ Xy — R\ H be a Borel isomorphism. Next, X5
and H are homeomorphic to NV, therefore to each other; let ¢ : Xo — H be a homeomorphism. Finally,
set § =1 U ¢, so that § : X — R is a Borel isomorphism. For M C X,

MeM(X) = MnX,e M(X)
(because X \ X5 is meager)
— MNX;eM(Xs) < Y[MnNXy € M(H)
< M]NH e M(H) <= 0[M] e M.

So 6 is an isomorphism between the structures (X, B(X), M(X)) and (R, 5, M). Q

(ii) Again, the most important special cases here are X = [0,1], X = {0,1}" and X = N¥,

522X Basic exercises >(a) Let K be the o-ideal of subsets of N generated by the compact sets. Show
that (I, C) is Tukey equivalent to the pre-ordered sets of 522C, so that add K = b and cf K = 0.

(b) (O.Kalenda) Set (P,C) = (N, <) x (NN, <) where < is the partial ordering of 522C(ii). Show that
(N,<) <1 (P,E) s1 (N¥, <), (P,E) 41 (N, <) and (NY, <) #1 (P,C).

(c) Let (X,X, ) be an atomless semi-finite measure space with uX > 0. Show that #(X) > nonN.
(Hint: 343Cc.)

>(e) Show that there are just 23 assignments of values to the cardinals of Cichoi’s diagram which are
allowed by the results in 522D-522Q and have ¢ = ws.

(g) Show that if covA > w; then every Al (= PCA-&-CPCA) set in a Polish space is universally
measurable. (Hint: 423Tb?, 521Xc.)

3Formerly 423Rb.
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(h) Let Z be the Stone space of the measure algebra 2 of Lebesgue measure. Show that the Novdk
number n(Z) of Z and the Martin number m(2l) of 2 are both equal to covN. (Hint: 341Q, 416V, 517K.)

522Y Further exercises (a) Show that if add N = ¢f N then (R, M) and (R, N) are isomorphic, in
the sense that there is a permutation f : R — R such that A C R is meager iff f[A] is Lebesgue negligible.

(b) Show that if cov N > wq then cov N > mpeq, .

(c) Let P and @ be partially ordered sets such that ¢ has no greatest member, ~ an equivalence relation
on P, and 7 : P — @ a surjective function such that, for pg, p1 € P, m(po) < m(p1) iff there is a p ~ pg
such that p < p;. Suppose that x is a cardinal such that no ~-equivalence class has cardinal greater than
k. Show that add(Q) < max(FN(P), k).

(d) Suppose that FN(PN) = w;. Show that whenever A C R is non-meager there is a set B € [A]“* such
that every uncountable subset of B is non-meager?.

(e) Suppose that FN(PN) = p and that £ > Meountable 18 such that cf[x]<P < k. Show that x > c.
(f) (S.Geschke) Show that if FN*(PN) < Meountable then non M < FN*(PN).

(g) Let S© be the family described in the proof of 522Vf. For any sets A, B say that A C* B if A\ B
is finite, and define <* as in 522C. Show that (S, C* S©)) gqr (NN, <* NN) x (NN, c* §0),

(h) Suppose that we have supported relations (A, R, B) and (4, S, A) such that RoS C R, that is,
(a,b) € R whenever (a,a’) € S and (a’,b) € R. Show that if w < cov(A4, R, B) < oo then cf(cov(A4, R, B)) >
add(4, S, A).

(i) Let X be any topological space with countable m-weight and write M(X) for the family of meager
subsets of X. Show that M(X) g1 M.

5227 Problem Is it the case that (R, €, M) =g7 (NV, finint, NN)? (See 5225 and the proof of 522V.)

522 Notes and comments All the significant ideas of this section may be found in BARTOSZYNSKI &
JUDAH 95, with a good deal more.

For many years it appeared that ‘measure’ and ‘category’ on the real line, or at least the structures
(R,B,N) and (R, B, M) where B is the Borel o-algebra of R, were in a symmetric duality. It was perfectly
well understood that the algebras 20 = B/BNN and & = B/BN M — what in this book I call the ‘Lebesgue
measure algebra’ and the ‘category algebra of R’ — are very different, but their complexities seemed to
be balanced, and such results as 522G encouraged us to suppose that anything provable in ZFC relating
measure to category ought to respect the symmetry. It therefore came as a surprise to most of us when
Bartoszyniski and Raisonnier & Stern (independently, but both drawing inspiration from ideas of SHELAH
84, themselves responding to a difficulty noted in SOLOVAY 70) showed that add AV < add M in all models
of set theory. (It was already known that add A/ could be strictly less than add M.)

The diagram in its present form emphasizes a new dual symmetry, corresponding to the duality of
Galois-Tukey connections (512Ab). No doubt this also is only part of the true picture. It gives no hint,
for instance, of a striking difference between cov.M and covN. While cov M = Mcountaple must have
uncountable cofinality (522Vf), covN can be w, (SHELAH 00). In 522H-522I and 522Sb-522Sc there are
hints of a different symmetry which I have not been able to formalize convincingly (see 5227Z).

I have hardly mentioned shrinking numbers here. This is because while shr M and shr A/ can be located
in Cichoni’s diagram (we have non M < shr M < ¢f M and non N < shr N < ¢f N, by 511Jc¢), they are not
known to be connected organically with the rest of the diagram. I will return to them in a more general
context in 523M. I have also not said where the m-weight of Lebesgue measure (see 511Gb) fits in; this is in
fact equal to cf N, as will appear in 524P.

4In the language of 554C, every non-meager subset of the real line includes a Lusin set.
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In 522T I give two classic ‘Martin’s axiom’ arguments. They are typical in that the structure of the proof
is to establish that there is a suitable partially ordered set for which a ‘generic’ upwards-directed subset
will provide an object to witness the truth of some assertion. ‘Generic’, in this context, means ‘meeting
sufficiently many cofinal sets’. If there were any more definite method of finding the object sought, we would
use it; these constructions are always even more ethereal than those which depend on unscrupulous use of
the axiom of choice. ‘Really’ they are names of propositions in a suitable forcing language, since (as a rule)
we can lift Martin numbers above w; only by entering a universe created by forcing. But in this chapter,
at least, I will try to avoid such considerations, and use arguments which are expressible in the ordinary
language of ZFC, even though their non-trivial applications depend on assumptions beyond ZFC.

Of the partially ordered sets S°° and P in the proof of 522T, the former comes readily to hand as soon
as we cast the problem in terms of the supported relation (N, C* S); we need only realize that we can
express members of S as limits of upwards-directed subsets of a subfamily in which there is some room to
manoeuvre, so that we have enough cofinal sets. The latter is more interesting. It belongs to one of the
standard types in that the partially ordered set is made up of pairs (o, F') in which o is the ‘working part’,
from which the desired meager set

M =R \ mneN UaeR,izn U(Z)

will be constructed, and F' is a ‘side condition’, designed to ensure that the partial order of P interacts
correctly with the problem. In such cases, there is generally a not-quite-trivial step to be made in proving
that the ordering is transitive ((b-i) of the proof of 522T). Note that we have two classes of cofinal set to
declare in (b-iii) of the proof here; the @), are there to ensure that M is meager, and the Q’; to ensure
that it includes every member of H. And a final element which must appear in every proof of this kind, is
the check that the partial order found is of the correct type, o-linked in (a) and o-centered in (b).

In 522U 1 suggest that it is natural to try to locate any newly defined cardinal among those displayed in
Cichon’s diagram. Of course there is no presumption that it will be possible to do this tidily, or that we can
expect any final structure to be low-dimensional; the picture in 522T is already neater than we are entitled
to expect, and the complications in 522U (and 522Yd-522Yf) are a warning that our luck may be running
out. However, we can surprisingly often find relationships like the ones between FN(PN), b, shr M and
Meountable here, which is one of my reasons for using this approach. It is very remarkable that under fairly
weak assumptions on cardinal arithmetic (the hypothesis ‘Mcountable < wy,” in 522Ud is much stronger than
is necessary, since in ‘ordinary’ models of set theory we have cf[x]=* = x whenever cfx > w — see 5A6Bc
and 5A6C), the axiom ‘FN(PN) = w;’ splits Cichoii’s diagram neatly into two halves. For an explanation
of why it was worth looking for such a split, see FUCHINO GESCHKE & SOUKUP 01.

For the sake of exactness and simplicity, I have maintained rigorously the convention that M and N are
the ideals of meager and negligible sets in R with Lebesgue measure. But from the point of view of the
diagram, they are ‘really’ representatives of classes of ideals defined on non-empty Polish spaces without
isolated points, on the one hand, and on atomless countably separated o-finite perfect measure spaces of
non-zero measure on the other (522W). The most natural expression of the duality between the supported
relations (R, €, M) and (R, €,N) (522G) depends, of course, on the fact that both structures are invariant
under translation; but even this is duplicated in R” and in infinite compact metrizable groups like {0, 1}.

At some stage I ought to mention a point concerning the language of this chapter. It is natural to think
of such expressions as add N as names for objects which exist in some ideal universe. Starting from such
a position, the sentence ‘it is possible that add A" < add M’ has to be interpreted as ‘there is a possible
mathematical universe in which add AV < add M’. But this can make sense only if ‘add A can refer to
different objects in different universes, and has a meaning independent of any particular incarnation. I
think that in fact we have to start again, and say that the expression add A/ is not a name for an object,
but an abbreviation of a definition. We can then speak of the interpretations of that definition in different
worlds. In fact we have to go much farther back than the names for cardinals in this section. PN and R
also have to be considered primarily as definitions. The set N itself has a relatively privileged position; but
even here it is perhaps safest to regard the symbol N as a name for a formula in the language of set theory
rather than anything else. Fortunately, one can do mathematics without aiming at perfect consistency or
logical purity, and I will make no attempt to disinfect my own language beyond what seems to be demanded
by the ideas I am trying to express at each moment; but you should be aware that there are possibilities for
confusion here, and that at some point you will need to find your own way of balancing among them. My

D.H.FREMLIN



36 Cardinal functions of measure theory 522 Notes

own practice, when the path does not seem clear, is to re-read KUNEN 80.

Version of 24.8.24
523 The measure of {0,1}!

In §522 1 tried to give an account of current knowledge concerning the most important cardinals associated
with Lebesgue measure. The next step is to investigate the usual measure v on {0,1}! for an arbitrary
set I. Here I discuss the cardinals associated with these measures. Obviously they depend only on #(I),
and are trivial if [ is finite. I start with the basic diagram relating the cardinal functions of v, and v, for
different cardinals k and A (523B). I take the opportunity to mention some simple facts about the measures
vy (523C-523D). Then I look at additivities (523E), covering numbers (523F-523G), uniformities (523H-
523L), shrinking numbers (523M) and cofinalities (523N). I end with a description of these cardinals under
the generalized continuum hypothesis (523P).

523A Notation For any set I, I will write v; for the usual measure on {0, 1}/ and A for its null ideal.
Recall that ({0,1}*, N,,) is isomorphic to (R, '), where N is the Lebesgue null ideal (522Wa).

523B The basic diagram Suppose that x and A are infinite cardinals, with x < A. Then we have the
following diagram for the additivity, covering number, uniformity, shrinking number and cofinality of the
ideals NV, and N, :

covNy — covN, — cfN, — cf N, — )\

shr N, —— shr N

w; — add Ny — add N,, — nonN,, — non N,

(As in 522B, the cardinals here increase from bottom left to top right.)

proof For the inequalities relating two cardinals associated with the same ideal, see 511Jc; all we need to
know is that N, and Ny are proper ideals containing singletons. For the inequalities relating the cardinal
functions of the two different ideals, use 521H; v,; is the image of vy under the map x +— z[x : {0,1}* —
{0,1}*, by 2540a. Of course wy < addN,. I leave the final inequality cf N, < A¥ for the moment, since
this will be part of Theorem 523N below.

523C In the next few paragraphs I will set out what is known about the cardinals here. It will be
convenient to begin with two easy lemmas.

Lemma Let I be any set, and J a family of subsets of I such that every countable subset of I is included
in some member of J. Then a subset A of {0, 1}1 belongs to N7 iff there is some J € J such that
{z]J: 2 € A} € Nj.

proof For J C I,z € {0,1}! set m;(x) = z[J € {0,1}’. Then vy is the image measure vyr;' (2540a
again), so A € N7 whenever there is some J € J such that 7;[A] € A;. On the other hand, if A € N,
there is a countable set K C I such that mx[A] € Nk (2540d). Now there is a J € J such that K C J, so
that w5 '[ms[A]] C 7 [rx[A]] € N7 and 75[A] € N

523D Because the measures v; are homogeneous in a strong sense, we have the following facts which
are occasionally useful.

Proposition Let k be an infinite cardinal, and T the domain of v,. For A C {0,1}"* write T4 for the
subspace o-algebra on A.

(©) 2005 D. H. Fremlin
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(a) If E C {0, 1}" is measurable and not negligible, then (F, T g, N,;NPE) is isomorphic to ({0, 1}, T, Ny).
(b) If £ C N, and #(&) < cov Ny, then (v.).(UE) = 0.

(¢) If A C {0,1}" is non-negligible, then there is a set B C {0,1}", of full outer measure, such that
(A, T4, N, NPA) is isomorphic to (B, Tg,N,, N PB).

(d) There is a set A C {0,1}* with cardinal non N,, which has full outer measure.

proof (a) In fact the subspace measure on E is isomorphic to a scalar multiple of vy (344L).

(b) ? Otherwise, let F' C |JE& be a non-negligible measurable set; then {FFNE : E € £} witnesses that
cov(F, N, NPF) < cov N, which contradicts (a). X

(c) Let E be a measurable envelope of A. By (a), there is a bijection f : E — {0,1}" which is an
isomorphism of the structures (E,Tg, N, N PE) and ({0,1}*,T,N,). Set B = f[A]. Then f[A is an
isomorphism of the structures (A, Ta, N, N PA) and (B, T, N, N PB). Moreover, since A meets every
member of Ty \ N, B meets every member of T \ N, that is, B has full outer measure.

(d) Let Ag C {0,1}* be a non-negligible set of cardinal non M. By (c), there is a set A of full outer
measure which is isomorphic to Ay in the sense described there; in particular, #(A4) = non N,.

523E Additivities Because the function x — add N, is non-increasing, it must stabilize, that is, there
is some first x, such that add NV,, = add N, for every k > k4. But in fact it stabilizes almost immediately.
If x is any uncountable cardinal, then add N, = addv, = wy, by 521Jb.  Thus among the additivities
add NV, only add A, = add V, the additivity of Lebesgue measure, can have any surprises for us.

523F Covering numbers Still on the left-hand side of the diagram, we again have a non-increasing
function x — covN,, and a critical value k. after which it is constant. We can locate this value to some
extent through the following simple fact. If § = covN,;, = min{covN,, :  is a cardinal}, then cov Ny = 6.
P Let x be such that covN, = 6. For I C &, set my(z) = z|I for x € {0,1}*. Let £ C N, be a cover
of {0,1}" of cardinality 6. For each E € &, let Jg C k be a countable set such that 7 [E] € Nj,. Set
I =Upeg JE, so that #(I) < 0 and 7;[E] € Nj for every E € €. Then {m;[E] : E € £} is a cover of {0,1}/
by at most covj, sets, and coviN; < covN,. Since ({0,1}, A7) is isomorphic to ({0, 1}#) Ny p), we
also have

cov Ny < cov Ny < cov NV, < cov Ny,

and covlNy = cov N, = 0. Q
‘What this means is that

w< ke <0< covN,, <covN, =covN <.
Another way of putting the same idea is to say that
if § < X then cov Ny <covNy =0 < A
so that
if X is a cardinal such that cov Ny > A then cov N, > A for every k.

523G When the additivity of Lebesgue measure is large we have a further constraint on covering numbers.
Proposition (KRASZEWSKI 01) If  is a cardinal and cov N, < add N, then cov N, < cf[x]=%.

proof As {0,1}* is covered by negligible sets, x is infinite. Let £ be a subset of N, with cardinal cov N,
and union {0,1}%, and J a cofinal subset of [k]* with cardinal cf[x]<*. For J € J and x € {0,1}" set
m7(x) = x|J, so that 7 : {0,1}® — {0,1}/ is inverse-measure-preserving. For J € J set £; = {E: E € &,
WJ[E] ENJ}, H; = UEJ. Since

#(E7) < #(E) = cov N, < add N = add N, = add Ny,
Fy = U{n/[E]: E € &} € Ny and H; C n;'[Fy] € N,,. Since Ujes €1 = € (523C) covers {0,1}",
{H;:J € J} covers {0,1}* and cov N, < #(J) = cf[r]=%.
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523H Uniformities On the other side of the diagram we have non-decreasing functions. To get upper
bounds for non N,, we have the following method.

Lemma (KrASZEWSKI 01) Suppose that I is a set and F' a family of functions with domain I such that
for every countable J C I there is an f € F such that f[J is injective. Then

non N7 < max(#(F),sup e p non Nypy).

proof If I is finite the result is trivial. Otherwise, for each f € F' take a non-negligible subset A of {0, 1}/

with cardinal non Ny, Set A = {yf : f € F,y € Ay} € {0,1}). 7 If A € N, there is a countable set

J C I such that {z[J: 2z € A} € Nj. Let f € F be such that f]J is injective. Then we have a function

¢ - {0,1}/1] = {0,1}7 defined by saying that ¢(z) = zf]J for every z € {0,1}/], and (because f[J is

injective) ¢ is inverse-measure-preserving for vy;; and v, so ¢[Ay| cannot be v;-negligible. But if y € Ay

then ¢(y)(§) = y(f(§)) for every & € J, so ¢p[Ay] C {z[J : x € A}, which is supposed to be negligible. X
Thus A is not negligible, and

non Ny < #(A) < max(w, #(F),sup e p #(Ay)) = max(#(F), sup ¢ p non Nyp))

because we are supposing that I is infinite, so there is some f € F such that f[I] is infinite.

5231 Theorem (a) For any cardinal ,
(i) non NV, < max(non N, cf[k]<%),
(i) non N+ < max(kt,nonN,),
(iii) non Nax < max(c, cf[k]=¢),
(iv) non Ny < max(k™, non Nax).
(b) If cf k > w, then non N, + < max(cfr,supy_, nonNy).
proof (a) If k is finite, all these are trivial; so suppose otherwise.

(i) Let J C [k]=¥ be a cofinal set with cardinal cf[x]<“, and for J € J let f; be the identity function
on J. Applying 523H with F' = {f;:J € J} we get

non N, < max(#(J), sup non Ny)

JeJg
< max(non N, Cf[lﬁ;]éw) = max(non N, Cf[’f]gw)~

(ii) For each £ < k™ choose a function f¢ : kK7 — k which is injective on &, and set F' = {f¢ : £ < kT}.
By 523H,
non N,.+ < max(#(F),supg .+ non Ny, .+7) < max(x*,nonNy).

(iii) Take J as in (i). This time, for J € J, define f;: Pk — PJ by setting f;(A) = AN J for every
A C k. Applying 523H with F' = {f;: J € J} we get

non Ny« = non Np,, < max(#(J), sup non Np ;) < max(cf[x]=% non ;)
JeJg
< max(cf[x]=%, non NV, cf[¢] ) = max(cf[k]=*, c)
(5A1F (e-ii)).

(iv) Set fe(A) = AN for € <kt and AC k. If 7 C Prt is countable, there is a £ < k* such that
ANE # A N¢ for all distinet A, A" € J, that is, f¢[J is injective. So 523H tells us that

non Ny = non Np(,+) < max(x", sup non Ny, .+])
E<kt
< max(k", sup non Np¢) = max(k™, non Nax ).
E<kt

(b)(i) If Kk = 6* where 6 is an infinite cardinal, non V,+ < max(x,non/Ny). PP Choose an injective
function h¢ : ¢ — & for each ¢ < k1. For £ < k define f¢ : kK — K by saying that
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Je(Q) =min(k \ {fe(n) : n < ¢, he(n) < €})
for ¢ < k™. If J C kT is countable, then & = sup, cc;,<c hc(n) is less than s, and fe(n) # fe(¢) for all
distinct 7, ¢ € J. Applying 523H with F = {f¢ : { < k} and using (a-ii) above, we get

non N, + < max(k,non N, ) < max(x,nonNy) = max(cfx,sup,_,. non/Ny). Q

(ii) Now suppose that x is an uncountable limit cardinal with uncountable cofinality. Again choose
an injective function h¢ : ¢ — & for each ¢ < x*. This time, let K C  be a cofinal set with cardinal cfx
consisting of cardinals, and for A € K define fy : k¥ — A" by the formula

SA(Q) = min(AT\{fa(n) : n <, he(n) < A})

for { < x*. If J C w* is countable, then there is a A € K such that A > sup, cc s, <¢ he(n), and fx(n) # fA(C)
for all distinct n, ¢ € J. Applying 523H with F' = {f) : A € K}, we get

non N+ < max(#(F),sup e p non Nyp+)) < max(cf s, supy ., non Ny).

523J Corollary (KraszEwskI 01) (a) nonN,,, = non N, = nonN.
(b) For any n € N, nonN,,, ., < max(w,,nonN).

(c) non Noes =nonl\; .

(d) If n € N then non NVawn < max(wy, non A, ).

proof (a) We have

non N = nonN,, <nonN,, <nonh\,,
(523B)
< max(cfwy,non NV,,)
(5231b)
=nonN.

(b) Induce on n, using 523Ib for the inductive step.
(c) By 523I(a-iii), non N« < max(wy,non N, ); since
w1 <nonN. < nonNoe,

we have the result.

(d) Induce on n, using 5231 (a-iii) or 5231(a-iv) for the inductive step.

523K Corollary (BURKE N05) For any sets I, K let T, (I, K) be the least cardinal of any family F' of
functions from I to K such that for every countable J C I there is an f € F which is injective on J. (If
#(K) < min(w, #(I)) take T, (I, K) = cc0.) Then

(a) non Ny < max(Y, (I, K),non Ng) for all sets I and K;
(b) if k > ¢ is a cardinal, then nonN,, = max (Y, (k, c), non \V;).

proof (a) This is just a slightly weaker version of 523H.

(b) The point is that Ty (k,¢) < nonN,. P Let A C {0,1}**“ be a non-negligible set of cardinal
non N, .. For x € {0,1}**% define f, : K — {0,1}* by setting f,(§) = (x({,n))nen for each £ < k. If &,
1 < k are distinct, then {z : f,(§) = f.(n)} is negligible, so if J C & is countable then {z : f,[J is injective}
is conegligible and meets A. Accordingly {f, : * € A} witnesses that

Yo (K, ¢) = Tu(k,{0,1}¥) < #(A) = non Ny x, = nonN,.. Q
Since we already know that
non N; < non N, < max(Y,(k,¢),nonN),

we have the result.
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523L On the other side we can find lower bounds which give a notion of the rate of growth of the
numbers non N, as s increases.

Proposition (a) If A and & are infinite cardinals with s > 2* then non N, > .
(b) If & is a strong limit cardinal of countable cofinality then non N, > k.

proof (a) Let A C {0,1}" be any set with cardinal at most A\. For { < k set Be = {x : z € A, z(§) = 1}.
Because & > 2#(4) there is some B C A such that I = {¢ : B¢ = B} is infinite. But what this means is
that if £ € I then z(§) =1 for every £ € B and x(£) = 0 for every x € A\ B, and A C {z : x is constant on
I} is negligible. As A is arbitrary, non N, > A.

(b) By (a), non N, > X for every A < k, so nonN,, > k; but also cf(nonN,) > add N, (513C(b-ii)), so
non N, has uncountable cofinality and must be greater than x.

523M Shrinking numbers As with non,, the functions x — shrN, and x — shrN, are non-
decreasing, by 521Hb. Some of the ideas used in 5231 can be adapted to this context, but the pattern as a
whole is rather different.

Proposition (a)(i) For any non-zero cardinals x and A,
shr V,, < max(covgh (K, A, w1,2), supy. shr Np).
(ii) For any infinite cardinal , shr NV, < max(shr AV, cf[]<%).
(iii) If cf k > w, then shr N, < max(k,supg.,, shrNp).
(b) For any infinite cardinal &,
(i) shr N, > k;
(ii) cf(shr Ny) > w;
(i) cf(shrt N) > k.

Remark For the definition of covgy, see 5A2Da.

proof (a)(i) If covsy(k, A, w1,2) = 00 or & is finite this is trivial. Otherwise, A > wy. Take a non-negligible
A C{0,1}*. Let J C [k]<* be a set with cardinal covgy(k, A, w1, 2) such that for every I € [k]<“! there is a
D € [J]<? such that I C |JD, that is, thereisa J € J such that I C J. ForeachJ € J, A; = {z]J : x € A}
is non-negligible; let By C A be a non-negligible set with cardinal at most shr ;. Let B C A be a set
with cardinal at most max(w,#(J),sup e shr ;) such that By C {z[J : * € B} for every J € J. If
I C k is countable, there is a J € J such that I C J, so {«|I :z € B} D {y|I :y € By} is non-negligible;
it follows that B is non-negligible, while #(B) < max(covsy (K, A, w1, 2), supy» shrNp).

(ii) Taking A = wy in (i),
shr NV,, < max(covsy(k,wr,wr,2),shr A,,) = max(cf[k]<¥, shr ).

(iii) Take A = & in (i); as [k]|=¥ = U§<H[£]§wa

shr V,, < max(covsp(k, K, w1, 2), supy.,. shr Ny) = max(k, supg., shr Np).

(b)(i) Induce on k. If K = w the result is trivial. For the inductive step to k™, consider the set
A={z:2€{0,1}*", 3¢ <kt z(n) =0 for every n > &}.

Then the only set which includes A and is determined by coordinates in a countable set is {0, 1}”+, so A
has full outer measure. On the other hand, if B C A and #(B) < &, then there is some { < k1 such that
x(¢) = 0 for every x € B and every £ > (, so B is negligible. Thus A witnesses that shr V;+ > xT. Because
k — shr NV is non-decreasing (523B), the inductive step to limit cardinals  is trivial.

(ii) 7 Now suppose, if possible, that cf(shr V) = w. Then there is a sequence {\,)nen of cardinals
less than shr N, with supremum shrA,. For each n € N set I,, = x x {n}, and let A,, C {0,1}/" be a
non-negligible set such that every non-negligible subset of A,, has more than A, members. By 523Dc, there
is a set B,, C {0,1}!" of full outer measure such that every non-negligible subset of B,, has more than \,
members. Set
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B={z:2€{0,1}**N 21, € B, for every n € N}.

Then the natural isomorphism between {0,1}**" and [, {0,1}/" identifies B with [], . Bn, so B has
full outer measure in {0, 1}**N (254Lb). There must therefore be a set C' C B, of non-zero measure, such
that #(C) < shrN,. Express C as (J, oy Cn where #(C,,) < Ay, for every n. Then there is an n € N
such that C,, is not negligible, in which case D,, = {«]I, : z € C,} is non-negligible. But D,, C B,, and
#(D,) < Ay, so this is impossible. X

(iii) The argument of (i) shows that if  is a successor cardinal, then shr™ NV, > k. So we need consider
only the case in which & is a limit cardinal. ? If cf(shr™ A;) < &, then there is a family (\¢)¢<, of cardinals
less than shr* AV, with supremum shr™ A. T use the same method as in (ii). For each £ < x set I = r x {¢},
and let Be C {0, 1}!¢ be a set of full outer measure such that every non-negligible subset of B¢ has at least
A¢ members. Set

B ={z:2€{0,1}"*%, z|I; € B for every £ < k.

Then B has full outer measure in {0,1}***. There must therefore be a set C' C B, of non-zero measure,
such that #(C) < shr* N,. Let & <  be such that #(C) < A¢. Then D = {x[I¢ : x € C} is non-negligible.
But D C B¢ and #(D¢) < A¢, so this is impossible. X

523N Cofinalities For the cardinals cf N, the pattern from 523I(a-i) and 523Mb continues, and indeed
we have an exact formula.

Theorem For any infinite cardinal &,

k < cf N, = max(cf N, cf[k]=¥) < k.

proof (a) cf N, < max(cf N, cf[x]=*). P Let J be a cofinal family in [k]* with cardinal cf[k]<“. For each
J € J, write mj(z) = x| J for x € {0,1}*. Let £; be a cofinal subset of N; with cardinal cfN; = cf N, =
cf N. Consider £ = {n;'[E]:J € J, E € £;}. By 523C, £ is cofinal with A, so that

cf Ny < #(€) < max(cf N, cf[k]=¥). Q
(b) We know that cf[k]=%¥ < cfN, (521Jb) and that cfN = cfAN, < cfN, (523B). So cfN, =
max(cf N, cf[K]=%).
(c) For the inequalities, note that w < ¢f A and if  is uncountable then (in the language of 512Ba)
cf[K]=% > cov(k, €, [k]|=¥) = k.

On the other side, cf A < ¢ < k% and cf[k]=% < #([k]=¥) < kY.

5230 Cofinalities of the cardinals In 523Mb I have shown that shr N, has uncountable cofinality
for infinite s, and rather more about shrt N,. From 513Cb we have a little information concerning the
cofinalities of add NV, cov N, non N, and cfN,; but except when x = w we learn only that cfN,, and
nonN,, have uncountable cofinality, and that if covN,, = cf N, then their common cofinality is at least
non N,;. This last remark can apply only to ‘small’ &, since ¢f N, > & (if & is infinite) and cov N, < cov .

523P The generalized continuum hypothesis In this chapter I am trying to present arguments in
forms which show their full strength and are not tied to particular axioms beyond those of ZFC. However it
is perhaps worth mentioning that in one of the standard universes the pattern is particularly simple.

Proposition Suppose that the generalized continuum hypothesis is true. Then, for any infinite cardinal &,

add N, = add v,, = cov N, = wq;

nonN,, = X if kK = AT where cfA > w,
=kTif cfk = w,

= K otherwise;
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shr N, = cf N, = kT if cfk = w,

= K otherwise;

shr™ NV, = (shr V)T = 1T if of v = w,

= k1 otherwise.

proof Since
wi < addWN, = add v, < covN, <covN < ¢ =wi,

the additivity and covering number are always w; .
If k = At where cf\ > w, then k > 27 for every # < ), so we have

A < non N, < max(c,cf[A\]S¥) = A
(523La, 523I(a-iii), 5A6ADb). If k = At where cf A\ = w, then
A <nonN, <\ <2 =g;

but as non NV, has uncountable cofinality (513C(b-ii) again), non N,, must be x. If « is a limit cardinal, then
k> 29 for every 0 < k, so

k < non N, < max(wy, cf[k]=¥)

by 5231(a-i); if ¢f s > w this is already enough to show that non N,, = &; if cfx = w then non N, cannot be
% so must be kT = k¥,
As for shr NV, if cfxk = w, then

kT <shrN, <cfN, = max(wy, cf[r]S¥) < 2F =
by 523M(b-ii) and 523N. If cfx > w then
k <shrN, <cftN. <k

by 523M(b-i), 523N and 5A6Ab. This deals with shr N, and ¢f NV,;. For the augmented shrinking numbers,
we know that if cfx = w then shr \V,, = kT is a successor cardinal so shr™ N, = (shr V)" = x+F, while if
cfx > w then

shr NV, = k < shr™
(523M (b-iii))
< (shr M,)*

and shrt N, = (shr V)" = s.

523X Basic exercises (a) Show that
Wi, 2,{0,1}%) < ([K]5, S, [/]5) x (N, Z,R)
for every infinite cardinal k. (See 5121 for the definition of x.) Use this to prove 523I(a-i).

(b) Let x be an infinite cardinal, and J a family of subsets of xk such that every countable subset
of x is included in some member of 7. Show that nonN, < max(#(J),sup;c;nonN;), nonNp, <
max(#(J),sup e 7 non Npz), shr N, < max(#(J),sup j¢ 7 shr Ny) and cf N, < max(#(7),sup je 7 cfN).

(¢) Show that
(N;@,Q,Nn) <aT ([H}Sw,ca [H}Sw) X (N,Q,N)

for every infinite cardinal k. Use this to prove 523N.
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(d) Let (X, 3, ) be any probability space, and for each set I write N'(u!) for the null ideal of the product
measure on X!, Show that all the results of 523E-5231 and 523L-523N are valid with A/(u!) in place of N
and A (u*) in place of A/, except that

—— in 523E the additivities may stabilize at co rather than wy;

—— in 523F we can no longer be sure that cov NV (u~) < ¢;

—— in 523I(a-iii) we need to write ‘non N'(u?") < max(c, non N (), cf[k]=)’;

—— in 523L and 523Mb we have to assume that the measure algebra of p is not {0, 1}, so that the product
measure p" is atomless;

—— in 523N we can no longer be sure that cf N'(u¥) < &%.

523Y Further exercises (a) Set 2 = PR/N. Show that ¢ < ¢(A) < 7(A) < 20N,

(b) Let x be an infinite cardinal. Show that there is a family J C [x]<% such that #(J) < shr N,, and
every infinite subset of k meets some member of 7 in an infinite set.

(c) Suppose that £ > w and that [x]<“ has bursting number at most add . Show that N, =1 [k]=* x N.

(d) Show that

(w1, <ywr) X (wr, <, w1) Lot (Wi, < w1) X (w1, < wi).

(e) For infinite cardinals k, write M, for the ideal of meager subsets of {0,1}". Show that under the
same conventions as in 522B and 523B we have the diagrams

covMy — covM,, — cfM, — cf M, — I\

shr M, —— shr M

w; — add M, — add M, — non M,, — non M,

and

covN,, — non M, — cf M, — cfN, — k%

w; — addN,, — add M, — cov.M, — nonN,,
whenever w < k < A. Show moreover that all the results of 523E-523P have parallel forms referring to M.
(f) In the language of 523Ye, show that mpe,, < cov. M, for every infinite k.

(g) Show that Ostaszewski’s & (4A1M) implies that cov. N, = cov M,,, = w;.

523Z Problem Is there a proof in ZFC that shr N, > cf[x]=“ for every cardinal x?

523 Notes and comments The basic diagram 523B is natural and easy to establish. Of course it leaves a
great deal of room, especially on the right-hand side, where we have the increasing functions non N, , shr AV,
and cf N,, and rather weak constraints

X < nonN, <shrN, <cfN, < k“ whenever 2* < &

to control them. However the generalized continuum hypothesis is sufficient to determine exact values for
all the cardinals considered here (523P).

The combinatorics of cf[x]<* and almost-disjoint families of functions are extremely complex, and depend
in surprising ways on special axioms; I think it possible that the results of 5231-523J can be usefully extended.
However 523N at least reduces the measure-theoretic problem of determining cf N, to a standard, if difficult,
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question in infinitary combinatorics. I do not know if there are corresponding results concerning non N,
and shr NV, (see 523Kb and 5237).

All the ideas in this section up to and including 523P can be applied to ideals of meager sets (523Ye) and
indeed to other classes of ideals satisfying the fundamental lemma 523C; see KRASZEWSKI 01.

Version of 29.9.10/10.9.13

524 Radon measures

It is a remarkable fact that for a Radon measure the principal cardinal functions are determined by its
measure algebra (524J), so can in most cases be calculated in terms of the cardinals of the last section
(524P-524Q). The proof of this seems to require a substantial excursion involving not only measure algebras
but also the Banach lattices ¢*(x) and/or the k-localization relation (524D, 524E). The same machinery
gives us formulae for the cardinal functions of measurable algebras (524M). The results of §518 can be
translated directly to give partial information on the Freese-Nation numbers of measurable algebras (5240).
For covering number and uniformity, we can see from 521L that strictly localizable compact measures follow
Radon measures. I know of no such general results for any other class of measure, but there are some bounds
for cardinal functions of countably compact and quasi-Radon measures, which I give in 524R-524T.

524A Notation If (X, X, u) is a measure space, N (u) will be the null ideal of p. For any cardinal «, v,
will be the usual measure on {0,1}"*, T its domain and (B, ;) its measure algebra. As in §§522-523, T will
write N, for A'(v,) and A for the null ideal of Lebesgue measure on R, so that (R, ) and ({0,1}*, N,,)
are isomorphic (522Wa). If 2 is any Boolean algebra, I write 2+ for A\ {0} and A~ for A\ {1}. If (4, R, B)
is a supported relation, R’ is the relation {(a,I) : a € R7![I]} (see 512F). For any cardinal &, (x,C*,S,)
will be the k-localization relation (522K).

524B Proposition Let (X, %, % 1) be a o-finite Radon measure space with Maharam type x. Then
N () <t B,

proof (a) Suppose, to begin with, that uX = 1 and k > w. Let 2 be the measure algebra of the Radon
product measure AonY = XN Then A~ B,. P By 417E(b-i), 2l is isomorphic to the measure algebra of
the usual product measure A on Y, which by 334E is isomorphic to ‘B,. Q
For E € N (1), let (Fg;)ien be a sequence of closed subsets of X such that EN Fg; = 0 and pFg; >
1 — 271 for every n € N. Then
M Tien Fri) = M Lien FEi) > Tien(1 = 2771 > 0;

set
(E) = (Y \[Lien Fi)* €A™
For b € 2~ let K}, C Y be a non-empty compact self-supporting set such that K; nb = 0. Set m;(y) = y(¢)

for i € N and y € Y. Then each m[K}] C X is compact and Kj C [T;cnm; ' [mi[Kb]l, so [T;en pmi[KG] > 0
and sup; ey pm; [Kp] = 1; set

(b)) = X\ Usen milKo] € N ().
If F € N(u) and b € 2~ and ¢(F) C b and j € N, then
Ky \7; [Fr;] € Ky \ [Lien Fri

is negligible. As K, is self-supporting, Kj \ w{l[FEj] is empty and 7;[K;| C Fgj. But this means that
7 [Kp) N E = 0 for every j € N, so that E C ¢(b).
This shows that ¢ is a Tukey function, so that N (u) <7 A~ =2 B,.

(b) If k is finite, N (1) has a greatest member and the constant function with value 0 is a Tukey function
from N(u) to B}, and the result is trivial. If  is infinite and uX # 1, then, because u is o-finite and not
trivial, there is a function f : X — ]0,00[ such that [ fdu = 1 (215B(ix)). Let v be the corresponding

(©) 2003 D. H. Fremlin
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indefinite-integral measure; then v is a Radon probability measure (416Sa) with the same measurable sets
and the same negligible sets as p (234L), so /N (v) = /N (1) has Maharam type . In this case, (a) tells
us that N () = N(v) <1 B,

524C Lemma Let P be a partially ordered set such that p V ¢ = sup{p, ¢} is defined for all p, ¢ € P.
Suppose that p is a metric on P such that P is complete (as a metric space) and V : P x P — P is
uniformly continuous with respect to p. Let @ C P be an open set, and k > d(Q) a cardinal. Then
(Q, <" [Q]7%) KaT (I1(K), <, 01 (k). If Q is upwards-directed, then Q <1 ¢ (k).

proof (a) If Q is finite, then we can set ¢(q) = 0 for every q € Q, ¥(x) = Q for every x € ¢} (k) and (¢, )
will be a Galois-Tukey connection from (Q, <’,[Q]<%) to (¢}(k), <, ¢ (k)). So let us suppose that Q and &
are infinite.

(b) Let (ge)e<r run over a dense subset of Q). For each ¢ € @ let m(q) € N be such that {p : p € P,
p(p,q) < 27™@} C Q. For each n € N, let 6, > 0 be such that p(sup I,supJ) < 2=™ whenever () # I C
J C P and #(J) < 2" and maxge s minye; p(p, q) < 26,; such exists because (p;)i<y — sup; ., p; : P* — P
is uniformly continuous whenever k£ > 0, and in particular when k = 2". Reducing the §,, if necessary, we
may suppose that d,41 < 6, < 27" for every n.

(c) Define ¢ : Q — ('(k) as follows. Given p € @Q, choose a sequence (£(p,n))nen in & such that
PP, Ge(pn)) < Ony1 for every n. Take ¢(p) € €' (k) such that

¢(p)(m(p)) 21,  d(p)(&(p,n)) = 27" for every n € N

(regarding m(p) as a finite ordinal).

(d) Define 9 : /*(k) = [Q]<¥ as follows. Given z € ¢'(k), set K, (z) = {g¢ : £ < K, z(§) > 27"} for
n € N. Then

S 2 (K (1)) € oy 2 (€) > 277} < 2y < oo,
so there is a k(z) € N such that x(n) < 1 for n € w\ k(z) and also #(K,(x)) < 2" for n > k(z). Set
K(z) = Kj(z)(z). For s € K(z) set
I(m,s,k(m)) = {3}7 I(xasvn + 1) = {q ‘g€ Kn+1(x)a p(QaI(xasvn)) < 25n+1}

for n > k(x), writing p(q, I) for infye; p(q,q"). Because (K, (x))nen is non-decreasing, so is (I(x, 5,1))p>k(z)-
Set rysn, =supI(z,s,n) in P for n > k(x); then p(ry s ni1,Tesn) < 27771 for every n > k(x), by the choice
of 611, 8O T2s = limy, 00 T2sn 18 defined in P. Set ¢(z) = Q N {rys : s € K(z)}.

(e) Now (¢,v) is a Galois-Tukey connection from (Q,<’,[Q]<%) to (£}(k), <, (k)). P Suppose that
p € Q and = € (1(k) are such that ¢(p) < z. Then Ge(pn) € Kn(x) for every n, s0 5 = qep i) € K(2).
Also ge(pny € 1(,8,n) for every n > k(x), because

P(de(pnt1)s Qe(pon)) < Ont2 + Ong1 < 20541
for every n. So Ge(p,n) < Tasn for every n > k(x). It follows that
PV res = lim, o0 de(pn) VY Tosn = limp 00 Tzsn = Tas

and p < 7.
By the choice of k(x), we also have ¢(p)(n) < 1 for n > k(x), so that m(p) < k(x). We therefore have

o

P(szap) < p(QS(p,k(a:))yp) + Z p(rw,s,n-i-hrwsn)
n=k(z)

(because s = G¢(p,k(x)) s the unique member of I(x, s, k(z)), so is equal to 7 s k(x))

< 5k(9c)+1 + Z 2 1l < 9—k(@)—1 4 9—k(z) < 9=m(p)
n==k(x)
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and 7,5 € Q. So p < 1y € Y(x) and p <’ P(x). As p and z are arbitrary, (¢,1) is a Galois-Tukey
connection. Q

() So (Q, <", [Q]™*) <aT (I1(K), <, 0 (k)), as claimed.
Finally, if @ is upwards-directed, then add Q > w, so (Q, <, Q) =gt (Q, <, [Q]<*) (5131d) and (Q, <, Q)
<at ((X(K), <, 01 (kK)), that is, Q <1 (k).

524D Proposition If k is any cardinal,
(B, <, [B]°Y) et (1K), <, 04(r)).

proof If x is finite then B is finite and the result is trivial. Otherwise, if we give B, its measure metric
p (323Ad), then it is a complete metric space in which U is uniformly continuous (323Gc, 323B) and
B,. =B, \ {1} is an open set. Now the topological density of B, and B, is x, by 521E; so 524C gives the
result.

524E Proposition Let « be an infinite cardinal. Then
(zl(’i)’ Sla [Kl("'@)]gw) <at (K“Nv cr, Sﬁ)'

proof (a) For each i € N, let (z;¢)¢<, run over a norm-dense subset of {z : z € £*(k)*, |lz];s <47%}. Now
there is a function ¢ : £!(k) — £~ such that

for every z € ('(k), n € N there is a k € N such that z < k>~ %, 6(2)(i)

P Given z € (*(k), choose (Tp)nen, (En)nen, (kn)nen inductively, as follows. Take kg > 1 such that

[zF]l1 < ko; set w9 = ky 'z and take & < & such that |9 — 2061 < 3. Given that x, € ((x)*,

&n < k are such that ||z, — zne, |1 < 47"=1 et k,y1 > 1 be such that ||z,1]1 < 477! where z,1; =
(T — 2ne, )T + kLot and take &,41 < & such that [|Tp41 — Zn1.6,,,]]1 < 47"72; continue. At the end of

the process, set ¢(x) = (€, )nen-
Now, for any n € N, we have z < 27 < k,2,,. But we also have, for any m > n, Z,y1 > Tm — Zmgpm > SO

that z, < z,, + Z:l;l zie, for every m > n. Since ||z, |1 < 47™ for every m, lim,, oo y, = 0 and
v <knn < knd2i, Zig(@)0)-
As x and n are arbitrary, ¢ is a suitable function. Q
(b) Define g : S, — ¢1(k) by setting 1o(S) = 2 (i.6)es Zie; because
Yeres Izl < 2o 4T #(SHi}) < 3227

is finite, 1o (S) is well defined in ¢!(k) for every S € S, (4A4le). Now define ¢ : S,, — [(1(k)]=* by setting
P(S) = {kyo(S) : k € N} for S € S,.

(c) If x € ¢ and S € S, are such that ¢(z) C* S, then x <’ ¥(S). P Let n € N be such that
(i,¢9(x)(i)) € S for every i > n. Then there is a k € N such that

T S kY, e i) S K ees zie = kibo(S) € ¥(S). Q

(d) Thus (¢,1) is a Galois-Tukey connection and
(€ (r), <", [(1(R)]=) Sar (87, 7, Sp).

524F Lemma Let (X, X, 1) be a countably compact measure space with Maharam type k.

(a) If v is a Maharam-type-homogeneous probability measure, there is a family (E¢)e<, in M (p) such
that Uge 4 E¢ has full outer measure for every uncountable A C k.

(b) If p is o-finite, there is a family (Eg)e<, in N (u) such that (o4 B¢ is non-negligible for every
uncountable A C k.

proof Let 2 be the measure algebra of (X, 3, u).
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(a) If s is countable, we can take E¢ = () for every . Otherwise, 2 is 7-generated by a stochastically
1

independent family (a¢)¢<, of elements of measure 3, and for every G € X there is a smallest countable set
Ic C k such that G* is in the closed subalgebra of 2 generated by {a¢ : £ € I} (254Rd or 325Mb). For
each { < k choose F¢ € X such that F¢ = a¢. Let KC be a countably compact class such that p is inner
regular with respect to K.

Let (Je)e<w be a disjoint family of subsets of x all with cardinal wy. For each £ < & choose (K¢p)nen,
(a¢n)nen inductively, as follows. g = minJe. Given ag, and (Kg;)icn, let K¢, € K be such that
KenNFo, =0and pu(Ken) > 5(1—37"72); now let ag,n11 be a member of Jg not belonging to Ix,, U{ae;}
for any ¢ < n. Continue. Set

Ef = UnEN ﬂmzn Kf"l g UnEN ann(X \ Fa{m)?

so that E¢ is negligible, because all the ag,, are different, so that (Fl,, )men is stochastically independent.

Now suppose that A C k is uncountable, and that F' C X is measurable and not negligible. Let K € K
be such that K C F and pI > 0; let £ € A be such that Ix N Je = 0; let n € N be such that K > 31
Set Gry = K N, <;em Kei for m > n. Then Ig, C Ix U, ,, Ik, does not contain gy, for any m. This
means that

<m

3—m—2

MGerl = M(Gm M K&m) Z ,U/(Gm \ Fagm) - 2

— 1 __9-—-m-—2
—Q(MGm 3 )

for every m > n, and an easy induction shows that uG,, > 3™~ for every m. But this tells us that every
G, is non-empty; because K is a countably compact class, K N E¢ 2 ﬂmZn G, is non-empty, and F meets
Ee.

As F is arbitrary, Ufe 4 E¢ has full outer measure.

(b) For the general case, because p is o-finite, there is a countable partition of unity (a;);c; in 2 such that
all the principal ideals 2,, are totally finite and Maharam-type-homogeneous (use 332A), and we can find a
partition (X;);e; of X into measurable sets such that X = a; for each i. Moreover, the subspace measure
tx, on X, is countably compact (451Db). Writing x; for the Maharam type of ,,, there is a family (E;¢)e <,
of negligible subsets of X; such that {{ : £ < k;, Eye C E} is countable for every negligible set E. (Apply
(a) to a scalar multiple of px,.) Now we know from 332S that k = sup;c; ki = #({(¢,§) i € I, § < K;}).
On the other hand, for any negligible set £ C X, {(4,&) : i € I, { < k;, B¢ C E} is countable. So if we
re-enumerate (Ej¢)icre<n; 85 (Fg¢)e<, We shall have an appropriate family.

524G Proposition Let (X, T, %, u) be a Maharam-type-homogeneous Radon probability space with
Maharam type x > w. Then (s, C*,S,) <aT (N (1), S, N (1)).

proof (Compare 522M.)

(a) By 524F, there is a family (E¢)e<, in N'(p) such that {§ : Ee C E} is countable for every E € N (u).
Next, because the measure algebra of p is isomorphic to the measure algebra of the usual measure on
[0, 1]%% there is a stochastically independent family (Gi¢)iene<x in ¥ such that uGie = 27% for every
i€Nand ¢ < k. For ferl set

¢(f) = UnEN Ef(”) U mnEN UmZn Gm,f(m) € N('u)

(b) Take E € N(u) and set Iy = {£: E¢ C E}, so that I is countable. Define 7 : X — {0,1}"*/= by
setting mg(x)(4,€) = 1 if © € Gy¢, 0 otherwise. Then there is a non-empty compact self-supporting set Kg
such that 7g | Kg is continuous. P Then 7g is measurable, therefore almost continuous (418J), and there is
a non-negligible measurable set H C X \ F such that 7g[H is continuous. Because p is inner regular with
respect to the compact self-supporting sets, there is a non-negligible compact self-supporting Ky C H, and
this has the required property. Q

7p[KE] is compact. Let (W, (E)),en run over the family of open-and-closed subsets W of {0, 1}"*/z
meeting 7x[Kp]. Then 7, [W,(E)] is a non-empty relatively open subset of K for every n; because Kp
is self-supporting, 7' [W,,(E)] is never negligible. Set

J(E,n,i) ={¢: €€ Ig, mp' [Wa(E)] NG = 0}

for n, i € N. Because (Gi¢)iencer, is stochastically independent,
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Yo 2 #(J(En, 1) = Y{uGie 1i €N, € € Ip, Gig Ny [Wa(E)] = 0}

is finite, by the Borel-Cantelli lemma (273K). For each n, let k(E,n) € N be such that 274#(J(E, n,i)) <
271 for i > k(E,n), and set

Y(E) =Upent(i€) i > k(E,n), § € J(E,n,i)} CN X k.
Then

#U{&: GO evE}Y < > #(J(E n,i)

neN,k(E,n)<i
S Z 2777,7122’ S 21,
neN,k(E,n)<i
for every i € N, and ¢(F) € S;.

(c) Now (¢,v) is a Galois-Tukey connection from (sV,C* S.) to (M (u), S, N (r)). P Suppose that
f € N and E € N(p) are such that ¢(f) C E. Because Ey,y) € ¢(f), f(n) € Ig for every n € N. Next,
Kp does not meet ¢(f), so Kr N[ \,en Upnsn Gm.f(m) 1s empty, that is,

Te[Ke] N Npen Upsnlw : w € {0, 1YNIE p(m, f(m)) = 1} = 0.
By Baire’s theorem, there is some m € N such that
me[Ke] U5, {w s w € {0, YN TE (i, £(i)) = 1}
is not dense in mg[Kg|, and there is an n € N such that
Wi (E) N Ujspmi{w : w € {0, 15T (i, £(i) = 1} = 0.

In this case, f(i) € J(E,n,i) for every ¢ > m. But this means that (i, f(i)) € ¢(E) for every i >
max(m, k(E,n)), so that f C* ¢/(F). As f and E are arbitrary, (¢, ) is a Galois-Tukey connection. Q

(d) Thus ¢ and 3 witness that (x, C*,S,.) <ar (M (1), S, N (1)), as claimed.
524H Corollary Let x be an infinite cardinal, and g a Maharam-type-homogeneous Radon prob-

ability measure with Maharam type x. Then (B},2/,[BF]=¥), (¢1(k),<’, [0} (k)]=*), (kY,C*,S,) and
(N(u), C, N (1)) are Galois-Tukey equivalent.

proof By 512Gb, 524D and 524B,
(B, <" [BL]5) <ar (B, [BL]°) et (¢H(k), <, (k)

N (u), N (1) <at (B, <, B,).

So
(B, 2 [BI5) = (B, ', [B]5°) = (B, <, [BL]™)
<aT (61('%)7 <Iv Ml(“{ ]<w1)
(512Gd)
= (01 (r), <", [ (R)]¥) g (57, C%, Sp)
(524E)
<aT (N(:u>7 C7N<M))
(524G)

(5131d again)

by 512Gb again.
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5241 Corollary Let ;z be a Maharam-type-homogeneous Radon probability measure with infinite Ma-
haram type . Then

add N (u) = add N, = add,, £*(k),
cf N(p) = cf N, = cf 01 (k).
proof By 524H and 512Db,

add (' (r), <", [0 (r)]=¥) = add(N (1), S, N (1))
= add(N (vx), S, N (vx)) = add(N,, S, Ny).

But add(¢*(k), <', [(*(k)]=¥) = add,, £*(x) (513Ia), while add(N (1), C, N (1)) = add N (1) and add(N,, C
N.) = add N, (512Ea). So

add,, /1 (k) = add N (i) = add V.
On the other side, 512Da tells us that
cov(Ne, C, Ni) = cov(N (1), ©, N () = cov(€t (), <', [0 (r)]=2).
But
cov(Ny, C,N) = cf Ny, cov(N(p), S, N (1)) = cfN ()

(512Ea). Next, cf¢!(k) > w. P If (z,)nen is any sequence in £!(k), then (because r is infinite) F,, = {x :
x < x,} is nowhere dense (for the norm topology) for any n € N, so (F,),en cannot cover ¢! (k) (4A2Ma)
and {z, : n € N} cannot be cofinal. Q So 512Gf tells us that

cov(l1(k), <!, [0 (K)]=%) = cov(f}(k), <, 1 (K)) = cf £ (k).
Putting these together,
cf N (1) = cf N, = cf 01 (k)

as required.

524J Theorem Let (X, %, %, u) and (Y, S, T, ) be Radon measure spaces with non-zero measure and
isomorphic measure algebras.

(a) M(u) and N (v) are Tukey equivalent, so addpy = add N () = add N (v) = addv and cf N (p) =
cfN(v).

(b) (X,e,N(n)) and (Y, €, N (v)) are Galois-Tukey equivalent, so cov. N (u) = cov N (v) and non N () =
non N (v).

proof (a) Let 2, B be the measure algebras of y and v. Let {(a;);c; be a partition of unity in AT such
that all the principal ideals 2,, are homogeneous and totally finite, and (b;);cr a matching family in 9B,
so that 2,, = B, for every i. Because (X,3,u) and (Y, T,v) are strictly localizable (416B), there are
decompositions (X;);c; and (Y;);er of X, Y respectively such that X! = a; and Y;* = b; for every ¢ (322M).
Write px,, vy, for the corresponding subspace measures; of course these are Radon measures (416Rb). Then
N(ux,) and N (vy,) are Tukey equivalent for every i. B If the common Maharam type of 2,, and By, is
infinite, this is a consequence of 524H. If 2,, = {0, a;}, then px, is purely atomic and there is a single point
x of X; such that p{z} = uX; (414G). In this case N (ux,) has a greatest member X; \ {z}, and similarly
N (v,,) has a greatest member, so they have Tukey equivalent cofinal subsets and are Tukey equivalent
(513E(d-ii)). Q

Now E +— (ENXj)ier is a partially-ordered-set isomorphism between N () and [[,.; NV (px,). Similarly,
N (v) is isomorphic to [],.; N (vy,). It now follows from 513Eg that (1) and N (v) are Tukey equivalent.
Accordingly add A () = add N (v) and cfN(u) = cf N (v). By 521Ad, addp = add N(p) and addv =
add NV (v).

(b) Immediate from 521La, applied in both directions.

524K Corollary Let (X, T, %, 1) and (Y, &, T, v) be Radon measure spaces with measure algebras 2, 8
respectively. If 2 can be regularly embedded in 98, then N (1) <1 N (v).
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proof As usual, write i and 7 for the functionals on 2, 98 respectively defined from p and v, and let
7 : A — B be a regular embedding, that is, an order-continuous injective Boolean homomorphism.

(a) Consider first the case in which p is totally finite and 7 is measure-preserving for i and 7. Let
(X',‘:?f, >, ) and (Y, S, T, V) be the Stone spaces of (2, z) and (B, ) respectively. Then 7 corresponds to
a continuous function f:V — X (312Q). By 418I, the image measure 7f~! is a Radon measure on X.If
a € A and @ is the corresponding open-and-closed set in X, then

vf~la) = v(ma) = v(ma) = ia = fia.
By 415H(v), vf~' = fi. By 521Hb, N (i) <1 N (7). But now 524Ja tells us that
N(w) =r N(@) <r N([@) =r N(v).

(b) Next, consider the case in which p and v are totally finite but 7 is not necessarily measure-preserving.
As it is (sequentially) order-continuous, we have a measure ' on X defined by saying that u'E = v(7wE*) for
E €3, and N (') = N(n). Because p is absolutely continuous with respect to p, it is an indefinite-integral
measure over 4 (2340) and is a Radon measure on X (416Sa again). Taking i’ to be the corresponding
functional on 2, (2, &) is the measure algebra of 1/ and 7 is measure-preserving for i’ and . So (a) tells
us that

N() = N (') < N(v).
(c) Thirdly, suppose that yu is totally finite, but » might not be. Set B/ = {b:b € B, b < cco}. For

be B, set ¢, =supfa:a €A bnma=0}; then bnme, = 0, because 7 is order-continuous. If a € A\ {0},
there is a b € B7 such that bnma # 0, so that a ¢ ¢,. Accordingly Supyemr 1\ cp = 1 in 2A; as A is cce, there

is a sequence (by)nen in B such that sup, ey 1\ ey, = 1, that is, ¥(an sup,,cy bn) > 0 for every non-zero
ac
For each n € N, choose F;, € T such that F; = b, in 9B, and set Y’ = | J,, o Frn. The subspace measure

vy is o-finite, so there is a totally finite measure v’ on Y, an indefinite-integral measure over vy, with the
same null ideal as vy (use 215B(ix)). The measures vy+ and v’ are both Radon measures (416Rb, 416Sa).
Setting b = sup,,cy by, in B, the principal ideal B can be identified with the measure algebra of vy (322I)
and v’. Moreover, the map a — bnma : A — By, is an injective order-continuous Boolean homomorphism.
By (b) and 521Fa,

N() <t N(v') = N(vyr) <0 N(0).

(d) For the general case, let (a;);er be a partition of unity in 2 such that pa; is finite for every 4, and
set b; = ma; for each i, so that (b;);cr is a partition of unity in 9. As in the proof of 524J, we have
corresponding partitions (X;);er, (Yi)ier of X, Y into measurable sets; as before, 322M tells us that N (u)
and NV (v) can be identified with [],.; N (px,) and [],.; N (vy, ) respectively. Now, for each i, we can identify
the principal ideals 2,,, Bp, with the measure algebras of the subspace measures px, and vy, and 7%,
is an order-continuous embedding of 2A,, in By,. So (c) tells us that N (ux,) <1 N (vy;). Accordingly

N(p) = ILies Npx,) st [Lie Nvy) =N ()
(513Eg again), and the proof is complete.

5241 So far we have been looking at cardinals defined from null ideals. Of course there is an equally
important series based on measurable algebras, which turns out to be similarly strongly associated with the
cardinal functions of the ideals Ny. I have already developed a good deal of the machinery in the arguments
of this section. But for ‘linking numbers’ we need a new idea, which is most clearly expressed in the context
of homogeneous algebras.

Proposition (Dow & STEPRANS 94) Let x be an infinite cardinal. Then for any n > 2 the n-linking
number link,, (%B8,) is the least A such that k < 2*.

proof Let X be the least cardinal such that x < 2.

(a) By 514Cb, 9B, is isomorphic, as partially ordered set, to a subset of P(link(8,;)), so we must have
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9link(B) > #(%5) >k
and link(B,) > A. It follows at once that link, (B,) > A for every n > 2 (5111a).

(b) Now let n > 2, and take an injective function ¢ : K — {0,1}*. Let C be the family of measurable
cylinders in {0, 1}*, that is, sets of the form {z : z € {0,1}*, x|I = 2}, where I C & is finite and z € {0, 1} .
For each F € T, \ N,; we can find disjoint finite sets I}, I%, Jg C x and Gg € Ty such that

setting Cp = {z : € {0,1}", z(¢) = 0 for { € Iy and xz(§) = 1 for { € I3}, and kg =

1 1 _
#(IIE) + #(I%)’ VK(CE \ E) < EVHCE = e 2 kE;

G is determined by coordinates in Jg and v, (Cr N (EAGE)) <

i . 27nkE .
—_ 47’L b

vilGgp >1— i

P By 254Fe, there is a set W, expressible as the union of finitely many measurable cylinders, such that
v (EAW) < %VHE. Now v W > 1—901/KE so vx(W\ E) < il/,QW. W is determined by coordinates in a
finite set, so is expressible as a disjoint union of non-empty measurable cylinders, and for at least one of
these we must have v, (C'\ E) < ﬁuKC’; take such a one for Cg. Express Cg as {x : z[Ig = zg}, where
I C k is finite and zg € {0,1}/#, and set I}, = {£: € € I, 2p(§) =0} and I, = {£: £ € I, 2p(€) = 1};
then v,Cp = 27%# and v, (Cp \ F) < in .9 kB

Next, take a set W/ C {0,1}", determined by coordinates in a finite subset J of k, such that v, (EAW’) <

L gk ot
n

Gp={z:2€{0,1}*, Iy e W' NCg, 2|\ Ig =yl \ Ir},
so that G is determined by coordinates in Jg = J \ Ig and Gg N Cg = W' N CEg; accordingly

1
an

Ve (Cp N (EAGE)) = v (Cr N (EAW")) < v (EAW') < L . 9-nks

Note that Gg and Cg are stochastically independent, so that

I/KCE(l — Z/,QGE) = V,@(OE\GE) < VK(CE\E) —|—V,€(CE N (E\GE))

1 1 1
< = — n<
< 4nVnCE + 4n(VnCE) < QnVHCE

and v,Gp >1- ~. Q
2n
(c) Let Q be the set of all quadruples (k, U, V, W) where k € N and U, V, W are disjoint open-and-closed
subsets of {0,1}* in its usual topology. For ¢ = (k,U,V,W) € Q, set
Eg={E:E€T\Ny, kp =k, ¢lIp] CU, ¢[Ig] CV, ¢[Jg] C W}

For any E € T, \ Ny, 1%, I}, and Jg, as chosen in (b) above, are disjoint finite sets, so ¢[I%], ¢[I%] and
¢[JE| also are, and there is a ¢ € @ such that E € &,. Now if ¢ = (k,U,V,W) € Q and E; € &, for i < n,
then v, (., £i) > 0. ® Set I' =, I, I" = U;.,, I, and J = ,,, Je,- Then ¢[I'] CU, ¢[I"] CV
and ¢[J] C W, so that I’, I"” and J must be disjoint. Set

C=cnCr ={z:2€{0,1}", x({) =0for € I', x(§) =1 for { € I"};
then v, C = 2~ #('VUI") > 9-nk  Next, setting G = Nicn GE;»
VG > 1= Y1 (1= vGp,) > 5,
and G is stochastically independent of C, so that v, (C'NG) > 27"*~1, Finally,

ve(C NG\ E;) < vo(Cp, NGp, \ i) < ﬁ gk
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for each 1, so
Ve(CNG\Njcn Bi) <272 <1, (CNG)

and v, (N;-, E:) > 0. Q

(d) This means that if we set A, = {E* : E € &} for each ¢ € Q, then every A, is an n-linked set in B,
and quQ A, = B}, Because {0, 1}’\ is a compact topological space with a subbase with cardinal A > w,
it has A open-and-closed sets and #(Q) = X. So (Ay)qeq Wwitnesses that link, (B.) < A, and the proof is
complete.

524M Theorem Let (2, i) be a semi-finite measure algebra. Let K be the set of infinite cardinals &
such that 2 has a homogeneous principal ideal with Maharam type «.

(a) #(2A) = 2 if 9 is finite,
= 7(A)* if A is ccc and infinite.
(b) wdistr() = oo if 2 is purely atomic,

add NV if K = {w},

w1 otherwise.

©

A

B
I

c(2) if A is purely atomic,
max(c(2), cf N, sup cf[k]=*) otherwise.

KEK
(d) m(2A) = oo if A is purely atomic,
= Kmellrg cov NV, otherwise.
(e) d(A) = ¢() if A is purely atomic,
= max(c(2), sulg nonN,) otherwise.
KE

(f) For 2 <n < w,
link,, () = ¢(2A) if 2 is purely atomic,
= max(c(A), min{\ : 7(A) < 2*}) otherwise.

proof The case 24 = {0} is trivial, so I shall assume henceforth that 21 # {0}. Let (a;);cr be a partition
of unity in A" such that all the principal ideals 2l,, are homogeneous and totally finite. For each i € I,

set k; = 7(Ay,), so that A,, = B, and let (Z;, \;) be the Stone space of (™Uq,, il Aq;). Let (§l it) be
the localization of (2, 1) (322Q). 2 can be identified with an order-dense Boolean subalgebra of 2A, so that

(a;)ier is still a partition of unity in 2. Because A = 2AS (322P), 2, is still a principal ideal of 2, and 2A
can be identified with the simple product [[,.; s, (315F).

(a) This is elementary if 2 is finite (see 511Ic). If 2 is infinite, then 515Ma tells us that # () = 7(A)“.
(b)

wdistr(2A) = wdistr ()
(514Ee)

= min wdistr(2,,)
icl

(514Ef)
= min wdistr(By,) = min add(N(\;))
(514Be, because N'();) is the ideal of nowhere dense subsets of Z, by 322R)
= minadd(N,,)
el
(524Ja)
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= o0 if K =1,
=add NV if K = {w},

= w; otherwise

(523E).

(c)(i) Consider first an algebra %B,, where k > w. Then ci®B; > w. P If (b,),cn is any sequence in
BF then (because B, is atomless) we can choose ¢, C b, such that 0 < ¢, < 2772 for each n € N. Set
¢ = SUP,cn Cn, b =1\ ¢; then b # 0 and b,, b for every n, so {b, : n € N} is not coinitial with B;}. Q

It follows that

ci B = cov(BF, 2, B) = cov(B, 2, [%i]g“’)
(512Gf)
= cov(N,, C, Ny)
(524H)
=cfN,.

(ii) If 21 is purely atomic, then ,, = {0,a;} for every i, and m(A) = #(I) = ¢(). Otherwise,

max(c(2A), sup m(Aq,)) < w(A)
i€l
(514Da, 514Ed)

< max(w, ¢(A), sup m(Aq, )
icl
(514Ef)

= max(c(2), sup 7(B,;)) = max(c(2), sup cfN,,)
rEK KEK

(by (i)

= max(c(), cf N, sup cf[]=¥))
KEK

by 523N.
(d) If 2l is purely atomic, then m(2() = co (5111If). Otherwise,

m(2) = m(2)
(5171d)
= minm(2,,) = minn(Z;)
(517N)
= min cov N ()\;)
iel

(again because N();) is the ideal of nowhere dense subsets of Z;)

= min cov N,
i€l
(524Jb)
= min cov N,
reK
as claimed.

(e)(d) I note first that d(,,) = nonN,, for each i. P Let A € PZ; \ N()\;) be a set with cardinal
non N'();). Then H = int A is not empty. Let a € 91; be such that the corresponding open-and-closed set @
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is included in H. Then @ can be identified with the Stone space of 2, (312T); because 2,, is homogeneous,
and AN is dense in @,

(514Bd)
< #(ANa) <nonN(\;) =nonN,,

(524JDb)
< d(Z)

(because N ()\;) is the ideal of nowhere dense subsets of Z;, so surely contains no dense set)
= d(mai)

by 514Bd again. Q
(ii) If A is purely atomic, d(2A) = ¢(2). Otherwise,

max(c(2A),sup d(2Ay,)) < d()

icl
(514Da, 514Ed)
= d@)
(514Ee)
< max(w, ¢(A), su? d(2a;))
ic
(514Ef)

= max(c(2),sup non Ny, ) = max(c(2), sup non N,,).
il reK

(f) If 2 is purely atomic, this is elementary, since any linked subset of A can contain at most one atom.
Otherwise, set

0 = max(c(2), min{\ : 7(2A) < 2*}), ' = link,, ().

For any i € I, k; < 7() (514Ed), so &; < 29 and link, (A,,) = link, (B,,) < 6 (524L; of course the case
k; = 0 is trivial here). Accordingly

~

6’ = link,, (2)
(514Fe)

< max(w, c(2A), sup link,, (Ay,))
iel
(514Ef)
<.

On the other hand, ¢(2) < @’ (514Da). For each i € I, link, (2;) < @' (514Ed), so x; < 29 (524L, in the
other direction). Let A; be a 7-generating subset of 2,, with cardinal ;. Now the order-closed subalgebra
of 2 generated by A ={a;:i € I} UJ..; A; is 2, so

7(A) < #(A) = max(c(A), sup,;c; ki) < max(9’,2) = 27"

iel

But this means that 6 < 6’ and the two are equal.

Remark For the corresponding calculation of 7(2(), when (2, ) is localizable, see 332S.
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524N Corollary (a) If (X,X, u) is a semi-finite locally compact measure space, with uX > 0, then
cov N (1) > Mg linked-
(b) If 2( is any measurable algebra, then m(2() > My jinked-

proof (a) Because p is semi-finite and pX > 0, there is an E € ¥ such that 0 < uFE < co. The subspace
measure pg on F is compact, so v = %HE is a compact probability measure. Set k = max(w,7(v)).
o

Because v is a compact measure, there is a function f : {0,1}* — E which is inverse-measure-preserving for
v, and v (343Cd). Now

Mo linked < M(B )
(because B, is o-linked, by 524Mf)

= cov N,
(524Md)
< cov N,
(523F)
< cov N (v)
(521Ha)
= cov N (ug) < cov N (u)
(521Fb).

(b) This is now immediate from 524Md.

5240 Freese-Nation numbers I spell out those facts about Freese-Nation numbers of measure algebras
which can be read off from the results in §518.

Proposition (a) Let (2, i) be an infinite measure algebra. Then FN(2() > FN(PN).
(b) Let 2 be a measurable algebra.
(PN < <*
(ii) If 7(2A) < ¢ then FN(2) < FN(PN).
(iii) If
(@) cf([A]S%) < AT for every cardinal A < 7(2),
(8) Oy is true for every uncountable cardinal A < 7(2() of countable cofinality,
then FN(2l) < FN*(PN).
(¢) Suppose that the continuum hypothesis and CTP(w,+1,w,) are both true. If 2 is a measurable
algebra, then

FNR) =c=w; if w < 7(A) < wy,

+

= ¢" = wy otherwise .

proof (a) This is a special case of 518Ca.

(b) (i) Consider first the case 2 = B, for some cardinal x. For I C &, let €; be the closed subalgebra of
B, consisting of those a € B, expressible in the form E* for some measurable E C {0,1}" determined by
coordinates in I. For a € B, there is a smallest subset I, of A such that a € €; (325M again); I, is always
countable.

For each a € 9B, set

f(a) :{b:Ib gIa}-

Then #(f(a)) < ¢ If a C b, then there is a ¢ € B, such that a € ¢ C b and I. C I, N I, (325M(b-ii)). So f
is a Freese-Nation function. This shows that FN(B,) < ¢*.

In general, 2 is either {0} or isomorphic to a closed subalgebra of B, where x = max(w,7(2)), so
FN(21) < FN(%B,.) < ¢+ by 518CC.
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(ii) 2 is o-linked (524Mf), so 518D(iii) tells us that FN(A) < FN(PN).

(iii) If B C 2 is a countably generated order-closed subalgebra, then FN(28) < FN(PN), by (ii); so
5181 tells us that FN(2() < FN*(PN).

(c) If 7(A) < w, then cf[A|=¥ = X for w; < A < 7(™A) (5A1F(e-iv)), so we can use (a) and (b-iii);
otherwise use (b-1) and 518K.

524P The Maharam classification If the cardinal functions of a Radon measure space are determined
by its measure algebra, there ought to be some way of calculating them directly from the classification of
measure algebras in §332. In many cases this is straightforward.

Theorem Let (X,%, %, 1) be a Radon measure space, and 2 its measure algebra. Let K be the set of
infinite cardinals k such that the Maharam-type-x component of 2l is non-zero.
(a) addp =add N (u) =0 if K =0,
=add VN if K = {w},

= w; otherwise.

(b) (1) = () = () if K =0,
= max(c(2A), cf N, 51612 cf[k]=%) otherwise.
(c) covN(u) =1if A = {0},

= oo if 2 has an atom,

= cov Npin k otherwise.
(d) non N (u) = oo if A = {0},

=1 if 2 has an atom,

= non Npin k otherwise.
(e) shr M (p) = 0 if 2 = {0},

=1 if 2 has an atom,

> shr N otherwise.
(f) If p is o-finite,

cAN(p)=1if K =10,
= max(cf N, cf[7(A)]5¥) otherwise.

proof If uX = 0 all these results are trivial, so let us suppose henceforth that X > 0. As in part (a)
of the proof of 524J, there is a decomposition (X;);c; of X such that the subspace measures px, are all
Maharam-type-homogeneous and non-zero. Note that max(w, #(I)) = max(w, ¢(2)) (332E). For each i € I,
let x; be the Maharam type of px,.

(a) By 521Ad, addpy = add N (u). The map E — (E N X;);er identifies N (u), as partially ordered
set, with the product of the family (NM(ux,))icr- So add N (p) = mingeradd N (pnx,) (511Hg). Now if
i € I and k; = 0, X; is an atom of (X,X, i), so there is an z; € X; such that u(X; \ {z;}) = 0 (414G
again). In this case, X; \ {z;} is the largest member of N (ux,) and add N (ux,) = oco. If k; is infinite,
then add N (ux,) = add Ny, by 5241 applied to a scalar multiple of ux,. So add N (u) = min,ex add Ny,
interpreting this as co if K = (. But we know from 523E that add N, = w; if kK > w, while of course
add NV, = add NV. It follows at once that

add N (p) = mei}laddj\/(uxi) oo if K =0,

add V if K = {w},

wy otherwise.
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(b) By 521Dd, 7(u) = m(2); and 524Mc gives us the formula for ().

(c) If € is a cover of X by negligible sets, and i € I, then {EN X, : E € £} is a cover of X; by negligible
sets; thus cov N (u) > sup;e; cov N (px,). By 524Jb, cov N () > sup;c; cov N,. If any of the k; is zero,
that is, if 20 has an atom, this is co, and we can stop.

Otherwise, for each i € I,

cov N (ux,) = cov Ny, < covNmink = A

say, by 523B. So we have a family (Fi¢)e<a of negligible subsets of X; covering X;; setting Ee¢ = (J;o; Eie
for each &, we have a family (E¢)ecy in N(p) covering X, so cov N (u) < cov Npin k. But we already know
that

cov N () > sup;e; cov Ny, > cov Nyin k.,
50 cov N (i) = cov Mnin k-

(d) A set A C X is non-negligible iff AN X, is non-negligible for some i € I. It follows at once that
non N (p) = min;ey non N (px,). If any of the X; is an atom, it contains a point of non-zero measure, so
that non V() = 1. If k; > w for every i, then we have

non N () = min;er non Ny, = non Nyin i
by 524Jb and 523B again.

(e) If 2 is purely atomic, then y is point-supported, so shr N (1) = 1. Otherwise, let E be a measurable set
of non-zero finite measure such that the subspace measure pg is atomless; let v be the normalized subspace

measure HLE,U,E; then v, like g, is a Radon measure. By 343Cb, there is a function f : E — {0,1}* which

is inverse-measure-preserving for v and v,,; because {0,1}* is separable and metrizable, vf~! is a Radon
measure (4510, or 4181-418J) and must be equal to v, (416Eb). By 521Fd and 521Hb,

shr V() > shr N (ug) = shr N (v) > shr M (v,) = shr V.

(£)(i) If K = 0 then (a) tells us that A/(u) has a greatest member, so that ¢f M (u) = 1.

(ii) Now suppose that K is not empty. Then 524Fb tells us that there is a family (E¢)ecr@y in N(u)
such that {§ : E¢ C E} is countable for every E € N(u). In this case, J +— Ugc s B : [T(2)]=% — N (1)

is a Tukey function, so cfN' (1) > cf[T(2)]S¥. At the same time, there is an i € I such that x; > w. The
identity map from N (ux,) to N (p) is a Tukey function; but this means that

cfN (1) > of N (pnx,) = cf Ny,
(5241 again)
> cf N, = cf N

(523B). Thus cf N (1) > max(cf N, cf[7(2A)]=).

(iii) In the other direction, we know from 524H (again, applied to a scalar multiple of pux,) that
(N(ux,), S, N(px,) =cr (£)Y, C*, S,,) whenever &, is infinite. Now 7() > &;, so the maps

79 =

identity: £} — 70N, S SN (Nx k) : Sy — S,
form a Galois-Tukey connection from (s, C* S,.) to (7(20)Y, C*, Sr2)). Accordingly we have
(N(:uXt)v Q’N(:uxi)) =GT (/{li\lv € S)
<t (TN, C*, Sy @) =ar Nr@s S N,

and N (px;) <t Ny
The arguments quoted assume that x; is infinite; but of course it is still true that M(ux,) < NT(QL) when
ki = 0, since then any constant function from N (ux,) to Ny () is a Tukey function. It follows that
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(513Eg once more).

(iv) At this point observe that as we are assuming that K # @, 7(2() is infinite; and as y is supposed to be
o-finite, I is countable. So we can find a disjoint family (F;);c; of measurable subsets of {0,1}™®) such that
all the subspace measures (v, ())r, are isomorphic to scalar multiples of v (. (Take F; = {2 : z(n;) = 1,
x(m) = 0 for m < n;} where i = n; : I — N is injective.) In this case, the map

(Eidier = Uier Bi : Tlier N((vr@y)r) = N(vrqa)
is a Tukey function, while er(m) is isomorphic to [[;c; N ((vr())r, ). Putting these together,

N(M) T NTI(Q[) = HiEIN((VT(QI))Fi) ST Nr(‘ﬁ)-
It follows that
cfN (1) < f oy = max (N, ef [7(A)]=¥).
So we have inequalities in both directions and cf V(1) = max(N, cf[7(A)]=*), as claimed.

*524Q I do not know how to calculate cf N (u) for non-o-finite Radon measures p without special
assumptions. In the presence of GCH, however, we have the following result.

Proposition Suppose that the generalized continuum hypothesis is true. Let (X,T,%, u) be a Radon
measure space and (2, /i) its measure algebra. For each cardinal s, write e, for the Maharam-type-x
component of 2, and €, for the principal ideal of 2 generated by sup,., e ; set A = sup{x : e, # 0}.
Then c¢f N'(p) = max(c(€p)™, A7) unless A > ¢(€) and there is some v < A such that c¢f A > ¢(€,), in which
case cf N (u) = A

proof (a) Write

0 = Xif A > ¢(€p) and cf A > minc(€,),
y<A

= max(A", ¢(€) ") otherwise.

If 41 is purely atomic, it is point-supported, so A = 0 and €, = {0} and § = 1 = cfN(p). So let us
suppose henceforth that p is not purely atomic, that is, €y # {0} and A > w. As in the proofs of 524J
and 524P,; there is a decomposition (X;);e; of X such that the subspace measures py, are all Maharam-
type-homogeneous and non-zero. Let x; be the Maharam type of px, for each ¢, so that A = sup,c; K.
Now N (i) = [[;c; N(nx,) (see the proof of 524Ja). For i € I, cfN(ux,) = 1 if x; = 0, and otherwise is
max(cf N, cf[r;] ) = max(wy, cf[r;]S¥) (524Ja, 523N). By 5A6Ab,
cfN(ux,)=1if k; =0,
=k if cfk; > w,

= /{j if cfk; = w.

(b) For each cardinal k, set J, = {i:i € I, cf N (ux,) > k}, and set

A1 = supcf N (ux,) = AT if there is an 7 € I such that x; = \ and cfk; = w,
iel

= )\ otherwise.

Then 5137 tells us that if Ay > #(J1) and there is some v < Ay such that cf Xy > #(J,), then cfN (1) = Ay,
and that otherwise cf V(1) = max(#(J1)*, A]). As we are supposing that 4 is not purely atomic, ¢(€p) > w
and ¢(€g) = max(w, #(J1)); also AT > A1 > X > w.

case 1 Suppose A; < #(J1). Then J; is infinite, so ¢(€y) = #(J1) > A, and
N (p) = #(J1)" = (€)=

as required.
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case 2 Suppose \; > max(\, #(J1)). Then there must be some ¢ € I such that ¢cf M (ux,) > A > w, in
which case k; = A has countable cofinality and A; = AT. In this case, cf A\ = Ay > #(J1), so cf N (p) = Ap.
If v < A, then €, is non-trivial, and cf A = w < ¢(€,); so

0= max(/\+, #(J1)+) =\ = CfN(,LL)

case 3 Suppose A\ = A > #(J;) has countable cofinality. In this case we must have x; < A\; for every
i, s0 #(J,) > w = cf Ay for every v < A1, and c¢f N'(u) = Af. At the same time, cf A = w < ¢(€,) for every
v < A, SO

0 = max(AT, #(J1)T) = max(\], #(J1)T) = cfN ().

case 4 Suppose A\; = A > #(J1) has uncountable cofinality. In this case we have A > max(w, #(J1)) =
c(€p), so

cfN(p) =M <= #(Jy) < cfA for some v < Ay
<= max(w, #(J,)) < cf Ay for some v < A\
<= ¢(€,) < cf A for some v < A
= 0=\ = 0=\,

and otherwise
cf N (1) = A = max(A*, ¢(€y)t) = 0.
Thus cf V(1) = 6 in all cases.

524R The results above show that most of the most important cardinal functions of measurable algebras
and Radon measures are readily calculable from the cardinal functions of the ideals N, studied in §523. There
are no such simple formulae for other classes of space such as compact or quasi-Radon measures (524Xj,
524Xk). However I can give a handful of partial results, as follows.

Proposition Let (X,X%, 1) be a countably compact o-finite measure space with Maharam type x. Then
[k]=¢ <1 N(u). Consequently cf[s]<% < cfN(u), and if s is uncountable then add N(u) = w; and
cfN (1) > cf N

proof If (E¢)ecy is a family as in 524Fb, then I — (Jgor B [k]=¥ — N (u) is a Tukey function, if both
[k]=¥ and N(p) are given their natural partial orderings of inclusion. By 513Ee, cf[x]=* < cfAN(u) and
add[x]=¥ > add N'(i). But if & is uncountable, add[x]<* = w; so add N (u) is also w;. At the same time,
cfN(u) > cf N (521K), so

cf N'(1) > max(cf N, cf[k] <) = cf N,.

524S In a different direction, there is something we can say about quasi-Radon measures.

Proposition Let (X,%,X, 1) be a Radon measure space, with uX > 0, and (Y, &, T,v) a quasi-Radon
measure space such that the measure algebras of p and v are isomorphic. Then

(a) N(v) <t N(u), so addv = add N'(v) > add N'(u) = add g and cf N (v) < cf N (u);

(b) (Y,e,N(v)) <ar (X, €,N (1)), so cov N (v) < cov N () and non N (v) > non N (p).

proof (a) Let (Z,4, A, \) be the Stone space of the measure algebra B of (Y,T,v), and R C Z x Y the
relation described in 415Q/416V, so that R~[F] € N'(\) for every F € N(v). Let W C Z be the union of
the open sets of finite measure. Then the subspace measure Ay is a Radon measure and its measure algebra
is isomorphic to the measure algebras of v and p (411Pf).

Now F +— WNR™F]: N(v) = N(\w) is a Tukey function. ? Otherwise, there is a family A C N (v)
such that |JA ¢ N(v) but {IW N R™'[A]: A € A} is bounded above in N'(Aw ). Because W is conegligible,
B = e R7[A] is negligible in Z. Let E € T be a measurable envelope of [ J.A (213J/213L). Then the
open-and-closed set E* C Z corresponding to E* € ‘B is not negligible; as A is inner regular with respect to
the open-and-closed sets (411Pb), there must be a non-empty open-and-closed set V' C E* which is disjoint
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from |J,c 4 R '[A]. Express V as F* where F' € T. Then R[V] = R[F*] is disjoint from J.A. But R[F*]
is measurable and F'\ R[F*] is negligible (415Qb), while F'\ E must also be negligible, so E N R[F*] is a
non-negligible measurable subset of F \ | J.A, which is impossible. XQ

This shows that N'(v) <t N (Aw). But Ay and p are Radon measures with isomorphic non-zero measure
algebras, so N'(A\w ) =1 N (1) (524J) and N (v) <1t N (p). Accordingly add NV (v) > add N (u) and cf N (v) <
cf N (p)

(b) This is a special case of 521La.

524T Corollary Let (Y, &, T, v) be a quasi-Radon measure space, and B its measure algebra. Let K
be the set of infinite cardinals x such that the Maharam-type-x component of ®8 is non-zero.

(a) addv = add N (v) = 00 if K =1,
>add N if K = {w}.
(b) m(v) =m(B) =c(B) it K =0,
= max(c(B), cf N, sup cf[k]=*) otherwise.
KEK
(c) covN(v) =1if B = {0},

= oo if B has an atom,
< cov Npin k¢ Ootherwise.
(d) non N (v) = oo if B = {0},
=1 if B has an atom,
> non Mpin x otherwise.
(e) If v is o-finite,
cANp)=1i{ K=0,
< max(cf N, cf[r(B)]=*) otherwise.

proof Parts (a), (c), (d) and (e) are mostly a matter of putting 524P and 524S together. If there are atoms
for u, they may no longer include singletons of non-zero measure; but they do include minimal non-negligible
closed sets, so there are non-negligible singletons and cov N (), non M () are co and 1 respectively. As for
(b), the proof of 524Pb still works.

524U There is an natural calculation which I shall want to call on later.

Lemma Let (2, i) be a probability algebra. Then there is a Radon probability measure on {0,1}7®) with
measure algebra isomorphic to (2, ).

proof Write k for 7(2).

(a) If 2A is finite, it is isomorphic to PI where I is the set of atoms of 2. Now #(I) < 2" so we
have an injection f : I — {0,1}*. Let u be the point-supported probability measure on {0, 1}" such that
w{f(a)} = fia for every a € I; this works.

(b) Otherwise, x is infinite. By Maharam’s theorem, we have a partition (a;);cs of unity in 2 such that,
for each ¢ € I, either a; is an atom or the principal ideal ,, is homogeneous with Maharam type x; > w,
and in the latter case (2,,, i[%,,) is isomorphic to the measure algebra of €;v,,,, where I write ¢; = fia; for
each i € I. If a; is an atom, let u; be a point-supported measure concentrated at a single point of {0,1}"
and with mass ¢;. Otherwise, k; = 7(,,) < &; let f; : {0,1}% — {0,1}" be a continuous injection and set
Wi = €V, fi_1 where v, fi_1 is the image measure. Then p; is a Radon probability measure on {0, 1}"* with
measure algebra isomorphic to (g, , &[Ua,)-

Now take an injection g : I — {0, 1}. Define a measure p on {0, 1} x {0,1}* by setting
pW =3 ier W {9 (0)}]
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for those sets W C {0, 1} x {0,1}* for which the sum is defined. It is easy to check that p is a complete
topological probability measure which is inner regular with respect to the compact sets, that is, is a Radon
probability measure. Also, setting F; = {g(#)} x {0,1}", the subspace measure ug, is isomorphic to p; so
has measure algebra isomorphic to (s, , i[2s,); as (E;)icr is a partition of a p-conegligible set, the measure
algebra of p is isomorphic to the simple product of the measure algebras of pg,, that is, to the simple
product [[;c;(a,, il2a,) = (A, 1)

As & is infinite, {0, 1} x {0, 1}* is homeomorphic to {0,1}* and we can copy u onto a Radon probability
measure on {0,1}" with measure algebra isomorphic to (2, ).

524X Basic exercises (a) Suppose that (2, ) is a probability algebra and that x = link, (), where
2 < n < w. Show that there are families (A¢)ecr in A\ {0} and (eg)e<s, in ]0,1] such that g(infI) > e
whenever I € [A¢]" and (U, A = A\ {0}. (Hint: proof of 524L.)

(b) Let (X, X, 1) be a semi-finite measure space with measure algebra 2, and A a family of non-negligible
(not necessarily measurable) subsets of X such that every non-negligible member of ¥ includes a member
of A. Show that #(A) > 7(A).

(c) Show that if x is uncountable, there is no function f : [0,1]® — {0,1}" which is almost continuous
and inverse-measure-preserving for the usual measures on these spaces. (Hint: if K C [0,1]" is a zero set,
any continuous function from K to {0,1}* is determined by coordinates in a countable set.)

(d) Let Il be the split interval and g its usual measure (343J). Show that there are f : {0,1}% — Il and
g: I = {0,1}* such that = v, f~' and v, = pg~'. (Hint: let A C [0,1] be a non-measurable set; define
fo : [0,1]2 = Il by setting fo(z,y) =y if x € A, y~ otherwise.)

(e) Let (Z, n) be the Stone space of (B,,, 7,). Show that there is no f : {0,1}* — Z such that p = v, f~1.
int: use an a to show that every non-negligible measurable subset o as cardinal 2°.
H 515J and 322R h h ligibl bl b fZh dinal 2¢

(f) Let X be a Hausdorff space with a compact topological probability measure p with Maharam type «,
and suppose that w(X) < covN,. (i) Show that there is an equidistributed sequence for u. (Hint: 491EDb.)
(ii) Show that if u is strictly positive then X is separable.

(g) Let (X, %, %, 1) be a Radon probability space with a strong lifting, and (Z,v) the Stone space of its
measure algebra. Show that shr A'(y) < shr A (v) and shr™ N (u) < shr™ N (v). (Hint: 453Mb.)

(h) Let (X,%,%, 1) be a Radon measure space, and K the set of infinite cardinals k£ such that the
Maharam-type-x component of its measure algebra 2 is non-zero. Show that

min{#(A) : A C X has full outer measure} = sup({c(2)} U {non N, : k € K}).

(i) Show that for any o-ideal Z of sets there is a compact probability measure g such that Z = N (u).
(Hint: set X = JZ U {zo}.)

(j) Show that for any non-zero measurable algebra % and any cardinal «, there is a complete compact
probability measure p such that the measure algebra of y is isomorphic to B, add M (u) = wy and cf N (1) >
k. (Hint: 524Xi.)

(k) Suppose that non N; = cov N, = cfc = ¢. Show that there is a quasi-Radon probability measure p
with Maharam type ¢ such that add A (p) = ¢.

524Y Further exercises (a) Show that if m > 2 and (2;);cr is a family of o-m-linked Boolean algebras,
with #(I) < ¢, then the free product of (2;);cr is o-m-linked.

(b) Let 2A be a measurable algebra with Maharam type A. Show that there is a family V C [\]<¢, cofinal
with [A]S¢, such that #({ANV : V € V}) < FN*() for every countable set A C \.
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(c) For a Boolean algebra 2 and a cardinal 0, write 1)g(2) for the smallest size of any subalgebra € of
2 such that d(€) > 6. (If > d(2) set ¥p(A) = 00.) (i) Show that if Z is the Stone space of A, 7 is the
ideal of nowhere dense sets in Z, and 6 > 2 then vy() < cov([Z]<?,C,Z). (ii) Show that if (X,%, ) is a
Maharam-type-homogeneous compact probability space with Maharam type x, and 6 is uncountable, then

o(Br) = cov([X]<0, C, N (1)) = add(S \ N (1), meet, [X]<7),

where meet is the relation {(A, B) : AN B # 0}. (Hint: start with g = v,,.) (iii) Show that if (X, X, u) is
a semi-finite locally compact measure space with measure algebra 2 then ,, () < cf([cov N (1)]=%). (iv)
Show that if (X, X, u) is any probability space, with measure algebra 2, and A is the product probability
measure on X, then covA()\) < ¢, (2). (v) Show that ¥aqqa m(B,) < non M, where M is the ideal of
meager subsets of R.

5247 Problems (a) Let (Z, 1) be the Stone space of (B,,,7,). Is shr M(u) necessarily equal to shr N7

(b) Can there be a quasi-Radon probability measure p with Maharam type greater than ¢ such that
add N (p) > wq?

524 Notes and comments The ideas of this section are derived primarily from BARTOSZYNSKI 84, FREM-
LIN 84B and FREMLIN 91. Of course it is not necessary to pass through both ¢!(x) and the k-localization
relation (k, C*,S,). I bring ¢! () into the argument (following BARTOSZYNSKI 84) because it will be useful
when we come to look at other structures in later in the chapter, and S, because it echoes the ideas of §522.
But note that 524G seems to need a new idea (the family (E¢)e<, from 524F) not required in 522M.

The difficulties of the work above arise from the fact that while there are many inverse-measure-preserving
functions between Radon measure spaces, immediately linking covering numbers and uniformities, there
are far fewer continuous inverse-measure-preserving functions; for instance, there is no almost continuous
inverse-measure-preserving function from the unit interval to the split interval, let alone to the Stone space
of its measure algebra. And the straightforward Tukey functions between the ideals N, of §523 depend on
measures being images of each other, which is something we can rely on only when our functions are almost
continuous. (But see 524Xd.) I do not know of any direct construction of a Tukey function from the null
ideal of the Stone space of the Lebesgue measure algebra to N, for instance. This is why there is nearly
nothing about shrinking numbers in this section (see 5247Za).

There is a significant gap in the calculations in 524P; for the cofinality of the null ideal I need to assume
that the measure is o-finite. I have no useful general recipe for ¢f (i), valid in ZFC, when p is a non-o-finite
Radon measure. The point is that although we can identify M (u) with the product of a family N (ux,) of
partially ordered sets to which the arguments of this section apply (524Q), this is not in itself enough to
determine its cofinality in the absence of special axioms.

Version of 11.9.13
525 Precalibers

I continue the discussion of precalibers in §516 with results applying to measure algebras. I start with
connexions between measure spaces and precalibers of their measure algebras (525B-525C). The next step is
to look at measure-precalibers. Elementary facts are in 525D-525G. When we come to ask which cardinals
are precalibers of which measure algebras, there seem to be real difficulties; partial answers, largely based
on infinitary combinatorics, are in 5251-5250. 525P is a note on a particular pair of cardinals. Finally, 525T
deals with precaliber triples (k, k, k) where k is finite; I approach it through a general result on correlations
in uniformly bounded families of random variables (5258S).

525A Notation If (X, X, u) is a measure space, N'(u) will be the null ideal of u. For any set I, vy
will be the usual measure on {0,1}/, T; its domain, N7 = N (vr) its null ideal and (B, 7r) its measure
algebra. In this context, set e; = {z : € {0,1}!, z(i) = 1}* in By for i € I. Then (e;);cs is a stochastically
independent family of elements of measure  in B, and {e; : i € I'} 7-generates B; I will say that (e;)ie;
is the standard generating family in 8;.

(©) 2004 D. H. Fremlin
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525B Proposition Let (X, T, X, u) be a quasi-Radon measure space, and 2 its measure algebra. Then
the downwards precaliber triples of the partially ordered set (X \ N(u),C) are just the precaliber triples of
the Boolean algebra 2.

proof Put 521Dd and 516C together.

525C Theorem Let (X, %, Y%, 1) be a Radon measure space and (2, i) its measure algebra.
(a) A pair (k, ) of cardinals is a precaliber pair of 2l iff whenever (E¢)e<, is a family in 3\ A (u) there
is an x € X such that #({{ : z € E¢}) > A
(b) A pair (k,A) of cardinals is a measure-precaliber pair of (2, i) iff whenever (E¢)¢<, is a family in
Y\ N () such that infec, pEe > 0 then there is an € X such that #({£ : x € E¢}) > A
(c) Suppose that k£ > sat(2) is an infinite regular cardinal. Then the following are equiveridical:
(i) & is a precaliber of ;
(ii) p«(Ue<, Ee) = 0 whenever (E¢)e<, is a non-decreasing family in N(p);
(iif) whenever (A¢)¢<y is a non-decreasing family of sets such that (J,_, A¢ = X, then there is some
& < k such that A¢ has full outer measure in X.

proof (a)(i) Suppose that (k, ) is a precaliber pair of A and (E¢)¢<y is a family in ¥\ M(p). For each
€ < K, let K¢ C E¢ be a non-negligible compact set. Then there is a I' € [k]* such that {K::£el}is
centered in 2. But in this case {X} U {K¢ : £ € T'} has the finite intersection property, and must have
non-empty intersection. If « is any point of this intersection, {£ : © € E¢} includes I' and has size at least A.

(ii) Suppose that whenever (E¢)eo, is a family in ¥\ N (u) there is an z € X such that #({¢ : x €
E¢}) > A Because p is complete and strictly localizable (416B), it has a lifting ¢ : 2 — ¥ (341K). Let
(ag)e<w be a family in 2\ {0}; then there is an « € X such that I' = {£ : @ € Yac} has cardinal at least A.
But now {ta¢ : £ € T'} is centered in ¥ so {ag¢ : £ € I'} is centered in 2A. As (a¢)¢<, is arbitrary, (k,A) is a
precaliber pair of 2.

(b) We can use exactly the same argument, provided that in part (i) we make sure that uKe > % pEe,
so that infec, pK¢ > 0.

(c)(i)=(iii) Suppose that x is a precaliber of 2 and (A¢)¢<, is a non-decreasing family of sets with union
X. 7 If no A¢ has full outer measure, then we can choose, for each £ < &, a non-negligible compact set
K¢ C X'\ A¢. Because r is a precaliber of 2, there is a set I' € [1]" such that {/ : { € '} is centered. Now
{K¢ : € € I'} has the finite intersection property and there is some z € (¢ K¢, in which case @ ¢ [Jgep Ae.
But since I' must be cofinal with &, e Ae = X. X As (Ag)¢<,, is arbitrary, (iii) is true.

(iii)=(ii) Suppose that (iii) is true, and that (E¢)¢< is a non-decreasing family in N'(u). T If U,_,, B¢
has non-zero inner measure, let £ C (J,, E¢ be a non-negligible measurable set. Set A¢ = E¢ U (X \ E)
for each &; then (A¢)¢<, is a non-decreasing family with union X, so there is some & such that A¢ has full
outer measure. But E \ E¢ is a non-negligible measurable set disjoint from A¢. X As (E¢)e<, is arbitrary,
(ii) is true.

(ii)=(i) Let Z be the Stone space of 2 and v its usual measure (411P). Because p has a lifting, there
is an inverse-measure-preserving function f : X — Z (341P).
Let (F¢)e<r be a non-decreasing family of nowhere dense subsets of Z. Then they are all v-negligible
(411Pa), so (f~'[F¢])¢<s is a non-decreasing family in N'(n) and (U, f~'[Fe]) = 0. But this means
that if G = int(U, ., Fe), vG = puf~1G] = 0 and G is empty. By 516Rb, & is a precaliber of 2.

525D Proposition Let (2, i) be a measure algebra.

(a) Any precaliber triple of 2 is a measure-precaliber triple of (2, ).

(b) If (k, A\, <6) is a measure-precaliber triple of (2, i) and s has uncountable cofinality, then (x, A, <6)
is a precaliber triple of 2.

(c) If k is a measure-precaliber of (2, i), so is cf x.

proof (a) is immediate from the definitions in 511E.
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(b) If (ag)e<s is any family in AT, then there is a § > 0 such that I' = {£ : fiag > ¢} has cardinal x; and
now there is a I'” € [T]* such that {a¢ : £ € I'} has a non-zero lower bound for every I € [IV]<Y.

(c) The point is that & is a measure-precaliber of (2, ) iff it is a precaliber of the supported relation
(As,2,AT) for every § > 0, where As = {a: a € 2, ia > §}; so this is just a special case of 516Bd.

525E Proposition (a) Let (2, i) be a probability algebra and s an infinite cardinal. Then x is a
precaliber of 21 iff either 2l is finite or k is a measure-precaliber of (2, i) and c¢frk > w.

(b) An infinite cardinal k is a precaliber of every measurable algebra iff it is a measure-precaliber of every
probability algebra and has uncountable cofinality.

proof (a) If « is a precaliber of 2, of course « is a measure-precaliber of (2, 1). Also cfk is a precaliber of
2A (516Bd again), so cfk > sat() (516Ja); and if A is infinite, cfx > w.

If 2 is finite, then any infinite cardinal is a precaliber of 2 (516Lc). If x is a measure-precaliber of (2, fz)
and cfk > w, then k is a precaliber of 2 by 525Db.

(b) Recall that an algebra 2 is ‘measurable’ iff either 2 = {0} or there is a functional f such that (2, i)
is a probability algebra (391B). So the result follows directly from (a).

525F Proposition Let (2, i) be a probability algebra.
(a) w is a measure-precaliber of (2, f1).
(b) If w < k < m(A), then « is a measure-precaliber of (2, i1).

proof (a) Let (a,)nen be a sequence in A such that inf, ey fa, = 3§ > 0. Set a = inf, ey sup,,>,, am; then
fia = inf,en A(Sup,,>, @m) > 6 > 0,s0a # 0. If 0 # b C aand n € N, there is an m > n such that b a, # 0.
We can therefore choose inductively a strictly increasing sequence (n;);en such that an inf j<iGn, # 0 for
every i, so that (a,,)ien is centered. As (a,)nen is arbitrary, w is a measure-precaliber of (2, fi).

(b) If kK = w, this is (a). Otherwise, let (a¢)e<, be a family in A with inf.., fiag =0 > 0. Set

¢ =1nfycu #(7)<r SUPecy\ s O¢;
then

fic = 1inf s () <n (SUPgep\ g Gg) > 0.

Choose (I¢)¢<, inductively so that, for each £ < k, I¢ is a countable subset of £\, ¢ I and ¢ C sup, ¢/, ay.
For £ < k, set

Qe=1{b:0#bCc,Anel, bCay}

Then Q¢ is coinitial with 2}. Because k < m(2) < m(2,), there is a centered R C A} meeting every Q.
Now

F'={n:n<k,IbER, bCa,}

meets every Ic so has cardinal , and {a, : 7 € I'} is centered. As (ag)e< is arbitrary, s is a measure-
precaliber of (2, ).

525G As is surely to be expected, questions about precalibers of measurable algebras can generally be
reduced to questions about precalibers of the algebras ®B,. Some of these can be quickly answered in terms
of the cardinals examined earlier in this chapter.

Proposition (a) Let (2(, ) be a totally finite measure algebra. Let K be the set of infinite cardinals x’
such that the Maharam-type-x’ component of 2 is non-zero (cf. 524M). If k, A and 6 are cardinals, of which
k is infinite, then (k, A, <) is a measure-precaliber triple of (2, ) iff it is a measure-precaliber triple of
(B, ) for every k' € K.

(b) Suppose that w < k < cov.N,/. Then & is a measure-precaliber of B..

(c) For any cardinal ', wy is a precaliber of B, iff cov N > w;.

(d) If k, k" are cardinals such that non N/ < cfk, then « is a precaliber of 9B,..
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proof (a)(i) Suppose that (x, A, <0) is a measure-precaliber triple of (2, 1), x € K and (b¢)e< is a family
in B, with infeo, vebe = 6 > 0. Let a € A be such that the principal ideal 2, is homogeneous with

Maharam type k', so that there is an isomorphism m : 9B, — 2, with i fi(mb) = Db for every b € B

(331L). Then infec, fi(mbe) = Sjia > 0, so there is a I' € [k]* such that infees 7be and infees be are non-zero
for every I € [[1<%. As (b¢)e<,, is arbitrary, (k, A, <6) is a measure-precaliber triple of (B, U,/).

(ii) Suppose that (x, A, <#) is a measure-precaliber triple of (B,/,7,/) for every ' € K and (ag¢)e<x
is a family in 2 with infe., flag = 0 > 0. Let D C A\ {0} be a partition of unity in 2 such that all the
principal ideals 214, for d € D, are homogeneous. Let C' C D be a finite set such that ZdeD\C nd < %(5.

Then for every £ < k there is a ¢ € C such that fi(ae nc) > 16fic, so (because  is infinite) there are ¢ € C
and Ty € [K]" such that ji(ag nc) > 36fic for every £ € I'g. If ¢ is an atom then infees ag 2 ¢ is non-zero for
every I C T'y. Otherwise, the Maharam type ' of 2. belongs to K. Let 7 : B,/ — 2. be an isomorphism
with fi(mb) = fic - Db for every b € B, Set be = 7 !(ag nc); then Dube > 36 for every ¢ € I'g. There
is therefore a T' € [[o]* such that infees be and infees ag are non-zero for every I € [I]<%. As (ag¢)e<, is
arbitrary, (k, A, <) is a measure-precaliber triple of (2, j1).

(b) We have cov N,y = m(B,/) (524Md), so we can use 525Fb.

(c) If covN,» > wy then (b) tells us that wy is a precaliber of B,. If coviNy = wr, let (Ee)ecw, be
a cover of {0,1}* by negligible sets; then (U, <¢ En)e<wy is a non-decreasing family in Ny with union of
non-zero inner measure, so 525Cc tells us that w; is not a precaliber of 9B,;.

(d) If #’ is finite this is elementary. Otherwise, d(B,/) = non N, (524Me). By 516Lc, & is a precaliber
of ‘B,{/ .

525H The structure of 8; Several of the arguments below will depend on the following ideas. Let I
be any set and (e;);cs the standard generating family in B;. If a € B, there is a smallest countable set
J C I such that a belongs to the closed subalgebra €; of B generated by {e; : i € J} (254Rd, 325MDb).
(Of course € is canonically isomorphic to 9B j; see 325Ma.)

Now suppose that (ag)eer is a family in B, that for each £ € T' we are given a set Ic C I such that
ag € €, and that J C [ is such that I N I, C J for all distinct §, n € I'." Then (ag)eer is relatively
stochastically independent over €;. I (€, )¢er is stochastically independent, because (I¢ \ J)ger is
disjoint; moreover, €; is independent of €p\ ; 2 Uger €1\, and €;.yy is the closed subalgebra generated
by €r.\; U &, for each . So 458Lg tells us that (€.us)¢er is relatively stochastically independent over
€ s; a fortiori, {ag)ecr is relatively stochastically independent over € ;. Q It follows that if A C T is finite
and infeca upr(ag, €7) # 0, then infeca ae # 0 (458Lf); in particular, if (upr(ae, €s))eer is centered, so is
(ag)eer-

5251 Theorem (a)(i) If x > 0 and (k, A\, <0) is a measure-precaliber triple of (B, ), then it is a

measure-precaliber triple of every probability algebra.
(ii) If k > 0 and (k, A, <6) is a precaliber triple of B, then it is a precaliber triple of every measurable

algebra.

(b) Suppose that c¢fx > wy. If (k, ) is a precaliber pair of B,/ for every k' < k, then it is a precaliber
pair of every measurable algebra.

(c) Suppose that (x, A, <6) is a measure-precaliber triple of (B, 7,,) and that x’ is such that cf[x/]=* <
cfk. Then (k, A, <) is a measure-precaliber triple of (B, 7).

proof (a)(i) Let (2, ) be any probability algebra and (ag¢)e<, a family in A such that infeo, iage > 0.
Let 9B be the closed subalgebra of A generated by {a¢ : £ < k}. Then (B, i[B) is a probability algebra
with Maharam type at most &, so is isomorphic to a closed subalgebra of (B, 7,,) (332N). Since (k, A, <6)
is a measure-precaliber triple of (B, 7,;) it is a measure-precaliber triple of (B, i[9B) (cf. 516Sb), and there
is a ' € [k]* such that {ag¢ : &€ € I} is bounded below in B+ and therefore in 2% for every I € [[1<?. As
(ag)e<y is arbitrary, (k, A, <8) is a measure-precaliber triple of (2, ii).

(ii) The same argument applies, deleting the phrase ‘inf¢, fiag > 07, since if 2 is a measurable algebra
other than {0} there is a functional fi such that (2, ) is a probability algebra.
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(b) By (a-ii), it is enough to prove that (k, A) is a precaliber pair of B,,. Let (a¢)e<, be a family in B .
For each I C k, let €1 be the closed subalgebra of 9B,, generated by {e; : ¢ € I'}, as in 525H. Then for each
§ < k we have a countable set I C & such that a¢ € CI{' Because cfk > woq, there are a I' € [k]" and a
J € [k]<" such that I NI, C J for all distinct £, n € I (5A1J(a-1)). Because #(J) < k, (k, ) is a precaliber
pair of B; = €, so there is a IV € [[]* such that (upr(ag, @ ;))¢er is centered. It follows that (ag)eer is
centered (525H). As (ag)e<, is arbitrary, we have the result.

(c) Let (a¢)e<x be a family in B, such that Drae > 6 > 0 for every £ < k. Fix a cofinal family J in
[k/]=“ with cardinal less than cf k. For each £ < & let Je € J be such that a¢ € €, where this time €, is
interpreted as a subalgebra of ®B,,. Then there must be some J € J such that A = {{ : J; = J} has cardinal
k. Now (€y, 7. | €y) is isomorphic to a subalgebra of (B, 7,,), so has (k, A, <f) as a measure-precaliber
triple, and there is a I' € [A]* such that {a¢ : £ € I'} has a non-zero lower bound for every I € [[]<?. As
(ag)e<y is arbitrary, (k, A, <6) is a measure-precaliber triple of (B, ).

525J Corollary Suppose that  is an infinite cardinal and x < covN,. Then x is a measure-precaliber
of every probability algebra.

proof By 525Gb, x is a measure-precaliber of (9B,,7,); by 525la, it is a measure-precaliber of every
probability algebra.

525K Proposition Let £ > non NV, be a regular cardinal such that cf[A\|S¥ < & for every A < x (e.g.,
k=ct (¢h)T, etc.; or K =ws if non N, = wy). Then k is a precaliber of every measurable algebra.

proof The point is that k is a precaliber of B, for every A < k. PP If X is finite, this is trivial. Otherwise,
d(B,) = non Ny < max(non N, cf[A]S%) < k = cfr

by 524Me and 523I(a-i); it follows that x is a precaliber of 95, (516Lc once more). Q
By 525Ib, k is a precaliber of all measurable algebras.

525L If k > ¢ is not a strong limit cardinal we can do a little better than 525K.

Proposition (DZAMONJA & PLEBANEK 04) Suppose that A and x are infinite cardinals such that \¥ <
cfk < k < 2*, where \¥ is the cardinal power. Then  is a precaliber of every measurable algebra.

proof By 525Eb and 525I(a-ii), it is enough to show that x is a precaliber of B,. Let (a¢)e<, be a family
in B, \ {0}. Let 6 : B, — T, be a lifting, and for each £ < k let K¢ be a non-empty closed subset of
fae which is determined by coordinates in a countable set Ie. We may suppose that each I is infinite; let
he : N — I be a bijection, and set g¢(x) = xhe for z € {0,1}", so that g : {0,1}% — {0,1} is continuous
and K¢ = ggl[gE[KE]]. As ¢ < cfk, there is an L C {0,1}" such that Ty = {£ : £ < &, g¢[K¢] = L} has
cardinal k.

Because x < 2%, there is an f : & x A — N such that whenever (£,),cn is a sequence of distinct elements
of x there is an n < A“ such that f(£,,n) = n for every n (5A1Fg). For each n < A“, set A, = {£ : { <k,
f(he(n),n) = n for every n € N}; then U, .. Ay = £, while cfx > A“, so there is an n* < A* such that
I'=TgN A,~ has k members.

Fix ze L. For (&, ne€ I and i, j € N,

he(i) = hy(j) =i = f(he(@),n") = f(hy(5),n") = -
So we can find an x € {0,1}" such that z(he(7)) = 2(¢) whenever £ € ' and ¢ € N; that is, g¢(z) = z for
every £ € I'. But this means that z € ggl[L] = K¢ for every £ € T'. It follows that whenever I € [['|<¥

then N¢e; Oag # 0 and infeer ae # 0; that is, that {a¢ : £ € I'} is centered. As (ag¢)e< is arbitrary, x is a
precaliber of B,.

525M Proposition Let (2, i) be a probability algebra and x an infinite cardinal such that cfk is a
measure-precaliber of (A, &) and A < k for every A < k. Then & is a measure-precaliber of (2, ).

proof If k = cfk, we can stop; so henceforth I will suppose that s is singular.
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(a) Suppose first that 2 = B; for some set I; let {e;);er be the standard generating family in B;. If
k is regular, the result is trivial. Otherwise, let (a¢)e<, be a family in AT such that infe., 7jae = 6 > 0.
There is a strictly increasing family (k4 )a<cf,s Of regular uncountable cardinals with supremum & such that
ko > cfk and if @ < cfk and A < Ko then A\ < k,. P All we need to know is that if § < x there is a
regular uncountable cardinal §’ such that § < ¢’ < x and A < @ whenever A < §'; and ¢’ = ()™ has this
property. Q

For each £ < &, let Ic C I be a countable set such that a; belongs to the closed subalgebra of 2 generated
by {e; : i € It}. By the A-system Lemma (5A1J(a-ii)), there is for each o < cfr a set 'y C K41 \ Ko Such
that #(T'a) = Ka41 and (Ig)eer, is a A-system with root J, say. Set J =J Ja, so that #(J) < cfx,
and

a<cfr

I, ={¢:€€Ta, I\ Jo) N (JUU, . Iy) =0}

then #(I",) = Ka41 for every a < cfk, and Ic NI, C J for all distinct &, n € T = (J, (¢, T Let €5 be
the closed subalgebra of 2 generated by {e; : ¢ € J}. For £ € IV, set b = upr(ae,€y). By 515Ma,

#(€7) <max(w, #(J))¥ < kat1 = cfRat1,
there is for each o < cfk a ¢, € €5 such that T = {(: £ €T, be = ¢o} has cardinal £,41. Note that
ViCo = D[b§ > Urag 2 1)

whenever o < cfx and € € T').

Now recall that we are supposing that cf x is a measure-precaliber of 2. So there is a A € [cfx]*I* such
that {c, : @ € A} is centered in 2. Now I'" = [, 'y has cardinal , and (be)eer~ is centered. It follows
that (ag)eer~ is centered (525H).

As (ag)e<x is arbitrary, k is a measure-precaliber of 2.

(b) For the general case, observe that by Maharam’s theorem (332B) 2l is isomorphic to the simple
product [, cx Aa, of a countable family of homogeneous principal ideals, where (di)rex is a partition of
unity in 2. Let {(a¢)e<x be a family in A such that infeo, fiae =6 > 0. Let L C K be a finite set such that
Drerr Hde = 0’ < 6. Then there is some k € L such that

6—¢’

#(L)}

has cardinal . Since cfk is a measure-precaliber of 2, it is also a measure-precaliber of g, (cf. 516Sc).
Since (Ug,,, 1] Aq, ) is isomorphic, up to a scalar multiple of the measure, to (B, 7r) for some I, (a) tells us
that « is a measure-precaliber of 24, . There is therefore a set I' € [I'x]" such that (a¢ Nndi)eer and (ag)eer
are centered. As (ag)e<, is arbitrary, k is a measure-precaliber of 2.

Tw={€:¢ <r, plagndy) >

525N Proposition (ARGYROS & TSARPALIAS 82) Let x be either w or a strong limit cardinal of
countable cofinality, and suppose that 2% = ™. Then ™ is not a precaliber of B,.

proof By 523Lb, nonN, > k. So if we enumerate {0,1}" as (z¢)ec,+ and set Ee = {z,; : n < &} for
£ < K1, (Ee)ecn+ is an increasing family in N, with union {0,1}". By 525Cc, £ is not a precaliber of B,.

5250 As in 523P, GCH decides the most important questions.

Proposition Suppose that the generalized continuum hypothesis is true.

(a) An infinite cardinal  is a measure-precaliber of every probability algebra iff cfx is not the successor
of a cardinal of countable cofinality.

(b) An infinite cardinal & is a precaliber of every measurable algebra iff cf x is neither w nor the successor
of a cardinal of countable cofinality.

proof (a)(i) If k is a measure-precaliber of every probability algebra, so is cfx (525Dc). By 525N, cfk
cannot be the successor of a cardinal of countable cofinality.

(ii) Now suppose that cfx is not the successor of a cardinal of countable cofinality. If K = w, then
certainly  is a measure-precaliber of every probability algebra (525Fa). Otherwise, k > A“ for every A < &
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and cfk > A¥ for every A < cfk (5A6Ac). By 525K, cf k is a measure-precaliber of every probability algebra;
by 525M, so is k.

(b) Put (a) and 525Eb together.

*525P As in 522U, the Freese-Nation number of PN is relevant to the questions here.
Proposition (Mcountable, FN"(PN)) is not a precaliber pair of B,,.

proof By 518D(iv), the Freese-Nation number of the topology of {0,1}% is FN(PN); the regular Freese-
Nation numbers are therefore also equal. We know that mcountable i the covering number of the meager
ideal of R (522Sa), and therefore also of the meager ideal of {0, 1}* (522Wb) and of the nowhere dense ideal
of {0,1}¥. By 518E, there is a set A C {0,1}*, with cardinal Mmcountable, Such that #(A N F) < FN*(PN)
for every nowhere dense set F' C {0,1}*.

Fix a nowhere dense compact set K C {0,1}* of non-zero measure. For each = € A, set a, = (K + z)°
in B, where + here is the usual group operation corresponding to the identification {0,1}* = Z¢. Then
every a, is non-zero. If B C A and {a, : © € B} is centered, then {K + z : © € B} has the finite
intersection property, so there is a y in its intersection; now B C AN (K + y), and K + y is nowhere dense,
so #(B) < FN*(PN). Thus (az)zc4 has no centered subfamily with cardinal FN*(PN) and witnesses that
(Meountable, FN"(PN)) is not a precaliber pair of B,,.

525Q I turn now to some results which may be interpreted as information on precaliber triples in which
the third cardinal is finite.

Lemma Let (2, ji) be a semi-finite measure algebra, (u,)nen a || [|2-bounded sequence in L? = L2(2, i)*,
and F a non-principal ultrafilter on N. Suppose that p € [0, 00] is such that sup,, oy ||u2 ||2 is finite, and set
v = lim,_, r Uy, w = lim,_, r uP, the limits being taken for the weak topology in L2. Then v? < w.

proof Of course the positive cone of L? is closed for the weak topology so v > 0 and we can speak of vP.
? If vP £ w, there are o, 8 > 0 such that o > 8 and

a=Jv>a]\[w>pg]#O0.
Let b C a be such that 0 < fib < co and consider u = %Xb. Then, setting ¢ = p/(p — 1) (of course p > 1),
() < ([ 07 = T ([ x5 0 < T (s < b0l
(by Hoélder’s inequality, 244EDb)
=l (@)1 [ = (@) [ w < p(aby < ¥ by

n—F b b

which is absurd. X So v? < w.

525R Lemma Let (2, /i) be a probability algebra and (un)nen 2 || ||co-bounded sequence in L (2L, )"

such that § = inf,en [, > 0. Let ko, ... , ki, be strictly positive integers with sum k. Suppose that y < o*.
(a) There are integers ng < ni < ... < ny, such that [ ]}, u]f{j > .
(b) In fact, there is an infinite set I C N such that f H;-n:(] ulfﬁj > ~ whenever ng, ... ,n,, belong to I and

Nog<ng <...<Nyp.

proof (a) Let F be a non-principal ultrafilter on N. For each j < m, let v; be the limit lim,_, » u,lij for the
weak topology on L?(L, ji); let v be the limit lim,,_, 7 u,. By 525Q,

/ ﬁ -/ ﬁ = [F = atlallel)

%,orooiszl)

(where g = P
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2(/v><xl)k

(by Holder’s inequality again, if k > 1)

n—F

:(/v)k: lim(/un)k25k>'y‘

(Or use 244Xd to show more directly that [v* > ([v)*.) We can therefore choose ng, ... ,n,, inductively
so that

ks
J oy x T a0 >

for each s < m (interpreting the final product []
be able to use any member of

m .
j=m1Vj a8 x1), since when we come to choose n; we shall

{n:n>n;for j <s, fulff X Hj;éuﬁfj x [t eiy v >3
which belongs to F so is not empty. At the end of the induction we shall have a sequence ng < ... < ny,
such that [T[7., ufﬂj >, as required.
(b) Let J C [N]™*! be the family of all sets of the form {ng,...,n,} where ng < ... < n,, and

J H;n:o u,’i’y > v. By (a), applied to subsequences of (u,)nen, every infinite subset of N includes some

member of J. By Ramsey’s theorem (4A1G), there is an infinite I C N such that [I]m+1 C J, which is
what we need.

5258 Theorem (FREMLIN 88) Let (2, i) be a probability algebra and « an infinite cardinal. Let (ug)e<x
be a || ||so-bounded family in L°°(A)*. Set § = infec,, [ue. Then for any k € N and v < %! there is a

T € [k]* such that [ [T\, ue, >~ for all &, ..., & €.

proof (a) It will be helpful to note straight away that it will be enough to consider the case (2, @) = (B, vr)
for some set I. P There is always a (B, 77) in which (2, &) can be embedded. In this case, L>(2) can
be identified, as f-algebra, with a subspace of L>°(B;), and the embedding respects integrals. So we can
regard (u¢)e<, as a family in L°°(B;) and perform all calculations there. @

At the same time, the case 6 = 0 is trivial, so let us suppose henceforth that 6 > 0.

(b) Next, having fixed on a suitable set I, let {(e;);c; be the standard generating family in 9B, and for
J C I let €; be the closed subalgebra of B generated by {e; : i € J}; following 325N, I will say that a
member of € is ‘determined by coordinates in J°. For J C I let P; : L*(B;,v7) — LY (€;,07]€;) be the
conditional expectation operator. Note that if J, K C I then P;Px = Pjni (254Ra/458M(iii)).

It will be useful to start by looking at a particular subset W of L (2B), being the set of linear combina-
tions Z?:o a;x¢; where every «; is rational and every ¢; is determined by coordinates in a finite set. Now
P;[W] CW for every J CI. P If ¢ € € where K C I is finite, then
v (end)

vrd
As Pj is linear, this is enough. @ Observe also that if K C [ is finite, then Px[W] is countable, being the
set of rational linear combinations of {xc: ¢ € €x}.

PJ(XC) = PJPK(XC) = PJHK(XC) = Zd is an atom of €Ak Xd ew.

(c) Suppose, therefore, that we have a set I, a || ||oo-bounded family (ug)ec, in L (B;)" with infeo, [ ue
=§>0,akecNanda~y< §**!. To begin with, let us suppose further that
() ue < x1 for every & < k&,
(B) ue € W, as described in (b), for each £ < k;
for each £ < &, let I¢ € [I]<* be such that Pp ue = ug.

(i) Suppose that £ = w. Because there are only finitely many sequences kg, . .. , ky, of strictly positive
integers with sum equal to k + 1, we can use 525Rb a finite number of times to find an infinite I' C w such
that [T, uff] >« whenever 337" kj = k+1 and ng < ... < ny, belong to T'. But in this case we surely

have fo:o Up, >~ for all ng,... ,n, €.
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(i) Next, suppose that k > w is regular. By the A-system Lemma (4A1Db) there is a A € [k]" such
that (I¢)eca is a A-system with root J say. Since Py[W] is countable, there is a v such that I' = {{ : € €

A, Pyug = v} has cardinal . Of course
fv = fug >4
for every £ € T

By 458Lg again, (€r,)eca is relatively independent over €;. Now suppose that &, ..., belong to T'.
Then

k k
/Hua 2 /HPJU&
=0 =0

_ /v’““ > (/U)k+1

> okt > )

(458Lh)
(as in the proof of 525Ra)

and this is what we need to know.

(iii) Finally, suppose that x > cfx > w. Set A = cfk and let (k¢)¢<x be a strictly increasing family
of regular cardinals greater than A and with supremum x. For each ¢ < A let Ar C keqq \ K¢ be a
set with cardinal r¢41 such that (Ig)een, is a A-system with root J¢ say. Set J = (. J¢; note that
#(J) < X < Key for every ¢, so that
Ar={§: €€ D¢, (I \J)N(JUU,cp, In) =0}

still has cardinal k¢4q.
If ( < Xand § € A}, I¢ N J is included in the finite set J¢; so {Pyug : § € At} is countable, and there is
a v¢ such that AY = {£: § € A}, Pjug = v¢} has cardinal r¢y1. Note that

f'l}C:f’L% 25
whenever ( < A and £ € A7.

Because \ is regular, we can apply (i) or (ii) above to find an A € [A]* such that | Hf:o v¢, > v whenever
Coy-- ,CEA Set ' = U(eA A/C/5 because A must be cofinal with A\, #(T") = k.

If & n € I are distinct, then Ic NI, € J. So (€r,)ecr is relatively independent over €;. Take any
£o,...,& €T for each i < k, let (; € A be such that &; € A’é_. By 458Lh again,

S ue, = [ TIimg Prue, = [Tz ve, =7
so we are done (provided («)-(8) are true).
(d) Now let us unwind these conditions from the bottom.

i «) 18 true, but 1s not, take € € |0,0| such that (0 — € > v+ (kK + 1)e. For eac < K,
i) If i but (B) i ki 0,96 h that (0 k+1 k+ 1)e. Fe h £

let u; € W be such that u; < x1 and [ |ug —ug| < e. (Such a ug exists because [J{Cx : K € [I]<*} is
topologically dense in B and u A x1 € W for every u € W.) Then fué > 6 — € for each &, so we can apply
(c) to (ug)e<x to see that there is a I € [x]" such that fo:o ug, > v+ (k+1)e for all &, ... ,§ € I'. Now
(because ug and uy all lie between 0 and x1) we have

k k
|Hi:0 Ug; — Hi:O uél

k
< Zi:o lug, — “/g

(see 2850), so that
k k k
in:O ug, > in:o ulgl - i—o f lug, — uél| >

whenever &g, ... ,&, € I', and the theorem is still true.
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ii) Finally, for the general case, set M =1+ sup Ug oo, and u, = Ly for < k. Then every u,
(<K 13 3 M 3 £

belongs to [0, x1] and [ u; > % By (i) thereis a I' € [x]" such that [ []F_, for all §, ... , & €T

2
U, 2 TpT
in which case [ Hf:o ug, > for all &, ... & €T
This completes the proof.

525T Corollary (ARGYROS & KALAMIDAS 82) (a) If £ is an infinite cardinal and k € N, (k, k,k) is a
measure-precaliber triple of every probability algebra.

(b) If & is a cardinal of uncountable cofinality and k € N, (k, &, k) is a precaliber triple of every measurable
algebra. In particular, every measurable algebra satisfies Knaster’s condition.

(c) If k is a cardinal of uncountable cofinality, (2, fi) is a probability algebra, k > 1 and (ag)e<y is a
family in 2\ {0}, then there are a § > 0 and a I' € [x]" such that f(infees ag) > 6 for every I € [T]%.

(d) For any measurable algebra 2, m(2() > mg; and if m(A) > wy, then m(2A) > mpee, . Soifw < K < my,
K is a measure-precaliber of every probability algebra.

proof Really this is just the special case of 5255 in which every u¢ belongs to {xa : a € 2}.

(a) If (A, 1) is a probability algebra and (a¢)e< is a family in 2 such that infe<, fiae = § > 0, take any
v € ]0,6%[. Setting ue = xae for each &, [ue > & for each &, so there is a I' € [k]" such that [ Hle ug;, >y
for every &1,...,& € I'; in which case infecj ag # 0 for every J € [[]*. As (ag¢)e<, is arbitrary, (s, &, k) is
a measure-precaliber triple of (2, ).

(b) This now follows at once from 525Db, since any non-zero measurable algebra can be given a probability
measure. Taking k = w1 and k = 2, we have Knaster’s condition.

(c) For the quantitative version, we have only to note that there must be some a > 0 such that #({¢ :
fiag > o} has cardinal s, and take § < a*.

(d) By (b), A satisfies Knaster’s condition; it follows at once that m(2) > mg, while sat(2A) < wy. If
m(2A) > wi, then w; is a precaliber of A (517Ig) so m(A) > mye,,. By 525FDb, every infinite cardinal less
than mg is a measure-precaliber of every probability algebra.

525X Basic exercises (a) Let (X, X, 1) be any measure space and 2 its measure algebra. (i) Show that
(AT,2) <1 (X \ N (1), 2). (ii) Show that a pair (x,\) is a downwards precaliber pair of ¥\ N (u) iff it is a
precaliber pair of .

>(b) Let 2 be a measurable algebra. Show that w; is a precaliber of 2( iff either 2 is purely atomic or
7(A) <w and cov N, > wy or covN,, > wy. (Hint: 525G, 523F.)

>(c) (i) Suppose that add N, = covN,, = k. Show that « is not a precaliber of B,,. (ii) Suppose that
non N, = ¢. Show that ¢ is not a precaliber of B,,.

(d) Let (X, X, u) be a complete strictly localizable measure space and 2l its measure algebra. Show that
the supported relation (X \ N(u), 3, X) has the same precaliber pairs as the Boolean algebra .

(e) Suppose that (k, \) is a precaliber pair of every measurable algebra, that I is a set, and that X C Rf
is a compact set such that #({i : x(i) # 0}) < A for every x € X. Show that #({i : (i) # 0}) < & for every
x belonging to the closed convex hull of X in RY. (Hint: 4611.)

(f) Suppose that A < k are infinite cardinals, (2, /) is a homogeneous probability algebra, and that
v < 1 is such that whenever (ag)e<, is a family in 2 and jiag > v for every & < &, there is a I' € [k]* such
that {a¢ : £ € T'} is centered. Show that (k,\) is a measure-precaliber pair of (2, ). (Hint: given that
infec, lag > 0, take (€,\) = @m(% i) = (A, i) to be the probability algebra free product of a large finite
number of copies of (%, i), and consider c¢ = sup, ., €;a¢ for £ < k.)

(g) Let 2 be a Boolean algebra, and A, k cardinals such that (k, A) is a measure-precaliber pair of every
probability algebra. Suppose that A C 20\ {0} has positive intersection number. Show that if (ag)e<, is a
family in A, then there is a I' € []* such that {a¢ : £ € '} is centered.
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(h) Let & be a cardinal such that (o) A < & for every A < x (8) A\ < cf« for every A < cfx. Show that
K is a measure-precaliber of every probability algebra.

(i) Show that if (X, ¥, 3, u) is a Radon measure space and X > 0, then cov M (u) > mg. (Hint: assemble
524Md, 524Pc, 525Th.)

525Z Problem Can we, in ZFC, find an infinite cardinal x which is not a measure-precaliber of all
probability algebras? From 525N we see that a negative answer will require a model of set theory in which
2% > gt for all strong limit cardinals & of countable cofinality; for such models see FOREMAN & WOODIN
91, CUMMINGS 92.

525 Notes and comments There seem to be three methods of proving that a cardinal is a precaliber of
a measure algebra. First, we have the counting arguments of 516L; since we know something about the
centering numbers of measure algebras (524Me), this gives us a start (see the proof of 525K). Next, we
can try to use Martin numbers, as in 517Ig and 525F; since we can relate the Martin number of a measure
algebra to the cardinals of §523 (524Md), we get the formulation 525J. In third place, we have arguments
based on the special structure of measure algebras, using 525H to apply A-system theorems from infinitary
combinatorics. Subject to the generalized continuum hypothesis, these ideas are enough to answer the most
natural questions (5250). Without this simplification, they leave conspicuous gaps. The most important
seems to be 525Z. Even if we know all the cardinals add V.., covN,, nonN,, and cf N, of §523, we may still
not be able to determine which cardinals are precalibers; 525Xb is an exceptional special case.

I have presented this section with a bias towards measure-precalibers rather than precalibers. When there
is a difference, the former search deeper. ‘Cofinality w;’ has a rather special position in this theory (525Ib),
deriving from the combinatorial arguments of 5A11.

Version of 24.1.14

526 Asymptotic density zero

In §491, I devoted some paragraphs to the ideal Z of subsets of N with asymptotic density zero, as part of
an investigation into equidistributed sequences in topological measure spaces. Here I return to Z to examine
its place in the Tukey ordering of partially ordered sets. We find that it lies strictly between NN and ¢!
(526B, 526J, 526L) but in some sense is closer to ¢! (526Ga). On the way, I mention the ideal Nwd of
nowhere dense subsets of NV (526H-526L) and ideals of sets with negligible closures (5261-526M).

526A Proposition For I C N, set v = sup,,>, Lu(Inn).

(a) v is a strictly positive submeasure (definition: 392A) on PN. We have a metric p on PN defined by
setting p(I,J) = v(IAJ) for all I, J C N, under which the Boolean operations U, N, A and \ and upper
asymptotic density d* : PN — [0, 1] are uniformly continuous and PN is complete.

(b) Z is a separable closed subset of PN.

(c) If Z C Z is such that ), ;v is finite, then (JZ € Z.

(d) With the subspace topology, (Z,C) is a metrizably compactly based directed set (definition: 513K).

proof (a) It is elementary to check that v is a strictly positive submeasure. By 392H, p is a metric under
which the Boolean operations are uniformly continuous. Since

|d* (1) = d*(J)| < d*(IAT) < W(IA)

for all I, J C N, d* is uniformly continuous. Let (I;);en be a sequence in PN such that p(I;, [j411) < 277
for every j € N. Set I =[x UjZm I;. For any m € Nand n > 1,

1 1 oo 00 —-m
~#n N (InAD) < =375, #(n 0 (AL ) < 3052, (L, i) <277,
0 p(Ipm, I) < 27™F1 Thus (I;) ey is convergent to I; as (I;);en is arbitrary, PN is complete (cf. 2A4E).

(© 2009 D. H. Fremlin
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(b) Z is a closed subset of PN. P If I belongs to the closure Z of Z, and € > 0, let J € Z be such that
p(I,J) < %€, and let m > 1 be such that 2#(J Nn) < 1€ for every n > m; then L#(I Nn) < e for every
n > m. As e is arbitrary, I € Z; as [ is arbitrary, Z is closed. Q

Z is separable because [N]<“ is a countable dense set. (If I € Z and n € N, p(a,aNn) < sup,,~, ~#(mnN

I).)
(c) Let € > 0. Then there is a finite Zyg C Z such that ZIEZ\IO vl <e Set J=UZ, Jo = JZo; then
Jo € Z so there is an ng € N such that #(Jy Nn) < ne for every n > ng. If n > ng, then

#(JNn) <F#(JoNn) + X reng, #UINn) <ne+ 3 e g, nvl < 2ne.
As € is arbitrary, J € Z.

(d) Z is closed under U, so is a directed set under C, and U : Z x Z — Z is continuous. If a € Z,
then on {b: b C a} the topology ¥, induced by p agrees with the usual compact Hausdorff topology & of
PN = {0,1}. P Ifn € Nand p(b,c) < ﬁ, then bNn = cNn; so T, is finer than & on PN. If € > 0, there
is an m € N such that #(a Nn) < ne whenever n > m; now p(b,c) < e whenever b, c C a and bN'm = cNm.
So & is finer than T, on {b: b C a}. Q Since {b:b C a} is G-compact, it is T,-compact.

Now suppose that (a,)nen is a sequence in Z with T,-limit a. Then it has a subsequence (a,, )ken such
that p(a,an,) < 27F for every k. Set b = Uken @ny,- Then, given € > 0, let 7, m € N be such that 27" < ¢
and #(n N (aUUJy<, an,)) < ne for every n > m; then

#nnb) <#nmN@UJan))+ Y. #nNan, \a)
k<r k=r+1

o0
< ne+ Z 27 kp < 2ne
k=r+1

for every n > m. So b € Z and {a,, : k € N} is bounded above in Z.

526B Proposition (FREMLIN 91) NN ¢ Z <p /1.
proof (a) For a € NV set
dla) ={2"i:neN,i<a(n)}.
Then ¢(a) € Z, because if k € N then

#(mNo(e) < Sn_ga(n) +[27Fm]

for every m. Also ¢ : NN — Z is a Tukey function, because if ¢(a) C a € Z then a(n) < min{i : 2" ¢ a}
for every n € N. So NN < Z.

(b) Give Z the metric p of 526 A. Then Z is complete and separable and the lattice operation U is uniformly
continuous (526Aa). By 524C, (Z,C',[Z2]<%) <ar ({*(w), <, 01 (w)). Since Z is upwards-directed, (Z,C,
Z) =gt (Z,C,[2]<%) (5131d) and (Z,C, Z) <aT (£}, <, 0, that is, Z <1 0L

526C The next three lemmas are steps on the way to Theorem 526F. I give them in much more generality
than is required by that theorem because a couple of them will be useful later, and I think they are interesting
in themselves. But if you are reading this primarily for the sake of 526F, you might save time by looking
ahead to the proof there and working backwards, extracting arguments adequate for the special case of 526E
which is actually required.

Lemma Let ((y,/in))nen be a sequence of purely atomic probability algebras, and 2 = [], .2, the
simple product algebra. Then there is an order-continuous Boolean homomorphism 7 : 2 — PN such that
limsup,,_, ., fAina(n) is the upper asymptotic density d*(mwa) for every a € 2; consequently, lim,,_, o fina(n)
is the asymptotic density d(wa) of wa if either is defined.

proof (a) For each n € N, let C,, be the set of atoms of 2,,, and choose rational numbers a,,(c) such that
an(c) < finc for each ¢ € Oy, Yo .co anlc) > 1 =277, and {c: c € Oy, ay(c) > 0} is finite. Express ay,(c)
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as rp(c)/s, for each ¢ € C,, where r,(c) € N and s, € N\ {0}; let (I,,(c))cec, be a disjoint family of
subsets of N with #(/,,(c)) = ry(c) for each ¢, and set J, = U cc, In(c); let m, : A, — PJ, be the Boolean
homomorphism such that m,(¢) = I,,(c) for each ¢ € C,,. Then

(1 =27")8n < 80D pee, anl(c) = e, Tn(c) = #(Jn) < sn.
Note that #(.J,) > 0. Also

#(Jn)(nd — 277) < #(Jn) Z an(c)

ceChp,cCd
<o S an@= 3 () = #(mad)
ceChp,cCd ceCy,cCd

and
(1 —=27")#(mnd) = (1 - 2in)snzcecn70gdan(c) < #(Jn) - find
for every d € ,,. So, for a € A,

#(mna(n))
#(Tn)

limsup,,_, o fina(n) = limsup,,_,

(b) Let (my)nen be a sequence in N such that
MpF(Jn) > 2" max(#(Jng1), D icrn Mt (Ji))

for every n. Set ng = n if Zi<n m; < k < Zign m; where n € N; then limg_,,onrp = oco. Set I =
Yick #(Jn;), so that lpy1 — Ik = #(Jp,) for each k, and let ¢p : PJn, — P(lks1 \ lx) be a Boolean
isomorphism; set

a4 = UkEN ¢kﬂnka(nk)
for a € 2, so that 7 : A — PN is an order-continuous Boolean isomorphism.

(c) Let a € 2, and set

#(mna(n))

7 = lHmsup,, oo fina(n) = limsup,, o =775,

~" = limsup;_, %#(l Nma).

Then v < o'. P Setting I;, = > ,_, mi#(J;), we have #(l;, ., N ma) > my#(m,a(n)), while I}, =
U +mp#(Jn) < (1 +27")m,#(Jy) for each n; but this means that

1 n n
v > limsup —#(l;,,; N 7a) > limsup o #f (mna(n)

)
n—oo lpi1 n—oo (1427 )mn#(Jn) 9

Also v/ <. P Let ¢ > 0. Let n* > 1 be such that 27" < ¢ and #(m,a(n)) < (v + €)#(J,) for every
n > n*. Suppose that [ > I],. ;. Then [ is of the form 1], | + j#(Jp+1) + i where n > n*, j < my41 and
i < #(Jnt1). Now Uy =1, + mp#(Jn), so

#(lnpr Nwa) < L, + mu#(mna(n)) < I, + ma#(Jn) (v + €)
S ma#(Jn) (v + €+ 277) S mn#(Jn) (7 + 26)

by the choice of m,,. Accordingly

#UNma) < mp#(Jn) (v +2€) + (§ + D)#(Tny1a(n + 1))
nFE (o) (v + 2€) + 5(v + F(Jnt1) + F#(Jnt1)

(7 + 26)1 + #(JnJrl) S (’V + 26)1 + 2inmn#(<]n)

<m
<m
<

(by the choice of my,)
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< (v + 3e)l.

As this is true for any [ > 1) |, 7' < v+ 3€; as € is arbitrary, 7' < v. Q
(d) Thus

lim sup,,_, . fina(n) = limsup,,_, %#(n N7a)
for every a € 2. But as 7 is a Boolean homomorphism, it follows at once that
liminf,, o fina(n) = liminf, i#(n N7a)

for every a, so that the limits are equal if either is defined.

526D Lemma Let (2, i) be a semi-finite measure algebra, and £ > max(w, c(2), 7(2)) a cardinal. Let
(B, 7x) be the measure algebra of the usual measure on {0,1}*, and v > 0. Then there is a function
0 : A — B, such that

(i) O(sup A) = sup O[A] for every non-empty A C 2 such that sup A is defined in ;

(ii) 7x0(a) =1 — e 7A@ for every a € 2, interpreting e~ as 0;

(iii) if {a;)er is a disjoint family in 2, and €; is the closed subalgebra of B, generated by {0(a) : a C a;}
for each 4, then (€;);cs is stochastically independent.

proof (a) By 495M°, we have exactly this result for some probability algebra (28, )) in place of (B, 7).
Set A/ = {a : a € A, fia < oo}, and give A/ its measure metric p (323Ad). Then 02/ is uniformly
continuous for p and the measure metric o of B. P If € > 0, there is a § > 0 such that |e™7" — e~ < le
whenever s, t € [0,00[ and |s —t| < 0. Now if a, o’ € A and i(a & a’) < §, set b =ana'; then 6(b) C 6(a)
and fia — b < 4§, so

o (0(a), 0(b)) = MO(a)\ 0(b)) = A0(a) — A(b) = e~V — ¢=a <

€.

N | =

Similarly, o(6(a’),0(b)) < 1€ so o0(6(a),0(a’)) < e. As € is arbitrary, this gives the result. Q

(b) By 521EDb, there is a set B C S, of cardinal at most , which is dense for p. Accordingly §[B] is
dense in f[/] for o. Taking D to be the closed subalgebra of B generated by [B], 7(D) < k and §[2f] C D.
But if @ € 21\ A/ then 6(a) = 1, so 2] C D. Now there is a measure-preserving Boolean homomorphism
¢ : D — B, (332N), and ¢0 : A — B,; has the properties we need.

526E Lemma Let ((2,, [in))nen be a sequence of finite probability algebras and (v, )nen a sequence in
10, 00[. Write P for the set
{p 'pE HnEN Q*[nv lim;, 00 'Ynﬂnp(n) = 0}7
with the ordering inherited from the product partial order on ], . ®,. Then P <1 2.

proof (a) By 526D, we can find for each n a probability algebra (%8,,,7,) and a function 6,, : 2,, — B,
such that, for all a, a’ € A,

On(aud) =0,(a)ub,(a),

Dnen(a) =1- exp(_'Ynﬂa)'
We may suppose that B, is generated by 0,[%,], so is itself finite. Set A = [, cx™%n, B = []
0(p) = (0n(p(n)))nen for p € A; then d(sup A) = sup §[A] for any non-empty subset A of A. Set
Q=A{q:q€IlenBn: limp o0 Zng(n) = 0}

Then 0] P is a Tukey function from P to Q. P P = f~1[Q], because lim, o Vn&, = 0 iff lim, o0 1 —
e~ & = 0. So O] P is a function from P to Q. If g€ Q, A= {p: p € A, O(p) C ¢} has a supremum p, € A;
now 6(po) = sup0[A] C ¢, so 8(pg) € Q and py € P is an upper bound for A in P. Q

neN %”“

5Formerly 495J.
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(b) By 526C, we have an order-continuous Boolean homomorphism 7 : 8 — PN such that n(q) € Z iff
q € Q. Now 7[Q is a Tukey function from Q to Z. P If d € Z, set B={q:q € B, 7(q) C d}. Because 7 is
an order-continuous Boolean homomorphism, B contains its supremum, and B is bounded above in ). Q

(¢) Thus 70| P : P — Z is a Tukey function and P <1 Z.

526F Theorem (¢, < /') xqr (NY, <, NV) x (2, C, 2).

proof (a) Let Q@ C N be the set of strictly increasing sequences a such that a(0) > 0. For a € Q, set

(oo}
— . 1 ; n Nt —
Po={z:z€l!, |z]o < a(0), lim 2 " a(i)" =0}
i=a(n)
a(n+1)—1
— . 00 ; n Nt —
={z:z€l® ||z|c < a0), nILH;OQ Z x(i)™ = 0}
i=a(n)
because
oo ) a(m+1)—1 a(m+1)—1
2" z(i)t = gn—mom z(i)" <2 sup 2" z(i)"
dooat =] > (i)t < sup > (i)

i=a(n) m=n i=a(m) i=a(m)

for every n and .
The point is that P, <t Z. P For each n € N set k,, = 22" (a(n + 1) — a(n)),

Vi = (a(n+1)\ a(n)) x k,a(0) CNx N, A, =PV,

and let i, be the uniform probability measure on 2L, so that f,d = #(d)/#(V,,) for d CV,. Forn € N
and x € £ set

fo(@) ={(,7) : a(n) <i < a(n+1), j < knmin(a(0), z(i))} € Vi
Then

B () = E Xy <icatury in(a(0), 2(0) )] < a(n+ 1) — a(n),
s0 if [|z||cc < @(0) then

a(n+1)—1
2"a(0)(a(n +1) — a(n)afa(z) =2 D 2(i)*] <2"(a(n+1) - a(n))/k,
i=a(n)
=27",
Accordingly
P,={z:2€0® ||z]oc < a(0), limy— o0 2" (a(n + 1) — a(n))fin fr(z) = 0}.
Let & =[], cn An be the simple product of the Boolean algebras 2, and I the ideal

{a:a €, lim, ;o 2" (a(n + 1) — a(n))ina(n) = 0}
of 2. For z € £, set f(x) = (fn(z))nen. Observe that f : £*° — 2l is supremum-preserving in the sense
that f(sup A) = sup f[A] for any non-empty bounded subset A of £>°.

The last formula for P, shows that f(x) € I for every z € P,. Butifae I, A={z:z € P,, f(z) C a}
is upwards-directed and has a supremum zg € £*°, with ||zl < @(0). Now f(z9) = sup,c4 f(x) C a, so
xg € P, and is an upper bound for A in P,. Thus f|P, is a Tukey function from P, to I, and P, < I.
By 526E, I <1 Z, s0 P, <7 Z. Q

Thus (Py, <, Py) <at (Z,C, 2); it follows at once that (P,, <,¢') <at (Z,C, 2).

(b) Now, for a € N¥, take P, = P3 where B(n) = 14 n + max;<, a(i) for n € N. Then P, C P,
whenever a < o in NV, Usent Pa = ¢t and (P,, <, ') <at (Z,C, Z) for every a; so (¢}, <, ') ggr (NV, <
,NNY % (2,C, 2), by 512K.
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526G Corollary Let A be the ideal of Lebesgue negligible subsets of R.
(a) add, Z = add N = add,, ¢* and cf Z = cf N = cf (1.
(b) If AC Z and #(A) < add N, there is a J € Z such that I\ J is finite for every I € A.

proof (a)(i) Putting 526B and 513Ie together, we see that
add, NN > add,, Z > add,, ¢*,
that is,
b > add, Z > add
(522A, 5241). Next, we can deduce from 526F that add, ¢! > min(add, N¥ add,, Z). P Let (¢,%) be a
Galois-Tukey connection from (¢!, < /') to
(NN, <,NN) x (2,C,2) = (NN x 2NV TNV x 2),
where

T ={((p, f),(g,a)) :p< qin NN, f(q) Ca € Z}.

We can interpret ¢ as a pair (¢1, ¢2) where ¢y is a function from ¢! to NN and ¢, is a function from ¢ x N¥
to Z, and saying that (¢,) is a Galois-Tukey connection means just that

if ¢1(z) < q and ¢2(x,q) C a then x < (g, a).

Now suppose that A C ¢! and #(A) < min(add,, N¥,add,, Z). Then there is a sequence (g,)nen in
NN such that for every # € A there is an n € N such that ¢;(z) < ¢,. Next, for each n € N there
is a sequence (Anm)men in Z such that for every x € A there is an m € N such that ¢2(2,¢n) C anm.-
In this case, B = {¥(qn, anm) : m, n € N} is a countable subset of Z, and for every € A there are
m, n € N such that ¢1(z) < g, and ¢2(x,q,) C apm, so that z < ¥(qn,anm) € B. As A is arbitrary,
add,, ! > min(add,, NV, add,, Z). Q

Thus we have add N > min(b, add,, Z) = add,, Z, and add,, Z = add N. And we know from 5241, with
k = w there, that add A = add,, ¢*

(i) On the other hand, 5241, 526F, 512Da and 512Jb tell us that

cf N = cf €' = cov(£*, C, 1) < cov((NY, <, NY) x (Z,C, 2))
= max(cov(NY, <, NV) cov(Z, C, Z)) = max(0, cf Z).
But from 526B we see that 0 < cf Z < cf !, so cf Z = cf N, while 5241 tells us that cf N = cf (1.

(b) By (a), there is a countable set D C Z such that every member of A is included in a member of D.
By 491Ae, there is a J € Z such that I\ J is finite for every I € D; this J serves.

526H I turn now to ideals of nowhere dense sets.

Proposition Let Awd be the ideal of nowhere dense subsets of NN and M the ideal of meager subsets of
NN,

(a) Mwd is isomorphic, as partially ordered set, to (Awd)N.

(b) (Mwd, T/, [Mwd]=*) =g (M, S, M).

(C) Mvd <7 o,

(d) Let X be a set and V a countable family of subsets of X. Set

D={D:DCX, for every V €V there is a V' € V such that V' C V' \ D}.

Then D <1 Mwd.

(e) If X is any non-empty Polish space without isolated points, and Nwd(X) is the ideal of nowhere
dense subsets of X, then Awd =1 Awd(X).

(f) If X is a compact metrizable space and Cyyq is the family of closed nowhere dense subsets of X with
the Fell (or Vietoris) topology (4A2T), then (Chwa, C) is a metrizably compactly based directed set.

Remark Recall that if R is any relation then R’ is the relation {(z, B) : (z,y) € R for some y € B}; see
512F-512G.

D.H.FREMLIN



78 Cardinal functions of measure theory 526H

proof Enumerate S = {J,.yN" as (0n)nen. For o € S write [, ={a:0 Ca € NN}

(a) Define ¢ : Nwd — ANwd" by setting ¢(F)(n) = {a : <n>"a € F} (notation: 5A1C). Then ¢ is an
isomorphism between Nwd and Nwd".

(b)(i) Choose ¢ : M — Nwd" such that M C J, oy #(M)(n) for every M € M. Then ¢ is a Tukey
function so M <1 Mwd" =2 Awd, that is, (M, C, M) <o (Mwd, C, Nwd). By 5131d and 512Gb,

(M7 gvM) =GT (M7 g/a [M}SW) <aT (NWda glv [NWd}Sw)

(ii) For n € N and 7 € N”, define g, : NY¥ — N by saying that g,(a) = 77a. Note that g, is a
homeomorphism between NN and I, so that g, [F] and g, ![F] are nowhere dense whenever F is.

Now for any F' € Mwd we can find a ¢(F) € Nwd such that F© C ¢(F) and for every o € S either
I, N ¢(F) = () or there is a 7 € S, extending o, such that g,[F] C ¢(F). P Choose (Tn)nen, (Un)nen
inductively, as follows. Given that I,,, N (F'U g, [F]) = 0 for all 4, j < n, set E = I, N(FUU,_, 9, [F]).
If £ =0 set v, =0, and 7, = 0, so that g,, [F] = F. If F is not empty, it is still nowhere dense, so we can
find v, D o, such that I, N FE = (. In this case, UKn I,,, is a closed set not including I, , so we can find
a T, 2 o, such that I, N, L, =0, and I,, N gT_n [F] = 0 for ¢ < n. Thus in both cases we shall have
Uicn Lo, N (FUUj<,, 97, [F]) = (), and the induction proceeds.

Set ¢(F) = F U,y g, [F]. Because v; 2 o and ¢(F) N I, is empty for every i € N, ¢(F) € Nwd. If
o € S is such that ¢(F) meets I, there is an n € N such that o = 0,,; now we cannot have v,, = o, so we
must have 7, 2 0, and g,, [F] C ¢(F'). Thus we have found an suitable set ¢(F). Q

For each M € M let £); be a non-empty countable family of closed nowhere dense sets covering M, and
set (M) = {g;[E]: E € Epr, 7 € S}. Then (¢,) is a Galois-Tukey connection from (Nwd, C’, [Nwd]=%)
to (M, C, M). P Suppose that F' € Nwd and M € M are such that ¢(F) C M. If F' = () then certainly
there is an F' € (M) covering F. Otherwise, ¢(F) is a non-empty closed set included in the union of
the countable set £y of closed sets. By Baire’s theorem, there must be a ¢ € S and an E € &)y such
that § # ¢(F) NI, C E. In this case, there is a 7 2O o such that g.[F] C ¢(F), so that g,[F] C E and
FCg Y E)€y(M)and F C"¢(M). As F and M are arbitrary, (¢,1) is a Galois-Tukey connection. Q

(iii) Thus we have
(M, C, M) gt (Mwd, ', [Md]=*) g (M, C, M)
and (M, C, M) =gt (Mwd, C/, [Nwd]=¥).
(c) We can use the idea of 5220. Let (U, ),en enumerate a base for the topology of NN not containing 0.
By 522N, there is for each n € N a countable family V,, of open subsets of U,, such that [V # 0 for every

Ve [Vn]fgn and every dense open subset of U,, includes some member of V,,. Enumerate V,, as (Upm)men-
For each F' € Nwd let fr : N — N be such that F N U, ¢,y = 0 for every n € N, and for n, i € N set

p(F)(2"(2i 4+ 1) —1)=27"if fr(n) =1,
= 0 otherwise.

Then Y ;2 #(F)(i) = 2 for each F, so we have a function ¢ : Nwd — (1.
Suppose that z € ¢*. Set A= {F: F € Nwd, ¢(F) <z} and E = |JA. The set

K={n:#{i:z2"(2i+1)—-1)>2""}) > 2"}
is finite; set k = sup({0} U K). If n > k, then #({fr(n) : F € A}) < 2", 50 (peca Un,fr(n) is @ non-empty
open subset of U,, disjoint from |Jzc 4 F = E. Thus {n: U, C E} C {0,... ,k} is finite, and therefore in

fact is empty, that is, £ € ANwd.
As z is arbitrary, ¢ : Mwd — ¢! is a Tukey function, and witnesses that Awd <t £1.

(d) If V = 0 then D = PX has a greatest element and the result is trivial (any function from D to
Mwd will be a Tukey function). Otherwise, choose a function i : S — V U {X} such that k() = X and
(h(0™<i>))ien runs over {V : h(c) D V € V} for every o € S. Note that h(r) C h(o) whenever 7 D o, and
that {h(7): 0 CTeN"} ={V:V eV, V C h(o)} whenever m € N, 0 € N and n > m. For each D € D
we can choose a sequence (Tpp)nen in S such that 7p, 2 0, and D N h(rp,) is empty and #(7py,) > n for
every n € N. Set ¢(D) = N¥\ U, ey Irp,, s0 that ¢(D) € Nwd.
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Take any F € Nwd, and set Do = |J{D : D € D, (D) C F}. Then Dy € D. P Let V € V. Let v € N!
be such that h(v) = V. Take 7 D v such that FN I, = 0. 2 If Dy N h(r) # 0, then there is a D € D
such that ¢(D) C F and DN h(1) # 0. I. N ¢(D) is empty, that is, I» C U, ey Irp,; because #(7p,) > n
for every m, this can happen only because there is some n € N such that 7p, C 7. But this means that
DN h(r) € DNh(tpy) = 0, which is impossible. X Thus Dy N h(7) is empty, and h(7) is a member of V
included in V' \ Dg. As V is arbitrary, Dy € V. Q

As F is arbitrary, ¢ is a Tukey function and D <t AMwd, as claimed.

(e)(i) Taking V to be a countable base for the topology of X not containing @), we have
Mvd(X) ={F: F C X, for every V € V there is a V' € V such that V' C V' \ F'},
so (d) tells us that Awd(X) <1 AMwd.

(ii) X has a dense subset Y which is homeomorphic to NN (5A4Le). Let Awd(Y) be the family of
nowhere dense subsets of Y. For F' € Nwd(Y) let ¢(F) be its closure in X. Then ¢ is a Tukey function
from Awd(Y) to Nwd(X), so Nwd =2 Mwd(Y) <1 Nwd(X).

(f) By 4A2Tg, the Fell topology on the family C of all closed subsets of X is compact and metrizable.
EUF € Cpwq for all E, F € Cpwd, and U : Chywd X Cowd — Cowd 1s continuous (4A2T (b-ii)). If F € Cpwa, the
set {E:F €Chwa, ECF}={E:F€C, EUF = F} is closed in C, therefore compact. Now suppose that
(Er)ren is a sequence in Cpywq converging to E € Cpwa. If X = 0 then of course {E}, : k € N} is bounded
above in Cpywq. Otherwise, let (U, )pen run over a base for the topology of X not containing (}, and choose
(kn)nen, (Va)nen inductively, as follows. Given k; € N for i < n, let V;, C U,, be a non-empty open set such
that V,, N (EUU,., Ex,) = 0; given that ENV; =0 for i < n, choose k,, > n such that Ey, NJ;-, Vi is
empty. (This is possible because (J,,, V; is compact, so the family of sets disjoint from it is open in the Fell
topology.) Continue. At the end of the induction, G = Unen Vi is a dense open set disjoint from (J,, ¢y Ek,, »
so X \ G is an upper bound for {Fj, : n € N} in Cyyq. Thus all the conditions of 513K are satisfied, and
Cuowa 1s metrizably compactly based.

5261 A related type of ideal is the following. I express the result in more general form because it has
some measure theory in it.

Proposition (FREMLIN 91) Let X be a second-countable topological space and p a o-finite topological
measure on X. Let £ be the ideal of subsets of X with negligible closures. Then, writing Nwd for the ideal
of nowhere dense subsets of N¥, & <1 Awd and € <7 Z.

proof (a) If uX = 0 then £ has a greatest element and the result is trivial. Otherwise, there is a probability
measure on X with the same measurable sets and the same negligible sets as p (215B(vii)); so we may
suppose that p itself is a probability measure. Let U/ be a countable base for the topology of X, containing
X and closed under finite unions.

(b) For k € N let V;, be the countable set {V : V € U, uV > 1 —27%}. Set
&, ={F:ECX, for every V € V there is a U € V}, such that U C V' \ E}.

Then £ = ﬂkeN Er. PP Because X € Vg, uE < 27k for every E € &, so ﬂkeN Er C £. On the other hand, if
EcfandkeNandV € Vy, then p(V\E)>1—-2"FandU' ={U:U €U, U C V\ E} has union V' \ E.
As U’ is countable, there is a finite U] C U’ such that U = |JU] has measure greater than 1 —27% so that
UeVyand U CV\ E. As V is arbitrary, £ € Vi; as E and k are arbitrary, £ C (), o Er- Q

This means that the map F +— (E,E,E,...) is a Tukey function from &€ to [],cy &k, so that & <
[Tien k- At the same time, & < Awd for every k, by 526Hd. So £ <1 Mwd" = Mwd (513Eg, 526Ha).

(c) Let 2 be the countable subalgebra of PX generated by U. Then there is a Boolean homomorphism
7 : A — PN such that d(wFE) is defined and equal to uE for every E € 2. P This is easy to prove
directly (see 491Xu), but we can also argue as follows. Let (2(,,),en be a non-decreasing sequence of finite
subalgebras of 2 with union . By 526C, we have a Boolean homomorphism 7’ : [],, . ™%» — PN such that
d(7"{Ep)nen) = limy, 00 nE,, whenever E,, € 2, for every n and the limit on the right is defined. For each
n € Nlet m, : A — 2, be a Boolean homomorphism extending the identity homomorphism on 2(,, (314K,
or otherwise); set 7E = 7' (7, E)nen for E € 2; this works. Q
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Let (V,,)nen be a sequence running over the closed sets belonging to . Let (k,),en be a strictly increasing
sequence in N\ {0} such that ki#(kn N7E) > pE — 27" whenever E belongs to the subalgebra 9B, of 2
generated by {V; : i < n}. Define ¢ : £ — PN by setting

d(E)={kiunV,:ieN, ECV;}.
Then ¢ is a Tukey function from & to Z.

P (i) If Ec & ande>0thereisa U € U such that U C X \ E and pU > 1 —e€. Let i € N be such that
X\ U =V;; then ¢(F) C k; UnV;, so
& (B(B)) < d(xVi) = Vi < .
As e is arbitrary, ¢(F) € Z. Thus ¢ is a function from & to Z.

(ii) Take any A C &, and set F' = JA, a = Upee ¢(E). If n € Nand i € k, \ a, then i ¢ ¢(E) for
every E € A, so for every E € A there is a j < n such that £ C V; and ¢ ¢ 7Vj. Set Fy,; = J{V; : j <mn,
i ¢ wV;}, so that ¢ ¢ nF,,;, while JA C F,; and F C F,,;. Set F,, = NN ﬂiekn\a F,;, so that F C F,, and
no member of k, \ a belongs fo 7F,,, that is, k, N 7F,, C a. Note that F,, € B,,. So we have

1

&, #(kn N CL) >

k"L
This means that d*(a) > pF. So if {¢(E) : E € A} is bounded above in Z, A must be bounded above in &;
that is, ¢ is a Tukey function. Q
Thus £ <1 Z also.

1

#(k,N7F,) > pk, —27" > pF — 27",

526J Proposition Let &L, be the ideal of subsets of R whose closures are Lebesgue negligible. Then
NN <1 Epep, but Epep, A1 NV consequently Z £+ NN, Mwd £ NN and ¢! £ NN,
proof (a) Enumerate Q N [0,1] as {g;)ien. Define ¢ : NN — &, by setting ¢(f)(n) = {n + ¢ : n € N,
i < f(n)}. Then it is easy to see that ¢ is a Tukey function, because if F C NN and {f(n) : f € F} is
unbounded, then (J;cp ¢(f) is dense in [n,n + 1] so does not belong to Epep.

(b) Let ¢ : ELeb — NN be any function. Let u be Lebesgue measure on R, and choose (f(n))nen
inductively in N such that p*{t : ¢t € [0,1], ¥({t})(i) < f(i) for every i < n} > 3 for every n. Set

A, ={t:te€0,1], v({t})(@) < f(i) for every i <n}, F = ﬂneNan

so that pF > % Let (U, )nen enumerate the set of open intervals of R, meeting F', with rational endpoints,
and for each n € N choose ¢, € A, NU,. Then ¥({t,})(i) < f(i) whenever n > i, so {)({tn}) : n € N} is
bounded above in NY; but {t, : n € N} includes F, so {{t,} : n € N} is not bounded above in Erep. Thus
1) cannot be a Tukey function.

(c) Accordingly Eren, #r NY; since Eren, <1 Z <1 ' and Erep, <7 Nwd (5261, 526B), Z #r NN,
Nwd #T NN and ¢! %T NN.

526K Proposition Let Awd be the ideal of nowhere dense subsets of NY. Then Z £t Awd, so
Z 7\<T gLeb and gl #T ./\[Wd

proof Let ¢ : Z — ANwd be any function. Let (U, ),en enumerate a base for the topology of NY which
contains ) and is closed under finite unions. For each n € N, set

ap, ={i:ieN, ¢(a) NU, # 0 whenever i € a € Z}.
Set
a = {min(a, \ n?) :n €N, a, € n?}

(interpreting n? in the formula above as a member of N rather than as a subset of N?). Then a € Z
and a N a, # 0 whenever a,, is infinite. Set K = {n : n € N, ¢(a) N U, = 0}, so that K is infinite and
Unex Un = N¥\ ¢(a) is dense, while a,, is finite for every n € K (since otherwise there is an i € a N ay,
and ¢(a) N U, will not be empty). For n € N, J,,cxn, Um belongs to U; let r(n) € N be such that
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Urtn) = Umeknn Um- Then r(n) € K for every n, so a,(,) is always finite. Take a strictly increasing
sequence (ky)nen in K such that a,,) C ky, for every n. For i < ko, set b; = {i}; for k,, <i < k11, choose
b; € Z such that 7 € b; and @(b;) N Uy(y,) is empty (such exists because i ¢ a,(n)).

Examine E = (J;cy ¢(bi) € NY. If m € K then U, C Uy for every n > m so Uy, N ¢(b;) = 0 for every
1> kper and Uy, N E = Ui<km+1 Un N ¢(b;) is nowhere dense. As |J,,cx Unm is a dense open set, E is
nowhere dense. On the other hand, J;cy0: = N. So {b:b € Z, ¢(b) C E} is not bounded above in Z, and
¢ cannot be a Tukey function. As ¢ is arbitrary, Z £t Awd.

Because Lo < AMwd (5261) and Z <1 £ (526B), it follows that Z £t Erep and €1 £ Mwd.

526L Proposition (MATRAI P09) Awd £t Z, so NAwd 41 ELep and £ L1 Z.

proof (a)(i) Fix a non-empty zero-dimensional compact metrizable space X without isolated points, and
write Awd(X) for the ideal of nowhere dense subsets of X; the bulk of the argument here will be a proof that
Mvd(X) £t Z. Let V be the family of non-empty open-and-closed subsets of X. For V' € V write Nwd (V) =

Nwd(X) NPV for the family of nowhere dense subsets of V. As in 526A, set vI = sup,,>, %#(I Nn) for
I C N. Take any function f: Nwd(X) — Z.

(ii) Let @ be the set of pairs o = (mg, I,) where I, C m, € N; for o, 7 € Q, say that o < 7 if either
o= or2m, <m; and I, = m, NI.. Then (Q,<) is a partially ordered set. For o € @ and ¢ > 0, let
D(o,€) be the set of those E C X for which there is an F' € Awd(X), including F, such that f(F)Nm, C I,
and v(f(F)\ I,) <e.

(iii) If 0 € Q, € > 0 and k > 2m,, then
D(o,e) CU{D(mye) ;o <T€Q,m =k, v(I; \1I,) <e}.
P If F € D(oye), let F € Nwd(X) be such that E C F, f(F)Nmy, C I, and v(f(F)\ I,) < e. Set
7= (k,I, U (kN f(F)); then 0 <7 and F witnesses that E € D(7,¢), while v(I; \ I,) <e. Q
(iv) If 0 € Q and €, § > 0, then
D(o,e) CU{D(1,9):0<7€Q,v(I;\1,) <E¢}.
P If £ € D(o,¢), let F € Nwd(X) be such that E C F, FNm, C I, and v(f(F)\I,) <e. As f(F) € Z,

there is a k > 2m, such that v(f(F)\ k) <. Set 7 = (k, I, U(kN f(F)); then F witnesses that E € D(r,0),
while v(I; \ I,) <e. Q

(v) Suppose that n > 1 and that (0;);<n, (7j);j<n are finite sequences in @ such that m., < m,, for
j<mnand o; < 74 for j <n. Then v(U,., Ir;, \ Io;) < 3maxjcn (I, \ Io;). P Note first that we
certainly have my, < m,,,, <m,, , forevery j <n. Set K = Uj<n I\, and € = maxj<p, v(Ir;,, \ 1o, )
IfmeN,set J={j:j<n,o;#Tj11, me; <m}, J ={j:je€J, my,, <m} Then

#(mNK) < Z#(mﬂ17j+l \Ioj)
jeJ
(because if j < n and m < mg,, then m NI, \ I, =0)
<em+ Z #(Iry 0 \ o))
jeJ’
(because #(J \ J') < 1)
<e(m+ Z mr,,,) < €(m+2m)
jeJ’
(because 2m.,,,, < 2mg,,, < 2mg, <m;,  <m whenever j, j/ are successive members of J')

= 3em.

As m is arbitrary, vK < 3c. Q

(b) (i) Suppose that V € V and that Cy, ... ,C, € Mwd(X) are such that every nowhere dense subset of
V is included in some member of Uign C;. Then there is an ¢ < n such that every nowhere dense subset of
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V is included in some member of C;. PP? Otherwise, for each i < n we can find a nowhere dense subset F;
of V not included in any member of C;; now E = |J,.,, E; is a nowhere dense subset of V' not included in
any member of | J,.,, C;. XQ

(ii) Suppose that V € V and that (C,)nen is a sequence of subsets of Nwd(X) such that every nowhere
dense subset of V' is included in some member of | J,, .y Cn. Then for any E € Nwd(V) there are a U € V
and an n € N such that £ C U and every nowhere dense subset of U is included in some member of C,,. PP
As V # () we can suppose that E # (). Let (U,)nen be a non-increasing sequence in V such that Uy =V
and ,,cn Un = E. 2 If, for every n € N, there is an E,, € Nwd(U,) not included in any member of C,,
consider F' = |J__n En; then F € Nwd(V) but F is not included in any member of any C,,. X So some U,
will serve. Q

(c) (The key.) Suppose that V € V, 0 € Q and € > 0 are such that Awd(V) C D(c,€). Let {€,)nen be a
sequence in |0, 0o[. Then there are an n € N, Uy, ... ,U, € V and 7 € @Q such that

o <7, v({;\I,) <8

neN

VUi, Uj, Nwd(U;) C D(t,¢;) for every j < n.

j<n
P It is enough to consider the case in which ZZOZO en < €. Let (x,)nen run over a dense subset of V. Choose

(On)nens (kn)nen, (Un)n>1 and (7,)n>1 inductively, as follows. Start with o9 = o, ko = me,. Given that
Mvd(V) C D(o,,€), we know from (a-iv) that

Mvd(V) C D(on,€) CU{D(T,€nt1) ion <TEQ, V(I \I,,) <€},

so by (b-ii) we can find a U,y € V and a 7,41 > o, such that z, € Upy1, v(Ir,,, \ I5,) < € and
NMwA(Up11) € D(Tp1,€ng1). Next, taking k,i1 = max(m,, ,,2m,, ), (a-iii) tells us that

NMd(V) C D(oy,e) CU{D(r,€): 0 <TEQ, my =kpi1, V(I \ 1) <€},

so from (b-i) we see that there is a 0,41 € @ such that N\wd(V) C D(0p41,€); Mo,y = knt1, 0n < Ong1
and v(I,, ., \ I,,) < e. Continue.

At the end of the induction, set £ = V \ U, ey Unt1. Because {z,, : n € N} is dense in V, so is
Unen Un+1, and E € Nwd(V). By (a-iv) and (b-ii) again, there are a Uy € V and a 79 > ¢ such that
E C Uy, Md(Uy) C D(19,€) and v(I, \ I,) < e. Now V C | U,; since V is compact, there is an
n € N such that V. C U, ., U;.

I have still to define 7. Set k = 2max(k,,m,,). For each j < n, (a-iii) and (b-i), as before, show
us that there is an v; € Q such that 7; < v, m,, = k, v(L,, \ I;) < ¢ and Nwd(U;) € D(vj,€;).
Try setting 7 = (k,U,<,, Lv;). Then surely Awd(U;) C D(r.¢;) for each j. To estimate v(I. \ I,), set
K=UjcnIrj \1o;, K' =U, 2 Io; 1 \ Is;- By (a-v), vK and vK’ are both at most 3e. Now

neN

LA\ L, € |, \ 1) U (I \ o)

j<n
uJUn o) u Uy \ 1)
j<n Jj<n
= JUu, \I,) (I, \ I,) UK UK’
Jj<n

and

<
I
o

as required. Q
(d) Now we can find T'C S =, ey N", (0t)ter, (0¢)ter, (Tt)ter and (Vi)ier such that
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T is a tree (that is, t|k € T whenever t € T and k € N),
d¢ >0 foreveryt €T, ), 10 < o0,

0t €Q, 7 €Q, 00 <1 foreveryt €T,

0 = Tipn, whenever n € N and t € T NN+

v(I,\1I,,) <06, forevery t € T,

V, € V, Mwd(V;) C D(oy,6;) for every t € T,

U{Vi:t € TNN"} =X for every n € N.

P Begin by choosing strictly positive d;, for ¢ € S, such that éy = 1 and }_, ¢ 0; is finite. Now choose
T, CN" and (o4)ter,, (Vi)ier, inductively, as follows. Start with To = {0}, oy = (0,0) and V3 = X. Then
NWd(VQ)) = NWd(X) = D((O, @), 1) = D(O’@, 5@),
so the process starts. Given that T, (0¢)ier, and (Vi)ier, have been defined, then for each ¢t € T, use (c)
to find ny € N, (Vim is)i<n, € V1 and 7, € Q such that oy < 7, v(Ir, \ Ip,) < &, Vi C Ui<n, Vim<is
and Mwd(V;~ <45) C D(7¢, 04~ <4~ ) for every @ < ny. Set Tppq = {t7°<i>:t € Ty, i <y} and oy = 74pp, for

every t € Ty, 11, and continue. At the end of the construction, set T' = |, e Tn- Q

(e) Let (yn)nen run over a dense subset of X. For n € N, take t,, € T N N™ such that y,, € V. Since
Mwd(V;,) € D(oy,,dt,), we can choose an F,, € Nwd(X), containing y,,, such that v(f(F,) \ In,, ) < d¢,.
Now {f(F,) : n € N} is bounded above in Z. P Set K = J,cp Io,. As Iy, =0,

K = Unen Urernnnsr Lo \ Moy = User In \ Lo,
as > eqp V(I7, \ I,,) is finite, K € Z (526Ac). Next,

UneN f(Fn) \ K C UneN f(Fn> \IO'tn;
Yoo V(F(F) \ Loy, ) < 320070 0t

is finite, |J,,cn f(Fn) \ K € Z, 50 J,,cn f(F) also belongs to Z, and is an upper bound for { f(F,) : n € N}.
Q

(f) On the other hand, {F), : n € N} is certainly not bounded above in Nwd(X), since J,,cy Fr includes
the dense set {y,, : n € N}. So f cannot be a Tukey function. Since f is arbitrary, Awd(X) £t Z.

(g) Since Awd(X) =1 Mwd (526He), it follows that Awd £1 Z. Since N¥ <1 ELe, <1 Z (5261, 526J)
and Nwd <t ¢! (526Hc), we see that Nwd £t ELep and (1 £ Z.

Remark A somewhat stronger result is in SOLECKI & TODORCEVIC 10.

526M Having introduced ideals of sets with negligible closures, I add a simple result which will be useful
later.

Proposition Let X be a second-countable topological space and pu a o-finite topological measure on X. Let
& be the ideal of subsets of X with negligible closures, A() the null ideal of i, and M the ideal of meager
subsets of N, Then

(€, S, N(w) sar (M, Z,NY);
consequently add(&, C, N (1)) > Mcountable-

proof (a) Suppose first that p is a probability measure. Let U be a countable base for the topology of X,
containing §) and closed under finite unions. For each n € N, let (Uy,;)ieny runover {U : U € U, pU > 127"},
For f € NN, set

V() = Nneny Uisn X \ Ui sy € N(p).
For F € &, set
(E)={f:feN", EZy(f)}
Then ¢(E) € M. P Since X \ E is a conegligible open set, we can find for each i € N a g(i) € N such that
ENU;gi = (. Now
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M= UnEN ﬂzZn{f fe NN’ f(l) o g(z)}

belongs to M. If f € ¢(F), there is an x € E'\ ¢(f), so that = € ﬂizn Ui tiy for some n; now if i > n, we
have x € U; ¢(;) \ Us g3y, so f(i) # g(i); thus f € M. Accordingly ¢(E) € M € M. Q

Now (¢,) is a Galois-Tukey connection from (£, C, N (i) to (M, Z,NY), and (£, S, N (n)) <agT (M, %
, NN,

(b) If uX =0, then of course (£,C,N(n)) <at (M, #,NY) (take ¢(E) = 0 for every E € &, (f) = X
for every f € NN). Otherwise, there is a probability measure v on X with the same domain and the same
null ideal as p, so (a) tells us that (£, C, N (1)) <t (M, F,NVY).

(¢) Accordingly
add(&, S, N(p)) > add(M, #,NY) = cov M

(512Db). But, writing M(R) for the ideal of meager subsets of R, cov.M = cov M(R) = Mcountable; DY
522Wb and 522Sa.

Remark If X = R and p is Lebesgue measure, then add(€, S, N (1)) = Meountable and cov(E, S, N (u)) =
non M; see BARTOSZYNSKI & SHELAH 92 or BARTOSZYNSKI & JUDAH 95, 2.6.14.

526X Basic exercises (a) Let v : PN — [0,1] be the submeasure described in 526A. Show that
d*(I) = limy, oo ¥(I \ n) for every I C N.

(b) For I, J C N say that I C* J if I\ J is finite. Show that (Z,C*, Z) =gt (2, </, [Z]=%).

(c) Let Mwd be the ideal of nowhere dense subsets of NY and M the ideal of meager subsets of NY. Show
that add, Awd = add M, non Awd = w, cov Nwd = meountable and cf Nwd < cf M.

(d) Let X be a topological space with a countable m-base, and Nwd(X) the ideal of nowhere dense
subsets of X. Show that Awd(X) <t AMwd, where Mwd is the ideal of nowhere dense subsets of NN

(e) In 526Hf, show that Cywaq is a G5 subset of the family C of all closed subsets of X with its Fell topology,
so is a Polish space in the subspace topology.

(f) Let Creb be the family of closed Lebesgue negligible subsets of [0,1]. Show that Cpe, with its Fell
topology is a Polish space and a metrizably compactly based directed set.

(g) Let Eprep be the ideal of subsets of R with negligible closures. (i) Show that it is Tukey equivalent to
the partially ordered set Cre, of 526Xf. (ii) Show that it is isomorphic to &5, . (iii) Show that if we write
&, for the o-ideal of subsets of R generated by Ereb, then (ErLen, T/, [ELeb]=*) =ct (&5, C,Ey). (iv) Show
that add,, ELep, = add &, and cf Erep, = cf &,

526Y Further exercises (a) Let X be a locally compact separable metrizable space. Let Cpywq be the
family of closed nowhere dense sets in X with its Fell topology. Show that Cpwq is a metrizably compactly
based directed set.

(b) Let 3 be the asymptotic density algebra PN/Z and define d* : 3 — [0, 1] by setting d*(I*) = d*(I)
for every I C N, as in 4911. Show that if A C 3 is non-empty, downwards-directed and has infimum 0, and
#(A) < p, then inf,c 4 d*(a) = 0. (Compare 4911d.)

(c) Show that wdistr(3) = wy.

(d) Show that m(3) > My jinked-

(e) Show that FN(PN) < FN(3) < max(FN*(PN), (cfA)1).

(f) Show that 7(3) > p.
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526 Notes and comments The ‘positive’ results of this section are straightforward enough, except perhaps
for 526F. As elsewhere in this chapter, I am attempting to describe a framework which will accommodate
the many arguments which have been found effective in discussing the cardinal functions of these partially
ordered sets. I note that in this section I use the symbol M to represent the ideal of meager subsets of NV,
rather than the ideal of meager subsets of R, as elsewhere in the chapter. If you miss this point, however,
none of the formulae here are dangerous, because the two ideals are Tukey equivalent, and indeed isomorphic
(522Wh).

When we come to ‘negative’ results, we have problems of a new kind. The special character of Tukey
functions is that they need not be of any particular type. They are not asked to be order-preserving, and
even if we have partially ordered sets with natural Polish topologies (as in 526A, 526Xe and 526Xf, for
instance), Tukey functions between them are not required to be Borel measurable. This means that in
order to show that there is no Tukey function between a given pair of partially ordered sets, we have had
to consider arbitrary functions, or seek to calculate suitable invariants which we know to be related to the
Tukey ordering, like precaliber triples (516C), and show that they are incompatible with the existence of a
Tukey function. For a discussion of a class of invariants giving very sharp distinctions, see MATRAI P09, §3.

Putting 526B and 526H-526L together, we find that we have a complete description of the Tukey ordering
on the set {NY &, Awd, Z, (1}, given by the diagram

Nwd — 1

NN — &b — Z

if we interpret this in the same way as for Cichori’s diagram (522B). Moreover, this is exact, in that no
two of the five are Tukey equivalent, and Z and Awd are Tukey incomparable. Note that all five of these
partially ordered sets are either themselves metrizably compactly based directed sets (526A, 513Xj, 513X1)
or are Tukey equivalent to metrizably compactly based directed sets (526He-526Hf, 526X{-526Xg).

In 526 YDb-526 YT I list miscellaneous facts about the asymptotic density algebra. A remarkable description
of its Dedekind completion is in 556S below.

Version of 22.9.21

527 Skew products of ideals

The methods of this chapter can be applied to a large proportion of the partially ordered sets which arise
in analysis. In this section I look at skew products of ideals, constructed by a method suggested by Fubini’s
theorem and the Kuratowski-Ulam theorem (527E). At the end of the section I introduce ‘harmless’ algebras
(527M-5270).

527A Notation If (X, X, i) is a measure space, N (1) will be the null ideal of p; A" will be the null ideal
of Lebesgue measure on R. If X is a topological space, B(X) will be the Borel o-algebra of X and M(X)
the o-ideal of meager subsets of X; M will be the ideal M(R) of meager subsets of R.

527B Skew products of ideals Suppose that Z << PX and J < PY are ideals of subsets of sets X, Y
respectively.

(a) I will write Z x J for their skew product {W : W C X x Y, {z: W[{z}] ¢ J} € Z}. (This use of
the symbol x is unconnected with the usage in §512 except by the vaguest of analogies.) It is easy to check
that Z x J < P(X xY).

Similarly, Z x J willbe {W : W C X x Y, {y: W {y}| ¢ Z} € T}

(b) Suppose that X and Y are not empty and that Z and J are proper ideals. Then
add(Z x J) = min(addZ,add J), cf(Z x J) > max(cfZ,cfT),

(©) 2002 D. H. Fremlin
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86 Cardinal functions of measure theory 527Bb

non(Z x J) = max(nonZ,nonJ), cov(Z x J)=min(covZ,covJ).

P (i) If (We)e<y is a family in T x J with £ < min(addZ,add J), set W = |, We. For each § < x, He =
{z: We[{z}] ¢ T} belongstoZ; as k < addZ, H = J;_, He € I. Forany x ¢ H, W[{z}] = U, Wel[{z}] €
J because k < add J; s0 W € T x J. As (We)e<y is arbitrary, add(Z x J) > min(addZ, add J).

In the other direction, as X ¢ Z, F={F : FCY, X X F €I x J},so F— X x F is a Tukey function
from J to Z x J and add J > add(Z x J), cfJ < cf(Z x J). Similarly, F — E x Y is a Tukey function
fromZ to Z x J and addZ > add(Z x J), cfZ < cf(Z x J).

(ii) Let A C X and B C Y be such that A ¢ Z, B ¢ J, #(A) = nonZ and #(B) = nonJ. Then
Ax B ¢TIxJ,sonon(ZxJ) < #(Ax B). But note that as Z and J are ideals, A and B are either
singletons or infinite; so #(A x B) = max(#(A), #(B)) and non(Z x J) < max(nonZ,non J).
In the other direction, take any W € P(X x Y)\ (Z x J). Set E = {z : W[{z}] ¢ J}. Then
#(E) > nonZ and #(W[{z}]) > non J for every z € E, so #(W) > max(nonZ,non J); as W is arbitrary,
non(Z x J) > max(nonZ,non 7).

(iii) If A C 7 covers X, then {AxY : A€ A} CTx J covers X xY; so cov(Zx J) < covZ. Similarly,
cov(Z x J) < covJ.

Now suppose that W C 7 x J and that #(W) < min(covZ,covJ). For each W € W set Ey = {z :
W{z}] ¢ J}; then Eyw € Z for every W, so there is an € X \ Uy )y Ew, because #(W) < covZ.
Now W[{z}] € J for every W, so there is a y € Y\ Uy )y WI{z}], because #(W) < covJ. In this case
(x,y) € (X xY)\UW. As W is arbitrary, cov(Z x J) > min(covZ, cov ) and we have equality. Q

(c) The idea of the operation x here is that we iterate notions of ‘negligible set’ in a way indicated by
Fubini’s theorem: a measurable subset of R? is negligible iff almost every vertical section is negligible, that
is, iff it belongs to N x N. However it is immediately apparent that N' x A/ contains many non-measurable
sets, and indeed many sets of full outer measure (527Xa). We are therefore led to the following idea. If A
is a family of subsets of X x Y, write Z xx J C Z x J for the ideal generated by (Z x J) N A. Note that if
% < min(addZ,add J) and W € A for every W € [A]<*, then add(Z x o J) > k; in particular, Z x 5 J will
be a o-ideal whenever Z and J are o-ideals and A is a o-algebra of subsets of X x Y. Typical applications
will be with A a Borel o-algebra or an algebra of the form ©&T. Thus 252F tells us that

if (X, 3, u) and (Y, T, v) are measure spaces with c.l.d. product (X xY, A, \) then N (u) x N (v) C
NV,

If 4 and v are o-finite then we get
NA) =N(p) xsgr N(v)

(252C). If we take B = B(R?) to be the Borel o-algebra of R?, then all four ideals N x grz2) N, M X g2y M,
M X pw2) N and NV X g(r2) M become interesting. In the next few paragraphs I will sketch some of the
ideas needed to deal with ideals of these kinds.

527C We are already familiar with A" x g2y N; I begin by repeating a result from §417 in this language.

Theorem Let (X, %, 3, u) and (Y, S, T, v) be o-finite effectively locally finite 7-additive topological measure
spaces, both measures being inner regular with respect to the Borel sets. Let A be the m-additive product

measure on X X Y (417C, 417F®). Then N (n) Xg(xxv) N (v) = N(N).

proof (a) To begin with, suppose that 4 and v are complete. Then 417C(b-vi) and 417G tell us that A is
inner regular with respect to the Borel sets, and that a Borel subset of X x Y is :\—negligible iff it belongs
to NV (1) x N'(v). On the other hand, because y and v are o-finite, so is A (251K), and every A-negligible set
is included in a A-negligible Borel set. P Suppose that W € N (A). Let (W,)nen be a cover of X x Y by
sets of finite measure. Because \ is inner regular with respect to the Borel sets, we can find V,, € B(X xY)
such that V;, C W,, \ W and S\Vn = ;\Wn for each n. Now

W C (X xY)\Upen Ve ENO)NBX xY). Q

SFormerly 417G.
"Formerly 417H.
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So N (k) xp(xxy)y N(v) :N(S\)~

(b) For the general case, let i and © be the completions of p and v. Just because they extend p and v,
they are 7-additive topological measures; they are inner regular with respect to the Borel sets by 412Ha;
and similarly they are inner regular with respect to subsets of open sets of finite measure, that is, they are
effectively locally finite. Write X* for the m-additive product of 2 and #; this is a complete locally determined
effectively locally finite topological measure on X x Y. By 417C(b-iv), it is inner regular with respect to
(Z®T) vV B(X xY), and of course

N(ExF)=aE-0F = uE -vF
whenever E € 3 and F' € T. By the uniqueness assertion in 417Ca, N =X\ So

N =N = N(@) x5 N (@)
(by (a) above)
=N (1) xpxxy) N(v)
by 212Eb.

527D The case M x g2y M is also well known.

Theorem Let X and Y be topological spaces, with product X x Y. Write M* = M(X) xgxxy) M(Y)
and M} = M(X) XB(XxY) M(Y), writing B(X x Y) for the Baire-property algebra of X x Y.

(a) If M(X xY) C M7, then M* = M} = M(X xY).

(b) Let & be the category algebra of Y (5141). If 7(&) < add M(X) then M* = M(X xY).

proof (a)(i) 2 If M} # M(X xY), there is a set W € M; \ M(X x Y); take Wy € B(X x Y) N (M(X) x
M(Y)) such that W; D W. By 4A3Sa®, there is an open set V' C X x Y such that W; AV is meager and
V NV’ is empty whenever V/ C X x Y is open and V' N W is meager. As Wy ¢ M(X xY), V cannot be
empty; let G C X, H C Y be non-empty open sets such that G x H C V. In this case, G X H cannot be
meager, so neither G nor H can be meager. (If F C X is nowhere dense, then F' X Y is nowhere dense in
XxY;s0 M xY € M(X xY) whenever M € M(X); as G xY ¢ M(X xY), G ¢ M(X).) But now we
see that

{z: (G x H)[{z}] ¢ M(Y)} = G & M(X),
so that G x H ¢ M7; but (G x H)\ W is meager, so belongs to M7, and W} is also supposed to belong to
Mi. X
(i) So M} = M(X x Y). Of course M* C M just because B(X x Y) C B(X x Y). In the other

direction, if W € M(X x Y) there is a meager F, set W/ D W. Now W’ is a Borel set in M(X xXY) = Mj,
so W' e M(X) x M(Y) witnesses that W € M*. Thus M(X x Y) C M* and the three classes are equal.

(b) By (a), I have only to show that W € M* whenever W C X x Y is meager. Let D C & \ {0} be an
order-dense subset with cardinal 7(®). Let H be the smallest comeager regular open subset of Y, so that
an open subset of Y is meager iff it is disjoint from H (4A3Sa again). For each d € D let V; C Y be an
open set such that V; = d in &; since H* = 1, we may suppose that V; C H. Observe that if /' C Y is a
non-meager closed set, then there is a d € D such that 0 # d € F'* in &, in which case V; \ F' is meager; as
VyCH,V;CF.

If W C X xY is a nowhere dense closed set, it belongs to M*. P Set E = {z : W[{z}] is not meager}.
For each d € D, the set

Ei={x: Vg CW[{z}]} ={z: (x,y) € W for every y € V4}

is a closed set in X and Eg x V; C W; so int B4 X Vy is an open subset of W. As W is nowhere dense, and
Va # 0, int E4 must be empty, and Eg € M(X). Next, E = J,cp Eq and #(D) = 71(8) < add M(X), so
Ee M(X)and W e M*. Q

Since M* is a o-ideal, it follows that every meager subset of X x Y belongs to M*, as required.

8Formerly 4A3Ra.
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527E Corollary If X and Y are separable metrizable spaces, then M(X xY) = M(X) xg(xxy) M(Y).
proof 7(€) <7(Y) <w(Y) <w < add M(X) (514Ja, 5A4Ba, 4A2P(a-1)).
Remark The case X =Y =R is the Kuratowski-Ulam theorem.

527F If we mix measure and category, as in M X B(R?) N and N X B(R2) M, we encounter some new
phenomena. To deal with the first we need the following, which is important for other reasons.

Lemma (see CICHON & PAWLIKOWSKI 86) Let X be a set, ¥ a o-algebra of subsets of X, and Z a o-ideal
of subsets of X generated by ¥ N Z; suppose that the quotient algebra ¥/% NZ is non-zero, atomless and
has countable m-weight. Let Y be a set, T a o-algebra of subsets of Y, and (H,),en a sequence of finite
covers of Y by members of T. Set

Hy, = Uz Hm : Hiy € Hin U {0} for every m > n}

for each n € N. Then there is a sequence (W,,)en of subsets of N¥ x X x Y such that

(i) for every n € N, W, is expressible as the union of a sequence of sets of the form I x E x F where
I C NV is open-and-closed, F € ¥ and F € T;

(ii) whenever n € N, o € N¥ and = € X then {y : (o, z,y) € W,,} € H;

(iii) setting W = (,,cy Wa, the set {(a,2) : a € NN, 2 € X, (o, @, f(x)) ¢ W} belongs to [NN]<¥ x T for
every (X, T)-measurable function f: X — Y.

proof If X € Z or Y is empty, we can take every W,, to be (J; suppose otherwise.

(a) Set S = J,,cy N". There is a family (Us,)ses such that

every U, belongs to ¥\ Z,

for every 0 € S, (U, ~ <> )ien is a disjoint sequence of subsets of U, and Uy \ ;e Uo~<i> € Z,
(see 5A1C for the notation here),

for every E € ¥\ Z there is a 0 € S such that U, \ E € Z.
P Let D be a countable order-dense set in 2 = ¥/YX N Z. Then the subalgebra B of 2 generated by
D is countable and atomless and non-trivial. Let & be the subalgebra of P(NY) generated by the sets
I, ={a:0 CaecN'} for 0 € S. This is also an atomless countable Boolean algebra, and must therefore
be isomorphic to B (316M). Let 7 : £ — B be an isomorphism, and set b, = m(I,) for each o € S.
Set Up = X and for n € N, 0 € N” choose a disjoint sequence (U,~ ;> )ien of subsets of U, such that
Uz cjs = bg~cis for every i. This construction ensures that U, € ¥\ Z for every 0. If E' € ¥\ Z, there
must be a non-zero d € D such that d € E*; now 7~ 1(d) € £\ {0}, so there is a 7 € S such that I, ¢ 7~1(d),
b C E* and U, \ E € Z. Finally, if 0 € S, set £ = U, \ U,y Us~<i>; then for every 7 € S either 7 C o
and U-\FE DU ~o0s € Z,0or U, NU, =0 and U, \ E = U, ¢ Z, or there is an i € N such that 7 D 0" <i>
and again U, \ E = U, ¢ Z. This means that F must belong to Z, so that (U,),cs has all the required
properties. Q

(b) Enumerate S as (7x)ren. Let (Hy)nen be a sequence running over |J,, o Hn. For n € N, set

K, ={(0,k):0¢€ N2 k< #(Tg(n)), on+1)=+#(m), H k) € Hnt,

To(n)

Vi =Uemer, {(@,y) e Cae N o eUs, y€ Hy i}

If « € NN and 2 € X the section {y : (o, x,y) € V,,} is either empty or H, . (k) where o € N*“t2 2 c U,
and 7, = afo(n + 1); in either case it belongs to H,, U {0}.
So if we now set W,, =J Vi, W, satisfies (i) and (ii) for every n.

m>n

(c) Set W = (,,cy Wn- 7 Suppose, if possible, that f : X — Y is a (3, T)-measurable function such
that {(a, ) : (o, z, f(z)) ¢ W} ¢ [NN]=% x 7. Note that
{V:VCNY X X xY, {z:(a,m, f(x)) € V} € for every a € NV}
is a o-algebra of subsets of N¥ x X x Y containing I x F x F whenever I is open-and-closed, E € ¥ and

F €T, so contains every V,, and every W,,.
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Set
Ag={a:ae NV {z: (a,z, f(x) ¢ W} ¢ I},
so that Ay is uncountable. For each a € Ay,

UnGN{m : (a,x,f(x)) ¢ Wn} = {33 : (a,x,f(a:)) ¢ W}

does not belong to Z. So there is an n € N such that
A ={a:a€ Ay, {z: (o,z, f(x)) ¢ W,} ¢ T}

is uncountable. For each a € Ay, set G, = {z : (o, z, f(z)) ¢ Wy, }; then G, € ¥\ Z, so thereisa o € S
such that U, \ G, € Z. Let o € S be such that

Ay={a:ae€ A, U, \Gy €1}

is infinite. Set m = max(n, #(0)); then U, N{x : (o, x, f(z)) € Vi } € T for every o € Ay. Set M = #(H,p).

Take k € N such that #({alk : o € As}) > M. Let (a;);<m be a family in A such that o; [k # ok
for distinct 4, j < M; let (ri)icns, (liYicm be such that o;lk = 7., for each i and H,, = {H), : i < M}.
Let s € N be such that 75(r;) is defined and equal to I; for ¢ < M. Let o’ € N™*2 be such that ¢’ D o,
o'(m)=sand o'(m+1) =k. Then U,y ¢ Z and U, \ G € T for every a € As.

Suppose that i < M and = € U,.. Then
{y : (aiax,y) € Vm} = H‘ru/(m) (]) = Hrg(j)

where (0’,j) € K,,, that is, j is such that 7; C o; and #(7(j)) = o'(m+1) = k. Thus j =r;, 7(j) = 1;
and {y : (o, z,y) € Vi, } = Hy,. But this means that, for any z € U,/,

Ui<M{y : (ai’x’y) € Vm} = Ui<M Hli =Y
contains f(x); that is, Uyr € U,y {2 : (a4, 2, f(z)) € Vin}. On the other hand,
Upr {2 (i, @, f(2)) € Vin} CUs N{z: (i, @, f(w)) € Vin} €T

for each ¢ < M, while U, itself does not belong to Z. So this is impossible. X
Thus (W, )nen satisfies (iii).

527G Theorem Let X be a set, ¥ a c-algebra of subsets of X, and Z a o-ideal of subsets of X
which is generated by ¥ N Z; suppose that the quotient algebra ¥/3 N Z is non-zero, atomless and has
countable m-weight. Let (Y, T,v) be an atomless perfect semi-finite measure space such that »Y > 0. Set
K =T xygp N(v). Then []<¥ 51 K, so add K = w; and cfK > c.

proof (a) To begin with (down to the end of (d)) suppose that v is totally finite. Because v is atomless, we
can for each n € N find a finite cover H,, of Y by measurable sets with measures at most 27". Let T be the
o-algebra generated by (J, .y Hn, so that Ty is a o-subalgebra of T. Construct (H};)nen, (Wn)nen and W
from (H,)nen as in 527F. Then if f : X — Y is (X, To)-measurable, {(a, z) : (o, z, f(x)) ¢ W} € [NN]S¥x T,
Note that vH < 27"F! for every H € H}, so v{y : (,z,y) € W, } < 27"F! for every a € NY 7 € X
and n € N. For each a € NN set K, = {(z,y) : (a,z,y) € W}. Observe that K, € L&T because
W € BNY)®E®T, and that

vEo[{z}] < infrenv{y : (o, 2,y) € Wy} =0
for every x € X, so K, € K for every o € NV,
(b) Set > = {EAM : E € ¥, M € T}. Then ¥ is a o-algebra of subsets of X (cf. 212Ca) and 7 is
a o-ideal in 3; also the identity embedding of ¥ in ¥ induces an isomorphism between ¥/X NZ and X/Z

(cf. 322Da). Consequently 3./Z has countable m-weight, therefore is ccc, and 3 is closed under Souslin’s
operation (431G).

(c) Let A C NN be an uncountable set, and V € E&®T a set disjoint from |J, 4 Ka. (I aim to show that
(X xY)\V ¢ Zx N(v).) There must be sequences (Cp)nen in X, (Fp,)pen in T such that V belongs to
the o-algebra generated by {C),, x F}, : n € N}; we can of course arrange that (J, .y Hn € {F, : n € N}. Let
T, be the o-subalgebra of T generated by {F, : n € N}, so that Tg C T; and V € £®T;. Let g: Y - R
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be the Marczewski functional defined by setting g = ZZ‘;O 37" xF,,. Because v is perfect, there is a Borel
set H C g[Y] such that g~ ![H] is conegligible. Let h : H — Y be any function such that g(h(t)) = t for
every t € H; note that h is (B(H), T1)-measurable, where B(H) is the Borel o-algebra of H, just because
g[Fu] Ng[Y \ F,] is empty for every n. Set Vo = {(2,t) 1z € X, t € H, (z,h(t)) € V}; then V; € S®B(H).
It follows that V{y belongs to the class of sets obtainable by Souslin’s operation from sets of the form E x F
where E € ¥ and F' C H is relatively closed in H. (Use 421F.)

Set E = Vo_l[H]. Because H is analytic and 3 is closed under Souslin’s operation, £ € 3 and there
is a (3, B(H))-measurable function f; : E — H such that (z, fi(x)) € V; for every z € E (423N). Now
fo=hfi : E—Y is (£,T))-measurable and (z, fa(z)) € V for every = € E.

For every n € N, E,, = f;'[F,] belongs to 3, so there is an E/, € ¥ such that E,AFE! € Z. Similarly,
there is an B/ € ¥ such that EAE' € Z. Because Z is generated by X N Z, there is an My € X NZT
including (EAE') U Unen(EnAE;). Now E\ My = E"\ My belongs to ¥. Set f3 = fo] E'\ Mo; then
f3'[Fn] = E\ My € X for every n, so f3 is (X, T;)-measurable. Take any yo € Y, and set f(x) = f3(x) if
zteF \ My, yo for other x € X; then f is (X, Tq)-measurable, therefore (3, Tj)-measurable.

The set {(a,z) : (a,z, f(z)) ¢ W} belongs to [N¥]=* x T, so there must be an a € A such that
My ={z: (a,z, f(z)) ¢ W} belongs to Z. T Suppose, if possible, that (X x Y)\V € Z x N(v). Then
there must be an z € X \ (Mo U M) such that V[{z}] is conegligible. In this case, V[{z}] N g~ '[H] is
conegligible, so is not empty, and there is a y € V[{z}] N g~ ![H]. Consider 3’ = h(g(y)); then g(v') = g(y),
so{n:y eF,}={n:yeF,},and {F:yeF < y € F}is a o-algebra of subsets of Y containing
every F, and therefore containing V[{z}]. So 3’ € V[{z}] and (z,g(y)) € Vo. This means that z € E; as
x ¢ My, f(x) = fs3(x) = fa(x) and (x, f(x)) € V. On the other hand, x ¢ M, so (a,z, f(x)) € W and
(z, f(x)) € K,; contradicting the choice of V' as a set disjoint from K,. X

This shows that (X x Y)\V ¢ Z x N(v). As V is arbitrary, . 4 Ko ¢ K.

acA
(d) This is true for every uncountable A C N¥. But this means that A — (J, 4 Ka is a Tukey function
from [NN]=¢ to K, and [¢]5¢ = [NN]=% <1 K.

(e) Thus the theorem is true if vY is finite. For the general case, let Yy € T be such that 0 < vYy < oco.
Then the subspace measure vy, is still atomless and perfect (214Ka, 451Dc), so [c]* <1 Ko, where Koy =
T X & (TPYo) N(vy,). But Kg = KNP(X x Yy), so the identity map from Ky to K is a Tukey function, and

[(]s¥ <1 Ko <1 K
in this case also. It follows at once that add K < add[¢]S* = wy, so that add K = w; and cf K > cf[c]5¢ = c.

527H Corollary M xggz2y N = [¢]S9.

proof By 527G, [¢]<* <1 M Xgg2) . In the other direction, all we need to observe is that #(B(R?)) = c.
Let (We)e<e run over B(R?) N (M x N), and for V € M xgrey) N choose &y < ¢ such that V C We, ; then
Vi {&v )} M xpmrey N — [(]<¥ is a Tukey function, so Mxgg2) <1 [(]<“.

5271 I now turn to the ideal N x g2y M.

Lemma Let X be a set, ¥ a o-algebra of subsets of X, and Y a topological space with a countable m-base
H. Let W be the family of subsets of X x Y of the form (Jy oy En x H, where Ey € ¥ for every H € H,
and Dy the family of sets D C X x Y such that (X x Y)\ D € W and D[{z}] is nowhere dense for every
z € X; let Ly be the o-ideal of subsets of X x Y generated by Dy. Then YRB(Y) C {WAL : W € W,
Le ,Co}

proof Write V for {WAL: W € W, L € Ly}. Then W and V are closed under countable unions. Next,
(X xY)\W €V for every W € W. P Express W as Uy cy Er x H where Ef € X for every H € H. For
H e H, set

FH:X\U{EH/ZH/EH,HIHH#Q)}EZ,

and set W' = Jycy Frr x H. Then W' and WU W’ belong to W. Set D = (X xY)\ (WUW’). Ifz € X
and G C Y is a non-empty open set, let H C G be a non-empty member of 4. Then either x € Fy and
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H is a non-empty open subset of G \ D[{z}], or there is an H' € H such that HNH' # () and x € Fy, in
which case H N H' is a non-empty open subset of G\ D[{z}]. As G is arbitrary, D[{x}] is nowhere dense;
as x is arbitrary, D € Dy. But now observe that (X xY)\ W = W'AD belongs to V. Q

It follows that the complement of any member of V belongs to V, so V is a g-algebra. Now E x G € V for
every F € Y andopen G CY. P For H € H, set Eg = E if H C G, () otherwise; set W = Upen Ea < H €
W. Then W C E x G. But, defining W’ from W as just above, we see that W’ is disjoint from E x G. So

(E x G)AW C (X x Y)\ (WUW’) € Dy

and ExGeV. Q
Accordingly V includes the o-algebra generated by {E x G : E € £, G C Y is open}, which is Y®B(Y).

527J Theorem (see FREMLIN 91) Let X be a topological space and i a o-finite quasi-Radon measure on
X with countable Maharam type; let Y be a topological space of countable m-weight. Then A () XB(XxY)
M) st N.

proof Write £ for V(i) xp(xxy) M(Y'), and fix a countable m-base , not containing (), for the topology
of Y.

(a) We need to know that for every Borel set V' C X x Y there are sets V', V" € B(X)®B(Y) such that
V' CV CV”and V'\V' € L. P Let V* be the family of all subsets of X x Y with this property. Because
B(X)®B(Y) is a o-algebra and L is a o-ideal of sets, V* is a o-algebra. If W C X x Y is open, set

Un=U{G:GC X isopen, G x HC W}, Up={z:HnNW[{z}] #0}

for H € M, so all the Uy and U}, are open (Uy is just the projection of the open set W N (X x H)). Set
Vi =Upyen Un x H and Vo = Uyeyy (X \Uly) x H). Then V4 and Vs both belong to B(X)®B(Y), Vi C W
and WNV,=0.

Let z € X. ? If the open set Vi [{z}]UV,[{x}] is not dense, there is an H € H disjoint from both V;[{z}]
and V2[{z}]. In this case x must belong to U};, and there is a point y € H N W[{z}]. (x,y) belongs to the
open set (X x H)NW, so there are open sets G € X, H C Y such that (z,y) € Gx H C (X x H)NW. Now
there is an H' € H such that H' C H, in which case z € G C Upr. But this will mean that H' C V;[{xz}]
and H' is a non-empty subset of H N V;[{z}], which is impossible. X

Thus V1[{z}] U Va[{z}] is dense for every x, and if we set V3 = (X x Y') \ V2 we shall have V3 \ V; € L,
while both V; and V3 belong to B(X)®B(Y), and Vi € W C V3. So W € V*. This is true for every open
set W C X XY, so the o-algebra V* must contain every Borel set, as required. Q

It follows that every member of £ is included in a member of £ N (B(X)RB(Y)). P If V € L there is
a Borel set V/ D V which belongs to £, and now there is a set V" € B(X)®B(Y) such that V D V' and
V" \ V' € L, in which case V" O V also must belong to £. Q

Thus £ = N () X5 x)a50v) M)

(b) To begin with let us suppose that X is compact and metrizable, p is totally finite and Y is a Baire
space.

(i) Taking ¥ = B(X), define W, Dy and Ly as in 5271. Now let D be the family of closed subsets
belonging to Dy, and £ the o-ideal of subsets of X x Y generated by {E xY : E € N (u)} UD.

(ii) Dy € Ly. P If D € Dy, express (X x Y)\ D as Uyey Fr x H where Ey € B(X) for every
H € H. Because p is totally finite, p is outer regular with respect to the open sets (412Wb). So for
each n € N we can find a family (G,g)geyn of open sets in X such that Ey C G,g for every H and
Yoben (Guua \ Eg) <277 Set D,y = (X x Y)\ Upey(Gnu x H). Then D,, is closed and D,, € D € Dy
so D, € D. Set E =, cnUpen(Gnu \ En); then E € N(u) and

DC(ExY)UU,cyDn € L1. Q
(iii) Of course every member of D belongs to £, so £1 C L. But in fact £L = £;. P If V € L, there
isa V' e (N x MY))N (B(X)RB(Y)) such that V C V', by (a). By 5271, we can express V' as WAL
where W € W and L € Ly. By (i), Lo C L1, so W € L. There is therefore a negligible set £ C X
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such that W[{z}] is meager for every z € X \ E. But W[{z}] is always open, and Y is a Baire space, so
W CEXY € L. Accordingly V' and V belong to £1. As V is arbitrary, L C £L;. Q

(iv) Let G be a countable base for the topology of X containing X. Let Uy be the family of those
sets U C X x Y such that U is expressible as a finite union of sets of the form G x H where G € G and
H € H, and U the set of those U € Uy such that m[U] = X, where 7 is the projection from X X Y onto
X. Consider

D'={D:DCX xY, for every Uy € U there is a U € U such that U C Uy \ D}.

D C D'. P Suppose that D € D and Uy € U, and consider Uy = {U : U € Uy, U C Uy \ D}. For every
x € X the section Up[{z}] is open and not empty and the section D[{z}] is nowhere dense, so there is a
y such that (x,y) € Uy \ D; now there are G € G, containing z, and an open H containing y such that
G x HCUy\D. Let H € H be such that ) 2 H' C H. Then U =G x H' € Uy and = € m[U]. As z is
arbitrary, {m[U] : U € Uy} is an open cover of X; as X is compact and U is upwards-directed, there is a
U € U, such that m1[U] = X; in which case U € Y and U C Uy \ D. As U is arbitrary, D € D’; as D is
arbitrary, D C D'. Q

D is cofinal with D’. I Let D € D'. For each H € H\ {0}, X x H € U, so there is a Uy € U such that
Un C (X x H)\ D; try D1 = (X \Y)\Upgep 9y Un- D1 is closed. Sinceld CUy CW, (X xY)\ D1 € W.
If x € X, then D;[{z}] is a closed set not including any member of the m-base H, so is nowhere dense in Y;
thus Dy € Dy and (being closed) belongs to D. Of course D C Dy. As D is arbitrary, D is cofinal with D’.

Q

(v) Because U is countable, 526Hd tells us that D’ <1t AMwd, where Nwd is the ideal of nowhere
dense subsets of NY; while of course D =1 D’ (513E(d-ii)). Let ¢ : £ — N(u) x DN be such that if
d(V) = (E,{Dp)nen) then V C (E X Y)UU, oy Dn; such a function exists by (iii), and is evidently a Tukey
function.

Note that the measure algebra of u, being a totally finite measure algebra with countable Maharam type,
can be regularly embedded in the measure algebra of Lebesgue measure on either [0,1] or on R. As p is a
Radon measure (416G), N (p) <t N (524K) and

L <1 N () x DN 57 N x MwdY =2 N x Mwd
(513Eg, 526Ha). Accordingly

neN

(£,S. L) =¢r (£, [L]5%)

(5131d)

<ar (N x Mwd, <", [N x Mwd]=*)
(512Gb)

=ar (N, T, IN]EY) x (Mwd, T/, [Nwd]=%)
(512Hd)

=gt N, CN) X (M,C, M)
(5131d, 526Hb, 512Hb)

<ar WV, S, N) x (N, C,N)
(522P)

=ar (N,C,N)

(513Eh), and £ <1 N.

(¢) This proves the theorem when X is compact and metrizable, p is totally finite and Y is a Baire space.
Now suppose that Y is still a Baire space, while (X, i) is any totally finite quasi-Radon measure space with
countable Maharam type.

(i) There is a compact metrizable Radon measure space (Z,A) such that A and p have isomorphic
measure algebras. I Because the measure algebra (2, i) of 1 is totally finite, it is isomorphic to the simple
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product of a countable family ((2;, fi;));cs of homogeneous totally finite measure algebras (332B). Because p
has countable Maharam type, every 2l; is either {0}, {0, 1} or isomorphic to the measure algebra of Lebesgue
measure on an interval; in any case it is isomorphic to the measure algebra of a compact Radon measure
space (Z;,A;). Take (Z',\') to be the direct sum of the measure spaces ((Z;, A;))icr; then the measure
algebra of (Z', ') is isomorphic to A. If we give Z’ its disjoint union topology, it is a locally compact
o-compact metrizable space, and its one-point compactification Z is second-countable, therefore metrizable;
taking A to be the trivial extension of X', (Z, \) is a compact metrizable Radon measure space with measure
algebra (B, ) = (2, ). Q

(ii) Let f : X — Z be an inverse-measure-preserving function inducing an isomorphism 7 : 8 — 2 of
the measure algebras (416Wb). By 418], f is almost continuous, so there is a Borel measurable function
which is equal almost everywhere to f (418V?); this function will still represent 7, so we may suppose that
f itself is Borel measurable. Now if V € B(X)®B(Y), there is a V' € B(Z)®B(Y) such that {z : V[{z}] #
V'[{f(x)}]} € N(\). P Let V be the family of subsets V of X x Y for which there is a V' € B(Z)&B(Y)
such that {z : V[{z}] # V'[{f(z)}]} € N()). Then V is a o-algebra. If E € B(X) and H € B(Y), then
there must be an F' € B(Z) such that F* = 7E* in B, so that EAf~[F] € N(u); now F x H witnesses
that E x H belongs to V. Accordingly V must include B(X)®B(Y). Q

(iii) We know that A (p) <t N(X) (524Sa), so there is a Tukey function 6 : N(u) — N(N). Set
L= N(A) %gz850) M(Y). Define a function ¢ : £ — L as follows. First, for V' € L, choose ¢o(V') €
LN (B(X)®B(Y)) including V ((a) above). Next, by (ii) here, we can choose ¢ (V) € B(Z)®B(Y') such that
Ny ={z: po(V)[{x}] # o1(V)[{f(2)}]} belongs to N(u). Set F ={z:2z € Z, $1(V)[{z}] is not meager};
then F is a Borel set, by 4A3Tal? and f~1[F] C Ny U{z : ¢o(V)[{z}] ¢ M(Y)} € N(n); so F € N(A\) and
¢1(V) € L. Finally, set ¢(V) = (0(Ny) xY)U¢1(V) € L.

¢ is a Tukey function from £ to £'. I Take W € L’ and consider £ = {V : V € L, (V) C W}. If
Y = 0 then of course £ is bounded above in £. Otherwise, N* = {z : W[{z}] = Y} must be A-negligible,
while 8(Ny) € N* for every V € &; because 6 is a Tukey function, N = [J{Ny : V € £} is u-negligible.
Take Wy € £' N (B(Z)@B(Y)) including W, and set W = {(x,) : (f(z),y) € Wi}; then W € B(X)&B(Y)
because f is Borel measurable. As

{o: Wl{z}] ¢ M(Y)} = f~H{z: Wil[{z}] ¢ M(Y)}

is negligible, W € £. So Vo = (N x Y) UW belongs to £. Now take any V € €. If z € X \ N, then = ¢ Ny,
o

V{z}] € do(V)[{z}] = o1 (V)[{f(2)}] € W{[f(2)}]
C Wil{f(2)}) = W[{z}] = Vo[{z}].

This shows that V' C Vjy; as V is arbitrary, V| is an upper bound for £ in £; as W is arbitrary, ¢ is a Tukey
function. Q

(iv) By (b), we know that £’ <1 N, so (iii) tells us that £ <1 N/, and the theorem is true in this case
also.

(d) We are nearly home. If Y is a Baire space and (X, p) is a o-finite quasi-Radon measure space with
countable Maharam type, which is not totally finite, then there is a measurable function f : X — ]0, 00|
such that [ fdu =1 (215B(ix)). Let v be the indefinite-integral measure defined by f. Then v has the same
negligible sets as p (234Lc), and is a quasi-Radon measure (4150b), so

L=N()xpxxy)MY) TN,
by (c).

(e) Finally, suppose that Y is not a Baire space. In this case, let H* be the smallest comeager regular
open subset of ¥ (4A3Sa once more), and set £* = N (u) Xg(x xpg+) M(H*). Then £ <7 L*. P For every
Ve L, let V' be such that V C V' € B(X xY) N (N (u) x M(Y)), and set ¢(V) = V' N (X x H*). Then

9Later editions only.
0Formerly 4A3Sa.
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¢(V) is a Borel subset of X x H*, and ¢(V)[{z}] = V'[{z}] N H* is meager in H* whenever V'[{z}] is
meager in Y, so ¢(V') € L*. To see that ¢ : L :— L* is a Tukey function, take any W € L£*. There is a Borel
set W’ € £* including W, and now V' = W' U (X x (Y \ H*)) is a Borel subset of X x Y; since V'[{x}] is
meager in Y whenever W'[{z}] is meager in H*, V' € L. Of course V' is an upper bound of {V : V € L,
o(V) C W}, as W is arbitrary, ¢ is a Tukey function and £ <1 L*. Q

By (d), £ <1 A in this case also, and the proof is complete.

527K Corollary N x g2y M =1 N.

proof By 527J, N xpggz2y M <t N. On the other hand, £ — E x R is a Tukey function from N to
N X B(R2) M,so N <t N X B(R?) M.

527L There are some interesting questions concerning the saturation of skew products. Here and in
5270 1 give results which will be useful later.

Theorem Let X be a set, ¥ a o-ideal of subsets of X, and Z <« PX a o-ideal; suppose that ¥/~ NZ is ccc.
Let (Y, T,v) be a o-finite measure space. Then (X®T)/((X®T) N (Z x N (v))) is ccc.

proof (a) The case vY = 0 is trivial, as then Z x M(v) = P(X x Y). Otherwise, there is a probability
measure on Y with the same domain and null ideal as v (215B(vii)), so we may suppose that vY = 1.
[

(b) The family W of sets W C X x Y such that W[{z}] € T for every 2 € X and x — vW[{x}] is
Y-measurable is a Dynkin class (136A), and contains F x F' whenever E € ¥ and F' € T; by the Monotone
Class Theorem (136B) it includes Y®T.

(c) Now suppose that (We)ecw, is a disjoint family in Y&T. For n € N and £ < & set
Eng = {x 1 vWel[{}] > 27" );

then #({€ : x € E,e}) < 27" for every x € X. It follows that A,, = {{ : £ < w1, Ene ¢ I} is countable.
? Otherwise, write 2 for the ccc algebra ¥/~ N7, and a¢ = Ee for £ < wy. Then 2 is Dedekind complete;
set bg = Supg<, <, @y for £ <w; and b = infecy,, be. Because 2 is cce, there is a ¢ < wy such that b = b¢
for every £ > (; because A, is uncountable, b # 0. Choose {(¢;);en and (&;)ien inductively such that ¢g = b
and, given that 0 # ¢; C b, &; is to be such that ¢;11 = ag, n¢c; # 0 and & > §; for every j < i.
Now inf;<on ag, D cany1 is non-zero, so there is an « € (), 5. Ene,; but this is impossible. XQ

(d) This is true for every n € N, so there is a £ < wy such that { ¢ A,, for every n, that is, E,e € Z for
every n. But in this case

{z: Wel{=}] ¢ N(v)} = Upen Ene

belongs to Z and We € T x N (v). As (We)e<y, is arbitrary, (S&T) N (Z x N(v)) is wi-saturated in T&T
and (2®T)/(ZRT) N (T x N(v)) is cce (316C).

527M The final theorem of this section provides me with an opportunity to introduce a concept which
will be needed in §547.

Definition A Boolean algebra 2 is harmless (cf. JusT 92) if it is ccc and whenever B is a countable
subalgebra of 2, there is a regularly embedded countable subalgebra of 2 including 5.

527N Lemma (a) A Boolean algebra with a harmless order-dense subalgebra is itself harmless.

(b) If 2 is a Dedekind complete Boolean algebra, then it is harmless iff every order-closed subalgebra of
2l with countable Maharam type has countable m-weight.

(c) For any set I, the regular open algebra RO({0,1}) of {0,1}! is harmless, so the category algebra of
{0,1} is harmless.

(d) If 2 has countable m-weight it is harmless.

(e) If A is a harmless Boolean algebra, B is a Boolean algebra and 7 : 2 — 9B is a surjective order-
continuous Boolean homomorphism, then 8 is harmless. In particular, any principal ideal of a harmless
Boolean algebra is harmless.
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proof (a) Let 2 be a Boolean algebra with a harmless order-dense subalgebra ®. By 316Xj or 513E(e-iii), 2
is ccc. Let B be a countable subalgebra of 2. For each b € 96 let D, C D be a countable set with supremum
b (313K, 316E). Let D¢ be the subalgebra of © generated by (J,cq Dp. Then Dy is countable, so there is a
countable subalgebra ®; of ®, including ®g, which is regularly embedded in ©. Let € be the subalgebra of
2 generated by 8 U®;. Then € is countable. Now every member of € is the supremum of the members of
®4 it includes. PP Set

C={c:ce c=sup{d:deDy,dCc} =inf{d:d €Dy, cCd}}.

Then C is closed under union (use 313Bd) and complementation (313A), and includes BUD1,s0 C = €. Q

It follows that € is regularly embedded in 2, because if C' C € has supremum 1 in € then (J,c-{d : d € D1,
d C ¢} must have supremum 1 in € and therefore in D; (because D; C €) and in D (because D, is regularly
embedded in ©) and in A (because D is regularly embedded in 2(). But this means that sup C' must be 1 in
2A. As C is arbitrary, € is regularly embedded. As 5 is arbitrary, 2 is harmless.

(b) (i) Suppose that 2 is harmless and that B C 2 is an order-closed subalgebra of countable Maharam
type. Let B C B be a countable set which 7-generates B, and B, the algebra generated by B; let € be a
countable subalgebra of 2, including B, which is regularly embedded in 2. Let © be the set

{d:ded,d=sup{c:ce € ccd}=inf{c:ce € dc}}.

Then D is an order-closed subalgebra of 2[. B As in (a) just above, it is a subalgebra. If D C D is a
non-empty set with supremum a in A, set C = {c:c€ €, cCa}, C" ={c:c€ € aCc}. Then ais an
upper bound for C' and a lower bound for C’. ? If either a is not the least upper bound of C, or a is not the
greatest lower bound of C’, then A = {¢'\c¢: ¢ € C’, ¢ € C} is a subset of € with a non-zero lower bound
in 2, so A has a non-zero lower bound ¢* in €. Now if d € D, ¢ € € and ¢ C d, then ¢ € C so cnc¢* = 0; as
d=sup{c:c€ € cCd}, dnc* =0. This is true for every d € D, so anc* =0 and 1\ ¢* € C’; but ¢* was
chosen to be included in every member of C’. X Thus a € D; as D is arbitrary, ® is order-closed in 2. Q

Now B C € C D. As B is regularly embedded in 2 (314Ga), B ND is an order-closed subalgebra of B
including B, so is the whole of B, and B C ©. It follows that 7(*8) < 7n(®D) (514Eb). But € is countable
and order-dense in D, so (D) and 7(*B) are countable. As B is arbitrary, 2 satisfies the declared condition.

(ii) Now suppose that 2 satisfies the condition. Note first that 2 is ccc. PP? Suppose, if possible,
otherwise; let (a¢)¢<w, be a disjoint family in 2\ {0}. Replacing ag by apu (1\ supe,,, a¢) if necessary,
we may suppose that supe.,, a¢ = 1. The map I — supgc;ae : Pwp — 2 is an injective order-continuous
Boolean homomorphism, so its image B is an order-closed subalgebra of 2[ isomorphic to Pw;. Now 7(8) =
7(Pwi) = w (514Ef, or otherwise), but 7(B) = wy; which is supposed to be impossible. XQ

If B is a countable subalgebra of 2, let 61 be the order-closed subalgebra of 2l which it generates. Then
7(B1) < w so 7(B1) < w, and there is a countable subalgebra € of B; which is order-dense in By; of
course we may suppose that 8 C €. Now the identity maps from € to %; and from B; to 2 are both
order-continuous, so their composition also is, and € is regularly embedded in 2. As B is arbitrary, 2 is
harmless.

(c) All regular open algebras are Dedekind complete. If B C RO({0,1}) is an order-closed subalgebra
with countable Maharam type, let (G, )nen be a sequence in B which 7-generates 8. Every regular open
subset of {0,1} is determined by coordinates in some countable set (4A2E(b-i)), so there is a countable
J C I such that every G,, is determined by coordinates in J. Let 7y : {0,1}Y — {0,1}” be the restriction
map; then we have an injective order-continuous Boolean homomorphism H — 7 '[H] : RO({0,1}7) —
RO({0,1}Y) (4A2B(f-iii)). Let € be the image of this homomorphism, so that € is an order-closed subalgebra
of RO({0,1}!). If H,, = 7[G,] then H,, is regular and open for each n (4A2B(f-iii) again, because 7 is
surjective and w}l[Hn] = G, is regular and open), so G,, = W;l[Hn] € ¢; accordingly 8 C €. Now ‘B is an
order-closed subalgebra of € so

7(B) < 7(€) = ({0,1}7) < w.

As B is arbitrary, RO({0, 1}!) satisfies the condition of (b) and is harmless.
Of course it follows at once that the category algebra is harmless, because it is isomorphic to the regular
open algebra (5141f-5141g).
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(d) Let D be a countable order-dense set in 2[. If 9B is a countable subalgebra of 2, let € be the subalgebra
of 2 generated by D U 93; then € is countable, includes B and is order-dense, therefore regularly embedded
in 2. As ‘B is arbitrary, 2 is harmless.

(e) Let © C B be a countable subalgebra. Because 7[2(] = 9B, there is a countable subalgebra ¢ of 2
such that 7[€] = ©. Let €; O € be a countable regularly embedded subalgebra of 2. Then ©; = 7[¢4] is
regularly embedded in B. PP Let D C ®; be a non-empty set such that 1 is not the least upper bound of
D in B. Set C = €; N7~ [D U{0}]; then 1 is not the least upper bound of 7[C] in B, so (because 7 is
order-continuous) 1 is not the least upper bound of C' in . Because €; is regularly embedded in 2, there
is a non-zero ¢y € €; such that ¢one = 0 for every ¢ € C. In particular, ¢y ¢ C and wcy # 0. But we also
have mcnmeyg = 0 for every ¢ € C, that is, dnmweg = 0 for every d € D, and 1 is not the least upper bound
of D in ®y. As D is arbitrary, @ is regularly embedded. @ Of course ©; is countable. As © is arbitrary,
B is harmless.

If ¢ € A then a — anc is an order-continuous homomorphism onto the principal ideal 2(. generated by
¢, so 2. is harmless.

5270 Theorem Let (X,X, 1) be a o-finite measure space and Y a topological space such that the
category algebra & of Y is harmless. Write £ for (S&B(Y))N (N (1) x M(Y)) and 2 for the measure algebra
of 1. Then € = (¥®B(Y))/L is ccc, and is isomorphic to the Dedekind completion of the free product A® &.
If neither 2 nor & is trivial, the isomorphism corresponds to embeddings E* — (EF x Y)* : 2l — € and
Fos (X x F)* 1B — €.

proof Write & for the topology of Y.

(a) Let W be the family of all sets of the form |J, .y En x Hy,, where E, € ¥ and H,, C Y is open for
every n. Then for any W € W there is a W' € W such that W/A((X xY)\ W) € L. P Express W as
Unen En X Hy, where E, € ¥ and H,, € & for each n. Let ® be the order-closed subalgebra of & generated by
{H; : n € N}. Because & is harmless and Dedekind complete, 7(D) < w (527Nb); let (G, )nen be a sequence
in & such that {G?, : n € N} is a w-base for ©; we may suppose that any non-empty open subset of any G,
is non-meager. Let &1 be the second-countable topology on Y generated by {H, : n € N} U{G, : n € N},
and B1(Y) C B(Y) the corresponding Borel o-algebra. Then V* € D for every V € &4, because V is the
union of a countable family of sets all with images in ©. If V' € &, is dense for &1, and n € N is such that
Gy, is non-empty, VNG, # 0 so V*nG:, # 0, by the choice of the G,,. But this means that V* = 1, that
is, V is comeager for the original topology of Y.

Now W and (X x Y) \ W belong to X®B,(Y). By 5271, there are W’ and (D,,)nen such that

(X X Y)\ W)AW’ C Upex D,

W' is expressible as |,y Fn X Vi, where F,, € ¥ and V,, € &, for every n,

every D,, belongs to 3&B(Y),

for every z € X and n € N, D, [{z}] is closed and nowhere dense for &;.
Evidently W’ € W; but we have just seen that sets which are closed and nowhere dense for &; are meager
for &. So every D,, belongs to £ and (X xY)\W)AW' € L. Q

(b) It follows (as in the proof of 527I) that V = {WAD : W € W, D € L} is a o-algebra of sets, and as
ExHecWforevery E€ X and H € S,V =XB(Y).

(c) € is ccc. P? Otherwise, there is a disjoint family (e¢)¢<n, in €\ {0}. For each { < wy, there
is a Ve € (Z®B(Y)) \ £ such that Ve = eg, and a We € W such that ViAW, € L. Express We as
Unen Een X Hen; as We ¢ L, there must be an ng such that Ee = Eep, ¢ N(u) and He = He,p, is
non-meager. Since the measure algebra of u satisfies Knaster’s condition (525Tb), there is an uncountable
A C wy such that Ee N E, ¢ N(p) for all £, n € A; because & is cce, there are distinet &, n € A such that
H¢ N H,, is non-meager. But also

(EgﬂEn) X (HEOHU) - WgﬂWn el
because (We N W,))* = e¢ ne, = 0. So this is impossible. X Q
Thus € is cce. As it is Dedekind o-complete (314C), it is Dedekind complete (316Fa).
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(d) If either uX = 0 or Y is meager, then A ® & and € are trivially isomorphic, and we can stop.
Otherwise, the map F — (E x Y)* : ¥ — € is a Boolean homomorphism with kernel ¥ NN (), so induces
a Boolean homomorphism m; : 2l — €. Similarly, we have a Boolean homomorphism w5 : & — € defined
by setting mo(F'*) = (X x F)* for F € B(Y). These now give us a Boolean homomorphism ¢ : A ® & — €
defined by saying that

G(E* ® F*) = 1 (E*) nma(F*) = (E x F)*

for E€ X and F € B(Y) (315Jb). If E € S\ N(u) and F € BY)\M(Y), then E x F ¢ L; so ¢ is injective
(use 315Kb). If ¢ € € is non-zero, it is expressible as W* for some W € W\ L; there must now be E € X,
F € B(Y) such that Ex F C W and E x F' ¢ L, so that ¢(E* ® F*) is non-zero and included in w. Thus
@[ ® B] is isomorphic to A® & and is an order-dense subalgebra of the Dedekind complete Boolean algebra
¢; it follows that € can be identified with the Dedekind completion of A ® &.

527X Basic exercises >(a) Show that there is a set belonging to N' x N which has full outer measure
for Lebesgue measure in the plane. (Hint: enumerate the compact non-negligible subsets of the plane
as (K¢)e<o (4A3Fa); note that the projection L¢ of K¢ onto the first coordinate is always non-negligible,
therefore uncountable, therefore of cardinal ¢ (423L); choose s¢ € L¢ \ {s; : n < &} and t¢ € K¢[{s¢}] for
each &; consider {(sg,te) : & < c¢}.)

>(b) Show that there is a unique construction of iterated skew products Zyp X Z; X ... X Z,, such that

(i) whenever Xo, ..., X, are sets and Z; is an ideal of subsets of X for every j, then Zy x ... x Z,, is an
ideal of subsets of Xy x ... x X,;;
(ii) whenever Xy, ..., X,, are sets, Z; is an ideal of subsets of X for every j, and k < n, then the natural

identification of Xy x ... x X,, with (Xo x ... X Xi) X (Xg41 X ... X X,,) identifies Zy x ... x Z,, with
(Zo % ... X Iy) X (Zg1 X ... x I,) as defined in 527B.

(c) Complete the analysis in 527Bb by describing what happens if one of X, Y is empty or one of the
ideals is not proper.

(d) Let X be a set, ¥ a o-algebra of subsets of X, and Z an ideal of subsets of X; let Y be a topological

space, B its Borel o-algebra, B its Baire-property algebra, and M its meager ideal. Show that 7 xyz,5 M =
7 [><2®3 M.

>(e) Let Z be the Stone space of the measure algebra of Lebesgue measure on [0, 1], and f: Z — [0, 1]
the canonical inverse-measure-preserving continuous function (416V). Let F' C [0, 1] be a nowhere dense set
which is not negligible, and set W = {(z,2) : © € [0,1], z € Z, = + f(2) € F}. Show that W is a nowhere
dense closed set in [0,1] x Z but does not belong to M([0,1]) x M(Z). (Hint: meager subsets of Z are
negligible (321K).)

>(f) Suppose that I and J are sets, X = {0,1}! and Y = {0,1}”. Show that M(X) xgxxy) M(Y) =
M(X XY).

(g) Write X for the class of topological spaces which have category algebras which are atomless and with
countable m-weight. (i) Show that the Sorgenfrey line (415Xc) belongs to X. (ii) Show that the split interval
(419L) belongs to X. (iii) Show that if the regular open algebra of a topological space X is atomless and
has countable m-weight, then X € X. (iv) Show that any open subspace of a space in X belongs to X. (v)
Show that any dense subspace of a space in X belongs to X. (vi) Show that any comeager subspace of a
space in X belongs to X. (vii) Show that the product of countably many spaces in X belongs to X.

(h) Show that a measurable algebra is harmless iff it is purely atomic.

527Y Further exercises (a) Show that Z x J # Z x J for any of the four cases in which {Z,J} C
{M, N}

(b) Extend the idea of 527Xb to define an ideal [\ ¢<ZLe of subsets of [ ] X¢ when ¢ is any ordinal and
I¢ is an ideal of subsets of X, for every & < (.
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(c) Let X be a set, ¥ a o-algebra of subsets of X and Z a o-ideal of ¥ such that X/7 is ccc. Let (Y, T,v)
be a probability space. Show that (S&T)/(X®T) N (Z x N(v)) is ccc.

(d) Let (Y, %) be a topological space. Show that there is a topology & on Y, coarser than ¥, such that
the weight of (Y, &) is equal to the w-weight of (¥, %) and the two topologies have the same nowhere dense
sets, the same meager ideal and the same Baire-property algebras.

(e) Let X be a topological space with a o-finite measure u such that p has countable Maharam type and
every measurable set can be expressed as the symmetric difference of a Borel set and a negligible set. Let
Y be a topological space with a countable 7-base. Show that N (1) Xg(xxy) M(Y) <7 N(n) x N.

(f) Let (A;);er be a family of harmless Boolean algebras satisfying Knaster’s condition, and 2 their free
product (315I). Show that 2 is harmless.

527 Notes and comments Skew products of ideals have been used many times for special purposes, and
we are approaching the point at which it would be worth developing a general theory of such products. I
am not really attempting to do this here, though the language of 527B is supposed to point to the right
questions. My primary aim in this section is to show that M xzg2) N and N x B(r2) M are very different
(527H, 527K). Of course the difference appears only when the continuum hypothesis is false (513Xf, 513Xr).

The version of the Kuratowski-Ulam theorem given in 527D is a natural one from the point of view of
this chapter, but you should be aware that there are many more cases in which M* = M(X X Y); see
527Xf and FREMLIN NATKANIEC & RECLAW 00. The statement of 527J includes the phrase ‘quasi-Radon
measure’. Actually we do not really need either 7-additivity or inner regularity with respect to closed sets.
What we need is a measure p such that A (i) <t N and the Borel sets generate the measure algebra
(527Ye). The argument for 527J betrays its origin in the case X =Y = [0, 1], which is of course also the
natural home of 527C-527F. Some of the complications of the argument are due to its being written out for
spaces of countable m-weight; an alternative approach would start with a reduction to the case in which Y
is second-countable (527Yd).

It is interesting that all four of the quotient algebras

B(R?)/BR?*) N (M x M), B(R?)/BR?)N (M x N),

B(R2)/B(R2) N (N x M), B(R2)/B(R2)N (N x N)

are ccc (see 527E; 527Yc¢, 5270, 527Bc and also 527L). This should not be taken for granted; for a variety
of examples of quotient algebras associated with o-ideals see FREMLIN 03.

Version of 10.2.11/11.2.11

528 Amoeba algebras

In the course of investigating the principal consequences of Martin’s axiom, MARTIN & SOLOVAY 70
introduced the partially ordered set of open subsets of R with measure strictly less than ~, for v > 0 (5280).
Elementary extensions of this idea lead us to a very interesting class of partially ordered sets, which I study
here in terms of their regular open algebras, the ‘amoeba algebras’ (528A). Of course the most important
ones are those associated with Lebesgue measure, and these are closely related to ‘localization posets’ (5281),
themselves intimately connected with the localization relations of 522K. In the second half of the section I
look at the cardinal functions of these algebras, of which the most interesting seems to be Maharam type
(528V).

As elsewhere in this chapter, I will write (98,;, ;) for the measure algebra of the usual measure on {0, 1}".
In any measure algebra (21, 1) I will write 2/ = {a : a € 2, jia < co}.

528 A Amoeba algebras Let (2, i) be a measure algebra.
(©) 2007 D. H. Fremlin
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(a) If 0 < v < jil, the amoeba algebra AM(%, ji,7) is the regular open algebra ROT(P) where P =
{a:a €, fia <~}, ordered by C .

(b) The variable-measure amoeba algebra AM*(2[, i) (TRUSs 88) is the regular open algebra
ROT(P’) where

P ={(a,a):a €, a € |aa,pl]},
ordered by saying that
(a,a) < (b,B) ifacband 5 < a.

528B It may help to have the following simple facts set out straight away.

Lemma Let (2, i) be a measure algebra and 0 < v < l. Set P ={a:a € 2, fa < ~}.
(a) Two elements a, b € P are compatible upwards in P iff g(aub) < .
(b) Suppose that (2, ) is semi-finite and atomless.
(i) P is separative upwards, so [a,oo[ € ROT(P) for every a € P.
(ii) If A C P is non-empty, then the infimum inf,c 4 [a, 00| is empty unless sup A is defined in 2 and
belongs to P, and in this case inf,¢c 4 [a, 0o = [sup A, ool

proof (a) [a,00[N [b,00[ ={c:aub C ce P} is non-empty iff aub € P.

(b)(i) Let a, b € P be such that aZb. If i(aub) > 7 then a and b are already incompatible upwards.
Otherwise, a(1\ (aub)) > v — fi(aubd). Because (2, i) is atomless and semi-finite, there is a d C 1\ (auUd)
such that id =~y — i(aub). Set ¢ = bud. Then

fic=v—p(a\b) <vy=p(auc),
so ¢ € [b,oo[ C P, while a and ¢ are incompatible upwards in P. As a and b are arbitrary, P is separative

upwards.
By 514Me, it follows that [a, 00| is a regular up-open set for every a € P.

(ii) This is a re-phrasing of 514Mf.

528C Proposition Suppose that (X, X, 1) is a measure space, (2, i) its measure algebra and 0 < v <
uX. If £ C ¥ is any family such that p is outer regular with respect to £, then AM(R, ii,) is isomorphic
to ROT({E: E € &, uE < ~}).

proof Set P={a:a € a<~}, Q={E:E €&, uE < ~v}. Because u is outer regular with respect to
&, the map G — G* : Q — A maps @ onto a cofinal subset P’ of P. Moreover, two elements Fy and F; of
Q are compatible upwards in Q iff u(EgU Fy) < v iff E§ and E} are compatible upwards in P. By 514R,
ROT(P) and ROT(Q) are isomorphic.

528D Proposition (a) (TRUss 88) Let (2, i) be an atomless homogeneous probability algebra. Then
the amoeba algebras AM(2L, fi,v) and AM(2, &i,~") are isomorphic for all v, v/ € ]0,1].

(b) Let (A, &) be a non-totally-finite atomless quasi-homogeneous measure algebra (definition: 374G).
Then all the amoeba algebras AM(2L, fi, ), for v > 0, are isomorphic.

proof (a)(i) Set P = {a : a € 2, ia < v}, and let x be the Maharam type of 2. Then the upwards
cellularity of P is at most x. F*? Otherwise, there is an up-antichain A C P with cardinality x*. Let
€ > 0 be such that A’ = {a: a € A, ija <y — €} has cardinal xT. Because the topological density of 2 is
% (521Ea), there must be distinct a, o’ € A’ such that fi(a A a’) < €; but in this case g(aua’) < 7, so that
aua’ is an upper bound for {a,a’} in P. XQ

(ii)) If 1 —/1—~v < a < v and D is a countable subset of |a,y[ such that sup D = ~, then there is
a maximal up-antichain (as¢).¢)epxx in P such that fiaie = ¢ for every t € D, £ < x. P Start with a
stochastically independent family (ci¢)t,¢)epxx Of elements of A with fic,e =t for all t € D, § < k. Because
a>1—+1T—-7, A= (ce)we)epxr is an up-antichain in P. Next, because supD = v, Q = {a : a € P,
fia € D} is cofinal with P. So there is a maximal up-antichain A" O A such that A" C @ (513Aa). Now
(because c'(P) < k) {a : a € A’, fia = t} has cardinal x for every t € D, so we can enumerate A’ as
(@t (t,e)eDxr in P where fiaye =t for every t € D and £ < k. Q
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(iii) There are a, o €]0,1[ such that

1—-VI=7<a<~y 1-yI-—7<d <y, 12072

PP We need consider only the case v < ~+'. Set

1
f=p=-1 a=y-fF1-v), o=7-B1-7%)
Then % =4 = 'Yll:;l,/. Of course a < v and & < 4/. On the other side, « = 1 — /T —~, while

,BS\/ll_iv/—lsoo/Zl—\/l—fy’.Q

(iv) If a € P, {b: a Cb € P} is isomorphic, as partially ordered set, to {b: b € A, b < Z:ZZ} Pr

The principal ideal 2(;,, generated by 1\ a is isomorphic, up to a scalar multiple of the measure, to 2, and
{b:a C b€ P} is isomorphic, as partially ordered set, to {b:b C 1\ a, ib <~y — fia}. Q

(v) For each n € N, set a, =y —27"(y — ), af, =7 — 27"(y' — &'); then

1—a, — 14 1—v — 149 1—v _ 1fan’ Y —a, _ y—an

v —al, v —al, v —a! y—an, 1-o 1-a,
for every n € N. Set P’ = {a:a € 2, fia < +'}. By (b), we have a maximal up-antichain (a,¢) (n,¢)enxe in
P such that fia,e = o, for all n € N and & < &; similarly, there is a maximal up-antichain <%5>(n,§)eng in
P’ such that [wL;LE = o, for all n € N and £ < k. Now, for each n € N and § < &, [an¢,o0[, taken in P, is

isomorphic, as partially ordered set, to [%57 oo, taken in P’ by (d). So

RO (P)

I

II RO™([ane, ]

neN (<K
(514N¥)

I

Il RO'([a)e 00]) = RO (P).

neN,E<k

(b) Suppose that 8, v > 0. As in Lemma 3321, we have a partition D of unity in 2 such that fa = 3
for every a € D. Similarly, we have a partition D’ of unity such that fga = v for every a € D’. By
332E, #(D) = #(D') = ¢(A). Let h : D — D' be a bijection. If d € D, the principal ideals 24, A (q)
have the same Maharam type, because (2, i) is quasi-homogeneous (374H), and are therefore isomorphic
as measure algebras, up to a scalar factor of the measure; let 74 : g — 2l},(4) be a Boolean isomorphism

such that ji(rqa) = %ﬂa for every a € d. Now we have a function 7 : A/ — 2/ defined by saying that

ma = supyecp ma(and) whenever fia < co, and 7 is a Boolean ring automorphism such that fira = 1 fa for

B

every a € /. But now 7 includes an isomorphism between the partially ordered sets {a : fia < 3} and
{a : ja < 7}, so their regular open algebras AM(%, i, ) and AM(2, i, y) are isomorphic.

528E Lemma Let (2, i) be an atomless semi-finite measure algebra. Then there is a family (ca)aco,n1]
in 2 such that c, Ccs and fic, = o whenever 0 < o < 3 < [l, and o — ¢, is continuous for the
measure-algebra topology of 2.

proof Because (2, i) is semi-finite, there is a non-decreasing sequence (e,,)nen in A/ such that sup,, o fie,, =
fl, starting from eg = 0; set e = sup,,cy €n, S0 that e = gl. Then (2., i[Ae) is o-finite and atomless.
Let (¢, \) be the measure algebra of Lebesgue measure on [0, fil[. For each n € N set e/, = e,41\ e, and
dy, = [fien, fien11[" € €.

Because 2 is atomless, 332P tells us that there is for each n € N a measure-preserving Boolean homo-
morphism 7, from the principal ideal €4, to a principal ideal of 2./, which must be 2. itself because
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fie!, = Ad,; by 324Kb, 7, is order-continuous. Assembling these, we have an order-continuous measure-
preserving Boolean homomorphism 7 : € — 2, defined by setting 7d = sup,,cy Tn(d N d,) for every d € €.
Now set ¢, = 7 [0,a[* for @ < f1l. Because 7 is continuous for the measure-algebra topologies of € and 2.
(324Fc), or otherwise, a — ¢, is continuous.

528F Proposition Let (2, i) be a semi-finite measure algebra, and v € ]0, col.

(a) Suppose that e € 2 and fie > v. If 2, is atomless, then AM(2., i 2, ~y) can be regularly embedded
in AM(, &, 7).

(b) Suppose that 2 is atomless, and that v < al. Let (ex)ren be a non-decreasing sequence in 2 with
supremum 1, and suppose that fie;, > 7 for every k € N. Then we have a sequence (mj)ren such that my :
AM(RL,,, i Ae,,v) — AM(RL, 1, ) is a regular embedding for every k € N, and ¢y mx [AM(2L,,, ] ™Ae, , 7)) 7-
generates AM(2L, fi, 7).

(c) Now suppose that (2, 1) is atomless and quasi-homogeneous, and that v < gl. Then AM(%, ii,7) can
be regularly embedded in AM* (2, fz).

proof (a) Set P={a:a €, fa <~} and Q = PN2A.. By 528E, we have a continuous order-preserving
function « — ¢4 : [0, ie] — A, such that fic, = « for each a. If a € A, then the function 8 — fi(cs \ a)
is a continuous non-decreasing function from [0, fie] onto [0, fi(cpe \ @)], and we can set §(a, ) = min{p :
f(cg\ a) = a} whenever 0 < a < fi(cpe \ @). In this case,
f((ane)ucsa,a)) = filane) + ilcsaa) \a) = a+ p(ane).
Note that d(a, ) < 6(a’, ') whenever a C @’ and a < o' < fi(cp1 \ d').
If a € P, then
Blcae \ @) = ficpe — fi(an cpe) = fie — plane) = pa — jilane) = fi(a\ e).
So d(a, i(a\ e)) is defined, and we have a function f given by the formula
f(a) = (a N 6) U Cs(a,fi(ave))

for a € P. In this case if(a) = fia, so f(a) € Q, for each a, and f, like 4, is order-preserving. Of course
fla) =afor a € Q.

Ifae P,be @ and f(a) C b, there is an o’ € P such that a C ¢’ and b = f(a’). P Set ¢’ = au (b\ f(a)).
Then

fia’ = fia + fi(b\ f(a)) = af(a) + @b\ f(a)) = b <,

soa € P. AlsobcC f(a)u(a'ne) C f(a'); as b = a’ = af(a’), b = f(a’). Q So if Qy C @ is cofinal
with @, f~1[Qo] will be cofinal with P (as in the proof of 514P), and we have an order-continuous Boolean

homomorphism 7 : ROT(Q) — ROT(P) defined by setting 7H = int f~1[H] for every H € ROT(Q). Finally,
fIP] = flQ] = Q. So 7 is injective and is a regular embedding of AM(2l.,i[%Ae,7) = ROT(Q) into
AM(2L, 1,7) = RO (P).

(b)(i) For each k € N, set Qx = PN2,, and choose functions f;, : P — Qi and 7 : ROT(Qr) — ROT(P)
as in (a) above. If we write [c,00[ = {a : ¢ C a € P} for every ¢ € P, then 2, N[c,00[={b:cCb € Qi}
for k € N and ¢ € Qy; in this case, 2, N [c,00] € ROT(Qy), by 528B(b-i).

(ii) Let & be the order-closed subalgebra of ROT(P) generated by ;e m:[ROT(Qr)]. If @ € P, there is
a non-empty G € & included in [a,00] € ROT(P). P Because a C sup,cy ek and {(eg)ren is non-decreasing,
there is an infinite 7 C N such that ), _; fi(a\ ex) <y — fia. Set b = sup,¢; fr(a). Then

fib < pa+ 3 e o fr(a)) < pa+ 3 per ala\ex) <
because fi(a) D aney for every k, by the construction in (a). Thus b € P. Also
f(a\b) <infrenpi(a)\ fr(a)) =0,

soa Cb.
Set

Vi =, N [fu(a), 0o € ROT(Qr)
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for every k. Then 7, V) = int fk_l[Vk] belongs to & for each k, and G = infreny Vi = (. en T Vie (514M(d-
ii)) belongs to &. Because every fi is order-preserving, fi(b') 2 fi(a) and fi(b') € Vj for every b’ D b; thus
b € int f, '[Vi] for every k, and b € G. This shows that G # 0.

? Suppose, if possible, that G € [a,00[. Then there is a ¢ € G such that a\ ¢ # 0. If i(cua) > 7, set
¢’ = c. Otherwise, let § > 0 be such that

d+pc<y<d+plcua) < pl.

Because (2, i) is atomless and semi-finite, there is a d C 1\ (cua) such that jid = 6. Set ¢/ = cud; then
cccd € Psocd €@, while i(c ua) > v, as in the previous case.

Because [ is infinite, sup,c;er = 1 and there is a k € I such that i((¢’ua)neg) > . In this case,
¢ € Vi C fi ' [Vi], so [¢/, 0o meets f, '[Vi] and there is a ¢’ D ¢’ such that ¢ € P and fi(c") € Vi, that
is, fr(c") 2 fr(a). Now, however,

fu(@)2(d nex)u(fula) ner) 2 (c'va)ney

has measure at least v, and cannot belong to Q. XQ

(iii) Since {[a, [ : @ € P} is a base for the topology of P, it is a m-base for ROT(P), and & includes
a m-base for ROT(P). But this means that every member of ROT(P) is the supremum of the members of &
it includes, and belongs to &. Thus & = ROT(P), as claimed.

(c)(i) This time, let (ca)ae[o,z1] be a family in 2 such that ¢, C cg and fic, = o whenever 0 < a < # < fil.
Set P = {(a,a) :a €A, a € |fia, i1]}. Let (y,)nen be a strictly increasing sequence with supremum i1 and
v = 0. For each n € N, set P, = {(a,a) : v, < pa < a <ypt1} and @, = {a:a € A, fia < yp41}, so that
P, is an up-open set in P. Note that J, .y P is dense in P for the up-topology, since if (a,a) € P then
(a, min(e, vp41)) € P, where v, < fia < 7yp41. Also

RO™(@Qn) = AM(2L, i, yny1) = AM(2L, i, 7).

P If il = oo, this is 528Db. If (2, 1) is totally finite, then 2l is homogeneous, so we can apply 528Da to an
appropriate multiple of the measure . Q
For a € 27, the function o — fi(cy \ @) : [0, fil] — [0, oc] is continuous and non-decreasing, and

f(cai\ a) = ficpy — fia = il — pa = p(1\ a).
So we can define §(a, ), for a € Af and 0 < o < fi(1\ a), by saying that
5(a,) = ming8 : fi(es\ @) = a} = min{8 : fillaUcs) = fio + a}.
Asin (a), 6(a,a) < d(a’,a’) whenever a C @’ and a < o'. For (a,a) € P,, set
fn(a, @) = aUcsiay,,—a);

so that fify(a,a) = fa + Yni1 — @ < Ypt1 and fr(a, @) € Qn. Of course fr(a,Ynt1) = a if (a,Y¥n11) € P,
that is, if @ € @,, and fia > v,.

(ii) (@) fn : P, — @y, is order-preserving. B If (a,a) < (a’, &) in Py, then §(a, yp41—a) < 6(a’, Yny1—
o), so fn(a,a) C fold, o). Q

B)IUpe P, beQ, and f,(p) Cb, there is a p’ € P, such that p < p’ and b C f,,(p'). P Express
p as (a,a). Consider a’ =au (b\ fn(p)). Then

pa’ = fia + fib — ffn(p) = pla + fib — fa — yny1 + @ < a,
so (a',a) € P. Of course (a,a) < (d/,a), sop' = (d/,a) € P,. Also f(p') 2 fn(p) and
fa(p) 20" 20\ fu(p),
sobC fn(p) Q

(7) fulPy) is cofinal with @Q,,. P If b € Q,,, take b’ € 2 such that b € V' and 7, < @b’ < vy,41. Then
V', Ynt1) € P, and

bet = fu(b,ymy1) € fn[Pn} Q
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(iii) By 514P, ROT(Q,) can be regularly embedded in ROT(P,). Now AM(, fi,7) is isomorphic to
RO™(Q.,), so there is an injective order-continuous Boolean homomorphism m,, : AM(2, i,v) — ROT(P,).
Putting these together, we have an injective order-continuous Boolean homomorphism 7 : AM(2, G, v) —
[1,.en ROT(P,) defined by setting mu = (m, (u))nen for u € AM(2, fi,7). On the other hand, since (P,)nen
is a disjoint sequence of up-open subsets of P with dense union,

[T, ROT(P,) = ROT(P) = AM" (2, )
by 315H. So we have a regular embedding of AM(2, i,) into AM* (2, i), as claimed.
528G Proposition Let (2, i) be a measure algebra, and € a o-subalgebra of 2 such that sup(€NAS) = 1
in 2. Then AM*(€, 1] €) can be regularly embedded in AM™*(2(, i).

proof (a) For each a € 2 we have a ‘conditional expectation’ u, € L'(€) defined by saying that fc Uy =
f(anc) for every ¢ € €f. (Apply 3650 to the identity map from €/ to 27.) Note that as the supremum
of ¢/ in A is 1,

fua = SUD,ces fcua = Sup,c¢s flanc) = pa.

Also, of course, 0 < fi(anc) < fic for every c € €/, 50 0 < u, < x1in L>=(€). Next, let u} be the decreasing
rearrangement of u,, that is, the element of L>°(241,) (where 2/, is the measure algebra of Lebesgue measure
on [0, 00[) such that Ju* > a] = [0, aJu > «][* for every o« > 0 (373Da).

(b) Set
P={(a,a):a €, acliail]}, Q={(c,a):ceC, acl]ic,il]}.
Define a function f on P by saying that f(a,a) = (¢, B) if
¢=Jus=1]=max{d:d e ¢, dCa},

B =max{f : 8 >0, ﬁ’—i—fﬁolouj; < a}.
Note that 8 > [ic because
/,Lc—kfﬁcua:fua:fua<0z7
using 373Fa for the equality in the middle, while 8 < a < [il; so (¢, 8) belongs to Q.

(c)@) If p < p' in P, then f(p) < f(p') in Q. P Express p, p/, f(p) and f(p') as (a,), (a’,a'),
(¢, B), (¢, B") respectively. Then ¢ Ca Ca' so ¢ C . Next, xa < xa’ so uq < ug and u) < ul, (373Db);
accordingly

a’§a=ﬁ+f5wu2§ﬁ+f;ouz/
and ' < (. Q

(i) If pe P, g € Q and f(p) < g, then there is a p’ > p such that f(p’) > g. P Express p, f(p) and ¢
as (a,a), (¢, ) and (d,~y) respectively. Set a’ = aud. Then

fid
ﬂa’:ﬂa+ﬂd—ﬂ(amd):/ua+ﬁd—/ua2/uj§+ﬁd—/ up
d 0
(apply 373E with v = xd)
:ﬁd+/ u;<5+/ ut
i B

(because [ul = 1] = [0, jic]* and jic < id < v < 3)

= Q.

So (a’,«) € P. Next, computing the integrals [, uq V xd for b belonging to ¢/ and either included in d or
disjoint from it, we see that u, = u, V xd so that Jus = 1] = [u, = 1Jud = d. Accordingly

HFormerly 365P.
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ﬂa’:fua/ :fu:, :ﬂd‘l’f:;’ll,:/ <’)/+f’yooul>;/
as noted above for u,, we have |u’, = = |0, ud|*®), and 1if we set @ = min(a,y + ur,) then p° =
d above f h =1 0, iid d if ! i 7 ug,) then pf

(a/,a’) > pand f(p') > q, as required. Q

(iii) Since P and @ have a common least element (0,f1) which is invariant under f, f satisfies the
second condition of 514P and AM*(€, i €) = ROT(Q) is regularly embedded in AM*(, 1) = ROT(P).

528H Proposition Let (2, i) be a semi-finite measure algebra, not {0}, and let £ > max(w, 7(2A), c(A))
be a cardinal. Then AM*(2, i1) can be regularly embedded in AM(B,, 7, 3).

proof (a) To begin with (down to the end of (g) below), assume that 2 is atomless. Let (1%, fi,) be the
simple product of a sequence of copies of (A, 1) (322L), so that ficca = > po g pay, if @ = (ay)nen € AV
Note that as 2l is certainly infinite, 7(2Y) = 7() and c(AY) = ¢(A) (514Ef). By 526D, there is a function
6 : AN — B, such that

O(sup A) = sup 0[A] for every non-empty A C AN with a supremum in 2,

v.0(a) = 1 — exp(—fisoa) for every a € AN,

whenever (a(i)>i€ 7 is a disjoint family in AN and €; is the closed subalgebra of 9B,, generated

by {0(a) : @ € aV} for each i, then (€;);cr is stochastically independent.

(b) For b € B, set g(b) =sup{a:a c AY, f(a) C b}.
(i) Tt is immediate from its definition that g : B, — 2N is order-preserving.
(ii) Because 6 is supremum-preserving, 0(g(b)) C b for every b € B.
(iii) If b € B, \ {1} then
1 =2:b <1 -0,0(g(b)) = exp(—fieeg (b)),
SO [isog(b) < —1In(1 — ,;b) is finite.

(iv) a C g(f(a)) for every a € AN; and if @ € AN has finite measure then g(f(a)) = a, because if @’ Z a
then 7.0(aua’) > 1,.60(a).

(v) If b € B, and € > 0, there is a § > 0 such that fi.(g(b')\ ¢g(b)) < € whenever 7, (b’ \b) < 4.
P? Otherwise, g(b) # lgn so b # 1y, and we can find a sequence (b, )nen in B, such that (b, \b) <
27"72(1 — .b) and fiso(g(bn) \ g(b)) > € for every n € N. For each n, set b}, = bu sup,,>,, bn; then

fisog(b,) = Fioog () + fioo (9(b7) \ 9(B)) = fiseg(b) + fioo(9(bn) \ 9(b)) > € + ficog (D).
Note that 7,.b5 < 1 so g(b§) has finite measure.
The sequences (b )nen, (9(0%))nen and (0(g(b)))nen are all non-increasing. Set @ = inf, e g(b}), so that

O(a) C infren6(g(bk)) C infpendl =0
because 7, (b} \ b) < 27! for every n. It follows that @ C g(b). At the same time,
foo@ = lim,, o0 ﬂoog(b;kz) > ﬂoog(b)a
which is impossible. XQ
(c) Define ¢ : AN — 2A by setting 1(a) = sup,,cy an Whenever @ = {a,)nen € AN
(i) v is supremum-preserving and ¥ (0) = 0.
(ii) If a, @’ € AN then
fi((a) atp(a)) < (@ ra)  fi((a) \Y(a')) < [ino(a\ @)
(iii) Now if b € B, a € A, a2 ¢Y(g(h)) and fia < a € R, there is a b’ Db such that a C ¥ (g(V')),
fi(g(b')) < o and 7, (b \ b) < 1 — exp(—fi(a\ P(g(b)))-
P Take o such that jia < o’ < a. By (b-v), there is a § > 0 such that i (g(d')\g(b)) < o — fa
)

whenever 7, (V' \ b) < 8. Set @™ = (a;)ien for each n € N, where a,; = a \ 1¥(g(b)) if i = n, 0 otherwise.
For each n € N, let €, be the closed subalgebra of 2B, generated by
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{0(a) :a € AV, anal™ = 0 for every m > n},

and let T, : L'(B,,7.) — L'(B,,7.) be the corresponding conditional-expectation operator (365Q'?).
Then (€, ),en is non-decreasing; also ﬁ,ﬁ(a(") ne) = ﬁnﬂ(a(")) - Uc for every n € N and ¢ € €,, by the final
clause of (a). By Lévy’s martingale theorem (2751, 367Jb), (T5,(xb))nen is || [|1-convergent. We can therefore
find an n € N such that || T}, (xb) — Thy1(xD)|l1 < dexp(—ja). Set ¥ = bub(a™). Then g(v') 2 g(b)ual™,
50 Y (g(b')) D ann UY(g(b)) = a. Also

s (0 \b) < 7:0(a™) =1 — exp(—finca™) = 1 — exp(—fi(a\ ¥ (g(D))).
7 If ip(g(b)) > a, set e = g(b') \ (9(b) U sup,,cya'™). Since
»(g(b) U sup,ena™) = P(g(b)) va = a,
¥(e) 24 (g(b)) \ a and
fisoe > o — fia > o — fia;
ase C g(f(e)) and eng(b) =0, ,,(6(e) \ b) > 5. On the other hand,

(1—mﬁmmthbmma>=<r—%emm»yéuazuw

(because e na™ = 0 for every m, so f(e) € €,)

- /X(1\9(a(”>)) : /Tn(xb) x x(e)

_ /X(1\9(a(">)) x T (xb) % x0(e)

(because Ty, (xb) x x8(e) € L°(¢,,) and x(1\ #(a™)) are stochastically independent)

6(e)\0(a(™)

7. (0(e)\ 0(a™) =, (bnbe)\ 0(a™)

(1= 2:0(a™))mx(0(e))
(because 0(e) € O(g(V')) C V' =bub(a™))

/ Tr1(xb)
6(e)0(alm)

because f(e) and #(a™) both belong to €, ;. So

§ exp(—fia) = d exp(—ficca™) < D (6(e) \ b) exp(—finca™)
= (1 - 2:0(a"™))7.(6(e) \ b))

=/ Toir (x0) — T (xD)
0(e)\0(atm)

ST (xb) = T (xb) [l < dexp(—pia),

which is impossible. X
So i (g(t')) < a, as required. Q
(d) Fix ¢ € B, with measure %; then the principal ideal of 98, generated by c is isomorphic to B, with
the measure halved. We therefore have a Boolean isomorphism 7 : B, — (B,). such that v,7b = %f/mb
for every b € B,. Set h(b) = ¥(g(r~1(bnc))) for b € B,. Then h : B, — A is order-preserving and
h(b) = h(bnc) for every b € 9B,,. Translating the results of (b) and (c), we see that
if b € B, and € > 0, there is a § > 0 such that G(h(b')\ k(b)) < € whenever 7,,(b'\ b) < 6,
ifbe By, aecA adh(b) and fia < o € R, there is a ¥’ Db such that a C h(V), ph(t) < «
and 7,(6'\b) < (1 - exp(—fi(a\ h(b).

2Formerly 365R.
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Note also that

ph(b) = m(g(n~ ' (bne))) < fiscg(m™ ' (b))
< —In(1 =z Y(bne)) < —In(1 = 20,.(bnc))

if we take In(0) to be —oo.

(e)(i) Set o = 3(1 — exp(—fil)), interpreting exp(—oc) as 0, so that 0 < 79 < %. Let P be the partially
ordered set {(a,a) : a € A, a € |fia, pl]} and Q the partially ordered set {b: b € B, v..b < Y}, so that
AM* (21, i) = ROT(P) and AM(B,,7,,7) = ROT(Q). For b € Q, set a, = sup{zh(b') : b € b’ € Q}. Then
ap > fi(h(b)). I We have

gh(b) < —In(1 —20,(bnec)) < —In(1 — 27v) = il,

so h(b) # 1. Because 2 is atomless, there is an a € 2/, disjoint from h(b), such that 0 < fia < —In(20,b).
Set @ = (an)nen Where a9 = a, a, = 0 for n > 1. Then

vef(a) =1 —exp(—fia) < 1—20,b,
so b =bumb(a) € Q, while h(b') D h(b)ua>h(b). Q
(ii) If b € Q and ih(b) < «, there is a by € Q such that b C by, h(by) = h(b) and oy < . B Let § > 0
be such that fi(h(b')\ h(b)) < a— ih(b) whenever v, (b’ \ b) < §. Because vy < 3, there is a b; € Q such that

= 2>

bCb,bnec=byncand iby > — 6. Then h(by) = h(b). If ¥’ € Q and V' D by, then 7, (b nec\b) <4, so
f(h(b')\ h(b)) = (h(b"nc) \ h(b)) < o — iih(b)
and ih(b') < a; thus ap, < a. Q
(f) By (e-i), we can define f : Q — P by setting f(b) = (h(b), ) for b € Q.
(i) f is order-preserving because h is.
(ii) If P, C P is up-open and cofinal with P, f~1[P] is cofinal with Q. P Take any b € Q. Set
a = min(ayp, Gh(b) — In(1 — 2y + 20,:b)) > fh(b),
so that f(b) < (h(b),«) in P. Then there is an (a, 8) € Py such that (h(b), @) < (a, 8), that is, h(b) C a and

B < a. In this case, there is a by € B, such that b; Db, h(b1) D a, ph(b;) < 8 and
_ 1 _ _
V(b1 \0) < 5 (1 = exp(—p(a\ h(b)))) <o — Vb

because f(a\ h(b)) < —In(1 — 27y + 20,:b). So by € Q. By (e-ii), there is a by € @ such that by Dby,
h(bz2) = h(by) and ap, < B. Now b C by, while f(by) = (h(b1),,) > (a, (). As Py is up-open, f(bs) € Pi;
as b is arbitrary, f~1[P] is cofinal with Q. Q

(iii) f[Q] is cofinal with P. P Take (a,a) € P. Set a = (an)neny € AN where ag = a and a,, = 0 for
n > 1, and set b = 76(a). Note that
— 1 _
Vb= 5(1 —exp(—pa)) < 7o,

so b € Q. Because jia < 00, (7~ 1b) = a and h(b) = a. By (e-ii) again, we can now find a b; Db in Q such
that h(by) = h(b) and ap, < . So f(b1) > (a, ). As (a,«) is arbitrary, f[Q] is cofinal. Q
(g) By 5140, AM*(2, i) = ROT(P) can be regularly embedded in
ROT(Q) = AM(B, 7, 70) = AM(B,;, v, 3)
by 528Da.

(h) All this has been done on the assumption that 2 is atomless, as required in (e). For the general case,
consider the localizable measure algebra free product (€, \) of (2, &) and (B, 7,) (325E). By 521Qa, we
have

max(w, ¢(€), 7(€)) < max(w, c(A), c(By,), 7(A), 7(By,)) < k.
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Also € is atomless because B,, is isomorphic to a closed subalgebra of € (325Dd) and is atomless (316R'?).
By (a)-(g), AM*(€, ) can be regularly embedded in AM(B,,, 7., 3). Now consider the canonical embedding
g1 : A — €. This is order-continuous and measure-preserving (325Da), so identifies the Dedekind o-complete
Boolean algebra 21 with a o-subalgebra of €; also 2/ has supremum 1 both in 2 and €. By 528G, AM* (2, 1)
can be regularly embedded in AM*(€, \) and therefore in AM(B.,, 7, 3).

5281 Definition For any set I, the (I, c0)-localization poset is the set

853 ={p:p SN x I, #(pl{n}]) < 2" for every n, sup, ey #(p[{n}]) is finite},

ordered by C. For p € §¢° set ||p|| = max,en #(p[{n}]). I will write S> for Sg°, already introduced in the
proof of 522T.

528J Proposition Let x be an infinite cardinal, Sg° the (k,o0)-localization poset, and (2, i) a semi-
finite measure algebra, not {0}, with x > max(w, c(),7()). Then the variable-measure amoeba algebra
AM* (21, i) can be regularly embedded in ROT(S2°).

proof (a) To begin with (down to the end of (d) below), suppose that 2 is atomless. Let P be the partially
ordered set {(a,a) : a € A, a € ]jia, ul]}, so that AM*(A, ) = ROT(P). Give 2/ its measure metric, so
that its topological density is at most k£ (521Eb). Set vy = %ﬂl and for n > 1 set v, = 272"~ 1l if il < oo,
47" otherwise. For each n, let D,, be a dense subset of {a : a € 2/, fia < ~,}, containing 0, with cardinal
at most k, and let (dng)e<, be a family running over D,, with cofinal repetitions.

(b) If p € Sg° set

Ap = SUP(p £)ep dng, op = fiap + ZZO:O(QH — #(H{n}))m
Then

fa, < ap <3007 20y, = [l
so we can define f : S3° — P by setting f(p) = (ap,ap). f is order-preserving, because if p C p’ in Sg° then

p = fiay + Z p'{n3))m

<fiap+ Y fidne + Z ' [{n})m

(n.8)ep’\p
<uap—|—2# {n}]\ p[{n}] %—I—Z P {n}))n = ap.

(c) Suppose that p € S and f(p) < (a,«) € P. Take o € Jfia,af. For n € N, set k,, = 2" — #(p[{n}]).
Then a, C a and

pa<a<a,=pay+ Yo knyn.
So there is an » € N such that

Ha < piap + Zzozo Y min(r, ky, );
take r so large that, in addition, ZZOZTH 2"y, <a-—a.

For each n, set k!, = min(r, k,) and C,, = {sup D : D € [D,]<F»}. Then (because 2 is atomless) C,, is
dense in {c:c €A, ic < k/,y,}. We can therefore choose (c,)nen inductively in such a way that

Cn € Cnv ﬂ(a’ U Supm<n Cm) < O/,
fi(a\ (ap U Sup,, ., ¢m)) < 200 ki Ym
BFormerly 316Xi.
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for every n € N. PP For the inductive step to n > 0, set b = a\ (ap U sup,,.,, ¢m). Take b’ C b such that
b’ = min(k., vy, ib), so that

flau sup,, <, ¢m UY) = A(aU sup,, ., cm) < &,

A(b\Y) < 30t K Ym.
Let ¢, € C,, be such that

o > i@V sup,, o, ¢ UY) + filen \B) = i@ sup,,c, ),

Y=t B > BONY) + B\ en) = i\ (ap U suPy<, €m))
and the induction proceeds. Q
For each n, we can find a set D, C D,,, with cardinal k], such that ¢,, = sup D),. Because (dpn¢)e<, runs

over D,, with cofinal repetitions, we can find a set I,, C x\p[{n}] such that #(I,,) = k;, and ¢,, = sup¢c;, dne-
Set g =pU{(n,&):neN,{el,}. Then

#(ql{n}]) < #(@{n}) + &, < min(2", [p[ +r)
for every n, so ¢ € §° and p C gq. Now

q = ap U SUP,en ¢e1, Ing = Ap U SUD, e Cn 2 G

because

f(a\ ag) < infhenfi(a\ (ap U sup,, o, ¢m)) < infpend oo 2™, = 0.
Also

ﬂa’q = SUPpeN ﬂ(a‘p U SUP,p<n Cm) < o <a,

while #(q[{n}]) = #(®[{n}]) + k. = 2™ whenever n < r, so
ag = fiag + 32,7, 1 (2" = #@{n})m <o’ + 300,11 2" < o

(d) What (c) shows is that if p € S and f(p) < (a,a) in P, then there is a ¢ D p in S° such that
(a,a) < f(q). Next, 8 has a least element (), and f(0) = (0, zl) is the least element of P. So 514P tells
us that ROT(P) = AM*(2, i) can be regularly embedded in ROT(S°).

(e) As for the general case, we can use the same trick as in part (h) of the proof of 528H. Let (€, \) be the
localizable measure algebra free product of (2, i) and (B, 7, ); as before, € is atomless, max(w, ¢(€), 7(€)) <
x and (2, i) is embedded in (€, \) as a o-subalgebra with sufficient elements of finite measure. So AM* (2L, /i)
is regularly embedded in AM*(€, \) and in ROT(S°).

528K Theorem (TRuUss 88) Let (2, i) be an atomless o-finite measure algebra in which every non-zero
principal ideal has Maharam type &, and 0 < v < l. Then each of the algebras

AM(Q{,[L,’}/), AM*(Q’[v ﬂ)7 AM(%*ﬁDK?%)
can be regularly embedded in the other two, and all three can be regularly embedded in ROT(S°).
proof By 528H, AM*(2, i) can be regularly embedded in AM(B,,7,,%). Take any e € 2 such that

v < jfie < oo. Then the principal ideal (., i[2l.) is isomorphic, up to a scalar multiple of the measure, to
(B, k), SO

AM(By, 7y, 1) =2 AM(B,., ﬁﬁ,%)

(528Da)
= AM(2e, il Ae, )
can be regularly embedded in AM(2, ii,v) (528Fa). By 528Fc, AM(2L, f1,y) can be regularly embedded

in AM*(2,i). Finally, by 528J, AM*(2, i) can be regularly embedded in ROT(S>). Because regular
embeddability is transitive (313N), these facts are enough to prove the theorem.
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528L It is possible without great effort to calculate many of the cardinal functions of these algebras.
Lemma m(AM(B,,, 7,,, %)) < add N, where N is the null ideal of Lebesgue measure on R.

proof Set P ={a:a € B, v,a < +}. Then wdistr(B,) > m'(P). P Take a family (B¢)¢<, of maximal
antichains in B, where k < m'(P). Let C C 9B, be a maximal disjoint set such that {b: b € Bg, bnc # 0}
is finite for every £ < k and ¢ € C. T Suppose, if possible, that ¢o = 1\ supC is not 0. Take ayg € P such
that 7, (ap Uco) > % (If v,co > %, take ag = 0; otherwise, take ag C 1\ ¢g such that % —Dycp < Upag < %)
For each & < k, set

Qe={a:acP,{b:bec B, b a} is finite};

then Q¢ is cofinal with P. There is therefore an upwards-directed R C P such that ap € R and R meets
every Q¢. Set e = sup R; then i,e < 3 so ¢y = ¢y \ e = (agUcp) \ e is non-zero.
If £ < K, there is an a € RN Q¢, so that

{b:be Be,brey £0 C{b:be Be,bZa}

is finite. But this means that we ought to have added ¢; to C. X
Thus C is a maximal antichain. As (Bg)e<, is arbitrary, wdistr(A) > m"(P). Q
Now 524Mb tells us that wdistr(8,,) = add N/, so m"(P) < add V. Finally, by 517Db,

m(AM(2, fi,7)) = m"(P) < add N,

as claimed.

528M Lemma m'(5%) > add NV.

proof (a) Recall the definition of the supported relations (NN, C*, S(®)) from 522L, where S(®) = {§: S C
N x N, #(S[{n}]) < a(n) for every n € N} for a € NN, Putting 522L, 522M and 512Db together, we have
add(NN, C*, 8(®)) = add N/ whenever lim,, ;o a(n) = co.

(b) The core of the argument is the following fact. Suppose that @ C S is cofinal and up-open, n € N
and o € [N x N|<¥. Let G C N x N be a set with finite vertical sections. Then there is a k¥ € N such that
whenever 0 C p € 8, p C o UG and ||p|| < n, there is a ¢ € @ such that p C g and ||¢|| < k.

P? Suppose, if possible, otherwise. Then for each j € N we can find p; € §° such that ¢ C p; Co UG,
lp;ll < n and ||g|| > j whenever p C ¢ € Q. Let p be a cluster point of (p;)jen in P(c UG). Then
#(pl{i}]) < supjen #(p;[{i}]) < min(2°,n) for every i, so p € §. Because @ is cofinal with §>°, there is a
g € Q such that p C ¢q. Set k = n+ ||g]|. Then (¢ UG) N (k x N) is finite, so there is an ¢ > k such that
piN(kxN)=pnN(kxN)Cyq. Set ¢ =p; Ug. Then

#(d'[{7}]) = #(ql{5}) < min(|lql,2’) if j < K,
< lpill + llgll < k < 27 otherwise.

So ¢’ € 8 and ||¢|| < k < i; because @ is up-open in 8§, ¢’ € Q, while p; C ¢’. But we chose p; so that
this could not happen. XQ

(c) We need to know that S is upwards-ccc. P For any n € N, finite 0 C N x N the set {p : p € §=,
llpll <2771, pn(n x N) = o} is upwards-linked. Q

(d) Now let (Q¢)e<r be any family of cofinal subsets of S°°, where £ < add N, and py € §°. For each
§ < rlet Ac C Q¢ be a maximal up-antichain; by (c), A¢ is countable. Set Q¢ = U{[g,00[ : ¢ € A¢}, so
that Q'5 is an up-open cofinal subset of S*°. Set A = {py} U U£<H Ag. For g € A, let F, C N be a finite set
such that (identifying each member of F, with its graph) ¢ C |J Fy; set F =J Fy, so that

#(F) < max(w, k) < add N < b

(522B). Let go € NY be a strictly increasing function such that {i : f(i) > go(i)} is finite for every f € F,
and also pg[{i}] C go(4) for every i. Set G = {(4,7) : i € N, j < go(i)}, so that G C N x N has finite vertical
sections. Observe that if ¢ € A then ¢\ G is finite.

For each £ < k, n € N and finite 0 C N x N, let k({,0,n) € N be such that whenever p € §> and
o C p C o UG then there is a ¢ € @ such that p C ¢ and |q|] < k(§,0,n); such a k exists by (b)

qeA
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above. Set ke¢(n) = sup{k(¢,0,n) : ¢ C n x go(n)}. Again because x < b, there is a g1 € NV such
that {n : ke(n) > gi(n)} is finite for every ¢ < k. Let @ € NY be a non-decreasing function such that
lim,, o @(n) = oo and

a(2g1(n)) <n,  a(n) + #(pol{n}]) <27, 2a(n) <n

for every n.
Because add(NY, C*, S(®)) = add NV, there is an Sy € S(® such that f C* S for every f € F, so that
q \ So is finite for every ¢ € A. Replacing Sy by So N G if necessary, we may suppose that Sy C G.

(e) Let S be the family of subsets S of N x N such that #(S[{n}]) < 2™ for every n, as in 522K. Note
that pgUSy € S, because a(n) + #(po(n)) < 2™ for every n. Let C be the family of finite subsets o of N x N
such that ¢ U Sy € S. For each £ < k, set

De={oc:0e€C,3qg€ A, q CaUSp}.

Then Dy is cofinal with C. I Let o € C. Let ngy be so large that g;(27°) > k¢(2"°) and o C ng X go(no)-
Set m =2¢1(2™), p=0U(SoN(m xN)) €S Then 0 Cp C o UG and ||p|| < max(2™°, a(m)) = 2™, so
there is a q € Qé such that p C ¢ and

llgll < k(§,0,2™0) < ke(2™0) < g1(2™°) =

m
5

Let ¢’ € A¢ besuch that ¢’ C ¢. Let m’ > max(m, ng) be such that ¢’ C (m’xN)USy, and set 7 = ¢gN(m'xN),
so that o C 7.
For n < m, we have

Sol{n}] € pl{n}] € ql{n}] = 7[{n}],

so (1 U Sp)[{n}] = ¢q[{n}] has at most 2™ members. For m < n < m’, we have

#((r U So)[{n}]) < #(al{n}]) + #(Sol{n}]) < lall + a(n) < T +7 <27,
while for n > m’ we have
#((1U So)[{n}]) = #(So[{n}]) < a(n) < 2™
SoTUSy € S and 7 € C. Since
¢ C(@n(m xN))USyC (gn(m xN))USy=r71USy,
T € D¢. As o is arbitrary, D; is cofinal with C. Q

(f) Because py U Sy € S, g9 = po \ So belongs to C. Because x < add N < Meountable < m'(C), there is
an upwards-directed set E C C' meeting every D¢ and containing o¢. Set S; = So UJ E. Then, because E
is upwards-directed,

#(S1[{n}]) = supyep #((0 U So)[{n}]) < 2"

for every n, and S;1 € S. Set R={p:p € 8%, p C S1}; then R C S is upwards-directed (in fact, closed
under U), and pg € R because op € E. Now R meets Q¢ for every { < k. PP There is a 0 € D¢ N E. But
this means that there is a ¢ € A¢ such that ¢ CoU Sy C S;andge RNQe:. Q

As po and (Q¢)e<, are arbitrary, m"(S%) > add V.

528N Theorem (BRENDLE 00, 2.3.10; JuDAH & REPICKY 95) Let (2, i) be an atomless o-finite measure
algebra with countable Maharam type, and 0 < v < il1. Then the algebras AM(2, i, v) and AM™* (2, i) and
the (N, co)-localization poset S (active upwards) all have Martin numbers equal to add V.

proof By 517Ia and 528K, with 517Db again,

m(AM(2L, f1,7)) = m(AM* (2, 1)) = m(AM(Bo,, 70, 7))
m(ROT(S®)) = m(S>).

Y

As
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m(AM(B,,, 7, 3)) < add N < ml(S5%)
(528L, 528M), all these are equal to add V.

5280 Corollary Let v > 0. Let G be the partially ordered set
{G:G CRisopen, u,G < v},
where juz is Lebesgue measure. Then m'(G) = add V.
proof Put 528C and 528N together.

528P Proposition Let (2, i) be an atomless semi-finite measure algebra, and 0 < v < fl.
(a) For any integer m > 2,

c(AM(2L, i1, y)) = link,,, (AM(2L, ii,y)) = max(c(21), 7(2A)).
(b) d(AM(%, 1, 7)) = m(AM(2, , 7)) = max(cf[e(A)]=, ().
proof Set P = {a:a €, fia <7}, so that AM(2, fi,y) = ROT(P).
(a) Set ko = max(c(A),7(A)), k1 = link,, (ROT(P)) = link! (P) and ry = ¢(ROT(P)) = ¢!(P) (514N).
(i) The topological density of 21/ for its measure metric is o (521Eb), so P has a metrically dense
subset D with cardinal at most kg. For d € D, set

Ui={a:a€ P, ila\d) < (v~ id)).

Then U, is upwards-m-linked in P. Also, if a € P, there is a d € D such that fi(a A d) < #ﬂ(v — fia), and
now a € Uy. So P is kg-m-linked upwards and kq < Kg.

(ii) By 511Hb or 5111a, ke < Kj.

(iii) We need to check that x5 is infinite. B Take a € 2 such that jia = . For any n > 1, we can find
disjoint ag, ... ,a, C a all of measure n%rlv; now (a\ a;)i<y is an up-antichain in P. So ks = ¢/ (P) > n+1;
and this is true for every n. Q

Now if (2, 1) is totally finite, then ¢(2A) = w < ky. Otherwise, there is a partition D of unity in 2 such
that fid = 1+ for every d € D; now D is an up-antichain in P and ko > #(D) = ¢(2). So we see that in all
cases kg > c(2).

(iv) If e € 2/ and the principal ideal 2, is homogeneous, then 7(2l,) < k2. P? Otherwise, set o = fie,
k = 7(2A). Because il > v, there is a d C 1\ e such that v < fi(feud) < v+ fie, that is, 0 < y— id < a. Set

B=4/1-— %ﬂd Because 2l is isomorphic, up to a scalar multiple of the measure, to the measure algebra
of the usual measure on [0, 1], there is a family (c¢)e<, in e such that
fice = Ba,  fi(ceney) = fPa
whenever &, n < k are distinct. Set be = du (e\ ¢¢) for £ < k. Then
fi(be Uby) = fid + a — BPa =1,
jtbe = id + o — Ba < vy
for all distinct £, n < k. So (be)e<s is an up-antichain in P and witnesses that ko > k. XQ

(v) Let E be a partition of unity in 2 such that 0 < fie < co and 2, is homogeneous for every e € E. For
e € E,let A, C 2, be a set with cardinal at most k2 which T-generates 2. Then A = A, T-generates
2A, so that

ecE

ko = max(c(2),7(A)) < max(c(A), #(A4)) < max(c(A), ke) = Ko,
and the three cardinals must be equal.

(b) Set r3 = max(w (), cf[c(A)]=¥), kg = T(AM(2L, f1,7)) and k5 = d(AM(2L, i, 7))-
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(i) By 323Mc, 2/ is complete in its measure metric. By 323Ma, u : 2/ x A/ — Af is uniformly

continuous for the measure metric, and P is an open subset of 2/, while the topological density of 2 is .
By 524C, (P, c’,[P]<%) gaT ((*(ko), <, 0 (kp)), where C’ is defined as in 512F. It follows that

rg = m(ROT(P)) = cf P

(514Nb)
= cov(P, ¢, P) < max(w, cov(P, C’, [P]=%))
(512Gf)
< max(w, cov(P, c’, [P]<¥))
(512Gb)
< max(w, cf 1 (ko))
(512Da)

= cf (' (ko) = cf N,
(where N, is the null ideal of the usual measure on {0,1}"°, as in 524I)

= max(cf N, cf[ro]=*)
(523N)

= max(cf N, cf[7(A)]5%, cf[c(A)]5)

= max(cf N, cf[T ()5, ¢(A), cf[c(A)]5¥) = max(7(A), cf[c(A)] =)
(524Mc)

= R3.

(ii) By 514Nd, d'(P) = k5. Let (Bg)¢<x, be a family of upwards-centered sets covering P. For each &,
be = sup B¢ is defined in A (counting sup ) as 0 if necessary), and
[ibe = sups¢(p,)<w A(supI) < 7.
Set D = {bg\by, : &, 1 < ks}. Then D is order-dense in 2. P If a € A\ {0}, take a’ C a such that
0 < pia’ < 7. Then a' € P, so there is some £ < k5 such that a’ € Be and o’ C be. Next, let ¢ C 1\ b¢ be
such that
v — fibe < fic < 7y — fibe + fia’.
Then cuU (be \ @’) € P, so there is an 1 < k5 such that cu (be \ @’) C b,). Now d = be \ b, C a’; as fi(bg uc) >
v > fiby, be b, and d # 0. Of course d € D and d C a; as a is arbitrary, D is order-dense. Q
Accordingly 7(21) < #(D) < k5. At the same time, cf[c(2)]=% < k5. P There is a disjoint set E C A\ {0}
with cardinal ¢(2() (332F). For each £ < ks, let I be the countable set {e : e € E, enbe #0}. If J C E'is
countable, let (e.)ccs be a strictly positive family of real numbers with sum less than -y. For each e € J let
ae C e be such that 0 < fia. < e, and set a = sup,¢ ; a.. Then a € P so there is a § < k5 such that a C b
and J C I¢. As J is arbitrary, {I¢ : £ < K5} is cofinal with [E]<*, and
cf[e(A)]= = cf[E]=¥ < k5. Q
Putting these together, we see that k3 < k5.

(iii) By 514Da, k5 < K4, so the three cardinals are equal.

528Q Proposition Let S be the (N, co)-localization poset.
(a) 7(ROT(8%)) = cfS® =c.
(b) For every m > 2,

¢(ROT(8%)) = ¢1(8%) = link,, (ROT(S*)) = link!,(§) = w.
(c) d(ROT(8>)) = dT(S>) = cf N.
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proof (a) If p, ¢ € S and p € q, take (n,i) € p\g; then thereis a ¢’ € S such that ¢’ D ¢, #(¢'[{n}]) = 2"
and (n,i) ¢ ¢/, in which case p and ¢ are incompatible upwards in §°. So S is separative upwards and
514Nb tells us that 7(ROT(8%)) = cf S.

Next, there is an almost-disjoint family (h¢)e<. in NY (5A1Nc). Identifying each he with its graph,
we can regard them as members of §°°; and any member of S includes only finitely many of them. So
cfS> > ¢. On the other hand, of course, cfS® < #(8%) = ¢. So T(ROT(S®)) = cfS™® = «.

(b) If m > 2, let Q be the countable set of pairs (I,7) where r € N and I € [N x N|<“_and for (/,7) € Q
set

27‘
A ={p:peS®, pn(rxN)=1, |p| SE}'
Then {U,.,,pi € S for any family (pi)i<m in Ap., that is, Ay is upwards-m-linked in §*. Also

Uir.meq A = 8%, so link] (8§%°) < w. Of course ¢'(S*) is infinite, and since ¢'(S®) < link], (S*)
(511Hb again), both must be w. Now 514N tells us that

c(ROT(8%)) = link,, (ROT(S®)) = w.

(c) Consider the N-localization relation (N, C* S) of 522K. We know from 522M and 512Da that
cov(NN, C*/S) = cov(N, C,N) = cf N.
(i) Let A C S be a set with cardinal cf A" such that for every f € NY there is an S € A such that
fC*S. Let A* be
{§:5€S8, S\JA is finite for some finite A" C A};

then every member of S is included in some member of A*. But if S € A* then {p:p € S, p C S} is
upwards-directed. So

dT(8®) < #(A*) < cfN.

(i) Now let Q be a family of upwards-centered subsets of ™ covering S>°. For each @ € Q, Sg = Q
belongs to S. Also every f € N belongs to 8> so is covered by some Sg. So Sg witnesses that cf N =
cov(NN, C* 8) < #(Q); as Q is arbitrary, cf N < dT(8>).

(iii) 514Nd tells us that

d(ROT(8%)) = dT(5%),

so we have equality throughout.

528R Theorem Let k be any cardinal, and S the (k,oc)-localization poset. Then ROT(S2°) has
countable Maharam type.

proof (a) If  is finite then cf SZ° is finite and the result is trivial. So let us suppose from now on that & is
infinite.

(b) Sg° is separative upwards. PP If p, ¢ € S° and p € ¢, take (n,&) € p\ ¢. Let J C k\ p[{n}] be a set
of size 2" — #(q[{n}], and set ¢ = qU ({n} x J); then ¢ C ¢’ € §* and p, ¢’ are incompatible upwards in
S*. Q

Accordingly [p, o[ € ROT(S%) for every p € S (514Me).

(c) For n e N, m < 2™ and & < &, set

Gmng = sup{[p, 00l : p € S, #(p[{n}]) = 2", (n,€) € p and #(p[{n}] N &) = m},
the supremum being taken in ROT(S°).

(d)Ifn e N, m < 2"and £ <7 < & then GpngNGmny = 0. P If p, g € S°, #(p[{n}]) = #(q[{n}]) = 27,

(n,€) € p, (n,n) € g and #(p[{n}] N &) = #(q[{n}]) Nn) = m then p[{n}] # q({n}], #(P[{n}] Uq[{n}]) > 2"
and [p, co[ N [g, 00[ is empty. Q
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(e) If &€ < k then U{Gmne : n € N, m < 2"} is dense in Sg°. P If p € S, take n € N such
that #(p[{n}]) < 2"; then there is a ¢ € S° such that p C ¢, £ € ¢[{n}] and #(¢[{n}]) = 2™. Set
m = #(q[{n}] N¢); then [g,00[ € [p, 0[N Grne- Q

Thus sup{Gpne : n € N, m < 2"} =1 in ROT(8) whenever £ < k.

(f) Let & be the order-closed subalgebra of ROT(S2°) generated by {Gne : n € N, m < 27, £ < k}. For
n € Nand & < k set Hpe = [{(n,§)}, 00[; then Hye = sup,, on Gmne. P Certainly Grne € Hpe whenever
m < 2™ If{(n,§)} Cp e SF, let ¢ € S be such that p C g and #(g[{n}]) = 2"; set m = #(g[{n}]NE); then
[q,00[ € Hype N Grope. Thus Grne is dense in Hye and H,¢ = sup,,con Gmne € 6. Q Consequently
Hng € 6.

m<2n

(g) If p € S2° then [p, oo] = inf(,, ¢)cp Hpe belongs to &, by 514Me. So & includes an order-dense subset
of ROT(82°) and must be the whole of ROT(S2°); that is, ROT(S°) is 7-generated by {Gune : n € N,
m < 2", & < k}. With (iv) and (v), we see that the conditions of 514F are satisified with J = x and
I={(m,n):neN, m<2"}, so that

7(ROT(8%°)) < max(w, #(I)) = w.

528S The calculation of Maharam types of amoeba algebras seems to be a good deal harder. However
it leads through an investigation of the structure of measure algebras, which is one of the things this book
is about, so I take the space to give one of the main theorems. It depends on a special property of the
standard generating families in algebras B,,.

Definition Let (2l, i) be a measure algebra. I will say that a well-spread basis for 2l is a non-decreasing
sequence (D, )nen of subsets of 2 such that
(i) setting D = (U, ey Dn, #(D) < max(w, c(A), 7(A));
(ii) if a € A, v € R and fia < 7, there is a set D C (J
fi(sup D) < ;
(iii) if » € N and (d;)ien is a sequence in D,, such that fi(sup;cyd;) < oo, there is an infinite
set J C N such that d = sup,¢ ; d; belongs to Dy;
(iv) whenever n € N, a € 2 and fia < 7' < v < fl, there is a b € 2 such that a C b and
~' < @b < v and a(bud) > v whenever d € D,, and d Z a.

neN D,, such that a C sup D and

528T Lemma (a) Let x be an infinite cardinal, and (e¢)s<, the standard generating family in 9B,,. For
n € Nlet C, be the set of elements of B,, expressible as infees eg N infee s(1\ €¢) where I, J C x are disjoint
and #(I U J) <n. Then (Cp)nen is a well-spread basis for (B, 7,,). Moreover,
(*) for each n > 1, there is a set C, C C,,, with cardinal &, such that v,c = 2" for every
¢ € C}, and whenever a € B,; \ {1} and I C CJ, is infinite, there is a ¢ € I such that
¢ ¢auc whenever ccc € C,.
(b) Let (A, ) be a measure algebra and e € . If (Cp)nen is a well-spread basis for (A, al2A.) and
(Dp)nen is a well-spread basis for (e, il A1\e), then (C, U Dy )pen is a well-spread basis for (2, ).

proof (a)(i) (Cy)nen satisfies (i) of Definition 528S just because 7(B,) = #(Cn) = & for n > 1, while
Co = {1}.

(ii) For J C &, let €; be the order-closed subalgebra of 9B, generated by {e¢ : { € J}; recall that for
every a € B, there is a countable set supp a C & such that a € €; iff J 2 suppa (254Rd/325Mb). Of course
#(suppc) < n whenever n € N and ¢ € C),.

Suppose that a € B, and v > D.a. Then for each k € N we can find an a; € B, with finite support,
such that 7 (a A ay) < 27572(y — pa) (254Fe/325Jc). Set b = supj,cy ax; then

b < vga+ Y pe o Uelar\a) <7,
Ve(a\b) < infrenvy(a\ ax) =0,

soa Cb. If k€ Nand #(suppax) = ng, then ar = sup{c: c € Cy,, c C ar}, so b =sup{c: c € U,cnCn,
¢ C b}. Thus 528S(ii) is satisfied.
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(iii) If n € N and (¢;)ien is a sequence in C,, there is an infinite I C N such that (suppc¢;)ics is a
A-system with root K say (5A1Jc). For i € I, express ¢; as ¢;ncj where ¢ € €k and ¢} € €guppe,)\k; a5
Cx is finite, there is a ¢ such that J = {i : ¢, = ¢} is infinite. Now ¢ € C),, and if m € N then

— e
Supie‘]\m C; — cnN SupiEJ\m Ci =cC

because (cj');c\m is a stochastically independent family of elements of B, all of measure at least 27", so
has supremum 1. In particular, 528S(iii) is satisfied.

(iv) Suppose that n € N and a € B,. Then there is a § > 0 such that 7, (c\ a) > ¢ whenever ¢ € C),
and ¢ Z a. P? Otherwise, there is a sequence {c;);cn in C, such that 0 < 7, (c; \ a) < 27 for every i € N.
By (iii) just above, there is an infinite set J C N such that ¢; C SUp;c j\m Ci for every j € J. Set jo = min J,
and let m be such that 27" < 7, (¢j, \ a); then

27 < De(supjenm ¢ \ @) < 205, Teleg \a) < 27,
which is absurd. XQ

(v) Suppose that n € N, a € B, and v,a < <y <1. Pickd>0,r >n, k* €N, e>0and o’ € B,
such that

D(c\ a) > § whenever ¢ € C,, and ¢ ¢ a,
9-r < v - ’YI, (2—n _ 2—7“)715 > 2—1"-{-27
(=2 <17,

€<28, e<27(1—2"T)F,

N | =

suppa’ is finite, D.(and) <e.

Let (K;);en be a disjoint sequence in [« \ suppa’]”, and set ¢; = infeck, e for each ¢ € N. Then
sup;ey ¢; = 1, so there is a first k such that 7, (au sup;<j ¢;) > ; set by = sup; ¢; and b = auby. Surely
a C band v.b < 7; also

(1-2"") <1—-y<1-0b =(1—-2"T")F
so k < k*. Moreover,
Y= ﬂnb < Dm(buck) - Dnb < Dn(ck\bl) = 2_T(1 - 2_T)k < 27" < Y= ’7/7

so that, in particular, v.b > «'.
If ce C, and cZa then 7.(c\a) > d so Dg(c\a') > § —e. Express ¢ as inf;<j, ¢; where suppc; C K, for

i < kandsuppcy, € £\ ;o Ki. Set J ={i:i <k, cj+#1}; then #(J) < n. Now

Ue(e\ (a'uby)) =v.((cp\a')n nelLf](c; \e))n inf (1\¢))

iek\J
ZDK(CZ\G/)'H%(CQ\CO' H 175(1\01')
ieJ iR\ J

(because supp(cy, \ a’) € suppcy, Usuppa’ C &\ [J,.p, Ki, so we are taking an infimum of stochastically
independent elements of 9B,;)
>@—eo-[[em-27) [T -2
icJ i€k\J

(of course every ¢ belongs to C.,)

v
N N

(2—n _ 2—7’)n(1 _ 2—r)k6 > 2—r+1(1 _ 2—r)k
>27"(1 -2 21— 27 >y —pb e
and
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U(c\ b) > v — b,

so vy(buc) > 7.
As n, a, v and 7 are arbitrary, (C,)nen satisfies 528S(iv) and is a well-spread basis.

(vi) As for (*), given n > 1, take a disjoint family (K¢)e<, in [k]", and set c¢ = inf, ek, e, for £ < &,
Cl, ={ce : £ < k}. If I C & is infinite and v.a < 1, take § > 0 such that 6 < 27"(1 — D,a —9), and ' € B,
such that supp a’ is finite and 7.(a A a’) < 6. Then there is a £ € I such that K¢ Nsuppas =0. 7 If ce C,
is such that c¢ C ¢ C a U ¢, there must be a d € B, with support K¢, included in ¢\ ¢¢. But now d C a and
suppdn suppa’ = 0, so

271 —=vga—0) <27"(1 —vgd) =D(d\ad') <5+ g(d\a) =6. X

(b)(i) We have

#( U CnUDy) < maX(w,#( U Cn)7 #( U Dn))

neN neN neN
< max(w, c(Ae), c(Are), T(Ae), 7(A11e)) = max(w, c(A), 7(2A))

by 514E.

(ii) Suppose that @ € 2 and fia < v. Then there are 71, 72 such that i(ane) < v, f(a\e) < v2 and
Y +7 <7v. Let C C U,enCny D € U,en Dn be such that ane € supC, a\e C sup D, fi(supC) < 71
and fi(sup D) < 2. Then CU D C |J,,cjy Cn U Dy, a € sup(C U D) and fi(sup(C U D)) < .

(iii) Suppose that n € N and (¢;);en is a sequence in C,, U D,, such that fi(sup;cy ¢;) < co. Then there
is an infinite J C N such that either ¢; € C), for every i € J, or ¢; € D,, for every i € I. In either case, there
is an infinite I C J such that sup,;c; ¢; belongs to C,, U D,,.

(iv) Thus (C),, U Dy, ) nen satisfies (i)-(iii) of Definition 528S. As for 528S(iv), suppose that n € N, a € 2
and jia <9 <y < jil. We need to find a b €  such that a C b and

v <pb<vy<pbuc)
whenever ¢ € C,, UD,, and cZa.
case 1 If e C a, then jie is finite and
fila\e) <~ —fie <y — fie < fi(1\e).
So there is a by € 24, such that a\ e C by and
v — pe < by <y — fie < fi(ba U d)
whenever d € D, and d Z a \ e; that is,
v <pleubs) <y < p(eubyud)

whenever d € D,, and d ¢ a. Since ¢ C a for every ¢ € C,,, we have fi(e Uby Uc) > 7 whenever ¢ € C,, U D,,
and ¢ Z a, and can take b = e U bs.

case 2 Similarly, if a D 1\ e, we can take b = (1\ e) u by for a suitable by C e.
case 3 If neither e nor 1\ e is included in a, we have
max(fane), 7 — i(1\ ) < min(fie,y — i\ ¢),
so we can find ~1, 71 such that
max(f(ane),y — p(l\e)) <71 <y < min(e,y — fi(a\e))
and 3 — ] <7 —7'. Let by € A, be such that ane C b; and
1 < by <y < a(bruc)
whenever ¢ € C,, and cZane. Set v5 =~ — v, and v2 = v — [iby, so that
fila\e) <7y <2 <y —7 <a(l\e).
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Let by € 2\ be such that a\ e C by and
vy < fiby < 2 < fi(ba U d)

whenever d € D,, and dZ a\ e.
Try b =b1 Ubs. Then a C b and b = by + iby belongs to

[aby + 73, b1 +72[ € [ + v —v,7[ S [Vl
Ifce (), and cZa, then cZane, so
pbuc) = p(biuc) + by > v + 795 =7
while if d € D,, and d ¢ a, then
pbud) = by + fi(bz ud) > pby + y2 = 7.

So in this case also we have found a suitable b.

528U Lemma Let (2, i) be an atomless semi-finite measure algebra and 0 < v < il. Let F, €, < and
F be such that
FE is a partition of unity in 2 such that 2. is homogeneous and 0 < € < fie < oo for every
ec€ FE;
< is a well-ordering of E such that 7(.) < 7(2/) whenever e < ¢ in E;
F is a partition of F such that each member of F is either a singleton or a countable set with
no <-greatest member.
Let Py be

{a:aeU, fa<~,v<ilaue) whenever {e} € F},
ordered by C . Then ROT(P,) has countable Maharam type.

proof (a)(i) For every e € E, (2, i[2.) is a non-zero atomless homogeneous totally finite measure algebra,
so is isomorphic, up to a scalar multiple of the measure, to (B, 7,) for some infinite cardinal x (331L).
So we can copy the well-spread basis for (9B, 7, ) described in 528Ta into a well-spread basis (D, )nen for
(Ae, il Ae) such that

#(UneN Den) = T(Q[e),

pd > 27" ie whenever n € N and d € D.,,,

Dy = {6}7

for each n > 1 there is a set D), C D.,, with cardinal 7(2.), such that id = 27" [ze for every

d € D.,,, and whenever a € A, \ {e} and I C D, is infinite, there is a d € I such that d' Zaud

en?

whenever d’ € D,,, and d’ >d,
(UneN Depn) \ (Un21 D!,) has cardinal 7(2l,).
(The last item is not mentioned in 528T, but is clearly achievable by thinning the sets D, appropriately,
besides being automatic if we use the construction in (a-vi) of the proof of 528T.) Note that (D., ), >1 is a
disjoint sequence of subsets of 2, for each e, so (D.,)ecE n>1 is disjoint.

(ii) For e € F € F, set

DE:UnENDen\UnZIDéTH D: :Ue’EF,e’ﬁeDe'

Because F' is countable and 7(2e/) < 7(2() whenever ¢’ 5 e, #(D?}) = 7(AU.) = #(D.,,) for every n > 1. We
therefore have a partition (Icq)qep= of U, ~; D¢, into countably infinite sets such that I.4 N Dy, is infinite
whenever d € Df and n > 1. N

Let ¢ be a limit ordinal such that the set € of limit ordinals less than ¢ has cardinal #(U.cp De). (Of
course we can take 6 to be either an uncountable cardinal or the ordinal product w-w or 0.) Again because
every member of F is countable, we have an enumeration (d¢)¢<o of |J D.,, such that whenever £ € Q)
then there are F' € F and e € F such that

df € De’ {df‘f‘l vz 1} = Ue’eF,e’%e Ie'dﬁ'

This will mean that whenever { € Q and F € F, e € F are such that d¢ € 2, then {i : d¢y; € D.,,} is
infinite whenever ¢/ € F, e < e and n € N.

ec E,neN
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(b)(i) Setting P = {a:a €, ia <~}, Py € ROT(P). P Evidently P, is up-open. If a € P\ Py, that is,
there is some e such that {e} € F and fi(aue) <, set b=aue; then a C b € P, while a(b/ ue) = gb’ < v
whenever b’ € [b, o[, so [b, oo does not meet Py. Accordingly [a,0o[ € Py and a ¢ int Py. As a is arbitrary,
Py = int Py € ROT(P). Q

It follows that ROT(Py) is the principal ideal of ROT(P) generated by Py (314R(b-ii)). Moreover, for
a € Py, [a,00] is the same whether taken in P or Py, and belongs to ROT(P) by 528B(b-i).

(ii) For a € Py and n € N, set A, (a) = {d : d € U,c Den, d € a}. Then any sequence in A, (a) has
a subsequence with an upper bound in A4, (a). P Set L = {e: e € E, fi(lane) > 27 "¢}; then L is finite. If
e€ E\ L and d € D,,, then d C e and

ad >2""pe > 27" > f(ane) > pland),

sodZa. Thus Ay(a) € U,cp, Den- It follows that if (c;)ien is any sequence in A, (a), there is an e € L such
that J = {i : ¢; € De,} is infinite. Now there is an infinite I C J such that ¢ = sup,; ¢; belongs to De,,. In
this case, ¢ C a so ¢ € A,(a) is an upper bound of {¢; : i € I}. Q

It follows that A, (a) has only finitely many maximal elements, and any non-decreasing sequence in A,,(a)
has an upper bound in A,(a). Consequently, every member of A, (a) is included in a maximal element of
Ay (a). P? Otherwise, we should be able to find a strictly increasing family (c¢)ecw, in Ay, (a); but now
there must be a £ < w; such that ficg = ficer1 <y and ¢ = cey1. XQ

Set Ey,(a) = {£ : d¢ is a maximal element of A, (a)}, so that E,(a) is a finite subset of 6.

(iii) For n € N, set
Qn=1{b:be Py, A,(b) = A, (V) whenever b C V' € Py}.

Then whenever @ € Py and n € N there is a b € Q,, such that a C b and A,(a) = A,(b). P Let L be a
finite subset of E including {e : i(ane) > 27" !¢} and such that a(sup L) > . Then (U.c; Dem)men is a
well-spread basis for (Usup 1, i Asup 1.)- (Induce on #(L), using 528Tb for the inductive step.) Since

flan sup L) < — p(a\ sup L) < fi(sup L),
there is a a by € Asyp 1, including a n sup L, such that
7= fi(a\ sup L) — 27" 1e < ibg < 7 — fi(a’\ sup L) < ji(bo U d)

whenever d € (J,c; Den and dZa. Set b = bpua. Then jib = by + ji(a\ supL) < 7, so b € Fy. If
bcbt € Pyand d € J,cp Den \ An(a), then either e € L and

B Ud) > fi(bud) + fi(a\ supL) > 5 > b,

ored¢ L,
pa(d\a) > jd—j(ane) >2"pe — 27" le > 27" 1e
and
(b ud) > jiby + fi(a\ sup L) + 27" Le >y > b’
in either case d Z . Thus A, (V') = A,(a) = A, (b) whenever b C ¥ € Py, and b € Q,,. Q
(c)(i) For m, n, i € Nand £ € Q, set
Qnmic = {b:b € Qn, £+ € En(b), #(En(b) NE) = mj,
Grmie = sup{[b,00[ : b € Qnmic} € ROT(Pp).

(ii) For any m, n, ¢ € N, (Gpmie)ecq is disjoint. I Suppose that £ < nin Q. If a € Qpme and

b € Qumin, we see that £ +i < n, {+ 1 € E,(a) and

#(En(b) M) =m = #(En(a) N &) < #(En(a) Nn).
So E,(a) # E,(b) and A, (a) # A,(b). But both a and b are supposed to belong to @y, so [a, co[ must be
disjoint from [b, oo[. As b is arbitrary, [a, 0[N Gpmin = 0; as a is arbitrary, Gpmie N Grmin = 0. Q

(iii) For any ¢ € Q and a € Py, there are m, n, i € N and b € Qpmi¢ such that a Cb. P Let e € E be
such that d¢ C e; let F' be the member of F containing e. If F' = {e}, then fi(aue) > v > fia; set eg = e, so
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that eg € F, eg = e and aneg # eg. Otherwise, there are infinitely many members of I’ greater than e for
the ordering <, because F' has no greatest member, so [i(SUp, ¢ o/ €') = 00, and there must be an ey € F
such that ey »= e and aney # eg.

Let n € N be such that 27" fieg < min(y — fia, fi(eo \ @)). Then {d¢y; : i € N} meets D[ ,, in an infinite
set, and there is an ¢ € N such that dey; € D, ,,, fidey; = 27" fieg, and d Z (aneg) Udeq; whenever d € Dy,
and d D dey;. Set a' = aUdgyy; then dey; is a maximal member of A,(a’). Let b € @, be such that ¢’ C b
and A, (b) = An(a’). Then {4+ i € E,(b). Set m = #(E,(b) N§). Then b € Qpmie and a C b. Q

Accordingly b € [a, 0[N Gpmie. As a is arbitrary, | Grmie is dense in Py and sup,,, ,, ;eny Grmic =

P() in ROT(Po)

(d)(i) Let & be the order-closed subalgebra of ROT(Py) generated by {Gpmie : m, n, i € N, £ € Q}. By
(c-ii) and (c-iii), the conditions of 514F are satisfied, and & has countable Maharam type.

(i) If d € PoNU.cepnen Den then [d,00] € &. P Set
H =sup{Gpmic :m, n, i €N, £ € Qand Gpmie C [d,00[} € ROT(Py).

Then H € ® and H C [d,cc[. Suppose that a € Py and a > d. Let n € N be such that d € | J, ¢ Den. Then
there is a b € @,, such that a C b. In this case, d € A, (b) so there is a maximal d’ € A, (b) including d;
let £ € Q, i € N be such that d' = de¢+;, and set m = #(E,,(b) N&). Then b € Qpmse. On the other hand,
for any b’ € Qumig, d C deyy C V', s0 [b/,00] C [d,00[; as b’ is arbitrary, Gpmie C [d,00] and Gpmie € H.
Accordingly b € H N [a,o00[. As a is arbitrary, H is dense in [d, co[ and must be the whole of [d, co[; thus we
have [d,o0[=H € 6. Q

(iii) If a € Py there is a b € Py such that a C b and [b,c0] € &. P Let Ey be a countable subset of F
such that a C sup Ey and fi(sup Eg) > 7. Set L ={e: e € Ey, ade}. Then Fy \ L is non-empty, and

m,n,ieN

Yeemo\r Hlane) = pa — p(sup L) < — a(sup L).
We therefore have a family (7e)eep,\z such that fi(ane) <. < fie for every e € Ey \ L and ZeEEo\L Ve <

v — fi(sup L). For each e € Ey there is a B, C |, ey Den such that ane € sup B and fi(sup Be) < 7e, by
528S(ii). Set

B=LU UeGEo\L B. C UeeE,neN Den
and b =sup B. Then a C b and
b= p(sup L) + 3 c g\ M(sup Be) < f(sup L) + 3 c vz Ve < 75
so b € Py. On the other hand,
[b, 00[ = Nyep [d, 00] = infaep [d, 0] € B,
as required. Q

(iv) As a is arbitrary, ® includes a 7-base for the Boolean algebra ROT(F)) and must be the whole of
ROT(P,). Accordingly

T(ROT(Ry)) = 7(8) < w.
This completes the proof.

528V Theorem Let (2, i) be an atomless semi-finite measure algebra and 0 < v < 1. Then AM(%, i, )
has countable Maharam type.

proof Throughout the proof, P will stand for {a : a € A, fia < ~v}.

(a) Suppose that there are a partition E of unity in 20 and an € > 0 such that 2(. is homogeneous and
€ < fie < oo for every e € E.

(i) Let < be a well-ordering of E such that 7(2.) < 7(™) whenever e < ¢’ in E. Let Fy be a maximal
disjoint family of subsets of E of order type w in the ordering induced by <. Then M = E\ |J Fp must be
finite; set F = Fo U {{e}:e € M}.

(i) For L C M, set
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Pr={a:a€P,adsuplL, i(aue) >~ for e € M\ L}.

Then (Pr)rca is a disjoint family of open subsets of P. Also |J;,, Pr is dense in P. P If a € P, let

L C M be a maximal set such that fi(au sup L) < v, and set b= a U sup L; then a C b € Pr.. Q So ROT(P)
is isomorphic to the simple product []; -, RO™(Py) (315H again).

(iii) If L € M, then ROT(PL) has countable Maharam type. P If Py, = () this is trivial. Otherwise
there is an a € Pr and fi(supL) < fia < 7. Consider A" = Ay supr, ¥ =7 — A(suplL), £/ = E\ L,
F=F\{{e}:e€ L} and ' = xN(E' x E'). Then (A, @a|A), v, F', ¢, <’ and F’ satisfy the conditions
of 528U. Setting

Qo={c:ce, gc<~ <jf(cue) for every e € M \ L},

ROT(Qo) has countable Maharam type, by 528U. But the map ¢ + cu sup L is an order-isomorphism
between Qo and Pp, so ROT(Py) has countable Maharam type. @

(iv) Thus AM(2, ji,) = ROT(P) is isomorphic to the product of finitely many Boolean algebras with
countable Maharam type, and has countable Maharam type (514Ef).

(b) Now suppose that (2, ) is localizable.

(i) In this case, let E be a partition of unity in 2 such that 2(, is homogeneous and 0 < fie < oo for
every e € E. Let € > 0 be such that ) fe>c e > . For each k € N, set

Ep,={e:e€ E,jie>27%c}, e} =supE.
By (a), AM(2L;, fi] ez ,v) has countable Maharam type for every k.

(ii) Now 528FD tells us that we have a sequence (m)ren such that 7y is a regular embedding of
AM(RAex, i RAex,y) into AM(L, i, ) for each k, and (J; ey me[AM (e, fi[ Aer , v)] T-generates AM(RL, fi, ).
So AM(%, i,7) has countable Maharam type. I For each k, we have a countable 7-generating set Dy C
AM(Rcx, i Aex, 7). Let & be the order-closed subalgebra of AM(2, i,7) generated by D = (J;cy 7k [Dr]-
For each k € N, 77,;1[6] is an order-closed subalgebra of AM(cx, fi]Aex, ) including Dy, so is the whole
of AM(Rey, il Aey,7), that is, mp[AM(RUe;, i Aez,v)] € &. Since Uy ey u[AM(RUe;, fi] Aey,v)] T-generates
AM(20, 2, 7), © — AM(2L, i, ) and 7(AM(20, 7)) < #(D) < w. @

(c) Thus we have the result when (2, i) is localizable. For the general case of atomless semi-finite (2, 1),
let (Ql u) be the localization of (%, 1) (322Q). Since the embedding A & 2A identifies A/ with A (322P)
{a:ae A, jia < ~} can be identified with P, and the regular open algebras AM(2(, @i, v) and AM(QL iy y)
are isomorphic. Again because 2/ and A are isomorphic, 2 is atomless. By (b), the common Maharam
type of AM(%, &, y) and AM(Q{,M, 7) is countable.

528X Basic exercises (a) Suppose that (X, X, 1) is a measure space and (2, i) its measure algebra.
Let £ C ¥ be a family such that p is outer regular with respect to £, and P the set {(F,a) : E € &,
uE < o < pX}, ordered by saying that (E,a) < (F,f) if E C F and 8 < a. Show that ROT(P) is
isomorphic to AM™ (2, fi).

(b) Let (A, &) be an atomless quasi-homogeneous semi-finite measure algebra. Show that AM(2(, fi,7) is
homogeneous whenever 0 < v < fl. (Hint: first check that 2 = 2;,, whenever a € 2 and 0 < fia < il.)

(c)(i) Let (A, ) be a totally finite measure algebra. Show that AM(R, i1, il) is isomorphic to 2. (ii)
Let (2, i) be an atomless measure algebra and e € 2 a non-zero element of finite measure. Show that the
principal ideal 2(, can be regularly embedded in AM(%L, &, jie).

(d) Show that if (2, i) is a probability algebra, 0 < v < 1 and k > max(w, 7(2()) then AM(2(, ii,~) can
be regularly embedded in AM(B,, x, 7).

(e) Let (X,%,%, 1) be a quasi-Radon measure space and (2, i) its amoeba algebra. Show that if 0 <
v < uX then the additivity of u is not a precaliber of AM(, fi, 7).
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(f) Let (2, z) be an atomless o-finite measure algebra and 0 < v < fl. Show that m(AM(2, fi,v)) =
wdistr(2().

(g) Let (2, 1) be an atomless semi-finite measure algebra. (i) Show that
c(AM* (2, @) = link,, (AM* (2, z)) = max(c(2), 7(2A))
for any integer m > 2. (ii) Show that
A(AM (2, 7)) = m(AM* (2, 7)) = max(cf[e(2)] <, 7(2).

(h) Show that for any cardinal  there is a probability algebra (2, 1) such that AM(, fi, 3) has Maharam
type k.

528Y Further exercises (a) Let (%, i) be an atomless quasi-homogeneous semi-finite measure algebra.
Show that AM* (2, i) is homogeneous.

(b) Let (2, 1) be an atomless totally finite measure algebra, and suppose that AM(2L, i, ) can be regularly
embedded in AM* (2L, i) for every v € |0, a1[. Show that 2 is homogeneous.

(c) Show that B, cannot be regularly embedded in AM(B,,, 7, 3).

(d) Let (2, 1) be an atomless probability algebra and v € ]0,1[. Show that AM(2L, fi,) is not weakly
(o, 00)-distributive.

(e) Let x be an infinite cardinal. Show that (i) 7(ROT(S8°)) = cf S is the cardinal power x“; (ii) for
every m > 2,

¢(ROT(8%)) = ¢1(8) = link,, (ROT(S)) = link! (S°) = &;
(iii) d(ROT(82°)) = dT(82°) = max(cf N, cf[k]=¥).

(f) Let (A, ) be a purely atomic semi-finite measure algebra of cellularity at most ¢, and 0 < v < fal.
Show that AM(%L, fi,~) has countable Maharam type.

(g) Let (A, 1) be an atomless semi-finite measure algebra and 0 < v < fil. Set £ = max(w, c(2A), 7(A))
and P ={a:a €U, fia < 7}; let P be the forcing notion (P, C,0,1) (see 5A3A). Show that |Fpk < wi.

(h) Show that if (A, 1) is a measure algebra with at most ¢ atoms, then 7(AM* (2, i) < w.

528Z Problems (a) Let (21, fir) be the measure algebra of Lebesgue measure on R. Is the amoeba
algebra AM(21y, fir,, 1) isomorphic to the amoeba algebra AM(B,,, 7, 5)?

(b) Let (2, z) be a probability algebra, B a closed subalgebra of 2, and 0 < v < 1. Is it necessarily true
that AM(B, 1] B,~) can be regularly embedded in AM(2, fi,v)? (See 528Xd and 528G.)

528 Notes and comments The ideas of 528 A-528K are based on TRUSS 88. The original amoeba algebras
of MARTIN & SOLOVAY 70, used in their proof that add A" > m (528L), are closest to 528C. For some more
about the amoeba algebras derived from Lebesgue measure, see BARTOSZYNSKI & JUDAH 95, §3.4. In this
section I have been willing to assume that the measure algebras involved are atomless; amoeba algebras are
surely still interesting for other measure algebras, but the new questions seem to be combinatoric rather than
measure-theoretic. It seems still to be unknown whether the algebras AM(2y, iz, 1) and AM(B,,, 7, 3)
are actually isomorphic, rather than just mutually embeddable (528K, 528Za).

If we think of the partially ordered sets of 528A and 5281 as forcing notions, we can study them in terms
of the forcing universes they lead to. This is associated with the prominence of ‘regular embeddings’ in this
section. I will not attempt to use such methods here, but I mention them because results such as 528Yg have
been part of the impulse for studying amoeba algebras, and led naturally to 528Ya, 528R and 528U-528V.
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Version of 26.5.11
529 Further partially ordered sets of measure theory

I end the chapter with notes on some more structures which can be approached by the methods used
earlier. The Banach lattices of Chapter 36 are of course partially ordered sets, and many of them can easily
be assigned places in the Tukey classification (529C, 529D, 529Xa). More surprising is the fact that the
Novak numbers of {0, 1}, for large I, are supported by the additivity of Lebesgue measure (529F); this is
associated with an interesting property of the localization poset from the last section (529E). There is a
similarly unexpected connexion between the covering number of Lebesgue measure and ‘reaping numbers’
t(wy, A) for large A (529H).

529A Notation As in previous sections, I will write A (u) for the null ideal of p in a measure space
(X,3, u), and NV for the null ideal of Lebesgue measure on R.

529B Proposition Let (2, 1) be a semi-finite measure algebra.
(a) For p € [1,00], give LP? = LP(2, 1) (definition: 366A) its norm topology. Then its topological density
is
d(LP) = 1if A = {0},
=wif 0 <#&) <w,
= max(c(2), 7(A)) if A is infinite.
(b) Give L° = L°(2l) its topology of convergence in measure (367L). Then

d(L%) =1 if A = {0},
=wif 0 < #(A) < w,
= 7(2) if A is infinite.
proof (a)(i) The case in which 2 is finite is elementary, since in this case LP = R™, where n is the number
of atoms of . So henceforth let us suppose that 2 is infinite.

(ii) If 2/ is the set of elements of 2 of finite measure, we have a natural injection a +— xa : %4/ — LP,
and ||xa — xb||, = p(a A b)1/?, s0 x is a homeomorphism for the measure metric on 2 and the norm metric
on LP. Tt follows that the density d(A) of A = {xa :a € Af} for the norm topology is equal to the density
of A/ for the strong measure-algebra topology, which is max(c(2), 7(2)), by 521Eb. So

max(c(A), 7(A)) = d(A4) < d(LP)

by 5A4B(h-ii). In the other direction, if Ay is a dense subset of A with cardinal d(A) and D is the set of
rational linear combinations of members of Ag, D D S(27) is dense in LP (366C), so

d(LP) < #(D) < max(w, #(4p)) = max(c(2A), 7(A)).
(b) Again, the case of finite 2 is trivial, so we need consider only infinite . In this case, 7(2) is equal
to the topological density dz(2) of 2 with its measure-algebra topology ¥ (521Ea).
(i) Let A C A be a topologically dense set of cardinal 7(2(). Set
D= {Z?:()%‘Xai 1qoy--- 5qn € Q7 ag, ... ,0n € Ql}a

so that D C L° has cardinal 7(2(). Because a +— xa : 2 — L? is continuous (367Ra), the closure D of D
includes {xa : a € A}. Because D is a linear subspace of L?, it includes S(21). Because S(2) is dense in L°
(367Nc), D = L° and d(L°) < #(D) = 7(21).

(ii) Let B C L° be a dense set with cardinal d(L"). Set
A={[u>1]:ue B},

(©) 2003 D. H. Fremlin
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so that A C A and #(A) < d(L°). Then A is topologically dense in A. P If c € A, a € A/ and € > 0, there
is a u € B such that [ |u— xc| A xa < e. But in this case, setting b = [u > 1], [x(b A ¢)| < 2|u — xcl, so

fglan (bAc)) < 2f lu — xc| A xa < e

As ¢, a and € are arbitrary, A is topologically dense in 2. Q
Accordingly

T(A) = d(A) < #(A) < d(L°)
and d(L°) = 7(2), as claimed.

529C Theorem (FREMLIN 91) Let U be an L-space. Then U =1 (!(x), where x = dimU if U is
finite-dimensional, and otherwise is the topological density of U.

proof (a) The finite-dimensional case is trivial, since in this case U and ¢!(k) are isomorphic as Banach
lattices. So henceforth let us suppose that U is infinite-dimensional. Now V : U x U — U is uniformly
continuous. I We have only to observe that u Vv = %(u + v+ |u — v|) in any Riesz space, that addition
and subtraction are uniformly continuous in any linear topological space, and that u +— |u| is uniformly
continuous just because ||lu] — |[v|]| < |u — v| (see 354B). Q So 524C, with @ = P = U, tells us that
U< o (FL)

The rest of the proof will therefore be devoted to showing that ¢!(x) <t U.

(b) By Kakutani’s theorem (369E), there is a localizable measure algebra (2, &) such that U is isomorphic,
as Banach lattice, to L'(2, ). Let (a;);c; be a partition of unity in 2 such that 0 < fia; < oo and the
principal ideal 2(,, is homogeneous for each i. Set k; = 7(,,), so that ; is either 0 or infinite for every i,
and x = max(#(I),sup;c; K;) by 529Ba.

It will simplify the calculations to follow if we arrange that all the a; have measure 1. To do this, set

va =y .cr (aza) for a € U; that is, va = f wdp, where w = Suplel Xaz in L°(2). In this case,
Jvdv = [vx wdp for every v € L' (2, 7), while [udi = fi x udv for every u € LY(, 1) (365514).

But this means that u — u x i is a Banach lattice isomorphism between L'(2, i) and L*(2,7), and U is
isomorphic, as L-space, to L' = L1(2l, 7); while 7a; = 1 for every i.

(c) There are a set J, with cardinal %, and a family (u;);c; in L' such that #(J) = &, |ju;|| < 2 for
every j € J and [|sup,c g ujf > 1/#(K) for every finite K C J. PP Set

J={(,0):i€l, k=0 U{(i,§) :i €I, &<k}

Then #(J) = . If i € I and k; = 0, set u(; 0y = xa;. If i € I and k; > 0, then (™U,,, 7[Ry, ) is a homogeneous
probability algebra with Maharam type k; > w, so is isomorphic to the measure algebra (€;, ;) of ]0,1]"™
with its usual measure \;, the product of Lebesgue measure on each copy of ]0, 1] (334E). For & < &, set

hie(t) = —,}@

and let u(; ¢) € L' correspond to hse € LY(\) = LY(€;, \) (365B). Of course

lu.oll :/hig(t (dt) / —doz

(because the coordinate map ¢ +— (&) is inverse-measure-preserving)
=2.

for ¢t €1]0,1]"™,

If L C KZ' is finite and not empty, then ||supgcr uge)ll = [ gd\i where g = supgcy, hig, that is, g(t) =

upEeL \/7

MFormerly 365T.

for t €10,1]™. Now, for any a > 1,
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Ni{t:g(t) < a} = N{t:a?t(€) > 1 for every £ € L}
—(1— é)#@) < max(%, 1- ﬁ#(m)

(induce on #(L))
=1- ﬁ#(L) if o > \/#(L).

So

(o)
| supug e |l = /gd)\i :/ Ai{t:g(t) > alda
¢eL 0
(2520)

> / . Ai{t 1 g(t) > a}da

1 _1
-/ O ]

What this means is that if K C J is finite and all the first coordinates of members of K are the same,
then | sup;cg ujl| > §4/#(K). In general, if K C J is finite, then for each i € I set L; = {¢ : (,¢) € K}.
Set v; = 0 if L; is empty, supgcy, u(i,¢) otherwise, so that [lv;| > 1/#(L;); now SUDjef Uj = ),

Isupsen usll = Sicr vill = 55 ies VAL > 53/ # L) = 3 /H#(E),

iel Vi, SO

as required. Q

(d) We can now apply the idea of the proof of 524C, as follows. The density of £*(k) is of course x, by
529Ba applied to counting measure on k, or otherwise. Index a dense subset of ¢!(k) as (yj)jes. For each
x € %, choose a sequence (k(x,n))pen in J such that

||.’E - Z:n,:o Yk(z,m) ” <8
for every n. Note that
-1 _
”yk(x,n)” < ||$ - Z%:O yk(l’m)” + ||‘T - Z:;L:O yk(»L,m)” <9.8™"

for each n. Choose f(x) € L' such that || f(z)| > [lz|| and f(x) > >0 1 27 ug(s,n); this is possible because
{Uk(z,n) : n € N} is bounded.

(e) f is a Tukey function. P Take v € L! and set
A={z: f(z) <v}, K,={k(z,n):xzec A}
for n € N. Fix n for the moment. If j € K, then there is an = € A such that j = k(z,n) and
Uj = Up(z,n) < 2" f(2) < 2™,
while [|y;l| = [[yk@ml < 9-87". If K C K, is finite, [|2"v| > %\/W, by (c); so #(K,) < 227F2|v|2.
This means that if we set 2z, = > . g [y;| we shall have [[z,[ < 98 "#(K,) < 36 - 27"||v||?, while
Yk(em) < 2n for every z € A.

Now z = > >° | 2, is defined in ¢! (), and if z € A then Y7 _ Yr(zs,m) < 2 for every n € N, so that = < 2.
Thus A is bounded above in £!(k). As v is arbitrary, f is a Tukey function. @

(f) Accordingly ¢* (k) < L' = U, and the proof is complete.

529D Theorem (FREMLIN 91) Let 2 be a homogeneous measurable algebra with Maharam type k > w.
Then LO(A) =1 (1 (k).
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proof (a) Let ji be such that (2, ji) is a probability algebra. If we give L® = L°(2) its topology of convergence
in measure, its density is x, by 529Bb. Moreover, this topology is defined by the metric (u,v) — [ |u—v|Ax1,
under which the lattice operation V is uniformly continuous. I Just as in part (a) of the proof of 529C,
we have uV v = 3(u+ v+ |u—v|) for all u and v, addition and subtraction are uniformly continuous, and
u + |u| is uniformly continuous. @ So, just as in 529C, we can use 524C to see that L° <1 ¢1(k).

(b) For the reverse connection, I repeat ideas from the proof of 529C. (2, i) is isomorphic to the measure
algebra (€, \) of |0, 1]" with its usual measure A. For £ < x and t € ]0,1]" set h¢(t) = L, and set ug = hg

V(&)
in LO(\) = L°(€) (3641c). This time, observe that if z € f1(k)™ and a > \/||z|| then

Alsupec, v/2(€)ue < ] = A(inf [va(©ue < o]) = J] My @ue < o

E<k
_ N ELS) _ z(§)
E<k (<K
>1- =Y w0
(<K

as o — co. This means that sup,_,, \/2(§)ug is defined in L°()) (364La). So we can define f : ¢! (k) — L())
by saying that f(z) = sup,_, /max(0, z(£))ue for every x € £'(k).

(c) fis a Tukey function. I Take v € LO%(A)T, and set A = {z : f(z) < v}. Note that f(zV z') =
f(@)V f(a') for all z, 2’ € {*(k), so A is upwards-directed. Take a > 0 such that AJv < a] = 8 > . If

x € Aand x > 0 then f(z) > /z(§)x1 so z(§) < « for every £. Now the calculation in (b) tells us that

8 < Msupec, V/a®ue < ol = [[ (1~ La(©))
E<k

1 1 1 1
< max(5,1— o= Zw(ﬁ)) = max(3, 1 — —|lz),
(<K

so ||z]| < 2a2(1 — B). As A is upwards-directed and norm-bounded and contains 0, it is bounded above in
01(k) (354N). As v is arbitrary, f is a Tukey function. Q
(d) Accordingly ¢}(k) < L°(\) = LO(A) and ¢!(x) and L°(A) are Tukey equivalent.
529E Proposition Let S be the (N, oco)-localization poset (528I). Then RO({0,1}¢) can be regularly
embedded in ROT(5%).
proof (a) Let (h¢)ec. be a family of eventually-different functions in NN (5A1Nc). Set
Wo=|J {(np):heNY pes> #p{n}]) =2"

n€N is even
(n,h(n)) ¢ p, (i,h(i)) € p for every i > n}
U{(h,p): h e N¥ pe 8>, (i,h(i)) € p for every i € N},

Wi= |J {(hp):heN" pes™ #p[{n}])=2"
n€N is odd

(n,h(n)) ¢ p, (i,h(i)) € p for every i > n}.
Observe that (i) Wo N Wy = 0 (ii) if (h,p) € W;, where j =0 or j =1, and p C ¢ € 8™ then (h,q) € W;
(iii) if p € S then
#({&: (he,p) € Wo UWL}) < ||p]|
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is finite.

(b) Set @ = Fn,(c,{0,1}), the set of functions from finite subsets of ¢ to {0,1}, ordered by extension
of functions, so that (Q, C) is isomorphic to (U, D) where U is the usual base of the topology of {0,1}, and
ROT(Q) = RO¥(U) can be identified with the regular open algebra of {0,1}¢ (514Sd). Define f : S® — Q
by setting f(p)(§) = j if (he,p) € Wj. Then f is order-preserving.

(c) For p € §%, set
Ao(p) ={€: ¢ <, {n:niseven, (n, he(n)) ¢ p} is finite},

Ai(p) ={¢: £ <, {n:nisodd, (n,he(n)) ¢ p} is finite},

Alp) = Ao(p) U A1(p),
so that A(p) is finite and dom f(p) C A(p). Now P, = {p : p € §, A(p) = dom f(p)} is cofinal with .
P Take p € §. Let m be such that

2™ > [|pll + #(A(p)),
(n, he(n)) € p whenever £ € Ag(p) and n > m is even,

(n, he(n)) € p whenever ¢ € A;(p) and n > m is odd.
Let p’ € 8 be such that

for n <m, p'[{n}] 2 p[{n}] and #('[{n}]) = 2",

for n.>m, p'[{n}] = pl{n}] U {he(n) : € € A(p)}.

Then p < p’ and A(p’) = A(p). Also A(p) = dom f(p’), because if £ € A(p) then either (n,he(n)) € p
for every n and (he,p’) € Wy, or there is a largest n such that (n,he(n)) ¢ p/, in which case n < m and
#('[{n}]) = 2", so (he,p’) belongs to Wy if n is even and W otherwise. Q

(d) If p € P, and q € Q extends f(p), there is a p; € §* such that p; D p and f(p1) = q. P Let m be
such that 2™ > ||p|| + #(dom ¢) and he(n) # h,(n) whenever £, n € dom g are distinct and n > m. For each
¢ € domg \ dom f(p) = domgq \ A(p), {n : n is even, (n, he¢(n)) ¢ p} and {n : n is odd, (n, he(n)) ¢ p} are
both infinite. So we can find m’ > m such that all these sets meet m’ \ m. Set

p'=pU{(n he(n)) :n€m’\'mis odd, q(§) = 0}
U{(n, he(n)) :nem’\ mis even, ¢(§) = 1}
U{(n,he(n)) :ne N\ m/, £ € domg},

so that p C p’ € 8. Let p; € 8™ be such that p; 2 p’, p1 \ p’ is finite, #(p1[{n}]) = 2™ for every n < m’
and (n, he(n)) ¢ p1 \ p’ whenever n € N and £ € domg. Now f(p1) = ¢, while p C p1. Q

(e) Putting (c) and (d) together, we see that f~1[Qo] must be cofinal with S for every cofinal Qo C Q;
moreover, since ) € P; and f(@) is the empty function, f[S*®°] = Q. So f satisfies the conditions of 5140,
and ROT(Q) =2 RO({0,1}*) can be regularly embedded in ROT(S5%).

529F Corollary (BRENDLE 00, 2.3.10; BRENDLE 06, Theorem 1) n({0,1}!) > add A for every set I.

proof If I is finite, this is trivial. Otherwise, write A = n({0,1}!). Then A > n({0,1}*). P If J C I
is a countably infinite set, then {{z : x[J = 2} : z € {0,1}7} is a cover of {0,1} by continuum many
nowhere dense sets, so A < ¢. Let (E¢)ecn be a cover of {0,1}* by nowhere dense sets. Then each E is
included in a nowhere dense closed set F¢ determined by coordinates in a countable set K¢ C I (4A2E(b-
iii)). Set K = J;.) K¢, so that #(K) < c¢. Then all the projections F{ = {z[K : z € F¢} are nowhere
dense in {0,1}% (apply 4A2B(f-ii) to the continuous open surjections z — x[ K¢ : {0,1} — {0,1}%¢ and
y =yl Ke: {0,1} — {0, 1}?), and they cover {0, 1}%. Next, we have an injection ¢ : K — ¢, and the sets
F{ ={z:2¢ € F{} form a cover of {0,1}* by nowhere dense sets; so n({0,1}*) < \. Q
Because every non-empty open set {0,1}¢ includes an open set homeomorphic to {0,1}¢,
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n({0,1}) = min{n(H) : H C {0,1}° is open and not empty}
— m(RO({0, 1}))
(517J)
> m(ROT(8™))
(where S is the (N, co)-localization poset, by 529E and 5171a)
= add V'

by 528N.

529G Reaping numbers (following BRENDLE 00) For cardinals § < A let (6, A) be the smallest cardinal
of any set A C [A]? such that for every B C X there is an A € A such that either A C B or AN B = ().

529H Proposition (BRENDLE 00, 2.7; BRENDLE 06, Theorem 5) t(w;,A) > cov N for all uncountable
A

proof Let (A¢)ec, be a family in [A]“!, where k < cov(N). I seek a B C A such that A; N B and A¢ \ B
are non-empty for every £ < k.

(a) If kK < ws, then choose {ag)e<y and (B¢)e<x inductively so that
ag € A \{By:n <&}, Be € Ac\{ay 1 <&}
for every £ < k, and set B = {f¢ : £ < k}; this serves. So henceforth let us suppose that £ > w;.
(b) For each € < k let Ay C A¢ be a set of order type wy. For each n, let X, be a set with cardinal n!
with its discrete topology and the uniform probability measure which gives measure % to every singleton.

Give X = HnGN X, its product measure p and its product topology. Because X is a compact metrizable
space and p is a Radon measure (416U), covN'(u) = cov N (522Wa). We can therefore choose a family
(e)e<r in X in such a way that each x, is random over its predecessors in the sense that

whenever £ < k and {z, : 7 € A’§ N ¢} is negligible, it does not contain z.

For distinct z, y € X, set A(z,y) = min{i : 2(i) # y(i)}. For v € X, set B(x) = {n : z,, # z, Az, x) is
even}.

(c) For every { <k, {z:2 € X, Ae C B(x)} and {z : 2 € X, A¢ N B(z) = 0} are negligible. I There is
a ¢ < k such that ¢ € A%, A; N ¢ is countable and D = {z,, : n € A; N(} is dense in {z;, : n € A¢}. Since
Te € D, D has measure greater than 0. By 2751, applied to the sequence (¥, ),cn where 3, is the finite
algebra of subsets of X determined by coordinates less than n, D has a point w which is a density point in
the sense that
myyin=win,yeD} _

w{yyIn=win} '

limy, o0
Consequently, setting
Jn ={y(n):y € D} ={y(n) : y € D} 2 {y(n) : y € D, yIn = win},

#(Jn) - plyyin=win,yeD}
n! T w{yyln=win}

—1

as n — 00.
Next note that, for any y € X and n € N,

plr:3i>n, z() =y@)} < Z;’im_l% < #—&ZU'

So
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p{z 3y € D,z(n) = y(n), x(2) # y(i) for every i > n}

#(Jn) _ n+2
2 n! (1 (n+1)(n+1)!)

as n — 00, and
p{z:Jy e D\ {z}, A(z,y) is even} = p{z :Jy € D\ {z}, A(x,y) is odd} = 1.
But if y € D\ {z} and A(z,y) is even, we have an n € A¢ such that A(z,z,) is even, and n € A¢ N B(x);

similarly, if there is a y € D \ {z} such that A(z,y) is odd, there is an n € A¢ \ B(z). So {z : A¢ C B(x)}
and {x : A¢ N B(x) = 0} are both negligible. Q

(d) Since cov N (i) = cov N > k, there is an = € X such that both A;NB(x) and A\ B(z) are non-empty
for every £ < k. So in this case also we have a suitable set B.

529X Basic exercises (a) Let (X, Y, 1) be a measure space, and p € [1,00[. Show that LP(u) =t £*(k),
where = dim LP(y) if this is finite, d(LP(u)) otherwise.

(b) Let U be an L-space. (i) Show that addU = oo if U = {0}, w otherwise. (ii) Show that add,, U = oo
if U is finite-dimensional, add A if U is separable and infinite-dimensional, wy otherwise. (iii) Show that
fU=1if U ={0}, wif 0 < dimU < w, max(ctN, cf[d(U)]=%) otherwise. (iv) Show that link’ (U) = 1 if
k < w, cfU otherwise.

(c) Let U be a separable Banach lattice. Suppose that (ug)e< is a family in U, where k£ < add . Show
that there is a family (eg)¢<, of strictly positive real numbers such that {ecue : € < K} is order-bounded in
U.

>(d) Let U be a separable Banach lattice, and D C U a dense set. Let A C U be a set with cardinal less
than add M. Show that there is a w € U such that for every u € A and every € > 0 there is a v € D such
that |u —v| < ew.

1

(e) Let T be the ideal of subsets I of N such that ), p—t

that add,Z = add N and cfZ = cf N.

is finite. (See 419A.) Show that ¢! =1 Z, so

(f) Show that if # < ¢ < X < X are cardinals, then t(6, A) < (¢, ).

(g)(i) Show that t(w,w) > covE > max(cov N, Mcountable), Where & is the ideal of subsets of R with
Lebesgue negligible closures. (ii) Show that if A is an infinite cardinal then t(w,\) > max(add N, cov Ny),
where N, is the null ideal of the usual measure on {0,1}*. (Hint: 529F.)

529Y Further exercises (a) Let X be a Polish space and K, the family of K, subsets of X. Show
that, defining <* as in 522C, (K5, C) <7 (NN, <*).

(b) Let X be a topological space with a countable network, and ¢ : PX — [0,00] an outer regular
submodular Choquet capacity (definitions: 432J). Show that if A is an upwards-directed family of subsets
of X such that #(A) < Ms-linked, then c¢(|JA) = sup 4¢ 4 c(4).

(c) Let r > 3 be an integer. (i) Let ¢ : PR” — [0, 00] be Choquet-Newton capacity (§479). Show that
if A is an upwards-directed family of subsets of R" such that #(A) < add N, then ¢(|J.A) = sup 44 c(4).
(Hint: 479Xi.) (ii) Let Z be the ideal of polar sets in R”. Show that addZ = add \V.

(d) Show that, for any infinite set I, the regular open algebra RO({0,1}!) of {0,1} is homogeneous, so
that m(RO({0,1}1)) = n({0,1}).

(e) Show that b < v(w,w) < 7(PN/[N]<¥).
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529 Notes and comments Many of the ideas of the last two chapters were first embodied in forcing
arguments. In 529E this becomes particularly transparent. If we have an upwards-directed set R C S
which is ‘generic’ in the sense that it meets all the cofinal subsets of S°° definable in a language £ with
terms for all the functions he, as well as such obvious ones as {p : #(p[{n}]) = 2"} for each n, and we set
S =JR, then S will belong to the set S = Sy of 522K, and we shall have he C* S for every ; so that we

have a corresponding function f(S) = Uper f(p) € {0,1}° defined by setting

F(9)(€) = sup{i : (i, he(i)) ¢ S} mod 2.

Next, if G C {0, 1}° is a dense open set with a definition in £, then f(S) € G; for, setting U, ={¢p: ¢ C ¢ €
{0,1} } when ¢ € Q = Fn,(¢,{0,1}), {q : U; € G} is cofinal with @, so {p : Uy € G} is cofinal with
S (part (d) of the proof of 529E) and meets R. Thus f(S) is ‘generic’ in the sense that it belongs to every
dense open set with a name in £; and it is a commonplace in the theory of forcing that a function which
transforms generic objects in one forcing extension into generic objects in another extension corresponds to
a regular embedding of the corresponding regular open algebras.
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