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Chapter 47
Geometric measure theory

I offer a chapter on geometric measure theory, continuing from Chapter 26. The greater part of it is
directed specifically at two topics: a version of the Divergence Theorem (475N) and the elementary theory
of Newtonian capacity and potential (§479). I do not attempt to provide a balanced view of the subject,
for which I must refer you to MATTILA 95, EVANS & GARIEPY 92 and FEDERER 69. However §472,
at least, deals with something which must be central to any approach, Besicovitch’s Density Theorem
for Radon measures on R” (472D). In §473 I examine Lipschitz functions, and give crude forms of some
fundamental ineqalities relating integrals [ || grad f||dp with other measures of the variation of a function
f (473H, 473K). In §474 I introduce perimeter measures A% and outward-normal functions 1z as those for
which the Divergence Theorem, in the form | pdivody = [¢.¢p d\2,, will be valid (474E), and give the
geometric description of 1g(z) as the Federer exterior normal to E at  (474R). In §475 I show that A%, can
be identified with normalized Hausdorff (r — 1)-dimensional measure on the essential boundary of E.

8471 is devoted to Hausdorff measures on general metric spaces, extending the ideas introduced in §264
for Euclidean space, up to basic results on densities (471P) and Howroyd’s theorem (471S). In §476 I turn to
a different topic, the problem of finding the subsets of R on which Lebesgue measure is most ‘concentrated’
in some sense. I present a number of classical results, the deepest being the Isoperimetric Theorem (476H):
among sets with a given measure, those with the smallest perimeters are the balls.

The last three sections are different again. Classical electrostatics led to a vigorous theory of capacity and
potential, based on the idea of ‘harmonic function’. It turns out that ‘Brownian motion’ in R” (§477) gives
an alternative and very powerful approach to the subject. I have brought Brownian motion and Wiener
measure to this chapter because I wish to use them to illuminate the geometry of R”; but much of §477
(in particular, the strong Markov property, 477G) is necessarily devoted to adapting ideas developed in
the more general contexts of Lévy and Gaussian processes, as described in §§455-456. In §478 I give the
most elementary parts of the theory of harmonic and superharmonic functions, building up to a definition of
‘harmonic measures’ based on Brownian motion (478P). In §479 I use these techniques to describe Newtonian
capacity and its extension Choquet-Newton capacity (479C) on Euclidean space of three or more dimensions,
and establish their basic properties (479E, 479F, 479N, 479P, 479U).

Version of 10.2.16

471 Hausdorff measures

I begin the chapter by returning to a class of measures which we have not examined in depth since
Chapter 26. The primary importance of these measures is in studying the geometry of Euclidean space; in
6265 I looked briefly at their use in describing surface measures, which will reappear in §475. Hausdorff
measures are also one of the basic tools in the study of fractals, but for such applications I must refer you
to FALCONER 90 and MATTILA 95. All I shall attempt to do here is to indicate some of the principal ideas
which are applicable to general metric spaces, and to look at some special properties of Hausdorff measures
related to the concerns of this chapter and of §261.

471A Definition Let (X, p) be a metric space and r € ]0,00[. For § > 0 and A C X, set

0,sA = inf{Z(diam D))" : (Dy)nen is a sequence of subsets of X covering A,
n=0

diam D,, < ¢ for every n € N}.
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2 Geometric measure theory 471A

(As in §264, take diam ) = 0 and inf ) = oo.) It will be useful to note that every 6,5 is an outer measure.
Now set

0,A =sups. 0,54

for A C X; 0, also is an outer measure on X, as in 264B; this is r-dimensional Hausdorff outer
measure on X. Let pp, be the measure defined by Carathéodory’s method from 6,.; pp, is -dimensional
Hausdorff measure on X.

Notation It may help if T list some notation already used elsewhere. Suppose that (X, p) is a metric space.
I write

B(z,0) ={y:p(y.z) <6}, Ulz,0)={y:p(y,z) <3}
for z € X, § > 0; recall that U(xz, ) is open (2A3G). For z € X and A, A’ C X I write
p(l', A) = innyA p(.’L’, y)> p(A, A/) = innyA,ZEA’ p(y, Z);

for definiteness, take inf () to be oo, as before.

471B Definition Let (X, p) be a metric space. An outer measure 6 on X is a metric outer measure
it 0(AU B) = A + 6B whenever A, B C X and p(A, B) > 0.

471C Proposition Let (X, p) be a metric space and 6 a metric outer measure on X. Let p be the
measure on X defined from 6 by Carathéodory’s method. Then p is a topological measure.

proof (Compare 264E, part (b) of the proof.) Let G C X be open, and A any subset of X such that
A < oo. Set

A, ={z:z2z €A, p(z,A\ G) > 27"},

B():AAO7 Bn:An\An—l for n > 1.

Observe that A, C A1 for every n and J,cny An = Upen Bn = ANG. The point is that if m, n € N
and n > m + 2, and if x € B,, and y € B,,, then there is a z € A\ G such that p(y,z) < 27"t < 27-m~1L
while p(x,z) must be at least 2™, so p(z,y) > p(z,2) — p(y,2z) > 27™"L. Thus p(B,,, B,) > 0 whenever
n > m + 2. It follows that for any k& > 0

S0 0B = 0(U,, < Bam) < 0(ANG) < o0,

om0 0Bami1 = 0(U,<, Bams1) < 0(ANG) < oo,

Consequently > 6B, < cc.
But now, given € > 0, there is an m such that Z?:m 0B,, <, so that

0(ANG)+0(A\G) <04, + i 0B, +0(A\ G)
< 6+9A,:ji-m9(A\G) =e+0(A,U(A\Q))
(since p(Ap, A\ G) >27™)
< e+ 0A.

As e is arbitrary, 0(ANG) + 0(A\ G) < HA. As A is arbitrary, G is measured by u; as G is arbitrary, p is a
topological measure.

471D Theorem Let (X, p) be a metric space and r > 0. Let pg, be r-dimensional Hausdorff measure
on X, and ¥ its domain; write 6, for r-dimensional Hausdorff outer measure on X, as defined in 471A.

(a) pgr is a topological measure.

(b) For every A C X there is a Gs set H D A such that pugy,H = 0, A.

(c) 0, is the outer measure defined from pp, (that is, 6, is a regular outer measure).

MEASURE THEORY



471D Hausdorff measures 3

(d) ¥ is closed under Souslin’s operation.

(e) pprE =sup{pg,F : F C E is closed} whenever F € ¥ and ppg,.E < oo.

(f) If AC X and 6,A < oo then A is separable and the set of isolated points of A is up,-negligible.
(&) ptmr is atomless.

(h) If ppy, is totally finite it is a quasi-Radon measure.

proof (a) The point is that 6,, as defined in 471A, is a metric outer measure. I* (Compare 264E, part (a)
of the proof.) Let A, B be subsets of X such that p(A, B) > 0. Of course 6,.(AU B) < §,A+ 60, B, because
0, is an outer measure. For the reverse inequality, we may suppose that 6,.(A U B) < oo, so that 6, A and
0. B are both finite. Let € > 0 and let 41, do > 0 be such that

0, A+6,B <0,5A+0,.5,8+¢,
defining the 6,.5, as in 471A. Set § = min(dy, d2, %p(A,B)) > 0 and let (Dy)nen be a sequence of sets of
diameter at most 4, covering AU B, and such that Y > (diam D,,)" < 6,5(AU B) + €. Set
K={n:D,NnA#0}, L={n:D,NB#0}.
Because p(x,y) > diam D,, whenever x € A, y € B and n € N, KN L = (}; and of course A C |J,,c s Dr,

B C Une . Drn. Consequently

0,A+0,B<e+0,5,A+0,5,B<e+ Y (diamD,)" + > (diam D,)"
nekK neL

<e+ Y (diamD,)" < 2¢+0,5(AUB) < 2¢+0,(AU B).
n=0

As e is arbitrary, 6,(AU B) > 0, A+ 0, B, and we therefore have equality. As A and B are arbitrary, 6, is a
metric outer measure. Q
Now 471C tells us that g, must be a topological measure.

(b) (Compare 264Fa.) If 6, A = oo this is trivial. Otherwise, for each n € N; let (D,,;);en be a sequence
of sets of diameter at most 27" such that A C |J;cyy Di and Y2 (diam Dy;)" < 6,.5-n(A) + 27", defining
0,2-~ as in 471A. Let n,; € ]0,27"] be such that (2n,; + diam D,,;)" < 27"7¢ + (diam D,;)", and set
Gni = {x: p(x,Dp;i) < i}, for all n, i € N; then G,,; = UxeDm U(x,mn;) is an open set including D,,; and
(diam G,;)" < 27"7¢ 4 (diam D,,;)". Set

H= mnGN UiGN Gni
so that H is a Gy set including A.

For any § > 0, there is an n € N such that 3-27" < §, so that diam G,,,; < diam D,,;; + 27,,,; < 9§ for
every ¢ € N and m > n, and

oo oo
OpsH < (diam Gppi)” <Y 277" 4 (diam Dyy;)"
=0 =0
<274 g m(A)+27 <272 49, A

for every m > n. Accordingly 0,sH < 6,.A for every 6 > 0, so 6,H < 6,.A. Of course this means that
0,.H = 0, A; and since, by (a), pg, measures H, we have uy,.H = 0,.A, as required.

(c) (Compare 264Fb.) If A C X,

0,A> 1y, A

(by (b))
=inf{,E: ACEecX}>0.A

(d) Use 431C.

D.H.FREMLIN



4 Geometric measure theory 471D

(e) By (b), there is a Borel set H DO E such that ug,.H = pp,-F, and now there is a Borel set H' O H\ F
such that pg,.H = pp(H \ E) =0, so that G = H \ H' is a Borel set included in E and pup,G = pug-E.
Now G is a Baire set (4A3Kb), so is Souslin-F (421L), and px,G = SUPpcg is closed KHr > Dy 431E.

(f) For every n € N, there must be a sequence (D,,;);en of sets of diameter at most 27" covering A; now
if D C A is a countable set which meets D,; whenever i, n € N and AN D,; # 0, D will be dense in A. If
Ay is the set of isolated points in A, it is still separable (4A2P(a-iv)); but as the only dense subset of Ag is
itself, it is countable. Since 6,s{z} = (diam{z})" = 0 for every 6 > 0, ug,{z} = 0 for every x € X, and Ay
is negligible.

(g) In fact, if A C X and 6, A > 0, there are disjoint Ag, A; C A such that 6, A4; > 0 for both i. I (i)
Suppose first that A is not separable. For each n € N, let D,, C A be a maximal set such that p(z,y) > 27"
for all distinct x, y € Dy; then | J, .y Dy is dense in A, so there is some n € N such that D,, is uncountable;
if we take A1, As to be disjoint uncountable subsets of D,,, then 6, 4; = 0, As = co. (ii) If A is separable,
then set G = {G : G C X is open, 6,(ANG) = 0}. Because A is hereditarily Lindeldf (4A2P(a-iii)), there is
a countable subset Gy of G such that ANJG = ANJGo (4A2H(c-1)), so ANJG is negligible and A\ |JG
has at least two points zg, z1. If we set A; = ANU(z;, 3p(x;,21-;)) for each i, these are disjoint subsets of
A of non-zero outer measure. Q

(h) If py, is totally finite, then it is inner regular with respect to the closed sets, by (e). Also, because
X must be separable, by (f), therefore hereditarily Lindelof, pz, must be T-additive (4140). Finally, g,
is complete just because it is defined by Carathéodory’s method. So pg, is a quasi-Radon measure.

471E Corollary If (X, p) is a metric space, r > 0 and Y C X then r-dimensional Hausdorfl measure

ugr) on Y extends the subspace measure (pg(r))y on Y induced by r-dimensional Hausdorff measure ,ug(r)

on X; and if either Y is measured by ,ug? or Y has finite r-dimensional Hausdorff outer measure in X, then
Y X

pir? = (g )y

proof Write Gﬁx) and GSY) for the two r-dimensional Hausdorfl outer measures.

If ACY and (Dy)nen is any sequence of subsets of X covering A, then (D, NY),cn is a sequence
of subsets of Y covering A, and Y >  (diam(D, NY))" < >  (diam D,)"; moreover, when calculating
diam(D,, NY), it doesn’t matter whether we use the metric p on X or the subspace metric p[Y x Y on
Y. What this means is that, for any § > 0, 6,5A is the same whether calculated in Y or in X, so that
0 A = supg. 05 A = 65 A,

Thus Gﬁy) = 97@ ['PY. Also, by 471Db, 61(”)() is a regular outer measure. So 214Hb gives the results.

471F Corollary Let (X, p) be an analytic metric space (that is, a metric space in which the topology is
analytic in the sense of §423), and write pp, for r-dimensional Hausdorff measure on X. Suppose that v is
a locally finite indefinite-integral measure over pg,. Then v is a Radon measure.

proof Since domv O dom pug,, v is a topological measure. Because X is separable, therefore hereditarily
Lindeldf, v is o-finite and 7-additive, therefore locally determined and effectively locally finite. Next, it is
inner regular with respect to the closed sets. I* Let f be a Radon-Nikodym derivative of v. If vE > 0, there
is an E' C E such that

O<yE’:ff><XE’duH7.<oo.

There is a g, -simple function g such that g < f x xE' pg,-a.e. and [ gdpp, > 0; setting H = E' N {x :
g(x) > 0}, vy, H < co. Now there is a closed set F' C H such that pg,.F > 0, by 471De, and in this case
vF > fF gdpg, > 0. By 412B, this is enough to show that v is inner regular with respect to the closed sets.

Since v is complete (2341), it is a quasi-Radon measure, therefore a Radon measure (434Jf, 434Jb).

471G Increasing Sets Lemma (DAVIES 70) Let (X, p) be a metric space and r > 0.
(a) Suppose that 6 > 0 and that (A,)nen is a non-decreasing sequence of subsets of X with union A.
Then 6,65(A) < (5" 4 2) sup,,en Ors An-
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471G Hausdorff measures 5

(b) Suppose that 6 > 0 and that (A,),en is a non-decreasing sequence of subsets of X with union A.
Then 6,5A = sup,,cn OrsAn.

proof (a) If sup,,cy 0r5An = oo this is trivial; suppose otherwise.

(i) Take any v > 7 > sup,ey0rsAn. For each i € N, let ¢; € ]0,16] be such that (a + )" <

a” + 277 (y —4/) whenever 0 < a < §. For each n € N, there is a sequence (Cy;)ien of sets covering A,
such that diam C,; < § for every i and > ;- (diam Cy,;)" < 7/; let (7n;)ien be such that diam Cp,; < 7y, <6
and v,,; > 0 for every i and Y ;o 7", < 7/. Since Y o 7~, is finite, lim; o0 ¥ = 0. Because v,,; > 0 for
every ¢, we may rearrange the sequences (Cp;)ien, (Vni)ien in such a way that v,; > 7, ;41 for each 7.

In this case, lim; o SUp,envni = 0. P

(04 Dvne < X0 Vg <
for every n, i € N. Q

(ii) By Ramsey’s theorem (4A1G, with n = 2), there is an infinite set I C N such that
for all i, j € N there is an s € N such that either C,,; N Cy; = 0 whenever m, n € I and
s <m < nor Chy; NCp;j #0 whenever m, n € I and s <m < mn,

for each i € N, a;; = limyer,n—00 Yni is defined in R.
(Apply 4A1Fb with the families
Ji; ={J : J € [N]®, either Cp,; N Cyj = 0 whenever m, n € J and m <n
or Cp,i N Chj # O whenever m, n € J and m < n}
Jig ={J : J € [N]*, either v,; < q for every n € J
or Yni > q for every n € J}

fori, jeNand ¢ € Q.)

Of course o; < o < § whenever ¢ < j, because vy,; < Y < 6 for every n. Set D,; = {z : p(z,Cp;) <
20; 4 2¢;} for all n, i € N, and D; = (J, ﬂnel\s D,,; for i € N. (I am identifying each s € N with the set
of its predecessors.) Note that if i € N and z, y € D;, then there is an s € N such that z, y both belong to
D,,; for every n € I'\'s, so p(z,y) < diam D,,; for every n € I\ s and p(z,y) < iminf,cr ,— o0 diam Dy,.
Accordingly diam D; < liminf, e 5,—s00 diam Dp;.

(iii) Set
L={(i,j):4,jeN,VseNIm,nel, s<m<nand Cy; NCy; #0}.

If (4,7) € L then there is an s € N such that Cp,; € Diyin(;,5) Whenever m € I and m > s. P By the choice
of I, we know that there is an sy € N such that Cy,; N Cy; # 0 whenever m, n € I and so < m < n. Let
$1 > Sp be such that

Ymi < +min(C, ¢G),  Ymy < o + min(G, ¢G)

whenever m € I and m > s;. Take mg € I such that mg > s1, and set s = mg + 1. Let m € I be such that
m > S.

(a) Suppose that ¢ < j and « € C,y;. Take any n € I such that m < n. Then there is an n’ € I such
that n < n/. We know that C.,; N Cy/j and Cp; N Cyrj; are both non-empty. So

p(x,Cy;) < diam C; +diam Crrj < Yps + g < @ + G+ a5 + ¢ < 205 +2¢;
and x € D,;. This is true for all n € I such that n > m, so z € D;. As z is arbitrary, Cy,; C D;.

(B) Suppose that j < i and « € C,,;. Take any n € I such that n > m. Then C,,; N C,; is not
empty, so

p(z,Cpj) <diamCryy <vi <o + (G <o+ ¢

and x € Dy;. As x and n are arbitrary, Cp,; C D;.
Thus Cpni € Diingi,j) in both cases. Q

(iv) Set

D.H.FREMLIN



6 Geometric measure theory 471G

D=U;enDi, J={i:ieN,IseN,Cpy €D whenever n € I and n > s}.

If i e N\ J and j € N, then (iii) tells us that (i,j) ¢ L, so there is some s € N such that C,,; N C,; =0
whenever m, n € I and s < m < n.

(v) For I € N, u3,.(A;\ D) < 2vy. P Let € > 0. Then there is a k¥ € N such that 7,; < ¢ whenever
n € N and 7 > k. Next, there is an s € N such that

Chi € D whenever i < k,i€ J,nel and s <n,

CrmiNCpj =0 whenever ¢, j < k,i¢ J, m,nelands<m<n.
Take m, n € I such that max(l,s) < m < n. Then

AN\D={JANCni\D

i€N
C | JAnnCri\ D)U | Crs
i<k i>k
c U (An n sz) U U Cmi
i<k,ig¢J i>k
c U ©CuntpulCyullCm
i<k,i¢Jj<k >k i>k
=JcnulCmi
i>k i>k

Since diam C,; < v; < € and diam C,,,; < ; < e for all 7, j > &,
0re(A\ D) < D220 Vi T D imkr1 Yo < 27
This is true for every € > 0, so u};,.(4; \ D) < 27, as claimed. Q

(vi) This is true for each I € N. But this means that pj;,.(A\ D) < 2v (132Ae). Now 6, 65D < 57y. P
For each 7 € N,

diam D; < liminf diam D,; < liminf diam C,; + 4c; + 4¢;

nel,n—oo nel,n—oo
nel,n—oo

Next, for any k € N,

k r__ 1 k r /
Zi:o af = limpernsoo Zizo Vni S

SO

k k k
D (diam Dy)" <57 (i + )" <57 (Y ai +27 (v —+))
i=0 i=0 i=0
(by the choice of the ;)
k

<5 (Y +> 27 (v —9) <57
i=0
Letting k — oo,
065D < Y i°o(diam D;)" < 5"y. Q
Putting these together,
Or66A < 0r65D 4 0r65(A\ D) < 065D + pl;,.(A\ D) < (5" +2)7.

As v is arbitrary, we have the preliminary result (a).
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471G Hausdorff measures 7

(b) Now let us turn to the sharp form (b). Once again, we may suppose that sup,,cy -5 A, is finite.
(i) Take v such that sup,,cy8rsA4, <. As in (a)(i) above, we can find a family (Cy;i)n ien such that
An - UiEN Cni7
diam C),; < 6 for every ¢ € N,

Yoo o(diam Cry)" < v
for each n, and
lim;_, o sup,, ¢y diam Ci,; = 0.

Replacing each C),; by its closure if necessary, we may suppose that every C,; is a Borel set.
Let @ C X be a countable set which meets C),; whenever n, ¢ € N and C),; is not empty. This time, let
I C N be an infinite set such that

a; = limyer oo diam C,y; is defined in [0, §] for every ¢ € N,

limper n—oo (2, Cni) is defined in [0, 00| for every i € N and every z € Q.

(Take p(z,0) = oo if any of the Cy; are empty.) It will be helpful to note straight away that the limit
limy,e1,n—00 p(x, Cri) is defined in [0,00] for every i € N and x € Q. P If limyer n—oo p(y, Cni) = oo for
some y € Q, then lim,es n—oo p(z,Cri) = o0, and we can stop. Otherwise, for any € > 0, there are a
z € @ such that p(z,z) < e and an s € N such that C,,; is not empty and |p(z, Cpi) — p(2,Chi)| < €
whenever m, n € I'\ s; in which case |p(z, Cpi) — p(z, Cps)| < 3¢ whenever m, n € I'\ s. As e is arbitrary,
limyer nooo p(x, Cpi) is defined in R. Q

Let F be a non-principal ultrafilter on N containing I, and for ¢ € N set

Di = {& : limp, 7 pl2, Coi) = 0},
Set D = J;ey Di- (Actually it is easy to check that every D; is closed.)
(ii) Set
A" =Upen mnel\m Uien Cni \ D;
note that A* is a Borel set. For k, m € N, set
Al = ﬂnel\m UiZk Chi-

For fixed k, (Aj,,)men is a non-decreasing sequence of sets. Also its union includes A*. I Take x € A*.

(@)? Ifz ¢ @, let € > 0 be such that QN B(x,¢) = 0. Let [ € N be such that diam C,,; < € whenever
n € N and ¢ > [; then z ¢ C,; whenever n € N and ¢ > [. Let m € N be such that = € UiEN C,; whenever

n €l and n>m. Then z € Ui<l Cpi whenever n € I and n > m. But this means that there must be some
i < lsuch that {n:x € C,;} € F and z € D; C D; which is impossible. X

(B) Thus z € Q, so limpes nsoo p(z,Cr;) is defined for each i (see (i) above), and must be greater
than 0, since ¢ D;. In particular, there is an s € N such that « ¢ C,,; whenever i < k and n € I\ s; there is

also an m € N such that z € ﬂnef\m Uien Cni; so that x € A} max(s,m)- A8 T is arbitrary, A* C Unmen 4im
Q

(iii) ppgrA* is finite. P Take any € > 0. Let & € N be such that diam C,,; < ¢ whenever ¢ > k and
n € N. For any m € I, 0, A}, <>, (diam C,,;)" < ~. By (a),

Or6e A" < (5" 4 2) sup Oy A,
meN

=("4+2) su% Ore Ay, < (57 +2)7.
me

As e is arbitrary, pp.A* < (5" +2)y < 00. Q
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8 Geometric measure theory 471G

(iv) Actually, pp,A* < v — > ;2 al. P? Suppose, if possible, otherwise. Take § such that v —
Scoal < B < purA*. Forx € A* and k € N, set fr(z) = min{n : n € I, z € A} }; then (fi)ren is a
non-decreasing sequence of Borel measurable functions from A* to N. Choose (sj)ren inductively so that

par{x iz e A%, fi(z) <s; for every j <k} > f3

for every k € N. Set A = {z : z € A*, fi(xz) < s; for every j € N}; because pp,A* is finite, warA > B.

Take € > 0 such that 6, A > ¥ — Z;’ZO of. Let k € N be such that 0, A+ Zi:ol aj > v and diam C,; <€
k—1

whenever n € N and i > k. Take n € I such that n > s; for every j <k and 0, A+ 37 (diam Cpy)" > .
If z € A, then

fe(x) <sp <n, @€ A}, CUispCnis
50 B, A < 322, (diam C,,;)"; but this means that Yo o(diam Cp;)" > 7, contrary to the choice of the Ch;.
xXQ

(v) Now observe that

A CUpmen Nusm Uien Cni € A* U D.

Moreover, for any i € N, diam D; < o; < §. P If 2, y € D; then for every e > 0
p(z,Chni) <€, py,Cni) <e, diamChp; < a;+¢

for all but finitely many n € I. So p(x,y) < a; + 3e. As x, y and € are arbitrary, diam D; = diam D; < a.
Of course a; < § because diam C),; < § for every n. Q
Now

06D <Y 72 (diam D;)" < 322 al.
Putting this together with (iv),
0r6A < 0p5D + 0,5 A" < 06D + pprA* <.
As 7 is arbitrary,
Ors A < sup, ey OrsAn;

as 6,5 is an outer measure, we have equality.

471H Corollary Let (X, p) be a metric space, and r > 0. For A C X, set
Oroc A =inf{} > (diam D,,)" : (Dy)nen is a sequence of subsets of X covering A}.
Then 6, is an outer regular Choquet capacity on X.
proof (a) Of course 0 < 6,504 < 0,.00B whenever A C B C X.

(b) Suppose that (A,),en is a non-decreasing sequence of subsets of A with union A. By (a), v =
limy, o0 OrooAn is defined and less than or equal to 0,,,A. If v = oo, of course it is equal to 6, A.
Otherwise, take 8 = (v + 1)1/’“. For n, k € N there is a sequence (D,;)ien of sets, covering A,,, such that
Z;’io(diam Dyri)” < v+ 27%. But in this case diam D,,; < 3 for all n, k and 4, so the D,,; witness that
0,84, <. By 471Gb, v > 6,34 > 0,5 A and again we have 7 = 0,5 A.

(c) Let A C X be any set, and suppose that v > 60,..0A. Let (D,)nen be a sequence of sets, covering
A, such that Y 7 j(diam D,,)” < 7. Let (€,)nen be a sequence of strictly positive real numbers such that
S0 o(diam Dy, + 2¢,)" < 7. Set G, = {z : p(z,D,) < €,} for each n; then G,, is open and diam G,, <
diam Dy, + 2¢,. So G = [J,,cy G is an open set including A, and (G)nen witnesses that 0,.,G <. As A
and +y are arbitrary, the condition of 432Jb is satisfied and 6,.o, is an outer regular Choquet capacity.

Remark 6, is ~-dimensional Hausdorff capacity on X.

4711 Theorem Let (X, p) be a metric space, and r > 0. Write p g, for r-dimensional Hausdorff measure
on X. If A C X is analytic, then pp, A is defined and equal to sup{upg,K : K C A is compact}.
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471J Hausdorff measures 9

proof (a) Before embarking on the main line of the proof, it will be convenient to set out a preliminary
result. For 6 >0, n € N, B C X set

Hﬁg)(B) =inf{}°" (diam D;)" : B C U,,, Di, diam D; < § for every i < n},

taking inf ) = 0o as usual. Then 6,5B < 6% (B) for every n. Now the point is that 63 (B) = sup{6\"(I) :
I C B is finite}. P Set v = sup;¢(pj<w 9" (I). Of course v < 67 (B). If v = oo there is nothing
more to say. Otherwise, take any 7' > ~. For each I € [B]<¥, we have a function fr : I — {0,...,n}
such that ). ; p(@;,9:)" < " whenever J C {0,... ,n} and z;, y; € I and fr(z;) = fr(y;) = i for every
i € J, while p(z,y) < § whenever z, y € I and fr(z) = fi(y). Let F be an ultrafilter on [B]<“ such that
{I:xzele[B|<¥}e F for every x € B (4A1la). Then for every x € B there is an f(z) € {0,... ,n} such
that {I : z € I € [B]<¥, fr(z) = f(z)} € F. Set D; = f~1[{i}] for i < n. If z, y € B and f(x) = f(y),
there is an I € [B]<“ containing both x and y such that fr(z) = f(z) = f(y) = f1(y), so that p(z,y) < §;
thus diam D; < § for each i. If J C {0,...,n} and for each i € J we take x;, y; € D;, then there is
an I € [B]<* such that fi(z;) = f1(y;) = i for every i € J, so >, p(xs,y;)" < +'. This means that

> ien(diam D;)" < 4/, so that Gig)(B) < 4. As v/ is arbitrary, 057;)(3) < v, as claimed. Q

(b) Now let us turn to the set A. Because A is Souslin-F (422Ha), p g, measures A (471Da, 471Dd). Set
v =sup{pup,K : K C Ais compact}.

? Suppose, if possible, that pp,.A > 7. Take v' € |y, pgrA[. Let 6 > 0 be such that 4" < 6,5A. Let
f: NN — A be a continuous surjection. For o € S = Unen N”, set

F,={¢:¢ e NN ¢(i) < o(i) for every i < #(0)},
so that f[Fy] = A. Now choose 1) € NY and a sequence (I,,),en of finite subsets of NY inductively, as follows.

Given that I; C Fy,, for every j < n and that 0,5(f[Fyn]) > 7/, then Gf_g)(f[Fwn]) > ', so by (a) above
there is a finite subset I,, of Fy |, such that Ogg)(f[fn]) > ~'. Next,

Jim Ors f[Flppny~<is] = Ors(|J FFp1n)~<i])
ieN
(by 471G)
=0Orsf[Fyprn] >,

so we can take 1(n) such that Ujgn I; C Fypnt1 and 0,5 f[Fypny1] >+, and continue.
At the end of the induction, set K = {¢: ¢ < ¢}. Then f[K] is a compact subset of A, and I,, C K for
every n € N, so
0,5 (FIK]) > 6,5 (1)) >/
for every n € N. On the other hand, pg,(f[K]) < 7, so there is a sequence (D;);cn of sets, covering

f[K], all of diameter less than 4, such that Y ;° (diam D;)" < +'. Enlarging the D; slightly if need be, we
may suppose that they are all open. But in this case there is some finite n such that K C Uign D;, and

97(,2)(1() < 3oF o(diam D;)" < +'; which is impossible. X
This contradiction shows that pp,.A = 7, as required.

471J Proposition Let (X, p) and (Y, o) be metric spaces, and f : X — Y a 7-Lipschitz function, where

v>0. If r >0 and 97(-X), 99/) are the r-dimensional Hausdorff outer measures on X and Y respectively,
then 9£Y)f[A] < fy’”&ﬁX)A for every A C X.

proof (Compare 264G.) Let § > 0. Set n = 6/(1+ ) and consider 97(«5,() : PX — [0, 00], defined as in 471A.
We know that Gﬁx)A > 0,(,7)7()/1, so there is a sequence (D, )nen of sets, all of diameter at most 7, covering
A, with 320° (diam D,,)" < 65 A + 6. Now f[A] C U, oy f[Dn] and

diam f[Dy] < ydiam D, <7 <6

for every n. Consequently
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10 Geometric measure theory 471J

053 (F1A]) < 02 (diam F[D,))" < 320297 (diam D)™ < 47 (64 A+ 5),
and
07 (F1A]) = lims 008 (£[A]) < 47040 4,

as claimed.

471K Lemma Let (X, p) be a metric space, and r > 0. Let g, be r-dimensional Hausdorff measure on
X. If AC X, then pugy,A =0 iff for every € > 0 there is a countable family D of sets, covering A, such that

> pep(diam D)" <e.

proof If pp,.A =0 and e > 0, then, in the language of 471A, 6,1 A < ¢, so there is a sequence (D, )nen of
sets covering A such that Y ° (diam D,)" <e.

If the condition is satisfied, then for any €, 6 > 0 there is a countable family D of sets, covering A,
such that )", p(diam D)” < min(e,d"). If D is infinite, enumerate it as (Dy)nen; if it is finite, enumerate
it as (Dp)n<m and set D, = 0 for n > m. Now A C |J, .y Dn and diam D,, < 6 for every n € N, so
0,.sA < Zflozo (diam D,,)" < e. As € is arbitrary, ,5A = 0; as § is arbitrary, 6, A = 0; it follows at once that
prrA is defined and is zero (113Xa).

471L Proposition Let (X, p) be a metric space and 0 < r < s. If A C X is such that pj;,.A is finite,
then pugsA =0.

proof Let € > 0. Let § > 0 be such that §°~"(1 + pj};,.A) < e. Then there is a sequence (A, )nen of sets of
diameter at most ¢ such that A C |J,, .y An and Y7 ((diam A,)" < 1+ pj;, A. But now, by the choice of
6, Y0 o(diam A,,)% < e. As e is arbitrary, ppsA =0, by 471K.

471M There is a generalization of the density theorems of §§223 and 261 for general Hausdorff measures,
which (as one expects) depends on a kind of Vitali theorem. I will use the following notation for the next
few paragraphs.

Definition If (X, p) is a metric space and A C X, write A~ for {z : z € X, p(z, A) < 2diam A}, where
p(z, A) = inf, e 4 p(x,y). (Following the conventions of 471A, 0~ = 0.)

471N Lemma Let (X, p) be a metric space. Let F be a family of subsets of X such that {diam F' : F € F}
is bounded. Set

Y = Nsoo U{F : F € F, diam F < 6}.

Then there is a disjoint family Z C F such that
) UF CUper I3
(i) Y C UJUUFez\JFN for every J C 7.

proof (a) Let v be an upper bound for {diam F' : F' € F}. Choose (Z,,)nen, (Jn)nen inductively, as follows.
Ty = 0. Given I,, set F), = {F : F € F,diamF > 27"y, FNJZ, = 0}, and let J,, C F,, be a maximal
disjoint set; now set Z,,4+1 = Z, U Jp,, and continue.

At the end of the induction, set

T =UpenZn, IT=7U{{z}:x2c F\UZ, {2} c F}.
The construction ensures that every 7, is a disjoint subset of F, so Z’ and Z are also disjoint subfamilies of

].'

(b) 7 Suppose, if possible, that there is a point z in JF \ Upez F~. Let F' € F be such that z € F.
Since x ¢ |JZ' and {z} ¢ Z, {z} ¢ F, and diam F > 0; let n € N be such that 27"y < diam F < 27" "1y,
If F ¢ F), there is a D € Z,, such that F N D # §; otherwise, since 7, is maximal and F ¢ 7, there is a
D € J,, such that FN D # (). In either case, we have a D € T such that FN D # () and diam F' < 2 diam D.
But in this case p(z, D) < diam F < 2diam D and x € D™, which is impossible. X

(c) ? Suppose, if possible, that there are a point € Y and a set J C Z such that = ¢ |J jUUFeI\j .
Then there is an F' € F such that z € F and diam F < p(z,|JJ), so that FNJJ = 0. As in (b), F
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471P Hausdorff measures 11

cannot be {z}, and there must be an n € N such that 27"y < diam F' < 27"y, As in (b), there must
be a D € Z,.1 such that F N D # (), so that x € D™; and as D cannot belong to J, we again have a
contradiction. X

4710 Lemma Let (X, p) be a metric space, and r > 0. Suppose that A, F are such that
(i) F is a family of closed subsets of X such that > ° (diam F,,)" is finite for every disjoint
sequence (F)nen in F,
(ii) for every x € A, 6 > 0 there is an F' € F such that z € F and 0 < diam F < 4.
Then there is a countable disjoint family Z C F such that A\ JZ has zero r-dimensional Hausdorff measure.

proof Replacing F by {F : F € F,0 < diam F' < 1} if necessary, we may suppose that sup ¢ diam F
is finite and that diam F' > 0 for every F' € F. Take a disjoint family Z C F as in 471N. If 7 is finite,
then A C Y C |JZ, where Y is defined as in 471N, so we can stop. Otherwise, hypothesis (i) tells us
that {F : F € Z, diam F' > §} is finite for every § > 0, so Z is countable; enumerate it as (F,)nen; we
must have Y (diam F,,)" < co. Since diam F};” < 5diam F;, for every n, Y °  (diam F;")" is finite, and
infpen Y oo, (diam F77)” = 0. But now observe that the construction ensures that A\ JZ C J,~,, F{~ for
every n € N. By 471K, pp,(A\JZ) = 0, as required. -

471P Theorem Let (X, p) be a metric space, and r > 0. Let upy, be r-dimensional Hausdorff measure
on X. Suppose that A C X and pj;, A < oco.

(a) limsyo sup{”’“( D)T) x €D, 0<diamD < 4§} =1 for py,-almost every x € A.
MHT(AVWB(I %)

- > 1 for pg,-almost every x € A. So

(b) lim Sups o

P (ANB@S) _ 4

27" < limsupy) (diam B(z,0))" —

for pp,-almost every x € A.
(c) If A is measured by pg,, then

limg o sup{% zeD,0<diamD <8} =0

for pp,-almost every z € X \ A.

proof (a)(i) Note first that as the quantities

Wi (A ﬂD)
supq{ (diam D" x €D, 0 < diamD < 4}

decrease with d, the limit is defined in [0, 00] for every z € X. Moreover, since diam D = diam D and
wir,(AN D) > 3. (AN D) for every D,

P (A ﬁD)
SUP{ Gam D €D CX,0<diamD < §}
Wi, (ANF) . .
=su p{idlamF) F C X is closed, z € F, 0 < diam F < §}

for every x and 6.

(ii) Fix e for the moment, and set

Ac ={z:2z € A, lims o sup{“H;TAg?)

z €D, 0<diamD <0} >1+¢€}.
Then 6,,(A4) < u§;, A — I%_EMETAG for every n > 0, where 0,,, is defined in 471A. I Let F be the family

{F:F CXisclosed, 0 < diam F' <, (1+¢)(diam F)" < p},.(ANF)}.

Then every member of A, belongs to sets in F of arbitrarily small diameter. Also, if (F},),cn is any disjoint
sequence in F,
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12 Geometric measure theory 471P

o (diam F)" < 3708 o iy, (AN Fy) < prgy A < o0

because every F,, being closed, is measured by pg,. (If you like, F,, N A is measured by the subspace
measure on A for every n.) So 4710 tells us that there is a countable disjoint family Z C F such that
A\ UZT is negligible, and p};,. A = pi7,- (A NUI).

Because 0, is an outer measure and 0,,, < u¥,.,

OrnA < Opy (AN T) + 0, (A\|JT) < ) (diam F)" + pjy, (A\ | T)
FeT
(because Z is countable)

1 * * * *
< Tt (AN UD) + wir (ANUT) = wip A - i“Hr(A nUJon

€ €
= :u*HrAili_’_e.u“*Hr A ﬁLJ:Z /’LH’I" GHETA€7

as claimed. Q

Lﬂ*H,«Ae and pg,.Ac = 0.

(iii) Taking the supremum as n | 0, pj;, A < pj, A — I
€

This is true for any € > 0. But

{z:z €A, hm(;wsup{ﬁriﬁ)m x€D,0<diamD < 4§} > 1}

is just (J,, ey A2-n, so is negligible.

(iv) Next, for 0 < e <1, set

Al ={z:z€ A, pu}, (AN D) < (1 —¢€)(diam D)"
whenever x € D and 0 < diam D < €}.

Then A, is negligible. ¥ Let (D, )nen be any sequence of sets of diameter at most e covering A.. Set
K ={n:D,nNAL+#(}. Then

Wi AL < S 1 (AN D,)
nekK

§(176)Z(diamD (1—¢) ZdlamD
n=0

nekK

As (D,,)nen is arbitrary,
i AL < (L= B, AL < (1— iy, AL
and pj;, A, (being finite) must be zero. Q

This means that

{z:x € A, lim;o bup{w

D) xeD,0<diamD <d§}t <1} C{

nen Ag-n
is also negligible, and we have the result.
(b) We need a slight modification of the argument in (a)(iv). This time, for 0 < € < 1, set
Al ={z:x €A, i (AN B(x,6) < (1 - €)§” whenever 0 < § < ¢}.

Then p¥;, AL < e. P Note first that, as g, {z} = 0 for every z, u%, (AN B(z,5)) < (1 — €)§" whenever
x E Ai and 0 < 6 < e. Let (Dy)nen be a sequence of sets of diameter at most e covering A;. Set
={n:D,NA.#0}, and for n € K choose z,, € D, N A, and set §,, = diam D,,. Then D,, C B(z,d,)

and 6, < € for each n, so AL C Unecx B(n,d,) and
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Wi AL < i (ALN B(zy,6,))

nekK
<Y (1=e)d, <(1—e) ) (diamD,)".
nekK n=0

As (Dy)pen is arbitrary, i, AL < (1 — )t A’ and A. must be negligible. Q
Now
{z:2z €A, limsupéww <1} =U,en A

is negligible. As for the second formula, we need note only that diam B(x,d) < 2§ for every z € X, § > 0
to obtain the first inequality, and apply (a) to obtain the second.

(c) Let € > 0. This time, write A, for

{z 2z € X, limso sup{’?”(AmD) cx €D, 0<diamD < d} > €}

diam D)~ °
Let E C A be a closed set such that u(A\ E) < € (471De). For n > 0, let F,, be the family
{F:FCX\FEisclosed, 0 <diam F <9, pg-(ANF) > e(diam F)"}.

Just as in (a) above, every point in A, \ E belongs to members of F,, of arbitrarily small diameter. If (F});c;
is a countable disjoint family in F,,

ey (diam F)" < %,LHT(A \E)<e

is finite. There is therefore a countable disjoint family Z, C F,, such that pir((Ac\ E)\UZ,) = 0. If Oryy
is the outer measure defined in 471A, we have

bry(Ac\ A) < 0y ((JZy) + bry(Ac\ (EUJT)))

< > (dam F)" + iy, (A N\ (EU|JZ,)) <e.
Fez,

As 7 is arbitrary, p%, (A, \ A) < e. But now

r(AND)

{r:ze X\A, limgwsup{‘édiamD)r :x €D, 0<diamD < §} > 0}

is (,en Ay—n \ A, and is negligible.

471Q I now come to a remarkable fact about Hausdorff measures on analytic spaces: their Borel versions
are semi-finite (471S). We need some new machinery.

Lemma Let (X, p) be a metric space, and r > 0, 6 > 0. Suppose that 6,.5X, as defined in 471A, is finite.
(a) There is a non-negative additive functional v on PX such that vX = 5770,5X and vA < (diam A)"
whenever A C X and diam A < %5.
(b) If X is compact, there is a Radon measure p on X such that uX = 5776,sX and uG < (diam G)"
whenever G C X is open and diam G < %5.

proof (a) I use 391E. If 6,5 X = 0 the result is trivial. Otherwise, set v = 5"/6,.5X and define ¢ : PX — [0, 1]
by setting ¢A = min(1, y(diam A)") if diam A < 16, 1 for other A C X. Now
whenever (A;);cr is a finite family of subsets of X, m € N and >
dier PAi = m.
P Discarding any A; for which ¢A; = 1, if necessary, we may suppose that diam A; < %5 and ¢A; =
v(diam A;)" for every i. Choose (I;)j<m, (Jj)j<m inductively, as follows. Iy = I. Given that j < m and
that I; C I is such that } .., xA; > (m — j)xX, apply 47IN to {4; : i € I;} to find J; C I; such that

ier XAi > mxX, then
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14 Geometric measure theory 471Q

(As)iey; is disjoint and Uz‘elj A; C UieJ,- A7. Set Ijy1 = I; \ J;. Observe that Zier xA4; < xX, so

Zielﬁl XA4; > (m —j — 1)xX and the induction proceeds.
Now note that, for each j < m, (A7)icy, is a cover of |J;c; Ai = X Dby sets of diameter at most J. So

> icy, (diam A7) > 6,5X for each j, and 3, (diam AT)" > mf;X. Accordingly

Z PA; = Z(diam A" >5""y Z(diam A7)
i€l i€l i€l
>57"my0.sX =m. Q

By 391E, there is an additive functional vy : PX — [0,1] such that 19X = 1 and vpA < ¢A for every
A C X. Setting v = 5770,.s X1, we have the result.

(b) Now suppose that X is compact. By 416K, there is a Radon measure p on X such that uK > vK
for every compact K C X and puG < vG for every open G C X. Because X itself is compact, uX = vX =
57705 X. If G is open and diam G < %5,

uG < vG < (diam G)",

as required.

471R Lemma (HOWROYD 95) Let (X, p) be a compact metric space and 7 > 0. Let p1p7, be r-dimensional
Hausdorff measure on X. If pgy,-X > 0, there is a Borel set H C X such that 0 < pg.H < c©.

proof (a) Let § > 0 be such that 6, 55(X) > 0, where 6, 55 is defined as in 471A. Then there is a family
V of open subsets of X such that (i) diamV < § for every V € V (ii) {V : V € V, diamV > €} is finite
for every € > 0 (iii) whenever A C X and 0 < diam A < 1§ there is a V € V such that 4 C V and
diam V' < 8diam A. P For each k € N, let [); be a finite subset of X such that X = J ¢, B(x,27F726);
now set V = {U(z,27%716) : k € N, x € I;}. Then V is a family of open sets and (i) and (ii) are satisfied.
IfAC X and 0 < diam A < i(?, let k € N be such that 275735 < diam A < 27%2§. Take x € I, such that
B(z,27%"28) N A # 0; then A C U(z,27%715) € V and diam U(z,27%"1§) < 27%§ < 8diam A. Q
In particular, {V : V € V, diam V < €} covers X for every e > 0.

(b) Set
P ={p: pis a Radon measure on X, pV < (diam V)" for every V € V}.

P is non-empty (it contains the zero measure, for instance). Now if G C X is open, u — uG is lower
semi-continuous for the narrow topology (437Jd), so P is a closed set in the narrow topology on the set of
Radon measures on X, which may be identified with a subset of C(X)* with its weak* topology (437Kc).
Moreover, since there is a finite subfamily of V covering X, v = sup{uX : 11 € P} is finite, and P is compact
(437Pb/437Rf). Because p — pX is continuous, Py = {u : p € P, uX = ~} is non-empty. Of course P
and Py are both convex, and Py, like P, is compact. By the Krein-Mil’'man theorem (4A4Gb), applied in
C(X)*, P has an extreme point v say.

Note next that 6, 55(X) is certainly finite, again because X is compact. By 471Qb, v > 0, and v is
non-trivial. For any e > 0, there is a finite cover of X by sets in V of diameter at most €, which have
measure at most € (for v); so v is atomless. In particular, v{z} = 0 for every x € X.

(c) For € > 0, set
Ge=U{V:VeV 0<diamV < eand vV > ;(diamV)"}.

Then G, is v-conegligible. P2 Otherwise, v(X \ G¢) > 0. Because V. ={V : V € V, diamV > ¢} is finite,
there is a Borel set F C X \ G, such that vE > 0 and, for every V € V! either E CV or ENV = 0.
Because v is atomless, there is a measurable set Ey C E such that vEy = svE (215D); set Ey = E \ Ey,.
Define Radon measures vy, v; on X by setting
vi(F)=2v(FNE;)+v(F\E)

whenever v measures F' \ E;_;, for each i (use 4168 if you feel the need to check that this defines a Radon
measure on the definitions of this book). If V' € V, then, by the choice of E,
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either E CV and v,V = vV < (diam V)"

or ENV =0 and v;V = vV < (diam V)"

or0 < diamV <eand vV < %(diam V)", in which case v;V < 20V < (diam V)"

ordiamV =0 and v,V =vV =0 = (diam V)".
So both v; belong to P and therefore to Py, since ;X =vX =~. But v = %(VO + 1) and vy # vy, so this
is impossible, because v is supposed to be an extreme point of Py. XQ

(d) Accordingly, setting H = (), oy G2-n, vH = vX = . Now examine g, H.

(1) pr-H > 8 "y. P Let (A, )nen be a sequence of sets covering H with diam A,, < éé for every n.
Set K = {n:diam A, > 0}, H' = HNJ, ¢ An; then H\ H' is countable, so vH' = vH. For each n € K,
let V,, € V be such that A,, CV,, and diamV,, < 8diam A,, ((a) above). Then

> (diam A,)" = > (diam A,)" > 87" > " (diam V;,)"
n=0 nek neK
>8> vV, =8 "vH =87y
nekK

As (A, ) nen is arbitrary,
8"y < 0,5/8(H) < piy, H=pp-H. Q

(ii) pprH <2y. P Let n > 0. Set F={V:V €V, 0<diamV <n, vV > I(diamV)"}. Then F is
a family of closed subsets of X, and (by the definition of G.) every member of H belongs to members of F
of arbitrarily small diameter. Also vF' > %(diam F)" for every F € F, so

3% o (diam )" < 255 vF, < 0o

for any disjoint sequence (Fj,)nen in F. By 4710, there is a countable disjoint family Z C F such that
pwar(H\UJZ) =0. Accordingly

Opy(H) <3 peg(diam F)" 4 0, (H \UZ) < Y per 2vF < 27.
As n is arbitrary, pp.H = pp, H < 2v. Q

(e) But this means that we have found a Borel set H with 0 < pp,-H < 0o, as required.

471S Theorem (HOWROYD 95) Let (X, p) be an analytic metric space, and r > 0. Let pp, be r-
dimensional Hausdorff measure on X, and B the Borel o-algebra of X. Then the Borel measure ug,.[B is
semi-finite and tight (that is, inner regular with respect to the closed compact sets).

proof Suppose that F € B and pug,.E > 0. Since E is analytic (423Eb), 4711 above tells us that there
is a compact set K C E such that pug,.K > 0. Next, by 471R, there is a Borel set H C K such that
0 < pgrH < 0o. (Strictly speaking, pg,-H here should be calculated as the r-dimensional Hausdorff measure
of H defined by the subspace metric p| K x K on K. By 471E we do not need to distinguish between this
and the r-dimensional measure calculated from p itself.) By 4711 again (applied to the subspace metric on
H), there is a compact set L C H such that pg,.L > 0.

Thus F includes a non-negligible compact set of finite measure. As F is arbitrary, this is enough to show
both that p g, [B is semi-finite and that it is tight.

471T Proposition Let (X, p) be a metric space, and r > 0.

(a) If X is analytic and pg,X > 0, then for every s € ]0,r[ there is a non-zero Radon measure p on X

1

such that ff m,u(dx)u(dy) < 0.

1
p(z,y)"

(b) If there is a non-zero topological measure p on X such that ff wu(dz)u(dy) is finite, then

/’[/HTX = 0.
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proof (a) By 471S, there is a compact set K C X such that pug,.K > 0. Set § = 5diam K and define
0.5 as in 471A. Then 0,sK > 0, by 471K, and 6,sK < (diam K)" < oco. By 471Qb, there is a Radon
measure v on K such that vK > 0 and vG < (diam G)" whenever G C K is relatively open; consequently
v*A < (diam A)" for every A C K. Now, for any y € X,

1 . e ) 1 _ o0
/}( p(z,y)s V(dx) o /(; V{x e K’ p(z,y)® Z t}dt /O V{Z‘ x € K p(x y) tl/b }dt
_ / V(K N By, -2))dt < / (diam(K 1 By, -2-))"dt
0 0

g/ (mln(dlamK,T)) dt < ZT/ min((diam K)", )dt < 00
0

because r > s. It follows at once that [} fK v(dz)v(dy) is finite. Taking p to be the extension of v

y)
to a Radon measure on X for which X \ K is neghglble7 we have an appropriate pu.

(b)(i) We can suppose that X is separable (471Df). Since the integrand is strictly positive, © must be
o-finite, so that there is no difficulty with the repeated integral. Replacing p by pulL F' for some set F' of
non-zero finite measure, we can suppose that p is totally finite; and replacing p by a scalar multiple of itself,
we can suppose that it is a probability measure.

(ii) Let € > 0. Let H be the conegligible set {y : f p(dx) < oo}. For any y € X, pu{y} =0, so

Pz y)r
limsyo fB(y5 —p(x m u(dz) =

for every y € H. For each 6 > 0,
xB(y,0)(x)
JY) = == X x X — |0,
(@) p(z,y)" 0, 00}
is Borel measurable, so
fo5 W (d.’I,') X - [0,00]
is Borel measurable (252P, applied to the restriction of y to the Borel o-algebra of X). There is therefore

ad > 0such that E={y:y € H, fB(y 5 p(x—ly)ru(dy) < ¢} has measure uE > 1. Note that if C C X has

diameter less than or equal to § and meets £ then pC < e(diam C)". P Set v = diam C and take y € CNE.
If C = {y} then uC = 0. Otherwise,

el s 1 T
HC < pBW) <" [5, 5 saaridn) <776 Q@

Now suppose that E C |
Then

i1 Ci where diam C; < § for every ¢, and each Cj is either empty or meets E.

% <pE <32 pnCi <302 e(diam Cy)".

As (C})ien is arbitrary, epp,.E > % and pg,X > i As € is arbitrary, pg,.X = oco.

Remark See 479Cb below.

471X Basic exercises (a) Define a metric p on X = {0, 1} by setting p(z,y) = 27" if z|n = y|n
and z(n) # y(n). Show that the usual measure p on X is one-dimensional Hausdorff measure. (Hint:
diam F' > pF for every closed set F C X.)

(b) Suppose that g : R — R is continuous and non-decreasing, and that v is the corresponding Lebesgue-
Stieltjes measure (114Xa). Define p(x,y) = | — y| + v/|g(x) — g(y)| for z, y € R. Show that p is a metric
on R defining the usual topology. Show that v is 2-dimensional Hausdorff measure for the metric p.

MEASURE THEORY
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(c) Let 7 > 1 be an integer, and give R” the metric ((&1,...,&), (M,... ,nr)) = max;<, |& — 7;|. Show
that Lebesgue measure on R" is Hausdorff r-dimensional measure for this metric.

(d) Let (X, p) be a metric space and r > 0; let ppr,, Or00 be r-dimensional Hausdorff measure and capacity
on X. (i) Show that, for A C X, ug,A =0 iff 6,,A = 0. (ii) Suppose that E C X and § > 0 are such that
OpprE < 0.0F. Show that there is a closed set F' C E such that pg,.F > 0 and dug,.(FNG) < (diam G)"
whenever pg, measures G. (Hint: show that {G* : 0,.0G < dup,G} cannot be order-dense in the measure
algebra of ppr,-. This is a version of ‘Frostman’s Lemma’.) (iii) Let C be the family of closed subsets of X,
with its Vietoris topology. Show that 6, [C is upper semi-continuous.

(e) Show that all the outer measures 0,5 described in 471A are outer regular Choquet capacities.

(f) Let (X, p) be an analytic metric space, (Y, 0) a metric space, and f : X — Y a Lipschitz function.
Show that if r > 0 and A C X is measured by Hausdorff r-dimensional measure on X, with finite measure,
then f[A] is measured by Hausdorff r-dimensional measure on Y.

(g) Let (X,p) be a metric space and r > 0. Show that a set A C X is negligible for Hausdorff r-

dimensional measure on X iff there is a sequence (A,)nen of subsets of X such that Y7  (diam A,)" is
finite and A € ),y Umz” A,

(h) Let (X,p) be a metric space. (i) Show that there is a unique dimy(X) € [0,00] such that the
r-dimensional Hausdorff measure of X is infinite if 0 < r < dimgy(X), zero if r > dimgy(X). (dimpy(X)
is the Hausdorff dimension of X.) (ii) Show that if (A,)nen is any sequence of subsets of X, then
dimp (U, en An) = sup, ey dimgy (Ay,).

(i) Let (X, p) be a metric space, and p any topological measure on X. Suppose that E C X and that
wE is defined and finite. (i) Show that (z,d) — u(E N B(x,0)) : X x [0,00[ — R is upper semi-continuous.
(ii) Show that x ~ limsups %M(Eﬂ B(z,9)) : X — [0, 00] is Borel measurable, for every r > 0. (iii) Show
that if X is separable, then uB(x,d) > 0 for every § > 0, for u-almost every « € X.

(j) Give R its usual metric. Let C C R be the Cantor set, and » = In2/1n3. Show that

pu(COB@d)) ot

lim infs o (diam B(z,8))" —

for every z € R.

(k) Let (X, p) be a metric space and r > 0. Let up, be r-dimensional Hausdorff measure on X and
[y its c.l.d. version (213D-213E). Show that fiy, is inner regular with respect to the closed sets, and that
ipgrA = pg,A for every analytic set A C X.

471Y Further exercises (a) The next few exercises (down to 471Yd) will be based on the following.
Let (X, p) be a metric space and ¢ : PX — [0, 00| a function such that ¥ = 0 and YA < A’ whenever
ACA CX. Set

Ops A = inf{z YDy, : (Dp)nen is a sequence of subsets of X covering A,
n=0

diam D,, < ¢ for every n € N}

for 6 > 0, and 0y A = supg~qOysA for A C X. Show that 6, is a metric outer measure. Let py be the
measure defined from 6, by Carathéodory’s method.

(b) Suppose that YA = inf{)E : E is a Borel set including A} for every A C X. Show that 6y = pJ,
and that pyE = sup{uyF : F C E is closed} whenever pyE < oo.

(c) Suppose that X is separable and that 8 > 0 is such that YA~ < Sy A for every A C X, where A™
is defined in 471M. (i) Suppose that A C X and F is a family of closed subsets of X such that Y > ¢ F),
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is finite for every disjoint sequence (F,)nen in F and for every z € A, § > 0 there is an F' € F such that
z € F and 0 < diam F' < §. Show that there is a disjoint family Z C F such that pu,(A\ UZ) = 0. (ii)
Suppose that ¢ > 0 and that 6,5(X) < co. Show that there is a non-negative additive functional v on PX
such that vX = %ng(X) and vA < 1A whenever A C X and diam A < 16. (iii) Now suppose that for
every x € X and € > 0 there is a 6 > 0 such that ¥ B(z,d) < e. Show that if X is compact and py, X >0
there is a compact set K C X such that 0 < py K < oo.

(d) State and prove a version of 471P appropriate to this context.

(e) Give an example of a set A C R? which is measured by Hausdorff 1-dimensional measure on R? but
is such that its projection onto the first coordinate is not measured by Hausdorff 1-dimensional measure on
R.

(f) Let p be a metric on R inducing the usual topology. Show that the corresponding Hausdorff dimension
of R is at least 1.

(g) Show that the space (X, p) of 471Xa can be isometrically embedded as a subset of a metric space
(Y, o) in such a way that (i) diam B(y,d) = 20 for every y € Y and 6 > 0 (ii) Y \ X is countable (iii) if pzr1
is one-dimensional Hausdorff measure on Y, then pg1B(y,0) € {0,d} for every y € Y and § > 0, so that

lim(sw NH1B(ZU’5)) c {0’ %}

diam B(z,6
for every y € Y.

(h) Let (k,)nen be a sequence in N\ {0,1,2,3} such that >>7 =

=0 < O Set X =], kn- Set mg =1,

neN
Mp41 = koki ...k, for n € N. Define a metric p on X by saying that

p(x,y) =1/2my, if n = min{i : z(i) # y(¢)} and min(z(n),y(n)) =0,
=1/my if n=min{i: (i) # y(:)} and min(z(n),y(n)) > 0.

Let v be the product measure on X obtained by giving each factor k, the uniform probability measure in
which each singleton set has measure 1/k,,. (i) Show that if A C X then v*A < diam A. (ii) Show that v
is one-dimensional Hausdorff measure on X. (iii) Set £ = |J,,cy{z : © € X, 2(n) = 0}. Show that vE < 1.
(iv) Show that

W(ENB(.9) -

. 1
lim supg o S B(x.0) 3

for every x € X. (v) Show that there is a family F of closed balls in X such that every point of X is the
centre of arbitrarily small members of F, but v(|JZ) < 1 for any disjoint subfamily Z of F.

(i) Let (X, p) be a metric space and 0 < r < s. Suppose that there is an analytic set A C X such that
prsA > 0. Show that there is a Borel surjection f : X — R such that ug,f~1[{a}] = oo for every a € R.

(j) Let p be the metric on {0,1}" defined in 471Xa. (i) Show that for any integer k > 1 there are
a v > 0 and a bijection f : [0,1]F — {0,1}" such that whenever 0 < 7 < 1, py 4 is Hausdorff rk-
dimensional measure on [0, 1]* (for its usual metric) and jifr, is Hausdorff r-dimensional measure on {0, 1},
then A < iy, f[A] < vepjy A for every A C [0,1]%. (ii) Show that in this case g+ and the
image measure jiz,.f ' have the same measurable sets, the same negligible sets and the same sets of finite
measure.

(k) Let (X,p) be a metric space, and » > 0. Give X x R the metric o where o((z, @), (y,5)) =
max(p(z,y), |a — B]). Write pur, pr and p,41 for Lebesgue measure on R, r-dimensional Hausdorff measure
on (X, p) and (r + 1)-dimensional Hausdorff measure on (X x R, o) respectively. Let A be the c.l.d. product
of pt, and pp. (i) Show that if W C X x R then [piW 1 [{a}|da < pf,W. (ii) Show that if I C R is a
bounded interval, A C X and p}A is finite, then p;, (A x I) = prA - prl. (iii) Give an example in which
there is a compact set K C X x R such that y,41K =1 and AK = 0. (iv) Show that if y, is o-finite then
tr+1 = A. (Hint: FEDERER 69, 2.10.45.)
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471Z Problems (a) Let ug)l, ug)l /2 be one-dimensional Hausdorff measure on R? and %—dimensional

Hausdorff measure on R respectively, for their usual metrics. Are the measure spaces (R27ug)1) and
(R, “551{,)1/2) isomorphic? (See 471Y]j.)

(b) Let p be a metric on R? inducing the usual topology, and ug% the corresponding 2-dimensional

Hausdorff measure. Is it necessarily the case that ,ug; (R?) > 0?7 (See 471Yf.)

471 Notes and comments In the exposition above, I have worked throughout with simple r-dimensional
measures for r > 0. As noted in 264Db, there are formulae in which it is helpful to interpret ppo as counting
measure. More interestingly, when we come to use Hausdorff measures to give us information about the
geometric structure of an object (e.g., in the observation that the Cantor set has In2/In3-dimensional
Hausdorff measure 1, in 264J), it is sometimes useful to refine the technique by using other functionals than
A+ (diam A)" in the basic formulae of 264A or 471A. The most natural generalization is to functionals of
the form 1A = h(diam A) where h : [0, 00] — [0, 00] is a non-decreasing function (264Yo). But it is easy to
see that many of the arguments are valid in much greater generality, as in 471Ya-471Yc. For more in these
directions see ROGERS 70 and FEDERER 69.

In the context of this book, the most conspicuous peculiarity of Hausdorff measures is that they are
often very far from being semi-finite. (This is trivial for non-separable spaces, by 471Df. That Hausdorff
one-dimensional measure on a subset of R? can be purely infinite is not I think obvious; I gave an example in
439H.) The response I ordinarily recommend in such cases is to take the c.l.d. version. But then of course we
need to know just what effect this will have. In geometric applications, one usually begins by checking that
the sets one is interested in have o-finite measure, and that therefore no problems arise; but it is a striking
fact that Hausdorff measures behave relatively well on analytic sets, even when not o-finite, provided we
ask exactly the right questions (4711, 4718, 471Xk).

The geometric applications of Hausdorff measures, naturally, tend to rely heavily on density theorems;
it is therefore useful to know that we have effective versions of Vitali’s theorem available in this context
(471IN-4710), leading to a general density theorem (471P) similar to that in 261D; see also 472D below. I
note that 471P is useful only after we have been able to concentrate our attention on a set of finite measure.
And traps remain. For instance, the formulae of 261C-261D cannot be transferred to the present context
without re-evaluation (471Yh).

This section, and indeed the chapter as a whole, is devoted to calculations involving metrics, which is why
the phrase ‘metric space’ is constantly repeated while the word ‘metrizable’ does not appear. But of course
topological ideas are omnipresent. See 471Yf for an interesting elementary fact with an obvious implied
challenge (471Zb). There is a less elementary fact in 471Yj, which shows that much of the measure space
structure, if not the geometry, of Hausdorff 7-dimensional measure on R” is determined by the ratio r/k.
(See 471Za.)

Version of 22.3.11

472 Besicovitch’s Density Theorem

The first step in the program of the next few sections is to set out some very remarkable properties of
Euclidean space. We find that in R", for geometric reasons (472A), we have versions of Vitali’s theorem
(472B-472C) and Lebesgue’s Density Theorem (472D) for arbitrary Radon measures. I add a version of the
Hardy-Littlewood Maximal Theorem (472F).

Throughout the section, > 1 will be a fixed integer. As usual, I write B(z,d) for the closed ball with
centre x and radius 4. || || will represent the Euclidean norm, and z.y the scalar product of z and y, so that

Ty = 22:1 &miife=(&,...,&)and y = (n1,... , ).

472A Besicovitch’s Covering Lemma Suppose that € > 0 is such that (5" +1)(1 —e—€?)" > (5+¢)".
Let zg,... ,x, € R", dg,...,d, > 0 be such that
||.’EZ — $]|| > 51’7 6j < (]. + 6)51

whenever ¢ < j < n. Then

D.H.FREMLIN
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H#{i i <n, ||z —xn] <6+ 0,)) <5

proof Set I ={i:i <, ||x; — x| < dp+d;}.
(a) It will simplify the formulae of the main argument if we suppose for the time being that ¢, = 1; in
this case 1 < (1 + €)d;, so that §; > %ﬂ for every i < n, while we still have §; < ||z; — x,|| for every i < n,

and ||z; — z,|| < 14 6; for every i € I.
For i € I, define z, by saying that
—if ||o; — x| <2+¢€ ) = x4
—if |a; — x| > 2+ €, ) is to be that point of the closed line segment from x,, to z; which is
at distance 2 + € from z,,.

(b) The point is that ||} — 2[| > 1 — € — ¢* whenever i, j are distinct members of I. P We may suppose
that ¢ < 7.

case 1 Suppose that ||z; — 2, | <2+ € and ||z; — z,] < 2+ €. In this case

1
||x;—x3|| = || — ;]| = & ZlTre >1-—c

case 2 Suppose that ||z; — z,] > 2+ € > ||z; — x,|. In this case

5 = @5l = ll2f = 5]l = llws — 25l = [l — 4|

>0 —|wi —wal| +2+ €20 =0 —1+2+e=1+e.

case 3 Suppose that |lz; — 2,/ <2+ € < |lz; — z,[]. Then

g = 2l = lles — 25l = llws = 5]l = Ny — 25 > 6 = oy — wn + 2+ €
>0 —6;—14+24+e>6—0;i(1+e)+1+e>1+e—€(2+¢€)
(because 0; < ||x; — znl < 2+€)
2

=1—€—¢€".

case 4 Suppose that 2+ ¢ < ||z; — z,| < |lz; — z,]||. Let y be the point on the line segment between
x; and x, which is the same distance from x,, as ;. In this case

ly — @il 2 s — a5l = |2 = yll = 6 — |2 = 2all + [lz; — znll = [Jo; — 20 - 1.
Because the triangles (z,,y, ;) and (zn, 7}, ¥}) are similar,
2+€ [|z;—xn|—1
-2 = ———ly—x[| > 2+ )= > 1 +¢
los =l = g v — =il 2 @+ OFT= 2

because [|z; — z,|| > 2+ €.
case 5 Suppose that 2+ € < ||z; — z,,|| < ||z; — x,]|. This time, let y be the point on the line segment
from x,, to x; which is the same distance from z,, as x; is. We now have
ly = wall 2 s = 250l = lleg = 91l > 6 =l — @l + lles = 2
> 65— €0 = (0 + 1) + ||lzi — on|
=z —anll =1 —€b; > ||lzi —nl|(1—€) — 1,

so that

=2 = 2y — il > (2 4+ olzizzalizg—1
Z(2+€)w:1_6_62_

2+-€
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So we have the required inequality in all cases. Q

(c) Now consider the balls B(z}, 1_62_52) for i € I. These are disjoint, all have Lebesgue measure

27"B,.(1—e—€2)" where 3, is the measure of the unit ball B(0,1), and are all included in the ball B(z,,2+
€ + 15¢), which has measure 277 3,.(5 + ¢)". So we must have

2
273 (1 —e—e2)"#(I) <27"B.(5+¢)".
But € was declared to be so small that this implies that #(I) < 5", as claimed.

(d) This proves the lemma in the case §,, = 1. For the general case, replace each z; by J, 'z; and each
d; by 8;/6,; the change of scale does not affect the hypotheses or the set I.

472B Theorem Let A C R" be a bounded set, and Z a family of non-trivial closed balls in R” such that
every point of A is the centre of a member of Z. Then there is a family (Zy)r<5- of countable subsets of Z
such that each Zj is disjoint and Uk<57. T covers A.

proof (a) For each z € A let §, > 0 be such that B(x,d,) € Z. If either A is empty or sup,c 4 d, = 00, the
result is trivial. (In the latter case, take z € A such that ¢, > diam A and set Zy = {B(z,d,)}, Z = 0 for
k> 0.) So let us suppose henceforth that {d, : 2 € A} is bounded in R. In this case, C' = (J,. 4 B(x,9,) is
bounded in R".

Fix € > 0 such that (5" +1)(1 —e —€2)" > (5+¢€)".

(b) Choose inductively a sequence (B, )nen in ZU {0} as follows. Given (B;)i<p, then if A C |J,_,, Bj set
B,, = 0. Otherwise, set v, = sup{d, : x € A\J,,, Bi}, choose x, € A\, ., Bi such that (14 ¢€)d,, > ap,
set By, = B(x,,d,,) and continue.

Now whenever n € N, I,, = {i : i < n, B;N B,, # (I} has fewer than 5" members. > We may suppose that
B, # 0, in which case B; = B(z;,0d,,) for every i < n, and the z;, §,, are such that, whenever i < j < n,

xj ¢ By, ie., ||x; — ;|| > dq,,
(51]. S Q; S (1 + 6)5I1
But now 472A gives the result at once. Q
(c) We may therefore define a function f: N — {0,1,...,5" — 1} by setting
f(n) =min{k : 0 <k < 5", f(i) # k for every i € I,,}

for every n € N. Set Z, = {B; : i € N, f(i) = k, B; # 0} for each k < 5". By the choice of f, i ¢ I;, so
that B; N B; = (), whenever i < j and f(i) = f(j); thus every Z is disjoint. Since B; C C for every i,
S{uB; : f(i) =k} < p*C for every k < 5", and >, uB; < 5"p*C is finite.

(d) ? Suppose, if possible, that
AZ Uk<5r UZ = UneN By.

Take x € A\ U, ey Bn- Then, first, A Z
(1+ €)d,, > 6, for every n. But this means that uB,, > 5T(

B; for every n, so that «,, is defined; next, o, > J,, so that
51
1+e

<n

)" for every n, and >0 ) uB, = oo; which
is impossible. X

(e) Thus A C ;.5 UZk, as required.

472C Theorem Let A be a Radon measure on R”, A a subset of R” and Z a family of non-trivial closed
balls in R” such that every point of A is the centre of arbitrarily small members of Z. Then

(a) there is a countable disjoint Zy C Z such that A(A\ JZy) = 0;

(b) for every € > 0 there is a countable Z; C 7 such that A C |JZ; and ZBeL AB < \*A +e.

proof (a)(i) The first step is to show that if A’ C A is bounded then there is a finite disjoint set J C Z such
that \*(A’'NYUJ) > 67"\*A. P If A*A’ =0 take J = (. Otherwise, by 472B, there is a family (Ji)r<sr
of disjoint countable subsets of Z such that (J, 5. Ji covers A’. Accordingly
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NA <SS A AU
and there is some k < 5" such that A*(A’ NYTx) > 5 "A\*A’". Let (B;)ien be a sequence running over J;
then

litm, o0 (A" N Uy Bi) = M (A N UTE) = 577N A,
so there is some n € N such that A\* (A"’ NU,<,, Bi) > 67"\ A’, and we can take J = {B; : i <n}. Q

(ii) Now choose (K, )nen inductively, as follows. Start by fixing on a sequence (m,,),en running over

N with cofinal repetitions. Take Ky = (). Given that K, is a finite disjoint subset of Z, set Z’ = {B : B €

Z,BNUK, =0}, A, = An B(0,m,) \ JK,. Because every point of A is the centre of arbitrarily small

members of Z, and |J K,, is closed, every member of A,, is the centre of (arbitrarily small) members of 7', and

(1) tells us that there is a finite disjoint set J,, C Z’ such that A*(A,NJ T) > 67"A*A4,,. Set K11 = KUT,,

and continue. At the end of the induction, set Zo = | K5 because (IC,)nen is non-decreasing and every
K, is disjoint, Zy is disjoint, and of course Zy C Z.
The effect of this construction is to ensure that

neN

A (ANBO,mn) \ | JKns1) = X (A \ [ J Tn) = XA = X (A0 [ T0)
(because |J Jy, is a closed set, therefore measured by \)
< (1-6T)N4,
= (1-6"")A\(AN B(0,m,) \ | JKn)

for every n. So, for any m € N,
A (ANB0,m) \UK,) <A (ANB(0,m))(1 — 6~ 7)#lsi<nmi=m}) _; o
as n — 00, and A*(AN B(0,m)\ | JZy) = 0. As m is arbitrary, A\*(A \ UZo) = 0, as required.

(b)(i) Let E DO A be such that AE = A\*A, and H 2 E an open set such that AH < AE + Se (256Bb).
Set 7' ={B: B €Z, BC H}. Then every point of A is the centre of arbitrarily small members of Z’; so by
(a) there is a disjoint family Zy C Z’ such that A(A \ JZy) = 0. Of course

Sper, B =AMUTo) < AH < XA+ je
(ii) For m € N set A,, = AN B(0,m) \ UZy. Then there is a J,, C Z, covering A,,, such that
Y Beg, AB < 27" 2%¢. P There is an open set G 2 A,, such that A\G < 57727 2. Now I” = {B :

B €I, BC G} covers Ay, so there is a family {7k ) k<5 of disjoint countable subfamilies of Z” such that
Tm = Uk<5,,, Jmk covers A,,. For each k,

> seg,.. AB =AU Tmr) < AG,

SO

Y pes, AB<5AG <27 % Q
(iii) Setting Z; = Zo U U,,cy Jm we have a cover of A by members of Z, and
SECED SPES S SR
BeI, BeZ, m=0BEJm

< \N'A+ %e + Z 27" 2e = M A+te.

m=0

472D Besicovitch’s Density Theorem Let A be any Radon measure on R”. Then, for any locally
M-integrable real-valued function f,

. 1
(a) f(y) = limsyo 3Bwd) JB(y.5) FAN,
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. 1
(b) limgsyo B(y.0) fB(Ws) |f(z) = f(y)|A(dz) =0
for A-almost every y € R”.

Remark The theorem asserts that, for A-almost every y, limits of the form lims % ... are defined;

in my usage, this includes the assertion that AB(y, d) # 0 for all sufficiently small 6§ > 0.
proof (Compare 261C and 261E.)

(a) Let Z be the support of A (411Nd); then Z is A-conegligible and AB(y,d) > 0 whenever y € Z and
0>0. Forg< ¢ in Q and n € N set

. 1
Angy =1y :y € Zndomf, ||yl <n, f(y) < g, limsups, 3BGD) fB(y,é) fdx>q¢'}.

Then AApqq = 0. P Let € > 0. Then there is an 7 € |0, €] such that [, |f|d\ < e whenever F C B(0,n) and
AF <1 (225A). Let E be a measurable envelope of A,,q, included in {y : y € ZNdom f, f(y) < ¢, |ly|| < n},
and take an open set G D F such that G C B(0,n) and A\(G \ E) < n (256Bb again). Let Z be the family
of non-singleton closed balls B C G such that [ pf > ¢'AB. Then every point of A4y is the centre of
arbitrarily small members of Z, so there is a disjoint family Zy C Z such that A(A,qe \ UZo) = 0 (472C).
Now AM(E\UZp) =0and A\((UZp) \ E) <n<e¢ s0

INE < d M| JTo) +eld| = D dAB+eld|
BeT

< fd)\—i-eq’:/ fd\ +e€ld
>/ o=, 7|

BeTZy

< / fdA+e(1+1q]) < g \E +€(1 +|¢']),
B

and
(@' — DN Angg = (0" — )AE < (1 + [¢'])e.

As e is arbitrary, A* A4y = 0. Q
As n, g and ¢’ are arbitrary,

. 1
hmsup&LO )\B(y75) fB(y,(s) f < f(y)

for A-almost every y € Z, therefore for A-almost every y € R”. Similarly, or applying the same argument to

_fa
. 1
liminfs)o 3BGD) fB(y,é) f=fy)
for A-almost every y, and
. 1 .
hmgwm fB(y’é) f exists = f(y)
for A-almost every y.

(b) Now, for each ¢ € Q set g,(x) = |f(z) — ¢| for x € dom f. By (a), we have a A-conegligible set D
such that

. 1
lims o NB(y.3) fB(y’(;) 9qaA = 9q(y)

for every y € D and ¢ € Q. Now, if y € D and € > 0, there is a ¢ € Q such that |f(y) — ¢| <€, and a g > 0
such that

1
|m fB(y,é) 9qdA — gq(y)| < €

whenever 0 < § < §p. But in this case
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1

AB(y.0) /B oy [T~ FWIANER)

1 1
< 3BG3) /B(y,é) /() = dlM(de) + S5 /B(M g — f(y)|\(da)

< 3e.

As € is arbitrary,

limso 55757 Sy @) — F@)IA ) = 0;

as this is true for every y € D, the theorem is proved.

*472E Proposition Let A\, \' be Radon measures on R”, and G C R" an open set. Let Z be the support
of \, and for x € ZN G set

M(z) = sup{);:—g : B C @ is a non-trivial ball with centre z}.
Then
Ma:weZ, M(z) >t} <ZNG
for every t > 0.

proof The function M : Z — [0, oo] is lower semi-continuous. B If M (z) > ¢ > 0, there is a ¢ > 0 such that
B(z,6) C G and N B(z,6) > tAB(z,d). Because X is a Radon measure, there is an open set V O B(z,0) such
that V' C G and N B(z, ) > tA\V; because B(z,d) is compact, there is an > 0 such that B(z,d+2n) C V.
Now if y € Z and ||y — x| < n,

B(z,0) € B(y,0+n) SV,

so MB(y,d +n) > tAB(y,d +n) and M(y) >t. Q

In particular, H; = {x : x € ZN G, M(z) > t} is always measured by A\. Now, given ¢t > 0, let Z be the
set of non-trivial closed balls B C G such that A’B > tAB. By 472B, there is a family (Zy)x<s5- of countable
disjoint subsets of Z such that Uk<5r Ty covers H;. So

r_ 1 T__ 5"
AH; < ZZ=01 ZBEIk AB < n 2:01 ZBEIk NB < TXG’

as claimed.

*472F Theorem Let A be a Radon measure on R”, and f € LP(\) any function, where 1 < p < co.

Let Z be the support of A, and for x € Z set f*(z) = sup5>oﬁf3($ 5) |f|dX\. Then f* is lower
. . X 5"p\1/
semi-continuous, and || f*||, < Q(prl) PIF -

proof (a) Replacing f by |f]| if necessary, we may suppose that f > 0. Z is A-conegligible, so that f* is
defined A-almost everywhere. Next, f* is lower semi-continuous. PP I repeat an idea from the proof of 472E.
If f*(x) > ¢ >0, there is a § > 0 such that fB(x 5) |fld\ > tAB(z, ). Because A is a Radon measure, there

is an open set V O B(z,0) such that fB(z 5) |f|dX\ > t\V; because B(x,d) is compact, there is an n > 0 such
that B(x,d + 2n) C V; and now f*(y) >t for every y € Z N B(z,n). Q
(b) Fort > 0,set Hy={x:x € Z, f*(x) >t} and F; = {x: x € dom f, f(x) > t}. Then
2-57
o S,
P Set g = f X xF; /2. Because (§5)PAF, /2 < || f|| is finite, AF} 5 is finite, xF} /o € L9(X) (where % + é =1)

and g € £L1()\) (244Eb). Let X be the indefinite-integral measure defined by g over A (234J); then )\ is
totally finite, and is a Radon measure (416Sa). Set

AH; <
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NB o . .
M(z) = sup{ﬁ : B C R" is a non-trivial ball with centre x}
for # € Z. Then f*(z) < M(x)+ & for every x € Z, just because

[, fdr < %)\B + [, gd\ = %)\B +\NB

for every closed ball B. Accordingly

A, < Mo M(z) > £} < Z2NRY
(by 472E)

(c) As in part (c) of the proof of 286A, we now have

/(f*)pd)\ = /Ooo Mz f*(x)P > tydt = p/oo P Iz : f*(x) > thdt

0

o0 2f(x)
<2-57p / P2 fdxdt =2-5"p / f(z) / tP2dt\(dx)
0 Ft/? R" 0

_ 9. ET 2r—t P _ 2°5"p D
=2-5 p/r o1 f@)PA(dzx) = T /f dA.
Taking pth roots, we have the result.

472X Basic exercises (a) Show that if A\, A’ are Radon measures on R” which agree on closed balls,
they are equal. (Cf. 466Xj.)

(b) Let A be a Radon measure on R”. Let A CR" be a non-empty set, and € > 0. Show that there is a
sequence (By,)nen of closed balls in R”, all of radius at most € and with centres in A, such that A C |J,,cy Bn
and Y07 (AB, < N A+e.

(c) Let X be a non-zero Radon measure on R” and Z its support. Show that we have a lower density ¢
(definition: 341C) for the subspace measure Az defined by setting ¢E = {z : z € Z, lim; % =1}

whenever Az measures E.

(d) Let A be a Radon measure on R", and f a locally A-integrable function. Show that E = {y : g(y) =

lims o m fB(yﬁ) fdA\ is defined in R} is a Borel set, and that g : E — R is Borel measurable.

472Y Further exercises (a)(i) Let Z be a finite family of intervals (open, closed or half-open) in R.
Show that there are subfamilies 7y, Z; C Z, both disjoint, such that Zo UZ; covers |JZ. (Hint: induce on
#(Z).) Show that this remains true if any totally ordered set is put in place of R. (ii) Show that if Z is any
family of non-empty intervals in R such that none contains the centre of any other, then 7 is expressible as
To UZ;, where both Zp and Z; are disjoint.

(b) Let m = m(r) be the largest number such that there are uj,... ,u, € R” such that ||u;|| = 1 for
every ¢ and |lu; —u || > 1 for all ¢ # j. Let A C R" be a bounded set and = — d, : A — ]0, 00[ a bounded
function; set B, = B(x,d,) for € A. (i) Show that m < 3". (i) Show that there is an € € |0, 5] such

» 10
that whenever |lug|| = ... = ||t || = 1 there are distinct 4, j < m such that u;.u; > 1(1+¢). (iii) Suppose
that u, v € R" are such that 3 < |lul| <1, |lv] <1+ € and |lu—v|| > 1. Show that the angle u0v has
2+b2_

2
cosine at most (14 ¢). (Hint: maximise % subject to § <a<1,b<1+eandc>1.) (iv) Suppose
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that (2,)nen is a sequence in A such that x, ¢ B,, for i <n and (1+ €)d,, > sup{d, : v € A\ U,., Bz, }
for every n. Show that A C (J, oy Bz,. (v) Take y € R". Show that there is at most one n such that
ly — @nll < §0z,. (vi) Show that if i < j, 305, < [ly — a4]| < &, and |y — x;]| < §; then the cosine of the
angle z;yx; is at most (1 + €). (vii) Show that #({i : y € By, }) <m+ 1.

Hence show that if Z is any family of non-trivial closed balls such that every point of A is the centre of
some member of Z, then there is a countable Zy C Z, covering A, such that no point of R” belongs to more
than 3" members of Zj.

(c) Use 472YDb to prove an alternative version of 472B, but with the constant 9" + 1 in place of 5".

(d) Let A C R" be a bounded set, and Z a family of non-trivial closed balls in R" such that whenever
x € A and € > 0 there is a ball B(y,d) € Z such that ||z — y|| < ed. Show that there is a family (Zj)g<s5- of
subsets of Z such that each Zj is disjoint and Uk<5r T covers A.

(e) Give an example of a strictly positive Radon probability measure p on a compact metric space (X, p)
for which there is a Borel set £ C X such that

n(ENB(z,9))
uB(x,0)

w(ENB(x,9)) _

nB(z,8) !

lim infs o =0, limsupsg

for every z € X.

(f) Let A be a Radon measure on R”, and f a A-integrable real-valued function. Show that sups- m fB(z 5) | f]dA

is defined and finite for A-almost every z € R".

N B(z,0)
AB(z,0)
every . (ii) Setting Ao = sup, ey A’ A nA in the cone of Radon measures on R” (437Yi), show that g is a
Radon-Nikodym derivative of Ag with respect to A. (Hint: show that if A and X are mutually singular then
g =0 \a.e.)

(g) Let A, X' be Radon measures on R". (i) Show that g(z) = lims o is defined in R for A-almost

472 Notes and comments I gave primacy to the ‘weak’ Vitali’s theorem in 261B because I think it is
easier than the ‘strong’ form in 472C, it uses the same ideas as the original one-dimensional theorem in
221A, and it is adequate for the needs of Volume 2. Any proper study of general measures on R”, however,
will depend on the ideas in 472A-472C. You will see that in 472B, as in other forms of Vitali’s theorem, there
is a key step in which a sequence is chosen greedily. This time we must look much more carefully at the
geometry of R” because we can no longer rely on a measure to tell us what is happening. (Though you will
observe that I still use the elementary properties of Euclidean volume in the argument of 472A.) Once we
have reached 472C, however, we are in a position to repeat all the arguments of 261C-261E in much greater
generality (472D), and, as a bonus, can refine 261F (472Xb). For more in this direction see MATTILA 95
and FEDERER 69, §2.8.

It is natural to ask whether the constant ‘5"’ in 472B is best possible. The argument of 472A is derived
from SULLIVAN 94, where a more thorough analysis is given. It seems that even for » = 2 the best constant
is unknown. (For r = 1, the best constant is 2; see 472Ya.) Note that even for finite families Z we should
have to find the colouring number of a graph (counting two balls as linked if they intersect), so it may well
be a truly difficult problem. The method in 472B amounts to using the greedy colouring algorithm after
ordering the balls by size, and one does not expect such approaches to give exact colouring numbers. Of
course the questions addressed here depend only on the existence of some function of r to do the job.

An alternative argument runs through a kind of pointwise version of 472A (472Yb-472Yc). It gives a
worse constant but is attractive in other ways. For many of the applications of 472C, the result of 472YD is
already sufficient.

The constant 2(;%)1/1) in 472F makes no pretence to be ‘best’, or even ‘good’. The only reason for

giving a formula at all is to emphasize the remarkable fact that it does not depend on the measure A. The
theorems of this section are based on the metric geometry of Euclidean space, not on any special properties
of Lebesgue measure. The constants do depend on the dimension, so that even in Hilbert space (for instance)
we cannot expect any corresponding results.
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Version of 25.7.11/7.8.20

473 Poincaré’s inequality

In this section I embark on the main work of the first half of the chapter, leading up to the Divergence
Theorem in §475. I follow the method in EVANS & GARIEPY 92. The first step is to add some minor results
on differentiable and Lipschitz functions to those already set out in §262 (473B-473C). Then we need to
know something about convolution products (473D), extending ideas in §§256 and 444; in particular, it will
be convenient to have a fixed sequence (ﬁn>neN of smoothing functions with some useful special properties
(473E).

The new ideas of the section begin with the Gagliardo-Nirenberg-Sobolev inequality, relating || f|,/—1)
to [ |lgrad f||. In its simplest form (473H) it applies only to functions with compact support; we need to
work much harder to get results which we can use to estimate [, |f|”/"~1) in terms of [, | grad f| and
J If| for balls B (473L, 473K).

473A Notation For the next three sections, r > 2 will be a fixed integer. For z € R" and § > 0,
B(z,6) ={y : |ly — =] <} will be the closed ball with centre x and radius ¢. I will write 0B(z,d) for the
boundary of B(x,J), the sphere {y : ||y — z| = d0}. S,—1 = 0B(0,1) will be the unit sphere. As in Chapter
26, I will use Greek letters to represent coordinates of vectors, so that z = (1, ... ,&,), etc.

u will always be Lebesgue measure on R”. (8, = uB(0,1) will be the r-dimensional volume of the unit
ball, that is,

ﬂ.k

ﬂrzﬁ if r = 2k is even,
2k+1 k
:%ifr:2k+lisodd

(252Q). v will be normalized Hausdorff (r — 1)-dimensional measure on R”, that is, v = 27" 3, _upy 1,
where pg,—1 is (r — 1)-dimensional Hausdorff measure on R" as described in §264. Recall from 265F and
265H that vS,_1 = 278,_2 = v, (counting [y as 1).

473B Differentiable functions (a) Recall from §262 that a function ¢ from a subset of R" to R*®
(where s > 1) is differentiable at © € R”, with derivative an s x r matrix T, if for every € > 0 there is a
d > 0 such that [|¢(y) — d(z) — T'(y — z)|| < €|ly — z|| whenever ||y — z|| < §; this includes the assertion that

B(x,6) C dom ¢. In this case, the coefficients of T are the partial derivatives g¢j (z) at x, where ¢1,... , @

are the coordinate functions of ¢, and % represents partial differentiation with respect to the ith coordinate
(2621c).

(b) When s = 1, so that we have a real-valued function f defined on a subset of R”, T will write (grad f)(x)
for the derivative of f at z, the gradient of f. If we strictly adhere to the language of (a), grad f is a
of of
% 5
belongs to R”, and we can speak of y. grad f(z) rather than (grad f(z))(y), etc.

1 X r matrix ( ); but it is convenient to treat it as a vector, so that grad f(z) (when defined)

(c) Chain rule for functions of many variables I find that I have not written out the following basic
fact. Let ¢ : A — R® and ¢ : B — RP be functions, where A C R” and B C R*. If € A is such that ¢ is
differentiable at z, with derivative S, and ¢ is differentiable at ¢(x), with derivative T, then the composition
¢ is differentiable at x, with derivative T'S.

P Recall that if we regard S and T as linear operators, they have finite norms (262H). Given € > 0, let
1 > 0 be such that n||T||+n(]|S||+n) < €. Let 1, d2 > 0 be such that ¢(y) is defined and ||¢(y) —¢(x) —S(y—
2)Il < nlly — all whenever [ly—| < 1, and () is defined and [|th(2) — (@) — T(= — (2)) | < nllz — 6(a)]

[

whenever ||z — ¢(z)]| < d2. Set 6 = min(&l,m) > 0. If |ly — || <9, then ¢(y) is defined and

lp(y) — ¢(@)I| < 1S(y — )| + lo(y) — ¢(x) = Sy — )| < (IS] +n)lly — 2 < 52,
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so Yé(y) is defined and

[¥e(y) — vo(x) =TSy — =)
< [Pe(y) = o(x) = T(¢(y) — ¢(@)|| + [Tl p(y) — d(x) — Sy — )|l
< nllé(y) — o)l + 1 Tlnlly — ||
< nUISIH+mlly =zl + 1 Tlnlly — 2l < elly — =[|;
as € is arbitrary, ¢ is differentiable at x with derivative T'S. Q

(d) It follows that if f and g are real-valued functions defined on a subset of R”, and x € dom f Ndom g
is such that (grad f)(z) and (gradg)(z) are both defined, then grad(f x g¢)(z) is defined and equal to

f(x)grad g(x) + g(x) grad f(x). P Set ¢(y) = (f(y)> for y € dom f N dom g; then ¢ is differentiable at

9(y)
iﬁiﬁggg) (262Ib). Set ¥ (z) = (1¢p for z = ((1,¢2) € R?; then 4 is

differentiable everywhere, with derivative the 1 x 2 matrix ({a (1). So f x g = 9¢ is differentiable at x
with derivative

x with derivative the 2 X r matrix (

(ale) fl)) (BT ) = oto) rad )+ f(0) grad o). @

(e) Let D be a subset of R” and ¢ : D — R® any function. Set Do = {x : z € D, ¢ is differentiable at x}.
Then the derivative of ¢, regarded as a function from Dy to R"%, is (Lebesgue) measurable. I* Use 262P;
the point is that, writing T'(z) for the derivative of ¢ at x, T(x) is surely a derivative of ¢] Dy, relative to
Dy, at every point of Dy. Q (See also 473Ya.)

(f) If G C R" is an open set, a function ¢ : G — R* is smooth if it is differentiable arbitrarily often;
that is, if all its repeated partial derivatives
",
€;, .06,
are defined and continuous everywhere on G. I will write D for the family of real-valued functions from R"
to R which are smooth and have compact support.

473C Lipschitz functions (a) If f and g are bounded real-valued Lipschitz functions, defined on any
subsets of R", then f x g, defined on dom f Ndom g, is Lipschitz. B Let ~f, My, v, and M, be such that

|f(@)] < My and |f(z)—f(y)| < v¢llz—yll for all z, y € dom f, while |g(z)| < M, and |g(z)—g(y)| < 7,llz—y||
for all z, y € domg. Then for any x, y € dom f Ndom g,

[f(@)g(z) = F)gW)] < [f(@)llg(x) — g()] + lgW)[|f (=) — ()]
< (Myyg + Myyy)llz = yll-
So Mg+ Mgy is a Lipschitz constant for f x g. Q
(b) Suppose that F;, F5 C R" are closed sets with convex union C. Let f : C — R be a function
such that f[Fy and f[F5 are both Lipschitz. Then f is Lipschitz. I For each j, let v; be a Lipschitz
constant for f[F;, and set v = max(v;,72), so that v is a Lipschitz constant for both f[F; and f[F,. Take
any z, y € C. If both belong to the same F}, then |f(z) — f(y)| < 7|z —y||. If z € F; and y ¢ F},

then y must belong to F3_;, and (1 — t)z + ty € Fy U Fy for every ¢ € [0,1], because C is convex. Set
to=sup{t:t€[0,1], (1 —t)z+ty € F;}, z = (1 —to)x + toy; then z € Fy N Fy, because both are closed, so

|f(@) = fW)] < 1f(@) = f(2)| + [f(2) = fW)] < vl = 2] +7l[z = yll = vllz =y
As x and y are arbitrary, - is a Lipschitz constant for f. Q

(c) Suppose that f : R” — R is Lipschitz. Recall that by Rademacher’s theorem (262Q), grad f is
defined almost everywhere. All the partial derivatives of f are (Lebesgue) measurable, by 473Be, so grad f
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is (Lebesgue) measurable on its domain. If 7 is a Lipschitz constant for f, | grad f(z)|| < ~ whenever
grad f(x) is defined. B If z € R", then

limwoaf(x—i—tz) — f(x) — tz. grad f(z)| = 0,

0
. 1
|2 grad f(z)] = limyyo 2| f (2 + t2) = f(2)] < 7=];
as z is arbitrary, || grad f(z)|| <. Q

(d) Conversely, if f : R™ — R is differentiable and || grad f(x)| < 7 for every x, then +y is a Lipschitz
constant for f. P Take z, y € R". Set g(t) = f((1—t)z+ty) for t € R. The functiont — (1—t)z+ty : R — R”
is everywhere differentiable, with constant derivative y — x, so by 473Bc g¢ is differentiable, with derivative
g (t) = (y—=x). grad f((1—t)x+ty) for every t; in particular, |¢'(t)| < v||ly—z|| for every t. Now, by the Mean
Value Theorem, there is a t € [0,1] such that g(1) — g(0) = ¢'(¢), so that |f(y) — f(z)| = |¢'(®)| < |y — ]|
As z and y are arbitrary, f is y-Lipschitz. Q

(e) Note that if f € D then all its partial derivatives are continuous functions with compact support, so
are bounded (4361a), and f is Lipschitz as well as bounded, by (d) here.

(£)(i) If D C R" is bounded and f : D — R is Lipschitz, then there is a Lipschitz function g : R” — R,
with compact support, extending f. I By 262Bb there is a Lipschitz function f; : R™ — R which extends
f. Let v > 0 be such that D C B(0,v) and v is a Lipschitz constant for f; set M = |f1(0)| + +2; then
|fi(x)| < M for every x € D, so if we set fao(x) = med(—M, fi(z), M) for z € R", f5 is a bounded Lipschitz
function extending f. Set f3(x) = med(0,1+~v—||z||,1) for € R"; then f5 is a bounded Lipschitz function
with compact support. By (a), g = f3 X fo is Lipschitz, and g : R” — R is a function with compact support
extending f. Q

(ii) Tt follows that if D C R" is bounded and f : D — R? is Lipschitz, then there is a Lipschitz function
g :R" — R*® with compact support, extending f. I By 262Ba, we need only apply (i) to each coordinate

of . Q

473D Smoothing by convolution We shall need a miscellany of facts, rnany of them special cases of
results in §§255 and 444, concerning convolutions on R”. Recall that I write (fxg)(z) = [ f(y Yu(dy)
whenever f and g are real-valued functions defined almost everywhere in R" and the 1ntegral is deﬁned and
that f*g=g=x f (255Fb, 4440g). Now we have the following.

Lemma Suppose that f and g are Lebesgue measurable real-valued functions defined p-almost everywhere
in R".

(a) If f is integrable and g is essentially bounded, then their convolution f x g is defined everywhere in
R" and uniformly continuous, and || f * glleo < || f]|1 €ss sup |g|.

(b) If f is locally integrable and g is bounded and has compact support, then f * g is defined everywhere
in R” and is continuous.

(¢) If f and g are defined everywhere in R” and x € R"\ ({y : f(y) # 0} +{z: g(z) # 0}), then (f *xg)(x)
is defined and equal to 0.

(d) If f is integrable and g is bounded, Lipschitz and deﬁned everywhere then f *gradg and grad(f = g)
are defined everywhere and equal, where f x gradg = (f * oL ) Moreover, f * g is Lipschitz.

(e) If f is locally integrable, and g € D, then f x g is deﬁned everywhere and is smooth.

(f) If f is essentially bounded and g € D, then all the derivatives of f x g are bounded, and f * g is

Lipschitz.
(g) If f is integrable and ¢ : R" — R” is a bounded measurable function with components ¢1,... , ¢,

andﬂzive write (f * @)(z) = ((f * ¢1)(@), ..., (f * &) (x)), then ||(f * d)(2)[| < [|f]l1 supyer- [[¢(y)] for every
r € R".

proof (a) See 255K.
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(b) Suppose that g(y) = 0 when ||y|| > n. Given z € R", set f=fx xB(z,n+1). Then f % g is defined
everywhere and continuous, by (a), while (f * g)(z) = (f * g)(z) whenever z € B(z,1); so f * g is defined
everywhere in B(z, 1) and is continuous at x.

(c) We have only to note that f(y)g(z —y) = 0 for every y.

(d) Let v be a Lipschitz constant for g. We know that grad ¢ is defined almost everywhere, is measurable,
and that || grad g(z)|| < v whenever it is defined (473Cc); so (f * grad g)(x) is defined for every z, by (a)
here. Fix z € R". If y, z € R" set

0y, z) = Hi,j'(LCJ(w —y+2z)—gl@x—y) —z. gradg(z —y))

whenever this is defined. Then |0(y, z)| < 2y whenever it is defined. Now suppose that (z,)nen is a sequence
in R" \ {0} converging to 0. Then lim, o 0(y, z,) = 0 whenever grad g(z — y) is defined, which almost
everywhere. So lim,, o [ f(y)0(y, z)u(dy) = 0, by Lebesgue’s Dominated Convergence Theorem. But this
means that

((f = 9)(@ + 20) = (f * g)(x) — ((f * grad g)(2)) . 20) — 0

as n — 00. As (zp)nen is arbitrary, grad(f * g)(z) is defined and is equal to (f * grad g)(z).
Now grad g is bounded, because g is Lipschitz, so grad(f * g) = f * grad g also is bounded, by (a), and
f * g must be Lipschitz (473Cd).

Hznll

(e) By (b), f * g is defined everywhere and is continuous. Now, for any ¢ < r, 2% (f g) = f* g—fg

everywhere. I Let n € N be such that g(y) = 0 if [|y[| > n. Given z € R", set f=fxxB(z,n+1). Then
(f*9)(z) = (f xg)(2) for every z € B(z,1), so that

W9) () = 229 () = (F » 22 ()

08 0¢; 0¢i
(by (d))
— 99
= (7 2)(@)
(because of course gg is also zero outside B(0,n)). Q Inducing on k,
o g
for every z € R” and every iy, ... ,ix; so we have the result.

(f) The point is just that all the partial derivatives of g, being smooth functions with compact support,
are integrable, and that

2 (f @) = 1(F * 22 @) < I loell S s

for every x and every ¢ < r. Inducing on the order of D, we see that D(f xg) = fxDg and | D(f *g)|loc <
[l flleollDgll1, so that D(f * g) is bounded, for any partial differential operator D. In particular, grad(f * g)
is bounded, so that f % g is Lipschitz, by 473Cd.

(g) If z, z € R", then
.. ZG “o)(@) = [ 1w me— dy)
/ 1y HZ@@ )li(dy)

S/\f(y)|||2||||¢(x—y)llu(dy) < [Izllllfllx sup [lg(y)ll-
yEeRT
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As z is arbitrary, [[(f * ¢)(@)[| <[]l supyer- [|(w)]

473E Lemma (a) Define h : R — [0, 1] by setting h(t) = exp(i) for [t| < 1, 0 for |t| > 1. Then h is
smooth, and A'(t) <0 fog t>0.
(b) For n > 1, define h,, : R™ — R by setting

an = [h((n+1)2e|?)u(de),  ha(z) =~

o+ 1) ]?)

for every z € R”. Then h,, € D, h,(x) > 0 for every z, h,(z) = 0 if ||z| > r%i—l’ and [ h,du = 1.

(¢) If f € LO(p), then limy, o0 (f % hn)(z) = f(x) for every z € dom f at which f is continuous.

(d) If f:R" — R is uniformly continuous (in particular, if it is either Lipschitz or a continuous function
with compact support), then lim, o ||f — f * iLn”OO =0.

(e) If f € LO(p) is locally integrable, then f(z) = limy,_,oo(f * hy)(x) for p-almost every z € R”.

(f) If f e LP(u), where 1 < p < oo, then lim,, oo || f — f * hpllp = 0.

proof (a) Set ho(t) = exp(—1+) for t > 0, 0 for ¢ < 0. A simple induction on n shows that the nth derivative
h(()n) of hg is of the form

n 1 1
B (8) = g (5) exp(—3) for t >0
=0fort <0,

where each ¢, is a polynomial of degree 2n; the inductive hypothesis depends on the fact that lims_, o g(s)e™* =
0 for every polynomial g. So hg is smooth. Now h(t) = ho(1 — t2) so h also is smooth. If 0 <t < 1 then

W) = —ep(z) iy

< 05
if ¢ > 1 then h'(¢) = 0; since A’ is continuous, A'(t) < 0 for every ¢ > 0.
(b) We need only observe that
ze (n+ 1D2[|2f* = (n+ 1), &
is smooth and that the composition of smooth functions is smooth (using 473Bc).

(c) If f is continuous at x and € > 0, let ng € N be such that |f(y) — f(z)| < € whenever y € dom f and
|y — 2|| < ——. Then for any n > no,
7’L0+1

(o) (&) — ()] = | / £ — g (y)u(dy) — / F (@) () uldy)
< / F@ — ) — @) hn(m)u(dy) < / ehn(y)pi(dy) = €.

As € is arbitrary, we have the result.
(d) Repeat the argument of (c), but ‘uniformly in 2’; that is, given € > 0, take ng such that | f(y)— f(z)| <

e whenever z, y € R” and ||y — z|| < %H’ and see that |(f * hy,)(x) — f(z)| < € for every n > ng and every
0
x.

(e) We know from 472Db or 261E that, for almost every € R”,

limsgo s [ g 11 0) = F@)l(dy) = 0.

Take any such x. Set v = f(z), Set g(y) = |f(y) — 7| for every y € dom f. Let € > 0. Then there is some

6 > 0 such that ;(?r < € whenever 0 < t < 4, where
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t
D= Jown 98 =[5 Jope.y 9w (dy)di

by 265G, so ¢'( fé)B(y " g dv for almost every t € [0,0], by 222E. If n + 1 > , then

(g% ) () = / 9()on(z — y)u(dy) = /B  Shale —utay)

/ /aB(M) B(n + 1)22)(dy)dt

%/h (n+1)%2)q (t)dt

—_— / 2(n 4 1)%th'((n + 1)**)q(t)dt

Qn 0

(265G again)

(integrating by parts (225F), because q(0) = h((n +1)?62) = 0 and both ¢ and h are absolutely continuous)
< —i /06 2(n 4+ 1)%th ((n + 1)*?)B,t"dt
(because 0 < ¢(t) < €,t" and ' ((n + 1)%t?) < 0 for 0 <t < 4)
=€
(applying the same calculations with xRT in place of g). But now, since (yxR" * Bn)(m) =~ for every n,
|(f * hn) =1 [(f( (z = y)udy)| < [1f(y) = YNhn(z = y)u(dy) < e

whenever n+1 > 5' As e is arbitrary, f(z) = = limy, 00 (f % hn)(2); and this is true for y-almost every z.

() Apply 444T to the indefinite-integral measure hop over p defined by hy,; use 444Pa for the identifi-
cation of (hnpu) * f with hy, % f = f * hy,.

473F Lemma For any measure space (X, ¥, \) and any non-negative fi, ..., fr € L9(\),
k l/k
ST £ < T (f i)
proof Induce on k. Note that we can suppose that every f; is integrable; for if any [ f; is zero, then f; = 0
a.e. and the result is trivial; and if all the [ f; are greater than zero and any of them is infinite, the result

is again trivial.
The induction starts with the trivial case k = 1. For the inductive step to k > 2, we have

k k—1
/Hfil/kd/\ < I TT £ Iy £ % 1
=1 i=1

(by Holder’s inequality, 244E)

k—1
= fil/(k_l)d)\ (k—=1)/k FudA 1/k
(f II )4 [ fan)

k—1
_1) (k—1)/k k
(by the inductive hypothesis)
k
=11/ san
i=1
as required.
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473G Lemma Let (X, X, \) be a o-finite measure space and k > 2 an integer. Write Ag for the product
measure on X*. For z = (&,. .. ,£k) e Xk teXandl<i<ksetsS, (ac t) = (51,... ,§k) where & =t and
i =& for j #4. Thenif h € L1(\g) is non-negative, and we set h;(z) = [ h(S JA(dt) whenever this
is defined in R, we have

f(Hf: hi)V/ k=1, < fhd)\ Yk/ (k=1),

proof Induce on k.

(a) If k = 2, we have

/hl X hod\y, = // / (71, &2) dﬁ)(/h(flaﬁ)dﬁ)dfld@
_ ////h(ﬁ,@)h(gl,TQ)dﬁdadgldgg
= // h(r1,&2)dmidEs - // h(&1, 72)dT2déy = (/hd/\Q)2

by Fubini’s theorem (252B) used repeatedly, because (by 253D) (11, 72,&1,&2) — h(&1,72)h(m1,&2) is A4-
integrable. (See 251W for a sketch of the manipulations needed to apply 252B, as stated, to the integrals
above.)

(b) For the inductive step to k > 3, argue as follows. For y € X*~1 set g(y) = [ h(y,t)dt whenever
this is defined in R, identifying X* with X*~! x X, so that g(y) = hx(y,t) whenever either is defined. If
1 <i <k, we can consider S;(y,t) for y € X*~! and t € X, and we have

[ 9(Si(y,t))dt = [[ h(S; wydudt = [ hi(y,t

for almost every y € X*~1. So

k

k—1
ST Dan = [ [ ([T ) Dg(a) /i v (ay)
=1 =1

k—1

= [ oo [T hatw ) Ve i)

i=1

/ )1/ 1>H /h Hdt) " n (dy)

(473F)

/ )L/ 1)Hg YV E=DN 1 (dy)

(where g; is defined from g in the same way as hi is defined from h)

k—1
< (f st (] TLot st

—2
-1

k—1)

??‘

=1)

: /g(y)/\kfl(dy)

(by Holder’s inequality again, this time with ﬁ

< (/g(y)kkfl(dy))l/

Aa\v

(by the inductive hypothesis)
k/(k—1 k/(k—1
= ([ struma@) 0 = ([ ),
and the induction proceeds.

D.H.FREMLIN



34 Geometric measure theory 473H

473H Gagliardo-Nirenberg-Sobolev inequality Suppose that f : R”™ — R is a Lipschitz function
with compact support. Then || f|l,/-—1) < [ || grad f||dpu.

proof By 473Cc, grad f is measurable and bounded, so || grad f|| also is; since it must have compact
support, it is integrable.

For 1 <i<r, o= ({,...,8) € R" and t € R write S;(z,t) = (£1,... ,&,) where & =t and & = &; for
j #i. Set hi(z) = [7_ || grad f(Si(z,t))||dt when this is defined, which will be the case for almost every .
Now, whenever h;(x) is defined,

|f (@) = [f(Si(z, &) \—\fooatf i(z,0))dt| < hi(z).

(Use 225E and the fact that a Lipschitz function on any bounded interval in R is absolutely continuous.)
So | f] <a.. h; for every i < r. Accordingly

S @)V pu(da) < [ TTiZy ha(2)Y D p(da) < ([ || grad f(2)]|p(dz))
by 473G. Raising both sides to the power (r — 1)/r we have the result.

r/(r—1)

4731 Lemma For any Lipschitz function f : B(0,1) — R,
r/(r— r r/(r—1)
ooy M/ < (2747 [ o llrad £ + | ldn) ,

proof (a) Set g(x) = max(0,2||x[|> — 1) for x € B(0,1). Then grad g is defined at every point = such that
lz]] < 1 and ||z| # %, and at all such points g—g is either 0 or 4¢; for each 4, so that || grad g(z)|| < 4||z| < 4.

Hence (or otherwise) g is Lipschitz. So f; = f X g is Lipschitz (473Ca).
By Rademacher’s theorem again, grad f; is defined almost everywhere in B(0,1). Now

/B(O 1

s

| grad f1|dyu = /B 1/ () grad g(x) + g(x) grad f(x)||pu(dx)

0,1

(473Bd)
< /B 41f] + || grad flldp.

)

(b) It will be convenient to have an elementary fact out in the open. Set ¢(x) =

I H2 for x € R™\ {0};

note that ¢?(z) = x. Then ¢[{x : ||z|| > §} is Lipschitz, for any § > 0. P If ||z = a > 4, ||yl = 8 > 6,
then we have

lé(z) = o) = lll* - a252 2~/+*Hyll2

= 252(||y||2—233 A+ lal?) < 54||1‘—y||2

1. N .
s0 = s a Lipschitz constant for ¢[R" \ B(0,4). Q

(c) Set fo(z) = f(z) if ||z|| < 1, fid(x) if ||z]] > 1. Then f; is well-defined (because fi(x) = f(x) if
llz|| = 1), is zero outside B(0,v/2) (because g(z) = 0 if ||z|| < %), and is Lipschitz. I By 473Cb, it will

be enough to show that fo|F is Lipschitz, where F' = {z : ||z|| > 1}. But (b) shows that ¢[F is 1-Lipschitz,
so any Lipschitz constant for f; is also a Lipschitz constant for fo[F. Q
If ||| > 1, then, for any i < r,

Of2 \ _ N\~0h 9, & \_0h 1 N0k &g
e, () = 2 (0 e (ap) = g, D) o — 2 2 (900)) e

_9ofs . 1 _ 2¢; v ora
=2, (0 o i £rad S(9(@))
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wherever the right-hand side is defined, that is, wherever all the partial derivatives 8? (¢(x)) are defined.

But H = B(0,1) \ dom(grad fi) is negligible, and does not meet {z : ||z| < %}, so ¢[H is Lipschitz and

¢[H] = ¢~ 1[H] is negligible (262D); while grad fi(¢(x)) is defined whenever ||z|| > 1 and = ¢ ¢~*[H]. So
the formula here is valid for almost every z € F', and

of2 L 2|§1|
52 )] < llgrad fi(#(@))] - 1z + Tt grad fu(o(@) ]

= || grad fi (o)) IR < 3 grad f1(6())]

for almost every x € F. But (since we know that grad fo is defined almost everywhere, by Rademacher’s
theorem, as usual) we have

I grad fo(z)|| < 3v/r|| grad f1(¢(x))]|

for almost every = € F'.

(d) We are now in a position to estimate

/ | erad fo | dp = / | grad foldu — / | grad | du
F B(0,v/2) B(0,1)

s

(because fo(z) = 0 if ||z]| > v/2)

V2
~ [ @)
1 9B(0,t)
(265G, as usual)

V2
1
< 3\/?/1 /83(07)&) | grad fl(t—zx)HV(da:)dt
(by (b) above)

V2
<3VF / / 272 grad f1(y) | (dy)dt
1 JoB(o,1/t)

substituting « = t?y in the inner integral; the point being that as the function y — t?y changes all distances
by a scalar multiple ¢, it must transform Hausdorff (r — 1)-dimensional measure by a multiple t>"~2. But
now, substituting s = % in the outer integral, we have

1
1
/ |l grad fo||du < 3\/;/ - / Il grad f1(y)|lv(dy)ds
F 1/v2 %" JoaB(o,s)

1
<9 .3F / / | grad £1 () |1v(dy)ds
1/v2 JoB(0,5)

— 2. 3yr | grad fu | dp
B(0,1)

<2 [ alfl grad
B(0,1)
by (a) above.
(e) Accordingly

/ | grad folldy = / | grad fldu + / | grad foldu
R"™ B F

)

<2t |f] + || grad fl|dp.
B(0,1)
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But now we can apply 473H to see that

/ A7V < / ol N < ( / | grad fof|dp)/ D
B(0,1)
r/(r—1
<@ [ ] erad £,
B(0,1)

as claimed.

473J Lemma Let f : R™ — R be a Lipschitz function. Then
2T T -
Loy (@) = F@ad) < o7 [ gwad f(a) e — = ()

whenever y € R”, § > 0 and z € B(y,J).

proof (a) To begin with, suppose that f is smooth. In this case, for any z, z € B(y, d),

1
@)= 1) = | [ e+ to = 2t
= ’/0 (x — 2). grad f(z + t(z — z))dt|
<llo =1 [ llgrad £z +to = 2Dl

So, for n > 0,

/ (@) — F()|v(da)
B(y,6)N0B(z,n)

1
< n/ / lerad f(= + t(x — 2))||v(dz)dt
0 JB(y,0)NdB(z,n)

4731

(grad f is continuous and bounded, and the subspace measure induced by v on 0B(z,7) is a (quasi-)Radon
measure (471E, 471Dh), so its product with Lebesgue measure also is (417T), and there is no difficulty with

the change in order of integration)

1
<n / . / | grad £ (w) |v(duw)dt
ot B(y,6)N0B(z,tn)

(because if ¢p(z) = 2z + t(x — z), then v¢~1[E] = L_JE whenever v measures E and ¢ > 0, while ¢(z) €

tr—1
B(y, 6) whenever x € B(y,J))

1
—y / / | grad f(w)lw — 27w (dw)dt
0 JB(y,6)NOB(z,tn)

n
—r [ Jrad £ ) = =/~ v(du)ds
0 JB(y,0)NdB(z,s)

(substituting s = tn)

— / | grad £ (w)ljw — 2|~ u(duw).
B(y,0)NB(z,1)

So
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26
Lo s = [T ) - s

26
< / ! / | grad f(w) | lw — 2~ u(duw)dy
0 B(y,0)NB(z,n)
26
< / ! / | grad £ (w)|llw — 2||*~" u(duw)dy
0 B(y,d)

2r .
=2 / | grad f(w)||[lw — 2|~ u(dw).
B(y,9)

r

(b) Now turn to the general case in which f is not necessarily differentiable everywhere, but is known to
be Lipschitz and bounded. We need to know that fB(y 5) |z — z||! =" u(dx) is finite; this is because

26
[ el atdn) < [ e sl atdn) = [0 v@B(G )
B(y,0) B(2,26) 0

26
:/ BT dE = 2603,
0

Take the sequence (hn)nen from 473E. Then (f * hy,)pnen converges uniformly to f (473Ed), while (grad(f
hn))nen = (hnxgrad f)nen (473Dd) is uniformly bounded (473Cc, 473Dg) and converges almost everywhere
to grad f (473Ee). But this means that, setting f,, = f * hy,

/ |f(z) = f(2)|p(dz) = lim | fn(2) = fa(2)|p(dz)
B(y,0)

"% J B(y,0)

: 2" o -7
< 1im 25 / | grad fo (@)l — 2] ()
B(y,0)

n—oo T

(because every f, is smooth, by 473De)
-

2" o —r
_ 25 / | grad £(2)]||z — 2| u(de)
B(y,9)

by Lebesgue’s Dominated Convergence Theorem.

(c) Finally, if f is not bounded on the whole of R", it is surely bounded on B(y, ), so we can apply (b)
to the function z — med(—M, f(x), M) for a suitable M > 0 to get the result as stated.

473K Poincaré’s inequality for balls Let B C R” be a non-trivial closed ball, and f : B - R a
. . . 1
Lipschitz function. Set v = B fB fdu. Then

(r— (r—=1)/r
(f5|f =7 =Vdu) <c[, Ilgrad f||dp,
where ¢ = 274, /r(1 + 27 +1).
proof (a) To begin with (down to the end of (b)) suppose that B is the unit ball B(0,1). Then, for any

T € B,
£(2) —l =] / f(@) - F(2)u(d)|

1
E/ |f(z 2)|u(dz)
<% /B Jevad F( o — =),
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by 473J. Also, for any z € B,

[ e uan = [ [ et
B(z,2) 9B(2,t)

:/ = (aB(z,t))dt_/ S, dt = 21,

0 0
So

/ |f 'Y|l£ d:C 27 / / ngadf ||||:E i 2”1 r (dz) (dx)
R /B/B [ grad f(2)[llz — 2"~ u(da) u(dz)
2”' -
< Z [ emaron [ el e

<2t [ Jgrad o))

(b) Now apply 4731 to g = f(x) — . We have

o - r/(r—1
[ 5=l Dau < e [ graa gl + llaw)”"
B B

< @i 2 [ grad fldu)0
B
(by (a)
— d d T/(Tfl).
(e [ Ngrad fldn)

(c) For the general case, express B as B(y,0), and set h(z) = f(y+0x) for z € B(0,1). Then grad h(z) =
dgrad f(y + dz) for almost every x € B(0,1). Now

1
fB(O,l) hdp = EIB(y,d) fdp,
SO

: -t _
MIB(OJ) hdp = 1B(y,0) fB(W;) Jdu=r.
We therefore have

/ If—vlr/(’”’”du=5r/ b=~/ Ddp
B(y,d) B(0,1)

<o(c [ eadnfdn) Y
B(0,1)

s

(by (a)-(b) above)
T 6 r/(r—
= (% [ grad fla)
B(y,9)

)

r/(r—1
(e[ emad flaw) ",
B(y,0)

Raising both sides to the power (r — 1)/r we have the result as stated.

Remark As will be plain from the way in which the proof here is constructed, there is no suggestion that
the formula offered for ¢ gives anything near the best possible value.
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473L Corollary Let B C R" be a non-trivial closed ball, and f : B — [0, 1] a Lipschitz function. Set
Fo={z:x€B, f(z) <3}, Fi={z:2€B, f(x) >3}
Then
(min(uFyo, uF1) "0 < def | grad fldp,
where ¢ = 274, /r(1 4 27F1).

. 1
proof Setting v = B I fdu,

)

_ |/ (=) _r ;
/Blf 7| dp > oy o if v =

NI N

1 :
Z ey ity < o

So 473K tells us that
. r—1)/r
(min(uFo, uFy)) " V" < c[, lgrad flldu,

N

as required.

473M The case r = 1 The general rubric for this section declares that r is taken to be at least 2,
which is clearly necessary for the formula in 473K to be appropriate. For the sake of an application in
the next section, however, I mention the elementary corresponding result when » = 1. In this case, B is
just a closed interval, and grad f is the ordinary derivative of f; interpreting (fB |f — |/ =) (r=1/7 a5
|lf x xB —vxBl|;/r—1), it is natural to look at

If % XB = ¥xBlloo = sup,ep |f(2) =] <sup, yep () = ) < [, | 1du,

giving a version of 473K for » = 1. We see that the formula for ¢ remains valid in the case r = 1, with a
good deal to spare. As for 473L, if fB lf'] < % then at least one of Fy, F; must be empty.

473X Basic exercises (a) Set f(r) = max(0, —In ||z]), fi(z) = min(k, f(x)) for z € R?\ {0}, k € N.
Show that limg_ || f — fxll2 = limk— o || grad f — grad fi||1 = 0, so that all the inequalities 473H-473L are
valid for f.

(r—1)!
(k—1)(r—Fk)!
basis of R™ and J the family of subsets of {1,...,r} with kK members. For J € J let V; be the linear span
of {e; : i € J}, m; : R™ — V; the orthogonal projection and v; the normalized k-dimensional Hausdorff
measure on V. Show that if A C R” then (u*A)™ <[] ;¢ vims[A]. (Hint: start with A C [0,1]" and note
that ([0,1]")™ can be identified with [T, /[0,1]7.)

(b) Let k € [1,7] be an integer, and set m = . Let eq,..., e, be the standard orthonormal

473Y Further exercises (a) Let D C R" be any set and ¢ : D — R® any function. Show that
Dy = {x: x € D, ¢ is differentiable at =} is a Borel subset of R", and that the derivative of ¢ is a Borel
measurable function. (Compare 225J.)

473 Notes and comments The point of all the inequalities 473H-473L is that they bound some measure of
variance of a function f by the integral of || grad f||. If r = 2, indeed, we are looking at || f||2 (473H) or [, |f[?
(4731) or something essentially equal to the variance of probability theory (473K). In higher dimensions we
need to look at || [|./(-—1) in place of || ||2, and when r = 1 we can interpret the inequalities in terms of the
supremum norm || ||o (473M). In all cases we want to develop inequalities which will enable us to discuss
a function in terms of its first derivative. In one dimension, this is the familiar Fundamental Theorem
of Calculus (Chapter 22). We find there a straightforward criterion (‘absolute continuity’) to determine
whether a given function of one variable is an indefinite integral, and that if so it is the indefinite integral
of its own derivative. Even in two dimensions, this simplicity disappears. The essential problem is that a
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function can be the indefinite integral of an integrable gradient function without being bounded (473Xa).
The principal results of this section are stated for Lipschitz functions, but in fact they apply much more
widely. The argument suggested in 473Xa involves approximating the unbounded function f by Lipschitz
functions fj in a sharp enough sense to make it possible to read off all the inequalities for f from the
corresponding inequalities for the fr. This idea leads naturally to the concept of ‘Sobolev space’, which I
leave on one side for the moment; see EVANS & GARIEPY 92, chap. 4, for details.

Version of 17.11.12
474 The distributional perimeter

The next step is a dramatic excursion, defining (for appropriate sets F) a perimeter measure for which
a version of the Divergence Theorem is true (474E). T begin the section with elementary notes on the
divergence of a vector field (474B-474C). I then define ‘locally finite perimeter’ (474D), ‘perimeter measure’
and ‘outward normal’ (474F) and ‘reduced boundary’ (474G). The definitions rely on the Riesz representation
theorem, and we have to work very hard to relate them to any geometrically natural idea of ‘boundary’. Even
half-spaces (474I) demand some attention. From Poincaré’s inequality (473K) we can prove isoperimetric
inequalities for perimeter measures (474L). With some effort we can locate the reduced boundary as a subset
of the topological boundary (474Xc), and obtain asymptotic inequalities on the perimeter measures of small
balls (474N). With much more effort we can find a geometric description of outward normal functions in
terms of ‘Federer exterior normals’ (474R), and get a tight asymptotic description of the perimeter measures
of small balls (474S). I end with the Compactness Theorem for sets of bounded perimeter (474T).

474 A Notation I had better repeat some of the notation from §473. r > 2 is a fixed integer. p is
Lebesgue measure on R”, and 8, = uB(0,1) is the volume of the unit ball. S,_; = 0B(0,1) is the unit
sphere. v is normalized (r — 1)-dimensional Hausdorff measure on R”. We shall sometimes need to look
at Lebesgue measure on R”~!, which I will denote p,_1. As in §473, I will use Greek letters to represent
coordinates, so that © = (&1,...,&,.) for x € R", etc., and G, will be the r-dimensional volume of the unit
ball in R".

D is the set of smooth functions f : R” — R with compact support; D, the set of smooth functions
¢ : R” — R” with compact support, that is, the set of functions ¢ = (¢1,...,¢,) : R” — R” such that
¢; € D for every i.

I continue to use the sequence <~n>n€N from 473E; these functions all belong to D, are non-negative

1

everywhere and zero outside B(0, n—ﬂ), are even, and have integral 1.

474B The divergence of a vector field (a) For a function ¢ from a subset of R” to R", write
divg =30, g?ﬁ where ¢ = (¢1,... ,¢,); for definiteness, let us take the domain of div ¢ to be the set of
points at which ¢ is differentiable (in the strict sense of 262Fa). Note that div¢ € D for every ¢ € D,.. We
need the following elementary facts.

(b) If f:R" - R and ¢ : R” — R" are functions, then div(f x ¢) = ¢. grad f + f x div ¢ at any point
at which f and ¢ are both differentiable. (Use 473Bc; compare 473Bd.)

(¢) If ¢ : R” — R” is a Lipschitz function with compact support, then [divgdy = 0. P dive is
defined almost everywhere (by Rademacher’s theorem, 262Q), measurable (473Be), bounded (473Cc) and
with compact support, so

[divedu =31, f%du

is defined in R. For each ¢ < r, Fubini’s theorem tells us that we can replace integration with respect to p
by a repeated integral, in which the inner integral is

fjooo (;z): (517 v 7§T)d£i =0

(©) 2001 D. H. Fremlin
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because ¢;(&1, ... ,&.) = 0 whenever || is large enough. So f ?)?

the result. Q

dp also is zero. Summing over 4, we have

(d)If¢:R" - R" and f : R” — R are Lipschitz functions, one of which has compact support, then f x ¢
is Lipschitz. I Take n € N such that f(z)¢(z) = 0 for ||| > n, and v > 0 such that |f(z)— f(y)| < vllz—yll
and ||¢p(z) — d(y)|| < ||z —yl| for all 2, y € R", while also |f(z)| < v whenever ||z|| < n+1and ||¢(z)| < v
whenever |z|| <n+1. If z, y € R" then

—if ||z <n+1and |ly]| <n+1,
1f(@)¢(x) = fFeW)ll < [f(@)ll¢) — W)l + Il f (x) — Fy) < 2v* |z — yll;
—if [|z|| < n and |yl > n+1,

[f(@)e(x) = f)oW)ll = [f @)@ <7 <?lz = yl;

)
—— it flz] > n and |ly[| > n, |f(z)é(x) — f(y)o(y)] = 0.
So 27?2 is a Lipschitz constant for f x ¢. Q
It follows that

[ é.grad fdu+ [ f x divdu=0.
P f and ¢ and f x ¢ are all differentiable almost everywhere. So
[ é.grad fdu+ [ fxdivgdu= [div(f x ¢)du =0
by (b) and (c) above. Q

(e) If f € £L°°(u), g € LY(u) is even (that is, g(—=z) is defined and equal to g(z) for every z € domg),
and ¢ : R” — R” is a Lipschitz function with compact support, then [(f xg) x divg = [ f x div(g * ¢),
where g * ¢ = (g * ¢1,... ,9* &,). P For each i,

JLRY. ~ [[ @922 @+ putdptar)
— [[ 109032 @ + putyn(a
/ fx5e g * @i )dp

474C Invariance under isometries: Proposition Suppose that T : R” — R" is an isometry, and
that ¢ is a function from a subset of R” to R”. Then

div(T~1¢T) = (dive)T

(255G /4440d)

(because ¢ is even)

dE
as in 473Dd. Now take the sum over ¢ of both sides. Q

proof Set z = T(0). By 4A4Jb, the isometry x +— T'(x) — z is linear and preserves inner products, so there
is an orthogonal matrix S such that T'(z) = z + S(x) for every z € R". Now suppose that x € R" is such
that (div¢)(T'(z)) is defined. Then T(y) — T(x) — S(y — z) = 0 for every y, so T is differentiable at x, with
derivative S, and ¢T is differentiable at x, with derivative DS, where D is the derivative of ¢ at T'(z), by
473Bc. Also T~ (y) = S™1(y — 2) for every y, so T~! is differentiable at ¢(T(x)) with derivative S—!, and
T~ 1¢T is differentiable at z, with derivative S~'DS. Now if D is (0ij)1<ij<r and S is (045)1<i j<r and
S~IDS is (Tij)1<ij<r, then S~ is the transpose (0ji)1<i,j<r of S, because S is orthogonal, so

div(T~'¢T)(z ZT” = Z Zaﬂ 2(5 kOki

11]1

= ZZCSjk Za'jio'ki = ZtSjj = div ¢(T'(z))

j=1k=1 =1
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because Y .:_, 0j;0;, = 1 if j = k and 0 otherwise. If div(T~'¢T)(z) is defined, then (because T~ also is
an isometry)

(div o) (T(z)) = div(TT*¢TT 1) (T(x)) = div(T1¢T)(T1T(z)) = div(T~1¢T)(x).
So the functions div(T~'¢T) and (div¢)T are identical.

474D Locally finite perimeter: Definition Let £ C R" be a Lebesgue measurable set. Its perimeter
per E is

sup{\fE divedy| : ¢ : R™ — B(0,1) is a Lipschitz function with compact support}
(allowing c0). A set E C R" has locally finite perimeter if it is Lebesgue measurable and
sup{|fE divgdu| : ¢ : R™ — R" is a Lipschitz function, ||¢|| < xB(0,n)}
is finite for every n € N. Of course a Lebesgue measurable set with finite perimeter also has locally finite

perimiter.

474E Theorem Suppose that £ C R" has locally finite perimeter.
(i) There are a Radon measure A% on R” and a Borel measurable function ¢ : R" — S,_; such that

[pdivodu= [ d.9drs

for every Lipschitz function ¢ : R™ — R" with compact support.
(ii) This formula uniquely determines )\SE, which can also be defined by saying that

N(G) = sup{|fE divgdu| : ¢ : R™ — R” is Lipschitz, ||¢|| < xG}

whenever G C R" is open.
(iii) If ¢ is another function defined A\%-a.e. and satisfying the formula in (i), then ¢) and 1 are equal
A2 _almost everywhere.

proof (a)(i) For each [ € N, set
v = sup{| [ divedu| : ¢ : R" — R" is Lipschitz, ||¢|| < xB(0,1)}.

If f:R” — R is a Lipschitz function and f(z) = 0 for |z[| > I, then | [, g—gdm < Ylflleo for every i < r.

P It is enough to consider the case ||f|lcc = 1, since the result is trivial if || f||cc = 0, and otherwise we can
look at an appropriate scalar multiple of f. In this case, set ¢p(x) = f(z)e; for every x, where e; is the unit
vector (0,...,0,1,0,...,0) with a 1 in the ith place. Then ¢ is Lipschitz and ||¢|| = |f| < xB(0,1), so

9] .
o imdul = | [pdivodu < . Q

(ii) Write Cf for the space of continuous functions with compact support from R" to R. By 473Dc
and 473De, f *x h, € D for every f € C} and n € N. Now the point is that

Li(f) = limpse [ 50 (F  hu)dp

is defined whenever f € Cy and ¢ <r. B Applying 473Ed, we see that Ilf— f = l~zn||Oo — 0 asn — oo. Let |
be such that f(x) =0 for ||z|| > 1. Then ||(f * hm) — (f * hn)|loo — 0 as m, n — oo, while all the f * h,, are
zero outside B(0,! + 1) (473Dc), so that

[ g # P = [ 5 (F # )] < ea|(F % Bu) = (F % B)Jow = 0

as m, n — oo. Thus (fE %(f * iLn)d,u>neN is a Cauchy sequence and must have a limit. @
(iii) If f € C% is Lipschitz and zero outside B(0,1), then

9 0 7 Py
o g = [ g (F % hu)dnl < yallf = F # hafloc = 0
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0
as n — oo, and L;(f) = [, %du. Consequently |L;(f)| < vl fllco-

(b) Because all the functionals f +— f = %( f* ﬁn)du are linear, L; is linear. Moreover, by the last remark

in (a-iii), it is order-bounded when regarded as a linear functional on the Riesz space Cy, so is expressible
as a difference L] — L of positive linear functionals (356B).

By the Riesz Representation Theorem (436J), we have Radon measures A", \; on R" such that L] (f) =
[ faXF, Ly (f) = [ fd\; for every f € Cj. Let A be the sum 7_, A + A, so that A is a Radon measure
(416De) and every A\j, A7 is an indefinite-integral measure over A (416Sb).

For each i < r, let g;" , g; be Radon-Nikodym derivatives of )\Z'-", A; with respect to A Adjusting them
on a X—negligible set if necessary, we may suppose that they are all bounded non-negative Borel measurable
functions from R” to R. (Recall from 256C that A must be the completion of its restriction to the Borel
o-algebra.) Set g; = g;" — g; for each i. Then

/EggidMZL;r(f)—LZ(f)Z/fd)\j—/fd)\;

:/fxg;rdj\—/fxg;dj\:/fxgidjx

for every Lipschitz function f with compact support (235K). Set g = \/>_._; g7. For i <r, set ¢;(z) = %

when g(z) # 0, % when g(x) = 0, so that 1 = (¢1,... ,1,) : R" — S,_; is Borel measurable. Let A% be

the indefinite-integral measure over A defined by g; then A2 is a Radon measure on R" (256E/416Sa).

(c¢) Now take any Lipschitz function ¢ : R™ — R" with compact support. Express it as (¢1,...,¢.)
where ¢; : R” — R is a Lipschitz function with compact support for each i. Then

~ ~ [ 096 :
/Edlv¢du=;/Ea€idu=;Li(¢i)
=Y L) - YL@ =Y [edii -3 [edi
i=1 =1 i=1 i=1
= ¢ixjd5\— d; X z_dj\
> [ oot =3 foxs

(by 235K again)

T

Z/d)ixgid}\i/@xwd)‘%

i=1
(235K once more, because ¢; X g = g;

)
= /(;S.wd)\%.

So we have A2 and 1 satisfying (i).
(d) Now suppose that G C R" is open. If ¢ : R” — R" is a Lipschitz function with compact support and
[6]l < XG, then
| [pdivodul = [ ¢.pdg| < [ ¢lldrg < AZ(G).

On the other hand, if v < A\%(G), let Gy € G be a bounded open set such that v < A%(Gy), and set
e = £(A%(Go) — 7). Let K C Gg be a compact set such that A%(Go \ K) < e. Let § > 0 be such that
lz —y|| > 26 whenever y € K and € R" \ Gy, and set H = {z : infycx || — y|| < d}. Now there are
fi,---, fr € Ck such that

D.H.FREMLIN



44 Geometric measure theory 47T4E

S fPSxH, Y fi xpidAg > .

P For each i < r, we can find a sequence (gyi)men in Ci such that [ [gm; — (i ¥ XK)|d)\% < 2™ for every
m € N (4161); multiplying the g,,,; by a function which takes the value 1 on K and 0 outside H if necessary,
we can suppose that g, (x) =0 for = ¢ H. Set

f' J— Imi E Ck:
" max(lv\/Z;:1 ggnj)
for each m and i. Now lim,,, o fini(x) = ;(z) for every ¢ < r whenever lim,, o gmi(z) = ¥;(z) for every
i < r, which is the case for A%-almost every z € K. Also S f2 < xH for every m, 50 | Yy fmi X ¥i] <
xH for every m, while

B, oo 31y fK Foni X A, =307, fK 2N, = A\ (K).
At the same time,
201 Jar i i % $idNG] < NG(H\ K) < e
for every m, so

Soiy [ fmi X idAG > A2 (Go) — Be =y
for all m large enough, and we may take f; = f,,; for such an m. Q
Now, for n € N, set

(bn: (fl*i'/ny 7fr*]~1n) EDT'
For all n large enough, we shall have ||z — y|| > 7#1—1 for every x € R" \ Gy and y € H, so that ¢, (z) =0 if
x ¢ Gy. By 473Dg,
16 ()] < supyer v/2oimy fily)? <1

for every = and n, so that ||¢,| < xGy for all n large enough. Next, lim, o ¢n () = (f1(2),..., fr(x)) for
every © € R” (473Ed), so

S divondp = [ dn.pdA — [ S0 fi x idAG >y

as n — 00, by Lebesgue’s Dominated Convergence Theorem. As «y is arbitrary,
A(G) < Sup{/ divgdu: ¢ € Dy, ||¢]| < xG}
E

< sup{/ div ¢ dp : ¢ is Lipschitz, ||¢|| < xG}
E

and we have equality.

(e) Thus )\6E must satisfy (ii). By 416EDb, it is uniquely defined. Now suppose that 1[1 is another function
from a A%-conegligible set to R" and satisfies (i). Then

[o.dXs = [ ¢.1pdrS,

for every Lipschitz function ¢ : R™ — R" with compact support. Take any i < r and any compact set
K CR". For m € N, set f,,(z) =max(0,1 — 2™ inf,cx ||y — z||) for z € R", so that (fm)men is a sequence
of Lipschitz functions with compact support and lim,,,—,~ fn = XK. Set

Gm =1(0,..., fm,-..,0),

where the non-zero term is in the ith position. Then
/ Y;d\% = lim /fm X ;d\% = lim /¢m.¢dA%
K m—00 m—r 00
= lim [ ¢m.9pdA = / DidNS,.
m—r 00 K
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By the Monotone Class Theorem (136C), or otherwise, fF Q/Ajid)\% = fF wid)\% for every bounded Borel set
F', so that ’(/AJZ =; )\%—a.e.; as ¢ is arbitrary, ¥ = 1& )\%—a.e. This completes the proof.

474F Definitions In the context of 474E, I will call )\'?E the perimeter measure of E, and if ¢ is a
function from a A%-conegligible subset of R™ to S,._; which has the property in (i) of the theorem, I will
call it an outward-normal function for E.

The words ‘perimeter’ and ‘outward normal’ are intended to suggest geometric interpretations; much of
this section and the next will be devoted to validating this suggestion.

Observe that if F has locally finite perimeter, then per E = X%(R"). The definitions in 474D-474E also
make it clear that if F, F C R are Lebesgue measurable and u(EAF) = 0, then per E = per F' and F has
locally finite perimeter iff F' has; and in this case )\BE = )\% and an outward-normal function for F is an
outward-normal function for F.

474G The reduced boundary Let £ C R” be a set with locally finite perimeter; let )\% be its perimeter
measure and ) an outward-normal function for E. The reduced boundary 9%FE is the set of those y € R”
such that, for some z € S,_1,

limys o (z) — 2| A% (dz) = 0.

1
A2 B(y,d) fB(yfo) Hw
(When requiring that the limit be defined, I mean to insist that )\%B (y,d) should be non-zero for every
§ > 0, that is, that y belongs to the support of A%. Warning! Some authors use the phrase ‘reduced
boundary’ for a slightly larger set.) Note that, writing ¢ = (¢1,... ,%,) and z = ((1,. .., (), we must have
PidAY,

] 1
¢ = limgyo me(y,é)

so that z is uniquely defined; call it 1g(y). Of course O°E and 1y are determined entirely by the set F,
because /\% is uniquely determined and v is determined up to a /\%—neghgible set (474E).
By Besicovitch’s Density Theorem (472Db),

1510 555 S5y 15(2) = vu(w) [N () = 0

for every i < r, for A9-almost every y € R"; and for any such y, ¥g(y) is defined and equal to ¥(y). Thus
O®E is A2-conegligible and g is an outward-normal function for E. 1 will call vg : P®E — S,_, the
canonical outward-normal function of E.

Once again, we see that if £, FF C R" are sets with locally finite perimeter and EAF' is Lebesgue
negligible, then they have the same reduced boundary and the same canonical outward-normal function.

474H Invariance under isometries: Proposition Let £ C R" be a set with locally finite perimeter.
Let )\% be its perimeter measure, and ¥g its canonical outward-normal function. If T : R” — R" is any
isometry, then T[FE] has locally finite perimeter, )\% B is the image measure )\BET_l, the reduced boundary

T |E) is T[0®F), and the canonical outward-normal function of T[E] is St T ', where S is the derivative
of T

proof (a) As noted in 474C, the derivative of T is constant, and is an orthogonal matrix. Suppose that
n € N. Let ¢ : R™ — R" be a Lipschitz function such that ||¢|| < xB(0,n). Then

[ dwodn =| [ @ivorau
T[E] E
(263D, because | det S| = 1)
—| [ div(rtoT)aud
E
(474C)
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— | [ div(s~6T)du
E
(because S~1¢T and T~ 1¢T differ by a constant, and must have the same derivative)
< AG(T7'[B(0,n)))

because S~1¢T is a Lipschitz function and
IS=1T | = 6T < xT~[B(0,n)].
Since T~1[B(0,n)] is bounded, A\%(T~*[B(0,n)]) is finite for every n, and T[F] has locally finite perimeter.

(b) We can therefore speak of its perimeter measure /\%E]. Let G C R" be an open set. If ¢ : R” — R"
is a Lipschitz function and ||¢|| < xT'[G], then
| iy div ddpal = | [ div(S™oT)dp| < M5(G)
because S~1¢T is a Lipschitz function dominated by xG. As ¢ is arbitrary, /\% E] (T[G]) < A\%(G). Applying
the same argument in reverse, with 77! in the place of T, we see that \%(G) < A?[E] (T'[G]), so the two
are equal. This means that the Radon measures )\g[E] and )\%T ~1 (4181) agree on open sets, and must be
identical (416Eb again).

(c) Now consider SyT~!. Since 1x is defined A\%-almost everywhere and takes values in S,_1, YT~
and SyYpT ! are defined )\%E]—almost everywhere and take values in S,_1. If ¢ : R™ — R" is a Lipschitz
function with compact support,

i = iv = iv(T™!
/T[E]dwdu /E(d ST dp /Ed (T~ 16T dp
:/ div(S‘lqu)du:/(S_lqu).z/)Ed)\‘?E
E
— [ (sve)ar

(because S is orthogonal)

- / 6. (SvET~)d(OLT)
(235G)

— / ¢ (SYeT™")d\ .

Accordingly SyT~1! is an outward-normal function for T[E]. Write Yp(g) for the canonical outward-normal
function of T'[E].

(d) Take y € R and consider

1 . . )
. B(s) Syl — SYpT X2 (d
A2 B(y,0) /B(M) 1SYET ™" (x) — ST~ (y) |\ (g (dz)

1

= BT )9 15 e(z) — SYeT ™ (y)| A% (dx)

B(T~'(y),8)
1 -1 1]
S S— — YT Ag(d
BT Jygg, 5 1720~ 06T 0N
for any § > 0 for which
Mg B(y.8) = AgT ' [B(y,0)] = ALB(T (), )

is non-zero. We see that
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. 1 _ —
0410 S By 1557700 = ST )y )

is defined and equal to 0 whenever

. _ -1 0
A%B(T*l(y),(s) fB(Tfl(y),é) ||’Q/JE(1') ¢ET (y)H)\E(dx)
is defined and equal to 0, that is, T~ (y) € 0*E. In this case, y € 9T [E] and ST~ (y) = ¥rm (y). So
O*T[E) D T[0*E] and ST~ extends Ve
Applying the argument to T~!, we see that S_l’(/JT[E]T extends ¢ g, that is, ¥pg) extends SyeT~!. So
SiET~! is exactly the canonical outward-normal function of T[E], and its domain T[0%E] is 9°T[E].

4741 Half-spaces It will be useful, and perhaps instructive, to check the most elementary special case.

Proposition Let H C R” be a half-space {z : .v < a}, where v € S"~!. Then H has locally finite
perimeter; its perimeter measure A% is defined by saying

N (F) =v(FNoH)

whenever F' C R" is such that v measures F' N 0H, and the constant function with value v is an outward-
normal function for H.

proof (a) Suppose, to begin with, that v is the unit vector (0,...,0,1) and that o = 0, so that H = {« :
& < 0}. Let ¢ : R™ — R" be a Lipschitz function with compact support. Then for any ¢ < r

O¢i _

because we can regard this as a multiple integral in which the inner integral is with respect to &; and is
therefore always zero. On the other hand, integrating with respect to the rth coordinate first,

0
09, _ 09,
/PI 9 ,u(dx) B /R"_l [oo & (27 t)dt /uril(dZ)

_ /R om0 (d) = [ r(@)y(de)

OH

(identifying v on R"™™1 x {0} with p,_; on R"~1)
= gb.vduz/gb.vd)\

OH
where \ is the indefinite-integral measure over v defined by the function x(0H). Note that (by 234La) A
can also be regarded as vggt ™!, where vy is the subspace measure on O0H and ¢ : 0H — R” is the identity
map. Now vsp can be identified with Lebesgue measure on R"~!, by 265B or otherwise, so in particular is
a Radon measure, and A also is a Radon measure, by 4181 again or otherwise.
This means that A\ and the constant function with value v satisfy the conditions of 474E, and must be
the perimeter measure of H and an outward-normal function.

(b) For the general case, let S be an orthogonal matrix such that S(0,...,0,1) = v, and set T'(z) =
S(z) + awv for every z, so that H = T[{z : & < 0}]. By 474H, the perimeter measure of H is AT ! and the
constant function with value v is an outward-normal function for H. Now the Radon measure A% = AT~}
is defined by saying that

NLF = NI F] = (T [F] N {z : & = 0}) = v(F N T[{z : & = 0}]) = v(F N OH)

whenever v(FNOH) is defined, because v (being a scalar multiple of a Hausdorff measure) must be invariant
under the isometry 7.

474J Lemma Let E C R" be a set with locally finite perimeter. Let /\% be the perimeter measure of E,
and g its canonical outward-normal function. Then R” \ E also has locally finite perimeter; its perimeter
measure is /\aE, its reduced boundary is 9%F, and its canonical outward-normal function is —z.
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proof Of course R" \ F is Lebesgue measurable. By 474Bc,
er\E divgdu = — [ divodp = [ ¢.(=r) dAY,

for every Lipschitz function ¢ : R™ — R” with compact support. The uniqueness assertions in 474E tell us
that R™ \ E has locally finite perimeter, that its perimeter measure is )\BE7 and that —yg is an outward-
normal function for R" \ E. Referring to the definition of ‘reduced boundary’ in 474G, we see at once that
O¥(R"\ E) = 0°E and that ¢ p = —p.

474K Lemma Let £ C R” be a set with locally finite perimeter; let /\% be its perimeter measure, and
1 an outward-normal function for E. Let ¢ : R” — R” be a Lipschitz function with compact support, and
g € D an even function. Then

fgb. grad(g * xE)dp + f(g * $) . d\% = 0.

proof

/(b- grad(g = xE)dp = — /(9 * xE) x divédp
(474Bd, using 473Dd to see that g x xE is Lipschitz)
= —/XE x div(g * ¢)du
(474Be)

—— [eorvang
(because g * ¢ is smooth and has compact support, so is Lipschitz), as required.

474L Two isoperimetric inequalities: Theorem Let £ C R" be a set with locally finite perimeter,
and A%, its perimeter measure.

(a) If E is bounded, then (uE)("~1/" < per E.

(b) If B C R" is a closed ball, then

min(u(B N E), u(B\ E))"=Y/" < 2e)\%(int B),
where ¢ = 274, /r(1 + 27 +1).

proof (a) Let € > 0. By 473Ef, there is an n € N such that ||f — xE||,/,—1) < €, where f = xE h.,. Note
that f is smooth (473De again) and has compact support, because E is bounded. Let n > 0 be such that

|| grad £|*
[ Il grad flldp < fm@”rﬁ,

grad / Then ¢ € D, and ||¢(x)|] <1 for every x € R". Now we can estimate

Vil grad fl?°

and set ¢ =

/ I grad flldp < /(;5- grad fdp + e
= [ ) v drg + e
(where v is an outward-normal function for E, by 474K)
< / [ * @||dAD + € < per E + €
because ||(hy, * ¢)(x)|| < 1 for every = € R”, by 473Dg. Accordingly
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(E) T = IXElrjre1) < [ fllejro) + € < / | grad flldu + €

(473H)
< perFE + 2e.

As € is arbitrary, we have the result.

(b)(3) Set o = min(w(BNE),u(B\ E)). If a = 0, the result is trivial; so suppose that o > 0. Take any
€ €]0,a]. Let By be a closed ball, with the same centre as B and strictly smaller non-zero radius, such that
w(B\ By) < ¢ then o — e < min(u(By N E), (B \ E)). For f € £7/0=D (1) set

Yo(f) = — fBl fdp,  n(f) = 1(f x xB1) = %(H)xBillr/r-1);

nB1

then both vy and 7; are continuous functions on £7/("=1)(p) if we give it its usual pseudometric (f,g)
If = gllr/o—1)- Now v (x(EN B)) > (v — ¢)"=1/7. P We have

“(B1NE)
ubBy

Y(X(ENB)) =

WENB) ) = [ (B0 B) — BB

_ W(BLOE) \r/(r=1) w(BANE) \r/(r=1)
= u(Bi 0 E)(1 - =) +u(Bi\ B) (%)

Bi\E)\r/(r—1) BiNE)\7/(r—1)
= (B QE)(%) + (B \E)(%) .

Either u(B1 N E) > %uBl or u(B1\ E) > %uBl; suppose the former. Then

s rT— 1 1
NO(ENB)™ > s (B \ B) > 55 (=€)

and v1(x(ENB)) > %(a — €)=/ Exchanging B; N E and B; \ E we have the same result if u(B; N E) >
suB. Q
(ii) Express B as B(y,d) and By as B(y,d1). Take ng > % Because v, is || ||;/(r—1)-continuous,
—01
there is an n > ng such that y1(f) > 3(a — €)"™V/" — ¢, where f = By % X(E N B) (473Ef); as in part (a)
of the proof, f € D. Let n > 0 be such that
Il grad f]1* > _
o, Zriraaa 2 I,  erad flldp - e.
Let m > ng be such that [ ¢. grad fdu > fBl || grad f||du — 2¢, where
=, (=22 B)).
0=t e 2 < X5
Note that ¢(z) = 0 if ||z — y[| > (6 + &1), so that (A, * ¢)(z) = 0 if = ¢ int B. By 473Dg, [|¢(z)|| < 1 for

every z and ||(hy, * ¢)(z)|| < 1 for every x, so ||hy, * ¢ < x(int B).
Now we have

/¢.gradfdu: /qb.grad(izn*X(EﬁB))du

_ _/(ﬁn « x(EN B)) x divdyu
(474Bd)
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_ / div( * ¢)dps
ENB
(474Be)
_ / div(hu, * &)dp < A2 (int B)
E

(474E).
(iii) Accordingly

1 r—1)/r
sa= 0t —e<m(f) < [ gmad
By

(473K)
< c(/qb. grad f du + 2¢) < c(\%(int B) + 2€).

As e is arbitrary, o""1/7 < 2¢\? (int B), as claimed.

474M Lemma Suppose that £ C R" has locally finite perimeter, with perimeter measure )\% and an
outward-normal function . Then for any y € R” and any Lipschitz function ¢ : R” — R",

i = o] 1
fEﬁB(yﬁ) divedp = fB(y,é) -y dXg + fEmaB(y,a) (@) -g(w —y)v(dz)
for almost every § > 0.

proof (a) For t > 0, set

W) = [propen 9@ 7@ = y) v(da)

when this is defined. By 265G, applied to functions of the form

T—y .
s {(b(x).”xy ifze Eand 0 < ||z —y|| < a

otherwise,

w is defined almost everywhere in ]0, oo[ and is measurable (for Lebesgue measure on R).
Let 6 > 0 be any point in the Lebesgue set of w (223D). Then

. 1 po+t . 1 po+t
limy o ;fé |w(s) —w(d)|ds < 2limy o 2ot lw(s) —w(d)| = 0.
Let € > 0. Then there is an i > 0 such that
1 pé+n 2]
= — < <
LT )~ w@lds S € Lo 110N <
St s nn e 41V lld < e

(b) Set
g(x) = 1if [lz —y| <6,
1 .
=1-Cllz =yl —0)if s <|lz —yll <o+,
=0if |z —yl| =6 +n.
Then g is continuous, and gradg(z) =0 if ||z —y|| < dor ||z —y|| > 6 + n; while if 6 < ||z —y| < 0 +n,

=y

— . This means that
nllz—yll

grad g(z) =
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o+n
/ 6. gradgdy = —1 / [E oy 1) 9@ )l
5+n
= —7/ w(t)dt.
o

n

By the choice of 7,
|fE¢>. grad g dp +w(d)| < e.

(c) By 474E and 474Bb we have

Jtaxo.0axt = [ aivtg x oya
E
(of course g x ¢ is Lipschitz, by 473Ca and 262Ba)

:/gb.gradgdu—i—/gxdivgbd,u.
E E

Next, by the choice of 7,
) )
[ (g x @)wddy = [, 5 @V dAGI < [o o s I91AAE <
while
1
|y ¢ gradgdp+ [, op o é(@).5(x = yv(de)| = | [, 6. gradgdp +w()] < e

and

’/gxdiV(bdp—/ divd)d,u‘
E ENB(y,5)

< | div @||du < e.

/B(y76+n)\B(y75)
Putting these together, we have

. 1
divodp — $apdND, — o(z).<(z —y)v(dz)| < 3e.
Y, s 5
|fEmB( 5) fB(ya) E fEﬁaB(yé) ( ) 5( ) ( )|

As € is arbitrary, this gives the result.

474N Lemma Let F C R" be a set with locally finite perimeter, and )\% its perimeter measure. Then,
for any y € O%E,

n(B (y 5)ﬂE) > _1
(3r)"’
n(B (3175)\E) > L .
6,,. — (37‘)"
AgBy,d) o 1
r=t T 2¢(3r)r-t’
where ¢ = 274, /r(1 + 2" +1);

B(y

. . A%
(iv) thUPaw% < Anfr_s.

(i) liminfs;o &

(ii) liminfso

(111) lim infgio

proof (a) Let 15 be the canonical outward-normal function of E (474G). Take y € °E. Set
® = {¢: ¢ is a Lipschitz function from R” to B(0,1)}.

Because the space L!(u) is separable in its usual (norm) topology (2441), so is {(div ¢ x xB(y,1))* : ¢ € ®}
(4A2P(a-iv)), and there must be a countable set &5 C ® such that

whenever ¢ € ® and m € N there is a ¢ € @, such that fB(u 1 | div ¢ — div q3|du <27m,
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Now, for each ¢ € ®g,

. 1
| divoda = [ owpdir [ )t yuido)
ENB(y,d) B(y,6) ENdB(y,d)
< A% B(y,8) + v(E N 0B(y,d))
for almost every § > 0, by 474M. But this means that, for almost every § € ]0, 1],
per(E' N B(y,d)) = sup | div ¢ dpl
6€d JENB(y,5)

= sup | div ¢ du| < X% B(y,6) + v(E N 9B(y,d)).
pe®o JENB(y,5)

(b) It follows that, for some dg > 0,
per(E£ N B(y,d)) < 3v(ENJB(y,0))
for almost every § € ]0,d¢]. P Applying 474M with ¢(z) = ¥g(y) for every x, we have

0= [y VEW) - VE@AGER) + [0, 5 0)- 5@ —y)u(da)

for almost every § € [0,1]. But by the definition of ¥ g(y),
1

474N

. 1 .
limg me(y,a) YY) Yp dAg = limsy MIB(M) Vp(y)-¥ey) dAy = 1.

So there is some dy > 0 such that, for almost every ¢ € 0, do],

X B(y,6) < 2 / (y) v dXy
B(y,0)
——2 | V()L — yw(de) < 20(E 1 0B(y,0)).
ENdB(y,0)

But this means that, for almost every such 4,

per(E N B(y,d)) < \zB(y,0) + v(ENJB(y,d)) < 3v(EN9B(y,9)). Q

(c) Set g(t) = p(ENB(y,t)) for t > 0. By 265G, g(t fo v(ENOB(y, s))ds for every t, so g is absolutely

continuous on [0, 1] and ¢'(t) = v(E N 0B(y,t)) for almost every t. Now we can estimate

g(®)" /" = W(E N B(y, )" < per(E N B(y,t))
(474La)
< 3v(ENdB(y,t)) =34 (t)

for almost every t € [0, dg]. So

d 1 . 1
L (g/r) = Lol > L

for almost every t € [0, do]; since t — g(t)'/" is non-decreasing, g(t)'/" > ;—T (222C) and g(t) >

every t € [0, do].
(d) Accordingly

#(B(y,0)NE)

.. . B(y,0)NE 1
lim 1nf5¢0(§7r > infocs<s, #B(y.H)0E)

> )
5" = (3r)"

This proves (i).
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(e) Because )\H‘z,.\ » = A% and —¢g is the canonical outward-normal function of R™ \ E (474J), y also
belongs to 9%(R" \ E), so the second formula of this lemma follows from the first.

(f) By 474Lb,
A%B(y,0) > i min (u(B(y, §) N E), u(B(y, ) \E))(T'_l)h'

for every § > 0. So

)
i inf 2EBW0) S 1 min(“(B(yv 9)0E) pB.5\E))e-1/r
510 or—1 2¢ 510 sr 57
> min (lim inf By, )N E),liminf M)(“l)/r
2c 440 5T 610 57"
Ly 1 \e=1)/r 1
= E((?)T)T) T 2¢(3r)rt

Thus (iii) is true.
(g) Returning to the inequality (}) in the proof of (b) above, we have a dy > 0 such that
N2.B(y,0) < 2v(ENdB(y,0)) < 2v(0B(y,0)) = 4 B,_26"
(265F) for almost every § € |0, dp]. But this means that, for any § € [0, do|,
N2 B(y,8) < infi=s A2 B(y,t) < infiss4nB, ot ™! = 473, o671,

and (iv) is true.

4740 Definition Let A C R” be any set, and y € R". A Federer exterior normal to A at y is a
v € S,_1 such that,
p (HAA)NB(y,0)) _
nB(y,9)

limmo 0,

where H is the half-space {z : (z —y).v < 0}.

474P Lemma If A CR" and y € R", there can be at most one Federer exterior normal to A at y.

proof Suppose that v, v’ € S,_; are two Federer exterior normals to E at y. Set
H={z:(x—y).v<0}, H ={x:(x-y).v <0}
Then

w((HAH)NB(y,6)
wB(y,0)

p*((HAA)NB(y,9))
.UB(yvé)

p (H'AA)NB(y,9))

=0.
pB(y,9)

lim(s 10

) < hm(uO + limgio

But for any § > 0,
(HAH')N B(y,d) =y + 0((HiAH)) N B(0,1)),
where
Hy={z:z.v<0}, Hjy={z:z.v <0}
So

p((HAH')NB(y,0)) _ p((HoAHG)NB(0,1)) _ p((HoAHG)NB(0,n))
pB(y,0) wB(0,1) pB(0,n)

0= lin’lgio

for every n > 1, and u(HoAH)) = 0. Since p is strictly positive, and Hy and H|, are both the closures of
their interiors, they must be identical; and it follows that v = v'.

474Q Lemma Set ¢/ = 2"+3/r — 1(1 4 2"). Suppose that c*, € and § are such that

1
c*>0, 6>0, O<e<—27 c*e3<iﬁr_1, 4c’e§§ﬁr_1.
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Set Vs = {z: 2 € R"™!, ||z| <4} and Cs = Vs x [~4,], regarded as a cylinder in R". Let f € D be such
that
0)du < c*e3dm 1,

of
Sy Igrad, 7] +max(2L,

(BL,.. 525 0). Set

where grad,_; f = TR
r—1

—_

F={z:2€Cs, f(x)>=}, F ={z:2€Cs f(z)<-}.

4

W

and for y € R set Hy = {z : 2 € R", & < ~}. Then there is a v € R such that
W(FA(HL N Cs)) <9u(Cs \ (FUF)) + (c*Br_1 + 16¢")ed".
proof (a) For t € [—4, d] set
ful2) = F(2,t) for 2 e R7,

Fi={2:2€Vs fu2) 23}, Fl={z:2€Vs filz) <3}
set

y=sup({=0} U {t:t € [=0,0), 1 F > Spr 1 Vi}),

G:{tﬁe[—&ﬂ,ﬁQHgMUﬂMmblze%“a}
Note that (grad,_; f)(z,t) = ((grad f¢)(z),0), so we have

I Ji erad folldp,—ydt = [, || erad, , flldp < cé%6m?
and 1 G < c*ed, where p is Lebesgue measure on R.
(b) If t € [-0,6] \ G, then
min (g1 F, pr—1F;) < 4c’ed™ L.
PIfr>2

. —2)/(r—1
i (11 Fl i1 )0 <4 [ grad i
Vs
(473L)
S 46/6267‘—2
because ¢ ¢ G, so that
(48162)(r71)/(r72)5r71

4c'esm 1

min(p, 1 F't, pr 1 Fy) <
<

because 4¢’ > 1 and (T )>1ande<1 If » = 2, then

1
ng H grad ftHerfl < € < 5
so at least one of F}, F} is empty, as noted in 473M, and min(u,_1 F}, u.—1F;) = 0. Q
(€) If =0 < s <t <4, then

S (5L (2,6).00de = [ 2L (2, €)de = £(2,t) = F(z,8)

for every z € F! N F;. Accordingly

N | =
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1 , of « 3sr—1 _ 1 r—1 _ 1
2/”‘7’—1(Fs mFt) < sz max(afT,O)dM <ce 0 < 4ﬁ7'—16 - 4M7'—1‘/:5

and p.—1(F.NFy) < %ur,ﬂ/g. It follows that if —§ < s < 7, so that there is a t > s such that u,_1F; >
%ﬂr—l‘/éa then ﬂr—lFé < %,Ur—lvé-

(d) Now
w((FA(H, N C5)) < 9u(Cs \ (F U F')) 4 €6 (c¢*Br_1 + 16¢).
P Set
G={t: =0 <t<0, 1 (FRUF) < lpp Vs,
G={t:—0<t<08, pp1F, <4ced™ '},
G ={t: =6 <t<36, pr_1F <4aced™ 1}
Then

ghr-1Vs G < u(Cs \ (FUF),

uw(F N (Vs x Q) < 8ed”,
w(F' N (Vs x Q) < 8ced”.
So if we set
W= (Cs\ (FUF)U (Vs x (GUGU{Y}))
UFN (Vs x ) U(F' N (Vs xG)),
we shall have
pW < u(Cs \ (FUF)) 4+ G - pr1Vs + 1 G - i1 Vs + 166"

<IU(Cs \ (FUF")) + c*edpr—1Vs + 16 ed”
= 9u(Cs \ (FUF")) + ed"(c" Br—1 + 16¢)

(using the estimate of 11 G in (a)).
? Suppose, if possible, that there is a point (z,t) € (FA(H,NCs)) \ W. Since t ¢ G, (b) tells us that

min(py—1 F, pr—1Fy) < 4c'ed™ 1 < %quVa.

Sote GUG'. Also, since ¢ ¢ G, r—1 Fy + pr_1 F} > gur,lvg; so (since t # ) either p,_1F; > %,ur,ﬂ/};

and t <7, or p._1F/ > %,ur_lV(; and ¢t >« (by (c)). Now

3
t<v= pr_1F} > ZuT_l%

= pr 1 F] <4ces™ !

—ted

= (2,t) ¢ F'
(because (z,t) & F' N (Vs x G'))

= (z,t) € F
(because (z,t) ¢ Cs \ (F'UF"))

= (2,t) € FN H,,
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which is impossible. And similarly

t>y = p,_1F' > %,Ufr—l‘/é

= pp_1 Fy < 4cded™ 1
—tcC
= (z,t) ¢ F
= (2,t) ¢ FUH,,
which is equally impossible. X
Thus FA(H, N Cs) € W has measure at most
Iu(Cs \ (FUF)) +ed"(c*Br1 + 16¢),

as claimed. Q

474R Theorem Let E C R" be a set with locally finite perimeter, g its canonical outward-normal
function, and y any point of its reduced boundary 9*E. Then Yg(y) is the Federer exterior normal to E at

Y-
proof Write )\% for the perimeter measure of F, as usual.

(a) To begin with (down to the end of (c-ii) below) suppose that y = 0 and that ¥g(y) = (0,...,0,1) = v
say. Set

c= 2 r(1 420, = 2 —I(142),
c1 =1+ max (47 8,2, 2c¢(3r)" 1),
(counting fy as 1, if r = 2),

16¢’
Br-1 )-

c=v2(2v2) " ter, =10+ %(c* +
As in 474Q), set
%:{Z:ZeRrilv ||Z||§6}7 Oéz%x[fd(ﬂ' H’Y:{I&"SV}

for 6 > 0 and v € R, andgradr_lf:(%,... ’Bff ,0) for f €D.

(b)(i) Take any € > 0 such that

1
6<ﬁ7

Then there is a §y € ]0,1] such that

cred < iﬁr,h 2rtlde < éﬁr,l.
() — o[ AG(dz) < €,

1
22 B(0,0) fB(o,é) 1¥s

1
07T <ARB(0,6) < 18!

for every § € ]0,280v/2] (using 474N(iii) and 474N(iv) for the inequalities bounding A% B(0, 4)).
(ii) Suppose that 0 < § < §y. Note first that

/ v — pplldrd < / v — dplld\d < EALB(0,26v/2)
Cas B(0,26V/2)

< 3(20V2)7 7 = %635T_1.
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(iii) limy,— 0o R, * XE =.. XxE (473Ee), so there is an n > % such that f06 |iLn x xE — xE|du < iG,U,Cg.
Setting
f=huxxE, F={z:2€Cs f(z)>3}, F ={z:2eCs f(x) <1},
we have f € D (473De once more) and
w(Cs\ (FUF") <eulCs, pwFALENCS)) < euCs.

(iv)

f * 3 sr—1
fc |l grad, _ 1f||—|—m8ux(8§ ,0)dp < c*e?dm
PP? Suppose, if possible, otherwise. Note that because pCs = 23,_10", limg/4s £Cs = pCs, so there is some
0" < ¢ such that

¢] * r—
fo || grad,. 1f\|+max(8£f 0)dp > c*e35m 1.

For 1 <i<rand x € R", set

(w) = — D)
T llgrad,y (@)

=1lifi=r, a:EC'(;/andang( x) >0,

ifi<r,xeCs and grad,_,(z) #0,

= 0 otherwise.
Then all the 6; are p-integrable. Setting 0 = (64,... ,0,),

f9 grad fdu = fc |l grad,_; f| +max(8£f 0)du > c*e35m 1.

By 473Ef, ([|0; — 0; * hk”l)keN — 0 for each 4; since grad f is bounded,
J(hi % 0). grad f du > c*e¥om!

for any k large enough. If we ensure also that k%—l <6 -0, and set ¢ = by * 0, we shall get a function
b € D, with ||¢(z)| < v2xCs for every = (by 473Dc and 473Dg), such that
f ¢. grad fdu > c*e36" L
Moreover, referring to the definition of * in 473Dd and 473Dg,
(B % @) () .0 = (A * (hy % 0,)) () > 0

for every z, because h,, hi and 6, are all non-negative.

Now
e < /(b. grad fdu = /¢. grad(ﬁn * xE)du
—/(ﬁn *¢).PppdAy
(474K)
< [ (s 0).0-vm) G < V2 [ o= vl @t
Cas
(because ||(hy * ¢)(z)|| < V2 for every x, by 473Dg again, and (h,, * ¢)(x) = 0 if 2 ¢ Cs + C1/n+1) € C2s)

< c* 635'r71;
which is absurd. XQ
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(v) By 474Q, there is a v € R such that

W(EA(Hy N Cs)) <9u(Cs \ (FUF")) + (¢"Bro1 + 16" )ed”
1
2Br—1

< 9euCs + (c*Br_1 + 16 )epCs = (c; — 1)euCs,

and

p((EAHY) N Cs) < w(FA(ENCs)) + p(FA(Hy N Cs)) < cieuCs.
(vi) As € is arbitrary, we see that
. . 1
lims o infcr Eu((EAHy) NCs) = 0.
(c) Again take € €]0,1].
(i) By (b) above and 474N(i)-(ii) there is a §; > 0 such that whenever 0 < § < ¢; then

nB(0,9),

1
p(B(0.0) N E) = 5

1(B(0,6) \ E) =

1
= muB(Oﬁ)

and there is a v € R such that

"

p((EAH,) N Cs) < mine, W)

,uC(;.
In this case, |y| < ed. P? Suppose, if possible, that v < —ed. Then

p(B(0,€0) N E) < u(ENCs \ Hy)

T

€

o 1
< B MO T et

B(0,€d)
which is impossible. X In the same way, ? if v > €d,

p(B(0,€6) \ E) < pu((Cs \ Hy) \ E)

r

€ 1
S BB pnCs = 28, (3r)

-113(0,¢0). XQ

(ii) It follows that
n((EAH)) NCs) < p((EAH,) N Cs) + p((HyAHo) N Cs)
< enCs + edptr—1Vs = SenCs.

As € is arbitrary,

1(EAH)NCs)

lims o Cs =0,
and
. EAH))NBs) _ 2Br_1 4. w((EAHG)NCSs)
1 r(( 0 < 1 PREST0) s) .
Mg o 1Bs =75 1ms 1o MCE

(d) Thus v is a Federer exterior normal to E at 0 if ¢5(0) = v. For the general case, let S be an
orthogonal matrix such that Sv¥g(y) = v, and set T'(z) = S(xz — y) for every . The point is of course that

0="T(y) € TOSE] = O°T[E], v = ST 1(0) = trm(0)
(474H). So if we set
H={z:(z—y).¢Ypy) <0} ={z:T(z).v <0} =T [H,
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then
p(HAE)NB(y,6)) _ p((HoAT[E])NB(0,9))
wB(y,6) uB(0,8)

as 0 | 0, and ¥g(y) is a Federer exterior normal to E at y, as required.

—0

474S Corollary Let E C R" be a set with locally finite perimeter, and )\aE its perimeter measure. Let
y be any point of the reduced boundary of E. Then

\eB(y:d) _

hmgu) B, 1071

proof (a) Set v = ¢Yg(y) and H = {z : (x — y).v < 0}, as in 474R. Now

1 .
fHﬂ@B(y,&) v.s(@ —y(de) = =fra6 !

for almost every 6 > 0. P Set ¢(x) = v for every x € R". By 4741, ¢ is an outward-normal function for H,
so 474M tells us that, for almost every § > 0,

/ v%(a:—y)l/(dx):/ divqﬁdu—/ v.owd)\Y
HNOB(y,5) HNB(y,5) B(y,9)

(using the identification of A% in 474I)
= _67‘—167”_1
(identifying v on the hyperplane OH with Lebesgue measure on R"~1, as usual). Q
(b) Now, given € > 0, there is a dy > 0 such that whenever 0 < § < §p there is an 1 such that
§<n<6(1+e€) and |NLB(y,n) — Br—1n" "t < en" L. P Let ¢ > 0 be such that
CA+ZB )1+ < e
By 474N(iv) and 474R and the definition of ¢, there is a §y > 0 such that
)‘%B(ya 5) < 57TB7"—25T?1)

p((EAH) N B(y,0)) < (6",

St (@) = 0[N (dw) < NG B(y, o)

whenever 0 < § < (1 + €)dy. Take 0 < § < §y. Then, for almost every n > 0, we have
P 1 B
fB(y,n) v () Xp(do) + fEmaB(y,n) U'E(m —y)vldr) =0

by 474M, applied with ¢ the constant function with value v. Putting this together with (a), we see that, for
almost every n € 0, (1 + €)do],

INEB(y,n) — Br—an™ '] = | v.owd\g — B Y
B(:W?)
§|/ v (v —pg) S| + | vbp NS — Br_y Y|
B(y,n) B(y,n)
<[ e -vlarg
B(y,m)
5 1
[ v Npldo) + [ v. @ - ) v(da)|
B(y,n) HNdB(y,n) "

(using (a) above)
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< (A\%B(y,n)

1 1
+ | U-*(x—y)l/(dx)—/ v.—(r —y)v(dz)
HNoB(y,;n) " ENdB(yy)

< 5o+ v((EAH) N OB(y,n)).

Integrating with respect to 1, we have

6(1+€)
r— 5 T r
/ AZB(y:n) = Br—1n"Hdn < 562G (1 + )" + p((EAH) 0 B(y, §(1 + €)))
0
(using 265G, as usual)

< B aC(1+ )+ (0T (1+ )" < 2

by the choice of ¢. But this means that there must be some 7 € [d, (1 + €)] such that
AgB(y:n) = B < e <en” 7. Q

(¢) Now we see that

AZB(y,6) < A5B(y.n) < (Bra + e " < (Bro1 +e)(1+€) 1oL

But by the same argument we have an 1) € | d 8] such that A%, B(y,7) — Br_17" 1| < en™ 1, so that

1+¢’
ALB(y,6) > A5B(y, 1) > (Br—1 — 7"t > (Br—1 — ) (1 + €)' 770" L
Thus, for every 6 € |0, do],
(Bro1 — €)1+ )6 < XB(y,0) < (Br_1 +€)(1+ €)1,
As ¢ is arbitrary,

A2 B(y,0
%1) = Br_1,

lin’ltuo 5"

as claimed.

474T The Compactness Theorem Let 3 be the algebra of Lebesgue measurable subsets of R”, and
give it the topology ¥, of convergence in measure defined by the pseudometrics pg (E, F) = p((EAF)NH)
for measurable sets H of finite measure (cf. §§245 and 323). Then

(a) per : ¥ — [0, 00] is lower semi-continuous;

(b) for any v < o0, {E : E € 3, per E < ~} is compact.

proof (a) Let (E,)nen be any T,,-convergent sequence in ¥ with limit £ € ¥. If ¢ : R™ — B(0,1) is a
Lipschitz function with compact support, then div ¢ is integrable, so F + [ pdivedpy is truly continuous
(225A), and

\fE div ¢ dp| = lim,, \fE div ¢ dp| < sup, oy per E,.

As ¢ is arbitrary, per E' < sup,,cy per E,,. This means that {E : per E < v} is sequentially closed, therefore
closed (4A2Ld), for any v, and per is lower semi-continuous.

(b) Let us say that a ‘dyadic cube’ is a set expressible in the form [], ., [27"k;, 27" (k; + 1)[ where n,
ki,... k. €Z. Set A={FE :per E <~}.

(i) For E € A,n € Nand € €]0,1] let G(E,n, €) be the union of all the dyadic cubes D with side length
27" such that euD < u(END) < (1—¢e)uD. Then puG(E,n,¢€) < ;Tlefy, where ¢; = 275 (1427 1) (14/r)" L.

P Express G(FE,n,¢€) as a disjoint union J;.; D; where each D; is a dyadic cube of side length 27" and
min(u(D; N E), u(D; \ E)) > euD;. Let x; be the centre of D; and B; the ball B(z;,27"~1/r), so that
D; C B; and uB; = BT(%\/F)’"MDZ». For any z € R", the ball B(z,27""1y/r) is included in a closed cube
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with side length 27™,/r, so can contain at the very most (1 + /r)" different x;, because different z; differ
by at least 27" in some coordinate. Turning this round, >, ; xB; < (1 4+ /7)"x(R").
Set ¢ = 2"T4/r(1 + 2"+1). Then, for each i € I,

2eA%B; > min(u(B; N E), u(B; \ )Y/
(474Lb)
> min(u(D; N E), u(D; \ E))"~Y/" > (euD;)r=V/m > 97n(r=b¢,

So

__ o—nr 2c o0 n.
HG(E n,e) = 27" #(I) < = 2; A9 B;
1€

<2 R) <29 Q

2ne - 2n¢

(ii) Now let (E,)nen be any sequence in A. Then we can find a subsequence (E), ), en such that whenever
n € N, D is a dyadic cube of side length 27" meeting B(0,n), and i, j > n, then |u(D N E]) — u(D N EY)| <

1

3Br(n++/1)" —-n r+1
w((E,AE, )N B(0,n)) < Tt +27"(n+1)" ey
whenever n > 1. PP Let £ be the set of dyadic cubes of side length 27" meeting B(0,n); then every member
of £ is included in B(0,n 4+ 27"/r), so u(lJE) < Br(n + /r)". Let & be the collection of those dyadic

. e . 1 . 1
cubes of side length 27" included in G(E;,n,m). If D e &£\ &, either p(E, N D) < WMD

2 3 1
and p(Ep 1 N D) < emmuD and p((BRAB, 1) N D) < oovmpD; or w(DA B, < oD and

n

2 3
w(D\ Ej ) < W”D and p((ERAE, )N D) < W#D- S0
W(ELAE, )N B(0,0) < Y p((B,AE, ) N D)
De&

S w(EAE,,) 0 D)+ u &)
De&NEL

3
< WN(U E) + uG(Ey,n

3Br(n++/1)" —n r+2
(n—l—l)T*z +2 (TL+1) c17,

IN

1
ety

IN

as claimed. Q

(iii) This means that > ° u((E/AE!_ ) N B(0,n)) is finite for each n € N, so that if we set E =
Uien ﬂjZi E}, then
W(EAE) 0 BO,n) < S, (ELAE] ) N BO,1)) - 0
as i — oo for every n € N. Tt follows that lim; o pg (F, Ef) = 0 whenever pH < oo (see the proofs of 245Eb
and 323Gb). Thus we have a subsequence (E!);cy of the original sequence (F;);eny which is convergent for

the topology ¥, of convergence in measure. By (a), its limit belongs to .A. But since ¥, is pseudometrizable
(245Eb/323Gb), this is enough to show that A is compact for T, (4A2Lf).

474X Basic exercises (a) Show that for any £ C R” with locally finite perimeter, its reduced boundary
is a Borel set and its canonical outward-normal function is Borel measurable.
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>(b) Show that if £ C R has finite perimeter then either E or its complement has finite measure.

(c)(i) Show that if E C R" has locally finite perimeter, then 9°F C OF. (Hint: 474N(i)-(ii).) (ii) Show
that if H C R” is a half-space, as in 4741, then 9°FE = OE.

. . . . . (ENB(y,5) 1
(d) Let E C R” be a set with locally finite perimeter, and y € 9*E. Show that lims o 222 — =

pB(y,6) 2

(e) In the proof of 474S, use 265E to show that

1 .
fHﬂ()B(y,&) v.s(z —y)v(de) = =fr1d !

for every § > 0.

474Y Further exercises (a) In 474E, explain how to interpret the pair (1), \%) as a vector measure
(definition: 3940') 6r : B — R", where B is the Borel o-algebra of R”, in such a way that we have
Jpdiveédu = [ ¢.dfp for Lipschitz functions ¢ with compact support.

474 Notes and comments When we come to the Divergence Theorem itself in the next section, it will
be nothing but a repetition of Theorem 474E with the perimeter measure and the outward-normal function
properly identified. The idea of the indirect approach here is to start by defining the pair (¢¥g, )\‘?E) as a kind
of ‘distributional derivative’ of the set E. I take the space to match the details with the language of the
rest of this treatise, but really 474E amounts to nothing more than the Riesz representation theorem; since
the functional ¢ — |[ p divodp is linear, and we restrict attention to sets E for which it is continuous in an
appropriate sense (and can therefore be extended to arbitrary continuous functions ¢ with compact support),
it must be representable by a (vector) measure, as in 474Ya. For the process to be interesting, we have
to be able to identify at least some of the appropriate sets E with their perimeter measures and outward-
normal functions. Half-spaces are straightforward enough (474I), and 474R tells us what the outward-normal
functions have to be; but for a proper description of the family of sets with locally finite perimeter we must
wait until the next section. I see no quick way to show from the results here that (for instance) the union
of two sets with finite perimeter again has finite perimeter. And I notice that I have not even shown that
balls have finite perimeters. After 475M things should be much clearer.

I have tried to find the shortest path to the Divergence Theorem itself, and have not attempted to give
‘best’ results in the intermediate material. In particular, in the isoperimetric inequality 474La, I show
only that the measure of a set E is controlled by the magnitude of its perimeter measure. Simple scaling
arguments show that if there is any such control, then it must be of the form 'y(uE)(’"*l)/r < per F; the
identification of the best constant v as rﬂi/ ", giving equality for balls, is the real prize, to which I shall
come in 476H. Similarly, there is a dramatic jump from the crude estimates in 474N to the exact limits
in 474Xd and 474S. When we say that a set F has a Federer exterior normal at a point y, we are clearly
saying that there is an ‘approximate’ tangent plane at that point, as measured by ordinary volume pu. 474S
strengthens this by saying that, when measured by the perimeter measure, the boundary of E looks like
a hyperplane through y with normalised (r — 1)-dimensional measure. In 475G below we shall come to a
partial explanation of this.

The laborious arguments of 474C and 474H are doing no more than establish the geometric invariance of
the concepts here, which ought, one would think, to be obvious. The trouble is that I have given definitions
of inner product and divergence and Lebesgue measure in terms of the standard coordinate system of R".
If these were not invariant under isometries they would be far less interesting. But even if we are confident
that there must be a result corresponding to 474H, I think a little thought is required to identify the exact
formulae involved in the transformation.

I leave the Compactness Theorem (474T) to the end of the section because it is off the line I have chosen
to the Divergence Theorem (though it can be used to make the proof of 474R more transparent; see EVANS
& GARIEPY 92, 5.7.2). T have expressed 474T in terms of the topology of convergence in measure on the
algebra of Lebesgue measurable sets. But since the perimeter of a measurable set E is not altered if we

IFormerly 3930.
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change E by a negligible set (474F), ‘perimeter’ can equally well be regarded as a function defined on the
measure algebra, in which case 474T becomes a theorem about the usual topology of the measure algebra
of Lebesgue measure, as described in §323.

Version of 24.1.13
475 The essential boundary

The principal aim of this section is to translate Theorem 474E into geometric terms. We have already
identified the Federer exterior normal as an outward-normal function (474R), so we need to find a description
of perimeter measures. Most remarkably, these turn out, in every case considered in 474E, to be just
normalized Hausdorff measures (475G). This description needs the concept of ‘essential boundary’ (475B). In
order to complete the programme, we need to be able to determine which sets have ‘locally finite perimeter’;
there is a natural criterion in the same language (475L). We now have all the machinery for a direct
statement of the Divergence Theorem (for Lipschitz functions) which depends on nothing more advanced
than the definition of Hausdorff measure (475N). (The definitions, at least, of ‘Federer exterior normal’ and
‘essential boundary’ are elementary.)

This concludes the main work of the first part of this chapter. But since we are now within reach of
a reasonably direct proof of a fundamental fact about the (r — 1)-dimensional Hausdorff measure of the
boundaries of subsets of R” (475Q), I continue up to Cauchy’s Perimeter Theorem and the Isoperimetric
Theorem for convex sets (475S, 475T).

475A Notation As in the last two sections, r will be an integer (greater than or equal to 2, unless
explicitly permitted to take the value 1). p will be Lebesgue measure on R”; T will sometimes write p,.—q for
Lebesgue measure on R"~! and y; for Lebesgue measure on R. 3, = uB(0,1) will be the measure of the unit
ball in R", and S,_; = dB(0, 1) will be the unit sphere. v will be normalized (r — 1)-dimensional Hausdorff
measure on R” (265A), that is, v = 27" "8, 1y 1, where pp —1 is (r—1)-dimensional Hausdorff measure
on R”. Recall that vS,_; = rf, (265H). I will take it for granted that € R" has coordinates ({1, ... ,&.).

If E C R" has locally finite perimeter (474D), A2 will be its perimeter measure (474F), 9%F its reduced
boundary (474G) and g its canonical outward-normal function (474G).

475B The essential boundary (In this paragraph I allow r = 1.) Let A C R” be any set. The
essential closure of A is the set
p(B(z,6)NA)

uB(z,8) = 0}

cl*A = {z : limsupg o

(see 266B). Similarly, the essential interior of A is the set

pa(B(z,0)NA) _ 1.

uB(z,8)
(If A is Lebesgue measurable, this is the lower Lebesgue density of A, as defined in 341E; see also 223Yf.)
Finally, the essential boundary 0*A of A is the difference cl*A \ int*A.

Note that if E C R" is Lebesgue measurable then R” \ 9*FE is the Lebesgue set of the function yF, as
defined in 261E.

int*A = {z : liminfs}o

475C Lemma (In this lemma I allow » = 1.) Let A, A’ CR".
(a)
int ACint*A Ccl*AC A, 0*AC A,
cl*A =R"\ int*(R"\ A), OI*(R"\ A)=0*A.
(b) If A\ A’ is negligible, then cl*A C cl*A’ and int*A C int*A’; in particular, if A itself is negligible,
cl*A, int*A and 0*A are all empty.
(c) int*A, cI*A and 0*A are Borel sets.
(©) 2000 D. H. Fremlin
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(d) cI*(AUA") = cl*AUcl*A" and int*(ANA’) = int*ANint* A’ so 0*(AUA’), 0*(ANA’) and 9*(AAA")
are all included in 0*A U 9*A’.
(e) c*ANint*A’ C cl*(AN A", *ANint*A’ C9* (AN A’) and %A\ cl*A’ C 9*¥(AU A).
(f) O¥(ANA") C (cI*A' NOA)U (0*A' Nint A).
(g) If E C R" is Lebesgue measurable, then EAInt*E, EAcI*E and 0*FE are Lebesgue negligible.
(h) A is Lebesgue measurable iff 9* A is Lebesgue negligible.
proof (a) It is obvious that
int A Cint*A C cl*A C A,
so that 0*A C 0A. Since
p(B(@,6)NA) | pa(B(x,6)\A)
nB(z,0) nB(z,0)
for every x € R” and every § > 0 (413Ec), R" \ int*A4 = cI*(R" \ A). It follows that

=1

OF(R™\ A) = cI*(R™\ A)Aint*(R"\ A)
= (R" \ int*A)A(R" \ cl*A) = int* AACI*A = §*A.

(b) If A\ A’ is negligible, then
ps(B(z,0) N A) < pu(B(w,0) N A'),  p*(B(x,6) N A) < p*(B(x,0) N A')

for all x and ¢, so int*A C int*A’ and cl*A C cl*A’.

(¢) The point is just that (z,d) — p*(AN B(x,0)) is continuous. P For any x, y € R" and 4, n > 0 we
have

W (A0 Bly,n)) = 1 (A0 Bz, 6)] < wlBly, ) SB(z, )
2u(B(x,0) U B(y,n)) — uB(x,8) — pB(y,n)

By (2(max(6,m) + [l — y[)" = 8" —n") =0

IN

as (y,n) — (z,0). Q So

r — lim SUPs 0 w1 (ANB(z,0))

. 1 %
Bag)  — Macga>08UPeqo<y<a g H (AN B2, 7))

is Borel measurable, and

w*(ANB(z,0)

cl*A = {x : limsupy, uB(z,8) : >0}

is a Borel set.
Accordingly int*A = R" \ cI*(R" \ A) and 9*A are also Borel sets.

(d) For any z € R,

lim sup & (AUANB(@8)) . p(ANB(@,d)) | p(A'NB(.9))
510 P uB(z,0) T 510 p wB(z,8) 1B (z,0)
- ANB(@.,0)) | 1. u(A'NB(z,6))
< limsu #ANB(z,9)) + lim sup ———-,
B 610 P uB(,6) 510 p uB(z,06)

so cl*(AUA’) Ccl*AUcl*A'. By (b), cl*AUcl*A’ C cl*(AU A’), so we have equality. Accordingly
int*(ANA) =R"\ cI*((R"\ A) U(R"\ A")) = int*ANint*A4’.
Since int*(AU A”) D int*A U int*A’, 9¥(AU A') C 9¥*AU 9*A’. Now
O¥(ANA)=0*R"\ (ANA)) CO*R"\ A)U*R"\ A)) =0*AU*A’
and

OF(ANA) COF(AN (RT\ A)) Ud*(A' N (R™\ A)) C 9*AUG*A'.
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(e) If z € cI*ANint*A’, then = ¢ cl*(R" \ A') so x ¢ cl*(4A\ 4’). But from (d) we know that
zec*ANA)Ucl*(A\ A), s0ox ec*(ANA).
Now
O*ANint*A" = (I*ANint*A) \ int*A
Cel*(ANA)\int*(ANA) =0%¥(AN A",

O*A\ cl*A" = 9*(R" \ A) Nint*(R™ \ A)
C O*((R"\ A)N(R"\ A))
=0*(R"\ (AU A")) =0* (AU A).
(f) Ifz € 0*(ANA")NOA, then of course z € cI*(ANA") C cI*A, so x € cI*ANOA. If x € 0*(ANA")\ 04,
then surely z € A, so € int A. But this means that
(B, 0) NA") = p(B(z,0) NANA), p*(Bz,0)NA)=p*(Blz,0)NnANA")
for all § small enough, so x € 9*A’ and x € 9*A’ Nint A.

(g) Applying 472Da to p and xE, we see that
O*E C (EAC*E) U (EAInt*E)

. . p(BnB(x,))

are all p-negligible.

(h) If A is Lebesgue measurable then (g) tells us that 0*A is negligible. If 9*A is negligible, let E be a
measurable envelope of A. Then u(ENB(x,6)) = u*(ANB(z,d)) for all  and §, so cI*E = cl*A. Similarly,
if F' is a measurable envelope of R" \ A, then cI*F = cI*(R"\ A) =R" \ int*A (using (a)). Now (g) tells us
that

WENF) = p(c*ENc*F) = p(cl*A \ int*A) = 0.
But now A\ Fand E\AC (ENF)U((R"\ A)\ F) are Lebesgue negligible, so A is Lebesgue measurable.

475D Lemma Let E C R” be a set with locally finite perimeter, and 9*E its reduced boundary. Then
O®FE C 0*E and v(0*F \ 0°E) = 0.
proof (a) By 474N(i), 0*E C cI*E; by 474N(ii), 0°E Nint*E = (); so 0°E C 0*F.

(b) For any y € 0*F,

L

5T_1)‘8EB(3/75) > 0.

lim supg o

P We have an € € ]0, %] such that

#(ENB(y,9))
pB(y,5)

1(ENB(y,5))

> €.
wB(y,6)

liminfs o <1l-—¢ limsupg

#(ENB(y,9))

Since the function ¢ —
11N uncrion ,U,B(yﬁ)

is continuous, there is a sequence (d,, ) nen in |0, co[ such that lim,, o, §, =0

and

euB(y,0n) < w(EN B(y,6,)) < (1 — €)uB(y,n)

for every n. Now from 474Lb we have

(e8) "= D/76, 71 = (enB(y, 6,)) V"
< min(u(B(y, 6,) N E), u(B(y,6,) \ E))""V/" < 2eAg B(y, 6,)

for every n, where ¢ > 0 is the constant there. But this means that
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lim sup; &%A%B(y,é) > limsup,, ., L)\%B(yﬁn) > i(eﬁr)(wl)/r >0 Q

on—1
(c) Let € > 0. Set

F.={y:yeR"\JE, lim supy N2 B(y,8) > €}

1
67‘—1
Because 9°F is \%-conegligible (474G), A& F. = 0. So there is an open set G O F. such that A\2G < €2
(256Bb/412Wb). Let 6 > 0. Let Z be the family of all those non-singleton closed balls B C G such that
diam B < ¢ and A\%B > 2 "Tl¢(diam B)"~!. Then every point of F. is the centre of arbitrarily small
members of Z. By Besicovitch’s Covering Lemma (472B), there is a family (Zy)r<5- of disjoint countable
subsets of 7 such that Z* = | J, _5- JZy covers F,. Now

. re 2r—1
S per (diam BY V<Y o Y g 0B <

As ¢ is arbitrary, pp ., Fe is at most 572" ~1e (264Fb/471Dc) and v*F. < 5"3,_1€. As € is arbitrary,

ror—1
2 NG < 52 le.
€

*E\OPEC{y:yecR"\*FE, lim supy &%)\%B(y, 0) >0}

is v-negligible, as claimed.

475E Lemma Let F C R” be a set with locally finite perimeter.
(a) If A C O°E, then v*A < (\2)*A.
(b) If ACR" and vA = 0, then A\2A = 0.

proof (a) Given ¢, § > 0 let Z be the family of non-trivial closed balls B C R" of diameter at most ¢ such
that ﬁr,l(% diam B)"~! < (1+€)A2B. By 474S, every point of A is the centre of arbitrarily small members

of Z. By 472Cb, there is a countable family Z; C I such that A C JZ; and Y 5.7, AZB < (Ag)*A+e. But
this means that

> pe, (diam BY 1 < (1+ 02—

(A2)*A+e).

r—1

As § is arbitrary,

vA=Dst A<M A+ ).

As € is arbitrary, we have the result.
(b) For n € N, set
A, ={x:x€ A \B(z,5) <28, 16""! whenever 0 < § <27 "}.

Now, given € > 0, there is a sequence (D;);en of sets covering A,, such that diam D; < 27" for every ¢ and
Yoo o(diam D;)" ! < e. Passing over the trivial case A,, = (), we may suppose that for each i € N there is
an x; € A, N D;, so that D; C B(x;,diam D;) and

A A, <3 (A)*Di <> A B(xy, diam D;)
=0 =0

< 225“1((11&1@1 D)t <28,
i=0

As e is arbitrary, A% A, = 0. And this is true for every n. As U, oy An 2 ANOPE (4748 again), A\U, oy 4n
is A%-negligible (474G), and so is A.

475F Lemma Let £ C R" be a set with locally finite perimeter, and ¢ > 0. Then )\OE is inner regular
with respect to the family & = {F : F C R" is Borel, A\ F < (1 + ¢)vF}.
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proof (a) We need some elementary bits of geometry.
() IfzeR",0>0,a>0and v e S,_1, then
p{z:z € B(z,9), |(z —z).v| < a} < 2a8,_10" L.

P Translating and rotating, if necessary, we can reduce to the case x = 0, v = (0,...,1). In this case we
are looking at

{zelzl <0 16| <a} S{urueR™ Jlull <6} x [~a, 0]
which has measure 2a6,_16" . Q
(i) ffzeR",6§>0,0<n<3,veS 1, H={z:2z.v<a}and

|W(H 0 B(x,0)) = spuB(x,0)] < 27771 B, 1o,

then |z.v — a| < nd. P Again translating and rotating if necessary, we may suppose that x = 0 and
v={(0,...,1). Set Hy ={z:¢ <0}. 2 If a > nd, then H N B(0,7) includes

(Ho N B(0,8)) U ({u:ueR™1, |Jul| < %5} x [0, a/])

V3

where o/ = min(|a|,76) > nd), SO

u(H 0 B(0,8)) — 5uB(0.6) = p(H 1 B(0.6)) — u(Ho N B(0.5))
> oG 5l s 27T gy,
contrary to hypothesis. X Similarly, ? if & < —nd, then H N B(0, ) is included in
HoNB(0,0)\ {u:ueR"™ J|ul| < %5} X ]a, 0]),

SO
SHB(0,8) — (H 1 B(0,8)) = u(Ho N B(0,8)) — u(H 1 B(0,))
Z 27T+16T_16r71a/ > 27T+167‘—15T777

which is equally impossible. X So |a| < nd. Q
(b) Let F be such that A% F > 0. Let 5, ¢ > 0 be such that

L Cive e <2

n<l,

Because 0% E is A\%-conegligible (474G again), A% (FNJ*E) > 0. Because \%, is a Radon measure (474E) and
Yp: 0°E — S, is dom(\Y)-measurable (474E(i), 474CG), there is a compact set K; C F N9%E such that
N2 Ky > 0and g K, is continuous, by Lusin’s theorem (418J). For z € 9%E, set H, = {2 : (z—x).¢p(z) <
0}. The function

(x,0) = p((EAH,) N B(x,0)) : K1 x]0,00[ = R
is Borel measurable. I Take a Borel set E’ such that u(EAE’) = 0. Then
{(z,0,2) :x € K1, z € (E'AH,)N B(x,0)}

is a Borel set in R” x ]0, 00[ x R", so its sectional measure is a Borel measurable function, by 252P. Q
For each z € K1,
p(EAH,)NB(x,27"))
uB(z,27m)
(474R). So there is an ng € N such that A% F; > 0, where F} is the Borel set
{z:ze€ Ky, p((EAH,) N B(x,27™)) < (uB(x,2™™) for every n > ng}.

=0

limy, o0
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Let K5 C F} be a compact set such that )\%Kz > 0.
For each n € N, the function

x> Ay B(x,27")) = Ao (x + B(0,27™))

is Borel measurable (444Fe). Let y € Ky be such that A% (K> N B(y,d)) > 0 for every § > 0 (cf. 411Nd).
Set v =Yg (y). Let n > ng be so large that 26, _1||Ye(x) — v|| < 5,¢ whenever z € K; and ||z — y|| < 27"
Set K3 = Ko N B(y,27""1), so that A2 K3 > 0.

(c) We have |(z — z).v| < n||lx — z|| whenever x, z € K3. PP If x = z this is trivial. Otherwise, let k > n

be such that 27%~! < ||z — 2|| < 27%, and set § = 27%. Set

H ={w:(w—2).v<0}, H,={w:(w-2z).v<0}.
Since |(w — x).v — (w — z) . Yp(z)| < 20||¢YE(x) — v|| whenever w € B(x, 26),

(HyAHL) N B(2,20) C {w :w € B(x,20), |(w—x).v| < 20||¢ve(x) —v|}

has measure at most

48]J () — o]y (20)71 < 258,(26) " = CuB(x 26),
using (a-i) for the first inequality. So

W(EAHL) O B(2,20)) < p((EAH,) 0 B(x,26)) + p((H,AHL) 0 B(z, 26)
< 2¢uB(z,26)
because k > ng and = € Fy. Similarly, u((EAH,) N B(z,6)) < 2¢uB(z,0). Now observe that because
|z —z|| <6, B(z,d) C B(z,24),
N((EAH:/c) N B(z,0)) < 2¢uB(x,26) = 2T+1</LB(Za5)7

and

p((H,AHD) N B(2,0)) < p((EAH;) N B(2,0)) + p((EAH?) N B(z,0))

<
< (242 CuB(2, 0).

Since p(H, N B(z,0)) = %,uB(z, 9),

((H 0V B(2,0)) — spuB(2,0)| < 2(1+27)CuB(2,6) < 27 Br_and,
and (using (a-ii) above)

1
(@ —2).0] < b <z —v]. Q

(d) Let V be the hyperplane {w : w.v = 0}, and let T': K3 — V be the orthogonal projection, that is,
Tz =z — (x.v)v for every x € K3. Then (c) tells us that if x, z € K3,
[Tz = Tz|| > [l — 2] = [(z = 2).v] = (1 =n)]z - 2.

1
1-n
vK3 > 0 (by 475Eb), so v(T[K3]) > (1 —n)""'vKs > 0 (264G/471J). Let G 2 T[K3] be an open set such
that v(GNV) < (1 +n)v(T[K3]). (I am using the fact that the subspace measure vy induced by v on V
is a copy of Lebesgue measure on R"~! so is a Radon measure.) Let Z be the family of non-trivial closed
balls B C G such that (1 —7)""'A2T~1[B] < (1 +n)v(BNV). Then every point of T[K3] is the centre of
arbitrarily small members of Z. B If z € K3 and d¢ > 0, there is a § € ]0, o] such that B(Tx,0) C G and
N2 B(z,6) < (1+41)B,—10""! (474S once more). Now consider B = B(T'z, (1—n)d). Then T~[B] C B(z, ),
0

Because 7 < 1, T is injective. Consider the compact set T[K3]. The inverse T-! of T is -Lipschitz, and

XIT=Y[B] < A%, B(x,6) < (14 n)Br_16""L = (1_1:)’3_1 v(BNV). Q
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By 261B/472Ca, applied in V = R"~1, there is a countable disjoint family Zy C Z such that v(T[K3]\UZo) =
0.

Now v(K3\Upez, T~ *[B]) = 0, because T~ is Lipschitz, so A (K3 \Ugez, T~ [B]) = 0 (475Eb again),
and

MK < Y T TB < ST u(BNY)

BeT, A=)
1+n (14m)? (14n)?
<—Ly(GENV)< —F—y(T[K3]) < K-
< Gy (G OV) = oy (TS < o s
(because T is 1-Lipschitz)
< (1+e€vKs

by the choice of n. Thus K3 € £.

(e) This shows that every /\%—non—negligible set measured by /\% includes a )\%—non—negligible member of
E. As € is closed under disjoint unions, A%, is inner regular with respect to £ (412Aa).

475G Theorem Let E C R” be a set with locally finite perimeter. Then /\% = vLLO*E, that is, for
F CR", A\ F = v(F N O*E) whenever either is defined.

proof (a) Suppose first that F is a Borel set included in the reduced boundary O%E of E. Then vF < /\%F,
by 475Ea. On the other hand, for any € > 0 and v < )\%F, there is an F} C F such that

v < )\%Fl <(1+evF < (1+evF,
by 475F; so we must have A\ F = vF.

(b) Now suppose that F' is measured by )\%. Because 0°F is /\%—conegligible, and /\% is a o-finite Radon
measure, there is a Borel set F/ C F N 9%E such that \%(F \ F') = 0. Now vF’' = \2F' by (a), and
v(FNO®E \ F') = 0, by 475Ea, and v(9*E \ 9°E) = 0, by 475D; so v(F N 9*E) is defined and equal to
NOF = \oF.

(c) Let (K,)nen be a non-decreasing sequence of compact subsets of 8*E such that Unen Kn is A2-
conegligible. By (b), v(0*E \ U, ey Kn) = 0, while vK,, = A}, K, is finite for each n. For each n, the

subspace measure vg, on K, is a multiple of Hausdorff (r — 1)-dimensional measure on K,, (471E), so is a
Radon measure (471Dh, 471F), as is (A%)x,; since, by (b), vk, and (A\%)k, agree on the Borel subsets of

n?

K., they are actually identical. So if £/ C R" is such that v measures F N 90*E, A% will measure F N K,, for
every n, and therefore will measure F; so that in this case also Ao F = v(F N O*E).

475H Proposition Let V' C R" be a hyperplane, and T : R” — V the orthogonal projection. Suppose
that A C R” is such that v A is defined and finite, and for u € V' set
f(u) = #(ANT[{u}]) if this is finite,
= oo otherwise.

Then [, f(u)v(du) is defined and at most vA.

proof (a) Because v is invariant under isometries, we can suppose that V = {z : £ = 0}, so that Tz =
(&1y...,&-1,0) for . = (&1,...,&). Form,n € Nand u € V set

frn(u) = #{k k€ Z, k| <4™, AN ({u} x 277k, 27" (k +1—27")[) # 0});
so that f(u) = limy,—e0 liMpy o0 frmn(u) for every u € V.

(b) Suppose for the moment that A is actually a Borel set. Then T[AN (R” X [«, B])] is always analytic
(423EDb, 423Bb), therefore measured by v (432A), and every f,,, is measurable. Next, given ¢ > 0 and
m, n € N, there is a sequence (F;);en of closed sets of diameter at most 27" covering A, such that
Y27 "B, (diam F;)""! < vA + e. Now each T'[F;] is a compact set of diameter at most diam F}, so
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v(T[F;]) < 27"t 6,1 (diam F;)"~ " (264H); and if we set g = >~ g XT[F;], fmn < g everywhere on V, so
J frndv < [gdv <vA+e. As e is arbitary, [ fim,dv < vA. Accordingly

mM—r00 N—00

/fdu: lim lim [ fondv
)

(because the limits are monotonic
<vA+e

As € is arbitrary, [ fdv < vA.

(c) In general, there are Borel sets F, F such that E\ FF C A C F and vF = 0, by 264Fc/471Db. By
(b),
f#(E NT{u}))v(du) < VE, f#(F NT {u}))v(du) < vF =0,
so [#(ANT '{u}])v(du) is defined and equal to [ #(ENT ! [{u}])v(du) < vA.

4751 Lemma (In this lemma I allow » = 1.) Let K be the family of compact sets K C R” such that
K = cI*K. Then p is inner regular with respect to K.

proof (a) Write D for the set of dyadic (half-open) cubes in R”, that is, sets expressible in the form
[I;c 277k, 27 (ks + 1)[ where m, ko, ... ,k,—1 € Z. For m € N and x € R" write C(x,m) for the dyadic
cube with side of length 2=™ which contains z. Then, for any A C R",

limy, 00 2™ s (AN C(x,m)) =1
for every z € int*A. ® C(xz,m) C B(x,27™/r) for each m, so

— r/2p (B(2,27" 1)\ A)
2™ (C(x,m) \ A) < Bpr uB(z,2-m/7) —0

as m — o0o. Q

(b) Now, given a Lebesgue measurable set E C R" and v < puF, choose (E,)nen, (Yn)neN, (Mn)nen and
(K, )nen inductively, as follows. Start with Ey = FE and 9 = 7. Given that v, < uE,, let K,, C E,, be a
compact set of measure greater than ~,. Now, by (a), there is an m,, > n such that p*E, 11 > ~,, where

Epii={x:2 e K,, p(K,NC(x,my)) > g,uC(m,mn)};

note that E, 1 is of the form K, N|JDy for some set Dy of half-open cubes of side 27 so that F, 1 is
measurable and

2
wEnr1 NC(xz,my)) = w(K, NC(z,my,)) > guC(x,mn)
for every z € E, 1. Now set

1 _
Vo1 = maxX(Yn, pBp gy — 5 - 27707),

and continue.
At the end of the induction, set K =, oy Kn =),y En- Then K is compact, K C E and

If x € K and n € N, then

p(K N B(x, 27" /1)) > p(K N C(x,mn)) > p(Epr N C(z,my)) — pBpi1 + pK

Y

LLC(!L', mn) - lffE'rH»l + Yn+1

—suB(, 27"/,

_ 1
B 381

. 2—mnr

Y
Wik Wi T
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SO
w(KNB(x,5)) 1

:U'B(Zv(s) = 3B,r/? >0

lim supy

and z € cl*K.

(c) Thus K C cI*K. Since certainly cI*K C K = K, we have K = cl*K.

475J Lemma Let E be a Lebesgue measurable subset of R, identified with R™! x R. For u € R"™1,
set G, = {t: (u,t) € nt*E}, H, = {t: (u,t) € int*(R"\ E)} and D, = {¢ : (u,t) € *E}, so that G, H,
and D, are disjoint and cover R.

(a) There is a u,_1-conegligible set Z C R"~! such that whenever u € Z,t <t in R, t € G, and t’ € H,,
there is an s € D, N ¢, ¢'[.

(b) There is a p,_1-conegligible set Z; C R"~! such that whenever u € Z1, ¢, ¢ € R, t € G, and t' € H,,,
there is a member of D,, between t and t'.

(¢c) If F has locally finite perimeter, there is a conegligible set Zy C Z; such that, for every u € Zs,
D, N [—n,n] is finite for every n € N, G,, and H,, are open, and D,, = 0G,, = OH,, so that the constituent
intervals of R\ D, lie alternately in G, and H,.

proof (a)(i) For ¢ € Q, set f,;(u) = sup(G, N]—o0, q[), taking —oo for sup@. Then f, : R"™1 — [—o0, g] is
Lebesgue measurable. I For a < ¢,
{u: fy(u) > a} = {u: there is some ¢ € Jo, ¢[ such that (u,t) € int*E}.

Because int*E is a Borel set (475Cc), {u : fq(u) > a} is analytic (423Eb, 423Bc), therefore measurable
(432A again). Q

(ii) For any ¢ € Q, W, = {u: f;(u) < q, fy(u) € G,} is negligible. ? Suppose, if possible, otherwise.
Let n € N be such that {u : v € W, f,(uv) > —n} is not negligible. If we think of [—o0,¢] as a compact
metrizable space, 418] again tells us that there is a Borel set F' C R"~! such that fql F is continuous and
Fr={u:ue FNW,, f,(u) > —n} is not negligible. Note that F; is measurable, being the projection of
the Borel set {(u, fy(uw)) : u € F, —n < fy(u) < ¢} Nint*E. By 4751, there is a non-negligible compact set
K C F; such that K C cI*K, interpreting c1*K in R™~!. Because g| K is continuous, it attains its maximum
at u € K say.

Set & = (u, fg(u)). Then, whenever 0 < 6 < min(n + f;(u), ¢ — fq(u)),

B(z,2) \ int*E D {(w,t) : w € KNV (u,0), [t — fo(u)] <6, fo(w) <t<q}
(writing V (u,d) for {w:w € R™™1, |w — u| < d})
D {(w,t):we KNV (y,d), fo(u) <t < fy(u)+d}

because fq(w) < fq(u) for every w € K. So, for such 4,

w(B(x,20) \ int*E) > opr—1 (K NV (u,0))

— 57‘—1 . MT—I(KQV(U,(S)) .
2TIBT‘ Mr—lV(U:5)

uB(x,20),
and

o p(B@ONE) _ . u(B(x.20)\int*E)
T T B AL SRS

Br-1 1. pr—1 (KNV (u,0))
> lim sup =———1+-
=28, st iV (wd)

>0

because u € cI*K; but = = (u, fy(u)) is supposed to belong to int*E. X Q
(iii) Similarly, setting
fo(u) = inf(H, N]u,00[), Wi={u:q< fy(u) <oo, fi(u) € Hy,},
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every W, is negligible. So Z = R71\ Ugeq(Wq U Wy) is pir—1-conegligible.
Now ifu e Z, t € G, and t' € H,, where t < t/, there is some s € ]t,t'[ N D,. P? Suppose, if possible,
otherwise. Since, by hypothesis, neither ¢ nor ¢’ belongs to D,,, D, N [t,t'] = 0. Note that, because u € Z,

s =inf(G, N]s, o0|) for every s € G, s =sup(H, N]—o0,s|) for every s € H,.

Choose ($p)nen, (s, )nen and (0, )nen inductively, as follows. Set sg = t, sj; =t'. Given that t < s, < s, <t
and s, € G, and s|, € H,, where n is even, set s, .| = sup(G, N [sp,s}]). Then either s, ; = s}, so
Shy1 € Hy, or s), 1 < s), and |s), 1, s, NGy =0, s0 s, ¢ G, and again s],,, € H,. Let §, > 0 be
such that 8, < 27" and u(E N B((u,s},,1),0,)) < 38-0%. Because the function s — pu(E N B((u,s),6,)) is
continuous (443C, or otherwise), there is an s,11 € Gy N [sy, sk | such that w(E N B((u, s),6,)) < 18,0,
whenever s € [s,41,5], 1]

This is the inductive step from even n. If n is odd and s, € Gy, s, € H, and s, < s, set Sp41 =
inf(Hy N [$n,s,]). This time we find that s,4; must belong to G,,. Let d,, € ]0,27"] be such that p(E N
B((u, $p41),6n)) > 28,07, and let s, .| € H,N]spi1,s,] be such that u(ENB((u, s),d,)) > 35,67 whenever
5 € [snits Sl

The construction provides us with a non-increasing sequence ([s,, s},|)nen of closed intervals, so there
must be some s in their intersection. In this case

w(E N B((u,s),0,) < 26,65 if n is even,

w(E N B((u,s),6,) > 35,65 if n is odd.
Since lim, .o 6, = 0,

WENB((u,3),6))
pB((u,s),0)
and s € D,,, while of course t < s < t'. XQ

p(ENB((,5).8)) <

< 1 lim su 1
=72 Pl = B(us)s) =2

lim inf(;w

(iv) Thus the conegligible set Z has the property required by (a).

(b) Applying (a) to R" \ E, there is a conegligible set Z’ C R"~! such that if u € Z', t € H,, t' € G,
and ¢t < t, then D, meets |¢t,t'[. So we can use ZNZ'.

(c) Now suppose that E has locally finite perimeter. We know that v(9*E N B(0,n)) = A\%,B(0,n) is
finite for every n € N (475G). By 475H,

fllu\lgn #(Dy, N [=n,n])pr—1(du) < v(0*E N B(0,2n)) < o0

for every n € N; but this means that D, N [—n,n] must be finite for almost every u such that |Jul| < n, for
every n, and therefore that
Zi ={u:ue€ Zy, D, N[—n,n] is finite for every n}

is conegligible. For u € Z;, R\ D, is an open set, so is made up of a disjoint sequence of intervals with
endpoints in D,, U {—00,00} (see 2A21); and because u € Z;, each of these intervals is included in either G,
or H,. Now

A = {u : there are successive constituent intervals of R\ D,, both included in G}
is negligible. PP? Otherwise, there are rationals ¢ < ¢’ such that
F ={u:]q,q¢'[\ Gy contains exactly one point}
is not negligible. Note that, writing 7' : R™ — R"~! for the orthogonal projection,

F=T[R"" x]q,q[) \ int*E]
VU TR x g, ¢") \int*E] N TR xJg”,¢'[) \ int*E]

q""€Q,q<q"" <q’

is measurable. Take any v € F N int*F, and let ¢ be the unique point in ]g,¢'[ \ G,. Then whenever
0 < 6 < min(t — q,¢' —t) we shall have
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p(B((u,1),0) \ E) = u(B((u,t),0) \ nt*E) < 26,1 (V(u,0) \ F),
because if w € F then (w, s) € int*E for almost every s € [t — d,t + d]. So

/"(B((u’t)vé)\E) < Qﬁrfl M — 0
iB((w)0) — B V() ’

lim sup;, lim sups o

and (u,t) € int*FE. XQ
Similarly,
A’ = {u : there are successive constituent intervals of R\ D,, both included in H,}

is negligible. So Zy = Z1 \ (AU A’) is a conegligible set of the kind we need.

475K Lemma Suppose that h : R" — [—1,1] is a Lipschitz function with compact support; let n € N
be such that h(z) = 0 for ||z|| > n. Suppose that E C R" is a Lebesgue measurable set. Then

oh r—1 *
e 5 dnl < 2(B,—1n"" + v(9*EN B(0,n))).
proof By Rademacher’s theorem (262Q), ;)?h is defined almost everywhere; as it is measurable and bounded,

and is zero outside B(0,n), the integral is well-defined. If v(0*E N B(0,n)) is infinite, the result is trivial;
so henceforth let us suppose that v(0*E N B(0,n)) < oo. Identify R™ with R"~! x R. For u € R™™!, set

flw)=#{t: (u,t) € 0*EN B(0,n)}) if this is finite,
= 0o otherwise.
By 475H, [ fdu,—1 < v(0*E N B(0,n)). By 475Jb, there is a ju,_i-conegligible set Z C R"~! such that
f(w) is finite for every u € Z and
whenever u € Z and (u,t) € int*E and (u,t’) € R" \ cI*E, there is an s lying between ¢ and '
such that (u,s) € O*F.
For u € Z, set D), = {t: (u,t) € B(0,n) \ 0*E}, and define g, : D], — {0,1} by setting

gu(t) = 1if (u,t) € B(0,n) Nint*E,
=0 if (u,t) € B(0,n) \ cI*E.

Now if ¢, t' € D!, and g(t) # g(t'), there is a point s between t and ¢’ such that (u, s) € 0*E; so the variation
Varp: gy of g, (224A) is at most f(u). Setting hy(t) = h(u,t) for u € R""" and ¢ € R, we now have

[ O;gg(u,t)x(B(O,n)ﬂint*E)(u,t)dt / Ml (t)gu(t)dt

(because hl,(t) = 0 if (u,t) ¢ B(0,n))
b
< (14 Varp, gu)sup| [ hy(t)|dt

a<b Ja

(by 224J, recalling that D, is either empty or a bounded interval with finitely many points deleted)
< (1+ f(u) sup |hy(b) — hu(a)l
a<b

(because h,, is Lipschitz, therefore absolutely continuous on any bounded interval)

< 2(1+ f(u)).

Integrating over u, we now have

Oh Ooh
| / dp| = | / i
B % B(0,n)nint*E %

(475Cg)
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/ / ah (u, t)x(B(0,n) Nint*E) (u, t)dt 1,1 (du)
V(0,n)
(where V(0,n) = {u:u € R"™L ||jul| <n})

</ o 20 S ()

<2(Br_in” ™t +v(0*E N B(0,n))).

475L Theorem Suppose that £ C R". Then E has locally finite perimeter iff v(0*E N B(0,n)) is finite
for every n € N.

proof If E has locally finite perimeter, then v(0*E N B(0,n)) = A%, B(0,n) is finite for every n, by 475G.
So let us suppose that v(0*E N B(0,n)) is finite for every n € N. Then u(0*E N B(0,n)) = 0 for every n
(471L), u(90*E) = 0 and E is Lebesgue measurable (475Ch).

If n € N, then

sup{|/ divedu| : ¢ : R™ — R" is Lipschitz, ||¢]] < xB(0,n)}
E
< 2r(B,—1n" " + v(0*E N B(0,n)))

is finite. P If ¢ = (¢1,... ,¢,) : R” — R" is a Lipschitz function and ||¢|| < xB(0,n), then 475K tells us
that

0, .
[ 82 du| < 2(B,—n" + V(O*E N B(0,n))).

But of course it is equally true that

0¢; r—
[, 8‘2_ du| < 2(B,-1n™ + v(O*EN B(0,n)))

for every other j < r; adding, we have the result. Q
Since n is arbitrary, FE has locally finite perimeter.

475M Corollary (a) The family of sets with locally finite perimeter is a subalgebra of the algebra of
Lebesgue measurable subsets of R".

(b) A set E C R" is Lebesgue measurable and has finite perimeter iff ¥(0*E) < oo, and in this case
v(0*E) is the perimeter of E.

(¢) If E C R" has finite measure, then per E = liminf,_, o per(E N B(0, a)).

proof (a) Recall that the definition in 474D insists that sets with locally finite perimeter should be Lebesgue
measurable. If E C R" has locally finite perimeter, then so has R" \ E, by 474J. If E, FF C R" have locally
finite perimeter, then

V(9*(E U F) N B(0,n)) < v(9*E N B(0,n)) + v(9*F N B(0,n))

is finite for every n € N, by 475L and 475Cd; by 475L in the other direction, F U F' has locally finite
perimeter.

(b) If E is Lebesgue measurable and has finite perimeter (on the definition in 474D), then v(0*E) = A\3R"
is the perimeter of E, by 475G. If v(0*F) < oo, then u(0*E) = 0 and E is measurable (471L and 475Ch);
now E has locally finite perimeter, by 475L, and 475G again tells us that v(0*E) = A2R" is the perimeter
of F.

(c) Now suppose that uF < co. For any a > 0,
O*(ENB(0,a)) C (0*EN B(0,a)) U (c*ENOB(0,a)) CO*EU (cI*ENOB(0,a))
by 475Cf. Now we know also that
fooo v(c*ENIB(0,a))da = p(cl*E) = pE < oo
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(265G), so liminf, oo v(cI*E N IB(0,«)) = 0. This means that

lim inf per(E N B(0, o)) = lim inf v(6*(E N B(0, «)))
a—r 00

a— 00

< liminf v(0*E) + v(c*ENIB(0,«)) = v(O*E).

a—r00

In the other direction,
O*E Nint B(0,a) = 0*E Nint*B(0, ) C 0*(E N B(0, «))
for every «, by 475Ce, so
per E = v(0*E) = lim v(0*E Nint B(0, «))

a—r0o0

< liminf v(0*(EF N B(0,«))) = liminf per(E N B(0, )
and we must have equality.

Remark See 475Xk.

475N The Divergence Theorem Let £ C R” be such that v(0*E N B(0,n)) is finite for every n € N.
(a) E is Lebesgue measurable.

(b) For v-almost every x € 0*F, there is a Federer exterior normal v, of E at x.

(¢) For every Lipschitz function ¢ : R” — R" with compact support,

fE divedu = fB*E’ o(x). v, v(de).

proof By 475L, E has locally finite perimeter, and in particular is Lebesgue measurable. By 474R, there
is a Federer exterior normal v, = ¢g(z) of E at z for every = € 9%E; by 475D, v-almost every point in 9*E
is of this kind. By 474E-474F,

[pdivedu= [ ¢.9pd\Y, = fa$E¢.¢E dX\?,
and this is also equal to fa*Eqﬁ.wE d\2., because O®E C 0*F and 0%F is A2-conegligible. But A% and v
induce the same subspace measures on 0*FE, by 475G, so
[pdivedu= [ . évpdv= [ o).v,v(dx),

as claimed.

4750 At the price of some technicalities which are themselves instructive, we can now proceed to some
basic properties of the essential boundary.

Lemma Let £ C R" be a set with locally finite perimeter, and g its canonical outward-normal function.
Let v be the unit vector (0,...,0,1). Identify R” with R"~! x R. Then we have sequences (F},)nen, (gn)nen
and (g, )nen such that

(i) for each n € N, F,, is a Lebesgue measurable subset of R"™1, and g, ¢/, : F,, — [—00, 00 are Lebesgue
measurable functions such that g, (u) < g/,(u) for every u € F;

(ii) if m, n € N are distinct and u € F,, N F,,, then [gm(w), g, (w)] N [gn(w), g, (w)] = 0;

(ii)) 3nzo Jr, 9n — Gndpr—1 = pE;

(iv) for any continuous function h : R™ — R with compact support,

Joe h@)0vop(@) v(dz) =3207, [ Alu, g (@) = h(u, gn(u))pr—1 (du),

where we interpret h(u,o0) and h(u, —o0) as 0 if necessary;
(v) for p,_1-almost every u € R"1,

{t: (u,t) € O*E} = {gn(u) :n € N, u € F,,, gn(u) # —o0}
U{g,(u) :n €N, ue F,, g,(u) # oo}

proof (a) Take a conegligible set Zo C R"~! as in 475Jc. Let Z C Z, be a conegligible Borel set. For u € Z
set Dy, = {t: (u,t) € O*E}.

D.H.FREMLIN



76 Geometric measure theory 4750

(b) For each ¢ € Q, set Fy = {u:u € Z, (u,q) € int*E}, so that F, is a Borel set, and for u € F} set
fq(u) =sup(Dy N]=00,q[),  fy(u) =inf(Dy N]-00,q]),

allowing —oo as sup () and oo as inf (). Observe that (because D, N[g—1,q+ 1] is finite) f,(u) < g < fy(u).
Now f, and f; are measurable, by the argument of part (a-i) of the proof of 475J. Enumerate Q as (gn)nen,
and set

F, _F(;,L\Um<n{u:u€ qm fqm< )<Qn<f/,,b( u)}

for n € N. Set g (u) = fq, (u), g,(u) = f; (u) for u € F,.

The effect of this construction is to ensure that, for any v € Z, u € F, iff g, is the first rational lying in
one of those constituent intervals I of R\ D,, such that {u} x I C int*E, and that now g, (u) and g/,(u) are
the endpoints of that interval, allowing oo as endpoints.

(c) Now let us look at the items (i)-(v) of the statement of this lemma. We have already achieved (i).
If u € F,,, N F,, then, in the language of 475J, |gm(u), g,,(u)[ is one of the constituent intervals of G,,
and |gn(u), gh,(u)[ is another; since these must be separated by one of the constituent intervals of H,, their
closures are disjoint. Thus (ii) is true. For any u € Z,

Y neNuer, 9n(W) = gn(w) = it : (u,t) € int*E},

0
ZZO:O[Fn g — gndpir—1 = fZ wi{t: (u,t) € mt*E}p,—1(du) = p(int*E) = pFE.
So (iii) is true. Also, for u € Z,
{t: (u,t) € 0*E} =D
= {gn(u) :n €N, u € Fy, gn(u) # —o0}
U{g,(u) :neN,ueF,,g,(u)# oo},

so (v) is true.

(d) As for (iv), suppose first that h : R” — R is a Lipschitz function with compact support. Set
o(x) = (0,...,h(x)) for x € R". Then

[ ey vdn) = [ b ve) X(dz)
O*E
(475Q)

= 9 _ iv

— [ovear —/Ed by

oh oh
/ 238 H /mt*E 3 :

/ Z /n(u Fra (u, t)dt pr—1(du)

neN,ueF,

(474E)

— [ X bugiw) bl galu)r ()
neNjueF,
(with the convention that h(u,+o00) = lims_, 1o h(u,t) = 0)

=3 [ g 0) = g )1 ()

because if |h| < myxB(0,m) then
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Y Ih(u, g () = hlu, gu(w)) -1 (du)

nefiatr,
< 2m/#({t  (,1) € B(0,m) N 9*EY)ty_1(du)
< 2mu(B(0,m) N O*E)

(475H) is finite.

For a general continuous function h of compact support, consider the convolutions hy = h x hy, for large
k, where hy, is defined in 473E. If |h| < mxB(0,m) then |h;| < mxB(0,m + 1) for every k, so that

Yonenuer, [Me(gn (1) = hi(gn(u))] < 2m#({t : (u,t) € B(0,m +1) N O*E})
for every u € R", k € N. Since hy — h uniformly (473Ed),

h(z)v.Yg(z)v(de) = lim hi(z)v. g (z) v(de)

O*E k— oo O*E
~ jim_ | 3l (40) = a1 a)
- / S B gl () — Bt gn (1) )1 (dr)
neNueF,,

> . 01 00) = g0 (),

as required.

475P Lemma Let v € S,_; be any unit vector, and V' C R” the hyperplane {z : z.v = 0}. Let
T : R" — V be the orthogonal projection. If £ C R" is any set with locally finite perimeter and canonical
outward-normal function ¥ g, then

S 0 vmldr = [ #0*E N T~ [{u}])v(du),
interpreting #(0*E N T~ [{u}]) as oo if 9*E NT~1[{u}] is infinite.
proof Asusual, we may suppose that the structure (E,v) is rotated until v = (0,... , 1), so that we can iden-
tlfy T(glv cee 767”) with (513 s 757’71) € erl’ and fV #(8*E N Tﬁl[{u}})y(du) with f]Rr—l #(Du)/jf’r‘*l(du)a
where D, = {t : (u,t) € 0*E}. For each m € N and u € R™=!, set D™ = {t : (u,t) € O*E, ||(u,t)|| < m};

note that [ #(D&T'L))ur_l(du) < v(0*E N B(0,m)) is defined and finite (475H). It follows that the integral
[y #(@*ENT [{u}])v(du) is defined in [0, o0].

(a) Write ® for the set of continuous functions h : R"™ — [—1, 1] with compact support. Then
Jyep 106l = suppc [,y h(a)o- () v(dz).
P Of course
[y loetisldy > [, h(z)o.tn(z) v(dz)
for any h € ®. On the other hand, if
v < fa*E lv.Yp|dy = f [v.Yg|dAS
(475G), then, because A2 is a Radon measure, there is an n € N such that
v < fB(Om) 0. ¥pldAS = [ ho(2)v.vp(x) NG (dx)

where
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v.g(x)
v.Yp(2)]

= 0 otherwise.

ho(z) = if z € B(0,n) and v.¢¥p(z) #£ 0,

Again because /\% is a Radon measure, there is a continuous function h; : R” — R with compact support
such that

[ 1h1 = holdXg, < me,n) v bpldAd — v
(4161); of course we may suppose that hl, like h, takes values in [—1,1], so that h; € &. Now
Joep M (@)0-¥p(x = [ ha(@)o.pu(x) A (dz) > 7.
As v is arbitrary,
suph€¢fh(z)v.7,/1E(a:) v(dz) = f|v.1/1E|dV
as required. Q
(b) Now take (Fy)nen, (gn)nen and (g, )nen as in 4750. Then

f# w) pr—1(du) = SuPhecbzn ofF (u Q;L(u)) — h(u, gn(u))pr—1(du).

(As in 4750(iv), interpret h(u,£00) as 0 if necessary.) P By 4750(ii), g/, (u) # gn(u) whenever m, n € N
and u € F,, N F,, while for almost all u € R" ™!

D, ={gn(u) :neN ue F,}\ {—oo})U{g,(u) :n €N, ue F,}\ {oo}).
Soif h € ®,
S° 0 h(u, gl (w) — h(u, ga(u) < #({gn(u) : u € Fp, gn(u) # —0c0})

neNueF,
+ #{gn(w) s u € Fy, gy, (u) # o0})
= #(Du)

for almost every u € R™™!, and

n OfF (u gn h(u>gn( )) o — 1 du f# ) Hr—1 du)

In the other direction, given v < [ #(Dy,)pr—1(du), there is an m € N such that v < [ #( D( ))ur 1(du).
Setting

H,={u:ueF,, gue ng)}’ H ={u:ueF,, g e D&m)}
for n € N, we have
V< e Hy + 30 g e HY, < [ #(D (DS™ 11 (du) < oo.

By 418J once more, we can find n € N and compact sets K; C H;, K] C H/ such that g;] K; and ¢;[ K] are
continuous for every i and

v < Z(NrflKi + pr—1 Kj) — Z (pr—1H; + pr—1 HY)
=0 1=n-+1
n
- Z(Mr—1(Hi \ Ki) + pr—1(Hj \ K7)).

i=0
Set
K =Uicn{(w,gi(u) s u € Ki}, K" =Uc, {(u, gi(w)) : u € Ki},
so that K and K’ are disjoint compact subsets of int B(0,m). Let h : R” — R be a continuous function
such that
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h(z) =1 for z € K,
=—1forxz € K,
=0 for x € R"\ int B(0,m)
(4A2F(d-ix)); we can suppose that —1 < h(z) <1 for every x. Then h € ®, and

; /E h(u,gz{(u)) — h(u, gi(uw)) pr—1(du)

= ; /H: h(u,gg(u))ﬂrfl(du) - ; /Hl h(u, gi(u))ﬂr71(du)

(because h is zero outside int B(0,m))

> ; /K; h(u, gi(u))pur—1(du) — ;/K h(u, g; () pr—1 (du)

- Z(:U’(Hz/ \ K7) + p(H; \ K3)) — Z (WH; + pH;)
i=0 i=nt1

> .

This shows that
J# D) -1 (du) < suppead ol [ hlu, g7, () = hlu, go(u)) -1 (du),
and we have equality. Q
(c) Putting (a) and (b) together with 4750(iv), we have the result.

475Q Theorem (a) Let E C R" be a set with finite perimeter. For v € S,_; write V,, for {z : x.v = 0},
and let T, : R™ — V,, be the orthogonal projection. Then

1

ber B = (0" E) = 3 /S /V BB 0 T [{u])v(du)v(dv)

. 1
~lim s /S HBAE + o)),

(b) Suppose that E C R" is Lebesgue measurable. Set
1
Y = SUDPgcRrr\ {0} mM(EA(E + ).

Then v < per E < ;BB—W

r—1

proof (a)(i) I start with an elementary fact: there is a constant ¢ such that [ |w.v|/\gr71 (dv) = ¢ for every

w € S,_1; this is because whenever w, w’ € S,_; there is an orthogonal linear transformation taking w to
w', and this transformation is an automorphism of the structure (R”, v, Sy_1,A% ) (474H). (In (iii) below

I will come to the calculation of c.)

(ii) Now, writing g for the canonical outward-normal function of E, we have

/ST_l /v #(O*EN T, [{u}]))v(du)v(dv) = /ST_1 /6*E g (). v|v(de)v(dv)
(475P)
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_ / () v AD(d2)AD,_ (dv)

(by 235K, recalling that )\gr and AaE are just indefinite-integral measures over v, while S,._; and 0*F are

Borel sets)

-1

— [[ a3, (@) ()
(because . is continuous, so (z,v) — g (x).v is measurable, while A9 and A%, are totally finite, so we
can use Fubini’s theorem)

=cperF
(by (i) above)

= cv(0*E).

(iii) We have still to identify the constant c. But observe that the argument above applies whenever
v(0*E) is finite, and in particular applies to E = B(0,1). In this case, 0*B(0,1) = S,_1, and for any
v € S,_1, u €V, we have

#(0*B(0,1) N T~ [{u}]) = 2 if ||ul| <1,
— Lif ful = 1,
=0 if |Jul| > 1.
Since we can identify v on V,, as a copy of Lebesgue measure pi,-_1,
fv #(0*B(0,1) N T [{u}))v(du) = 2v{u:u € V,, ||lu]| <1} = 28,_1.
This is true for every v € V,,, so from (ii) we get

26, 1vS,_1 :fsrflfvv #(*E NT; [{u})v(du)v(dv) = cvS, 1,

and ¢ = 2f,_1. Substituting this into the result of (ii), we get
per E = v(0*E) = 257 - fS, . fv #(O*ENT, H{u})v(du)v(dv).

(iv) Before continuing with the main argument, it will help to set out another elementary fact, this
time about translates of certain simple subsets of R. Suppose that (G, H, D) is a partition of R such that
G and H are open, D = 0G = 0H is the common boundary of G and H, and D is locally finite, that is,
D N [—n,n] is finite for every n € N. Then

SUPg~g %ul(GA(G +6)) = limsyo %m (GA(G+9)) = #(D)

if you will allow me to identify ‘co’ with the cardinal w. PP If we look at the components of G, these are
intervals with endpoints in D; and because 0G = 0H, distinct components of G have disjoint closures. Set
f(0) = pi(GA(G+6)) for 6 > 0. If D is infinite, then for any n € N we have disjoint bounded components
Iy, ..., I, of G; for any ¢ small enough, G N (I; + §) C I; for every j < n (because D is locally finite); so
that

F(6) = 325 ;AT + 6)) = 2(n + 1),
and liminfs g %f(é) > 2(n+1). As n is arbitrary,
Supss.q 3 F(8) = lims o 5 /(8) = oo,
If D is empty, then G is either empty or R, and

1 . 1
SUPg~q gf(é) = limso gf(é) =0
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If D is finite and not empty, let Iy, ... , I, be the components of G. Then, for all small § > 0, we have
F0) =3 j—o I AT + 0)) = 2(n + 1)6 = 6#(D),

SO again
Sups0 3/ (6) = lims o 3 £(8) = #(D). Q

(v) Returning to the proof in hand, we find that if v € S,._; is such that fVU #(O*ENT, {u}])v(du)
is finite, then the integral is equal to

limg o %M(EA(E + 0v)) = sups- %u(EA(E + 6v)).

P It is enough to consider the case in which v is the unit vector (0,...,0,1), so that we can identify V,,
with R™! and R” with R"™! x R, as in 475J; in this case, E N T, '[{u}] turns into E[{u}]. Let Zy CR"!
and G, H, and D,, for u € R"™!, be as in 475Jc. In this case, for any é§ > 0,

WENA(E + 6v)) = p(int* EA(Int*E + 6v))

1 (it BA(int*E + 50)) [{u}] )1 (du)

p1(GuA(Gy + 6)) 1 (du)

I 1
%\ %\
3 3
i i

1 (GuA (G + 6)) pr—1 (du)

I
S

because Zs is conegligible. By (iv),
limsjo 5411 (GuM(Gu +0)) = 5Py 311 (GuA(Gu +8)) = #(D.)

for any u € Z5. Applying Lebesgue’s Dominated Convergence Theorem to arbitrary sequences (6, )nen | 0,
we see that

limgyo 5 LUEA(E + 6v)) = [, #Du)v(du) = [, #(0*EN T, [{u})r(du),
as required. To see that
limgyo 2p(BA(E +0v)) = supgs o s p(BA(E + 0v)),
set g(0) = p(EA(E + 6v)) for § > 0. Then for 4, &’ > 0 we have
g6+ 08") = u(EA(E + (6 + 8 )v)) < u(EA(E + 6v)) + u((E + 0v)A(E + (6 + §'v)))
= 9(0) + p(0v + (EA(E + 6'v))) = g(8) + g(&").
Consequently g(6) < ng(+8) whenever § > 0 and n > 1, so
59(0) < liminf oo $9(3:0) = limg 1o 5 9(8)
for every § > 0. Q
(vi) Putting (v) together with (i)—(iii) above,

perE = fS - lll’n(uo /L(EA(E + 5’0)) ( )

2/5, 1

To see that we can exchange the limit and the integral, observe that we can again use the dominated
convergence theorem, because

1
Js  sWss0 3 n(BA(E +60)) = 28,y per E

is finite. So
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per E = limg g WEA(E + 0v))v(dv).

26, 15fsr )

(b)(i) v < per E. P We can suppose that E has finite perimeter.

(a) To begin with, suppose that = (0,...,0,0) where § > 0. As in part (a-v) of this proof, set
v =(0,...,0,1), identify R with R"~! x R, and define G, D, C R, for u € R"™!, and Zo C R""! as
in 475Jc. Suppose that u € Zy. Then G, = (int*E)[{u}] is an open set and its constituent intervals have
endpoints in D,, = (0*E)[{u}]. It follows that for any ¢ in

Gy (Gy + 9) = (It*EA(Int*E + 6v))[{u}],
there must be an s € D, N [t — §, 6], and ¢ € D, + [0,6]. Accordingly
(int* EA(Int*E + 0v)) N (Z2 x R) C 9*E + [0, dv),
writing [0, dv] for {tv:t € [0,d]}. So
W(EA(E + 6v)) = p(int* EA(I*E + dv)) < p*(0*E + [0, 6v]).

Take any € > 0. We have a sequence (A, ),cn of sets, all of diameter at most €, covering O*E, and
such that 27718, 3> (diam A,)"~! < e + v(9*E); we can suppose that every A, is closed. Taking
T :R" — R"~! to be the natural projection, T[A,] is compact and has diameter at most diam 4,,, so that
pr—1T[A,] < 277F13, 4 (diam A,,)"~! (264H again). For each n € N, the vertical sections of A,, + [0, v]
have diameter at most ¢ + 4. So

(A, +10,6v]) < 27718, (diam A,,)" " (e + 9).
Consequently,

WEA(E + 6v)) < p* (0% E +[0,6v]) < i (A + 10, 60])

n=0
<> 27 By (diam A,) (e 4 8) < (e + 6)(e + v(I¥E)).
n=0
As € is arbitrary,

W(EA(E + ) = p(EA(E + 6v)) < dv(0*E) = ||z||v(0*E).
(B) Of course the same must be true for all other non-zero € R", so v < v(0*E) = per E. Q

(ii) For the other inequality, we need look only at the case in which + is finite.

(@) In this case, F has finite perimeter. P Let ¢ : R™ — B(0,1) be a Lipschitz function with
compact support. Take ¢ such that 1 < ¢ < r, and consider

[ Sl =1 [ Jim 2 (outa +27"e) = st
(where ¢ = (¢1,... ,¢r))

— i [ 2"(oila+27"e) — e la)]

n—oo

(by Lebesgue’s Dominated Convergence Theorem, because ¢; is Lipschitz and has bounded support)

= lim 2“]/ ¢i(z +27"e;) — ¢i(w))u(dz)|

n—oQ
= lim 2" ¢idu—/ o
n=00 E4+2-7e; E
<limsup2"u((E +27"e;)AE)
n—oo

(because ||¢;]loo < 1)

MEASURE THEORY



4758 The essential boundary 83

<.

Summing over i, | [, div¢du| < ry. As ¢ is arbitrary, per E < ry is finite. Q
(B) By (a), we have

o 1
per B = lim 22— /S (EA(E + 6v))v(dv)
_ By
S 267‘71’}/”5’,‘_1 o 257717

as required.

475R Convex sets in R" For the next result it will help to have some elementary facts about convex
sets in finite-dimensional spaces out in the open.

Lemma (In this lemma I allow » = 1.) Let C C R" be a convex set.
(a) If x € C and y € int C, then ty + (1 —t)z € int C for every ¢ € |0, 1].
(b) C and int C are convex.
(c) If int C # () then C = int C.
(d) If int C = @ then C lies within some hyperplane.
(e) int C = int C.

proof (a) Setting ¢(z) =z +t(z — z) for z € R", ¢ : R" — R" is a homeomorphism and ¢[C] C C, so
o(y) € ¢lint C] = int ¢[C] C int C.

(b) It follows at once from (a) that int C is convex; C is convex because (z,y) — tz+ (1 —t)y is continuous
for every ¢ € [0,1].

(c) From (a) we see also that if int C' # () then C' C int C, so that C C int C and C = int C.
?

(d) It is enough to consider the case in which 0 € C, since if C' = ) the result is trivial. ? If zy,... ,z,

are linearly independent elements of C, set x = ﬁ > i xi; then

r r 1
T+ iwi =) (o + r—Tl)xi eC

1 - .
whenever Y |a;| < ——. Also, writing ey, . .. , e, for the standard orthonormal basis of R", we can express
i=1 r41 ’ ) ) )

) . 1 .
e; as 25:1 a;;x; for each j; setting M = (r + 1) max; <, 23:1 |ai;|, we have z £ 276 € C for every i <,

1 .
W, and z € int C. X

So the linear subspace of R” spanned by C has dimension at most r — 1.

so that x +y € C whenever |y|| <

(e) If int C = R" the result is trivial. If int C' is empty, then (d) shows that C is included in a hyperplane,
so that int C is empty. Otherwise, if # € R” \ int C, there is a non-zero e € R” such that e.y < e.x for every
y € int C (4A4Db, or otherwise). Now, by (c), e.y < e.x for every y € C, so x ¢ int C. This shows that
int C C int C, so that the two are equal.

4758 Corollary: Cauchy’s Perimeter Theorem Let C' C R” be a bounded convex set with non-
empty interior. For v € S,_; write V,, for { : x.v = 0}, and let T,, : R” — V,, be the orthogonal projection.
Then

v(9C) = % [o  v(T[Chw(dv).

proof (a) The first thing to note is that 9*C' = 9C. P Of course 0*C C 9C' (475Ca). If z € 9C, there is
a half-space V' containing x and disjoint from int C' (4A4Db again, because int C' is convex), so that
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- wB@,0\C) S 1 p(B(x,d)\int V) _ 1
limsupg o " B(z) > limsupy B (@) =3
and z ¢ int*C. On the other hand, if g € int C' and n > 0 are such that B(zg,n) C int C, then for any
§ €]0,1] we can set t = #, and then
n+{|zo—||

B(z +t(xg — z),tn) € B(z,d) N ((1 — t)xz + tB(xo,n)) C B(x,d) NC,
so that

w(B(z,0)NC) > B t"™n" = ( )TuB(x,é);

as 4 is arbitrary, = € cI*C. This shows that 9C C 9*C so that 9*C = 9C. Q

(b) We have a function ¢ : R™ — C defined by taking ¢(z) to be the unique point of C' closest to z, for
every x € R" (3A5Md). This function is 1-Lipschitz. I® Take any z, y € R” and set e = ¢(z) — ¢(y). We
know that ¢(x) —ee € C, so that ||z — ¢(x) —ee|| > ||z +¢(z)]], for 0 < € < 1; it follows that (z—¢(z)).e > 0.
Similarly, (y — ¢(y)).(—e) > 0. Accordingly (z —y).e > e.e and ||z — y|| > ||e||. As z and y are arbitrary,
¢ is 1-Lipschitz. Q

Now suppose that C’ 2 C'is a closed bounded convex set. Then v(9C") > v(9C). P Let ¢ be the function
defined just above. By 264G/471J again, v*(¢[0C"]) < v(0C"). But if € 9C, there is an e € R" \ {0} such
that z.e > y.e for every y € C. Then ¢(x + ae) = x for every a > 0. Because C’ is closed and bounded,
and x € C C (', there is a greatest o > 0 such that z + ae € C’, and in this case x + ae € dC’; since
o(x + ae) =z, x € $[0C]. As z is arbitrary, C C ¢[0C"], and

v(90) < v*(910C") < v(9C"). Q

Since we can certainly find a closed convex set C' O C such that v(9C") is finite (e.g., any sufficiently
large ball or cube), v¥(0C) < co. It follows at once that u(9C) = 0 (471L once more).

_n
l|zo—zll+n

(¢) The argument so far applies, of course, to every r > 1 and every bounded convex set with non-empty
interior in R”. Moving to the intended case r > 2, and fixing v € S,._; for the moment, we see that, because
T, is an open map (if we give V,, its subspace topology), T,[C] is again a bounded convex set with non-empty
(relative) interior. Since the subspace measure induced by v on V, is just a copy of Lebesgue measure, (b)
tells us that vT,[C] = v(inty, T,[C]), where here I write inty, T, [C] for the interior of T, [C] in the subspace
topology of V,,. Now the point is that inty, T, [C] C T, [int C]. P int C' (taken in R") is dense in C' (475Rc),
so W = T, [int C] is a relatively open convex set which is dense in T, [C]; now W = inty, W (475Re, applied
inV, 2R"1), so W Dinty, T, [C]. Q

It follows that #(0C NT, 1[{u}]) = 2 for every u € inty, T,[C]. P T, }[{u}] is a straight line meeting
int C' in yo say. Because C is a bounded convex set, it meets T, *[{u}] in a bounded convex set, which must
be a non-trivial closed line segment with endpoints 1, y2 say. Now certainly neither y; nor y, can be in the
interior of C. Moreover, the open line segments between y; and yg, and between ys and yg, are covered by
int C, by 475Ra; so T, '[{u}] N OC = {y1,y2} has just two members. Q

(d) This is true for every v € S,_;. But this means that we can apply 475Q to see that

1

U(00) = v(9°C) = 1 /S /V S(0C N T {u))w(du)v(dv)

=— * v (du)v(dv
~m L HOT @

1

i [ o HOC T i)

- ml_l /S . (it T, [C)w (dv) = 63_1 /S . V(T,[C])v(dv),

as required.

475T Corollary: the Convex Isoperimetric Theorem If C' C R" is a bounded convex set, then
v(0C) < rB,(3 diam C) 1.
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proof (a) If C is included in some (r — 1)-dimensional affine subspace, then
v(0C) = vC < 57»1(% diam C)" 1

by 264H once more. For completeness, I should check that 8,1 < rS,.. P Comparing 265F with 265H, or
working from the formulae in 252Q, we have r(, = 273,_2. On the other hand, by the argument of 252Q),

Bro1 = ﬂr_zf_ﬂ;; cos" M tdt < fh_a,
so (not coincidentally) we have a factor of two to spare. Q
(b) Otherwise, C' has non-empty interior (475Rd), and for any orthogonal projection T of R" onto an
(r — 1)-dimensional linear subspace, diam T'[C] < diam C, so v(T[C]) < 57«—1(% diam C)"~!. Now 475S tells
us that

00) < (L amCy-108 =]y,
Remark Compare 476H below.

475X Basic exercises (a) Show that if ¢ C R" is convex, then either uC = 0 and §*C = 0, or
0*C = 0C.
(b) Let A, A’ CR" be any sets. Show that
(O*ANint*A") U (0*A' nint*A) C 9*¥(ANA") C (9*ANcl*A’) U (0*A' N cl*A).

(c) Let A CR” be any set, and B a non-trivial closed ball. Show that
*(ANB)A(BNO*A)U(ANIB)) C ANOB\ 9*A.

>(d) Let E, F C R" be measurable sets, and v the Federer exterior normal to F at x € int*F. Show
that v is the Federer exterior normal to EN F' at x.

(e) Let ¥ be the density topology on R" (414P) defined from lower Lebesgue density (341E). Show that,
for any A CR", AUcl*A is the T-closure of A and int*A is the T-interior of the T-closure of A.

(f) Let A C R" be any set. Show that A\ cI*A and int*A \ A are Lebesgue negligible.

>(g) Let E C R" be such that v(0*F) and pFE are both finite. Show that, taking v, to be the Federer
exterior normal to E at any point z where this is defined,

[pdivedu= [, é(x).v,v(dr)
for every bounded Lipschitz function ¢ : R™ — R".

>(h) Let (E,)nen be a sequence of measurable subsets of R” such that (i) there is a measurable set F
such that lim,,_, p((E,AE) N B(0,m)) = 0 for every m € N (ii) sup,,cn ¥(0*E,, N B(0,m)) is finite for
every m € N. Show that E has locally finite perimeter. (Hint: fE divodu = lim, o fE div ¢ dpu for every
Lipschitz function ¢ with compact support.)

i) Give an example of bounded convex sets F and F such that 83(F U F PEUISF.
(1) p

(j)(i) Show that if A, B C R" then 0*(ANB)NJ*(AUB) C 9*ANo*B. (ii) Show that if E, FF C R are
Lebesgue measurable, then per(E N F) 4+ per(E U F) < per E + per F.

>(k) Let E C R” be a set with finite Lebesgue measure and finite perimeter. (i) Show that if H C R”"
is a half-space, then per(E N H) < perE. (Hint: 475Ja.) (ii) Show that if C C R” is convex, then
per(ENC) < per E. (Hint: by the Hahn-Banach theorem, C' is a limit of polytopes; use 474Ta.) (iii) Show
that in 475Mc we have per E = lim,_,o per(E N B(0, «v)).
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(1) Let E C R" be a set with finite measure and finite perimeter, and f : R™ — R a Lipschitz function.
Show that for any unit vector v € R”, | [ v. grad f du| < || f| per E.

(m) For measurable F C R7” set p(E) — SupzeRT\{(]} ﬁM(EA(E—FZ')) (1) Show that for any measurable
E, p(E) = limsup,_,q ﬁ,u(EA(E + z)). (ii) Show that for every € > 0 there is an E C R” such that

per E =1 and p(F) > 1 —e. (iii) Show that if E C R" is a non-trivial ball then per F = QZﬁT p(E). (iv)
Show that if E C R" is a cube then per E = \/rp(FE). (Hint: 475Y1.)

(n) Suppose that £ C R" is a bounded set with finite perimeter, and ¢, ¥ : R™ — R two differentiable
functions such that grad ¢ and grad vy are Lipschitz. Show that

ngb x V2 —p x V2pdp = fG*E((b x grad ¢ — ¢ x grad ¢).v, v(dx)

where v, is the Federer exterior normal to E at = when this is defined. (This is Green’s second identity.)

475Y Further exercises (a) Show that if A C R" is Lebesgue negligible, then there is a Borel set
E CR" such that A C 0*E.

(b) Let (X, p) be a metric space and p a strictly positive locally finite topological measure on X. Show
that we can define operations cl*, int* and 0* on PX for which parts (a)-(f) of 475C will be true.

(c) Let B be a ball in R” with centre y, and v, v’ two unit vectors in R”. Set

H={z:2eR", (x—y).v<0}, H={x:2€R", (x—y).v <0}

Show that u((HAH')NB) = % arccos(v.v')uB.

(d) Show that g is inner regular with respect to the family of compact sets K C R” such that
w(B(z,0)NK)

lim supg o B (z.0)

> % for every z € K.

(e) Let (fn)nen be a sequence of functions from R” to R which is uniformly bounded and uniformly
Lipschitz in the sense that there is some v > 0 such that every f, is y-Lipschitz. Suppose that f =
lim,, o fr is defined everywhere in R". (i) Show that if £ C R" has finite measure, then f g 2. grad fdu =
lim, o [} 2. grad fndp for every z € R”. (Hint: look at E of finite perimeter first.) (ii) Show that for any
convex function ¢ : R — [0,00][, [ ¢(grad f)du < liminf, . [ ¢(grad f,,)dp.

(f) Let E C R" be a set with locally finite perimeter. Show that

1
SUPeRr™\ {0} mH(EA(E +)) = sup|y|=1 fa*E v v, v(dz),
where v, is the Federer exterior normal of E at x when this is defined.

(g) Let E C R" be Lebesgue measurable. (i) Show that int*E is an F,s (= IIJ) set, that is, is expressible
as the intersection of a sequence of F, sets. (ii)(cf. ANDRETTA & CAMERLO 13) Show that if F is not
negligible and cl*E has empty interior, then int*E is not Gs, (= £9), that is, cannot be expressed as the
union of sequence of Gy sets.

475 Notes and comments The successful identification of the distributionally-defined notion of ‘perime-
ter’, as described in §474, with the geometrically accessible concept of Hausdorff measure of an appropriate
boundary, is of course the key to any proper understanding of the results of the last section as well as this
one. The very word ‘perimeter’ would be unfair if the perimeter of £'U F' were unrelated to the perimeters
of F and F'; and from this point of view the reduced boundary is less suitable than the essential bound-
ary (475Cd, 475Xi). If we re-examine 474M, we see that it is saying, in effect, that for many balls B the
boundary 0*(E N B) is nearly (BN 0*E) U (ENJB), and that an outward-normal function for £ N B can
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be assembled from outward-normal functions for £ and B. But looking at 475Xc-475Xd we see that this is
entirely natural; we need only ensure that v(F N 9B) = 0 for a p-negligible set F' defined from FE; and the
‘almost every ¢’ in the statement of 474M is fully enough to arrange this. On the other hand, 475Xg seems
to be very hard to prove without using the identification between v(9*E) and per E.

Concerning 475Q, I ought to emphasize that it is not generally true that

vF = [y [y #F 0T {})ul(du)v(do)

even for r = 2 and compact sets F' with vF < co. We are here approaching one of the many fundamental
concepts of geometric measure theory which I am ignoring. The key word is ‘rectifiability’; for ‘rectifiable’
sets a wide variety of concepts of k-dimensional measure coincide, including the integral-geometric form
above, and 9*F is rectifiable whenever E has locally finite perimeter (EvANs & GARIEPY 92, 5.7.3). For
the general theory of rectifiable sets, see the last quarter of MATTILA 95, or Chapter 3 of FEDERER 69.

I have already noted that the largest volumes for sets of given diameter or perimeter are provided by
balls (see 264H and the notes to §474). The isoperimetric theorem for convex sets (475T) is of the same
form: once again, the best constant (here, the largest perimeter for a convex set of given diameter, or the
smallest diameter for a convex set of given perimeter) is provided by balls.

475Qb gives an alternative characterization of ‘set of finite perimeter’, with bounds on the perimeter
which are sometimes useful.

Version of 29.7.21

476 Concentration of measure

Among the myriad special properties of Lebesgue measure, a particularly interesting one is ‘concentration
of measure’. For a set of given measure in the plane, it is natural to feel that it is most ‘concentrated’ if it is
a disk. There are many ways of defining ‘concentration’, and I examine three of them in this section (476F,
476G and 476H); all lead us to Euclidean balls as the ‘most concentrated’ shapes. On the sphere the same
criteria lead us to caps (476K, 476Xe).

All the main theorems of this section will be based on the fact that semi-continuous functions on compact
spaces attain their bounds. The compact spaces in question will be spaces of subsets, and I begin with
some general facts concerning the topologies introduced in 4A2T (476A-476B). The particular geometric
properties of Euclidean space which make all these results possible are described in 476D-476E, where I
describe concentrating operators based on reflections. The actual theorems 476F-476H and 476K can now
almost be mass-produced.

476A Proposition Let X be a topological space, C the family of closed subsets of X, K C C the family
of closed compact sets and p a topological measure on X.
(a)(i) If u is outer regular with respect to the open sets then p[C : C — [0, 00[ is upper semi-continuous
with respect to the Vietoris topology on C.
(ii) If p is locally finite and inner regular with respect to the closed sets then u[K is upper semi-
continuous with respect to the Vietoris topology.
(iii) If p is inner regular with respect to the closed sets and f is a non-negative p-integrable real-valued
function then F — [ p fdp : C — R is upper semi-continuous with respect to the Vietoris topology.
(b) Suppose that u is tight.
(i) If p is totally finite then u[C is upper semi-continuous with respect to the Fell topology on C.
(ii) If f is a non-negative p-integrable real-valued function then F +~— || pfdp: C — R is upper semi-
continuous with respect to the Fell topology.
(c) Suppose that X is metrizable, and that p is a metric on X defining its topology; let p be the Hausdorff
metric on C \ {0}.
(i) If p is totally finite, then p[C \ {0} is upper semi-continuous with respect to p.
(ii) If g is locally finite, then u[KC\ {0} is upper semi-continuous with respect to p.

(©) 2001 D. H. Fremlin
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(iii) If f is a non-negative p-integrable real-valued function, then F +— [ p fdu: C\ {0} — R is upper
semi-continuous with respect to p.

proof (a)(i) Suppose that F' € C and that uF < «. Because p is outer regular with respect to the open
sets, there is an open set G D F such that uG < a. Now V = {E : E € C, E C G} is an open set for
the Vietoris topology containing F', and pFE < « for every E € V. As F and « are arbitrary, u[C is upper
semi-continuous for the Vietoris topology.

(ii) Given that K € K and pK < a, then, because y is locally finite, there is an open set G of finite
measure including K (cf. 411Ga). Now there is a closed set F' C G \ K such that pF' > uG — «, so that
V={L:LeK,LCG)\F} is a relatively open subset of K for the Vietoris topology containing K, and
uL < a for every L € V.

(iii) Apply (i) to the indefinite-integral measure over p defined by f; by 412Q this is still inner regular
with respect to the closed sets.

(b) If F € C and puF < a, let K C X\ F be a compact set such that p > uX —a. ThenV ={FE: E €C,
ENK =0} is a neighbourhood of F and puE < « for every E € V. This proves (i). Now (ii) follows as in
(a-iii) above.

(c)(d) It F e C\ {0} and puF < a, then for each n € N set F,, = {z : p(x, F) < 27"}. Since (F,,)nen is
a non-increasing sequence of closed sets with intersection F', and p is totally finite, there is an n such that
uF, < a. If now we take E € C\ {0} such that p(E,F) < 27" then E C F,, so pE < a. As F and « are
arbitrary, x[C \ {0} is upper semi-continuous.

(i) If K € K\ {0} and uK < «, let G D K be an open set of finite measure, as in (a-ii) above. The
function = — p(x, X \ G) is continuous and strictly positive on K, so has a non-zero lower bound on K,
and there is some m € N such that p(x, X \ G) > 27™ for every x € K. If, as in (i) just above, we set
F, ={x:p(z,K) < 27"} for each n, F},, C G has finite measure. So, as in (i), we have an n > m such that
wk, < a, and we can continue as before.

(iii) Once again this follows at once from (i).

476B Lemma Let (X, p) be a metric space, and C the family of closed subsets of X, with its Fell
topology. For € > 0, set U(A,e) = {z: 2 € X, p(z,A) < e} if A C X is not empty; set U(D,¢) = . Then
for any 7-additive topological measure @ on X, the function

(F,e) = pU(Fye) : C x]0,00[ — [0, 0]

is lower semi-continuous.
proof Set Q = {(F,e) : F € C, ¢ > 0, uU(F,¢) > ~}, where v € R. Take any (Fp,¢9) € Q. Note
first that pU(Fo,€0) = sup..., pU(F,¢€), so there is a § € }0, %60[ such that pU(Fp,e9 — 26) > . Next,
{U(z,e0 — 20) : © € Fy} is an open cover of U(Fy, ey — 24); because p is T-additive, there is a finite set
I C F such that p(J,.; U(z, €0 — 25)) > +. Consider

V={F:FeC FNU(z,0) # 0 for every z € I'}.

xzel

By the definition of the Fell topology, V is open. So V X ]y — 8, 00[ is an open neighbourhood of (Fp,€) in
CxR.If FeVand e > ¢y — 9, then

U(F,e) 2 Uper Ulw,e—6) 2 Uuer U, €0 — 26)

has measure greater than v and (F,e) € Q. As (Fp, ) is arbitrary, @) is open; as +y is arbitrary, (F,e€) —
uU (F,€) is lower semi-continuous.

Remark Recall that all ‘ordinary’ topological measures on metric spaces are T-additive; see 438J.
476C Proposition Let (X, p) be a non-empty compact metric space, and suppose that its isometry

group G acts transitively on X. Then X has a unique G-invariant Radon probability measure p, which is
strictly positive.

proof By 441G, G, with its topology of pointwise convergence, is a compact topological group, and the
action of G on X is continuous. So 443Ud gives the result.
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476D Concentration by partial reflection The following construction will be used repeatedly in the
rest of the section.

(a) Let X be an inner product space. (In this section, X will be usually be R, but in 493G below it
will be helpful to be able to speak of abstract Hilbert spaces.) For any unit vector e € X and any « € R,
write R = Req : X — X for the reflection in the hyperplane V =V, = {z : ¢ € X, (z|e) = a}, so that
R(z) = z + 2(a — (z|e))e for every x € X. Next, for any A C X, we can define a set ¢(A4) = ¥en(A4) by
setting

Y(A)={z:z€ A, (zle) >a}tU{z:z € A, (zle) < a, R(x) € A}
U{z:xz eR"\ A, (z|e) > «, R(z) € A}
— (W N (AU R[A)]) U (AN R[A)),

where W = W,,, is the half-space {z : (z|e) > a}. Geometrically, we construct 1(A) by moving those points
of A on the ‘wrong’ side of the hyperplane V to their reflections, provided those points are not already
occupied. We have the following facts.

(b)) f AC BC X, ¢(A) C(B). (ii) For any A C X, ¥(R[A]) = ¥(A). (iii) If FF C X is closed, then
P(F) is closed. I Use the second formula in (a) for ¢(F). Q

(c) We need a fragment of elementary geometry. If z € X \ W and y € W then |z — R(y)|| < ||z — y|.
P Write Y for the linear subspace of X generated by e, Y1 for its orthogonal complement and P for the
orthogonal projection of X onto Y1. Then P(e) = 0, PR(y) = P(y),

(zle) <a < (yle), (R(y)le) = (yle) +2(a — (yle)) = 2a — (yle),

|z —yle)| = |(zle) — af + [(yle) — af = [(z]e) = 2o+ (yle)] = [(x — R(y)le)];

and

|z —yl* = (z — yle)* + [Pz —y)|®
(4A4JF)
> (z = R(y)le)” + | P(x = R(y))[I” = = — Ry)[I*. Q

(d) For non-empty A C X and € > 0, set U(A,¢) = {z : p(z, A) < €}, where p is the standard metric on
X. Now U(¢(A),e) CH(U(A,e)). P

(i) fz e UWNAe) \ W, there is a y € W N A such that ||z — y|| < & by (¢), ||z — R(y)|| < € so
x € U(R[A],e) = R[U(A, €)] (because R : X — X is an isometry) and

xeU(A,e)NRIU(A,e)] CY(U(Ae));
thus UW N A,e) \ W C(U(A4,¢)); as also
UWNAeNW CUA,e)NW Co(U(Ae)),
we have UMW N A, e) Cp(U(A,e)).

(i) Now
U(p(A),e) =U(ANR[A]l,e) UU(ANW,e) UU(R[A] N W, €)
C (U(A,e) NU(R[A],€)) Uy(U(A,€)) Up(U(R[A] €))
= (U(A,e) NR[U(A,€)]) U(U(A, €)) U (R[U(A, €)])
= (U(A,e) N R[U(A, )]) Up(U(4,¢))
(using (b-i))
=9(U(4,¢). Q
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476E Lemma Let X be an inner product space, e € X a unit vector and ¢« € R. Let R = Reo, : X — X
be the reflection operator, and 1) = 1., : PX — PX the associated transformation, as described in 476D.
For x € A C X, define

pa(z) =z if (z|e) > «
=z if (z|e) < a and R(x) € A,
= R(xz) if (z|e) < @ and R(x) ¢ A.
Let v be a topological measure on X which is R-invariant, that is, v coincides with the image measure vR™!.

(a) For any A C X, ¢4 : A — ¥(A) is a bijection. If a < 0, then [|[¢a(x)| < ||z| for every z € A, with
[pa(@)l] < lz|| iff (z|e) < o and R(z) ¢ A.

(b)(i) If E C X is measured by v, then ¢(F) is measured by v, vi)(F) = vE and ¢g is a measure space
isomorphism for the subspace measures on E and ¢ (F) induced by v.

(ii) For any A C X, v*¢(A) < v*A <20y (A).
() If @ < 0 and E C X is measured by v, then [, |z|v(dz) > fw |z||v(dz), with equality iff

{z:z €E, (z|e) < a, R(z) ¢ E} is negligible.
(d) Suppose that X is separable. Let A be the c.l.d. product measure of v with itself on X x X. If E C X
is measured by v, then

Jop e =vlINd@ ) = [, oo e =y, y)).

(e) Now suppose that X = R". Then v(0*y(A)) < v(0*A) for every A C R”, where 0*A is the essential
boundary of A (definition: 475B).

proof (a) That ¢4 : A — ¥(A) is a bijection is immediate from the definitions of ¢ and ¢ 4. If a < 0, then
for any x € A either ¢pa(x) =z or (z|e) < @ and R(x) ¢ A. In the latter case

[pa(@)I* = |R(2)]|* = ||« + 2vell?
(where v = a — (z|e) > 0)
= |le|* + 4v(zle) + 49* = [l2|* + 4y < |||,

so [|¢a(@)ll < ||z
(b)(i) If we set
E,={x:2€E, (zle) > a},
Ey,={x:x€E,(xle) < a, R(x) € E},
Es={x:x €E, (zle) <a, R(x) ¢ E},

E,={x:2 €R"\ E, (z|e) > a, R(z) € E},

then Fy, Es, E5 and E4 are disjoint and measured by v, E = E; U E; U Es, ¢(FE) = Ey U Ey U Ey and
¢plE3 = R[E3 is a measure space isomorphism for the subspace measures on F3 and Fj.

(ii) There is an F D A such that v measures E and v*A = vE. Now ¢(A) C ¢(E), so
vi(A) <vyY(E) =vE = v*A.
On the other hand, if z € A then at least one of x, R(x) belongs to ¢¥(A4), so A C (A) U R[¢(A)] and
v*A <vp(A) + v R[Y(A)] = 2v*y(A).

(c) By (a),
Jg lzlv(de) = [ llop@)lvide) = [, . lzlv(d)

by 235Ge, because ¢g : E — 1(FE) is inverse-measure-preserving, with equality only when
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{z:[lzll > llop(@)|} = {z:z € E, (z]e) < a, R(z) ¢ E}
is negligible.

(d) Note first that if A is the domain of A then A includes the Borel algebra of X x X (because X
is second-countable, so this is just the o-algebra generated by products of Borel sets, by 4A3Ga); so that
(z,y) = || — y|| is A-measurable, and the integrals are defined in [0, 0c]. Now consider the sets

Wi =A{(z,y):x € E,y€ E, R(z) ¢ E, R(y) € E, (z]e) < a, (yle) < a},
Wi ={(z,y):x € E,ye E,R(x) ¢ E, R(y) € E, (zle) < a, (yle) > a},
Wy ={(z,y):x € E,y€ E, R(x) € E, R(y) ¢ E, (zle) < a, (yle) < a},
Wi={(5,9): 0 € By € B, Rw) € B, R(y) ¢ B, (2le) > o (yle) < .
Then (z,y) — (z, R(y)) : W{ — Wi is a measure space isomorphism for the subspace measures induced on
W1 and W1 by A, so
[ os@) - épr @) = [ 1R - ylde)
Wi Wi
— [ IR - Rw)A )
wy

:/ Iz — YAz, )).
Wy

Similarly,
/’nmxm—¢E@meaw>=/"HR@>—muwuw»
w{ Wy
=/|mw—R@wwmw>
Wi
:/ Iz — ylIAd(z, ).
Wy
So we get

Jovronw 165(2) = o5 @MW) = [yl — vl ).

In the same way, (z,y) — (R(z),y) is an isomorphism of the subspace measures on Wy and W3, and we
have

Srvsog 198(@) = S I D) = [y I = N, v).

On the other hand, for all (z,y) € (E x E)\ (W7 UW{ UWo U W), we have ||[¢r(x) — or(¥)| < |z — y|.
(Either z and y are both left fixed by ¢g, or both are moved, or one is on the reflecting hyperplane, or one
is moved to the same side of the reflecting hyperplane as the other.) So we get

L le-uidew = [ o) - sp)rdey)
ExXE EXE

=/’ Iz - yIAd(z,3)
Y(E) Xy (E)

because (z,y) — (¢pr(x), ¢r(y)) is an inverse-measure-preserving transformation for the subspace measures
on E x E and ¢(F) x ¢(E).

(e)(i) Because R is both an isometry and a measure space automorphism for Lebesgue measure p on
R", cI*R[A] = R[c]*A] and int*R[A] = R[int*A], where cl*A and int*A are the essential closure and the
essential interior of A, as in 475B. Recall that cl*A, int* A and 0*A are all Borel sets (475Cc), so that 9* A
and 0*y(A) are measured by v.
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(ii) Suppose that x.e = a. Then z € 9*Y(A) iff z € 9*A. P For any 6 > 0, it is easy to check that
B(z,0)Ny(A) =y (B(x,0)NA), while p*(B(z,d) N A) lies between p*¢(B(z,d)NA) and 2p*yp(B(x, ) NA)
by (b-ii) above; so

pr(B(z,0) Ny(A)) < p*(B(z,0) N A) < 2p(B(z,8) Ny (A))

for every § > 0 and z € cl*A iff x € cl*Y(A). If z = R(z) € int*A, then x € int*R[A] so = € int*(A N R[A])
(475Cd) and x € int*y)(A). If x € int*y)(A) then = € int*(R[)(A)] Np(A)) C int*A. Q

(iii) If x € 0*9Y(A) \ 0*A then R(x) € 90*A\ 0*yY(A). P By (ii), z.e # a.

case 1 Suppose that z.e > «. Setting § = z.e—a, we see that U(x,d)Np(A) = U(z,§)N(AUR[A]),
while U(R(z),d) N¢p(A) = U(R(x),0) N AN R[A]. Since = ¢ int*y(A), = ¢ int*(AU R[A]) and = ¢ int*A;
since x also does not belong to 0*A, = ¢ cl*A. However, x € cl*(A U R[A]) = cI*A U cl*R[A] (475Cd), so
x € cI*R[A] and R(x) € cI*A. Next, ¢ ¢ int*R[A], so R(z) ¢ int*A and R(z) € 0*A. Since = ¢ cl*A,
R(x) ¢ cI*R[A], while R(z).e < ; so R(x) ¢ cI*(A) and R(z) € 0*A\ 0%y (A).

case 2 Suppose that z.e < o. This time, set § = a—x.¢, so that U(z,d)NyY(A) = U(z,d) NANR[A]
and U(R(z),0)NyY(A) = U(R(z),0)N(AUR[A]). As z € cI*(A), x € cI*(ANR[A]) and R(z) € cl*A. Also
x € cl*4; as x ¢ 0*A, x € int*A, R(z) € int*R[A] and R(z) € int*i(A), so that R(x) ¢ 0*(A). Finally,
we know that € int*A but x ¢ int*(A N R[A]) (because z ¢ int*(A)); it follows that x ¢ int*R[A] so
R(z) ¢ int*A and R(z) € 0*A \ 9*y(A).

Thus all possibilities are covered and we have the result. Q
(iv) What this means is that if we set E = §*i(A) \ 9*A then R[E] C 9*A\ 0*¢(A4). So
vo*Y(A) = vE 4+ v(0*Y(A) N0*A) = vR[E] + v(0*¢Y(A) N 0*A) < vO*A,

as required.

476F Theorem Let 7 > 1 be an integer, and let p be Lebesgue measure on R”. For non-empty A C R"
and € > 0, write U(A,¢€) for {z : p(z, A) < €}, where p is the Euclidean metric on R”. If x* A is finite, then
nU(A,€) > pU(Ba,€), where By is the closed ball with centre 0 and measure p* A.

proof (a) To begin with, suppose that A is bounded. Set v = p*A and 8 = pU(A,¢). If v = 0 then
(because A # ()
,UU(Aa 6) > /-LU({O}’ 6) = /’LU(BAv 6)’
and we can stop. So let us suppose henceforth that v > 0. Let M > 0 be such that A C B(0, M), and
consider the family
F={F:Fe(C,FCBO,M), uF > ~, uU(F,¢) < B},

where C is the family of closed subsets of R™ with its Fell topology. Because U(A,¢) = U(A,¢), A € F and
F is non-empty. By the definition of the Fell topology, {F : FF C B(0, M)} is closed; by 476A(b-ii) (applied
to the functional F — [, xB(0,M)du) and 476B, F is closed in C, therefore compact, by 4A2T (b-iii). Next,
the function

F fF max(0, M — ||z|))u(dz) : C — [0, 00]

is upper semi-continuous, by 476A(b-ii) again. It therefore attains its supremum on F at some Fy € F
(4A2Gl). Let Fy C Fj be a closed self-supporting set of the same measure as Fo; then U(Fy,€) C U(Fo,€)
and uFy = ukFy, so Fy € F; also

Jo, M = llzllu(de) = [ M —||z|p(dz) > [, M — |alu(dz)
for every F' € F.

(b) Now F} is a ball with centre 0. P? Suppose, if possible, otherwise. Then there are z1 € F; and
xo € R™\ Fy such that ||zg|| < [|z1]|. Set e = !

————(xg—x1), so that e is a unit vector, and o = %e. (xo+m1);
then

lzo—1 |

1
a=-———(r9 —71).(T0 +T1) = ([lzol* = llz1]1?) <O,

 2|zo—m || 2||xo—z1]|
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e.(xg—x1) >0, e.xg>e.xy, e€.x9g>a>e.27.

Define R = Req : R” — R”™ and ¢ = 9., as in 476D; note that R(z1) = xg. Set F = ¢(Fy). Then F is
closed (476Db) and uF = puFy > p*A (476Eb). Also U(F,€) C (U (F1,¢€)) (476Dd), so

,LLU(Fa 6) < :U‘(qu)(U(Flv E)) = IU‘U(Fla E) <p
and I € F. It follows that [, M—|[z[|u(dz) < [, M—|z]|u(de); as uF = pkFy, [ [lz]p(de) > [g lo]lp(d).

By 476Ec, G = {z : x € F1, x.e < a, R(z) ¢ F1} is negligible. But G contains x; and is relatively open in
Fy, and F} is supposed to be self-supporting; so this is impossible. XQ

(c) Since pFy > vy, Fy O By, and
pU(Ba,€) < pU(F1,€) < 8= pU(A,e).

So we have the required result for bounded A. In general, given an unbounded set A of finite measure, let
0 be the radius of B4; then

WU (Baye) = uB(0,6+ ) = sup pB(0,a + )
a<d

< swp pUBa )< s aU(Ae) = uU(Ae)
A’CA is bounded A’CA is bounded
because {U(A’,e) : A’ C A is bounded} is an upwards-directed family of open sets with union U(A,¢€), and
1 is T-additive. So the theorem is true for unbounded A as well.

476G Theorem Let r > 1 be an integer, and let i be Lebesgue measure on R"; write A for the product
measure on R” x R"”. For any measurable set £ C R” of finite measure, write Bg for the closed ball with
centre 0 and the same measure as E. Then

o lz = vlMd@.) > [l — v\, v).

proof (a) Suppose for the time being (down to the end of (c¢) below) that E is compact and not empty,
and that € > 0. Let M > 0 be such that ||z|] < M for every x € E. For a non-empty set A C R" set
U(A,e) = {z: p(z, A) < €}, where p is Euclidean distance on R”. Set § = fU(E7€)XU(E76) lz —ylA(d(z,y)).
Let F be the family of non-empty closed subsets F' of the ball B(0,M) = {z : |jz|| < M} such that
wF > pE and fU(F7€)XU(F7E) |z — yl|A(d(x,y)) < B. Then F is compact for the Fell topology on the family
C of closed subsets of R". P We know from 4A2T(b-iii) that C is compact, and from 476A(b-ii) that
{F: [ xB(0,M)du > pE} is closed; also {F : F' C B(0, M)} is closed. Let o be the metric on R” x R”
defined by setting o((x,y), («',y")) = max(||Jz — 2'||, ||y — ¥'||), and v the indefinite-integral measure over A
defined by the function (x,y) — ||z — y||. Then

U(F,e) x U(F,¢e) ={(z,y) : 0((z,y), Fx F) < e} =U(F X F,e;0)
for F € C and € > 0. Now, writing Cy for the family of closed sets in R" x R" with its Fell topology, we
know that
F+— F x F:C — Cs is continuous, by 4A2Td,
E — vU(E,¢€;0) : Co — R is lower semi-continuous, by 476B;
so F' +— v(U(F,e) x U(F,¢)) is lower semi-continuous, and {F : fU(F,e)XU(F,e) |z — yl|A(d(z,y)) < B} is
closed. Putting these together, F is a closed subset of C and is compact. Q
(b) Since E € F, F is not empty. By 476A(b-ii), there is an Fy € F such that fF — |lz||p(dz) >
S M — ||z||p(dz) for every F' € F. Let F1 C Fy be a closed self-supporting set of the same measure; then
U(Fy1,¢e) CU(Fy,e€), so fU (Fy.)xU(F1.¢) [l — y||A(d(x,y)) < B and F; € F; also
Jo, M = llzllp(dz) = [ M — |lzllu(dz) > [, M —||z]u(d)
for every F € F.
Now F} is a ball with centre 0. ? Suppose, if possible, otherwise. Then (just as in the proof of 476F)

there are x1 € Fy and xp € R" \ Fy such that ||z1]| > ||zo]. Once again, set e = (xo — 1) and

lzo—1 ||
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o= %e.(xo + 1) < 0. Define R = Reo, : R™ — R” and ¢ = )., as in 476D. Set F' = ¢(Fy). Then F is
closed and pF = pFy > pE and U(F,e) C¢(U(F1,¢€)). So

j/ [l =yl A(d(z, y)) Sl/‘ [ =yl Ad(z, y))
U(F,e)xU(F,e)

YU (F1,€)) xp(U(F1€))
<

/ 2 — g Az, )
U(Fl,E)XU(Fl,C)

(476Ed)
<B.
This means that ' € F. Accordingly [, M—||z|u(dz) > [ M—|z|pu(dz); since uF = pFy, [, ||=|p(dr) <

Sz 1zl pe(da). By 476Ec, G = {x : x € Fi, z.e < o, R(x) ¢ F1} must be negligible. But G contains ; and
is relatively open in Fp, and Fj is supposed to be self-supporting; so this is impossible. X Q

(c) Since uFy > pE, Fy O Bg, and

[ e s < [ o = yA(d(a,)
BgpXxXBg

U(Fy,e)xU(F1,¢)

gﬁ:/' lz — ylAd(z, v)-
U(E,e)xU(E,e)

At this point, recall that € was arbitrary. Since F is compact,

e>0

/ |M—MMM@&D=Hﬁ/ - M@z, v)
EXE U(E,e)xU(E,e)

>A¥mex—muwww».

(d) Thus the result is proved for non-empty compact sets E. In general, given a measurable set F of
finite measure, then if E is negligible the result is trivial; and otherwise, writing § for the radius of B,

/ |M—MMM@&D=ﬁm/ |z — yl|A(d(z, y))
BpxBg a<é JB(0,a)xB(0,a)

< sw / 2 — g Az, )
BKXBK

KCEF is compact

< sw ﬁ;Kux—muw@w»

KCEFE is compact
= [ le-slate ),
ExXE

so the proof is complete.

476H The Isoperimetric Theorem Let r > 1 be an integer, and let u be Lebesgue measure on R”. If
E C R" is a measurable set of finite measure, then per E > per Bg, where Bg is the closed ball with centre
0 and the same measure as F, while per E is the perimeter of E as defined in 474D.

proof (a) Suppose to begin with that £ C B(0, M), where M > 0, and that per E < oco. Let F be the
family of measurable sets ' C R” such that F'\ B(0, M) is negligible, uF' > pFE and per F' < per E, with
the topology of convergence in measure (4747T). Then

F={F :perF <perE, u(FNB(0,M)) > uE,
w(FNB(0,a)) < u(FNB(0,M)) for every o > 0}
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is a closed subset of {F' : per F < per E'}, which is compact (474Tb), so F is compact. For F € F set
h(F) = [ ||z||pu(dx); then |h(F) — h(F")| < Mu((FAF') N B(0,M)) for all F, F' € F, so h is continuous.
There is therefore an Fy € F such that h(Fy) < h(F) for every F' € F. Set Fy = cl*F), so that F1AF is
negligible (475Cg), per Fy = per Fy (474F), Fy € F, F1 C B(0, M) and h(Fy) = h(Fp).

(b) Writing 6 = sup,¢p, |||, we have U(0,9) C Fy. PP? Otherwise, there are o € R" \ Fy and z; € F}
such that ||zo| < ||z1]|. Set e = m(% —21), 0 = %e.(mo +21) <0, R=Reo : R" = R" and ¢ = teq.
0—41
As before, e.21 < a < e.xg, and R(xg) = 21 so R[B(zo,n)] = B(x1,n) for every n > 0. Set F' = ¢(Fy) and
let ¢ = ¢, : F1 — F be the function described in 476E. Then ||¢(z)|| < ||z|| for every x € Fy (476Ea). In
particular, F' = ¢[F1] C B(0,M). Now F is measurable and uF = pFy > pFE, by 476Eb. Also, writing v
for normalized (r — 1)-dimensional Hausdorfl measure on R",

per F = v(0*F) < v(0*F)) = per F; < per E,
by 475Mb and 476Ee. So F € F, and
Je lzllude) > [ llzlip(dz) = [, llz]u(do).

By 476Ec, G = {z : © € F1, z.e < «, R(z) ¢ F1} is negligible. But now consider G N U(x1,7n) for small
1 > 0. Since 7 belongs to Fy = cl*Fy = cl*Fy, but zy does not,

p(F1NB(z1,m))

p(F1NB(z0,m))
MB(Q?M?) '

lim su
Pnio 1B (0,m)

> 0 = limsup, |,
There must therefore be some 1 > 0 such that n < ||z1—o| and p(FiNB(zo,n)) < p(FiNB(x1,m)). In this
case, however, G O FyNB(z1,n)\R[F1NB(zo,n)] has measure at least u(F1NB(z1,n))—pu(F1NB(zg,n)) > 0,
which is impossible. XQ

(c) Thus U(0,9) C Fy C B(0,6) and per Fy = per B(0, ). Since uFy > pFE, the radius of By is at most
0 and

per Bg < per B(0,0) = per F; < per E.

(d) Thus the result is proved when E is bounded and has finite perimeter. Of course it is trivial
when F has infinite perimeter. Now suppose that E is any measurable set with finite measure and finite
perimeter. Set E, = EN B(0,«) for a > 0; then per E = liminf,_, per E, (475Mc, 475Xk). By (a)-(c),
per E, > per Bg,_, for every o > 0; since per By, — per Bg as a — 00, per E > per B in this case also.

4761 Spheres in inner product spaces For the rest of the section I will use the following notation.
Let X be a (real) inner product space. Then Sx will be the unit sphere {z : € X, ||z|| = 1}. Let Hx be
the isometry group of Sx with its topology of pointwise convergence (441G).

A cap in Sx will be a set of the form {z : € Sx, (x|e) > a} where e € Sy and -1 < a < 1.

When X is finite-dimensional, it is isomorphic, as inner product space, to R", where r = dim X (4A4Je).
If r > 1, Sx is non-empty and compact, so has a unique H x-invariant Radon probability measure vx, which
is strictly positive (476C). If » > 1 is an integer, we know that the (r — 1)-dimensional Hausdorff measure
of the sphere Sgr is finite and non-zero (265F). Since Hausdorff measures are invariant under isometries
(471J), and are quasi-Radon measures when totally finite (471Dh), (r — 1)-dimensional Hausdorff measure
on Sgr is a multiple of the normalized invariant measure vgr, by 476C. The same is therefore true in any
r-dimensional inner product space.

476J Lemma Let X be a real inner product space and f € Hx. Then (f(z)|f(y)) = (z]y) for all z,
y € Sx. Consequently f(ax + By) = af(z) + 8f(y) whenever z, y € Sx and «, f € R are such that
axr + ,By S Sx.

proof (a) We have
p(z,y)* = (& —ylr —y) = (z]2) — 2(zly) + (yly) = 2 - 2(=[y),

SO
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(aly) = 1= 3p(2,9)* = 1= Sp(f(2), F()? = (f@)|fW)).

(b)

1f (e + By) — af(x) = Bf ()P
= (flaz + By) — af(z) = BfW)|f(ex + By) — af(z) — Bf(y))
=1+a”+ % = 2a(f(ax + By)|f(z))
—2B8(f(az + By)|f(y)) + 2aB(f(z)|f(y))
=1+a” + 3% = 2a(ax + Bylz) — 28(ax + Byly) + 2a6(x]y)
= [[(az + By) — azx — By||* = 0.

476K 1 give a theorem on concentration of measure on the sphere corresponding to 476F.

Theorem Let X be a finite-dimensional inner product space of dimension at least 2, Sx its unit sphere
and vx the invariant Radon probability measure on Sx. For a non-empty set A C Sx and ¢ > 0, write
U(A,e) = {z : p(x,A) < €}, where p is the usual metric of X. Then there is a cap C C Sx such that
vxC =viA, and vx(Sx NU(A,¢€)) > vx(Sx NU(C,¢)) for any such C and every ¢ > 0.

proof In order to apply the results of 476D-476E directly, and simplify some of the formulae slightly, it
will be helpful to write v for the Radon measure on X defined by setting vE = vx (E N Sx) whenever this
is defined. By 214Cd, v* agrees with v% on PSx.

(a) The first step is to check that there is a cap C of Sx such that vC' = v*A. P Take any ¢y € Sx,
and set C, = {x : x € Sx, (z]|eg) > a} for a € [-1,1]. vC, is defined for every o € R because every C,
is closed and v is a topological measure. Now examine the formulae of 265F. We can identify X with R"+!
where 7 + 1 = dim X; do this in such a way that ey corresponds to the unit vector (0,...,0,1). We have
a parametrization ¢, : D, — Sx, where D, is a Borel subset of R” with interior |—m, 7| x ]0, 7[7»1 and @,
is differentiable with continuous derivative. Moreover, if © = (§1,... ,&.) € D, then ¢,(z).ey = cos&,, and
the Jacobian J,. of ¢, is bounded by 1 and never zero on int D,.. Finally, the boundary 9D, is negligible.
What this means is that 1,Cy = |, B Jrdp.., where p,. is Lebesgue measure on R”, v, is normalized Hausdorff
r-dimensional measure on R™! and E, = {x : x € D,., cos&,. > a}. Soif —1 < a < 3 <1 then

1:Co — 1,05 < (B \ Eg) < 27"~ (arccos a — arccos j3);
because arccos is continuous, so is o +— 1,.C,. Also, if & < 8, then E, \ Es is non-negligible, so
fEa\Eﬁ Jrdp, # 0 and v,Cy > v,.Cp.

This shows that a — 1,.C,, is continuous and strictly decreasing; since v, is just a multiple of v on Sy,
the same is true of a +— vC,.

Since vC_1 = vSx = 1 and vCy = v{ep} = 0, the Intermediate Value Theorem tells us that there is a
unique « such that vC, = v*A, and we can set C = C,. Q

(b) Now take any non-empty set A C Sx and any € > 0, and set v = v*A, § = vU(A,¢€). Let C be a cap
such that v*A = vC; let eg be the centre of C'. Consider the family
F={F:Fe(C, FCSx,vF >~ vU(F,e) <},

where C is the family of closed subsets of X with its Fell topology. Because U(A,¢) = U(A,¢€), A € F and
F is non-empty. By 476A(b-i) and 476B, F is closed in C, therefore compact, by 4A2T(b-iii) once more.
Next, the function

F— fF max(0,1 + (x|eg))v(dz) : C — [0, 00]

is upper semi-continuous, by 476A(b-ii). It therefore attains its supremum on F at some Fy € F. Let
F) C Fj be a self-supporting closed set with the same measure as Fy; then F} € F and fF(l + (z|eg))v(dx) <
S, (1 + (z]eo))v(dx) for every F € F.
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(c) Fy is a cap with centre eg. PP? Otherwise, there are zop € Sx \ F1 and 27 € F; such that (zg|eg) >

(z1]eg). Set e = = e ”( —x1). Then e € Sx and (e|eg) > 0. Set R = Rep and ¢ = 1), as defined

in 476D; write I for ¢( Fy). Note that (2o + 1|0 — 21) = ||70l|? — |Jz1]|* = 0, so (zog + x1]e) = 0 and
R(z1) = xo. Also R[Sx] = Sx, so v is R-invariant, because v is a multiple of Hausdorff (r — 1)-dimensional
measure on Sx and must be invariant under isometries of Sx.
We have vF = vF; > v, by 476Eb, and
vU(F,e) <vi(U(Fy,¢)) =vU(Fy,¢e) <vU(Fp,e) <
by 476Dd. So F' € F. But consider the standard bijection ¢ = ¢, : F1 — F as defined in 476E. We have
[, L+ (@(@)]eo))v(dz) = [L(1+ (xleo))(dz) < [, (1+ (z]e))v(da).

If we examine the definition of ¢, we see that ¢(x) # = only when (z|e) < 0 and ¢(x) = R(z), so that in this
case ¢(z) — x is a positive multiple of e and (¢(z)|eg) > (z|eg). So G = {z : z € Fy, (zle) <0, R(x) ¢ F1}
must be v-negligible. But G includes a relative neighbourhood of z; in F; and F) is supposed to be
self-supporting for v, so this is impossible. X Q
(d) Now v*A =~ <vFy, so C C Fy and
vU(A,e) = B > vU(F1,¢e) > vU(Ce),

as claimed.

476L Corollary For any € > 0, there is an ry > 1 such that whenever X is a finite-dimensional inner
product space of dimension at least rg, A1, A2 C Sx and min(ri As,viAs) > €, then there are x € Ay,
y € A such that ||z —y| < e

proof Take rg > 2 such that rge? > 2. Suppose that dim X = r > rg. Fix eg € Sx. We need an estimate
of vxC¢/a, where Cp = {x : x € Sx, (x]eg) > €/2} as in 476K. To get this, let ey,...,e,_1 be such that
€0, .- ,€r—1 18 an orthonormal basis of X (4A4Kc). For each ¢ < r, there is an f € Hx such that f(e;) = eq,
so that (zle;) = (f(x)|eo) for every x (476J), and
[ (@lei)?vx (dz) = [(f(x)]eo)?vx (dx) = [(x]eo)vx (dx),
because f : Sx — Sx is inverse-measure-preserving for vx.
Accordingly

vxCejo = %yx{a: cx € Sx, |(x|eg)| > €/2} < 6%/5 (z]eo)?vx (dx)

X

e/ (z]eo)?vx (dx) —EZ/ (z]e;)?vx (dx)

=e Z zle;)?vx (dr) = € < Vi A

Sx j=0

So, taking C' to be the cap of Sx with centre eg and measure vy A;, C' = C, where a < e and
Vx(SX n U(Al, %6)) > Vx(SX n U(Ca, %6)) > VXCa—e/Q > 5

by 476K. Similarly, vx (Sx NU(Asz, 3¢€)) > 3 and there mubt be some z € Sx NU(A1, 3¢) NU(As, 1¢€). Take
z € Ay and y € Ay such that ||z — z|| < 3e and ||y — 2| < 3¢; then ||z — y|| < ¢, as required.

476X Basic exercises (a) Let X be a topological space, C the set of closed subsets of X, p a topological
measure on X and f a p-integrable real-valued function; set ¢(F f g fdp for F € C. (1) Show that if
either p is inner regular with respect to the closed sets and C is glven its Vietoris topology or u is tight and
C is given its Fell topology, then ¢ is Borel measurable. (ii) Show that if X is metrizable and C\ {#} is given
an appropriate Hausdorff metric, then ¢[C \ {0} is Borel measurable.
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(b) In the context of 476D, show that diam . (A) < diam A for all A, e and a.
>(c) Find an argument along the lines of those in 476F and 476G to prove 264H. (Hint: 476XDb.)

>(d) Let X be an inner product space and Sy its unit sphere. Show that every isometry f: Sx — Sx
extends uniquely to an isometry Ty : X — X which is a linear operator. (Hint: first check the cases in
which dim X < 2.) Show that f is surjective iff T} is, so that we have a natural isomorphism between the
isometry group of Sx and the group of invertible isometric linear operators. Show that this isomorphism is
a homeomorphism for the topologies of pointwise convergence.

(e) Let X be a finite-dimensional inner product space, vx the invariant Radon probability measure on
the sphere Sx, and E € domvx; let C' C Sx be a cap with the same measure as F, and let A be the product
measure of vx with itself on Sx x Sx. Show that [ . llz — ylA(d(z,y)) <[5, g lz = ylIX(d(z,y)).

(f) Let X be a finite-dimensional inner product space and vx the invariant Radon probability measure
on the sphere Sx. (i) Without appealing to the formulae in §265, show that vx(Sx N H) = 0 whenever
H C X is a proper affine subspace. (Hint: induce on dim H.) (ii) Use this to prove that if e € Sx then
a— vx{z: (z|e) > a} is continuous.

476Y Further exercises (a) Let X be a compact metric space and G its isometry group. Suppose that
H C G is a subgroup such that the action of H on X is transitive. Show that X has a unique H-invariant
Radon probability measure which is also G-invariant.

(b) Let » > 1 be an integer, and g € Cy(R") a non-negative y-Lipschitz function, where v > 0. Let F be
the set of non-negative y-Lipschitz functions f € C(R") such that f has the same decreasing rearrangement
as g with respect to Lebesgue measure o on R” (§373) and [ ¢(grad f)du < [ ¢(grad g)du for every convex
function ¢ : R™ — [0, 00[. (i) Show that F' is compact for the topology of pointwise convergence. (ii) Show
that there is an f € F such that f(x) > f(y) whenever ||z| < ||y||. (Hint: parts (a) and (b-i) of the proof
of 479V.)

476 Notes and comments The main theorems here (476F-476H, 476K), like 264H, are all ‘classical’; they
go back to the roots of geometric measure theory, and the contribution of the twentieth century was to
extend the classes of sets for which balls or caps provide the bounding examples. It is very striking that
they can all be proved with the same tools (see 476Xc). Of course I should remark that the Compactness
Theorem (474T) lies at a much deeper level than the rest of the ideas here. (The proof of 474T relies on
the distributional definition of ‘perimeter’ in 474D, while the arguments of 476Ee and 476H work with the
Hausdorff measures of essential boundaries; so that we can join these ideas together only after proving all the
principal theorems of §§472-475.) So while ‘Steiner symmetrization’ (264H) and ‘concentration by partial
reflection’ (476D) are natural companions, 476H is essentially harder than the other results.

In all the theorems here, as in 264H, I have been content to show that a ball or a cap is an optimum for
whatever inequality is being considered. I have not examined the question of whether, and in what sense,
the optimum is unique. It seems that this requires deeper analysis.

Version of 4.1.08/2.1.10

477 Brownian motion

I presented §455 with an extraordinary omission: the leading example of a Lévy process, and the inspi-
ration for the whole project, was relegated to an anonymous example (455Xg). In this section I will take
the subject up again. The theorem that the sum of independent normally distributed random variables is
again normally distributed (274B), when translated into the language of this volume, tells us that we have
a family (A;)¢~o of centered normal distributions such that As4; = As * A for all s, ¢ > 0. Consequently
we have a corresponding example of a Lévy process on R, and this is the process which we call ‘Brownian

(©) 2008 D. H. Fremlin
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motion’ (477A). This is special in innumerable ways, but one of them is central: we can represent it in such
a way that sample paths are continuous (477B), that is, as a Radon measure on the space of continuous
paths starting at 0. In this form, it also appears as a limit, for the narrow topology, of interpolations of
random walks (477C).

For the geometric ideas of §479, we need Brownian motion in three dimensions; the r-dimensional theory
of 477D-477G gives no new difficulties. The simplest expression of Brownian motion in R” is just to take a
product measure (477Da), but in order to apply the results of §455, and match the construction with the
ideas of §456, a fair bit of explanation is necessary. The geometric properties of Brownian motion begin
with the invariant transformations of 477E. As for all Lévy processes, we have a strong Markov property,
and Theorem 455U translates easily into the new formulation (477G), as does the theory of hitting times
(4771). I conclude with a classic result on maximal values which will be useful later (477J), and with proofs
that almost all Brownian paths are nowhere differentiable (477K) and have zero two-dimensional Hausdorff
measure (477L).

477A Brownian motion: Theorem There are a probability space (2, %, ) and a family (X;)¢>o of
real-valued random variables on 2 such that

(i) Xo = 0 almost everywhere;

(ii) whenever 0 < s < ¢ then X; — X is normally distributed with expectation 0 and variance ¢ — s;

(iii) (X¢)1>0 has independent increments.

First proof In 455P, take U = R and A, for ¢ > 0, to be the distribution of a normal random variable with

expectation 0 and variance t¢; that is, the distribution with probability density function x — \/%ﬂte_ﬁ/ 2t
By 272T2, Agyr = Mg * N for all s, ¢ > 0. If € > 0, then
limgyo A ] —€, €[ = limuo)\l]—%,% (=1,

50 (A\¢)¢>0 satisfies the conditions of 455P. Accordingly we have a probability measure fi on Q = R[>l for
which, setting X;(w) = w(t), (X¢)i>0 has the required properties, as noted in 455Q-455R.

Second proof Let uy be Lebesgue measure on R, and for ¢t > 0 set uy = x[0,#]* in L?(ur), so that
(us|u;) = min(s,t) for s, t > 0. By 456C, there is a centered Gaussian distribution g on RI%>®l with
covariance matrix (min(s,t))s >0 Set X;(z) = x(t) for 2 € RI%>®L Then Xj has expectation and variance
both 0, that is, Xg =0 a.e. If 0 < s < ¢, then X; — X is a linear combination of X, and X}, so is normally
distributed with expectation 0, and its variance is

E(X; — X,)2 =E(X,)? — 2E(Xy x X))+ E(X,)2 =t —2s+s=1—s.

Ho<ty<...<t,and ¥; = X;
456Ba. Also, if i < j < n, then

i1 — Xy, for i < n, then (Y;)i<, has a centered Gaussian distribution, by

E(Y; x YV]) = E(Xti+1 X th+1) - E(XtiJrl X th) - E<Xti X th+1) + E(Xti X th)
- ti+1 - ti+1 - tl + t1 - O

So 456E assures us that (Y;);<, is independent.
Thus (X,;)¢>0 satisfies the conditions required.

477B These constructions of Brownian motion are sufficient to show that there is a process, satisfying
the defining conditions (i)-(iii), which can be studied with the tools of measure theory. From 455H we see
that we have a Radon measure on the space of callal functions representing the process, and from 455P
that we have the option of moving to the cadlag functions, with a corresponding description of the strong
Markov property in terms of inverse-measure-preserving functions, as in 455U. But there is no hint yet of
the most important property of Brownian motion, that ‘sample paths are continuous’. With some simple
inequalities from Chapter 27 and the ideas of 454Q-454S, we can find a proof of this, as follows.

2Formerly 272S.
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Theorem Let (X,);>o be as in 477A, and /i the distribution of the process (X;);>0. Let C([0, 00[)o be the
set of continuous functions w : [0,00[ = R such that w(0) = 0. Then C(]0, c0[)o has full outer measure for
fi, and the subspace measure py on C([0,0[)o induced by i is a Radon measure when C([0, 0o[)o is given
the topology ¥, of uniform convergence on compact sets.

proof (a) The main part of the argument here (down to the end of (e)) is devoted to showing that
1*C(]0,00[) = 1; the result will then follow easily from 454Sb.

(b) ? Suppose, if possible, that 1*C([0,00[) < 1. Then there is a non-negligible Baire set H C R[>l
C(]0, 00[). There is a countable set D C [0, 0o such that H is determined by coordinates in D (4A3NDb); we
may suppose that D includes Q N [0, oof.

(c) (The key.) Let g, ¢’ be rational numbers such that 0 < g < ¢/, and € > 0. Then

184 —q _¢2 -
Pr(supteDm[q)q,] | X — X, >¢) < v © /18(q"—q)

Plfg=to<ti <...<th,=¢,setY; =X, — X3, , for 1 <i < n, so that X;
1 <m <mn,and Yi,...,Y, are independent. By Etemadi’s lemma (272V3),

— Xy =X, Yi for

m

Pr(sup | Xy, — X, >¢€) < 3maXPr(|Xt - X, > l6)
i<n 3

| X, X\>

=3 max Pr(

1
1<i<n V ti—q \/ )

= 6 max / e " 2y
1<z<n\/ﬂ /3VE=T

(because \/ti(Xt — X,) is standard normal)
_ b —x2/2d
= e x
var /e/zwﬁ
< 18y q/_qefe2/18(q/fq)

eV 2

by 274Ma. Thus if I C [g,q'] is any finite set containing ¢ and ¢/,
18vq'—q 2 _
Pr(supteI | X: — Xq| >e€) < ﬁe /18(q"—q)

Taking (I, )nen to be a non-decreasing sequence of finite sets with union DNJg, ¢], starting from Iy = {q,q'},
we get

Pr( sup |X;— Xy >¢)= lim Pr(sup | X — X4 > €)
teDN[g,q’] n—reo

< 18Va'—q —&/18(4 —9)
- eﬁ

as required. Q
(d) If e > 0 and n > 1, then

Pr(there are t, u € D N [0,n] such that |t —u| < % and | X; — X,| > 3¢)

< 18n? e—n262/18

eV 21

P Divide [0,n] into n? intervals [g;, ¢;+1] of length 1/n?. For each of these,
3Formerly 272U.
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18 2.2
Pr(SupteDm[qi,qu] |Xt - qu.| > 5) < 0 _emnle /18,

nev2mw
So
Pr(there are i < n3, t € DN ([g;, qi+1] such that | X; — X,,| > €)
2
is at most 18n e~ /18,

eV2m
But if ¢, u € [0,n] and |t — u| < 1/n? and |X; — X,| > 3¢, there must be an i < n3 such that both ¢
and u belong to [g;, git+2], so that either there is a ¢’ € D N [g;, ¢;+1] such that | Xy — X, | > € or there is a
t" € DN [giy1,qiv2) such that | X — X, | > €. So

Pr(there are t, u € D N [0,n] such that [t — u| < % and |X; — Xu| > 3€)
< Pr(there are i < n®, t € DN g, qit1] such that and | X; — Xg| > €

< 18n® 6771252/18
— 27 ’

ﬁ

as required. Q

(e) So if we take G, to be the Baire set

{w:w e RO®L there are t, u € DN [0,n] such that |t —u| < #

and |w(t) — w(u)| > 3e},

we have
A 18n? 2,2
< —n“e” /18
/’[’an - Eme b
and lim, o 4G, = 0. We can therefore find a strictly increasing sequence (nj)reny in N such that

> oney Gy, ) < iH, so that there is an w € H \ Uy>q G1/kn,-
What this means is that if £ > 1 and ¢, u € D N[0, ng] are such that [t —u| < n%, then |w(t) —w(u)| < %
k
Since ni — 00 as k — 0o, there is a continuous function w’ : [0, 00 — R such that w'[D = w[D. But H is
determined by coordinates in D, so w’ belongs to H N C([0, co[), which is supposed to be empty. X

(f) Thus 4*C([0, 00[) = 1. Since ji{w : w(0) = 0} =1, C([0, 00])\ C([0, 00[)g is fi-negligible and C(]0, oo)o
has full outer measure for i. By 454Sb, the subspace measure jic on C([0,00[) induced by fi is a Radon
measure for T.; now C([0,00[)g is fic-conegligible. The subspace measure py on C([0,00[)g induced by f
is also the subspace measure induced by fic, so is a Radon measure for the topology on C([0, 00[)g induced

by T..

Remark We can put this together with the ideas of 455H. Following the First Proof of 477A, and using
455Pc, we see that there is a unique Radon measure ji on RI%>l (for the topology %, of pointwise conver-
gence) extending fi. The identity map ¢ : C([0,00[)g — R[%*[ is continuous for T, and T, so the image
measure gyt~ " is a Radon measure on Rl (4181). If E C RI%>l is a Baire set, then

pweHE] = pw (E N C([0, 00])o) = B,

so uwe~! agrees with i on Baire sets, and the two must be equal. Now C([0, c0[)g is fi-conegligible, just
because its complement has empty inverse image under ¢. So py is also the subspace measure on C([0, c0[)g
induced by f.

Equally, since of course C([0, 00[)o is a subspace of the set Cqig of cadlag functions from [0, co[ to R, ppw
is the subspace measure induced by the measure ji of Theorem 4550.

*477C 1 star the next theorem because it is very hard work and will not be relied on later. Nevertheless
I think the statement, at least, should be part of your general picture of Brownian motion.
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Theorem For a > 0, define f, : RN — Q = C([0, 00[) by setting fo(2)(t) = vVa(> -, z(i)—f—é(t—na)z(n))

when z € RN n € N and na <t < (n+ 1)a. Give Q its topology . of uniform convergence on compact
sets, and RY its product topology; then f, is continuous. For a Radon probability measure v on R, let t,q
be the image Radon measure v f;1 on Q, where ! is the product measure on RY. Let puy be the Radon
measure of 477B, and U a neighbourhood of uy in the space Pr(£2) of Radon probability measures on 2
for the narrow topology (437Jd). Then there is a 6 > 0 such that p,, € U whenever « € ]0,d] and v is a
Radon probability measure on R with mean 0 = [z v(dx) and variance 1 = [ 2?v(dz) and

f{m:|x\25/\/a} $2V(d$> <. (T)

Remark The idea is that, for a given a and v, we consider a random walk with independent identically
distributed steps, with expectation 0 and variance «, at time intervals of a, and then interpolate to get a
continuous function on [0, co[; and that if the step-lengths are small the result should look like Brownian
motion. Moreover, this ought not to depend on the distribution v; but in order to apply the Central Limit
Theorem in a sufficiently uniform way, we need the extra regularity condition (}). On first reading you may
well prefer to ﬁx on a particular distribution v with mean 0 and expectation 1 (e.g., the distribution which
gives measure § to each of {1} and {—1}), so that () is satisfied whenever « is small enough compared with

J.

proof For § > 0 I will write Q(4) for the set of pairs (v, «) such that v is a Radon probability measure
on R with mean 0 and variance 1, 0 < a < § and f{m:\z|>5/\/&} 2?v(dz) < 6. Note that Q(&") C Q(6) when

§ <4.

(a)(i) If -y, € > 0 there is a 6 > 0 such that whenever (v,a) € Q(J), s, t > 0 are multiples of « such that
t—s>~,and I CRis an interval (open, closed or half-open), then

|tpaf{w:weQ, wt) —w(s)el}t— \/ﬁfl e 2t=9) 4| < e.
(i

P For 6 > 0, z € R set ¢s(x) = 22 if |¢| > §, 0 if |[#|] < 5. Let n > 0 be such that whenever
Y1,...,Y; are independent random variables with finite variance and zero expectation, Zle Var(Y;) = 1

and Zz 1 E(wn( )) < , then
Pr( Vi < 8) = o= [0 e 2da| < &

for every 5 € R (274F); observe that in this case

N |

k 5
1 a2
|Pr(§Yi<6)—\/—27r/ e " Pda|
i=1 -
lim | P f:y< hoo 7 2y < £
TR = T Ty

for every 8 € R, so that
Pr(XF  Vied) - fJ e~ /2dx| < €

for every interval J C R.
Set § = min(n,n,/7). If I C R is an interval, (v, ) € Q(J) and s, ¢ are multiples of a such that t —s > 1,

setjzg,k‘:% andJZ\/t—sI:\/gI. Then
tafw: w(t) —w(s) € I} = Nz 1 fo(2)(t) — fal2)(s) € I}

k-1 k-1
=Nz \FZ i)el} = PrZYGJ
=J =0
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where Y;(z) = %z(y + ). For each i, the mean and variance of Y; are 0 and f, because the mean and

expectation of v are 0 and 1. Next,

k—1
E(yy,(Y;)) = *l‘ v(dr) < z2v(dx
; (n(2) /{x lz| >0V} (de) /{w:w|>nM} (dz)

< x21/(dx) < <n,

/{x:|z><wa}

so by the choice of 7,

. _ _ 1 —z?/2(t—s)
|tpa{w:we Q, w(t) —w(s) e I} \/2”('57—5)/16 dzx|

(ii) If v, € > 0, there is a § > 0 such that
pvo{w : dism(w[[8, 8 +7]) > 126} < M/

whenever (v,a) € Q(6) and 5 > 0. P Let nn > 0 be such that
6(77 + V+n e € 2/2(y4mn) ) < M6_62/2v’
€

6271'

and let dp > 0 be such that
. _ _ 1 —2?j2t-s) <
|[tpa{w:we R, w(t) —w(s) eI} \/mfle dx| <n
whenever I C R is an interval, (v,a) € Q(6) and s and ¢ are multiples of a such that ¢t —s > 1v. Set

0= mln(ir% %777 50)
Fix (v,a) € Q(6). Applying the last formula with I = [—e¢, €] and then taking complements,

() — 2 [T s
tyadw : ot w(s)lx}ﬁﬁm/g ‘ "

2 > —z2/2
+ = e dx
-
e/\/t—s
§n+\/%/oo ™ 2y < 4 Y= /20rtn)
T e/\/vT

whenever s, t are multiples of « such that %’y <t—s<+v+mn, using 274Ma for the last step, as in part (c)
of the proof of 477B. Now if s, ¢ are multiples of « such that s <t <+ 7, either t — s > %’y and

1 e
el [w(t) — w(s)| > 2¢} < -+ Ve /2040),
ort<s+ %7 and there is a multiple u of o such that ¢ + %’y <u<Lt+ %’y, in which case
fvafw = [w(t) = w(s)] > 2e} < pafw : [wu) —w(s)| > e} + pra{w : |w(u) —w(t)] > €}
< 2(77+ v7+77 —62/2('y+17))

Letj,k;besuchthatﬁ—%n<ja§ﬁandﬁ+’y§ka<6+’y+%n. We have
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fvaiw : diam(w[[8, B +7]]) > 12¢}
=z - diam(fa(2)[[8, 8 + 1)) > 126}
<Mz sup  [fa(2)(t) — fa(2)(ja)| > Ge}

te(8,8+7]
< vN{z : there is an [ such that j <[ <k and |f,(2)(la) — fa(2)(ja)| > 6€}

(because f(2) is linear between its determining values at multiples of «)
-1
= N{z : there is an [ such that j <1 < k and |Z i) >£}
i=j

<3 sup MN{z: z >7
s gj il> 2

(Etemadi’s lemma, 272V)

=3 sup pal{w:|w(la) —w(ja)| > 2¢}
J<I<k

< 6(n+ \/7+n —62/2(7+n)) 3\?6—52/%

as required. Q
(iii) If , € > 0 there is a 6 > 0 such that
tya{w : there are s, ¢ € [0,7] such that |t — s| < § and |w(t) —w(s)| > €} <e
whenever (v,a) € Q(0). I Set n = ¢/12, and let k > 1 be such that %e’k%’?/? < e set m = |2k%y]. By
(ii), there is a & € |0, 7= | such that
pro{w : diam(w[[8, B + é] ) > 120} < k%e_’“2’72/2

whenever (v,a) € Q(6) and 8 > 0. Now, for such v and «,

tyva{w : there are s, ¢t € [0,7] such that |t — s| < § and |w(t) — w(s)| > €}
< vl | (o diam(e] 515, 522)] > 120))
<m
< ?’7me—’€2772/2 < %e—kznzﬂ <e
— k?’] — 77 — ?
as required. Q
(b) Suppose that 0 = tg < t; < ... < t, and that Ey,...,E,_; are intervals in R; set £ = {w : w € Q,

w(tiy1) —w(t;) € E; for i < n}. Then for every e > 0 there is a ¢ > 0 such that uw F < 3¢+ p,o E whenever
(v,a) € Q(9). P Of course

e /20—t g

1
pwE =1, \/WIE

For > 0 and i < n, let F}; be the interval {z : [z — 2n,x + 2n] C E;}. Set v = § minj<p (tiy1 — £;); let
n € ]0,7] be such that

—z2/2v;
1<"\/27r%fF e/ Midy > pwE — e
whenever |v; — (t;4+1 — t;)| < n for every i < n. Next, by (a-i) and (a-iii), there is a 6 € |0, 3] such that
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—x2/2(si+1 —si)daj

e ],

<n
<e+ H Hoa{w : w(sit1) —w(s;) € Fip}t,
i<n

tyaf{w : there are s, t € [0,t, + 7]
such that |s —t] < § and |w(s) —w(t)| >n} <e€

whenever (v, a) € Q(§) and sy, ... ,s, are multiples of o such that s;11 — s; > 7 for every i < n. Take any
(v,a) € Q(9), and for each ¢ < n let s; be a multiple of « such that t; < s; <t; + «. Then

{w:w(siy1) —w(s;) € Fyy, for every i <n}\ E

= (J{w : w(sit1) —w(si) € Fiy, wtin) —w(t;) & E;}

c U{w w(sit1) —w(si)) — (w(tipr —w(ti))| > 2n}
C U{w Hw(si) —w(ti)] > n}

C {w : there are s, t € [0, t, + 1)
such that |s —¢| < ¢ and |w(s;) — w(t;)| > n},
S0
Hoa{w : w(sit1) —w(s;) € Fy, for every i < n} < e+ pyoE.

Next, if s; = k;« for each 1,

pa{w : w(siy1) —w(s;) € Fiy for every i < n}
=Nz 1 fa(2)(si41) — fa(2)(si) € Fiy, for every i < n}

k7_+1 1
=Nz Va Z ) € Fy, for every i < n}
J=k;
=[] "{=: \FZ ) € Fyy}
<n
= H poaf{w :w si+1) —w(s;) € Fip}.
i<n

So

712/2(Si+178i)d$

pwE <e+ ][ fml - /

i<n
(because |(si+1 — 8;) — (tix1 — ;)] < a < nfor i < n)
< 2+ H Hoa{w : w(sit1) —w(s;) € Fip}
i<n
(because s;+1 — s; >y for every i < n)
= 2€+ pya{w  w(si41) —w(s;) € Fyy, for every i < n}
< 3e+ aE,

as required. Q
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(c)(i) For k € N let 6, > 0 be such that 11,,Gr < 27% whenever (v, a) € Q(dx), where

Gy = {w: there are s, t € [0, k] such that |t — s| < & and |w(t) — w(s)| > 27*};
such exists by (a-iii) above. For k, n € N set Hy, = J,<,, Gk+i- If k € N and (w],)nen is a sequence such
that w/, € Q\ Hy, for every n € N, {w/, : n € N} is relatively compact in Q. B If v > 0 and € > 0, there is
an n € N such that 27%=" < e and k +n > v; now for m > n, w/,, & Gjyn s0 W), (t) — W), (s)] < € whenever
s, t €10,7] and |s — t| < dg4n. Of course there is a § € |0, dk4y] such that |w),(s) — wl,(t)] < € whenever
m < k+n and s, t € [0,] are such that |s—¢| < §. Since w],(0) = 0 for every n, the conditions of 4A2U(e-ii)
are satisfied, and {w/, : n € N} is relatively compact in C([0, o0[), therefore in its closed subset Q. Q

Now if we have a compact set K C €, an open set G C  including K, and k € N, there are an n € N
and a finite set I C [0, 00[ such that w’ € G U Hy,, whenever w € K, ' € Q and |w'(s) —w(s)] < 27"
for every s € I. B? Otherwise, let (¢;);eny enumerate Q N [0,00[. For each n € N we have w, € K and
w), € 2\ (G U Hygy,) such that |w) (¢;) — wn(g)] < 27" for every i < n. Since the topology T, on  is
metrizable (4A2U(e-1)), and both {w, : n € N} and {w/, : n € N} are relatively compact, there is a strictly
increasing sequence (n;);en such that w = lim; ;o0 wp, and W' = lim; ;o w;,, are both defined (use 4A2Lf
twice). Since |[w'(q) —w(q)| = lim;_0 |wy,, (q) — wn, (q)] is zero for every ¢ € QN [0, 00, w = W'; but w € K
and w’ ¢ G, so this is impossible. XQ

(ii) Suppose that G C Q is open and v < pw E. Then there is a § > 0 such that p,,G > v whenever
(v,a) € Qs. P Let K C G be a compact set such that uy K > . Let &k € N, ¢ > 0 be such that
pw kK > v+ e+ 2751 By (i), there are an n € N and a finite set I C [0, 00[ such that o’ € G U Hg,
whenever w’ € Q, w € K and |w'(t) — w(t)] < 27" for every ¢ € I; of course we can suppose that 0 € I and
that #(I) > 2. Enumerate I in increasing order as (t;);<n,. For z € Z™, set

E,={w:we, 2"m(w(tit1 —w(ti))]| = z(i) for every i < m};

set D={z:2€Z™ E.NK #0}and F =J,.pE.. If z€ D and w’ € E,, there is an w € KN E,, in
which case

9—n
m

(W (tig1) — W' (t:)) — (W(tit1 —w(ty))] < for every i < m,

|w'(t;) — w(t;)] < 27™ for every i < m
and w’ € GU Hy,,. Thus F C GU Hy,,. As K is compact, {w(t;) : w € K} is bounded for every ¢ and D is
finite. By (b) there is a ¢ > 0 such that § < 0,4, for every ¢ < n and

/LWE + ,ul/(sz

<
~ 1+#(D)
whenever z € D and (v, a) € Q(J). Now, for such v and «,

6+2—k+1 +'Y§/14WK SMWF: ZMWEZ <e+ ZMV&EZ
z€D zeD

=€+ ,U/VaF <e+ NV&G + Z ,U/VaGk+i
=0

n
<e+ oG+ Z 27kt e 27 4 G
i=0

and p,,G > 7, as required. Q

(iii) So if U is a neighbourhood of up for the narrow topology on Pr(2), there is a § > 0 such that
tya € U whenever (v,«) € Q(5). P There are open sets Go,... ,G, and v, ... ,7, such that v; < pwG;
for each i < n and U includes {p : p € Pr(Q)), uG; > ~; for every i < n}. But from (ii) we see that for
each i < n there will be a 0, > 0 such that p,,G; > 7; for every i whenever (v,a) € Q(J}); so setting
d = min; <, §; we get the result. Q

And this is just the conclusion declared in the statement of the theorem, rephrased in the language
developed in the course of the proof.
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477D Multidimensional Brownian motion In §§478-479 we shall need the theory of Brownian motion
in r-dimensional space. I sketch the relevant details. Fix an integer r > 1.

(a) Let pw1 be the Radon probability measure on Qq = C([0,00[)o described in 477B; T will call it
one-dimensional Wiener measure. We can identify the power Q] with Q = C([0,00[;R"), the space
of continuous functions w : [0,00[ — R" such that w(0) = 0, with the topology of uniform convergence on
compact sets; note that 5 is Polish (4A2U(e-1)), so Qf also is. Because §2; is separable and metrizable, the
c.l.d. product measure uj;,; measures every Borel set (4A3Dc, 4A3E), while it is inner regular with respect
to the compact sets (412Sb), so it is a Radon measure. I will say that pw = pjy, interpreted as a measure
on C([0,00[;R")g, is r-dimensional Wiener measure.

As observed in 477B, pwy is the subspace measure on §2; induced by the distribution f of the process
(Xt)e>0 In 477TA. So pw here, regarded as a measure on C([0, 00[)j, is the subspace measure induced by the
measure /i on (RI0:°0)7 2= RI0:00xr (954 ).

(b) Forwe Q,t>0and i <r, set Xt(i) (w) =w(t)(7). Then (Xt(i)>t20ﬂ-<r is a centered Gaussian process,
with covariance matrix

E(X® x X9y =0if i # 7,
= min(s,t) if i = j.

P Taking p, i and A" as in (a), 4", like fi, is a centered Gaussian distribution (456Be); but it is easy to
check from the formula in 454J(i) that 4" can be identified with the distribution of the family (Xt(i)>t207i<r.
So <Xt(i)>t20,i<r is a centered Gaussian process. As for the covariance matrix, if ¢ # j then X% and Xt(j)
are determined by different factors in the product Q = QF, so must be independent; while if ¢ = j then

(Xgi),Xt(i)) have the same joint distribution as (X, X;) in 477A. Q
(c) We shall need a variety of characterizations of the Radon measure pyy .

(i) pw is the only Radon probability measure on Q such that the process (Xf”)tzoﬂ-q described in
(b) is a Gaussian process with the covariance matrix there. I Suppose v is another measure with these
properties. The distribution of <Xt(i)>t20,z‘<r (with respect to ) must be a centered Gaussian process on
R7*[0:00 =~ (R[O’OO[)’", and because it has the same covariance matrix it must be equal to 4", by 456Bb.
But this says just that <Xt(i)>t20’i<r has the same joint distribution with respect to uw and v. By 454N,
v=rpw. Q

(ii) Another way of looking at the family <Xt(i)>i<r,t20 is to write X;(w) = w(t) for t > 0, so that
(X¢)i>0 is now a family of R"-valued random variables defined on 2. We can describe its distribution in
terms matching those of 455Q and 477A, which become

(i) Xo = 0 everywhere (on €, that is);

(ii) whenever 0 < s < ¢ then \/%(Xt — X,) has the standard Gaussian distribution puf, (that
—S

is, w \/%(w(t) — w(s)) is inverse-measure-preserving for py and ug);
(iii) whenever 0 < t; < ... < ¢y, then X3, — Xy,,..., Xy, — X¢, _, are independent (that is,

taking T; to be the o-algebra {{w : w(t;y1) —w(t;) € B} : E CR" is a Borel set}, Tq,...,Th_1

are independent).
Note that these properties also determine the Radon measure py. B Once again, suppose v is a Radon
probability measure on 2 for which (ii) and (iii) are true. We wish to show that uy and v give the same
distribution to <Xt(i)>i<r,t20- 0=ty <ty <...<ty,, we know that py and v give the same distribution
to each of the differences Y; = X; ,, — Xy,
Yj(i) = Xt(;)ﬂ — Xt(:)); moreover, if 3; is the o-algebra generated by {Yj(i) : 1 < r} for each j, then puy and
v agree that (X;);<, is independent. So puw E = vE whenever E is of the form ﬂj<n E; where E; € ¥, for
each j < n. By the Monotone Class Theorem, py and v agree on the o-algebra 3. generated by sets of this
type, which is the o-algebra generated by {Yj(i) ti<r,j<n} Butas X; =3}

(or, if you prefer, to each of the families <Y.(i)>i<r, where

j+1 J

i<iYi for every j < n, every
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Xt(j) is Y-measurable, and py and v give the same distribution to (Xf?)KmSn. As this is true whenever

0=ty < ... <ty pw and v give the same distribution to the whole family <Xt(i)>i<m20, and must be
equal. Q

(d) In order to apply Theorem 455U, we need to go a little deeper, in order to relate the product-measure
definition of py to the construction in 455P. T will use the ideas of part (b) of the proof of 455R. Consider the
process (X{”),50.i<, and the associated distribution 4" on (R0 = (R™)0:0 Setting X, = (XV)icy,
(Xt)t>0 is an R"-valued process satisfying the conditions of 455Q with U = R". P» Xy = 0 a.e. because
every X(gi) is zero a.e. If 0 < s < t then X; — X, = (Xt(i) — Xs(i)>l-<r has the same distribution as X;_
because Xt(i) — X has the same distribution as Xt(i)s for each ¢ and (Xt(i) - Xgi)>i<r, <Xt(i)s>i<r are both
independent. If 0 < t; < t; < ... < t, then <Xt(2rl — X,f(;)>i<r7j<n is independent so (X;,,, — X¢,)j<n
is independent (using 272K, or otherwise). Finally, when ¢ | 0, X; — 0 in measure because Xt@ — 0 in
measure for each i. Q

For t > 0, let A\; be the distribution of X;. Then \; is the centered Gaussian distribution on R"
with covariance matrix (o;;); j<, Where o;; = t if ¢ = j and 0 if ¢ # j (456Ba, with T'(w) = w(t) for
w € RIOoolxr = (RT)[0:[) By 455R, the process of 455P can be applied to (\;);o to give us a measure
on (]R'”)[O’OO[, the completion of a Baire measure, such that

Hw : w(t;) € F; for every i < n} = Pr(Xy, € F; for every i < n)
= i"{w: w(t;) € F; for every i < n}

whenever Fy, ..., F, CR" are Borel sets and tg,... ,t, € [0,00[. Since sets of this kind generate the Baire
o-algebra of (R™)[0:>°[) & must be equal to 4", that is, /i" is the result of applying 455P to (\;)>o.

By 455H, ¥ has a unique extension to a measure 7 on (RT)[O’OO[ which is a Radon measure for the product
topology. But if we write ¢ : C([0,00[;R")g — (R")[%®[ for the identity map, the image measure gy~
is a Radon measure on (RT)[O"X’[ for the product topology and extends 4", so must be equal to . Thus
vC([0,00[;R")g = 1. Of course C([0,00[;R")g is included in the space of callal functions from [0, oo to
R", so that we have a strengthening of the results in §455. Similarly, writing & for the subspace measure
induced by ¥ or i on the space Cqiz of cadlag functions from [0, oo to R”, pw is the subspace measure on
C(]0,00[;R")g induced by .

By 4A3Qa, every Baire subset of Cqj, is the intersection of Cyj, with a Baire subset of (Rr)[o"’o[, and is
therefore measured by . In particular, C([0, 0o[;R") and C([0,00[;R") are measured by ¥ (4A3Qd).

477E Invariant transformations of Wiener measure: Proposition Let r > 1 be an integer, and
pw Wiener measure on = C([0,00[;R")o. Let 4" be the product measure on (RI%>0" as described in
477D.

(a) Suppose that f : (RIO=07r — (R0 is inverse-measure-preserving for 4", and that Qy C Q is
a uy-conegligible set such that f[Q¢] C Qp. Then f[€Qy is inverse-measure-preserving for the subspace
measure induced by puw on Q.

(b) Suppose that 7" : R™*[0:l 5 R™*[0:[ ig g linear operator such that, for i, j < r and s, t > 0,

/ (Tw) (i, ) (Tw)(j, £)ji" (dew) = min(s, ) if i = j,
—0ifi ]

Then, identifying R7*[02°l with (RI%°l)" T is inverse-measure-preserving for "

(c) Suppose that ¢t > 0. Define S; : Q — Q by setting (S;w)(s) = w(s +t) — w(s) for s > 0 and w € Q.
Then S; is inverse-measure-preserving for pyy .

(d) Let T : R” — R” be an orthogonal transformation. Define T : Q — Q by setting (Tw)(t) = T(w(t))

for t > 0 and w € Q. Then T is an automorphism of (£, pw ).
(e) Suppose that @ > 0. Define U, : Q — Q by setting U, (w)(t) = %w(at) for t > 0 and w € Q. Then

U, is an automorphism of (€2, uw ).
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(f) Set
Q= {w: w e Q, limy o0 7w(t) = 0},

and define R : 29 — )y by setting

(Rw)(t) = tw(%) if ¢ >0,
=0ift=0.

Then g is pw-conegligible and R is an automorphism of Qy with its subspace measure.
(g) Suppose that 1 < ¢ < r, and that ug,) is Wiener measure on C([0,00[;R™)o. Define P : Q —

C(]0,00[; R™)g by setting (Pw)(t)(i) = w(t)(i) for t > 0, i < 7’ and w € Q. Then ,ug/;) is the image measure

mww P

proof The following arguments will unscrupulously identify C([0,00[;R")o with C([0, 00[)5, and R7 [0l

with (R")%l and (RO,

(a) Because pyw is the subspace measure on € induced by 4" (477Da), the subspace measure v on Qg
induced by pw is also the subspace measure on €y induced by " (214Ce). If E C Qg is measured by v,
there is an F' € dom i" such that £ = F N Qg, and now

vE = [ F = @' [ F] = v(Qo N fHF]) = v(f190) 7 [E].
As F is arbitrary, f[€)g is inverse-measure-preserving for v.

(b) By 456Ba, /TLTT71 is a centered Gaussian distribution on R”*[%:°l. The hypothesis asserts that its
covariance matrix is the same as that of 4" (477Db), so that 4" = "7~ (456Bb), that is, 7' is inverse-
measure-preserving for i".

(c) Define Sy : R™*[0:00l — R7*x10. by setting (Syw)(i,s) = w(i, s+t)—w(i, s), this time for w € R0l
i <rand s >0. Then S; is linear, and for s, u € [0,00], ¢, j < 7

/ (81 (i, )(S10) (i ) ()

— [(@liss +6) — wO)wlu+ 6 - . (d)
=0if ¢ # j,
= min(s + ¢, u +t) — min(s + ¢, t)
— min(t, u + t) + min(¢, t) = min(s, u) if i = j.
By (b), S, is inverse-measure-preserving for 4" Now S, [Q] CQ,s08; = 5,19 is inverse-measure-preserving
for uW, by (a).

(d) If we define 7' : (R")0:=l — (R™)[02¢[ by setting (T)(w)(t) = T(w(t)) for z € (R™)O>l and ¢ > 0,
then 7' is linear. Suppose that 7" is defined by the matrix (aij)ij<r. Forw e R7*[0:¢ ¢ € [0, 00[ and i < 7,
(Tw)(iyt) = Sy amw(k,t).

So, for i, j <rand s, t >0,

r—1r—1

[ @@ G (@) = 3 S anan [l st (de)
k=0 1=0

r—1

= Z Qi mings, t)

k=0

= min(s,t) if i = j,
=0if ¢ #j.
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So T is ji"-inverse-measure-preserving. If we think of T' as operating on (R")I%>l then T'(w) = Tw is
continuous for every w € C([0,00[; R"), so T[Q] € Q and T = T[Q is pp-inverse-measure-preserving.

Now the same argument applies to T~!, so T-1 = (T~1)~ also is inverse-measure-preserving, and T is
an automorphism of (€, pw ).

(e) This time, we have U, : R™*0:2¢[ — R7x[0:20[ defined by the formula (Uyw)(i,t) = —=w(i, at) for

Si-

i<r t>0and we R0l Once again, U, is linear. This time,

/ (Uaw) (i, 8) (Uaw) (4, ) A" (dw) = é / w(i, as)w(j, at) i (dw)
=0if i #j,
= imin(as,at) = min(s,t) if i = j.
As before, it follows that U, is ["-inverse-measure-preserving, so that U, = Ua 9 is [y -inverse-measure-

preserving. In the same way as in (d), U; ! = U, /a 18 pw-inverse-measure-preserving, so U, is an automor-
phism of (2, uw).

(f) Define R : R"*[0:l  R7*[0:0¢[ by setting

R(w)(i,t) = tw(i,%) if i <randt >0,

=w(4,0)if i <rand t=0.
Then, if 4, j < r and s, t > 0,

[ o)) ()G, 0 ) = st [ (i, 2t D ()
—0ifi #j,

= stmin(é,%) = min(s,t) if i = j.
If s = 0, then (Rw)(i,s) = w(i,s) = 0 for almost every w, so that f(f%w)(i,s)(fiw)(j, t)i" (dw) = 0; and
similarly if t = 0. So R is i"-inverse-measure-preserving.

At this point I think we need a new argument. Consider the set

E={w:we (]RT)[O*OO[, limgeq,qrow(g) = 0}.

Then E is a Baire set in (R")[0®l = R™[0:2[ Since E D Q, 4”E = 1. Consequently 4"R™'[E] = 1. But,
for w € (R™)[0L,

_ . A . 1 . 1
w € R E] <= 0= limgeqq10(Rw)(q) = limgeq,qi0 qw(;) = limgeg,g—00 QW(Q)-
So
Qoz{w:weQ,tli)m %w(t)zO}:{w:wEQ, lim luJ(q):O}
(because every member of ) is continuous)
=QNRE

is pyw-conegligible. Next, for w € €y, Rw is continuous on 10, oo[ and

0 =w(0) = lim ~w(t) = limw(t)

t—oo t tl0
= (Bw)(0) = Jim (Rw)(;) = limt(Rw) ()

= lim(Rw)(t) = lim *(Rw)(t),

tl0 t—oo t
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so Rw € Q. By (a), R= Ry is inverse-measure-preserving for the subspace measure v = (1w )a,; being
an involution, it is an automorphism of (o, v).

(g) If we identify uy and u%},’) with pf;, and u%l, as in 477Da, this is elementary.

477F Proposition Let 7 > 1 be an integer. Then Wiener measure on 2 = C([0,00[;R")g is strictly
positive for the topology ¥. of uniform convergence on compact sets.

proof (a) Let Z be a partition of [0, 0o into bounded intervals (open, closed or half-open). As usual, set
Xi(w) = w(t) for t € [0,00[ and w € (R™)[%®L Define (V;);>0, (Zi)¢>0 as follows. If t € I € T, a = inf I and
b =supl, then

Ytzanrg(Xb—Xa) if a < b,

=X,=X, =X, ifa=b,
Zi=X; - Y.

(i) With respect to the centered Gaussian distribution 4" on (RI%*l)r =2 (R™)1%2°L" ((Y;);>0, (Zi)i>0)
is a centered Gaussian process. I The map w — ((Yi(w)):>o0, (Zt( )} ¢t>0) is linear and continuous, so we

can apply 456Ba (strictly speaking, we apply this to the family (( ( ))i<rt>0, (Z, (l)((JJ)>Z<r’t20) regarded
as linear operators from R"*[%:%[ to its square). Q

(ii) If s, t € [0,00[ then E(Y; x Y;) = E(X; x Y;). P Let I, J be the members of Z containing s, t
respectively; set ¢ = min [, b = max I, ¢ = minJ and d = max J.
case 1 If a = b then Y; = X and we can stop.
case 2 If a < b < ¢, then

E(X, x X.)

E(X, x Xg) =a, E(X,xY)=
]E(Xb X XC) = E(Xb X Xd) = b, ]E(Xb X )/f) = b,

E(X, x X.)

E(X, x Xg)=s, E(X,xY,) =

E(Ys x Y;) :a+g(b—a):s:E(X5 X Yy).
case 3 If d < a < b, then
c=E(Xs x X.) =E(X, x X;) =E(X, x X.) =E(Y; x X,),

d=E(X, x Xg) =E(X, x Xq) = E(X, x Xg) = E(Y, x Xg);

since Y; is a convex combination of X, and X4, E(Y; x Y;) = E(X x Y3).
case 4 If a = ¢ < b=d, then

E(X, x Y1) = B(Xa x Xa) + o E(Xo x (Xp — Xa)) = a,

E(X, x Y;) = E(Xp x X,) +£:—ZE(X,, < (Xp — Xa)) = a—l—Z:—Z(b—a) —t,

t—a — tma, . _
:E(XS X (Xp—Xy))=a+ b_a(s a),

E(X, x Y;) = E(X, x X,) +
E(Y, x ;) = E(X, x Y;) + 22 E((Xp — Xa) x Y))

s—a
=a+t b—a

(t—a)=EX,xY;). Q
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(iii) Accordingly E(Zs x Y;) =0 for all s, t > 0. It follows that if X1, X5 are the o-algebras of subsets
of (RT)[O’OO[ defined by {Y; : ¢ > 0} and {Z; : t > 0} respectively, ¥; and X5 are ji"-independent (456Eb).

(b) Observe next that if zq,... ,2, € R", 0 < ¢; < ... < ¢, and § > 0, then g"{w : ||w(t;) — 2] < o
for 1 < i < n} is greater than 0. P Set zp = 0 in R” and ¢, = 0. For each ¢ < n, the distribution of
1
Vitig1—t;

density function with respect to Lebesgue measure. So

(Xt —X¢,) is the standard Gaussian distribution pg, on R™, which has strictly positive probability

1 . 1
Pr(|(Xe ., — Xe,) = (i1 — @)l < -0) = pe{w : |ty — tiw — 2y + @af| < ~6}
> 0.

Next, Xy, — X4,,..., Xy, — X4, , are independent, so

1
0< H Pr(ll(Xti+1 - Xti) - (miJrl - xl)” < ;6)

<n
= Pr(|(Xe,., — X2,) — (w01 — 34)|| < 26 for every i < n)

< Pr(|| Xy, —zi]] <6 for every i <n). Q

(c) Let G C Q be a non-empty T.-open set. Then there are wy € @, m € N and § > 0 such that G
includes

V=A{w:weQ, |w(t) —w(t)] <66 for every t € [0, m]}.
For n € N, let F}, be

{w:we ®NO™ Jwlg) ~w(d) <6
whenever ¢, ¢ € QN [0,m] and |¢ — ¢'| <27"}.
Then Q C |J,,cn Fr so there is an n > 0 such that wy € F, and g"F, > 0. Let Z be {[27"k,27"(k + 1) :
k € N}, and let (Yy)i>0, (Z¢)i>0 be the families of random variables defined from Z by the method of
(a) above, with corresponding independent c-algebras ¥j, Xo. If w € F,, then || Z;(w)]| < § for every
teQnio,m]. PIftelab €Z thenb—a=2""so0 || X (w) — Xo(w)l, | X¢(w) — Xp(w)|| and therefore
|1 Z:(w)]] = | Xt (w) — Yi(w)|| are all at most 6. Q Set

F={w:we (RO |Z,(w)| < for every t € QN [0,m]};

then F' € ¥ and g"F > 0.
Next, set

E={w:wec RNO= |w(27"k) —wo(27"k)|| <6 for 1 < k < 2"m}.
By (b), i"E > 0. But since Ys-ny(w) = Xo-np(w) = w(27"k) whenever k < 2"m, E € ¥;. Accordingly
A(ENF)=p"E-f"F >0 Bt ENFNQCV. PIfwe ENFNQ, then t — X;(w), t — Yi(w) and
t — Zy(w) are all continuous, so ||Z;(w)|| < ¢ for every t € [0,m]. If t € [0,m], let k& < 2™m be such that
27"k <t <2 "(k+1). Then
lw(®) = wo®)]| < llw(t) = w@T"R)| + [[w(27"k) = wo(27" k)| + [lwo(27"k) — wo(t)]

<N Ze(@)+ 1Ye(w) = Yaonp (@) + 26

<O+ [w@T(k+1) —w@27Ek)|| + 26

Slw@™ (R + 1) —wo27" (k + 1)) + llwo (27" (k + 1)) — wo(27"K) |

+ [|wo(27"k) — w(27™k)|| + 36
< 64.

As t is arbitrary, w € V. Q
Accordingly

MEASURE THEORY



47TH Brownian motion 113

uwG > uw(ENFNQ)=4"(ENF)>0.
As @ is arbitrary, uy is strictly positive.

477G The strong Markov property With the identification in 477Dd, we are ready for one of the
most important properties of Brownian motion.

Theorem Suppose that r > 1, uy is Wiener measure on Q = C([0, 00[; R")g and ¥ is its domain. For ¢ > 0
let >; be

{F:FeX o eF whenever w € F, w' € Q and w'[[0,t] = w[[0, ]},

E;r = ﬂs>t DIPR
and let 7 : © — [0, 00| be a stopping time adapted to the family (3, );>¢. Define ¢, : Q x Q — Q by saying
that
dr(w,)(t) = w(t) if t < 7(w),
=w(T(W)) + W' (t — 7(w)) if t > 7(w).
Then ¢, is inverse-measure-preserving for py X pw and py .

proof (a) At this point I apply the general theory of §455 in something like its full strength. As in 477Dd,
let (M\¢)t>0 be the standard family of Gaussian distributions on R”, i the corresponding measure on the
space Cqjg of cadlag functions from [0, co[ to R, and ¥ its domain; then 7Q = 1 and pw is the subspace
measure on ) induced by . As in 455U, let 3, be

{F:Fe%, o € F whenever w € F, w' € Cyy and ' [[0,1] = w][0,1]},
and 3 = Mot 3, for t > 0.
(b) For w € Cqig set
7(w) = inf{t : there is an w’ €  such that w'[[0,t] = wl[0,t] and 7(w’) < t},
counting inf () as co. Then 7 is a stopping time adapted to (3 );>o. P For ¢t > 0, set
Fi={w:weQ rw) <t} e,
(455Lb), and
F] = {w:w € Cqy, there is an w’ € F; such that w[[0,¢] = w'[[0,¢]}.

Since F; € X, F/ N Q = Fy; as Q is v-conegligible and ¥ is complete, F} € $: now of course F| e . If
w € F}, let w' € F; be such that w[[0,¢] = w'[[0,¢]; then w’ witnesses that 7(w) < 7(w’) < t. f w € Cyqiz and
7(w) <t,let ¢ <t and w’ € Q be such that ¢ is rational, w[[0, q] = w'[[0, q] and 7(w’') < g; then

weFeX, CYy
This shows that
{w TwE Cd1g7 T(w) < t} = qu[O,t]ﬁQ Fé € Y.

By 455Lb in the other direction, 7 is a stopping time adapted to (i?‘)tzo. Q

(c) By 455U, (b : Caig X Cqig = Caig is inverse-measure-preserving for i x ¥ and ¥, where

dlw,w")(t) = w(t) if t < F(w),
= w(F(w)) + ' (t — F(w)) if t > F(w).

Now ¢, = ¢ x Q and pw X pw is the subspace measure on Q x Q induced by ¥ x ¥ (251Q), so ¢, also is
inverse-measure-preserving.

477H Some families of o-algebras The o-algebras considered in Theorem 477G can be looked at in
other ways which are sometimes useful.
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Proposition Let r > 1 be an integer, pyw r-dimensional Wiener measure on ©Q = C([0,00[;R")o and ¥ its
domain. Set Xt(i) (w) =w(t)(i) for t > 0 and i < r. For I C [0, 0], let T be the o-algebra of subsets of Q
generated by {Xs(i) - Xt(i) s, tel,i<r}, and T; the o-algebra {EAF : E € Ty, uwF = 0}.

(a) Tpp,00f is the Borel o-algebra of € either for the topology of pointwise convergence inherited from
(R")[O"X’[ or R™*10:[ or for the topology of uniform convergence on compact sets.

(b) If Z is a family of subsets of [0, co[ such that for all distinct I, J € Z either sup I < inf J or sup J < inf ]
(counting inf @ as co and sup ) as 0), then (T;);ez is an independent family of o-algebras.

(c) For t > 0, let ¥; be the o-algebra of sets F € ¥ such that w’ € F whenever w € F, v’ € Q and

W'T0,4] = wl[0,t], and &} = Nyst Xs. Write ng7t] for M, T[QS]. Then, for any ¢ > 0,

-+
Tio,0 €3¢ €3¢ € Ty = Tio. = Tioul-
(d) On the tail o-algebra [, T[t,oo[, uw takes only the values 0 and 1.

proof (a) Write B(Q2,%,), B(£,%.) for the Borel algebras under the topologies ¥,, ¥, of pointwise conver-
gence and uniform convergence on compact sets. Then Tjo o € B(2,%,) because the functionals Xt(i) are
all T,-continuous, and B(2,%,) C B(2,T.) because T, C T..

Now T{g,o0[ includes a base for T.. B Suppose that w € Q,n € Nand V = {w’ : ' € Q, sup,c(g ) ' (t) —
w(t)|| < 27"}. Then (because every member of  is continuous)

V = Upen Naegrion 1’ : Tico X8 (w') = X ()2 < 272 —27m)

belongs to T[g o [; but such sets form a base for T.. Q
Since T is separable and metrizable, B(2,T.) C Ty o[ (4A3Da).

(b) (i) Suppose to begin with that Z is finite and every member of Z is finite. If we enumerate {0}U(JZ in
ascending order as (;);<n, <Xt(2r1 — Xt(;)
Taking J; = {t; : j < n, t; € I, tj41 € I} for I € I, {Xt(jzrl - Xt(;) : j € Jr} generates Ty for each

I € 7, because of the separation property of the members of Z, and (J;)sez is disjoint. By 272K, (T;)rer
is independent.

)j<n,i<r is an independent family of real-valued random variables.

(ii) Now suppose only that Z is finite and not empty. For I € Z, set T} = UJcr is finite L7 for I € T;
then T/ is an algebra of sets, and T; is the o-algebra generated by T}. If E; € T for I € T, there are
Jr € [I]<% such that E; € Ty, for I € Z, so pw(\;ez E1) = [lez pw(Er), by (). Inducing on n,
and using the Monotone Class Theorem for the inductive step, we see that puw ((;cz Er) = [1;c7 uw (Er)
whenever E; € Ty for every I € T and #({I : Er ¢ T}}) < n. At the end of the induction, with n = #(Z),
we have pw ((;ez E1) = [1;e7 bw (Er) whenever Er € Ty for every I € Z; that is, (T1)rez is independent.

(iii) Thus (T;);e7 is independent for every non-empty finite J C Z, and (T);cz is independent
(272Bb).

(c)(i) If s, ' <t and i < r then Xs(i), Xs(f) and Xgi) — Xs(f) are Yg-measurable, so Tjg 4 € 3. Of course
¥ C B

(i) =, C T[o,t]- P Suppose that F € ;. Set D = [0,¢] N (QU {¢}), and set g(w) = w|D for w € Q;
then g : Q — (R™)? is continuous (when § is given the topology of pointwise convergence inherited from
(R™)[0:l " for definiteness), and F' = g~ '[g[F]]. Now the Borel g-algebra of (R")” = R"*P is the o-algebra
generated by the functionals w — w(t)(i) : (R")? — R for t € D and i < r (4A3D(c-i)), and for such ¢ and
i, w e g(w)(t)(i) = Xt(i)(w) is Ty 4-measurable; so g is T}y 4-measurable. Now there is a sequence (K )nen
of compact subsets of F such that sup,cypw K, = puwF. In this case, g[K,] C (R")? is compact and
K], = g7 '[g[K,]] belongs to Tyg ), for each n. So F’ = J,,cy K7, belongs to T 4, and pw (F\ F') = 0.

Similarly, applAying the same argument to Q \ F', we have an F"' € Tjo 4 such that F"" 2O F and pw (F"\
F) =0. So F € T[O,t]- Q

Consequently ¥ C ng’t].
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(iii) (@) Let A be the family of those sets G € X such that xG has a conditional expectation on T?(_m]

which is Ty -measurable. Then A is a Dynkin class (definition: 136A). If E' € Ty and F' € T, o[ Where
s > t, then (uw F)x$ is a conditional expectation of xF on T?{Lt], because T[J&ﬂ - T[O,s] and T, o[ are
independent. As E € T[ngﬂ, (uw F)xE is a conditional expectation of x(E N F) on T[ngt] (233Eg), and

ENFe A Since E={ENF:Ec%;, FcJ,., T [} is closed under finite intersections, the Monotone
Class Theorem, in the form 136B, shows that A includes the o-algebra T generated by &; note that T

includes Tjg g U Ts oo whenever s > ¢. Now Xl(f) - Xgi) is T-measurable whenever 0 < s < u. PP If u <,
Xl(f) — Xél) is T|p,g-measurable, therefore T-measurable; if t < s, Xz(f) — Xgi) is T, c[-measurable, therefore
T-measurable. If s <t < u, let (£, )nen be a sequence in ¢, u] with limit ¢. Then

XO = X0 = limy, oo (X — X+ (x - x[)
is T-measurable. Q

(B) This means that T includes Tjg o[ It follows that A = X, because for any G € ¥ there is a

G" € Tg,00] such that GAG" is negligible, and now xG and xG’ have the same conditional expectations. So

T[Et] = 'AF[OJ]. P Of course T[T),t] ) T[O,t]- If H e T[Et] there is a To s-measurable function g which is a

conditional expectation of yH on T[Jg’t]. But in this case g =a.. XH, 50, setting £ = {w : g(w) = 1} € Tjo 4,
EAH is negligible and H € T[O,t]- Thus ng’t] C T[o,t]- Q

() Observe next that Xt(i) is T[p,-measurable for i < r. P If t = 0 then Xt(i) is the constant
function with value 0. Otherwise, there is a strictly increasing sequence (s, )nen in [0, [ with limit ¢, so that
Xt(z) = lim, o0 X S(fl) is the limit of a sequence of T ;-measurable functions and is itself T ;-measurable. Q

But this means that T(g 4 = T(g g, so T[J(rJ,t] - T[O,t] = T[O,t[~ In the other direction, of course T C T[Et]

and T[O,t[ - T?(;,t]’ so we have equality.

(d) Set T = U,»0 Tpog- If E € N0 T[t’oo[, then puw (ENF) = pwkE - uwF for every F € T'. By the
Monotone Class Theorem again, puw (E N F) = puw E - uw F for every F in the o-algebra generated by T’,
which is B(€2), by (a). Now uw L E (definition: 234M*) and (uw E)uw are Radon measures on €2 (416Sa)
which agree on B(£), so must be identical. In particular,

pwE = (upw L E)(E) = (uw E)?
and puw E must be either 0 or 1.

4771 Hitting times In 455M I introduced ‘hitting times’. I give a paragraph now to these in the special
case of Brownian motion; such stopping times will dominate the applications of the theory in §§478-479.
Take r > 1, and let py be Wiener measure on = C([0,00[;R")y and ¥ its domain; for ¢ > 0 define ¥;
and Ty 4 as in 477G and 477H. Give (2 its topology of uniform convergence on compact sets.

(a) Suppose that A C R". For w € Q set 7(w) = inf{t : t € [0,00[, w(t) € A}, counting inf as
0o. I will call 7 the Brownian hitting time to A, or the Brownian exit time from R” \ A. T will
say that the Brownian hitting probability of A, or the Brownian exit probability of R" \ A, is
hp(A) = pw{w : T(w) < oo} if this is defined. More generally, I will write

hp(A) = piy s 7(w) < o0} = piy s w1 [A] £ 0},
the outer Brownian hitting probability, for any A C R".
(b) If A C R" is analytic, the Brownian hitting time to A is a stopping time adapted to the family
(X )i>0. P Let Cqig be the space of cadlag functions from [0,00[ to R", and define ¥ as in the proof
of 477G; let 7 be the hitting time on Cgqj; defined by A. By 455Ma, 7 is Y-measurable, so 7 = 7[Q is

Y-measurable. Now (as in 455Mb) {w : 7(w) < t} € X; for every ¢, so 7 is adapted to (X; );>0. Q
In particular, there is a well-defined Brownian hitting probability of A.

4Formerly 234E.
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(c) Let F' C R” be a closed set, and 7 the Brownian hitting time to F.
(i) If 7(w) < o0, then
7(w) = infw ! [F] = minw™}[F]
because w is continuous. If 0 ¢ F' and 7(w) < oo, then w(7(w)) € OF.
(ii) 7 is lower semi-continuous. I For any ¢ € [0, oo,
{w:7(Ww) >t} ={w:w(s) ¢ F for every s < t}
is open in Q). Q

(iii) 7 is adapted to (T|o4))¢>0- PP Let (G,)nen be a non-increasing sequence of open sets including F

such that F =[x Gn. Then, for w € Q and ¢t > 0,

neN

T(w) <t <= w[[0,t]|]NF#D
(because w is continuous)
— w[[0,¢]]N G, # 0 for every n € N
(because w[[0,t]] is compact)

<= for every n € N there is a rational ¢ < ¢ such that w(q) € G,,.

So

{w:T(w) <t} =N,en quQm[o,t] {w:w(q) € Gn} € T -
Of course {w : 7(w) = 0} is either Q (if 0 € F) or () (if 0 ¢ F), so belongs to T,0]- Q
In the language of 477G, we have Ty C X; for every ¢t > 0 (477Hc), so 7 must also be adapted to
(Zt)t>o0-
(d) If A CR" is any set, then
hp*(A) = min{hp(B) : B 2 A is an analytic set} = min{hp(F) : E D A is a Gy set}.
P Of course

hp*(A) < inf{hp(B) : B 2 A is an analytic set}

= min{hp(B) : B D A is an analytic set}

<inf{hp(E): E D Ais a Gs set} = min{hp(E) : E D A is a G; set}
just because hp” is an order-preserving function. If v > hp*(A), there is a compact K C Q such that
wlA] =0 for every w € K and puw K > 1—+. Now F = {w(t) : w € K, t € [0,00[} is a K, set not meeting
A, s0 E=TR"\F is a Gs set including A. Since w™1[E] is empty for every w € K, hp(E) < puw (Q\ K) < 7.
As v is arbitrary,

inf{hp(E) : E D Ais a Gs set} < hp*(A)
and we have equality throughout. Q
(e) If A C R" is analytic, then hp(A) = sup{hp(K) : K C A is compact}. P Suppose that v < hp(A4).

Set = {(w,t) :w € Q, t >0, w(t) € A}. Then E is analytic and hp(A4) = pwm [E], where 71 (w,t) = w
for (w,t) € E. Let X be the subspace measure (uw)x,[g). By 433D, there is a Radon measure \" on E

such that A = Nz, '. Then ME = hp(A) > 7, so there is a compact set L C E such that ML > ~. Set
K ={w(t) : (w,t) € L}; then K CR" is compact, and

hp(K) = pw{w : w(t) € K for some ¢ > 0} > puwmi[L] > NL > ~.
As v is arbitrary, hp(A) < sup{hp(K) : K C A is compact}; the reverse inequality is trivial. Q
Remark 4771d-477Ie are characteristic of Choquet capacities (432J-432L); see 478Xe below.
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477J As an example of the use of 477G, I give a classical result on one-dimensional Brownian motion.

Proposition Let puw be Wiener measure on = C([0,00[)o. Set X;(w) = w(t) for w € Q. Then
Pr(max,<; X; > a) =2Pr(X, > a) = \/%f;;ﬁ e~ 2dy
whenever ¢t > 0 and « > 0.

proof Let 7 be the Brownian hitting time to F' = {z : € R, > a}; because F is closed, 7 is a stopping
time adapted to (X;)¢>0, as in 477Ic. Let ¢, : © x @ —  be the corresponding inverse-measure-preserving
function as in 477G, and set F = {w : 7(w) < t}. Note that as w(r(w)) = « whenever 7(w) is finite,
Pr(r =t) < Pr(Xy = a) =0, and

pwE =Pr(r <t) = Pr(maxs<; X > o).

Now

Pr(X, > ) = pur{w : w(t) > a} = (8 {(@,0) : dr(w,0')(0) > 0}
= pip{(w,w') : T(W) <, ¢r (w,W)(1) 2 a}
(because if 7(w) >t then ¢, (w,w')(t) = w(t) < @)
= piy{(w,w') : 7(w) <, or(w,W)(t) > a}
(because {w : T(w) =t} is negligible)
= i {(w,w') : T(w) < t, w(T(Ww)) + ' (t — 7(w)) > a}
= {(w,W)  T(w) < t, W (t —T(w)) >0}

_ /E p (o Wt — T(w)) = 0}y (dw)

1 1
= EMWE =3 PI‘(I?%?(XS > ).

To compute the value, observe that X, has the same distribution as v/tZ where Z is a standard normal
random variable, so that

Pr(X; > a)=Pr(Z —u*/2 gy,

ay_ L o
ZW)ﬂ/ﬂfa/ﬁe

477K Typical Brownian paths A vast amount is known concerning the nature of ‘typical’ members
of ; that is to say, a great many interesting uy -conegligible sets have been found. Here I will give only a
couple of basic results; the first because it is essential to any picture of Brownian motion, and the second
because it is relevant to a question in §479. Others are in 478M, 478Yi and 479R.

Proposition Let puy be one-dimensional Wiener measure on Q = C([0,00[)g. Then pp-almost every
element of €2 is nowhere differentiable.

proof Note first that if > 0 and Z is a standard normal random variable, then Pr(|Z| <) < 7, because
the maximum value of the probability density function of Z is % < % For m, n, k € N, set

2m
Fr = {w:w € Q and there is a t € [0, m[ such that limsup, W <m},
Epng ={w:w e Q, [w2™(k +2)) —w@ " (k+1))[ <3-27"m,
lw@™(k+3)) —w(@ " (k+2))] <5-27"m,
w2 (k+4)) —w(@ " (k+3))| < 7-27"m},

Epn = Uk<2"’m Ernk.
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Now we can estimate the measure of E,,,i, because for any a, t > 0, 2/2 (Xiy2-» — X;) has a standard
normal distribution (taking X;(w) = w(t), as usual), so

Pr(|Xprgr — Xi| < ) < 2720
since E,,,r is the intersection of three independent sets of this type,
piw By < 27/2-3-27"m - 27/2. 5. 27" - 272 . 7. 27 m = 105 m3273/2,
Accordingly

1w B < 35 conm 1w Empk < 105 m*277/2,

Next, observe that Fr, € Ujen (s Emn- P Ifw € Fy, let t € [0, m[ be such that limsupy lots)—w®]

s—t
m, and [ € N such that |w(s) —w(t)| < m(s—t) whenever t < s < t+4-27!. Take any n > I. Then there is
a k < 2"m such that 27"k <t < 27"(k 4+ 1). In this case,
W@k + 1)) — w(®)] < 2m
for1 <5 <4,
W@k 47+ 1)) —w@T(k+ ) < (27 + 1)27"m
for 1 <j<3,and w € Enpk € Emn- Q
Since
/’LW(UleN nnZl E’mn) <liminf, pw Epn = 0,

F, is negligible. So F' = J,,,cn Fim is negligible. But F' includes any member of w which is differentiable at
any point of |0, co[, and more. So almost every path is nowhere differentiable.

477L Theorem Let > 1 be an integer, and py Wiener measure on 2 = C([0,00[; R")g; for s > 0 let
s be s-dimensional Hausdorff measure on R”.

(a) (TAYLOR 53) {w(t) : t € [0,00[} is pe-negligible for py-almost every w.

(b) Now suppose that r > 2. For w € Q, let F,, be the compact set {w(¢) : t € [0,1]}. Then for p -almost
every w € Q, upF, = oo for every s € |0, 2[.

proof (a)(i) For 0 < s <t and w € Q set Ky(w) = {w(u) : s <u <t} and dg(w) = diam K (w). Note
that dg : © — [0, 00[ is continuous (for the topology of uniform convergence on compact sets, of course).

(@) If 0 < s < t then E(d?) < 8r(t —s). P As (Xuis — Xs)u>0 and (X, ),>0 have the same
distribution, dy; has the same distribution as do;—s, and we may suppose that s = 0. [If you prefer: if
Ss :  — Q is the shift operator of 477Ec, Ky (w) = w(s) + Ko 1—s(Ssw), 80 dst(w) = do1—s(Ssw), while Sy
is inverse-measure-preserving.| In this case,

don(w)? < 4maxyepo,q w(s)|* < 43277 maxeeqo,q w(s) ()™

For each j < r,

s ()0 () = [ gl max w(0))° > £}

s

< / (s max w(s)(G) = VB
0

s€[0,t]

+pw{w: min w(s)(j) < —\/B}ds

=2 [l s s w(5)() > /)5

(because uywy is invariant under reflections in R", see 477Ed)
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:4/0°° pw{w s w(t)(j) > v/BYdB

(by 477J, applied to the jth coordinate projection of Q onto C([0, co[)o, which is inverse-measure-preserving,
by 477Da or 477Ed and 477Eg)

=2 [l w0 2 5)dp
(again because uw is symmetric)
—2 [ b)) () = 2B(e2?)
Q

(where Z is a standard normal random variable)
= 2t.

Summing,

E(d3,) <4305 [ max,eo,qw(s)(j) 2w (dw) < 8rt. Q

(B) For any € > 0, Pr(dp; <€) > 0. P {w: dp1(w) < €} is a neighbourhood of 0 for the topology of
uniform convergence on compact sets, so has non-zero measure, by 477F. Q

(ii) For a non-empty finite set I C [0, c0[ and w € Q set
-1
gI(w) = Z;L:O dtj—latj ("‘))2
where (tj> j<n enumerates I in increasing order. For 0 < s <t and w € Q) set
hst(w) = inf{s,t}gIg[s,t] is finite gI(w);

then h; is T/, y-measurable, in the language of 477H. P The point is that I + g;(w) is a continuous function
of the members of I, at least if we restrict attention to sets I of a fixed size. So if D is any countable dense
subset of [s,t] containing s and ¢,

hse = infys 131D is finite 91-
On the other hand, if I C D is enumerated as (¢;)i<n,

1 —1
g[(CU) = Z?:O maXu,u’EDﬂ[ti7ti+1] HW(U) - LU(U/)HQ,

so gy is T|s ;-measurable. Q
(iii) We need the following facts about the hg;.

(a) If 0 < s < ¢, then the distribution of hy is the same as the distribution of hg;_s, again because
(Xs4u — Xs)u>0 has the same distribution as (X,),>0. [In the language suggested in the proof of (i-a), we
have gsir(w) = g1(Ss(w)) for any w € Q and non-empty finite I C [0, 00[, 50 hgt(w) = ho 1—s(Ssw).]

(B) hot has finite expectation. P hoy < gro,¢p = dg;, so we can use (i). Q

() houw < hgt +hy if s <t <w PIf {s,¢} CTICJ[s,t] and {t,u} CJ C [t,u] then {s,u} CTUJ C
[s,u] and grus = g1 + 9. Q

(0) If s <t < u then hy and hy,, are independent, because Ti, ;) and Ty, are independent (477H(b-
i)).

(€) The distribution of hg; is the same as the distribution of thg; whenever ¢t > 0. I* The case t = 0

is trivial. For t > 0, define Uy : 2 — Q by saying that U(w)(s) = %w(ts), as in 477Ee. Then

Ksu(Ut(W)) = %Kts,tu(w)u dsu(Ut(w)) = %dts,tu(w)v
91(U(w@)) = 59 @) hou(Un(@)) = Fheosu(w),
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whenever s < u, {s,u} CI C [s,u] and w € €, and

puw{w : ther(w) > a} = pw{w : the1(Uy(w)) > a}
(because Uy is an automorphism of (€2, uy))

= pw{w : hot(w) > a}

for every a € R. Q
(¢) Consequently
E(hst) = E(hot—s) = (t — s)E(ho1)
whenever s < t, and
E(hst) + E(htu) = E(hsu)
whenever s <t < u. Since hgt + Ry > hgy, by (iii), we must have hg + hey =ae. Rsu-
(n) For any 1 > 0, Pr(ho1 < 4n*) > 0. P By (i-8), Pr(do1 < 2n) > 0, and ho1 < g{o,13 = d3;- Q

(iv) For ¢ > 0 let ¢; be the characteristic function of hg;, that is, ¢i(a) = E(exp(ictho)) for o € R
(285Ab). Working through the facts listed above, we see that

(1) = E(exp(ihot)) = E(exp(itho1))

(by (iii-€))

= ¢1(t),

p1(8)p1(t) = @s(1)pe(1) = E(exp(ihos) ) E(exp(ihot))

= E(exp(ihos))E(exp(ihs s+t))
(by (ii-a))

= E(exp(ihos) exp(ihs s+t))
(because hos and hg ¢4, are independent, by (c-iv))

= E(exp(i(hos + hs,s+t))) = E(iho,s+t)
(by (iii-¢))

= p1(s +1),

for all s, ¢t > 0; while ; is differentiable, because hg; has finite expectation ((ili-«) above and 285Fd). It
follows that there is a v € R such that ¢q(t) = €t for every t € R. P Set v = %@’1(0) = E(ho1) (285Fd)
and (t) = e~y (t) for t € R. If t > 0, then

() = limyyo 1 (1 (E+5) — @1 (1) = 1 (8) limggo < (i21(5) = 1) = ipn (£)y

and ' (t) = 0. Since v is continuous on [0, oo[ (285Fb), it must be constant, and ¢ (t) = €'4)(0) = e for
every t > 0. As for negative ¢, we have

pi(t) = pi(—t) = et =

for t <0, by 285Fc. Q

(v) Thus we see that hg; has the same characteristic function as the Dirac measure concentrated at
7, and this must therefore be the distribution of hg; (285M); that is, hgr =a.. 7. Now (iii-n) tells us that
v=0.
Since hg; has the same distribution as thgi, hot =a.e. 0 for every ¢ > 0. But now observe that if ¢ > 0,
w € Q and hg;(w) = 0, then for any 7 > 0 there is a finite I C [0,¢], containing 0 and ¢, such that g;(w) < n.
This means that Ko (w) can be covered by finitely many sets K, ., (w) with Z;L:_Ol diam Ky, 4., (w)? < 0.
All the diameters here must of course be less than or equal to 7. As 7 is arbitrary, pgoKo(w) = 0.
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For each ¢t > 0, this is true for almost every w. But this means that, for almost every w, pgoKo,(w) =0
for every n, and pgo{w(t) : t > 0} = 0, as claimed.

(b)(i) To begin with, take a fixed s € ]0,2[. Let pur1 be Lebesgue measure on [0, 1]. For each w € Q, let
(. be the image measure 1 (w[[0,1])~% on F,. Then

/9 /Fw / oo o) Gy v (o)
// / o0 e & du pw (dw)
///Ilw “o( MW(dw)dtdu

is continuous and non-negative, so there is no difficulty with the change

(of course (w,t,u)

flw(t )— Ol

in order of integration)
_ 2/ / / TOREOI ———uw (dw) dt du

W /mmdw) i

(because X; — X, has the same distribution as Xy, as in (a-i-a)

1—u
- <

= —lll?/2t
= 2/ /7 T Hz||se p(dx) dt

(here p is Lebesgue measure on R")

ww/ w?/ e el o
= (j%r/ tr/2/ 5\/) 752/2\/id5dt

_ 2rB. / r—s—1_—pB2/2
= - 7dt 15} e dB < oo
e J, v2 ),

because g <landr—s>0. So fF fF ﬁ@w (dz)(,(dy) is finite for almost every w. Since (, is always
w w ||[T—Y||®
a probability measure with support included in F,,, pgsF,, = oo for all such w (471Tb).

(ii) Setting s, = 2 — 27" for each n, we see that, for almost every w € Q, pps, F,, = oo for every n.
But for any such w, pgsF,, = oo for every s € ]0,2[, by 471L.

477X Basic exercises (a) Use 272Yc® to simplify the formulae in the proof of 477B.

(b) Let pw be Wiener measure on 2 = C([0, 00])o, and set X;(w) = w(t) for t > 0 and w € Q. Let f be a
real-valued tempered function on R (definition: 284D). For x € R and 0 < ¢ < b, let V,(Ut’b) be the distribution

of a normally distributed random variable with mean z and variance b —t, so that g(z,t) = [ f(y (t b) dy)
can be regarded as the expectation of f(Xp) given that X; = x. (i) Show that g satlsﬁes the backwards

heat equation 2 % —|— —— = 0. (ii) Interpret this in terms of the disintegration it =[v: (u:b) (1 u)(dz) as
ult.

5Formerly 272Ye.

D.H.FREMLIN



122 Geometric measure theory 477Xc

(c)(i) Show that the measure " of 477Da can be constructed directly by applying 455A with (X, B;) =

(R7, B(R")) for every t > 0 and suitable Gaussian distributions i on R (ii) Show that the measure "
can be constructed by applying 455A to T = r x [0, oo[ with its lexicographic ordering and suitable Gaussian

distributions " on R.

(d) Let » > 1 be an integer. (i) Show that there is a centered Gaussian process (Y):e[o,1] = (Y;@)te[m]’iq
such that E(Ys v x Y(J)) = 01if ¢ # j, min(s,t) — st otherwise. (ii) Show that if (X;);>¢ is ordinary r-
dimensional Brownian motion, then (Y});c[0,1] has the same distribution as (X —¢X1);e[0,1)- (iii) Show that
the process (Y;)¢cjo,1) (the Brownian bridge) can be represented by a Radon probablhty Measure fpridge
on the space C([0,1];R")go of continuous functions from [0, 1] to R” taking the value 0 at both ends of the
interval. (iv) For w € C(]0,1];R" ) define & € C([0,1];R")go by setting &(t) = w(1 —t) for ¢ € [0,1]. Show
that w — & is an automorphism of (C([0, 1];R")oo, Kbridge)-

(e) Let (©,X%, 1) be a complete probability space and (X;);>o a family of real-valued random variables
on ) with independent increments. For I C [0, oco[ let T be the o-algebra generated by { X, — X, : s, ¢t € I'}.
Let Z be a family of subsets of [0, oo[ such that for all distinct I, J € T either sup I < inf J or sup J < inf I.
Show that (Tj)rez is an independent family of o-algebras.

(f) Suppose that H C R" is an F, set and that 7 : @ — [0,00] is the Brownian hitting time to H, as
defined in 4771. Show that 7 is Borel measurable.

(g) Let uw be one-dimensional Wiener measure, and 7 the hitting time to {1}. Show that the distribution
e~1/2% for x > 0.

of 7 has probability density function = !
TV 2Tx
(h) Let pw be one-dimensional Wiener measure on = C(]0,00[)p. Show that, for py -almost every
w € €, the total variation Varp, ,(w) is infinite whenever 0 < s < ¢.

477Y Further exercises (a) Write D,, for {27"i : 4 € N} and D = |J,,cj Dn, the set of dyadic rationals
in [0, 00[. For d € D define fq € C([0,0]) as follows. IfneN, fot) =0ift<n,t—nifn<t<n+1,1if

t>n+1. If d=2""k where n > 1 and k € N is odd, f4(t) = max(0, W(l — 27|t —d|)) for t > 0. Now

let (Za)aep be an independent family of standard normal distributions, and set wy,(t) = >_,cp. fa(t)Za for
t > 0, so that each w, is a random continuous function on [0, co[. Show that for any n € N and € > 0,

n 2 [e'e] 2
Pr(supejo,n [wnt1(t) —wa(t)] =€) < 2"n - = Joeyam € 2,

and hence that (wy,)nen converges almost surely to a continuous function. Explain how to interpret this
as a construction of Wiener measure on Q = C([0, 0[)o, as the image measure u2g~' where g : RP — Q
is almost continuous (for the topology ¥, on ) and ,ug is the product of copies of the standard normal
distribution ug.

(b) Fix p €]0,1[\ {3}. (i) For a € R set hq(t) = |t — alP~2 — |t[~2 when this is defined. Show that
he € £2(ur), where g, is Lebesgue measure, and that [|ha||3 = |o??||h1]13 and [|ha — hgll2 = |ha—gsl2
for all o, 8 € R. (ii) Show that there is a centered Gaussian process (Xq)aer such that E(X, x Xg) =
|a|?? + |B]*P — |a — B)?P for all a, B € R. (iii) Show that such a process can be represented by a Radon
measure on C(R). (Hint: 477Ya.) (This is fractional Brownian motion.)

(c) Let uw be Wiener measure on 2 = C([0,00[;R")g, where r > 1, and set X;(w) = w(t) for t > 0 and
w € Q. Let f be a real-valued tempered function on R” (deﬁnition 284Wa). For z € R" and 0 < t < b, let
(t ®) be the distribution of z + Xy, so that g(z,t) = [ f(y t b) (dy) can be regarded as the expectation

r— 13g

of f(Xp) given that X; = x. Show that g satisfies the backwards heat equation 2 g +>.50 e =

(d) Let r > 1 be an integer, and v a Radon probability measure on R” such that 2 — a.x has expectation
0 and variance ||a||? for every a € R". Let © be C([0,00[;R")g, and for a > 0 define f, : (R")N — Q by
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setting fo(z)(t) = Va(X,., 2(i) + é(t —na)z(n)) when z € (R")N n € Nand na <t < (n+1)a; let p,

be the image Radon measure /N fo 1 on Q. Show that Wiener measure uy is the limit lim, 10 Bo for the
narrow topology.

L ot)=0

(e) Let uw be Wiener measure on C([0, 0o[)g, and v > % Show that lim;_, o t%w(t) = limy o pr

for puy-almost every w.

(f) Write out a proof of 477G which works directly from the Gaussian-distribution characterization of
Wiener measure, without appealing to results from §455 other than 455L. (I think you will need to start with
stopping times taking finitely and countably many values, as in 455C; but you will find great simplifications.)
(g) Let fi be the Gaussian distribution on R0l corresponding to Brownian motion, as in 477A. For
t >0 let 2 be the family of Baire subsets of R[*:> determined by coordinates in [0,], and &} = .-, Zs.
For w € RI%*®l set 7(w) = inf{q : ¢ € Q, w(q) > 1}, counting inf ) as co. Show that 7 is a stopping time
adapted to (X} )¢>0. For w, w’ € RI%>[ define ¢, (w,w’) € RIO>[ by setting ¢, (w,w’)(t) = w(t) if t < 7(w),
w(T(Ww)) +w'(t —7(w)) if t > 7(w). Show that ¢, is not inverse-measure-preserving for the product measure
4% and fi. (Hint: show that {w : 7(w) € D} is negligible for every countable set D.)

(h) Let pw be one-dimensional Wiener measure on = C([0,00[)g. (i) Show by induction on k that
Pr(there are tg < ¢; < ... < t), < ¢ such that X;, = (—1)7 for every j < k) = Pr(there is an s < ¢
such that Xg = 2k + 1) for any ¢ > 0. (Hint: 477].) (ii) For w € Q, k € N define 7 (w) by saying that
To(w) = inf{t : |w(t)| = 1}, Tet1(w) = inf{t : t > 7 (w), w(t) = —w(7k(w))}. Show that 73 is a stopping
time adapted to the family (X;);>0 of 477H, and is finite pp-a.e. (iil) Set By = {w : p(w) < 1 < mgg1(w)},
pr = pw Ek, Fr, = {w : there is an s < 1 such that w(s) =2k + 1}, gx = pw Fx. Show that

_ 1 oo . i o —z2/2
Gk = 5Pkt D e P = \/gfzkﬂ ™" 2da.
(iv) Show that Pr(ro < 1) = Y22 Pk = 2> peo(—1)* i

(i) Let pw be Wiener measure on Q = C([0,00[;R")g, where r > 1. Show that, for upy-almost every

w e Q, {H:Eg\\ it > tg, w(t) # 0} is dense in 9B(0,1) for every to > 0.

(j)(1) Show that, for any r > 1, the topology ¥. of uniform convergence on compact sets is a complete
linear space topology on Q = C([0,00[;R")g. (ii) Show that Wiener measure on (2 is a centered Gaussian
measure in the sense of 466N. (Hint: 466Ye.)

477 Notes and comments The ‘first proof’ of 477A calls on a result which is twenty-five pages into §455,
and you will probably be glad to be assured that all it really needs is 455A, fragments from the proof of
455P, and part (a) of the proof of 455R. So it is not enormously harder than the ‘second proof’, based on
the elementary theory of Gaussian processes.

With this theorem, we have two routes to the first target: setting up a measure space with a family of
random variables representing Brownian motion. I repeat that this is a secondary issue. Brownian motion
begins with the family of joint distributions of finite indexed sets (Xz,,..., Xy, ) satisfying the properties
listed in 477A. It is one of the triumphs of Kolmogorov’s theory of probability that these distributions can
be represented by a family of real-valued functions on a set with a countably additive measure; but they
would still be of the highest importance if they could not. In order to show that it can be done, we can
use either the time-dependent approach based on conditional expectations, as in 455A, 455P and the ‘first
proof’ of 477A, or the timeless Gaussian-distribution approach through 456C, as in the ‘second proof’ of
477A. Both, of course, depend on Kolmogorov’s theorem 454D. They have different advantages, and it will
be very useful to be able to call on the intuitions of both. The ‘first proof’ leads us naturally into the theory
of Lévy processes, in which other families of distributions replace normal distributions.

To get to the continuity of sample paths, we need to do quite a bit more, and the proof of 477B is one
way of filling the gap. At this point it becomes tempting to abandon both proofs of 477A and start again
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with the method of 477Ya, the ‘Lévy-Ciesielski’ construction, not using Kolmogorov’s theorem. But if we
do this, we shall have to devise a new argument to prove the strong Markov property 477G, rather than
quoting 455U. Of course the special properties of Gaussian processes mean that a direct proof of 477G is
still quite a bit easier than the general results of §455 (477Yf). I make no claim that one approach is ‘better’
than another; they all throw light on the result.

What I here call ‘Wiener measure’ (477B) is a particular realization of Brownian motion. It is so con-
vincing that it is tempting to regard it as ‘the’ real basis of Brownian motion. I do not mean to assert this
in any way which will bind me in future. But (as a measure theorist, rather than a probabilist) I think that
the specific measures of 477B and 477D are worth as much attention as any. One reason for not insisting
that the space C([0,00[)o is the only right place to start is that we may at any moment wish to move to
something smaller, as in 477Ef. The approach here gives a very direct language in which to express theorems
of the form ‘almost every Brownian path is ...’ (477K, 477L), and every such theorem carries an implicit
suggestion that we could move to a conegligible set and a subspace measure.

In 477C I sketch an alternative characterization of one-dimensional Wiener measure. Five pages seem
to be rather a lot for a proof of something which surely has to be true, if we can get the hypotheses right;
but I do not see a genuinely shorter route, and I think in fact that the indigestibility of the argument as
presented is due to compression more than to pedantry. At least I have tried to put the key step into part
(a-i) of the proof. We have to use the Central Limit Theorem; we have to use a finite-approximation version
of it, rather than a limit version; the ideas of this proof do not demand Lindeberg’s formulation, but this is
what we have to hand in Volume 2; and if we are going to consider interpolations for general random walks,
we need something to force a sufficient degree of equicontinuity, and (f) is what comes naturally from the
result in 274F. It is surely obvious that I have been half-hearted in the generality of the theorem as given.
There can be no reason for insisting on steps being at uniform time intervals, or on stationary processes, or
even on variances being exactly correct, provided that everything averages out nicely in the limit. The idea
does require that steps be independent, but after that we just need hypotheses adequate for the application
of the Central Limit Theorem.

Clearly we can also look for r-dimensional versions of the theorem. I have not done so because they
would inevitably demand vector-valued versions of the Central Limit Theorem, and while a combination of
the ideas of §§274 and 456 would take us a long way, it would not belong to this section. However I give
477Yd as an example which can be dealt with without much general theory.

Already in the elementary results 477Eb-477Eg we see that Wiener measure is a remarkable construction.
It is a general principle that the more symmetries an object has, the more important it is; this one has a
surprising symmetry (477Ef), which is even better. I take it as confirmation that we have a good represen-
tation, that all these symmetries can be represented by actual inverse-measure-preserving functions, rather
than leaving them as manipulations of distributions.

477F is a natural result, and a further confirmation that in C([0,00[;R")g we have got hold of an
appropriate space of functions. The proof I give depends on an aspect of the structure developed in 477Ya.

The next really important result is the ‘strong Markov property’ (477G). This is clearly a central property
of Brownian motion. It may not be quite so clear what the formulation here is trying to say. As in 477E, I
am expressing the result in terms of an inverse-measure-preserving function. This makes no sense unless we
have a probability space €2 in which we can put two elements w, w’ together to form a third; so we are more
or less forced to look at a space of paths. But not all spaces of paths will do. For an indication of what can
happen if we work with the wrong realization, see 477Yg.

In 477H we have two kinds of zero-one law. One, 477Hd, is explicit; the tail o-algebra (), T[t)oo[ behaves

like the tail of an independent sequence of o-algebras (2720). But the formula ‘() ., ¥, C T[O,ﬂ’ in 477Hc
can be thought of as a relative zero-one law. There are many events (e.g., {w : liminf,; w(s) > 0})
which belong to (.., £ and not to T}y 4 or ¥y, but all collapse to events in Tjy if we rearrange them on
appropriate negligible sets. This is really a special case of 455T.

The formulae in the first application of the strong Markov property (477J) demand a bit of concentrated
attention, but I think that the key step at the end of the proof (moving from ﬂ%/v to f ... dpw) faithfully
represents the intuition: once we have reached the level «, we have an even chance of rising farther. For the
discrete case, 272Yc is a version of the same idea. From the distribution of the hitting time to {a} we can
deduce the distribution of the hitting time to {—1,1} (477Yh); but I do not know of a corresponding exact
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result for the hitting time to the unit circle for two-dimensional Brownian motion.

I expect you have been shown a continuous function which is nowhere differentiable. In 477K we see
that ‘almost every’ function is of this type. What a hundred and fifty years ago seemed to be an exotic
counter-example now presents itself as a representative of the typical case. The very crude estimates in the
proof of 477K are supposed to furnish a straightforward proof of the result, without asking for anything
which might lead to refinements. Of course there is much more to be said, starting with 477Xh. In 477L we
have an interesting result which will be useful in §479, when I return to geometric properties of Brownian
paths.

Version of 4.6.09/7.8.20

478 Harmonic functions

In this section and the next I will attempt an introduction to potential theory. This is an enormous subject
and my choice of results is necessarily somewhat arbitrary. My principal aim is to give the most elementary
properties of Newtonian capacity, which will appear in §479. It seems that this necessarily involves a basic
understanding of harmonic and superharmonic functions. I approach these by the ‘probabilistic’ route, using
Brownian motion as described in §477.

The first few paragraphs, down to 478J, do not in fact involve Brownian motion; they rely on multidi-
mensional advanced calculus and on the Divergence Theorem. (The latter is applied only to continuously
differentiable functions and domains of very simple types, so we need far less than the quoted result in
475N.) Defining ‘harmonic function’ in terms of average values over concentric spherical shells (478B), the
first step is to identify this with the definition in terms of the Laplacian differential operator (478E). An
essential result is a formula for a harmonic function inside a sphere in terms of its values on the boundary
and the ‘Poisson kernel’ (478Ib), and we also need to understand the effects of smoothing by convolution
with appropriate functions (478J, following 473D-473E). I turn to Brownian motion with Dynkin’s formula
(478K), relating the expected value of f(X,) for a stopped Brownian process X, to an integral in terms of
V2 f. This is already enough to deal with the asymptotic behaviour of Brownian paths, which depends in a
striking way on the dimension of the space (478M).

We can now approach Dirichlet’s problem. If we have a bounded open set G C R”, there is a family
{(phz)zeq of probability measures such that whenever f : G — R is continuous and f[G is harmonic, then
f(z) = [ fdu, for every x € G (478Pc). So this family of ‘harmonic measures’ gives a formula continuously
extending a function on G to a harmonic function on G, whenever such an extension exists (478S). The
method used expresses p, in terms of the distribution of points at which Brownian paths starting at x
strike G, and relies on Dynkin’s formula through Theorem 4780. The strong Markov property of Brownian
motion now enables us to relate harmonic measures associated with different sets (478R).

478 A Notation r > 1 will be an integer; if you find it easier to focus on one dimensionality at a time,
you should start with r = 3, because r = 1 is too easy and r = 2 is exceptional. p will be Lebesgue measure
on R”, and || || the Euclidean norm on R”; v will be normalized (r — 1)-dimensional Hausdorff measure on
R". In the elementary case r = 1, v will be counting measure on R.

B, will be the volume of the unit ball in R", that is,

1 . .
By = Ewk if r = 2k is even,

2k+1
_ (22k+1l;!'ﬂ_k if r =2k +1 is odd.

Recall that

v(0B(0,1)) =B, = ﬁwk if r = 2k is even,

22k+1k!
T(2k)!

7Fif r =2k + 1 is odd
(265F /265H).
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; in these, it will
lz—yll"=*" [la—y|"—2’ ’

often be convenient to interpret % as 00, so that we have [0, oo]-valued functions defined everywhere.
It will be convenient to do some calculations in the one-point compactification R” U {oco} of R” (3A30).
For a set A C R", write A and 8 A for its closure and boundary taken in R” U {oo}; that is,

AT =4, 9*A=0A

In the formulae below, there are repeated expressions of the form

if A is bounded, and
AT =AU{cc}, 0%A4A=0AU{c0}

if A is unbounded. Note that A~ and A are always compact. In this context I will take 4+ co = oo for
every ¢ € R".

pw will be r-dimensional Wiener measure on = C([0,00[;R")g, the space of continuous functions w
from [0, oo[ to R” such that w(0) = 0 (477D), endowed with the topology of uniform convergence on compact
sets; X will be the domain of py. The probabilistic notations E and Pr will always be with respect to puw
or some directly associated probability. u%, will be the product measure on  x Q. I will write X;(w) = w(t)
for t € [0,00[ and w € Q, and if 7 : Q@ — [0, 00] is a function, I will write X, (w) = w(7(w)) whenever w € Q
and 7(w) is finite.

As in 477Hc, I will write X; for the o-algebra of sets F' € ¥ such that w’ € F whenever w € F, w’ € Q and
w'1[0,1] = w[[0,t], and & = ,., Ts. Tjo, will be the o-algebra of subsets of {2 generated by {X, : s < t}.

478B Harmonic and superharmonic functions Let G C R" be an open set and f : G — [—00, 00| a
function.

. . - 1 . .
(a) f is superharmonic if S@B@D) faB(x,a) fdv is defined in [—o00, o0] and less than or equal to f(x)

whenever x € G, 6 > 0 and B(z,d) C G.

1
v(0B(zx,9))
greater than or equal to f(z) whenever € G, 6 > 0 and B(z,0) C G.

(b) f is subharmonic if — f is superharmonic, that is, faB(z.é) fdv is defined in [—o0, 00] and

(c) fis harmonic if it is both superharmonic and subharmonic, that is,
and equal to f(z) whenever x € G, § > 0 and B(z,d) C G.

1 .
m faB(I,é) fdl/ is defined

478C Elementary facts Let G C R” be an open set.

(a) If f: G — [—o0,00] is a function, then f is superharmonic iff —f is subharmonic.

(b) If f, g : G — [—00, 00| are superharmonic functions, then f + g is superharmonic. P If z € G, § > 0
and B(z,d) C G, then faB(m 5 fdv and fBB(z 5) 9 dv are defined in [—o0, 0o, so faB(m 5 f +gdv is defined
and is

Jonos T+ Jypias 98 < v(0B(x,9)) (f(2) + g(z)). Q

(c) If f, g: G — [—00,00] are superharmonic functions, then f A g is superharmonic. P If z € G, § > 0
and B(x,0) C G, then [, 5 fdv and [,5., 5 gdv are defined in [—00,00], so [55, 5 f A gdv is defined
and is at most

min( [y, o Sdv, fop 5 9dv) < v(0B(x,8) min(f(x),g(z)). Q

(d) Let f: G — R be a harmonic function which is locally integrable with respect to Lebesgue measure
on G (that is, every point of G' has a neighbourhood V' such that [, fdu is defined and finite). Then

1
1@) = 56a Jiag) Fn
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whenever z € G, 6 > 0 and B(z,d) C G. P By 265G,

¢ t
fB(:L‘,(S) fd/u’ = fO faB(I,t) fdl/ dt = fo V(@B(L (5))f($)dt = ﬂ’l“érf(x) Q
So f is continuous. P If = € G, take § > 0 such that B(z,2§) C G, and set f1(y) = f(y) for y € B(x,26), 0
r o 1
for y € R"\ B(x,25). Set g = B(03)
(444Rc). Also, for any y € B(x,9),

xB(0,6). Then f; is integrable, so the convolution f; * g is continuous

B(y,5) wuB(y,5)

(fl *g)(y) = /fl(z)g(y - z)u(dz) :/ f1(2) u(dz)
1
= uB(y.0) /B(M) f(2)uldz) = f(y),

so f is continuous at x. Q

478D Maximal principle One of the fundamental properties of harmonic functions will hardly be used
in the exposition here, but I had better give it a suitably prominent place.

Proposition Let G C R” be a non-empty open set. Suppose that g : [l |—00,00] is lower semi-
continuous, g(y) > 0 for every y € 0°G, and ¢[G is superharmonic. Then g(x) > 0 for every = € G.

proof ? Otherwise, set v = inf,eq g(z) = inf{g(y) : y € @OO}. Because G is compact and g is lower
semi-continuous, K = {z : x € G, g(x) = v} is non-empty and compact (4A2B(d-viii)). Let z € K be

. . 1
such that ||z| is maximal, and § > 0 such that B(z,d) C G. Then WIBB(w,é)ng < g(z). But
g(y) > g(z) for every y € 9B(x,6) and
{v:y €dB(x,0), g(y) > g(x)} 2 {y :y € IB(,9), (y — x).x > 0}

is not v-negligible, so this is impossible. X

478E Theorem Let G C R” be an open set and f : G — R a function with continuous second derivative.

Write V2 f for its Laplacian divgrad f = >.._, g%];

(a) f is superharmonic iff V2f < 0 everywhere in G.
(b) f is subharmonic iff V2f > 0 everywhere in G.
(c) f is harmonic iff V2f = 0 everywhere in G.

proof (a)(i) For z € G set
R, = p(‘raRT \G) = innyRT\G ||JJ - y||7
counting inf () as oo; for 0 < v < R, set

9:00) = = fo oy FOVAD) = [0 1) fl@ 720 (d2).

Because f is continuously differentiable, ¢/ () is defined and equal to fBB(O 1 %f(x + v2)v(dz) for v €

10, R.[.
Set ¢ = grad f, so that V2f = div¢. Each ball B(x,v) has finite perimeter; its essential boundary is its

ordinary boundary; the Federer exterior normal v, at y is %(y —z); and if y = x 4+ vz, where ||z|| = 1, then

d(y) . vy is %f(x + 7z). So the Divergence Theorem (475N) tells us that

[ Wrau= | o)umay
B(=z,7) dB(z,y)

- B ,,
=y e ya(ds) =170,
aB(0,1) 97
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(ii) If V2f < 0 everywhere in G, and B(z,7) C G, then g/ (t) <0 for 0 <t <7, so
92 (7) < limeyo g2(t) = 7B, f(2);

as x and « are arbitrary, f is superharmonic.

(iii) If f is superharmonic, and = € G, then
9z (7) < Tﬁrf(x) = lim¢y0 9o (t)

for every 7 € )0, R;[. So there must be arbitrarily small v > 0 such that ¢/(y) < 0 and fB(x ) V2 fdu < 0;
as V2 f is continuous, (V2f)(z) < 0.

(b)-(c) are now immediate.

478F Basic examples (a) For any y, z € R",

g — Lt gy Emay
flz—z|"=2’ llz—z|"’
o Jy=2lP=lle—yl? _ o(z—2).(y=2) _ 1
flo—z[|" flo—z[" lz—z|"=2

are harmonic on R \ {z}.
(b) For any z € R?,

x—In|lz— 2|

is harmonic on R? \ {z}.

proof The Laplacians are easiest to calculate when z = 0, of course, but in any case you only have to get
the algebra right to apply 478Ec.

ly—zII”=llz—yll*

ezl is the Poisson kernel; see 4781 below.
x—z||"

Remark The function z —

478G We shall need a pair of exact integrals involving the functions here, with an easy corollary.

1 1 1 r
Lemma (a) m f@B(O.ﬁ) WV(CZZ) = W whenever z € R” and 1) > 0.
(b) e [ PPNl gy = —— 1 whenever z € R”, 6 > 0 and ||z]| # 6
V(0B(0,6)) J9B(0.5) Ja—z|" max(®,[2l]) 2 ’ '

(c) fB(o 5 mu(dz) < %T,BT(SQ whenever € R” and § > 0.

proof (a)(i) The first thing to note is that there is a function g : [0,00[ \ {6} — [0,00[ such that

1 1 .
g(llz|)) = WEEC)) faB(O,é) Wy(dz) whenever ||z|| # §. P If ||z|| = ||ly||, then there is an orthogonal

transformation 7' : R” — R” such that Tz = y, so that

1 1
——v(dz) = ——v(dz
/33(075) ly—=["—2 (dz) /33(075) ly—Tz|"=> (dz)

(because T is an automorphism of (R", B(0,6),v))

1 1
N Tro—razv42) = ————w(dz).
/83(0,5) HTa:—TzH"*ZV( ?) /5)3(0’5) ”:IJ—ZH'V'fZV( z). Q

(ii) Now suppose that 0 < vy < . Then
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o 1

1 1 1
/8 ﬁu(dz)l/(dx)

VOB0.7) /aB(oﬁmc‘)B(ma)) s0.9) To—7]

1 1 1
v(8B(0,5)) AOBON) —v(d d
v(0B(0,9)) /33(0,5) v(0B(0,7)) /83(0,7) H"I;_ZHT‘—QI/( z)v(dz)

1 1
= —
v(05(0,5)) /BB(O,,;) etz (42)

is harmonic in R" \ {z}, by 478Fa)

(because the function x e
r—=z

(iii) Next, if v > 4,

1 1 1
= L(0B(0,6)) NEETGE ————v(dx)v(d
9 = S GBws) /83(0,5) VB0 Jo0.) ooV (de)v(d2)

(as in (ii))

_ 1 L
= (0B(0,9)) /6,3(0’5) 2 v(dz)

(by (ii), with v and § interchanged)

77‘72 :

(iv) So we have the result if ||z|| # J. If ||| = 0 and r > 2, set x, = (1 + 27 ")z for each n € N. If
1

WMEN is a non-decreasing
Tn—2||" "

z € 0B(0,0), (||zn—2||)nen is a decreasing sequence with limit ||z —z||, so (

sequence with limit By B.Levi’s theorem,

lz—z]m=2"
1 1 . 1 1
e a— T — dZ = hm e — T 4 dZ
1(9B(0,8)) /63(076) z—z||"—2 (de) = lim Y(9B(0.6)) Jop0.5) llzn—zl"> (dz)
- lim —— =1 1
n—oo [lza |72 flzflm=2 62

Finally, if r = 1 and ||z|| = |z| = §, we are just trying to take the average of |z — 4| and |z — (—¢)|, which

will be § = —.

(b) We can follow the same general line.

(i) Define f : R" \ 9B(0,8) — R by setting f(z) = - ! IIgEllz_aZu(dz) when ||z| # 6.

(0B(0,9)) faB(O"S) llz—="
Then f is harmonic. P If z and v > 0 are such that B(z,v) CR" \ 9B(0,6), then
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1
S . o S

o | e | MR @)
v(0B(z,v)) 9B(z,7) v(0B(0,9)) 8B(0,5) ly—z"
— 1 1 llyll*—6*
VOBO3) Jym0.5) "OB@) Jopo ="
1 Jall2—o°

v(dy)v(dz)

~ v(0B(0,9)) aB(0,5) le==I" (dz)
(because the functions y +— % are harmonic when ||z|| = §, by 478Fa)
=f(z).Q

Since f is smooth, V2f = 0 everywhere off B(0, ), by 478Ec.

(ii) As before, we have a function h : [0,00[\ {6} — [0, 00| such that f(z) = h(||z||) whenever ||z| # 0.
If 0 <7 <6 then

1

1
h(y) = ——— h dy) — — d
) = 5557 ., M) = sty [ s
1 —52 1
— 0 _ —_9 d =——,
10) v(8B(0,9)) Jap(0,5) HZIITV( ?) 52
and
1 |62 —l=|1?| _ 1
v(0B(0,9)) f{)B(O,&) lz—z|" V(dz) = h(’y) T 52
if ||z =v < 0.
(iii) For v > ¢ I start with an elementary estimate. If ||z|| = v > ¢ then ‘:lilﬁz_”éj lies between (7;_:;; and
(’f__g; for every z € OB(x,§), so that v"~2 f(x) lies between é;gﬂ;; and (i:gﬂg;, and is approximately

1 if v is large.

(iv) Now we can use the Divergence Theorem again, as follows. If § < v < B consider the region
E = B(0,8) \ B(0,~) and the function ¢ = grad f. As f is smooth, ¢ is defined everywhere off 9B(0,d),

and ¢(x) = Wizl oy every © € R"\ 0B(0,4). The essential boundary of E is 0F = 9B(0,v) U 9B(0, 3);

lll

the Federer exterior normal at x € 9B(0,7) is v, = —%x and at x € 9B(0, 8) it is v, = %x; and div¢ = V2f

is zero everywhere on E. So 475N tells us that

0= vgv(d Lvgv(d
/83(0,5) o(x) v v(dx) +/83(0,»y) o(x) v (dx)

- / W (B)w(de) — / W ()v(dz)
8B(0,8) 9B(0,7)
=rB.B W (B) — rBy" TN (7).

r—1

This shows that h/(vy) is inversely proportional to

(v) If r > 3, there are «, 5 € R such that h(y) = a +
1

,YT—Z

— for every v > 4. But since (iii) shows us
g

that lim, oo 7" 72h(y) = 1, we must have h(y) = for v > 0, as declared. If r = 2, then we can express

-2

h in the form h(y) = a + f1In+; this time, lim,_ h(y) = 1, so once more h(y) =1 = % for every 7.
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162 —[|=|*|

1 .
B Josos Temr V(@) 1 the

(vi) Finally, if » = 1 and |z| > §, then, as in (a-iv) above,
I2_62

|z+-4|

1

|m|7‘72 :

r2—

2
average of g‘ = |z + d] and = |z —4],s0is |z| =

|z—

(c) This follows easily from (a);

§
1 1
ez idz) = — L (dz)dt
/B<o,6> fomatr#4) /0 /BB(O,t) e (4%)
g _ s
:/ Ldté/ Tﬂrtdtzl,rﬁréQ.
O r—2 0 2

max(t,]|]|)

478H Corollary If r > 2, then z — m :R" — [0, 00] is superharmonic for any z € R".
proof If § > 0 and z € R",
1 1 1 1
S b (dy) = ——— S ——T
VOB(x,9) /83(1,5) === \) = 5503 J, 0. Tora—atr—=" %)
B 1 1
- max(6fle—z[) 2 T flz—z|nm2"

4781 The Poisson kernel gives a basic method of building and describing harmonic functions.

Theorem Suppose that y € R™ and 6 > 0; let S = 0B(y,d) be the sphere with centre y and radius 9.
(a) Let ¢ be a totally finite Radon measure on S, and define f on R" \ S by setting

f@) = o J a2

llz—z|”

for x € R™\ S. Then f is continuous and harmonic.

(b) Let g : S — R be a vg-integrable function, where vg is the subspace measure on S induced by v, and
define f: R™ — R by setting

f(z) : / g(z)wu(dz) ifz e R"\ S,
s

86 llz—=|["

=g(z)ifz e S.

(i) f is continuous and harmonic in R” \ S.
(i) If r > 2, then

hm ianGS,ZA’Zo g($) = hm lnfxﬁzo f(x), hm Supm%zo f(l') = hm SuszS,zﬁzo g(.’IJ)

for every zp € S.
(iii) f is continuous at any point of S where g is continuous, and if g is lower semi-continuous then f
also is.

(iv) sup,er- f(2) = sup,es 9(2) and infzepr f(z) = inf.es g(2).

0 —|lz—yl?
llz—z|"
for z € S and x running over any compact set not meeting S.
Suppose that ||z —y|| < § and 5 > 0 is such that B(z,n) NS = (. Then

proof (a) f is continuous just because x — is continuous for each z € S and uniformly bounded
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y ! L[ 5wy
v(9B(z,n)) /éyB(Ln)f v v(0B(z,n)) AB(z,n) TBT(S/S lw—z|" ¢(dz)v(dw)

S S —T—— F—llw—yl?
- B8 /S v(8B(z,n)) fw—z|" v(dw)((dz)

0B(z,n)
_ 1 Z—lle=yl® » 4
6.0 /S o—alr¢(42)
is harmonic on R" \ {z} whenever z € S, by 478Fa)
= f(=@).

52 —|lw—yl*

(because w ,
flw—=z]|"

As z and n are arbitrary, f is harmonic on int B(y, ). Similarly, it is harmonic on R" \ B(y, 9).

(b)(i) Applying (a) to the indefinite-integral measures over the subspace measure vg defined by the
positive and negative parts of g, we see that f is continuous and harmonic in R" \ S.

(ii)(a) Itz ¢ S,

/\62—||z ull?| (dz):/ 02 —lla=v|, g,
le—z[I" B0, Ile—y=zI"

V(9B(0,6))
max(d,|lz—yl[)"—2

by 478Gb. In particular, if x is close to, but not on, the sphere S, fs% v(dz) is approximately
v(0B(0,0
(57‘ (2 ) _ r8,6.

(B) Set M = [, |g|dv, and take zy € S; set v = limsup,cg, ., 9(x). If v = oo then certainly
limsup,_, ., f(x) <. Otherwise, take n > 0. Let ag € ]0,d[ be such that

F=lle=sl?] o <
s @) ~ U <

whenever 0 < |6 — ||z — y||| < ao, and g(z) <~y +n whenever z € S and 0 < ||z — 2o|| < 2ap. Let « € ]0, ag]
be such that (26 + ag)(M + |y])avS < 27rB.dafn.

If 2 — 2] < @ and [lz— ]| # 6, then |5~ [}z — ]| < |}~ z0l| < a0 and |62 [z —y|?| < [} — zol|(25+ax),
0

|02 —lz—yl|?|

f@) = <l + 55 [ (o) - )R

6% —llz—yl*|
g(z) —~ ——v(dz
ey /SmB(zo,zao)( (=) ) [l =zl (d2)
1 |62 —llz—yl*|
+ + ———y(d
8.6 L\B(zo72ao)(|g(2)| "YD llz—z|I" V( Z)

|62 —llz—yl?|
<9yl +—== 71/ dz
- |,Y| rﬁ 1) [|z—z]|" ( )

1 llo—20 | (28-+a0)
+ / (lg(2)] + [y lE=zellCotao)
B8\ B(z0,2a0) 2T

v(dz)

<yl +

(because r > 2, so v{zo} = 0)
26+a0)
< b+ (1) (M + 220, 6
< (Yl +1+n+1)n.
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Also, of course, f(z) —v = g(z) —v < nif 0 < ||z — 2] < @ and ||z —y|| = §. As n is arbitrary,
limsup, ,, f(x) <~. In the other direction, limsup,_,, f(x) > v just because f extends g.

() Similarly, or applying (5) to —g, liminf, ., f(z) = liminf,cg -, 9(2).

(iii)(a) If » > 2, it follows at once from (ii) that if g is continuous at zop € S, so is f, and that
if g is lower semi-continuous (so that g(zp) < liminf,eg 4., g(z) for every zop € S) then f also is lower
semi-continuous.

B)Ifr=1,then S={y—d,y+0}tand v{y—d} =v{y+d} =1, s0

1 /62— (z—y)? 82— (z—y)?
T = g (oo ol — o) + T8ty + )

= %(Ix* (y+8)|gly —6) + |z — (y — 8)|gly + 9))

for x € R\ S, and limg, 45 f(x) = g(y £ 6), so f is continuous.

(iv) If g(z) < a < oo for every z € S, then

f(x):TﬁlréAg(z)|52—\\$—y||2\y(dz)grg%/a \52—||x—y||2|l/(dz)

o=zl B0y Te—v—=I"

o v@B0s) _ a5 a
rB,.0  max(d,||z—y|)r—2 max(6,[lz—y|)r=2 —

for every € R\ S. So sup,cp- f(x) = sup,cg g(2); similarly, inf,cr- f(z) = inf.cg g(2).

478J Convolutions and smoothing: Proposition (a) Suppose that f : R™ — [0,00] is Lebesgue
measurable, and G C R” an open set such that f[G is superharmonic. Let h : R" — [0, 00] be a Lebesgue
integrable function, and f *h the convolution of f and h. If H C G is an open set such that H —{z : h(z) #
0} C G, then (f * h)[H is superharmonic.

(b) Suppose, in (a), that h(y) = h(z) whenever ||y|| = ||z| and that [,, hdu < 1. If z € G and v > 0 are
such that B(x,v) C G and h(y) = 0 whenever ||y|| > v, then (f *h)(z) < f(x).

(c) Let f : R™ — [0, 00] be a lower semi-continuous function, and (h,)nen the sequence of 473E. If G C R”
is an open set such that f[G is superharmonic, then f(x) = lim, oo (f * iLn)(:E) for every z € G.

(d) Let G C R" be an open set, K C G a compact set and g : G — R a smooth function. Then there is a
smooth function f : G — R with compact support included in G such that f agrees with g on an open set
including K.

proof (a) If z € H and ¢ > 0 are such that B(z,d) C H, then

Lo e = [ = neumtan)
= / h(z) / fly = 2)v(dy)u(dz)
R" OB(x,6)
= [ h(z) / fyv(dy)u(dz)
T OB(z—2,0)

< 7Bt / h(z)f(z — 2)u(dz)
(because if h(z) # 0 then B(x — z,6) = B(x,d) — z is included in G)
=v(0B(x,9)) - (f = h)(x).
(b) Let g : [0,00[ — [0, 00] be such that h(y) = g(||y||) for every y. Then
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em@ = [ foma-nuin= [ [ saatvia
< [Tt st = o) [ nd < so)

(c) By (b), (f * hn)(z) < f(x) for every sufficiently large n, so limsup,, .. (f * hy)(z) < f(z). In the
other direction, if z € G and o < f(z), there is a § > 0 such that B(z,6) C G and f(y) > « for every
y € B(z,d). Now there is an m € N such that h,(y) = 0 whenever n > m and ||y|| > J; so that

/ 1y Ju(dy) = / F@)hn(e — y)uldy)
B(z,0)

/ onl — yu(dy) = o

B(z,)

whenever n > m. As « is arbitrary, f(z) = limy, o0 (f * 2n) ().

(d) If K is empty we can take f to be the constant function with value 0, so suppose otherwise. Let
0>0 be such that B(z,46) C G for every z € K, and set Hy = {z : p(z, K) < ké} for k € N. Let n be such
that —< <0, and set f = g x (xHa * h n)- By 473De, xHj * h,, and therefore f are smooth. If z € H; then
(XH2 * h 2) (@) =150 f(z) = g(x), while if z € G\ Hy then f(x) = (xHa * hy)(z) = 0 so the support of f is
included in the compact set H3 C G.

478K Dynkin’s formula: Lemma Let uy be r-dimensional Wiener measure on @ = C([0, 00[;R")g;
set Xi(w) = w(t) for w € Q and ¢t > 0. Let f: R™ — R be a three-times-differentiable function such that f
and its first three derivatives are continuous and bounded.

(a) E(f(Xy)) = f(0) + %E(fot(VQf)(Xs)ds) for every t > 0.
(b) If 7 : © — [0, 00] is a stopping time adapted to (3, );>0 and E(7) is finite, then

E(f(X,)) = f(0) + SE( [, (V2[)(X,)ds).

proof (a)(i) We need a special case of the multidimensional Taylor’s theorem. If f : R” — R is three times
differentiable and « = (&1,...,&), y = (n1,...,m-) € R", then there is a z in the line segment [z, y] such
that

+Z -~ ZZ &) e (@)

=1 j=1
1 T
+3 ZZZm — &) (n; =€) — &) 3gege ()
i=1 j=1 k=1
P Set g(8) = f(By+ (1 — B)x) for B € R. Then g is three times differentiable, with

T

J(B) = Z(nrgm ~(By + (1= B)x),

k=1

"(8) =33y — &) (e — %g;g (By + (1 - B)a),
j*lk*l

9" ZZZ &) (1 §k)w(5y+(1*ﬂ) ).
=1 j=1 k=1

Now by Taylor’s theorem with remainder, in one dimension, there is a 8 € ]0, 1] such that
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9(1) = g(0) + g'(0) + 39" (0) + <4 (B)

and all we have to do is to set z = Sy + (1 — 8)z and substitute in the values for g(1),...,¢"(8). Q

(ii) Let M > 0 be such that HWHOO < M whenever 1 <4, j, k <r. Let K be E((3_/_, |Zi|)?)

when Z1,...,Z, are independent real-valued random variables with standard normal distribution. (To see
that this is finite, observe that

Z\Z| <Ermax\Z|)<r3EZ|Z\ rE(1Z]%)

=1

(where Z is a random variable with standard normal distribution)

I A —t2/2
=i J, t’e dt < 00.)
For any z, y € R” we have
T a 1 T T az
£ = £(0) = 32 = €56 () + 5 3232 = €0 &) (4]
i= i=1 j=
M i
<M -al)?
i=1
Ifo<s<tandw e, then
r of
| fw(t) = flw(s)) - oe, W) Wit) — wis))
i=1
-1 Z 3 521 ) () — () ey 1) — ()
i=1 j=1
M T
< U5 wilt) — wils)))®,
i=1
writing w, ... ,w, € C(]0,00[)g for the coordinates of w € 2. Integrating with respect to w, we have

SIS SR ) (B - XOEXD - x0)|

(writing Xt(i) (w) = w;(t) for 1 < ¢ < r, and recalling that E(Xt(i) - Xs(i)) = 0 for every i, while E(Xt(i) -
X2 =t—y)
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s

= [E(F(X0) - £(X) = DB - x() 3L (x.)

1=

1
1y i 120?
— 5 LB - XD ()

1w i ; j iy 02
-3 Zlgmxf P X)X - X0 g (X))
1=1 3%

(because for any 7 < r the random variables gf (Xs) and Xt(i) ~ X are independent, while for any distinct

i

i, j < r the random variables 8?28]; (X)), X — x{ and XY — X1 are independent)

T

= [E(£(X0) - (X = 3 (x¢7 - x )L (x.)
i=1

because the Xt(i) — X are independent random variables all with the same distribution as v/t — s Z where
Z is standard normal.

(iii) Now fix t > 0 and n > 1; set s = Bt for k <n. Set
n

gn(w) = Y52 (sks1 — sk) (V) (w(s1))
for w € Q. Then

| [ ()10~ Sgu @) aw ()

1

n

]

E(f(Xopir) = F(Xor) = 5 (5001 = 1) (V2 (X))

i
L

MK

MK ;t\3/2 _ MKt\/t
K (Lyajz MKW

6v/n

IN

L
n

E

(e}

On the other hand,
. t
limy, o0 gn(w) = [ (V2F)(w(s))ds

for every w (the Riemann integral fg (V2f)(w(s))ds is defined because s — (V2 f)(w(s)) is continuous), and
|gn(W)| < t|V2f]leo < o0 for every w, so by Lebesgue’s Dominated Convergence Theorem

B((X) ~ £0) =} tim [ gulwhan(d) =1 [l gn ) (o)

=3 [ [ Do i) = 3( [ (9210600
as claimed.

(b) (i) Consider first the case in which 7 takes values in a finite set I C [0, 00[. In this case we can induce
on #(I). If I = {¢p} then

E(f(X,)) = E(f(Xy)) = [(0) + 3E( [ (V2[)(X.)ds) = F(0) + SB( [ (V2)(X,)ds)
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by (a). For the inductive step to #(I) > 1, set to =minl, F = {w : 7(w) = to} and

dlw,w)(t) = w(t) if t < to,
= w(ty) + W' (t — to) if t > to,

for w, W’ € Q, so that ¢ is inverse-measure-preserving (477G). Set
ou(W') = 7(p(w,w)) —to

for w, w' € Q. If w € Q\ E, 0, is a stopping time adapted to (3, );>0, taking fewer than #(I) values.
P Suppose that ¢ > 0 and F = {&' : 0,(w') < t}. Ifw € F, @ € Q and &'[[0,¢] = w'[[0,¢], then
T(P(w,w")) < t + to, while ¢p(w,@’)(s) = ¢(w,w’)(s) whenever s <t + to; so that

0, (@) +to = T(p(w, @) < t+to

and & € F. Thus F € Y;; as t is arbitrary, o, is adapted to <E?_>t20 (455Lb). Also every value of o,
belongs to {t —tg: t € I, t > to} which is smaller than I. Q

Writing [ ...dw and [ ...dw for integration with respect to p,

B[ (V20
L s
-] d)w))<v2f><¢<w,w'><s>>dsdw’dw
e
" /Q . / / t[)m(w/)<v2f><¢<w7w’><s>>dsdw'dw
-/ /0 st [ [ / (V21)((e0,)(3)) s dedes
/Q . / [ )<v2f><¢<w,w'><s>>dsdw'dw
=// (V2 ) (w(s)ds de
. /Q L /t:“”(w')(v%)(w(tw (s — to))ds dad
Lt [ i
=2 [ flwtto) - FO)ds

+ Q/SZ\E/ f(w(to) +w/(0w(w/))) — f(w(to))dw’dw

(applying the inductive hypothesis to the function z — f(w(to) + ) and the stopping time o)

:Q/Ef(w(to)) dw+2/Q\E/f (to) + W' (0w, (W) — f(0)dw'dw
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= QLAf(¢(w,wl)(T(¢(w’w/)))) _ f(O)dw’dw
Jr2/Q\E/ (w, &) (T(¢(w, ")) = F(0)de'duw

= 2/9/Qf(@s(w,w/)(T(gb(w,w’)))) _ f(O)dw’dw
- Q/Qf(w(f(w))) — F(0)dw = 2(E(f(X,)) — £(0)).

Turning this around, we have the formula we want, so the induction proceeds.

(ii) Now suppose that every value of 7 belongs to an infinite set of the form {¢,, : n € N} U {co} where
(tn)nen is a strictly increasing sequence in [0, co[. In this case, for n € N, define

Tn(w) = min(7(w), t,,)
for w € €, so that 7, takes values in the finite set {to, ... ,t,}, and
{w:mw) <ty ={w:7Tw) <t} ey if t <tp,,
—Qey,ift>t,.
Now 7 is finite a.e., S0 T =, .¢. liM,,_so0 Tp; it follows that

f(Xr (W) = flw(T(w))) = limp 00 fw(mn(w))) = limp o0 (X7, (w))

for almost every w; because f is bounded,

E(f(X7)) = limy o0 E(f(X5,))-
On the other side,

ST T2 ) w(s)ds = lim oo [T (V1) (w(s))ds

for almost every w. At this point, recall that we are supposing that 7 has finite expectation and that V2 f
is bounded. So

T @ s)ds) < 7172 ) @s)ds] < [ f[laom(w)

for every w, and the dominated convergence theorem assures us that

7(w)
// (V2f)(w(s))ds dw
Tn(w)
= lim // (V2 ) (w(s))ds dw
n—oo

~ Jim IE(/O (V21)(X,)ds).

E( / | (V2 )(X.)ds)

Accordingly
BCE) = fim B((X0) = i f0)+ 55 (720)(x.)ds)
(by (1)

= £(0) + 5E( / (V)X .)ds).

0

as required.

(iii) Suppose just that 7 has finite expectation. This time, for n € N, define a stopping time 7,, by
saying that
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Th(w)=2""kifk>1and 27" (k- 1) < 7(w) < 27"k,
= o0 if T7(w) = 0.
If t >0, set ' = 27"k where 27"k <t < 27"(k + 1); then
{w:im(w) <t} ={w:7w) <t'} e Xy C 3.

So 7, is a stopping time adapted to (X )i>0; as 7, < 27" + 7, E(7,) < oo. Again we have 7(w) =
lim;, 00 7n(w) for every w. The arguments of (ii) now tell us that, as before,

(X7 (w)) = limp o0 f (X7, (W)

(because f is continuous),

ST ) () ds = lime [T (V2)(w(s))ds

for almost every w, so that

E(f(XT)) = limy, 00 E(f(XTn))v

E( [, (V2f)(X.)ds) = lim,, oo B [ (V2)(X.)ds).

(This time, of course, we need to check that

T (V2 ) (w(s))ds] < V2] oomo(w)

for almost every w, to confirm that we have dominated convergence.) So once again the desired formula can
be got by taking the limit of a sequence of equalities we already know.

478L Theorem Let puy be r-dimensional Wiener measure on 2 = C([0,00[;R")g, f : R" — [0,00] a
lower semi-continuous superharmonic function, and 7 : Q — [0, 0o] a stopping time adapted to (X} );>0. Set
H={w:we, 7(w) <oo}. Then

) 2 [, f@+w(T (W) pw(dw)
for every z € R”.

proof (a) To begin with, suppose that f is real-valued and bounded. Let <iLm>m€N be the sequence of
473E/478], and for m € N set f,, = f % hy. Then each fm is non-negative, smooth with bounded derivatives
of all orders (473De) and superharmonic (478Ja), so V2 f,, < 0 (478Ea). Set 7, (w) = min(n, 7(w)) for n € N
and w € ; then each 7, is a stopping time, adapted to (X, >t>0, with finite expectation. In the language of
478K,

E(fm (@ + Xr,)) = fn(@) + 3E( [ (V2 ) (@ + X,)d5) < fin(2)

whenever m, n € N. Letting n — oo,

[l wlr@i () = i [ o+ () @)
H n—oo H
(because fn,, and every w € €, are continuous, and 7(w) = lim,,_, o 7y (w) for every w)

<tminf [ fona + w(m (@) (dw)

n—oo -
(because f,,, is non-negative)

< fm(2)
by Fatou’s Lemma. Now f = lim, e fm (478Jc), so

m—r 00

<liminf f,(2) = f(),

m—r o0

/ F( + w(r(@))pw (@) < liminf / Fonl - (@) (@)
H
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which is what we need to know.

(b) For the general case, set g, = fAkxR" for each k € N. Then gy, is non-negative, lower semi-continuous,
superharmonic (478Cc) and bounded. So

[ttt (@) = tim [ gulo+ wlr()m(do)
H ©JH

< khjgo gk (x) = f(x).

478M Proposition (a) If r = 1, then {w(t) : t > 0} = R for almost every w € Q.
(b) If r < 2, then {w(t) : t > 0} is dense in R? for almost every w € €.

(c) If > 2, then for every z € R?, 2 ¢ {w(t) : t > 0} for almost every w € Q.

(d) If r > 3, then lim;_, ||w(t)|| = oo for almost every w € .

proof (a) Suppose that «, § > 0 and that 7 is the Brownian exit time from |—q, 8[; then 7 is a stopping

«

time adapted to (3;);>0 (477Ic). Now 7 is almost everywhere finite and Pr(X, = ) = porh P Since

Pr(|X;| < max(a,B)) — 0 as t — oo, 7 is finite a.e., and Pr(X; = 5) + Pr(X,; = —a) = 1. Set 7,(w) =
min(n, 7(w)) for each n, and let f : R — R be a smooth function with compact support such that f(z) =z
for x € [-a— 1,8+ 1] (478Jd). Now 478K tells us that

1 T
E(X.,) = E(f(Xy,)) = f(0) + ;E([," (V2 /)(Xs)ds) = f(0) = 0.
Since (X )nen is a uniformly bounded sequence converging almost everywhere to X,

BPr(X; =) — aPr(X; = —a) =E(X;) =lim, o E(X,,) =0,
[0
and Pr(X, =p) = Pt
Letting o« — oo, we see that Pr(3 ¢ > 0, X; = 8) = 1. Similarly, —« lies on almost every sample path.
Thus almost every sample path must pass through every point of Z; since sample paths are continuous,
they almost all cover R.

(b) For r = 1 this is covered by (a); take r = 2. Suppose that z € R? and that § > 0. Then almost
every sample path meets B(z,d). B If § > ||z|| this is trivial. Otherwise, take R > ||z|| and let 7 be the
Brownian exit time from G = int B(z, R) \ B(z,6). We have Pr(||X;|| < R+ ||z]|) = 0 as t — oo (because
Pr(| X¢| < o) < Pr(|Z] < %) where Z is a standard normal random variable), so 7 is finite a.e. Once
again, set 7, (w) = min(n, 7(w)) for n € N and w € Q; this time, take a smooth function f : R? — R with
compact support such that f(z) =In|lz — z| for z € B(2,2R) \ B(z,16). Then

E(f(X7,)) = f(0) = In||z]|
(use 478FDb), so

InR-Pr(X; € 0B(z,R)) +1Ind - Pr(X,; € 0B(z,9))
=E(f(X:)) = nh_{IgO E(f(X:,)) =In|z|

and
Pr(X, € 0B(z, ) = BAmnll

Letting R — oo, we see that Pr(3 ¢ > 0, w(t) € B(z,d)) = 1; that is, almost every sample path meets
B(z,9). Q

Letting B(z,8) run over a sequence of balls constituting a network for the topology of R?, we see that
almost every path meets every non-empty open set and is dense in R2.

(c) (i) Consider first the case r = 2.
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(a) Suppose that z # 0. In this case, take §, R such that 0 < § < ||z|| < R and let 7 be the Brownian
exit time from G = int B(z, R) \ B(z,9), as in the proof of (b). As before, we have

Pi(X, € 0B(z,6)) = ALl

This time, looking at the limit as § | 0, we see that
{w : there is a ¢ > 0 such that w(t) = z but ||w(s) — z|| < R for every s <t}
is negligible. Taking the union of these sets over large integer R, we see that
{w : there is a ¢t > 0 such that w(t) = z}
is negligible, as required.

(B) As for z =0, take any € > 0. Then

pw {w : there is some t > € such that w(t) = 0}
= 3 {(w,w’) : there is some ¢ > 0 such that w'(t) = —w(e)}
= pd{(w,w’) : w(e) # 0 and there is some ¢ > 0 such that w'(t) = —w(e)}
(because the distribution of X, is atomless, so {w : w(e) = 0} is negligible)
=0

by («). Taking the union over rational € > 0, {w : there is some ¢ > 0 such that w(t) = 0} is negligible.

(i) If r > 2, set Tx = (&,&) for z = (&,...,&) € R". Then w — Tw : C([0,00[;R")g —
C(]0,00[; R?)g is inverse-measure-preserving for r-dimensional Wiener measure gy, on C([0, 00[;R") and
two-dimensional Wiener measure py2 on C([0,00[;R?)g, by 477D(c-i) or otherwise. So

{w:zew[]0,00[]} CH{w: Tz € (Tw)[]0, 0[]}
is negligible.

(d)(3) Fix v € [0,00[ and € > 0 for the moment. Set g(z) = f”yH%Bo(x —y)u(dy) for z € R”, where hg

is the function of 473E; then g is smooth (473De), strictly positive and superharmonic (478Ja). In addition,
we have the following.

(@) All the derivatives of g are bounded. I* As shown in the proof of 473De, g—g ()= [ ||yH17-72 gfﬁo(x—

y)u(dy) for 1 < i <r and x € R". Inducing on the order of D, and using 478Gc at the last step, we see that

1 > 1 =
(Dg)(z) = /W(Dho)(w—y)u(dy) = /W(Dho)(y)u(dy)

- /B L (Dhy)uldy)

(0,1) lz—yllm=2

< || Dhol| oo ————u(dy) < =rB-||Dhol|oo
= || 0” /B(OJ) ||:zfyHT*2M( y) = QTB || 0“

for any partial differential operator D and any « € R". Q

(B) lim| 4| 500 9(7) = 0, because

~ 1 7 ;87‘
9(2) < Mhollo [ 0,1) Jomyrmst) = Mholloo =iy

whenever ||z|| > 1.

(v) g(z) = g(y) whenever ||z|| = ||y|]|. P Let T : R™ — R” be an orthogonal transformation such
that Tx = y. Then
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o0) = [ thooutds) = [ rh(T2)u(dz)
(because hoT = ho)
— [ ho@outin) = [ @)

(because T is an automorphism of (R", 1))

=9(v) Q

(ii) Let 8 > 0 be the common value of g(y) for ||y|| = 7. Take x € R" such that ||z|| > v, and n € N.
Define

T(w) =min({n} U{t: |z +w@)] <~})
for w € Q. Then 7 is a bounded stopping time adapted to (X;);>0, so
BPr(r <n) < E(g(z + X7))
—9(0) + 3B( [ (V)0 + X.)d5) < g(0).
Letting n — oo, we see that

pw{w : ||z + w(t)|| <« for some t > 0} < %g(m)
(iii) Now let n > ~ be an integer such that %g(x) < € whenever |[z|| > n. As in (a) and (b-i) above,

lim 00 Pr(|| X:|| < m) = 0; take m € N such that Pr(||X,,|| < n) < e. Let o be the stopping time with
constant value m, with ¢, : 2 x Q — Q the corresponding inverse-measure-preserving function (477G). Set
F ={w:|w(m)| >n}. Now

Pr(|| X¢|| < v for some ¢t > m)
= 13 {(w,w') ¢ || (w,w) ()| < 7 for some t > m}
(where 2, is the product measure on 2 x )
= w3 {(w,w’) : Jw(m) + W' (t —m)| < v for some t > m}
< iy {(w,w") ¢ lw(m)]| < n or [lw(m)|| = n
and |lw(m) + w'(¢)|| < v for some t > 0}
< pfw s flo(m)| < n}

+/ pw{w’ @ [Jw(m) + W' (t)| < v for some t > 0}pw (dw)
F
<e —|—/ %g(w(m))uw(dw) <e+euwF < 2e.

F

As € is arbitrary, Pr(liminf, o || X¢]| < ) = 0; as « is arbitrary, Pr(lim;_, || X¢|| = o0) = 1.

Remark In 479R I will show that there is a surprising difference between the cases r = 3 and r > 4.

478N Wandering paths Let G C R" be an open set, and for = € G set
F,(G) = {w: either 7, (w) < 0o or lims—, o ||w(t)|| = oo}

where 7, is the Brownian exit time from G — z. I will say that G has few wandering paths if F,(G) is
conegligible for every x € GG. In this case we can be sure that, if z € G, then for almost every w either
limy o0 |lw(t)|| = 00 or w(t) ¢ G — x for some t. So we can speak of X, (w) = w(7,(w)), taking this to be
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oo if w € F(G) and 7, (w) = oo; and w will be continuous on [0, 7, (w)] for every w € F,(G). We find that
X, 1 Q — 0°(G — ) is Borel measurable. PP 7, is the Brownian hitting time to the closed set R™\ (G —x),
so is a stopping time adapted to (T 4)¢>0 (477Ic). Let B(£2) be the Borel o-algebra of € for the topology
of uniform convergence on compact sets; then T4 € B(Q) for every t > 0. The function

(t,w) = Xi(w) : [0,00[ x 2 = R"

is continuous, therefore B([0, co[)®B()-measurable (4A3D(c-1)); so X, is B(Q)-measurable (455Ld). Q

From 478M, we see that if r > 3 then any open set in R” will have few wandering paths, while if » < 2
then G will have few wandering paths whenever it is not dense in R”. Note that if G C R" is open, H is a
component of G, and = € H, then the exit times from H — x and G — x are the same, just because sample
paths are continuous, and F,(G) = F,(H). It follows at once that if G has more than one component then
it has few wandering paths.

4780 Theorem Let G C R” be an open set with few wandering paths and f : G~ = R a bounded
lower semi-continuous function such that f[G is superharmonic. Take 2 € G and let 7 :  — [0, 00] be the
Brownian exit time from G — x (477la). Then f(z) > E(f(z + X,)).

proof It will be enough to deal with the case f > 0.
(a) Extend f to a function f: R” U{co} — R by setting f(x) = 0 for z ¢ G . Since f is bounded, so is

f. Let (hp)nen be the sequence of 473E/478Jc, and for n € N set f, = (f[RT) % hy. Also, for n € N, set

— - r .
Gn={y:ycG |yl <n ply,R"\G) > —=}
(interpreting p(y, ) as oo if G = R"), and let 7, be the Brownian exit time from G,, — z.

(b) For y € G, foly) < f(y) for all sufficiently large n and f(y) = lim,— o fn(y) (478Jb). Also
fnl Gy is superharmonic (478Ja). Each f, is smooth with bounded derivatives of all orders (473De), and
(V2f)(y) <0 for y € Gy, (478Ea).

If m>n,

E(fm(x + Xm)) = fm(x) + %E(fom (VQf’rn)(x + XS)dS) < fm(x)
(478K). Consequently

E(f(z+ X)) <lminfE(f,(z + X))

m—r 00
<liminf f,(z) = f(x).
m—r 00

(c) For every w € Q, (7, (w))nen is a non-decreasing sequence with limit 7(w). B Since 7, (w) < 741 (w) <
T(w) for every n, t = limpen7y(w) is defined in [0,00]. If ¢ = oo then surely ¢ = 7(w). Otherwise,
w(t) = lim, 0o w(T(w)) ¢ G — x, so again t = T7(w). Q

Consequently

flz+ w(t(w))) <liminf, o f(z + w(m(w)))

for almost every w. I In the language of 478N, we can suppose that w € F,(G), so that w(7(w)) =
limy, s 0o w(7y(w)) in R™ U {00}, and we can use the fact that f is lower semi-continuous. @ So

E(f(z+ X;)) <liminf, o E(f(z + X)) < f(z)

as required.

478P Harmonic measures (a) Let A C R” be an analytic set and x € R". Let 7 : Q — [0, 00] be the
Brownian hitting time to A — z (4771). Then 7 is Y-measurable, where ¥ is the domain of py (455Ma).
Setting H = {w : 7(w) < o0}, X; : H — R" is Y-measurable. P By 4A3Qc, (w,t) — w(t) is RB([0, 0o[)-
measurable, while w  (w,7(w)) is (2, 2®B([0, 0o[))-measurable. So w + w(r(w)) is L-measurable on H.

Q

Consider the function w — z+w(7(w)) : H — R". This induces a Radon image measure 1, on R” defined
by saying that

D.H.FREMLIN



144 Geometric measure theory 478P

peF =ppwi{w:we H z+w(t(w) e F}=Pr(z+ X, € F)

whenever this is defined. Because every w € Q is continuous, X, (w) € (A — z) for every w € H, and 0A
is conegligible for u,. I will call y, the harmonic measure for arrivals in A from z. Of course p,R" is
the Brownian hitting probability of A.

Note that if 7/ C R" is closed and € R" \ F, then the Brownian hitting time to F' — z is the same as
the Brownian hitting time to OF — x, because all paths are continuous, so that the harmonic measure for
arrivals in F' from z coincides with the harmonic measure for arrivals in OF from z.

(b) We now have an easy corollary of 478L. Let A C R" be an analytic set, © € R”, and u, the harmonic
measure for arrivals in A from z. If f : R" — [0,00] is a lower semi-continuous superharmonic function,
f(z) > [ fdu,. P Let 7 be the Brownian hitting time to A — z, and H = {w : 7(w) < co}. Then

[t = [ 1+t
(because p, is the image measure of the subspace measure (uw )y under w — x 4+ w(7(w)))

< f(x)
by 478L. Q

(c) We can re-interpret 4780 in this language. Let G C R” be an open set with few wandering paths,
and = € G. Let p, be the harmonic measure for arrivals in R” \ G from z. In this case, taking 7 to be the
Brownian exit time from G —x and H = {w : 7(w) < oo}, we know that lim;_, ||w(t)|| = oo for almost
every w € Q\ H. If f:0°G — [—00, 0] is a function, then

E(f(x + X,) /fx+X pw (dw) + f(00)uw (@ \ H)

(counting f(oo) as zero if G is bounded)
— [ fdia + 1)1 - )

if either integral is defined in [—oo, 0] (235J%). In particular, if f : G~ — R is a bounded lower semi-
continuous function and f[G is superharmomc then f(x) > f fdug + f(00)(1 — pR™), by 4780. Similarly,
if f: G~ = R is continuous and f1G is harmonic, then f = [ fdpg + f(00)(1 — puyR") for every z € G.

(d) Suppose that (A, )nen is a non-decreasing sequence of analytic subsets of R”, with union A. For
x € R", let ps”, ptz be the harmonic measures for arrivals in A,,, A respectively from z. Then u, is the

limit lim, o0 ué") for the narrow topology on the space of totally finite Radon measures on R” (437Jd). P
Let 7,, 7 be the Brownian hitting times for A,, — x, A — x respectively. Then (7,,)nen is a non-increasing
sequence with limit 7. Since every w €  is continuous, X, (w) = lim, o X, (w) whenever 7(w) < co. Set

H, ={w: Tp(w) < oo} for each n, H = {w : 7(w) < 0o} = U,,cn Hn-
If f € Cp(R"), then f(z+ X, (w)) =lim, 00 (2 + X, (w)) for every w € H, so
ffdum = fH fle+ X)duw = lim, o an x+ X., )dpw = lim, e ffd,u (n).
As f is arbitrary, p, = lim, ,u(n) (437Kc). Q
478Q It is generally difficult to find formulae describing harmonic measures. Theorem 4781, however,

gives us a technique for an important special case.

SFormerly 235L.
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Proposition Let S be the sphere 9B(y,d), where y € R” and 6 > 0. For 2z € R"\ S, let (, be the
indefinite-integral measure over v defined by the function

|02 —[|z—y]|?|
rBr6ljz—z|"
—0if ze R"\ S.

Z if z €S,

(a) If « € int B(y, ¢), then the harmonic measure p, for arrivals in S from z is (.
(b) In particular, the harmonic measure p,, for arrivals in S from y is %uLS .

(c) Suppose that r > 2. If z € R" \ B(y, ), then the harmonic measure p, for arrivals in S from z is (,.

. or—2
In particular, p,R" = ———.
P : Jo—yl—

proof (a) If g € Cp(R"), then 478Ib tells us that we have a continuous function f, which extends g, is
harmonic on R” \ S and is such that fy(z) = [g¢d(,. Now G = int B(y,d) is bounded, so it has few
wandering paths (478N) and the harmomc measure /i, is defined, with f,(z) = [ fy dpg, by 478Pc. But
this means that
[ 9dpe = [ fodpe = fylx) = [ gdés.
As g is arbitrary, p, = (, (4151), as claimed.
(b) If = y then
O —lle—yl* _ _ ¢ 1

rB.8|lz—z|"  rB.0T+r  vS
if z € S. Since vL S is the indefinite-integral measure over v defined by xS (234M7), we have the result.

(c) (i) To see that (, is the harmonic measure, we can use the same argument as in (a), with decorations.
If g € Cyp(R"), then 478Ib gives us a bounded continuous function f,, harmonic on H = R" \ B(y, J), such
that f, agrees with g on S, and f4(x f gd(,. S is conegligible for both p, and (,.

(a) If r > 3, then

lim su |fg(z)] < S limsu Nz=ylP=0"
Plafoo lfo(@)] < 737 Pllall=oo laf=s—Jyl)r ~

So setting fy(c0) =0, fq : H™ — R is continuous and bounded, and harmonic on H; so that
fgde_ ffqd:ux'i'fg( )(1_MwRT):fgdﬂw~
As in (a), we conclude that (, = .

(B) If r = 2, then by 478Mb we see that almost every w € ) takes values in B(y,d) —x; so p,R" =
Set fq(z) = fy(x) for & € R?, f4(00) = liminf| ;e fy(2). Then f, is lower semi-continuous on H” and
harmonic on H, so

[ 9d¢e = fo(x) = fo(x) > [ fodpa+ fo(00)(1 — paR) = [ gdps.

Applying the same argument to —g, we see that f gd(, < f gdu,, so in fact the integrals are equal, and we
have the result in this case also.

(i) Now
r_ _ [ lz—y|=6>
/‘LIR _CIS_‘/ST’BMHM*ZHTV(CZZ)
_ lleylP o v(@B0)
/63(0,6) Tﬁr‘s“x*y*Z”TV( ?) 86|z —yl[" 2
(478Gh)

"Formerly 234E.

D.H.FREMLIN



146 Geometric measure theory 478Q

52
lz—yll~=2"

478R Theorem Let A, B C R" be analytic sets with A C B. For z € R", let ME;“), ,ug(cB) be the harmonic

measures for arrivals in A, B respectively from z. Then, for any x € R”, <,u§A))yeRr is a disintegration of

M;A) over M&B).

proof (a) Let 7 be the Brownian hitting time to B — x, and 7/ the hitting time to A — z; then 7(w) < 7/(w)

for every w. If 7(w) < oo, set f(w) = = + w(r(w)), so that M;A)
H={w:1(w) < co}. Define ¢, : @ x Q@ — Q as in 477G, so that

is the image measure (uw )gf~!, where

Then we have x + ¢, (w,w')(t) € A iff t > 7(w) and f(w) + W'(t — 7(w)) € A; so if we write o, for the
Brownian hitting time to A — f(w) when w € H, 7/(¢; (w,w’)) = 7(w) + 0, (w').

(b) Now suppose that E C R" is a Borel set. Then

p(EB) = pw{w: 7'(w) < 00, 2 + w(r'(w)) € E}
= i {(w,w") : (7 (W, ")) < 00, T+ dr(w, ) (7' (fr (w,0))) € B}
= i {(w,w") : (W) < 00, (W) < 00, f(w) +w'(0u(w)) € E}

- /H pw AW’ : 7)< 00, () + ' (0()) € Elpuw (dw)

= [ B ta) = [ uE (@),

The definition in 452E demands that this formula should be valid whenever F is measured by u(mA); but in

general there will be Borel sets E', E” such that £/ C F C E” and ,ugA)(E’) = [L;SCA)(E) = NECA)(E"), in

which case we must have /Lg(JA)(E’) = MZ(JA)(E) = ﬂéA) (E") for ﬂ;(DB)—almost every y, and again p{™ (E) =
A
S g () (dy).

478S Corollary Let A C R" be an analytic set, and f : A — R a bounded universally measurable
function. For x € R" \ A set g(z) = [ fdu,, where p, is the harmonic measure for arrivals in A from .
Then g is harmonic.

proof Suppose that § > 0 is such that B(z,d) N A = (), and set S = dB(z,d) = O(R" \ int B(z,d)). Then
the harmonic measure for arrivals in R” \ int B(z, ) from z is %uLS’ (478Qb). So

9(x) :/fd/lz:/sé/fduyu(dy)

(478R, 452F)

As x and ¢ are arbitrary, g is harmonic.

478T Corollary Let A C R" be an analytic set, and for € R" let y1,, be the harmonic measure for
arrivals in A from z. Then z — p, is continuous on R” \ A for the total variation metric on the set of totally
finite Radon measures on R” (definition: 437Qa).
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proof Take any y € R"\ A. Let § > 0 be such that B(y,)NA = 0, and set S = dB(y, ). For x € int B(y, J),
let ¢, be the harmonic measure for arrivals in R™\ B(y, d) from z, so that (, is the indefinite-integral measure
over v defined by the function

52 —[lz—y|?
rBréljx—z|"

—0if ze R"\ S

if ze S,

(478Qa). Then, for any x € int B(y, d), (u.).crr is a disintegration of p, over (,. So if E C R" is a Borel
set,

5 —llz—y|?

1
But this means that
s 02— |lz—yl? 62
FE)— E) <22 su — ;
‘/Jw( ) :uy( )| = 18,0 szS’ llz—z||" lly—z|"
as I is arbitrary, the distance from p, to p, is at most
- 5% —[lz—y? 6
5" 2su = ,
e el e

which is small if z is close to y.

478U A variation on the technique of 478R enables us to say something about Brownian paths starting
from a point in the essential closure of a set.

Proposition Suppose that A C R” and that 0 belongs to the essential closure cl*A of A as defined in 475B.
Then the outer Brownian hitting probability hp*(A) of A (4771a) is 1.

1-a?

proof (a) Take that a € ]0,1[ such that o)

... < 4, are such that §; < ad;41 for i < n. For i < n, let 7; be the Brownian hitting time to S; = 0B(0, §;).
Then

= % Suppose that £ C R" is analytic, and that 0 < dg <

pw{w : w(r(w)) ¢ E for every i <n} < [ (1 — 5 )
P Induce on n. If n =0, then
e w(ro(w)) ¢ By =1 g™ (B)
(where ,ugsi) is the harmonic measure for arrivals in .S; from 0)
o vS; - 2uS;

(478Qb). For the inductive step ton+1> 1, let ¢ : @ x Q — Q be the inverse-measure-preserving function
corresponding to the stopping time 7, as in 477G; when 7, (w) is finite, set y(w) = w(m(w)) € S,. Since
Ti(w) < Tip1(w) whenever ¢ < n and 7;(w) is finite,

Ti((w,w')) = 7i(w)
for i < n and w, W' € Q. As for 7, 41(¢(w,w)), this is infinite if 7,,(w) = oo, and otherwise is 7, (w’),
where o, is the Brownian hitting time of S, 1 —y. Now if y € S,,, then

§2 . —§2
o p) = [ ety

5,1y BrOne =yl

(478Qa)
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62, ,—62

n+41 n v E' m S
- TBT n+1(6n+1+6n)7l ( 7L+1)
1—a2 I/(Eﬁsn 1)
1= B — v(BNSns1)
~ rBed, i (14a)” VB N Snv1) 208011

Consequently

pw{w: w(r(w)) ¢ E for every i <n+ 1}
— (i % ) {(@,) : B0, (73(Bl, ) ¢ F for every i <+ 1)
= (uw x pw ){(w,0') : w(ri(w)) ¢ E for every i < n, w'(0y(w)(w')) ¢ E}
= [ e 0y @) € Bl (@)
(setting V = {w : w(r(w)) ¢ E for every i < n})
< gV - sup (1 pPe) )

YESn

n+1
o v(BNSai) _ u(ENS,)
S MWV (1 2Vsn+1 ) S H (1 21/57, )

i=0
by the inductive hypothesis. So the induction continues. Q

(b) In particular, under the conditions of (a), hp(E) > 1—[]_,(1— QEgS )). Now suppose that A C R”

and that 0 € cl*A. Let £ O A be an analytic set such that hp(F) = hp*(4) (4771d). Then 0 € cl*E; set
1 W(ENB(0,5)) L V(ENOB(0,5))
T=3 lim sups o TB00) > 0. For any ¢ > 0, there is a ¢’ € ]0, d] such that ~ 9B > 2v. P Let

B €]0,4] be such that u(E N B(0,3)) > 2yuB(0, ). Then

[P v(En0B(0,0)dt > 2y [ vOB(0, t)dt

so there must be a §’ € 0, 8] such that v(E N 90B(0,¢")) > 29v90B(0,4'). Q

We can therefore find, for any n € N, 0 < dp < ... < 0, such that 0; < ad;1 for every i < n (where « is
chosen as in (a) above) and v(E N 9B(0,6;)) > 2yvIdB(0, ;) for every i. As noted at the beginning of this
part of the proof, it follows that hp(E) > 1 — (1 — v)"*!. As this is true for every n € N, hp(E) = 1, so
hp*(A4) = 1, as claimed.

*478V Theorem (a) Let G C R" be an open set with few wandering paths and f : G~ = R a continuous
function such that f|G is harmonic. For € R" let 7, :  — [0, c0] be the Brownian exit time from G — z.
Set

9r. () = f(@ + w(re(w))) if 7o(w) < o0,
= f(o0) if tlg& lw(t)|| = oo and 7, (w) = 0.

Then f(z) = E(g-,)-
(b) Now suppose that o is a stopping time adapted to (X;);>¢ such that o(w) < 7,(w) for every w. Set

9o (W) = gr, (w) if 0(w) = 72 (w) = o0,
= f(z + w(o(w))) otherwise.
t

As in 455Lc, set ¥y = {E : F € dom uw, EN{w : 0(w) < t} € %, for every t > 0}. Then g, is a conditional
expectation of g., on X,.

proof (a)(i) Of course if x ¢ G then 7,(w) = 0 and g¢., (w) = f(z) for every w and the result is trivial. So
we can suppose that z € G. Note next that if there is any w such that lim;_, ||w(?)|| = oo and 7, (w) = oo,
then G must be unbounded, so f(co) will be defined. Because G has few wandering paths, g, is defined
almost everywhere.
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(ii) Let m € N be such that p(z,R" \ G) > #H and |lz|| < m; for n > m, set G, = {y : |ly|]| < n,
ply, R"\ G) > %_H}, let 7/,, be the Brownian exit time from G,, — z and set 7, (w) = min(n, 7, (w)) for
every w. Note that by 477I(c-1), z + w(Tun(w)) € G,, for every w.

By 4771(c-iii) and 455L(c-v), T4y is a stopping time adapted to (3;);>0. Let (7, )nen be the sequence of
473E, and for n > m set f, = f * h,, where f is the extension of f|G to R” which takes the value 0 on
R"\ G. Then f, and all its derivatives are smooth and bounded. By 478Jb (applied in turn to the functions
f+MYR" and —f + MxR" where M = sup,ec |f(y)], which of course are both superharmonic on G), f,
agrees with f on G,,, so that f,,[G, is harmonic and VZ2f,, is zero on G,, (478Ec). Also, because both f,
and f are continuous, they agree on Gy, and f(z + w(Ten(w))) = fu(z + w(Ten(w))) for every w.

Ifn>m we Qand 0 < s < Tpp(w), then z + w(s) € G, so (V2f,)(z + w(s)) = 0. Dynkin’s
formula (478K), applied to the function y — f,(z + y), therefore tells us that f(z) = f.(z) = [ fu(z +
w(Ten (w))) pw (dw).

(iii) f w € Q and t < 7, (w), then the compact set x +w[[0,¢]] is included in the open set G and there
is an n > max(m,t) such that it is included in G,,. So lim,, o Ton(w) = 72 (w) and, because f is continuous
on G,

gr, (W) = limy o0 f(2 + w(Ten(W))) = liMp o0 fr (2 + w(Ten(W)))

for almost every w. Since ||fnlloo < ||flleo < 00 for every n, Lebesgue’s Dominated Convergence Theorem
tells us that

E(g‘rw) = lim,, 00 f fn(x + W(Tﬂm(w)))uw(dw) = f(x)7
as required.
(b)(1) If wo, w1 € Q, o(wp) =t and wy[[0,t] = wol[0,¢], then o(wy) = ¢t. P The set {w : o(w) < t}

belongs to ¥;; as it contains wy, it contains wy, and o(wy) < t. But now wy agrees with wy on [0, o(w1)], so

olw)>ow)=t. Q
If He X, then wy € H iff w; € H. P For every t > 0, H N {w : o(w) <t} belongs to X, so contains wy
iff it contains w;. Q

{ (;i))Of c}ourse Ey ={w: o(w) = oo} belongs to X, because it has empty intersection with every set
w:o(w) <t}

(iii) gy is Xy-measurable. P For n € N, w € Q and ¢ > 0, set

ha(t,w) = f(w(27[27))) if w(27"[27t]) € G,

= 0 otherwise.

Then h,, is (B([0,00]) x ¥)-measurable, so if we set h(t,w) = lim, 00 hn(t,w) when this is defined, h
also will be (B([0,00[) x X)-measurable, and w +— h(o(w),w) is X-measurable. Now, because ¢ < T,
Jo(w) = h(o(w),w) for almost every w € Q\ E; because uy is complete, g, is Y-measurable. But now
observe that if £ > 0 and o € R, {w : o(w) < ¢, go(w) > a} belongs to ¥ and is determined by coordinates
less than or equal to t, so belongs to 3;. As t is arbitrary, {w : g,(w) > a} € ¥,; as « is arbitrary, g, is
Y.o-measurable. Q

(iv) As in 477G, define ¢, : @ x Q — Q by saying that
Go(w, ") (t) = w(t) if t < o(w),
=w(o(w)) +w'(t —o(w)) if t > o(w).

Then 477G tells us that ¢, is inverse-measure-preserving,.

(V) T2(¢o(w,w")) = 0(W) + Totw(ow)) (@) for all w, w’ € Q. P If o(w) = oo then ¢, (w,w’) = w and

7o (o (W, W) = Ta(w) = o (w).
If 0(w) = 7 (w) is finite then w(o(w)) ¢ G — z and ¢, (w,w’) [0, 7% (w)] = w[[0, 7% (w)], sO
7o (Po (W, ') = T2 (W) = 0(W) = 0(W) + Topu(o(w) (W)
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If o(w) < 7p(w) then w(t) = ¢p(w,w’)(t) belongs to G — z for every t < o(w)) and
To(do (W, ")) = inf{t : t > o(w), w(o(w)) +w'(t —o(w)) ¢ G —x}
=o(w) +inf{t:w'(t) ¢ G — 2 —w(o(W))} = 0(W) + Totwow) (W) Q

Consequently, if w € Q, o(w) < 00 and y = w(o(w)),
Po (w, ") (7o (90 (w, ")) = do(w, W) (0(W) + Taty (W) = y + &' (Taty (W)

whenever either 7, (¢, (w,w’)) or 7,4, (w’) is finite,

9r. (9o (w,0")) = f(z + ¢o(w, W) (T2 (o (w, W) = f(z + Y + W' (To4y (W)

for almost every w’'.

(vi) If H € ¥, then ¢, [H] = H x Q. P If w, w’ € Q then ¢, (w,w’)[[0,0(w)] = wl]0,0(w)], so by (i)
above ¢, (w,w') € Hifwe H. Q
If HN E,, =0, we now have

= o (G0 (w, ")) d(w, W’
/o /%I[H]g (60 (w0, )d(10,)
- /H / F( 4+ 0(0(@)) + 9 (Ta ooy @)))dw'dw

— [t o)
H

s
H

Of course we also have [}, gr, = [;90 if H C Ex. So [,; 90 = [} 97, for every H € ¥, and g, is a
conditional expectation of g, on X,.

(by (a) above)

478X Basic exercises (a) Let G C R" be an open set, and (f,)nen a sequence of superharmonic
functions from G to [0, 00]. Show that liminf, _, f, is superharmonic.

(b) Let G C R” be an open set, and f : G — R a continuous harmonic function. Show that f is smooth.
(Hint: put 4781 and 478D together.)

(c) Let G C R" be an open set, and f : G — [0,00] a lower semi-continuous superharmonic function.
Show that there is are sequences (G, )nen, (fn)nen such that (i) (G,)nen is a non-decreasing sequence of
open sets with union G (ii) for each n € N, f,, : G,, — [0, 00[ is a bounded smooth superharmonic function
and fp, < fIG, (iii) f(z) = lim,_ 0 fn(x) for every z € G.

>(d) Let (X;);>0 be Brownian motion in R", and 6 > 0. Let 7 be the Brownian hitting time to

{z :||z|| > §}. Show that E(r) = ? (Hint: in 478K, take f extending x ~— ||z||* : B(0,) — R.)

(e) Show that hp* : PR" — [0, 1] is an outer regular Choquet capacity (definition: 432J) iff » > 3. (Hint:
if r > 3, pw is inner regular with respect to {K : K C Q, lim;_, inf,cx [|w(t)]| = c0}.)

(f) Show that an open subset of R has few wandering paths iff it is not R itself.

(g) Suppose r = 2. (i) Show that if x € R?\ {0}, then the Brownian exit time from R? \ {x} is infinite
a.e. (Hint: use the method of part (b-ii) of the proof of 478M to show that if R > ||z|| and § > 0 is small
enough then most sample paths meet B(z, R) before they meet B(x,§).) (ii) Show that if G C R? is an
open set with countable complement then G does not have few wandering paths.
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(h) Suppose that r > 3. Let (A, )nen be a non-increasing sequence of analytic sets in R” such that Ay is

bounded and (), oy An = (V,eny An, and € R". Let u;"), 1tz be the harmonic measures for arrivals in A,,,

ﬂmeN A, from x. Show that p, = lim, ,ué") for the narrow topology on the set of totally finite Radon
measures on R”. (Hint: 478Xe, 478Pd.)

(i) Let A C R be an analytic set, z € R and p, the harmonic measure for arrivals in A from z. For y € R
let &, be the Dirac measure on R concentrated at y. Show that (i) if A is empty, then p, is the zero measure;
(ii) if A # 0 but AN [x,00[ = 0 then py = dgup 4; (iil) if A # 0 but AN]—o0,z] = 0 then py = inr 4; (iv) if
A meets both |—oo, 2] and [z, 00[, and y = sup(AN]—o0, z]), z = inf(A N[z, 00]), then u, =6, if y =z =z,

z—x(s T—y 5.

and otherwise i, = —0d, +
zZ=Yy z—Yy

(j) Prove 478Qb by a symmetry argument not involving the calculations of 478I.

>(k) Let G C R" be an open set, and for z € G let p, be the harmonic measure for arrivals in
R" \ G from x. Show that for any bounded universally measurable function f : 0G — R, the function
z+ [ fdp, : G — R is continuous and harmonic.

(1) (i) Suppose that r = 2, and that z, y, z € R” are such that ||z| < 1 = ||z|| and y = 0. Identify R?
ly—zlI’—llz—yll* _
llz—=("

with C, and express x, z as ve'? and e® respectively. Show that, in the language of 272Yg,
A, (0 —t). (ii) Compare 478I(b-iii) with 272Yg(iii).

478Y Further exercises (a)(i) Show that there is a function f : R — Q which is ‘harmonic’ in the sense
of 478B, but is not continuous. (Hint: take f to be a linear operator when R is regarded as a linear space
over Q.) (ii) Show that if the continuum hypothesis is true, there is a surjective function f : R? — {0, 1}
which is ‘harmonic’ in the sense of 478B.

(b) Let G C R” be a connected open set, and f : G — [0,00] a superharmonic Lebesgue measurable
function which is not everywhere infinite. Show that f is locally integrable.

(c) Let G C R? be an open set, and f : G — C a function which is analytic when regarded as a function
of a complex variable. Show that Re f is harmonic. (Hint: The non-trivial part is the theorem that f has
continuous second partial derivatives.)

@

[l]|?”
subset of R", set f*(z) = M%f(z/)(x)) for x € ¢y~ [dom f] \ {0}. (This is the Kelvin transform of f
relative to the sphere 9B(0,1).) (i) Show that if f is real-valued and twice continuously differentiable, then
(V2f*)(x) = Hw‘lll"“ (V2f)((z)) for x € dom f*. (ii) Show that if dom f is open and f is non-negative,

lower semi-continuous and superharmonic, then f* is superharmonic.

(d) Define ¢ : R"\ {0} — R" by setting ¢(z) = For a [—o0, 00]-valued function f defined on a

(e) Let G C R? be an open set. Show that G has few wandering paths iff there is an # € R? such that
hp((R?\ (G U {z})) —z) > 0.

(f) Show that 478K remains true if we replace ‘three-times-differentiable function such that f and its
first three derivatives are continuous and bounded’ with ‘twice-differentiable function such that f and its
first two derivatives are continuous and bounded’.

(g) Let f : R™ — R be a twice-differentiable function such that f and its first two derivatives are
continuous and bounded. Show that

1

. 1 _ _(VNH=)
lims o aj(f(x) " uB(z.9) fB(z,a) fd,u) T 2(r42)

for every z € R".
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(h) Let G CR" be an open set and f: G — R a continuous function such that
. 1 1
limsyo g(f(w) T Bd) fB(M) fdu) =0
for every z € G. Show that f is harmonic.

(i) Let f:R™ — [0,00] be a lower semi-continuous superharmonic function. Show that fw is continuous
for pw-almost every w € Q.

(j) Suppose that A C R". Show that = — hp*(A — z) is lower semi-continuous at every point of R" \ A,
and continuous at every point of R" \ A.

(k) Suppose that A C R" is such that infs~ohp* (AN B(0,d)) > 0. Show that hp*(A) = 1.

(1) Let pw be three-dimensional Wiener measure on 2 = C([0, 0o[;R?)g, and e a unit vector in R, Set
1

Yi(w) = o=l for w € Q and t € [0, 00[ such that w(t) # e. (i) Show that if R > 1 then
__ 1 exp(—||z|*/2t)
B0 = g | SR uta)

1

1 1
< - —u(dr) + ———
= (Vamt)® /Bm,l) e (40) + ey B(e.R)\B(e,1)

—llzl|? /2t 1,1
e p(dx) + 7%
as t — 00, so that lim; ., E(Y;) = 0 and (Y;);>0 is not a martingale. (ii) Show that if n > 1 and 7, is
the Brownian hitting time to B(e,27"), then (Y;a-, )¢t>0 is a martingale, where t A 7,, is the stopping time
w +— min(t, 7, (w)). (iii) Show that (7, (w))nen is a strictly increasing sequence with limit oo for almost every
w. ((Yi)¢>0 is a ‘local martingale’.)

(m) Taking r =2, set S = {(¢,1) : £ € R} and let ¢ be the indefinite-integral measure over v defined by
the function

1
&)~ e

— 0 otherwise.

ifn=1,

Show that ¢ is the harmonic measure for arrivals in S from (0, 0).

478 Notes and comments I find that books are still being published on the subject of potential theory
which ignore Brownian motion. To my eye, Newtonian potential, at least (and this is generally acknowledged
to be the core of the subject), is an essentially geometric concept, and random walks are an indispensable
tool for understanding it. So I am giving these priority, at the cost of myself ignoring Green’s functions.
The definitions in 478B are already unconventional; most authors take it for granted that harmonic
functions should be finite-valued and continuous (see 478Cd). All the work of this section refers to measurable

functions. But there are things which can be said about non-measurable functions satisfying the definitions

here (478Ya). Let me draw your attention to 478Fa and 478H. If we want to say that z — L harmonic,

lll|m=2

we have to be careful not to define it at 0. If (for » > 3) we allow = 00, we get a superharmonic function.

07‘72
If (for r = 1) we allow Lo 0, we get a subharmonic function. The slightly paradoxical phenomenon of
0—1

478Y1 is another manifestation of this.

I hope that using the operations —>° and 0°° does not make things more difficult. The point is that
by compactifying R" we get an efficient way of talking about lim,|—o f(z) when we need to. This is
particularly effective for Brownian paths, since in three and more dimensions almost all paths go off to
infinity (478Md). In two dimensions the situation is more complex (478Mb-478Mc), and we have to consider
the possibility that a path w in an open set may be ‘wandering’, in the sense that it neither strikes the
boundary nor goes to infinity, and lim;,~ f(w(t)) may fail to exist even for the best-behaved functions

(o0}
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f. Of course this already happens in one dimension, but only when G = R, and classical potential theory
(though not, I think, Brownian potential theory) is nearly trivial in the one-dimensional case.

Many readers will also find that setting » = 3 and rf3, = 47 will make the formulae easier to digest. I
allow for variations in r partly in order to cover the case r = 2 (in this section, though not in the next, many
of the ideas translate directly into the one- and two-dimensional cases), and partly because it is not always
easy to guess at a formula for r > 4 from the formula for r = 3. There is little extra work to be done, given
that §§472-475 cover the general case.

I call 478K a ‘lemma’ because I have made no attempt to look for weakest adequate hypotheses; of course
we don’t really need third derivatives (478Yf). The ‘theorems’ are 478L and 4780, where the hypotheses
seem to mark natural boundaries of the arguments given. In 4780 I use a language which is both unusual
and slightly contorted, in order to do as much as possible without splitting the cases r < 2 from the rest. Of
course any result involving the notion of ‘few wandering paths’ really has two forms; one when r > 3, so that
there is no restriction on the open set and we are genuinely making use of the one-point compactification of
R", and one when r < 2, in which essentially all our paths are bounded.

Theorem 4780 leads directly to a solution of Dirichlet’s problem, in the sense that, for an open set G
with few wandering paths, we have a family of measures enabling us to calculate the values within G of a
continuous function on G- which satisfies Laplace’s equation inside G (478Pc). We do not get a satisfactory
existence theorem; we can use harmonic measures to generate many harmonic functions on G (478S), but we
do not get good information on their behaviour near G, and are left guessing at which continuous functions
on 0°G will be extended continuously. The method does, however, make it clear that what matters is the
geometry of the boundary; we need to know whether, starting from a point near the boundary, a random
walk will hit the boundary soon. So at least we can see from 478M that (if r > 2) an isolated point of 0G
will be at worst an irrelevant distraction. For r > 3 the next section will give some useful information (479P
et seq.), though I shall not have space for a proper analysis.

The idea of 478Vb is that we have a particularly dramatic kind of martingale. Writing S for the set of
stopping times o < 7, it is easy to see that the family (g,),cs is @ martingale in the sense that ¥, C 3,/
and g, is a conditional expectation of g,» on ¥, whenever o < ¢’ in S.

Version of 15.2.10/28.4.10
479 Newtonian capacity

I end the chapter with a sketch of fragments of the theory of Newtonian capacity. I introduce equilibrium
measures as integrals of harmonic measures (479B); this gives a quick definition of capacity (479C), with
a substantial number of basic properties (479D, 479E), including its extendability to a Choquet capacity
(479Ed). 1T give sufficient fragments of the theory of Newtonian potentials (479F, 479J) and harmonic
analysis (479G, 4791) to support the classical definitions of capacity and equilibrium measures in terms of
potential and energy (479K, 479N). The method demands some Fourier analysis extending that of Chapter
28 (479H). 479P is a portmanteau theorem on generalized equilibrium measures and potentials with an exact
description of the latter in terms of outer Brownian hitting probabilities. I continue with notes on capacity
and Hausdorff measure (479Q), self-intersecting Brownian paths (479R) and an example of a discontinuous
equilibrium potential (479S). Yet another definition of capacity, for compact sets, can be formulated in terms
of gradients of potential functions (479U); this leads to a simple inequality relating capacity to Lebesgue
measure (479V). The section ends with an alternative description of capacity in terms of a measure on the
family of closed subsets of R" (479W).

479A Notation In this section, unless otherwise stated, » will be a fixed integer greater than or equal
to 3. As in §478, p will be Lebesgue measure on R”, and §, the measure of the unit ball B(0,1); v will be
normalized (r — 1)-dimensional Hausdorff measure on R”, so that v(0B(0,1)) = rf,.

Recall that if ¢ is a measure on a space X, and E' € dom ¢, then (L F is defined by saying that ((L E)(F) =
C((ENF) whenever F C X and ¢ measures E N F (234M®). If ¢ is a Radon measure, so is (L E (416Sa).

As in §478, Q will be C([0,00[;R")g, with the topology of uniform convergence on compact sets; upw
will be Wiener measure on ). Recall that the Brownian hitting probability hp(D) of a set D C R” is

8Formerly 234E.
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pw{w : w D] # 0} if this is defined, and that for any D C R" the outer Brownian hitting probability is
hp*(D) = piy{w : w1 [D] # 0} (4771a).
If x € R" and A C R" is an analytic set, ,u;A) will be the harmonic measure for arrivals in A from z
(478P); note that p&V (R7) = 1 (94) = hp(A — z).
I will write pg, for the total variation metric on the space Mf{ (R") of totally finite Radon measures on
R", so that
Piv(A Q) = SUDE pCR™ are Borel M — CE — AF + (F

for \, ¢ € M7 (R") (437Qa).

479B Theorem Let A C R” be a bounded analytic set.
(i) There is a Radon measure A4 on R”, with support included in 0A, defined by saying that

<7‘ﬁ §c )>$€3B(0’7) is a disintegration of A4 over the subspace measure vyp(,) Whenever v > 0 and
A Cint B(0,7).

(ii) Aa is the limit lim)— o0 ||m\\r_2u§cA) for the total variation metric on My (R").
proof (a) Suppose that v > 0 is such that A C int B(0,~). By 478T, z i (E) : 0B(0,v) — [0,00]
is continuous for every Borel set £ C R", and M(A)(RT \ A) = 0 for every x, so {,u( )ize 0B(0,7)} is
uniformly tight. By 452Da, we have a unique totally finite Radon measure ¢, such that (—— B ui )>w€8 B(0,y)

is a disintegration of ¢, over the subspace measure vyp(g,,). Since R"\ A is ,um )-neghglble for every
x € 0B(0,v) (478Pa), it is also (,-negligible.

(b) Now suppose that A C int B(0,~) and that ||z|| = M~, where M > 1. Then 478R tells us that

</,L§/A)>y€RT is a disintegration of ug;A) over u( ©m), So, for any Borel set E C R",

68— ol V| = | [ VB v(an) ~ ol 2 [ VB0 )
RT
(where S = 0B(0,7))
=i |/M<A)EV — [l / s E ul (dy)|
Y S
(478Pa)
() By ( r—2 [ _l=llP=y* HAEv(d
= By |/“ v(dy) = lle] /rﬁ FETRA ARG
(478Q)
1— lzlr=2 =P () gy, g
WM/| o2 L2 0 By
r—2 ||33H -
= el
B +w||xur :
=7 Z‘QE(‘ foyl |+ eyl
B r_—o Mr,yr _ ,YT'M1'—2
=7 an—y ~ U Famy)
r—2 MT—2 _ M
( (M-1)" 1+ (Mfl)r>'

(c) Accordingly

MT | M2 )

r—o (A e
oGl 2y < 27 (1 = 1+

whenever v > 0, A C int B(0,v) and ||z|| = M~ > ~; so that
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. r—2 (A
Gy = im0 ||| 25

for the total variation metric whenever v > 0 and A C int B(0,~). We can therefore write A4 for the limit,
and both (i) and (ii) will be true, since I have already checked that supp((,) € 0A for all large ~.

479C Definitions (a)(i) In the context of 479B, I will call A4 the equilibrium measure of the bounded
analytic set A, and AgR" = A4 (0A) the Newtonian capacity cap A of A.

(ii) For any D C R", its Choquet-Newton capacity will be

C(D) = infGQD is open SungG’ is compact cap K.

(I will confirm in 479Ed below that ¢ is in fact a capacity as defined in §432.) Sets with zero Choquet-Newton
capacity are called polar.

(b) If ¢ is a Radon measure on R", the Newtonian potential associated with ¢ is the function W :
R" — [0, 0] defined by the formula

Welw) = [y, s ld)

for x € R". The energy of ( is now
1
energy(¢) = [ WedC = [, fRTWC(dy)C(d@'

If A is a bounded analytic subset of R”, the potential W4 = Wy , is the equilibrium potential of A.
(In 479P below I will describe constructions of equilibrium measures and potentials for arbitrary subsets
D of R” such that ¢(D) is finite.)

(c) If ¢ is a Radon measure on R”, I will write U, for the (r — 1)-potential of ¢, defined by saying that
1
Ue(w) = fw Wg(dy) € [0,00] for z € R".

479D The machinery in Theorem 479B gives an efficient method of approaching several fundamental
properties of equilibrium measures. I start with some elementary calculations.

Proposition (a) For any v > 0 and z € R", the Newtonian capacity of B(z,7) is v"~2, the equilibrium
measure of B(z,7) is %VL@B(,Z, v), and the equilibrium potential of B(z,) is given by

r—2

Wam(x) = min(lvm)

for every z € R”.

(b) Let A C R” be a bounded analytic set with equilibrium measure A4 and equilibrium potential W 4.
(i) Wa(z) <1 for every z € R”.
(ii) If B C A is another analytic set, Wg < Wa.
(iif) Wa(x) = 1 for every z € int A.

(c) Let A, B CR" be bounded analytic sets.
(i) Defining + and < as in 234G® and 234P, Aaup < A4 + Ap.
(ii) AaB < cap B.

proof (a) For z € R" \ B(z,7), 18P EM) is the indefinite-integral measure over v 0B(z,7) defined by the

: lz—2[2—~ r—2, (B(z:7) ; : o
function y — Blleal (478Qc). So ||z||"*pa is the indefinite-integral measure defined by
)" 2 (lz—=]—7*)
—> T = .
v L) = g e

9Formerly 112Xe.
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(z7)

As ||z|| — oo, faly) — uniformly for y € 0B(2,7), s0 Agy) = lim|g)-e ||xHT*2/QL§UB is

r

vLOB(z,v). Consequently the capacity of B(z,7) is v(0B(z,7)) = 4"~2, and the equilibrium

1
T,Br T8y
potential is

1
W (@) = B /Z)B(”)ymnr_z’/(dy)

1 1 1 (0B(0,7))
= — —_— d = —
rﬂ«v/QB<my>ly+z—mw‘2”( R e P |

(478Ga)

s 8l
= mm(l’inz—z”r*?)'

(b)(i) Let v > 0 be such that A C int B(0,~). Then

7 1
Walw)= | o= A (dy)v(d
Al@) /]Rr llz—yl"—2 Aald T,BT /BB(O " /RT lz—yl— " (dy)v(dz)

1 1
< — —v(d
= 1By /é)B(O,w) lz—z||"—2 V( Z)

_ v(9B(0,7)) 1
rBry  max(y,l|zl)r2

(452F)

(478Pb, 478H)

(478Ga)
<1

(ii) Let v > 0 be such that A C int B(0,v). Then

e lz—yllm=2

__1 By d
55 Doy oo Tt @2

= ! B g @ (dw)v(d
5 Lo o L e o i)

(because (ug,, )>U,€Rr is a dlsmtegratlon of u( ) over ,u,(zA) for every z, by 478R)

1
< L A CS d
T By /aB(om /R le—wf—2H2 (dw)(dz)

is continuous and superharmonic)

W(z) = / L p(dy)

(by 478Pb, because y —

lz—yl~—2

= Wa(z).

(iii) If = € int A, there is a v > 0 such that B(x,~) C A; now, putting (a) and (ii) above together,
Wa(z) > Wp(pq)(2) = 1.
Since we know from (i) that W4 (z) < 1, we have equality.
(c)(i) Suppose that K C R" is compact and that 2z € R". Let 74, 75 and T4up be the Brownian hitting

times to A —z, B — z and (AU B) — z respectively. Then 74up = 74 A 7. Now
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M;AUB)

(K) = pw{w : Tavp(w) < 0, z + w(taup(w)) € K}
< pw{w: Taup(Ww) = Ta(w) < 00, 2+ w(Ta(w)) € K}
+ pww : Tavp(Ww) = TB(W) < 0, z + w(Tp(W)) € K}

< 1K) + n{PU(K).

Multiplying by ||z||"~2 and letting ||z| — oo,
Au(K) <MK + XK = (Aa + Ap)(K)
for every K, which is the criterion of 416E(a-ii).

(ii) For any = € R",

p(B) = pw{w : Ta(w) < 00, =+ w(ra(w)) € B}
(where 74 (w) is the Brownian hitting time to A — z)
< pwiw:w B —a] # 0} = ufP (R).

Multiplying by |lz|"~2 and taking the limit as ||z| — oo, AaB < cap B.

479E Theorem (a) Newtonian capacity cap is submodular (definition: 413Qb).
(b) Suppose that (A, )nen is a non-decreasing sequence of analytic subsets of R” with bounded union A.
(i) The equilibrium measure A4 is the limit lim,, ;oo A, for the narrow topology on the space My (R")
of totally finite Radon measures on R".
(ii) cap A = lim,, o, cap A,
(iii) The equilibrium potential Wa is lim,, o Wa, = sup,cy Wa,, -
(c) Suppose that (A,)nen is a non-increasing sequence of bounded analytic subsets of R" such that
Mnen An =N, en An = A say.
(i) A is the limit lim,_,o A4, for the narrow topology on My (R").
(ii) cap A = lim,,_, oo cap A,.
(d)(i) Choquet-Newton capacity ¢ : PR"” — [0,00] is the unique outer regular Choquet capacity on R”
extending cap.
(ii) ¢ is submodular.
(iii) ¢(A) = sup{cap K : K C A is compact} for every analytic set A C R".

proof (a) Let A, B C R" be bounded analytic sets. If x € R", then
hp((AUB) —z) + hp((AN B) —z) < hp(A — z) + hp(B — z).
P For C C R” set
He = {w:w € Q, there is some t > 0 such that z + w(t) € C},
so that if C' is an analytic set, hp(C — x) = pw He. Then
Haup=HaUHp, Hanp C HyNHp,

SO
hp((AU B) —z) + hp((AN B) — z) = pwHaup + pwHanp
<pw(HaUHR)+ pw(HaNHp)
=pwHa+ pwHp
=hp(A—z)+hp(B—=z). Q
Consequently
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cap(AU B) 4+ cap(AN B) = Aaup(R") + Aans(R")
= lim 2" (hp((AU B) — @) + hp((AN B) - x)

llzll—o0

< lim|lz]|"7*(hp(A — ) + hp(B — ))

T lzll—oo

= cap A 4 cap B.
As A and B are arbitrary, cap is submodular.

(b)(i) Let f : R™ — R be any bounded continuous function. For any z € R", [ fd,ugcA) =lim;, 00 [ fdugcA").
P Let 7, 7, be the Brownian hitting times to A — x, A,, — x respectively. Observe that (7, (w))nen is non-
increasing and

T(w) = inf{t: 2+ w(t) € U,en Ant = limy 00 Tn(w)

for every w € Q. Set H = {w : 7(w) < oo}, Hp, = {w : 7p(w) < oo}. Then (Hp)nen is a non-decreasing
sequence with union H, and for w € H

f(@+7(w)) =lim,—eo f(2 + T (w))

because f and w are continuous. Accordingly

[ an

/ f(@ + w(r(@)))
H
= lim fz+wlmw)) = lim | fdui*). Q

n—oo H'n. n—oo

Taking v > 0 such that A C int B(0,7),

1
dhg = / / dpMv(de
Jia=gm [ [ saovan)

! / lim [ fdpA)u(dz)
9B(0,7)

T By n—o0o

(452F)

= lim

1 A) T
fdplAy(de) = lim /fd)\An.
n—00 rﬁr'y 43(077)/ H ( ) n—00

As f is arbitrary, Ay = lim,, oo A4, for the narrow topology (437Kc).

(ii) Taking f = xR" in (i), we see that cap A = lim,,_, cap A,.

(iii) For any = € R",
= 1 P 1
W = | ————Aa(dy) <1 frooo | ————Aa. (d
a(@) = [ g Aaldy) Stiminfuoo [ prmsda, (@)

because y +— is non-negative and continuous (437Jg). As W, (z) < Wa(z) for every n (479D (b-

ly—z|"—2
i), Wa(z) = limy, o0 Wa, (z) = sup,,ey Wa, (z).

(c) Most of the ideas of (b) still work. Again take f € Cy(R"). Then [ fdu'™ =1lim, s [ fdul™ for
any x € R". P As before, let 7, 7, be the Brownian hitting times to A — x, A,, — x respectively. This time,
(Tn)nen is non-decreasing. Let €' be the conegligible subset of 2 consisting of those functions w such that
limy o0 Jw(t)]] = 00. If w € Q' and ¢ = lim,,_, oo 7, (w) is finite, then for every n € N there is a t, <t 427"
such that x + w(t,) € A,. Let s € [0,t] be a cluster point of (t,)nen; then = + w(s) is a cluster point of

T + w(tn))nen, so belongs to A, = A, and 7(w) < s < t. Since 7(w) > T(wy,) for every n, we have
neN
T(w) = limy,— 00 7(wWp).
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Setting H = {w : 7(w) < oo} and H,, = {w : 7,(w) < o0}, (Hp)nen is a non-increasing sequence with
intersection H, and for w € H

flx+7(W)) =lim, o f(z + 70 (w))-

So once again

[ = [ o trie) (@)

= Jim [ fo+ wlme)r(d) = [ ). @

n—oo H
n

The rest of the argument follows (b-i) and (b-ii) unchanged.
(d) (i) I seek to apply 432Lb.

() Let K be the family of compact subsets of R™ and set ¢; = cap [K. By (a), ¢; is submodular. If
G C R" is a bounded open set, then it is expressible as the union of a non-decreasing sequence of compact sets,
so by (b-ii) we have cap G = sup{e1(L) : L € K, L C G}; and if K € K, there is a non-increasing sequence

(Gn)nen of bounded open sets such that K = (1, .y Gn = ),y Gy and now c1(K) = limy, o cap G, by
(c-ii). But this means that

1 (K) < infGQK is open SUP[,C @ is compact C1 (L) <infyencapGpn =1 (K)

So all the conditions of 432Lb are satisfied, and ¢, as defined in 479C(a-ii), is the unique extension of ¢; to
an outer regular Choquet capacity on R".

(B) Now ¢(A) = cap A for every bounded analytic set A CR". P

c(A) = sup c(K)

KCA is compact
(432K)

= sup cap K <capA < cap G

inf
KCA is compact GDA is bounded and open

= inf sup (L) =c(A). Q

GDA is open LCG is compact

So ¢ extends cap, as claimed, and must be the unique outer regular Choquet capacity doing so.

(ii)-(iii) By 432Lb, c is submodular; and (iii) is covered by the argument in (i-3).

479F 1 now wish to describe an entirely different characterization of the capacity and equilibrium
measure of a compact set, which demands a substantial investment in harmonic analysis (down to 479I) and
an excursion into Fourier analysis (479H). I begin with general remarks about Newtonian potentials.

Theorem Let ¢ be a totally finite Radon measure on R”, and set G = R" \ supp ¢, where supp ( is the
support of ¢ (411Nd). Let W, be the Newtonian potential associated with (.

(a) We : R™ — [0, 00] is lower semi-continuous, and W¢[G : G — [0, 0o is continuous.

(b) W, is superharmonic, and W, |G is harmonic.

(c) We is locally p-integrable; in particular, it is finite p-a.e.

(d) If ¢ has compact support, then (R" = lim; |00 [|2]|" > We ().

(e) If W¢ | supp( is continuous then W¢ is continuous.

(f) If K is a compact set such that W, [K is continuous and finite-valued then W¢|_ g is continuous.

(g) If W, is finite (-a.e. and f : R” — [0, 00] is a lower semi-continuous superharmonic function such that
f>We C-ae., then f > We.

(h) If ¢’ is another Radon measure on R” and ¢’ < ¢, then W < W, and energy(¢’) < energy(¢).

D.H.FREMLIN



160 Geometric measure theory 479F

. 1
= lim,—y0o ———— for

proof (a) If (z,)nen is a convergent sequence in R” with limit z, then ly—zn] 2

_
ly—z|~=2
every y (counting % as 0o, as usual), so that W, (z) < liminf,,_,o W¢(z,), by Fatou’s Lemma. As z and

(®n)nen are arbitrary, W, is lower semi-continuous.

2
If £ € G, then
ly—anll"=2 = p(z,supp()™—2

Dominated Convergence Theorem tells us that W¢(z) = lim, o W¢(2,,) and that W is continuous at x,
as well as finite-valued there.

for all n large enough and all ¥ € supp(, so Lebesgue’s

(b) If z € R™ and § > 0, then

1
_ Wed ¢(d d
W(9B(2.3)) /BBW) = ané /BBM) /R Ile—yl—= ynr 76(d2)v(dy)

= [ om — L (dy)c(d
/RT ”(dB(x"s)) 8B(x,5) ||Z—y||’ 2v(dy)C(d2)

Y N 1
- /R,r V(6B(0,)) /BB(M) ||z_x_yHr72V(dy)C(dZ)

1 = X
> /R L ((dz) = We()

e lz—zlm2

(478Ga) with equality if B(x,d) does not meet supp ¢, since then z — z ¢ B(0,4) and

1 1
u(aB FyJones =) = =

for ¢-almost every z.

1
) ly—|=2

1
[ owen=[ |yt
B(0,7) B(0,y) /R Y

:/ / Wﬂ(dx)g‘(dy) S%T@WQCRT
rJB(0,~) 1Y%

r 1 2
(c) For any v > 0 and y € R", fB(O pu(dr) < Erﬁyy (478Gc), so

is finite.

(d) If ¢ has compact support, there is an > 0 such that supp ¢ C B(0,+). In this case, for ||z|| > v, we
have

[E el W ez o _lal™ oo
< R
Gty 7 R = o ooy () = We@llal™ < s

so all the terms converge to (R" as ||z| — oc.
(e) Since W; is lower semi-continuous, it will be enough to show that H = {z : W¢(x) < ~} is open for

every v € R. Take zg € H. If zg ¢ supp( then W¢ is continuous at zg, by 479Fa, and H is certainly a
neighbourhood of xo. If zy € supp¢ take n € ]0,27"(y — W¢(zo))[. Because We(zo) is finite, ({zo} = 0;

. . . 1
_ < _
because W[ supp( is continuous, there is a ¢ > 0 such that fB(xmé) H:co—yHT‘QC(dy) < n and |W¢(z)
We(zo)| < m whenever x € B(zg,d) Nsupp (. Let ¢’ € ]0,d[ be such that
’ 1 . 1 | < n
lz—yll"==  llzo—yl"=2" — (R"

whenever ||z — zg|| <6’ and ||y — zo| > J; then

1 1
e o5 Tog )~ Jerb(eos Ty z (@) <1

whenever x € B(xg,?’).
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Take x € B(zg, 16'), and let z € B(wo, §) Nsupp ¢ be such that ||z —z|| = p(z, B(zo, §) Nsupp (). We have
[ —z|| < [l =0l so ||z — ol < 2]z —xol < &' If y € B(xo,6)Nsupp, then [ly—z|| < [z -y +[lz—2z[| <
2||z — y||; so

E r—2 1
——((dy) <2 _ 1
/B(ro,zi) Hx—yIIT*ZC( v < /B(mé) Hz—y||uzC( y)

r—2 1
—2 W) - [ )

R™\B(z0,5) 177V
1

< 272(2 + W (o) — / L
- ( " g(on) R7\B(z0,5) |zo—yllm—2

C(dy))

:T*n+;é L ay)

(20,8) llzo—yll"=2
<27lp42p < (27— 1),

r 1
We(z) < (2" = 1)77+/ (==
R7\ B(z0,5) v

r 1 r
§277+/ WC(C@)S2”+WC(IO)<'Y~
R™\B(x,6) 1T0~Y

C(dy)

Thus B(z, %5’ ) € H and again H is a neighbourhood of zg. As z is arbitrary, H is open; as 7 is arbitrary,

W¢ is continuous.

(f) Setting H=R"\ K, ( =CL K+ (LH,so We = W¢_x + W g (234Hc!'Y). Now We x and We g
are both lower semi-continuous and non-negative, so if W[ K is continuous and finite-valued then W¢| g [K
is continuous (4A2B(d-ix)). Since supp(¢L K) C K, (e) tells us that W, g is continuous.

(8) ? Suppose that f(xzg) < We(zo). Since {x : f(z) > We(x), We(x) < oo} is (-conegligible, and W,
is measurable therefore (-almost continuous (418J), there is a compact set K such that W¢(z) < oo and
We(z) < f(z) for every x € K, W¢[K is continuous and fK mg(dy) > f(zo). Set ¢' = (LK. By

.
(f), Wer is continuous; Wer(zg) > f(xo); and f(z) > We(z) > Wer(x) for every x € K D supp(’.

Set g = f — Wy and a = inf,cprr g(z) < 0. Because f is lower semi-continuous and W¢: is continu-
ous, g is lower semi-continuous; because ¢’ has compact support, lim|— We/(2) = 0 ((d) above) and
liminf ), 0 g(2) > 0; so L = {z : g(z) = o} is non-empty and compact. Note that L is disjoint from K.
Let z1 € L be a point of maximum norm. Then z; ¢ K, while W¢/[R” \ K is harmonic ((b) above). Let
d > 0 be such that B(x1,d) N K = 0. Then we have

1
v(0B(x1,0)) faB(xm gdv > a

because g(x) > « for every x and g(z) > « whenever & # x1 and (z — z1).21 > 0. But we also have

1 1 1
_— dv = ——— dv — —— Wer d
v(90B(z1,0)) /aB(zl.,é) g v(0B(21,9)) JoB(a1,5) fdv v(9B(z1,0)) /33(95175) ¢

< fla) = We(z) = o
which is impossible. X
(h) By 234Qc, W¢r < We; so
energy((') = [ Werd(! < [[Wed(! < [ Wed( = energy(Q).

479G At this point I embark on an extended parenthesis, down to 4791, covering some essential material
from harmonic analysis and Fourier analysis. The methods here apply equally to the cases r = 1 and r = 2.

0Formerly 212Xh.
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Lemma (In this result, » may be any integer greater than or equal to 1.) For a € R, set k,(x) =

e o
zeR"N\{0}. fa<r, B<rand a+ 3 >r, then kyyp_, is a constant multiple of the convolution k * kg
(definition: 255E, 4440).

proof (a) First note that

fB(O 1) p(dz) *Tﬂrf _aldt:i

r—«o

is finite. Consequently k, is expressible as the sum of an integrable function and a bounded function, and
in particular is locally integrable.

(b) For z € R", set f(z) = [p. ka Yks(z — y)u(dy) € [0,00]. If e € R” is a unit vector, then
f(e) is finite. P For any y e R", at least one of |le — yl|, |le + y|| is greater than or equal to 1, so
kale —y)kgle+y) < kale—y) + ks (e + y). Consequently

Ji02 kale = w)kale +y)u(dy) < [} o o kale = y) + kale +y)u(dy)
is finite. On the other hand, if |ly|| > 2, ||e — y|| and ||e — y|| are both at least %|y]|, so

2« Q[ﬂ
/ Frale — y)ka(e + yu(dy) < / 22 )
R"™\B(0,2) R7\B(0,2) llyll llyll

_ oga+f ! = 27‘7"67‘
=2 Tﬁ / ta+ﬁ a+B—r

is finite. Putting these together, f(e) = [5. ka y)kp(e — y)p(dy) is finite. Q

(c) If e, ¢’ € R™ are unit vectors, then f(e) = f(e ). P Let T : R" — R" be an orthogonal transformation
such that T'e = ¢’. Then

£) = [ kalTe—y)ks(Te =~ piutdy) = [ a(Te = Ty)bs(Te = Ty)u(dy)

r

(because T is an automorphism of (R", 1))

- / ka(e —y)ks(e — y)u(dy)

(because ko (), kg(x) are functions of ||z||)

=[f(e) Q
Let ¢ be the constant value of f(e) for |le|]| = 1.

50 = [ Kalte = )katte — uldy) = / halte ~ t2)ha(te — t2)u(d2)
(substituting y = tz)
_ yr—a—p /T ko(e — 2)kg(e — z)p(dz) = W- Q

(e) If 2 € R"\ {0}, (ko x kg)(z) = 2°7F""ckqyp_r(z). P Set z = x. Then

1 1
ko * k = | —uldy) = | ———————pu(d
(ko * k) () /R Ha:—y||“||y||5'u( ) /R IIw—y—zllaHy+zll‘*”( v)

_ 1 _ c _ oa+B-r
- /R el T ) = feeamr = 2777 o= (@) Q
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(f) Of course it is of no importance what happens at 0, but for completeness: kq4p_r is declared to be

undefined there, and er mu(dy) is infinite for any a and f3, so kq * kg also is undefined at 0 on the

convention of 255E or 4440. Thus we have kq, * kg = 2“+B—rcka+g_r in the strict sense.

Remark The functions k, are called Riesz kernels. It will be helpful later to have a name for the constant
arising here in a special case. If r > 3, I will take ¢, > 0 to be the constant such that c.k,._o = k,._1 *xk,._1.

479H Now for some Fourier analysis which wasn’t quite reached in Chapter 28. In the following, I
will define the Fourier transform JA‘ and the inverse Fourier transform Jvf, for p-measurable complex-valued
functions f defined p-almost everywhere in R”, as in 283W and 284W, and 2 , for a totally finite Radon
measure ¢ on R”, by the formula offered in 285Ya for probability measures. The convolution ¢ * f of a
measure and a function will be defined as in 444H. Thus the basic formulae are

) = gy Jor V@), 1) = g fe € f(@)plde)

for u-integrable f,

1

(W) =ty Jor €7 Cd), (D)) = fo Fla = w)C(dy).

Theorem (In this result, » may be any integer greater than or equal to 1.) Let ¢ be a totally finite Radon
measure on R". .

(a) If f € L&(p), then C * f is p-integrable and (¢ * f)* = (vV27)"C x f.

(b) If ¢ has compact support and h : R" — C is a rapidly decreasing test function (284Wa), then ¢ * h
and h x 2 are rapidly decreasing test functions.

(¢) Suppose that f is a tempered function on R”" (284Wa). If either ¢ has compact support or f is
expressible as the sum of a p-integrable function and a bounded function, then ( * f is defined p-almost
everywhere and is a tempered function.

(d) Suppose that f, g are tempered functions on R” such that g represents the Fourier transform of
f (284Wd). If either ¢ has compact support or f is expressible as the sum of a bounded function and a

p-integrable function, then (v/ 271')"2 X g represents the Fourier transform of ¢ * f.

proof (a)(i) To begin with, suppose that f is real-valued and non-negative. As in §444, I will write fu for
the indefinite-integral measure defined by f over p. By 444K, ¢ * f is p-integrable and (¢ * f)u = ¢ * fu.

As the formula used here for 2 does not quite match that of 445C, whatever parametrization we use for
the characters of the topological group R", I had better not try to quote Chapter 44 when discussing Fourier
transforms. Going back to first principles,

1

)"

(Cx )" (y) =

—iy.x % T ) = 71 e—iy.w * X
( /6 (C* N@)n(dr) = ¢ @,)T/ (C* f)u(dr)
—iy.x _ 1 —iy.(x+z
— o [ € fndn) = s [ [ @ ()

-5

(444C)

o
- ;
3

— g [ [ ()
~ ) / e f(a)u(de) = (V2r) ) ()

for every y € R".

(ii) For general integrable complex-valued functions f, apply (i) to the positive and negative parts of
the real and imaginary parts of f.

(b) (i) Because h is continuous, so is ¢ * h (444Ib). If j < r, then, as in 123D,
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(G (¢ + M)@) = 5= [ e = 4)(dy) = [ 2-h(e = y)(dy) = (¢ 3)(@)

because % is bounded. Since % is again a rapidly decreasing test function, we can repeat this process to
j j

see that ¢ * h is smooth. Next, let v > 0 be such that the support of ¢ is included in B(0,~). If k € N, then
M = sup, g+ (Y* + ||lz[|¥)|h(z)] is finite, and

lzlI* R )] < (lyll + ) *IR(y)] < 28M
whenever ||z —y|| <~. So
[2l*1(¢ * h)(@)] < CR™ - [|2[|* supy, p <y [R(y)] < 28MCRT

for every x € R". Applying this to all the partial derivatives of h, we see that ¢ x h is a rapidly decreasing
test function.

(ii) Again suppose that j < r. Because ¢ has compact support, [ ||z[/¢(dz) is finite, so %2 (y) is defined
3
and equal to —i [ e~ *((dx) for every y € R (cf. 285Fd). More generally, whenever ji, ... ,jm <T,

() = (—i)™ [ &, .. & eV (da),

onj, -0y,

so all the partial derivatives of 6 are defined everywhere and bounded. It follows that 6 is smooth and h x 2
is a rapidly decreasing test function.

(c)(i) To begin with, suppose that f is real and non-negative, and that ¢ has compact support. Set
fn = f x xB(0,n) for each n € N. Then f, is integrable, so ¢ x f,, is defined p-a.e.; also (¢ * fn)nen is
non-decreasing, and (¢ * f)(x) = sup,,en(¢ * fn)(2) whenever the latter is defined and finite.

Let v > 1 be such that the support of € is included in B(0, ), and let k& € N be such that va Wf(x),u(dx)
. . 1 M
. r <
is finite. If y € B(0,7) and & € R", then |z < 2max(y, ||z + y||), so el < Tiel where

M =1+ 2FyF. Tt follows that

/RT e (€ * F) @) / /B(O e @ — S (dy) ()
B /B(O,’y) /r an(x — y)u(dz)(dy)
1
B /B(OP/) /Tmf"(x)u(dm)qdy)

1
<o [ | o emnca)

(¢ * f)(x)u(dz) is defined and finite.

for every n € N. Consequently er 1+|| B

(ii) Now suppose that f is expressible as f; + f, where f; is p-integrable, fo is bounded and both
are real-valued and non-negative. Adjusting f; and fo on a p-negligible set if necessary, we can suppose
that foo is Borel measurable and defined everywhere on R". By (a), ¢ * f; is defined and p-integrable. Next,
¢ * foo is defined everywhere, is bounded, and is Borel measurable (4441a). So (% f =ae ¢ * f1 + ( * foo iS
the sum of a p-integrable function and a bounded Borel measurable function, and is tempered.

(iii) These arguments deal with the case in which f > 0. For the general case, apply (i) or (ii) to the
four parts of f, as in (a-ii).

(d)(i) Suppose to begin with that ¢ has compact support. Let h be a rapidly decreasing test function.
Set %(m) = h(—z) for every z € R". Then his a rapidly decreasing test function, and

(¢ h)(—x) = [ h(~z —y)¢(dy) = [ h(z +y)¢(dy)

MEASURE THEORY



4791 Newtonian capacity 165

for every z € R”. Accordingly

[ sy xnan= [[ nw) @ - ycamutaz)
/ [ b tta - wutaz)c(an)

(because ¢ * |f] is tempered, so [/ |h(z —y)|¢(dy)p(dx) = [|h] x (¢ = |f])dp is finite)

/ [ e+ ) @utdn)c(an)

/ h(z + ) f (2)¢(dy)u(de)
(because [[ |h(z +y)f(2)|u(dx)((dy) = [[ |h(z)f(z — y)|u(dx)¢(dy) is finite)
=/f><(C*h)“du=/9X((C*z)“)vdu
(because ¢ * h and (¢ % k) are rapidly decreasing test functions, by (b))
=[x cxhydn= 2Ry [gxEx () dn
(by (a))
:(\/ﬂ)"/gxéxfﬁdu.

As h is arbitrary, (v27)"g X 2 represents the Fourier transform of ¢ * f.

(ii) Now suppose that f is expressible as f; + foo where f; is p-integrable and f, is bounded. By
(c), ¢ #|f| is defined almost everywhere and is a tempered function. Set ¢, = (L B(0,n) for each n. Then
(V2m)"g x 271 represents the Fourier transform of ¢, * f, for each n. Now <2n>n€N converges uniformly to

8 , and ((, * finen converges to ¢ x f at every point at which ¢ * | f] is defined and finite, which is p-almost
everywhere. So if h is a rapidly decreasing test function,

/hx(\/ )ng—hm/hx )gx(
(the convergence is dominated by the integrable function (v27)"¢R" - |h x g|)
= lim h>< (Cnxf)= /hx( )

n—oo

A

(this convergence being dominated by the integrable function |fAL| x (C*|f]))- As his arbitrary, (vV2m)"g x
represents the Fourier transform of ¢ x f.

4791 Proposition (In this result, r may be any integer greater than or equal to 1.)
(a) Suppose that 0 < o < 7.
(i) There is a tempered function representing the Fourier transform of k.
(ii) There is a measurable function gg, defined almost everywhere on [0, oo[, such that y — go(||y])
represents the Fourier transform of k.
(iii) In (ii),
204/2F(%)f000 trflgo(ﬂefet?dt _ 2(7“7&)/21_‘(%)‘/‘000 taflefgt’zdt

for every € > 0.
(iv) 29727 (%) go(t) = 27 =)/2D(252)t*~" for almost every ¢ > 0.
(v) 20=)/2D(25%)k, _, represents the Fourier transform of 2/2T'(% )k,
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(b) Suppose that (1, (s are totally finite Radon measures on R”, and 0 < a < 7. If {3 ko = (o %k pra.e.,
then Cl = CQ.

proof (a)(i) Set 5 = %(a + 7). Then kg is expressible as fi + fo where f; is integrable and f, is square-
integrable. I®

141
fB(o,l) kgdp = 74'6Tf0 t_Bdt

is finite because 8 < r;

2 _ 00 trfl
er\B(o,l) kgdu = rﬂ’"ﬁ preacd
is finite because 28 > r. So we can take f1 = ko X xB(0,1) and fo =k, — f1. Q
479G tells us that there is a constant ¢ such that
ko =ckg kg =c(f1 % f1+ 2f1 % fa+ fa x f2).

Now f1* f1 is integrable and f7 x f is square-integrable (444Ra), so both have Fourier transforms represented
by tempered functions; while the continuous function fs * fo also has a Fourier transform represented by
an integrable function (284Wi). Assembling these, k, has a Fourier transform represented by a tempered
function.

(ii) We can therefore represent the Fourier transform of k, by the function g, where

y) = Tm e s [ 8511 0k ()

is defined p-almost everywhere (284M/284Wg). Now suppose that T : R” — R" is any orthogonal transfor-
mation, and that y € dom g. Then

n—oo

= Jim g [ e T T (Tt

(because the transpose T'" of T acts as an automorphism of (R”, 1))

= lim ﬁ/e*iTy’“”e*”w‘wnka(x)ﬂ(dx)a

n—oo ™

and g(Ty) is defined and equal to g(y). So we can set go(t) = g(y) whenever y € dom g and ||y|| = ¢, and
we shall have y — go(||ly||) representing the Fourier transform of k.

(iii) If € > 0, then  — e~clel® s a rapidly decreasing test function, and its Fourier transform is the

i L —llal?/4e j11
function x — V3¢ (283N /283Wi'!). We therefore have

J golllyle= W1 u(dy) = o [ halw)e b1 (),

that is,
o r—1 —et? _ _TBr OOE —t2 /4e j;.
T/Brfo " go(t)e ™ dt = (\/E)Tfo prale dt;
simplifying,

> r—1 —et? _ 1 > r—l—a 7t2/4e
/0 t" "go(t)e dtf—(\/@,/o t e dt

2 [ rmamz)y
_ r—a—2)/2 _—u
= SoricE /0 i e “du

(substituting u = t2/4e)

HFormerly 283We.
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2« r—a
2.27/2¢x/2 ( 2 )

On the other hand,

® a1 —et? gy _ (O WVWT? g 1 o
fo e e dt—fo ez € “du-QEa/zI‘(E).

Putting these together,

oo

2&/21‘\(%)[0 tr—lgo(t)e_etzdt _ 2(r—a)/2r(%)f000 t(r—l)—(r—a)e—etzdt

for every € > 0.
(iv) Set
g1 (t) _ trfleﬂg2 (2a/21“(%)go(t) _ 2(7“704)/21'\(%)#177“)
for t > 0. Then g; is integrable and fooo gl(t)e*“?dt = 0 for every ¢ > 0. It follows that g1 = 0 a.e. P

Consider the linear span A of the functions t s =" for € > 0. This is a subalgebra of Cy ([0, 00[) containing
the constant functions and separating the points of [0,00[. It follows that for every v > 0, 6 > 0 and
h € Cp([0,0]), there is an f € A such that |f(t) — h(t)] < 6 for t € [0,7] and ||f|lco < ||P|lo (281E). Since
IS g1 x f =0, we must have

[y g1 x bl <dllgrlls +2|hllee [ 191.(8)]dt.

As 6 and v are arbitrary, [~ g1 x h = 0; as h is arbitrary, [ g1 = 0 for every a > 0, and g; must be zero
almost everywhere (222D). Q
Accordingly 2%/%T(%)go(t) = 2"=)/2D(Z52)t*~" for almost every ¢ > 0.

(v) Now

y = 207D (550 ke —a(y) =ae. 2°/°T(5)g0(llyll)
represents the Fourier transform of 2%/2T(%)k,.

(b) By (a), the Fourier transform of k,, is represented by a tempered function g which is non-zero p-a.e.
As k, is the sum of an integrable function and a bounded function, 479Hd tells us that the Fourier transform

of (1 xk, is represented by (v/ 27r)7"€“1 x g; and similarly for (5. As (1%ky =a.c. (2xka, 21 X g =ae. 82 x g (2841b)

and 2 1 =ae. 22. Since 2 , and 22 are both continuous (285Fb), they are equal everywhere; in particular,

GR" = (41(0) = ((0) = GR".
If {; = (s is the zero measure, we can stop. Otherwise, they can be expressed as (] and v{} where (] and

¢} are probability measures and v > 0. In this case, ¢ and ¢} have the same characteristic function (285D)
and must be equal (285M); so {1 = (2, as claimed.

Remark The functions ( * k, are called Riesz potentials.

479J Now I return to the study of Newtonian potential when r > 3.

Lemma (a) Let ¢ be a totally finite Radon measure on R". Let U; be the (r — 1)-potential of ¢ and W, the
Newtonian potential of (; let k._q and k,_5 be the Riesz kernels. Then Ur =,¢. (*kr—1 and We =4, (*xkr_o.
(b) Let ¢, ¢1 and (2 be totally finite Radon measures on R”.

1) [pr We dGo = [, We,dGi = ifR,, U¢, X Ug,du, where ¢, is the constant of 479G.

(
(ii) The energy energy(¢) of ¢ is CLHUgHg, counting ||U¢||2 as oo if Us ¢ £2(p).
(iii) If ¢ = 1 + 2 then Uy = Uy, + U, and Wy = W, + We,; similarly, Uy = aUe and Wy = oV,
for a > 0.

(iv) If Ue, = Ug, p-a.e., then (1 = (.

(v) It We, = W, p-a.e., then ¢ = (o.
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(vi) (R" = hmwﬁOO fBB(O oy Wedv.
(c) Let My (R") be the set of totally finite Radon measures on R", with its narrow topology. Then

energy : My (R™) — [0, oc] is lower semi-continuous.

proof (a) As k,_; and k,_o are both expressible as sums of integrable functions and bounded functions,
(xk,_1 and ¢ * k._o are both defined a.e. (479Hc); and now we have only to read the definitions to see that
U¢ and W are these convolutions with the technical adjustment that they are permitted to take the value
00.

(b)(i) For any =, y € R",

1 :kr—Q(xfy) :i(kr_l*kr_l)(xiy)

lz—yllm—2 cr

1 1
= — - - 1% dz
cr /Rr lz—y—zlI"="|lz[I"~" (dz)

1 1 1 1
== dz / w(dz).
cr /]RT lo—zll" eyl pldz) = e Jre llz=2l""Hly—z[I"* (dz)

So

| owede = [ [ s aana)
:i/7 / / ||I—z||T—11||y_ZHr—1M(dZ)CI(dx)Cz(dy)
/7 / / lz—z||"~ 1||y P - C1(dz)C2(dy)pu(dz)

— 1 [ UL () U (2)uldz) = /Ucleczdu
RT R~

Cr

Hence (or otherwise)

er WCde1 = ier UCQ x UCldM = er WC1dC2'

(ii) Take ¢ = ¢ = ¢ in (i).

(iii) This is immediate from 234Hc.
(iv)-(v) Put (a) and 479Ib together.
(vi) For any v > 0,

1
Wedv = /W d\
rByy /aB(O;y) ¢ ¢ B(0,7)

= / W(0.)d¢

(479Da)

((i) above)

/mln e z||“" 2)C(alx)
(479Da again)
— (R"

as y — 00.
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c emap ( — ¢ X ( : — X 1S continuous, by a. ext, the function
Th ¢ ¢ x ¢ M;C R" M;: R” x R7) i i by 437Ma. N he f i

A er mk(d(az, y)) : M (R" x R") — [0, oc] is lower semi-continuous, by 437Jg again. So energy is

the composition of a lower semi-continuous function with a continuous function, and is lower semi-continuous
(4A2B(d-ii)).

479K Lemma Let K C R" be a compact set, with equilibrium measure Ag. Then Ax K = cap K =
energy(Ag ), and if ¢ is any Radon measure on R" such that (K > cap K > energy((), { = Ak.

proof (a) We know that Ax K = AxR"” = cap K (479C(a-1)). So if K has zero capacity then g is the zero
measure and energy(Ax) = 0; also the only Radon measure on R” with zero energy is Ak, and we can stop.
So henceforth let us suppose that cap K > 0.

Set

e = inf{energy({) : ¢ is a Radon probability measure on R” such that (K > cap K}.
Because W (z) < 1 for every z € R” (479D (b-i)),
e < energy(A\g) = fWKd)\K < AkR"=cap K
is finite.

(b) Consider the set @ of Radon measures ¢ on R” such that (K = (R" = cap K. With its narrow
topology, @ is homeomorphic to the set of Radon measures on K of magnitude cap K, which is compact
(437R(f-ii)). Since energy : @ — [0,00] is lower semi-continuous (479Jc), there is a A € Q) with energy e
(4A2B(d-viii)).

In fact there is exactly one such member of Q. I* Suppose that ( is any other member of @ with energy
e. Write u¢ for the equivalence class of U in L?. Then 3(¢ + A) belongs to @ and Uiicen) = 1(Ue + Uy)
(479J(b-iii)). So, defining ¢, as in 479G,

1 1 1
e+ —llu¢ — uall3 < energy(5 (¢ + X)) + 5 (uc — ualug — ux)

1
u¢ + uxlue +un) + —(ug — ulue — uy)

- E( 4c,

(479J (b-ii))
1
= 5o (lucllz + llurll3) = e.

It follows that ||uc — uxll2 =0 and Us =, Ux. Consequently ¢ = X (479J(b-iv)). Q
eC(K

cap K’
sz(Kgl_K. Then ¢’ has finite energy (479Fh) and belongs to @, so for any
a € [0,1] we have a¢’ + (1 — a)A € Q, and

(c)(i) If ¢ is any Radon measure on R” with finite energy, then [ W¢d\ >

P If (K = 0 this is

trivial. Otherwise, set (' =

cre < ¢ energy(ac’ + (1 — a)A) = [laug + (1 — a)uall3
= o[lug |13 + 20(1 = @) (ugrfun) + (1 = ) [luall3
= o[lug |13 + 20(1 = @) (ugrfun) + (1 — ) ’cre
= cre +20((ugrux) — cre) + a?(flug |15 — 2(ugrlu) + cre).
It follows that (uc/|uy) —cre > 0 and

/WCdA > /WCLKd)\
(479Fh)
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170 Geometric measure theory 479K

_ _CK _ _¢K
= capK/WC/d)\i crcapK/U(:/ X UAdu

(479 (b-i))

(K eCK
cre = ,
c.cap K cap K

(K
= , >
crcapK(uC "LLC) -

as claimed. Q

e

(ii) If ¢ is any Radon measure on R” with finite energy, then W) (x) > p—e

for (-almost every x € K.

P? Otherwise, set E = {z:2 € K, Wy(z) < ﬁ}, and consider ¢’ = (L E. Then

/ WerdA = / WdC'

LC/ES

cap K

(479 (b-1))
e('K
cap K’

contradicting (i). XQ

(iii) Wi (z) = ca}e)K for A-almost every « € K. TP Since A has finite energy, (ii) tells us that Wy (z) >

e
cap K

for A-almost every x € K. Since

e
S WadA < [Wadh = e = —2 K,

e
ap K

we must have Wy (z) = " for A-almost every z € K. Q

e

(iv) Since AK = AR", 479Fg, with f the constant function with value ap K’

tells us that Wy (z) <

e

for every z € R".
cap K y

(d) For z e R"\ K, Wy (x) < ﬁ hp(K —z). P Set G =R"\ K, and let 7 be the Brownian exit time
from G — z. Define f: G~ — [0,1] by setting
fly)=0ify € 0G = OK,

_ € _ .
= ook Wi(y) if y € G,

=—° ify=o00
" capK Y = oo

Because W, [ G is continuous and harmonic (479Fa), sois f[G. Because A has compact support, lim,_,. Wx(y) =

0 (479Fd), so f is continuous at oo; because Wy (y) <

e
cap K

for every y, f is lower semi-continuous. So

ca;K —Wi(z) = f(z) > E(f(z + X;))

(4780, because r > 3 and R" has few wandering paths)

e e
= K Pr(r = 0) = CapK(l — Pr(7 < o0)).

e

Thus Wy () is at most P~
Q

Pr(7 < 00). But Pr(7 < 00) is just the Brownian hitting probability hp(K —z).
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(e) e = energy(\g). P

e < energy(Ag) < cap K
((a) above)

=AK = AR" = lim |z||"2Wy(z)
llz]|—o0
(479Fd)
< liminf ||z||" "2 hp(K — )

cap K ||z||»o0

(by (d) of this proof)

- cap K rcap K
(479B(i1))

=ec. Q

(f) From this we see at once that A = Ax and cap K = energy(Ax). Now suppose that ¢ is a Radon
measure on R” such that (K > cap K > energy(¢). Set ¢/ = CELKKCLK; then ¢’ € @, while ¢’ < (, so

e = cap K > energy(() > energy((’)
by 479Fh. It follows that ¢’ = A and A < ¢. Accordingly W) < W, (479Fh again),

energy(¢) = / WedC > / Wad( > /K Wad > (K

((c-ii) above)
> cap K > energy((),

and we have equality throughout. Since X is non-zero and the kernel (z,y) — m is strictly positive,

W, is strictly positive. It follows that ((R™ \ K) = 0 and ¢ € Q; consequently ( = A = Ak, as required.

479L I shall wish later to quote a couple of the facts which appeared in the course of the proof above,
and I think it will be safer to list them now.

Corollary Let K C R” be a compact set with equilibrium potential Wi
(a) If ¢ is any Radon measure on R” with finite energy, then WK(x) =1 for {-almost every = € K.
(b) If ¢ is a Radon measure on R” such that W, < 1 everywhere on K, (K < cap K.
(c) Wi (z) < hp(K — z) for every z € R" \ K.

proof (a)(i) Suppose first that cap K > 0. Working through the proof of 479K, we discover, in parts (e)-(f)
of the proof, that e = cap K and A\ = Ak, so we just have to put (c-ii) of the proof together with 479D(b-i).

(i) If cap K = 0, let B be a non-trivial closed ball disjoint from A, and consider L = K U B. Then
cap B = cap L (479Ea) and A K = 0, by 479D(c-ii), so

AB =ML =cap L = energy(A\r) = cap B
and A\, = Ap (479K). Now Wy, = 1 C-a.e. on L, while
Wi(z) =Wg(z) < 1
for every z € R™ \ B (479Da), and in particular for every z € K; so K must be (-negligible.
(b) Set ¢! = (L K; then W < We, so energy(¢') = [, Wed¢” < ('K is finite. By (a), Wk > 1 (-ae.,

SO
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172 Geometric measure theory 479L

(K =(CK < /WKdg’ = /WC/dAK

(479J(b-1))
< AgR" =cap K.

(¢) If cap K = 0 then A is the zero measure and the result is trivial. Otherwise, again look at the proof
of 479K; in part (d), we saw that W) (z) < ﬁ hp(K — x); but we now know that e = cap K and A = Ak,

so we get Wi (z) < hp(K — ), as claimed.

479M In 479Ed we saw that there is a natural extension of Newtonian capacity to a Choquet capacity
defined on every subset of R”. However the importance of Newtonian capacity lies as much in the equilibrium
measures and potentials as in the simple quantity of capacity itself, and the methods of 479B-479E do not
seem to yield these by any direct method. With the new ideas of 479K-479L, we can now approach the
problem of defining equilibrium measures for unbounded analytic sets of finite capacity.

Lemma Let A C R" be an analytic set with finite Choquet-Newton capacity c(A).
(a) lim,— o0 (A \ B(0,7)) = 0.
(b) Aa = lim, 00 AanB(0,y) is defined for the total variation metric on the space Mg (R") of totally finite
Radon measures on R”.
(€)(i) AaR" = c(A).
(ii) supp(Aa) C 0A.
(iii) If B C R" is another analytic set such that ¢(B) < oo, then Aaup < Aa + Ap.
(d)(i) WA = Wy, is the limit lim,_ WAQB( ) = SuP,>0 WanB(o,4)-
(ii) Wa(z) <1 for every z € R".
(iii) If ¢ is any Radon measure on R” with finite energy, Wa(x) = 1 for (-almost every x € A.
(iv) energy(Aa) = c(A).
proof (a) 7 Otherwise, set
a = lim,_,o ¢(A\ B(0,7)) = inf,>0c(A\ B(0,7)) > 0.
Set e = fav and § = 3 /. Let v be such that ¢(4\ B(0,7)) < a+e¢, and let K C A\ B(0,7) be a compact
set such that cap K > « — € (479E(d-iii)). Let 4/ be such that K C B(0,7'), and let L C A\ B(0,v’ + 9)

be a compact set such that cap L > « — e }
Set ¢ = 2(Ax 4+ AL). Then We = 2(Wx + Wy). If # € K, then ||z — y| > 6 for every y € L, so

~ a—&-e_l.
W()< )\LL_ 52— 3

similarly, Wg (z) < % for every € L. So W¢(z) < 1 for every € K U L, and therefore for every z € R”,
by 479Fg. But this means that

¢(A\ B(0,7)) = cap(K U L) > (K U L)
(479Lb)

= %(capKJrcapL) >

[SRIN

(—€) >a+e,

which is impossible. X

. gjb) IZorEfy| >0 se;)av = c(A\ B(0,7)) and {y = Aanp(o,)- If0 <y <9 and E C R" is Borel, then
— v B < ay.
2l S Gy
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G E < GE+ AgnB0,,)\B(0,) (K)
(479D (c-1))
< B+ e(ANBO.7)\ BO.7)) < ¢, E+e(A\ BO.7)) = ¢, +a.

On the other side we now have
G = (AN B(0,7)) - (R \ E)
< c(ANB(0,7)) = G(R"\ E) + oy = (B + vy

So |(yE — (v E| < a,. Q It follows at once that pi((y, () < 2a5.
Since limy o0 ay = 0, by (a), (Cn)nen is a Cauchy sequence for pgy. As noted in 437Q(a-iii), My (R") is
complete, so limy 00 AanB(0,7) = liMp 00 G 18 defined, and we have our measure A4.

(c)(i) Now
AaR” = 1limy, 00 AanB(0,n) (R") = limy 00 (AN B(0,n)) = c(A).

(ii) For any v > 0,

AanB(0,) R\ 0A) < Aanp(o,4)(0B(0,7))
(because the support of Asnp(0,) is included in 9(A N B(0,v)) € 0AUIB(0,7))

<[Aa(9B(0,7)) — AanB(0,4)(0B(0,7))| + Aa(0B(0,7))
< pv(Aa; AanBo,y)) + Aa(9B(0,7)).

So
Aa(R™\ 0A) = 713{.10 AanB(o,q,) (R"\ 0A)

< lim ptv()‘A7)\AﬁB(0;y)) + lim )\A(aB(O,v)) =0.
y—00

y—>0o0

(iii) For any compact set K C R",

Aaup(K) = M Aausns o) (K) < m Aanpo.m) (K) + Asnso.qm) (K)
(479D(c-1))
= M (K) + Ap(K) = (A4 + Ap)(K).
By 416Ea, Aup < Aa + Ap.
(d)(i) By 479D(b-ii), the supremum and the limit are the same. Suppose that z € R” and € > 0. Start

with vy > ||z||. Since WAQB(OW) (x) is finite, thereisa d € 0,y — ||z||[ such that fB(O 5 W)\AQB(ON)(dy) <

1
z—y|
€. If v >~ >0, then

AanB(0,y) < AanB(0,y) T AanB(0,4)\B(0,7);

SO
/ ;)\4 (dy) < / ;)\ (dy)
B(0.6) lz—y||"—2 NBOAN\Y) = B(0.6) [o—yl™—2 ANB(0,7)(AY

1
+ / o2 MNE©4)\B0.) ()
B(0,5) yll
(234Hc, 234Qc)
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1
B /B(o 8) W)\AQB(OKY)(dy)
(because int B(0,7) is Aan(0,)\5(0,) negligible)
<e
i 1
So, setting M = P
(Wans(0.4) (@ fmm = L )\ ansonn(dy)] <<

|
Using (c-ii) and (c-iii) to apply the same argument w1th A in place of AN B(0,v'), we get

fmm |T ————)Aa(dy)| < e
On the other hand,
fmln |T ) Aa(dy) = lim, fmm (M,

(437Q(a-ii)), so

1
lz—ylim=2

JAanB(0,4)(dy)
limsup.,/_, |WAQB(O,Y/)(;E) — WA(.’E)| < 2e.
As e is arbitrary, Wa(z) = limy/ oo Wanp(o,4)(2), as claimed.
(ii) Tt follows at once that W, < 1 everywhere.

(iii) Write E = {z : & € A, Wa(x) < 1}, and let ¢ be a Radon measure on R” of finite energy. ? If
CE > 0, there is a compact set K C E such that (K > 0. Now there is a v > 0 such that K C B(0, ), in
which case

Wi (2) < Wanp(o.q (z) <1
for every z € K, and (K = 0, by 479La. X So (FE = 0, as required.
(iv) By (ii) and (c-i),
energy(Aa) = [ WadAa < AaR" = ¢(A).
In the other direction, for any v > 0,

energy(\a) = /WAd)\A > /WAQB(O,W)CD\A = /WAd)\AnB(O,'y)
(4793 (b-1))
> /WAnB(o,y)dAAmB(o,y) = c(AN B(0,7));

taking the limit as v — oo, energy(Aa) > ¢(A) and we have equality.

479N We are ready to match the definitions in 479C to some alternative definitions of capacity.

Theorem Let A C R” be an analytic set with finite Choquet-Newton capacity c(A).
(a) Writing W, for the Newtonian potential of a Radon measure ( on R”,

c(A) =sup{CA: ( is a Radon measure on R", W¢(z) < 1 for every x € R"};

if A is closed, the supremum is attained.

(b) ¢(A) = inf{energy(¢) : ¢ is a Radon measure on R”, (A > ¢(A)}; if A is closed, the infimum is
attained.

(c) If A#0, c(A) =su p{m

if A is closed, the supremum is attained.

: ¢ is a Radon measure on R” such that (A = 1}, counting i as zero;
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479N Newtonian capacity 175

proof Note first that if there is a Radon measure ¢ on R", with finite energy, such that (A > 0, then
¢(A) > 0. P By 479M(d-iii), W4 = 1 -a.e. on A. So W, cannot be identically 0, and 0 < AgR" = ¢(A),
by 479M(c-i). Q

(a)(i) We know from 479E(d-i) and 479D(b-i) that

¢(A) = sup{cap K : K C A is compact} = sup{ g K : K C A is compact}
=sup{AgA: K C Ais compact} < sup{CA: W, < xR"}.

(ii) If ¢ is a Radon measure on R” and W, < xR", then

CA = sup (K < sup cap K
KCA is compact KCA is compact

(479Lb)
=c(A).
Thus sup{CA : W, < xR"} < ¢(A) and we have equality.
(iii) If A is closed, then by 479M(c-ii)
AaA = A4(0A) = MaR" = ¢(A)
SO0 A4 witnesses that the supremum is attained.

(b)(i) ? Suppose, if possible, that there is a Radon measure ¢ on R” such that (A > ¢(A) > energy(().
Let o € ]0,1[ be such that a*c(A) > energy(¢). Since

(A =sup{CK : K C Ais compact}, ¢(A)=sup{capK : K C A is compact},

there is a compact K C A such that (K > a¢A and cap K > a?c(A). Set (! = Cz%KC. Then

energy(¢') = (CZI;(K)Q energy(() < (%)QQ%(A)

< a’c(A) <capK = ('K;

which is impossible, by 479K. X
So ¢(A) < inf{energy(¢) : (A > ¢(A)}.

(ii) Take any € > 0. Then there is a compact set K C A such that (1 + ¢)cap K > ¢(A4). Set
¢ = (1+€)\k; then

CA>c(A), energy(¢)=(1+¢)?energy(Ax) = (1+¢)?cap K < (1 +¢€)%c(A).
As e is arbitrary, ¢(A) > inf{energy(¢) : (A > ¢(A)} and we have equality.
(iii) If A is closed, then
AaA = 24(0A) = AaR"™ = ¢(A)

by 479M(c-1) and (c-ii), while energy(Aa) = c¢(A) by 479M(d-iv). So A4 witnesses that ¢(A) = min{energy(¢) :
(A > c(A)}.

(c)(i) Suppose that ¢ is a Radon measure on R” such that (A = 1. If energy(¢) = oo then of course

m < ¢(A). Otherwise, ¢(A) > 0, as remarked at the beginning of this part of the proof. Set

¢" = c(A)C. By (b),
c(A) < energy((’) = c(A)? energy((),

1
b A,
© ey (© = €4)
1

Thus sup{m :CA=(R" =1} < c(A).
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(ii) If ¢(A) = 0 then the supremum is attained by any Radon measure ¢ such that (A = 1, so we can
stop. If ¢(A) > 0, then for any o € ]0,1[ there is a compact set K C A such that cap K > ac(A). Set

1
(= capK)\K’ then

(K=(R"=CA=1
and
1 (cap K)?

= == K > A .
energy(¢)  energy(Ax) D0 = ac(4)

As « is arbitrary, c(A) < sup{ﬁ : (A =(R" = 1} and we have equality.

energy

L

(iii) If A is closed and ¢(A) > 0, then ¢ = oy

above.

A4 witnesses that the supremum is attained, as in (b)

4790 Polar sets To make the final step, to arbitrary sets with finite Choquet-Newton capacity, we seem
to need an alternative description of polar sets.

Proposition For a set D C R", the following are equiveridical:

(i) D is polar, that is, ¢(D) = 0;

(ii) there is a totally finite Radon measure ¢ on R" such that its Newtonian potential W¢ is infinite at
every point of D;

(iii) there is an analytic set £ D D such that (E = 0 whenever ¢ is a Radon measure on R” with finite
energy.

proof (i)=(ii) If (i) is true, then for each n € N there is a bounded open set G,, 2 D N B(0,n) such
that ¢(G,) < 27". Try ¢ = Y..°, Ac,., defining the sum as in 234G. Then (R" = >  ¢(G,,) is finite,

and Wy = 320° (We, (234Hce). If z € D N B(0,n), then Wg, (x) = 1 for every m > n (479D(b-iii)), so
We(z) = oo. Thus ¢ witnesses that (ii) is true.

(ii)=-(iii) Suppose that A is a totally finite Radon measure such that Wy(z) = oo for every z € D. Set
E = {z : Wx(z) = oo}; then E is a Gy set, because W) is lower semi-continuous (479Fa). ? If there is
a Radon measure ¢ on R", with finite energy, such that (E > 0, let K C F be a compact set such that

1 .
CK >0. Set (1 = C—KCLK, then (; has finite energy and (1 K =1, so cap K > P} > 0, by 479Nc.

Let G O K be a bounded open set; set Ay = ALG and Ay = AL(R" \ G), so that A = A\; + A2 and
Wy = Wy, + Wy, (234Hc). Since Wy, () is finite for x € G (479Fa), Wy, (z) = oo for every z € K. Let
€ > 0 be such that e\;{R" < cap K. Then eW}, is a lower semi-continuous superharmonic function greater
than or equal to Wx on K D supp(Ag), so €Wy, > Wx everywhere (479Fg). But this means that

eMR” =€ lim |z]|"2Wy, ()

llz]| o0
(479Fd)
> lim ||z]|""2Wg(z) = AkR" = cap K > e\|R”,

 lzll—oo

which is absurd. X
So E witnesses that (iii) is true.

(iii)=(i) Suppose that F D D is analytic and that (E = 0 whenever energy(¢) is finite. If K C E is
compact and ¢ is a Radon probability measure on R” such that (K = 1, then energy({) must be infinite;
by 479Nc, cap K = 0. As K is arbitrary, ¢(E) =0 and ¢(D) = 0.

479P At last I come to my final extension of the notions of equilibrium measure and potential, together
with a direct expression of the latter in terms of Brownian hitting probabilities.
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Theorem Let D C R" be a set with finite Choquet-Newton capacity ¢(D).

(a) There is a totally finite Radon measure Ap on R" such that Ap = A4, as defined in 479Mb, whenever
A D D is analytic and ¢(A) = ¢(D).

(b) Write Wp = W) , for the equilibrium potential corresponding to the equilibrium measure Ap. Then
Wp(x) =hp*((D\ {z}) — z) for every z € R".

B) if ¢ is any Radon measure on R” with finite energy, WD(x) =1 for (-almost every x € D;
7) energy(Ap) = c(D);
0) if D' C D and ¢(D’) = ¢(D), then A\pr = Ap.

supp(Ap) C dD.

«
B) Apup’ < Ap +Apr; }
v) Wprpr + Wpupr < Wp + Wpr;
5) ptv(ADy)\D/) S QC(DAD/).
(iv) If (D, )nen is a non-decreasing sequence of sets with union D, then
) I/T/D = limy, 00 I/T/Dn = SUPpeN WDTL;
) (D, )nen — Ap for the narrow topology on Mg (R").
(v) ¢(D) = inf{¢R" : ¢ is a Radon measure on R", W, > xD}
= inf{energy(¢) : ¢ is a Radon measure on R", W, > xD}.
(vi) Writing cl*D for the essential closure of D, ¢(cI*D) < ¢(D) and Wep < Wp.
(vii) Suppose that f: D — R" is 4-Lipschitz, where v > 0. Then ¢(f[D]) < 7" 2¢(D).

proof (a)(i) If A, B C R" are analytic sets, ¢(B) < co and A C B, then

Wa = sup Wanp(o,n)
neN

(479M(d-i))

< sup Wgnp(o,n)
neN

(479D (b-ii))
= Ws.

If ¢(A) = ¢(B), then Ay = Ag. P

c¢(A) = energy(Aa)
(479M(d-iv))
= /WAd)\A < /WBd)\A = /VT/AdAB
(4793 (b-1))
< / Wpda = energy(Ap) = c(B) = ApR"

(479M(c-1)). So we must have equality throughout, and Wi =Wg \g-a.e. By 479F g, Wi >Wpg everywhere
and

Wy, =Wp =Wy =Wy,.

By 479J(b—V), AB = Aa. Q

(i) Now consider the given set D. By 479E(d-i), there is an analytic set A O D such that ¢(A) = ¢(D).
If B is another such set, then ¢(AN B) = ¢(A) = ¢(B), s0 Aanp = Aa = Ap. We therefore have a common
measure which we can take to be Ap. Of course this agrees with 479Mb if D itself is analytic, and with
479B if D is bounded and analytic.
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(b) Write hp(z) for hp*((D \ {z}) — z).
(i) To begin with, suppose that D = K is compact and that « ¢ K, so that hp(z) = hx(z) = hp(K—=x).
(@) hg(z) > Wi (z). P 479Lc. Q

(B) In fact hy(x) = Wi(z). P Let e > 0. Set E = {y:y e K, Wg(y) < 1}. Because W is
lower semi-continuous, E is an F,, set, therefore analytic; by 479M(d-iii), F satisfies condition (iii) of 4790,
and is polar. By 4790(ii), there is a totally finite Radon measure ¢ on R” such that W, (y) = oo for every
y € E. Let H be a bounded open set, including K, such that x ¢ H; set ¢(; = (L_H and ¢, = (L (R"\ H).
Then ¢ = (1 + (2, so We = W, + W, (479J(b-iii)). Since H is open and (»-negligible, W¢, (y) is finite for
every y € K (479Fa), and W¢, (y) = oo for every y € E; while W¢, () is finite because the support of (; is
included in H.
There is therefore an 1 > 0 such that nW, (z) < e. Consider A = Ag + n¢1. We have W (y) > 1 for
every y € K, while W) is superharmonic and lower semi-continuous (479Fa, 479Fb); as the support of A is
included in the compact set H, lim | | o Wa(y) = 0 (479Fd). Consequently

() = 1) < [ Waduf) < Wi

(478Pc, with G =R" \ K)
< Wk(x)+e

As € is arbitrary, hi (z) < Wi (z) and we have equality. Q
(i) If D = A is analytic, note that cap{z} = 0 (479Da, or otherwise), so ¢(A4 \ {z}) = ¢(A), because ¢
is monotonic and submodular, therefore subadditive (479E(d-ii)). Now we know that
ha(z) =sup{hp(K — z) : K C A\ {z} is compact}
(4771e) and
c(A\ {z}) =sup{cap K : K C A\ {z} is compact}
(479E(d-iii)). So there is a non-decreasing sequence (K, )nen of compact subsets of A\ {«} such that
ha(z) =sup, ey hp(K, — ), c(A\ {z}) = sup,cycap K.

Set E =, .py Kn; then E C A and ¢(E) = ¢(A), so Ag = A ((a-i) above) and Wg = Wy4. Accordingly

neN

hA(x) = Sup hp(Kn - Jf) = sup WKn (33)
neN neN

((a-1) above)
= sup WKnt(o,m)(l“) = sup WEmB(o,m) (z)
m,neN meN
(apply 479E(b-iii) twice)

Wg(x) = Wa(z).

(iii) For the general case, note first that hp < Wp. P There is a G5 set E D D such that ¢(E) = ¢(D),
so Ag = Ap. Now, for any z € R",

hp(z) < hg(z) = Wg(z) = Wp(z),

using (ii) for the central equality. Q
Equally, hp > Wp. P If € R", there is a Gg set H O (D \ {z}) — 2 such that

hp(x) =hp*((D\ {z}) —x) =hp H
(4771d). Set A= (H + ) U {x}; then A D D and
hp(z) = ha(z) = Walz) > Wang(z) = Wp(z),
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using (a-i) again for the inequality. Q
So hp = Wp, as claimed.

(c) Fix an analytic set A 2 D such that ch) = ¢(D); replacing A by AN D if necessary, we may suppose
that A C D. We have A\p = A4 and Wp = Wy4.

(D) (e)
ADR” = MR"™ = ¢(A) = ¢(D)
by 479M(c-i).

(B)-(7) 479M(d-iii) tells us that Wp(z) = Wa(x) = 1 for ¢-almost every = € A, and therefore for
(-almost every x € D. At the same time,

energy(\p) = encrgy(\a) = c(A) = ¢(D)
by 479M(d-iv).
(8) Of course A D D’ and ¢(A) = ¢(D'), 80 Apr = Aa = Ap.
(ii) A= D and int A D int D, so A C 9D and
Ap(R"\ D) = Aa(R"\ D) < M (R"\0A) =0
by 479M(c-ii). As 0D is closed, it includes supp(Ap).
(iii) Let A’ O D’ be an analytic set such that ¢(A") = ¢(D’).

(a)
Ap(D") < Ap(A') = Aa(4') < SU% AanBo,m)(4A)
me

(479Mb)

= Sup AAHB(O,m) (A, N B(07 Tl)) < sup C(A/ N B(Oa n))

m,neN neN

(479D(c-ii))

=c(A")
(because c¢ is a capacity)

=c(D’).

(B) Because c is subadditive, we know that ¢(D U D’) is finite. Let B O D U D’ be an analytic set
such that ¢(B) = ¢(D U D’). Then

ADpup’ = ABn(auar) < ABna + Apnar
(4T9M (c-iii))
= Ap + Ap.

() This is immediate from (b) and the general fact that (*(UNV) 4+ (U UV) < *U 4 ¢*V for
any measure ¢ and any sets U and V' (132Xk).

(6) As usual, it will be enough to show that |[ApE — Ap/ E| < ¢(DAD’) for every Borel set E C R";
by symmetry, all we need to check is that Ap/E < ApE + ¢(DAD’) for every Borel set E. P

case 1 Suppose that D and D’ are both bounded Borel sets. Take x € R", and let 7, 7/ : @ — [0, o0
be the Brownian arrival times to D — x, D' — x respectively. Then
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pPVE = py{w : 7 (w) < 00, 4 w('(w)) € E}
<pw{w:T(w) < oo, 2 +w(T(w)) € E} + pw{w: 7(w) # 7'(w)}
< P E + pw {w : there is some ¢ > 0 such that  + w(t) € DAD'}
— WDV E 4 y(PADRT

So
ApE = lim ol E
< lim 2" 2P E+ lim [lz]|"2uPAPORT = ApE + ¢(DAD').

T lzll—oo llz[|—o0

case 2 Suppose that D, D’ are Borel sets, not necessarity bounded. Set D, = D N B(0,n),
D!, =D’ ' nB(0,n). Then

)\D/E: lim )\D’E
n—o00 "
(479Mb)
< lim Ap, E+ lim ¢(D,AD.)

n— oo n— oo
(by case 1)
= ApE + lim ((DAD')NB(0,n)) = ApE + c(DAD')
n— oo

because c is a capacity.

case 3 In general, let G D D, G' D D' and H D DAD' be Gy sets such that ¢(G) = ¢(D),
(@) = ¢(D’) and ¢(H) = ¢(DAD’). Set

Gi=GnN(G'UH), G,=GnN(GUH);
these are Borel sets, while D C G; C G, D' C G} C G and G1AG2, C H. So

Ap B = )‘GiE <A, E+ c(GAGH)
(by case 2)
< ApE+ C(H) =ApE + C(DAD/)

and we have the result in this case also. So we’re done. Q
(iv) () This follows immediately from (b) above.

(B) Consider first the case in which every D,, is analytic. Returning to the proof of 479M, or putting
479Ma together with (iii-0) here, we see that for any m, n € N we shall have

Prv(AD, s Ap,nB0m)) < 2¢(Dn \ B(0,m)) < 2¢(D\ B(0,1m)) = 2,

say, and that lim,, o, a,;, = 0. So if G C R” is any open set,

ApG = lim Apnpom)G < lim liminf Ap ~po,m)G
m— oo m—00 Nn—o0

(479E(c-1))
< lim liminfAp, G + 2a, = liminf Ap G.

m—o0 nN—oo n—oo

Since we know also that

ApR" = ¢(D) = limy, 00 ¢(Dy) = limy 00 Ap, R,
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(AD, Ynen — Ap for the narrow topology.
For the general case, take analytic sets A, 2 D,, A 2 D such that ¢(4,) = ¢(D,,) for every n and
c(A) = ¢(D). Set A}, = AN(,,5, Am for each n, A" ={J, ¢y An; then

(AD, )nen = (Aar Jnen = Aar = Ap

for the narrow topology.
(v) Let @ be the set of Radon measures ¢ on R” such that W, > xD.

(a) I show first that infceg (R” and infeeq energy(¢)} are both less than or equal to ¢(D). I Let
e > 0. Because c is outer regular (479E(d-i)), there is an open set G O D such that ¢(G) < ¢(D) + €. Set
¢ = Ag. Then

We=We > xG > xD
(479D (b-iii)), so ¢ € @, while
(R"™ = energy(¢) = ¢(G) <c¢(D)+e Q
(B) Now suppose that ¢ € Q. Then ¢(D) < min((R", energy(¢)). I Take any v < ¢(D) and € > 0.
Let A D D be an analytic set such that c(4) = ¢(D); replacing A by {z : € A, W(z) > 1} if necessary,
we can suppose that We > yxA. For each n € N, let ¢, be the totally finite measure (1 + €)(L B(0,n).
Then (W, )nen is non-decreasing and has supremum (1 + €)We (479M(d-i)), so A = |J,cn An, where

A, ={x:2 € A W, (x) > 1}. There are an n € N such that ¢(4,) > v and a compact K C A,, such that
cap K > v (432K). Now W, > Wi Ak-a.e., so W, > Wi everywhere (479Fg) and

v <capK = /WKd)\K < /chd)\K = /WKan
(4793 (b-i))
< /Wgndgn < (1+e)/W<an < (1+6)2/W<dC: (1 + €)? energy(¢).

Moreover, 479J(c-vi), applied to ¢, and Ak, tells us that
(R™ > (uR” > A\xR"™ = cap K > 7.
As v and € are arbitrary, ¢(D) < min(energy(¢),(R"), as claimed. Q
(7) Putting these together, we see that ¢(D) = inf.cq (R” = inf ¢ energy(().

(vi) If z € cI*A, then 0 € cI*((A \ {z}) — z) and Wa(z) = hp*((A\ {z}) — z) =1 for every z € cI*E,
by 478U and (b) above. Now

c(cl*D) < ¢(cl*A) < energy(Aa)
((v) above)

(479M(d-iv))

(vii)(a) Consider first the case D = A, so that f[D] = f[A] is analytic. We can suppose that
¢(f[A]) > 0, in which case A # () and v > 0. Take any € > 0. By 479Nc there is a Radon measure ¢ on

R” such that (f[A] =1 and ¢(f[A]) < ﬁg;(()' Applying 433D to the subspace measure (4], we see that

there is a Radon probability measure ¢’ on A such that (4] is the image measure ¢’ f ~1: let A be the Radon
probability measure on R” extending ¢’. Then
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1 1
energy(¢) = / /TWC(W)C(GZZ/) > /f[A /f[A WC(dﬂf)C(dy)

¢(dz)¢ (dv) du)('(d
//A]nx oz ()¢ (dv) //Hf = (e (@)
(applying 235J2 twice)

2/ /. Wc%dumdv)
/, / Tu—vl|—2 v||r sA(du)A(dv) =

By 479Nc in the other direction,
1 1

1
A) > >
c(4) 2 energy(A) — y"~Zenergy(() — (14+e€)y 2
As e is arbitrary, c(f[A]) < 4" 2c(A).

()

c(f[A]).

B (B) In general, since f : D — R" is certainly uniformly continuous, it has a continuous extension
g: D — R" (3A4G), which is still y-Lipschitz. Now () tells us that

c(f[D]) < c(g[A]) < 7" 2c(A) =" %¢(D),

as required.

479Q Hausdorff measure: Theorem For s € ]0,00[ let ups be Hausdorff s-dimensional measure on
R". Let D be any subset of R".

(a) If the Choquet-Newton capacity ¢(D) is non-zero, then uj . oD = oo.

(b) If s > r — 2 and uj;,.D > 0, then ¢(D) > 0.
proof (a) Let £/ 2 D be a Gy set such that pp,—oF = pjr,. oD (471Db). Then ¢(E) > 0. Let K C E be
a compact set such that cap K > 0. Then

1
cap X = fK fK W)\K(dx))q((dy)
is finite and not 0; applying 471Tb to the subspace measure on K,
00 = pigr—2K = ppr—2F = iy, _oD.

(b) Let E D D be a Gs set such that ¢(E) = ¢(D) (479E(d i)). Then ugysE > 0. By 471Ta, there is a
|T ————Co(dx){o(dy) is finite. Let K C E be a compact

set such that (oK > 0, and let ¢ be the Radon measure on R” such that (H = (o(K N H) for every Borel
set H C R"; then

non-zero Radon measure (3 on E such that fE fE s

1
energy(¢) = [ [, WCO(dI)CO(dy)
is finite, while K is (-conegligible. By 479Nc (or, more directly, by the first remark in the proof of 479N),
cap K > 0, so that ¢(D) = ¢(E) > cap K > 0.

479R I come to the promised difference between Brownian motion in R® and in higher dimensions,
following 478M.

Proposition (a) Suppose that » = 3. Then almost every w €  is not injective.
(b) If r > 4, then almost every w € € is injective.

proof In this proof, I will take X;(w) = w(t) for w € Q and ¢t > 0.

2Formerly 235L.
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(a)(i) For w € Q set F,, = {w(t) : t € [0,1]}. Then cap F,, > 0 for uy-almost every w. I By 477Lb,
w3 2k, = oo for almost every w. For any such w, there is a non-zero Radon measure (o on F;, such that

fF fF ﬁ@(dw)(o(dy) is finite (471Ta). Let ¢ be the Radon measure on R”, extending (p, for which

F,, is conegligible. Then ((F,) > 0 and energy(¢) < oco. (This is where we need to know that r = 3.) So
cap F,, > 0 (479Nc). Q

(i) Consider Ey = {w : there are s < 1 and ¢t > 2 such that w(s) = w(t)}. (This is an F, set, so is
measurable.) Take 7 to be the stopping time with constant value 2 and ¢, : Q x Q@ — Q the corresponding
inverse-measure-preserving function as in 477G; set H = {w :w € Q, w(2) ¢ F,;}. Then

i Bo = [ e s o(0,) € Bobu ()

= / pw{w’ : there is some ¢ > 0 such that w(2) + w'(t) € F, }uw (dw)
Q

— pw @\ H) + /H W (w0(2) (o)
(479Pb)
>0

because Wi, (w(2)) > 0 whenever w € H and cap F,, > 0, which is so for almost every w € H.
(iii) Now, setting
E, = {w: there are s € [n,n + 1] and t > n + 2 such that w(s) = w(t)},

we have pw E,, = uw Ey for every n, because (Xs1, — X5)s>0 has the same distribution as (Xs)s>0. So if
E = NpenUmsn Ems pwE > 0. But E belongs to the tail o-algebra (1, T} o[, S0 has measure either
Oorl (477Hd): and must be conegligible. Since every w € F is self-intersecting, we see that almost every
Brownian path is self-intersecting.

(b) (i) Suppose that ¢, ¢’ € Q are such that 0 < ¢ < ¢/. This time, set F,, = {w(t) : ¢t € [0,¢]}. For almost
every w, F,, has zero two-dimensional Hausdorff measure (477La), so has zero (r — 2)-dimensional Hausdorff
measure (because r > 4), and therefore has zero capacity (479Qa). Also

pwiw s w(q) € Fo} = (pw x pw){(w, ') 1 '(¢" — q) € Fu —w(@)} =0

because the distribution of X, _, is absolutely continuous with respect to Lebesgue measure and pF,, = 0
for pw-almost every w. But this means that

pw {w : there is a ¢t > ¢’ such that w(t) € F,,}
(uw X pw){(w,w’) : there is a t > 0 such that w'(t) € F, —w(q')}

/ Wr,( Jp(dw) =

that is,
{w : there are s < g, t > ¢’ such that w(s) = w(t)}

is negligible. As ¢ and ¢’ are arbitrary, almost every sample path is injective.

479S A famous classical problem concerned, in effect, the continuity of potential functions, in particular
the continuity of functions of the form Wy . I think that even with the modern theory as sketched above,
this is not quite trivial, so I spell out an example.

Example Suppose that e € R” is a unit vector. Then there is a sequence (d,)nen of strictly positive real
numbers such that the equilibrium potential W is discontinuous at e whenever K C B(0,1) is compact,
ec€int K and ||z — te|| <4, whenever n e N,t € [1-27",1], x € K and |z|| =t
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proof For n € N, let K,, be the line segment {te : 1 — 27" <t < 1 —27""1}. Then the one-dimensional
Hausdorff measure of K, is finite, so cap K,, = 0 (479Qa). By 479E(c-ii), lims o cap(K,, + B(0,6)) = 0; let
8n € 10,2772 be such that cap(K, + B(0,6,)) < 27376, Setting L,, = K,, + B(0,4,), the distance from
e to L, is at least 27" ~2. By 479Pb,

hp(L, —e) = Wy, (e) <42\, (R") = 4" 2 cap L,, < 2772
Suppose that K C B(0,1) is compact, e € int K and ||z — te|]| < 8, whenever n € N, t € [1 —27™,1],

r € K and |z|| =t. Then K C |J,cy Ln U {e}. Using the full strength of 479Pb,

Wi (e) = hp((K \ {e}) =€) <hp(Uyen Ln — €) < X0 o hp(Ln —€) <

N | =

On the other hand, Wx () = 1 for every z € int K (479D(b-iii)), so Wx is not continuous at e.

*479T This concludes the main argument of the section, which you may feel is quite enough. However,
there is an important alternative method of calculating the capacity of a compact set, based on gradients
of potential functions (479U), and a couple of further results are reasonably accessible (479V-479W) which
reflect other concerns of this volume.

Lemma (a) If g : R” — R is a smooth function with compact support,

Y N2du=—r(r —
er ”x_yHr,QV gd/’l/ - ,r‘(r 2)/87‘9(1‘)

for every z € R".
(b) Let g, h : R"™ — R be smooth functions with compact support. Then

er h % VQg dp = er g X V2h = _fR"' grad h. grad g dp.

(c) Let ¢ be a totally finite Radon measure on R”, and W, : R” — [0, 00] the associated Newtonian
potential. Then [, We x Vigdu = —r(r — 2)8, [, gd¢ for every smooth function g : R” — R with
compact support.

(d) Let ¢ be a totally finite Radon measure on R” such that W is finite-valued everywhere and Lipschitz.
Then fRT grad f. grad Wedp = r(r — 2)6, er fdc¢ for every Lipschitz function f : R" — R with compact
support.

(e) Let K C R" be a compact set, and € > 0. Then there is a Radon measure ¢ on R", with support
included in K+ B(0, ¢€), such that W¢ is a smooth function with compact support, W, > x K, (R" < cap K +¢

and
Jer
1

proof (a)(i) Consider first the case x = 0. Setting f(y) = o

and (V2f)(y) = 0 for y # 0 (478Fa); also f is locally integrable, by 478Ga. So [, f x Vg du is well-defined.
Let R > 0 be such that g is zero outside B(0, R), and set M = || grad g||; take € € ]0, R[. Then

grad W ||2dp = r(r — 2) B, energy(¢) < r(r — 2)3.¢R".

for y # 0, we have grad f(y) = —ﬁy

/ fozgdu=/ fxV2g—gxVifdu
R7\B(0,¢) B(0,R)\B(0,¢)

= / div(f x gradg — g x grad f)du
B(0,R)\B(0,¢)
(use 474BDb)

_ 1 (r=2)9(y) \ ¥
_/E>B<O,R)(y||7'2gmdg(y)+ i 2 )

_ _ L (r=2)9(y) \ y_
LB(O,E)(||yT—2gradg(y>+ i T ()

(475Nc)
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—— [ (e amadgl) + 2 ay)
oB(0,e) 1Y

- L / (- erad g(y) + (r — 2)g(u))v(dy).
OB(0,¢)

€r

Now we have
|faB(0,e) y. grad g(y)v(dy)| < eMv(0B(0,¢)) < rB.e"M,

SO

| / FXV2gdp+ r(r — 2)8,9(0)|
R™\B(0,¢)

< B + e - 290)— [ (= 2iglyiay)
9B(0,¢)

< rBreM +

€

r—2
/6 o [900) — glv(a)

<rB.eM+r(r—2)5, sup [g(0)—g(y)| =0
y€OB(0,¢)

as € | 0; that is,
er [ xVigdp=—r(r—2)83.9(0).
(ii) For the general case, apply (i) to the function y — g(z + y).
(b) Take R > 0 so large that both g and h are zero outside B(0, R), and M > max(||V?¢||so, [|V2h/o0)-
(i) We have

/R (V29 (@)(V2R) (9) (de) ()

r Jrellz—yllm=2

< M? / / e p(dz)u(dy) < M / B R u(dy)
B(0,R) JB(0,R) IZ=YI B(O,R) 2

(478Gc)
< 00.
So
(=2 [ hxViodu= [ [ o (PR@(T ) (ol
(by (a)

:/ / WWQQMW%<w>u<dy>u<dx>
r JRT
=—r(r—2)B: /T g x VZhdp.

Thus [, 9 X V2hdp = [5. h x Vigdpu.

(ii) By 473Bd, grad(gx h) = g x grad h+h x grad g, so 474Bb tells us that V2(gx h) = 2 grad g. grad h+
g x V2h 4+ h x V?g, and

V2(g % h)dp = / V2(g % h)dp

R™ B(O,R)

= / grad(g x h).—v(dz) = 0,
9B(0,R) [l
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SO

1
fRT grad g. grad hdp = —5fR7\g x V2h+ h x V2gdu = —er g x V2hdp.

(c) If g(z) = 0 for ||z|| > R and |(V?g)(z)| < M for every z, then

_ 2 < _r < 1 2
er Hx_yllrfg ‘(v g)(x)m(d:v) — MfB(O,R) ”x_yHrfz M(dl’) —= ZMTBTR
for every y (478Gc again). We can therefore apply (a) and integrate with respect to ¢ to see that
1
—r(r - 2)&/ gd¢ = / / o= (Vo) @)u(dz)¢(dy)
R’r‘ R’r‘ RT yH
1
- [ [ s @)
rr Jrr lz=yll
= | We@)(Vig)(@)u(dz),
as required.
(d) Let (hp)nen be the smoothing sequence of 473E.

(i) Suppose to begin with that f is smooth. For n € N set g, = R We. As We is continuous,
limy,, 00 gn = We (473Ec); as [Welloo < 1, [|gnlloo < 1 for every n (473Da). Because f has compact support,

limy, o0 er gn X VQfd:U = f]RT We x vzfdlu

by the dominated convergence theorem. Next, gradg, = Ry, % grad W¢ for each n (473Dd). As grad W,
is essentially bounded (473Cc), all its coordinates are locally integrable, so grad W =, .. lim,_ o grad g,
(473Ee). We therefore have

/ grad f. grad Wedp = ILm grad f. grad g,du
r n—oo Jpr

= — lim gn X V2fdpu
n— oo Rr

((b) above)

= — WC X V2f dp = "“(T - 2)57‘ de
R" R”

by (c).

(ii) For the general case, smooth on the other side, setting f, = Ry, * f for every m. This time,
fn — [ uniformly (473Ed), so [, fd¢ = lim, e [p. fndC. On the other hand, if f is M-Lipschitz,
grad f,, = hy, * grad f converges p-a.e. to grad f, and Il grad fr.]|0o is at most M for every n; also there is a
bounded set outside which all the f,, and grad f,, are zero, and || grad W¢|| is bounded. So

fﬂv grad f. grad Wedp = limy, o0 er grad fp, . grad Wedp.
Applying (i) to each f,, and taking the limit, we get the equality we seek.
(e)(i) There is a compact set L C K 4 B(0, §) such that K C int L and cap L < cap K + ¢ (479Ed). Let
n € N be such that n%_l < ; and K + B(0, %_H) C L. Set h = A * h,,, where h, is the function of 473E,

as before; let { = hu be the corresponding indefinite-integral measure over p. Because h,, is zero outside
B(0, n%rl) and the support of Ay, is included in L, the support of ¢ is included in L+ B(O0, %H) C K+B(0,¢).

(ii) By 444Pa, we have
We = Co ks = () by = b Ky
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where k,_o is the Riesz kernel (479G). Now W, = Wy % h,. P For m € N, set fm = kr—2 x xB(0,m), so
that f,, is p-integrable. Observe that

Wile) = [ heoale—p)huldy) = [ fue =)y
= nlgnoo o fm(z —y)AL(dy) = %EHM(AL * fon) ()

for each x; moreover, because (f,)men is non-decreasing, so is (A * fi,)men. For each m,

h*fm:(h,u)*fm:()\L*iln)u*fm:()\L*iLnu)*fm
(444K)
= AL * (ﬁn:u * fm)
(4441c)
-

= (AL * faht) % by = (AL * fon )t % hy = (AL * fim)

Now, for each =,

Wew) = [ bl = phs)utdy) = Jim_ [ (e =) flw)utdy)

m—oo [pr

= Tim (b fr)(@) = lim (A * fon) * hn)(@)

m—0o0

= lim [ (Ap* fi) (@) hn(z —y)pu(dy)

m—oo Jpr

= /R Hm (Ap # fn)(y)hn(z — y)p(dy)

r M—>00

= | Wi)ha(z = y)uldy) = (Wr * h,)(z). Q

R™

~ (iii) Since Wr(z) = 1 whenever z € intL (479D (b-iil)), and @ + y € int L whenever z € K and
hn(y) # 0, We(x) = 1 for every & € K. Because both Wy and h,, have compact support, so does We;
because h,, is smooth, so is W¢ (473De).

(iv) Now

[ Newad WelPdi == [ Wex 9*Wedn
R” R”
((b) above)

=r(r—2)p, [ Wed¢

R’r‘
((c) above)

=r(r — 2)B, energy(¢) < r(r —2)3-CR"

because |[Welloo < [IWLllsollnllL < 1.
(v) Finally,

(R™ = (h)R™ = (AL * hpp)R™ = ALR - (hyp)R”
= A R"=capL <e+capK.
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*479U Theorem Let K C R" be compact, and let ® be the set of Lipschitz functions g : R”™ — R such
that g(x) > 1 for every € K and lim ;o g(2) = 0. Then

r(r—2)prcap K = inf{/ | grad g||?du : g € ® is smooth and has compact support}
R’V’
= inf{/ | grad g||?du : g € ®}.
R’V’

proof (a) By 479Te,
inf{er | grad g||?dp : g € ® is smooth and has compact support} < r(r —2)8, cap K.

(b) Now suppose that g € ® is a smooth function with compact support. Then r(r — 2)5, cap K <
Ja- || grad g||*dp. P Take any € € ]0,1[. Then thereis a § > 0 such that g(x) > 1—e¢ for every x € K+B(0,4).
By 479Te, there is a Radon measure ¢ on R”, with support included in K 4 B(0, ¢), such that W¢ is smooth
and has compact support, Wy > xK, (R” < cap K + € and

er | grad We||2du = r(r — 2) B, energy(¢) < r(r — 2)8,.CR".

In this case,

/ grad g. grad Wedp = r(r — 2)5r/ gd¢
R’r‘

r

(479Td)
>(1—er(r—2)8.CR">(1—c¢) /RT | grad W<||2.

Setting v = (1 — €) grad W, we have

Joo v gradgdp > [ |Jv]2dp.
But this means that

/ | grad g||?dy = 2 / v. grad gdy — / loll?du + / o — grad glPdu
R™ R™ RT R™
> [ olPdez (1= [ arad el
RT R™

=(1—e%r—2)8 [ Wed¢> 1 - (r—2)8, | WkdC
R” R™

(because W, > Wk on K, so We > Wk everywhere, by 479Fg)

=1 —-e2r(r—2)8, | Wedrg
RT

(4793 (b-1))

> (1—¢€)?r(r—2)8, WidAg = (1 — €)?r(r — 2)8, cap K.
]R’V‘

As ¢ is arbitrary, r(r — 2)8, cap K < [5. || grad g||*du. Q

(c) If g € ® has compact support, then [, || gradg|*du > r(r — 2)B,cap K. P Let R > 0 be such
that ¢ is zero outside B(0, R). Let M > 0 be such that g is M-Lipschitz; then || grad g(x)|| < M for every
z € domgrad g (473Cc). Take any € > 0. As in 479T, let (h,)nen be the smoothing sequence of 473E. For
n €N, set g, = (14 €)hy, *g. Then gradg, = (1 + €)h, * gradg (473Dd) and || grad g, |lec < M(1 + ¢)
(473Da). In the limit, (1 + €) grad g =,.¢. lim, o grad g, (473Ee).

There is an m € N such that (1 + €)g(z) > 1 for every x € K + B(0, —

’TH)’ now if n 2 m,
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gn(x) = (1+ €) infjy<1/(nen) 9(z —y) > 1
for every z € K. So

(e [ NeradglPdu=(+0? [ gmadglPdn
R" B(0,R+1)

= lim | grad g, [|*dp
n—=% JB(0,R+1)
(by the dominated convergence theorem)
= tim [ [ gradga|?ds
n—oo Jpr
(because every g, is zero outside B(0, R + 1))
>r(r—2)p, cap K

grad g[*dp. Q

(d) If g € @, then [, || grad g||*du > r(r — 2)5, cap K. B Let € > 0. Set g1(z) = max(0, (1 + €)g(z) —¢)
for x € R". Then g; € ® has compact support, and ||g1(z) — g1 (v)|| < (1 +¢€)||g(x) — g(y)|| for all z, y € R",
so ||grad g1 (x)]] < (1 + €)| grad g(z)|| whenever both gradients are defined. Accordingly

(1+e)? [, leradg|?dp > [ [lgrad gi||*dp > r(r — 2)B, cap K

by (c). As e is arbitrary, we have the result. Q

(applying (b) to g, for n > m). As € is arbitrary, r(r — 2)8, cap K < [,

(e) Putting (a) and (d) together, the theorem is proved.

*479V  We are ready for another theorem along the lines of 476H, this time relating capacity and
Lebesgue measure.

Theorem Let D C R” be a set of finite outer Lebesgue measure, and Bp the closed ball with centre 0 and
the same outer measure as D. Then the Choquet-Newton capacity ¢(D) of D is at least cap Bp.

proof (a) We need an elementary fact about gradients. Suppose that f, g : R” — R and « € R" are such
that grad f, grad g, grad(f V g) and grad(f A g) are all defined at 2. Then {grad(fV g)(z),grad(f Ag)(z)} =
{grad f(z),gradg(z)}. P (i) If f(x) > g(z) then (because f and g are both continuous at z) we have
grad(f V g)(x) = grad f(x), grad(f A g)(z) = grad g(z) and the result is immediate. (ii) The same argument
applies if f(x) < g(z). (iii) If f(z) = g(x), consider h = |f —g| = (fVg) — (f Ag). Then grad h(z) is defined,
and h(z) =0 < h(y) for every y. So all the partial derivatives of h have to be zero at z, and grad h(z) = 0,

that is, limy_,, mh(y) = 0. It follows at once that grad f(z) = grad g(z), and therefore both are equal

to grad(f V g)(z) and grad(f A g)(z). So again we have the result. Q

(b) Now for a further clause to add to Lemma 476E. Suppose that e € S,._; = 9B(0,1) and « € R; let
R = R., be the reflection in the plane {z : z.e = a}, and ¥ = 1, : PR"” — PR" the partial-reflection
operator of 476D-476E, that is,

(D)= W nN(DUR[D]))U(W'nDn R[D])
for D CR", where W ={z:2z.e > a} and W = {z: x.e < a}. Then c(¢p(D)) < ¢(D) for every D C R".
P (i) Suppose first that D = K is compact. Take any v > r(r —2) 8, cap K. By 479U, there is a Lipschitz
function f: R™ — R such that f(z) > 1 for every & € K, lim|; o0 f(2) =0 and [, || grad f||*dpu < . Set
g = fR. Of course g is Lipschitz and [, ||grad g|?dp = [, || grad f||?dp. Now fV g and f A g are also
Lipschitz, so for almost every x € R" all the gradients grad f(z), grad g(z), grad(fV g)(x) and grad(f Ag)(x)

are defined; by (a), || grad f||* + || grad g||* =a.c. | grad(f v 9)|1* + || grad(f A g)|*.
Now consider the function h defined by saying that

h(z) = (fVg)(x)ifzeW,
=(fAg)(z)ifzeW'.
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h is Lipschitz and limj; |- h(z) = 0; also h(x) > 1 for every x € (K). For x € W\ W', h(z) = (f V g)(x)
and h(Rz) = (f A g)(z), so {grad h(x),grad(hR)(z)} = {grad(f V g)(z),grad(f A g)(z)} if the gradients
are defined; for x € W\ W, h(z) = (f A g)(z) and h(Rz) = (f V g)(z), so {grad h(z),grad(hR)(x)} =
{grad(f V g)(z), grad(f A g)(x)} if the gradients are defined. Accordingly
lgrad Al* + || grad (hR)||* =a.c. | grad(f V g)|I* + || grad(f A g)|>
—a.e. H gradeZ + || gradgHz'

By 479U again,

rlr =28, cap(w(K)) < [ leradhlPdn =3 [ (leradl? + | rad (R

=1

=3 /]R (|| grad f||* + || grad g||*)dp < 7.

As ~ is arbitrary, cap(¢¥(K)) < cap K.

(ii) Now suppose that D = G is open. Then there is a non-decreasing sequence (K, ),cn of compact
sets with union G, and (¢(K,,))nen is a non-decreasing sequence with union ¢(G). So

c(Y(GQ)) = sup,en cap(V(Ky)) < sup, ey cap K, = ¢(G).

(iii) Finally, for arbitrary D C R", take any v > ¢(D). Then there is an open set G such that D C G
and ¢(G) < v (because c is outer regular, see 479E(d-i)). In this case, ¢(D) C ¥ (G), so
c(¥(D)) < c(¥(G)) < ¢(G) <.
As ~ is arbitrary, c¢(¥(D)) < ¢(D) and we are done. Q

(c) Now suppose that F is a bounded Lebesgue measurable subset of R” with finite perimeter.

(i) Let M > 0 be such that E C B(0,M). Consider

E={F:F C B(0,M) is Lebesgue measurable,
pwF = uE, per F < perE, ¢(F) < c¢(E)}.
Then £ is compact for the topology ¥, of convergence in measure as described in 474T. P By 474T,
&1 = {F : F is Lebesgue measurable, per F' < per E'}

is compact. So if (F,)nen is any sequence in &, it has a subsequence (F)),en which is ¥,,-convergent
to F € & say (4A2Le; recall that, as noted in the proof of 474T, ¥, is pseudometrizable). Taking a
further subsequence if necessary, we can suppose that p((FAF)) N B(0,M)) < 27" for every n € N.
Set F' = UnenNpsm £ Because every Fy is included in B(0, M), F' is a T,,-limit of (F})nen. So
uF" =1lim, . pF), = pE, and
c(F') = limy—o0 c((Nyy5m Fr) < c(E).

Finally, F'AF is negligible, so 0*F’ = 0*F and per(F’) = per FF < per E. Thus F' € £. As (F,)nen is
arbitrary, £ is relatively compact, by 4A2Le in the opposite direction. @

(ii) Because B(0, M) is bounded, the function F +— [ ||z||u(dx) : € — [0, 00[ is continuous, and must
attain its infimum at H say. Let Bg be the ball with centre 0 and the same measure as E. Then Bg C cl*H.
P (Compare part (b) of the proof of 476H.) 2 Otherwise, take z € Bg \ cI*H. Then

wB(O\H) _ 4 w(B(z0\Br) 1
uB(z,9) ’ uB(z,9) -2’

so there is a d > 0 such that u(B(z,0) \ Bg) < u(B(z,90) \ H) and pu(Bg \ H) > 0. Because
p(cl*H) = pH = pE = B,

cl*H \ Bg is also non-negligible. Take 21 € cI*H \ Bg and 2o € Bg \ cI*H. Then 6y = ||z1]| — ||zo]| is
greater than 0. Since

lims~g lims~o
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p(HNB(z1,3))
,LLB(&L'1,5)

p(HNB(z0,9))

lim supy o B (z0)

>0= lim(uo

there is a § € |0, 300 [ such that p(HNB(x1,6)) > u(HNB(xo,d)). Now let e be the unit vector — L (-

llzo—z1 |l
x1), and set a = e. %(zo + 21). Consider the reflection R = R.,, and the operator ¢ = 1q; set Hy = ¢(H)
and let ¢ = ¢, : H — H; be the function of 476E. As oo < 0, ||¢(z)|| < ||z| for every = € H; moreover,
R[B(x1,8)] = B(zg,9), so
{z: @)l <llzll} 2 {z: = € B(x1,6) N H, Rz ¢ H}

is not negligible. So [, |lz[lu(dz) < [y [lzllu(dz). On the other hand, we surely have Hy C B(0, M),
wHy = pH = pE and per Hy < per H < per E (476Ee); and, finally, ¢(Hy) < ¢(H) < ¢(E), by (b) of this
proof. Thus H; € £ and the functional F +— [ ||z|u(dx) is not minimized at H. XQ

(iii) Accordingly

cap Bg < ¢(cI*H) < ¢(H)
(479P(c-vi))
< c(E).

(d) Thus cap Bg < ¢(F) whenever E C R" is Lebesgue measurable, bounded and has finite perimeter.
Consequently cap B < cap K for every compact set K C R". P If ¢ > 0, there is an open set G O K such
that ¢(G) < cap K + e. Now there is a set E, a finite union of balls, such that K C F C G. In this case, E
has finite perimeter and is bounded, while of course B O Bg. So

cap Bg < capBg < ¢(F) < ¢(G) <cap K +e.

As € is arbitrary, cap Bx < cap K. Q

It follows that cap Br < ¢(E) for every measurable set E C R" of finite measure. P If K C F' is compact,
then cap Bx < cap K < ¢(F). But as uF = sup{uK : K C E is compact}, diam B = sup{diam B : K C
E is compact}; because capacity is a continuous function of radius (479Da),

cap Bg) = sup{cap Bk : K C F is compact}
< sup{cap K : K C FE is compact } < ¢(E). Q
Finally, if D is any set of finite outer measure, there is a Gs set F D D such that ¢(E) = ¢(D) and
uwE = p*D, so that
cap Bp = cap Bg < ¢(E) = ¢(D),

and we have the general result claimed.

*479W 1 conclude with an alternative representation of Choquet-Newton capacity ¢ in terms of a
measure on the space of closed subsets of R”.

Theorem Let C* be the family of non-empty closed subsets of R", with its Fell topology (4A2T). Then
there is a unique Radon measure 6 on C* such that 6*{C : C € C*, DN C # 0} is the Choquet-Newton
capacity ¢(D) of D for every D C R".

proof (a) Recall that the Fell topology on C = C* U {0} is compact (4A2T(b-iii)) and metrizable (4A2Tf),
so C* is locally compact and Polish. For D C R", set ¥D = {C : C € C*, CN D # 0}. Of course
U(JA) =Upea ¥D for every family A of subsets of R”.

(b) Let Q' be the set of those w € Q such that lim;_, o ||w(t)|| = oo; because r > 3, €' is conegligible in
Q (478Md). If w € ', then w[[0,00[] is closed. For z € R™ and w € @/, set h,(w) = 2 + w[[0,00[] € CT.
Then h, : Q" — CT is Borel measurable. P (o) If G C R” is open, then

{wiwe®, hy(W)NG #0} =Usolw: o +w(t) € G}
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is relatively open in Q. (8) If K C R" is compact,
{(w,t) :x+w(t) € K}

is closed in Q x [0, oo], so its projection {w : x+w[[0,00[|NK # 0} is Fy, and {w: w € @, hy(w)NK = 0} is
a Gg set in . () Because C7 is hereditarily Lindeldf, this is enough to prove that h, is Borel measurable
(4A3DDb). Q

(c) Let T be the ring of subsets of CT generated by sets of the form WE where £ C R” is bounded and
is either compact or open. Then we have an additive functional ¢ : T — [0, oo such that ¢(VK) = cap K
for every compact set K CR”. P For z € R" let h; : Q" — C* be as in (b). Then we have a corresponding
scaled Radon image measure ¢, = ||z|"?(uw )arh,t on CT (4181), defined by setting ¢, H = ||z||" 2 pw{w :
x + w[[0,00[] € H} whenever this is defined. If E C R" is either compact or open, then
{w:z+w[[0,00[]NE #0}
is F, or open, respectively, so ¢,(VFE) is defined; accordingly ¢, H is defined for every H € T. If v > 0,
E C B(0,v) and ||z|| > ~, then
¢3(VE) < 64(¥(B(0,7))) = [z~ *hp(B(0,7) —z) ="
(478Qc). So imsup), e ¢ H is finite for every H € T. Take an ultrafilter 7 on R" containing R"\ B(0, )
for every v > 0; then ¢ H = lim,_, 7 ¢, H is defined in [0, oo for every H € T, and ¢ is additive. If E C R"
is bounded and either compact or open, then
H(VE) =lim, 7 ||z|" "2 hp(E — x) = ¢(E)
by 479B(ii). Q
(d) ¢ is inner regular with respect to the compact sets, in the sense that ¢H = sup{¢L : L € T is
compact, L C H} for every H € T. P Note first that the set
H={H:HeT, ¢H =sup{¢L: L € T is compact, L C H}}

is a sublattice of T. Suppose that £, H C R" are bounded sets which are either compact or open, and
€ > 0. Then there are a compact K C E and a bounded open G D H such that ¢(F) < € + cap K and
c(@Q) < e+c(H) (479E). Now WK is a closed subset of C included in C, so is a compact subset of C*, while
U@ is open; thus L = UK \ UG is a compact subset of WE \ WH, and of course L € T. Now

G(WE\ WH) < 6L + $(VE\ WK) + (VG \ WH)
= ¢L+ ¢(VE) — ¢(VK) + ¢(VG) — ¢(VH)
=¢L+c(E) —cap K + ¢(G) — c(H) < ¢L + 2e.
As € is arbitrary, WE \ WH belongs to H.

Since any member of T is expressible as a finite union of finite intersections of sets of this kind, T C H,
as required. Q

(e) Let £ be the family of compact subsets of C*. If L € L, it is a closed subset of C not containing (), so
there must be a compact set K C R” such that L C WK. Thus every member of L is covered by a member
of T, and we have a functional ¢; : £ — [0, 0o defined by setting ¢1 L = inf{¢pF : E € T, L C E} for L € L.

I seek to apply 413J. Of course () € £ and L is closed under finite disjoint unions and countable intersec-
tions; moreover, if (L, )nen is a non-increasing sequence in £ with empty intersection, one of the L, must
be empty, so inf,en ¢1 L, = 0. Now turn to condition («) of the theorem:

¢1L1 = Qle() + sup{gﬁlL : L e E, L Q L1 \ Lo} whenever Lo, L1 € L and LQ Q Ll.
(i) If Lo, L € L are disjoint, then ¢1(LoU L) > ¢1 Lo + ¢1L. P The topology & of CT is generated by

sets of the form WG, where G C R” is open, and by sets of the form C* \ WK, where K C R is compact.
It is therefore generated by

{VG\ VYK : G CR" is bounded and open, K C R" is compact} C T.
So 6N T is a base for & and disjoint compact sets in C* can be separated by members of T (4A2F(h-i));
let Ey € T be such that Ly C Eg CCT\ L. Now if E€ T and E 2 Ly U L,
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oE = ¢(ENEo) + ¢(E\ Eo) = ¢1Lo + ¢1L;
as F is arbitrary, ¢1(LoUL) > ¢1Lo+ ¢1L. Q

(i) If Ly, L1 € L, Ly C Ly and € > 0, there is an L € £ such that L C L; U Ly and ¢1L; <
d1Lo + 1L+ 3e. P Let Ey, E1 € T be such that Ly C Ey, Ly C Fy and ¢Fy < ¢1Lg + €. By (d), there
isan L'’ € LN T such that L' C Ey \ Eg and ¢L' > ¢(E; \ Eg) —¢e. Set L = L' N Ly. Then L € £ and
LC L\ Ly Let E €T be such that L C E and ¢F < ¢1L +¢€. Then L1 C EgUE U ((E1 \ Eo) \ L"), so

d1L1 < 9By + ¢FE + ¢(E1 \ Ey) — ¢L' < ¢1 L1 + ¢L + 3e,

as required. Q
Putting this together with (i), the final condition of 413J is satisfied.

(f) We therefore have a complete locally determined measure 6 on C* extending ¢; and inner regular
with respect to £. For E C C*, 0 measures E iff § measures ENL for every L € L (412Ja); so § measures all
closed subsets of C*, and is a topological measure. Of course § is inner regular with respect to the compact
sets. If C' € CT, there is a bounded open set G C R” meeting C, and now ¥ is an open set containing C
and included in the compact set UG; accordingly

B(VG) < 0(WG) = 6, (VE) = H(VT) = cap T
is finite. Thus € is locally finite and is a Radon measure.
(g) As in (f), we have
BUEK) = 61 (VK) = (V) = cap K
for every compact K C R". Next, §(UG) = ¢(G) for every open G C R”. PP If G is bounded,

0(PG) = sup{fL : L C UG is compact}
=sup{¢1L : L C UG is compact} < ¢(¥G) = ¢(G)
= sup{cap K : K C G is compact}
=sup{f(¥K) : K C G is compact} < §(VG).
If G is unbounded, then there is a non-decreasing sequence (Gy,)nen of bounded open sets with union G, so

Q(WG) = 0(Un€N \I/Gn) = SuPneNe(\I'Gn) = SUPpeN C<Gn) = C(G>- Q

(h) Now suppose that D C R" is any bounded set. We have
0*(ID) < inf{(¥YG) : G D D is open} = inf{c(G) : G 2 D is open} = ¢(D).
? Suppose, if possible, that 8*(¥D) < ¢(D). Let G 2 D be a bounded open set. Then there is a compact
L C UG\ ¥D such that 0L > 0(VG) — c(D). Set F' = Jpc;, C; then F is closed (4A2T (e-iii)) and disjoint
from D, so G\ F is open, D C G\ F and ¥(G \ F) is disjoint from L. But this means that
(D) <c(G\F)=0(T(G\F)) <H(VG)—-0L < c¢(D),

which is absurd. X So 6*(¥D) = ¢(D).

If D C R" is any set, then it is expressible as the union of a non-decreasing sequence (D,,)nen of bounded
sets, so

c(D) = lim, o0 ¢(Dy) = limp 00 0 (Y Dy) = 0% (U, ey YD) = 07 (Y D).

Thus 6 has all the properties declared.

(i) To see that 6 is unique, consider the base V for the topology of CT consisting of sets of the form
Nic; YGi \ YK where (Gy)icr is a non-empty finite family of bounded open sets in R” and K C R" is
compact. The conditions that § must satisfy determine its value on any set of the form ¥(GUK) = $WGUUK

where G C R" is open and K C R” is compact, and therefore determine its values on V. By 415H(iv), 6 is
fixed by these.

479X Basic exercises (a) Let ¢ be a Radon measure on R”. Show that
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(R = limy o0 — [0 Wedp.
v rB.v2J B(0,y)

>(b)(i) Show directly from 479B-479C that Choquet-Newton capacity ¢ is invariant under isometries of
R". (ii) Show that c¢(aD) = a"~2¢(D) whenever o > 0 and D C R".

(c) Suppose that ¢; and ¢, are totally finite Radon measures on R". Show that We ., = ¢ x W, =
Cg * WCl .

(d) Show that there is a closed set F' C R" such that hp(F) < 1 but ¢(F) = oo. (Hint: look at the proof
of 479Ma..)

(e) Let K C R” be compact. Show that int{z : W (z) < 1} is the unbounded component of R™\supp Ax .
(Hint: setting L = supp A, show that cap(supp Ax) = cap K so that Wi = Wp.)

(f) Let A C R” be an analytic set such that ¢(A) < co. Show that Wa = sup{W¢ : ¢ is a Radon measure
on R", A is (-conegligible, W, < 1}.

>(g) Show that there is a universally negligible set D C B(0, 1) such that ¢(D) = 1. (Hint: use the ideas
of 439F to find D such that {||z|| : # € D} is universally negligible and = — ||z|| : D — [0, 1] is injective, but
v* Hi—” cx €D, ||z|| >1—0} =rB, for every 6 € 0, 1[; compute ¢(D) with the aid of 479D, 479P(c-iii-«)

and 479P(c-vii).)

(h) Suppose that D C D’ C R” and ¢(D’) < oo. Show that [ fd\p < [ fdAp: for every lower semi-
continuous superharmonic f : R™ — [0, 00].

(i) Let D C R" be a bounded set. Show that ¢(D) = lim|, e [|2[|" "2 hp™ (D — ). (Hint: 4771d.)

() Let T : R™ — R” be an isometry, and D C R" a set such that ¢(D) < co. Show that WT[D]T$) =
Wp(x) for every z € R” and that Aripj is the image measure ApT .

(k) Let D C R” be a set such that ¢(D) < oo, and o > 0. Show that Wop(z) = VNVD(éx) for every
x € R", and that \op = " 2ApT !, where T'(z) = ax for x € R".

ow that ¢ =1 : ¢ 18 a Radon measure on R", > X = mfyenergy(¢) : ¢ 18 a Radon
1) Sh h D inf{C(R" : ¢ is a Rad R", W¢ D inf ¢) : ¢ is a Rad
measure on R”, W, > xD} for any D C R".

(m) Let K C R” be a compact set, with complement G, and @ the set of continuous harmonic functions
f:G —[0,1] such that lim;j oo f(x) = 0. Show that Wi [G is the greatest element of ®. (Hint: 479Pb,
llzl
478Pc.)

(n)(i) Show that if G is a convex open set then hp(G — x) = 1 for every x € G. (ii) Show that if D C R"
is a convex bounded set with non-empty interior, then Wp is continuous.

(o) Show that if D, D’ CR" and ¢(D U D’) < oo, then Wpap + Wpup < Wp + Wpr.

(p) Let D C R” be a set such that ¢(D) < oo, and set D = {x : Wp(z) = 1}. Show that (i) D\ D is polar

(ii) Ap = Ap. (Hint: reduce to the case in which D = A is analytic; use 479Fg to show that W; < Wy; use
479J(b-v).)

(q) Let A be the set of subsets of R” with finite Choquet-Newton capacity, and p the pseudometric
(D,D") = 2¢(DU D) — ¢(D) — ¢(D’) (432Xj). (i) Show that |Ux, — Ux,, |13 < 2¢,p(D,D’) for D, D’ € A.
(ii) Show that p(D,D’) =0 iff A\p = Apr.

(r) Suppose that D C R”. Show that the following are equiveridical: (i) D is polar; (ii) there is some
x € R" such that hp(D — z) = 0; (iii) hp((D \ {z}) — z) = 0 for every z € R".
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(s) Suppose that (D, )nen is a non-increasing sequence of subsets of R” such that inf,, ey ¢(D,,) is finite and

Mnen Pn = ey Dn = F say. Show that (Ap, )nen — Ap for the narrow topology, and that (c¢(D,))nen —

¢(F). (Compare 479Ye.)

(t) For w € Q set 7(w) = sup{t : ||w(t)|| < 1}. (i) Show that 7 : Q — [0, 0] is measurable. (ii) Show that
if r <2 then 7 = o0 a.e. (iii) Show that if » > 3 then 7 is not a stopping time. (iv) Show that if 3 <r <4
then 7 is finite a.e., but has infinite expectation. (v) Show that if » > 5 then 7 has finite expectation. (Hint:
show that if » > 2 then

L —|lz)?/2 1
wﬂ)rf ¢ (LD el ) °%)

Pr(r >t) =

479Y Further exercises (a)(i) Show that there is an open set G C B(0,1), dense in B(0, 1), such that
¢(G) < 1. (ii) Show that cap(supp Ag) = 1.

(b) In 479G, suppose that 0 < o <r, 0 < 8 < r and o + 8 > r. Show that

I(r— *)0(5)1(5)
(VAT (2= D (252 T(

e

3 o

kayp—r =

r—

ﬁ)ka *k‘g.
2

(c) Let A C R” be an analytic set with ¢(A4) < co. (i) Show that for every v > 0 there is a Radon
measure ¢, on R” such that <$N;A)>z683(0,—y) is a disintegration of ¢, over the subspace measure vypg,)-

(ii) Show that lim, . ¢y = A4 for the total variation metric on Mg (R").

(d) Set (D) = sup{¢*D : ¢ is a Radon measure on R” such that W, < 1 everywhere} for D C R". Show
that ¢’ is a Choquet capacity on R", extending Newtonian capacity for compact sets, which is different from
Choquet-Newton capacity.

(e) Let (Dn>n§N be a non-increasing sequence of subsets of R” with finite Choquet-Newton capacity. For
each n € N, set D,, = {x : Wp, (x) = 1}, and set A = [, .y Drr. Show that c(A) = inf,cnc(D,) and that
A4 is the limit of (Ap, )nen for the narrow topology on My (R").

(f) Let A, p be as in 479Xq, and let (A, p) be the corresponding metric space, identifying members of A
which are zero distance apart. Show that A is complete.

(g) Let E CR” be a set of finite Lebesgue measure, and By the ball with centre 0 and the same measure
as E. Show that energy(uL E) < energy(uL Bg).

(h) Prove 479V from 479U and 476Yb.

(1) (i) Show that c is alternating of all orders, that is,
2o aCr () is even D UUiey Di) < 3 5c1 400y is oaa €D U U,y Di)

whenever [ is a non-empty finite set, (D;);cr is a family of subsets of R™ and D is another subset of R".
(Cf. 132Yf.) (ii) Show that if ¢(D U |J;c; Di) < oo, then

ZJQI,#(J) is even WDUUIAEJ D; < ZJQI,#(J) is odd WDUUIAEJ D;-

(j) Let us say that if X is a Polish space, a set A C X is projectively universally measurable if
WA] is universally measurable whenever Y is a Polish space and W C X x Y is analytic. Show that we
can replace the word ‘analytic’ by the phrase ‘projectively universally measurable’ in all the theorems of
this section.

(k) Suppose that A C R" is analytic and non-empty, and = € R" is such that p(z, A) = § > 0. Show that

A 1
energy(ufc )) < pp

D.H.FREMLIN



196 Geometric measure theory 479Y1

(1) Show that if D C R” and ¢(D) < oo, then c({z : Wp(z) > ~}) < =¢(D) for every v > 0.

1
Y

(m) For a set D C R” with ¢(D) < o0, set cleapD = {2 : Wp(x) = 1}. Show that ¢(D) = ¢(cleapD) =
(D UcleapD).

479 Notes and comments Newtonian potential is another of the great concepts of mathematics, and is
one of the points at which physical problems and intuitions have stimulated and illuminated the development
of analysis. As with all the best ideas of mathematics, there is more than one route to it, and any proper
understanding of it must include a matching of the different approaches. In the exposition here I start with
a description of equilibrium measures in terms of harmonic measures (479B), themselves defined in 478P in
terms of Brownian motion. We are led quickly to definitions of capacity and equilibrium potential (479C),
with some elementary properties (479D). Moreover, some very striking further results (479E, 479W) are
already accessible.

However we are still rather far from the original physical concept of ‘capacity’ of a conductor. If you have

ever studied electrostatics, the ideas here may recall some basic physical principles. The kernel x +—>

€T r—2
represents the potential energy field of a point mass or charge; the potential W, represents the field l‘lu”e to
a mass or charge with distribution {. The capacity of a set K is the largest charge that can be put on K
without raising the potential of any point above 1 (479Na), and the infimum of the charges which raise the
potential of every point of K to 1 (479P(c-v)). The result that Ax is supported by 0K (479B(i)) corresponds
to the principle that the charge on a conductor always collects on the surface of the conductor; 479D (b-iii)
corresponds to the principle that there is no electric field inside a conductor.

At the same time, the equilibrium measure is supposed to be the (unique) distribution of the charge,
which on physical grounds ought to be the distribution with least energy, as in 479K. To reach these ideas,
it seems that we need to know various non-trivial facts from classical analysis, which I set out in 479G-4791.
The deepest of these is in 479Ib: for the Riesz kernels k,, the convolution ( * k. determines the totally finite
Radon measure {. I do not know of any way of establishing this except through the Fourier analysis of 479H
and the detailed calculations of 479G and 479]1a.

The ideas here are connected in so many ways that there is no clear flow to the logic, and we are more
than usually in danger of using circular arguments. In my style of exposition, this complexity manifests
itself in an exceptional density of detailed back-references; I hope that these will enable you to check the
proofs effectively. On a larger scale, the laborious zigzag progression from the original notion of capacity of
compact sets, as in 479K and 479U, through bounded analytic sets (479B, 479E) and general analytic sets
(479M, 479N) to arbitrary sets (479P), displays a choice of path to which there are surely many alternatives.

Of course we cannot expect all the properties of Newtonian capacity to have recognizable forms in such
a general context as that of 479P (see 479Xg, which shows that we cannot hope to replicate the ideas of
479Na-479Nc), but the elementary results if 479D mostly extend (479Pc). More importantly, we have a
quite new characterization of equilibrium potentials (479Pb). With these techniques available, we can learn
a good deal more about Brownian motion. 479R is a curious and striking fact to go with 477K, 477L and
478M. It is not a surprise that capacity and Hausdorff dimension should be linked, but it is notable that the
phase change is at dimension r — 2 (479Q); this goes naturally with 479P(c-vii). I know of no such dramatic
difference between four and five dimensions, but for some purposes 479Xt marks a significant change.

My treatment is an unconventional one, so perhaps I should indicate points where you should expect other
authors to diverge from it. While the notions of Newtonian capacity, equilibrium measure and equilibrium
potential are solidly established for compact sets in R” (at least up to scalar factors, and for r > 3), the
extension to general bounded analytic sets is not I think standard. (I try to signal this by writing c(A)
in place of cap A, after 479E, for sets which are not guaranteed to be compact, even when the definition
in 479C(a-1) is applicable. The fact that this step gives very little extra trouble is a demonstration of the
power of the Brownian-motion approach.) The further extension of Newtonian capacity, defined on compact
sets, to a Choquet capacity, defined on every subset of R" (479Ed), is surely not standard, which is why
I give the extension a different name. (While Choquet certainly considered the capacity which I here call
‘Choquet-Newton capacity’, I fear that the phrase has no real historical justification; but I hope it will
convey some of the right ideas.) You may have noticed that I give essentially nothing concerning differential
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equations, which have traditionally been one of the central concerns of potential theory; there are hints in
479Xm and 479T.

A weakness in the formulae of 479B is that they are not self-evidently translation-invariant. Of course it
is easy to show that in fact we have an isometry-invariant construction (479Xb), and this can also be seen
from the descriptions of capacity and equilibrium potentials in 479N and 479Pb. Because the capacity c is
countably subadditive, it is easy to build a dense open subset G of R" such that ¢(G) is finite (see 479Ya),
and for such a set we cannot ask that Ag should be describable as a limit of ||x||“2u§gc) as ||z|| — oo. But
if we start from 479B(i) rather than 479B(ii), we do have an averaged form, with

Aa = limy o » ugA)V(dx)

1
m‘faB(O,
whenever A is an analytic set and ¢(A4) < oo (479Y¢; see also 479J(b-vi) and 479Xa).

The factor (v/27)" in 479H repeats that of 283Wg!'3. The appearance of v/27 in 283M, but not 445G, is
proof that the conventions of Chapter 28 are not reconcilable with those of §445.

In 4790 I describe one of the important notions of ‘small’ set in Euclidean space, to go with ‘negligible’
and ‘meager’. I have no space to deal with it properly here, but the applications in the proofs of 479P, 479R,
and 479S will give an idea of its uses; another is in 479Xm. As another example of the logical complexity of
the patterns here, consider the problem of either proving 479Pb without 4790, or extending 4790 to cover
479Xr without passing through a version of 479P.

Quite a lot of the work here is caused by the need to accommodate discontinuous equilibrium potentials
(479S). This has been an important theme in general potential theory. 479Pb shows that the problem is
essentially geometric: if a compact set K has a sufficiently narrow spike at e, then a Brownian path starting
at e can easily fail to enter K again.

As T have written the theory out, 479T-479U are rather separate from the rest, being closer in spirit
to the work of §8473-475. They explore some more of the basic principles of potential theory. Note, in
particular, the formula of 479Ta, which amounts to saying that (under the right conditions) a function g is
a multiple of k,_q * V2g; of course this can be thought of as a method of finding a particular solution of the
equation V2g = f; equally, it gives an approach to the problem of expressing a given g as a potential We.
From 479Tb and 479Tc we see that in the sense of distributional derivatives we can think of r(r — 2)5,¢
as representing the Laplacian —VQWC; recall that as W, is superharmonic (479Fb), we expect V2W< to be
negative (478E).

I give a bit of space to 479V because it links the material here to that of §476, and this book is about such
linkages, and because it supports my thesis that capacity is a geometrical concept. 479W is characteristic
of Choquet capacities which are alternating of all orders (479Y1i). I spell it out here because it calls on the
Fell topology, which is important elsewhere in this volume.

It is natural to ask which of the ideas here applying to analytic sets can be extended to wider classes.
If you look back to where analytic sets first entered the discussion, in the theory of hitting times (455M),
you will see that we needed a class of universally measurable sets which would be invariant under various
operations, notably projections (479Yj). In Volume 5 we shall meet axiom systems in which there are various
interesting possibilities.

This section is firmly directed at Euclidean space of three or more dimensions. The harmonic and Fourier
analysis of 479G-4791 applies unchanged to dimensions 1 and 2; so does 479Tb. On the line, Brownian hitting
probabilities are trivial; in the plane, they are very different from hitting probabilities in higher dimensions,
but still of considerable interest. Theorems 479B, 479E and 479W still work, but ‘capacity’, if defined by
the formulation of 479Ca, is bounded by 1. The geometric nature of the results changes dramatically, and
4791 cannot be applied in the same way, since we no longer have 0 < r — 2.

Version of 16.2.10

Concordance

L3Formerly 283Wj.
(©) 2010 D. H. Fremlin
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I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

479Xe Exercise 479Xe on Choquet-Newton capacity, referred to in the 2008 edition of Volume 5, is now
479Xi.
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