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Chapter 45
Perfect measures and disintegrations

One of the most remarkable features of countably additive measures is that they provide us with a
framework for probability theory, as described in Chapter 27. The extraordinary achievements of probability
theory since Kolmogorov are to a large extent possible because of the rich variety of probability measures
which can be constructed. We have already seen image measures (234C') and product measures (§254).
The former are elementary, but a glance at the index will confirm that they have many surprises to offer; the
latter are obviously fundamental to any idea of what probability theory means. In this chapter I will look
at some further constructions. The most important are those associated with ‘disintegrations’ or ‘regular
conditional probabilities’ (§§452-453) and methods for confirming the existence of measures on product
spaces with given images on subproducts (§454, 455A). We find that these constructions have to be based
on measure spaces of special types; the measures involved in the principal results are the Radon measures
of Chapter 41 (of course), the compact and perfect measures of Chapter 34, and an intermediate class, the
‘countably compact’ measures of MARCZEWSKI 53 (451B). So the first section of this chapter is a systematic
discussion of compact, countably compact and perfect measures.

A ‘disintegration’, when present, is likely to provide us with a particularly effective instrument for studying
a measure, analogous to Fubini’s theorem for product measures (see 452F). §§452-453 therefore concentrate
on theorems guaranteeing the existence of disintegrations compatible with some pre-existing structure,
typically an inverse-measure-preserving function (4521, 4520, 453K) or a product structure (452M). Both
depend on the existence of suitable liftings, and for the topological version in §453 we need a ‘strong’ lifting,
so much of that section is devoted to the study of such liftings.

One of the central concerns of probability theory is to understand ‘stochastic processes’, that is, models
of systems evolving randomly over time. If we think of our state space as consisting of functions, so that
a whole possible history is described by a random function of time, it is natural to think of our functions
as members of some set [, .y Zn (if we think of observations as being taken at discrete time intervals)
or Hte[o,oo[ Zy (if we regard our system as evolving continuously), where Z; represents the set of possible
states of the system at time ¢. We are therefore led to consider measures on such product spaces, and
the new idea is that we may have some definite intuition concerning the joint distribution of finite strings
(f(to),.-., f(tn)) of values of our random function, that is to say, we may think we know something about
the image measures on finite products [[,.,, Z,. So we come immediately to a fundamental question: given
a (probability) measure py on [[;c; Z; for each finite J C T, when will there be a measure on [Licr Zi
compatible with every p;7 In §454 I give the most important generally applicable existence theorems for
such measures, and in 455A-455E I show how they can be applied to a general construction for models of
Markov processes. These models enable us to discuss the Markov property either in terms of disintegrations
or in terms of conditional expectations (455C, 4550), and for Lévy processes, in terms of inverse-measure-
preserving functions (455U).

The abstract theory of §454 yields measures on product spaces which, from the point of view of a
probabilist, are unnaturally large, often much larger than intuition suggests. Some of the most powerful
results in the theory of Markov processes, such as the strong Markov property (4550), depend on moving
to much smaller spaces; most notably the space of cadlag functions (455G), but the larger space of callal
functions is also of interest. The most important example, Brownian motion, will have to wait for Chapter
47, but I give the basic general theory of Lévy processes in complete metric groups.

One of the defining characteristics of Brownian motion is the fact that all its finite-dimensional marginals
are Gaussian distributions. Stochastic processes with this property form a particularly interesting class,
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2 Perfect measures, disintegrations and processes Chap. 45 intro.

which I examine in §456. From the point of view of this volume, one of their most striking properties is
Talagrand’s theorem that, regarded as measures on powers R, they are 7-additive (4560).

The next two sections look again at some of the ideas of the previous sections when interpreted as answers
to questions of the form ‘can all the measures in such-and-such a family be simultaneously extended to a single
measure?’ If we seek only a finitely additive common extension, there is a reasonably convincing general
result (457A); but countably additive measures remain puzzling even in apparently simple circumstances
(457Z). In §458 T introduce ‘relatively independent’ families of o-algebras, with the associated concept of
‘relative product’ of measures, and the corresponding concepts for probability algebras. Finally, in §459,
I give some basic results on symmetric measures and exchangeable random variables, with De Finetti’s
theorem (459C) and corresponding theorems on representing permutation-invariant measures on products
as mixtures of product measures (459E, 459H).

Version of 8.11.07

451 Perfect, compact and countably compact measures

In §8342-343 I introduced ‘compact’ and ‘perfect’ measures as part of a study of the representation
of homomorphisms of measure algebras by functions between measure spaces. An intermediate class of
‘countably compact’ measures has appeared in the exercises. It is now time to collect these ideas together
in a more systematic way. In this section I run through the standard properties of compact, countably
compact and perfect measures (451A-451J), with a couple of simple examples of their interaction with
topologies (451M-451P). An example of a perfect measure space which is not countably compact is in 451U.
Some new ideas, involving non-trivial set theory, show that measurable functions from compact totally finite
measure spaces to metrizable spaces have ‘essentially separable ranges’ (451R); consequently, any measurable
function from a Radon measure space to a metrizable space is almost continuous (451T).

451B Definition Let (X, X, u) be a measure space. Then (X, X, ), or p, is countably compact if p
is inner regular with respect to some countably compact class of sets.

451C Proposition Any semi-finite countably compact measure is perfect.

451D Proposition Let (X, ¥, 1) be a measure space, and F € ¥; let ug be the subspace measure on E.
(a) If p is compact, so is ug.

(b) If p is countably compact, so is pg.

(c) If p is perfect, so is ug.

451E Proposition Let (X, X, u) be a perfect measure space.

(a) If (Y, T,v) is another measure space and f: X — Y is an inverse-measure-preserving function, then
v is perfect.

(b) In particular, u| T is perfect for any o-subalgebra T of ¥.

451F Lemma Let (X, X, u) be a semi-finite measure space. Then the following are equiveridical:
(i) w is perfect;

(ii) p|T is compact for every countably generated o-subalgebra T of X;

(iii) u[T is perfect for every countably generated o-subalgebra T of %;

(iv) for every countable set £ C ¥ there is a o-algebra T D & such that u[T is perfect.

451G Proposition Let (X, Y, 1) be a measure space. Let (X, 3, /i) be its completion and (X, %, i) its
c.l.d. version. Then
(a)(i) if p is compact, so are i and [;
(ii) if p is semi-finite and either ji or fi is compact, then p is compact.
(b)(i) If u is countably compact, so are i and [;
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451P Perfect, compact and countably compact measures 3

(ii) if p is semi-finite and either i or i is countably compact, then p is countably compact.
(¢)(i) If w is perfect, so are i and [i;

(ii) if fu is perfect, then p is perfect;

(iii) if p is semi-finite and [ is perfect, then p is perfect.

451H Lemma Let (X;);c; be a family of sets with product X. Suppose that K; C PX; for each i € I,
and set K = {n; '[K]:i € I, K € K;}, where 7; : X — X is the coordinate map for each i € I. Then

(a) if every K; is a compact class, so is K;

(b) if every K; is a countably compact class, so is K.

4511 Theorem Let (X, %, 1) and (Y, T, v) be measure spaces, with c.l.d. product (X x Y, A, ).
(a) If u and v are compact, so is A.

(b) If 4 and v are countably compact, so is A.

(c) If p and v are perfect, so is .

451J Theorem Let ((X;,Y;, 1;))icr be a family of probability spaces, with product (X, X, ).
(a) If every p; is compact, so is p.

(b) If every p; is countably compact, so is pu.

(c) If every u; is perfect, so is p.

451K Proposition Let (X;);cr be a family of sets with product X, and 3; a o-algebra of subsets of X;
for each i. Let A be a perfect totally finite measure with domain ),_;3;. Set 7;(z) = z[J for z € X and
JCI.

(a) Let IC be the set {V : V C X, 7;[V] € &, ;% for every J C I'}. Then X is inner regular with respect
to KC. R

(b) Let A be the completion of A.

@

) For any J C I, the completion of the image measure )\77;1 on [[;c, X; is the image measure 5\7r}1.

iel

(i) If W is measured by A and W is determined by coordinates in J C I, then there is a V € @ig&
such that V' C W, V is determined by coordinates in J and W \ V' is A-negligible.

*451L Proposition Let (X, 3, 1) be a strictly localizable measure space. Let us say that a family £ C ¥
is u-centered if u(( &) > 0 for every non-empty finite & C &.

(i) Suppose that p is inner regular with respect to some K C % such that every u-centered subset of K
has non-empty intersection. Then p is compact.

(ii) Suppose that u is inner regular with respect to some K C ¥ such that every countable p-centered
subset of I has non-empty intersection. Then g is countably compact.

451M Proposition Let (X, X) be a standard Borel space. Then any semi-finite measure p with domain
¥ is compact, therefore perfect.

451N Proposition Let (X, X, 1) be a perfect measure space and ¥ a Ty topology on X with a countable
network consisting of measurable sets. Then g is inner regular with respect to the compact sets.

4510 Corollary Let (X, X, 1) be a complete perfect measure space, Y a Hausdorff space with a countable
network consisting of Borel sets and f : X — Y a measurable function. If the image measure puf = is locally
finite, it is a Radon measure.

451P Corollary Let (X, X, i) be a perfect measure space, Y a separable metrizable space, and f : X = Y
a measurable function.

(a) If E € ¥ and v < pFE, there is a compact set K C f[E] such that u(E N f~1[K]) > ~.

(b) If v = puf~! is the image measure, then p, f~![B] = v, B for every BC Y.

(c) If moreover p is o-finite, then p* f~1[B] = v*B for every B C Y.
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4 Perfect measures, disintegrations and processes 451Q

451Q Lemma Let (X, X, i) be a semi-finite compact measure space, and (F;);cs a disjoint family of
subsets of X such that (J,.; E; € ¥ for every J C I. Then pu(U;c; Ei) = > ;1 1.

451R Lemma Let (X,X, ) be a totally finite compact measure space, Y a metrizable space, and
f: X — Y ameasurable function. Then there is a closed separable subspace Yy of Y such that f=1[Y \ Y]
is negligible.

451S Proposition Let (X,X, ) be a semi-finite compact measure space, Y a metrizable space and
f:+ X — Y ameasurable function.

(a) The image measure v = pf ! is tight.

(b) If v is locally finite and p is complete and locally determined, v is a Radon measure.

451T Theorem Let (X, %, X, 1) be a Radon measure space and Y a metrizable space. Then a function
f: X — Y is measurable iff it is almost continuous.

451U Example There is a perfect completion regular quasi-Radon probability space which is not count-
ably compact.

*451V Weakly a-favourable spaces For any measure space (X, X, 1) we can imagine an infinite game
for two players, whom I will call ‘Empty’ and ‘Nonemepty’. Empty chooses a non-negligible measurable set
FEy; Nonempty chooses a non-negligible measurable set Fy C Fy; Empty chooses a non-negligible measurable
set F; C Fy; Nonempty chooses a non-negligible measurable set Fy; C Fj, and so on. At the end of the
game, Empty wins if (), .y En = [,y Frn is empty; otherwise Nonempty wins. (If uX = 0, so that Empty
has no legal initial move, I declare Nonempty the winner by default.)

A strategy for Nonempty is a function o : (J,,cy(2 \ V)" — S\ N, where N is the ideal of negligible
sets, such that o(Ey, ... ,E,) C E, for all Ey,... ,E, € ¥\ N. o is a winning strategy if (), .y En # 0
whenever (F,)nen is a sequence in ¥\ N such that E, 1 C o(Ey, ..., E,) for every n € N.

Now we say that the measure space (X, ¥, u) is weakly a-favourable if there is a winning strategy for
Nonempty.

Version of 6.11.08

452 Integration and disintegration of measures

A standard method of defining measures is through a formula

pE = [ pyE v(dy)

where (Y, T,v) is a measure space and (i1,)ycy is a family of measures on another set X. In practice these
constructions commonly involve technical problems concerning the domain of u, which is why I have hardly
used them so far in this treatise. There are not-quite-trivial examples in 417Yb, 434R and 436F, and the
indefinite-integral measures of §234 can also be expressed in this way; for a case in which this approach is
worked out fully, see 453N. But when a formula of this kind is valid, as in Fubini’s theorem, it is likely to
be so useful that it dominates further investigation of the topic. In this section I give one of the two most
important theorems guaranteeing the existence of appropriate families (uy,)ycy when p and v are given
(4521); the other will follow in the next section. They both suppose that we are provided with a suitable
function f : X — Y, and rely heavily on the Lifting Theorem and on considerations of inner regularity from
Chapter 41.

The formal definition of a ‘disintegration’ (which is nearly the same thing as a ‘regular conditional
probability’) is in 452E. The main theorem depends, for its full generality, on the concept of ‘countably
compact measure’. It can be strengthened when p is actually a Radon measure (4520).

The greater part of the section is concerned with general disintegrations, in which the measures p,, are
supposed to be measures on X and are not necessarily related to any particular structure on X. However
a natural, and obviously important, class of applications has X =Y x Z and each p, based on the section
{y} x Z, so that it can be regarded as a measure on Z. Mostly there is very little more to be said in this
case (see 452B-452D); but in 452M we find that there is an interesting variation in the way that countable
compactness can be used.

MEASURE THEORY (abridged version)



452E Integration and disintegration of measures 5

452A Lemma Let (Y, T,v) be a measure space, X a set, and (i, )ycy a family of measures on X. Let
A be the family of subsets A of X such that F = [ u, Ev(dy) is defined in R. Suppose that X € A.
(a) A is a Dynkin class.
(b) If ¥ is any o-subalgebra of A then p = #]X is a measure on X.
(c) Suppose now that every p, is complete. If, in (b), /i is the completion of y and ¥ its domain, then
SCAand 4 =613

452B Theorem (a) Let X be a set, (Y, T,v) a measure space, and (f,),ecy a family of measures on
X such that [ p,X v(dy) is defined and finite. Let & be a family of subsets of X, closed under finite
intersections, such that [y, E v(dy) is defined in R for every E € &.
(i) If X is the o-algebra of subsets of X generated by £, we have a totally finite measure p on X, with
domain ¥, given by the formula uE = [ p,Ev(dy) for every E € X.
(ii) If i is the completion of 1 and 3 its domain, then [ fiyE v(dy) is defined and equal to 4E for every
E € %, where fly is the completion of p, for each y € Y.
(b) Let Z be a set, (Y,T,v) a measure space, and (u,)ycy a family of measures on Z such that
f Wy Z v(dy) is defined and finite. Let H be a family of subsets of Z, closed under finite intersections,
such that [y, H v(dy) is defined in R for every H € H.
(i) If T is the o-algebra of subsets of Z generated by H, we have a totally finite measure g on' Y x Z,
with domain T&T, defined by setting pE = [ 1y E[{y}]v(dy) for every E € T®Y.
(ii) If /i fiis the completion of z and 3 its domain, then J iy E{y}|v(dy) is defined and equal to gE for
every E € &, where fly is the completion of p, for each y € Y.

452C Theorem (a) Let Y be a topological space, v a 7-additive topological measure on Y, (X,%T) a
topological space, and (u1y)ycy a family of T-additive topological measures on X such that [y, X v(dy) is
defined and finite. Suppose that there is a base U for ¥, closed under finite unions, such that y — p,U is
lower semi-continuous for every U € U.

(i) We can define a 7-additive Borel measure p on X by writing uE = [ p, E v(dy) for every Borel set
ECX.

(ii) If fu is the completion of p and 3 its domain, then J iy E v(dy) is defined and equal to i E for every
E € 3, where fly is the completion of p, for each y € Y.

(b) Let Y be a topological space, v a T-additive topological measure on Y, (Z,4l) a topological space,
and ({1y)yey a family of 7-additive topological measures on Z such that [ p,Z v(dy) is defined and finite.
Suppose that there is a base V for i, closed under finite unions, such that y — u,V is lower semi-continuous
for every V € V.

(i) We can define a 7-additive Borel measure p on Y x Z by writing pE = [ p, E[{y}v(dy) for every
Borel set E CY x Z.
(ii) If /i fiis the completion of y and 3 its domain, then [ i, E[{y}]v(dy) is defined and equal to i FE for

every F € E, where fi, is the completion of u, for each y € Y.

452D Theorem (a) Let (Y, S, T, v) be a Radon measure space, (X, %) a topological space, and (ty)yey
a uniformly tight family of Radon measures on X such that [ u, X v(dy) is defined and finite. Suppose that
there is a base U for ¥, closed under finite unions, such that y — u,U is lower semi-continuous for every
U € U. Then we have a totally finite Radon measure fi on X defined by saying that that 4E = [ p, E v(dy)
whenever i measures E.

(b) Let (Y, &, T,v) be a Radon measure space, (Z,4l) a topological space, and (i, )ycy a uniformly tight
family of Radon measures on Z such that [ p,Z v(dy) is defined and finite. Suppose that there is a base V
for 4, closed under finite unions, such that y — u,V is lower semi-continuous for every V' € V. Then we
have a totally finite Radon measure i on Y x Z such that gF = [ u, E[{y}|v(dy) whenever ji measures E.

452E Definition Let (X, Y, 1) and (Y, T, v) be measure spaces. A disintegration of y over v is a family
(fty)yey of measures on X such that [ p,Fv(dy) is defined in [0, 00] and equal to pE for every E € X. If
f X — Y is an inverse-measure-preserving function, a disintegration (u,)ycy of p over v is consistent
with f if, for each F € T, p, f~'[F] =1 for v-almost every y € F. (u,)yecy is strongly consistent with f
if, for almost every y € Y, u, is a probability measure for which f~![{y}] is conegligible.

D.H.FREMLIN



6 Perfect measures, disintegrations and processes 452F

452F Proposition Let (X, %, 1) and (Y, T, v) be measure spaces and (i,)ycy a disintegration of p over
v. Then [[ f(x)p,(dz)v(dy) is defined and equal to [ fdu for every [—oo, col-valued function f such that
J fdu is defined in [—o0, co].

Remark When X =Y x Z and our disintegration is a family (u;),ecy of measures on X defined from
a family (tby)yey of probability measures on Z we can more naturally write [ f(y,z)u,(dz) in place of
J f(x)p,(dz), and we get

ff fly, 2)py(d2)v(dy) = f fdu whenever the latter is defined in [—o0, 00].

452G Proposition Let (X,3, ) and (Y, T,v) be measure spaces, f : X — Y an inverse-measure-
preserving function, and (u,),cy a disintegration of y over v.

(a) If {py)yey is consistent with f, and F' € T, then u, f~'[F] = xF(y) for v-almost every y € Y; in
particular, almost every p, is a probability measure.

(b) If (uy)yey is strongly consistent with f it is consistent with f.

(c) If v is countably separated and (u,),cy is consistent with f, then it is strongly consistent with f.

452H Lemma Let (X,%, 1) and (Y, T,v) be probability spaces, and T : L>(u) — L (v) a positive
linear operator such that T(xX*) = xY* and [Tu = [ whenever v € L>(u)". Let K be a countably
compact class of subsets of X, closed under finite unions and countable intersections, such that p is inner
regular with respect to /. Then there is a disintegration (u,)yey of p over v such that

(1) py is a complete probability measure on X, inner regular with respect to K and measuring every
member of IC, for every yey;

(ii) setting hy(y) = [ gd,uu whenever g € £*°(u) and y € Y are such that the integral is defined,
hg € L=(v) and T( *) = hy for every g € L°(p).

4521 Theorem Let (X,¥, ) be a non-empty countably compact measure space, (Y,T,v) a o-finite
measure space, and f : X — Y an inverse-measure-preserving function. Then there is a disintegration
(y)yey of w over v, consistent with f, such that p, is a complete probability measure on X for every
y € Y. Moreover,

(i) if K is a countably compact class of subsets of X such that p is inner regular with respect to K, then
we can arrange that X C dom p,, for every y € Y;

(ii) if, in (i), K is closed under finite unions and countable intersections, then we can arrange that
K C dom p,, and p, is inner regular with respect to K for every y € Y.

452K Example Set Y = [0,1], and let v be Lebesgue measure on Y, with domain T. Let X C [0, 1]
have outer measure 1 and inner measure 0; let p be the subspace measure on X. Set f(z) = x for z € X.
Then there is no disintegration (g, )yey of p over v which is consistent with f.

452L Definition Let (X;);c; be a family of sets, and A a measure on X = [[,.; X;. For each i € I set
mi(x) = x(i) for x € X. Then the image measure Aw; ~ is the marginal measure of A on Xj.

452M Theorem Let Y and Z be sets and T C PY, T C PZ o-algebras. Let p be a non-zero totally
finite measure with domain T®&Y, and v the marginal measure of 1 on Y. Suppose that the marginal
measure A of p on Z is inner regular with respect to a countably compact class X C PZ which is closed
under finite unions and countable intersections. Then there is a family (u,),ey of complete probability
measures on Z, all measuring every member of K and inner regular with respect to IC, such that

pE = [ py E[{y}v(dy)
for every F € T®Y, and
[ fdp= [[ f(y, 2)py(dz)v(dy)

whenever f is a [—o0, 0o]-valued function such that [ fdu is defined in [—o0, co].
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8453 intro. Strong liftings 7

452N Corollary Let Y and Z be sets and T C PY, T C PZ o-algebras. Let u be a probability measure
with domain T®?Y, and v the marginal measure of ;z on Y. Suppose that
either Y is the Baire o-algebra with respect to a compact Hausdorff topology on Z
or Y is the Borel o-algebra with respect to an analytic Hausdorff topology on Z
or (Z,7T) is a standard Borel space.
Then there is a family (u,),ecy of probability measures on Z, all with domain Y, such that

pE = [ py E[{y}v(dy)
for every E € T®Y, and
[ fdu= [[ f(y.2)ny(dz)v(dy)

whenever f is a [—o0, 0o]-valued function such that [ fdu is defined in [—o0, co].

4520 Proposition Let (X, T, %, u) be a Radon measure space, (Y, T,v) a strictly localizable measure
space, and f : X — Y an inverse-measure-preserving function. Then there is a disintegration (f,)ycy of p
over v, consistent with f, such that every p, is a Radon measure on X.

452P Corollary Let (X, %, %, 1) be a Radon measure space, (Y,8,T,v) an analytic Radon measure
space and f : X — Y an inverse-measure-preserving function. Then there is a disintegration (u,),cy of u
over v, strongly consistent with f, such that every pu, is a Radon measure on X.

452Q Disintegrations and conditional expectations: Proposition Let (X,X, 1) and (Y, T,v) be
probability spaces and f : X — Y an inverse-measure-preserving function. Suppose that (u,)ycy is a
disintegration of p over v which is consistent with f, and that g is a p-integrable real-valued function.

(a) Setting ho(y) = [ gdu, whenever y € Y and the integral is defined in R, hq is a Radon-Nikodym
derivative of the functional F' +— ff—l[F] gdu: T —R.

(b) Now suppose that v is complete. Setting hi(x) = fgd,uf(w) whenever x € X and the integral is
defined in R, then hy is a conditional expectation of g on the o-algebra $o = {f~![F]: F € T}.

*452R Theorem Let (X,X, ) be a countably compact measure space, (Y, T,v) a strictly localizable
measure space, and f : X — Y an inverse-measure-preserving function. Then v is countably compact.

*452S Corollary If (X,X, ) is a countably compact totally finite measure space, and T is any o-
subalgebra of ¥, then u|T is countably compact.

452T Theorem Let X be a locally compact Hausdorff space, G a compact Hausdorff topological group
and ¢ a continuous action of G on X. Suppose that p is a G-invariant Radon probability measure on X.
For z € X, write f(x) for the corresponding orbit {asx : a € G} of the action. Let Y = f[X] be the set of
orbits, with the topology {W : W C Y, f~}[W] is open in X}. Write v for the image measure uf ! on Y.

(a) Y is locally compact and Hausdorff, and v is a Radon probability measure.

(b) For each y € Y, there is a unique G-invariant Radon probability s, on X such that s, (y) = 1.

(¢) (uy)yey is a disintegration of p over v, strongly consistent with f.

Version of 22.3.10/23.3.10

453 Strong liftings

The next step involves the concept of ‘strong’ lifting on a topological measure space (453A); I devote a
few pages to describing the principal cases in which strong liftings are known to exist (453B-453J). When
we have Radon measures p and v, with an almost continuous inverse-measure-preserving function between
them, and a strong lifting for v, we can hope for a disintegration (u,),cy such that (almost) every p,
lives on the appropriate fiber. This is the content of 453K. I end the section with a note on the relation
between strong liftings and Stone spaces (453M) and with V.Losert’s example of a space with no strong
lifting (453N).

(© 1998 D. H. Fremlin
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8 Perfect measures, disintegrations and processes 453A

453 A Definition Let (X, T, %, 1) be a topological measure space. A lifting ¢ : ¥ — ¥ is strong or of
local type if G O G for every open set G C X, that is, if F C F for every closed set F' C X. I will say
that ¢ is almost strong if J,cc G\ #G is negligible.

Similarly, if 2 is the measure algebra of u, a lifting 6 : A — X is strong if 6G* O G for every open set
G C X, and almost strong if J; . G \ G* is negligible.

453B Theorem Let X be a topological group with a Haar measure u, and X its algebra of Haar
measurable sets.

(a) If ¢ : ¥ — X is a left-translation-invariant lifting, then ¢ is strong.

(b) u has a strong lifting.

453C Proposition Let (X, T, %, 1) be a topological measure space and ¢ : ¥ — X a lifting. Write £>°
for the space of bounded Y-measurable real-valued functions on X, so that £>° can be identified with L (X)
and the Boolean homomorphism ¢ : ¥ — ¥ gives rise to a Riesz homomorphism 7" : £ — £°°.

(a) If ¢ is a strong lifting, then T'f = f for every bounded continuous function f: X — R.

(b) If (X, %) is completely regular and T'f = f for every f € Cp(X), then ¢ is strong.

453D Proposition Let (X, T, %, 1) be a topological measure space.

(a) If 1 has a strong lifting it is strictly positive.

(b) If w is strictly positive and complete, and has an almost strong lifting, it has a strong lifting.

(¢) If 4 has an almost strong lifting it is 7-additive, so has a support.

(d) If pu is complete and pX > 0 and the subspace measure pg has an almost strong lifting for some
conegligible set £ C X, then p has an almost strong lifting.

453E Proposition Let (X, T, 3, 1) be a complete strictly localizable topological measure space with an
almost strong lifting, and A C X a non-negligible set. Then the subspace measure ;14 has an almost strong
lifting.

453F Proposition Let (X, T, X, u) be a complete strictly localizable topological measure space.
(a) If T has a countable network, any lifting for p is almost strong.
(b) Suppose that 4 X > 0 and p is inner regular with respect to

K={K:K €X, ug has an almost strong lifting},

where px is the subspace measure on K. Then p has an almost strong lifting.

453G Corollary (a) A non-zero quasi-Radon measure on a separable metrizable space has an almost
strong lifting.
(b) A non-zero Radon measure p on an analytic Hausdorff space X has an almost strong lifting.

453H Lemma Let (X, 3, 1) be a complete locally determined measure space and ¥ a topology on X
generated by a family ¢« C ¥. Suppose that ¢ : ¥ — X is a lifting such that ¢U D U for every U € U. Then
u is a T-additive topological measure, and ¢ is a strong lifting.

4531 Proposition Let ((X;,T;, X;, 4i))icr be a family of topological probability spaces such that every
%; has a countable network and every p; is strictly positive. Let A be the (ordinary) complete product
measure on X = [],.; X;. Then X is a 7-additive topological measure and has a strong lifting.

453J Corollary Let ((X;,%;, %, 14i))icr be a family of quasi-Radon probability spaces such that every
T; has a countable network consisting of measurable sets and every p; is strictly positive. Then the ordinary
product measure A on X = [],.; X; is quasi-Radon and has a strong lifting. If every X; is compact and
Hausdorff, then X is a Radon measure.

453K Theorem Let (X, %, % u) and (Y, S, T, v) be Radon measure spaces and f : X — Y an almost
continuous inverse-measure-preserving function. Suppose that v has an almost strong lifting. Then there is
a disintegration (i, )yey of p over v such that every p, is a Radon measure and i, X = p, f~'[{y}] =1 for
almost every y € Y.

MEASURE THEORY (abridged version)
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453M Strong liftings and Stone spaces Let (X,T,3,u) be a quasi-Radon measure space, and
(Z,6,T,v) the Stone space of the measure algebra (2, i) of u. For E € ¥ let E* C Z be the open-
and-closed set corresponding to the equivalence class E* € 2. Let R be the relation

NFcx is closeal (2:2) 12 € Z\ F*orz € F} C Z x X.

For every lifting ¢ : ¥ — 3 we have a unique function g4 : X — Z such that ¢F = g;l[E*] for every
EeX.

(a) ¢ is strong iff (g4(z),z) € R for every z € X.

(b) If T is Hausdorff, so that R is the graph of a function f, then ¢ is strong iff fg4(x) = x for every
reX.

453N Losert’s example There is a compact Hausdorff space with a strictly positive completion regular
Radon probability measure which has no strong lifting.

Version of 19.5.16/5.8.22

454 Measures on product spaces

A central concern of probability theory is the study of ‘processes’, that is, families (X;);er of random
variables thought of as representing the evolution of a system in time. Kolmogorov’s successful representation
of such processes as measurable functions on an abstract probability space was one of the foundations on
which the modern concept of ‘random variable’ was built. In this section I give a version of Kolmogorov’s
theorem on the extension of consistent families of measures on subproducts to a measure on the whole
product (454D). It turns out that some restriction on the marginal measures is necessary, and ‘perfectness’
seems to be an appropriate hypothesis, necessarily satisfied if the factor spaces are standard Borel spaces
or the marginal measures are Radon measures. If we have marginal measures with stronger properties then
we shall be able to infer corresponding properties of the measure on the product space (454A, generalizing
451J).

The apparatus here makes it easy to describe joint distributions of arbitrary families of real-valued random
variables (454J-454P), extending the ideas of §271. For the sake of the theorem that almost all Brownian
paths are continuous (477B) I briefly investigate measures on C(T), where T is a Polish space (454Q-4548S).

454A Theorem Let ((X;,3;, 1i))icr be a non-empty family of totally finite measure spaces. Set X =
[I;c; Xi and let ;1 be a measure on X which is inner regular with respect to the o-algebra @), ;Y; generated
by {W;l[E] :i1 €I, Ee€X,;}, where m; : X — X is the coordinate map for each ¢ € I. Suppose that every
m; i inverse-measure-preserving.

(a) If £ C PX is a family of sets which is closed under finite unions and countable intersections, and p;
is inner regular with respect to K; = {K : K C X;, n; '[K] € K} for every i € I, then  is inner regular
with respect to K.

(b)(i) If every p; is a compact measure, o is ;

(ii) if every p; is a countably compact measure, so is p;
(iii) if every p; is a perfect measure, so is p.

454B Corollary Let (X;);cr be a family of Polish spaces with product X. Then any totally finite Baire
measure on X is a compact measure.

454C Theorem Let (X, X, u) be a perfect totally finite measure space and (Y, T, v) any totally finite
measure space. Let ¥ ® T be the algebra of subsets of X x Y generated by {E x F: F € ¥, F € T}.
If Ao : 2® T — [0,00] is a non-negative finitely additive functional such that Ao(E x Y) = pE and
Mo(X X F) = vF whenever E € ¥ and F € T, then A\g has a unique extension to a measure defined on YRT.

(©) 2001 D. H. Fremlin
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10 Perfect measures, disintegrations and processes 454D

454D Theorem Let ((X;,Y;, 1;))icr be a family of totally finite perfect measure spaces. Set X =
[Lic; Xi, and write @), X; for the algebra of subsets of X generated by {m;'[E):i €I, E €%}, where
m; © X — X; is the coordinate map for each ¢ € I. Suppose that Ao : &),c; Xi — [0,00] is a non-negative
finitely additive functional such that Agm;” 1[E] = u; F whenever ¢ € I and F € ¥;. Then \g has a unique

extension to a measure A with domain ), _;%;, and A is perfect.

iel

454E Corollary Let ((X;,%;, u;i))icr be a family of perfect measure spaces. Let C be the family of
subsets of X = [[,.; X; expressible in the form X N (., 7; '[E;] where J C I is finite and E; € %; for
every ¢ € I, writing m;(z) = x(4) for z € X, i € I. Suppose that Xo : C = R is a functional such that (i)
TME] = i E whenever i € I and E € % (i) AoC = X\o(C N, H[E]) + Ao(C \ 7; *[E]) whenever C € C,

)\07Ti

i€l and F € ;. Then )\ has a unique extension to a measure on ), _;%;, which is necessarily perfect.

iel

454F Corollary Let ((X;,Y;))ics be a family of standard Borel spaces. Set X = [],.; X;, and let
&,c; i be the algebra of subsets of X generated by {m; '[E] : i € I, E € ¥;}, where m; : X — X; is the
coordinate map for each i. Let Ao : @,;c; Xi — [0,00[ be a non-negative finitely additive functional such
that all the marginal functionals E + \o7; '[F] : ¥; — [0, o[ are countably additive. Then A has a unique

extension to a measure defined on ), ;%;, which is a compact measure.

iel

454G Corollary Let (X;);c; be a family of sets, and X; a o-algebra of subsets of X; for each i € I.
Suppose that for each finite set J C I we are given a totally finite measure p; on Z; = [ [, ; X; with domain
&), ;% such that (i) whenever J, K are finite subsets of I and J C K, then the canonical projection from
Zk to Zj is inverse-measure-preserving (ii) every marginal measure p;; on Zg;p = X; is perfect. Then
there is a unique measure p defined on ®Z—GIZZ- such that the canonical projection 7y : Hiel X, = Zjis
inverse-measure-preserving for every finite J C 1.

454H Corollary Let {((X,,3,))nen be a sequence of standard Borel spaces. For each n € N set Z,, =
[[ic,Xiand T, = Q,_,%i. ForneN, W e T,y and z € Z,, write W[{z}] = {£: £ € X, (2,§) € W}
set X = [],cn Xn and write 7, for the canonical projection of X onto Z,. Suppose that for each n € N and
z € Z, we are given a probability measure v, on X,, with domain X,, such that z — v,(FE) is T,,-measurable
for every E € %,,.

(a) We have a sequence (i, )nen of probability measures such that, for each n € N, u,, has domain T,
and

1 (W sz {z}Hpn(d2)
for every W € T,,41, and

[t = [[ oo [ 160 gmen e tden)

V(o en_o)(dEn—1) - - - Ve, (d€1)1p(dEo)

for every n € N and p,,41-integrable real-valued function f.
(b) There is a unique probability measure g on X = []
the image measure p#, ! on Z, for every n € N

nen Xn, with domain ®n€N n, such that g, is

454J Distributions of random processes: Proposition Let (2,%, ) be a probability space and
(Xi)icr a family of real-valued random variables on (2.

(i) There is a unique complete probability measure v on R?, measuring every Baire set and inner regular
with respect to the zero sets, such that

v{z:z e Rl 2(i,) < a, for every r < n} = Pr(X;, < a, for every r < n)

whenever g, ... ,i, € I and ag,...,q, € R.
i) If ig,... ,i, € I and 7(z) = (z(ig), ..., x2(i for z € RY, then the image measure v7~—! on R*t! is
( ) 05 IRZ0) 0)s ) n ) g

the joint distribution of X; , X

P07 - - in -
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4548 Measures on product spaces 11

(iii) v is a compact measure. If I is countable then v is a Radon measure.
(iv) If every X; is defined everywhere on ), then the function w + (X;(w))ier : © — R is inverse-
measure-preserving for & and v, where fi is the completion of .

454K Definition In the context of 454J, T will call v the (joint) distribution of the process (X;);cr.

454L Independence: Theorem Let (2, X, 1) be a probability space and (X;);cr a family of real-valued
random variables on , with distribution v on RY. Then (X;);c; is independent iff v is the c.l.d. product of
the marginal measures on R.

454M Proposition Let I be a set, and suppose that for each finite J C I we are given a Radon probability
measure vy on R” such that whenever K is a finite subset of I and J C K, then the canonical projection
from R¥ to R is inverse-measure-preserving. Then there is a unique complete probability measure v on R”,
measuring every Baire set and inner regular with respect to the zero sets, such that the canonical projection
from R’ to R is inverse-measure-preserving for every finite J C I.

454N Proposition Let 2 be a Hausdorff space, 1 and v two Radon probability measures on €2, and
(Xi)ier a family of continuous functions separating the points of Q. If p and v give (X;);c; the same
distribution, they are equal.

4540 What distributions determine: Proposition Let (2,%, 1), (2/,%/, ') probability spaces,
(Xi)ier a family of random variables on Q and (X!);c; a family of random variables on €', both with the
same distribution v on R!. Suppose that (I;);c; is a family of countable subsets of I, and that for each
j € I we have a Borel measurable function f; : R to R. For j € J define Y, Yj/ by saying that

Yj(w) = f;({(Xi(w))ier,) for w € QN[ dom X,

Y/ (W) = f;((X{(w))ier,) for " € O N Nie, dom X7.

Then (Yj)jes and (Y]);jes have the same distribution.

454P Theorem Let I be a set.

(a) Let v and v/ be Baire probability measures on R! such that [e¥/(®v(dz) = [ef@)v/(dx) for every
continuous linear functional f : R’ — R. Then v = v/’

(b) Let (X;);er and (Y});er be two families of random variables such that

E(exp(i)_;_o arX;,)) = E(exp(id_,_o Y5, )
whenever jo,...,j, € I and ag,..., e, € R. Then (X;),er and (Y;), e have the same distribution.

454Q Continuous processes: Lemma Let T be a separable metrizable space and (X, X, i) a semi-
finite measure space. Let T be a topology on X such that p is inner regular with respect to the closed
sets.

(a) Let ¢ : X x T'— R be a function such that (i) for each x € X, t — ¢(x,t) is continuous (ii) for each
teT, x— ¢(x,t) is X-measurable. Then p is inner regular with respect to K = {K : K C X, ¢|K x T is
continuous}.

(b) Let 8 : X — C(T) be a function such that z — 6(x)(t) is X-measurable for every ¢t € T. Give C(T)
the topology ¥, of uniform convergence on compact subsets of 7. Then 6 is almost continuous.

454R Proposition Let T be an analytic metrizable space, and p a probability measure on C(7T') with
domain the o-algebra ¥ generated by the evaluation functionals f — f(¢) : C(T) — R for t € T. Give C(T)
the topology ¥. of uniform convergence on compact subsets of T. Then the completion of i is a .-Radon
measure.

454S Corollary Let T be an analytic metrizable space.

D.H.FREMLIN



12 Perfect measures, disintegrations and processes 4548

(a) C(T), with either the topology ¥, of uniform convergence on finite subsets of T" or the topology ¥.
of uniform convergence on compact subsets of T', is a measure-compact Radon space.

(b) Let p be a Baire probability measure on R” such that p*C(T) = 1. Then the subspace measure
fic on C(T) induced by the completion of x4 is a Radon measure on C(T) if C(T) is given either T, or ¥..
1 itself is 7-additive and has a unique extension fi which is a Radon measure on R”; fic is the subspace
measure on C'(T) induced by fi.

*454T Convergence of distributions (a) Let I be a set. Write M for the set of distributions on R,
that is, the set of completions of probability measures with domain Ba(R?). For any v € M, the integral
f fdv is defined for every bounded continuous function f : R’ — R. I will say that the vague topology
on M is the topology generated by the functionals v — [ fdv as f runs over the space C,(R”) of bounded
continuous real-valued functions on R’.

(b) The vague topology on M is Hausdorff.

*454U Theorem Let (2,3, 1) be a probability space, and I a set. Let M be the set of distributions
on RY; for a family X = (X;);cs of real-valued random variables on 2, let vx be its distribution. Then the
function X +— vx : £L%u)! — M is continuous for the product topology on L£°%(u)! corresponding to the
topology of convergence in measure on £°(u) and the vague topology on M.

*454V (a)(i) If A is a Dedekind o-complete Boolean algebra, I is a set, and u € L°(A)!, we have a
sequentially order-continuous Boolean homomorphism E + [u € E] : Ba(R!) — 2 defined by saying that

[ue{r:xeRl 2(i) <a}] =[u(i) < a]
whenever ¢ € I and o € R.

(ii) If h : R" — R is a Baire measurable function, there is a function h : L°(2)! — L°(2) defined by
saying that [h(u) € E] = [u € h=1[E]] for every Borel set E C R.

(b) Suppose that (2, /i) is a probability algebra, I is a set and u € L°()!. Then there is a unique
complete probability measure v on R?, measuring every Baire set and inner regular with respect to the zero
sets, such that

v{z:z € R 2(i) € E; for every i € J} = fi(inf;c s [u(i) € E;])
whenever J C [ is finite and F; C R is a Borel set for every i € J.

(c) In this context, I will call v the (joint) distribution of w.

(d) Let (2, z) and (2, ii') be probability algebras, and u € L°(2), v’ € L) families with the same
distribution. Suppose that (h;) ;e is a family of Baire measurable functions from R! to R. Then (h;(u))jes

and (h;j(u’));ecs have the same distribution.

(e) Similarly, if (2, j1) is a probability algebra, I a set, and we write v, for the distribution of u € L°(()7,
u +— v, is continuous for the product topology on L°(()! corresponding to the topology of convergence in
measure on L°(2A) and the vague topology on the space M of distributions on R’.

Version of 18.1.09/12.10.18
455 Markov and Lévy processes

For a ‘Markov’ process, in which the evolution of the system after a time ¢ depends only on the state at
time ¢, the general theory of §454 leads to a straightforward existence theorem (at least for random variables
taking values in standard Borel spaces) dependent only on a natural consistency condition on the transitional
probabilities (455A, 455E). The formulation leads naturally to descriptions of the ‘Markov property’ (for

(©) 2007 D. H. Fremlin
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455B Markov and Lévy processes 13

stopping times taking only countably many values) in terms of disintegrations and conditional expectations
(455C, 455Ec). With appropriate continuity conditions, we find that the process can be represented either
by a Radon measure (455H) or by a measure on the set of cadlag paths (455Ge) for which we have a
formulation of the strong Markov property (for general stopping times) in terms of disintegrations (4550).
These conditions are satisfied by Lévy processes (455P-455R). For these, we have an alternative expression
of the strong Markov property in terms of inverse-measure-preserving functions (455U). By far the most
important example of a continuous-time Markov process is Brownian motion, but I defer discussion of this
to §477.

455A Theorem Let T be a totally ordered set with least element t*, and for each t € T let €; be a
non-empty set and T, a o-algebra of subsets of ; containing all singleton subsets of €;. Set Q@ = [[,.+

and for t € T, w € Q set X;(w) = w(t). Fix * € Q4~. Suppose that we are given, for each pair s <t in T, a

family @S’”}IEQS of perfect probability measures on §2;, all with domain Ty, and suppose that

(t) whenever s < t < win T and z € €, then (yét’u)>yegt is a disintegration of v over
l/és’t).
For J C T write m; for the canonical map from Q onto Z; = [],.; Q. Then there is a unique probability

measure g on ), with domain @teTTt? such that, writing A; for the image measure ,u7r31,
[ tixs= [ sy, .. )

:// fla* xq,. .. ,xn)ug(f: ot ") (da,)

ptn—2tn_ 1)(d1’ ). (t tl)(dz )

$n2

whenever t* < t; < ... < t,, J = {t*,t1,... ,t,} and f is Aj-integrable. p is perfect, and the marginal
measure p; = pX; * is equal to 1/( D if ¢ > t*, while e {z*} = 1.

455B Lemma Suppose that T, t*, ((, Tt))ter, ©Q, z* and (ués’t)>5<t’xegs are as in 455A.

(a) Suppose that u is constructed from z* and <V§¢S’t)>5<t’wegs as in 455A. If F € @teTTt is determined
by coordinates in [t*,¢9] and H* = {w : w(t;) € E; for 1 < i < n} where ¢ty < t;... < t, and E; € T, for
1 <i < n, then

p 0Py = [ [ 3B ) ) ) (+)

where H =[], ., Ei
(b) Suppose that w €  and a € T'U {co}, where co is taken to be greater than every element of T'. For
s<tinT and z € Q) set

pEh =30 if g < s,
—Vi(zt)) ifs<a<t,

—5(5)% if t < a,

here writing 6% for the probability measure with domain Ty such that 6(t)({x}) =1

1 I/U(Ja;) is always a perfect probability measure with domain T;, and l/wa u) q, 1s a disintegration of

(i) ys ap p y v ) yes g
v over v whenever s <t < win T and z € Q..

* (s,t)
wa s<t,r ’

(ii) Taking p,q to be the measure on €2 defined from w(t*) and (Ve )s<t,zeq, by the method of 455A
then {w' : w' € Q, W'|D = w[D} is pyq-conegligible for every countable D C T N [t*, al.

(iii) If w, w’ € Q and w[[t*,a] = W'[[t*, a] then pya = pwra-
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14 Perfect measures, disintegrations and processes 455C

455C Theorem Suppose that T, t*, (2, T¢))ier, Q, ¥, (V,(;S’t)>5<t’xegs and p are as in 455A. Adjoin
a point oo to T above any point of T, and let 7: Q@ — T'U {oco} be a function taking countably many values

and such that {w : 7(w) < s} belongs to @, T: and is determined by coordinates in [t*, s] for every s € T'.
(a) For w € Q define (&) for s <t and z € Q,, as in 455Bb, and let p,, r(,) be the corresponding

w,T(w),z’
measure on . Then (u, -())weq is a disintegration of y over itself.

(b) Let ¥, be the set of those £ € @), Tt such that EN{w : 7(w) < t} is determined by coordinates in

[t*,t] for every t € T. Then ¥, is a o-subalgebra of &), ,T:. If f is any p-integrable real-valued function,
and we set gf(w) = [ fdpig 7wy when this is defined in R, then gy is a conditional expectation of f on X.

455E Theorem Let T be a totally ordered set with least element ¢*. Let (2;):er be a family of Hausdorff
spaces; suppose that we are given an z* € {;+ and, for each pair s < ¢ in T, a family (l/g(gs’t)>xegs of Radon
probability measures on {2; such that
<V1(/t7u)>yegs is a disintegration of sz’u) over Vés’t) whenever s <t <wuin T and x € Q.

Write Q = HteT Qy; for t € T let B(£2;) be the Borel o-algebra of ;, and X; : Q — Q; the canonical map;
for J C T write 7; for the canonical map from Q onto [[,.; ;. Fort € T'and = € Q; let 5_&0 be the Dirac
measure on §); concentrated at x.

(a) There is a unique complete probability measure fi on €, inner regular with respect to @teTB(Qt),
such that, writing 5\,] for the image measure [m;l,

[ 5= [ )t o))

= /...//f(a:*,a;l, e ,xn)ug(cij:ll’t")(da:n)

V(t"'—Q’t”'—l)(dxn_l) . Vg(f:’tl) (dxy)

Tn—2

whenever t* < t; < ... < t, in T, J = {t*,t1,... ,t,} and f is \j-integrable. In particular, the image
measure 1X; ! is equal to AT SN t*, and to 6;75* )if t = t*,

T*

(b)(i) For w €  and a € T'U {oo} define <V£;Sa’i)>5<t’meﬂs by setting

vt = (80 if g < s,

:uf)a(’;))ifsga<t,

— 5(75)

w(t) if t <a.

The family <1/£,S(;2>S<t7wegs, together with the point w(t*) € Q4+, satisfy the conditions of (a), so can be used
to define a complete measure fi,,, on (2.

(ii) If w € Q and D C T N [t*,a] is countable, then fiy{w' : W' [D =w[D} = 1.

(iii) If w, w’ € Q and W'[[t*, a] = w[[t*, al, then [iyq = fiwg-

(c) Let ¥ be the domain of fi. Suppose that 7: Q — T'U{oc} is a function taking countably many values

and such that {w: 7(w) <t} belongs to ¥ and is determined by coordinates in [t*,¢] for every t € T

(1) (fleo,r(w))wea is a disintegration of fi over itself.

(ii) Let X, be the set

{E:Ee¥ ENn{w: 7(w) <t} is determined by coordinates in [t*, ]
for every ¢t € T'}.
Then X, is a o-subalgebra of . If f is any fi-integrable real-valued function, and we set gy(w) = [ Jdfiy r(w)

when this is defined in R, then g is a conditional expectation of f on ;.

455F Definitions (a) Let U be a Hausdorff space and (Vg(cs’t)>0§s<t,$eU a family of Radon probability

. b . . ipey . .
measures on U. I will say that <V¢£S )>OSs<t,ac€U is narrowly continuous if it is continuous, as a function
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from {(s,t) : 0 < s <t} x U to the set of Radon probability measures on U, when the latter is given its
narrow topology.

(b) Let (U, p) be a metric space, and <u§s’”)ogs<meU a family of Radon probability measures on U. 1

will say that <1/g(cs’t)>0§5<t’x€U is uniformly time-continuous on the right if for every ¢ > 0 there is a

6 > 0 such that Vg(cs’t)B(a:,e) >1—¢€ewhenever r € U and 0 < s<t<s+9.

455G Theorem Let (U, p) be a complete metric space and (ug(cs’t)>0§5<t,meU a family of Radon probability

measures on U, uniformly time-continuous on the right, such that <l/?5t’u)>y€U is a disintegration of 1/9(337“)

over Vis’t) whenever 0 < s <t < u and z € U. Take a point @ in @ = Ul and a € [0,00]. Let figq be

the completed probability measure on €2 defined from (Vg(gs’t))ogsq,weu, w and a as in 455Eb.
(a) For figq-almost every w € Q, limgeq, gyt w(g) and limgeq, g1t w(q) are defined in U for every ¢ > a.
(b)(i) If a <t < o0, then w(t) = limgeq,q1t w(q) for fige-almost every w € .
(ii) If a < t < o0, then w(t) = limgeg g1t w(g) for fizq-almost every w € Q.
(c)(i) Let €V be the set of callal functions from [0,00[to U. If@ € C“, ¢V has full outer measure for
ﬂ&)a-
(ii) Let Cqig be the set of cadlag functions from [0,00[ to U. If @ € Cqig, Caig has full outer measure
for figq.

455H Corollary Let (U, p) be a complete metric space and (Vg(cs’t)>ogs<m€U a family of Radon probability

measures on U, uniformly time-continuous on the right, such that (uét’u)>yeU is a disintegration of v{*"

over v$™" whenever 0 < s < t < u and z € U. Let C1L(U) be the set of callal functions from [0, oo to

U. Suppose that @ € C1L(U), and a € [0, 00]; let fiz, be the completed probability measure on Q = U0l
defined from @, a and <V¢£S’t)>ogs<t7me(] as in 455Eb. Then [, has a unique extension to a Radon measure

fize on £, and [La,aC1L(U) =1.

4551 Lemma Let (U, p) be a complete separable metric space and <V§5’t)>0§3<t726(] a family of Radon

probability measures on U, uniformly time-continuous on the right, such that <V3(Jt’u)>y€U is a disintegration

of z/és’u) over V:(Es’t) whenever 0 < s <t <wu and « € U. Suppose that & € Q, and a € [0, 00]; let fiz, be the

completed probability measure on Q = U0l defined from (z/,(f’t)>0§s<me(], w and a as in 455Eb.
(a) Suppose that 0 < qo < ¢1 and € > 0. For w € Q, I will say that ]qo, q1[ is an e-shift interval of w
with (qo, q1, €)-shift point ¢ if p(w(qo),w(q1)) > 2¢ and

t =sup{q:q € QNlgo,q1[, p(w(q),w(qo)) < €}
=inf{q:q € QNJqo, q1[, p(w(q),w(q1)) < €}.
Let E be the set of such w.
(i) E € Ba() = ® 0. BU).
(ii) The function f : E — ]qo,q1| which takes each w € E to its (qo, q1,€)-shift point is Ba(Q)-
measurable.
(iii) If go > a, the set {w:w € E, f(w) =t} is [ige-negligible for every ¢ € ]qo, q1].
(iv) If g0, 1 € Qw e FE, w € Qand w'|Q = w[Q, then w’ € E and f(w') = f(w).
(b) Suppose that (¢;)i<n, (¢)i<n, (<i)i<n, € >0, E € Ba(2) and (f;)i<, are such that, for every i < n,

4,9 €Q, ¢ <gqj, <;iseither <or >,
l4i» ¢;] is an e-shift interval of w with (g;, ¢}, €)-shift point f;(w), for every w € E,
and also
a<qo, ¢ <q foreveryi<nmn,
whenever w, w’ € E there is an ¢ < n such that f;(w') <; fi(w).
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16 Perfect measures, disintegrations and processes 4551

Then FE is figq-negligible.
(c) Suppose that (¢;)i<n, (@})i<n, (<i)i<n, € >0, E € Ba(Q) and (f;)i<n are such that, for every i < n,

g, ¢, €Q, ¢ <gq, <;iseither <or >,

lgi» ¢;] is an e-shift interval of w with (g;, ¢}, €)-shift point f;(w), for every w € E,
and also
a<qo, ¢ <gi+ foreveryi<n.

Then for jige-almost every w € E there is an w’ € E such that f;(w’) <; f;(w) for every i < n.

455J Theorem Let (U, p) be a complete separable metric space and (Vg(f’t)>ogs<t,xe(] a family of Radon

probability measures on U, uniformly time-continuous on the right, such that <V3(/t’u)>y€U is a disintegration

of 15" over v whenever 0 < s < t < u and = € U. Write C'" for the set of callal functions from [0, oo

to U. Suppose that w € C’“, and a € [0,00]; let jiz, be the completed probability measure on Q = U1l
defined from <I/§;S7t)>0§3<t7m€[]7 @ and a as in 455Eb, and [ig, its extension to a Radon measure on €2, as in

455H. Then fig, is inner regular with respect to sets of the form F' N cV where F C Q is a zero set.

455K Corollary Suppose, in 455J, that & € Cqyg, the space of cadlag functions from [0, 0o[ to U. Then
the subspace measure fig, on Cqie induced by fiz, is a completion regular quasi-Radon measure.

455L Stopping times Let 2 be a set, ¥ a o-algebra of subsets of  and (¥;);>¢ a non-decreasing family
of o-subalgebras of ¥. (Such a family is called a filtration.) For t > 0, set £ = (., X, so that (X; )0

also is a non-decreasing family of o-algebras. Of course X;” = - ¥ for every t > 0.

(a) A function 7 : Q — [0, 00] is a stopping time adapted to (£;:);>¢ if {w:w € Q, 7(w) <t} belongs
to X; for every ¢t > 0.
7 will be ¥-measurable.

(b) A function 7 : Q — [0,00] is a stopping time adapted to (X} );>¢ iff {w : 7(w) < t} € X for every
t>0.
(c)(i) Constant functions on § are stopping times.
(ii) If 7 and 7" are stopping times adapted to (X;)¢>0, so is 7+ 7.
(iii) If 7 is a stopping time adapted to (X);>0, then
Y,={E:EFeX En{w:7(w) <t} €, for every ¢t > 0}
is a o-subalgebra of X.

(iv) If (73)ier is a countable family of stopping times adapted to (X¢)¢>0, then 7 = sup,c; 7; is adapted
to (X¢)¢>o0-

(v) If (7;);es is a countable family of stopping times adapted to (X} );>¢, then 7 = inf;cs 7; is adapted
to <Z?>t20.

(d) Now suppose that Y is a topological space and we have a family (X;);>¢ of functions from 2 to
Y, and that 7 : @ — [0,00] is any Y-measurable function. Set X;(w) = X;(,)(w) when 7(w) < oco. If
(t,w) = Xi(w) : [0,00[ x @ — Y is B([0, oo[)@X-measurable, where B([0,00[) is the Borel o-algebra of
[0, 00[, then X, : {w : 7(w) < 00} = Y is E-measurable.

*(e) Again take a topological space Y, a family (X;);>o of functions from Q to Y, and a stopping time
7 : Q0 — [0, 00] adapted to (X;);>0. This time, suppose that (X;);>¢ is progressively measurable, that
is, that (s,w) — X,(w) : [0,¢] x Q = Y is B(]0,])@%;-measurable for every ¢ > 0, and moreover that ¥, is
closed under Souslin’s operation for every ¢t. Then X, as defined in (d), will be ¥ -measurable.
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*(f)(i) Suppose that p is a probability measure with domain ¥ and null ideal N ( ). Then we can form
the completion /i with domain 3. If we now set 33 = {EAA: E € %y, A€ N ()}, (E¢)i>0 and (2] )0 are

filtrations, where 33} = N>t 3, for t > 0.

(ii) We find that ;) = {EAA: E €%, A e N(u)} for every t > 0.

(iif) Of course every stopping time adapted to (X} );>o is adapted to <f) )i>0. Conversely, if 7: Q@ —
[0, 0] is a stopping time adapted to (f) )¢>0, there is a stopping time 7/, adapted to (¥;);>0, such that
T =pe T.

(iv) Continuing from (iii) just above, we find that, defining 31 from (£ )50 and 7 and %7, from
(3 )¢50 and 7' by the formula in (c-iii), then 3+ = {FAA: F e B5,, A€ N(w)}.

455M Hitting times: Proposition Let U be a Polish space and Cqi the set of cadlag functions from
[0,00[ to U. Let A C U be an analytic set, and define 7 : Cqig — [0, 00] by setting
T(w) =inf{t:w(t) € A}

for w € Cqig, counting inf @) as co.

(a) Let ¥ be a o-algebra of subsets of Cqig closed under Souslin’s operation and including the algebra
generated by the functionals w +— w(t) for ¢ > 0. Then 7 is ¥-measurable.

(b) For t > 0 let 3; be

{F:F €%, € F whenever w, w € Cqig, w € F and w[|[0,t] = w'[[0,1]},

and ¥ = s> Xt Then 7 is a stopping time adapted to (¥; Diso-
(c) If A is closed, then 7 is adapted to (X;);>0-

455N Lemma Let (U, p) be a metric space, n € N and f: U"™! — R a bounded uniformly continuous

function. Let (v (k)>k<7, zcu be a family of topological probability measures on U such that = — v s

continuous for the narrow topology for every k < n. Then

gy [[ oo [ fyzn, )l D (dey) v (das)v (day)

is defined everywhere on U and continuous.

4550 Theorem Suppose that (U, p) is a complete metric space, z* is a point of U, (Vg(cs’t)>ogs<t7m€U

is a family of Radon probability measures on U which is both narrowly continuous and uniformly time-

continuous on the right, and that (v (t, u)>yeU is a disintegration of v{*" over v{*" whenever z € U and

s <t < u. Let ji be the corresponding completed measure on Q = U%>®l as in 455E. Let Caig be the set of
cadlag functions from [0, 00[ to U, ji the subspace measure on Cqje, and 3 its domain. For ¢ > 0, let X, be
{F:Fe ¥, w' € F whenever w € F, w' € Caig and w'[[0,¢] = w[[0, ]},

and 3 = Nt 3.
For w € Q and a > 0 let fiy, be the completed measure on 2 built from w(0) and (uwax)>0<s<t zeU as
in 455Eb; let fi,q be the subspace measure on Cyqig. Let 7 : Caig — [0, 00] be a stopping time adapted to

(EF)e=o0.
(a) {fiw,r(w))weCay, 1 a disintegration of ji over itself.

(b) Set
St={F:Fe3 Fn{w:r(w) <t} e for every t > 0}.
Then Z"’ is a o-algebra of subsets of Cyj,. For a ji-integrable function f on Cyyg, write Gy (w de] Jdii 7 (w)

when this is defined in R. Then gy is a conditional expectation of f on Ej.
(c) If 7 is adapted to (X);>0, set

Y, ={F:Fe¥ Fn{w:7(w) <t} € for every t > 0}.

Then 3, is a o-algebra of subsets of Cayg, and gy is a conditional expectation of f on 3., for every f € L1(ji).
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18 Perfect measures, disintegrations and processes 455P

455P Theorem Let U be a metrizable topological group which is complete under a right-translation-
invariant metric p inducing its topology. Let (\;)¢~o be a family of Radon probability measures on U such
that the convolution As * A; is equal to Asy; for all s, ¢ > 0. Suppose that lim; o \yG = 1 for every open
neighbourhood G of the identity in U. For x € U and 0 < s < t, let v. (s Y be the Radon probability measure
on U defined by saying that 4" t)( E) = \_s(Ex!) whenever \;_s measures Ez~*

(a)

(b) < >0§S<t7er is narrowly continuous and uniformly time-continuous on the right.

(c)(i) We can define a complete measure i on U%>l by the method of 455E applied to x* = e and

<V£87t)>0§s<t,m€U-

(ii) If Caig is the space of cadlag functions from [0, co[ to U, then 4*Cqg = 1, and the subspace measure
it on Cqig will have the properties described in 4550, with w(0) = e for ji-almost every w € Cag.

(iii) £ has a unique extension to a Radon measure i on U [0,00],

(vy (e )>y€U is a disintegration of v over vi™" whenever 2 € U and 0 < s < t < u.

455Q Lévy processes Let U be a separable metrizable topological group with identity e, and consider
the following list of properties of a family (X,);>o of U-valued random variables:
Xy = e almost everywhere,
Pr(X;X;' € F) =Pr(X;_s € F) whenever 0 < s <t and F C U is Borel
(the process is stationary),
whenever 0 <ty <t; <...<ty, then Xy, X,
(the process has independent increments),

to ,XtQX{1 yeen ,thXt:il are independent

X; — e in measure as t | 0
(that is, limy g Pr(X; € G) = 1 for every neighbourhood G of the identity). Such a family I will call a
Lévy process.

455R Theorem Let U be a Polish group with identity e which is complete under a right-translation-
invariant metric inducing its topology. A family (Xy);>o of U-valued random variables is a Lévy process iff
there is a family (\;);>0 of Radon probability measures on U, satisfying the conditions of 455P, such that if
we start from 2* = e and build the measure /i on U%>[ as in 455P¢, then
Pr(X,, € F; for every i <n) = fi{w : w(t;) € F; for every i < n}

whenever tg, ... ,t, € [0,00] and F; C U is a Borel set for every i < n.

4558 Lemma Let U be a metrizable topological group which is complete under a right-translation-
invariant metric inducing its topology. Let (A;)¢~o be a family of Radon probability measures on U such
that Ag * Ay = Ay for all s, ¢ >0 and lim; o \yG = 1 for every open neighbourhood G of the identity e
inU. Forx € U and 0 < s < ¢, let 1/$ > be the Radon probability measure on U defined by saying that

e t)(E) = \_s(Ex~1) whenever \;_, measures Ex~

() f0<ty<t; <...<ty,, z€Uand f: R/ = R is a bounded Borel measurable function, where

J = {to, ce 7tn}7 then

///f(le L) (d) o) (A )0 (dry )
://.../f(z,xlz,... TnZ) g(cn" b ) (day,)
V;tll’tQ)(d.’Eg)l/éto’tl)(da?l).

(b) Take w € Ul and @ > 0. Let /i and fiyq be the measures on U0l defined from <V£S7t)>s<tﬁzeU by
the method of 455E, starting from z* = e. Define ¢,,, : U%®l — U0l by setting

Guale)(6) = wlt) i £ < a,
=uw'(t —a)w(a) if t > a.

MEASURE THEORY (abridged version)



456A Gaussian distributions 19

Then fi,,, is the image measure fi¢_}.

(c) In (b), suppose that w belongs to the set Cqyg of cadlag functions from [0, co[ to U. Then ¢y,q(w’) € Caig
for every w’ € Caig, and ¢4 : Cqig = Cayg is inverse-measure-preserving for the subspace measures ji and
flwa O Cdlg~

455T Corollary Let U be a metrizable topological group which is complete under a right-translation-
invariant metric inducing its topology. Let (\;)t>0 be a family of Radon probability measures on U such
that As * Ay = As4¢ for all s, ¢ > 0 and lim¢ g A:G = 1 for every open neighbourhood G of the identity e
in U; let i be the measure on Ul defined from (\;)¢~o by the method of 455Pc. Let Caig be the set of
cadlag functions from [0, 00[ to U, ji the subspace measure on Cgjy and 3 its domain. For ¢t > 0, let 3, be

{F:Fe¥, o € F whenever w € F, ' € Cayg and w'[[0,t] = w[[0, 1]}

¥ includes E?‘ =Nst 3.

and 3, = {FAA: F € 5, jiA=0}. Then 3, =

s>t

455U Theorem Let U be a metrizable topological group which is complete under a right-translation-
invariant metric inducing its topology. Let (\:)t>o be a family of Radon probability measures on U such
that As * Ay = As4¢ for all s, ¢ > 0 and lim¢ g A:G = 1 for every open neighbourhood G of the identity e
in U; let i be the measure on Ul defined from (\;)¢~o by the method of 455Pc. Let Caig be the set of

cadlag functions from [0, 00[ to U, ji the subspace measure on Cqje and X its domain. For ¢ > 0, let X; be

{F:Fe ¥, w' € F whenever w € F, w' € Caig and w'[[0,¢] = w[[0, ]},

and 3 = {FAA: F € 3y, jid = 0}; let 7 : Cqig — [0, 00] be a stopping time adapted to <it>t20- Define
Or : Cdlg X Cdlg — Odlg by setting

¢r(w,w)(t) = o' (t = T(w))w(r(w)) if t > 7(w),

= w(t) otherwise.

Then ¢, is inverse-measure-preserving for the product measure ji X ji on Cqig X Cqig and fi on Cgg.

Version of 19.5.10

456 Gaussian distributions

Uncountable powers of R are not as a rule measure-compact. Accordingly distributions, in the sense of
454K, need not be 7-additive. But some, at least, of the distributions most important to us are indeed
7T-additive, and therefore have interesting canonical extensions. This section is devoted to a remarkable
result, taken from TALAGRAND 81, concerning a class of distributions which are of great importance in
probability theory. It demands a combination of techniques from classical probability theory and from
the topological measure theory of this volume. I begin with the definition and fundamental properties of
what T call ‘centered Gaussian distributions’ (456A-4561). These are fairly straightforward adaptations of
the classical finite-dimensional theory, and will be useful in §477 when we come to study Brownian motion.
Another relatively easy idea is that of ‘universal’ Gaussian distribution (456J-456L). In 456M we come to a
much deeper result, a step towards classifying the ways in which a Gaussian family of n-dimensional random
variables can accumulate at 0. The ideas are combined in 456N-4560 to complete the proof of Talagrand’s
theorem that Gaussian distributions on powers of R are 7-additive.

456 A Definitions (a) Write p¢ for the Radon probability measure on R which is the distribution of a

standard normal random variable. For any set I, write M(G{) for the measure on R which is the product of
copies of pq; this is always quasi-Radon; if T is countable, it is Radon; if I = n € N\ {0}, it is the probability
distribution with density function x — (27)~"/2e=%%/2; if [ = (), it is the unique probability measure on
the singleton set R?.

(©) 2010 D. H. Fremlin
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20 Perfect measures, disintegrations and processes 456Ab

(b) I will use the phrase centered Gaussian distribution to mean a measure y on a power R’ of R
such that p is the completion of a Baire measure and every continuous linear functional f : R! — R is either
zero almost everywhere or is a normal random variable with zero expectation.

(c) If I is a set and p is a centered Gaussian distribution on R, its covariance matrix is the family
(0ij)ijer where o;; = [x(i)z(j)u(dx) for i, j € I.

456B Proposition (a) Suppose that I and J are sets, p is a centered Gaussian distribution on R’, and
T :R! = R’ is a continuous linear operator. Then there is a unique centered Gaussian distribution on R”
for which T is inverse-measure-preserving; if .J is countable, this is the image measure uT 1.

(b) Let I be a set, and u, v two centered Gaussian distributions on R. If they have the same covariance
matrices they are equal.

(c) For any set I, ,ug) is the centered Gaussian distribution on R! with the identity matrix for its
covariance matrix.

(d) Suppose that I is a countable set. Then a measure x4 on R’ is a centered Gaussian distribution iff it
is of the form ug)T’l where T : RN — R’ is a continuous linear operator.

(e) Suppose (I;);c is a disjoint family of sets with union I, and that for each j € J we have a centered
Gaussian distribution v; on R%. Then the product v of the measures v;, regarded as a measure on R, is a
centered Gaussian distribution.

(f) Let I be any set, u a centered Gaussian distribution on R and £ C R’ a set such that p measures
E. Writing —F = {-z:2 € E}, u(—E) = uE.

456C Theorem Let I be a set and (o;;); jer a family of real numbers. Then the following are equiver-
idical:

i) (o) icr is the covariance matrix of a centered Gaussian distribution on R’;

314,
ii) there are a (real) Hilbert space U and a family (u;);cy in U such that (u;|u;) = o;; for all 4, j € I;
j J

(iii) for every finite J C I, (0i;)i e is the covariance matrix of a centered Gaussian distribution on R7;

(iv) (04j)i,jer is symmetric and positive semi-definite in the sense that o;; = o0j; for all ¢, j € I and
Zi.jGJ a;ao; > 0 whenever J C [ is finite and (a;)ics € RY.

456D Gaussian processes: Definition A family (X;);c; of real-valued random variables on a proba-
bility space is a centered Gaussian process if its distribution is a centered Gaussian distribution.

456E Independence and correlation: Proposition (a) Let (X;);c; be a centered Gaussian process.
Then (X;)icr is independent iff E(X; x X;) = 0 for all distinct ¢, j € I.

(b) Let (X;)icr be a centered Gaussian process on a complete probability space (Q, X, 1), and J a disjoint
family of subsets of I; for J € J let ¥; be the o-algebra of subsets of  generated by {X; '[F] :i € J,
F C R is Borel}. Suppose that E(X; x X;) = 0 whenever .J, J’ are distinct members of 7, i € J and j € J'.
Then (X) je 7 is independent.

456F Proposition Let (X;);c; be a family of random variables on a probability space (£2,3, p). Then
the following are equiveridical:
(i) the distribution of (X;);cr is a centered Gaussian distribution;

(ii) whenever ig, ... ,i, € I and aq, ... ,a, € R then Z::o o, X;, is either zero a.e. or a normal random
variable with zero expectation;
(iil) whenever g, ... , i, € I then the joint distribution of Xj,,... , X;, is a centered Gaussian distribution;

(iv) whenever J C I is finite then there is an independent family (Yy)rex of standard normal random
variables on €2 such that each X, for ¢ € J, is almost everywhere equal to a linear combination of the Y.

456G Lemma Let I be a finite set and i a centered Gaussian distribution on R?. Suppose that v > 0
and & = ju{a s sup,e; [(i)] = 7} Then pfa : supye; [2(i)] = Ly} > 2a(1 — a)?.

456H The support of a Gaussian distribution: Proposition Let I be a set and p a centered
Gaussian distribution on R?. Write Z for the set of those z € R’ such that f(z) = 0 whenever f: RT — R
is a continuous linear functional and f = 0 a.e. Then Z is a self-supporting closed linear subspace of R
with full outer measure. If I is countable Z is the support of u.
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4561 Remarks (a) In the context of 456H, I will call Z the support of the centered Gaussian distribution
u, even though p need not be a topological measure.

(b) If I and J are sets, u and v are centered Gaussian distributions on R and R” respectively with
supports Z and Z’, and T : R — R” is an inverse-measure-preserving continuous linear operator, then
Tz € Z' for every z € Z.

456J Universal Gaussian distributions: Definition A centered Gaussian distribution on RY is
universal if its covariance matrix (o;;); jer is the inner product for a Hilbert space structure on I.

456K Proposition Let I be any set, and p a centered Gaussian distribution on I. Then there are a set
J, a universal centered Gaussian distribution v on R”, and a continuous inverse-measure-preserving linear
operator T : R7 — R,

456L Lemma Let 4 be a universal centered Gaussian distribution on R; give I a corresponding Hilbert
space structure such that [ z(i)x(j)u(dz) = (i|j) for all 4, j € I. Let F € domu be a set determined by
coordinates in J, where J C I is a closed linear subspace for the Hilbert space structure of I. Let W be the
union of all the open subsets of R’ which meet F' in a negligible set, and W’ the union of the open subsets
of RT which meet F in a negligible set and are determined by coordinates in .J. If F C W then F C W'.

456M Cluster sets: Lemma Let I be a countable set, n > 1 an integer and p a centered Gaussian
distribution on RY*". For € > 0 set

I.={i:iel, f |z(i,r)|?u(dz) < €% for every r < n};

suppose that no I, is empty.
(a) There is a closed set F' C R™ such that

F= me>0 {<x(iv7")>r<n ci €I}

for almost every x € RTx™,
(b)If z€ Fand =1 <« <1, then az € F.
(c) If F is bounded, then there is some € > 0 such that sup;c; .., [2(i,7)| < oo for almost every € RT*™.

456N Lemma Let J be a set and u a centered Gaussian distribution on R/. Let M be the linear
subspace of L?(u) generated by {n? : j € J}, where 7;(z) = 2(j) for z € R’ and j € J. If M is separable
then p is T-additive.

4560 Theorem Every centered Gaussian distribution is T-additive.

456P Corollary If y is a centered Gaussian distribution on R’, there is a unique quasi-Radon measure
fi on RY extending . The support of u as defined in 456H is the support of ji as defined in 411N.

456(Q) Proposition Let I be a set and R the set of functions ¢ : I x I — R which are symmetric and
positive semi-definite in the sense of 456C; give R the subspace topology induced by the usual topology of
RIXI Let PqR(RI ) be the space of quasi-Radon probability measures on R’ with its narrow topology. For
o € R, let p1, be the centered Gaussian distribution on R! with covariance matrix o, and i, the quasi-
Radon measure extending p,. Then R is a closed subset of RI*! and the function o — fi, : R — P,r(RY)
is continuous.

Version of 18.1.13

457 Simultaneous extension of measures

The questions addressed in §§451, 454 and 455 can all be regarded as special cases of a general class of
problems: given a set X and a family (v;);cr of (probability) measures on X, when can we expect to find a
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measure on X extending every v;? An alternative formulation, superficially more general, is to ask: given a
set X, a family ((Y;, T;,vi)):er of probability spaces, and functions ¢; : X — Y; for each i, when can we find
a measure on X for which every ¢; is inverse-measure-preserving? Even the simplest non-trivial case, when
X =[;c; Yi and every ¢; is the coordinate map, demands a significant construction (the product measures
of Chapter 25). In this section I bring together a handful of important further cases which are accessible
by the methods of this chapter. I begin with a discussion of extensions of finitely additive measures (457A-
457D), which are much easier, before considering the problems associated with countably additive measures
(457E-457G), with examples (457H-457J). In 457K-457M I look at a pair of optimisation problems.

457A Lemma Let 2 be a Boolean algebra and (B;);c; a non-empty family of subalgebras of 2. For
each ¢ € I, we may identify L°°(%8;) with the closed linear subspace of L>(2() generated by {xb: b € B;}.
Suppose that for each ¢ € I we are given a finitely additive functional v; : 8, — [0, 1] such that v;1 = 1; write
f...dy; for the corresponding positive linear functional on L (B;). Then the following are equiveridical:
(i) there is an additive functional p : 2 — [0, 1] extending every v;;

oy (0 whenererio, i € 1,0y € By for k<, and Xk=o Xak 2 mx1 in S(2), where m € N, then
::(Ziiilic \flh;ne\’fer W0y in € I, a € By, for k < n, and >.;_,xar < mxl, where m € N, then
ap < m:
i:_%;lgjk%l%l;ng;? Q0.+ i € I are distinct, uy € L®(B;,) for every k < n, and >2;_juy, > x1, then
i:O(V) kwh;;e;/er’ i, ... ,in € I are distinct, u, € L>(%B;,) for every k < n, and 37, ur < X1, then

Z?:Ofukdyik <L

457B Corollary Let X be a set and (Y;);c; a family of sets. Suppose that for each i € I we have

an algebra &; of subsets of Y;, an additive functional v; : & — [0,1] such that v;¥; = 1, and a function
fi : X = Y;. Then the following are equiveridical:

(i) there is an additive functional y : PX — [0,1] such that uf; *[E] = v;E whenever i € I and E € &;

(ii) whenever ig,... ,i, € I and Ej, € &, for k < n, then there is an z € X such that >, v, Ep <

#{k : k <n, fi () € Ex}).

457C Corollary (a) Let 2 be a Boolean algebra and 981, B2 two subalgebras of 2 with finitely additive
functionals v; : B; — [0,1] such that 111 = 51 = 1. Then the following are equiveridical:
(i) there is an additive functional p : 2 — [0, 1] extending both the v;;
(ii) whenever by € B1, by € By and by Uby = 1, then v1by + voby > 1;
(111) whenever b; € B, by € By and by nby = 0, then v1by + v9by < 1.
(b) Let X, Y1, Y2 be sets, and for i € {1,2} let & be an algebra of subsets of Y;, v; : & — [0,1] an
additive functional such that v;Y; = 1, and f; : X — Y; a function. Then the following are equiveridical:
(i) there is an additive functional y : PX — [0,1] such that uf; '[E] = v;E whenever i € {1,2} and
Eeé&;
(ii) f B N £y [E2] # 0 whenever Ey € &, Ey € & and 11 Ey + 15 Ey > 1;
(iii) 11 E1 < v9Fy whenever Fy € &1, E5 € £ and ffl[El] C f{l[Eg].

*457D Proposition Let 2 be a Boolean algebra and 981, %, two subalgebras of 2. Suppose that
v; : B; — [0,1] are finitely additive functionals such that 111 = 151 =1, and 6 : 2 — [0, co[ another additive
functional. Then the following are equiveridical:

(i) there is an additive functional p : 2 — [0, oo[ extending both the v;, and such that pa < fa for every
a e

(11) v1by + by <1+ 9(b1 n bz) whenever by € B and by € Bs.

457E Proposition Let X be a non-empty set and (v;);c; a family of probability measures on X satisfying
the conditions of Lemma 457A, taking 2l = PX and B; = dom y; for each i. Suppose that there is a countably
compact class K C PX such that every v; is inner regular with respect to L. Then there is a probability
measure g on X extending every v;.
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457F Proposition (a) Let (X, X, u) be a perfect probability space and (Y, T, v) any probability space.
Write ¥ ® T for the algebra of subsets of X x Y generated by {E x F : E € ¥, F € T}. Suppose that
Z C X xY is such that
(i) Z is expressible as the intersection of a sequence in ¥ ® T,
(ii) ZN(E x F) # () whenever E € ¥, F € T are such that uF + vF > 1.
Then there is a probability measure A on Z such that the maps (z,y) — 2 :Z — X and (z,y) —»y: Z =Y
are both inverse-measure-preserving.
(b) Let (X, i, ti))ier be a family of perfect probability spaces. Write ), ¥; for the algebra of subsets

of X = [[;c; X: generated by {{z: 2 € X, 2(i) € E} :i € I, E € ¥;}. Suppose that Z C X is such that
(i) Z is expressible as the intersection of a sequence in &), ¥,
(ii) whenever ig,... ,i, € I and Ey, € ¥;, for k < n, there is a z € Z such that #({k : k <

n, 2(ix) € E}) > 375 _o tig B
Then there is a perfect probability measure A on Z such that z — 2(i) : Z — X, is inverse-measure-
preserving for every i € I.

457G Theorem Let X be a set and (u;);c; a family of probability measures on X which is upwards-
directed in the sense that for any 4, j € I there is a k € I such that p extends both p; and p;. Suppose
that for any countable J C I there is a measure on X extending u; for every ¢ € J. Then there is a measure
on X extending u; for every i € I.

457H Example Set X = {(z,y) : 0 <z <y < 1} C [0,1]2. Write 71, 72 : X — R for the coordinate
maps, and py, for Lebesgue measure on [0, 1], with X}, its domain.

(a) There is a finitely additive functional v : PX — [0, 1] such that v, '[E] = uz E whenever i € {1,2}
and F € ¥p,.

(b) However, there is no measure p on X for which both 7; and my are inverse-measure-preserving.

4571 Example Let ;1 be Lebesgue measure on [0, 1] and ¥, its domain. Set

X = {(€1,6,6) :0< & < 1foreach i, X0 & <2, 5% 2 <1},

For 1 <4 <3 set Wl(.r) =¢; for x = (51,52,53) e X.
(a) If E; € ¥, for 4 < 3, then there is an « € X such that #({i : mi(z) € E;}) > Zle nrE;.

(b) There is no finitely additive functional v on X such that vr; *[E] = purF for each i and every E € ¥y,

457J Example There are a set X and a family (u;);cr of probability measures on X such that (i) for
every countable set J C I there is a measure on X extending p; for every ¢ € J (ii) there is no measure on
X extending p; for every i € I.

457K Definition Let (X, p) be a metric space. For quasi-Radon probability measures p, v on X, set
pw(u,v) = sup{|fudu - fudy\ :u: X — Ris bounded and 1-Lipschitz}.

457L Theorem Let (X, p) be a metric space and Pyr the set of quasi-Radon probability measures on
X; define pw as in 457K.
(a) For all y, v and A in Pyg,

pw (s, v) = pw(v, ), pw(ps A) < pw(p,v) + pw(v, A),

pw(p,v) =0iff p=wv.

(b) If 1, v € Pyr, then pw(p,v) = infreq(u [ p(@, y)A(d(x,y)), where Q(u,v) is the set of quasi-Radon
probability measures on X x X with marginal measures p and v.
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(¢) In (b), if 4 and v are Radon measures, Q(u, v) is included in Pg (X x X'), the space of Radon probability
measures on X x X, and is compact for the narrow topology on Pg(X x X); and there is a A € Q(u, ) such
that pw(p,v) = [ p(z, y)A(d(z,y)).

(d) If p is bounded, then pw is a metric on Pyg inducing the narrow topology.

457M Theorem Let X be a Hausdorff space and (v;);c; a non-empty finite family of locally finite
measures on X all inner regular with respect to the closed sets.
(a) For A C X x [0, 0], set

c(A) = inf{z / hidv; : h; : X — [0,00] is dom v;-measurable for each i € I,
iel
a< Zhi(x) whenever (z,a) € A}.
iel
(i) ¢ is a Choquet capacity.
(ii) For every A C X x [0, c0[, the infimum in the definition of ¢(A) is attained.
(b) Let f: X — [0, 00[ be a function such that {z : f(z) > a} is K-analytic for every a > 0. Then

inf{z / hidv; : h; : X — [0,00] is dom v;-measurable for each ¢ € I, f < Z h;}
iel i€l

= sup{/ fdu: pis a Radon measure on X and p < v; for every ¢ € I}.

457Z Problems Give [0, 1] Lebesgue measure.

(a) Characterize the sets X C [0, 1]? for which there is a measure on X such that both the projections
from X to [0, 1] are inverse-measure-preserving.

(b) Set X = {z:x €[0,1)3, ||z|| = 1}. Is there more than one Radon measure on X for which all three
coordinate maps from X onto [0, 1] are inverse-measure-preserving?

Version of 20.11.17

458 Relative independence and relative products

Stochastic independence is one of the central concepts of probability theory, and pervades measure theory.
I come now to a generalization of great importance. If X7, X5 and Y are random variables, we may find
that X; and X5 are ‘relatively independent over Y, or ‘independent when conditioned on Y’ in the sense
that if we know the value of Y, then we learn nothing further about one of the X; if we are told the value
of the other. For any stochastic process, where information comes to us piecemeal, this idea is likely to be
fundamental. In this section I set out a general framework for discussion of relative independence (458A),
introducing relative distributions (458I) and relative independence in measure algebras (458L-458M). In
the last third of the section I look at ‘relative product measures’ (458N, 458Q), giving the basic existence
theorems (4580, 458S, 458T).

458 A Relative independence Let (X, X, 1) be a probability space and T a o-subalgebra of 3.

(a) I say that a family (E;);c; in ¥ is relatively (stochastically) independent over T if whenever
J C I is finite and not empty, and g¢; is a conditional expectation of xF; on T for each i € J, then
W(F ey Ei) = [w11icy 9idp for every F € T; that is, [],.; g: is a conditional expectation of x((;c; E:)
on T. A family (¥;);es of subalgebras of ¥ is relatively independent over T if (E;);cs is relatively

independent over T whenever E; € X; for every i € I.

(©) 2007 D. H. Fremlin
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(b) I say that a family (f;)icr in £%(u) is relatively independent over T if (¥;);c; is relatively
independent over T with respect to the completion of u, where ¥; is the o-algebra defined by f;.

(¢) I remark at once that a family of subalgebras or random variables is relatively independent iff every
finite subfamily is.

(d) If 3, T are algebras of subsets of a set X, I will write VT for the o-algebra of subsets of X generated
by ZUT; if (X;);er is a family of algebras of subsets of X, then \/,_; 3; will be the o-algebra generated by

Uiel 2.

icl

458B Lemma Let (X, X, ) be a probability space, T a o-subalgebra of X, and (X;);c; a family of
subalgebras of ¥ such that T C J;c; X;. Suppose that whenever J C [ is finite and not empty, E; € X; and
gi is a conditional expectation of xE; on T for each i € J, then (e, Ei) = [[],c; 9idp- Then (X;)ier is
relatively independent over T.

458C Proposition Let (X,3, u) be a probability space, T a non-empty upwards-directed family of
subalgebras of 3, and (X;);cr a family of o-subalgebras of ¥ which is relatively independent over T for every
T € T. Then (3;);cr is relatively independent over \/ T.

458D Proposition Let (X, X, 1) be a probability space, T a o-subalgebra of ¥ and (¥;);cs a family of
subalgebras of ¥ which is relatively independent over T.

(a) If J C I and ¥} is a subalgebra of X; for i € J, then (X});c is relatively independent over T.

(b) Set ¥ =%, VT for i € I. Then (X¥);es is relatively independent over T.

(c) If & C ;s Bi, then (E)er is relatively independent over the o-algebra generated by T U €.

458E Example Let (X, X, 1) be a probability space, (T;);cr an independent family of o-subalgebras of
%, and T a o-subalgebra of ¥ which is independent of \/._; T;. For each i € I, let ¥; be TV T;. Then
(3;)ier is relatively independent over T.

iel

458F Proposition Let (X, X, 1) be a probability space and T a o-subalgebra of X.
(a) Let (fi)ier be a family of non-negative p-integrable functions on X which is relatively independent
over T. For each i € I let g; be a conditional expectation of f; on T. Then for any F' € T and ig,... ,i, € I,

fF H;'L:() Gi; < fF H;'L:Q [i;
with equality if all the ¢; are distinct.
(b) Suppose that ¥;, ¥o are o-subalgebras of ¥ which are relatively independent over T, and that
f € LY(ul3y). If g is a conditional expectation of f on T, then it is a conditional expectation of f on
TV X,.

*458G Lemma Let (X,X, ) be a probability space, T a o-subalgebra of 3, and (X;);c; a family of
subalgebras of ¥. Let T be the family of finite subalgebras of T. For A € T write Ap for the set of
non-negligible atoms in A. For non-empty finite J C I, (E;)ics € [[;c, Xi and F € T, set

E;NH
¢A(F, <Ei>i€J) = ZHG.AA 'U(H N F) : HieJ %

Then (X;)ier is relatively independent over T iff limpaer ar da (F, (Ei)ies) = u(FN(),c; Ei) whenever J C [

is finite and not empty, E; € X; for every i € J and F € T.

458H Proposition Let (X, X, 1) be a probability space and T a o-subalgebra of ¥.. Let (¥;);er be a
family of o-subalgebras of 3 which is relatively independent over T. Let (I;),c be a partition of I, and for
each j € J let 3 be Vier, Zi-

(a) If (2;)ics is relatively independent over T, then (3;) ;e s is relatively independent over T.

(b) Suppose that (§J> jes is relatively independent over T and that (¥;);c;; is relatively independent over
T for every j € J. Then (X;);¢; is relatively independent over T.
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4581 Definition Let (X, Y, 1) be a probability space, T a o-subalgebra of ¥, and f € £%(u). Then a
relative distribution of f over T will be a family (v, ).cx of Radon probability measures on R such that
x + v, H is a conditional expectation of xf~[H] on T for every Borel set H C R.

458J Theorem Let (X, Y, i) be a probability space, T a o-subalgebra of 3, and f € £%(u). Then there
is a relative distribution of f over T, which is essentially unique in the sense that if (v,),ex and (V))zex
are two such relative distributions, then v, = v, for u|T-almost every x.

458K Theorem Let (X, X, 1) be a probability space, T a o-subalgebra of X, and (f;);c; a family in
LO(p). For each i € I, let (viz)pex be a relative distribution of f; over T, and f; : X = R an arbitrary
extension of f; to the whole of X. Then the following are equiveridical:

(i) (fi)ier is relatively independent over T;

(ii) for any Baire set W C RY and any F € T,

PENFHW]) = [ AW p(de),

where /i is the completion of p, f(x) = (fi(x))ics for € X, and ), is the product of (v;,)ic; for each ;
(iii) for any non-negative Baire measurable function h : R — R and any F € T,

Jpbfdp= [, [ hdr,pu(dz).

458L Measure algebras (a) If a € 2, then we can say that u € L°°(€) is the conditional expectation
of xa on € if [ u = fi(cna) for every ¢ € €. Now we can say that a family (b;);c; in % is relatively
(stochastically) independent over € if fi(cn infic;b;) = [ [];c,u; whenever J C I is a non-empty
finite set and w; is the conditional expectation of xb; on € for every ¢ € J; while a family (B;);c; of
subalgebras of 2 is relatively (stochastically) independent over € if (b;);cs is relatively independent
over € whenever b; € B; for every i € I.

Corresponding to 458Ab, we can say that a family (w;);e; in L°(21) is relatively (stochastically)
independent over € if (8;),c; is relatively stochastically independent, where B; is the closed subalgebra
of A generated by {[w; > ] : a € R} for each 1.

Returning to the original form of these ideas, we say that a family (b;);c; in 2 is (stochastically)
independent if it is relatively independent over {0, 1}, that is, if #(inf;c s b;) = [[;c; fib; whenever J C I is
finite. Similarly, a family (%B;);c; of subalgebras of 2 is (stochastically) independent, in the sense of 325L,
iff it is relatively independent over {0,1} in the sense here.

(b) Let (X,X, 1) be a probability space and (2, i) its measure algebra. Let (E;)icr, (Zi)icr and (fi)icr
be, respectively, a family in X, a family of subalgebras of 3, and a family of p-virtually measurable real-
valued functions defined almost everywhere on X; let T be a o-subalgebra of . For i € I, set a; = Ef € ,
B, ={E*: E e}, and w; = ff € L°(2), identified with L°(u). Set € = {F* : F € T}. Then

(a;)ier is relatively independent over € iff (E;);c; is relatively independent over T,
(B;)icr is relatively independent over € iff (X;);c; is relatively independent over T,
(w;)ier is relatively independent over € iff (f;);c; is relatively independent over T.

(c) Corresponding to 458B, we see that if (;);c; is a family of subalgebras of  such that € C J,; i,
and ineJuidﬂ = p(inf;c s a;) whenever J C [ is finite and not empty and a; € 2; and u; € L>®(€) is a
conditional expectation of xa; on € for each i € J, then (2;);c; is relatively independent over €.

(d) Corresponding to 458Db, we see that if (B;);cr is a family of subalgebras of 2 which is relatively
independent over €, and B} is the closed subalgebra of 2 generated by 9B; U € for each i, then (B);cy is
relatively independent over €.

Corresponding to 458Dc, we see that if (3B;);cr is a family of subalgebras of 2 which is relatively inde-
pendent over €, D; € B; for every i € I, and D is the closed subalgebra of 2 generated by €U J,c; Ds,
then (B;);c is relatively independent over ©.
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(e) Following 45§H, we have the result that if (%B;);cs is relatively independent over €, and <Ij~>j€J is a

partition of I, and 9B; is the closed subalgebra of 2 generated by |J,.; B; for every j € J, then (B,);cs is

icl;
relatively independent over €.

(f) Note that if (B;);cs is a family of subalgebras of 2 which is relatively independent over €, and J C I
is finite, and b; € B; for each i € J, then inf;c; b; = 0 iff inf;c ;y upr(b;, €) = 0.

(g) If (¢;);er is a stochastically independent family of closed subalgebras of , € is independent of the
algebra generated by (J;o; €, and B; is the closed subalgebra of 2 generated by € U &; for each i, then
(%B;)icr is relatively independent over €.

(h) Let P: L*(A, i) — L' (€, a] €) C LY(2A, 1) be the conditional expectation operator associated with
€. Suppose that (B;);cr is a family of closed subalgebras of 2 which is relatively independent over €. Then

fc H;‘L:O Puj < fc H;'L:O U

whenever ¢ € €, ig,... ,i, € I and u; € Ll(%ij,ﬂ[%ij)* for each j < n, with equality if ig,... i, are
distinct.

458M Proposition Let (2, i) be a probability algebra and 9, € closed subalgebras of 2. Write Py, P
and Pgne for the conditional expectation operators associated with 98, € and B8N ¢€. Then the following are
equiveridical:

(i) B and € are relatively independent over B N €;

(ii) Pyne(v X w) = Ppnev X Ppnew whenever v € L°(9B) and w € L*™(C);

(ifi) PsPe = Pane:

(iv) PgPe = PePuy;
(v) Pyu € L°(€) for every u € L'(€, i] ©).

458N Relative free products of probability algebras: Definition Let ((2L;, [i;))icr be a family of

probability algebras and (€, 7) a probability algebra, and suppose that we are given a measure-preserving
Boolean homomomorphism 7; : € — 2A; for each i € I. A relative free product of ((;, fi;, 7;))icr over
(¢, D) is a probability algebra (21, 1), together with a measure-preserving Boolean homomorphism ¢; : 2; — 2
for each i € I, such that

2l is the closed subalgebra of itself generated by J;.; ¢:[4:],

¢ = ¢y € — A forall i, jel,

writing © for the common value of the ¢;[m;[€]], (¢;[2;])icr is relatively independent over D.

4580 Theorem Let ((2;, fi;))ier be a family of probability algebras, (€,7) a probability algebra and
m; » € — 2; a measure-preserving Boolean homomomorphism for each i € I. Then ((2;, fi;, 7;))icr has an
essentially unique relative free product over (€, 7).

458P Theorem Let ((A;, fi;))icr, (AL, ii}))icr be two families of probability algebras, and v; : 2; — 2,
a measure-preserving Boolean homomorphism for each i. Let (€,7), (¢/,7) be probability algebras and
w2 € — Ay, w0 € — AL measure-preserving Boolean homomomorphisms for each ¢ € I; suppose that
we have a measure-preserving isomorphism v : € — €’ such that 7}y = ¢¥;m; : € — A, for each 7. Let
(A, i, (bi)ier) and (A, i/, (#})icr) be relative free products of ((A;, i, m:))ier, (A, 7L, 7))ier over (€, ),

(¢, 7") respectively. Then there is a unique measure-preserving Boolean homomorphism ) : 2l — 2" such
that ¥¢; = ¢lm; : A, — A for every i € I.

458Q Relative product measures: Definitions (a) Let (X;);cr be a family of sets, Y a set, and
m; + X; = Y a function for each i € I. The fiber product of ((X;,7;))ics is the set A ={z:z € [[,.; Xi,
mx(i) = mx(j) for all 4, j € I},

iel
(b) Let ((X;,%;, 1i))ier be a family of probability spaces and (Y, T, v) a probability space, and suppose
that we are given an inverse-measure-preserving function m; : X; — Y for each ¢ € I; let A be the fiber

product of ((X;,m;))icr. A relative product measure on A is a probability measure p on A such that
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() whenever J C I is finite and not empty and F; € ¥, for ¢ € J, and g; is a Radon-Nikodym
derivative with respect to v of the functional F' + p;(E N7, '[F]) : T — [0,1] for each i € J,
then p{x : v € A, x(i) € E; for every i € J} is defined and equal to [ [],.; gidv;

(1) for every W € X there is a W' in the o-algebra generated by {{z : z € A, z(i) € E} :i € I,
E € ¥} such that u(WAW’) = 0.

Remark If y is a relative product measure of {(u;, 7;));cr over v, then all the functions x — x(i) : A — X;
are inverse-measure-preserving. It follows that if I is not empty then we have an inverse-measure-preserving
function 7 : A — Y defined by setting 7z = m;z(i) whenever z € A and i € I.

458R Proposition Suppose that ((X;, X;, p;))ier is a family of probability spaces, (Y, T, v) a probability
space, ; : X; — Y an inverse-measure-preserving function for each ¢ € I, A the fiber product of ((X;, 7;)Yicr
and p a relative product measure of ((u;, m;))icr. Let (2, G;), (€,7) and (2, i) be the measure algebras
of u;, v and p respectively, and for i € I define 7; : € — 2; and ¢; : A; — A by setting 7, F* = W[l[F]',
¢;E* ={x:x € A, x(i) € E}* whenever F € T and F € %;. Then (2, fi, (¢;)ic1) is a relative free product
of <(Q[l, ﬂi, ﬁi)>i€l over (Q:, ﬂ).

4588 Proposition Let ((X;,3;, 1;)):cr be a family of probability spaces, (Y, T, ) a probability space,
and m; : X; — Y an inverse-measure-preserving function for each i. Suppose that for each i we have a
disintegration (u;y)ycy of p; such that ,u;‘wal[{y}] = piyX; = 1 for every y € Y. Let A C [[,c; Xi be
the fiber product of ((X;,7;))icr, and T the subspace o-algebra on A induced by ), ;%;. For y € Y,
let A\, be the product of (uiy)ier, (A\y)a the subspace measure on A and X its restriction to Y. Then
pW = [ X, Wv(dy) is defined for every W € T, and p is a relative product measure of ((u;,;))ier over v.

458T Proposition Let ((X;,T;, %, 1i))ier be a family of compact Radon probability spaces, (Y, &, T, v)
a Radon probability space, and 7; : X; — Y a continuous inverse-measure-preserving function for each 1.
Then ((u;, 7;))ier has a relative product measure p over v which is a Radon measure for the topology on
the fiber product of ((X;, m;))ier induced by the product topology on [[,.; Xi.

458U Proposition Let (X1,31, 11), (X2, X2, u2) and (Y, T, v) be probability spaces, and 71 : X3 =Y,
o : Xo — Y inverse-measure-preserving functions. Let A be the fiber product of (X1, ) and (X2, 72), and
suppose that p is a relative product measure of (1, 71) and (e, ) over v; set mx = mx(1l) = mox(2) for
xr € A. Take f1 € L1(u1) and fo € £2(uz), and set (f1 @ f2)(z) = f1(z(1))f2(z(2)) when x € AN (dom f; x
dom f3). For i =1, 2 let g; € £L(v) be a Radon-Nikodym derivative of H ~ fﬂ_i—l[H] fidp; : T — R. Then

S 91 X gadv = frl[F] f1 ® fadu for every F € T.

Version of 7.12.10

459 Symmetric measures and exchangeable random variables

Among the relatively independent families of random variables discussed in 458K, it is natural to give extra
attention to those which are ‘relatively identically distributed’. It turns out that these have a particularly
appealing characterization as the ‘exchangeable’ families (459C). In the same way, among the measures on
a product space X! there is a special place for those which are invariant under permutations of coordinates
(459E, 459H). A more abstract kind of permutation-invariance is examined in 495L-495M.

459A Lemma Let (X,¥, 1) and (Y, T,v) be probability spaces and ¢ : X — Y an inverse-measure-
preserving function; set Yo = {¢p"[F] : F € T}. Let Ty be a o-subalgebra of T and ¥ = {f~![F] : F € Ty }.
If g € £Y(v) and h is a conditional expectation of g on Ty, then h¢ is a conditional expectation of g¢ on 3j.

(©) 2003 D. H. Fremlin
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459B Theorem Let (X, X, 1) be a probability space, Z a set, T a o-algebra of subsets of Z and (f;)ics
an infinite family of (X, Y)-measurable functions from X to Z. For each i € I, set %; = {f; '[H]: H € T}.
Then the following are equiveridical:
(i) whenever ig, ... ,i, € I are distinct, jo,... ,j. € I are distinct, and Hy € T for each k < r,
then M(ﬂkgr fzzl[Hk]) = N(ﬂkgr f;;l[Hk]ﬁ
(ii) there is a o-subalgebra T of ¥ such that
(o) (Z;)ier is relatively independent over T,
(B) whenever 4, j € I, H€ T and F € T, then u(F N f7'[H]) = uw(F N f;l[H]).
Moreover, if I is totally ordered by <, we can add
(iii) whenever iyp < ... < i, € I, jo < ... < jr € I and Hy € Y for each k < r, then
(e [ [HED) = (e £, [H))-

459C Exchangeable random variables: De Finetti’s theorem Let (X, X, u) be a probability space,
and (f;)scs an infinite family in £°(u). Then the following are equiveridical:
(i) the joint distribution of (fy, fi,,. .. , fi,) is the same as the joint distribution of (f;y, fj,,--- , fi.)
whenever ig, ... ,i,. € I are distinct and jg,... ,J, € I are distinct;
(ii) there is a o-subalgebra T of ¥ such that (f;);c; is relatively independent over T and all
the f; have the same relative distribution over T.
Moreover, if I is totally ordered by <, we can add
(iii) the joint distribution of (fi,, fi,,- - . , fi.) is the same as the joint distribution of (fj,, fj,,- .- , fj.)
whenever g < ... <1, and jg < ... < j, in I.

459D Proposition Let Z b/e\a set, T a o-algebra of subsets of Z, I an infinite set and p a measure on
Z! with domain the o-algebra & ;Y generated by {m; '[H]:i € I, H € Y}, taking m;(z) = (i) for x € Z!
and i € I. For each permutation p of I, define p : Z! — Z! by setting p(z) = xp for z € Z!. Suppose that
= pup~! for every p. Let € be the family of those sets E € ®1T such that u(EAp~L[E]) = 0 for every
permutation p of I, and V the family of those sets V € @ ;T such that V' is determined by coordinates in
I\ {i} for every i € I.
(a) € is a o-subalgebra of @IT.
(b) V is a o-subalgebra of £.
(¢) If E € £ and J C I is infinite, then there is a V' € V, determined by coordinates in J, such that
w(EAV) =0.
(d) Setting ¥; = {m; '[H] : H € T} for each i € I,
(o) (E;)ier is relatively independent over &,
(B) for every H € T there is an £-measurable function gy : Z! — [0,1] which is a conditional
expectation of y(m; '[H]) on & for every i € I.

459E Theorem Let Z be a set, T a o-algebra of subsets 9£ Z, I an infinite set, and p a countably
compact probability measure on Z! with domain the o-algebra & ;Y. Then the following are equiveridical:
(i) for every permutation p of I, x +— xp: Z I 71 is inverse-measure-preserving for
(ii) for every transposition p of two elements of I, x + xp : ZI — ZT is inverse-measure-
preserving for u;
(iii) for each n € N and any two injective functions p, ¢ : n — I the maps x + xp: Z1 — 2"
x> xq: Z' — Z" induce the same measure on Z™;
(iv) there are a probability space (Y, T, v) and a family (\,),cy of probability measures on Z
such that <)\£>yey is a disintegration of u over v, writing /\é for the product of copies of A.
Moreover, if I is totally ordered, we can add
(v) for each n € N and any two strictly increasing functions p, ¢ : n — I the maps z — ap :
2T - 72" v — 2q: Z' — Z™ induce the same measure on Z”.
If the conditions (i)-(v) are satisfied, then there is a countably compact measure A, with domain Y, which
is the common marginal measure of p on every coordinate; and if IC is a countably compact class of subsets
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of Z, closed under finite unions and countable intersections, such that A is inner regular with respect to IC,
then
(iv)" there are a probability space (Y,T,v) and a family (\,),cy of complete probability
measures on Z, all with domains including K and inner regular with respect to K, such that
(ML) ey is a disintegration of p over v.

459F Lemma Let X be a Hausdorff space and Pg(X) the space of Radon probability measures on X with
its narrow topology. If (K, )nen is a disjoint sequence of compact subsets of X, then A = {pu: p € Pr(X),
(Upen Kn) = 1} is a K-analytic subset of Pr(X).

459G Lemma Let X be a topological space, (Y,&,T,v) a totally finite quasi-Radon measure space,
y = [y & continuous function from Y to the space M, ;R(X ) of totally finite quasi-Radon measures on X with
its narrow topology, and U a base for the topology of X, containing X and closed under finite intersections.
If p e M;R(X) is such that pU = [ p,U v(dy) for every U € U, then (u,)yey is a disintegration of y over
v.

459H Theorem Let Z be a Hausdorff space, I an infinite set, and i a quasi-Radon probability measure
on Z! such that the marginal measures on each copy of Z are Radon measures. Write Pgr(Z) for the set of
Radon probability measures on Z with its narrow topology. Then the following are equiveridical:

(i) for every permutation p of I, w + wp : Z1 — Z! is inverse-measure-preserving for ji;

(i) for every transposition p of two elements of I, w + wp : ZI — Z! is inverse-measure-
preserving for fi;

(iii) for each n € N and any two injective functions p, ¢ : n — I the maps w +— wp : Z1 — Z»
and w +— wq : ZT — Z™ induce the same measure on Z";

(iv) there are a probability space (Y, T, v) and a family (u,),cy of T-additive Borel probability
measures on Z such that (ﬂ{,>y€y is a disintegration of ji over v, writing [Lé for the T-additive
product of copies of fiy;

(v) there is a Radon probability measure # on Pg(Z) such that (#7)gc Pr(z) is disintegration
of i over U, writing 6! for the quasi-Radon product of copies of 6.

Moreover, if I is totally ordered, we can add

(vi) for each n € N and any two strictly increasing functions p, ¢ : n — I the maps w +— wp :

ZT - Z™ and w — wq : Z' — Z" induce the same measure on Z".

4591 Lemma Let (X, X, 1) be a probability space and I a set. For a family T of subalgebras of PX, write

\/ T for the o-algebra generated by | JT. Let G be the group of permutations ¢ of I such that {i : ¢(¢) # ¢}
is finite. Suppose that « is an action of G on X such that x — ¢ex is inverse-measure-preserving for each
¢ € G;set peA = {¢ox:x € A} for ¢ € Gand A C X. Let (X;)scs be a family of o-subalgebras of ¥ such
that

(i) for every J C I, ¥ is the o-algebra generated by |y is finite 2K

(ii)if JC I, E€ Xy and ¢ € G, then ¢eE € Sy ;3 -

(iii) if JC I, E € 35 and ¢ € G is such that ¢(i) = i for every i € J, then ¢+F = E.
Suppose that J* is a filter on I not containing any infinite set, and that K C I, X C Pl and J C J* are
such that for every K’ € K there is a J € J such that KN K’ C J. Then Y and \/ i/ i X are relatively
independent over \/ ;. ; .

459J Corollary Let (X, X, u) be a probability space and I a set. Let G be the group of permutations

¢ of I such that {i : ¢(i) # 4} is finite. Suppose that « is an action of G on X such that z — ¢ex is inverse-
measure-preserving for each ¢ € G. Let (X;)jcr be a family of o-subalgebras of ¥ such that

(i) for every J C I, 3 is the o-algebra generated by |z c; is finite 2K

(ii) if J C I, E€ X, and ¢ € G, then ¢p«E € Ty ; -

(iii) if JC I, E € ¥ and ¢ € G is such that ¢(i) =i for every i € J, then ¢+E = E.
Then if J C I is infinite and (K, )cr is a family of subsets of I such that K, N Ks C J for all distinct ~,
6 €T, (XK, )yer is relatively independent over ;.
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459K Example There are a separable metrizable space Z and a quasi-Radon measure on ZV, invariant
under permutations of coordinates, which cannot be disintegrated into powers of measures on Z.

Version of 27.2.04

Concordance for Volume 4

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this volume, and which have since been changed.

4521 In FrREMLIN 00 I quote Pachl’s result that if (X,X, ) is countably compact, (Y, T,v) is strictly
localizable and f : X — Y is inverse-measure-preserving, then v is countably compact; this is now in 452R.

455D The material on Brownian motion in §455, mentioned in KONIG 04 and KONIG 06, has been
moved to §477.

458Yd This exercise (on the strong law of large numbers for relatively independent sequences), referred
to in the 2008 and 2015 printings of Volume 5, is now 458Ye.
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