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Chapter 37

Linear operators between function spaces

As everywhere in functional analysis, the function spaces of measure theory cannot be properly understood
without investigating linear operators between them. In this chapter I have collected a number of results
which rely on, or illuminate, the measure-theoretic aspects of the theory. §371 is devoted to a fundamental
property of linear operators on L-spaces, if considered abstractly, that is, of L1-spaces, if considered in
the languages of Chapters 24 and 36, and to an introduction to the class T of operators which are norm-
decreasing for both ‖ ‖1 and ‖ ‖∞. This makes it possible to prove a version of Birkhoff’s Ergodic Theorem for
operators which need not be positive (372D). In §372 I give various forms of this theorem, for linear operators
between function spaces, for measure-preserving Boolean homomorphisms between measure algebras, and for
inverse-measure-preserving functions between measure spaces, with an excursion into the theory of continued
fractions. In §373 I make a fuller analysis of the class T , with a complete characterization of those u, v
such that v = Tu for some T ∈ T . Using this we can describe ‘rearrangement-invariant’ function spaces and
extended Fatou norms (§374). Returning to ideas left on one side in §§364 and 368, I investigate positive
linear operators defined on L0 spaces (§375). In the penultimate section of the chapter (§376), I look at
operators which can be defined in terms of kernels on product spaces. Finally, in §377, I examine the function
spaces of reduced products, projective limits and inductive limits of probability algebras.

Version of 13.12.06

371 The Chacon-Krengel theorem

The first topic I wish to treat is a remarkable property of L-spaces: if U and V are L-spaces, then every
continuous linear operator T : U → V is order-bounded, and ‖|T |‖ = ‖T‖ (371D). This generalizes in various
ways to other V (371B, 371C). I apply the result to a special type of operator between M1,0 spaces which
will be conspicuous in the next section (371F-371H).

371A Lemma Let U be an L-space, V a Banach lattice and T : U → V a bounded linear operator. Take
u ≥ 0 in U and set

B = {∑n
i=0 |Tui| : u0, . . . , un ∈ U+,

∑n
i=0 ui = u} ⊆ V +.

Then B is upwards-directed and supv∈B ‖v‖ ≤ ‖T‖‖u‖.
proof (a) Suppose that v, v′ ∈ B. Then we have u0, . . . , um, u

′
0, . . . , u

′
n ∈ U+ such that

∑m
i=0 ui =∑n

j=0 u
′
j = u, v =

∑m
i=0 |Tui| and v′ =

∑n
j=0 |Tu′j |. Now there are vij ≥ 0 in U , for i ≤ m and j ≤ n, such

that ui =
∑n

j=0 vij for i ≤ m and u′j =
∑m

i=0 vij for j ≤ n (352Fd). We have u =
∑m

i=0

∑n
j=0 vij , so that

v′′ =
∑m

i=0

∑n
j=0 |Tvij | ∈ B. But

v =
∑m

i=0 |Tui| =
∑m

i=0 |T (
∑n

j=0 vij)| ≤
∑m

i=0

∑m
j=0 |Tvij | = v′′,

and similarly v′ ≤ v′′. As v and v′ are arbitrary, B is upwards-directed.

(b) The other part is easy. If v ∈ B is expressed as
∑n

i=0 |Tui| where ui ≥ 0 for every i and
∑n

i=0 ui = u,
then

‖v‖ ≤∑n
i=0 ‖Tui‖ ≤ ‖T‖

∑n
i=0 ‖ui‖ = ‖T‖‖u‖

because U is an L-space.
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2 Linear operators between function spaces 371B

371B Theorem Let U be an L-space and V a Dedekind complete Banach lattice U with a Fatou norm.
Then the Riesz space L

∼(U ;V ) = L
×(U ;V ) is a closed linear subspace of the Banach space B(U ;V ) and is

in itself a Banach lattice with a Fatou norm.

proof (a) I start by noting that L
∼(U ;V ) = L

×(U ;V ) ⊆ B(U ;V ) just because V has a Riesz norm and U
is a Banach lattice with an order-continuous norm (355Kb, 355C).

(b) The first new step is to check that ‖|T |‖ ≤ ‖T‖ for any T ∈ L
∼(U ;V ). PPP Start with any u ∈ U+.

Set

B = {∑n
i=0 |Tui| : u0, . . . , un ∈ U+,

∑n
i=0 ui = u} ⊆ V +,

as in 371A. If u0, . . . , un ≥ 0 are such that
∑n

i=0 ui = u, then |Tui| ≤ |T |ui for each i, so that
∑n

i=0 |Tui| ≤∑n
i=0 |T |ui = |T |u; thus B is bounded above by |T |u and supB ≤ |T |u. On the other hand, if |v| ≤ u in U ,

then v+ + v− + (u− |v|) = u, so |Tv+|+ |Tv−|+ |T (u− |v|)| ∈ B and

|Tv| = |Tv+ + Tv−| ≤ |Tv+|+ |Tv−| ≤ supB.

As v is arbitrary, |T |u ≤ supB and |T |u = supB. Consequently

‖|T |u‖ ≤ ‖ supB‖ = supw∈B ‖w‖ ≤ ‖T‖‖u‖
because V has a Fatou norm and B is upwards-directed.

For general u ∈ U ,

‖|T |u‖ ≤ ‖|T ||u|‖ ≤ ‖T‖‖|u|‖ = ‖T‖‖u‖.
This shows that ‖|T |‖ ≤ ‖T‖. QQQ

(c) Now if |S| ≤ |T | in L
∼(U ;V ), and u ∈ U , we must have

‖Su‖ ≤ ‖|S||u|‖ ≤ ‖|T ||u|‖ ≤ ‖|T |‖‖|u|‖ ≤ ‖T‖‖u‖;
as u is arbitrary, ‖S‖ ≤ ‖T‖. This shows that the norm of L

∼(U ;V ), inherited from B(U ;V ), is a Riesz
norm.

(d) Suppose next that T ∈ B(U ;V ) belongs to the norm-closure of L
∼(U ;V ). For each n ∈ N choose

Tn ∈ L
∼(U ;V ) such that ‖T − Tn‖ ≤ 2−n. Set Sn = |Tn+1 − Tn| ∈ L

∼(U ;V ) for each n. Then

‖Sn‖ = ‖Tn+1 − Tn‖ ≤ 3 · 2−n−1

for each n, so S =
∑∞

n=0 Sn is defined in the Banach space B(U ;V ). But if u ∈ U+, we surely have

Su =
∑∞

n=0 Snu ≥ 0

in V . Moreover, if u ∈ U+ and |v| ≤ u, then for any n ∈ N

|Tn+1v − T0v| = |
∑n

i=0(Ti+1 − Ti)v| ≤
∑n

i=0 Siu ≤ Su,

and T0v − Su ≤ Tn+1v ≤ T0v + Su; letting n→∞, we see that

−|T0|u− Su ≤ T0v − Su ≤ Tv ≤ T0v + Su ≤ |T0|u+ Su.

So |Tv| ≤ |T0|u+ Su whenever |v| ≤ u. As u is arbitrary, T ∈ L
∼(U ;V ).

This shows that L
∼(U ;V ) is closed in B(U ;V ) and is therefore a Banach space in its own right; putting

this together with (b), we see that it is a Banach lattice.

(e) Finally, the norm of L∼(U ;V ) is a Fatou norm. PPP Let A ⊆ L
∼(U ;V )+ be a non-empty, upwards-

directed set with supremum T0 ∈ L
∼(U ;V ). For any u ∈ U ,

‖T0u‖ = ‖|T0u|‖ ≤ ‖T0|u|‖ = ‖ supT∈A T |u|‖
by 355Ed. But {T |u| : T ∈ A} is upwards-directed and the norm of V is a Fatou norm, so

‖T0u‖ ≤ supT∈A ‖T |u|‖ ≤ supT∈A ‖T‖‖u‖.
As u is arbitrary, ‖T0‖ ≤ supT∈A ‖T‖. As A is arbitrary, the norm of L∼(U ;V ) is Fatou. QQQ

371C Theorem Let U be an L-space and V a Dedekind complete Banach lattice with a Fatou norm
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371G The Chacon-Krengel theorem 3

and the Levi property. Then B(U ;V ) = L
∼(U ;V ) = L

×(U ;V ) is a Dedekind complete Banach lattice with
a Fatou norm and the Levi property. In particular, |T | is defined and ‖|T |‖ = ‖T‖ for every T ∈ B(U ;V ).

proof (a) Let T : U → V be any bounded linear operator. Then T ∈ L
∼(U ;V ). PPP Take any u ≥ 0 in U .

Set

B = {∑n
i=0 |Tui| : u0, . . . , un ∈ U+,

∑n
i=0 ui = u} ⊆ V +

as in 371A. Then 371A tells us that B is upwards-directed and norm-bounded. Because V has the Levi
property, B is bounded above. But just as in part (b) of the proof of 371B, any upper bound of B is also
an upper bound of {Tv : |v| ≤ u}. As u is arbitrary, T ∈ L

∼(U ;V ). QQQ

(b) Accordingly L
∼(U ;V ) = B(U ;V ). By 371B, this is a Banach lattice with a Fatou norm, and equal

to L
×(U ;V ). To see that it also has the Levi property, let A ⊆ L

∼(U ;V ) be any non-empty norm-bounded
upwards-directed set. For u ∈ U+, {Tu : T ∈ A} is non-empty, norm-bounded and upwards-directed in V ,
so is bounded above in V . By 355Ed, A is bounded above in L

∼(U ;V ).

371D Corollary Let U and V be L-spaces. Then L
∼(U ;V ) = L

×(U ;V ) = B(U ;V ) is a Dedekind
complete Banach lattice with a Fatou norm and the Levi property.

371E Remarks Note that both these theorems show that L
∼(U ;V ) is a Banach lattice with properties

similar to those of V whenever U is an L-space. They can therefore be applied repeatedly, to give facts
about L∼(U1;L∼(U2;V )) where U1, U2 are L-spaces and V is a Banach lattice, for instance. I hope that this
formula will recall some of those in the theory of bilinear operators and tensor products (see 253Xa-253Xb).

371F The class T (0) For the sake of applications in the next section, I introduce now a class of operators
of great intrinsic interest.

Definition Let (A, µ̄), (B, ν̄) be measure algebras. Recall that M1,0(A, µ̄) is the space of those u ∈
L1(A, µ̄) + L∞(A) such that µ̄[[|u| > α]] < ∞ for every α > 0 (366F-366G, 369P). Write T (0) = T (0)

µ̄,ν̄ for

the set of all linear operators T : M1,0(A, µ̄)→M1,0(B, ν̄) such that Tu ∈ L1(B, ν̄) and ‖Tu‖1 ≤ ‖u‖1 for
every u ∈ L1(A, µ̄), Tu ∈ L∞(B) and ‖Tu‖∞ ≤ ‖u‖∞ for every u ∈ L∞(A) ∩M1,0(A, µ̄).

371G Proposition Let (A, µ̄) and (B, ν̄) be measure algebras.

(a) T (0) = T (0)
µ̄,ν̄ is a convex set in the unit ball of B(M1,0(A, µ̄);M1,0(B, ν̄)). If T0 : L1(A, µ̄)→ L1(B, ν̄) is

a linear operator of norm at most 1, and T0u ∈ L∞(B) and ‖T0u‖∞ ≤ ‖u‖∞ for every u ∈ L1(A, µ̄)∩L∞(A),
then T0 has a unique extension to a member of T (0).

(b) If T ∈ T (0) then T is order-bounded and |T |, taken in

L
∼(M1,0(A, µ̄);M1,0(B, ν̄)) = L

×(M1,0(A, µ̄);M1,0(B, ν̄)),

also belongs to T (0).
(c) If T ∈ T (0) then ‖Tu‖1,∞ ≤ ‖u‖1,∞ for every u ∈M1,0(A, µ̄).

(d) If T ∈ T (0), p ∈ [1,∞[ and w ∈ Lp(A, µ̄) then Tw ∈ Lp(B, ν̄) and ‖Tw‖p ≤ ‖w‖p.

(e) If (C, λ̄) is another measure algebra then ST ∈ T (0)

µ̄,λ̄
whenever T ∈ T (0)

µ̄,ν̄ and S ∈ T (0)

ν̄,λ̄
.

proof I write M1,0
µ̄ , Lp

ν̄ for M1,0
µ̄ , Lp(B, ν̄), etc.

(a)(i) If T ∈ T (0) and u ∈M1,0
µ̄ then there are v ∈ L1

µ̄, w ∈ L∞
µ̄ such that u = v+w and ‖v‖1 + ‖w‖∞ =

‖u‖1,∞ (369Ob); so that

‖Tu‖1,∞ ≤ ‖Tv‖1 + ‖Tw‖∞ ≤ ‖v‖1 + ‖w‖∞ ≤ ‖u‖1,∞.

As u is arbitrary, T is in the unit ball of B(M1,0
µ̄ ;M1,0

ν̄ ).

(ii) Because the unit balls of B(L1
µ̄;L1

ν̄) and B(L∞
µ̄ ;L∞

ν̄ ) are convex, so is T (0).

(iii) Now suppose that T0 : L1
µ̄ → L1

ν̄ is a linear operator of norm at most 1 such that ‖T0u‖∞ ≤ ‖u‖∞
for every u ∈ L1

µ̄ ∩ L∞
µ̄ . By the argument of (i), T0 is a bounded operator for the ‖ ‖1,∞ norms; since L1

µ̄ is

D.H.Fremlin



4 Linear operators between function spaces 371G

dense in M1,0
µ̄ (369Pc), T0 has a unique extension to a bounded linear operator T : M1,0

µ̄ →M1,0
ν̄ . Of course

‖Tu‖1 = ‖T0u‖1 ≤ ‖u‖1 for every u ∈ L1
µ̄.

Now suppose that u ∈ L∞
µ̄ ∩M1,0

µ̄ ; set γ = ‖u‖∞. Let ǫ > 0, and set

v = (u+ − ǫχ1)+ − (u− − ǫχ1)+;

then |v| ≤ |u| and ‖u− v‖∞ ≤ ǫ and v ∈ L1
µ̄ ∩ L∞

µ̄ . Accordingly

‖Tu− Tv‖1,∞ ≤ ‖u− v‖1,∞ ≤ ǫ, ‖Tv‖∞ = ‖T0v‖∞ ≤ ‖v‖∞ ≤ γ.

So if we set w = (|Tu− Tv| − ǫχ1)+ ∈ L1
ν̄ , ‖w‖1 ≤ ǫ; while

|Tu| ≤ |Tv|+ w + ǫχ1 ≤ (γ + ǫ)χ1 + w,

so

‖(|Tu| − (γ + ǫ)χ1)+‖1 ≤ ‖w‖1 ≤ ǫ.
As ǫ is arbitrary, |Tu| ≤ γχ1, that is, ‖Tu‖∞ ≤ ‖u‖∞. As u is arbitrary, T ∈ T (0).

(b) Because M1,0
µ̄ has an order-continuous norm (369Pb), L∼(M1,0

µ̄ ;M1,0
ν̄ ) = L

×(M1,0
µ̄ ;M1,0

ν̄ ) (355Kb).

Take any T ∈ T (0) and consider T0 = T ↾L1
µ̄ : L1

µ̄ → L1
ν̄ . This is an operator of norm at most 1. By 371D,

T0 is order-bounded, and ‖|T0|‖ ≤ 1, where |T0| is taken in L
∼(L1

µ̄;L1
µ̄) = B(L1

µ̄;L1
ν̄). Now if u ∈ L1

µ̄ ∩ L∞
ν̄ ,

||T0|u| ≤ |T0||u| = sup|u′|≤|u| |T0u′| ≤ ‖u‖∞χ1,

so ‖|T0|u‖∞ ≤ ‖u‖∞. By (a), there is a unique S ∈ T (0) extending |T0|. Now Su+ ≥ 0 for every u ∈ L1
µ̄, so

Su+ ≥ 0 for every u ∈ M1,0
µ̄ (since the function u 7→ (Su+)+ − Su+ : M1,0

µ̄ → M1,0
ν̄ is continuous and zero

on the dense set L1
µ̄), that is, S is a positive operator; also S|u| ≥ |Tu| for every u ∈ L1

µ̄, so Sv ≥ S|u| ≥ |Tu|
whenever u, v ∈ M1,0

µ̄ and |u| ≤ v. This means that T : M1,0
µ̄ → M1,0

ν̄ is order-bounded. Because M1,0
ν̄ is

Dedekind complete (366Ga), |T | is defined in L
∼(M1,0

µ̄ ;M1,0
µ̄ ).

If v ≥ 0 in L1
µ̄, then

|T |v = sup|u|≤v Tu = sup|u|≤v T0u = |T0|v = Sv.

Thus |T | agrees with S on L1
µ̄. Because M1,0

µ̄ is a Banach lattice (or otherwise), |T | is a bounded operator,

therefore continuous (2A4Fc), so |T | = S ∈ T (0), which is what we needed to know.

(c) We can express u as v+w where ‖v‖1 + ‖w‖∞ = ‖u‖1,∞; now w = u− v ∈M1,0
µ̄ , so we can speak of

Tw, and

‖Tu‖1,∞ = ‖Tv + Tw‖1,∞ ≤ ‖Tv‖1 + ‖Tw‖∞ ≤ ‖v‖1 + ‖w‖∞ = ‖u‖1,∞,

as required.

(d) This can be thought of as a generalization of 244M. We need to revisit the proof of Jensen’s inequality
in 233H-233J.

(i) Suppose that T , p, w are as described, and that in addition T is positive. As in the proof of
244M, the function t 7→ |t|p is convex, so we can find families 〈βq〉q∈Q, 〈γq〉q∈Q of real numbers such that
|t|p = supq∈Q βq + γq(t − q) for every t ∈ R (233Hb). Then |u|p = supq∈Q βqχ1 + γq(u − qχ1) for every

u ∈ L0. (The easiest way to check this is perhaps to think of L0 as a quotient of a space of functions, as in
364C; it is also a consequence of 364Xg(iii).) We know that |w|p ∈ L1

µ̄, so we may speak of T (|w|p); while

w ∈M1,0
µ̄ (366Ga), so we may speak of Tw.

For any q ∈ Q, 0p ≥ βq−qγq, that is, qγq−βq ≥ 0, while γqw−|w|p ≤ (qγq−βq)χ1 and ‖(γqw−|w|p)+‖∞ ≤
qγq − βq. Now this means that

T (γqw − |w|p) ≤ T (γqw − |w|p)+ ≤ ‖T (γqw − |w|p)+‖∞χ1

≤ ‖(γqw − |w|p)+‖∞χ1 ≤ (qγq − βq)χ1.

Turning this round again,

βqχ1 + γq(Tw − qχ1) ≤ T (|w|p).

Measure Theory



371Yd The Chacon-Krengel theorem 5

Taking the supremum over q, |Tw|p ≤ T (|w|p), so that
∫
|Tw|p ≤

∫
|w|p (because ‖Tv‖1 ≤ ‖v‖1 for every

v ∈ L1). Thus Tw ∈ Lp and ‖Tw‖p ≤ ‖w‖p.

(ii) For a general T ∈ T (0), we have |T | ∈ T (0), by (b), and |Tw| ≤ |T ||w|, so that ‖Tw‖p ≤ ‖|T ||w|‖p ≤
‖w‖p, as required.

(e) This is elementary, because

‖STu‖1 ≤ ‖Tu‖1 ≤ ‖u‖1, ‖STv‖∞ ≤ ‖Tu‖∞ ≤ ‖u‖∞
whenever u ∈ L1

µ̄ and v ∈ L∞
µ̄ ∩M1,0

µ̄ .

371H Remark In the context of 366H, Tπ↾M
1,0
µ̄ ∈ T (0)

µ̄,ν̄ , while Pπ ∈ T (0)
ν̄,µ̄ . Thus 366H(a-iv) and 366H(b-

iii) are special cases of 371Gd.

371X Basic exercises >>>(a) Let U be an L-space, V a Banach lattice with an order-continuous norm

and T : U → V a bounded linear operator. Let B be the unit ball of U . Show that |T |[B] ⊆ T [B].

(b) Let U and V be Banach spaces. (i) Show that the space K(U ;V ) of compact linear operators from U
to V (definition: 3A5La) is a closed linear subspace of B(U ;V ). (ii) Show that if U is an L-space and V is a
Banach lattice with an order-continuous norm, then K(U ;V ) is a norm-closed Riesz subspace of L∼(U ;V ).
(See Krengel 63.)

(c) Let (A, µ̄) be a semi-finite measure algebra and set U = L1(A, µ̄). Show that L
∼(U ;U) = B(U ;U) is

a Banach lattice with a Fatou norm and the Levi property. Show that its norm is order-continuous iff A is
finite. (Hint : consider operators u 7→ u× χa, where a ∈ A.)

>>>(d) Let U be a Banach lattice, and V a Dedekind complete M -space. Show that L
∼(U ;V ) = B(U ;V )

is a Banach lattice with a Fatou norm and the Levi property.

(e) Let U and V be Riesz spaces, of which V is Dedekind complete, and let T ∈ L
∼(U ;V ). Define

T ′ ∈ L
∼(V ∼;U∼) by writing T ′(h) = hT for h ∈ V ∼. (i) Show that |T |′ ≥ |T ′| in L

∼(V ∼;U∼). (ii) Show
that |T |′h = |T ′|h for every h ∈ V ×. (Hint : show that if u ∈ U+ and h ∈ (V ×)+ then (|T ′|h)(u) and h(|T |u)
are both equal to sup{∑n

i=0 gi(Tui) : |gi| ≤ h, ui ≥ 0,
∑n

i=0 ui = u}.)

>>>(f) Using 371D, but nothing about uniformly integrable sets beyond the definition (354P), show that
if U and V are L-spaces, A ⊆ U is uniformly integrable in U , and T : U → V is a bounded linear operator,
then T [A] is uniformly integrable in V .

371Y Further exercises (a) Let U and V be Banach spaces. (i) Show that the space Kw(U ;V ) of
weakly compact linear operators from U to V (definition: 3A5Lb) is a closed linear subspace of B(U ;V ).
(ii) Show that if U is an L-space and V is a Banach lattice with an order-continuous norm, then Kw(U ;V )
is a norm-closed Riesz subspace of L∼(U ;V ).

(b) Let (A, µ̄) be a measure algebra, U a Banach space, and T : L1(A, µ̄)→ U a bounded linear operator.

Show that T is a compact linear operator iff { 1

µ̄a
T (χa) : a ∈ A, 0 < µ̄a <∞} is relatively compact in U .

(c) Let (A, µ̄) be a probability algebra, and set L1 = L1(A, µ̄). Let 〈an〉n∈N be a stochastically independent
sequence of elements of A of measure 1

2 , and define T : L1 → RN by setting Tu(n) =
∫
u− 2

∫
an
u for each

n. Show that T ∈ B(L1;ccc0) \ L∼(L1;ccc0), where ccc0 is the Banach lattice of sequences converging to 0. (See
272Ye1.)

(d) Regarding T of 371Yc as a map from L1 to ℓ∞, show that |T ′| 6= |T |′ in L
∼((ℓ∞)∗, L∞(A)).

1Formerly 272Yd.
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6 Linear operators between function spaces 371Ye

(e)(i) In ℓ2 define ei by setting ei(i) = 1, ei(j) = 0 if j 6= i. Show that if T ∈ L
∼(ℓ2; ℓ2) then (|T |ei|ej) =

|(Tei|ej)| for all i, j ∈ N. (ii) Show that for each n ∈ N there is an orthogonal (2n × 2n)-matrix An such

that every coefficient of An has modulus 2−n/2. (Hint : An+1 =
1√
2

(
An An

−An An

)
.) (iii) Show that there is

a linear isometry S : ℓ2 → ℓ2 such that |(Sei|ej)| = 2−n/2 if 2n ≤ i, j < 2n+1. (iv) Show that S /∈ L
∼(ℓ2; ℓ2).

371 Notes and comments The ‘Chacon-Krengel theorem’, properly speaking (Chacon & Krengel 64),
is 371D in the case in which U = L1(µ), V = L1(ν); of course no new ideas are required in the generalizations
here, which I have copied from Fremlin 74a.

Anyone with a training in functional analysis will automatically seek to investigate properties of operators
T : U → V in terms of properties of their adjoints T ′ : V ∗ → U∗, as in 371Xe and 371Yd. When U is
an L-space, then U∗ is a Dedekind complete M -space, and it is easy to see that this forces T ′ to be order-
bounded, for any Banach lattice V (371Xd). But since no important L-space is reflexive, this approach
cannot reach 371B-371D without a new idea of some kind. It can however be adapted to the special case in
371Gb (Dunford & Schwartz 57, VIII.6.4).

In fact the results of 371B-371C are characteristic of L-spaces (Fremlin 74b). To see that they fail in
the simplest cases in which U is not an L-space and V is not an M -space, see 371Yc-371Ye.

Version of 7.12.08/17.7.11

372 The ergodic theorem

I come now to one of the most remarkable topics in measure theory. I cannot do it justice in the space
I have allowed for it here, but I can give the basic theorem (372D, 372F) and a variety of the corollaries
through which it is regularly used (372E, 372G-372J), together with brief notes on one of its most famous and
characteristic applications (to continued fractions, 372L-372N) and on ‘ergodic’ and ‘mixing’ transformations
(372O-372S). In the first half of the section (down to 372G) I express the arguments in the abstract language
of measure algebras and their associated function spaces, as developed in Chapter 36; the second half, from
372H onwards, contains translations of the results into the language of measure spaces and measurable
functions, the more traditional, and more readily applicable, forms.

372A Lemma Let U be a reflexive Banach space and T : U → U a bounded linear operator of norm at
most 1. Then

V = {u+ v − Tu : u, v ∈ U, Tv = v}
is dense in U .

proof Of course V is a linear subspace of U . ??? Suppose, if possible, that it is not dense. Then there is a
non-zero h ∈ U∗ such that h(v) = 0 for every v ∈ V (3A5Ad). Take u ∈ U such that h(u) 6= 0. Set

un =
1

n+1

∑n
i=0 T

iu

for each n ∈ N, taking T 0 to be the identity operator; because

‖T iu‖ ≤ ‖T i‖‖u‖ ≤ ‖T‖i‖u‖ ≤ ‖u‖
for each i, ‖un‖ ≤ ‖u‖ for every n. Note also that T i+1u−T iu ∈ V for every i, so that h(T i+1u−T iu) = 0;
accordingly h(T iu) = h(u) for every i, and h(un) = h(u) for every n.

Let F be any non-principal ultrafilter on N. Because U is reflexive, v = limn→F un is defined in U for
the weak topology on U (3A5Gc). Now Tv = v. PPP For each n ∈ N,

Tun − un =
1

n+1

∑n
i=0(T i+1u− T iu) =

1

n+1
(Tn+1u− u)

has norm at most 2
n+1‖u‖. So 〈Tun − un〉n∈N → 0 for the norm topology U and therefore for the weak

topology, and surely limn→F Tun − un = 0. On the other hand (because T is continuous for the weak
topology, 2A5If)

Measure Theory



372C The ergodic theorem 7

Tv = limn→F Tun = limn→F (Tun − un) + limn→F un = 0 + v = v,

where all the limits are taken for the weak topology. QQQ
But this means that v ∈ V , while

h(v) = limn→F h(un) = h(u) 6= 0,

contradicting the assumption that h ∈ V ◦. XXX

372B Lemma Let (A, µ̄) be a measure algebra, and T : L1 → L1 a positive linear operator of norm at
most 1, where L1 = L1(A, µ̄). Take any u ∈ L1 and m ∈ N, and set

a = [[u > 0]] ∪ [[u+ Tu > 0]] ∪ [[u+ Tu+ T 2u > 0]] ∪ . . . ∪ [[u+ Tu+ . . .+ Tmu > 0]].

Then
∫
a
u ≥ 0.

proof Set u0 = u, u1 = u + Tu, . . . , um = u + Tu + . . . + Tmu, v = supi≤m ui, so that a = [[v > 0]].

Consider u + T (v+). We have T (v+) ≥ Tv ≥ Tui for every i ≤ m (because T is positive), so that
u + T (v+) ≥ u + Tui = ui+1 for i < m, and u + T (v+) ≥ sup1≤i≤m ui. Also u + T (v+) ≥ u because

T (v+) ≥ 0, so u+ T (v+) ≥ v. Accordingly∫
a
u ≥

∫
a
v −

∫
a
T (v+) =

∫
v+ −

∫
a
T (v+) ≥ ‖v+‖1 − ‖Tv+‖1 ≥ 0

because ‖T‖ ≤ 1.

372C Maximal Ergodic Theorem Let (A, µ̄) be a measure algebra, and T : L1 → L1 a linear
operator, where L1 = L1(A, µ̄), such that ‖Tu‖1 ≤ ‖u‖1 for every u ∈ L1 and ‖Tu‖∞ ≤ ‖u‖∞ for every
u ∈ L1 ∩ L∞(A). Set An = 1

n+1

∑n
i=0 T

i for each n ∈ N. Then for any u ∈ L1, u∗ = supn∈NAnu is defined

in L0(A), and αµ̄[[u∗ > α]] ≤ ‖u‖1 for every α > 0.

proof (a) To begin with, suppose that T is positive and that u ≥ 0 in L1. Note that if v ∈ L1 ∩ L∞, then
‖T iv‖∞ ≤ ‖v‖∞ for every i ∈ N, so ‖Anv‖∞ ≤ ‖v‖∞ for every n; in particular, An(χa) ≤ χ1 for every n
and every a of finite measure.

For m ∈ N and α > 0, set

amα = [[supi≤mAiu > α]].

Then αµ̄amα ≤ ‖u‖1. PPP Set a = amα, w = u − αχa. Of course supi≤mAiu belongs to L1, so µ̄a is finite

and w ∈ L1. For any i ≤ m,

Aiw = Aiu− αAi(χa) ≥ Aiu− αχ1,

so [[Aiw > 0]] ⊇ [[Aiu > α]]. Accordingly a ⊆ b, where

b = supi≤m [[Aiw > 0]] = supi≤m [[w + Tw + . . .+ T iw > 0]].

By 372B,
∫
b
w ≥ 0. But this means that

αµ̄a = α
∫
b
χa =

∫
b
u−

∫
b
w ≤

∫
b
u ≤ ‖u‖1,

as claimed. QQQ
It follows that if we set cα = supn∈N anα, µ̄cα ≤ α−1‖u‖1 for every α > 0 and infα>0 cα = 0. But this

is exactly the criterion in 364L(a-ii) for u∗ = supn∈NAnu to be defined in L0. And [[u∗ > α]] = cα, so
αµ̄[[u∗ > α]] ≤ ‖u‖1 for every α > 0, as required.

(b) Now consider the case of general T , u. In this case T is order-bounded and ‖|T |‖ ≤ 1, where |T | is
the modulus of T in L

∼(L1;L1) = B(L1;L1) (371D). If w ∈ L1 ∩ L∞, then

||T |w| ≤ |T ||w| = sup|w′|≤|w| |Tw′| ≤ ‖w‖∞χ1,

so ‖|T |w‖∞ ≤ ‖w‖∞. Thus |T | also satisfies the conditions of the theorem. Setting Bn = 1
n+1

∑n
i=0 |T |i,

Bn ≥ An in L
∼(L1;L1) and Bn|u| ≥ Anu for every n. But by (a), v = supn∈NBn|u| is defined in L0 and

αµ̄[[v > α]] ≤ ‖|u|‖1 = ‖u‖1 for every α > 0. Consequently u∗ = supn∈NAnu is defined in L0 and u∗ ≤ v, so
that αµ̄[[u∗ > α]] ≤ ‖u‖1 for every α > 0.

D.H.Fremlin



8 Linear operators between function spaces 372D

372D We are now ready for a very general form of the Ergodic Theorem. I express it in terms of the
space M1,0 from 366F and the class T (0) of operators from 371F. If these formulae are unfamiliar, you may
like to glance at the statement of 372F before looking them up.

The Ergodic Theorem: first form Let (A, µ̄) be a measure algebra, and set M1,0 = M1,0(A, µ̄), T (0) =

T (0)
µ̄,µ̄ ⊆ B(M1,0;M1,0) as in 371F-371G. Take any T ∈ T (0), and set An = 1

n+1

∑n
i=0 T

i : M1,0 → M1,0 for

every n. Then for any u ∈ M1,0, 〈Anu〉n∈N is order*-convergent (definition: 367A) and ‖ ‖1,∞-convergent
to a member Pu of M1,0. The operator P : M1,0 → M1,0 is a projection onto the linear subspace {u : u ∈
M1,0, Tu = u}, and P ∈ T (0).

proof (a) It will be convenient to start with some elementary remarks. First, every An belongs to T (0),
by 371Ge and 371Ga. Next, 〈Anu〉n∈N is order-bounded in L0 = L0(A) for any u ∈M1,0; this is because if
u = v + w, where v ∈ L1 = L1(A, µ̄) and w ∈ L∞ = L∞(A), then 〈Anv〉n∈N and 〈An(−v)〉n∈N are bounded
above, by 372C, while 〈Anw〉n∈N is norm- and order-bounded in L∞. Accordingly I can uninhibitedly speak
of P ∗(u) = infn∈N supi≥nAiu and P∗(u) = supn∈N infi≥nAiu for any u ∈M1,0, these both being defined in

L0.

(b) Write V1 for the set of those u ∈ M1,0 such that 〈Anu〉n∈N is order*-convergent in L0; that is,
P ∗(u) = P∗(u) (367Be). It is easy to see that V1 is a linear subspace of M1,0 (use 367Ca). Also it is closed
for ‖ ‖1,∞.

PPP We know that |T |, taken in L
∼(M1,0;M1,0), belongs to T (0) (371Gb); set Bn = 1

n+1

∑n
i=0 |T |i for each

i.
Suppose that u0 ∈ V 1. Then for any ǫ > 0 there is a u ∈ V1 such that ‖u0 − u‖1,∞ ≤ ǫ2. Write

Pu = P ∗(u) = P∗(u) for the order*-limit of 〈Anu〉n∈N. Express u0 − u as v +w where v ∈ L1, w ∈ L∞ and
‖v‖1 + ‖w‖∞ ≤ 2ǫ2.

Set v∗ = supn∈NBn|v|. Then µ̄[[v∗ > ǫ]] ≤ 2ǫ, by 372C. Next, if w∗ = supn∈NBn|w|, we surely have
w∗ ≤ 2ǫ2χ1. Now

|Anu0 −Anu| = |Anv +Anw| ≤ Bn|v|+Bn|w| ≤ v∗ + w∗

for every n ∈ N, that is,

Anu− v∗ − w∗ ≤ Anu0 ≤ Anu+ v∗ + w∗

for every n. Because 〈Anu〉n∈N order*-converges to Pu,

Pu− v∗ − w∗ ≤ P∗(u0) ≤ P ∗(u0) ≤ Pu+ v∗ + w∗,

and P ∗(u0)− P∗(u0) ≤ 2(v∗ + w∗). On the other hand,

µ̄[[2(v∗ + w∗) > 2ǫ+ 4ǫ2]] ≤ µ̄[[v∗ > ǫ]] + µ̄[[w∗ > 2ǫ2]] = µ̄[[v∗ > ǫ]] ≤ 2ǫ

(using 364Ea for the first inequality). So

µ̄[[P ∗(u0)− P∗(u0) > 2ǫ(1 + 2ǫ)]] ≤ 2ǫ.

Since ǫ is arbitrary, 〈Anu0〉n∈N order*-converges to P ∗(u0) = P∗(u0), and u0 ∈ V1. As u0 is arbitrary, V1 is
closed. QQQ

(c) Similarly, the set V2 of those u ∈ M1,0 for which 〈Anu〉n∈N is norm-convergent is a linear subspace
of M1,0, and it also is closed. PPP This is a standard argument. If u0 ∈ V 2 and ǫ > 0, there is a u ∈ V2
such that ‖u0 − u‖1,∞ ≤ ǫ. There is an n ∈ N such that ‖Aiu − Aju‖1,∞ ≤ ǫ for all i, j ≥ n, and now
‖Aiu0 − Aju0‖1,∞ ≤ 3ǫ for all i, j ≥ n, because every Ai has norm at most 1 in B(M1,0;M1,0) (371Gc).
As ǫ is arbitrary, 〈Aiu0〉n∈N is Cauchy; because M1,0 is complete, it is convergent, and u0 ∈ V2. As u0 is
arbitrary, V2 is closed. QQQ

(d) Now let V be {u+v−Tu : u ∈M1,0∩L∞, v ∈M1,0, T v = v}. Then V ⊆ V1∩V2. PPP If u ∈M1,0∩L∞,
then for any n ∈ N

An(u− Tu) = 1
n+1 (u− Tn+1u)→ 0

for ‖ ‖∞, and therefore is both order*-convergent and convergent for ‖ ‖1,∞; so u − Tu ∈ V1 ∩ V2. On the
other hand, if Tv = v, then of course Anv = v for every n, so again v ∈ V1 ∩ V2. QQQ

Measure Theory



372G The ergodic theorem 9

(e) Consequently L2 = L2(A, µ̄) ⊆ V1∩V2. PPP L2∩V1∩V2 is a linear subspace; but also it is closed for the
norm topology of L2, because the identity map from L2 to M1,0 is continuous (369Oe). We know also that
T ↾L2 is an operator of norm at most 1 from L2 to itself (371Gd). Consequently W = {u+ v − Tu : u, v ∈
L2, T v = v} is dense in L2 (372A). On the other hand, given u ∈ L2 and ǫ > 0, there is a u′ ∈ L2∩L∞ such
that ‖u−u′‖2 ≤ ǫ (take u′ = (u∧γχ1)∨(−γχ1) for any γ large enough), and now ‖(u−Tu)−(u′−Tu′)‖2 ≤ 2ǫ.
Thus W ′ = {u′ + v − Tu′ : u′ ∈ L2 ∩ L∞, v ∈ L2, T v = v} is dense in L2. But W ′ ⊆ V1 ∩ V2, by (d) above.
Thus L2 ∩ V1 ∩ V2 is dense in L2, and is therefore the whole of L2. QQQ

(f) L2 ⊇ S(Af ) is dense in M1,0, by 369Pc, so V1 = V2 = M1,0. This shows that 〈Anu〉n∈N is norm-
convergent and order*-convergent for every u ∈M1,0. By 367Da, the limits are the same. Write Pu for the
common value of the limits.

(g) Of course we now have

‖Pu‖∞ ≤ supn∈N ‖Anu‖∞ ≤ ‖u‖∞
for every u ∈ L∞ ∩M1,0, while

‖Pu‖1 ≤ lim infn→∞ ‖Anu‖1 ≤ ‖u‖1
for every u ∈ L1, by Fatou’s Lemma. So P ∈ T (0). If u ∈ M1,0 and Tu = u, then surely Pu = u,
because Anu = u for every u. On the other hand, for any u ∈ M1,0, TPu = Pu. PPP Because 〈Anu〉n∈N is
norm-convergent to Pu,

‖TPu− Pu‖1,∞ = lim
n→∞

‖TAnu−Anu‖1,∞

= lim
n→∞

1

n+1
‖Tn+1u− u‖1,∞ = 0. QQQ

Thus, writing U = {u : Tu = u}, P [M1,0] = U and Pu = u for every u ∈ U .

372E Corollary Let (A, µ̄) be a measure algebra, and π : Af → Af a measure-preserving ring homo-
morphism, where Af = {a : µ̄a < ∞}. Let T : M1,0 → M1,0 be the corresponding Riesz homomorphism,
where M1,0 = M1,0(A, µ̄) (366H, in particular part (a-v)). Set An = 1

n+1

∑n
i=0 T

i for n ∈ N. Then for every

u ∈M1,0, 〈Anu〉n∈N is order*-convergent and ‖ ‖1,∞-convergent to some v such that Tv = v.

proof By 366H(a-iv), T ∈ T (0), as defined in 371F. So the result follows at once from 372D.

372F The Ergodic Theorem: second form Let (A, µ̄) be a measure algebra, and let T : L1 → L1,
where L1 = L1(A, µ̄), be a linear operator of norm at most 1 such that Tu ∈ L∞ = L∞(A) and ‖Tu‖∞ ≤
‖u‖∞ whenever u ∈ L1∩L∞. Set An = 1

n+1

∑n
i=0 T

i : L1 → L1 for every n. Then for any u ∈ L1, 〈Anu〉n∈N

is order*-convergent to an element Pu of L1. The operator P : L1 → L1 is a projection of norm at most 1
onto the linear subspace {u : u ∈ L1, Tu = u}.
proof By 371Ga, there is an extension of T to a member T̃ of T (0). So 372D tells us that 〈Anu〉n∈N is
order*-convergent to some Pu ∈ L1 for every u ∈ L1, and P : L1 → L1 is a projection of norm at most 1,
because P is the restriction of a projection P̃ ∈ T (0). Also we still have TPu = Pu for every u ∈ L1, and
Pu = u whenever Tu = u, so the set of values P [L1] of P must be exactly {u : u ∈ L1, Tu = u}.
Remark In 372D and 372F I have used the phrase ‘order*-convergent’ from §367 without always being
specific about the partially ordered set in which it is to be interpreted. But, as remarked in 367E, the
notion is robust enough for the omission to be immaterial here. Since both M1,0 and L1 are solid linear
subspaces of L0, a sequence in M1,0 is order*-convergent to a member of M1,0 (when order*-convergence is
interpreted in the partially ordered set M1,0) iff it is order*-convergent to the same point (when convergence
is interpreted in the set L0); and the same applies to L1 in place of M1,0.

372G Corollary Let (A, µ̄) be a probability algebra, and π : A → A a measure-preserving Boolean
homomorphism. Let T : L1 → L1 be the corresponding Riesz homomorphism, where L1 = L1(A, µ̄). Set
An = 1

n+1

∑n
i=0 T

i for n ∈ N. Then for every u ∈ L1, 〈Anu〉n∈N is order*-convergent and ‖ ‖1-convergent.

D.H.Fremlin



10 Linear operators between function spaces 372G

If we set Pu = limn→∞Anu for each u, P is the conditional expectation operator corresponding to the
fixed-point subalgebra C = {a : πa = a} of A.

proof (a) The first part is just a special case of 372E; the point is that because (A, µ̄) is totally finite,
L∞(A) ⊆ L1, so M1,0(A, µ̄) = L1. Also (because µ̄1 = 1) ‖u‖∞ ≤ ‖u‖1 for every u ∈ L∞, so the norm
‖ ‖1,∞ is actually equal to ‖ ‖1.

(b) For the last sentence, recall that C is a closed subalgebra of A (cf. 333R). By 372D or 372F, P is
a projection operator onto the subspace {u : Tu = u}. Now [[Tu > α]] = π[[u > α]] (365Nc), so Tu = u iff
[[u > α]] ∈ C for every α ∈ R, that is, iff u belongs to the canonical image of L1(C, µ̄↾C) in L1 (365Q). To
identify Pu further, observe that if u ∈ L1 and a ∈ C then∫

a
Tu =

∫
πa
Tu =

∫
a
u

(365Nb). Consequently
∫
a
T iu =

∫
a
u for every i ∈ N,

∫
a
Anu =

∫
a
u for every n ∈ N, and

∫
a
Pu =

∫
a
u

(because Pu is the limit of 〈Anu〉n∈N for ‖ ‖1). But this is enough to define Pu as the conditional expectation
of u on C (365Q).

372H The Ergodic Theorem is most often expressed in terms of transformations of measure spaces. In
the next few corollaries I will formulate such expressions. The translation is straightforward.

Corollary Let (X,Σ, µ) be a measure space and φ : X → X an inverse-measure-preserving function. Let f
be a real-valued function which is integrable over X. Then

g(x) = limn→∞
1

n+1

∑n
i=0 f(φi(x))

is defined for almost every x ∈ X, and gφ(x) = g(x) for almost every x.

proof Let (A, µ̄) be the measure algebra of (X,Σ, µ), and π : A → A, T : L0(A) → L0(A) the homo-
morphisms corresponding to φ, as in 364Qd. Set u = f• in L1(A, µ̄). Then for any i ∈ N, T iu = (fφi)•

(364Q(c)-(d)), so setting An = 1
n+1

∑n
i=0 T

i, Anu = g•
n, where gn(x) = 1

n+1

∑n
i=0 f(φi(x)) whenever this is

defined. Now we know from 372F or 372E that 〈Anu〉n∈N is order*-convergent to some v such that Tv = v,
so 〈gn〉n∈N must be convergent almost everywhere (367F), and taking g = limn→∞ gn where this is defined,
g• = v. Accordingly (gφ)• = Tv = v = g• and gφ =a.e. g, as claimed.

372I The following facts will be useful in the next version of the theorem, and elsewhere.

Lemma Let (X,Σ, µ) be a measure space with measure algebra (A, µ̄). Let φ : X → X be an inverse-
measure-preserving function and π : A → A the associated homomorphism, as in 343A and 364Qd. Set
C = {c : c ∈ A, πc = c}, T = {E : E ∈ Σ, φ−1[E]△E is negligible} and T0 = {E : E ∈ Σ, φ−1[E] = E}.
Then T and T0 are σ-subalgebras of Σ; T0 ⊆ T, T = {E : E ∈ Σ, E• ∈ C}, and C = {E• : E ∈ T0}.
proof It is easy to see that T and T0 are σ-subalgebras of Σ and that T0 ⊆ T = {E : E• ∈ C}. So we have
only to check that if c ∈ C there is an E ∈ T0 such that E• = c. PPP Start with any F ∈ Σ such that F • = c.
Now F△φ−i[F ] is negligible for every i ∈ N, because (φ−i[F ])• = πic = c. So if we set

E =
⋃

n∈N

⋂

i≥n

φ−i[F ]

= {x : there is an n ∈ N such that φi(x) ∈ F for every i ≥ n},
E• = c. On the other hand, it is easy to check that E ∈ T0. QQQ

372J The Ergodic Theorem: third form Let (X,Σ, µ) be a probability space and φ : X → X an
inverse-measure-preserving function. Let f be a real-valued function which is integrable over X. Then

g(x) = limn→∞
1

n+1

∑n
i=0 f(φi(x))

is defined for almost every x ∈ X; gφ =a.e. g, and g is a conditional expectation of f on the σ-algebra
T = {E : E ∈ Σ, φ−1[E]△E is negligible}. If either f is Σ-measurable and defined everywhere in X
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372K The ergodic theorem 11

or φ[E] is negligible for every negligible set E, then g is a conditional expectation of f on the σ-algebra
T0 = {E : E ∈ Σ, φ−1[E] = E}.
proof (a) We know by 372H that g is defined almost everywhere and that gφ =a.e. g. In the language of
the proof of 372H, g• = v is the conditional expectation of u = f• on the closed subalgebra

C = {a : a ∈ A, πa = a} = {F • : F ∈ T} = {F • : F ∈ T0},
by 372G and 372I. So v must be expressible as h• where h : X → R is T0-measurable and is a conditional
expectation of f on T0 (and also on T). Since every set of measure zero belongs to T, g = h µ↾T-a.e., and
g also is a conditional expectation of f on T.

(b) Suppose now that f is defined everywhere and Σ-measurable. Here I come to a technical obstruction.
The definition of ‘conditional expectation’ in 233D asks for g to be µ↾T0-integrable, and since µ-negligible
sets do not need to be µ↾T0-negligible we have some more checking to do, to confirm that {x : x ∈
dom g, g(x) = h(x)} is µ↾T0-conegligible as well as µ-conegligible.

(i) For n ∈ N, set Σn = {φ−n[E] : E ∈ Σ}; then Σn is a σ-subalgebra of Σ, including T0. Set
Σ∞ =

⋂
n∈N Σn, still a σ-algebra including T0. Now any negligible set E ∈ Σ∞ is µ↾T0-negligible. PPP For

each n ∈ N choose Fn ∈ Σ such that E = φ−n[Fn]. Because φ is inverse-measure-preserving, every Fn is
negligible, so that

E∗ =
⋂

m∈N

⋃
n∈N,j≥m φ−j [Fn]

is negligible. Of course E =
⋂

m∈N φ
−m[Fm] is included in E∗. Now

φ−1[E∗] =
⋂

m∈N

⋃
n∈N,j≥m φ−j−1[Fn] =

⋂
m≥1

⋃
n∈N,j≥m φ−j [Fn] = E∗

because
⋃

n∈N,j≥1 φ
−j [Fn] ⊆ ⋃

n∈N,j≥0 φ
−j [Fn].

So E∗ ∈ T0 and E is included in a negligible member of T0, which is what we needed to know. QQQ

(ii) We are assuming that f is Σ-measurable and defined everywhere, so that gn = 1
n+1

∑n
i=0 f ◦φi

is Σ-measurable and defined everywhere. If we set g∗ = lim supn→∞ gn, then g∗ : X → [−∞,∞] is Σ∞-
measurable. PPP For any m ∈ N, f ◦φi is Σm-measurable for every i ≥ m, since {x : f(φi(x)) > α} = φ−m[{x :
f(φi−m(x)) > α}] for every α. Accordingly

g∗ = lim supn→∞
1

n+1

∑n
i=m f ◦φi

is Σm-measurable. As m is arbitrary, g∗ is Σ∞-measurable. QQQ
Since h is surely Σ∞-measurable, and h = g∗ µ-a.e., (i) tells us that h = g∗ µ↾T0-a.e. But similarly

h = lim infn→∞ gn µ↾T0-a.e., so we must have h = g µ↾T0-a.e.; and g, like h, is a conditional expectation
of f on T0.

(c) Finally, suppose that φ[E] is negligible for every negligible set E. Then every µ-negligible set is µ↾T0-
negligible. PPP If E is µ-negligible, then φ[E], φ2[E] = φ[φ[E]], . . . are all negligible, so E∗ =

⋃
n∈N φ

n[E] is
negligible, and there is a measurable negligible set F ⊇ E∗. Now F∗ =

⋃
m∈N

⋂
n≥m φ−n[F ] is a negligible

set in T0 including E, so E is µ↾T0-negligible. QQQ Consequently g = h µ↾T0-a.e., and in this case also g is
a conditional expectation of f on T0.

372K Remark Parts (b)-(c) of the proof above are dominated by the technical question of the exact
definition of ‘conditional expectation of f on T0’, and it is natural to be impatient with such details. The
kind of example I am concerned about is the following. Let C ⊆ [0, 1] be the Cantor set (134G), and
φ : [0, 1] → [0, 1] a Borel measurable function such that φ[C] = [0, 1] and φ(x) = x for x ∈ [0, 1] \ C.
(For instance, we could take φ agreeing with the Cantor function on C (134H).) Because C is negligible,
φ is inverse-measure-preserving for Lebesgue measure µ, and if f is any Lebesgue integrable function then

g(x) = limn→∞
1

n+1

∑n
i=0 f(φi(x)) is defined and equal to f(x) for every x ∈ dom f \ C. But for x ∈ C we

can, by manipulating φ, arrange for g(x) to be almost anything; and if f is undefined on C then g will also

D.H.Fremlin



12 Linear operators between function spaces 372K

be undefined on C. On the other hand, C is not µ↾T0-negligible, because the only member of T0 including
C is [0, 1]. So we cannot be sure of being able to form

∫
g d(µ↾T0).

If instead of Lebesgue measure itself we took its restriction µB to the algebra of Borel subsets of [0, 1], then
φ would still be inverse-measure-preserving for µB, but we should now have to worry about the possibility
that f↾C was non-measurable, so that g↾C came out to be non-measurable, even if everywhere defined, and
g was not µB↾T0-virtually measurable.

In the statement of 372J I have offered two ways of being sure that the problem does not arise: check that
φ[E] is negligible whenever E is negligible (so that all negligible sets are µ↾T0-negligible), or check that f is
defined everywhere and Σ-measurable. Even if these conditions are not immediately satisfied in a particular
application, it may be possible to modify the problem so that they are. For instance, completing the
measure will leave φ inverse-measure-preserving (234Ba2), will not change the integrable functions but will
make them all measurable (212F, 212Bc), and may enlarge T0 enough to make a difference. If our function
f is measurable (because the measure is complete, or otherwise) we can extend it to a measurable function
defined everywhere (121I) and the corresponding extension of g will be µ↾T0-integrable. Alternatively, if
the difficulty seems to lie in the behaviour of φ rather than in the behaviour of f (as in the example above),
it may help to modify φ on a negligible set.

372L Continued fractions A particularly delightful application of the results above is to a question
which belongs as much to number theory as to analysis. It takes a bit of space to describe, but I hope you
will agree with me that it is well worth knowing in itself, and that it also illuminates some of the ideas
above.

(a) Set X = [0, 1]\Q. For x ∈ X, set φ(x) = < 1
x>, the fractional part of 1

x , and k1(x) = 1
x −φ(x) = ⌊ 1x⌋,

the integer part of 1
x ; then φ(x) ∈ X for each x ∈ X, so we may define kn(x) = k1(φn−1(x)) for every n ≥ 1.

The strictly positive integers k1(x), k2(x), k3(x), . . . are the continued fraction coefficients of x. Of
course kn+1(x) = kn(φ(x)) for every n ≥ 1. Now define 〈pn(x)〉n∈N, 〈qn(x)〉n∈N inductively by setting

p0(x) = 0, p1(x) = 1, pn(x) = pn−2(x) + kn(x)pn−1(x) for n ≥ 1,

q0(x) = 1, q1(x) = k1(x), qn(x) = qn−2(x) + kn(x)qn−1(x) for n ≥ 1.

The continued fraction approximations or convergents to x are the quotients pn(x)/qn(x).
(I do not discuss rational x, because for my purposes here these are merely distracting. But if we set

k1(0) =∞, φ(0) = 0 then the formulae above produce the conventional values for kn(x) for rational x ∈ [0, 1[.
As for the pn and qn, use the formulae above until you get to x = pn(x)/qn(x), φn(x) = 0, kn+1(x) = ∞,
and then set pm(x) = pn(x), qm(x) = qn(x) for m ≥ n.)

(b) The point is that the quotients rn(x) = pn(x)/qn(x) are, in a strong sense, good rational approxima-
tions to x. (See 372Xl(v).) We have rn(x) < x < rn+1(x) for every even n (372Xl). If x = π − 3, then the
first few coefficients are

k1 = 7, k2 = 15, k3 = 1,

r1 =
1

7
, r2 =

15

106
, r3 =

16

113
;

the first and third of these corresponding to the classical approximations π ≏
22

7
, π ≏

355

113
. Or if we take

x = e− 2, we get

k1 = 1, k2 = 2, k3 = 1, k4 = 1, k5 = 4, k6 = 1, k7 = 1,

r1 = 1, r2 =
2

3
, r3 =

3

4
, r4 =

5

7
, r5 =

23

32
, r6 =

28

39
, r7 =

51

71
;

note that the obvious approximations 17
24 , 86

120 derived from the series for e are not in fact as close as the

even terms 5
7 , 28

39 above, and involve larger numbers3.

2Formerly 235Hc.
3There is a remarkable expression for the continued fraction expansion of e, due essentially to Euler; k3m−1 = 2m, k3m =
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372M The ergodic theorem 13

(c) Now we need a variety of miscellaneous facts about these coefficients, which I list here.

(i) For any x ∈ X, n ≥ 1 we have

pn−1(x)qn(x)− pn(x)qn−1(x) = (−1)n, φn(x) =
pn(x)−xqn(x)

xqn−1(x)−pn−1(x)

(induce on n), so

x =
pn(x)+pn−1(x)φn(x)

qn(x)+qn−1(x)φn(x)
.

(ii) Another easy induction on n shows that for any finite string m = (m1, . . . ,mn) of strictly positive
integers the set Dm = {x : x ∈ X, ki(x) = mi for 1 ≤ i ≤ n} is an interval in X on which φn is monotonic,
being strictly increasing if n is even and strictly decreasing if n is odd. (For the inductive step, note just
that

D(m1,... ,mn) = [ 1
m1+1 ,

1
m1

] ∩ φ−1[D(m2,... ,mn)].)

(iii) We also need to know that the intervals Dm of (ii) are small; specifically, that if m = (m1, . . . ,mn),
the length of Dm is at most 2−n+1. PPP All the coefficients pi, qi, for i ≤ n, take constant values p∗i , q∗i on
Dm, since they are determined from the coefficients ki which are constant on Dm by definition. Now every
x ∈ Dm is of the form (p∗n + tp∗n−1)/(q∗n + tq∗n−1) for some t ∈ X (see (i) above) and therefore lies between
p∗n−1/q

∗
n−1 and p∗n/q

∗
n. But the distance between these is

∣∣p∗
nq

∗
n−1−p∗

n−1q
∗
n

q∗nq
∗
n−1

∣∣ =
1

q∗nq
∗
n−1

,

by the first formula in (i). Next, noting that q∗i ≥ q∗i−1 + q∗i−2 for each i ≥ 2, we see that q∗i q
∗
i−1 ≥ 2q∗i−1q

∗
i−2

for i ≥ 2, and therefore that q∗nq
∗
n−1 ≥ 2n−1, so that the length of Dm is at most 2−n+1. QQQ

372M Theorem Set X = [0, 1]\Q, and define φ : X → X as in 372L. Then for every Lebesgue integrable
function f on X,

limn→∞
1

n+1

∑n
i=0 f(φi(x)) =

1

ln 2

∫ 1

0

f(t)

1+t
dt

for almost every x ∈ X.

proof (a) The integral just written, and the phrase ‘almost every’, refer of course to Lebesgue measure;
but the first step is to introduce another measure, so I had better give a name µL to Lebesgue measure on
X. Let ν be the indefinite-integral measure on X defined by saying that νE = 1

ln 2

∫
E

1
1+xµL(dx) whenever

this is defined. The coefficient 1
ln 2 is of course chosen to make νX = 1. Because 1

1+x > 0 for every x ∈ X,

dom ν = domµL and ν has just the same negligible sets as µL (234Lc4); I can therefore safely use the terms
‘measurable set’, ‘almost everywhere’ and ‘negligible’ without declaring which measure I have in mind each
time.

(b) Now φ is inverse-measure-preserving when regarded as a function from (X, ν) to itself. PPP For each

k ≥ 1, set Ik =
[

1
k+1 ,

1
k

[
. On X ∩ Ik, φ(x) = 1

x − k. Observe that φ↾Ik : X ∩ Ik → X is bijective and

differentiable relative to its domain in the sense of 262Fb. Consider, for any measurable E ⊆ X,

∫

E

1

(y+k)(y+k+1)
µL(dy) =

∫

Ik∩φ−1[E]

1

(φ(x)+k)(φ(x)+k+1)
|φ′(x)|µL(dx)

=

∫

Ik∩φ−1[E]

x2

x+1

1

x2
µL(dx) = ln 2 · ν(Ik ∩ φ−1[E]),

using 263D (or more primitive results, of course). But

k3m+1 = 1 for m ≥ 2. See Cohn 06.
4Formerly 234D.
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14 Linear operators between function spaces 372M

∑∞
k=1

1

(y+k)(y+k+1)
=

∑∞
k=1

1

y+k
− 1

y+k+1
=

1

y+1

for every y ∈ [0, 1], so

νE =
1

ln 2

∞∑

k=1

∫

E

1

(y+k)(y+k+1)
µL(dy) =

∞∑

k=1

ν(Ik ∩ φ−1[E]) = νφ−1[E].

As E is arbitrary, φ is inverse-measure-preserving. QQQ

(c) The next thing we need to know is that if E ⊆ X and φ−1[E] = E then E is either negligible or
conegligible. PPP I use the sets Dm of 372L(c-ii).

(i) For any string m = (m1, . . . ,mn) of strictly positive integers, we have

x =
p∗
n+p∗

n−1φ
n(x)

q∗n+q∗n−1φ
n(x)

for every x ∈ Dm, where p∗n, etc., are defined from m as in 372L(c-iii). Recall also that φn is strictly
monotonic on Dm. So for any interval I ⊆ [0, 1] (open, closed or half-open) with endpoints α < β,
φ−n[I] ∩Dm will be of the form X ∩ J , where J is an interval with endpoints (p∗n + p∗n−1α)/(q∗n + q∗n−1α),
(p∗n+p∗n−1β)/(q∗n+q∗n−1β) in some order. This means that we can estimate µL(φ−n[I]∩Dm)/µLDm, because
it is

∣∣p∗
n+p∗

n−1α

q∗n+q∗n−1α
− p∗

n+p∗
n−1β

q∗n+q∗n−1β

∣∣
∣∣p∗

n

q∗n
− p∗

n+p∗
n−1

q∗n+q∗n−1

∣∣ =
(β−α)q∗n(q

∗
n+q∗n−1)

(q∗n+q∗n−1α)(q
∗
n+q∗n−1β)

≥ (β−α)q∗n
q∗n+q∗n−1

≥ 1

2
(β − α).

Now look at

A = {E : E ⊆ [0, 1] is Lebesgue measurable, µL(φ−n[E] ∩Dm) ≥ 1

2
µLE · µLDm}.

Clearly the union of two disjoint members of A belongs to A. Because A contains every subinterval of [0, 1]
it includes the algebra E of subsets of [0, 1] consisting of finite unions of intervals. Next, the union of any
non-decreasing sequence in A belongs to A, and the intersection of a non-increasing sequence likewise. But
this means that A must include the σ-algebra generated by E (136G), that is, the Borel σ-algebra. But also,
if E ∈ A and H ⊆ [0, 1] is negligible, then

µL(φ−n[E△H] ∩Dm) = µL(φ−n[E] ∩Dm) ≥ 1

2
µLE · µLDm =

1

2
µL(E△H) · µLDm

and E△H ∈ A. And this means that every Lebesgue measurable subset of [0, 1] belongs to A (134Fb).

(ii) ??? Now suppose, if possible, that E is a measurable subset of X and that φ−1[E] = E and E is
neither negligible nor conegligible in X. Set γ = 1

2µLE > 0. By Lebesgue’s density theorem (223B) there

is some x ∈ X \ E such that limδ↓0 ψ(δ) = 0, where ψ(δ) =
1

2δ
µL(E ∩ [x − δ, x + δ]) for δ > 0. Take n so

large that ψ(δ) < 1
2γ whenever 0 < δ ≤ 2−n+1, and set mi = ki(x) for i ≤ n, so that x ∈ Dm. Taking the

least δ such that Dm ⊆ [x− δ, x+ δ], we must have δ ≤ 2−n+1, because the length of Dm is at most 2−n+1

(372L(c-iii)), while µLDm ≥ δ, because Dm is an interval. Accordingly

µL(E ∩Dm) ≤ µL(E ∩ [x− δ, x+ δ]) = 2δψ(δ) < γδ ≤ γµLDm.

But we also have

µL(E ∩Dm) = µL(φ−n[E] ∩Dm) ≥ γµLDm,

by (i). XXX
This proves the result. QQQ

(d) The final fact we need in preparation is that φ[E] is negligible for every negligible E ⊆ X. This is
because φ is differentiable relative to its domain (see 263D(ii)).

(e) Now let f be any µL-integrable function. Because 1
1+x ≤ 1 for every x, f is also ν-integrable (235K5);

5Formerly 235M.
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372P The ergodic theorem 15

consequently, using (b) above and 372J,

g(x) = limn→∞
1

n+1

∑n
i=0 f(φi(x))

is defined for almost every x ∈ X, and is a conditional expectation of f (with respect to the measure ν) on
the σ-algebra T0 = {E : E is measurable, φ−1[E] = E}. But we have just seen that T0 consists only of
negligible and conegligible sets, so g must be essentially constant; since

∫
g dν =

∫
fdν, we must have

lim
n→∞

1

n+1

n∑

i=0

f(φi(x)) =

∫
fdν =

1

ln 2

∫ 1

0

f(t)

1+t
µL(dt)

for almost every x (using 235K to calculate
∫
fdν).

372N Corollary For almost every x ∈ [0, 1] \Q,

limn→∞
1

n
#({i : 1 ≤ i ≤ n, ki(x) = k}) =

1

ln 2
(2 ln(k + 1)− ln k − ln(k + 2))

for every k ≥ 1, where k1(x), . . . are the continued fraction coefficients of x.

proof In 372M, set f = χ(X ∩ [ 1
k+1 ,

1
k ]). Then (for i ≥ 1) f(φi(x)) = 1 if ki(x) = k and zero otherwise. So

lim
n→∞

1

n
#({i : 1 ≤ i ≤ n, ki(x) = k})

= lim
n→∞

1

n

n∑

i=1

f(φi(x)) = lim
n→∞

1

n+1

n∑

i=0

f(φi(x))

=
1

ln 2

∫ 1

0

f(t)

1+t
dt =

1

ln 2

∫ 1/k

1/k+1

1

1+t
dt

=
1

ln 2
(ln(1 +

1

k
)− ln(1 +

1

k+1
)) =

1

ln 2
(2 ln(k + 1)− ln k − ln(k + 2)),

for almost every x ∈ X.

372O Mixing and ergodic transformations This seems an appropriate moment for some brief notes
on three special types of measure-preserving homomorphism or inverse-measure-preserving function.

Definitions (a)(i) Let A be a Boolean algebra. Then a Boolean homomorphism π : A → A is ergodic if
whenever a, b ∈ A \ {0} there are m, n ∈ N such that πma ∩ πnb 6= 0.

(ii) Let (A, µ̄) be a probability algebra and π : A→ A a measure-preserving Boolean homomorphism.
Then π is mixing (sometimes called strongly mixing) if limn→∞ µ̄(πna ∩ b) = µ̄a · µ̄b for all a, b ∈ A.

(iii) Let (A, µ̄) be a probability algebra and π : A→ A a measure-preserving Boolean homomorphism.

Then π is weakly mixing if limn→∞
1

n

∑n−1
i=0 |µ̄(πna ∩ b)− µ̄a · µ̄b| = 0 for all a, b ∈ A.

(b) Let (X,Σ, µ) be a probability space and φ : X → X an inverse-measure-preserving function.

(i) φ is ergodic (also called metrically transitive, indecomposable) if every measurable set E such
that φ−1[E] = E is either negligible or conegligible.

(ii) φ is mixing if limn→∞ µ(F ∩ φ−n[E]) = µE · µF for all E, F ∈ Σ.

(iii) φ is weakly mixing if if limn→∞
1

n

∑n−1
i=0 |µ(F ∩ φ−n[E])− µE · µF | = 0 for all E, F ∈ Σ.

372P For the principal applications of the idea in 372O(a-i), we have an alternative definition in terms
of fixed-point subalgebras.
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16 Linear operators between function spaces 372P

Proposition Let A be a Boolean algebra and π : A → A a Boolean homomorphism, with fixed-point
subalgebra C.

(a) If π is ergodic, then C = {0, 1}.
(b) If π is an automorphism, then π is ergodic iff supn∈Z π

na = 1 for every a ∈ A \ {0}.
(c) If π is an automorphism and A is Dedekind σ-complete, then π is ergodic iff C = {0, 1}.

proof (a) If c ∈ C, then πmc = c is disjoint from πn(1 \ c) = 1 \ c for all m, n ∈ N, so one of c, 1 \ c must
be zero.

(b)(i) If π is ergodic and a 6= 0 and b ∩ πna = 0 for every n ∈ Z, then πmb ∩ πna = πm(b ∩ πn−ma) = 0
for all m, n ∈ N, so b = 0. As b is arbitrary, supn∈Z π

na = 1; as a is arbitrary, π satisfies the condition.

(ii) If π satisfies the condition, and a, b ∈ A \ {0}, then there is an m ∈ Z such that πma ∩ b 6= 0;
setting n = max(−m, 0), πm+na ∩ πnb 6= 0, while m+ n and n both belong to N. As a and b are arbitrary,
π is ergodic.

(c) If π is ergodic then C = {0, 1}, by (a). If C = {0, 1} and a ∈ A \ {0}, consider c = supn∈Z π
na, which

is defined because A is Dedekind σ-complete. Being an automorphism, π is order-continuous (313Ld), so
πc = supn∈Z π

n+1a = c and c ∈ C. Since c ⊇ a is non-zero, c = 1. As a is arbitrary, π is ergodic, by (b).

372Q The following facts are equally straightforward.

Proposition (a) Let (A, µ̄) be a probability algebra, π : A → A a measure-preserving Boolean homomor-
phism, and T : L0 = L0(A)→ L0 the Riesz homomorphism such that T (χa) = χπa for every a ∈ A.

(i) If π is mixing, it is weakly mixing.
(ii) If π is weakly mixing, it is ergodic.
(iii) The following are equiveridical: (α) π is ergodic; (β) the only u ∈ L0 such that Tu = u are the

multiples of χ1; (γ) for every u ∈ L1 = L1(A, µ̄), 〈 1
n+1

∑n
i=0 T

iu〉n∈N order*-converges to (
∫
u)χ1.

(iv) The following are equiveridical: (α) π is mixing; (β) limn→∞(Tnu|v) =
∫
u
∫
v for all u, v ∈

L2(A, µ̄).

(v) The following are equiveridical: (α) π is weakly mixing; (β) limn→∞
1

n

∑n−1
k=0 |(T ku|v)−

∫
u
∫
v| = 0

for all u, v ∈ L2(A, µ̄).
(b) Let (X,Σ, µ) be a probability space, with measure algebra (A, µ̄). Let φ : X → X be an inverse-

measure-preserving function and π : A → A the associated homomorphism such that πE• = (φ−1[E])• for
every E ∈ Σ.

(i) The following are equiveridical: (α) φ is ergodic; (β) π is ergodic; (γ) for every µ-integrable real-
valued function f , 〈 1

n+1

∑n
i=0 f(φi(x))〉n∈N converges to

∫
f for almost every x ∈ X.

(ii) φ is mixing iff π is, and in this case φ is weakly mixing.
(iii) φ is weakly mixing iff π is, and in this case φ is ergodic.

proof (a)(i)-(ii) Immediate from the definitions.

(iii)(ααα)⇒(βββ) Tu = u iff π[[u > α]] = [[u > α]] for every α; if π is ergodic, this means that [[u > α]] ∈
{0, 1} for every α, by 372Pa, and u must be of the form γχ1, where γ = inf{α : [[u > α]] = 0}.

(βββ)⇒(γγγ) If (β) is true and u ∈ L1, then we know from 372G that 〈 1
n+1

∑n
i=0 T

iu〉n∈N is order*-

convergent and ‖ ‖1-convergent to some v such that Tv = v; by (β), v is of the form γχ1; and

γ =
∫
v = limn→∞

1

n+1

∑n
i=0

∫
T iu =

∫
u.

(γγγ)⇒(ααα) Assuming (γ), take any a ∈ A such that πa = a, and consider u = χa. Then T iu = χa for
every i, so

χa = limn→∞
1

n+1

∑n
i=0 T

iu = (
∫
u)χ1 = µ̄a · χ1,

and a must be either 0 or 1. By 372Pc, π is ergodic.

(iv)(ααα)⇒(βββ) Since π is mixing,

Measure Theory
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lim
n→∞

(Tnχa|χb) = lim
n→∞

(χπna|χb) = lim
n→∞

µ̄(πna ∩ b)

= µ̄a · µ̄b =

∫
χa

∫
χb

for all a, b ∈ A. Because (u, v) 7→ (Tnu|v) and (u, v) 7→
∫
u
∫
v are both bilinear,

limn→∞(Tnu|v) =
∫
u
∫
v

for all u, v ∈ S(A). For general u, v ∈ L2(A, µ̄), take any ǫ > 0. Then there are u′, v′ ∈ S(A) such that

(‖u− u′‖2 + ‖v − v′‖2) max(‖u‖2, ‖v‖2 + ‖v − v′‖2) ≤ ǫ
(366C), so that

|(Tnu|v)− (Tnu′|v′)| ≤ |(Tnu|v − v′)|+ |(Tnu− Tnu′|v′)|
≤ ‖Tnu‖2‖v − v′‖2 + ‖Tnu− Tnu′‖2‖v′‖2
≤ ‖u‖2‖v − v′‖2 + ‖u− u′‖2(‖v‖2 + ‖v − v′‖2)

(366H(a-iv))

≤ ǫ,

|
∫
u

∫
v −

∫
u′

∫
v′| ≤ |

∫
u||

∫
v − v′|+ |

∫
u− u′||

∫
v′|

≤ ‖u‖2‖v − v′‖2 + ‖u− u′‖2‖v′‖2 ≤ ǫ

for every n, and

lim supn→∞ |(Tnu|v)−
∫
u
∫
v| ≤ 2ǫ+ limn→∞ |(Tnu′|v′)−

∫
u′
∫
v′| = 2ǫ.

As ǫ is arbitrary, limn→∞(Tnu|v) =
∫
u
∫
v, as required.

(βββ)⇒(ααα) This is elementary, as (α) is just the case u = χa, v = χb of (β).

(v) The argument is essentially the same as in (iv); (α) is a special case of (β); if (α) is true, then by

linearity (β) is true when u, v ∈ S(A), and the functional (u, v) 7→ lim supn→∞
1

n

∑n−1
k=0 |(T ku|v) −

∫
u
∫
v|

is continuous.

(b)(i)(ααα)⇒(βββ) If πa = a there is an E such that φ−1[E] = E and E• = a, by 372I; now µ̄a = µE ∈ {0, 1},
so a ∈ {0, 1}. Thus the fixed-point subalgebra of π is {0, 1}; by 372Pc again, π is ergodic.

(βββ)⇒(γγγ) Set u = f• ∈ L1. In the language of (a), T iu = (fφi)• for each i, as in the proof of 372H,
so that

(
1

n+1

∑n
i=0 fφ

i)• =
1

n+1

∑n
i=0 T

iu

is order*-convergent to (
∫
u)χ1 = (

∫
f)χ1, and 1

n+1

∑n
i=0 fφ

i →
∫
f a.e.

(γγγ)⇒(ααα) If φ−1[E] = E then, applying (γ) to f = χE, we see that χE =a.e. µE · χX, so that E is
either negligible or conegligible.

(ii)-(iii) Simply translating the definitions, we see that π is mixing, or weakly mixing, iff φ is. So the
results here are reformulations of (a-i) and (a-ii).

372R Remarks (a) The reason for introducing ‘ergodic’ homomorphisms in this section is of course
372G/372J; if π in 372G, or φ in 372J, is ergodic, then the limit Pu or g must be (essentially) constant,
being a conditional expectation on a trivial subalgebra.

(b) In the definition 372O(b-i) I should perhaps emphasize that we look only at measurable sets E. We
certainly expect that there will generally be many sets E for which φ−1[E] = E, since any union of orbits
of φ will have this property.
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18 Linear operators between function spaces 372Rc

(c) Part (c) of the proof of 372M was devoted to showing that the function φ there was ergodic; see also
372Xm. For another ergodic transformation see 372Xr. For examples of mixing transformations see 333P,
372Xp, 372Xq, 372Xt, 372Xw and 372Xx.

(d) It seems to be difficult to display explicitly a weakly mixing transformation which is not mixing.
There is an example in Chacon 69, and I give another in 494F in Volume 4. In a certain sense, however,
‘most’ measure-preserving automorphisms of the Lebesgue probability algebra are weakly mixing but not
mixing; I will return to this in 494E.

372S There is a useful sufficient condition for a homomorphism or function to be mixing.

Proposition (a) Let (A, µ̄) be a probability algebra, and π : A → A a measure-preserving Boolean homo-
morphism. If

⋂
n∈N π

n[A] = {0, 1}, then π is mixing.
(b) Let (X,Σ, µ) be a probability space, and φ : X → X an inverse-measure-preserving function. Set

T = {E : for every n ∈ N there is an F ∈ Σ such that E = φ−n[F ]}.
If every member of T is either negligible or conegligible, φ is mixing.

proof (a) Let T : L0 = L0(A) → L0 be the Riesz homomorphism associated with π. Take any a, b ∈ A

and any non-principal ultrafilter F on N. Then 〈Tn(χa)〉n∈N is a bounded sequence in the reflexive space
L2
µ̄ = L2(A, µ̄), so v = limn→F T

n(χa) is defined for the weak topology of L2
µ̄. Now for each n ∈ N set

Bn = πn[A]. This is a closed subalgebra of A (314F(a-i)), and contains πia for every i ≥ n. So if we identify
L2(Bn, µ̄↾Bn) with the corresponding subspace of L2

µ̄ (366I), it contains T i(χa) for every i ≥ n; but also
it is norm-closed, therefore weakly closed (3A5Ee), so contains v. This means that [[v > α]] must belong to
Bn for every α and every n. But in this case [[v > α]] ∈ ⋂

n∈N Bn = {0, 1} for every α, and v is of the form
γχ1. Also

γ =
∫
v = limn→F

∫
Tn(χa) = µ̄a.

So

limn→F µ̄(πna ∩ b) = limn→F

∫
Tn(χa)× χb =

∫
v × χb = γµ̄b = µ̄a · µ̄b.

But this is true of every non-principal ultrafilter F on N, so we must have limn→∞ µ̄(πna ∩ b) = µ̄a · µ̄b
(3A3Lc). As a and b are arbitrary, π is mixing.

(b) Let (A, µ̄) be the measure algebra of (X,Σ, µ), and π : A→ A the measure-preserving homomorphism
corresponding to φ. The point is that if a ∈ ⋂

n∈N π
n[A], there is an E ∈ T such that E• = a. PPP For each

n ∈ N there is an an ∈ A such that πnan = a; say an = F •
n where Fn ∈ Σ. Then φ−n[Fn]• = a. Set

E =
⋃

m∈N

⋂
n≥m φ−n[Fn], Ek =

⋃
m≥k

⋂
n≥m φ−(n−k)[Fn]

for each k; then E• = a and

φ−k[Ek] =
⋃

m≥k

⋂
n≥m φ−n[Fn] =

⋃
m∈N

⋂
n≥m φ−n[Fn] = E

for every k, so E ∈ T. QQQ
So

⋂
n∈N An = {0, 1} and π and φ are mixing.

372X Basic exercises (a) Let U be any reflexive Banach space, and T : U → U an operator of norm
at most 1. Set An = 1

n+1

∑n
i=0 T

i for each n ∈ N. Show that Pu = limn→∞Anu is defined (as a limit for

the norm topology) for every u ∈ U , and that P : U → U is a projection onto {u : Tu = u}. (Hint : show
that {u : Pu is defined} is a closed linear subspace of U containing Tu− u for every u ∈ U .)

(This is a version of the mean ergodic theorem.)

>>>(b) Let (A, µ̄) be a measure algebra, and T ∈ T (0)
µ̄,µ̄ ; set An = 1

n+1

∑n
i=0 T

i for n ∈ N. Take any

p ∈ [1,∞[ and u ∈ Lp = Lp(A, µ̄). Show that 〈Anu〉n∈N is order*-convergent and ‖ ‖p-convergent to some
v ∈ Lp. (Hint : put 372Xa together with 372D.)

(c) Let (A, µ̄) be a probability algebra, and π : A → A a measure-preserving Boolean homomorphism.
Let P : L1 → L1 be the operator defined as in 365O/366Hb, where L1 = L1

µ̄, so that
∫
a
Pu =

∫
πa
u for
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u ∈ L1 and a ∈ A. Set An = 1
n+1

∑n
i=0 P

i : L1 → L1 for each i. Show that for any u ∈ L1, 〈Anu〉n∈N is

order*-convergent and ‖ ‖1-convergent to the conditional expectation of u on the subalgebra {a : πa = a}.

(d) Show that if f is any Lebesgue integrable function on R, and y ∈ R \ {0}, then

limn→∞
1

n+1

∑n
k=0 f(x+ ky) = 0

for almost every x ∈ R.

(e) Let (X,Σ, µ) be a measure space and φ : X → X an inverse-measure-preserving function. Set
T = {E : E ∈ Σ, µ(φ−1[E]△E) = 0}, T0 = {E : E ∈ Σ, φ−1[E] = E}. (i) Show that T = {E△F : E ∈
T0, F ∈ Σ, µF = 0}. (ii) Show that a set A ⊆ X is µ↾T0-negligible iff φn[A] is µ-negligible for every n ∈ N.

>>>(f) Let ν be a Radon probability measure on R such that
∫
|t|ν(dt) is finite (cf. 271F). On X = RN let

λ be the product measure obtained when each factor is given the measure ν. Define φ : X → X by setting
φ(x)(n) = x(n+ 1) for x ∈ X, n ∈ N. (i) Show that φ is inverse-measure-preserving. (Hint : 254G. See also
372Xw below.) (iii) Set γ =

∫
tν(dt), the expectation of the distribution ν. By considering 1

n+1

∑n
i=0 f ◦φi,

where f(x) = x(0) for x ∈ X, show that limn→∞
1

n+1

∑n
i=0 x(i) = γ for λ-almost every x ∈ X.

>>>(g) Use the Ergodic Theorem to prove Kolmogorov’s Strong Law of Large Numbers (273I), as follows.
Given a complete probability space (Ω,Σ, µ) and an independent identically distributed sequence 〈fn〉n∈N

of measurable functions from Ω to R, set X = RN and f(ω) = 〈fn(ω)〉n∈N for ω ∈ Ω. Show that if we give
each copy of R the distribution of f0 then f is inverse-measure-preserving for µ and the product measure λ
on X. Now use 372Xf.

>>>(h) Let 〈fn〉n∈N be a sequence of real-valued random variables with finite expectation such that

(f0, f1, . . . , fn) has the same joint distribution as (f1, f2, . . . , fn+1) for every n ∈ N. Show that 〈 1

n+1

∑n
i=0 fi〉n∈N

converges a.e. (Hint : Let (X,Σ, µ) be the underlying probability space. Reduce to the case in which every
fi is measurable and defined everywhere in X. Define θ : X → RN by setting θ(x)(n) = fn(x) for x ∈ X,
n ∈ N. Let λ be the image measure µθ−1. Set φ(z)(n) = z(n + 1) for z ∈ RN and n ∈ N. Show that φ is
inverse-measure-preserving for λ, and apply 372J.)

(i) Show that the continued fraction coefficients of
1√
2

are 1, 2, 2, 2, . . . .

>>>(j) For x ∈ X = [0, 1] \ Q let k1(x), k2(x), . . . be its continued-fraction coefficients. Show that x 7→
〈kn+1(x) − 1〉n∈N is a bijection between X and NN which is a homeomorphism if X is given its usual
topology (as a subset of R) and NN is given its usual product topology (each copy of N being given its
discrete topology).

(k) Set x = 1
2 (
√

5 − 1). Show that, in the notation of 372L, kn(x) = 1 and qn(x) = pn−1(x) for every
n ≥ 1 and that 〈pn(x)〉n∈N is the Fibonacci sequence.

(l) For any irrational x ∈ [0, 1] let k1(x), k2(x), . . . be its continued-fraction coefficients and pn(x), qn(x)
the numerators and denominators of its continued-fraction approximations, as described in 372L. Write
rn(x) = pn(x)/qn(x). (i) Show that x lies between rn(x) and rn+1(x) for every n ∈ N. (ii) Show that
rn+1(x) − rn(x) = (−1)n/qn(x)qn+1(x) for every n ∈ N. (iii) Show that |x − rn(x)| ≤ 1/qn(x)2kn+1(x) for
every n ≥ 1. (iv) Hence show that for almost every γ ∈ R, the set {(p, q) : p ∈ Z, q ≥ 1, |γ − p

q | ≤ ǫ/q2} is

infinite for every ǫ > 0. (v) Show that if n ≥ 1, p, q ∈ N and 0 < q ≤ qn(x), then |x− p
q | ≥ |x− rn(x)|, with

equality only when p = pn(x) and q = qn(x).

(m) In 372M, let T1 be the family {E : for every n ∈ N there is a measurable set F ⊆ X such that
φ−n[F ] = E}. Show that every member of T1 is either negligible or conegligible. (Hint : the argument of
part (c) of the proof of 372M still works.) Hence show that φ is mixing for the measure ν.

(n) Let (A, µ̄) be an atomless probability algebra. Show that the following are equiveridical: (i) A is
homogeneous; (ii) there is an ergodic measure-preserving Boolean homomorphism π : A → A; (iii) there is
a mixing measure-preserving automorphism π : A→ A. (Hint : 333P.)
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20 Linear operators between function spaces 372Xo

(o) Let (A, µ̄) be a probability algebra, and π : A → A a measure-preserving Boolean homomorphism.
(i) Show that if n ≥ 1 then π is mixing iff πn is mixing. (ii) Show that if n ≥ 1 then π is weakly mixing iff
πn is weakly mixing. (iii) Show that if n ≥ 1 and πn is ergodic then π is ergodic. (iv) Show that if π is an
automorphism then it is ergodic, or mixing, or weakly mixing, iff π−1 is.

>>>(p) Consider the tent map φα(x) = αmin(x, 1− x) for x ∈ [0, 1], α ∈ [0, 2]. Show that φ2 is inverse-
measure-preserving and mixing for Lebesgue measure on [0, 1]. (Hint : show that φn+1

2 (x) = φ2(<2nx>) for
n ≥ 1, and hence that µ(I ∩ φ−n

2 [J ]) = µI · µJ whenever I is of the form [2−nk, 2−n(k + 1)] and J is an
interval.)

(q) Consider the logistic map ψβ(x) = βx(1 − x) for x ∈ [0, 1], β ∈ [0, 4]. Show that ψ4 is inverse-

measure-preserving and mixing for the Radon measure on [0, 1] with density function t 7→ 1

π
√

t(1−t)
. (Hint :

show that the transformation t 7→ sin2 πt
2 matches it with the tent map.) Show that for almost every x,

limn→∞
1

n+1
#({i : i ≤ n, ψi

4(x) ≤ α}) =
2

π
arcsin

√
α

for every α ∈ [0, 1].

(r) Let µ be Lebesgue measure on [0, 1[, and fix an irrational number α ∈ [0, 1[. (i) Set φ(x) = x +1 α
for every x ∈ [0, 1[, where x+1 α is whichever of x+ α, x+ α− 1 belongs to [0, 1[. Show that φ is inverse-
measure-preserving. (ii) Show that if I ⊆ [0, 1[ is an interval then limn→∞

1
n+1

∑n
i=0 χI(φi(x)) = µI for

almost every x ∈ [0, 1[. (Hint : this is Weyl’s Equidistribution Theorem (281N).) (iii) Show that φ is ergodic.
(Hint : take the conditional expectation operator P of 372G, and look at P (χI•) for intervals I.) (iv) Show
that φn is ergodic for any n ∈ Z \ {0}. (v) Show that φ is not weakly mixing.

(s) Let p, q ∈ [1,∞] be such that 1
p + 1

q = 1. (i) Let (A, µ̄) be a probability algebra, π : A→ A a mixing

measure-preserving homomorphism, and T : L0(A)→ L0(A) the corresponding homomorphism. Show that
limn→∞

∫
Tnu× v =

∫
u
∫
v whenever u ∈ Lp(A, µ̄) and v ∈ Lq(A, µ̄). (Hint : start with u, v ∈ S(A).) (ii)

Let (X,Σ, µ) be a probability space and φ : X → X a mixing inverse-measure-preserving function. Show
that limn→∞

∫
f(φn(x))g(x)dx =

∫
f
∫
g whenever f ∈ L

p(µ) and g ∈ L
q(µ).

(t) Give [0, 1[ Lebesgue measure µ, and let k ≥ 2 be an integer. Define φ : [0, 1[ → [0, 1[ by setting
φ(x) = <kx>, the fractional part of kx. Show that φ is inverse-measure-preserving. Show that φ is mixing.
(Hint : if I = [k−ni, k−n(i+ 1)[, J = [k−nj, k−n(j + 1)[ then µ(I ∩ φ−m[J ]) = µI · µJ for all m ≥ n.)

(u) Let (X,Σ, µ) be a probability space and φ : X → X an ergodic inverse-measure-preserving function.
Let f be a µ-virtually measurable function defined almost everywhere in X such that

∫
fdµ = ∞. Show

that limn→∞
1

n+1

∑n
i=0 fφ

i is infinite a.e. (Hint : look at the corresponding limits for fm = f ∧mχX.)

(v) For irrational x ∈ [0, 1], write k1(x), k2(x), . . . for the continued-fraction coefficients of x. Show that
the limit limn→∞

1
n

∑n
i=1 ki(x) is infinite for almost every x. (Hint : take φ, ν as in 372M, and show that∫

k1dν =∞.)

(w) Let (X,Σ, µ) be any probability space, and let λ be the product measure on XN. Define φ : XN → XN

by setting φ(x)(n) = x(n+1). Show that φ is inverse-measure-preserving. Show that φ satisfies the conditions
of 372S, so is mixing.

(x) Let (X,Σ, µ) be any probability space, and λ the product measure on XZ. Define φ : XZ → XZ by
setting φ(x)(n) = x(n+ 1). Show that φ is inverse-measure-preserving. Show that φ is mixing. (Hint : show
that if C, C ′ are basic cylinder sets then µ(C ∩ φ−n[C ′]) = µC · µC ′ for all n large enough.) Show that φ
does not ordinarily satisfy the conditions of 372S. (Compare 333P.)

(y)(i) Let A be a Boolean algebra, π : A→ A a Boolean homomorphism, and φ : A→ A an automorphism.
Show that if π is ergodic then φπφ−1 is ergodic. (ii) Let (A, µ̄) be a probability algebra, π : A→ A a measure-
preserving Boolean homomorphism, and φ : A → A a measure-preserving Boolean automorphism. Show
that if π is mixing, or weakly mixing, then so is φπφ−1.
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372Y Further exercises (a) In 372D, show that the null space of the limit operator P is precisely the
closure in M1,0 of the subspace {Tu− u : u ∈M1,0}.

(b) Let (A, µ̄) be a measure algebra, T ∈ T (0)
µ̄,µ̄ , p ∈ ]1,∞[ and u ∈ Lp(A, µ̄). Set u∗ = supn∈N

1
n+1

∑n
i=0 |T iu|.

(i) Show that for any γ > 0,

µ̄[[u∗ > γ]] ≤ 2

γ

∫
[[|u|>γ/2]]

|u|.

(Hint : apply 372C to (|u|− 1
2γχ1)+.) (ii) Show that ‖u∗‖p ≤ 2(

p

p−1
)1/p‖u‖p. (Hint : show that

∫
[[|u|>α]]

|u| =
αµ̄[[|u| > α]] +

∫∞

α
µ̄[[|u| > β]]dβ; see 365A. Use 366Xa to show that

‖u∗‖pp ≤ 2p
∫∞

0
γp−2

∫∞

γ/2
µ̄[[|u| > β]]dβdγ + 2p‖u‖pp,

and reverse the order of integration. Compare 275Yd.) (This is Wiener’s Dominated Ergodic Theo-
rem.)

(c) Let (A, µ̄) be a probability algebra and T an operator in T (0)
µ̄,µ̄ . Take u ∈ L1 = L1(A, µ̄) such that

h(|u|) ∈ L1, where h(t) = t ln t for t ≥ 1, 0 for t ≤ 1, and h̄ is the corresponding function from L0(A) to
itself. Set u∗ = supn∈N

1
n+1

∑n
i=0 |T iu|. Show that u∗ ∈ L1. (Hint : use the method of 372Yb to show that∫∞

2
µ̄[[u∗ > γ]]dγ ≤ 2

∫
h̄(u).)

(d) Let U be a Banach space, (A, µ̄) a semi-finite measure algebra and 〈Tn〉n∈N a sequence of continuous
linear operators from U to L0 = L0(A) with its topology of convergence in measure. Suppose that supn∈N Tnu
is defined in L0 for every u ∈ U . Show that {u : u ∈ U , 〈Tnu〉n∈N is order*-convergent in L0} is a norm-closed
linear subspace of U .

(e) In 372G, suppose that A is atomless. Show that there is always an a ∈ A such that µ̄a ≤ 1
2 and

infi≤n π
ia 6= 0 for every n, so that (except in trivial cases) 〈An(χa)〉n∈N will not be ‖ ‖∞-convergent.

(f) Let (X,Σ, µ) be a measure space with measure algebra (A, µ̄). Let Φ be a family of inverse-measure-
preserving functions from X to itself, and for φ ∈ Φ let πφ : A → A be the associated homomorphism. Set
C = {c : c ∈ A, πφc = c for every φ ∈ Φ}, T = {E : E ∈ Σ, φ−1[E]△E is negligible for every φ ∈ Φ} and
T0 = {E : E ∈ Σ, φ−1[E] = E for every φ ∈ Φ}. Show that (i) T and T0 are σ-subalgebras of Σ (ii) T0 ⊆ T
(iii) T = {E : E ∈ Σ, E• ∈ C} (iv) if Φ is countable and φψ = ψφ for all φ, ψ ∈ Φ, then C = {E• : E ∈ T0}.

(g) Show that an irrational x ∈ ]0, 1[ has an eventually periodic sequence of continued fraction coefficients
iff it is a solution of a quadratic equation with integral coefficients.

(h) In the language of 372L-372N and 372Xl, show the following. (i) For any x ∈ X and n ≥ 2,
qn(x)qn−1(x) ≥ 2n−1 and pn(x)pn+1(x) ≥ 2n−1, so that qn+1(x)pn(x) ≥ 2n−1, |1 − x/rn(x)| ≤ 2−n+1 and
| lnx− ln rn(x)| ≤ 2−n+2. Also |x−rn(x)| ≥ 1/qn(x)qn+2(x). (ii) For any x ∈ X, n ≥ 1, pn+1(x) = qn(φ(x))

and qn(x)
∏n−1

i=0 rn−i(φ
i(x)) = 1. (iii) For any x ∈ X, n ≥ 1, | ln qn(x) +

∑n−1
i=0 lnφi(x)| ≤ 4. (iv) For almost

every x ∈ X,

limn→∞
1

n
ln qn(x) = − 1

ln 2

∫ 1

0

ln t

1+t
dt =

π2

12 ln 2
.

(Hint : 225Xg, 282Xo.) (v) For almost every x ∈ X, limn→∞
1
n ln |x− rn(x)| = − π2

6 ln 2
. (vi) For almost every

x ∈ X, 11−n ≤ |x− rn(x)| ≤ 10−n and 3n ≤ qn(x) ≤ 4n for all but finitely many n.

(i)(i) Let (X,Σ, µ) and (Y,T, ν) be probability spaces, with c.l.d. product (X × Y,Λ, λ). Suppose that
φ : X → X is a weakly mixing inverse-measure-preserving function and ψ : Y → Y is an ergodic inverse-
measure-preserving function. Define θ : X × Y → X × Y by setting θ(x, y) = (φ(x), ψ(y)) for all x, y. Show
that θ is an ergodic inverse-measure-preserving function. (ii) Let (A, µ̄) and (B, ν̄) be probability algebras,
with probability algebra free product (C, λ̄). Suppose that φ : A→ A is a weakly mixing measure-preserving
Boolean homomorphism and ψ : B → B is an ergodic measure-preserving Boolean homomorphism. Let
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θ : C→ C be the measure-preserving Boolean homomorphism such that θ(a⊗ b) = φa⊗ψb for all a ∈ A and
b ∈ B (325Xe). (α) Show that θ is ergodic. (β) Show that if ψ is weakly mixing then θ is weakly mixing.
(γ) Show that if φ and ψ are mixing then θ is mixing.

(j) Let 〈(Xi,Σi, µi)〉i∈I be any family of probability spaces, with product (X,Λ, λ). Suppose that for
each i ∈ I we are given an inverse-measure-preserving function φi : Xi → Xi. (i) Show that there is
a corresponding inverse-measure-preserving function φ : X → X given by setting φ(x)(i) = φi(x(i)) for
x ∈ X, i ∈ I. (ii) Show that if every φi is mixing so is φ. (iii) Show that if every φi is weakly mixing so is φ.

(k) Give an example of an ergodic measure-preserving automorphism φ : [0, 1[ → [0, 1[ such that φ2 is
not ergodic. (Hint : set φ(x) = 1

2 (1 + φ0(2x)) for x < 1
2 , x− 1

2 for x ≥ 1
2 . See also 388Xg.)

(l) Show that there is an ergodic φ : [0, 1] → [0, 1] such that (ξ1, ξ2) 7→ (φ(ξ1), φ(ξ2)) : [0, 1]2 → [0, 1]2 is
not ergodic. (Hint : 372Xr.)

(m) Let M be an r × r matrix with integer coefficients and non-zero determinant, where r ≥ 1. Let
φ : [0, 1[

r → [0, 1[
r

be the function such that φ(x) −Mx ∈ Zr for every x ∈ [0, 1[
r
. Show that φ is inverse-

measure-preserving for Lebesgue measure on [0, 1[
r
.

(n)(i) Let (A, µ̄) be a probability algebra, π : A → A a weakly mixing measure-preserving Boolean
homomorphism, and T = Tπ : L1

µ̄ → L1
µ̄ the corresponding linear operator (365N). Show that if u ∈ L1

µ̄ is
such that {Tnu : n ∈ N} is relatively compact for the norm topology, then u = αχ1 for some α. (ii) Let
µ be Lebesgue measure on [0, 1[, (A, µ̄) its measure algebra, α ∈ [0, 1[ an irrational number, φ(x) = x+1 α
for x ∈ [0, 1[ (as in 372Xr), and T : L1(µ) → L1(µ) the linear operator defined by setting Tg• = (gφ)• for
g ∈ L

1(µ). Show that {Tn : n ∈ Z} is relatively compact for the strong operator topology on B(L1(µ);L1(µ)).

(o) In 372M, show that for any measurable set E ⊆ X, limn→∞ µLφ
−n[E] = νE. (Hint : recall that φ is

mixing for ν (372Xm). Hence show that limn→∞

∫
φ−n[E]

g dν = νE ·
∫
g dν for any integrable g. Apply this

to a Radon-Nikodým derivative of µL with respect to ν.) (I understand that this result is due to Gauss.)

(p) (i) Show that there are a Boolean algebra A and an automorphism π : A→ A which is not ergodic,
but has fixed-point algebra {0, 1}. (ii) Show that there are a σ-finite measure algebra (A, µ̄) and a measure-
preserving Boolean homomorphism π : A→ A which is not ergodic, but has fixed-point algebra {0, 1}.

(q) For a Boolean algebra A and a Boolean homomorphism π : A → A, write Tπ for the corresponding
operator from L∞(A) to itself, as defined in 363F. (i) Suppose that A is a Boolean algebra, π : A → A is
a Boolean homomorphism, u ∈ L∞(A) and Tπu = u. Show that if either π is ergodic or A is Dedekind
σ-complete and the fixed-point subalgebra of π is {0, 1}, then u must be a multiple of χ1. (ii) Find a Boolean
algebra A, an automorphism π : A→ A with fixed-point algebra {0, 1}, and a u ∈ L∞(A), not a multiple of
χ1, such that Tπu = u.

(r) Set Fd = {I : I ⊆ N, limn→∞
1

n
#(I ∩ n) = 1}. (i) Show that Fd is a filter on N. (ii) Show

that for a bounded sequence 〈αn〉n∈N in R, the following are equiveridical: (α) limn→Fd
αn = 0; (β)

limn→∞
1

n+1

∑n
k=0 |αk| = 0; (γ) limn→∞

1

n+1

∑n
k=0 α

2
k = 0. (Fd is called the (asymptotic) density

filter.)

(s) Let (A, µ̄) be a probability algebra, and φ : A→ A a measure-preserving Boolean homomorphism. (i)
Show that there are a probability algebra (C, λ̄), a measure-preserving Boolean homomorphism π : A→ C,

and a measure-preserving automorphism φ̃ : C→ C such that φ̃π = πφ and C is the closure of
⋃

n∈N φ̃
−n[π[A]]

for the measure-algebra topology. (Hint : 328J.) (ii) Show that φ̃ is ergodic, or mixing, or weakly mixing iff
φ is.
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372 Notes and comments I have chosen an entirely conventional route to the Ergodic Theorem here,
through the Mean Ergodic Theorem (372Xa) or, rather, the fundamental lemma underlying it (372A), and
the Maximal Ergodic Theorem (372B-372C). What is not to be found in every presentation is the generality
here. I speak of arbitrary T ∈ T (0), the operators which are contractions both for ‖ ‖1 and for ‖ ‖∞, not
requiring T to be positive, let alone correspond to a measure-preserving homomorphism. (I do not mention
T (0) in the statement of 372C, but of course it is present in spirit.) The work we have done up to this
point puts this extra generality within easy reach, but as the rest of the section shows, it is not needed
for the principal examples. Only in 372Xc do I offer an application not associated in the usual way with a
measure-preserving homomorphism or an inverse-measure-preserving function.

The Ergodic Theorem is an ‘almost-everywhere pointwise convergence theorem’, like the strong law(s)
of large numbers and the martingale theorem(s) (§273, §275). Indeed Kolmogorov’s form of the strong law
can be derived from the Ergodic Theorem (372Xg). There are some very strong family resemblances. For
instance, the Maximal Ergodic Theorem corresponds to the most basic of all the martingale inequalities
(275D). Consequently we have similar results, obtained by similar methods, concerning the domination of
sequences starting from members of Lp (372Yb, 275Yd), though the inequalities are not identical. (Com-
pare also 372Yc with 275Ye.) There are some tantalising reflections of these traits in results surrounding
Carleson’s theorem on the pointwise convergence of square-integrable Fourier series (see §286 notes), but
Carleson’s theorem seems to be much harder than the others. Other forms of the strong law (273D, 273H)
do not appear to fit into quite the same pattern, but I note that here, as with the Ergodic Theorem, we
begin with a study of square-integrable functions (see part (e) of the proof of 372D).

After 372D, there is a contraction and concentration in the scope of the results, starting with a simple
replacement of M1,0 with L1 (372F). Of course it is almost as easy to prove 372D from 372F as the other
way about; I give precedence to 372D only because M1,0 is the space naturally associated with the class
T (0) of operators to which these methods apply. Following this I turn to the special family of operators to
which the rest of the section is devoted, those associated with measure-preserving homomorphisms (372E),
generally on probability spaces (372G). This is the point at which we can begin to identify the limit as a
conditional expectation as well as an invariant element.

Next comes the translation into the language of measure spaces and inverse-measure-preserving functions,
all perfectly straightforward in view of 372I. These turn 372E into 372H and 372G into the main part of
372J.

In 372J-372K I find myself writing at some length about a technical problem. The root of the difficulty
is in the definition of ‘conditional expectation’. Now it is generally accepted that any pure mathematician
has ‘Humpty Dumpty’s privilege’: ‘When I use a word, it means just what I choose it to mean – neither
more nor less’. With any privilege come duties and responsibilities; here, the duty to be self-consistent,
and the responsibility to try to use terms in ways which will not mystify or mislead the unprepared reader.
Having written down a definition of ‘conditional expectation’ in Volume 2, I must either stick to it, or go
back and change it, or very carefully explain exactly what modification I wish to make here. I don’t wish
to suggest that absolute consistency – in terminology or anything else – is supreme among mathematical
virtues. Surely it is better to give local meanings to words, or tolerate ambiguities, than to suppress ideas
which cannot be formulated effectively otherwise, and among ‘ideas’ I wish to include the analogies and
resonances which a suitable language can suggest. But I do say that it is always best to be conscious of
what one is doing – I go farther: one of the things which mathematics is for, is to raise our consciousness of
what our thoughts really are. So I believe it is right to pause occasionally over such questions.

In 372L-372N (see also 372Xl, 372Xv, 372Xm, 372Xk, 372Yh, 372Yo) I make an excursion into number
theory. This is a remarkable example of the power of advanced measure theory to give striking results
in other branches of mathematics. Everything here is derived from Billingsley 65, who goes farther
than I have space for, and gives references to more. Here let me point to 372Xj; almost accidentally, the
construction offers a useful formula for a homeomorphism between two of the most important spaces of
descriptive set theory, which will be important to us in Volume 4.

I end the section by introducing three terms, ‘ergodic’, ‘mixing’ and ‘weakly mixing’ transformations,
not because I wish to use them for any new ideas (apart from the elementary 372P-372S, these must wait
for §§385-387 below and §494 in Volume 4), but because it may help if I immediately classify some of the
inverse-measure-preserving functions we have seen (372Xp-372Xr, 372Xt, 372Xw, 372Xx). Of course in any
application of any ergodic theorem it is of great importance to be able to identify the limits promised by
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the theorem, and the point about an ergodic transformation is just that our averages converge to constant
limits (372Q). Actually proving that a given inverse-measure-preserving function is ergodic is rarely quite
trivial (see 372M, 372Xq, 372Xr), though a handful of standard techniques cover a large number of cases,
and it is usually obvious when a map is not ergodic, so that if an invariant region does not leap to the eye
one has a good hope of ergodicity. The extra concept of ‘weakly mixing’ transformation is hardly relevant
to anything in this volume (though see 372Yi-372Yj), but is associated with a remarkable topological fact
about automorphism groups of probability algebras, to come in 494E.

I ought to remark on the odd shift between the definitions of ‘ergodic Boolean homomorphism’ and ‘ergodic
inverse-measure-preserving function’ in 372O. The point is that the version in 372O(b-i) is the standard
formulation in this context, but that its natural translation into the version ‘a Boolean homomorphism from
a probability algebra to itself is ergodic if its fixed-point subalgebra is trivial’, although perfectly satisfactory
in that context, allows unwelcome phenomena if applied to general Boolean algebras (372Yp, 372Yq). The
definition in 372O(a-i) is rather closer to the essential idea of ergodicity of a dynamical system, which asks
that the system should always evolve along a path which approximates all possible states. In practice,
however, we shall nearly always be dealing with automorphisms of Dedekind σ-complete algebras, for which
we can use the fixed-point criterion of 372Pc.

I take the opportunity to mention two famous functions from [0, 1] to itself, the ‘tent’ and ‘logistic’ maps
(372Xp, 372Xq). In the formulae φα, ψβ I include redundant parameters; this is because the real importance
of these functions lies in the way their behaviour depends, in bewildering complexity, on these parameters. It
is only at the extreme values α = 2, β = 4 that the methods of this volume can tell us anything interesting.

Version of 25.5.16

373 Decreasing rearrangements

I take a section to discuss operators in the class T (0) of 371F-371H and two associated classes T , T ×

(373A). These turn out to be intimately related to the idea of ‘decreasing rearrangement’ (373C). In 373D-
373F I give elementary properties of decreasing rearrangements; then in 373G-373O I show how they may
be used to characterize the set {Tu : T ∈ T } for a given u. The argument uses a natural topology on
the set T (373K). I conclude with remarks on the possible values of

∫
Tu × v for T ∈ T (373P-373Q) and

identifications between T (0)
µ̄,ν̄ , T (0)

ν̄,µ̄ and T ×
µ̄,ν̄ (373R-373T).

373A Definition Let (A, µ̄) and (B, ν̄) be measure algebras. Recall that M1,∞(A, µ̄) = L1(A, µ̄)+L∞(A)
is the set of those u ∈ L0(A) such that (|u| − αχ1)+ is integrable for some α, its norm ‖ ‖1,∞ being defined
by the formulae

‖u‖1,∞ = min{‖v‖1 + ‖w‖∞ : v ∈ L1, w ∈ L∞, v + w = u}

= min{α+

∫
(|u| − αχ1)+ : α ≥ 0}

(369Ob).

(a) Tµ̄,ν̄ will be the space of linear operators T : M1,∞(A, µ̄)→M1,∞(B, ν̄) such that ‖Tu‖1 ≤ ‖u‖1 for

every u ∈ L1(A, µ̄) and ‖Tu‖∞ ≤ ‖u‖∞ for every u ∈ L∞(A). (Compare the definition of T (0) in 371F.)

(b) If B is Dedekind complete, so that M1,∞(A, µ̄), being a solid linear subspace of the Dedekind complete
space L0(B), is Dedekind complete, T ×

µ̄,ν̄ will be Tµ̄,ν̄ ∩ L
×(M1,∞(A, µ̄);M1,∞(A, µ̄)).

c© 1996 D. H. Fremlin
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373B Proposition Let (A, µ̄) and (B, ν̄) be measure algebras.
(a) T = Tµ̄,ν̄ is a convex subset of the unit ball of B(M1,∞(A, µ̄);M1,∞(B, ν̄)).

(b) If T ∈ T then T ↾M1,0(A, µ̄) belongs to T (0)
µ̄,ν̄ . So if T ∈ T , p ∈ [1,∞[ and u ∈ Lp(A, µ̄) then

Tu ∈ Lp(B, ν̄) and ‖Tu‖p ≤ ‖u‖p.
(c) If B is Dedekind complete, then T is a solid subset of L∼(M1,∞(A, µ̄);M1,∞(B, ν̄)).
(d) If π : A→ B is a measure-preserving Boolean homomorphism, then we have a corresponding operator

T ∈ T defined by saying that T (χa) = χ(πa) for every a ∈ A. If π is order-continuous, then so is T .
(e) If (C, λ̄) is another measure algebra, T ∈ T and S ∈ Tν̄,λ̄ then ST ∈ Tµ̄,λ̄.

proof (a) As 371G, parts (a-i) and (a-ii) of the proof.

(b) If u ∈M1,0
µ̄ and ǫ > 0, then u is expressible as u′ + u′′ where ‖u′′‖∞ ≤ ǫ and u′ ∈ L1

µ̄. (Set

u′′ = (u+ ∧ ǫχ1)− (u− ∧ ǫχ1).)

So

(|Tu| − ǫχ1)+ ≤ (|Tu| − |Tu′′|)+ ≤ ||Tu| − |Tu′′|| ≤ |Tu− Tu′′| = |Tu′| ∈ L1
ν̄ .

As ǫ is arbitrary, Tu ∈M1,0
ν̄ ; as u is arbitrary, T ↾M1,0

µ̄ ∈ T (0). Now the rest is a consequence of 371Gd.

(c)(i) Because M1,∞
ν̄ is a solid linear subspace of L0(B), which is Dedekind complete because B is,

L
∼(M1,∞

µ̄ ;M1,∞
ν̄ ) is a Riesz space (355Ea).

(ii) T ⊆ L
∼(M1,∞

µ̄ ;M1,∞
ν̄ ). PPP Suppose that T ∈ T . Take any u ≥ 0 in M1,∞

µ̄ . Let α ≥ 0 be such that

(u − αχ1)+ ∈ L1
µ̄. Because T ↾L1

µ̄ belongs to B(L1
µ̄;L1

ν̄) = L
∼(L1

µ̄;L1
ν̄) (371D), w0 = sup{Tv : v ∈ L1

µ̄, 0 ≤
v ≤ (u− αχ1)+} is defined in L1

ν̄ . Now if v ∈M1,∞
µ̄ and 0 ≤ v ≤ u, we must have

Tv = T (v − αχ1)+ + T (v ∧ αχ1) ≤ w0 + αχ1 ∈M1,∞
ν̄ .

Thus {Tv : 0 ≤ v ≤ u} is bounded above in M1,∞
ν̄ . As u is arbitrary, T ∈ L

∼(M1,∞
µ̄ ;M1,∞

ν̄ ) (355Ba). QQQ

(iii) T is solid in L
∼(M1,∞

µ̄ ;M1,∞
ν̄ ). PPP Suppose that T ∈ T , T1L

∼(M1,∞
µ̄ ;M1,∞

ν̄ ) and |T1| ≤ |T |. Then

‖T1u‖1 ≤ ‖|T1||u|‖1
(355Eb)

≤ ‖|T ||u|‖1 ≤ ‖|T |↾L1
µ̄‖‖|u|‖1 = ‖T ↾L1

µ̄‖‖u‖1
(371D)

≤ ‖u‖1

for every u ∈ L1
µ̄. At the same time, if u ∈ L∞(A), then

|T1u| ≤ |T1||u| ≤ |T ||u| = sup
|v|≤|u|

Tv

≤ sup
|v|≤|u|

‖Tv‖∞χ1 ≤ sup
|v|≤|u|

‖v‖∞χ1 = ‖u‖∞χ1,

so ‖T1u‖∞ ≤ ‖u‖∞. Thus T1 ∈ T . By 352Ja, this is enough to show that T is solid. QQQ

(d) By 365N and 363F, we have norm-preserving positive linear operators T1 : L1
µ̄ → L1

ν̄ and T∞ :
L∞(A)→ L∞(B) defined by saying that T1(χa) = χ(πa) whenever µ̄a <∞ and T∞(χa) = χ(πa) for every
a ∈ A. If u ∈ S(Af ) = L1

µ̄ ∩ S(A) (365F), then T1u = T∞u, because both T1 and T∞ are linear and they

agree on {χa : µ̄a < ∞}. If u ≥ 0 in M∞,1
µ̄ = L1

µ̄ ∩ L∞(A), there is a non-decreasing sequence 〈un〉n∈N in

S(Af ) such that u = supn∈N un and

limn→∞ ‖u− un‖1 = limn→∞ ‖u− un‖∞ = 0

(see the proof of 369Od), so that

T1u = supn∈N T1un = supn∈N T∞un = T∞u.
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Accordingly T1 and T∞ agree on L1
µ̄∩L∞(A). But this means that if u ∈M1,∞

µ̄ is expressed as v+w = v′+w′,

where v, v′ ∈ L1
µ̄ and w, w′ ∈ L∞(A), we shall have

T1v
′ + T∞w

′ = T1v + T∞w + T1(v′ − v)− T∞(w − w′) = T1v + T∞w,

because v′ − v = w − w′ ∈M∞,1
µ̄ . Accordingly we have an operator T : M1,∞

µ̄ →M1,∞
ν̄ defined by setting

T (v + w) = T1v + T∞w whenever v ∈ L1
µ̄, w ∈ L∞(A).

This formula makes it easy to check that T is linear and positive, and it clearly belongs to T .
To see that T is uniquely defined, observe that T ↾L1

µ̄ and T ↾L∞(A) are uniquely defined by the values T

takes on S(Af ), S(A) respectively, because these spaces are dense for the appropriate norms.
Now suppose that π is order-continuous. Then T1 and T∞ are also order-continuous (365Na, 363Ff). If

A ⊆ M1,∞
µ̄ is non-empty and downwards-directed and has infimum 0, take u0 ∈ A and γ > 0 such that

(u0 − γχ1)+ ∈ L1
µ̄. Set

A1 = {(u− γχ1)+ : u ∈ A, u ≤ u0}, A∞ = {u ∧ γχ1 : u ∈ A}.
Then A1 ⊆ L1

µ̄ and A∞ ⊆ L∞(A) are both downwards-directed and have infimum 0, so inf T1[A1] =

inf T∞[A∞] = 0 in L0(B). But this means that inf(T1[A1] + T∞[A∞]) = 0 (351Dc). Now any w ∈
T1[A1] + T∞[A∞] is expressible as T (u − γχ1)+ + T (u′ ∧ γχ1) where u, u′ ∈ A; because A is downwards-
directed, there is a v ∈ A such that v ≤ u ∧ u′, in which case Tv ≤ w. Accordingly T [A] must also have
infimum 0. As A is arbitrary, T is order-continuous.

(e) is obvious, as usual.

373C Decreasing rearrangements The following concept is fundamental to any understanding of the
class T . Let (A, µ̄) be a measure algebra. Write M0,∞

µ̄ = M0,∞(A, µ̄) for the set of those u ∈ L0(A) such
that µ̄[[|u| > α]] is finite for some α ∈ R. (See 369N for the ideology of this notation.) It is easy to see that
M0,∞(A, µ̄) is a solid linear subspace of L0(A). Let (AL, µ̄L) be the measure algebra of Lebesgue measure

on [0,∞[. For u ∈M0,∞(A, µ̄) its decreasing rearrangement is u∗ ∈M0,∞
µ̄L

= M0,∞(AL, µ̄L), defined by
setting u∗ = g•, where

g(t) = min{α : α ≥ 0, µ̄[[|u| > α]] ≤ t}
for every t > 0. (The infimum is always finite because infα∈R µ̄[[|u| > α]] = 0, by 364Aa(β) and 321F, and
by 364Aa(α) the infimum is attained.)

I will maintain this usage of the symbols AL, µ̄L, u∗ for the rest of this section.

373D Lemma Let (A, µ̄) be a measure algebra.
(a) For any u ∈M0,∞(A, µ̄), its decreasing rearrangement u∗ may be defined by the formula

[[u∗ > α]] = [0, µ̄[[|u| > α]][
•

for every α ≥ 0,

that is,

µ̄L[[u∗ > α]] = µ̄[[|u| > α]] for every α ≥ 0.

(b) If |u| ≤ |v| in M0,∞(A, µ̄), then u∗ ≤ v∗; in particular, |u|∗ = u∗.
(c)(i) If u =

∑n
i=0 αiχai, where a0 ⊇ a1 ⊇ . . . ⊇ an and αi ≥ 0 for each i, then u∗ =

∑n
i=0 αiχ [0, µ̄ai[

•
.

(ii) If u =
∑n

i=0 αiχai where a0, . . . , an are disjoint and |α0| ≥ |α1| ≥ . . . ≥ |αn|, then u∗ =∑n
i=0 |αi|χ [βi, βi+1[

•
, where βi =

∑
j<i µ̄ai for i ≤ n+ 1.

(d) If E ⊆ ]0,∞[ is any Borel set, and u ∈M0(A, µ̄), then µ̄L[[u∗ ∈ E]] = µ̄[[|u| ∈ E]].
(e) Let h : [0,∞[ → [0,∞[ be a non-decreasing function such that h(0) = 0, and write h̄ for the

corresponding functions on L0(A)+ and L0(AL)+ (364H). Then (h̄(u))∗ = h̄(u∗) whenever u ≥ 0 in M0(A, µ̄).
If h is continuous on the left, (h̄(u))∗ = h̄(u∗) whenever u ≥ 0 in M0,∞(A, µ̄).

(f) If u ∈M0,∞(A, µ̄) and α ≥ 0, then

(u∗ − αχ1)+ = ((|u| − αχ1)+)∗.

(g) If u ∈M0,∞(A, µ̄), then for any t > 0
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∫ t

0
u∗ = infα≥0 αt+

∫
(|u| − αχ1)+.

(h) If A ⊆ (M0,∞(A, µ̄))+ is non-empty and upwards-directed and has supremum u0 ∈M0,∞(A, µ̄), then
u∗0 = supu∈A u

∗.

proof (a) Set

g(t) = inf{α : µ̄[[|u| > α]] ≤ t}
as in 373C. If α ≥ 0,

g(t) > α ⇐⇒ µ̄[[|u| > β]] > t for some β > α ⇐⇒ µ̄[[|u| > α]] > t

(because [[|u| > α]] = supβ>α [[|u| > β]]), so

[[u∗ > α]] = {t : g(t) > α}• = [0, µ̄[[|u| > α]][
•
.

Of course this formula defines u∗.

(b) This is obvious, either from the definition in 373C or from (a) just above.

(c)(i) Setting v =
∑n

i=0 αiχ [0, µ̄ai[
•
, we have

[[v > α]] = 0 if

n∑

i=0

αi ≤ α,

= [0, µ̄aj [
•

if

j−1∑

i=0

αi ≤ α <
j∑

i=0

αi,

= [0, µ̄a0[
•

if 0 ≤ α < α0,

and in all cases is equal to [0, µ̄[[|u| > α]][
•
.

(ii) A similar argument applies. (If any aj has infinite measure, then ai is irrelevant for i > j.)

(d) Fix γ > 0 for the moment, and consider

A = {E : E ⊆ ]γ,∞[ is a Borel set, µ̄L[[u∗ ∈ E]] = µ̄[[|u| ∈ E]]},

I = {]α,∞[ : α ≥ γ}.
Then I ⊆ A (by (a)), I ∩ J ∈ I for all I, J ∈ I, E \ F ∈ A whenever E, F ∈ A and F ⊆ E (because
u ∈ M0

µ̄, so µ̄[[|u| ∈ E]] < ∞), and
⋃

n∈NEn ∈ A whenever 〈En〉n∈N is a non-decreasing sequence in A. So,
by the Monotone Class Theorem (136B), A includes the σ-algebra of subsets of ]γ,∞[ generated by I; but
this must contain E ∩ ]γ,∞[ for every Borel set E ⊆ R.

Accordingly, for any Borel set E ⊆ ]0,∞[,

µ̄L[[u∗ ∈ E]] = supn∈N µ̄L[[u∗ ∈ E ∩ ]2−n,∞[ ]] = µ̄[[|u| ∈ E]].

(e) For any α > 0, Eα = {t : h(t) > α} is a Borel subset of ]0,∞[. If u ∈M0
µ̄ then, using (d) above,

µ̄L[[h̄(u∗) > α]] = µ̄L[[u∗ ∈ Eα]] = µ̄[[u ∈ Eα]] = µ̄[[h̄(u) > α]] = µ̄L[[(h̄(u))∗ > α]].

As both (h̄(u))∗ and h̄(u∗) are equivalence classes of non-increasing functions, they must be equal.
If h is continuous on the left, then Eα = ]γ,∞[ for some γ, so we no longer need to use (d), and the

argument works for any u ∈ (M0,∞
µ̄ )+.

(f) Apply (e) with h(β) = max(0, β − α).

(g) Express u∗ as g•, where

g(s) = inf{α : µ̄[[|u| > α]] ≤ s}
for every s > 0. Because g is non-increasing, it is easy to check that, for t > 0,

∫ t

0
g = tg(t) +

∫∞

0
max(0, g(s)− g(t))ds ≤ αt+

∫∞

0
max(0, g(s)− α)ds

for every α ≥ 0; so that
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∫ t

0
u∗ = minα≥0 αt+

∫
(u∗ − αχ1)+.

Now

∫
(u∗ − αχ1)+ =

∫ ∞

0

µ̄L[[(u∗ − αχ1)+ > β]]dβ

=

∫ ∞

0

µ̄[[(|u| − αχ1)+ > β]]dβ =

∫
(|u| − αχ1)+

for every α ≥ 0, using (f) and 365A, and
∫ t

0
u∗ = minα≥0 αt+

∫
(|u| − αχ1)+.

(h)

µ̄[[u0 > α]] = µ̄(supu∈A [[u > α]]) = supu∈A µ̄[[u > α]]

for any α > 0, using 364L(a-ii) and 321D. So

[[u∗0 > α]] = [0, µ̄[[u0 > α]][
•

= supu∈A [0, µ̄[[u > α]][
•

= supu∈A [[u∗ > α]]

for every α, and u∗0 = supu∈A u
∗.

373E Theorem Let (A, µ̄) be a measure algebra. Then
∫
|u× v| ≤

∫
u∗ × v∗ for all u, v ∈M0,∞(A, µ̄).

proof (a) Consider first the case u, v ≥ 0 in S(A). Then we may express u, v as
∑m

i=0 αiχai,
∑n

j=0 βjχbj
where a0 ⊇ a1 ⊇ . . . ⊇ am, b0 ⊇ . . . ⊇ bn in A and αi, βj ≥ 0 for all i, j (361Ec). Now u∗, v∗ are given by

u∗ =
∑m

i=0 αiχ [0, µ̄ai[
•
, v∗ =

∑n
j=0 βjχ [0, µ̄bj [

•

(373Dc). So

∫
u× v =

m∑

i=0

n∑

j=0

αiβj µ̄(ai ∩ bj) ≤
m∑

i=0

n∑

j=0

αiβj min(µ̄ai, µ̄bj)

=

m∑

i=0

n∑

j=0

αiβjµL([0, µ̄ai[ ∩ [0, µ̄bj [) =

∫
u∗ × v∗.

(b) For the general case, we have non-decreasing sequences 〈un〉n∈N, 〈vn〉n∈N in S(A)+ with suprema |u|,
|v| respectively (364Jd), so that

|u× v| = |u| × |v| = supn∈N |u| × vn = supm,n∈N um × vn = supn∈N un × vn
and ∫

|u× v| =
∫

supn∈N un × vn = supn∈N

∫
un × vn ≤ supn∈N

∫
u∗n × v∗n ≤

∫
u∗ × v∗,

using 373Db.

373F Theorem Let (A, µ̄) be a measure algebra, and u any member of M0,∞(A, µ̄).
(a) For any p ∈ [1,∞], u ∈ Lp(A, µ̄) iff u∗ ∈ Lp(AL, µ̄L), and in this case ‖u‖p = ‖u∗‖p.
(b)(i) u ∈M0(A, µ̄) iff u∗ ∈M0(AL, µ̄L);

(ii) u ∈M1,∞(A, µ̄) iff u∗ ∈M1,∞(AL, µ̄L), and in this case ‖u‖1,∞ = ‖u∗‖1,∞;
(iii) u ∈M1,0(A, µ̄) iff u∗ ∈M1,0(AL, µ̄L);
(iv) u ∈M∞,1(A, µ̄) iff u∗ ∈M∞,1(AL, µ̄L), and in this case ‖u‖∞,1 = ‖u∗‖∞,1.

proof (a)(i) Consider first the case p = 1. In this case∫
|u| =

∫∞

0
µ̄[[|u| > α]]dα =

∫∞

0
µ̄L[[u∗ > α]]dα =

∫
u∗.

(ii) If 1 < p <∞, then by 373De we have (|u|p)∗ = (u∗)p, so that

‖u‖pp =
∫
|u|p =

∫
(|u|p)∗ =

∫
(u∗)p = ‖u∗‖pp
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if either ‖u‖p or ‖u∗‖p is finite. (iii) As for p =∞,

‖u‖∞ ≤ γ ⇐⇒ [[|u| > γ]] = 0 ⇐⇒ [[u∗ > γ]] = 0 ⇐⇒ ‖u∗‖∞ ≤ γ.

(b)(i)

u ∈M0
µ̄ ⇐⇒ µ̄[[|u| > α]] <∞ for every α > 0

⇐⇒ µ̄L[[u∗ > α]] <∞ for every α > 0 ⇐⇒ u∗ ∈M0
µ̄L
.

(ii) For any α ≥ 0, ∫
(|u| − αχ1)+ =

∫
(u∗ − αχ1)+

as in the proof of 373Dg. So ‖u‖1,∞ = ‖u∗‖1,∞ if either is finite, by the formula in 369Ob.

(iii) This follows from (i) and (ii), because M1,0 = M0 ∩M1,∞.

(iv) Allowing ∞ as a value of an integral, we have

‖u‖1,∞ = min{α+

∫
(|u| − αχ1)+ : α ≥ 0}

= min{α+

∫
(u∗ − αχ1)+ : α ≥ 0} = ‖u∗‖1,∞

by 369Ob; in particular, u ∈M1,∞
µ̄ iff u∗ ∈M1,∞

µ̄L
.

373G Lemma Let (A, µ̄) and (B, ν̄) be measure algebras. If

either u ∈M1,∞(A, µ̄) and T ∈ Tµ̄,ν̄
or u ∈M1,0(A, µ̄) and T ∈ T (0)

µ̄,ν̄ ,

then
∫ t

0
(Tu)∗ ≤

∫ t

0
u∗ for every t ≥ 0.

proof Set T1 = T ↾L1
µ̄, so that ‖T1‖ ≤ 1 in B(L1

µ̄;L1
ν̄), and |T1| is defined in B(L1

µ̄;L1
ν̄), also with norm

at most 1. If α ≥ 0, then we can express u as u1 + u2 where |u1| ≤ (|u| − αχ1)+ and |u2| ≤ αχ1. (Let
w ∈ L∞(A) be such that ‖w‖∞ ≤ 1, u = |u| × w; set u2 = w × (|u| ∧ αχ1).) So if

∫
(|u| − αχ1)+ <∞,

|Tu| ≤ |Tu1|+ |Tu2| ≤ |T1||u1|+ αχ1

and ∫
(|Tu| − αχ1)+ ≤

∫
|T1||u1| ≤

∫
|u1| ≤

∫
(|u| − αχ1)+.

The formula of 373Dg now tells us that
∫ t

0
(Tu)∗ ≤

∫ t

0
u∗ for every t.

373H Lemma Let (A, µ̄) be a measure algebra, and θ : Af → R an additive functional, where Af = {a :
µ̄a <∞}.

(a) The following are equiveridical:

(α) limt↓0 supµ̄a≤t |θa| = limt→∞
1

t
supµ̄a≤t |θa| = 0,

(β) there is some u ∈M1,0(A, µ̄) such that θa =
∫
a
u for every a ∈ Af ,

and in this case u is uniquely defined.
(b) Now suppose that (A, µ̄) is localizable. Then the following are equiveridical:

(α) limt↓0 supµ̄a≤t |θa| = 0, lim supt→∞
1

t
supµ̄a≤t |θa| <∞,

(β) there is some u ∈M1,∞(A, µ̄) such that θa =
∫
a
u for every a ∈ Af ,

and again this u is uniquely defined.

proof (a)(i) Assume (α). For a, c ∈ Af , set θc(a) = θ(a ∩ c). Then for each c ∈ Af , there is a unique
uc ∈ L1

µ̄ such that θca =
∫
a
uc for every a ∈ Af (365Eb). Because uc is unique we must have uc = ud × χc
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whenever c ⊆ d ∈ Af . Next, given α > 0, there is a t0 ≥ 0 such that |θa| ≤ αµ̄a whenever a ∈ Af and
µ̄a ≥ t0; so that µ̄[[uc > α]] ≤ t0 for every c ∈ Af , and e(α) = supc∈Af [[u+c > α]] is defined in Af . Of course

e(α) = [[u+e(1) > α]] for every α ≥ 1, so infα∈R e(α) = 0, and v1 = supc∈Af u+c is defined in L0 = L0(A)

(364L(a-ii) again). Because [[v1 > α]] = e(α) ∈ Af for each α > 0, v1 ∈M0
µ̄. For any a ∈ Af ,

v1 × χa = supc∈Af u+c × χa = u+a ,

so v1 ∈M1,0
µ̄ and

∫
a
v1 =

∫
a
u+a for every a ∈ Af .

Similarly, v2 = supc∈Af u−c is defined in M1,0
µ̄ and

∫
a
v2 =

∫
a
u−a for every a ∈ Af . So we can set

u = v1 − v2 ∈M1,0
µ̄ and get

∫
a
u =

∫
a
ua = θa

for every a ∈ Af . Thus (β) is true.

(ii) Assume (β). If ǫ > 0, there is a δ > 0 such that
∫
a
(|u| − ǫχ1)+ ≤ ǫ whenever µ̄a ≤ δ (365Ea), so

that |
∫
a
u| ≤ ǫ(1 + µ̄a) whenever µ̄a ≤ δ. As ǫ is arbitrary, limt↓0 supµ̄a≤t |

∫
a
u| = 0. Moreover, whenever

t > 0 and µ̄a ≤ t, 1
t |
∫
a
u| ≤ ǫ+ 1

t

∫
(|u| − ǫχ1)+. Thus

lim supt→∞
1
t supµ̄a≤t |

∫
a
u| ≤ ǫ.

As ǫ is arbitrary, θ satisfies the conditions in (α).

(iii) The uniqueness of u is a consequence of 366Gd.

(b) The argument for (b) uses the same ideas.

(i) Assume (α). Again, for each c ∈ Af , we have a unique uc ∈ L1
µ̄ such that θca =

∫
a
uc for every

a ∈ Af ; again, set e(α) = supc∈Af [[u+c > α]], which is still defined because A is supposed to be Dedekind
complete. This time, there are t0, γ ≥ 0 such that |θa| ≤ γµ̄a whenever a ∈ Af and µ̄a ≥ t0; so that
µ̄[[uc > γ]] ≤ t0 for every c ∈ Af , and µ̄e(γ) <∞. Accordingly

infα≥γ e(α) = infα≥γ [[u+e(γ) > α]] = 0,

and once more v1 = supc∈Af u+c is defined in L0 = L0(A). As before, v1 × χa = u+a ∈ L1
µ̄ for any a ∈ Af ,

Because [[v1 > γ]] = e(γ) ∈ Af , v1 ∈M1,∞
µ̄ . Similarly, v2 = supc∈Af u−c is defined in M1,∞

µ̄ , with v2×χa = u−a
for every a ∈ Af . So u = v1 − v2 ∈M1,∞

µ̄ , and
∫
a
u =

∫
a
ua = θa

for every a ∈ Af .

(ii) Assume (β). Take γ ≥ 0 such that β =
∫

(|u| − γχ1)+ is finite. If ǫ > 0, there is a δ > 0 such
that

∫
a
(|u| − γχ1)+ ≤ ǫ whenever µ̄a ≤ δ, so that |

∫
a
u| ≤ ǫ + γµ̄a whenever µ̄a ≤ δ. As ǫ is arbitrary,

limt↓0 supµ̄a≤t |
∫
a
u| = 0. Moreover, whenever t > 0 and µ̄a ≤ t, then 1

t |
∫
a
u| ≤ γ + 1

t

∫
(|u| − ǫχ1)+. Thus

lim supt→∞
1
t supµ̄a≤t |

∫
a
u| ≤ γ <∞,

and the function a 7→
∫
a
u satisfies the conditions in (β).

(iii) u is uniquely defined because u× χa must be ua, as defined in (i), for every a ∈ Af , and (A, µ̄) is
semi-finite.

373I Lemma Suppose that u, v, w ∈ M0,∞(AL, µ̄L) are all equivalence classes of non-negative non-

increasing functions. If
∫ t

0
u ≤

∫ t

0
v for every t ≥ 0, then

∫
u× w ≤

∫
v × w.

proof For n ∈ N, i ≤ 4n set ani = [[w > 2−ni]]; set wn =
∑4n

i=1 2−nχani. Then each ani is of the form [0, t]•,
so ∫

u× wn =
∑4n

i=1 2−n
∫
ani

u ≤∑4n

i=1 2−n
∫
ani

v =
∫
v × wn.

Also 〈wn〉n∈N is a non-decreasing sequence with supremum w, so
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∫
u× w = supn∈N

∫
u× wn ≤ supn∈N

∫
v × wn =

∫
v × w.

373J Corollary Suppose that (A, µ̄) and (B, ν̄) are measure algebras and v ∈M0,∞(B, ν̄). If

either u ∈M1,0(A, µ̄) and T ∈ T (0)
µ̄,ν̄

or u ∈M1,∞(A, µ̄) and T ∈ Tµ̄,ν̄
then

∫
|Tu× v| ≤

∫
u∗ × v∗.

proof Put 373E, 373G and 373I together.

373K The very weak operator topology Let (A, µ̄) and (B, ν̄) be two measure algebras. For u ∈
M1,∞(A, µ̄) and w ∈M∞,1(B, ν̄) set

τuw(T ) = |
∫
Tu× w| for T ∈ B = B(M1,∞(A, µ̄);M1,∞(B, ν̄)).

Then τuw is a seminorm on B. I will call the topology generated by {τuw : u ∈M1,∞(A, µ̄), w ∈M∞,1(B, ν̄)}
(2A5B) the very weak operator topology on B.

373L Theorem Let (A, µ̄) be a measure algebra and (B, ν̄) a localizable measure algebra. Then T = Tµ̄,ν̄
is compact in the very weak operator topology.

proof Let F be an ultrafilter on T . If u ∈M1,∞
µ̄ and w ∈M∞,1

ν̄ then

|
∫
Tu× w| ≤

∫
u∗ × w∗ <∞

for every T ∈ T (373J);
∫
u∗ × w∗ is finite because u∗ ∈M1,∞

µ̄L
and w∗ ∈M∞,1

µ̄L
(373F).

In particular, {
∫
Tu × w : T ∈ T } is bounded. Consequently hu(w) = limT→F

∫
Tu × w is defined in R

(2A3Se). Because w 7→
∫
Tu× w is additive for every T ∈ T , so is hu. Also

|hu(w)| ≤
∫
u∗ × w∗ ≤ ‖u∗‖1,∞‖w∗‖∞,1 = ‖u‖1,∞‖w‖∞,1

for every w ∈M∞,1
ν̄ .

|hu(χb)| ≤
∫ t

0
u∗ whenever b ∈ Bf and ν̄b ≤ t. So

limt↓0 supν̄b≤t |hu(χb)| ≤ limt↓0

∫ t

0
u∗ = 0,

lim supt→∞
1
t supν̄b≤t |hu(χb)| ≤ lim supt→∞

1
t

∫ t

0
u∗ <∞.

Of course b 7→ hu(χb) is additive, so by 373Hb there is a unique Su ∈ M1,∞
ν̄ such that hu(χb) =

∫
b
Su for

every b ∈ Bf . Since both hu and w 7→
∫
Su×w are linear and continuous on M∞,1

ν̄ , and S(Bf ) is dense in

M∞,1
ν̄ (369Od), ∫

Su× w = hu(w) = limT→F

∫
Tu× w

for every w ∈M∞,1
ν̄ . And this is true for every u ∈M1,∞

µ̄ .

For any particular w ∈ M∞,1
ν̄ , all the maps u 7→

∫
Tu × w are linear, so u 7→

∫
Su × w also is; that is,

S : M1,∞
µ̄ →M1,∞

ν̄ is linear.

Now S ∈ T . PPP (α) If u ∈ L1
µ̄ and b, c ∈ Bf , then

∫

b

Su−
∫

c

Su = lim
T→F

∫
Tu× (χb− χc) ≤ sup

T∈T

∫
Tu× (χb− χc)

≤ sup
T∈T
‖Tu‖1‖χb− χc‖∞ ≤ ‖u‖1.

But, setting e = [[Su > 0]], we have

∫
|Su| =

∫

e

Su−
∫

1\e

Su

= sup
b∈Bf ,b⊆e

∫

b

Su+ sup
c∈Bf ,c⊆1\e

∫

c

(−Su) ≤ ‖u‖1.
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(β) If u ∈ L∞(A), then

|
∫
b
Su| ≤ supT∈T |

∫
Tu× χb| ≤ supT∈T ‖Tu‖∞ν̄b ≤ ‖u‖∞ν̄b

for every b ∈ Bf . So [[Su > ‖u‖∞]] = [[−Su > ‖u‖∞]] = 0 and ‖Su‖∞ ≤ ‖u‖∞. (Note that both parts of
this argument depend on knowing that (B, ν̄) is semi-finite, so that we cannot be troubled by purely infinite
elements of B.) QQQ

Of course we now have limT→F τuw(T −S) = 0 for all u ∈M1,∞
µ̄ , w ∈M∞,1

ν̄ , so that S = limF in T . As
F is arbitrary, T is compact (2A3R).

373M Corollary Let (A, µ̄) be a measure algebra and (B, ν̄) a localizable measure algebra, and u
any member of M1,∞(A, µ̄). Then B = {Tu : T ∈ Tµ̄,ν̄} is compact in M1,∞(B, ν̄) for the topology
Ts(M

1,∞(B, ν̄),M∞,1(B, ν̄)).

proof The point is just that the map T 7→ Tu : Tµ̄,ν̄ → M1,∞
ν̄ is continuous for the very weak operator

topology on Tµ̄,ν̄ and Ts(M
1,∞
ν̄ ,M∞,1

ν̄ ). So B is a continuous image of a compact set, therefore compact
(2A3N(b-ii)).

373N Corollary Let (A, µ̄) be a measure algebra, (B, ν̄) a localizable measure algebra and u any member
of M1,∞(A, µ̄); set B = {Tu : T ∈ Tµ̄,ν̄}. If 〈vn〉n∈N is any non-decreasing sequence in B, then supn∈N vn is
defined in M1,∞(B, ν̄) and belongs to B.

proof (a) The point is that (M1,∞
ν̄ )+ is a closed set for Ts(M

1,∞
ν̄ ,M∞,1

ν̄ ). PPP If w ∈M1,∞
ν̄ and w 6≥ 0, then

b = [[−w > 0]] 6= 0. As (B, ν̄) is semi-finite, there is a non-zero c ∈ Bf with c ⊆ b, and
∫
c
(−w) > 0, that is,∫

w × χc < 0. Now χc ∈ M∞,1
ν̄ so {w′ :

∫
c
w′ < 0} is a neighbourhood of w disjoint from (M1,∞

ν̄ )+. Thus

M1,∞
ν̄ \ (M1,∞

ν̄ )+ is open and (M1,∞
ν̄ )+ is closed. QQQ

(b) Because Ts(M
1,∞
ν̄ ,M∞,1

ν̄ ) is a linear space topology, the sets {w : v ≤ w} = {w : w − v ∈ (M1,∞
ν̄ )+}

and {w : w ≤ v} = {w : v−w ∈ (M1,∞
ν̄ )+} are closed for every w ∈M1,∞

ν̄ . Now consider the given sequence
〈vn〉n∈N in B. By 373M, it has a cluster point v ∈ B. Since {w : vn ≤ w} is a closed set containing vi
whenever i ≥ n, vn ≤ v, for every n ∈ N. On the other hand, if v′ is any upper bound of {vn : n ∈ N} in

M1,∞
ν̄ then v ≤ v′ because {w : w ≤ v′}. Accordingly supn∈N vn = v is defined and belongs to B.

373O Theorem Suppose that (A, µ̄), (B, ν̄) are measure algebras, u ∈M1,∞(A, µ̄) and v ∈M1,∞(B, ν̄).
Then the following are equiveridical:

(i) there is a T ∈ Tµ̄,ν̄ such that Tu = v,

(ii)
∫ t

0
v∗ ≤

∫ t

0
u∗ for every t ≥ 0.

In particular, given u ∈M1,∞(A, µ̄), there are S ∈ Tµ̄,µ̄L
, T ∈ Tµ̄L,µ̄ such that Su = u∗ and Tu∗ = u.

proof (i)⇒(ii) is covered by Lemma 373G. Accordingly I shall devote the rest of the proof to showing that
(ii)⇒(i).

(a) If (A, µ̄), (B, ν̄) are measure algebras, u ∈ M1,∞
µ̄ and v ∈ M1,∞

ν̄ , I will say that v 4 u if there is
a T ∈ Tµ̄,ν̄ such that Tu = v, and that v ∼ u if v 4 u and u 4 v. (Properly speaking, I ought to write
(u, µ̄) 4 (v, ν̄), because we could in principle have two different measures on the same algebra. But I do not
think any confusion is likely to arise in the argument which follows.) By 373Be, 4 is transitive and ∼ is an
equivalence relation. Now we have the following facts.

(b) If (A, µ̄) is a measure algebra and u1, u2 ∈ M1,∞
µ̄ are such that |u1| ≤ |u2|, then u1 4 u2. PPP There

is a w ∈ L∞(A) such that u1 = w × u2 and ‖w‖∞ ≤ 1. Set Tv = w × v for for v ∈ M1,∞
µ̄ ; then T ∈ Tµ̄,µ̄

and Tu2 = u1. QQQ So u ∼ |u| for every u ∈M1,∞
µ̄ .

(c)(i) If (A, µ̄) is a measure algebra and u ≥ 0 in S(A), then u∗ 4 u. PPP If u = 0 this is trivial.
Otherwise, express u as

∑n
i=0 αiχai where a0, . . . , an are disjoint and non-zero and α0 > α1 . . . > αn >

0 ∈ R. If µ̄ai = ∞ for any i, take m to be minimal subject to µ̄am = ∞; otherwise, set m = n. Then

u∗ =
∑m

i=0 αiχ [βi, βi+1[
•
, where βj =

∑j−1
i=0 µ̄ai for j ≤ m+ 1.

For i < m, and for i = m if µ̄am <∞, define hi : M1,∞
µ̄ → R by setting
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hi(v) =
1

µ̄ai

∫
ai
v

for every v ∈ M1,∞
µ̄ . If µ̄am = ∞, then we need a different idea to define hm, as follows. Let I be

{a : a ∈ A, µ̄(a∩am) <∞}. Then I is an ideal of A not containing am, so there is a Boolean homomorphism
π : A→ {0, 1} such that πa = 0 for a ∈ I and πam = 1 (311D). This induces a corresponding ‖ ‖∞-continuous
linear operator h : L∞(A)→ L∞({0, 1}) ∼= R, as in 363F. Now h(χa) = 0 whenever µ̄a <∞, and accordingly

h(v) = 0 whenever v ∈M∞,1
µ̄ , since S(Af ) is dense in M∞,1

µ̄ for ‖ ‖∞,1 and therefore also for ‖ ‖∞. But this

means that h has a unique extension to a linear functional hm : M1,∞
µ̄ → R such that hm(v) = 0 for every

v ∈ L1
µ̄, while hm(χam) = 1 and |hm(v)| ≤ ‖v‖∞ for every v ∈ L∞(A).

Having defined hi for every i ≤ m, define T : M1,∞
µ̄ →M1,∞

µ̄L
by setting

Tv =
∑m

i=0 hi(v)χ [βi, βi+1[
•

for every v ∈M1,∞
µ̄ .

For any i ≤ m and v ∈ L1
µ̄,

∫ βi+1

βi
|Tv| = |hi(v)|µ̄ai ≤

∫
ai
|v|;

summing over i, ‖Tv‖1 ≤ ‖v‖1. Similarly, for any i ≤ m and v ∈ L∞(B), |hi(v)| ≤ ‖v‖∞, so ‖Tv‖∞ ≤ ‖v‖∞.

Thus T ∈ Tµ̄,µ̄L
. Since u∗ = Tu, we conclude that u∗ 4 u, as claimed. QQQ

(ii) If (A, µ̄) is a measure algebra and u ≥ 0 in M1,∞
µ̄ , then u∗ 4 u. PPP Let 〈un〉n∈N be a non-decreasing

sequence in S(A) with u0 ≥ 0 and supn∈N un = u. Then 〈u∗n〉n∈N is a non-decreasing sequence in M1,∞
µ̄L

with
supremum u∗, by 373Db and 373Dh. Also u∗n 4 un 4 u for every n, by (b) above and (i) here. By 373N,
u∗ 4 u. QQQ

(d)(i) If (A, µ̄) is a measure algebra and u ≥ 0 in S(A), then u 4 u∗. PPP The argument is very similar
to that of (c-i). Again, the result is trivial if u = 0; suppose that u > 0 and define αi, ai, m, βi as before.
This time, set a′i = ai for i < m, a′m = supm≤j≤n aj , ũ =

∑m
i=0 αiχa

′
i; then u ≤ ũ and ũ∗ = u∗. Set

hi(v) =
1

βi+1−βi

∫ βi+1

βi
v

if i ≤ m, βi+1 <∞ (that is, µ̄ai <∞) and v ∈M1,∞
µ̄L

; and if µ̄am =∞, set

hm(v) = limk→F
1

k

∫ k

0
v

for some non-principal ultrafilter F on N. As before, we have

|hi(v)|µ̄a′i ≤
∫ βi+1

βi
|v|,

whenever v ∈ L1
µ̄L

and i ≤ m, while |hi(v)| ≤ ‖v‖∞ whenever v ∈ L∞(AL) and i ≤ m. So we can define

T ∈ Tµ̄L,µ̄ by setting Tv =
∑m

i=0 hi(v)χa′i for every v ∈M1,∞
µ̄L

, and get

u 4 ũ = Tu∗ 4 u∗. QQQ

(ii) If (A, µ̄) is a measure algebra and u ≥ 0 in M1,∞
µ̄ , then u 4 u∗. PPP This time I seek to copy the

ideas of (c-ii); there is a new obstacle to circumvent, since (A, µ̄) might not be localizable. Set

α0 = inf{α : α ≥ 0, µ̄[[u > α]] <∞}, e = [[u > α0]].

Then e = supn∈N [[u > α0 + 2−n]] is a countable supremum of elements of finite measure, so the principal
ideal Ae, with its induced measure µ̄e, is σ-finite. Now let 〈un〉n∈N be a non-decreasing sequence in S(A)
with u0 ≥ 0 and supn∈N un = u; set ũ = u× χe and ũn = un × χe, regarded as members of S(Ae), for each
n. In this case

ũn 4 ũ∗n 4 u∗

for every n. Because (Ae, µ̄e) is σ-finite, therefore localizable, 373N tells us that ũ 4 u∗.

Let S ∈ Tµ̄L,µ̄e
be such that Su∗ = ũ. As in (i), choose a non-principal ultrafilter F on N and set
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h(v) = limk→F
1

k

∫ k

0
v

for v ∈M1,∞
µ̄L

. Now define T : M1,∞
µ̄L
→M1,∞

µ̄ by setting

Tv = Sv + h(v)χ(1 \ e),

here regarding Sv as a member of M1,∞
µ̄ . (I am taking it to be obvious that M1,∞

µ̄e
can be identified with

{w × χe : w ∈M1,∞
µ̄ }.) Then it is easy to see that T ∈ Tµ̄L,µ̄. Also u ≤ Tu∗, because

h(u∗) = inf{α : µ̄L[[u∗ > α]] <∞} = α0,

while u× χ(1 \ e) ≤ α0χ(1 \ e). So we get u 4 Tu∗ 4 u∗. QQQ

(e)(i) Now suppose that u, v ≥ 0 in M1,∞
µ̄L

, that
∫ t

0
u∗ ≥

∫ t

0
v∗ for every t ≥ 0, and that v is of the form∑n

i=1 αiχai where α1 > . . . > αn > 0, a1, . . . , an ∈ AL are disjoint and 0 < µ̄Lai < ∞ for each i. Then
v 4 u. PPP Induce on n. If n = 0 then v = 0 and the result is trivial. For the inductive step to n ≥ 1, if
v∗ ≤ u∗ we have

v ∼ v∗ 4 u∗ ∼ u,

using (b)-(d) above. Otherwise, look at φ(t) = 1
t

∫ t

0
u∗ for t > 0. We have

φ(t) ≥ 1

t

∫ t

0
v∗ = α1

for t ≤ β = µ̄a1, while limt→∞ φ(t) < α1, because (limt→∞ φ(t))χ1 ≤ u∗ and v∗ ≤ α1χ1 and v∗ 6≤ u∗.
Because φ is continuous, there is a γ ≥ β such that φ(γ) = α1. Define T0 ∈ Tµ̄L,µ̄L

by setting

T0w = (
1

γ

∫ γ

0
w)χ [0, γ[

•
+ (w × χ [γ,∞[

•
)

for every w ∈M1,∞
µ̄L

. Then T0u
∗ 4 u∗ ∼ u, and

T0u
∗ × χ [0, γ[

•
= (

1

γ

∫ γ

0
u∗)χ [0, γ[

•
= α1χ [0, γ[

•
.

We need to know that
∫ t

0
T0u

∗ ≥
∫ t

0
v∗ for every t; this is because

∫ t

0

T0u
∗ = α1t ≥

∫ t

0

v∗ whenever t ≤ γ,

=

∫ γ

0

T0u
∗ +

∫ t

γ

T0u
∗ =

∫ t

0

u∗ ≥
∫ t

0

v∗ whenever t ≥ γ.

Set

u1 = T0u
∗ × χ [β,∞[

•
, v1 = v∗ × χ [β,∞[

•
.

Then u∗1, v∗1 are just translations of T0u
∗, v∗ to the left, so that

∫ t

0
u∗1 =

∫ β+t

β
T0u

∗ =
∫ β+t

0
T0u

∗ − α1β ≥
∫ β+t

0
v∗ − α1β =

∫ β+t

β
v∗ =

∫ t

0
v∗1

for every t ≥ 0. Also v1 =
∑n

i=2 αiχ [βi−1, βi[
•

where βi =
∑i

j=1 µ̄aj for each j. So by the inductive
hypothesis, v1 4 u1.

Let S ∈ Tµ̄L,µ̄L
be such that Su1 = v1, and define T ∈ Tµ̄L,µ̄L

by setting

Tw = w × χ [0, β[
•

+ S(w × χ [β,∞[
•
)× χ [β,∞[

•

for every w ∈M1,∞
µ̄L,µ̄L

. Then TT0u
∗ = v∗, so v ∼ v∗ 4 u∗ ∼ u, as required. QQQ

(ii) We are nearly home. If u, v ≥ 0 in M1,∞
µ̄L

and
∫ t

0
v∗ ≤

∫ t

0
u∗ for every t ≥ 0, then v 4 u. PPP Let

〈vn〉n∈N be a non-decreasing sequence in S(Af
L)+ with supremum v. Then v∗n ≤ v∗ for each n, so (i) tells us

that vn 4 u for every n. By 373N, for the last time, v 4 u. QQQ

(f) Finally, suppose that (A, µ̄) and (B, ν̄) are arbitrary measure algebras and that u ∈M1,∞
µ̄ , v ∈M1,∞

ν̄

are such that
∫ t

0
v∗ ≤

∫ t

0
u∗ for every t ≥ 0. Then
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v ∼ |v| 4 |v|∗ = v∗

(by (b), (d) and 373Db)

4 u∗

(by (e))

= |u|∗ 4 |u|
(by (c))

∼ u

and v 4 u, as claimed

373P Theorem Let (A, µ̄) be a measure algebra and (B, ν̄) a semi-finite measure algebra. Then for any
u ∈M1,∞(A, µ̄) and v ∈M0(B, ν̄), there is a T ∈ T = Tµ̄,ν̄ such that

∫
Tu× v =

∫
u∗ × v∗.

proof (a) It is convenient to dispose immediately of some elementary questions.

(i) We need only find a T ∈ T such that
∫
|Tu × v| ≥

∫
u∗ × v∗. PPP Take v0 ∈ L∞(B) such that

|Tu× v| = v0 × Tu× v and ‖v0‖∞ ≤ 1, and set T1w = v0 × Tw for w ∈M1,∞
µ̄ ; then T1 ∈ T and

∫
T1u× v =

∫
|Tu× v| ≥

∫
u∗ × v∗ ≥

∫
T1u× v

by 373J. QQQ

(ii) Consequently it will be enough to consider v ≥ 0, since of course
∫
|Tu × v| =

∫
|Tu × |v||, while

|v|∗ = v∗.

(iii) It will be enough to consider u = u∗. PPP If we can find T ∈ Tµ̄L,ν̄ such that
∫
Tu∗×v =

∫
(u∗)∗×v∗,

then we know from 373O that there is an S ∈ Tµ̄,µ̄L
such that Su = u∗, so that TS ∈ T and∫

TSu× v =
∫

(u∗)∗ × v∗ =
∫
u∗ × v∗. QQQ

(iv) It will be enough to consider localizable (B, ν̄). PPP Assuming that v ≥ 0, following (ii) above, set
e = [[v > 0]] = supn∈N [[v > 2−n]], and let ν̄e be the restriction of ν̄ to the principal ideal Be generated by
e. Then if we write ṽ for the member of L0(Be) corresponding to v (so that [[ṽ > α]] = [[v > α]] for every
α > 0), ṽ∗ = v∗. Also (Be, ν̄e) is σ-finite, therefore localizable. Now if we can find T ∈ Tµ̄,ν̄e

such that∫
Tu× ṽ =

∫
u∗ × ṽ∗, then ST will belong to Tµ̄,ν̄ , where S : L0(Be)→ L0(B) is the canonical embedding

defined by the formula

[[Sw > α]] = [[w > α]] if α ≥ 0,

= [[w > α]] ∪ (1 \ e) if α < 0,

and ∫
STu× v =

∫
Tu× ṽ =

∫
u∗ × ṽ∗ =

∫
u∗ × v∗. QQQ

(b) So let us suppose henceforth that µ̄ = µ̄L, u = u∗ is the equivalence class of a non-increasing
non-negative function, v ≥ 0 and (B, ν̄) is localizable.

For n, i ∈ N set

bni = [[v > 2−ni]], βni = ν̄bni, cni = bni \ bn,i+1, γni = ν̄cni = βni − βn,i+1

(because βni <∞ if i > 0; this is really where I use the hypothesis that v ∈M0). For n ∈ N set

Kn = {i : i ≥ 1, γni > 0},

Tnw =
∑

i∈Kn

( 1

γni

∫ βni

βn,i+1

w
)
χcni
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for w ∈ M1,∞
µ̄L

; this is defined in L0(B) because Kn is countable and 〈cni〉i∈N is disjoint. Of course Tn :

M1,∞
µ̄L
→ L0(B) is linear. If w ∈ L∞(AL) then

‖Tnw‖∞ = supi∈Kn

∣∣ 1

γni

∫ βni

βn,i+1

w
∣∣ ≤ ‖w‖∞,

and if w ∈ L1
µ̄L

then

‖Tnw‖1 =
∑

i∈Kn

∣∣ 1

γni

∫ βni

βn,i+1

w
∣∣ν̄cni =

∑
i∈Kn

∣∣∫ βni

βn,i+1

w
∣∣ ≤ ‖w‖1;

so Tnw ∈M1,∞
ν̄ for every w ∈M1,∞

µ̄L
, and Tn ∈ T . It will be helpful to observe that

∫
cni

Tnw =
∫ βni

βn,i+1

w

whenever i ≥ 1, since if i /∈ Kn then both sides are 0.
Note next that for every n, i ∈ N,

bni = bn+1,2i, βni = βn+1,2i, cni = cn+1,2i ∪ cn+1,2i+1, γni = γn+1,2i + γn+1,2i+1,

so that, for i ≥ 1,
∫
cni

Tnu =
∫ βni

βn,i+1

u =
∫
cni

Tn+1u.

This means that if T is any cluster point of 〈Tn〉n∈N in T for the very weak operator topology (and such
a cluster point exists, by 373L),

∫
cmi

Tu must be a cluster point of 〈
∫
cmi

Tnu〉n∈N, and therefore equal to∫
cmi

Tmu, whenever m ∈ N and i ≥ 1.

Consequently, if m ∈ N,

∫
|Tu× v| ≥

∞∑

i=0

∫

cmi

|Tu| × v ≥
∞∑

i=0

2−mi

∫

cmi

|Tu|

(because cmi ⊆ [[v > 2−mi]])

≥
∞∑

i=1

2−mi|
∫

cmi

Tu| =
∞∑

i=1

2−mi

∫

cmi

Tmu

=

∞∑

i=0

2−mi

∫ βmi

βm,i+1

u ≥
∫
u× (v∗ − 2−mχ1)+

because

[βm,i+1, βmi]
• ⊆ [[v∗ ≤ 2−m(i+ 1)]] = [[(v∗ − 2−mχ1)+ ≤ 2−mi]]

for each i ∈ N. But letting m→∞, we have∫
|Tu× v| ≥ limm→∞

∫
u× (v∗ − 2−mχ1)+ =

∫
u× v∗

because 〈u × (v∗ − 2−mχ1)+〉m∈N is a non-decreasing sequence with supremum u × v∗. In view of the
reductions in (a) above, this is enough to complete the proof.

373Q Corollary Let (A, µ̄) be a measure algebra, (B, ν̄) a semi-finite measure algebra, u ∈M1,∞(A, µ̄)
and v ∈M0,∞(B, ν̄). Then∫

u∗ × v∗ = sup{
∫
|Tu× v| : T ∈ Tµ̄,ν̄} = sup{

∫
Tu× v : T ∈ Tµ̄,ν̄}.

proof There is a non-decreasing sequence 〈cn〉n∈N in Bf such that v∗ = supn∈N v
∗
n, where vn = v×χcn for

each n. PPP For each rational q > 0, we can find a countable non-empty set Bq ⊆ B such that

b ⊆ [[|v| > q]], ν̄b <∞ for every b ∈ Bq,

supb∈Bq
ν̄b = ν̄[[|v| > q]]
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(because (B, ν̄) is semi-finite). Let 〈bn〉n∈N be a sequence running over
⋃

q∈Q,q>0Bq and set cn = supi≤n bi,

vn = v × χcn for each n. Then 〈|vn|〉n∈N and 〈v∗n〉n∈N are non-decreasing and supn∈N v
∗
n ≤ v∗ in L0(AL).

But in fact supn∈N v
∗
n = v∗, because

µ̄L[[v∗ > q]] = µ̄[[|v| > q]] = supn∈N µ̄[[vn > q]] = supn∈N µ̄L[[v∗n > q]] = µ̄L[[supn∈N v
∗
n > q]]

for every rational q > 0, by 373Da. QQQ

For each n ∈ N we have a Tn ∈ Tµ̄,ν̄ such that
∫
Tnu× vn =

∫
u∗ × v∗n (373P). Set Snw = Tnw × χcn for

n ∈ N, w ∈M1,∞
µ̄ ; then every Sn belongs to Tµ̄,ν̄ , so

sup{
∫
Tu× v : T ∈ Tµ̄,ν̄} ≥ sup

n∈N

∫
Snu× v = sup

n∈N

∫
Tnu× vn

= sup
n∈N

∫
u∗ × v∗n =

∫
u∗ × v∗

≥ sup{
∫
|Tu× v| : T ∈ Tµ̄,ν̄} ≥ sup{

∫
Tu× v : T ∈ Tµ̄,ν̄}

by 373J, as usual.

373R Order-continuous operators: Proposition Let (A, µ̄) be a measure algebra, (B, ν̄) a localizable

measure algebra, and T0 ∈ T (0) = T (0)
µ̄,ν̄ . Then there is a T ∈ T × = T ×

µ̄,ν̄ extending T0. If (A, µ̄) is semi-finite,
T is uniquely defined.

proof (a) Suppose first that T0 ∈ T (0) is non-negative, regarded as a member of L∼(M1,0
µ̄ ;M1,0

ν̄ ). In this

case T0 has an extension to an order-continuous positive linear operator T : M1,∞
µ̄ → L0(B) defined by

saying that Tw = sup{T0u : u ∈M1,0
µ̄ , 0 ≤ u ≤ w} for every w ≥ 0 in M1,∞

µ̄ . PPP I use 355F. M1,0
µ̄ is a solid

linear subspace of M1,∞
µ̄ . T0 is order-continuous when its codomain is taken to be M1,0

ν̄ , as noted in 371Gb,

and therefore if its codomain is taken to be L0(B), because M1,0 is a solid linear subspace in L0, so the

embedding is order-continuous. If w ≥ 0 in M1,∞
µ̄ , let γ ≥ 0 be such that u1 = (w − γχ1)+ is integrable. If

u ∈M1,0
µ̄ and 0 ≤ u ≤ w, then (u− γχ1)+ ≤ u1, so

T0u = T0(u− γχ1)+ + T0(u ∧ γχ1) ≤ T0u1 + γχ1 ∈ L0(B).

Thus {T0u : u ∈M1,0
ν̄ , 0 ≤ u ≤ w} is bounded above in L0(B), for any w ≥ 0 in M1,∞

µ̄ . L0(B) is Dedekind

complete, because (B, ν̄) is localizable, so sup{T0u : 0 ≤ u ≤ w} is defined in L0(B); and this is true for

every w ∈ (M1,∞
µ̄ )+. Thus the conditions of 355F are satisfied and we have the result. QQQ

(b) Now suppose that T0 is any member of T (0). Then T0 has an extension to a member of T ×. PPP |T0|,
T+
0 = 1

2 (|T0| + T0) and T−
0 = 1

2 (|T0| − T0), taken in L
∼(M1,0

µ̄ ;M1,0
ν̄ ), all belong to T (0) (371G), so have

extensions S, S1 and S2 to order-continuous positive linear operators from M1,∞
µ̄ to L0(B) as defined in (a).

Now for any w ∈ L1
µ̄,

‖Sw‖1 = ‖|T0|w‖1 ≤ ‖w‖1,

and for any w ∈ L∞(A),

|Sw| ≤ S|w| = sup{|T0|u : u ∈M1,0
µ̄ , 0 ≤ u ≤ w} ≤ ‖w‖∞χ1,

so ‖Sw‖∞ ≤ ‖w‖∞. Thus S ∈ T ; similarly, S1 and S2 can be regarded as operators from M1,∞
µ̄ to M1,∞

ν̄ ,

and as such belong to T . Next, for w ≥ 0 in M1,∞
µ̄ ,

S1w + S2w = sup{T+
0 u : u ∈M1,0

µ̄ , 0 ≤ u ≤ w}+ sup{T−
0 u : u ∈M1,0

µ̄ , 0 ≤ u ≤ w}
= sup{T+

0 u+ T−
0 u : u ∈M1,0

µ̄ , 0 ≤ u ≤ w} = Sw.

But this means that

S = S1 + S2 ≥ |S1 − S2|
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and T = S1 − S2 ∈ T , by 373Bc; while of course T extends T+
0 − T−

0 = T0. Finally, because S1 and S2 are

order-continuous, T ∈ L
×(M1,∞

µ̄ ;M1,∞
ν̄ ), so T ∈ T ×. QQQ

(c) If (A, µ̄) is semi-finite, then M1,0
µ̄ is order-dense in M1,∞

µ̄ (because it includes L1
µ̄, which is order-dense

in L0(A)); so that the extension T is unique, by 355Fe.

373S Adjoints in T (0): Theorem Let (A, µ̄) and (B, ν̄) be measure algebras, and T any member

of T (0)
µ̄,ν̄ . Then there is a unique operator T ′ ∈ T (0)

ν̄,µ̄ such that
∫
a
T ′(χb) =

∫
b
T (χa) whenever a ∈ Af and

b ∈ Bf , and now
∫
u×T ′v =

∫
Tu×v whenever u ∈M1,0(A, µ̄), v ∈M1,0(B, ν̄) are such that

∫
u∗×v∗ <∞.

proof (a) For each v ∈M1,0
ν̄ we can define T ′v ∈M1,0

µ̄ by the formula
∫
a
T ′v =

∫
T (χa)× v

for every a ∈ Af . PPP Set θa =
∫
T (χa)× v for each a ∈ Af ; because

∫
(χa)∗× v∗ <∞, the integral is defined

and finite (373J). Of course θ : Af → R is additive because χ is additive and T , × and
∫

are linear. Also

limt↓0 supµ̄a≤t |θa| ≤ limt↓0

∫ t

0
v∗ = 0,

limt→∞
1

t
supµ̄a≤t |θa| ≤ limt→∞

1
t

∫ t

0
v∗ = 0

because v ∈ M1,0
ν̄ , so v∗ ∈ M1,0

µ̄L
. By 373Ha, there is a unique T ′v ∈ M1,0

µ̄ such that
∫
a
T ′v = θa for every

a ∈ Af . QQQ

(b) Because the formula uniquely determines T ′v, we see that T ′ : M1,0
ν̄ →M1,0

µ̄ is linear. Now T ′ ∈ T (0)
ν̄,µ̄ .

PPP (i) If v ∈ L1
ν̄ , then (because T ′v ∈M1,0

µ̄ ) |T ′v| = supa∈Af |T ′v| × χa, and

‖T ′v‖1 =

∫
|T ′v| = sup

a∈Af

∫

a

|T ′v| = sup
b,c∈Af

(

∫

b

T ′v −
∫

c

T ′v)

= sup
b,c∈Af

∫
T (χb− χc)× v ≤ sup

b,c∈Af

∫
(χb− χc)∗ × v∗

=

∫
v∗ = ‖v‖1.

(ii) Now suppose that v ∈ L∞(B) ∩M1,0
ν̄ , and set γ = ‖v‖∞. ??? If a = [[|T ′v| > γ]] 6= 0, then T ′v 6= 0 so

v 6= 0 and γ > 0 and µ̄a <∞, because T ′v ∈M1,0
µ̄ . Set b = [[(T ′v)+ > γ]], c = [[(T ′v)− > γ]]; then

γµ̄a <

∫

a

|T ′v| =
∫

b

T ′v −
∫

c

T ′v =

∫
T (χb− χc)× v

≤ γ‖T (χb− χc)‖1 ≤ γ‖χb− χc‖1 = γµ̄a,

which is impossible. XXX Thus [[|T ′v| > γ]] = 0 and ‖T ′v‖∞ ≤ γ = ‖v‖∞.

Putting this together with (i), we see that T ′ ∈ T (0)
ν̄,µ̄ . QQQ

(c) Let |T | be the modulus of T in L
∼(M1,0

µ̄ ;M1,0
ν̄ ), so that |T | ∈ T (0)

µ̄,ν̄ , by 371Gb. If u ≥ 0 in M1,0
µ̄ , v ≥ 0

in M1,0
ν̄ are such that

∫
u∗ × v∗ <∞, let 〈un〉n∈N be a non-decreasing sequence in S(Af )+ with supremum

u. In this case |T |u = supn∈N |T |un, so
∫
|T |u× v = supn∈N

∫
|T |un × v and

|
∫
Tu× v −

∫
Tun × v| ≤

∫
|T |(u− un)× v → 0

as n→∞, because ∫
|T |u× v ≤

∫
u∗ × v∗ <∞.

At the same time,

|
∫
u× T ′v −

∫
un × T ′v| ≤

∫
(u− un)× |T ′v| → 0

because
∫
u× |T ′v| ≤

∫
u∗ × v∗ <∞. So

Measure Theory



373Xe Decreasing rearrangements 39

∫
Tu× v = limn→∞

∫
Tun × v = limn→∞

∫
un × T ′v =

∫
u× T ′v,

the middle equality being valid because each un is a linear combination of indicator functions.
Because T and T ′ are linear, it follows at once that

∫
u× T ′v =

∫
Tu× v whenever u ∈M1,0

µ̄ , v ∈M1,0
ν̄

are such that
∫
u∗ × v∗ <∞.

(d) Finally, to see that T ′ is uniquely defined by the formula in the statement of the theorem, observe
that this surely defines T ′(χb) for every b ∈ Bf , by the remarks in (a). Consequently it defines T ′ on S(Bf ).

Since S(Bf ) is order-dense in M1,0
ν̄ , and any member of T (0)

ν̄,µ̄ must belong to L
×(M1,0

ν̄ ;M1,0
µ̄ ) (371Gb), the

restriction of T ′ to S(Bf ) determines T ′ (355J).

373T Corollary Let (A, µ̄) and (B, ν̄) be localizable measure algebras. Then for any T ∈ T ×
µ̄,ν̄ there is a

unique T ′ ∈ T ×
ν̄,µ̄ such that

∫
u× T ′v =

∫
Tu× v whenever u ∈M1,∞(A, µ̄), v ∈M1,∞(B, ν̄) are such that∫

u∗ × v∗ <∞.

proof The restriction T ↾M1,0
µ̄ belongs to T (0)

µ̄,ν̄ (373Bb), so there is a unique S ∈ T (0)
ν̄,µ̄ such that

∫
u×Sv =∫

Tu× v whenever u ∈M1,0
µ̄ , v ∈M1,0

ν̄ are such that
∫
u∗× v∗ <∞ (373S). Now there is a unique T ′ ∈ T ×

ν̄,µ̄

extending S (373R). If u ≥ 0 in M1,∞
µ̄ , v ≥ 0 in M1,∞

ν̄ are such that
∫
u∗×v∗ <∞, then

∫
u×T ′v =

∫
Tu×v.

PPP If T ≥ 0, then both are

sup{
∫
u0 × T ′v0 : u0 ∈M1,0

µ̄ , v ∈M1,0
ν̄ , 0 ≤ u0 ≤ u, 0 ≤ v0 ≤ v}

because both T and T ′ are (order-)continuous. In general, we can apply the same argument to T+ and

T−, taken in L
∼(M1,∞

µ̄ ;M1,∞
ν̄ ), since these belong to T ×

µ̄,ν̄ , by 373B and 355H, and we shall surely have

T ′ = (T+)′− (T−)′. QQQ As in 373S, it follows that
∫
u× T ′v =

∫
Tu× v whenever u ∈M1,∞

µ̄ , v ∈M1,∞
ν̄ are

such that
∫
u∗ × v∗ <∞.

373U Corollary Let (A, µ̄) and (B, ν̄) be localizable measure algebras, and π : A → B an order-
continuous measure-preserving Boolean homomorphism. Then the associated map T ∈ T ×

µ̄,ν̄ (373Bd) has an

adjoint P ∈ T ×
ν̄,µ̄ defined by the formula

∫
a
P (χb) = ν̄(b ∩ πa) for a ∈ Af , b ∈ Bf .

proof By 373T, T has an adjoint P = T ′ such that∫
a
P (χb) =

∫
χa× P (χb) =

∫
T (χa)× χb =

∫
χ(πa)× χb = ν̄(πa ∩ b)

whenever a ∈ Af and b ∈ Bf . To see that this defines P uniquely, let S ∈ T ×
ν̄,µ̄ be any other operator with

the same property. By 373Hb, S(χb) = P (χb) for every b ∈ Bf , so S and P agree on S(Bf ). Because both

P and S are supposed to belong to L
×(M1,∞

ν̄ ;M1,∞
µ̄ ), and S(Bf ) is order-dense in M1,∞

ν̄ , S = P , by 355J.

373X Basic exercises (a) Let (A, µ̄) and (B, ν̄) be measure algebras, and π : A→ B a ring homomor-
phism such that ν̄πa ≤ µ̄a for every a ∈ A. (i) Show that there is a unique T ∈ Tµ̄,ν̄ such that T (χa) = χ(πa)
for every a ∈ A, and that T is a Riesz homomorphism. (ii) Show that T is (sequentially) order-continuous
iff π is.

>>>(b) Let (A, µ̄) and (B, µ̄) be measure algebras, and φ : R → R a convex function such that φ(0) ≤ 0.

Show that if T ∈ Tµ̄,ν̄ and T ≥ 0, then φ̄(Tu) ≤ T (φ̄(u)) whenever u ∈ M1,∞
µ̄ is such that φ̄(u) ∈ M1,∞

µ̄ .
(Hint : 371Gd.)

(c) Let (A, µ̄) be a measure algebra. Show that if w ∈ L∞(A) and ‖w‖∞ ≤ 1 then u 7→ u×w : M1,∞
µ̄ →

M1,∞
µ̄ belongs to T ×

µ̄,µ̄.

(d) Let (A, µ̄) and (B, ν̄) be measure algebras. Show that if 〈ai〉i∈I , 〈bi〉i∈I are disjoint families in A, B
respectively, and 〈Ti〉i∈I is any family in Tµ̄,ν̄ , and either I is countable or B is Dedekind complete, then

we have an operator T ∈ Tµ̄,ν̄ such that Tu× χbi = Ti(u× χai)× χbi for every u ∈M1,∞
µ̄,ν̄ , i ∈ I.

>>>(e) Let I, J be sets and write µ = µ̄, ν = ν̄ for counting measure on I, J respectively. Show that
there is a natural one-to-one correspondence between T ×

µ̄,ν̄ and the set of matrices 〈aij〉i∈I,j∈J such that∑
i∈I |aij | ≤ 1 for every j ∈ J ,

∑
j∈J |aij | ≤ 1 for every i ∈ I.
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40 Linear operators between function spaces 373Xf

>>>(f) Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces, with measure algebras (A, µ̄) and (B, ν̄), and
product measure λ on X × Y . Let h : X × Y → R be a measurable function such that

∫
|h(x, y)|dx ≤ 1 for

ν-almost every y ∈ Y and
∫
|h(x, y)|dy ≤ 1 for µ-almost every x ∈ X. Show that there is a corresponding

T ∈ T ×
µ̄,ν̄ defined by writing T (f•) = g• whenever f ∈ L1(µ) +L∞(µ) and g(y) =

∫
h(x, y)f(x)dx for almost

every y.

>>>(g) Let µ be Lebesgue measure on R, and (A, µ̄) its measure algebra. Show that for any µ-integrable
function h with

∫
|h|dµ ≤ 1 we have a corresponding T ∈ T ×

µ̄,µ̄ defined by setting T (f•) = (h ∗ f)• whenever

g ∈ L
1(µ) + L

∞(µ), writing h ∗ f for the convolution of h and f (255E). Explain how this may be regarded
as a special case of 373Xf.

>>>(h) Let (A, µ̄) be a probability algebra and u ∈ L0(A)+; let νu be its distribution (364GB). Show that
each of u∗, νu is uniquely determined by the other.

(i) Let (A, µ̄) and (B, ν̄) be measure algebras, and π : A → B a measure-preserving Boolean homomor-

phism; let T : M1,∞
µ̄ → M1,∞

ν̄ be the corresponding operator (373Bd). Show that (Tu)∗ = u∗ for every

u ∈M1,∞
µ̄ .

(j) Let (A, µ̄) be a totally finite measure algebra, and A a subset of L1
µ̄. Show that the following

are equiveridical: (i) A is uniformly integrable; (ii) {u∗ : u ∈ A} is uniformly integrable in L1
µ̄L

; (iii)

limt↓0 supu∈A

∫ t

0
u∗ = 0.

(k) Let (A, µ̄) be a measure algebra, and A ⊆ (M0
µ̄)+ a non-empty downwards-directed set. Show that

(inf A)∗ = infu∈A u
∗ in L0(AL).

(l) Let (A, µ̄) be a measure algebra. Show that ‖u‖1,∞ =
∫ 1

0
u∗ for every u ∈M1,∞(A, µ̄).

(m) Let (A, µ̄) and (B, ν̄) be measure algebras, and φ a Young’s function (369Xc). Write Uφ,µ̄ ⊆ L0(A),
Uφ,ν̄ ⊆ L0(B) for the corresponding Orlicz spaces. (i) Show that if T ∈ Tµ̄,ν̄ and u ∈ Uφ,µ̄, then Tu ∈ Uφ,ν̄

and ‖Tu‖φ ≤ ‖u‖φ. (ii) Show that u ∈ Uφ,µ̄ iff u∗ ∈ Uφ,µ̄L
, and in this case ‖u‖φ = ‖u∗‖φ.

>>>(n) Let (A, µ̄) be a measure algebra and (B, ν̄) a totally finite measure algebra. Show that if A ⊆ L1
µ̄

is uniformly integrable, then {Tu : u ∈ A, T ∈ Tµ̄,ν̄} is uniformly integrable in L1
ν̄ .

(o)(i) Give examples of u, v ∈ L1(AL) such that (u + v)∗ 6≤ u∗ + v∗. (ii) Show that if (A, µ̄) is any

measure algebra and u, v ∈M0,∞
µ̄ , then

∫ t

0
(u+ v)∗ ≤

∫ t

0
u∗ + v∗ for every t ≥ 0.

(p) Let (A, µ̄) and (B, ν̄) be two measure algebras. For u ∈M1,0
µ̄ , w ∈M∞,1

ν̄ set

ρuw(S, T ) = |
∫
Su× w −

∫
Tu× w| for S, T ∈ T (0) = T (0)

µ̄,ν̄ .

The topology generated by the pseudometrics ρuw is the very weak operator topology on T (0). Show
that T (0) is compact in this topology.

(q) Let (A, µ̄) and (B, ν̄) be measure algebras and let u ∈ M1,0
µ̄ . (i) Show that B = {Tu : T ∈ T (0)

µ̄,ν̄ } is

compact for the topology Ts(M
1,0
ν̄ ,M∞,1

ν̄ ). (ii) Show that any non-decreasing sequence in B has a supremum
in L0(B) which belongs to B.

(r) Let (A, µ̄) and (B, ν̄) be measure algebras, and u ∈ M1,0
µ̄ , v ∈ M1,0

ν̄ . Show that the following are

equiveridical: (i) there is a T ∈ T (0)
µ̄,ν̄ such that Tu = v; (ii)

∫ t

0
u∗ ≤

∫ t

0
v∗ for every t ≥ 0.

(s) Let (A, µ̄) and (B, ν̄) be measure algebras. Suppose that u1, u2 ∈ M1,∞
µ̄ and v ∈ M1,∞

ν̄ are such

that
∫ t

0
v∗ ≤

∫ t

0
(u1 + u2)∗ for every t ≥ 0. Show that there are v1, v2 ∈ M1,∞

ν̄ such that v1 + v2 = v and∫ t

0
v∗i ≤

∫ t

0
u∗i for both i, every t ≥ 0.
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>>>(t) Set g(t) = t/(t + 1) for t ≥ 0, and set v = g•, u = χ[0, 1]• ∈ L∞(AL). Show that
∫
u∗ × v∗ = 1 >∫

Tu× v for every T ∈ Tµ̄L,µ̄L
.

(u) Let (A, µ̄) and (B, ν̄) be measure algebras, and for T ∈ T (0)
µ̄,ν̄ define T ′ ∈ T (0)

ν̄,µ̄ as in 373S. Show that
T ′′ = T .

(v) Let (A, µ̄) and (B, ν̄) be measure algebras, and give T (0)
µ̄,ν̄ , T (0)

ν̄,µ̄ their very weak operator topologies

(373Xp). Show that the map T 7→ T ′ : T (0)
µ̄,ν̄ → T (0)

ν̄,µ̄ is an isomorphism for the convex, order and topological
structures of the two spaces. (By the ‘convex structure’ of a convex set C in a linear space I mean the
operation (x, y, t) 7→ tx+ (1− t)y : C × C × [0, 1]→ C.)

373Y Further exercises (a) Let (A, µ̄) be the measure algebra of Lebesgue measure on [0, 1]. Set u = f•

and v = g• in L0(A), where f(t) = t, g(t) = 1− 2|t− 1
2 | for t ∈ [0, 1]. Show that u∗ = v∗, but that there is

no measure-preserving Boolean homomorphism π : A→ A such that Tπv = u, writing Tπ : L0(A)→ L0(A)
for the operator induced by π, as in 364P. (Hint : show that {[[v > α]] : α ∈ R} does not τ -generate A.)

(b) Let (A, µ̄) be a totally finite homogeneous measure algebra of uncountable Maharam type. Let u,

v ∈ (M1,∞
µ̄ )+ be such that u∗ = v∗. Show that there is a measure-preserving automorphism π : A→ A such

that Tπu = v.

(c) Let u, v ∈M1,∞
µ̄L

be such that u = u∗, v = v∗ and
∫ t

0
v ≤

∫ t

0
u for every t ≥ 0. (i) Show that there is

a non-negative T ∈ Tµ̄L,µ̄L
such that Tu = v and

∫ t

0
Tw ≤

∫ t

0
w for every w ∈ (M1,∞

µ̄L
)+. (ii) Show that any

such T must belong to T ×
µ̄L,µ̄L

.

(d) Let (A, µ̄) and (B, ν̄) be measure algebras, and u ∈ M1,∞
µ̄ . (i) Suppose that w ∈ S(Bf ). Show

directly (without quoting the result of 373O, but possibly using some of the ideas of the proof) that for
every γ <

∫
u∗×w∗ there is a T ∈ Tµ̄,ν̄ such that

∫
Tu×w ≥ γ. (ii) Suppose that (B, ν̄) is localizable and that

v ∈M1,∞
ν̄ \{Tu : T ∈ Tµ̄,ν̄}. Show that there is a w ∈ S(Bf ) such that

∫
v×w > sup{

∫
Tu×w : T ∈ Tµ̄,ν̄}.

(Hint : use 373M and the Hahn-Banach theorem in the following form: if U is a linear space with the
topology Ts(U, V ) defined by a linear subspace V of L(U ;R), C ⊆ U is a non-empty closed convex set, and
v ∈ U \ C, then there is an f ∈ V such that f(v) > supu∈C f(u).) (iii) Hence prove 373O for localizable
(B, ν̄). (iv) Now prove 373O for general (B, ν̄).

(e)(i) Define v ∈ L∞(AL) as in 373Xt. Show that there is no T ∈ T ×
µ̄L,µ̄L

such that Tv = v∗. (ii) Set

h(t) = 1 + max(0, sin t
t ) for t > 0, w = h• ∈ L∞(AL). Show that there is no T ∈ T ×

µ̄L,µ̄L
such that Tw∗ = w.

(f) Let (A, µ̄) be the measure algebra of Lebesgue measure on [0, 1]. Show that Tµ̄,µ̄L
= T ×

µ̄,µ̄L
can be

identified, as convex ordered space, with T ×
µ̄L,µ̄, and that this is a proper subset of Tµ̄L,µ̄.

(g) Show that the adjoint operation of 373T is not as a rule continuous for the very weak operator
topologies of T ×

µ̄,ν̄ , T ×
ν̄,µ̄.

373 Notes and comments 373A-373B are just alternative expressions of concepts already treated in 371F-
371H. My use of the simpler formula Tµ̄,ν̄ symbolizes my view that T , rather than T (0) or T ×, is the most

natural vehicle for these ideas; I used T (0) in §§371 only because that made it possible to give theorems
which applied to all measure algebras, without demanding localizability (compare 371Gb with 373Bc).

The obvious examples of operators in T are those derived from measure-preserving Boolean homomor-
phisms, as in 373Bd, and their adjoints (373U). Note that the latter include conditional expectation oper-
ators. In return, we find that operators in T share some of the characteristic properties of the operators
derived from Boolean homomorphisms (373Bb, 373Xb, 373Xm). Other examples are multiplication op-
erators (373Xc), operators obtained by piecing others together (373Xd) and kernel operators of the type
described in 373Xe-373Xf, including convolution operators (373Xg). (For a general theory of kernel opera-
tors, see §376 below.)
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Most of the section is devoted to the relationships between the classes T of operators and the ‘decreasing
rearrangements’ of 373C. If you like, the decreasing rearrangement u∗ of u describes the ‘distribution’ of |u|
(373Xh); but for u /∈ M0 it loses some information (373Xt, 373Ye). It is important to be conscious that
even when u ∈ L0(AL), u∗ is not necessarily obtained by ‘rearranging’ the elements of the algebra AL by a
measure-preserving automorphism (which would, of course, correspond to an automorphism of the measure
space ([0,∞[ , µL), by 344C). I will treat ‘rearrangements’ of this narrower type in the next section; for the
moment, see 373Ya. Apart from this, the basic properties of decreasing rearrangements are straightforward
enough (373D-373F). The only obscure area concerns the relationship between (u + v)∗ and u∗, v∗ (see
373Xo).

In 373G I embark on results involving both decreasing rearrangements and operators in T , leading to the
characterization of the sets {Tu : T ∈ T } in 373O. In one direction this is easy, and is the content of 373G.
In the other direction it depends on a deeper analysis, and the easiest method seems to be through studying
the ‘very weak operator topology’ on T (373K-373L), even though this is an effective tool only when one
of the algebras involved is localizable (373L). A functional analyst is likely to feel that the method is both
natural and illuminating; but from the point of view of a measure theorist it is not perfectly satisfactory,
because it is essentially non-constructive. While it tells us that there are operators T ∈ T acting in the
required ways, it gives only the vaguest of hints concerning what they actually look like.

Of course the very weak operator topology is interesting in its own right; and see also 373Xp-373Xq.

The proof of 373O can be thought of as consisting of three steps. Given that
∫ t

0
v∗ ≤

∫ t

0
u∗ for every t,

then I set out to show that v is expressible as T1v
∗ (parts (c)-(d) of the proof), that v∗ is expressible as T2u

∗

(part (g)) and that u∗ is expressible as T3u (parts (e)-(f)), each Ti belonging to an appropriate T . In all
three steps the general case follows easily from the case in which u ∈ S(A) and v ∈ S(B). If we are willing
to use a more sophisticated version of the Hahn-Banach theorem than those given in 3A5A and 363R, there
is an alternative route (373Yd). I note that the central step above, from u∗ to v∗, can be performed with an
order-continuous T2 (373Yc), but that in general neither of the other steps can (373Ye), so that we cannot
use T × in place of T here.

A companion result to 373O, in that it also shows that {Tu : T ∈ T } is large enough to reach natural
bounds, is 373P; given u and v, we can find T such that

∫
Tu × v is as large as possible. In this form the

result is valid only for v ∈M (0) (373Xt). But if we do not demand that the supremum should be attained,
we can deal with other v (373Q).

We already know that every operator in T (0) is a difference of order-continuous operators, just because
M1,0 has an order-continuous norm (371Gb). It is therefore not surprising that members of T (0) can be

extended to members of T ×, at least when the codomain M1,∞
ν̄ is Dedekind complete (373R). It is also very

natural to look for a correspondence between Tµ̄,ν̄ and Tν̄,µ̄, because if T ∈ Tµ̄,ν̄ we shall surely have an
adjoint operator (T ↾L1

µ̄)′ from (L1
ν̄)∗ to (L1

µ̄)∗, and we can hope that this will correspond to some member
of Tν̄,µ̄. But when we come to the details, the normed-space properties of a general member of T are not

enough (373Yf), and we need some kind of order-continuity. For members of T (0) this is automatically
present (373S), and now the canonical isomorphism between T (0) and T × gives us an isomorphism between
T ×
µ̄,ν̄ and T ×

ν̄,µ̄ when µ̄ and ν̄ are localizable (373T).

Version of 15.6.09

374 Rearrangement-invariant spaces

As is to be expected, many of the most important function spaces of analysis are symmetric in various
ways; in particular, they share the symmetries of the underlying measure algebras. The natural expression
of this is to say that they are ‘rearrangement-invariant’ (374E). In fact it turns out that in many cases
they have the stronger property of ‘T -invariance’ (374A). In this section I give a brief account of the most
important properties of these two kinds of invariance. In particular, T -invariance is related to a kind of
transfer mechanism, enabling us to associate function spaces on different measure algebras (374C-374D).
As for rearrangement-invariance, the salient fact is that on the most important measure algebras many
rearrangement-invariant spaces are T -invariant (374K, 374M).

374A T -invariance: Definitions Let (A, µ̄) be a measure algebra. Recall that I write
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M1,∞
µ̄ = L1

µ̄ + L∞(A) ⊆ L0(A),

M∞,1
µ̄ = L1

µ̄ ∩ L∞(A),

M0,∞
µ̄ = {u : u ∈ L0(A), infα>0 µ̄[[|u| > α]] <∞},

(369N, 373C).

(a) I will say that a subset A of M1,∞
µ̄ is T -invariant if Tu ∈ A whenever u ∈ A and T ∈ T = Tµ̄,µ̄

(definition: 373Aa).

(b) An extended Fatou norm τ on L0 is T -invariant or fully symmetric if τ(Tu) ≤ τ(u) whenever

u ∈M1,∞
µ̄ and T ∈ T .

(c) As in §373, I will write (AL, µ̄L) for the measure algebra of Lebesgue measure on [0,∞[, and u∗ ∈M0,∞
µ̄L

for the decreasing rearrangement of any u belonging to any M0,∞
µ̄ (373C).

374B The first step is to show that the associate of a T -invariant norm is T -invariant.

Theorem Let (A, µ̄) be a semi-finite measure algebra and τ a T -invariant extended Fatou norm on L0(A).
Let Lτ be the Banach lattice defined from τ (369G), and τ ′ the associate extended Fatou norm (369H-369I).
Then

(i) M∞,1
µ̄ ⊆ Lτ ⊆M1,∞

µ̄ ;

(ii) τ ′ is also T -invariant, and
∫
u∗ × v∗ ≤ τ(u)τ ′(v) for all u, v ∈M0,∞

µ̄ .

proof (a) I check first that Lτ ⊆M0,∞
µ̄ . PPP Take any u ∈ L0(A) \M0,∞

µ̄ . There is surely some w > 0 in Lτ ,
and we can suppose that w = χa for some a of finite measure. Now, for any n ∈ N,

(|u| ∧ nχ1)∗ = nχ1 ≥ nw∗

in L0(AL), because µ̄[[|u| > n]] =∞. So there is a T ∈ Tµ̄,µ̄ such that T (|u| ∧ nχ1) = nw, by 373O, and

τ(u) ≥ τ(|u| ∧ nχ1) ≥ τ(T (|u| ∧ nχ1)) = τ(nw) = nτ(w).

As n is arbitrary, τ(u) =∞. As u is arbitrary, Lτ ⊆M0,∞
µ̄ . QQQ

(b) Next,
∫
u∗ × v∗ ≤ τ(u)τ ′(v) for all u, v ∈M0,∞

µ̄ . PPP If u ∈M1,∞
µ̄ , then

∫
u∗ × v∗ = sup{

∫
|Tu× v| : T ∈ Tµ̄,µ̄}

(373Q)

≤ sup{τ(Tu)τ ′(v) : T ∈ Tµ̄,µ̄} = τ(u)τ ′(v).

Generally, setting un = |u|∧nχ1, 〈u∗n〉n∈N is a non-decreasing sequence with supremum u∗ (373Db, 373Dh),
so ∫

u∗ × v∗ = supn∈N

∫
u∗n × v∗ ≤ supn∈N τ(un)τ ′(v) = τ(u)τ ′(v). QQQ

(c) Consequently, Lτ ⊆ M1,∞
µ̄ . PPP If A = {0}, this is trivial. Otherwise, take u ∈ Lτ . There is surely

some non-zero a such that τ ′(χa) <∞; now, setting v = χa,
∫ µ̄a

0
u∗ =

∫
u∗ × v∗ ≤ τ(u)τ ′(v) <∞

by (b) above. But this means that u∗ ∈M1,∞
µ̄ , so that u ∈M1,∞

µ̄ (373F(b-ii)). QQQ

(d) Next, τ ′ is T -invariant. PPP Suppose that v ∈ M1,∞
µ̄ , T ∈ Tµ̄,µ̄, u ∈ L0(A) and τ(u) ≤ 1. Then

u ∈M1,∞
µ̄ , by (c), so

∫
|u× Tv| ≤

∫
u∗ × v∗ ≤ τ(u)τ ′(v) ≤ τ ′(v),
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using 373J for the first inequality. Taking the supremum over u, we see that τ ′(Tv) ≤ τ ′(v); as T and v are
arbitrary, τ ′ is T -invariant. QQQ

(e) Finally, putting (d) and (c) together, Lτ ′ ⊆M1,∞
µ̄ , so that Lτ ⊇M∞,1

µ̄ , using 369J and 369O.

374C For any T -invariant extended Fatou norm on L0(AL) there are corresponding norms on L0(A) for
any semi-finite measure algebra, as follows.

Theorem Let θ be a T -invariant extended Fatou norm on L0(AL), and (A, µ̄) a semi-finite measure algebra.
(a) There is a T -invariant extended Fatou norm τ on L0(A) defined by setting

τ(u) = θ(u∗) if u ∈M0,∞
µ̄ ,

=∞ if u ∈ L0(A) \M0,∞
µ̄ .

(b) Writing θ′, τ ′ for the associates of θ and τ , we now have

τ ′(v) = θ′(v∗) if v ∈M0,∞
µ̄ ,

=∞ if v ∈ L0(A) \M0,∞
µ̄ .

(c) If θ is an order-continuous norm on the Banach lattice Lθ, then τ is an order-continuous norm on Lτ .

proof (a)(i) The argument seems to run better if I use a different formula to define τ : set

τ(u) = sup{
∫
|u× Tw| : T ∈ Tµ̄L,µ̄, w ∈ L0(AL), θ′(w) ≤ 1}

for u ∈ L0(A). (By 374B(i), w ∈ M1,∞
µ̄L

whenever θ′(w) ≤ 1, so there is no difficulty in defining Tw.) Now

τ(u) = θ(u∗) for every u ∈ M0,∞
µ̄ . PPP (α) If w ∈ L0(AL) and θ′(w) ≤ 1, then w ∈ M1,∞

µ̄L
, so there is an

S ∈ Tµ̄L,µ̄L
such that Sw = w∗ (373O). Accordingly θ′(w∗) ≤ θ′(w) (because θ′ is T -invariant, by 374B);

now ∫
|u× Tw| ≤

∫
u∗ × w∗ ≤ θ(u∗)θ′(w∗) ≤ θ(u∗)θ′(w) ≤ θ(u∗);

as w is arbitrary, τ(u) ≤ θ(u∗). (β) If w ∈ L0(AL) and θ′(w) ≤ 1, then

∫
|u∗ × w| ≤

∫
(u∗)∗ × w∗

(373E)

=

∫
u∗ × w∗ = sup{

∫
|u× Tw| : T ∈ Tµ̄L,µ̄}

(373Q)

≤ τ(u).

But because θ is the associate of θ′ (369I(ii)), this means that θ(u∗) ≤ τ(u). QQQ

(ii) Now τ is an extended Fatou norm on L0(A). PPP Of the conditions in 369F, (i)-(iv) are satisfied

just because τ(u) = supv∈B

∫
|u × v| for some set B ⊆ L0. As for (v) and (vi), observe that if u ∈ M∞,1

µ̄

then u∗ ∈M∞,1
µ̄L

(373F(b-iv)), so that τ(u) = θ(u∗) <∞, by 374B(i), while also

u 6= 0 =⇒ u∗ 6= 0 =⇒ τ(u) = θ(u∗) > 0.

As M∞,1
µ̄ is order-dense in L0(A) (this is where I use the hypothesis that (A, µ̄) is semi-finite), 369F(v)-(vi)

are satisfied, and τ is an extended Fatou norm. QQQ

(iii) τ is T -invariant. PPP Take u ∈M1,∞
µ̄ and T ∈ Tµ̄,µ̄. There are S0 ∈ Tµ̄L,µ̄ and S1 ∈ Tµ̄,µ̄L

such that
S0u

∗ = u, S1Tu = (Tu)∗ (373O); now S1TS0 ∈ Tµ̄L,µ̄L
(373Be), so

τ(Tu) = θ((Tu)∗) = θ(S1TS0u
∗) ≤ θ(u∗) = τ(u)

because θ is T -invariant. QQQ
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(iv) We can now return to the definition of τ . I have already remarked that τ(u) = θ(u∗) if u ∈M0,∞
µ̄ .

For other u, we must have τ(u) =∞ just because τ is a T -invariant extended Fatou norm (374B(i)). So the
definitions in the statement of the theorem and (i) above coincide.

(b) We surely have τ ′(v) =∞ if v ∈ L0(A)\M0,∞
µ̄ , by 374B, because τ ′, like τ , is a T -invariant extended

Fatou norm. So take v ∈M0,∞
µ̄ .

(i) If u ∈ L0(A) and τ(u) ≤ 1, then∫
|v × u| ≤

∫
v∗ × u∗ ≤ θ′(v∗)θ(u∗) = θ′(v∗)τ(u) ≤ θ′(v∗);

as u is arbitrary, τ ′(v) ≤ θ′(v∗).

(ii) If w ∈ L0(AL) and θ(w) ≤ 1, then

∫
|v∗ × w| ≤

∫
v∗ × w∗ = sup{

∫
|v × Tw| : T ∈ Tµ̄L,µ̄}

(373Q)

≤ sup{τ ′(v)τ(Tw) : T ∈ Tµ̄L,µ̄} = sup{τ ′(v)θ((Tw)∗) : T ∈ Tµ̄L,µ̄}
≤ sup{τ ′(v)θ(STw) : T ∈ Tµ̄L,µ̄, S ∈ Tµ̄,µ̄L

}
(because, given T , we can find an S such that STw = (Tw)∗, by 373O)

≤ sup{τ ′(v)θ(Tw) : T ∈ Tµ̄L,µ̄L
} ≤ τ ′(v).

As w is arbitrary, θ′(v∗) ≤ τ ′(v) and the two are equal. This completes the proof of (b).

(c)(i) The first step is to note that Lτ ⊆M0
µ̄. PPP??? Suppose that u ∈ Lτ \M0

µ̄, that is, that µ̄[[|u| > α]] =∞
for some α > 0. Then u∗ ≥ αχ1 in L0(AL), so L∞(AL) ⊆ Lθ. For each n ∈ N, set vn = χ [n,∞[

•
. Then

v∗n = v0, so we can find a Tn ∈ Tµ̄L,µ̄L
such that Tnvn = v0 (373O), and θ(vn) ≥ θ(v0) for every n. But as

〈vn〉n∈N is a decreasing sequence with infimum 0, this means that θ is not an order-continuous norm. XXXQQQ

(ii) Now suppose that A ⊆ Lτ is non-empty and downwards-directed and has infimum 0. Then
infu∈A µ̄[[u > α]] = 0 for every α > 0 (put 364L(b-ii) and 321F together). But this means that B = {u∗ : u ∈
A} must have infimum 0; since B is surely downwards-directed, infv∈B θ(v) = 0, that is, infu∈A τ(u) = 0.
As A is arbitrary, τ is an order-continuous norm.

374D What is more, every T -invariant extended Fatou norm can be represented in this way.

Theorem Let (A, µ̄) be a semi-finite measure algebra, and τ a T -invariant extended Fatou norm on L0(A).

Then there is a T -invariant extended Fatou norm θ on L0(AL) such that τ(u) = θ(u∗) for every u ∈M0,∞
µ̄ .

proof I use the method of 374C. If A = {0} the result is trivial; assume that A 6= {0}.
(a) Set

θ(w) = sup{
∫
|w × Tv| : T ∈ Tµ̄,µ̄L

, v ∈ L0(A), τ ′(v) ≤ 1}
for w ∈ L0(AL). Note that

θ(w) = sup{
∫
w∗ × v∗ : v ∈ L0(A), τ ′(v) ≤ 1}

for every w ∈M0,∞
µ̄L

, by 373Q again.

θ is an extended Fatou norm on L0(AL). PPP As in 374C, the conditions 369F(i)-(iv) are elementary. If
w > 0 in L0(AL), take any v ∈ L0(A) such that 0 < τ ′(v) ≤ 1; then w∗ × v∗ 6= 0 so θ(w) ≥

∫
w∗ × v∗ > 0.

So 369F(v) is satisfied. As for 369F(vi), if w > 0 in L0(AL), take a non-zero a ∈ A of finite measure such
that α = τ(χa) <∞. Let β > 0, b ∈ AL be such that 0 < µ̄Lb ≤ µ̄a and βχb ≤ w; then

θ(χb) = supτ ′(v)≤1

∫
(χb)∗ × v∗ ≤ supτ ′(v)≤1

∫
(χa)∗ × v∗ ≤ τ(χa) <∞

by 374B(ii). So θ(βχb) <∞ and 369F(vi) is satisfied. Thus θ is an extended Fatou norm. QQQ

(b) θ is T -invariant. PPP If T ∈ Tµ̄L,µ̄L
and w ∈M1,∞

µ̄L
, then
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θ(Tw) = supτ ′(v)≤1

∫
(Tw)∗ × v∗ ≤ supτ ′(v)≤1

∫
w∗ × v∗ = θ(w)

by 373G and 373I. QQQ

(c) θ(u∗) = τ(u) for every u ∈M0,∞
µ̄ . PPP We have

τ(u) = supτ ′(v)≤1

∫
|u× v| ≤ supτ ′(v)≤1

∫
u∗ × v∗ ≤ τ(u),

using 369I, 373E and 374B. So

θ(u∗) = supτ ′(v)≤1

∫
u∗ × v∗ = τ(u)

by the remark in (a) above. QQQ

374E I turn now to rearrangement-invariance. Let (A, µ̄) be a measure algebra.

(a) I will say that a subset A of L0 = L0(A) is rearrangement-invariant if Tπu ∈ A whenever u ∈ A
and π : A → A is a measure-preserving Boolean automorphism, writing Tπ : L0 → L0 for the isomorphism
corresponding to π (364P).

(b) I will say that an extended Fatou norm τ on L0 is rearrangement-invariant if τ(Tπu) = τ(u)
whenever u ∈ L0 and π : A→ A is a measure-preserving automorphism.

374F Remarks (a) If (A, µ̄) is a semi-finite measure algebra and π : A → A is a sequentially order-

continuous measure-preserving Boolean homomorphism, then Tπ↾M
1,∞
µ̄ belongs to Tµ̄,µ̄; this is obvious

from the definition of M1,∞ = L1 +L∞ and the basic properties of Tπ (364P). Accordingly, any T -invariant
extended Fatou norm τ on L0(A) must be rearrangement-invariant, since (by 374B) we shall have τ(u) =

τ(Tπ(u)) =∞ when u /∈M1,∞
µ̄ . Similarly, any T -invariant subset of M1,∞

µ̄ will be rearrangement-invariant.

(b) I seek to describe cases in which rearrangement-invariance implies T -invariance. This happens only
for certain measure algebras; in order to shorten the statements of the main theorems I introduce a special
phrase.

374G Definition I say that a measure algebra (A, µ̄) is quasi-homogeneous if for any non-zero a,
b ∈ A there is a measure-preserving Boolean automorphism π : A→ A such that πa ∩ b 6= 0.

374H Proposition Let (A, µ̄) be a semi-finite measure algebra. Then the following are equiveridical:
(i) (A, µ̄) is quasi-homogeneous;
(ii) either A is purely atomic and every atom of A has the same measure or there is a κ ≥ ω such that

the principal ideal Aa is homogeneous, with Maharam type κ, for every a ∈ A of non-zero finite measure.

proof (i)⇒(ii) Suppose that (A, µ̄) is quasi-homogeneous.

(ααα) Suppose that A has an atom a. In this case, for any b ∈ A \ {0} there is an automorphism π of
(A, µ̄) such that πa ∩ b 6= 0; now πa must be an atom, so πa = πa ∩ b and πa is an atom included in b. As b
is arbitrary, A is purely atomic; moreover, if b is an atom, then it must be equal to πa and therefore of the
same measure as a, so all atoms of A have the same measure.

(βββ) Now suppose that A is atomless. In this case, if a ∈ A has finite non-zero measure, Aa is homo-
geneous. PPP??? Otherwise, there are non-zero b, c ⊆ a such that the principal ideals Ab, Ac are homogeneous
and of different Maharam types, by Maharam’s theorem (332B, 332H). But now there is supposed to be an
automorphism π such that πb ∩ c 6= 0, in which case Ab, Aπb, Aπb∩c and Ac must all have the same Maharam
type. XXXQQQ

Consequently, if a, b ∈ A are both of non-zero finite measure, the Maharam types of Aa, Aa∪b and Ab

must all be the same infinite cardinal κ.

(ii)⇒(i) Assume (ii), and take a, b ∈ A \ {0}. If a ∩ b 6= 0 we can take π to be the identity automorphism
and stop. So let us suppose that a ∩ b = 0.
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(ααα) If A is purely atomic and every atom has the same measure, then there are atoms a0 ⊆ a, b0 ⊆ b.
Set

πc = c if c ⊇ a0 ∪ b0 or c ∩ (a0 ∪ b0) = 0,

= c△ (a0 ∪ b0) otherwise.

Then it is easy to check that π is a measure-preserving automorphism of A such that πa0 = b0, so that
πa ∩ b 6= 0.

(βββ) If Ac is Maharam-type-homogeneous with the same infinite Maharam type κ for every non-zero
c of finite measure, set γ = min(1, µ̄a, µ̄b) > 0. Because A is atomless, there are a0 ⊆ a, b0 ⊆ b with
µ̄a0 = µ̄b0 = γ (331C). Now Aa0

and Ab0 are homogeneous with the same Maharam type and the same
magnitude, so by Maharam’s theorem (331I) there is a measure-preserving isomorphism π0 : Aa0

→ Ab0 .
Define π : A→ A by setting

πc = (c \ (a0 ∪ b0)) ∪ π0(c ∩ a0) ∪ π−1
0 (c ∩ b0)

for c ∈ A; then it is easy to see that π is a measure-preserving automorphism of A and that πa ∩ b 6= 0.

Remark We shall return to these ideas in Chapter 38. In particular, the construction of π from π0 in the

last part of the proof will be of great importance; in the language of 381R, π = (
←−−−−
a0 π0

b0).

374I Corollary Let (A, µ̄) be a quasi-homogeneous semi-finite measure algebra. Then
(a) whenever a, b ∈ A have the same finite measure, the principal ideals Aa, Ab are isomorphic as measure

algebras;
(b) there is a subgroup Γ of the additive group R such that (α) µ̄a ∈ Γ whenever a ∈ A and µ̄a <∞ (β)

whenever a ∈ A, γ ∈ Γ and 0 ≤ γ ≤ µ̄a then there is a c ⊆ a such that µ̄c = γ.

proof If A is purely atomic, with all its atoms of measure γ0, set Γ = γ0Z, and the results are elementary.
If A is atomless, set Γ = R; then (a) is a consequence of Maharam’s theorem, and (b) is a consequence of
331C, already used in the proof of 374H.

374J Lemma Let (A, µ̄) be a quasi-homogeneous semi-finite measure algebra and u, v ∈ M0,∞
µ̄ . Let

Autµ̄ be the group of measure-preserving automorphisms of A. Then∫
u∗ × v∗ = supπ∈Autµ̄

∫
|u× Tπv|,

where Tπ : L0(A)→ L0(A) is the isomorphism corresponding to π.

proof (a) Suppose first that u, v are non-negative and belong to S(Af ), where Af is the ring {a : µ̄a <∞},
as usual. Then they can be expressed as u =

∑m
i=0 αiχai, v =

∑n
j=0 βjχbj where α0 ≥ . . . αm ≥ 0,

β0 ≥ . . . ≥ βn ≥ 0, a0, . . . , am are disjoint and of finite measure, and b0, . . . , bn are disjoint and of finite
measure. Extending each list by a final term having a coefficient of 0, if need be, we may suppose that
supi≤m ai = supj≤n bj .

Let (t0, . . . , ts) enumerate in ascending order the set

{0} ∪ {∑k
i=0 µ̄ai : k ≤ m} ∪ {∑k

j=0 µ̄bj : k ≤ n}.
Then every tr belongs to the subgroup Γ of 374Ib, and ts =

∑m
i=0 µ̄ai =

∑n
j=0 µ̄bj . For 1 ≤ r ≤ s let k(r),

l(r) be minimal subject to the requirements tr ≤
∑k(r)

i=0 µ̄ai, tr ≤
∑l(r)

j=0 µ̄bj . Then µ̄ai =
∑

k(r)=i tr − tr−1,

so (using 374Ib) we can find a disjoint family 〈cr〉1≤r≤s such that cr ⊆ ak(r) and µ̄cr = tr − tr−1 for each
r. Similarly, there is a disjoint family 〈dr〉1≤r≤s such that dr ⊆ bl(r) and µ̄dr = tr − tr−1 for each r. Now
the principal ideals Acr , Adr

are isomorphic for every r, by 374Ia; let πr : Adr
→ Acr be measure-preserving

isomorphisms. Define π : A→ A by setting

πa = (a \ sup1≤r≤s dr) ∪ sup1≤r≤s πr(a ∩ dr);

because

supr≤s cr = supi≤m ai = supj≤n bj = supr≤s dr,
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π : A→ A is a measure-preserving automorphism.
Now

u =
∑s

r=1 αk(r)χcr, v =
∑s

r=1 βl(r)χdr,

u∗ =
∑s

r=1 αk(r)χ [tr−1, tr[
•
, v∗ =

∑s
r=1 βl(r)χ [tr−1, tr[

•
,

so ∫
u× Tπv =

∑s
r=1 αk(r)βl(r)µ̄cr =

∑s
r=1 αk(r)βl(r)(tr − tr−1) =

∫
u∗ × v∗.

(b) Now take any u0, v0 ∈M0,∞
µ̄ . Set

A = {u : u ∈ S(Af ), 0 ≤ u ≤ |u0|}, B = {v : v ∈ S(Af ), 0 ≤ v ≤ |v0|}.
Then A is an upwards-directed set with supremum |u0|, because (A, µ̄) is semi-finite, so {u∗ : u ∈ A} is an
upwards-directed set with supremum |u0|∗ = u∗0 (373Db, 373Dh). Similarly {v∗ : v ∈ B} is upwards-directed
and has supremum v∗0 , so {u∗ × v∗ : u ∈ A, v ∈ B} is upwards-directed and has supremum u∗0 × v∗0 .

Consequently, if γ <
∫
u∗0 × v∗0 , there are u ∈ A, v ∈ B such that γ ≤

∫
u∗ × v∗. Now, by (a), there is a

π ∈ Autµ̄ such that

γ ≤
∫
u× Tπv ≤

∫
|u0| × Tπ|v0| =

∫
|u0 × Tπv0|

because Tπ is a Riesz homomorphism. As γ is arbitrary,∫
u∗0 × v∗0 ≤ supπ∈Autµ̄

∫
|u0 × Tπv0|.

But the reverse inequality is immediate from 373J.

374K Theorem Let (A, µ̄) be a quasi-homogeneous semi-finite measure algebra, and τ a rearrangement
-invariant extended Fatou norm on L0 = L0(A). Then τ is T -invariant.

proof Write τ ′ for the associate of τ . Then 374J tells us that for any u, v ∈M0,∞
µ̄ ,

∫
u∗ × v∗ = supπ∈Autµ̄

∫
|Tπu× v| ≤ supπ∈Autµ̄ τ(Tπu)τ ′(v) = τ(u)τ ′(v),

writing u∗, v∗ for the decreasing rearrangements of u and v, and Autµ̄ for the group of measure-preserving

automorphisms of (A, µ̄). But now, if u ∈M1,∞
µ̄ and T ∈ Tµ̄,µ̄,

τ(Tu) = sup{
∫
|Tu× v| : τ ′(v) ≤ 1}

(369I)

≤ sup{
∫
u∗ × v∗ : τ ′(v) ≤ 1}

(373J)

≤ τ(u).

As T , u are arbitrary, τ is T -invariant.

374L Lemma Let (A, µ̄) be a quasi-homogeneous semi-finite measure algebra. Suppose that u, v ∈
(M0,∞

µ̄ )+ are such that
∫
u∗ × v∗ =∞. Then there is a measure-preserving automorphism π : A→ A such

that
∫
u× Tπv =∞.

proof I take three cases separately.

(a) Suppose that A is purely atomic; then u, v ∈ L∞(A) and u∗, v∗ ∈ L∞(AL), so neither u∗ nor v∗ can
belong to L1

µ̄L
and neither u nor v can belong to L1

µ̄. Let γ be the common measure of the atoms of A. For
each n ∈ N, set

αn = inf{α : α ≥ 0, µ̄[[u > α]] ≤ 3nγ}, ãn = [[u > 1
2αn]].
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Then µ̄[[u > αn]] ≤ 3nγ; also αn > 0, since otherwise u would belong to L1
µ̄, so µ̄ãn ≥ 3nγ. We can therefore

choose 〈a′n〉n∈N inductively such that a′n ⊆ ãn and µ̄a′n = 3nγ for each n (using 374Ib). For each n ≥ 1, set

a′′n = a′n \ supi<n a
′
i; then µ̄a′′n ≥

1

2
· 3−nγ, so we can choose an an ⊆ a′′n such that µ̄an = 3n−1γ.

Also, of course, 〈αn〉n∈N is non-increasing. We now see that

〈an〉n≥1 is disjoint, u ≥ 1

2
αnχan for every n ≥ 1,

u∗ ≤ ‖u‖∞χ [0, γ[
• ∨ supn∈N αnχ

[
3nγ, 3n+1γ

[•
.

Similarly, there are a non-increasing sequence 〈βn〉n∈N in [0,∞[ and a disjoint sequence 〈bn〉n≥1 in A such
that

µ̄bn = 3n−1γ, v ≥ 1

2
βnχbn for every n ≥ 1,

v∗ ≤ ‖v‖∞χ [0, γ[
• ∨ supn∈N βnχ

[
3nγ, 3n+1γ

[•
.

We are supposing that

∞ =

∫
u∗ × v∗ = γ‖u‖∞‖v‖∞ +

∞∑

n=0

2 · 3nγαnβn

= γ‖u‖∞‖v‖∞ + 2γα0β0 + 2γ

∞∑

n=0

32n+1(α2n+1β2n+1 + 3α2n+2β2n+2)

≤ γ‖u‖∞‖v‖∞ + 2γα0β0 + 24

∞∑

n=0

32nγα2n+1β2n+1,

so
∑∞

n=0 32nα2n+1β2n+1 =∞.
At this point, recall that we are dealing with a purely atomic algebra in which every atom has measure γ.

Let An, Bn be the sets of atoms included in an, bn for each n ≥ 1, and A =
⋃

n≥1An ∪Bn. Then #(An) =

#(Bn) = 3n−1 for each n ≥ 1. We therefore have a permutation φ : A → A such that φ[B2n+1] = A2n+1

for every n. (The point is that A \ ⋃n∈NA2n+1 and A \ ⋃n∈NB2n+1 are both countably infinite.) Define
π : A→ A by setting

πc = (c \ supA) ∪ supa∈A,a⊆c φa

for c ∈ A. Then π is well-defined (because A is countable), and it is easy to check that it is a measure-
preserving Boolean automorphism (because it is just a permutation of the atoms); and πb2n+1 = a2n+1 for
every n. Consequently

∫
u× Tπv ≥

∑∞
n=0

1

4
α2n+1β2n+1µ̄a2n+1 =

1

4
γ
∑∞

n=0 32nα2n+1β2n+1 =∞.

So we have found a suitable automorphism.

(b) Next, consider the case in which (A, µ̄) is atomless and of finite magnitude γ. Of course γ > 0. For
each n ∈ N set

αn = inf{α : α ≥ 0, µ̄[[u > α]] ≤ 3−nγ}, ãn = [[u >
1

2
αn]].

Then 〈αn〉n∈N is non-decreasing and

u∗ ≤ supn∈N αn+1χ
[
3−n−1γ, 3−nγ

[•
.

This time, µ̄ãn ≥ 3−nγ, and we are in an atomless measure algebra, so we can choose a′n ⊆ ãn such that

µ̄a′n = 3−nγ; taking a′′n = a′n \ supi>n a
′
i, µ̄a

′′
n ≥

1

2
·3−nγ, and we can choose an ⊆ a′′n such that µ̄an = 3−n−1γ

for every n. As before, u ≥ 1

2
αnχan for every n, and 〈an〉n∈N is disjoint.

In the same way, we can find 〈βn〉n∈N, 〈bn〉n∈N such that 〈bn〉n∈N is disjoint,
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v∗ ≤ supn∈N βn+1χ
[
3−n−1γ, 3−nγ

[•
, v ≥ supn∈N

1

2
βnχbn

and µ̄bn = 3−n−1γ for each n. In this case, we have

∞ =
∫
u∗ × v∗ ≤∑∞

n=0 2 · 3−n−1γαn+1βn+1,

and
∑∞

n=0 3−nαnβn is infinite.
Now all the principal ideals Aan

, Abn are homogeneous and of the same Maharam type, so there

are measure-preserving isomorphisms πn : Abn → Aan
; similarly, setting ã = 1 \ supn∈N an and b̃ =

1 \ supn∈N bn, there is a measure-preserving isomorphism π̃ : Ab̃ → Aã. Define π : A→ A by setting

πc = π̃(c ∩ b̃) ∪ supn∈N πn(c ∩ an)

for every c ∈ A; then π is a measure-preserving automorphism of A, and πbn = an for each n. In this case,
∫
u× Tπv ≥ 1

4

∑∞
n=0 3−n−1γαnβn =∞,

and again we have a suitable automorphism.

(c) Thirdly, consider the case in which A is atomless and not totally finite; take κ to be the common
Maharam type of all the principal ideals Aa where 0 < µ̄a <∞. In this case, set

αn = inf{α : µ̄[[u > α]] ≤ 3n}, βn = inf{α : µ̄[[v > α]] ≤ 3n}
for each n ∈ Z. This time

u∗ ≤ supn∈Z αnχ
[
3n, 3n+1

[•
, v∗ ≤ supn∈Z βnχ

[
3n, 3n+1

[•
,

so

∞ =
∫
u∗ × v∗ = 2

∑∞
n=−∞ 3nαnβn ≤ 8

∑∞
n=−∞ 32nα2nβ2n.

For each n ∈ Z, 3n ≤ µ̄[[u > 1
2αn]], so there is an a′′n such that

a′′n ⊆ [[u > 1
2αn]], µ̄a′′n = 3n.

Set a′n = a′′n \ sup−∞<i<n a
′′
i ; then µ̄a′n ≥

1

2
· 3n for each n; choose an ⊆ a′n such that µ̄an = 3n−1. Then

〈an〉n∈N is disjoint and u ≥ 1

2
αnχan for each n.

Similarly, there is a disjoint sequence 〈bn〉n∈N such that

µ̄bn = 3n−1, v ≥ 1

2
βnχbn

for each n ∈ N.
Set d∗ = supn∈Z an ∪ supn∈Z bn. Then

ã = d∗ \ supn∈Z a2n, b̃ = d∗ \ supn∈Z b2n

both have magnitude ω and Maharam type κ. So there is a measure-preserving isomorphism π̃ : Ab̃ → Aã

(332J). At the same time, for each n ∈ Z there is a measure-preserving isomorphism πn : Ab2n → Aa2n
. So

once again we can assemble these to form a measure-preserving automorphism π : A → A, defined by the
formula

πc = (c \ d∗) ∪ π̃(c ∩ b̃) ∪ supn∈Z πn(c ∩ b2n).

Just as in (a) and (b) above,
∫
u× Tπv ≥

∑∞
n=−∞

1

4
· 32n−1α2nβ2n =∞.

Thus we have a suitable π in any of the cases allowed by 374H.

374M Proposition Let (A, µ̄) be a quasi-homogeneous localizable measure algebra, and U ⊆ L0 = L0(A)
a solid linear subspace which, regarded as a Riesz space, is perfect. If U is rearrangement-invariant and
M∞,1

µ̄ ⊆ U ⊆M1,∞
µ̄ , then U is T -invariant.
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proof Set V = {v : u × v ∈ L1 for every u ∈ U}, so that V is a solid linear subspace of L0 which can be

identified with U× (369C), and U becomes {u : u× v ∈ L1 for every v ∈ V }; note that M∞,1
µ̄ ⊆ V ⊆M1,∞

µ̄

(using 369Q).
If u ∈ U+, v ∈ V + and π : A→ A is a measure-preserving automorphism, then Tπu ∈ U , so

∫
v×Tπu <∞;

by 374L,
∫
u∗ × v∗ is finite. But this means that if u ∈ U , v ∈ V and T ∈ Tµ̄,µ̄,∫

|Tu× v| ≤
∫
u∗ × v∗ <∞.

As v is arbitrary, Tu ∈ U ; as T and u are arbitrary, U is T -invariant.

374X Basic exercises >>>(a) Let (A, µ̄) be a measure algebra and A ⊆ M1,∞
µ̄ a T -invariant set. (i)

Show that A is solid. (ii) Show that if A is a linear subspace and not {0}, then it includes M∞,1
µ̄ . (iii)

Show that if u ∈ A, v ∈ M0,∞
µ̄ and

∫ t

0
v∗ ≤

∫ t

0
u∗ for every t > 0, then v ∈ A. (iv) Show that if (B, ν̄) is

any other measure algebra, then B = {Tu : u ∈ A, T ∈ Tµ̄,ν̄} and C = {v : v ∈ M1,∞
ν̄ , T v ∈ A for every

T ∈ Tν̄,µ̄} are T -invariant subsets of M1,∞
ν̄ , and that B ⊆ C. Give two examples in which B ⊂ C. Show

that if (A, µ̄) = (AL, µ̄L) then B = C.

>>>(b) Let (A, µ̄) be a measure algebra. Show that the extended Fatou norm ‖ ‖p on L0(A) is T -invariant
for every p ∈ [1,∞]. (Hint : 371Gd.)

(c) Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras, and φ a Young’s function (369Xc). Let τφ,
τ̃φ be the corresponding Orlicz norms on L0(A), L0(B). Show that τ̃φ(Tu) ≤ τφ(u) for every u ∈ L0(A),
T ∈ Tµ̄,ν̄ . (Hint : 369Xn, 373Xm.) In particular, τφ is T -invariant.

(d) Show that if (A, µ̄) is a semi-finite measure algebra and τ is a T -invariant extended Fatou norm on
L0(A), then the Banach lattice Lτ defined from τ is T -invariant.

(e) Let (A, µ̄) be a semi-finite measure algebra and τ a T -invariant extended Fatou norm on L0(A) which

is an order-continuous norm on Lτ . Show that Lτ ⊆M1,0
µ̄ .

(f) Let θ be a T -invariant extended Fatou norm on L0(AL) and (A, µ̄), (B, ν̄) two semi-finite measure
algebras. Let τ1, τ2 be the extended Fatou norms on L0(A), L0(B) defined from θ by the method of 374C.

Show that τ2(Tu) ≤ τ1(u) whenever u ∈M1,∞
µ̄ and T ∈ Tµ̄,ν̄ .

>>>(g) Let (A, µ̄) be a semi-finite measure algebra, not {0}, and set τ(u) = sup0<µ̄a<∞
1√
µ̄a

∫
a
|u| for

u ∈ L0(A). Show that τ is a T -invariant extended Fatou norm. Find examples of (A, µ̄) for which τ is, and
is not, order-continuous on Lτ .

(h) Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras and τ a T -invariant extended Fatou norm on
L0(A). (i) Show that there is a T -invariant extended Fatou norm θ on L0(B) defined by setting θ(v) =

sup{τ(Tv) : T ∈ Tν̄,µ̄} for v ∈ M1,∞
ν̄ . (ii) Show that when (A, µ̄) = (AL, µ̄L) then θ(v) = τ(v∗) for every

v ∈M0,∞
ν̄ . (iii) Show that when (B, ν̄) = (AL, µ̄L) then τ(u) = θ(u∗) for every u ∈M0,∞

µ̄ .

(i) Let (A, µ̄) be a semi-finite measure algebra and τ an extended Fatou norm on L0 = L0(A). Suppose
that Lτ is a T -invariant subset of L0. Show that there is a T -invariant extended Fatou norm τ̃ which is
equivalent to τ in the sense that, for some M > 0, τ̃(u) ≤Mτ(u) ≤M2τ̃(u) for every u ∈ L0. (Hint : show

first that
∫
u∗ × v∗ <∞ for every u ∈ Lτ and v ∈ Lτ ′

, then that supτ(u)≤1,τ ′(v)≤1

∫
u∗ × v∗ <∞.)

(j) Suppose that τ is a T -invariant extended Fatou norm on L0(AL), and that 0 < w = w∗ ∈M1,∞
µ̄L

. Let
(A, µ̄) be any semi-finite measure algebra. Show that the function u 7→ τ(w × u∗) extends to a T -invariant

extended Fatou norm θ on L0(A). (Hint : τ(w × u∗) = sup{τ(w × Tu) : T ∈ Tµ̄,µ̄L
} for u ∈M1,∞

µ̄L
.) (When

τ = ‖ ‖p these norms are called Lorentz norms; see Lindenstrauss & Tzafriri 79, p. 121.)

(k) Let (A, µ̄) be PN with counting measure. Identify L0(A) with RN. Let U be {u : u ∈ RN, {n : u(n) 6=
0} is finite}. Show that U is a perfect Riesz space, and is rearrangement-invariant but not T -invariant.
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(l) Let (A, µ̄) be an atomless quasi-homogeneous localizable measure algebra, and U ⊆ L0(A) a rearrange-

ment-invariant solid linear subspace which is a perfect Riesz space. Show that U ⊆M1,∞
µ̄ and that U is T -

invariant. (Hint : assume U 6= {0}. Show that (i) χa ∈ U whenever µ̄a <∞ (ii) V = {v : v×u ∈ L1 ∀ u ∈ U}
is rearrangement-invariant (iii) U , V ⊆M1,∞.)

374Y Further exercises (a) Let (A, µ̄) be a localizable measure algebra and U ⊆ M1,∞
µ̄ a non-zero

T -invariant Riesz subspace which, regarded as a Riesz space, is perfect. (i) Show that U includes M∞,1
µ̄ .

(ii) Show that its dual {v : v ∈ L0(A), v × u ∈ L1
µ̄ ∀ u ∈ U} (which in this exercise I will denote by U×) is

also T -invariant, and is {v : v ∈M0,∞
µ̄ ,

∫
u∗× v∗ <∞ ∀ u ∈ U}. (iii) Show that for any localizable measure

algebra (B, ν̄) the set V = {v : v ∈ M1,∞
ν̄ , T v ∈ U ∀ T ∈ Tν̄,µ̄} is a perfect Riesz subspace of L0(B), and

that V × = {v : v ∈ M1,∞
ν̄ , T v ∈ U× ∀ T ∈ Tν̄,µ̄}. (iv) Show that if, in (i)-(iii), (A, µ̄) = (AL, µ̄L), then

V = {v : v ∈M0,∞, v∗ ∈ U}. (v) Show that if, in (iii), (B, ν̄) = (AL, µ̄L), then U = {u : u ∈M0,∞
µ̄ , u∗ ∈ V }.

(b) Let (A, µ̄) be a semi-finite measure algebra, and suppose that 1 ≤ q ≤ p <∞. Let wpq ∈ L0(AL) be

the equivalence class of the function t 7→ t(q−p)/p. (i) Show that for any u ∈ L0(A),∫
wpq × (u∗)q = p

∫∞

0
tq−1(µ̄[[|u| > t]])q/pdt.

(ii) Show that we have an extended Fatou norm ‖ ‖p,q on L0(A) defined by setting

‖u‖p,q =
(
p
∫∞

0
tq−1(µ̄[[|u| > t]])q/pdt

)1/q

for every u ∈ L0(A). (Hint : use 374Xj with w = w
1/q
pq , ‖ ‖ = ‖ ‖q.) (iii) Show that if (B, ν̄) is another

semi-finite measure algebra and T ∈ Tµ̄,ν̄ , then ‖Tu‖p,q ≤ ‖u‖p,q for every u ∈M1,∞
µ̄ . (iv) Show that ‖ ‖p,q

is an order-continuous norm on L‖ ‖p,q .

(c) Let (A, µ̄) be a homogeneous measure algebra of uncountable Maharam type, and u, v ≥ 0 in M0
µ̄

such that u∗ = v∗. Show that there is a measure-preserving automorphism π of A such that Tπu = v, where
Tπ : L0(A)→ L0(A) is the isomorphism corresponding to π.

(d) In L0(AL) let u be the equivalence class of the function f(t) = te−t. Show that there is no Boolean
automorphism π of AL such that Tπu = u∗. (Hint : show that AL is τ -generated by {[[u∗ > α]] : α > 0}.)

(e) Let (A, µ̄) be a quasi-homogeneous semi-finite measure algebra and C ⊆ L0(A) a solid convex order-

closed rearrangement-invariant set. Show that C ∩M1,∞
µ̄ is T -invariant.

374 Notes and comments I gave this section the title ‘rearrangement-invariant spaces’ because it looks
good on the Contents page, and it follows what has been common practice since Luxemburg 67b; but
actually I think that it’s T -invariance which matters, and that rearrangement-invariant spaces are significant
largely because the important ones are T -invariant. The particular quality of T -invariance which I have
tried to bring out here is its transferability from one measure algebra (or measure space, of course) to
another. This is what I take at a relatively leisurely pace in 374B-374D and 374Xf, and then encapsulate
in 374Xh and 374Ya. The special place of the Lebesgue algebra (AL, µ̄L) arises from its being more or less
the simplest algebra over which every T -invariant set can be described; see 374Xa.

I don’t think this work is particularly easy, and (as in §373) there are rather a lot of unattractive names
in it; but once one has achieved a reasonable familiarity with the concepts, the techniques used can be seen
to amount to half a dozen ideas – non-trivial ideas, to be sure – from §§369 and 373. From §369 I take
concepts of duality: the symmetric relationship between a perfect Riesz space U ⊆ L0 and the representation
of its dual (369C-369D), and the notion of associate extended Fatou norms (369H-369K). From §373 I take
the idea of ‘decreasing rearrangement’ and theorems guaranteeing the existence of useful members of Tµ̄,ν̄
(373O-373Q). The results of the present section all depend on repeated use of these facts, assembled in a
variety of patterns.

There is one new method here, but an easy one: the construction of measure-preserving automorphisms
by joining isomorphisms together, as in the proofs of 374H and 374J. I shall return to this idea, in greater
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generality and more systematically investigated, in §381. I hope that the special cases here will give no
difficulty.

While T -invariance is a similar phenomenon for both extended Fatou norms and perfect Riesz spaces
(see 374Xh, 374Ya), the former seem easier to deal with. The essential difference is I think in 374B(i);
with a T -invariant extended Fatou norm, we are necessarily confined to M1,∞, the natural domain of the
methods used here. For perfect Riesz spaces we have examples like RN ∼= L0(PN) and its dual, the space of
eventually-zero sequences (374Xk); these are rearrangement-invariant but not T -invariant, as I have defined
it. This problem does not arise over atomless algebras (374Xl).

I think it is obvious that for algebras which are not quasi-homogeneous (374G) rearrangement-invariance
is going to be of limited interest; there will be regions between which there is no communication by means
of measure-preserving automorphisms, and the best we can hope for is a discussion of quasi-homogeneous
components, if they exist, corresponding to the partition of unity used in the proof of 332J. There is a
special difficulty concerning rearrangement-invariance in L0(AL): two elements can have the same decreas-
ing rearrangement without being rearrangements of each other in the strict sense (373Ya, 374Yd). The
phenomenon of 373Ya is specific to algebras of countable Maharam type (374Yc). You will see that some of
the labour of 374L is because we have to make room for the pieces to move in. 374J is easier just because
in that context we can settle for a supremum, rather than an actual infinity, so the rearrangement needed
(part (a) of the proof) can be based on a region of finite measure.

Version of 30.1.10

375 Kwapien’s theorem

In §368 and the first part of §369 I examined maps from various types of Riesz space into L0 spaces.
There are equally striking results about maps out of L0 spaces. I start with some relatively elementary facts
about positive linear operators from L0 spaces to Archimedean Riesz spaces in general (375A-375D), and
then turn to a remarkable analysis, due essentially to S.Kwapien, of the positive linear operators from a
general L0 space to the L0 space of a semi-finite measure algebra (375J), with a couple of simple corollaries.

375A Theorem Let A be a Dedekind σ-complete Boolean algebra and W an Archimedean Riesz space.
If T : L0(A)→W is a positive linear operator, it is sequentially order-continuous.

proof (a) The first step is to observe that if 〈un〉n∈N is any non-increasing sequence in L0 = L0(A)
with infimum 0, and ǫ > 0, then {n(un − ǫu0) : n ∈ N} is bounded above in L0. PPP For k ∈ N set
ak = supn∈N [[n(un − ǫu0) > k]]; set a = infk∈N ak. ??? Suppose, if possible, that a 6= 0. Because un ≤ u0,
n(un − ǫu0) ≤ nu0 for every n and

a ⊆ a0 ⊆ [[u0 > 0]] = [[ǫu0 > 0]] = supn∈N [[ǫu0 − un > 0]].

So there is some m ∈ N such that a′ = a ∩ [[ǫu0 − um > 0]] 6= 0. Now, for any n ≥ m, any k ∈ N,

a′ ∩ [[n(un − ǫu0) > k]] ⊆ [[ǫu0 − um > 0]] ∩ [[um − ǫu0 > 0]] = 0.

But a′ ⊆ supn∈N [[n(un − ǫu0) > k]], so in fact

a′ ⊆ supn≤m [[n(un − ǫu0) > k]] = [[v > k]],

where v = supn≤m n(un − ǫu0). And this means that infk∈N [[v > k]] ⊇ a′ 6= 0, which is impossible. XXX
Accordingly a = 0; by 364L(a-i), {n(un − ǫu0) : n ∈ N} is bounded above. QQQ

(b) Now suppose that 〈un〉n∈N is a non-increasing sequence in L0 with infimum 0, and that w ∈ W is a
lower bound for {Tun : n ∈ N}. Take any ǫ > 0. By (a), {n(un− ǫu0) : n ∈ N} has an upper bound v in L0.
Because T is positive,

w ≤ Tun = T (un − ǫu0) + T (ǫu0) ≤ T (
1

n
v) + T (ǫu0) =

1

n
Tv + ǫTu0

for every n ≥ 1. Because W is Archimedean, w ≤ ǫTu0. But this is true for every ǫ > 0, so (again because
W is Archimedean) w ≤ 0. As w is arbitrary, infn∈N Tun = 0. As 〈un〉n∈N is arbitrary, T is sequentially
order-continuous (351Gb).

D.H.Fremlin



54 Linear operators between function spaces 375B

375B Proposition Let A be an atomless Dedekind σ-complete Boolean algebra. Then L0(A)× = {0}.
proof ??? Suppose, if possible, that h : L0(A)→ R is a non-zero order-continuous positive linear functional.
Then there is a u > 0 in L0 such that h(v) > 0 whenever 0 < v ≤ u (356H). Because A is atomless, there is
a disjoint sequence 〈an〉n∈N such that an ⊆ [[u > 0]] for each n, so that un = u×χan > 0, while um ∧un = 0
if m 6= n. Now however

v = supn∈N

n

h(un)
un

is defined in L0, by 368K, and h(v) ≥ n for every n, which is impossible. XXX

375C Theorem Let A be a Dedekind complete Boolean algebra, W an Archimedean Riesz space, and
T : L0(A) → W an order-continuous Riesz homomorphism. Then V = T [L0(A)] is an order-closed Riesz
subspace of W .

proof The kernel U of T is a band in L0 = L0(A) (352Oe), and must be a projection band (353J), because
L0 is Dedekind complete (364M). Since U + U⊥ = L0, T [U ] + T [U⊥] = V , that is, T [U⊥] = V ; since
U ∩U⊥ = {0}, T is an isomorphism between U⊥ and V . Now suppose that A ⊆ V is upwards-directed and
has a least upper bound w ∈ W . Then B = {u : u ∈ U⊥, Tu ∈ A} is upwards-directed and T [B] = A. The
point is that B is bounded above in L0. PPP??? If not, then {u+ : u ∈ B} cannot be bounded above, so there
is a u0 > 0 in L0 such that nu0 = supu∈B nu0 ∧ u+ for every n ∈ N (368A). Since B ⊆ U⊥, u0 ∈ U⊥ and
Tu0 > 0. But now, because T is an order-continuous Riesz homomorphism,

nTu0 = supu∈B T (nu0 ∧ u+) = supv∈A nTu0 ∧ v+ ≤ w+

for every n ∈ N, which is impossible. XXXQQQ
Set u∗ = supB; then Tu∗ = supA = w and w ∈ V . As A is arbitrary, V is order-closed.

375D Corollary Let W be a Riesz space and V an order-dense Riesz subspace which is isomorphic to
L0(A) for some Dedekind complete Boolean algebra A. Then V = W .

proof By 353G, W is Archimedean. So we can apply 375C to an isomorphism T : L0(A)→ V to see that
V is order-closed in W .

375E Theorem Let (A, µ̄) be a semi-finite measure algebra, (B, ν̄) any measure algebra, and T : L0(A)→
L0(B) an order-continuous positive linear operator. Then T is continuous for the topologies of convergence
in measure.

proof ??? Otherwise, we can find w ∈ L0(A), b ∈ Bf and ǫ > 0 such that whenever a ∈ Af and δ > 0
there is a u ∈ L0(A) such that µ̄(a ∩ [[|u− w| > δ]]) ≤ δ and ν̄(b ∩ [[|Tu− Tw| > ǫ]]) ≥ ǫ (367L, 2A3H). Of
course it follows that whenever a ∈ Af and δ > 0 there is a u ∈ L0(A) such that µ̄(a ∩ [[|u| > δ]]) ≤ δ and
ν̄(b ∩ [[|Tu| > ǫ]]) ≥ ǫ. Choose 〈an〉n∈N and 〈un〉n∈N inductively, as follows. a0 = 0. Given that an ∈ Af , let
un ∈ L0(A) be such that µ̄(an ∩ [[|un| > 2−n]]) ≤ 2−n and ν̄(b ∩ [[|Tun| > ǫ]]) ≥ ǫ. Of course it follows that
ν̄(b ∩ [[T |un| > ǫ]]) ≥ ǫ. Because (A, µ̄) is semi-finite, |un| = supa∈Af |un|×χa); because T is order-continuous,
T |un| = supa∈Af T (|un| × χa), and we can find an+1 ∈ Af such that ν̄(b ∩ [[T (|un| × χan+1) > ǫ]]) ≥ 1

2ǫ.
Enlarging an+1 if necessary, arrange that an+1 ⊇ an. Continue.

At the end of the induction, set vn = 2n|un| × χan+1; then µ̄(an ∩ [[vn > 1]]) ≤ 2−n, for each n ∈ N. It
follows that {vn : n ∈ N} is bounded above. PPP For k ∈ N, set ck = supn∈N [[vn > k]]. Then ck ⊆ supn∈N an.
If n ∈ N and δ > 0, let m ≥ n be such that 2−m+1 ≤ δ, and k ≥ 1 such that µ̄(an ∩ [[supm<n vm > k]]) ≤ δ.
Then

µ̄(an ∩ ck) ≤ µ̄(an ∩ [[supm<n vm > k]]) +
∑∞

i=m µ̄(ai ∩ [[vi > 1]]) ≤ 2δ.

As δ is arbitrary, an ∩ infk∈N ck = 0; as n is arbitrary, infk∈N ck = 0; by 364L(a-i) again, {vn : n ∈ N} is
bounded above. QQQ

Set v = supn∈N vn. Then 2−nv ≥ |un|×χan+1, so 2−nTv ≥ T (|un|×χan+1) and ν̄(b ∩ [[2−nTv > ǫ]]) ≥ 1
2ǫ,

for each n ∈ N. But infn∈N 2−nTv = 0, so infn∈N [[2−nTv > ǫ]] = 0 (364L(b-ii)) and infn∈N ν̄(b ∩ [[2−nTv > ǫ]]) =
0. XXX

So we have the result.
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375F I come now to the deepest result of this section, concerning positive linear operators from L0(A)
to L0(B) where B is a measure algebra. I approach through a couple of lemmas which are striking enough
in their own right.

The following temporary definition will be useful.

Definition Let A and B be Boolean algebras. I will say that a function φ : A→ B is a σ-subhomomor-
phism if

φ(a ∪ a′) = φ(a) ∪ φ(a′) for all a, a′ ∈ A,

infn∈N φ(an) = 0 whenever 〈an〉n∈N is a non-increasing sequence in A with infimum 0.

Now we have the following easy facts.

375G Lemma Let A and B be Boolean algebras and φ : A→ B a σ-subhomomorphism.
(a) φ(0) = 0, φ(a) ⊆ φ(a′) whenever a ⊆ a′, and φ(a) \ φ(a′) ⊆ φ(a \ a′) for every a, a′ ∈ A.
(b) If µ̄, ν̄ are measures such that (A, µ̄) and (B, ν̄) are totally finite measure algebras, then for every

ǫ > 0 there is a δ > 0 such that ν̄φ(a) ≤ ǫ whenever µ̄a ≤ δ.
proof (a) This is elementary. Set every an = 0 in the second clause of the definition 375F to see that
φ(0) = 0. The other two parts are immediate consequences of the first clause.

(b) (Compare 232Ba, 327Bb.) ??? Suppose, if possible, otherwise. Then for every n ∈ N there is an an ∈ A

such that µ̄an ≤ 2−n and ν̄φ(an) ≥ ǫ. Set cn = supi≥n ai for each n; then 〈cn〉n∈N is non-increasing and has

infimum 0 (since µ̄cn ≤ 2−n+1 for each n), but ν̄φ(cn) ≥ ǫ for every n, so infn∈N φcn cannot be 0. XXX

375H Lemma Let (A, µ̄) and (B, ν̄) be totally finite measure algebras and φ : A → B a σ-subho-
momorphism. Then for every non-zero b0 ∈ B there are a non-zero b ⊆ b0 and an m ∈ N such that
b ∩ infj≤m φ(aj) = 0 whenever a0, . . . , am ∈ A are disjoint.

proof (a) Suppose first that A is atomless and that µ̄1 = 1.
Set ǫ = 1

5 ν̄b0 and let m ≥ 1 be such that ν̄φ(a) ≤ ǫ whenever µ̄a ≤ 1
m (375Gb). We need to know that

(1− 1
m )m ≤ 1

2 ; this is because (if m ≥ 2) lnm− ln(m− 1) ≥ 1
m , so m ln(1− 1

m ) ≤ −1 ≤ − ln 2.
Set

C = {infj≤m φ(aj) : a0, . . . , am ∈ A are disjoint}.
??? Suppose, if possible, that b0 ⊆ supC. Then there are c0, . . . , ck ∈ C such that ν̄(b0 ∩ supi≤k ci) ≥ 4ǫ.
For each i ≤ k choose disjoint ai0, . . . , aim ∈ A such that ci = infj≤m φ(aij). Let D be the set of atoms of
the finite subalgebra of A generated by {aij : i ≤ k, j ≤ m}, so that D is a finite partition of unity in A,
and every aij is the join of the members of D it includes. Set p = #(D), and for each d ∈ D take a maximal
disjoint set Ed ⊆ {e : e ⊆ d, µ̄e = 1

pm}, so that µ̄(d \ supEd) < 1
pm ; set

d∗ = 1 \ sup(
⋃

d∈D Ed) = supd∈D(d \ supEd),

so that µ̄d∗ is a multiple of 1
pm and is less than 1

m . Let E∗ be a disjoint set of elements of measure 1
pm with

union d∗, and take E = E∗ ∪⋃d∈D Ed, so that E is a partition of unity in A, µ̄e = 1
pm for every e ∈ E, and

aij \ d∗ is the join of the members of E it includes for every i ≤ k and j ≤ m.
Set

K = {K : K ⊆ E, #(K) = p}, M = #(K) =
(mp)!

p!(mp−p)!
.

For every K ∈ K, µ̄(supK) = 1
m so ν̄φ(supK) ≤ ǫ. So if we set

v =
∑

K∈K χφ(supK),
∫
v ≤ ǫM . On the other hand,

ν̄(b0 ∩ supi≤k ci) ≥ 4ǫ, ν̄φ(d∗) ≤ ǫ,
so ν̄b1 ≥ 3ǫ, where

b1 = b0 ∩ supi≤k ci \ φ(d∗).
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Accordingly
∫
v ≤ 1

3Mν̄b1 and

b2 = b1 ∩ [[v < 1
2M ]]

is non-zero.
Because b2 ⊆ b1, there is an i ≤ k such that b2 ∩ ci 6= 0. Now

b2 ∩ ci ⊆ ci \ φ(d∗) = infj≤m φ(aij) \ φ(d∗) ⊆ infj≤m φ(aij \ d∗).

But every aij \ d∗ is the join of the members of E it includes, so

b2 ∩ ci ⊆ inf
j≤m

φ(aij \ d∗) ⊆ inf
j≤m

φ(sup{e : e ∈ E, e ⊆ aij})

= inf
j≤m

sup{φ(e) : e ∈ E, e ⊆ aij}

= sup{ inf
j≤m

φ(ej) : e0, . . . , em ∈ E and ej ⊆ aij for every j}.

So there are e0, . . . , em ∈ E such that ej ⊆ aij for each j and b3 = b2 ∩ infj≤m φ(ej) 6= 0. Because
ai0, . . . , aim are disjoint, e0, . . . , em are distinct; set J = {e0, . . . , em}. Then whenever K ∈ K and K∩J 6= ∅,
b3 ⊆ φ(supK).

So let us calculate the size of K1 = {K : K ∈ K, K ∩ J 6= ∅}. This is

M − (mp−m−1)!

p!(mp−p−m−1)!
= M

(
1− (mp−p)(mp−p−1)...(mp−p−m)

mp(mp−1)...(mp−m)

)

≥M
(
1− (

mp−p

mp
)m+1

)
≥ 1

2
M.

But this means that b3 ⊆ [[v ≥ 1
2M ]], while also b3 ⊆ [[v < 1

2M ]]; which is surely impossible. XXX
Accordingly b0 6⊆ supC, and we can take b = b0 \ supC.

(b) Now for the general case. Let A be the set of atoms of A, and set d = 1 \ supA. Then the principal
ideal Ad is atomless, so there are a non-zero b1 ⊆ b0 and an n ∈ N such that b1 ∩ infj≤n φ(aj) = 0 whenever
a0, . . . , an ∈ Ad are disjoint. PPP If µ̄d > 0 this follows from (a), if we apply it to φ↾Ad and (µ̄d)−1µ̄↾Ad. If
µ̄d = 0 then we can just take b1 = b0 and n = 0. QQQ

Let δ > 0 be such that ν̄φ(a) < ν̄b1 whenever µ̄a ≤ δ. Let A1 ⊆ A be a finite set such that µ̄(supA1) ≥
µ̄(supA) − δ, and set r = #(A), d∗ = sup(A \A1). Then µ̄d∗ ≤ δ so b = b1 \ φ(d∗) 6= 0. Try m = n + r.
If a0, . . . , am are disjoint, then at most r of them can meet supA1, so (re-ordering if necessary) we can
suppose that a0, . . . , an are disjoint from supA1, in which case aj \ d∗ ⊆ d for each j ≤ m. But in this case
(because b ∩ φ(d∗) = 0)

b ∩ infj≤m φ(aj) ⊆ b ∩ infj≤n φ(aj) = b ∩ infj≤n φ(aj ∩ d) = 0

by the choice of n and b1.
Thus in the general case also we can find appropriate b and m.

375I Lemma Let (A, µ̄) and (B, ν̄) be totally finite measure algebras and φ : A→ B a σ-subhomomor-
phism. Then for every non-zero b0 ∈ B there are a non-zero b ⊆ b0 and a finite partition of unity C ⊆ A

such that a 7→ b ∩ φ(a ∩ c) is a ring homomorphism for every c ∈ C.

proof By 375H, we can find b1, m such that 0 6= b1 ⊆ b0 and b1 ∩ infj≤m φ(aj) = 0 whenever a0, . . . , am ∈
A are disjoint. Do this with the smallest possible m. If m = 0 then b1 ∩ φ(1) = 0, so we can take
b = b1, C = {1}. Otherwise, because m is minimal, there must be disjoint c1, . . . , cm ∈ A such that
b = b1 ∩ inf1≤j≤m φ(cj) 6= 0. Set c0 = 1 \ sup1≤j≤m cj , C = {c0, c1, . . . , cm}; then C is a partition of unity
in A. Set πj(a) = b ∩ φ(a ∩ cj) for each a ∈ A and j ≤ m. Then we always have πj(a ∪ a′) = πj(a) ∪ πj(a′)
for all a, a′ ∈ A, because φ is a subhomomorphism.

To see that every πj is a ring homomorphism, we need only check that πj(a ∩ a′) = 0 whenever a ∩ a′ = 0.
(Compare 312H(iv).) In the case j = 0, we actually have π0(a) = 0 for every a, because b ∩ φ(c0) =
b1 ∩ inf0≤j≤m φ(cj) = 0 by the choice of b1 and m. When 1 ≤ j ≤ m, if a ∩ a′ = 0, then

πj(a) ∩ πj(a′) = b1 ∩ inf1≤i≤m,i6=j φ(cj) ∩ φ(a) ∩ φ(a′)

is again 0, because a, a′, c1, . . . , cj−1, cj+1, . . . , cm are disjoint. So we have a suitable pair b, C.
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375J Theorem Let A be any Dedekind σ-complete Boolean algebra and (B, ν̄) a semi-finite measure
algebra. Let T : L0(A) → L0(B) be a positive linear operator. Then we can find B, 〈Ab〉b∈B such that B
is a partition of unity in B, each Ab is a finite partition of unity in A, and u 7→ T (u × χa) × χb is a Riesz
homomorphism whenever b ∈ B and a ∈ Ab.

proof (a) Write B∗ for the set of potential members of B; that is, the set of those b ∈ B such that
there is a finite partition of unity A ⊆ A such that Tab is a Riesz homomorphism for every a ∈ A, writing
Tab(u) = T (u × χa) × χb. If I can show that B∗ is order-dense in B, this will suffice, since there will then
be a partition of unity B ⊆ B∗.

(b) So let b0 be any non-zero member of B; I seek a non-zero member of B∗ included in b0. Of course
there is a non-zero b1 ⊆ b0 with ν̄b1 <∞. Let γ > 0 be such that b2 = b1 ∩ [[T (χ1) ≤ γ]] is non-zero. Define
µ : A→ [0,∞[ by setting µa =

∫
b2
T (χa) for every a ∈ A. Then µ is countably additive, because χ, T and

∫

are all additive and sequentially order-continuous (using 375A). Set N = {a : µa = 0}; then N is a σ-ideal
of A, and (C, µ̄) is a totally finite measure algebra, where C = A/N and µ̄a• = µa for every a ∈ A (just as
in 321H).

(c) We have a function φ from C to the principal ideal Bb2 defined by saying that φa• = b2 ∩ [[T (χa) > 0]]
for every a ∈ A. PPP If a1, a2 ∈ A are such that a•

1 = a•
2 in C, this means that a1 △ a2 ∈ N ; now

[[T (χa1) > 0]] △ [[T (χa2) > 0]] ⊆ [[|T (χa1)− T (χa2)| > 0]]

⊆ [[T (|χa1 − χa2|) > 0]] = [[Tχ(a1 △ a2) > 0]]

is disjoint from b2 because
∫
b2
Tχ(a1 △ a2) = 0. Accordingly b2 ∩ [[T (χa1) > 0]] = b2 ∩ [[T (χa2) > 0]] and we

can take this common value for φ(a•
1) = φ(a•

2). QQQ

(d) Now φ is a σ-subhomomorphism. PPP (i) For any a1, a2 ∈ A we have

[[Tχ(a1 ∪ a2) > 0]] = [[T (χa1) > 0]] ∪ [[T (χa2) > 0]]

because

T (χa1) ∨ T (χa2) ≤ Tχ(a1 ∪ a2) ≤ T (χa1) + T (χa2).

So φ(c1 ∪ c2) = φ(c1) ∪ φ(c2) for all c1, c2 ∈ C. (ii) If 〈cn〉n∈N is a non-increasing sequence in C with infimum
0, choose an ∈ A such that a•

n = cn for each n, and set ãn = infi≤n ai \ infi∈N ai for each n; then ã•
n = cn so

φ(cn) = [[T (χãn) > 0]] for each n, while 〈ãn〉n∈N is non-increasing and infn∈N ãn = 0. ??? Suppose, if possible,
that b′ = infn∈N φ(cn) 6= 0; set ǫ = 1

2 ν̄b
′. Then ν̄(b2 ∩ [[T (χãn) > 0]]) ≥ 2ǫ for every n ∈ N. For each n,

take αn > 0 such that ν̄(b2 ∩ [[T (χãn) > αn]]) ≥ ǫ. Then u = supn∈N nα
−1
n χãn is defined in L0(A) (because

supn∈N [[nα−1
n χãn > k]] ⊆ ãm if k ≥ maxi≤m iα−1

i , so infk∈N supn∈N [[nα−1
n χãn > k]] = 0). But now

ν̄(b2 ∩ [[Tu > n]]) ≥ ν̄(b2 ∩ [[T (χãn) > αn]]) ≥ ǫ
for every n, so infn∈N [[Tu > n]] 6= 0, which is impossible. XXX Thus infn∈N φ(cn) = 0; as 〈cn〉n∈N is arbitrary,
φ is a σ-subhomomorphism. QQQ

(e) By 375I, there are a non-zero b ∈ Bb2 and a finite partition of unity C ⊆ C such that d 7→ b ∩ φ(d ∩ c)
is a ring homomorphism for every c ∈ C. There is a partition of unity A ⊆ A, of the same size as C, such
that C = {a• : a ∈ A}. Now Tab is a Riesz homomorphism for every a ∈ A. PPP It is surely a positive linear
operator. If u1, u2 ∈ L0(A) and u1 ∧ u2 = 0, set ei = [[ui > 0]] for each i, so that e1 ∩ e2 = 0. Observe that
ui = supn∈N ui ∧ nχei, so that

[[Tabui > 0]] = supn∈N [[Tab(ui ∧ nχei) > 0]] ⊆ [[Tab(χei) > 0]] = b ∩ [[Tχ(ei ∩ a) > 0]]

for both i (of course Tab, like T , is sequentially order-continuous). But this means that

[[Tabu1 > 0]] ∩ [[Tabu2 > 0]] ⊆ b ∩ [[Tχ(e1 ∩ a) > 0]] ∩ [[Tχ(e2 ∩ a) > 0]]

= b ∩ φ(e•1 ∩ a•) ∩ φ(e•2 ∩ a•) = 0

because a• ∈ C, so d 7→ b ∩ φ(d ∩ a•) is a ring homomorphism, while e•1 ∩ e•2 = 0. So Tabu1 ∧ Tabu2 = 0. As
u1 and u2 are arbitrary, Tab is a Riesz homomorphism (352G(iv)). QQQ

(f) Thus b ∈ B∗. As b0 is arbitrary, B∗ is order-dense, and we’re home.
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375K Corollary Let A be a Dedekind σ-complete Boolean algebra and U a Dedekind complete Riesz
space such that U× separates the points of U . If T : L0(A) → U is a positive linear operator, there is a
sequence 〈Tn〉n∈N of Riesz homomorphisms from L0(A) to U such that T =

∑∞
n=0 Tn, in the sense that

Tu = supn∈N

∑n
i=0 Tiu for every u ≥ 0 in L0(A).

proof By 369A, U can be embedded as an order-dense Riesz subspace of L0(B) for some localizable measure
algebra (B, ν̄); being Dedekind complete, it is solid in L0(B) (353L). Regard T as an operator from L0(A) to
L0(B), and take B, 〈Ab〉b∈B as in 375J. Note that L0(B) can be identified with

∏
b∈B L

0(Bb) (364R, 322L).

For each b ∈ B let fb : Ab → N be an injection. If b ∈ B and n ∈ fb[Ab], set Tnb(u) = χb× T (u× χf−1
b (n));

otherwise set Tnb = 0. Then Tnb : L0(A)→ L0(Bb) is a Riesz homomorphism; because Ab is a finite partition
of unity,

∑∞
n=0 Tnbu = χb× Tu for every u ∈ L0(A). But this means that if we set Tnu = 〈Tnbu〉b∈B ,

Tn : L0(A)→∏
b∈B L

0(Bb) ∼= L0(B)

is a Riesz homomorphism for each n; and T =
∑∞

n=0 Tn. Of course every Tn is an operator from L0(A) to
U because |Tnu| ≤ T |u| ∈ U for every u ∈ L0(A).

375L Corollary (a) If A is a Dedekind σ-complete Boolean algebra, (B, ν̄) is a semi-finite measure
algebra, and there is any non-zero positive linear operator from L0(A) to L0(B), then there is a non-trivial
sequentially order-continuous ring homomorphism from A to B.

(b) If (A, µ̄) and (B, ν̄) are homogeneous probability algebras and τ(A) > τ(B), then L
∼(L0(A);L0(B)) =

{0}.
proof (a) It is probably quickest to look at the proof of 375J: starting from a non-zero positive linear
operator T : L0(A) → L0(B), we move to a non-zero σ-subhomomorphism φ : A/N → B and thence to
a non-zero ring homomorphism from A/N to B, corresponding to a non-zero ring homomorphism from A

to B, which is sequentially order-continuous because it is dominated by φ. Alternatively, quoting 375J, we
have a non-zero Riesz homomorphism T1 : L0(A)→ L0(B), and it is easy to check that a 7→ [[T (χa) > 0]] is
a non-zero sequentially order-continuous ring homomorphism.

(b) Use (a) and 331J.

375X Basic exercises (a) Let A be a Dedekind complete Boolean algebra and W an Archimedean Riesz
space. Let T : L0(A) → W be a positive linear operator. Show that T is order-continuous iff Tχ : A → W
is order-continuous.

(b) Let A be an atomless Dedekind σ-complete Boolean algebra and W a Banach lattice. Show that the
only order-continuous positive linear operator from L0(A) to W is the zero operator.

(c) Let A be a Dedekind complete Boolean algebra and W a Riesz space. Let T : L0(A) → W be an
order-continuous Riesz homomorphism such that T [L0(A)] is order-dense in W . Show that T is surjective.

>>>(d) Let A and B be Boolean algebras and φ : A→ B a σ-subhomomorphism as defined in 375F. Show
that φ is sequentially order-continuous.

>>>(e) Let A be the measure algebra of Lebesgue measure on [0, 1] and G the regular open algebra of
R. (i) Show that there is no non-zero positive linear operator from L0(G) to L0(A). (Hint : suppose
T : L0(G) → L0(A) were such an operator. Reduce to the case T (χ1) ≤ χ1. Let 〈bn〉n∈N enumerate an
order-dense subset of G (316Yo). For each n ∈ N take non-zero b′n ⊆ bn such that

∫
T (χb′n) ≤ 2−n−2

∫
T (χ1)

and consider Tχ(supn∈N b
′
n). See also 375Yf-375Ye.) (ii) Show that there is no non-zero positive linear

operator from L0(A) to L0(G). (Hint : suppose T : L0(A)→ L0(G) were such an operator. For each n ∈ N

choose an ∈ A, αn > 0 such that µ̄an ≤ 2−n and if bn ⊆ [[T (χ1) > 0]] then bn ∩ [[T (χan) > αn]] 6= 0. Consider
Tu where u =

∑∞
n=0 nα

−1
n χan.)

(f) In 375K, show that for any u ∈ L0(A)

infn∈N supm≥n [[|Tu−∑m
i=0 Tiu| > 0]] = 0.
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>>>(g) Prove directly, without quoting 375F-375L, that if A is a Dedekind σ-complete Boolean algebra
then every positive linear functional from L0(A) to R is a finite sum of Riesz homomorphisms.

(h) Let A and B be Dedekind σ-complete Boolean algebras, and T : L0(A) → L0(B) a Riesz homo-
morphism. Show that there are a sequentially order-continuous ring homomorphism π : A → B and a
w ∈ L0(B)+ such that Tu = w × Tπu for every u ∈ L0(A), where Tπ : L0(A) → L0(B) is defined as in
364Yg.

375Y Further exercises (a) Let A and B be Dedekind σ-complete Boolean algebras, and T : L0(A)→
L0(B) a linear operator. (i) Show that if T is order-bounded, then 〈Tun〉n∈N order*-converges to 0 in L0(B)
(definition: 367A) whenever 〈un〉n∈N order*-converges to 0 in L0(A). (ii) Show that if B is ccc and weakly
(σ,∞)-distributive and 〈Tun〉n∈N order*-converges to 0 in L0(B) whenever 〈un〉n∈N order*-converges to 0
in L0(A), then T is order-bounded.

(b) Show that the following are equiveridical: (i) there is a purely atomic probability space (X,Σ, µ) such
that Σ = PX and µ{x} = 0 for every x ∈ X; (ii) there are a set X and a Riesz homomorphism f : RX → R

which is not order-continuous; (iii) there are a Dedekind complete Boolean algebra A and a positive linear
operator f : L0(A)→ R which is not order-continuous; (iv) there are a Dedekind complete Boolean algebra
A and a sequentially order-continuous Boolean homomorphism π : A→ {0, 1} which is not order-continuous;
(v) there are a Dedekind complete Riesz space U and a sequentially order-continuous Riesz homomorphism
f : U → R which is not order-continuous; *(vi) there are an atomless Dedekind complete Boolean algebra A

and a sequentially order-continuous Boolean homomorphism π : A → {0, 1} which is not order-continuous.
(Compare 363S.)

(c) Give an example of an atomless Dedekind σ-complete Boolean algebra A such that L0(A)∼ 6= {0}.

(d) Let A be the measure algebra of Lebesgue measure on [0, 1], and set L0 = L0(A). Show that there is
a positive linear operator T : L0 → L0 such that T [L0] is not order-closed in L0.

(e) Show that the following are equiveridical: (i) there is a probability space (X,Σ, µ) such that Σ = PX
and µ{x} = 0 for every x ∈ X; (ii) there are localizable measure algebras (A, µ̄) and (B, ν̄) and a positive
linear operator T : L0(A)→ L0(B) which is not order-continuous.

(f) Let A, B be Dedekind σ-complete Boolean algebras of which B is weakly σ-distributive. Let
T : L0(A) → L0(B) be a positive linear operator. Show that a 7→ [[T (χa) > 0]] : A → B is a σ-subho-
momorphism.

(g) Let A, B be Dedekind σ-complete Boolean algebras of which B is weakly σ-distributive. Let φ : A→
B be a σ-subhomomorphism such that πa 6= 0 whenever a ∈ A \ {0}. Show that A is weakly σ-distributive.

(h) Let A and B be Dedekind complete Boolean algebras, and φ : A → B a σ-subhomomorphism such
that φ1A = 1B. Show that there is a sequentially order-continuous Boolean homomorphism π : A→ B such
that πa ⊆ φa for every a ∈ A.

(i) Let G be the regular open algebra of R, and L0 = L0(G). Give an example of a non-zero positive
linear operator T : L0 → L0 such that there is no non-zero Riesz homomorphism S : L0 → L0 with S ≤ T .

375Z Problem Let G be the regular open algebra of R, and L0 = L0(G). If T : L0 → L0 is a positive
linear operator, must T [L0] be order-closed?

375 Notes and comments Both this section, and the earlier work on linear operators into L0 spaces,
can be regarded as describing different aspects of a single fact: L0 spaces are very large. The most explicit
statements of this principle are 368E and 375D: every Archimedean Riesz space can be embedded into a
Dedekind complete L0 space, but no such L0 space can be properly embedded as an order-dense Riesz
subspace of any other Archimedean Riesz space. Consequently there are many maps into L0 spaces (368B).
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But by the same token there are few maps out of them (375B, 375Lb), and those which do exist have a
variety of special properties (375A, 375J).

The original version of Kwapien’s theorem (Kwapien 73) was the special case of 375J in which A is the
Lebesgue measure algebra. The ideas of the proof here are mostly taken from Kalton Peck & Roberts

84. I have based my account on the concept of ‘subhomomorphism’ (375F); this seems to be an effective
tool when B is weakly (σ,∞)-distributive (375Yf), but less useful in other cases. The case B = {0, 1},
L0(B) ∼= R is not entirely trivial and is worth working through on its own (375Xg).

Version of 8.4.10

376 Kernel operators

The theory of linear integral equations is in large part the theory of operators T defined from formulae
of the type

(Tf)(y) =
∫
k(x, y)f(x)dx

for some function k of two variables. I make no attempt to study the general theory here. However, the
concepts developed in this book make it easy to discuss certain aspects of such operators defined between
the ‘function spaces’ of measure theory, meaning spaces of equivalence classes of functions, and indeed allow
us to do some of the work in the abstract theory of Riesz spaces, omitting all formal mention of measures
(376D, 376H, 376P). I give a very brief account of two theorems characterizing kernel operators in the
abstract (376E, 376H), with corollaries to show the form these theorems can take in the ordinary language
of integral kernels (376J, 376N). To give an idea of the kind of results we can hope for in this area, I go a
bit farther with operators with domain L1 (376Mb, 376P, 376S).

I take the opportunity to spell out versions of results from §253 in the language of this volume (376B-
376C).

376A Kernel operators To give an idea of where this section is going, I will try to describe the central
idea in a relatively concrete special case. Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces; you can
take them both to be [0, 1] with Lebesgue measure if you like. Let λ be the product measure on X × Y .
If k ∈ L

1(λ), then
∫
k(x, y)dx is defined for almost every y, by Fubini’s theorem; so if f ∈ L

∞(µ) then
g(y) =

∫
k(x, y)f(x)dx is defined for almost every y. Also∫

g(y)dy =
∫
k(x, y)f(x)dxdy

is defined, because (x, y) 7→ k(x, y)f(x) is λ-virtually measurable, defined λ-a.e. and is dominated by a
multiple of the integrable function k. Thus k defines a function from L∞(µ) to L1(ν). Changing f on a set
of measure 0 will not change g, so we can think of this as an operator from L∞(µ) to L

1(ν); and of course we
can move immediately to the equivalence class of g in L1(ν), so getting an operator Tk from L∞(µ) to L1(ν).
This operator is plainly linear; also it is easy to check that ±Tk ≤ T|k|, so that Tk ∈ L

∼(L∞(µ);L1(ν)), and

that ‖Tk‖ ≤
∫
|k|. Moreover, changing k on a λ-negligible set does not change Tk, so that in fact we can

speak of Tw for any w ∈ L1(λ).
I think it is obvious, even before investigating them, that operators representable in this way will be

important. We can immediately ask what their properties will be and whether there is any straightforward
way of recognising them. We can look at the properties of the map w 7→ Tw : L1(λ) → L

∼(L∞(µ);L1(ν)).
And we can ask what happens when L∞(µ) and L1(ν) are replaced by other function spaces, defined by
extended Fatou norms or otherwise. Theorems 376E and 376H are answers to questions of this kind.

It turns out that the formula g(y) =
∫
k(x, y)f(x)dx gives rise to a variety of technical problems, and

it is much easier to characterize Tu in terms of its action on the dual. In the language of the special case
above, if h ∈ L

∞(ν), then we shall have∫
k(x, y)f(x)h(y)d(x, y) =

∫
g(y)h(y)dy;

since g• ∈ L1(ν) is entirely determined by the integrals
∫
g(y)h(y)dy as h runs over L∞(ν), we can define

the operator T in terms of the functional (f, h) 7→
∫
k(x, y)f(x)h(y)d(x, y). This enables us to extend the

results from the case of σ-finite spaces to general strictly localizable spaces; perhaps more to the point in the
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present context, it gives them natural expressions in terms of function spaces defined from measure algebras
rather than measure spaces, as in 376E.

Before going farther along this road, however, I give a couple of results relating the theorems of §253 to
the methods of this volume.

376B The canonical map L0 × L0 → L0: Proposition Let (A, µ̄) and (B, ν̄) be semi-finite measure
algebras, and (C, λ̄) their localizable measure algebra free product (325E). Then we have a bilinear operator
(u, v) 7→ u⊗ v : L0(A)× L0(B)→ L0(C) with the following properties.

(a) For any u ∈ L0(A), v ∈ L0(B) and α ∈ R,

[[u⊗ χ1B > α]] = [[u > α]]⊗ 1B, [[χ1A ⊗ v > α]] = 1A ⊗ [[v > α]]

where for a ∈ A, b ∈ B I write a ⊗ b for the corresponding member of A ⊗ B (315N), identified with a
subalgebra of C (325Dc).

(b)(i) For any u ∈ L0(A)+, the map v 7→ u ⊗ v : L0(B) → L0(C) is an order-continuous multiplicative
Riesz homomorphism.

(ii) For any v ∈ L0(B)+, the map u 7→ u ⊗ v : L0(A) → L0(C) is an order-continuous multiplicative
Riesz homomorphism.

(c) In particular, |u⊗ v| = |u| ⊗ |v| for all u ∈ L0(A) and v ∈ L0(B).
(d) For any u ∈ L0(A)+ and v ∈ L0(B)+, [[u⊗ v > 0]] = [[u > 0]]⊗ [[v > 0]].

proof The canonical maps a 7→ a ⊗ 1B, b 7→ 1A ⊗ b from A, B to C are order-continuous Boolean
homomorphisms (325Da), so induce order-continuous multiplicative Riesz homomorphisms from L0(A) and
L0(B) to L0(C) (364P); write ũ, ṽ for the images of u ∈ L0(A), v ∈ L0(B). Observe that |ũ| = |u|∼,
|ṽ| = |v|∼ and (χ1A)∼ = (χ1B)∼ = χ1C. Now set u ⊗ v = ũ × ṽ. The properties listed in (a)-(c) are just a
matter of putting the definition in 364Pa together with the fact that L0(C) is an f -algebra (364D). As for
[[u⊗ v > 0]] = [[ũ× ṽ > 0]], this is (for non-negative u, v) just

[[ũ > 0]] ∩ [[ṽ > 0]] = ([[u > 0]]⊗ 1B) ∩ (1A ⊗ [[v > 0]]) = [[u > 0]]⊗ [[v > 0]].

376C For L1 spaces we have a similar result, with additions corresponding to the Banach lattice struc-
tures of the three spaces.

Theorem Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras with localizable measure algebra free product
(C, λ̄).

(a) If u ∈ L1
µ̄ = L1(A, µ̄) and v ∈ L1

ν̄ = L1(B, ν̄) then u⊗ v ∈ L1
λ̄

= L1(C, λ̄) and
∫
u⊗ v =

∫
u
∫
v, ‖u⊗ v‖1 = ‖u‖1‖v‖1.

(b) Let W be a Banach space and φ : L1
µ̄ × L1

ν̄ → W a bounded bilinear operator. Then there is a

unique bounded linear operator T : L1
λ̄
→ W such that T (u ⊗ v) = φ(u, v) for all u ∈ L1

µ̄ and v ∈ L1
ν̄ , and

‖T‖ = ‖φ‖.
(c) Suppose, in (b), that W is a Banach lattice. Then

(i) T is positive iff φ(u, v) ≥ 0 for all u, v ≥ 0;
(ii) T is a Riesz homomorphism iff u 7→ φ(u, v0) : L1

µ̄ → W and v 7→ φ(u0, v) : L1
ν̄ → W are Riesz

homomorphisms for all v0 ≥ 0 in L1
ν̄ and u0 ≥ 0 in L1

µ̄.

proof (a) I refer to the proof of 325D. Let (X,Σ, µ) and (Y,T, ν) be the Stone spaces of (A, µ̄) and (B, ν̄)
(321K), so that (C, λ̄) can be identified with the measure algebra of the c.l.d. product measure λ on X × Y
(part (a) of the proof of 325D), and L1

µ̄, L1
ν̄ , L1

λ̄
can be identified with L1(µ), L1(ν) and L1(λ) (365B). Now

if f ∈ L
0(µ) and g ∈ L

0(ν) then f ⊗ g ∈ L
0(λ) (253Cb), and it is easy to check that (f ⊗ g)• ∈ L0(λ̄)

corresponds to f•⊗g• as defined in 376B. (Look first at the cases in which one of f , g is a constant function
with value 1.) By 253E, we have a canonical map (f•, g•) 7→ (f ⊗ g)• from L1(µ) × L1(ν) to L1(λ), with∫
f ⊗ g =

∫
f
∫
g (253D); so that if u ∈ L1

µ̄ and v ∈ L1
ν̄ we must have u ⊗ v ∈ L1

λ̄
, with

∫
u ⊗ v =

∫
u
∫
v.

As in 253E, it follows that ‖u⊗ v‖1 = ‖u‖1‖v‖1.

(b) In view of the situation described in (a) above, this is now just a translation of the same result about
L1(µ), L1(ν) and L1(λ), which is Theorem 253F.
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(c) Identifying the algebraic free product A⊗B with its canonical image in C (325Dc), I write (A⊗B)f

for {c : c ∈ A ⊗ B, λ̄c < ∞}, so that (A ⊗ B)f is a subring of C. Recall that any member of A ⊗ B is
expressible as supi≤n ai ⊗ bi where a0, . . . , an are disjoint (315Oa); evidently this will belong to (A ⊗B)f

iff µ̄ai · ν̄bi is finite for every i.
The next fact to lift from previous theorems is in part (e) of the proof of 253F: the linear span M of

{χ(a ⊗ b) : a ∈ Af , b ∈ Bf} is norm-dense in L1
λ̄
. Of course M can also be regarded as the linear span of

{χc : c ∈ (A⊗B)f}, or S(A⊗B)f . (Strictly speaking, this last remark relies on 361J; the identity map from
(A ⊗B)f to C induces an injective Riesz homomorphism from S(A ⊗B)f into S(C) ⊆ L0(C). To see that
χc ∈M for every c ∈ (A⊗B)f , we need to know that c can be expressed as a disjoint union of members of
A⊗B, as noted above.)

(i) If T is positive then of course φ(u, v) = T (u ⊗ v) ≥ 0 whenever u, v ≥ 0, since u ⊗ v ≥ 0. On
the other hand, if φ is non-negative on U+ × V +, then, in particular, Tχ(a⊗ b) = φ(χa, χb) ≥ 0 whenever
µ̄a·ν̄b <∞. Consequently T (χc) ≥ 0 for every c ∈ (A⊗B)f and Tw ≥ 0 whenever w ≥ 0 in M ∼= S(A⊗B)f ,
as in 361Ga.

Now this means that T |w| ≥ 0 whenever w ∈M . But as M is norm-dense in L1
λ̄
, w 7→ T |w| is continuous

and W+ is closed, it follows that T |w| ≥ 0 for every w ∈ L1
λ̄
, that is, that T is positive.

(ii) If T is a Riesz homomorphism then of course u 7→ φ(u, v0) = T (u⊗v0) and v 7→ φ(u0, v) = T (u0⊗v)
are Riesz homomorphisms for v0, u0 ≥ 0. On the other hand, if all these maps are Riesz homomorphisms,
then, in particular,

Tχ(a⊗ b) ∧ Tχ(a′ ⊗ b′) = φ(χa, χb) ∧ φ(χa′, χb′)

≤ φ(χa, χb+ χb′) ∧ φ(χa′, χb+ χb′)

= φ(χa ∧ χa′, χb+ χb′) = 0

whenever a, a′ ∈ Af , b, b′ ∈ Bf and a ∩ a′ = 0. Similarly, Tχ(a⊗ b) ∧ Tχ(a′ ⊗ b′) = 0 if b ∩ b′ = 0. But this
means that Tχc ∧ Tχc′ = 0 whenever c, c′ ∈ (A ⊗B)f and c ∩ c′ = 0. PPP Express c, c′ as supi≤m ai ⊗ bi,
supj≤n a

′
j ⊗ b′j where ai, a

′
j , bi, b

′
j all have finite measure. Now if i ≤ m, j ≤ n, (ai ∩ a′j) ⊗ (bi ∩ b′j) =

(ai⊗bi) ∩ (a′j⊗b′j) = 0, so one of ai ∩ a′j , bi ∩ b
′
j must be zero, and in either case Tχ(ai⊗bi)∧Tχ(a′j⊗b′j) = 0.

Accordingly

Tχc ∧ Tχc′ ≤ (
m∑

i=0

Tχ(ai ⊗ bi)) ∧ (
n∑

j=0

Tχ(a′j × b′j))

≤
m∑

i=0

n∑

j=0

Tχ(ai ⊗ bi) ∧ Tχ(a′j ⊗ b′j) = 0,

using 352F(a-ii) for the second inequality. QQQ
This implies that T ↾M must be a Riesz homomorphism (361Gc), that is, T |w| = |Tw| for all w ∈ M .

Again because M is dense in L1
λ̄
, T |w| = |Tw| for every w ∈ L1

λ̄
, and T is a Riesz homomorphism.

376D Abstract integral operators: Definition The following concept will be used repeatedly in
the theorems below; it is perhaps worth giving it a name. Let U be a Riesz space and V a Dedekind
complete Riesz space, so that L

×(U ;V ) is a Dedekind complete Riesz space (355H). If f ∈ U× and v ∈ V
write Pfvu = f(u)v for each u ∈ U ; then Pfv ∈ L

×(U ;V ). PPP If f ≥ 0 in U× and v ≥ 0 in V × then
Pfv is a positive linear operator from U to V which is order-continuous because if A ⊆ U is non-empty,
downwards-directed and has infimum 0, then (as V is Archimedean)

infu∈A Pfv(u) = infu∈A f(u)v = 0.

Of course (f, g) 7→ Pfg is bilinear, so Pfv ∈ L
×(U ;V ) for every f ∈ U×, v ∈ V . QQQ Now I call a linear

operator from U to V an abstract integral operator if it is in the band in L
×(U ;V ) generated by

{Pfv : f ∈ U×, v ∈ V }.
The first result describes these operators when U , V are expressed as subspaces of L0(A), L0(B) for

measure algebras A, B and V is perfect.
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376E Theorem Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras, with localizable measure algebra
free product (C, λ̄), and U ⊆ L0(A), V ⊆ L0(B) order-dense Riesz subspaces. Write W for the set of those
w ∈ L0(C) such that w × (u ⊗ v) is integrable for every u ∈ U and v ∈ V . Then we have an operator
w 7→ Tw : W → L

×(U ;V ×) defined by setting

Tw(u)(v) =
∫
w × (u⊗ v)

for every w ∈ W , u ∈ U and v ∈ V . The map w 7→ Tw is a Riesz space isomorphism between W and the
band of abstract integral operators in L

×(U ;V ×).

proof (a) The first thing to check is that the formula offered does define a member Tw(u) of V × for any
w ∈W and u ∈ U . PPP Of course Tw(u) is a linear operator because

∫
is linear and ⊗ and × are bilinear. It

belongs to V ∼ because, writing g(v) =
∫
|w|×(|u|⊗v), g is a positive linear operator and |Tw(u)(v)| ≤ g(|v|)

for every v. (I am here using 376Bc to see that |w × (u ⊗ Fv)| = |w| × (|u| ⊗ |v|).) Also g ∈ V × because
v 7→ |u| ⊗ v, w′ 7→ |w| × w′ and

∫
are all order-continuous; so Tw(u) also belongs to V ×. QQQ

(b) Next, for any given w ∈W , the map Tw : U → V × is linear (again because ⊗ and × are bilinear). It
is helpful to note that W is a solid linear subspace of L0(C). Now if w ≥ 0 in W , then Tw ∈ L

×(U ;V ×). PPP
If u, v ≥ 0 then u⊗ v ≥ 0, w × (u⊗ v) ≥ 0 and Tw(u)(v) ≥ 0; as v is arbitrary, Tw(u) ≥ 0 whenever u ≥ 0;
as u is arbitrary, Tw is positive. If A ⊆ U is non-empty, downwards-directed and has infimum 0, then Tw[A]
is downwards-directed, and for any v ∈ V +

(inf Tw[A])(v) = infu∈A Tw(u)(v) = infu∈A

∫
w × (u⊗ v) = 0

because u 7→ u⊗ v is order-continuous. So inf Tw[A] = 0; as A is arbitrary, Tw is order-continuous. QQQ
For general w ∈W , we now have Tw = Tw+ − Tw− ∈ L×(U ;V ×).

(c) Ths shows that w 7→ Tw is a map from W to L×(U ;V ×). Running through the formulae once again,
it is linear, positive and order-continuous; this last because, given a non-empty downwards-directed C ⊆W
with infimum 0, then for any u ∈ U+, v ∈ V +

(infw∈C Tw)(u)(v) ≤ infw∈C

∫
w × (u⊗ v) = 0

(because
∫

and × are order-continuous); as v is arbitrary, (infw∈C Tw)(u) = 0; as u is arbitrary, infw∈C Tw =
0.

(d) All this is easy, being nothing but a string of applications of the elementary properties of ⊗, ×
and

∫
. But I think a new idea is needed for the next fact: the map w 7→ Tw : W → L

×(U ;V ×) is
a Riesz homomorphism. PPP Write D for the set of those d ∈ C such that Tw ∧ Tw′ = 0 whenever w,
w′ ∈ W+, [[w > 0]] ⊆ d and [[w′ > 0]] ⊆ 1C \ d. (i) If d1, d2 ∈ D, w, w′ ∈ W+, [[w > 0]] ⊆ d1 ∪ d2 and
[[w′ > 0]] ∩ (d1 ∪ d2) = 0, then set w1 = w × χd1, w2 = w − w1. In this case

[[w1 > 0]] ⊆ d1, [[w2 > 0]] ⊆ d2,

so

Tw1
∧ Tw′ = Tw2

∧ Tw′ = 0, Tw ∧ Tw′ ≤ (Tw1
∧ Tw′) + (Tw2

∧ Tw′) = 0.

As w, w′ are arbitrary, d1 ∪ d2 ∈ D. Thus D is closed under ∪ . (ii) The symmetry of the definition of
D means that 1C \ d ∈ D whenever d ∈ D. (iii) Of course 0 ∈ D, just because Tw = 0 if w ∈ W+ and
[[w > 0]] = 0; so D is a subalgebra of C. (iv) If D ⊆ D is non-empty and upwards-directed, with supremum c
in C, and if w, w′ ∈W+ are such that [[w > 0]] ⊆ c, [[w′ > 0]] ∩ c = 0, then consider {w×χd : d ∈ D}. This is
upwards-directed, with supremum w; so Tw = supd∈D Tw×χd, because the map q 7→ Tq is order-continuous.
Also Tw×χd ∧ Tw′ = 0 for every d ∈ D, so Tw ∧ Tw′ = 0. As w, w′ are arbitrary, c ∈ D; as D is arbitrary,
D is an order-closed subalgebra of C. (v) If a ∈ A and w, w′ ∈ W+ are such that [[w > 0]] ⊆ a ⊗ 1B and
[[w′ > 0]] ∩ (a⊗ 1B) = 0, then any u ∈ U+ is expressible as u1 + u2 where u1 = u× χa, u2 = u× χ(1A \ a).
Now

Tw(u2)(v) =
∫
w × (u2 ⊗ v) =

∫
w × χ(a⊗ 1B)× (u⊗ v)× χ((1A \ a)⊗ 1B) = 0

for every v ∈ V , so Tw(u2) = 0. Similarly, Tw′(u1) = 0. But this means that

(Tw ∧ Tw′)(u) ≤ Tw(u2) + Tw′(u1) = 0.
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As u is arbitrary, Tw ∧ Tw′ = 0; as w and w′ are arbitrary, a ⊗ 1B ∈ D. (vi) Now suppose that b ∈ B and
that w, w′ ∈W+ are such that [[w > 0]] ⊆ 1A ⊗ b and [[w′ > 0]] ∩ (1A ⊗ b) = 0. If u ∈ U+ and v ∈ V + then

(Tw ∧ Tw′)(u)(v) ≤
∫
w × (u⊗ (v × χ(1B \ b))) +

∫
w′ × (u⊗ (v × χb)) = 0.

As u, v are arbitrary, Tw ∧ Tw′ = 0; as w and w′ are arbitrary, 1A ⊗ b ∈ D. (vii) This means that D is
an order-closed subalgebra of C including A ⊗B, and is therefore the whole of C (325D(c-ii)). (viii) Now
take any w, w′ ∈ W such that w ∧ w′ = 0, and consider c = [[w > 0]]. Then [[w′ > 0]] ⊆ 1C \ c and c ∈ D, so
Tw ∧ Tw′ = 0. This is what we need to be sure that w 7→ Tw is a Riesz homomorphism (352G). QQQ

(e) The map w 7→ Tw is injective. PPP (i) If w > 0 in W , then consider

A = {a : a ∈ A, ∃u ∈ U, χa ≤ u}, B = {b : b ∈ B, ∃ v ∈ V, χb ≤ v}.
Because U and V are order-dense in L0(A) and L0(B) respectively, A and B are order-dense in A and B.
Also both are upwards-directed. So supa∈A,b∈B a ⊗ b = 1C and 0 <

∫
w = supa∈A,b∈B

∫
a⊗b

w. Take a ∈ A,

b ∈ B such that
∫
a⊗b

w > 0; then there are u ∈ U , v ∈ V such that χa ≤ u and χb ≤ v, so that

Tw(u)(v) ≥
∫
a⊗b

w > 0

and Tw > 0. (ii) For general non-zero w ∈W , we now have |Tw| = T|w| > 0 so Tw 6= 0. QQQ
Thus w 7→ Tw is an order-continuous injective Riesz homomorphism.

(f) Write W̃ for {Tw : w ∈ W}, so that W̃ is a Riesz subspace of L
×(U ;V ×) isomorphic to W , and

Ŵ for the band it generates in L
×(U ;V ×). Then W̃ is order-dense in Ŵ . PPP Suppose that S > 0 in

Ŵ = W̃⊥⊥ (353Ba). Then S /∈ W̃⊥, so there is a w ∈ W such that S ∧ Tw > 0. Set w1 = w ∧ χ1C. Then
w = supn∈N w ∧ nw1, so Tw = supn∈N Tw ∧ nTw1

and R = S ∧ Tw1
> 0.

Set U1 = U ∩L1(A, µ̄). Because U is an order-dense Riesz subspace of L0(A), U1 is an order-dense Riesz
subspace of L1

µ̄ = L1(A, µ̄), therefore also norm-dense. Similarly V1 = V ∩ L1(B, ν̄) is a norm-dense Riesz

subspace of L1
ν̄ = L1(B, ν̄). Define φ0 : U1 × V1 → R by setting φ0(u, v) = R(u)(v) for u ∈ U1 and v ∈ V1.

Then φ0 is bilinear, and

|φ0(u, v)| = |R(u)(v)| ≤ |R(u)|(|v|) ≤ R(|u|)(|v|) ≤ Tw1
(|u|)(|v|)

=

∫
w1 × (|u| ⊗ |v|) ≤

∫
|u| ⊗ |v| = ‖u‖1‖v‖1

for all u ∈ U1, v ∈ V1, because 0 ≤ R ≤ Tw1
in L

×(U ;V ×). Because U1, V1 are norm-dense in L1
µ̄, L1

ν̄

respectively, φ0 has a unique extension to a continuous bilinear operator φ : L1
µ̄ × L1

ν̄ → R. (To reduce this
to standard results on linear operators, think of R as a function from U1 to V ∗

1 ; since every member of V ∗
1

has a unique extension to a member of (L1
ν̄)∗, we get a corresponding function R1 : U1 → (L1

ν̄)∗ which is
continuous and linear, so has a unique extension to a continuous linear operator R2 : L1

µ̄ → (L1
ν̄)∗, and we

set φ(u, v) = R2(u)(v).)
By 376C, there is a unique h ∈ (L1

λ̄
)∗ = L1(C, λ̄)∗ such that h(u ⊗ v) = φ(u, v) for every u ∈ L1

µ̄ and

v ∈ L1
ν̄ . Because (C, λ̄) is localizable, this h corresponds to a w′ ∈ L∞(C) (365Lc), and∫

w′ × (u⊗ v) = h(u⊗ v) = φ0(u, v) = R(u)(v)

for every u ∈ U1, v ∈ V1.
Because U1 is norm-dense in L1

µ̄, U+
1 is dense in (L1

µ̄)+, and similarly V +
1 is dense in (L1

ν̄)+, so U+
1 × V +

1

is dense in (L1
µ̄)+ × (L1

ν̄)+; now φ0 is non-negative on U+
1 × V +

1 , so φ (being continuous) is non-negative on

(L1
µ̄)+×(L1

ν̄)+. By 376Cc, h ≥ 0 in (L1
λ̄
)∗ and w′ ≥ 0 in L∞(C). In the same way, because φ0(u, v) ≤ Tw(u)(v)

for u ∈ U+
1 and v ∈ V +

1 , w′ ≤ w1 ≤ w in L0(C), so w′ ∈W . We have

Tw′(u)(v) =
∫
w′ × (u⊗ v) = R(u)(v)

for all u ∈ U1, v ∈ V1. If u ∈ U+
1 , then Tw′(u) and R(u) are both order-continuous, so must be identical, since

V1 is order-dense in V . This means that Tw′ and R agree on U1. But as both are themselves order-continuous
linear operators, and U1 is order-dense in U , they must be equal.

Thus 0 < Tw′ ≤ S in L
×(U ;V ×). As S is arbitrary, W̃ is quasi-order-dense in Ŵ , therefore order-dense

(353A). QQQ
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(g) Because w 7→ Tw : W 7→ W̃ is an injective Riesz homomorphism, we have an inverse map Q :

W̃ → L0(C), setting Q(Tw) = w; this is a Riesz homomorphism, and it is order-continuous because W is
solid in L0(C), so that the embedding W ⊂→ L0(C) is order-continuous. By 368B, Q has an extension to

an order-continuous Riesz homomorphism Q̃ : Ŵ → L0(C). Because Q(S) > 0 whenever S > 0 in W̃ ,

Q̃(S) > 0 whenever S > 0 in Ŵ , so Q̃ is injective. Now Q̃(S) ∈ W for every S ∈ Ŵ . PPP It is enough

to look at non-negative S. In this case, Q̃(S) must be sup{Q̃(Tw) : w ∈ W, Tw ≤ S} = supC, where
C = {w : Tw ≤ S} ⊆ W . Take u ∈ U+ and v ∈ V +. Then {w × (u ⊗ v) : w ∈ C} is upwards-directed,
because C is, and

supw∈C

∫
w × (u⊗ v) = supw∈C Tw(u)(v) ≤ S(u)(v) <∞.

So Q̃(S)× (u⊗ v) = supw∈C w × (u⊗ v) belongs to L1
λ̄

(365Df). As u and v are arbitrary, Q̃(S) ∈W . QQQ

(h) Of course this means that W̃ = Ŵ and Q̃ = Q, that is, that w 7→ Tw : W 7→ Ŵ is a Riesz space
isomorphism.

(i) I have still to check on the identification of Ŵ as the band Z of abstract integral operators in
L
×(U ;V ×). Write Pfg(u) = f(u)g for f ∈ U×, g ∈ V × and u ∈ U .

Set

U# = {u : u ∈ L0(A), u× u′ ∈ L1
µ̄ for every u′ ∈ U},

V # = {v : v ∈ L0(B), v × v′ ∈ L1
ν̄ for every v′ ∈ V }.

From 369C we know that if we set fu(u′) =
∫
u×u′ for u ∈ U# and u′ ∈ U , then fu ∈ U× for every u ∈ U#,

and u 7→ fu is an isomorphism between U# and an order-dense Riesz subspace of U×. Similarly, setting
gv(v′) =

∫
v × v′ for v ∈ V # and v′ ∈ V , v 7→ gv is an isomorphism between V # and an order-dense Riesz

subspace of V ×.
If u ∈ U# and v ∈ V # then∫

(u⊗ v)× (u′ ⊗ v′) =
∫

(u× u′)⊗ (v × v′) = (
∫
u× u′)(

∫
v × v′) = fu(u′)gv(v′)

for every u′ ∈ U , v′ ∈ V , so u⊗ v ∈W and Tu⊗v = Pfugv .
Now take f ∈ (U×)+ and g ∈ (V ×)+. Set A = {u : u ∈ U#, u ≥ 0, fu ≤ f} and B = {v : v ∈ V #, v ≥

0, gv ≤ g}. These are upwards-directed, so C = {u ⊗ v : u ∈ A, v ∈ B} is upwards-directed in L0(C).
Because {fu : u ∈ U#} is order-dense in U×, f = supu∈A fu; by 355Ed, f(u′) = supu∈A fu(u′) for every
u′ ∈ U+. Similarly, g(v′) = supv∈B fv(v′) for every v′ ∈ V +.

??? Suppose, if possible, that C is not bounded above in L0(C). Because C and L0(C) are Dedekind
complete,

c = infn∈N supu∈A,v∈B [[u⊗ v ≥ n]]

must be non-zero (364L(a-i)). Because U and V are order-dense in L0(A), L0(B) respectively,

1A = sup{[[u′ > 0]] : u′ ∈ U}, 1B = sup{[[v′ > 0]] : v′ ∈ V },
and there are u′ ∈ U+, v′ ∈ V + such that c ∩ [[u′ > 0]] ⊗ [[v′ > 0]] 6= 0, so that

∫
c
u′ ⊗ v′ > 0. But now, for

any n ∈ N,

f(u′)g(v′) ≥ sup
u∈A,v∈B

fu(u′)gv(v′)

= sup
u∈A,v∈B

∫
(u⊗ v)× (u′ ⊗ v′)

≥ sup
u∈A,v∈B

∫
((u⊗ v) ∧ nχc)× (u′ ⊗ v′)

=

∫
sup

u∈A,v∈B
((u⊗ v) ∧ nχc)× (u′ ⊗ v′)

(because w 7→
∫
w × (u′ ⊗ v′) is order-continuous)
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=

∫
(nχc)× (u′ ⊗ v′) = n

∫

c

u′ ⊗ v′,

which is impossible. XXX
Thus C is bounded above in L0(C), and has a supremum w ∈ L0(C). If u′ ∈ U+, v′ ∈ V + then

∫
w × (u′ ⊗ v′) = sup

u∈A,v∈B

∫
(u⊗ v)× (u′ ⊗ v′)

= sup
u∈A,v∈B

fu(u′)gv(v′) = f(u′)g(v′) = Pfg(u′)(v′).

Thus w ∈W and

Pfg = Tw ∈ W̃ ⊆ Ŵ .

And this is true for any non-negative f ∈ U× and g ∈ V ×. Of course it follows that Pfg ∈ Ŵ for every

f ∈ U×, g ∈ V ×; as Ŵ is a band, it must include Z.

(j) Finally, Ŵ ⊆ Z. PPP Since Z = Z⊥⊥, it is enough to show that Ŵ ∩ Z⊥ = {0}. Take any T > 0 in

Ŵ . There are u′0 ∈ U+, v′0 ∈ V + such that T (u′0)(v′0) > 0. So there is a v ∈ V # such that 0 ≤ gv ≤ T (u′0)
and gv(v′0) > 0, that is,

∫
v × v′0 > 0. Because V is order-dense in L0(B), there is a v′1 ∈ V such that

0 < v′1 ≤ v′0 × χ[[v > 0]], so that

0 <
∫
v × v′1 = gv(v′1) ≤ T (u′0)(v′1)

and [[v′1 > 0]] ⊆ [[v > 0]].
Now consider the functional u′ 7→ h(u′) = T (u′)(v′1) : U → R. This belongs to (U×)+ and h(u′0) > 0,

so there is a u ∈ U# such that 0 ≤ fu ≤ h and fu(u′0) > 0. This time,
∫
u × u′0 > 0 so (because U is

order-dense in L0(A)) there is a u′1 ∈ U such that h(u′1) > 0 and [[u′1 > 0]] ⊆ [[u > 0]].
We can express T as Tw where w ∈W+. In this case, we have∫

w × (u′1 ⊗ v′1) = T (u′1)(v′1) = h(u′1) > 0,

so

0 6= [[w > 0]] ∩ [[u′1 ⊗ v′1 > 0]] = [[w > 0]] ∩ ([[u′1 > 0]]⊗ [[v′1 > 0]])

⊆ [[w > 0]] ∩ ([[u > 0]]⊗ [[v > 0]]) = [[w > 0]] ∩ [[u⊗ v > 0]],

and w ∧ (u⊗ v) > 0, so

Tw ∧ Pfugv = Tw ∧ Tu⊗v = Tw∧(u⊗v) > 0.

Thus T /∈ Z⊥. Accordingly Ŵ ∩ Z⊥ = {0} and Ŵ ⊆ Z⊥⊥ = Z. QQQ

Since we already know that Z ⊆ Ŵ , this completes the proof.

376F Corollary Let (A, µ̄) and (B, ν̄) be localizable measure algebras, with localizable measure algebra
free product (C, λ̄). Let U ⊆ L0(A), V ⊆ L0(B) be perfect order-dense solid linear subspaces, and T : U → V
a linear operator. Then the following are equiveridical:

(i) T is an abstract integral operator;
(ii) there is a w ∈ L0(C) such that

∫
w × (u⊗ v′) is defined and equal to

∫
Tu× v′ whenever u ∈ U and

v′ ∈ L0(B) is such that v′ × v is integrable for every v ∈ V .

proof Setting V # = {v′ : v′ ∈ L0(B), v× v′ ∈ L1 for every v ∈ V }, we know that we can identify V # with
V × and V with (V #)× (369C). So the equivalence of (i) and (ii) is just 376E applied to V # in place of V .

376G Lemma Let U be a Riesz space, V an Archimedean Riesz space, T : U → V a linear operator,
f ∈ (U∼)+ and e ∈ V +. Suppose that 0 ≤ Tu ≤ f(u)e for every u ∈ U+. Then if 〈un〉n∈N is a sequence
in U such that limn→∞ g(un) = 0 whenever g ∈ U∼ and |g| ≤ f , 〈Tun〉n∈N order*-converges to 0 in V
(definition: 367A).
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proof Let Ve be the solid linear subspace of V generated by e; then Tu ∈ Ve for every u ∈ U . We can identify
Ve with an order-dense and norm-dense Riesz subspace of C(X), where X is a compact Hausdorff space,
with e corresponding to χX (353N). For x ∈ X, set gx(u) = (Tu)(x) for every u ∈ U ; then 0 ≤ gx(u) ≤ f(u)
for u ≥ 0, so |gx| ≤ f and limn→∞(Tun)(x) = 0. As x is arbitrary, 〈Tun〉n∈N order*-converges to 0 in C(X),
by 367K, and therefore in Ve, because Ve is order-dense in C(X) (367E). But Ve, regarded as a subspace of
V , is solid, so 367E tells us also that 〈Tun〉n∈N order*-converges to 0 in V .

376H Theorem Let U be a Riesz space and V a weakly (σ,∞)-distributive Dedekind complete Riesz
space (definition: 368N). Suppose that T ∈ L

×(U ;V ). Then the following are equiveridical:
(i) T is an abstract integral operator;
(ii) whenever 〈un〉n∈N is an order-bounded sequence in U+ and limn→∞ f(un) = 0 for every f ∈ U×,

then 〈Tun〉n∈N order*-converges to 0 in V ;
(iii) whenever 〈un〉n∈N is an order-bounded sequence in U and limn→∞ f(un) = 0 for every f ∈ U×, then

〈Tun〉n∈N order*-converges to 0 in V .

proof For f ∈ U×, v ∈ V and u ∈ U set Pfv(u) = f(u)v. Write Z ⊆ L
×(U ;V ) for the band of abstract

integral operators.

(a)(i)⇒(iii) Suppose that T ∈ Z+, and that 〈un〉n∈N is an order-bounded sequence in U such that
limn→∞ f(un) = 0 for every f ∈ U×. Note that {Pfv : f ∈ U×+, v ∈ V +} is upwards-directed, so that
T = sup{T ∧ Pfv : f ∈ U×+, v ∈ V +} (352Va).

Take u∗ ∈ U+ such that |un| ≤ u∗ for every n, and set w = infn∈N supm≥n Tum, which is defined because

|Tun| ≤ Tu∗ for every n. Now w ≤ (T −Pfv)+(u∗) for every f ∈ U×+ and v ∈ V +. PPP Setting T1 = T ∧Pfv,
w0 = (T − Pfv)+(u∗) we have

Tun − T1un ≤ |T − T1|(u∗) = (T − Pfv)+(u∗) = w0

for every n ∈ N, so Tun ≤ w0 + T1un. On the other hand, 0 ≤ T1u ≤ f(u)v for every u ∈ U+, so by 376G
we must have infn∈N supm≥n T1um = 0. Accordingly

w ≤ w0 + infn∈N supm≥n T1um = w0. QQQ

But as inf{(T − Pfv)+ : f ∈ U×+, v ∈ V +} = 0, w ≤ 0. Similarly (or applying the same argument to
〈−un〉n∈N), supn∈N infn∈N Tun ≥ 0 and 〈Tun〉n∈N order*-converges to zero.

For general T ∈ Z, this shows that 〈T+un〉n∈N and 〈T−un〉n∈N both order*-converge to 0, so 〈Tun〉n∈N

order*-converges to 0, by 367C(a-iv). As 〈un〉n∈N is arbitrary, (iii) is satisfied.

(b)(iii)⇒(ii) is trivial.

(c)(ii)⇒(i) ??? Now suppose, if possible, that (ii) is satisfied, but that T /∈ Z. Because L
×(U ;V ) is

Dedekind complete (355H), Z is a projection band (353J), so T is expressible as T1 + T2 where T1 ∈ Z,
T2 ∈ Z⊥ and T2 6= 0. At least one of T+

2 , T−
2 is non-zero; replacing T by −T if need be, we may suppose

that T+
2 > 0.

Because T+
2 , like T , belongs to L

×(U ;V ), its kernel U0 is a band in U , which cannot be the whole of U ,
and there is a u0 > 0 in U⊥

0 . In this case T+
2 u0 > 0; because T+

2 ∧ (T−
2 + |T1|) = 0, there is a u1 ∈ [0, u0]

such that T+
2 (u0 − u1) + (T−

2 + |T1|)(u1) 6≥ T+
2 u0, so that

Tu1 ≥ T2u1 − |T1|(u1) 6≤ 0

and Tu1 6= 0. Now this means that the sequence (Tu1, Tu1, . . . ) is not order*-convergent to zero, so there
must be some f ∈ U× such that (f(u1), f(u1), . . . ) does not converge to 0, that is, f(u1) 6= 0; replacing f
by |f | if necessary, we may suppose that f ≥ 0 and that f(u1) > 0.

By 356H, there is a u2 such that 0 < u2 ≤ u1 and g(u2) = 0 whenever g ∈ U× and g ∧ f = 0. Because
0 < u2 ≤ u0, u2 ∈ U⊥

0 and v0 = T+
2 u2 > 0. Consider Pfv0

∈ Z. Because T2 ∈ Z⊥, T+
2 ∧ Pfv0

= 0; set
S = Pfv0

+ T−
2 , so that T+

2 ∧ S = 0. Then

infu∈[0,u2] T
+
2 (u2 − u) + Su = 0, supu∈[0,u2] T

+
2 u− Su = v0

(use 355Ec for the first equality, and then subtract both sides from v0). Now Su ≥ f(u)v0 for every u ≥ 0,
so that for any ǫ > 0
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supu∈[0,u2],f(u)≥ǫ T
+
2 u− Su ≤ (1− ǫ)v0

and accordingly

supu∈[0,u2],f(u)≤ǫ T
+
2 u = v0,

since the join of these two suprema is surely at least v0, while the second is at most v0. Note also that

v0 = supu∈[0,u2],f(u)≤ǫ T
+
2 u = sup0≤u′≤u≤u2,f(u)≤ǫ T2u

′ = sup0≤u′≤u2,f(u′)≤ǫ T2u
′.

For k ∈ N set Ak = {u : 0 ≤ u ≤ u2, f(u) ≤ 2−k}. We know that

Bk = {supu∈I T2u : I ⊆ Ak is finite}
is an upwards-directed set with supremum v0 for each k. Because V is weakly (σ,∞)-distributive, we can
find a sequence 〈v′k〉k∈N such that v′k ∈ Bk for every k and v1 = infk∈N v

′
k > 0. For each k let Ik ⊆ Ak be a

finite set such that v′k = supu∈Ik T2u.
Because each Ik is finite, we can build a sequence 〈u′n〉n∈N in [0, u2] enumerating each in turn, so that

limn→∞ f(u′n) = 0 (since f(u) ≤ 2−k if u ∈ Ik) while supm≥n T2u
′
m ≥ v1 for every n (since {u′m : m ≥ n}

always includes some Ik). Now 〈T2u′n〉n∈N does not order*-converge to 0.
However, limn→∞ g(u′n) = 0 for every g ∈ U×. PPP Express |g| as g1 + g2 where g1 belongs to the band

of U× generated by f and g2 ∧ f = 0 (353Ic). Then g2(u′n) = g2(u2) = 0 for every n, by the choice of u2.
Also g1 = supn∈N g1 ∧ nf (352Vb); so, given ǫ > 0, there is an m ∈ N such that (g1 −mf)+(u2) ≤ ǫ and
(g1 −mf)+(u′n) ≤ ǫ for every n ∈ N. But this means that

|g(u′n)| ≤ |g|(u′n) ≤ ǫ+mf(u′n)

for every n, and lim supn→∞ |g(u′n)| ≤ ǫ; as ǫ is arbitrary, limn→∞ g(u′n) = 0. QQQ
Now, however, part (a) of this proof tells us that 〈T1u′n〉n∈N is order*-convergent to 0, because T1 ∈ Z,

while 〈Tu′n〉n∈N is order*-convergent to 0, by hypothesis; so 〈T2u′n〉n∈N = 〈Tu′n−T1u′n〉n∈N order*-converges
to 0. XXX

This contradiction shows that every operator satisfying the condition (ii) must be in Z.

376I The following elementary remark will be useful for the next corollary and also for Theorem 376S.

Lemma Let (X,Σ, µ) be a σ-finite measure space and U an order-dense solid linear subspace of L0(µ). Then
there is a non-decreasing sequence 〈Xn〉n∈N of measurable subsets of X, with union X, such that χX•

n ∈ U
for every n ∈ N.

proof Write A for the measure algebra of µ, so that L0(µ) can be identified with L0(A) (364Ic). A = {a :
a ∈ A \ {0}, χa ∈ U} is order-dense in A, so includes a partition of unity 〈ai〉i∈I . Because µ is σ-finite, A is
ccc (322G) and I is countable, so we can take I to be a subset of N. Choose Ei ∈ Σ such that E•

i = ai for
i ∈ I; set E = X \⋃i∈I Ei, Xn = E ∪⋃

i∈I,i≤nEi for n ∈ N.

376J Corollary Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces, with product measure λ on X×Y .
Let U ⊆ L0(µ), V ⊆ L0(ν) be perfect order-dense solid linear subspaces, and T : U → V a linear operator.
Write U = {f : f ∈ L0(µ), f• ∈ U}, V# = {h : h ∈ L0(ν), h• × v ∈ L1 for every v ∈ V }. Then the following
are equiveridical:

(i) T is an abstract integral operator;
(ii) there is a k ∈ L

0(λ) such that
(α)

∫
|k(x, y)f(x)h(y)|d(x, y) <∞ for every f ∈ U, h ∈ V#,

(β) if f ∈ U and we set g(y) =
∫
k(x, y)f(x)dx wherever this is defined, then g ∈ L0(ν) and Tf• = g•;

(iii) T ∈ L
∼(U ;V ) and whenever 〈un〉n∈N is an order-bounded sequence in U+ and limn→∞ h(un) = 0 for

every h ∈ U×, then 〈Tun〉n∈N order*-converges to 0 in V .

Remark I write ‘d(x, y)’ above to indicate integration with respect to the product measure λ. Recall that
in the terminology of §251, λ can be taken to be either the ‘primitive’ or ‘c.l.d.’ product measure (251K).

proof The idea is of course to identify L0(µ) and L0(ν) with L0(A) and L0(B), where (A, µ̄) and (B, ν̄) are
the measure algebras of µ and ν, so that their localizable measure algebra free product can be identified with
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the measure algebra of λ (325E), while V # = {h• : h ∈ V
#} can be identified with V ×, because (T,T, ν) is

localizable (see the last sentence in 369C).

(a)(i)⇒(ii) By 376F, there is a w ∈ L0(λ) such that
∫
w × (u ⊗ v′) is defined and equal to

∫
Tu ×

v′ whenever u ∈ U and v′ ∈ V #. Express w as k• where k ∈ L
0(λ). If f ∈ U and h ∈ V

# then∫
|k(x, y)f(x)h(y)|d(x, y) =

∫
|w × (f• ⊗ h•| is finite, so (ii-α) is satisfied.

Now take any f ∈ U, and set g(y) =
∫
k(x, y)f(x)dx whenever this is defined in R. Write F for the set

of those F ∈ T such that χF ∈ V
#. Then for any F ∈ F , g is defined almost everywhere in F and g↾F is

ν-virtually measurable. PPP
∫
k(x, y)f(x)χF (y)d(x, y) is defined in R, so by Fubini’s theorem (252B, 252C)

gF (y) =
∫
k(x, y)f(x)χF (y)dx is defined for almost every y, and is ν-virtually measurable; now g↾F = gF ↾F .

QQQ Next, there is a sequence 〈Fn〉n∈N in F with union Y , by 376I, because V is perfect and order-dense, so
V # must also be order-dense in L0(ν).

For each n ∈ N, there is a measurable set F ′
n ⊆ Fn ∩ dom g such that g↾Fn is measurable and Fn \ F ′

n is
negligible. Setting G =

⋃
n∈N F

′
n, G is conegligible and g↾G is measurable, so g ∈ L

0(ν).

If g̃ ∈ L0(ν) represents Tu ∈ L0(ν), then for any F ∈ F∫
F
g̃ =

∫
Tu× (χF )• =

∫
F
g.

In particular, this is true whenever F ∈ T and F ⊆ Fn. So g and g̃ agree almost everywhere in Fn, for each
n, and g =a.e. g̃. Thus g also represents Tu, as required in (ii-β).

(b)(ii)⇒(i) Set w = k• in L0(λ). If f ∈ U and h ∈ V
# the hypothesis (α) tells us that (x, y) 7→

k(x, y)f(x)h(y) is integrable (because it surely belongs to L
0(λ)). By Fubini’s theorem,∫

k(x, y)f(x)h(y)d(x, y) =
∫
g(y)h(y)dy

where g(y) =
∫
k(x, y)f(x)dx for almost every y, so that Tf• = g•, by (β). But this means that, setting

u = f• and v′ = h•, ∫
w × (u⊗ v′) =

∫
Tu× v′;

and this is true for every u ∈ U , v′ ∈ V #.
Thus T satisfies the condition 376F(ii), and is an abstract integral operator.

(b)(i)⇒(iii) Because V is weakly (σ,∞)-distributive (368S), this is covered by 376H(i)⇒(iii).

(c)(iii)⇒(i) Suppose that T satisfies (iii). The point is that T+ is order-continuous. PPP??? Otherwise,
let A ⊆ U be a non-empty downwards-directed set, with infimum 0, such that v0 = infu∈A T

+(u) > 0.
Let 〈Xn〉n∈N be a non-decreasing sequence of sets of finite measure covering X, and set an = X•

n for each
n. For each n, infu∈A [[u > 2−n]] = 0, so we can find ũn ∈ A such that µ̄(an ∩ [[ũn > 2−n]]) ≤ 2−n. Set
un = infi≤n ũi for each n; then 〈un〉n∈N is non-increasing and has infimum 0; also, [0, un] meets A for each
n, so that v0 ≤ sup{Tu : 0 ≤ u ≤ un} for each n. Because V is weakly (σ,∞)-distributive, we can find
a sequence 〈In〉n∈N of finite sets such that In ⊆ [0, un] for each n and v1 = infn∈N supu∈In(Tu)+ > 0.
Enumerating

⋃
n∈N In as 〈u′n〉n∈N, as in part (c) of the proof of 376H, we see that 〈u′n〉n∈N is order-bounded

and limn→∞ f(u′n) = 0 for every f ∈ U× (indeed, 〈u′n〉n∈N order*-converges to 0 in U), while 〈Tu′n〉n∈N 6→∗ 0
in V . XXXQQQ

Similarly, T− is order-continuous, so T ∈ L
×(U ;V ). Accordingly T is an abstract integral operator by

condition (ii) of 376H.

376K As an application of the ideas above, I give a result due to N.Dunford (376N) which was one
of the inspirations underlying the theory. Following the method of Zaanen 83, I begin with a couple of
elementary lemmas.

Lemma Let U and V be Riesz spaces. Then there is a Riesz space isomorphism T 7→ T ′ : L×(U ;V ×) →
L
×(V ;U×) defined by the formula

(T ′v)(u) = (Tu)(v) for every u ∈ U , v ∈ V .

If we write Pfg(u) = f(u)g for f ∈ U×, g ∈ V × and u ∈ U , then Pfg ∈ L
×(U ;V ×) and P ′

fg = Pgf in

L
×(V ;U×). Consequently T is an abstract integral operator iff T ′ is.
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proof All the ideas involved have already appeared. For positive T ∈ L
×(U ;V ×) the functional (u, v) 7→

(Tu)(v) is bilinear and order-continuous in each variable separately; so (just as in the first part of the proof
of 376E) corresponds to a T ′ ∈ L

×(V ;U×). The map T 7→ T ′ : L×(U ;V ×)+ → L
×(V ;U×)+ is evidently an

additive, order-preserving bijection, so extends to an isomorphism between L
×(U ;V ×) and L

×(V ;U×) given
by the same formula. I remarked in part (i) of the proof of 376E that every Pfg belongs to L

×(U ;V ×), and
the identification P ′

fg = Pgf is just a matter of checking the formulae. Of course it follows at once that the

bands of abstract integral operators must also be matched by the map T 7→ T ′.

376L Lemma Let U be a Banach lattice with an order-continuous norm. If w ∈ U+ there is a g ∈ (U×)+

such that for every ǫ > 0 there is a δ > 0 such that ‖u‖ ≤ ǫ whenever 0 ≤ u ≤ w and g(u) ≤ δ.
proof (a) As remarked in 356D, U∗ = U∼ = U×. Set

A = {v : v ∈ U and there is an f ∈ (U×)+ such that f(u) > 0 whenever 0 < u ≤ |v|}.
Then v′ ∈ A whenever |v′| ≤ |v| ∈ A and v + v′ ∈ A for all v, v′ ∈ A (if f(u) > 0 whenever 0 < u ≤ |v| and
f ′(u) > 0 whenever 0 < u ≤ |v′|, then (f + f ′)(u) > 0 whenever 0 < u ≤ |v + v′|); moreover, if v0 > 0 in U ,
there is a v ∈ A such that 0 < v ≤ v0. PPP Because U× = U∗ separates the points of U , there is a g > 0 in
U× such that g(v0) > 0; now by 356H there is a v ∈ ]0, v0] such that g is strictly positive on ]0, v], so that
v ∈ A. QQQ But this means that A is an order-dense solid linear subspace of U .

(b) In fact w ∈ A. PPP w = supB, where B = A ∩ [0, w]. Because B is upwards-directed, w ∈ B (354Ea),
and there is a sequence 〈u′n〉n∈N in B converging to w for the norm. For each n, choose fn ∈ (U×)+ such
that fn(u) > 0 whenever 0 < u ≤ u′n. Set

f =
∑∞

n=0
1

2n(1+‖fn‖)
fn

in U∗ = U×. Then whenever 0 < u ≤ w there is some n ∈ N such that u ∧ u′n > 0, so that fn(u) > 0 and
f(u) > 0. So f witnesses that w ∈ A. QQQ

(c) Take g ∈ (U×)+ such that g(u) > 0 whenever 0 < u ≤ w. This g serves. PPP??? Otherwise, there
is some ǫ > 0 such that for every n ∈ N we can find a un ∈ [0, w] with g(un) ≤ 2−n and ‖un‖ ≥ ǫ. Set
vn = supi≥n ui; then 0 ≤ vn ≤ w, g(vn) ≤ 2−n+1 and ‖vn‖ ≥ ǫ for every n ∈ N. But 〈vn〉n∈N is non-
decreasing, so v = infn∈N vn must be non-zero, while 0 ≤ v ≤ w and g(v) = 0; which is impossible. XXX
QQQ

Thus we have found an appropriate g.

376M Theorem (a) Let U be a Banach lattice with an order-continuous norm and V a Dedekind
complete M -space. Then every bounded linear operator from U to V is an abstract integral operator.

(b) Let U be an L-space and V a Banach lattice with order-continuous norm. Then every bounded linear
operator from U to V × is an abstract integral operator.

proof (a) By 355Kb and 355C, L×(U ;V ) = L
∼(U ;V ) ⊆ B(U ;V ); but since norm-bounded sets in V are

also order-bounded, {Tu : |u| ≤ u0} is bounded above in V for every T ∈ B(U ;V ) and u0 ∈ U+, and
B(U ;V ) = L

×(U ;V ).
I repeat ideas from the proof of 376H. (I cannot quote 376H directly as I am not assuming that V is

weakly (σ,∞)-distributive.) ??? Suppose, if possible, that B(U ;V ) is not the band Z of abstract integral
operators. In this case there is a T > 0 in Z⊥. Take u1 ≥ 0 such that v0 = Tu1 is non-zero. Let f ≥ 0
in U× be such that for every ǫ > 0 there is a δ > 0 such that ‖u‖ ≤ ǫ whenever 0 ≤ u ≤ u1 and f(u) ≤ δ
(376L). Then, just as in part (c) of the proof of 376H,

supu∈[0,u1],f(u)≤δ Tu = v0

for every δ > 0. But there is a δ > 0 such that ‖T‖‖u‖ ≤ 1
2‖v0‖ whenever 0 ≤ u ≤ u1 and f(u) ≤ δ; in

which case ‖ supu∈[0,u1],f(u)≤δ Tu‖ ≤ 1
2‖v0‖, which is impossible. XXX

Thus Z = B(U ;V ), as required.

(b) Because V has an order-continuous norm, V ∗ = V × = V ∼; and the norm of V ∗ is a Fatou norm with
the Levi property (356Da). So B(U ;V ∗) = L

×(U ;V ×), by 371C. By 376K, this is canonically isomorphic
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to L
×(V ;U×). Now U× = U∗ is an M -space (356Pb). By (a), every member of L×(V ;U×) is an abstract

integral operator; but the isomorphism between L
×(V ;U×) and L

×(U ;V ×) matches the abstract integral
operators in each space (376K), so every member of B(U ;V ∗) is also an abstract integral operator, as claimed.

376N Corollary: Dunford’s theorem Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces and
T : L1(µ) → Lp(ν) a bounded linear operator, where 1 < p ≤ ∞. Then there is a measurable function
k : X ×Y → R such that Tf• = g•

f , where gf (y) =
∫
k(x, y)f(x)dx almost everywhere, for every f ∈ L1(µ).

proof Set q = p
p−1 if p is finite, 1 if p = ∞. We can identify Lp(ν) with V ×, where V = Lq(ν) ∼= Lp(ν)×

(366Dc, 365Lc) has an order-continuous norm because 1 ≤ q < ∞. By 376Mb, T is an abstract integral
operator. By 376F/376J, T is represented by a kernel, as claimed.

376O Under the right conditions, weakly compact operators are abstract integral operators.

Lemma Let U be a Riesz space, and W a solid linear subspace of U∼. If C ⊆ U is relatively compact
for the weak topology Ts(U,W ) (3A5E), then for every g ∈ W+ and ǫ > 0 there is a u∗ ∈ U+ such that
g(|u| − u∗)+ ≤ ǫ for every u ∈ C.

proof Let Wg be the solid linear subspace of W generated by g. Then Wg is an Archimedean Riesz space
with order unit, so W×

g is a band in the L-space W ∗
g = W∼

g (356Na), and is therefore an L-space in its own

right (354O). For u ∈ U , h ∈W×
g set (Tu)(h) = h(u); then T is an order-continuous Riesz homomomorphism

from U to W×
g (356F).

Now Wg is perfect. PPP I use 356K. Wg is Dedekind complete because it is a solid linear subspace of the
Dedekind complete space U∼. W×

g separates the points of W because T [U ] does. If A ⊆ Wg is upwards-

directed and suph∈A φ(h) is finite for every φ ∈W×
g , then A acts on W×

g as a set of bounded linear functionals
which, by the Uniform Boundedness Theorem (3A5Ha), is uniformly bounded; that is, there is some M ≥ 0
such that suph∈A |φ(h)| ≤ M‖φ‖ for every φ ∈ W×

g . Because g is the standard order unit of Wg, we have

‖φ‖ = |φ|(g) and |φ(h)| ≤M |φ|(g) for every φ ∈W×
g and h ∈ A. In particular,

h(u) ≤ |h(u)| = |(Tu)(h)| ≤M |Tu|(g) = M(Tu)(g) = Mg(u)

for every h ∈ A and u ∈ U+. But this means that h ≤Mg for every h ∈ A and A is bounded above in Wg.
Thus all the conditions of 356K are satisfied and Wg is perfect. QQQ

Accordingly T is continuous for the topologies Ts(U,W ) and Ts(W
×
g ,W

××
g ), because every element φ of

W××
g corresponds to a member of Wg ⊆W , so 3A5Ec applies.

Now we are supposing that C is relatively compact for Ts(U,W ), that is, is included in some compact set
C ′; accordingly T [C ′] is compact and T [C] is relatively compact for Ts(W

×
g ,W

××
g ). Since W×

g is an L-space,
T [C] is uniformly integrable (356Q); consequently (ignoring the trivial case C = ∅) there are φ0, . . . , φn ∈
T [C] such that ‖(|φ| − supi≤n |φi|)+‖ ≤ ǫ for every φ ∈ T [C] (354Rb), so that (|φ| − supi≤n |φi|)+(g) ≤ ǫ for
every φ ∈ T [C].

Translating this back into terms of C itself, and recalling that T is a Riesz homomorphism, we see that
there are u0, . . . , un ∈ C such that g(|u| − supi≤n |ui|)+ ≤ ǫ for every u ∈ C. Setting u∗ = supi≤n |ui| we
have the result.

376P Theorem Let U be an L-space and V a perfect Riesz space. If T : U → V is a linear operator such
that {Tu : u ∈ U, ‖u‖ ≤ 1} is relatively compact for the weak topology Ts(V, V

×), then T is an abstract
integral operator.

proof (a) For any g ≥ 0 in V ×, Mg = sup‖u‖≤1 g(|Tu|) is finite. PPP By 376O, there is a v∗ ∈ V + such

that g(|Tu| − v∗)+ ≤ 1 whenever ‖u‖ ≤ 1; now Mg ≤ g(v∗) + 1. QQQ Considering ‖u‖−1u, we see that
g(|Tu|) ≤Mg‖u‖ for every u ∈ U .

Next, we find that T ∈ L
∼(U ;V ). PPP Take u ∈ U+. Set

B = {∑n
i=0 |Tui| : u0, . . . , un ∈ U+,

∑n
i=0 ui = u} ⊆ V +.

Then B is upwards-directed. (Cf. 371A.) If g ≥ 0 in V ×,
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sup
v∈B

g(v) = sup{
n∑

i=0

g(|Tui|) :

n∑

i=0

ui = u}

≤ sup{
n∑

i=0

Mg‖ui‖ :

n∑

i=0

ui = u} = Mg‖u‖

is finite. By 356K, B is bounded above in V ; and of course any upper bound for B is also an upper bound
for {Tu′ : 0 ≤ u′ ≤ u}. As u is arbitrary, T is order-bounded. QQQ

Because U is a Banach lattice with an order-continuous norm, T ∈ L
×(U ;V ) (355Kb).

(b) Since we can identify L
×(U ;V ) with L

×(U ;V ××), we have an adjoint operator T ′ ∈ L
×(V ×;U×), as

in 376K. Now if g ≥ 0 in V × and 〈gn〉n∈N is a sequence in [0, g] such that limn→∞ gn(v) = 0 for every v ∈ V ,
〈T ′gn〉n∈N order*-converges to 0 in U×. PPP For any ǫ > 0, there is a v∗ ∈ V + such that g(|Tu| − v∗)+ ≤ ǫ
whenever ‖u‖ ≤ 1; consequently

‖T ′gn‖ = sup
‖u‖≤1

(T ′gn)(u) = sup
‖u‖≤1

gn(Tu)

≤ gn(v∗) + sup
‖u‖≤1

gn(|Tu| − v∗)+

≤ gn(v∗) + sup
‖u‖≤1

g(|Tu| − v∗)+ ≤ gn(v∗) + ǫ

for every n ∈ N. As limn→∞ gn(v∗) = 0, lim supn→∞ ‖T ′gn‖ ≤ ǫ; as ǫ is arbitrary, 〈‖T ′gn‖〉n∈N → 0. But as
U× is an M -space (356Pb), it follows that 〈T ′gn〉n∈N order*-converges to 0. QQQ

By 368Pc, U× is weakly (σ,∞)-distributive. By 376H, T ′ is an abstract integral operator, so T also is,
by 376K.

376Q Corollary Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces and T : L1(µ) → L1(ν) a
weakly compact linear operator. Then there is a function k : X × Y → R such that Tf• = g•

f , where

gf (y) =
∫
k(x, y)f(x)dx almost everywhere, for every f ∈ L

1(µ).

proof This follows from 376P and 376J, just as in 376N.

376R So far I have mentioned actual kernel functions k(x, y) only as a way of giving slightly more
concrete form to the abstract kernels of 376E. But of course they can provide new structures and insights.
I give one result as an example. The following lemma is useful.

Lemma Let (X,Σ, µ) be a measure space, (Y,T, ν) a σ-finite measure space, and λ the c.l.d. product
measure on X × Y . Suppose that k is a λ-integrable real-valued function. Then for any ǫ > 0 there is a
finite partition E0, . . . , En of X into measurable sets such that ‖k − k1‖1 ≤ ǫ, where

k1(x, y) =
1

µEi

∫

Ei

k(t, y)dt whenever x ∈ Ei, 0 < µEi <∞

and the integral is defined in R,

= 0 in all other cases.

proof Once again I refer to the proof of 253F: there are sets H0, . . . , Hr of finite measure in X, sets
F0, . . . , Fr of finite measure in Y , and α0, . . . , αr such that ‖k−k2‖1 ≤ 1

2ǫ, where k2 =
∑r

j=0 αiχ(Hj ×Fj).

Let E0, . . . , En be the partition of X generated by {Hi : i ≤ r}. Then for any i ≤ n,
∫
Ei×Y

|k − k1| is

defined and is at most 2
∫
Ei×Y

|k − k2|. PPP If µEi = 0, this is trivial, as both are zero. If µEi = ∞, then

again the result is elementary, since both k1 and k2 are zero on Ei×Y . So let us suppose that 0 < µEi <∞.
In this case

∫
Ei
k(t, y)dt must be defined for almost every y, by Fubini’s theorem. So k1 is defined almost

everywhere in Ei × Y , and ∫
Ei×Y

|k − k1| =
∫
Y

∫
Ei
|k(x, y)− k1(x, y)|dxdy.
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Now take some fixed y ∈ Y such that

β =
1

µEi

∫
Ei
k(t, y)dt

is defined. Then β = k1(x, y) for every x ∈ Ei. For every x ∈ Ei, we must have k2(x, y) = α where
α =

∑{αj : Ei ⊆ Hj , y ∈ Fj}. But in this case, because
∫
Ei
k(x, y)− β dx = 0, we have

∫
Ei

max(0, k(x, y)− β)dx =
∫
Ei

max(0, β − k(x, y))dx =
1

2

∫
Ei
|k(x, y)− k1(x, y)|dx.

If β ≥ α, ∫
Ei

max(0, k(x, y)− β)dx ≤
∫
Ei

max(0, k(x, y)− α)dx ≤
∫
Ei
|k(x, y)− k2(x, y)|dx;

if β ≤ α, ∫
Ei

max(0, β − k(x, y))dx ≤
∫
Ei

max(0, α− k(x, y))dx ≤
∫
Ei
|k(x, y)− k2(x, y)|dx;

in either case,

1

2

∫
Ei
|k(x, y)− k1(x, y)|dx ≤

∫
Ei
|k(x, y)− k2(x, y)|dx.

This is true for almost every y, so integrating with respect to y we get the result. QQQ
Now, summing over i, we get ∫

|k − k1| ≤ 2
∫
|k − k2| ≤ ǫ,

as required.

376S Theorem Let (X,Σ, µ) be a complete locally determined measure space, (Y,T, ν) a σ-finite measure

space, and λ the c.l.d. product measure on X×Y . Let τ be an extended Fatou norm on L0(ν) and write L
τ ′

for {g : g ∈ L
0(ν), τ ′(g•) < ∞}, where τ ′ is the associate extended Fatou norm of τ (369H-369I). Suppose

that k ∈ L
0(λ) is such that k × (f ⊗ g) is integrable whenever f ∈ L

1(µ) and g ∈ L
τ ′

. Then we have a
corresponding linear operator T : L1(µ)→ Lτ defined by saying that

∫
(Tf•)× g• =

∫
k× (f ⊗ g) whenever

f ∈ L1(µ) and g ∈ Lτ ′

.
For x ∈ X set kx(y) = k(x, y) whenever this is defined. Then kx ∈ L

0(ν) for almost every x; set
vx = k•

x ∈ L0(ν) for such x. In this case x 7→ τ(vx) is measurable and defined and finite almost everywhere,
and ‖T‖ = ess supx τ(vx).

Remarks The discussion of extended Fatou norms in §369 regarded them as functionals on spaces of the
form L0(A). I trust that no-one will be offended if I now speak of an extended Fatou norm on L0(ν), with

the associated function spaces Lτ , Lτ ′ ⊆ L0, taking for granted the identification in 364Ic.
Recall that (f ⊗ g)(x, y) = f(x)g(y) for x ∈ dom f and y ∈ dom g (253B).
By ‘ess supx τ(vx)’ I mean

inf{M : M ≥ 0, {x : vx is defined and τ(vx) ≤M} is conegligible}
(see 243D).

proof (a) To see that the formula (f, g) 7→
∫
k × (f ⊗ g) gives rise to an operator in L

×(U ; (Lτ ′

)×), it is
perhaps quickest to repeat the argument of parts (a) and (b) of the proof of 376E. (We are not quite in
a position to quote 376E, as stated, because the localizable measure algebra free product there might be
strictly larger than the measure algebra of λ; see 325B.) The first step, of course, is to note that changing
f or g on a negligible set does not affect the integral

∫
k × (f ⊗ g), so that we have a bilinear functional on

L1 × Lτ ′

; and the other essential element is the fact that the maps f• 7→ (f ⊗ χY )•, g• 7→ (χX ⊗ g)• are
order-continuous (put 325A and 364Pc together).

By 369K, we can identify (Lτ ′

)× with Lτ , so that T becomes an operator in L
×(U ;Lτ ). Note that it

must be norm-bounded (355C).

(b) By 376I, there is a non-decreasing sequence 〈Yn〉n∈N of measurable sets in Y , covering Y , such that

χYn ∈ Lτ ′

for every n. Set X0 = {x : x ∈ X, kx ∈ L0(ν)}. Then X0 is conegligible in X. PPP Let E ∈ Σ be
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any set of finite measure. Then for any n ∈ N, k× (χE ⊗ χYn) is integrable, that is,
∫
E×Yn

k is defined and

finite; so by Fubini’s theorem
∫
Yn
kx is defined and finite for almost every x ∈ E. Consequently, for almost

every x ∈ E, kx × χYn ∈ L
0(ν) for every n ∈ N, that is, kx ∈ L

0(ν), that is, x ∈ X0.
Thus E \X0 is negligible for every set E of finite measure. Because µ is complete and locally determined,

X0 is conegligible. QQQ
This means that vx and τ(vx) are defined for almost every x.

(c) τ(vx) ≤ ‖T‖ for almost every x. PPP Take any E ∈ Σ of finite measure, and n ∈ N. Then k×χ(E×Yn)
is integrable. For each r ∈ N, there is a finite partition Er0, . . . , Er,m(r) of E into measurable sets such that∫
E×Yn

|k − k(r)| ≤ 2−r, where

k(r)(x, y) =
1

µEri

∫

Eri

k(t, y)dt whenever y ∈ Yn, x ∈ Eri, µEri > 0

and the integral is defined in R

= 0 otherwise

(376R). Now k(r) also is integrable over E × Yn, so k
(r)
x ∈ L0(ν) for almost every x ∈ E, writing k

(r)
x (y) =

k(r)(x, y), and we can speak of v
(r)
x = (k

(r)
x )• for almost every x. Note that k

(r)
x = k

(r)
x′ whenever x, x′ belong

to the same Eri.

If µEri > 0, then v
(r)
x must be defined for every x ∈ Eri. If v′ ∈ Lτ ′

is represented by g ∈ L
τ ′

then

∫
k × (χEri ⊗ (g × χYn)) =

∫

Eri×Yn

k(t, y)g(y)d(t, y)

= µEri

∫
k(r)(x, y)g(y)dy = µEri

∫
v(r)x × v′

for any x ∈ Eri. But this means that

µEri

∫
v
(r)
x × v′ =

∫
T (χE•

ri)× v′ × χY •
n

for every v′ ∈ Lτ ′

, so

v
(r)
x =

1

µEri

T (χE•
ri)× χY •

n , τ(v
(r)
x ) ≤ 1

µEri

‖T‖‖χE•
ri‖1 = ‖T‖

for every x ∈ Eri. This is true whenever µEri > 0, so in fact τ(v
(r)
x ) ≤ ‖T‖ for almost every x ∈ E.

Because
∑

r∈N

∫
E×Yn

|k − k(r)| < ∞, we must have k(x, y) = limr→∞ k(r)(x, y) for almost every (x, y) ∈
E × Yn. Consequently, for almost every x ∈ E, k(x, y) = limr→∞ k(r)(x, y) for almost every y ∈ Yn, that is,

〈v(r)x 〉r∈N order*-converges to vx × χY •
n (in L0(ν)) for almost every x ∈ E. But this means that, for almost

every x ∈ E,

τ(vx × χY •
n ) ≤ lim infr→∞ τ(v

(r)
x ) ≤ ‖T‖

(369Mc). Now

τ(vx) = limn→∞ τ(vx × χY •
n ) ≤ ‖T‖

for almost every x ∈ E.
As in (b), this implies (since E is arbitrary) that τ(vx) ≤ ‖T‖ for almost every x ∈ X. QQQ

(d) I now show that x 7→ τ(vx) is measurable. PPP Take γ ∈ [0,∞[ and set A = {x : x ∈ X0, τ(vx) ≤ γ}.
Suppose that µE <∞. Let G be a measurable envelope of A∩E (132Ee). Set k̃(x, y) = k(x, y) when x ∈ G
and (x, y) ∈ dom k, 0 otherwise. If f ∈ L

1(µ) and g ∈ L
τ ′

, then∫
k̃(x, y)f(x)g(y)d(x, y) =

∫
G×Y

k(x, y)f(x)g(y)d(x, y) =
∫
G
f(x)

∫
Y
k(x, y)g(y)dydx

is defined.
Take any g ∈ L

τ ′

. For x ∈ X0, set h(x) =
∫
|k̃(x, y)g(y)|dy. Then h is finite almost everywhere and

measurable. For x ∈ A ∩ E,
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∫
|k̃(x, y)g(y)|dy =

∫
|vx × g•| ≤ γτ ′(g•).

So the measurable set G′ = {x : h(x) ≤ γτ ′(g•)} includes A ∩ E, and µ(G \G′) = 0. Consequently

|
∫
k̃(x, y)f(x)g(y)d(x, y)| ≤

∫
G
|f(x)|h(x)dx ≤ γ‖f‖1τ ′(g•),

and this is true whenever f ∈ L
1(µ).

Now we have an operator T̃ : L1(µ)→ Lτ defined by the formula∫
(T̃ f•)× g• =

∫
k̃ × (f ⊗ g) when f ∈ L1(ν) and g ∈ Lτ ′

,

and the formula just above tells us that |
∫
T̃ u× v′| ≤ γ‖u‖1τ ′(v′) for every u ∈ L1(ν) and v′ ∈ Lτ ′

; that is,

τ(T̃ u) ≤ γ‖u‖1 for every u ∈ L1(µ); that is, ‖T̃‖ ≤ γ. But now (c) tells us that τ(ṽx) ≤ γ for almost every

x ∈ X, where ṽx is the equivalence class of y 7→ k̃(x, y), that is, ṽx = vx for x ∈ G ∩X0, 0 for x ∈ X \ G.
So τ(vx) ≤ γ for almost every x ∈ G, and G \A is negligible. But this means that A ∩E is measurable. As
E is arbitrary, A is measurable; as γ is arbitrary, x 7→ τ(vx) is measurable. QQQ

(e) Finally, the ideas in (d) show that ‖T‖ ≤ ess supx τ(vx). PPP Set M = ess supx τ(vx). If f ∈ L
1(µ)

and g ∈ L
τ ′

, then ∫
|k(x, y)f(x)g(y)|d(x, y) ≤

∫
|f(x)|τ(vx)τ ′(g•)dx ≤M‖f‖1τ ′(g•);

as g is arbitrary, τ(Tf•) ≤M‖f‖1; as f is arbitrary, ‖T‖ ≤M . QQQ

376X Basic exercises >>>(a) Let µ be Lebesgue measure on R. Let h be a µ-integrable real-valued
function with ‖h‖1 ≤ 1, and set k(x, y) = h(y−x) whenever this is defined. Show that if f is in either L1(µ)
or L

∞(µ) then g(y) =
∫
k(x, y)f(x)dx is defined for almost every y ∈ R, and that this formula gives rise to

an operator T ∈ T ×
µ̄,µ̄ as defined in 373Ab. (Hint : 255H.)

(b) Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras with localizable measure algebra free product
(C, λ̄), and take p ∈ [1,∞]. Show that if u ∈ Lp(A, µ̄) and v ∈ Lp(B, ν̄) then u ⊗ v ∈ Lp(C, λ̄) and
‖u⊗ v‖p = ‖u‖p‖v‖p.

>>>(c) Let U , V , W be Riesz spaces, of which V and W are Dedekind complete, and suppose that
T ∈ L

×(U ;V ) and S ∈ L
×(V ;W ). Show that if either S or T is an abstract integral operator, so is ST .

(d) Let h be a Lebesgue integrable function on R, and f a square-integrable function. Suppose that
〈fn〉n∈N is a sequence of measurable functions such that (α) |fn| ≤ f for every n (β) limn→∞

∫
E
fn = 0 for

every measurable set E of finite measure. Show that limn→∞(h ∗ fn)(y) = 0 for almost every y ∈ R, where
h ∗ fn is the convolution of h and fn. (Hint : 376Xa, 376H.)

(e) Let U and V be Riesz spaces, of which V is Dedekind complete. Suppose that W ⊆ U∼ is a solid
linear subspace, and that T belongs to the band in L

∼(U ;V ) generated by operators of the form u 7→ f(u)v,
where f ∈ W and v ∈ V . Show that whenever 〈un〉n∈N is an order-bounded sequence in U such that
limn→∞ f(un) = 0 for every f ∈W , then 〈Tun〉n∈N order*-converges to 0 in V .

(f) Let (A, µ̄) be a semi-finite measure algebra and U ⊆ L0 = L0(A) an order-dense Riesz subspace
such that U× separates the points of U . Let 〈un〉n∈N be an order-bounded sequence in U . Show that the
following are equiveridical: (i) limn→∞ f(|un|) = 0 for every f ∈ U×; (ii) 〈un〉n∈N → 0 for the topology of
convergence in measure on L0. (Hint : by 367T, condition (ii) is intrinsic to U , so we can replace (A, µ̄) by
a localizable algebra and use the representation in 369D.)

(g) Let U be a Banach lattice with an order-continuous norm, and V a weakly (σ,∞)-distributive Riesz
space. Show that for T ∈ L

∼(U ;V ) the following are equiveridical: (i) T belongs to the band in L
∼(U ;V )

generated by operators of the form u 7→ f(u)v where f ∈ U∼, v ∈ V ; (ii) 〈Tun〉n∈N order*-converges to 0
in V whenever 〈un〉n∈N is an order-bounded sequence in U+ which is norm-convergent to 0; (iii) 〈Tun〉n∈N

order*-converges to 0 in V whenever 〈un〉n∈N is an order-bounded sequence in U which is weakly convergent
to 0.
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(h) Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces, with product measure λ on X × Y , and
measure algebras (A, µ̄), (B, ν̄). Suppose that k ∈ L

0(λ). Show that the following are equiveridical: (i)(α)
if f ∈ L

1(µ) then gf (y) =
∫
k(x, y)f(x)dx is defined for almost every y and gf ∈ L

1(ν) (β) there is an

operator T ∈ T ×
µ̄,ν̄ defined by setting Tf• = g•

f for every f ∈ L
1(µ); (ii)

∫
|k(x, y)|dy ≤ 1 for almost every

x ∈ X,
∫
|k(x, y)|dx ≤ 1 for almost every y ∈ Y .

>>>(i)(i) Show that there is a compact linear operator from ℓ2 to itself which is not in L
∼(ℓ2; ℓ2). (Hint :

start from the operator S of 371Ye.) (ii) Show that the identity operator on ℓ2 is an abstract integral
operator.

>>>(j) Let µ be Lebesgue measure on [0, 1]. (i) Give an example of a measurable function k : [0, 1]2 → R

such that, for any f ∈ L
2(µ), gf (y) =

∫
k(x, y)f(x)dx is defined for every y and ‖gf‖2 = ‖f‖2, but k is not

integrable, so the linear isometry on L2 = L2(µ) defined by k does not belong to L
∼(L2;L2). (ii) Show that

the identity operator on L2 is not an abstract integral operator.

(k) Let (X,Σ, µ) be a σ-finite measure space and (Y,T, ν) a complete locally determined measure space.
Let U ⊆ L0(µ), V ⊆ L0(ν) be solid linear subspaces, of which V is order-dense; write V # = {v : v ∈
L0(ν), v × v′ is integrable for every v′ ∈ V }, U = {f : f ∈ L

0(ν), f• ∈ U}, V = {g : g ∈ L
0(ν), g• ∈ V },

V# = {h : h ∈ L0(ν), h• ∈ V #}. Let λ be the c.l.d. product measure on X × Y , and k ∈ L0(λ) a
function such that k × (f ⊗ g) is integrable for whenever f ∈ U and g ∈ V. (i) Show that for any f ∈ U,
hf (y) =

∫
k(x, y)f(x)dx is defined for almost every y ∈ Y , and that hf ∈ V

#. (ii) Show that we have a map

T ∈ L
×(U ;V #) defined either by writing Tf• = h•

f for every f ∈ U or by writing
∫

(Tf•)×g• =
∫
k×(f⊗g)

for every f ∈ U and g ∈ V.

(l) Let (X,Σ, µ), (Y,T, ν) and (Z,Λ, λ) be σ-finite measure spaces, and U , V , W perfect order-dense
solid linear subspaces of L0(µ), L0(ν) and L0(λ) respectively. Suppose that T : U → V and S : V → W
are abstract integral operators corresponding to kernels k1 ∈ L

0(µ × ν), k2 ∈ L
0(ν × λ), writing µ × ν for

the (c.l.d. or primitive) product measure on X × Y . Show that ST : U → W is represented by the kernel
k ∈ L

0(µ× λ) defined by setting k(x, z) =
∫
k1(x, y)k2(y, z)dy whenever this integral is defined.

(m) Let U be a perfect Riesz space. Show that a set C ⊆ U is relatively compact for Ts(U,U
×) iff for

every g ∈ (U×)+, ǫ > 0 there is a u∗ ∈ U such that g(|u| − u∗)+ ≤ ǫ for every u ∈ C. (Hint : 376O and the
proof of 356Q.)

>>>(n) Let µ be Lebesgue measure on [0, 1], and ν counting measure on [0, 1]. Set k(x, y) = 1 if x = y, 0
otherwise. Show that 376S fails in this context (with, e.g., τ = ‖ ‖∞).

(o) Suppose, in 376Xk, that U = Lτ for some extended Fatou norm on L0(µ) and that V = L1(ν), so
that V # = L∞(ν). Set ky(x) = k(x, y) whenever this is defined, wy = k•

y whenever ky ∈ L
0(µ). Show that

wy ∈ Lτ ′

for almost every y ∈ Y , and that the norm of T in B(Lτ ;L∞) is ess supy τ
′(wy). (Hint : do the

case of totally finite Y first.)

376Y Further exercises (a) Let U , V and W be linear spaces (over any field F ) and φ : U × V →W
a bilinear operator. Let W0 be the linear subspace of W generated by φ[U × V ]. Show that the following
are equiveridical: (i) for every linear space Z over F and every bilinear ψ : U × V → Z, there is a (unique)
linear operator T : W0 → Z such that Tφ = ψ (ii) whenever u0, . . . , un ∈ U are linearly independent
and v0, . . . , vn ∈ V are non-zero,

∑n
i=0 φ(ui, vi) 6= 0 (iii) whenever u0, . . . , un ∈ U are non-zero and

v0, . . . , vn ∈ V are linearly independent,
∑n

i=0 φ(ui, vi) 6= 0 (iv) for any Hamel bases 〈ui〉i∈I , 〈vj〉j∈J of U
and V , 〈φ(ui, vj)〉i∈I,j∈J is a Hamel basis of W0 (v) for some pair 〈ui〉i∈I , 〈vj〉j∈J of Hamel bases of U and
V , 〈φ(ui, vj)〉i∈I,j∈J is a Hamel basis of W0.

(b) Let (A, µ̄), (B, ν̄) be semi-finite measure algebras, and (C, λ̄) their localizable measure algebra free
product. Show that ⊗ : L0(A)× L0(B)→ L0(C) satisfies the equivalent conditions of 376Ya.

(c) Let (X,Σ, µ) and (Y,T, ν) be semi-finite measure spaces and λ the c.l.d. product measure on X × Y .
Show that the map (f, g) 7→ f ⊗ g : L0(µ)×L

0(ν)→ L
0(λ) induces a map (u, v) 7→ u⊗ v : L0(µ)×L0(ν)→

L0(λ) possessing all the properties described in 376B and 376Ya, subject to a suitable interpretation of the
formula ⊗ : A×B→ C.
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(d) Let (Bω1
, ν̄ω1

) be the measure algebra of {0, 1}ω1 with its usual measure, and 〈aξ〉ξ<ω1
a stochastically

independent (definition: 325Xf) family of elements of measure 1
2 in Bω1

. Set U = L2(Bω1
, ν̄ω1

) and

V = {v : v ∈ Rω1 , {ξ : v(ξ) 6= 0} is countable}. Define T : U → Rω1 by setting Tu(ξ) = 2
∫
aξ
u −

∫
u for

ξ < ω1, u ∈ U . Show that (i) Tu ∈ V for every u ∈ U (ii) 〈Tun〉n∈N order*-converges to 0 in V whenever
〈un〉n∈N is a sequence in U such that limn→∞ f(un) = 0 for every f ∈ U× (iii) T /∈ L

∼(U ;V ).

(e) Let U be a Riesz space with the countable sup property (definition: 241Ye) such that U× separates the
points of U , and 〈un〉n∈N a sequence in U . Show that the following are equiveridical: (i) limn→∞ f(v∧|un|) =
0 for every f ∈ U×, v ∈ U+; (ii) every subsequence of 〈un〉n∈N has a sub-subsequence which is order*-
convergent to 0.

(f) Let U be an Archimedean Riesz space and A a weakly (σ,∞)-distributive Dedekind complete Boolean
algebra. Suppose that T : U → L0 = L0(A) is a linear operator such that 〈|Tun|〉n∈N order*-converges to
0 in L0 whenever 〈un〉n∈N is order-bounded and order*-convergent to 0 in U . Show that T ∈ L

∼
c (U ;L0)

(definition: 355G), so that if U has the countable sup property then T ∈ L
×(U ;L0).

(g) Suppose that (Y,T, ν) is a probability space in which T = PY and ν{y} = 0 for every y ∈ Y . (See
363S.) Take X = Y and let µ be counting measure on X; let λ be the c.l.d. product measure on X ×Y , and
set k(x, y) = 1 if x = y, 0 otherwise. Show that we have an operator T : L∞(µ)→ L∞(ν) defined by setting
Tf = g• whenever f ∈ L∞(µ) ∼= ℓ∞(X) and g(y) =

∫
k(x, y)f(x)dx = f(y) for every y ∈ Y . Show that T

satisfies the conditions (ii) and (iii) of 376J but does not belong to L
×(L∞(µ);L∞(ν)).

(h) Give an example of an abstract integral operator T : ℓ2 → L1(µ), where µ is Lebesgue measure on
[0, 1], such that 〈Ten〉n∈N is not order*-convergent in L1(µ), where 〈en〉n∈N is the standard orthonormal
sequence in ℓ2.

(i) Set k(m,n) = 1/π(n−m+ 1
2 ) form, n ∈ Z. (i) Show that

∑∞
n=−∞ k(m,n)2 = 1 and

∑∞
n=−∞ k(m,n)k(m′, n) =

0 for all distinct m, m′ ∈ Z. (Hint : find the Fourier series of x 7→ ei(m+ 1
2
)x and use 282K.) (ii) Show that

there is a norm-preserving linear operator T from ℓ2 = ℓ2(Z) to itself given by the formula (Tu)(n) =∑∞
m=−∞ k(m,n)u(m). (iii) Show that T 2 is the identity operator on ℓ2. (iv) Show that T /∈ L

∼(ℓ2; ℓ2).

(Hint : consider
∑∞

m,n=−∞ |k(m,n)|x(m)x(n) where x(n) = 1/
√
|n| ln |n| for |n| ≥ 2.) (T is a form of the

Hilbert transform.)

(j) Let U be an L-space and V a Banach lattice with an order-continuous norm. Let T ∈ L
∼(U ;V ).

Show that the following are equiveridical: (i) T is an abstract integral operator; (ii) T [C] is norm-compact
in V whenever C is weakly compact in U . (Hint : start with the case in which C is order-bounded, and
remember that it is weakly sequentially compact.)

(k) Let (X,Σ, µ) be a complete locally determined measure space and (Y,T, ν), (Z,Λ, λ) two σ-finite
measure spaces. Suppose that τ , θ are extended Fatou norms on L0(ν), L0(λ) respectively, and that T :
L1(µ)→ Lτ is an abstract integral operator, with corresponding kernel k ∈ L

0(µ×ν), while S ∈ L
×(Lτ ;Lθ),

so that ST : L1(µ) → Lθ is an abstract integral operator (376Xc); let k̃ ∈ L
0(µ × λ) be the corresponding

kernel. For x ∈ X set vx = k•
x when this is defined in Lτ , as in 376S, and similarly take wx = k̃•

x ∈ Lθ.
Show that Svx = wx for almost every x ∈ X.

376 Notes and comments I leave 376Yb to the exercises because I do not rely on it for any of the work
here, but of course it is an essential aspect of the map ⊗ : L0(A)×L0(B)→ L0(C) I discuss in this section.
The conditions in 376Ya are characterizations of the ‘tensor product’ of two linear spaces, a construction of
great importance in abstract linear algebra (and, indeed, in modern applied linear algebra; it is by no means
trivial even in the finite-dimensional case). In particular, note that conditions (ii), (iii) of 376Ya apply to
arbitrary subspaces of U and V if they apply to U and V themselves.

The principal ideas used in 376B-376C have already been set out in §§253 and 325. Here I do little more
than list the references. I remark however that it is quite striking that L1(C, λ̄) should have no fewer than
three universal mapping theorems attached to it (376Cb, 376C(c-i) and 376C(c-ii)).
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The real work of this section begins in 376E. As usual, much of the proof is taken up with relatively
straightforward verifications, as in parts (a) and (b), while part (i) is just a manoeuvre to show that it
doesn’t matter if A and B aren’t Dedekind complete, because C is. But I think that parts (d), (f) and (j)
have ideas in them. In particular, part (f) is a kind of application of the Radon-Nikodým theorem (through
the identification of L1(C, λ̄)∗ with L∞(C)).

I have split 376E from 376H because the former demands the language of measure algebras, while the
latter can be put into the language of pure Riesz space theory. Asking for a weakly (σ,∞)-distributive space
V in 376H is a way of applying the ideas to V = L0 as well as to Banach function spaces. (When V = L0,
indeed, variations on the hypotheses are possible, using 376Yf.) But it is a reminder of one of the directions
in which it is often possible to find generalizations of ideas beginning in measure theory.

The condition ‘limn→∞ f(un) = 0 for every f ∈ U×’ (376H(ii)) seems natural in this context, and gives
marginally greater generality than some alternatives (because it does the right thing when U× does not
separate the points of U), but it is not the only way of expressing the idea; see 376Xf and 376Ye. Note that
the conditions (ii) and (iii) of 376H are significantly different. In 376H(iii) we could easily have |un| = u∗ for
every n; for instance, if un = 2χan − χ1 for some stochastically independent sequence 〈an〉n∈N of elements
of measure 1

2 in a probability algebra (272Ye).

If you have studied compact linear operators between Banach spaces (definition: 3A5La), you will have
encountered the condition ‘Tun → 0 strongly whenever un → 0 weakly’. The conditions in 376H and 376J
are of this type. If a sequence 〈un〉n∈N in a Riesz space U is order-bounded and order*-convergent to 0,
then limn→∞ f(un) = 0 for every f ∈ U× (367Xg). Visibly this latter condition is associated with weak
convergence, and order*-convergence is (in Banach lattices) closely related to norm convergence (367D). In
the context of 376H, an abstract integral operator is one which transforms convergent sequences of a weak
type into convergent sequences of a stronger type. The relationship between the classes of (weakly) compact
operators and abstract integral operators is interesting, but outside the scope of this book; I leave you with
376P-376Q and 376Y, and a pair of elementary examples to guard against extravagant conjecture (376Xi).

376O belongs to an extensive general theory of weak compactness in perfect Riesz spaces, based on
adaptations of the concept of ‘uniform integrability’. I give the next step in 376Xm. For more information
see Fremlin 74a, chap. 8.

Note that 376Mb and 376P overlap when V × in 376Mb is reflexive – for instance, when V is an Lp space
for some p ∈ ]1,∞[ – since then every bounded linear operator from L1 to V × must be weakly compact. For
more information on the representation of operators see Dunford & Schwartz 57, particularly Table VI
in the notes to Chapter VI.

As soon as we leave formulations in terms of the spaces L0(A) and their subspaces, and return to the
original conception of a kernel operator in terms of integrating functions against sections of a kernel, we
are necessarily involved in the pathology of Fubini’s theorem for general measure spaces. In general, the
repeated integrals

∫∫
k(x, y)dxdy,

∫∫
k(x, y)dydx need not be equal, and something has to give (376Xn). Of

course this particular worry disappears if the spaces are σ-finite, as in 376J. In 376S I take the trouble to
offer a more general condition, mostly as a reminder that the techniques developed in Volume 2 do enable
us sometimes to go beyond the σ-finite case. Note that this is one of the many contexts in which anything
we can prove about probability spaces will be true of all σ-finite spaces; but that we cannot make the next
step, to all strictly localizable spaces.

376S verges on the theory of integration of vector-valued functions, which I don’t wish to enter here;
but it also seems to have a natural place in the context of this chapter. It is of course a special property
of L1 spaces. The formula ‖Tk‖ = ess supx τ(k•

x) shows that ‖T|k|‖ = ‖Tk‖; now we know fron 376E that
T|k| = |Tk|, so we get a special case of the Chacon-Krengel theorem (371D). Reversing the roles of X and Y ,
we find ourselves with an operator from Lτ to L∞ (376Xo), which is the other standard context in which
‖T‖ = ‖|T |‖ (371Xd). I include two exercises on L2 spaces (376Xj, 376Yi) designed to emphasize the fact
that B(U ;V ) is included in L

∼(U ;V ) only in very special cases.

The history of the theory here is even more confusing than that of mathematics in general, because so
many of the ideas were developed in national schools in very imperfect contact with each other. My own
account gives no hint of how this material arose; I ought in particular to note that 376N is one of the oldest
results, coming (essentially) from Dunford 1936. For further references, see Zaanen 83, chap. 13.
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Version of 30.12.09

*377 Function spaces of reduced products

In §328 I introduced ‘reduced products’ of probability algebras. In this section I seek to describe the
function spaces of reduced products as images of subspaces of products of function spaces of the original
algebras. I add a group of universal mapping theorems associated with the constructions of projective and
inductive limits of directed families of probability algebras (377G-377H).

377A Proposition If 〈Ai〉i∈I is a non-empty family of Boolean algebras with simple product A, then
L∞(A) can be identified, as normed space and f -algebra, with the subspace W∞ of

∏
i∈I L

∞(Ai) consisting
of families u = 〈ui〉i∈I such that ‖u‖∞ = supi∈I ‖ui‖∞ is finite.

proof (a) I begin by noting that W∞ is, in itself, an Archimedean f -algebra and ‖ ‖∞ is a Riesz norm on
W∞. PPP W∞ is a solid linear subspace of

∏
i∈I L

∞(Ai), so inherits a Riesz space structure (352K, 352Ia).
Now it is easy to check that e = 〈χ1Ai

〉i∈I is an order unit in W∞ and that ‖ ‖∞ is the corresponding
order-unit norm (354F-354G). Finally, because W∞ is the solid linear subspace of

∏
i∈I L

∞(Ai) generated
by e, and e is the multiplicative identity of

∏
i∈I L

∞(Ai), W∞ is closed under multiplication, and is an
f -algebra. QQQ

(b) We have a natural function θ : A→W∞ defined by saying that θa = 〈χai〉i∈I whenever a = 〈ai〉i∈I ∈
A. Clearly θ is additive and ‖θa‖∞ ≤ 1 for every a ∈ A; moreover, θa ∧ θb = 0 when a, b ∈ A are disjoint.
By 363E, we have a corresponding Riesz homomorphism T : L∞(A)→W∞ of norm at most 1.

(c) In fact ‖Tw‖∞ = ‖w‖∞ for every w ∈ L∞(A). PPP If w = 0, this is trivial. If w ∈ S(A)\{0}, express it
as

∑n
k=0 αkχa

(k) where 〈a(k)〉k≤n is a disjoint family of non-zero elements. Expressing each a(k) as 〈aki〉i∈I ,

Tw = 〈∑n
k=0 αkχaki〉i∈I .

There must be a j such that |αj | = ‖w‖∞; now there is an i such that aji 6= 0; as 〈aki〉k≤n is disjoint,

‖Tw‖∞ ≥ ‖
∑n

k=0 αkχaki‖∞ ≥ |αj | = ‖w‖∞.

If now w is any member of L∞(A),

‖w‖∞ = sup{‖w′‖∞ : w′ ∈ S(A), |w′| ≤ |w|}
= sup{‖Tw′‖∞ : w′ ∈ S(A), |w′| ≤ |w|} ≤ ‖Tw‖∞

because T is a Riesz homomorphism. QQQ
Thus T is norm-preserving, therefore injective.

(d) Next, T is surjective. PPP Suppose that 〈ui〉i∈I ∈ W+
∞ is non-negative, and that ǫ > 0. Let n ∈ N be

such that nǫ ≥ supi∈I ‖ui‖∞, and for k ≤ n, i ∈ I set aki = [[ui > kǫ]]. Set w = ǫ
∑n

k=1 χ(〈aki〉i∈I). Then
w ∈ L∞(A) and Tw = 〈vi〉i∈I , where vi = ǫ

∑n
k=1 χaki, so that vi ≤ ui and ‖ui − vi‖∞ ≤ ǫ, for every i ∈ I.

Thus ‖Tw − 〈ui〉i∈I‖∞ ≤ ǫ.
As 〈ui〉i∈I and ǫ are arbitrary, T [L∞(A)] ∩W+

∞ is norm-dense in W+
∞. But T is an isometry and L∞(A)

is norm-complete, so T [L∞(A)] is closed in W∞ and includes W+
∞ and therefore W∞; that is, T is surjective.

QQQ
So T is a norm-preserving bijective Riesz homomorphism, that is, a normed Riesz space isomorphism.

Finally, by 353Qd or otherwise, T is multiplicative, so is an f -algebra isomorphism.

377B Theorem Let 〈(Ai, µ̄i)〉i∈I be a non-empty family of probability algebras, and (B, ν̄) a probability
algebra. Let A be the simple product of 〈Ai〉i∈I , and π : A → B a Boolean homomorphism such that
ν̄π(〈ai〉i∈I) ≤ supi∈I µ̄iai whenever 〈ai〉i∈I ∈ A. Let W0 be the subspace of

∏
i∈I L

0(Ai) consisting of
families 〈ui〉i∈I such that infk∈N supi∈I µ̄i[[|ui| > k]] = 0.

(a) W0 is a solid linear subspace and a subalgebra of
∏

i∈I L
0(Ai), and there is a unique Riesz homo-

morphism T : W0 → L0(B) such that T (〈χai〉i∈I) = χπ(〈ai〉i∈I) whenever 〈ai〉i∈I ∈ A. Moreover, T is
multiplicative, and [[Tu > 0]] ⊆ π(〈[[ui > 0]]〉i∈I) whenever u = 〈ui〉i∈I belongs to W0.

c© 2008 D. H. Fremlin
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(b) If h : R → R is a continuous function, and we write h̄ for the corresponding maps from L0 to itself
for any of the spaces L0 = L0(Ai), L

0 = L0(B) (364H), then 〈h̄(ui)〉i∈I ∈ W0 and T (〈h̄(ui)〉i∈I) = h̄(Tu)
whenever u = 〈ui〉i∈I belongs to W0.

proof (a) For u = 〈ui〉i∈I ∈
∏

i∈I L
0(Ai) and k ∈ N, set γk(u) = supi∈I µ̄i[[|ui| > k]].

(i) W0 is a solid linear subspace and subalgebra of the f -algebra
∏

i∈I L
0(Ai). PPP For k ∈ N and u,

v ∈∏
i∈I L

0(Ai),

γk(u) ≤ γk(v) whenever |u| ≤ |v|,

γ2k(u+ v) ≤ γk(u) + γk(v),

γk2(u× v) ≤ γk(u) + γk(v)

for all u, v ∈ ∏
i∈I L

0(Ai) and k ∈ N. So W0 is solid, is closed under addition, and is closed under
multiplication. QQQ

(ii) Let W∞ ⊆ W0 be the set of families 〈ui〉i∈I ∈
∏

i∈I L
∞(Ai) such that supi∈I ‖ui‖∞ is finite; by

377A, we can identify W∞ with L∞(A). We therefore have a corresponding multiplicative Riesz homomor-
phism S : W∞ → L∞(B) such that S(〈χai〉i∈I) = χπ(〈ai〉i∈I) whenever 〈ai〉i∈I ∈ A (363F); note that
S(〈χ1Ai

〉i∈I) = χ1B.

(iii) If u = 〈ui〉i∈I ∈ W∞ and k ∈ N, then [[Su > k]] ⊆ π(〈[[ui > k]]〉i∈I). PPP Setting ai = [[ui > k]], we
have ui × χ(1Ai

\ ai) ≤ kχ1Ai
for every i. Set a = 〈ai〉i∈I . Since S is a multiplicative Riesz homomorphism,

Su× χ(1B \ πa) = Su× χπ(〈1Ai
\ ai〉i∈I) = S(〈ui〉i∈I)× S(〈χ(1Ai

\ ai)〉i∈I)

= S(〈ui〉i∈I × 〈χ(1Ai
\ ai〉i∈I)) = S(〈ui × χ(1Ai

\ ai)〉i∈I)

≤ S(〈kχ1Ai
〉i∈I) = kχ1B

and [[Su > k]] ⊆ πa, as claimed. QQQ

(iv) If u = 〈ui〉i∈I ∈ W+
0 , then sup{Sv : v ∈ W∞, 0 ≤ v ≤ u} is defined in L0(B). PPP Set Au =

S[W∞ ∩ [0, u] ]. Because W∞ ∩ [0, u] is upwards-directed, so is A. If v = 〈vi〉i∈I ∈ W∞ ∩ [0, u], then
[[Sv > k]] ⊆ π(〈[[vi > k]]〉i∈I), by (iii), so

ν̄[[Sv > k]] ≤ supi∈I µ̄i[[vi > k]] ≤ γk(u).

Thus ν̄[[w > k]] ≤ γk(u) for every w ∈ A. Since u ∈W0, limk→∞ γk(u) = 0; so 364L(a-ii) tells us that supAu

is defined in L0(B). QQQ
By 355F, there is a Riesz homomorphism T : W0 → L0(B) extending S and such that Tu = Au for every

u ∈W+
0 . By 353Qd, T is multiplicative.

(v) Because T is multiplicative, we can repeat the calculations of (iii), with T in place of S, to see that

[[Tu > k]] ⊆ π(〈[[ui > k]]〉i∈I)

whenever u = 〈ui〉i∈I ∈W0; in particular, [[Tu > 0]] ⊆ π(〈[[ui > 0]]〉i∈I).

(vi) To see that T is uniquely defined, let T ′ : W0 → L0(B) be another Riesz homomorphism agreeing
with T on families of the form 〈χai〉i∈I . Then T and T ′ agree on W∞

∼= L∞(A), by the uniqueness guaranteed
in 363Fa, and T ′ also is multiplicative, by 353Qd once more. As in (v), we therefore have

[[Tu > k]] ∪ [[T ′u > k]] ⊆ π(〈[[ui > k]]〉i∈I), ν̄([[Tu > k]] ∪ [[T ′u > k]]) ≤ γk(u)

whenever u ∈W0 and k ∈ N.
Suppose that u ∈W+

0 and ǫ > 0. Then there is a k ∈ N such that γk(u) ≤ ǫ. Set vi = ui ∧ kχ1Ai
for each

i, and v = 〈vi〉i∈I . Then Tv = T ′v, so

ν̄[[|Tu− T ′u| > 0]] ≤ ν̄([[Tu− Tv > 0]] ∪ [[T ′u− T ′v > 0]]) ≤ γ0(u− v) = γk(u) ≤ ǫ.
As ǫ is arbitrary, Tu = T ′u; as u is arbitrary, T = T ′.
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(b)(i) If ǫ > 0, there is a k ∈ N such that µ̄i[[|ui| > k]] ≤ ǫ for every i ∈ I. Now there is an l ∈ N such
that |h(t)| ≤ l whenever |t| ≤ k. So [[|h̄(ui)| > l]] ⊆ [[|ui| > k]] and µ̄i[[|h̄(ui)| > l]] ≤ ǫ for every i ∈ I. As ǫ is
arbitrary, 〈h̄(ui)〉i∈I ∈W0.

(ii) Again take any ǫ > 0. Let k ∈ N be such that µ̄iai ≤ ǫ for every i ∈ I, where ai = [[|ui| > k]]. By
the Stone-Weierstrass theorem in the form 281E, there is a polynomial g : R→ R such that |g(t)−h(t)| ≤ ǫ
whenever |t| ≤ k. Setting vi = h̄(ui), v

′
i = ḡ(ui), v = 〈ui〉i∈I and v′ = 〈v′i〉i∈I , we have [[|vi − v′i| > ǫ]] ⊆ ai for

every i (use 364Ib for a quick check of the calculation). Because T is multiplicative (and T (〈χ1Ai
〉i∈I) = χ1B),

Tv′ = ḡ(Tu). So

[[|Tv − h̄(Tu)| > 2ǫ]] ⊆ [[T |v − v′| > ǫ]] ∪ [[|ḡ(Tu)− h̄(Tu)| > ǫ]]

⊆ π(〈[[|vi − v′i| > ǫ]]〉i∈I) ∪ [[|Tu| > k]]

(using (b))

⊆ π(〈ai〉i∈I)

(see (a-v) above), which has measure at most ǫ. As ǫ is arbitrary, Tv = h̄(Tu), as claimed.

377C Theorem Let 〈(Ai, µ̄i)〉i∈I be a non-empty family of probability algebras, (B, ν̄) a probability
algebra, and π :

∏
i∈I Ai → B a Boolean homomorphism such that ν̄π(〈ai〉i∈I) ≤ supi∈I µ̄iai whenever

〈ai〉i∈I ∈
∏

i∈I Ai. Let W0 ⊆
∏

i∈I L
0(Ai) and T : W0 → L0(B) be as in 377B. Suppose either that every

Ai is atomless or that there is an ultrafilter F on I such that ν̄π(〈ai〉i∈I) = limi→F µ̄iai whenever 〈ai〉i∈I

in
∏

i∈I Ai. For 1 ≤ p ≤ ∞ let Wp be the subspace of
∏

i∈I L
0(Ai) consisting of families 〈ui〉i∈I such that

supi∈I ‖ui‖p is finite. Then T [Wp] ⊆ Lp(B, ν̄), and ‖Tu‖p ≤ supi∈I ‖ui‖p whenever u = 〈ui〉i∈I belongs to
Wp.

proof (a) I should begin by explaining why W1 ⊆W0. All we need to observe is that if u = 〈ui〉i∈I belongs
to W1, so that γ = supi∈I ‖ui‖1 is finite, then

infk≥1 supi∈I µ̄i[[ui > k]] ≤ infk≥1
γ

k
= 0,

so u ∈W0. Of course we now have Wp ⊆W1 for p ≥ 1, because every (Ai, µ̄i) is a probability algebra.

(b) I start real work on the proof with a note on the case in which every Ai is atomless. Suppose that
this is so, and that we are given a family 〈ai〉i∈I ∈

∏
i∈I Ai and γ ∈ Q∩ [0, 1]. Then there is a family 〈a′i〉i∈I

such that a′i ⊆ ai and µ̄ia
′
i = γµiai for every i ∈ I, and

γν̄π(〈ai〉i∈I) ≤ ν̄π(〈a′i〉i∈I).

PPP For each i ∈ I, we can find a non-decreasing family 〈ait〉t∈[0,1] in Ai such that ai1 = ai and µ̄iait = tµ̄ai
for every t ∈ [0, 1]. Set b(t) = π(〈ait〉i∈I) and β(t) = ν̄b(t) for t ∈ [0, 1]; then β(s) ≤ β(t) ≤ β(s) + t− s for
0 ≤ s ≤ t ≤ 1, because

β(t)− β(s) = ν̄π(〈ait \ ais〉i∈I) ≤ supi∈I µ̄i(ait \ ais) = (t− s) supi∈I µ̄iai ≤ t− s.

Let n ≥ 1 be such that
1

n
≤ ǫ and m = nγ is an integer, and set αi = β( i+1

n )− β( i
n ) for i < n; then

∑n−1
i=0 αi = β(1) = ν̄b(1).

Consider the possible values of γK =
∑

k∈K αk for sets K ∈ [n]m. (I am thinking of n as the set {0, 1, . . . , n−
1}.) The average value of γK over all m-element subsets of n is just m

n β(1) = γβ(1), so there is some K
such that γK ≥ γβ(1).

Set

a′i = supk∈K ai,(k+1)/n \ ai,k/n

for i ∈ I. Then µ̄ia
′
i = γµ̄iai for every i, while

ν̄π(〈a′i〉i∈I) = supk∈K ν̄(b(k+1
n ) \ b( k

n )) =
∑

k∈K αk
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is at least γβ(1), as required. QQQ

(c) We find now that under either of the hypotheses proposed,
∑n

k=0 γkν̄π(〈aki〉i∈I) ≤ supi∈I

∑n
k=0 γkµiaki

whenever γ0, . . . , γn ≥ 0 are rational and 〈aki〉k≤n is a disjoint family in Ai for each i ∈ I.

PPP(i) Consider first the case in which every Ai is atomless and every γk is between 0 and 1. In this case,
given ǫ > 0, (b) above tells us that we can find a′ki ⊆ aki, for i ∈ I and k ≤ n, such that µ̄ia

′
ki = γkµ̄iaki

and

γkν̄π(〈aki〉i∈I) ≤ ν̄π(〈a′ki〉i∈I).

Set ci = supk≤n a
′
ki for i ∈ I; then

n∑

k=0

γkν̄π(〈aki〉i∈I) ≤
n∑

k=0

ν̄π(〈a′ki〉i∈I) = ν̄π(sup
k≤n
〈a′ki〉i∈I) = ν̄π(〈ci〉i∈I)

≤ sup
i∈I

µ̄ici = sup
i∈I

n∑

k=0

µ̄ia
′
ki = sup

i∈I

n∑

k=0

γkµ̄iaki,

as required.

(ii) Because T is linear, it follows at once that the result is true for any rational γ0, . . . , γn ≥ 0, if
every Ai is atomless.

(iii) Now consider the case in which there is an ultrafilter F on I such that ν̄π(〈ai〉i∈I) = limi→F µ̄iai
for every 〈ai〉i∈I . In this case, given ǫ > 0, the set

J = {j : j ∈ I, ν̄(〈aki〉i∈I) ≤ µ̄jakj + ǫ for every k ≤ n}
belongs to F and is not empty. Take any j ∈ J ; then

∑n
k=0 γkν̄π(〈aki〉i∈I) ≤∑n

k=0 γk(µ̄jakj + ǫ) ≤ ǫ∑n
k=0 γk + supi∈I

∑n
k=0 γkµ̄iaki.

As ǫ is arbitrary, we again have the result. QQQ

(d) Next,
∫
Tu ≤ supi∈I

∫
ui whenever u = 〈ui〉i∈I belongs to W+

∞. PPP Let ǫ > 0 and let n ∈ N be such
that ‖ui‖∞ ≤ nǫ for every i ∈ I. For i ∈ I and k ≤ n, set aki = [[ui > kǫ]] \ [[ui > (k + 1)ǫ]]; for i ∈ I, set
u′i =

∑n
k=0 kǫχaki; then u′i ≤ ui ≤ u′i + ǫχ1Ai

. Setting u′ = 〈u′i〉i∈I , Tu ≤ Tu′ + ǫχ1B, so

∫
Tu− ǫ ≤

∫
Tu′ =

∫ n∑

k=0

kǫχπ(〈aki〉i∈I)

=

n∑

k=0

kǫν̄π(〈aki〉i∈I) ≤ sup
i∈I

n∑

k=0

kǫµ̄iaki

(by (c))

= sup
i∈I

∫
u′i ≤ sup

i∈I

∫
ui.

As ǫ is arbitrary, we have the result. QQQ

(d) It follows that Tu ∈ L1(B, ν̄) and
∫
Tu ≤ supi∈I

∫
ui whenever u = 〈ui〉i∈I belongs to W+

1 and
u ≥ 0. PPP Set γ = supi∈I

∫
ui. Let ǫ > 0. Set γ′ = γ/ǫ. For i ∈ I set vi = ui ∧ γ′χ1Ai

; set v = 〈vi〉i∈I . Then
v ∈W∞ and ∫

Tv ≤ supi∈I

∫
vi ≤ supi∈I

∫
ui = γ

by (c) above. Also [[Tu− Tv > 0]] ⊆ π(〈[[ui > γ′]]〉i∈I), by 377Ba, so

ν̄[[Tu− Tv > 0]] ≤ supi∈I µ̄i[[ui > γ′]] ≤ ǫ.
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Thus for each n ∈ N we can find a wn ∈ L∞(B) such that 0 ≤ wn ≤ Tu,
∫
wn ≤ γ and ν̄[[Tu− wn > 0]] ≤

2−n. Set w′
n = infi≥n wi for each n; then 〈w′

n〉n∈N is a non-decreasing sequence with supremum Tu in L0(B),
while

∫
w′

n ≤ γ for every n. Consequently Tu ∈ L1(B, ν̄) and
∫
Tu ≤ γ, as claimed. QQQ

(e) Because T is a Riesz homomorphism, Tu ∈ L1(B, ν̄) and ‖Tu‖1 =
∫
T |u| is at most supi∈I

∫
|ui| =

supi∈I ‖ui‖1 for every u ∈W1.

(f) Now suppose that p ∈ ]1,∞[ and that u = 〈ui〉i∈I belongs to Wp. In this case, 〈|ui|p〉i∈I belongs
to W1, so T (〈|ui|p〉i∈I) ∈ L1(B, ν̄) and

∫
T (〈|ui|p〉i∈I) ≤ supi∈I

∫
|ui|p. By 377Bb, with h(t) = |t|p,

T (〈|ui|p〉i∈I) = |Tu|p. So Tu ∈ Lp(B, ν̄) and

‖Tu‖p = (
∫
|Tu|p)1/p ≤ supi∈I(

∫
|ui|p)1/p = supi∈I ‖ui‖p

as claimed.

377D The original motivation for the work of this section was to understand the function spaces as-
sociated with the reduced products of §328. For these we have various simplifications in addition to that
observed in 377C.

Theorem Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras, F an ultrafilter on I, and (B, ν̄) a probability
algebra. Let A be the simple product

∏
i∈I Ai and π : A → B a Boolean homomorphism such that

ν̄π(〈ai〉i∈I) = limi→F µ̄iai whenever 〈ai〉i∈I ∈ A. Let W0 ⊆
∏

i∈I L
0(Ai) and T : W0 → L0(B) be as in

377B-377C.
(a) If u = 〈ui〉i∈I belongs to W0 and {i : i ∈ I, ui = 0} ∈ F , then Tu = 0.
(b) For 1 ≤ p ≤ ∞, write Wp for the set of those families 〈ui〉i∈I ∈

∏
i∈I L

p(Ai, µ̄i) such that supi∈I ‖ui‖p
is finite. Then Tu ∈ Lp(B, ν̄) and ‖Tu‖p ≤ limi→F ‖ui‖p whenever u = 〈ui〉i∈I belongs to Wp.

(c) LetWui be the subspace of
∏

i∈I L
1(Ai, µ̄i) consisting of families 〈ui〉i∈I such that infk∈N supi∈I

∫
(|ui|−

kχ1Ai
)+ = 0. Then

∫
Tu = limi→F

∫
ui and ‖Tu‖1 = limi→F ‖ui‖1 whenever u = 〈ui〉i∈I belongs to Wui.

(d) Suppose now that π[A] = B.
(i) T [W0] = L0(B).
(ii) T [Wui] = L1(B, ν̄).
(iii) If p ∈ [1,∞], then T [Wp] = Lp(B, ν̄) and for every w ∈ Lp(B, ν̄) there is a u = 〈ui〉i∈I in Wp such

that Tu = w and supi∈I ‖ui‖p = ‖w‖p.

proof (a) Setting

ai = 1Ai
if ui 6= 0,

= 0 if ui = 0,

〈ai〉i∈I ∈ A and ν̄π(〈ai〉i∈I) = limi→F µ̄iai = 0, so π(〈ai〉i∈I) = 0. Accordingly

Tu = T (〈ui × χai〉i∈I) = Tu× T (〈χai〉i∈I) = Tu× χπ(〈ai〉i∈I) = 0.

(b) Suppose that u = 〈ui〉i∈I ∈Wp and that J ∈ F . Set

vi = ui if i ∈ J,
= 0 if i ∈ I \ J ;

then, putting (a) and 377C together,

‖Tu‖p = ‖Tv‖p ≤ supi∈I ‖vi‖p = supi∈J ‖ui‖p.

As J is arbitrary, ‖Tu‖p ≤ limi→F ‖ui‖p.

(c)(i) Clearly Wui is a solid linear subspace of W1. Suppose that u = 〈ui〉i∈I ∈ W+
ui and ǫ > 0. Let

n ≥ 1 be such that
∫

(ui − nǫχ1Ai
)+ ≤ ǫ for every i ∈ I. For i ∈ I and k ≤ n, set aki = [[ui > kǫ]]; set

vi =
∑n

k=1 kǫχaki, so that

vi ≤ ui ≤ vi + ǫχ1Ai
+ (ui − nǫχ1Ai

)+,
∫
ui ≤

∫
vi + 2ǫ.

If v = 〈vi〉i∈I , then
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∫
Tu = ‖Tu‖1 ≤ lim

i→F
‖ui‖1 = lim

i→F

∫
ui

≤ 2ǫ+ lim
i→F

∫
vi = 2ǫ+

n∑

k=1

kǫ lim
i→F

µ̄iaki

= 2ǫ+

n∑

k=1

kǫν̄π(〈aki〉i∈I) = 2ǫ+

∫ n∑

k=1

kǫχπ(〈aki〉i∈I)

= 2ǫ+

∫
Tv ≤ 2ǫ+

∫
Tu.

As ǫ is arbitrary,
∫
Tu = limi→F

∫
ui.

(ii) It follows at once that
∫
Tu = limi→F

∫
ui and that

‖Tu‖1 =
∫
|Tu| =

∫
T |u| = limi→F

∫
|ui| = limi→F ‖ui‖1

whenever u = 〈ui〉i∈I ∈Wui.

(d)(i)(ααα) Let Tπ : L∞(A)→ L∞(B) be the Riesz homomorphism associated with the Boolean homomor-
phism π : A → B. Since π is surjective, 363Fd tells us that Tπ is surjective. Identifying W∞ with L∞(A),
and T ↾W∞ with Tπ, as in part (a) of the the proof of 377B, we see that T [W∞] = L∞(B). Moreover, 363Fd
tells us also that if w ∈ L∞ there is a v ∈ L∞(A) such that Tπv = w and ‖v‖∞ = ‖w‖∞; translating this
into terms of W∞, we have a u = 〈ui〉i∈I ∈W∞ such that Tu = w and supi∈I ‖ui‖∞ = ‖w‖∞.

It will be useful to know that if b ∈ B and ǫ > 0 there is a family 〈ai〉i∈I ∈ A such that π(〈ai〉i∈I) = b
and supi∈I µ̄iai ≤ ν̄b + ǫ. PPP By hypothesis, there is a family 〈a′i〉i∈I ∈ A such that π(〈a′i〉i∈I) = b, and
ν̄b = limi→F µ̄iai. Set

ai = a′i if µ̄iai ≤ ν̄b+ ǫ,

= 0 for other i ∈ I.

Then limi→F µ̄i(a
′
i △ ai) = 0 so π(〈a′i △ ai〉i∈I) = 0 and π(〈ai〉i∈I) = b, while µ̄iai ≤ ν̄b + ǫ for every i ∈ I.

QQQ

(βββ) Now suppose that w ∈ L0(B)+. For each n ∈ N, set wn = w∧nχ1B and let u(n) = 〈uni〉i∈I ∈W∞

be such that Tu(n) = wn+1−wn and ‖uni‖∞ ≤ 1 for every i ∈ I. Next, for each n, set bn = [[wn+1 − wn > 0]],
and let 〈ani〉i∈I ∈ A be such that π(〈ani〉i∈I) = bn and supi∈I µ̄iani ≤ ν̄bn +2−n. If we set a′ni = infm≤n ami

and u′ni = uni × χa′ni, we shall have

T (〈u′ni〉i∈I) = T (〈uni〉i∈I)× χπ(〈a′ni〉i∈I)

= (wn+1 − wn)× inf
m≤n

χbm = wn+1 − wn

for every n. Also, for each i ∈ I, 〈a′ni〉n∈N is non-increasing and

limn→∞ µ̄ia
′
ni ≤ limn→∞ ν̄bn + 2−n = 0.

So vi = supn∈N

∑n
m=0 u

′
ni is defined in L0(Ai), and

infk∈N supi∈I µ̄i[[vi > k]] ≤ infk∈N supi∈I µ̄ia
′
ki = 0.

Thus v = 〈vi〉i∈I belongs to W0 and we can speak of Tv. Of course

Tv ≥∑n
m=0 T (〈u′ni〉i∈I) = wn+1

for every n, so Tv ≥ w. On the other hand, for any n ∈ N,

[[vi −
∑n

m=0 u
′
ni > 0]] ⊆ a′ni

for every i, so [[Tv − wn+1 > 0]] ⊆ bn, by 377B; as infn∈N bn = 0, Tv = supn∈N wn = w.

(γγγ) Thus T [W0] ⊇ L0(B)+; as T is linear, T [W0] = L0(B).
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(ii) Now suppose that w ∈ L1(B, ν̄)+. In this case, repeat the process of (i-β) above. This time,
observe that as χbn+1 ≤ wn+1 − wn for every n,

∑∞
n=0 ν̄bn ≤ 1 +

∫
w is finite. Consequently, in the first

place,
∑∞

n=0

∫
u′ni ≤

∑∞
n=0 µ̄iani ≤

∑∞
n=0 ν̄bn + 2−n

is finite, and vi ∈ L1(Ai, µ̄i), for every i ∈ I. But also, for any k ∈ N and i ∈ I,∫
(vi − kχ1Ai

)+ ≤∑∞
n=k

∫
u′ni ≤

∑∞
n=k ν̄bn + 2−n → 0

k →∞. So v ∈Wui and w ∈ T [Wui]. Because Wui is a linear subspace of W0, T [Wui] = L1(B, ν̄).

(iii)(ααα) If p =∞ the result has already been dealt with in (i-α) above.

(βββ) For the case p = 1, take w ∈ L1(B, ν̄). Let v = 〈vi〉i∈I ∈ Wui be such that Tv = w. For i ∈ I
set

ui =
‖w‖1

‖vi‖1

vi if ‖vi‖1 > ‖w‖1,

= vi otherwise.

Then

µ̄[[(|ui| − k > 0]] ≤ µ̄[[|vi| − k > 0]]

for all k ∈ N and i ∈ I, so u = 〈ui〉i∈I ∈Wui. Since limi→F ‖vi‖1 = ‖w‖1, by (c) above, limi→F ‖ui−vi‖1 = 0
and Tu = Tv = w, by (b). And of course ‖ui‖1 ≤ ‖w‖1 for every i.

(γγγ) Now suppose that 1 < p < ∞ and that w ∈ Lp(B, ν̄). By (β), there is a v = 〈vi〉i∈I ∈ W1

such that Tv = |w|p and supi∈I ‖vi‖1 = ‖w‖pp. Set v′i = |vi|1/p for each i; then v′ = 〈v′i〉i∈I ∈ Wp and
Tv′ = |w|, by 377Bb. Next, w is expressible as |w| × w̃, where w̃ ∈ L∞(B) and ‖w̃‖∞ ≤ 1. There is a
ṽ = 〈ṽi〉i∈I ∈ W∞ such that T ṽ = w̃ and supi∈I ‖ṽi‖∞ = 1. Set ui = v′i × ṽi for each i; then u = 〈ui〉i∈I

belongs to Wp, ‖ui‖p ≤ ‖w‖p for every i, and Tu = w.

377E In the case of a reduced power of a probability algebra we can express these ideas in a slightly
different way.

Proposition Let (A, µ̄) and (B, ν̄) be probability algebras, I a set and F an ultrafilter on I. Let π : AI → B

be a Boolean homomorphism such that ν̄π(〈ai〉i∈I) = limi→F µ̄ai whenever 〈ai〉i∈I ∈ AI . Let W0 be the set
of families in L0(A)I which are bounded for the topology of convergence in measure on L0(A).

(a)(i) W0 is a solid linear subspace and a subalgebra of L0(A)I , and there is a unique multiplicative Riesz
homomorphism T : W0 → L0(B) such that T (〈χai〉i∈I) = χπ(〈ai〉i∈I) whenever 〈ai〉i∈I ∈ AI .

(ii) [[Tu > 0]] ⊆ π(〈[[ui > 0]]〉i∈I) whenever u = 〈ui〉i∈I belongs to W0.
(iii) If h : R → R is a continuous function, and we write h̄ for the corresponding maps from L0 to

itself for either of the spaces L0 = L0(A), L0 = L0(B), then 〈h̄(ui)〉i∈I ∈ W0 and T (〈h̄(ui)〉i∈I) = h̄(Tu)
whenever u = 〈ui〉i∈I belongs to W0.

(b)(i) For 1 ≤ p ≤ ∞ let Wp be the subspace of Lp(A, µ̄)I consisting of ‖ ‖p-bounded families. Then
T [Wp] ⊆ Lp(B, ν̄), and ‖Tu‖p ≤ limi→F ‖ui‖p whenever u = 〈ui〉i∈I belongs to Wp.

(ii) Let Wui be the subspace of L1(Ai, µ̄i)
I consisting of uniformly integrable families. Then

∫
Tu =

limi→F

∫
ui and ‖Tu‖1 = limi→F ‖ui‖1 whenever u = 〈ui〉i∈I belongs to Wui.

(c)(i) We have a measure-preserving Boolean homomorphism π̃ : A→ B defined by setting π̃a = π(〈a〉i∈I)
for each a ∈ A.

(ii) Let Pπ̃ : L1(B, ν̄)→ L1(A, µ̄) be the conditional-expectation operator corresponding to π̃ : A→ B

(365O). If 〈ui〉i∈I is a uniformly integrable family in L1(A), then Pπ̃T (〈ui〉i∈I) is the limit limi→F ui for the
weak topology of L1(A, µ̄).

(iii) Suppose that 1 < p < ∞ and that 〈ui〉i∈I is a bounded family in Lp(A, µ̄). Then Pπ̃T (〈ui〉i∈I) is
the limit limi→F ui for the weak topology of Lp(A, µ̄).

proof (a) By 367Rd, a family 〈ui〉i∈I in L0(A) is bounded for the topology of convergence in measure iff
infk∈N supi∈I µ̄[[|ui| > k]] = 0. So we just have a special case of 377B.
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(b) Similarly, the condition ‘infk∈N supi∈I

∫
(|ui| − kχ1Ai

)+ = 0’ translates into ‘{ui : i ∈ I} is uniformly
integrable’ (cf. 246Bd), so we are looking at a special case of 377Db-377Dc.

(c)(i) π̃ is a Boolean homomorphism just because the function taking a ∈ A into the constant family with
value a is a Boolean homomorphism from A to AI . The formula ‘ν̄π(〈ai〉i∈I) = limi→F µ̄ai’ now ensures
that π̃ is measure-preserving.

(ii) By the defining formula for Pπ̃ (365Oa),

∫

a

Pπ̃T (〈ui〉i∈I) =

∫
T (〈ui〉i∈I)× χπ̃(a) =

∫
T (〈ui〉i∈I)× χπ(〈a〉i∈I)

=

∫
T (〈ui〉i∈I)× T (〈χa〉i∈I)

=

∫
T (〈ui × χa〉i∈I) = lim

i→F

∫
ui × χa

(because {ui × χa : i ∈ I} is uniformly integrable)

= lim
i→F

∫

a

ui

for every a ∈ A. It follows that Pπ̃T (〈ui〉i∈I) = limi→F ui. PPP We have∫
Pπ̃T (〈ui〉i∈I)× v = limi→F

∫
ui × v

whenever v = χa, for any a ∈ A; by linearity, whenever v ∈ S(A), the space of A-simple functions; and by
continuity, whenever v ∈ L∞(A) (because {ui : i ∈ I} is ‖ ‖1-bounded, and S(A) is ‖ ‖∞-dense in L∞(A)).
Since L∞(A) can be identified with the dual of L1(A, µ̄) (365Lc), we have the required weak convergence.
QQQ

(iii) If {ui : i ∈ I} is ‖ ‖p-bounded, where 1 < p <∞, then it is uniformly integrable. PPP Set q =
p

p−1
.

If k ≥ 1,

infk≥1 supi∈I

∫
(|ui| − kχ1A)+ ≤ infk≥1

1

kp−1
supi∈I ‖ui‖pp = 0. QQQ

So ∫
Pπ̃T (〈ui〉i∈I)× v = limi→F

∫
ui × v

for every v ∈ S(A), and therefore for every v ∈ Lq(A, µ̄), since v can be ‖ ‖q-approximated by members of
S(A) (366C). Since Lq(A, µ̄) can be identified with Lp(A, µ̄)∗, we again have weak convergence.

377F Proposition Let (A, µ̄) and (A′, µ̄′) be probability algebras, I a set and F an ultrafilter on
I; let (B, ν̄) and (B′, ν̄′) be the reduced powers (A, µ̄)I |F , (A′, µ̄′)I |F as described in 328A-328C, with

corresponding homomorphisms π : AI → B and π′ : A′I → B′.
(a) Writing W0, W ′

0 for the spaces of topologically bounded families in L0(A)I , L0(A′)I respectively,
we have unique Riesz homomorphisms T : W0 → L0(B) and T ′ : W ′

0 → L0(B′) such that T (〈χai〉i∈I) =
χπ(〈ai〉i∈I), T ′(〈χa′i〉i∈I) = χπ′(〈a′i〉i∈I) whenever 〈ai〉i∈I ∈ AI and 〈a′i〉i∈I ∈ (A′)I .

(b) Suppose that S : L1(A, µ̄) → L1(A′, µ̄′) is a bounded linear operator. Then we have a unique

bounded linear operator Ŝ : L1(B, ν̄) → L1(B′, ν̄′) such that ŜT (〈ui〉i∈I) = T ′(〈Sui〉i∈I) whenever 〈ui〉i∈I

is a uniformly integrable family in L1(A, µ̄).

(c) The map S 7→ Ŝ is a norm-preserving Riesz homomorphism from B(L1(A, µ̄);L1(A′, µ̄′)) to B(L1(B, ν̄);
L1(B′, ν̄′)).

proof (a) Once again, this is nothing but a specialization of the corresponding fragments of 377Ba and
377Ea.

(b) Write Wui for the space of uniformly integrable families in L1
µ̄ = L1(A, µ̄). If 〈ui〉i∈I ∈ Wui, then

〈Sui〉i∈I is uniformly integrable in L1
µ̄′ = L1(A′, µ̄′) (because {ui : i ∈ I} and {Sui : i ∈ I} are relatively
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weakly compact, as in 247D), so belongs toW ′
0, and we can speak of T ′(〈Sui〉i∈I). If moreover T (〈ui〉i∈I) = 0,

then limi→F ‖ui‖1 = 0 (377E(b-ii)), so limi→F ‖Sui‖1 = 0 and T ′(〈Sui〉i∈I) = 0. Finally, T [Wui] = L1
ν̄ =

L1(B, ν̄) by 377D(d-ii). So the given formula defines a linear operator Ŝ : L1
ν̄ → L1

ν̄′ = L1(B′, ν̄′). Next, if
w ∈ L1

ν̄ , we can take any family 〈ui〉i∈I ∈Wui such that T (〈ui〉i∈I) = w, and

‖Ŝw‖1 = ‖T ′(〈Sui〉i∈I)‖1 = lim
i→F
‖Sui‖1

(377E(b-ii))

≤ ‖S‖ lim
i→F
‖ui‖1 = ‖S‖‖w‖1.

As w is arbitrary, Ŝ is a bounded linear operator, and ‖Ŝ‖ ≤ ‖S‖. On the other hand, if u ∈ L1
µ̄ and

‖u‖1 ≤ 1, ‖T (〈u〉i∈I)‖1 ≤ 1 so

‖Ŝ‖ ≥ ‖ŜT (〈u〉i∈I)‖ = ‖T ′(〈Su〉i∈I)‖1 = ‖Su‖1;

as u is arbitrary, ‖Ŝ‖ ≥ ‖S‖.
(c)(i) Recall from 371D that the Banach space B(L1

µ̄;L1
µ̄′) of continuous linear operators is also the

Dedekind complete Riesz space L∼(L1
µ̄;L1

µ̄′) of order-bounded linear operators, and its norm is a Riesz

norm; similarly, B(L1
ν̄ ;L1

ν̄′) = L∼(L1
ν̄ ;L1

ν̄′). We have already seen that S 7→ Ŝ is norm-preserving, and it is
clearly linear. If w ∈ (L1

ν̄)+, then, by 377D(d-ii), w = T (〈ui〉i∈I) for a family 〈ui〉i∈I ∈ Wui; since T is a

Riesz homomorphism, w = w+ = T (〈u+i 〉i∈I ; so that if S ≥ 0 we shall have Ŝw = T ′(〈Su+i 〉i∈I) ≥ 0. This

shows that Ŝ ≥ 0 whenever S ≥ 0, so that S 7→ Ŝ is a positive linear operator.

(ii) To show that S 7→ Ŝ is a Riesz homomorphism, I argue as follows. Take any bounded linear
operator S : L1

µ̄ → L1
µ̄′ and ǫ > 0. Then

B = {∑n
k=0 |Svk| : v0, . . . , vk ∈ (L1

µ̄)+,
∑n

k=0 vk = χ1A}
is an upwards-directed set in L1

µ̄′ with supremum |S|(χ1A) (371A, part (b) of the proof of 371B). So we can

find v0, . . . , vn ∈ (L1
µ̄)+ such that

∑n
k=0 vk = χ1A and ‖v′‖1 ≤ ǫ, where v′ = |S|(χ1A)−∑n

k=0 |Svk| ≥ 0.

Next, if 0 ≤ u ≤ χ1A in L1
µ̄, set u′ = χ1A − u; we have

|S|(χ1A)− v′ =
n∑

k=0

|Svk| ≤
n∑

k=0

|S(u× vk)|+
n∑

k=0

|S(u′ × vk)|

≤ |S|(u) + |S|(u′) = |S|(χ1A).

So |S|(u)−∑n
k=0 |S(u× vk)| ≤ v′ and ‖|S|(u)−∑n

k=0 |S(u× vk)|‖1 ≤ ǫ.
Now take any w ∈ L1

ν̄ such that 0 ≤ w ≤ χ1B. Again because T is a Riesz homomorphism and
T (〈χ1A〉i∈I) = χ1B, we can express w as T (〈ui〉i∈I) where 0 ≤ ui ≤ χ1A for every i. Consequently, setting
v′i = |S|ui −

∑n
k=0 |S(ui × vk)| for each i, and w′ = T ′(〈v′i〉i∈I),

|S|̂(w) = T ′(〈|S|ui〉i∈I) = T ′(〈
n∑

k=0

|S(ui × vk)|+ v′i〉i∈I)

=

n∑

k=0

|T ′(〈S(ui × vk)〉i∈I)|+ T ′(〈v′i〉i∈I)

=

n∑

k=0

|ŜT (〈ui × vk〉i∈I)|+ w′ =

n∑

k=0

|Ŝ
(
T (〈ui〉i∈I)× T (〈vk〉i∈I)

)
|+ w′

≤
n∑

k=0

|Ŝ|
(
T (〈ui〉i∈I)× T (〈vk〉i∈I)

)
+ w′ = |Ŝ|(w) + w′

because
∑n

k=0 T (〈vk〉i∈I) = T (〈χ1A〉i∈I) = χ1B.
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But we also have ‖w′‖1 = limi→F ‖v′i‖1 ≤ ǫ, while |Ŝ| ≤ |S| .̂ So we conclude that ‖|S|̂(w)− |Ŝ|(w)‖1 ≤ ǫ;
as ǫ is arbitrary, |S|̂(w) = |Ŝ|(w).

This is true whenever 0 ≤ w ≤ χ1B. But as both |S|̂ and |Ŝ| are continuous linear operators, and

L∞(B) is dense in L1
ν̄ , |S|̂= |Ŝ|. As S is arbitrary, we have a Riesz homomorphism (352G).

377G Projective limits: Proposition Let (I,≤), 〈(Ai, µ̄i)〉i∈I and 〈πij〉i≤j be such that (I,≤) is a
non-empty upwards-directed partially ordered set, every (Ai, µ̄i) is a probability algebra, πij : Aj → Ai is a
measure-preserving Boolean homomorphism whenever i ≤ j in I, and πik = πijπjk whenever i ≤ j ≤ k. Let
(C, λ̄, 〈πi〉i∈I) be the corresponding projective limit (328I). Write L1

µ̄i
for L1(Ai, µ̄i) and L1

λ̄
for L1(C, λ̄). For

i ≤ j in I, let Tij : L1
µ̄j
→ L1

µ̄i
and Pij : L1

µ̄i
→ L1

µ̄j
be the norm-preserving Riesz homomorphism and the

positive linear operator corresponding to πij : Aj → Ai (365N, 365O), and Ti : L1
λ̄
→ L1

µ̄i
, Pi : L1

µ̄i
→ L1

λ̄
the operators corresponding to πi : C→ Ai. Let X be any set.

(a) Suppose that for each i ∈ I we are given a function Si : L1
µ̄i
→ X such that SiTij = Sj whenever

i ≤ j in I. Then there is a unique function S : L1
λ̄
→ X such that S = SiTi for every i ∈ I.

(b) Suppose that for each i ∈ I we are given a function Si : X → L1
µ̄i

such that TijSj = Si whenever

i ≤ j in I. Then there is a unique function S : X → L1
λ̄

such that TiS = Si for every i ∈ I.
(c) Suppose that X is a topological space, and for each i ∈ I we are given a norm-continuous function

Si : L1
µ̄i
→ X such that SjPij = Si whenever i ≤ j in I. Then there is a unique function S : L1

λ̄
→ X such

that SPi = Si for every i ∈ I.
(d) Suppose that for each i ∈ I we are given a function Si : X → L1

µ̄i
such that PijSi = Sj whenever

i ≤ j in I. Then there is a unique function S : X → L1
λ̄

such that S = PiSi for every i ∈ I.

proof: preliminary remarks (i) It will be helpful to recall some basic facts from §§328 and 365. If i ≤ j
in I, then by the definition of ‘projective limit’ we have πijπj = πi so TijTj = Ti and PjPij = Pi. Also
PijTij is the identity operator on L1

µ̄j
, and PiTi is the identity operator on L1

λ̄
.

(ii) At a deeper level, we have useful concretizations of (C, λ̄), as follows. Fix i ∈ I for the moment.
For j ≥ i, set Bj = πij [Aj ], ν̄j = µ̄i↾Bj ; then Bj is a closed subalgebra of Ai, isomorphic (as probability

algebra) to Aj . If u ∈ L1
µ̄i

and b ∈ Bj , set b′ = π−1
ij b ∈ Aj ; then

∫
b
u =

∫
πijb′

u =
∫
b′
Piju =

∫
b
TijPiju;

thus TijPij is the conditional expectation PBj
: L1

µ̄i
→ L1(Bj , ν̄j), identifying L1(Bj , ν̄j) with L1

µ̄i
∩L0(Bj)

as in 365Qa.
If k ≥ j, then πik = πijπjk so Bk ⊆ Bj ; thus B = {Bj : j ≥ i} is downwards-directed. Set D =

⋂
B,

ν̄ = µ̄↾D.
For k ≥ i, set φk = π−1

ik ↾D : D → Ak; then φk is a measure-preserving Boolean homomorphism, and
φj = πjkφk whenever i ≤ j ≤ k. We can therefore define φj : D → Aj , for any j ∈ I, by saying that
φj = πjkφk whenever k ∈ I is greater than or equal to both i and j, and we shall have φj = πjkφk whenever
j ≤ k in I. PPP If j ∈ I and k0, k1 are two upper bounds of {i, j} in I, take an upper bound k of {k0, k1};
then

πjk0
φk0

= πjk0
πk0kφk = πjkφk = πjk1

πk1kφk = πjk1
φk1

,

so φj is well-defined. If j, k ∈ I and j ≤ k, let k′ be an upper bound of {i, k}; then

πjkφk = πjkπkk′φk′ = πjk′φk′ = φj . QQQ

Of course every φj is a measure-preserving Boolean homomorphism.
By the definition of (C, λ̄), there is a measure-preserving Boolean homomorphism φ : D → C such that

πjφ = φj for every j ∈ I. In this case, πiφ = φi is the identity embedding of D in Ai, and πi[C] = D.
Accordingly PD = TiPi. By the generalized reverse martingale theorem 367Qa, TiPi is the limit of PB as B

decreases in B, in the sense that for every u ∈ L1(Ai) and ǫ > 0 there is a j ≥ i in I such that

‖TiPiu− TikPiku‖1 = ‖PDu− PBk
u‖1 ≤ ǫ

whenever k ≥ j in I. If we write F(I↑) for the filter on I generated by {{k : k ≥ j} : j ∈ I}, we have

TiPiu = limj→F(I↑) TijPiju,
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for the norm in L1
µ̄i

, for every u ∈ L1
µ̄i

.
Now let us turn to (a)-(d) as listed above.

(a) All we have to know is that

SiTi = SiTijTj = SjTj

whenever i ≤ j in I; because I is upwards-directed, SiTi = SjTj for all i, j ∈ I, and we have a sound
definition for S.

(b) The point is that TiPiSi = Si for every i ∈ I. PPP For j ≥ i,
TijPijSi = TijPijTijSj = TijSj = Si.

If x ∈ X,

TiPiSix = limj→F(I↑) TijPijSix = Six. QQQ

If now i ≤ j in I,

PiSi = PjPijTijSj = PjSj .

As I is upwards-directed, PiSi = PjSj for all i, j ∈ I; write S for this common value. Then

TiS = TiPiSi = Si

for every i ∈ I. As Ti is injective for every i ∈ I, the formula uniquely defines the function S.

(c) This time, we have SiTiPi = Si for every i ∈ I. PPP For any u ∈ L1
λ̄
,

SiTiPiu = lim
j→F(I↑)

SiTijPiju

(because Si is continuous)

= lim
j→F(I↑)

SjPijTijPiju = lim
j→F(I↑)

SjPiju = Siu. QQQ

If i ≤ j in I,

SiTi = SjPijTijTj = SjTj ;

consequently SiTi = SjTj for all i, j ∈ I, and we can call this common function S. In this case, SPi =
SiTiPi = Si for every i ∈ I. Since Pi[L

1
µ̄i

] = L1
λ̄
, this defines S uniquely.

(d) As in (a), all we have to check is that if i ≤ j in I then

PjSj = PjPijSi = PiSi.

377H Inductive limits: Proposition Let (I,≤), 〈(Ai, µ̄i)〉i∈I and 〈πji〉i≤j be such that (I,≤) is a
non-empty upwards-directed partially ordered set, every (Ai, µ̄i) is a probability algebra, πji : Ai → Aj is
a measure-preserving Boolean homomorphism whenever i ≤ j in I, and πki = πkjπji whenever i ≤ j ≤ k.
Let (C, λ̄, 〈πi〉i∈I) be the corresponding inductive limit (328H). Write L1

µ̄i
for L1(Ai, µ̄i) and L1

λ̄
for L1(C, λ̄).

For i ≤ j in I, let Tji : L1
µ̄i
→ L1

µ̄j
and Pji : L1

µ̄j
→ L1

µ̄i
be the Riesz homomorphism and the positive linear

operator corresponding to πji : Ai → Aj , and Ti : L1
µ̄i
→ L1

λ̄
, Pi : L1

λ̄
→ L1

µ̄i
the operators corresponding to

πi : Ai → C. Let X be a set.
(a) Suppose that for each i ∈ I we are given a function Si : L1

µ̄i
→ X such that SjTji = Si whenever

i ≤ j in I. Then there is a function S : L1
λ̄
→ X such that Si = STi for every i ∈ I.

(b) Suppose that for each i ∈ I we are given a function Si : X → L1
µ̄i

such that TjiSi = Sj whenever

i ≤ j in I. Then there is a unique function S : X → L1
λ̄

such that TiSi = S for every i ∈ I.

(c) Suppose that for each i ∈ I we are given a function Si : L1
µ̄i
→ X such that SiPji = Sj whenever

i ≤ j in I. Then there is a unique function S : L1
λ̄
→ X such that S = SiPi for every i ∈ I.

(d) Suppose that for each i ∈ I we are given a function Si : X → L1
µ̄i

such that PjiSj = Si whenever
i ≤ j in I, and that
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infk∈N supi∈I

∫
(|Six| − kχ1Ai

)+ = 0

for every x ∈ X. Then there is a unique function S : X → L1
λ̄

such that Si = PiS for every i ∈ I.

proof We can follow the same programme as in the proof of 377G, but with a couple of new twists.

preliminary remarks (i) If i ≤ j in I, then by the definition of ‘inductive limit’ we have πjπji = πi so
TjTji = Ti and PjiPj = Pi. PjiTji and PiTi are the identity operator on L1

µ̄i
.

(ii) Let F(I↑) be the filter on I generated by {{k : k ≥ j} : j ∈ I}. Then limi→F(I↑) TiPiu = u for

every u ∈ L1
λ̄
. PPP Setting Bi = Ti[Ai] for each i ∈ I, B = {Bi : i ∈ I} is an upwards-directed family

of closed subalgebras of C; set D =
⋃
B and ν̄ = λ̄↾D, so that (D, ν̄) is a probability algebra. Since

πi : Ai → D is a measure-preserving Boolean homomorphism and πi = πjπji whenever i ≤ j in I, there is a
measure-preserving Boolean homomorphism φ : C→ D such that φπi = πi for every i. But this means that
C = D.

As in 377G, we can identify each TiPi : L1
λ̄
→ L1

λ̄
with the conditional expectation PBi

. This time, 367Qb

tells us that PBu→ PDu = u as B increases through B, that is, u = limi→F(I↑) TiPiu, for every u ∈ L1
λ̄
. QQQ

(a) The point is that if i, j ∈ I, u ∈ L1
µ̄i

, v ∈ L1
µ̄j

and Tiu = Tjv, then Siu = Sjv. PPP Let k ∈ I be such
that i ≤ k and j ≤ k. Then

TkTkiu = Tiu = Tjv = TkTkjv;

since Tk is injective, Tkiu = Tkjv. Accordingly

Siu = SkTkiu = SkTkjv = Sjv. QQQ

There is therefore a function S′ :
⋃

i∈I Si[L
1
µ̄i

] → X defined by saying that S(Tiu) = Siu whenever i ∈ I
and u ∈ L1

µ̄i
; extending S′ arbitrarily to a function S : L1

λ̄
→ X, we get the result.

(b) All we have to do is to check that if i ≤ j in I, then

TiSi = TjTjiSi = TjSj .

(c) In this case, we have

SjPj = SiPjiPj = SiPi

whenever i ≤ j in I.

(d)(i) For each x ∈ X, {TiSix : i ∈ I} ⊆ L1
λ̄

is uniformly integrable. PPP If k ∈ N and i ∈ I,

|TiSix| ≤ Ti(|Six| − kχ1Ai
)+ + Ti(kχ1Ai

) ≤ Ti(|Six| − kχ1Ai
)+ + kχ1C,

so ∫
(|TiSix| − kχ1C)+ ≤

∫
Ti(|Six| − kχ1Ai

)+ =
∫

(|Six| − kχ1Ai
)+.

Accordingly

infk∈N supi∈I

∫
(|TiSix| − kχ1C)+ ≤ infk∈N supi∈I

∫
(|Six| − kχ1Ai

)+ = 0. QQQ

(ii) Fix an ultrafilter G on I including F(I↑). For each x ∈ X, {TiSix : i ∈ I} is relatively weakly
compact in L1

λ̄
, so Sx = limi→G TiSix is defined for the weak topology on L1

λ̄
. Now for any i ∈ I,

PiSx = lim
j→G

PiTjSjx

(for the weak topology on L1
µ̄i

)

= lim
j→G

PjiPjTjSjx

(because {j : j ≥ i} ∈ G)

= lim
j→G

PjiSjx = Six.
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(iii) To see that S is uniquely defined, it is enough to recall that

Sx = limi→F(I↑) TiPiSx = limi→F(I↑) TiSix

is uniquely defined by the family 〈Six〉i∈I , for every x ∈ X.

377X Basic exercises (a) In 377B, show that 〈ui〉i∈I ∈
∏

i∈I L
0(Ai) belongs to W0 iff {u∗i : i ∈ I} is

bounded above in L0(AL), where AL is the measure algebra of Lebesgue measure on [0,∞[, and u∗i is the
decreasing rearrangement of ui for each i (373C).

(b) In 377D, suppose that u = 〈ui〉i∈I and v = 〈vi〉i∈I belong to W2, and that at least one of |u|2, |v|2
belongs to Wui. Show that (Tu|Tv) = limi→F (ui|vi).

(c) Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras, and suppose that we have ui ∈ L1(Ai, µ̄i) for
each i. Show that the following are equiveridical: (i) infk∈N supi∈I

∫
(|ui| − kχ1Ai

)+ = 0; (ii) {u∗i : i ∈
I} is uniformly integrable in L1(µL), where µL is Lebesgue measure on [0,∞[, and u∗i is the decreasing
rearrangement of ui for each i ∈ I.

(d) Take any p ∈ ]1,∞[. Show that 377G remains true if we replace every ‘L1’ by ‘Lp’.

(e) Take any p ∈ ]1,∞[. Show that 377H remains true if we replace every ‘L1’ by ‘Lp’ and in part (d)
we replace ‘infk∈N supi∈I

∫
(|Six| − kχ1Ai

)+ = 0’ by ‘supi∈I ‖Six‖p <∞’.

(f) In 377Ha, suppose that X has a metric ρ under which it is complete, and that 〈Si〉i∈I is uniformly
equicontinuous in the sense that for every ǫ > 0 there is a δ > 0 such that ρ(Siu, Siv) ≤ ǫ whenever i ∈ I, u,
v ∈ L1

µ̄i
and ‖u− v‖1 ≤ δ. Show that there is a unique continuous function S : L1

λ̄
→ X such that Si = STi

for every i ∈ I.

377Y Further exercises (a) Find a non-empty family 〈(Ai, µ̄i)〉i∈I of probability algebras, a probability
algebra (B, ν̄), a Boolean homomorphism π :

∏
i∈I Ai → B such that ν̄π(〈ai〉i∈I) ≤ supi∈I µ̄iai whenever

〈ai〉i∈I ∈
∏

i∈I Ai, and an element u = 〈ui〉i∈I of W+
0 , as described in 377B, such that ‖Tu‖1 > supi∈I ‖ui‖1,

where T : W0 → L0(B) is the Riesz homomorphism of 377B-377C. (Hint : #(I) = 2.)

(b) Show that if, in 377Gc, we omit the hypothesis that the Si are to be continuous, then the result can
fail.

(c) Let 〈Ui〉i∈I be a non-empty family of L-spaces and F an ultrafilter on I. (i) Show that
∏

i∈I Ui is
a Dedekind complete Riesz space (see 352K) in which W∞ = {〈ui〉i∈I : supi∈I ‖ui‖ < ∞} is a solid linear
subspace. (ii) Let W0 ⊆ W∞ be {{〈ui〉i∈I : supi∈I ‖ui‖ < ∞, limi→F ‖ui‖ = 0}; show that W0 is a solid
linear subspace of W∞. (iii) Let U be the quotient Riesz space W∞/W0 (352U). Show that U is an L-space
under the norm ‖〈ui〉•i∈I‖ = limi→F ‖ui‖ for 〈ui〉i∈I ∈W∞.

(d) Let V be a normed space, and suppose that for every finite-dimensional subspace V0 of V there are
an L-space U and a norm-preserving linear map T : V0 → U . Show that there are an L-space U and a
norm-preserving linear map T : V → U .

377 Notes and comments Although my main target in this section has been to understand the function
spaces of reduced products of probability algebras, I have as usual felt that the ideas are clearer if each is
developed in a context closer to the most general case in which it is applicable. Only in part (b) of the proof
of 377C, I think, does this involve us in extra work.

The new techniques of this section are forced on us by the fact that we are looking at Boolean homomor-
phisms π :

∏
i∈I Ai → B which are not normally sequentially order-continuous. While we have a natural

Riesz homomorphism from L∞(
∏

i∈I Ai) to L∞(B), as in 363F, we cannot expect a similar operator from

the whole of L0(
∏

i∈I Ai) ∼=
∏

i∈I L
0(Ai) to L0(B). However the condition ‘ν̄π(〈ai〉i∈I) ≤ supi∈I µ̄iai’ en-

sures that there is a space W0 ⊆
∏

i∈I L
0(Ai) on which an operator to L0(B) can be defined, and which is
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large enough to give us a method of investigating the spaces Lp(B, ν̄) as images of subspaces Wp of products∏
i∈I L

p(Ai, µ̄i).
In 377E, the case p = 1 is special because we can identify Wui as the space of relatively weakly compact

families in L1(A, µ̄), and for such a family u = 〈ui〉i∈I we have ‖Tu‖1 = limi→F ‖ui‖1. So the Banach space
L1(B, ν̄) is a kind of reduced power, describable in terms of the normed space L1(A, ν̄). For other Lp spaces
we need to know something more, e.g., the lattice structure, if we are to identify those u ∈ Wp such that
Tu = 0. The difference becomes significant when we come to look at morphisms of Lp(B, ν̄) corresponding
to morphisms of Lp(A, µ̄), as in 377F.

In 377G-377H I give a string of results which are visibly mass-produced. What is striking is that in
eight cases out of eight we have a straightforward formula corresponding to the idea that (C, λ̄) is a limit of
〈(Ai, µ̄i)〉i∈I . What is curious is that in two of the eight cases (377Gc, 377Hd) we have to impose different
special conditions on the functions Si which the target S is supposed to approximate, and in just one case
(377Ha) the target S is not uniquely defined in the absence of further constraints (377Xf). I think the ideas
take up enough room when given only in their application to L1 spaces, but of course there are versions,
only slightly modified, which apply to other Lp spaces (377Xd-377Xe).

The repeated conditions of the form

infk∈N supi∈I µ̄i[[|ui| > k]] = 0,

infk∈N supi∈I

∫
(|ui| − kχ1Ai

)+ = 0,

(377B, 377Dc, 377Hd) both have expressions in terms of decreasing rearrangements (377Xa, 377Xc). The
latter is clearly associated with uniform integrability and weak compactness, and unsurprisingly we use it
to show that a weak limit will be defined. The former is there to ensure that a set appearing in an L0 space
will be bounded above, so that we can apply 355F to extend a Riesz homomorphism.

Version of 7.12.08

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

372I The version of the Ergodic Theorem in 372I, referred to in the 2003 and 2006 editions of Volume
4, is now 372H.

372K The version of the Ergodic Theorem in 372K, referred to in the 2003 and 2006 editions of Volume
4, is now 372J.

372P Mixing and ergodic transformations The definitions in 372P are now in 372O.

372Xm The tent map, referred to in the 2003 and 2006 editions of Volume 4, is now in 372Xp.
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Ionescu Tulcea C. & Ionescu Tulcea A. [69] Topics in the Theory of Lifting. Springer, 1969. [§341 notes .]

James I.M. [87] Topological and Uniform Spaces. Springer, 1987. [§3A3, §3A4.]
Jech T. [03] Set Theory, Millennium Edition. Springer, 2002. [§3A1.]
Jech T. [08] ‘Algebraic characterizations of measure algebras’, Proc. Amer. Math. Soc. 136 (2008) 1285-

1294. [393Xj.]
Johnson R.A. [80] ‘Strong liftings which are not Borel liftings’, Proc. Amer. Math. Soc. 80 (1980) 234-236.

[345F.]
Judah H. [93] (ed.) Proceedings of the Bar-Ilan Conference on Set Theory and the Reals, 1991. Amer.

Math. Soc. (Israel Mathematical Conference Proceedings 6), 1993.

Kakutani S. [1941] ‘Concrete representation of abstract L-spaces and the mean ergodic theorem’, Annals
of Math. 42 (1941) 523-537. [369E.]

Kalton N.J., Peck N.T. & Roberts J.W. [84] ‘An F-space sampler’, Cambridge U.P., 1984. [§375 notes .]
Kalton N.J. & Roberts J.W. [83] ‘Uniformly exhaustive submeasures and nearly additive set functions’,

Trans. Amer. Math. Soc. 278 (1983) 803-816. [392D, §392 notes .]
Kantorovich L.V., Vulikh B.Z. & Pinsker A.G. [50] Functional Analysis in Partially Ordered Spaces,

Gostekhizdat, 1950. [391D.]
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