Version of 27.6.16
Chapter 37
Linear operators between function spaces

As everywhere in functional analysis, the function spaces of measure theory cannot be properly understood
without investigating linear operators between them. In this chapter I have collected a number of results
which rely on, or illuminate, the measure-theoretic aspects of the theory. §371 is devoted to a fundamental
property of linear operators on L-spaces, if considered abstractly, that is, of L!'-spaces, if considered in
the languages of Chapters 24 and 36, and to an introduction to the class T of operators which are norm-
decreasing for both || ||; and || ||co. This makes it possible to prove a version of Birkhofl’s Ergodic Theorem for
operators which need not be positive (372D). In §372 I give various forms of this theorem, for linear operators
between function spaces, for measure-preserving Boolean homomorphisms between measure algebras, and for
inverse-measure-preserving functions between measure spaces, with an excursion into the theory of continued
fractions. In §373 I make a fuller analysis of the class 7, with a complete characterization of those u, v
such that v = Tu for some T € T. Using this we can describe ‘rearrangement-invariant’ function spaces and
extended Fatou norms (§374). Returning to ideas left on one side in §§364 and 368, I investigate positive
linear operators defined on L° spaces (§375). In the penultimate section of the chapter (§376), I look at
operators which can be defined in terms of kernels on product spaces. Finally, in §377, I examine the function
spaces of reduced products, projective limits and inductive limits of probability algebras.

Version of 13.12.06
371 The Chacon-Krengel theorem

The first topic I wish to treat is a remarkable property of L-spaces: if U and V are L-spaces, then every
continuous linear operator 7' : U — V is order-bounded, and |||T||| = ||T]| (371D). This generalizes in various
ways to other V (371B, 371C). I apply the result to a special type of operator between M? spaces which
will be conspicuous in the next section (371F-371H).

371A Lemma Let U be an L-space, V a Banach lattice and T : U — V a bounded linear operator. Take
u > 0in U and set

B={3"|Twl:ug,...,un €U, Y1 qu; =u} CV*.
Then B is upwards-directed and sup,¢p ||v]| < || T]|]Ju|-

proof (a) Suppose that v, v' € B. Then we have ug,... ,Upm,u,... ul, € UT such that Y .- u; =
Yooty =u, v =" |Tu| and v’ = 370 |Twf|. Now there are v;; > 0 in U, for i <m and j < n, such
that u; = Y27 vij for i <m and wj = 371" vy for j < n (352Fd). We have u = 31" 3% vij, so that

" =30, Z?:() |Tv;;| € B. But
v = ZZZO |TU7,| = Z:io ‘T(Z?:() Uij)| S Z:i() ZT:O |Tvij| — ’UH,
and similarly v' <v”. As v and v’ are arbitrary, B is upwards-directed.

(b) The other part is easy. If v € B is expressed as > |T'w;| where u; > 0 for every i and >, u; = u,
then

ol < 3250 1T will < NT13250 llusll = 1Tl

because U is an L-space.
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2 Linear operators between function spaces 371B

371B Theorem Let U be an L-space and V' a Dedekind complete Banach lattice U with a Fatou norm.
Then the Riesz space L~ (U; V) = L*(U;V) is a closed linear subspace of the Banach space B(U; V) and is
in itself a Banach lattice with a Fatou norm.

proof (a) I start by noting that L~(U; V) = L*(U; V) C B(U; V) just because V has a Riesz norm and U
is a Banach lattice with an order-continuous norm (355Kb, 355C).

(b) The first new step is to check that |||T||| < ||T|| for any T € L~(U;V). P Start with any u € U™T.
Set

B={3"o|Tui| :up,...,up €U, > juy=u} CVH,

as in 371A. If ug, ... ,u, > 0 are such that Y . u; = u, then |Tw;| < |T'|u; for each i, so that > . |Tu;| <
> o |T|u; = |T|u; thus B is bounded above by |T'|u and sup B < |T|u. On the other hand, if [v| < w in U,
then v* + v~ 4+ (u— |v]) = u, so |Tvt| + |Tv~ |+ |T(u— |v])| € B and

|Tv| = |Tvt +Tv™ | <|Tv"|+ |Tv~| < sup B.
As v is arbitrary, |T|u < sup B and |T|u = sup B. Consequently
1T ull < [|sup Bl = sup,ep [lwll < [ T|[ull

because V' has a Fatou norm and B is upwards-directed.
For general u € U,

T wll < Tl I < 1Tl = 1Tl
This shows that |||T]]| < |T]. Q
(c) Now if |S| < |T| in L™(U; V), and u € U, we must have
[Swll < [{STlulll < T [fal [l < [Tl < 1Tl

as u is arbitrary, |S|| < ||T||. This shows that the norm of L~ (U;V), inherited from B(U;V), is a Riesz
norm.

(d) Suppose next that T € B(U; V) belongs to the norm-closure of L™~(U; V). For each n € N choose
T, € L~ (U;V) such that |T — T,|| <27". Set S, = |Tp+1 — Tn| € L™(U; V) for each n. Then

1Sull = [Tss — Tl < 3+ 27771
for each n, so S =377, S, is defined in the Banach space B(U; V). But if u € U™, we surely have
Su =35>0
in V. Moreover, if u € UT and |v| < u, then for any n € N
| Toi1v — Tov| = [327 o (Tivr — Ti)v| < 3007, Siu < Su,
and Tov — Su < T 11v < Tov + Su; letting n — 0o, we see that
—|Tolu — Su < Tov — Su < Tv < Toyv 4+ Su < |Tp|u + Su.

So |Twv| < |Tp|lu + Su whenever |v| < u. As u is arbitrary, T € L~ (U; V).
This shows that L™~ (U; V) is closed in B(U; V) and is therefore a Banach space in its own right; putting
this together with (b), we see that it is a Banach lattice.

(e) Finally, the norm of L~(U;V) is a Fatou norm. P Let A C L~(U; V)" be a non-empty, upwards-
directed set with supremum Ty € L~ (U; V). For any u € U,

[Toull = 1 Toulll < | Tolulll = [|supre Tlull

by 355Ed. But {T'|u| : T' € A} is upwards-directed and the norm of V' is a Fatou norm, so
[Toull < suprea [ T]ull] < suppea 1T |ull

As u is arbitrary, ||Tp|| < suppeq [Tl As A is arbitrary, the norm of L~ (U; V) is Fatou. Q

371C Theorem Let U be an L-space and V a Dedekind complete Banach lattice with a Fatou norm
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371G The Chacon-Krengel theorem 3

and the Levi property. Then B(U;V) = L~(U;V) = L*(U;V) is a Dedekind complete Banach lattice with
a Fatou norm and the Levi property. In particular, |T| is defined and |||T||| = ||T|| for every T € B(U; V).

proof (a) Let T : U — V be any bounded linear operator. Then T' € L~(U; V). P Take any u > 0 in U.
Set

B = {Z?ZO |Tuz| Uy -, Up € U+a Z?:O U; = u} g V+

as in 371A. Then 371A tells us that B is upwards-directed and norm-bounded. Because V has the Levi
property, B is bounded above. But just as in part (b) of the proof of 371B, any upper bound of B is also
an upper bound of {Tw : [v| < u}. As w is arbitrary, T € L~(U;V). Q

(b) Accordingly L~(U; V) = B(U; V). By 371B, this is a Banach lattice with a Fatou norm, and equal
to L*(U; V). To see that it also has the Levi property, let A C L~(U; V) be any non-empty norm-bounded
upwards-directed set. For uw € UT, {Tw : T € A} is non-empty, norm-bounded and upwards-directed in V,
so is bounded above in V. By 355Ed, A is bounded above in L~ (U; V).

371D Corollary Let U and V be L-spaces. Then L~(U;V) = L*(U;V) = B(U;V) is a Dedekind
complete Banach lattice with a Fatou norm and the Levi property.

371E Remarks Note that both these theorems show that L™(U; V) is a Banach lattice with properties
similar to those of V whenever U is an L-space. They can therefore be applied repeatedly, to give facts
about L~ (Uy; L™~ (Us; V') where Uy, Us are L-spaces and V is a Banach lattice, for instance. I hope that this
formula will recall some of those in the theory of bilinear operators and tensor products (see 253Xa-253XDb).

371F The class 7 For the sake of applications in the next section, I introduce now a class of operators
of great intrinsic interest.

Definition Let (2, 1), (8,7) be measure algebras. Recall that M9(2(, i) is the space of those u €
LYA, 1) + L=(A) such that fflu| > o] < oo for every a > 0 (366F-366G, 369P). Write 7(0) = 771((,)—,) for

the set of all linear operators T : MYO(21, i) — M*9(B, ) such that Tu € L' (B8, ) and ||Tul|; < Hu||1 for
every u € L1(2, 1), Tu € L®(B) and || Tul|oo < ||t for every u € Lo°(g) N MYO(A, ).

371G Proposition Let (2, i) and (9B, 7) be measure algebras.
(a) T = 7% is a convex set in the unit ball of B(M (2, i); M0(B,7)). If Ty : L' (A, i) — L} (B, ) is
a linear operator of norm at most 1, and Tou € L>(B) and || Tou s < ||ulleo for every u € LY(2A, i) NL>®(A),

then Tp has a unique extension to a member of 7(?).
(b) If T € T then T is order-bounded and |T|, taken in

L™ (MO, ); MYO(B, 7)) = L (MVO(, ); MO(B, 7)),
also belongs to 7).
() T € TO then ||Tull1,00 < |[ufl1,00 for every u € MYO(A, f1).
(AT eT® pell,oo] and w € LP(A, i) then Tw € LP(B, 7) and | Tw||, < |[w],-
(e) If (€, \) is another measure algebra then ST € 7;1(05\) whenever T' € 7;(01—,) and S € ’7;(05\)
proof I write M;’O, LE for Mé’o, LP (B, 1), etc.

@O UTeT® andu e Ml—i’o then there are v € L}, w € L such that u = v+ w and |[v]|; + [|w]|ec =

[le]l1,00 (3690D); so that
[Tull1,00 < 1Tl + [Twlloo < ol + [[w]loo < [lu

As w is arbitrary, T is in the unit ball of B(M;’O; MOy,

1,00

(ii) Because the unit balls of B(L}; L)) and B(L>°; L) are convex, so is T,

(iii) Now suppose that Ty : L), — L} is a linear operator of norm at most 1 such that || Toul|co < [|uls
for every u € Lj, N L. By the argument of (i), Tp is a bounded operator for the || [[1,00 norms; since L}, is
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4 Linear operators between function spaces 371G

dense in M;’O (369Pc), Tp has a unique extension to a bounded linear operator T : Mé’o — My°. Of course
[Tully = IToully < [lull; for every u € L}.
Now suppose that u € L5° N M set v = |[uf|os. Let € > 0, and set
v=(u" —ex)" — (u” —ex1)™;
then [v] < |uf and [lu — v|jo < eand v € L}, N Ly°. Accordingly
T = ol < i = vl <& [Tolle = ITovlloe < lllloe < 7.
So if we set w = (|Tu — Tw| — ex1)™ € LL, ||w|j; < € while
ITul < |To +w+ exd < (v +x1 +w,
S0
I(Tul = (v +ex )Tl < fJwlh < e
As € is arbitrary, |Tu| < vx1, that is, | Tulloo < ||t]lco. As u is arbitrary, T € T,
ecause My has an order-continuous norm , MY = o My :
b) B M;" h d i 369Pb), L~ (M, My °) = L (M % M) (355Kb

Take any T € T and consider Tj = TIL} : Lj, — L. This is an operator of norm at most 1. By 371D,
Ty is order-bounded, and |||Ty||| < 1, where |Tp| is taken in L™~(L}; L) = B(L}; L}). Now if uw e L), N L,

m

[ Tolul < [Tollul = supjy <) [Tow'| < Jlulloox1,

50 |||To|ullce < ||t]|oo- By (a), there is a unique S € T(®) extending |Tp|. Now Sut > 0 for every u € L}, so
Sut > 0 for every u € My (since the function u — (Su®)* — Su* : M;" — M, is continuous and zero
on the dense set Llli)7 that is, S is a positive operator; also S|u| > |Tu| for every u € Llli, so Sv > Slu| > [Tul
whenever u, v € MF—IL’0 and |u| < v. This means that T : Mé’o — M,;l’o is order-bounded. Because Ml—}’o is
Dedekind complete (366Ga), |T| is defined in LN(Mé’O; M}L’O).

Ifv>0in Llli, then

|T|v = sup|,<, Tu = supj, <, Tou = |Tolv = Sv.

Thus |T'| agrees with S on Lj,. Because MP—lt’0 is a Banach lattice (or otherwise), |T'| is a bounded operator,
therefore continuous (2A4Fc), so |T| = S € T(©), which is what we needed to know.

c e can express u as v +w where ||V|[1 + [|W|loo = ||U]|1.00; DOW W = u — v € M7, SO We can speak o
W h 7 M’ k of
Tw, and

[Tull1,00 = 10 + Tw]|

100 < | Tv[li + [Twlloo < vl + lwlloe = llull1,00,
as required.

(d) This can be thought of as a generalization of 244M. We need to revisit the proof of Jensen’s inequality
in 233H-233J.

(i) Suppose that T, p, w are as described, and that in addition T is positive. As in the proof of
244M, the function ¢ — [t|? is convex, so we can find families (84)4ecq, (Vq)qeq of real numbers such that
[t|P = sup,eq By + Vq(t — q) for every t € R (233Hb). Then |ul? = sup,cq Byx1 + 74(u — gx1) for every
u € L°. (The easiest way to check this is perhaps to think of L as a quotient of a space of functions, as in
364C; it is also a consequence of 364Xg(iii).) We know that [w[P € L}, so we may speak of T'(Jw[P); while
w e Mé’o (366Ga), so we may speak of Tw.

For any ¢ € Q, 0P > ,—q,, that is, ¢y,— B, > 0, while y,w—|w[? < (g7,—B4)x1 and ||(y,w—|w[P) | s <
qYq — Bq- Now this means that

T(yqw = Jw|?) < T(ygw — [w|")* < [T (yqw — [w[P) " loox1
< [(vgw = [w[?) " floex1 < (a7 — Ba)X1-
Turning this round again,

Bax1 + vq(Tw — gx1) < T(|wl?).
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371Yd The Chacon-Krengel theorem 5
Taking the supremum over ¢, |Tw|? < T(|w|P), so that [|Tw|P < [|w|P (because ||Tv||; < ||v]|y for every
v € LY). Thus Tw € LP and ||[Twl|, < ||w,-

(ii) For a general T € T we have |T| € T, by (b), and [Tw| < |T|jw], so that || Tw|, < |||T||w]|, <
[lw]|p, as required.

(e) This is elementary, because
[STully < [[Tully < flully,  [[STv[loo < | Tufloo < [Jullo

whenever u € L}] and v € L5 N Mé’o.

371H Remark In the context of 366H, T, [ M, € 7., while P, € 7,'. Thus 366H(a-iv) and 366H(b-
iii) are special cases of 371Gd.

371X Basic exercises >(a) Let U be an L-space, V a Banach lattice with an order-continuous norm
and T : U — V a bounded linear operator. Let B be the unit ball of U. Show that |T|[B] C T'[B].

(b) Let U and V be Banach spaces. (i) Show that the space K(U; V') of compact linear operators from U
to V (definition: 3A5La) is a closed linear subspace of B(U; V). (ii) Show that if U is an L-space and V is a
Banach lattice with an order-continuous norm, then K(U; V) is a norm-closed Riesz subspace of L™ (U; V).
(See KRENGEL 63.)

(c) Let (2, ji) be a semi-finite measure algebra and set U = L*(2, ji). Show that L~(U;U) = B(U;U) is
a Banach lattice with a Fatou norm and the Levi property. Show that its norm is order-continuous iff 2 is
finite. (Hint: consider operators u — u X ya, where a € 21.)

>(d) Let U be a Banach lattice, and V' a Dedekind complete M-space. Show that L~(U; V) = B(U;V)
is a Banach lattice with a Fatou norm and the Levi property.

(e) Let U and V be Riesz spaces, of which V is Dedekind complete, and let T € L~(U;V). Define
T € L~(V~;U™) by writing T'(h) = AT for h € V™. (i) Show that |T'|" > |T’| in L~(V~;U"™). (ii) Show
that |T|'h = |T"|h for every h € V*. (Hint: show that if u € UT and h € (V*)* then (|T”|h)(u) and h(|T|u)
are both equal to sup{>_"_ ¢;(Tw;) : [g;| < h, u; >0, Y0y u; = u}.)

>(f) Using 371D, but nothing about uniformly integrable sets beyond the definition (354P), show that
if U and V are L-spaces, A C U is uniformly integrable in U, and T : U — V is a bounded linear operator,
then T'[A] is uniformly integrable in V.

371Y Further exercises (a) Let U and V be Banach spaces. (i) Show that the space K., (U;V) of
weakly compact linear operators from U to V' (definition: 3A5Lb) is a closed linear subspace of B(U;V
(ii) Show that if U is an L-space and V is a Banach lattice with an order-continuous norm, then K, (U; V)
is a norm-closed Riesz subspace of L™(U; V).

(b) Let (2, i) be a measure algebra, U a Banach space, and T : L*(2, i) — U a bounded linear operator.
Show that T" is a compact linear operator iff {iT(Xa) ca €2, 0< fia < oo} is relatively compact in U.

(c) Let (2, ji) be a probability algebra, and set L* = L1(2l, fi). Let {a,)nen be a stochastically independent
sequence of elements of 2 of measure %, and define T : L' — RN by setting Tu(n) = [u —2 fan u for each

n. Show that T € B(L';¢q) \ L~ (L;¢p), where ¢g is the Banach lattice of sequences converging to 0. (See
272Yel.)

(d) Regarding T of 371Yc as a map from L! to £°°, show that |T"| # |T|" in L™~ ((£>°)*, L>°(21)).
TFormerly 272Yd.
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6 Linear operators between function spaces 371Ye

(e)(i) In £2 define e; by setting e;(i) = 1, €;(j) = 0 if j # i. Show that if T' € L~ (¢%;¢?) then (|T|e;|e;) =
Te;le;)| for all 4, 7 € N. (ii) Show that for each n € N there is an orthogonal (2" x 2")-matrix A,, such
J

that every coefficient of A,, has modulus 27"/2. (Hint: A, 4, = L (_AXL i" ) .) (iil) Show that there is

V2
a linear isometry S : £2 — ¢2 such that |(Se;|e;)| = 27/2 if 2" <4, j < 2"*1. (iv) Show that S ¢ L™ (¢2;¢?).

371 Notes and comments The ‘Chacon-Krengel theorem’, properly speaking (CHACON & KRENGEL 64),
is 371D in the case in which U = L(u), V = L(v); of course no new ideas are required in the generalizations
here, which I have copied from FREMLIN 74A.

Anyone with a training in functional analysis will automatically seek to investigate properties of operators
T : U — V in terms of properties of their adjoints 77 : V* — U*, as in 371Xe and 371Yd. When U is
an L-space, then U* is a Dedekind complete M-space, and it is easy to see that this forces T” to be order-
bounded, for any Banach lattice V' (371Xd). But since no important L-space is reflexive, this approach
cannot reach 371B-371D without a new idea of some kind. It can however be adapted to the special case in
371Gb (DUNFORD & SCHWARTZ 57, VIIL.6.4).

In fact the results of 371B-371C are characteristic of L-spaces (FREMLIN 74B). To see that they fail in
the simplest cases in which U is not an L-space and V is not an M-space, see 371Yc-371Ye.

Version of 7.12.08/17.7.11
372 The ergodic theorem

I come now to one of the most remarkable topics in measure theory. I cannot do it justice in the space
I have allowed for it here, but I can give the basic theorem (372D, 372F) and a variety of the corollaries
through which it is regularly used (372E, 372G-372J), together with brief notes on one of its most famous and
characteristic applications (to continued fractions, 372L-372N) and on ‘ergodic’ and ‘mixing’ transformations
(3720-372S). In the first half of the section (down to 372G) I express the arguments in the abstract language
of measure algebras and their associated function spaces, as developed in Chapter 36; the second half, from
372H onwards, contains translations of the results into the language of measure spaces and measurable
functions, the more traditional, and more readily applicable, forms.

372A Lemma Let U be a reflexive Banach space and T : U — U a bounded linear operator of norm at
most 1. Then

V={u+v—-—Tu:u,velU Tv=uv}
is dense in U.

proof Of course V is a linear subspace of U. 7 Suppose, if possible, that it is not dense. Then there is a
non-zero h € U* such that h(v) = 0 for every v € V' (3A5Ad). Take u € U such that h(u) # 0. Set

_ 1 no o
Uy, = n+12i20T U

for each n € N, taking T to be the identity operator; because
1Tl < TNl < NTY Nl < |

for each i, ||u,|| < |Ju|| for every n. Note also that T""tu — T%u € V for every 4, so that h(T*1u — T'u) = 0;
accordingly h(T*u) = h(u) for every 4, and h(u,) = h(u) for every n.

Let F be any non-principal ultrafilter on N. Because U is reflexive, v = lim,,_, = u,, is defined in U for
the weak topology on U (3A5Gc). Now Tv = v. PP For each n € N,

=L i, iy — L 1,
Tuy, un*n_i_lZi:o(T u Tu)fn_i_l(T u—u)

has norm at most |u]l. So (Tun — up)nen — 0 for the norm topology U and therefore for the weak

2
n+1 |
topology, and surely lim,,_, T'u, — u, = 0. On the other hand (because T is continuous for the weak
topology, 2A51f)
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372C The ergodic theorem 7

Tv = limy,— 7 Tu, = lim, 7 (Tup — uy) + limy, s ru, =0+ v =0,

where all the limits are taken for the weak topology. Q
But this means that v € V', while

h(v) = limy,, 7 h(uy,) = h(u) # 0,
contradicting the assumption that A € V°. X

372B Lemma Let (2, /i) be a measure algebra, and T : L' — L' a positive linear operator of norm at
most 1, where L' = L1(2, fi). Take any u € L' and m € N, and set
U fu

a=Ju>0]ufu+Tu>0]ufu+Tu+T?*u>0u...ufu+Tu+...+T™u>0].

Then [ u > 0.
proof Set ug = u, uy = u+Tu,... ,upm = u+Tu+ ... +T"u, v = Sup;<,, u;, so that a = [v > 0].
Consider u + T'(v"). We have T'(vT) > Tv > Tu; for every i < m (because T is positive), so that

u+T(w") > u+ Tu; = iy for i < m, and u+ T(v") > sup;<;c,, ui- Also u + T(vt) > u because
T(vt) >0,s0 u+T(v") > v. Accordingly

Jouz o= [,T0h) = [ = [T 2 o | = [Tot ) 2 0
because ||T|| < 1.

372C Maximal Ergodic Theorem Let (2, i) be a measure algebra, and T : L' — L' a linear
operator, where L' = LY(2, 1), such that ||Tul|; < |lul|; for every u € L' and ||Tul|oo < |lu|loo for every
we L'NL®(A). Set A, = =25 Y27 T" for each n € N. Then for any u € L', u* = sup,,cy Ayu is defined
in L9(21), and ajifu* > o] < ||ul|; for every a > 0.

proof (a) To begin with, suppose that T is positive and that u > 0 in L!. Note that if v € L' N L*°, then
|T0||co < ||v]loo for every i € N, so ||[Apv|lee < [|v]|oo for every n; in particular, A, (ya) < x1 for every n

and every a of finite measure.
For m € N and a > 0, set

Uma = [SUp;<,, Aju > a].

Then afiame < ||ull1- P Set a = ama, w = u — axa. Of course Sup; <,,, Aiu belongs to L', so fia is finite

and w € L'. For any ¢ < m,
Ayw = Aju — ad;(xa) > Aju — axl,
so [A;w > 0] 2 [Aju > a]. Accordingly a C b, where
b = sup;<,, [Aiw > 0] = sup,,, [w+Tw+ ...+ Tw > 0].
By 372B, [, w > 0. But this means that
afia = afbxa = fbuf fbw < fbu < ull1,

as claimed. Q

It follows that if we set co = SUpP, ey Anas fi¢a < a”H|ully for every a > 0 and inf,~0c, = 0. But this
is exactly the criterion in 364L(a-ii) for u* = sup,cy Anu to be defined in L°. And [u* > a] = cq, so
affu* > o] < |lu|; for every o > 0, as required.

(b) Now consider the case of general T, u. In this case T is order-bounded and |||T||| < 1, where |T is
the modulus of T in L~(LY; L) = B(LY; L) (371D). If w € L' N L*°, then
|T|w| < |T||w| = supjy|<jw) 1TW'] < [wlleox],
$0 [||T|w|loo < ||w]|oo. Thus |T| also satisfies the conditions of the theorem. Setting B,, = %ﬂ STl
B, > A, in L~(L'; L") and B,|u| > A,u for every n. But by (a), v = sup,,cy By |u/ is defined in L° and
ajifv > o] <|||ulll; = |lu||s for every a > 0. Consequently u* = sup,,cy Anu is defined in L and u* < v, so
that agu* > o < ||u|l; for every o > 0.
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8 Linear operators between function spaces 372D

372D We are now ready for a very general form of the Ergodic Theorem. I express it in terms of the
space M0 from 366F and the class T(9) of operators from 371F. If these formulae are unfamiliar, you may
like to glance at the statement of 372F before looking them up.

The Ergodic Theorem: first form Let (2, /i) be a measure algebra, and set M1 = MO0, 1), TO) =
7:1(21) C B(M"0; M"0) as in 371F-371G. Take any T € T, and set A, = =5 >0, T": M0 — M0 for
every n. Then for any u € M0, (A, u),en is order*-convergent (definition: 367A) and || ||1,co-convergent

to a member Pu of M?. The operator P : M1 — M0 is a projection onto the linear subspace {u : u €
MY, Tu=u}, and P € T,

proof (a) It will be convenient to start with some elementary remarks. First, every A, belongs to 7O,
by 371Ge and 371Ga. Next, (A,u) ey is order-bounded in LY = LO(2A) for any u € M1Y; this is because if
u=v+w, where v € L' = LY(2, i) and w € L™ = L>(A), then (A, v),en and (A, (—v))nen are bounded
above, by 372C, while (A, w),en is norm- and order-bounded in L. Accordingly I can uninhibitedly speak
of P*(u) = inf,en sup;~, A;u and P.(u) = sup,,cy inf;>, A;u for any v € M0, these both being defined in
L. -

(b) Write Vi for the set of those u € M*? such that (A,u),en is order*-convergent in LY; that is,
P*(u) = P.(u) (367Be). It is easy to see that V; is a linear subspace of M9 (use 367Ca). Also it is closed
for || ||1,00-

. P We know that |T'|, taken in L~ (M19; M10), belongs to T(®) (371Gb); set B,, = T Yoimo [T for each
i.

Suppose that ug € Vi. Then for any € > 0 there is a u € V; such that ||ug — ull1,00 < €. Write
Pu = P*(u) = P,(u) for the order*-limit of (A, u),en. Express ug —u as v +w where v € L', w € L> and
o]l + llwlle < 262

Set v* = sup,,cn Bn|v|. Then fv* > €] < 2¢, by 372C. Next, if w* = sup, oy Bn|w|, we surely have
w* < 262)(1. Now

|Anuo — Anu| = |Apv + Apw| < Bylv| + Bylw| < v* 4+ w*
for every n € N, that is,
Ayu—v* —w* < Apug < A u+v* +w*
for every n. Because (A,u)pen order*-converges to Pu,
Pu —v* —w* < Pi(up) < P*(uwy) < Pu+ v* 4+ w*,
and P*(ug) — P(up) < 2(v* + w*). On the other hand,
A2(v* + w*) > 2e + 4€%] < pfo* > €] + plw* > 26%] = po* > €] < 2
(using 364Ea for the first inequality). So
B[P*(ug) — Pi(ug) > 2€(1 + 2€)] < 2e.

Since € is arbitrary, (A,ug)nen order*-converges to P*(ug) = Pi(ug), and ug € V5. As wyg is arbitrary, V; is
closed. Q

(c) Similarly, the set V; of those u € MY for which (A, u),en is norm-convergent is a linear subspace
of M0 and it also is closed. I This is a standard argument. If uy € Vo and € > 0, there is a u € Va
such that ||ug — u|l1,00 < e. There is an n € N such that ||A;u — Ajull1,00 < € for all ¢, j > n, and now
| Aivo — Ajugll1,00 < 3e€ for all 4, j > n, because every A; has norm at most 1 in B(M*9; M0) (371Gc).
As € is arbitrary, (A;ug)nen is Cauchy; because M0 is complete, it is convergent, and ug € Va. As ug is
arbitrary, V5 is closed. Q

(d) Now let V be {u+v—Tu:u e M*°NL>® v e MO Tv=v}. ThenV C ViNVa. P Ifue MONL>®,
then for any n € N

An(u—Tu) = R%H(u — T ) =0

for || |leo, and therefore is both order*-convergent and convergent for ||||1,00; S0 w — Tu € V4 N V. On the
other hand, if Tv = v, then of course A,v = v for every n, so again v € V1 N V5. Q

MEASURE THEORY



372G The ergodic theorem 9

(e) Consequently L? = L2(, i) C ViNVa. P L2NV;NV; is a linear subspace; but also it is closed for the
norm topology of L2, because the identity map from L? to M0 is continuous (3690e). We know also that
T L? is an operator of norm at most 1 from L? to itself (371Gd). Consequently W = {u+v —Tu : u, v €
L?, Tv = v} is dense in L? (372A). On the other hand, given u € L? and € > 0, there is a v’ € L?N L* such
that ||[u—u'||2 < € (take v’ = (uAyx1)V(—vx1) for any v large enough), and now ||(u—Tu)— (v’ —Tu')||2 < 2e.
Thus W = {v/ +v—Tu : v/ € LN L>®, v € L?, Tv = v} is dense in L2. But W’ C V; N Va, by (d) above.
Thus L2 N'V4 N Va is dense in L2, and is therefore the whole of L2. Q

(F) L? 2 S(A7) is dense in M9, by 369Pc, so Vi = Vo = M. This shows that (A,u),ey is norm-
convergent and order*-convergent for every u € M1'°. By 367Da, the limits are the same. Write Pu for the
common value of the limits.

(g) Of course we now have
[Pulloc < supe [|[Antfloo < flulloo
for every u € L> N MY, while
[Pully < liminfy o0 [[Anully < fJully

for every u € L', by Fatou’s Lemma. So P € T, If w € M"° and Tu = u, then surely Pu = u,
because A,u = u for every u. On the other hand, for any u € M1 TPu = Pu. P Because (A, u)nen is
norm-convergent to Pu,

ITPu — Pulj1,00 = lim ||TA,u— Apull1,co

n—oo

: L n+l, _ _
nh_>rr010 n+1||T u—1ull100 =0. Q

Thus, writing U = {u : Tu = u}, P[M'°] = U and Pu = u for every u € U.

372E Corollary Let (2, /i) be a measure algebra, and 7 : A/ — 2/ a measure-preserving ring homo-
morphism, where 2Af = {a : fia < co}. Let T : M0 — M9 be the corresponding Riesz homomorphism,
where M0 = M2, i) (366H, in particular part (a-v)). Set A, = 45 Y>> T" for n € N. Then for every
u € MY, (A, u)nen is order*-convergent and || ||1 «o-convergent to some v such that Tv = v.

proof By 366H(a-iv), T € T, as defined in 371F. So the result follows at once from 372D.

372F The Ergodic Theorem: second form Let (2, /i) be a measure algebra, and let T : L' — L!,
where L' = LY(2, 1), be a linear operator of norm at most 1 such that Tu € L™ = L*(2) and ||Tu| s <
||lu|loo whenever u € L'NL%>®. Set A, = %—H ST L' — L' for every n. Then for any u € L', (A, u)pen
is order*-convergent to an element Pu of L'. The operator P : L' — L' is a projection of norm at most 1
onto the linear subspace {u: u € L', Tu = u}.

proof By 371Ga, there is an extension of 7' to a member T of T(®. So 372D tells us that (Apu)pen is
order*-convergent to some Pu € L' for every u € L', and P : L' — L' is a projection of norm at most 1,
because P is the restriction of a projection P e T Also we still have TPu = Pu for every u € L', and
Pu = u whenever Tu = u, so the set of values P[L'] of P must be exactly {u:u € L', Tu = u}.

Remark In 372D and 372F I have used the phrase ‘order*-convergent’ from §367 without always being
specific about the partially ordered set in which it is to be interpreted. But, as remarked in 367E, the
notion is robust enough for the omission to be immaterial here. Since both M and L' are solid linear
subspaces of LY, a sequence in MY is order*-convergent to a member of M1:? (when order*-convergence is
interpreted in the partially ordered set M) iff it is order*-convergent to the same point (when convergence
is interpreted in the set LY); and the same applies to L! in place of M0,

372G Corollary Let (2, i) be a probability algebra, and 7 : 2 — 21 a measure-preserving Boolean
homomorphism. Let T : L' — L' be the corresponding Riesz homomorphism, where L' = L'(2, 1). Set
A, = n%rl St oT" for n € N. Then for every u € L', (A,u)pen is order*-convergent and || ||;-convergent.

D.H.FREMLIN



10 Linear operators between function spaces 372G

If we set Pu = lim,, ., A,u for each u, P is the conditional expectation operator corresponding to the
fixed-point subalgebra € = {a : 7a = a} of 2.

proof (a) The first part is just a special case of 372E; the point is that because (2, 1) is totally finite,
L(A) € LY, so MYO(A i) = LY. Also (because jil = 1) |Julloo < |Jul|1 for every u € L*°, so the norm
1,00 is actually equal to || ||1.

(b) For the last sentence, recall that € is a closed subalgebra of 2 (cf. 333R). By 372D or 372F, P is
a projection operator onto the subspace {u : Tu = u}. Now [Tu > o] = wJu > o] (365Nc), so Tu = wu iff
[u > a] € € for every a € R, that is, iff u belongs to the canonical image of L*(€, i €) in L' (365Q). To
identify Pu further, observe that if u € L! and a € € then

faTu:fmTu:fau

(365Nb). Consequently [ T'u = [ wfor every i € N, [ Ayu = [ u for every n € N, and [ Pu= [ u
(because Pu is the limit of (A, u),en for || ||1). But this is enough to define Pu as the conditional expectation
of uon € (365Q).

372H The Ergodic Theorem is most often expressed in terms of transformations of measure spaces. In
the next few corollaries I will formulate such expressions. The translation is straightforward.

Corollary Let (X, 3, u) be a measure space and ¢ : X — X an inverse-measure-preserving function. Let f
be a real-valued function which is integrable over X. Then

. 1 n 'L
g(x) = lim,, r_*_lzi:o f(¢'())
is defined for almost every x € X, and g¢(z) = g(z) for almost every z.

proof Let (2, /i) be the measure algebra of (X,%, ), and m : % — 2, T : L°(A) — L°(2A) the homo-
morphisms corresponding to ¢, as in 364Qd. Set w = f* in L*(2,ji). Then for any i € N, Tlu = (f¢')*
(364Q(c)-(d)), so setting A, = A5 Y1 T, Apu = g5, where gn(z) = 57 Yoy f(¢'(x)) whenever this is
defined. Now we know from 372F or 372E that (A, u),en is order*-convergent to some v such that Tv = v,
S0 (gn)nen must be convergent almost everywhere (367F), and taking g = lim,,_,, g, where this is defined,
g* =v. Accordingly (9¢)* =Tv =v = ¢g* and g¢ =,.. g, as claimed.

3721 The following facts will be useful in the next version of the theorem, and elsewhere.

Lemma Let (X, u) be a measure space with measure algebra (2, ). Let ¢ : X — X be an inverse-
measure-preserving function and 7 : 2 — 2 the associated homomorphism, as in 343A and 364Qd. Set
C={c:ceA,mc=c}, T={E:E €Y, ¢ [E]AE is negligible} and Tg = {E : E € X, ¢~ }[E] = E}.
Then T and Ty are o-subalgebras of ¥; To C T, T={E: Ec€ X, E* € €}, and € = {E* : E € Ty}.

proof It is easy to see that T and T are o-subalgebras of ¥ and that To C T = {E : E* € €}. So we have
only to check that if ¢ € € there is an E € T such that E* = ¢. P Start with any F' € ¥ such that F* = c.
Now FA¢~*[F] is negligible for every i € N, because (¢~ ¢[F])* = n’c = c¢. So if we set

E=J )¢ 'F]

neNi>n

= {z: there is an n € N such that ¢'(z) € F for every i > n},
E* = c. On the other hand, it is easy to check that £ € Ty. Q

372J The Ergodic Theorem: third form Let (X, 3, u) be a probability space and ¢ : X — X an
inverse-measure-preserving function. Let f be a real-valued function which is integrable over X. Then

9(@) = limy oo == 577 (6 ()

is defined for almost every x € X; g¢ =, ¢, and ¢ is a conditional expectation of f on the o-algebra
T ={FE : E € 3, ¢ [E]AFE is negligible}. If either f is Y-measurable and defined everywhere in X
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372K The ergodic theorem 11

or ¢[E] is negligible for every negligible set E, then ¢ is a conditional expectation of f on the o-algebra
To={E:EcX, ¢ '[E] = FE}.

proof (a) We know by 372H that g is defined almost everywhere and that g¢ =, g¢. In the language of
the proof of 372H, g* = v is the conditional expectation of u = f* on the closed subalgebra

C={a:acU, ma=a}={F*:FeT}={F:FeTy},
by 372G and 372I. So v must be expressible as h* where h : X — R is Ty-measurable and is a conditional

expectation of f on Ty (and also on T). Since every set of measure zero belongs to T, g = h u|T-a.e., and
g also is a conditional expectation of f on T.

(b) Suppose now that f is defined everywhere and ¥-measurable. Here I come to a technical obstruction.
The definition of ‘conditional expectation’ in 233D asks for g to be u[Ty-integrable, and since p-negligible
sets do not need to be u[To-negligible we have some more checking to do, to confirm that {z : z €
dom g, g(z) = h(x)} is u] To-conegligible as well as p-conegligible.

(i) For n € N, set 3, = {¢""[E] : E € ¥}; then X, is a o-subalgebra of ¥, including Ty. Set
Yoo = Npen Zn, still a o-algebra including Ty. Now any negligible set £ € ¥ is pu] To-negligible. I For

each n € N choose F,, € ¥ such that E = ¢~ "[F,]. Because ¢ is inverse-measure-preserving, every F), is
negligible, so that

E* =NpenUnenjom o7 [F)
is negligible. Of course E = (1, ,cy ¢~ ""[Fm] is included in E*. Now

d)il[E*] = ﬂmEN UnEN,jZm ¢7j71[F”] = ﬂmzl UnEN,jZm ¢7j [F”] =E*

because

UnEN,jZl ¢~I[F,] C UnEN,jZO ¢~I[F).
So E* € Ty and F is included in a negligible member of T, which is what we needed to know. Q

(ii) We are assuming that f is Y-measurable and defined everywhere, so that g, = n%_l St o fod!
is ¥-measurable and defined everywhere. If we set ¢* = limsup,, . gn, then ¢* : X — [—00,00] is Too-
measurable. B For any m € N, fo¢® is 3,,,-measurable for every i > m, since {x : f(¢'(z)) > a} = ¢ ™" [{z :
f(@=™(x)) > a}] for every a.. Accordingly

R o L Y
is ¥,,-measurable. As m is arbitrary, ¢g* is ¥ ,-measurable. Q

Since h is surely Y .-measurable, and h = ¢g* p-a.e., (i) tells us that h = ¢* u[To-a.e. But similarly
h = liminf, . g, plTo-a.e., so we must have h = g p[Tp-a.e.; and g, like h, is a conditional expectation

of f on Ty.

g* = limsup,,_,

(c) Finally, suppose that ¢[F] is negligible for every negligible set E. Then every p-negligible set is p| To-
negligible. B If E is p-negligible, then ¢[E], ¢?[E] = ¢[¢[E]], ... are all negligible, so E* = J, oy ¢"[E] is
negligible, and there is a measurable negligible set F' O E*. Now Fi = {J,,cnnsm @ "[F] is a negligible
set in Ty including E, so E is u[ To-negligible. Q Consequently g = h u[Ty-a.e., and in this case also g is
a conditional expectation of f on T.

372K Remark Parts (b)-(c) of the proof above are dominated by the technical question of the exact
definition of ‘conditional expectation of f on Ty’, and it is natural to be impatient with such details. The
kind of example I am concerned about is the following. Let C' C [0,1] be the Cantor set (134G), and
¢ : [0,1] — [0,1] a Borel measurable function such that ¢[C] = [0,1] and ¢(z) = « for z € [0,1] \ C.
(For instance, we could take ¢ agreeing with the Cantor function on C (134H).) Because C' is negligible,

¢ is inverse-measure-preserving for Lebesgue measure pu, and if f is any Lebesgue integrable function then
g(x) = limp 00 %H St o f(¢'(z)) is defined and equal to f(z) for every x € dom f \ C. But for x € C we

K2

can, by manipulating ¢, arrange for g(z) to be almost anything; and if f is undefined on C' then g will also
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12 Linear operators between function spaces 372K

be undefined on C. On the other hand, C is not u| Tg-negligible, because the only member of Ty including
C is [0,1]. So we cannot be sure of being able to form [ gd(ulTy).

If instead of Lebesgue measure itself we took its restriction iz to the algebra of Borel subsets of [0, 1], then
¢ would still be inverse-measure-preserving for ug, but we should now have to worry about the possibility
that f]C was non-measurable, so that g[C came out to be non-measurable, even if everywhere defined, and
g was not ug| To-virtually measurable.

In the statement of 372J I have offered two ways of being sure that the problem does not arise: check that
@[ F] is negligible whenever FE is negligible (so that all negligible sets are u| To-negligible), or check that f is
defined everywhere and Y-measurable. Even if these conditions are not immediately satisfied in a particular
application, it may be possible to modify the problem so that they are. For instance, completing the
measure will leave ¢ inverse-measure-preserving (234Ba?), will not change the integrable functions but will
make them all measurable (212F, 212Bc), and may enlarge Ty enough to make a difference. If our function
f is measurable (because the measure is complete, or otherwise) we can extend it to a measurable function
defined everywhere (1211) and the corresponding extension of g will be u|To-integrable. Alternatively, if
the difficulty seems to lie in the behaviour of ¢ rather than in the behaviour of f (as in the example above),
it may help to modify ¢ on a negligible set.

372L Continued fractions A particularly delightful application of the results above is to a question
which belongs as much to number theory as to analysis. It takes a bit of space to describe, but I hope you
will agree with me that it is well worth knowing in itself, and that it also illuminates some of the ideas
above.

(a) Set X =[0,1]\Q. For z € X, set ¢(z) = <1>, the fractional part of £, and ki(z) = L —¢(z) = | 1],
the integer part of 1; then ¢(x) € X for each z € X, so we may define k, (z) = k1(¢"~*(x)) for every n > 1.
The strictly positive integers ki(x), ka(x), ks(z),... are the continued fraction coefficients of x. Of

course ky11(x) = kn(o(z)) for every n > 1. Now define (p,(2))nen, (gn(x))nen inductively by setting
Po@) =0, pi@) =1, pu(@) = pu_2(2) + kn(@)pu_1(2) for n > 1,

w(z)=1, qr)=k(z), @.@)=agn—2(x)+ky(x)gn_1(z) for n > 1.

The continued fraction approximations or convergents to x are the quotients p,(x)/qn(z).

(I do not discuss rational z, because for my purposes here these are merely distracting. But if we set
k1(0) = o0, ¢(0) = 0 then the formulae above produce the conventional values for &, (x) for rational = € [0, 1].
As for the p,, and g, use the formulae above until you get to = = p,(x)/qn(z), ¢"(z) = 0, kpt1(z) = o0,
and then set p,, (z) = pn(2), gm(z) = gn(x) for m > n.)

(b) The point is that the quotients r,(z) = p,(z)/g.(x) are, in a strong sense, good rational approxima-
tions to x. (See 372X1(v).) We have r,(z) < < rp41(z) for every even n (372X1). If 2 = m — 3, then the
first few coeflicients are

k=7, ko=15, Fky=1,

O S T
7o 2T e P
. . . . . 22 355 .
the first and third of these corresponding to the classical approximations = = T T Or if we take

r=e—2, we get

ki=1, ke=2 ky=1, ka=1 ks=4, ke=1 Fkr=1,

ri=1 7’*g 1"*§ 7’*§ T*E r*§ r*g'

=5 2my BTy MTmp T Tay 16T ag T gy
note that the obvious approximations %, % derived from the series for e are not in fact as close as the
even terms %, % above, and involve larger numbers3.

2Formerly 235Hc.
3There is a remarkable expression for the continued fraction expansion of e, due essentially to Euler; k3;_1 = 2m, k3m =
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(c) Now we need a variety of miscellaneous facts about these coefficients, which I list here.
(i) For any € X, n > 1 we have

o () = P @)

pn—l(x)Qn(x) 7pn(x)Qn—1(x) = (71)’”‘7 qu—l(w)—Pn—l(Z)

(induce on n), so

~

T = p"(x)""pnfl (l')(ﬁ” ($
@n (@) +qn-1(z)¢"(z)

(ii) Another easy induction on n shows that for any finite string m = (my,... ,m,) of strictly positive
integers the set Dy = {z : z € X, k;i(z) = m,; for 1 <i <mn} is an interval in X on which ¢™ is monotonic,
being strictly increasing if n is even and strictly decreasing if n is odd. (For the inductive step, note just
that

D(ml,“. mp) — [ﬁa i} N ¢71[D(m2,4.. ,mn)]')

(iii) We also need to know that the intervals Dy, of (ii) are small; specifically, that if m = (mq,... ,my),
the length of Dy, is at most 27"+1. P All the coefficients p;, g;, for i < n, take constant values p}, ¢ on
Dy, since they are determined from the coefficients k; which are constant on Dy, by definition. Now every
x € Dy, is of the form (p} + tpl_1)/ (¢} + tq)_,) for some ¢t € X (see (i) above) and therefore lies between
pi_1/q_1 and p} /q’. But the distance between these is

1

PN
9ndn—1

|p:,q:,_rp:,_1q2,| —

a4 dn_1
by the first formula in (i). Next, noting that ¢ > ¢ ; + ¢}, for each i > 2, we see that ¢/¢; | > 2¢7 ¢ o
for i > 2, and therefore that ¢q* ; > 2"~! so that the length of Dy, is at most 27 "1, Q

372M Theorem Set X = [0,1]\Q, and define ¢ : X — X as in 372L. Then for every Lebesgue integrable
function f on X,

. 1 ; 1A

for almost every z € X.

proof (a) The integral just written, and the phrase ‘almost every’, refer of course to Lebesgue measure;
but the first step is to introduce another measure, so I had better give a name py, to Lebesgue measure on
X. Let v be the indefinite-integral measure on X defined by saying that vE = 5 [, 19 iz (dx) whenever

this is defined. The coefficient 25
domv = dom pz, and v has just the same negligible sets as uy, (234Lc?); T can therefore safely use the terms
‘measurable set’, ‘almost everywhere’ and ‘negligible’ without declaring which measure I have in mind each

time.

is of course chosen to make ¥ X = 1. Because 177 > 0 for every z € X,

(b) Now ¢ is inverse-measure-preserving when regarded as a function from (X, v) to itself. I* For each
k> 1, set I, = [#1%[ On X NIy, ¢(x) = L — k. Observe that @[ : X NIy — X is bijective and
differentiable relative to its domain in the sense of 262Fb. Consider, for any measurable £ C X,

[ mmmtan = | 1
o R k) YT ) G@ R @) )

21 _
:/I i wilﬁuL(dx):lnll/(Ikﬁqb 1[E})7
kN1

CACIBACED)

using 263D (or more primitive results, of course). But

k3m+1 = 1 for m > 2. See ConN 06.
4Formerly 234D.
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14 Linear operators between function spaces 372M

1 !

(y+k) (y+k+1) = 2k y+k  ytk+l  y+l

Zkl

for every y € [0, 1], so

vE MZ/ y+ky+k+1uLdy = vl n ¢ [E]) = vo ' [E].
k=1

As F is arbitrary, ¢ is inverse-measure-preserving. Q

(c) The next thing we need to know is that if £ C X and ¢ ![E] = E then E is either negligible or
conegligible. I T use the sets Dy, of 372L(c-ii).

(i) For any string m = (mq,...,m,) of strictly positive integers, we have

_ patpL 19" (2)

N q5+a 16" ()
for every @ € Dy,, where p*, etc., are defined from m as in 372L(c-iii). Recall also that ¢™ is strictly
monotonic on Dy,. So for any interval I C [0,1] (open, closed or half-open) with endpoints o < f3,
¢~ "[I] N Dy, will be of the form X N .J, where J is an interval with endpoints (p + pi_,«a)/(¢k + q}_10),
(pr+pi_18)/(q;+q;_,B) in some order. This means that we can estimate pr,(¢~"[I]NDym)/pr Dm, because
it is

* +p:1710‘ o P;+p:715

Gttt Bl (Brean(entey) o (Fd)g Lig—a)
pL _ PatPna | (G+ana)(gi+an_18) — a+a — 2
a4 a5 +4n

Now look at
A={E:E C|0,1] is Lebesgue measurable, u (¢ "[E] N D) > %uLE ~prDm}.

Clearly the union of two disjoint members of A belongs to .A. Because A contains every subinterval of [0, 1]
it includes the algebra & of subsets of [0, 1] consisting of finite unions of intervals. Next, the union of any
non-decreasing sequence in 4 belongs to A, and the intersection of a non-increasing sequence likewise. But
this means that A must include the o-algebra generated by £ (136G), that is, the Borel o-algebra. But also,
if E € Aand H C [0,1] is negligible, then

ML(¢_n[EAH] N Dm) = ,UL(d)_n[E] N Dm) > %MLE “prDm = %/“LL(EAH) -, Dm

and EAH € A. And this means that every Lebesgue measurable subset of [0, 1] belongs to A (134Fb).

(ii) 7 Now suppose, if possible, that F is a measurable subset of X and that ¢~![E] = E and F is
neither negligible nor conegligible in X. Set v = %/LLE > 0. By Lebesgue’s density theorem (223B) there

is some z € X \ E such that lims o (d) = 0, where ¢(§) = %ML(E N[z — 6,2+ 0]) for 6 > 0. Take n so

large that ¥(8) < 37 whenever 0 < ¢ < 27""! and set m; = k;(z) for i < n, so that € Dy,. Taking the
least ¢ such that Dy, C [z — 6,z + §], we must have § < 27 *1 because the length of Dy, is at most 277!
(372L(c-iii)), while ur, Dy > 8, because Dy, is an interval. Accordingly

pr(EN D) <up(ENz—4§,z46]) =20¢(6) < v0 < yurDm
But we also have
pr(E N D) = pr(¢7"[E]N Dm) = ypr D,

by (i). X
This proves the result. Q

(d) The final fact we need in preparation is that ¢[E] is negligible for every negligible E C X. This is
because ¢ is differentiable relative to its domain (see 263D(ii))

(e) Now let f be any pr-integrable function. Because -— < 1 for every z, f is also v-integrable (235K5);

5Formerly 235M.
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372P The ergodic theorem 15

consequently, using (b) above and 372J,

. 1 ;
is defined for almost every z € X, and is a conditional expectation of f (with respect to the measure v) on

the o-algebra Tg = {E : E is measurable, ¢~ '[E] = E}. But we have just seen that T consists only of
negligible and conegligible sets, so g must be essentially constant; since [ gdv = [ fdv, we must have

n 1
tim L 16 @) = [ fav =5 [ s an
— 0

n—oo n+1 4 1+t
K3
for almost every x (using 235K to calculate [ fdv).

372N Corollary For almost every = € [0,1] \ Q,

limm, o %#({i 1< <, kilw) = k) = o5 (2I(k+1) — Ink — In(k + 2))

for every k > 1, where kq(z),... are the continued fraction coefficients of x.
proof In 372M, set f = x(X N [k%-l’ 1) Then (for i > 1) f(¢'(x)) = 1if k;(x) = k and zero otherwise. So
. 1 . .
nl;rrgog#({z 1 <i<m, ki(z) =k})
= lim Z} f(¢'(x)) = lim — Zof(qﬁ (2))
IS IO P U G U
In2 0 1+t In2 1/k+1 1+t

I(1+ 1) = In(1+—2)) = = (2In(k+1) = Ink — In(k +2)),

1
1n2( k+1 In2

for almost every =z € X.

3720 Mixing and ergodic transformations This seems an appropriate moment for some brief notes
on three special types of measure-preserving homomorphism or inverse-measure-preserving function.

Definitions (a)(i) Let 2 be a Boolean algebra. Then a Boolean homomorphism 7 : % — 2 is ergodic if
whenever a, b € A\ {0} there are m, n € N such that 7™an7"™b # 0.

(ii) Let (A, ) be a probability algebra and 7 : 2 — 2 a measure-preserving Boolean homomorphism.
Then 7 is mixing (sometimes called strongly mixing) if lim,_, . @(7"anb) = fia - pb for all a, b € A.

(iii) Let (2, z) be a probability algebra and 7 : 20 — 2 a measure-preserving Boolean homomorphism.

Then 7 is weakly mixing if lim,_ % Z?:_ol |Z(7"anb) — pa - @b| =0 for all a, b € 2A.

(b) Let (X, X, 1) be a probability space and ¢ : X — X an inverse-measure-preserving function.

(i) ¢ is ergodic (also called metrically transitive, indecomposable) if every measurable set E such
that ¢~1[E] = E is either negligible or conegligible.

(ii) ¢ is mixing if lim, oo p(F N ¢ "[E]) = pE - pF for all E, F € X.

(iii) ¢ is weakly mixing if if lim,, % Z?;Ol |W(FN ¢ "[E]) — uE - uF| =0 for all E, F € .

372P For the principal applications of the idea in 3720(a-i), we have an alternative definition in terms
of fixed-point subalgebras.
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16 Linear operators between function spaces 372P

Proposition Let 2 be a Boolean algebra and 7 : 2 — 2 a Boolean homomorphism, with fixed-point
subalgebra €.

(a) If 7 is ergodic, then € = {0, 1}.

(b) If 7 is an automorphism, then 7 is ergodic iff sup,,c; 7"a = 1 for every a € 2\ {0}.

(c) If 7 is an automorphism and 2 is Dedekind o-complete, then 7 is ergodic iff € = {0,1}.

proof (a) If ¢ € €, then 7™¢ = ¢ is disjoint from 7™ (1\ ¢) = 1\ ¢ for all m, n € N, so one of ¢, 1\ ¢ must
be zero.

(b)(3) If 7 is ergodic and a # 0 and bnn"a = 0 for every n € Z, then 7™bna"a = 7™ (bna" "a) =0
for all m, n € N, so b =0. As b is arbitrary, sup, c; 7"a = 1; as a is arbitrary, 7 satisfies the condition.

(ii) If 7 satisfies the condition, and a, b € 2\ {0}, then there is an m € Z such that 7anb # 0;
setting n = max(—m,0), 7™ "a n7"b # 0, while m + n and n both belong to N. As a and b are arbitrary,
7 is ergodic.

(c) If 7 is ergodic then € = {0,1}, by (a). If € = {0,1} and a € A\ {0}, consider ¢ = sup,,c; 7"a, which
is defined because 2 is Dedekind o-complete. Being an automorphism, 7 is order-continuous (313Ld), so
mc =sup,c; 7" a = c and ¢ € €. Since ¢ D a is non-zero, ¢ = 1. As a is arbitrary, 7 is ergodic, by (b).

372Q The following facts are equally straightforward.

Proposition (a) Let (2, i) be a probability algebra, 7 : 2 — 2 a measure-preserving Boolean homomor-
phism, and 7' : L = L%(2) — L° the Riesz homomorphism such that T'(ya) = x7a for every a € .

(i) If 7 is mixing, it is weakly mixing.

(ii) If 7 is weakly mixing, it is ergodic.

(iii) The following are equlverldlcal (o) 7 is ergodic; (B3) the only u € L? such that Tu = u are the
multiples of x1; () for every u € L* = LY(2, fi), <n~1k1 S o T'u)pen order*-converges to ([ u)x1.

(iv) The following are equiveridical: (o) 7 is mixing; (8) lim, eo(T"ulv) = [u [v for all u, v €
L2(A, ).

(v) The following are equiveridical: («) 7 is weakly mixing; (8) lim,, oo = Z T’“u|v —fJufv][=0
for all u, v € L2(2, i).

(b) Let (X,3, ) be a probability space, with measure algebra (2, ). Let ¢ : X — X be an inverse-
measure-preserving function and 7 : 2 — 2 the associated homomorphism such that 7E* = (¢~ 1[E])* for
every £ € 3.

(i) The following are equiveridical: («) ¢ is ergodic; (8) 7 is ergodic; () for every p-integrable real-
valued function f, (%ﬂ S o f(¢'(%)))nen converges to [ f for almost every z € X.

(ii) ¢ is mixing iff 7 is, and in this case ¢ is weakly mixing.

(iii) ¢ is weakly mixing iff 7 is, and in this case ¢ is ergodic.

proof (a)(i)-(ii) Immediate from the definitions.

(iii) (a)=(B) Tu = u iff 7[u > o] = [u > o] for every a; if 7 is ergodic, this means that [u > o] €
{0,1} for every a, by 372Pa, and u must be of the form yx1, where v = inf{a : Ju > a] = 0}.

(B)=(v) If (B) is true and u € L', then we know from 372G that <%+1 S o T u)pen is order*-
convergent and || ||;-convergent to some v such that Tv = v; by (8), v is of the form ~yx1; and

N = fv = hm"ﬁoo,%_lz?:ofTi“ = fu.

(7)=(a) Assuming (v), take any a € 2 such that ma = a, and consider u = ya. Then Tu = ya for
every i, so

. 1 ; _
xa = lim,_, THZ?ZO Tty = (f u)x1 = fia - x1,
and a must be either 0 or 1. By 372Pc, 7 is ergodic.

(iv)(a)=(pB) Since 7 is mixing,
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lim (T"xa|xb) = hm (Xﬂ' alxb) = hm g(r"anb)

n— o0
= [a - ,ub—/xa/xb

for all a, b € A. Because (u,v) — (T"ulv) and (u,v) — [u [ v are both bilinear,
lim,, o0 (T™u|v) = fufv
for all u, v € S(2A). For general u, v € L?(2, ji), take any € > 0. Then there are u’, v’ € S(2A) such that

(= w'll2 + [lv = o"ll2) max([lull, [[v]l2 + [lv = v"[[2) <€

(366C), so that

(T ulv) = (T"u'[o")] < [(T"ulo = o")| + [(T"u — T™u' )]
< T ullzflo = o'fl + 17w = T |2 |02
< flullzllv = v'll2 + llu = wll2(lfvll2 + [lv = v[|2)

L foe [ fore) fut fovist fuct [

< Hull2llo = o"ll2 + [lu = w'll2[lo"]l2 < €

(366H (a-iv))

for every n, and
lim sup,,_, ., [(T™ulv) — fuf v| < 2+ limy,— 00 [(T™U/ V) f f V| = 2e.
As € is arbitrary, lim, o (T"u|v) = [u [ v, as required.
(8)=(e) This is elementary, as («) is just the case u = xa, v = xb of (3).
(v) The argument is essentially the same as in (iv); («) is a special case of (8); if («) is true, then by
linearity (5) is true when u, v € S(2), and the functional (u,v) — lim supn_mo% P |(TrRulv) = [u [l

is continuous.

(b)(i)(@)=(B) If ra = a there is an E such that ¢ ![E] = E and E* = a, by 3721; now jia = pE € {0,1},
so a € {0,1}. Thus the fixed-point subalgebra of 7 is {0, 1}; by 372Pc¢ again, 7 is ergodic.

(B)=(7) Set u= f* € L. In the language of (a), T%u = (f¢')* for each i, as in the proof of 372H,
so that

(LS f6) = S T

is order*-convergent to ([u)x1 = ([ f)x1, and n%‘_l St fet = [ fae.

(7)=(a) If ¢~ '[E] = E then, applying () to f = xE, we see that YE =, uFE - xX, so that E is
either negligible or conegligible.

n+1

(ii)-(iii) Simply translating the definitions, we see that 7 is mixing, or weakly mixing, iff ¢ is. So the
results here are reformulations of (a-i) and (a-ii).

372R Remarks (a) The reason for introducing ‘ergodic’ homomorphisms in this section is of course
372G/372J; if 7 in 372G, or ¢ in 372J, is ergodic, then the limit Pu or g must be (essentially) constant,
being a conditional expectation on a trivial subalgebra.

(b) In the definition 3720(b-i) I should perhaps emphasize that we look only at measurable sets E. We
certainly expect that there will generally be many sets E for which ¢~![E] = E, since any union of orbits
of ¢ will have this property.
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18 Linear operators between function spaces 372Rc

(c) Part (c) of the proof of 372M was devoted to showing that the function ¢ there was ergodic; see also
372Xm. For another ergodic transformation see 372Xr. For examples of mixing transformations see 333P,
372Xp, 372Xq, 372Xt, 372Xw and 372Xx.

(d) It seems to be difficult to display explicitly a weakly mixing transformation which is not mixing.
There is an example in CHACON 69, and I give another in 494F in Volume 4. In a certain sense, however,
‘most’ measure-preserving automorphisms of the Lebesgue probability algebra are weakly mixing but not
mixing; I will return to this in 494E.

372S There is a useful sufficient condition for a homomorphism or function to be mixing.

Proposition (a) Let (2, ) be a probability algebra, and 7 : 2l — 2 a measure-preserving Boolean homo-
morphism. If (), . 7" ] = {0,1}, then 7 is mixing.
(b) Let (X,X, u) be a probability space, and ¢ : X — X an inverse-measure-preserving function. Set

T = {E: for every n € N there is an F' € ¥ such that E = ¢~ "[F]}.
If every member of T is either negligible or conegligible, ¢ is mixing.

proof (a) Let T : L° = L%(A) — L be the Riesz homomorphism associated with 7. Take any a, b € 2
and any non-principal ultrafilter F on N. Then (T™(xa))nen is a bounded sequence in the reflexive space
L2 = L*(A, i), so v = lim,,, 7 T"(xa) is defined for the weak topology of L2. Now for each n € N set
B,, = "[2A]. This is a closed subalgebra of 2 (314F(a-i)), and contains 7'a for every i > n. So if we identify
L?(B,,, 1] B,,) with the corresponding subspace of L/% (3661), it contains T%(ya) for every i > n; but also
it is norm-closed, therefore weakly closed (3A5Ee), so contains v. This means that [v > «] must belong to
B,, for every « and every n. But in this case [v > a] € (,,cxy Brn = {0,1} for every «, and v is of the form
vx1. Also

neN

v = fv = limnﬁ]:fT”(Xa) = [ia.
So
lim,, 7 a(7"anb) = lim,_, » fT"(Xa) x xb = fv X xb = ~viib = fia - fib.
But this is true of every non-principal ultrafilter 7 on N, so we must have lim,, o, g(7"anb) = fa - iib

(3A3Lc). As @ and b are arbitrary, 7 is mixing.

(b) Let (2, ) be the measure algebra of (X, ¥, 1), and 7 : 2 — 2 the measure-preserving homomorphism
corresponding to ¢. The point is that if a € (), oy 7"[2], there is an £ € T such that £* = a. P For each
n € N there is an a,, € 2 such that 7"a,, = a; say a, = F, where F,, € ¥.. Then ¢~ "[F,]* = a. Set

E=UpnenNMusm @ "Fal, Br = Uz Npsm ¢ "P[F]
for each k; then E* = a and

Qsik[Ek] = UmZk nan ¢7n[Fn} = UmEN ﬂan ¢7n[Fn] =F
for every k,so E € T. Q
So MN,en ™A = {0,1} and 7 and ¢ are mixing.

372X Basic exercises (a) Let U be any reflexive Banach space, and T : U — U an operator of norm
at most 1. Set A4,, = n%rl Z?:o T? for each n € N. Show that Pu = lim,, ,o, A,u is defined (as a limit for
the norm topology) for every u € U, and that P : U — U is a projection onto {u : Tu = u}. (Hint: show
that {u : Pu is defined} is a closed linear subspace of U containing Tu — u for every u € U.)

(This is a version of the mean ergodic theorem.)

>(b) Let (2, ) be a measure algebra, and T € 771(3—2; set A, = %HZ?:O T for n € N. Take any
p € [1,00[ and w € LP = LP(2, 1). Show that (A, u)nen is order*-convergent and || ||,-convergent to some

v € LP. (Hint: put 372Xa together with 372D.)

(c) Let (2, ) be a probability algebra, and 7 : 24 — 2 a measure-preserving Boolean homomorphism.

Let P : L' — L' be the operator defined as in 3650/366Hb, where L' = L}j, so that fa Pu = fmu for
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ue L' and a € A. Set A,, = n%_l S o Pt LY — L' for each i. Show that for any u € L', (A, u),en is
order*-convergent and || ||;-convergent to the conditional expectation of u on the subalgebra {a : ma = a}.

(d) Show that if f is any Lebesgue integrable function on R, and y € R\ {0}, then
limy, o0 137 2= (2 + ky) =0

for almost every z € R.

(e) Let (X,X%, ) be a measure space and ¢ : X — X an inverse-measure-preserving function. Set
T={E:Eex u¢ ' EJAE) =0}, To={E: E €, ¢ '[E] = E}. (i) Show that T = {EAF : E €
Ty, F € &, uF = 0}. (ii) Show that a set A C X is u| To-negligible iff ¢™[A4] is p-negligible for every n € N.

>(f) Let v be a Radon probability measure on R such that [ [t|v(dt) is finite (cf. 271F). On X = RN let
A be the product measure obtained when each factor is given the measure v. Define ¢ : X — X by setting
¢(z)(n) =x(n+1) for v € X, n € N. (i) Show that ¢ is inverse-measure-preserving. (Hint: 254G. See also
372Xw below.) (iii) Set v = [ tv(dt), the expectation of the distribution v. By considering n%rl S fedh,
where f(z) = z(0) for z € X, show that lim,_, n%rl S (i) =~ for A-almost every z € X.

>(g) Use the Ergodic Theorem to prove Kolmogorov’s Strong Law of Large Numbers (2731), as follows.
Given a complete probability space (2,3, 1) and an independent identically distributed sequence {f,)nen
of measurable functions from Q to R, set X = RY and f(w) = (fn(w))nen for w € Q. Show that if we give
each copy of R the distribution of fy then f is inverse-measure-preserving for p and the product measure A
on X. Now use 372Xf.

>(h) Let (fn)nen be a sequence of real-valued random variables with finite expectation such that
(fo, f1,---, fn) has the same joint distribution as (f1, f2, ... , fnt+1) for every n € N. Show that <%+1 St fidnen

converges a.e. (Hint: Let (X, 3, u) be the underlying probability space. Reduce to the case in which every
fi is measurable and defined everywhere in X. Define 6 : X — RY by setting §(x)(n) = f.(x) for z € X,
n € N. Let A be the image measure uf='. Set ¢(2)(n) = z(n + 1) for z € RN and n € N. Show that ¢ is
inverse-measure-preserving for A, and apply 372J.)

(i) Show that the continued fraction coefficients of % are 1,2,2,2,....

>(j) For z € X = [0,1] \ Q let k1(x), ka(x),... be its continued-fraction coefficients. Show that x
(kni1(z) — 1)pen is a bijection between X and NN which is a homeomorphism if X is given its usual
topology (as a subset of R) and NV is given its usual product topology (each copy of N being given its
discrete topology).

(k) Set © = 1(v/5 — 1). Show that, in the notation of 372L, k,,(z) = 1 and ¢,(z) = p,—1(z) for every
n > 1 and that (p,(z))nen is the Fibonacci sequence.

(1) For any irrational z € [0,1] let k1(z), k2(x), ... be its continued-fraction coefficients and p, (), ¢, (x)
the numerators and denominators of its continued-fraction approximations, as described in 372L. Write
rn(x) = pp(x)/gn(z). (i) Show that x lies between 7, (z) and r,41(z) for every n € N. (ii) Show that
Tni1(x) — ro(x) = (=1)"/qn(2)gn+1(x) for every n € N. (iii) Show that |z — 7, ()| < 1/¢n(2)?*kn11(z) for
every n > 1. (iv) Hence show that for almost every v € R, the set {(p,q) :p € Z, ¢ > 1, |y — | < €/q*} is
infinite for every € > 0. (v) Show that if n > 1, p, ¢ € N and 0 < ¢ < g, (z), then |z — %\ > |z —rp(z)|, with
equality only when p = p,(x) and g = ¢, (z).

(m) In 372M, let T; be the family {E : for every n € N there is a measurable set F' C X such that
¢~ "[F] = E}. Show that every member of Ty is either negligible or conegligible. (Hint: the argument of
part (c¢) of the proof of 372M still works.) Hence show that ¢ is mixing for the measure v.

(n) Let (A, 1) be an atomless probability algebra. Show that the following are equiveridical: (i) 2 is
homogeneous; (ii) there is an ergodic measure-preserving Boolean homomorphism 7 : 28 — 2L; (iii) there is
a mixing measure-preserving automorphism 7 : 2 — 2. (Hint: 333P.)
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(o) Let (2, 1) be a probability algebra, and 7 : 2 — 2 a measure-preserving Boolean homomorphism.
(i) Show that if n > 1 then = is mixing iff 7 is mixing. (ii) Show that if n > 1 then 7 is weakly mixing iff
7™ is weakly mixing. (iii) Show that if n > 1 and 7™ is ergodic then 7 is ergodic. (iv) Show that if 7 is an
automorphism then it is ergodic, or mixing, or weakly mixing, iff 7! is.

>(p) Consider the tent map ¢,(z) = amin(z,1 — z) for z € [0,1], « € [0,2]. Show that ¢ is inverse-
measure-preserving and mixing for Lebesgue measure on [0, 1]. (Hint: show that ¢4 (z) = ¢o(<2"2>) for
n > 1, and hence that u(I N¢5"[J]) = pd - pJ whenever I is of the form [27"k,27"(k + 1)] and J is an
interval.)

(q) Consider the logistic map ¢g(z) = Bx(1 — z) for x € [0,1], B € [0,4]. Show that 1, is inverse-
1

measure-preserving and mixing for the Radon measure on [0, 1] with density function ¢ — gk (Hint:
x —
show that the transformation ¢ — sin? %t matches it with the tent map.) Show that for almost every x,
lim,, o0 %—1—1#({1 Li < n, Yi(z) < a)) = 2 arcsin a
i

for every « € [0,1].

(r) Let p be Lebesgue measure on [0, 1], and fix an irrational number « € [0,1[. (i) Set ¢(z) = = +1 «
for every x € [0, 1[, where 4+ « is whichever of  + «, © + a — 1 belongs to [0, 1[. Show that ¢ is inverse-
measure-preserving. (i) Show that if I C [0,1[ is an interval then lim,_, #—1 Yoo xI(¢'(z)) = pl for
almost every x € [0, 1[. (Hint: this is Weyl’s Equidistribution Theorem (281N).) (iii) Show that ¢ is ergodic.
(Hint: take the conditional expectation operator P of 372G, and look at P(xI*®) for intervals I.) (iv) Show
that ¢" is ergodic for any n € Z \ {0}. (v) Show that ¢ is not weakly mixing.

(s) Let p, g € [1,00] be such that 1% + % =1. (i) Let (A, &) be a probability algebra, m : 2 — 2 a mixing
measure-preserving homomorphism, and 7 : L°(2() — L°(2A) the corresponding homomorphism. Show that
lim, oo [T"u X v = [u [v whenever u € LP(, ) and v € LY(A, t). (Hint: start with u, v € S(2).) (ii)
Let (X, %, u) be a probability space and ¢ : X — X a mixing inverse-measure-preserving function. Show
that lim, o [ f(¢™(2))g(z)dx = [ f [ g whenever f € LP(u) and g € L9(u).

(t) Give [0,1] Lebesgue measure u, and let k& > 2 be an integer. Define ¢ : [0,1] — [0, 1] by setting
¢(x) = <kx>, the fractional part of kx. Show that ¢ is inverse-measure-preserving. Show that ¢ is mixing.
(Hint: if I = [k, k" (@ + 1), J=[k7"5,k7"(j + 1)] then u(I N ¢p=™[J]) = pul - pJ for all m > n.)

(u) Let (X, X, 1) be a probability space and ¢ : X — X an ergodic inverse-measure-preserving function.
Let f be a p-virtually measurable function defined almost everywhere in X such that [ fdu = oo. Show
that lim,, s %H St o f¢' is infinite a.e. (Hint: look at the corresponding limits for f,, = f A mxX.)

(v) For irrational x € [0, 1], write ki (x), k2(z),... for the continued-fraction coefficients of x. Show that
the limit lim, o £ 37" | k;() is infinite for almost every z. (Hint: take ¢, v as in 372M, and show that
[ kidv = )

(w) Let (X, X, 1) be any probability space, and let A be the product measure on X". Define ¢ : XN — XN
by setting ¢(z)(n) = x(n+1). Show that ¢ is inverse-measure-preserving. Show that ¢ satisfies the conditions
of 3725, so is mixing.

(x) Let (X,3, 1) be any probability space, and A the product measure on X?. Define ¢ : X% — X% by
setting ¢(x)(n) = x(n+1). Show that ¢ is inverse-measure-preserving. Show that ¢ is mixing. (Hint: show
that if C, C’ are basic cylinder sets then p(C N ¢~ "[C’]) = uC - uC’ for all n large enough.) Show that ¢
does not ordinarily satisfy the conditions of 372S. (Compare 333P.)

(y) (i) Let 2 be a Boolean algebra, 7 : 24 — 2 a Boolean homomorphism, and ¢ : 2l — 2 an automorphism.
Show that if 7 is ergodic then ¢r¢ ! is ergodic. (ii) Let (A, 1) be a probability algebra, 7 : 2 — 2 a measure-
preserving Boolean homomorphism, and ¢ : 2l — 2 a measure-preserving Boolean automorphism. Show
that if 7 is mixing, or weakly mixing, then so is ¢m¢ 1.

MEASURE THEORY



372Yi The ergodic theorem 21

372Y Further exercises (a) In 372D, show that the null space of the limit operator P is precisely the
closure in M0 of the subspace {Tu —u :u € M0},

(b) Let (2, i) be a measure algebra, T' € 7;—(3—2, p€]l,00land u € LP(A, ). Set u* = sup, ey 77 Yoig |T7.
(i) Show that for any v > 0,

Alu” > 1] f[uu|>w/211| ul.

(Hint: apply 372C to (Ju|— 3vx1)™.) (ii) Show that [ju*||, < 2(%)1/p\|u||p. (Hint: show that f[[|u\>a]} lu| =
apflul > o] + [° af|ul > B]dB; see 365A. Use 366Xa to show that

l g < 2p [y~ 772 [, Allul > BldBdy + 27 ||ulp,

and reverse the order of integration. Compare 275Yd.) (This is Wiener’s Dominated Ergodic Theo-
rem.)

(c) Let (2, 1) be a probability algebra and T an operator in 7' Take u € L' = L*(, ji) such that
h(|u|) € L', where h(t) = tlnt for t > 1, 0 for ¢t < 1, and h is the corresponding function from L°(2l) to
itself. Set u* = sup,,cy nil Z?:o |T%u|. Show that u* € L'. (Hint: use the method of 372Yb to show that

[5° mlut > ~ldy <2 [ h(u)

(d) Let U be a Banach space, (2, i) a semi-finite measure algebra and (T}, )nen a sequence of continuous
linear operators from U to L° = L°(2) with its topology of convergence in measure. Suppose that sup,, ey Int
is defined in L° for every u € U. Show that {u : u € U, (T}, u)nen is order*-convergent in L%} is a norm-closed
linear subspace of U.

(e) In 372G, suppose that 2 is atomless. Show that there is always an a € 2 such that ia < % and

inf;<,, 7’a # 0 for every n, so that (except in trivial cases) (A, (xa))nen Will not be || ||oo-convergent.

(f) Let (X, %, 1) be a measure space with measure algebra (2(, ii). Let ® be a family of inverse-measure-
preserving functions from X to itself, and for ¢ € @ let 7y : A — A be the associated homomorphism. Set
C={c:ceU myc=cforevery ¢p € ®}, T={E: E € X, ¢ '[E]AFE is negligible for every ¢ € ®} and
To={E:E€X, ¢"[E] = E for every ¢ € ®}. Show that (i) T and Ty are o-subalgebras of ¥ (ii) To C T
(iii) T={E: E€X, E* €} (iv) if ® is countable and ¢1p = ¢ for all ¢, ¢ € ®, then € = {E*: E € Ty}.

(g) Show that an irrational x € ]0, 1] has an eventually periodic sequence of continued fraction coefficients
iff it is a solution of a quadratic equation with integral coefficients.

(h) In the language of 372L-372N and 372Xl, show the following. (i) For any 2 € X and n > 2,
Gn(2)qn_1(z) > 2771 and p,(2)pps1(x) > 2771 so that gui1(2)pa(x) > 2774 |1 — 2/r,(2)] < 277 and
|Inz—1Inr,(z)| <272, Also |z —7,(2)| > 1/¢n(x)gns2(z). (i) For any z € X, n > 1, ppy1(z) = qn(o(x))
and g, (2) [17=y n_i(¢*(x)) = 1. (iii) For any z € X, n > 1, |Ing,(z) + 3.7 In¢’(z)| < 4. (iv) For almost
every ¢ € X,

. 1 1 1 Int w2
lim ~Ing,(z) = — | —dt= .
nTeo ¢n(2) 1n2f0 1+t 121n2

(Hint: 225Xg, 282X0.) (v) For almost every x € X, limp 00 + In |z — 1y (2)| = _671TT2'
ze X, 117" < |z —rp(z)] <107™ and 3™ < g, (x) < 4" for all but finitely many n.

(vi) For almost every

(1)(i) Let (X,%, ) and (Y, T,v) be probability spaces, with c.l.d. product (X x Y, A, A). Suppose that
¢ : X — X is a weakly mixing inverse-measure-preserving function and ¢ : ¥ — Y is an ergodic inverse-
measure-preserving function. Define § : X x Y — X x Y by setting 0(x,y) = (¢(x),1(y)) for all , y. Show
that 0 is an ergodic inverse-measure-preserving function. (ii) Let (2, ) and (2B, ) be probability algebras,
with probability algebra free product (&, \). Suppose that ¢ : 2 — 21 is a weakly mixing measure-preserving
Boolean homomorphism and ¥ : 8 — ‘B is an ergodic measure-preserving Boolean homomorphism. Let
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0 : € — € be the measure-preserving Boolean homomorphism such that 8(a ® b) = ¢a @ ¥b for all a € 2 and
b € B (325Xe). («) Show that 0 is ergodic. () Show that if ¢ is weakly mixing then 6 is weakly mixing.
(7) Show that if ¢ and v are mixing then 6 is mixing.

(J) Let ((Xi,%i, 1i))ier be any family of probability spaces, with product (X, A, \). Suppose that for
each 7 € I we are given an inverse-measure-preserving function ¢; : X; — X;. (i) Show that there is
a corresponding inverse-measure-preserving function ¢ : X — X given by setting ¢(z)(:) = ¢;(x(3)) for
x € X, i€ I. (ii) Show that if every ¢; is mixing so is ¢. (iii) Show that if every ¢; is weakly mixing so is ¢.

(k) Give an example of an ergodic measure-preserving automorphism ¢ : [0, 1] — [0, 1] such that ¢? is
not ergodic. (Hint: set ¢(x) = (1 + ¢o(2x)) for v < §, & — § for z > 5. See also 388Xg.)

(1) Show that there is an ergodic ¢ : [0,1] — [0, 1] such that (&1,&) — (4(&1), ¢(€2)) : [0,1]* — [0,1]2 is
not ergodic. (Hint: 372Xr.)

(m) Let M be an r x r matrix with integer coefficients and non-zero determinant, where r > 1. Let
¢ :10,1]" — [0,1[" be the function such that ¢(z) — Mz € Z" for every x € [0,1[". Show that ¢ is inverse-
measure-preserving for Lebesgue measure on [0, 1[".

(n)(i) Let (2, z) be a probability algebra, m : 2 — 2 a weakly mixing measure-preserving Boolean
homomorphism, and T' = Ty : L}, — L, the corresponding linear operator (365N). Show that if u € L}, is
such that {T™u : n € N} is relatively compact for the norm topology, then u = ax1 for some «. (ii) Let
u be Lebesgue measure on [0, 1], (A, &) its measure algebra, o € [0, 1] an irrational number, ¢(z) = = +1 «
for z € [0,1] (as in 372Xr), and T : L'(u) — L*(p) the linear operator defined by setting T'g* = (g¢)* for
g € LY(u). Show that {T™ : n € Z} is relatively compact for the strong operator topology on B(L! (1); L' (1)).

(o) In 372M, show that for any measurable set E C X, lim,, oo ur¢” "[E] = vE. (Hint: recall that ¢ is
mixing for v (372Xm). Hence show that lim,, f¢,” (E] gdv =vE - [ gdv for any integrable g. Apply this

to a Radon-Nikodym derivative of p7, with respect to v.) (I understand that this result is due to Gauss.)

(p) (i) Show that there are a Boolean algebra 2 and an automorphism = : 20 — 2 which is not ergodic,
but has fixed-point algebra {0,1}. (ii) Show that there are a o-finite measure algebra (2, i) and a measure-
preserving Boolean homomorphism 7 : 2l — 2[ which is not ergodic, but has fixed-point algebra {0, 1}.

(q) For a Boolean algebra 20 and a Boolean homomorphism 7 : 2 — 2(, write T for the corresponding
operator from L>°(2l) to itself, as defined in 363F. (i) Suppose that 2l is a Boolean algebra, 7 : 20 — 2 is
a Boolean homomorphism, v € L>*(2) and T,u = u. Show that if either 7 is ergodic or 2 is Dedekind
o-complete and the fixed-point subalgebra of 7 is {0, 1}, then w must be a multiple of x1. (ii) Find a Boolean
algebra 21, an automorphism 7 : 2 — 2 with fixed-point algebra {0,1}, and a u € L>°(2(), not a multiple of
x1, such that T u = u.

(r) Set Fg = {I : I C N, limn_mo%#(l Nn) = 1}. (i) Show that Fy is a filter on N. (ii) Show
that for a bounded sequence (a,)nen in R, the following are equiveridical: («) lim, .z, o, = 0; (8)
. 1 n . 1 n . . .
hm”HOOT_HZk:O lak| = 0; (v) hm,Hoon—HZk:0 al = 0. (Fy is called the (asymptotic) density
filter.)

(s) Let (2, i) be a probability algebra, and ¢ : 2 — 24 a measure-preserving Boolean homomorphism. (i)
Show that there are a probability algebraﬁ (€, ), a measure-preserving Boolean homomorphism 7 k A — ¢
and a measure-preserving automorphism ¢ : € — € such that ¢m = m¢ and € is the closure of | J,, . ¢~ " [7[U]]

for the measure-algebra topology. (Hint: 328J.) (ii) Show that q~5 is ergodic, or mixing, or weakly mixing iff
@ is.
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372 Notes and comments I have chosen an entirely conventional route to the Ergodic Theorem here,
through the Mean Ergodic Theorem (372Xa) or, rather, the fundamental lemma underlying it (372A), and
the Maximal Ergodic Theorem (372B-372C). What is not to be found in every presentation is the generality
here. T speak of arbitrary T € T(9), the operators which are contractions both for ||||; and for || ||, not
requiring 7' to be positive, let alone correspond to a measure-preserving homomorphism. (I do not mention
T in the statement of 372C, but of course it is present in spirit.) The work we have done up to this
point puts this extra generality within easy reach, but as the rest of the section shows, it is not needed
for the principal examples. Only in 372Xc do I offer an application not associated in the usual way with a
measure-preserving homomorphism or an inverse-measure-preserving function.

The Ergodic Theorem is an ‘almost-everywhere pointwise convergence theorem’, like the strong law(s)
of large numbers and the martingale theorem(s) (§273, §275). Indeed Kolmogorov’s form of the strong law
can be derived from the Ergodic Theorem (372Xg). There are some very strong family resemblances. For
instance, the Maximal Ergodic Theorem corresponds to the most basic of all the martingale inequalities
(275D). Consequently we have similar results, obtained by similar methods, concerning the domination of
sequences starting from members of LP (372Yb, 275Yd), though the inequalities are not identical. (Com-
pare also 372Yc with 275Ye.) There are some tantalising reflections of these traits in results surrounding
Carleson’s theorem on the pointwise convergence of square-integrable Fourier series (see §286 notes), but
Carleson’s theorem seems to be much harder than the others. Other forms of the strong law (273D, 273H)
do not appear to fit into quite the same pattern, but I note that here, as with the Ergodic Theorem, we
begin with a study of square-integrable functions (see part (e) of the proof of 372D).

After 372D, there is a contraction and concentration in the scope of the results, starting with a simple
replacement of MY with L! (372F). Of course it is almost as easy to prove 372D from 372F as the other
way about; I give precedence to 372D only because M1? is the space naturally associated with the class
T©) of operators to which these methods apply. Following this I turn to the special family of operators to
which the rest of the section is devoted, those associated with measure-preserving homomorphisms (372E),
generally on probability spaces (372G). This is the point at which we can begin to identify the limit as a
conditional expectation as well as an invariant element.

Next comes the translation into the language of measure spaces and inverse-measure-preserving functions,
all perfectly straightforward in view of 372I. These turn 372E into 372H and 372G into the main part of
372J.

In 372J-372K I find myself writing at some length about a technical problem. The root of the difficulty
is in the definition of ‘conditional expectation’. Now it is generally accepted that any pure mathematician
has ‘Humpty Dumpty’s privilege’: ‘When I use a word, it means just what I choose it to mean — neither
more nor less’. With any privilege come duties and responsibilities; here, the duty to be self-consistent,
and the responsibility to try to use terms in ways which will not mystify or mislead the unprepared reader.
Having written down a definition of ‘conditional expectation’ in Volume 2, I must either stick to it, or go
back and change it, or very carefully explain exactly what modification I wish to make here. I don’t wish
to suggest that absolute consistency — in terminology or anything else — is supreme among mathematical
virtues. Surely it is better to give local meanings to words, or tolerate ambiguities, than to suppress ideas
which cannot be formulated effectively otherwise, and among ‘ideas’ I wish to include the analogies and
resonances which a suitable language can suggest. But I do say that it is always best to be conscious of
what one is doing — I go farther: one of the things which mathematics is for, is to raise our consciousness of
what our thoughts really are. So I believe it is right to pause occasionally over such questions.

In 372L-372N (see also 372X], 372Xv, 372Xm, 372Xk, 372Yh, 372Yo) I make an excursion into number
theory. This is a remarkable example of the power of advanced measure theory to give striking results
in other branches of mathematics. Everything here is derived from BILLINGSLEY 65, who goes farther
than I have space for, and gives references to more. Here let me point to 372Xj; almost accidentally, the
construction offers a useful formula for a homeomorphism between two of the most important spaces of
descriptive set theory, which will be important to us in Volume 4.

I end the section by introducing three terms, ‘ergodic’, ‘mixing’ and ‘weakly mixing’ transformations,
not because I wish to use them for any new ideas (apart from the elementary 372P-372S, these must wait
for §6385-387 below and §494 in Volume 4), but because it may help if I immediately classify some of the
inverse-measure-preserving functions we have seen (372Xp-372Xr, 372Xt, 372Xw, 372Xx). Of course in any
application of any ergodic theorem it is of great importance to be able to identify the limits promised by
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the theorem, and the point about an ergodic transformation is just that our averages converge to constant
limits (372Q). Actually proving that a given inverse-measure-preserving function is ergodic is rarely quite
trivial (see 372M, 372Xq, 372Xr), though a handful of standard techniques cover a large number of cases,
and it is usually obvious when a map is not ergodic, so that if an invariant region does not leap to the eye
one has a good hope of ergodicity. The extra concept of ‘weakly mixing’ transformation is hardly relevant
to anything in this volume (though see 372Yi-372Yj), but is associated with a remarkable topological fact
about automorphism groups of probability algebras, to come in 494E.

I ought to remark on the odd shift between the definitions of ‘ergodic Boolean homomorphism’ and ‘ergodic
inverse-measure-preserving function’ in 3720. The point is that the version in 3720(b-i) is the standard
formulation in this context, but that its natural translation into the version ‘a Boolean homomorphism from
a probability algebra to itself is ergodic if its fixed-point subalgebra is trivial’, although perfectly satisfactory
in that context, allows unwelcome phenomena if applied to general Boolean algebras (372Yp, 372Yq). The
definition in 3720(a-i) is rather closer to the essential idea of ergodicity of a dynamical system, which asks
that the system should always evolve along a path which approximates all possible states. In practice,
however, we shall nearly always be dealing with automorphisms of Dedekind o-complete algebras, for which
we can use the fixed-point criterion of 372Pc.

I take the opportunity to mention two famous functions from [0, 1] to itself, the ‘tent’ and ‘logistic’ maps
(372Xp, 372Xq). In the formulae ¢, 1g I include redundant parameters; this is because the real importance
of these functions lies in the way their behaviour depends, in bewildering complexity, on these parameters. It
is only at the extreme values o = 2, 8 = 4 that the methods of this volume can tell us anything interesting.

Version of 25.5.16

373 Decreasing rearrangements

I take a section to discuss operators in the class 7(9 of 371F-371H and two associated classes T, T *
(373A). These turn out to be intimately related to the idea of ‘decreasing rearrangement’ (373C). In 373D-
373F 1 give elementary properties of decreasing rearrangements; then in 373G-3730 I show how they may
be used to characterize the set {Tu : T € T} for a given u. The argument uses a natural topology on
the set 7 (373K). I conclude with remarks on the possible values of [Tu x v for T € T (373P-373Q) and

identifications between 7:1(017) , 7:—,(%) and T, (373R-373T).

373A Definition Let (2, 1) and (B, 7) be measure algebras. Recall that M1:°° (2, i) = L* (2, i)+ L>(2A)
is the set of those u € L%() such that (Ju| — ax1)" is integrable for some «, its norm || ||1,0c being defined
by the formulae

llull1.00 = min{|Jv]|1 + |w|joo : v € L', w € L=, v +w = u}

= min{a + /(|u| —ax)t:a >0}
(3690D).

(a) Tp,» will be the space of linear operators 1" : M1 (A, i) — M (B, ) such that ||Tul|; < |lul|, for
every u € L'(2, i) and ||Tu|e < |lu]|oo for every u € L>®(24). (Compare the definition of 7(°) in 371F.)

(b) If B is Dedekind complete, so that M1:°° (2L, fi), being a solid linear subspace of the Dedekind complete
space L°(B), is Dedekind complete, 7., will be T 5 NL* (MB (A, f); M1 (A, [1)).

(© 1996 D. H. Fremlin
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373B Proposition Let (2, ) and (28, 7) be measure algebras.

(a) T = Ta, is a convex subset of the unit ball of B(M1>°(2A, i); M1°°(B, v)).

(b) It T € T then TIM"“°(, i) belongs to Tow. Soif T € T, p € [1,00[ and u € LP(2, /i) then
Tu'e L(%B,7) and |[Tull, < |ull,.

(c) If B is Dedekind complete, then 7 is a solid subset of L™ (MY (21, i1); M1 (B, 7)).

(d) If m : A4 — B is a measure-preserving Boolean homomorphism, then we have a corresponding operator
T €T defined by saying that T'(xa) = x(ma) for every a € . If 7 is order-continuous, then so is 7.

(e) If (€, \) is another measure algebra, 7€ T and S € T, 5 then ST € T, 5.
proof (a) As 371G, parts (a-i) and (a-ii) of the proof.

(b) If u € M;° and € > 0, then u is expressible as u’ + " where ||u”[|oc < ¢ and «’ € L. (Set

' = (ut Aexl) — (u™ Aexl).)
So
(ITul — ex1)* < (Tu| — [Tw")* < ||Tu] - |Tu”|| < [Tu - Tu"| = [T'| € L},

As € is arbitrary, Tu € M,;l’o; as u is arbitrary, T[M;’O e T, Now the rest is a consequence of 371Gd.

(c)(i) Because MY is a solid linear subspace of L°(%B), which is Dedekind complete because B is,
LN(M;’OO; M;}™) is a Riesz space (355Ea).

(i) T C LN(Ml—i’oo; M;>°). P Suppose that T € 7. Take any u > 0 in M;’OO. Let o > 0 be such that
(u—ax1)™ € L}. Because T|Lj, belongs to B(L}; LL) = L~(L}; L) (371D), wo = sup{Tv : v € L}, 0 <
v < (u—axl)T} is defined in LL. Now if v € M;’OO and 0 < v < u, we must have

To=T(w—ax)t +T(vAaxl) <wy+axl € My™.
Thus {T : 0 < v < u} is bounded above in MY, As u is arbitrary, T € LN(Mé’w; M} (355Ba). Q

(iii) 7 is solid in L™ (M3 My'>°). P Suppose that 7' € T, T1L~ (M My™) and |Ty| < |T|. Then

[Tvulls < [[| T fulllx
(355Eb)
< T ffullle < NTNLEullls = 1T TL A full
(371D)
< Julh

for every u € L},. At the same time, if u € L>°(2l), then
|Thul < |Ti||lu| < |T|lu| = sup Tw
o[ <lul

< sup [[Tv]foox1l < sup [|vlleox = [Julloox1,
o] <[ul o] <[ul

50 |[Thulloo < ||tt]|oo. Thus Ty € T. By 352Ja, this is enough to show that T is solid. Q

(d) By 365N and 363F, we have norm-preserving positive linear operators T; : L}-L — LL and T, :
L>(2A) — L*°(B) defined by saying that T} (xa) = x(ma) whenever fia < oo and T (xa) = x(ma) for every
acA IfueSA) = L}, N S(A) (365F), then Tyu = Thou, because both T; and T, are linear and they

agree on {ya : ia < oo}. If u >0 in Mgo’l = L} N L>°(2A), there is a non-decreasing sequence (un)nen in
S(27) such that u = sup,,cy uy, and

limy, o0 ||t — U1 = limp oo [ — Unllee =0
(see the proof of 3690d), so that

Tyu = sup, ey T1Un = sup,, ey Tootin = Toou.
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Accordingly T and T, agree on L}LHL‘X’ (21). But this means that if u € M;’OO is expressed as v+w = v/ +w’,
where v, v’ € L}L and w, w’ € L (), we shall have
T + Teow =Tho+ Toow + Ty (v —0) — Too(w — w') = Thv 4+ Toow,
because v/ —v =w —w’ € M;fo’l. Accordingly we have an operator T : M;’Oo — MY defined by setting
T(v+w) = Tyv 4 Toow whenever v € L%, w € L>®(2).

This formula makes it easy to check that T is linear and positive, and it clearly belongs to 7.

To see that T is uniquely defined, observe that T [L}L and T'TL*>(2l) are uniquely defined by the values T
takes on S(2AS ), S(2) respectively, because these spaces are dense for the appropriate norms.

Now suppose that 7 is order-continuous. Then 77 and T\, are also order-continuous (365Na, 363Ff). If
A C M;L’OO is non-empty and downwards-directed and has infimum 0, take ug € A and « > 0 such that
(uo —yx1)T € L}. Set

A ={(u—yx1)":ued u<uy}, Ax={unyxl:ue A}

Then A; C L}L and A, C L°°(2) are both downwards-directed and have infimum 0, so inf73[A;] =
inf Too[Aso] = 0 in LO(B). But this means that inf(71[A;] + Two[Ax]) = 0 (351Dc). Now any w €
T1[A1] + To[Aso] is expressible as T'(u — yx1)™ + T'(u’ A yx1) where u, v’ € A; because A is downwards-

directed, there is a v € A such that v < u A v/, in which case Tv < w. Accordingly T[A] must also have
infimum 0. As A is arbitrary, T is order-continuous.

(e) is obvious, as usual.

373C Decreasing rearrangements The following concept is fundamental to any understanding of the
class 7. Let (A, i) be a measure algebra. Write Mg’oo = M%>°(, ji) for the set of those u € L°(2l) such
that ff|u| > o] is finite for some a € R. (See 369N for the ideology of this notation.) It is easy to see that
MY>°(2, 1) is a solid linear subspace of L(2). Let (A, fiz,) be the measure algebra of Lebesgue measure
on [0,00[. For u € M%>°(2, 1) its decreasing rearrangement is u* € Mgfo = MY (Ap, jir), defined by
setting u* = g*, where

g(t) = min{a: a >0, aflul > o] <t}

for every t > 0. (The infimum is always finite because inf,er ff|u| > o] = 0, by 364Aa(8) and 321F, and
by 364Aa(«) the infimum is attained.)

I will maintain this usage of the symbols 2, iy, u* for the rest of this section.

373D Lemma Let (2, ) be a measure algebra.
(a) For any u € M%>°(, i), its decreasing rearrangement u* may be defined by the formula
[u* > o] =0, af|lul > ][ for every e > 0,
that is,
prfu* > o] = pfju| > o] for every a > 0.
(b) If |u| < |v| in MO (A, i), then u* < v*; in particular, [ul* = u*.
(¢)d) If u=>"" jauxa;, where ag2a; 2 ... Da, and a; > 0 for each 4, then u* = 3" [ a;x [0, fia;[".
(i) If u = Z;;O a;xa; where ag,...,a, are disjoint and |ag| > |aq| > ... > |ay|, then u* =
>oicolailx [Bi, Bisa[*, where 8; = 3, fa; for i <n+ 1.
(d) If E C]0,00[ is any Borel set, and u € M°(, 1), then jir[u* € E] = i[|u| € E]J. B
(e) Let h : [0,00] — [0,00[ be a non-decreasing function such that h(0) = 0, and write h for the
corresponding functions on L () and L°(Az )" (364H). Then (h(u))* = h(u*) whenever u > 0 in M%(2, fi).
If h is continuous on the left, (h(u))* = h(u*) whenever u > 0 in M%° (2, i1).
(f) If w € M%>°(2, i) and a > 0, then
(" —ax)* = ((jul = ax)*)".
(g) If u € M9%>°(2A, ji), then for any ¢t > 0
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t .
fo u* =infy>0 ot + f(|u\ —ax1)™.

(h) If A C (M%°°(2, 1)) " is non-empty and upwards-directed and has supremum ug € M%°°(2l, i), then
UGy = SUP, e U

proof (a) Set
g(t) = inf{a: aflul > o] <t}
as in 373C. If a > 0,
g(t) > a <= [flul > B] >t for some 8 > a < [flul > a] >t
(because [|u| > a] = supgs, [lul > 8]), so
[w* > a] = {t: g(t) > a}* = 0, llul > a]["

Of course this formula defines u*.

(b) This is obvious, either from the definition in 373C or from (a) just above.

(c)(i) Setting v =>"7" ; a;x [0, fia; [, we have

[[v>a]]:OifZai§a7
i=0

j—1 J
= [0, ja,;[" if Zai <a< Zai,
i=0 i=0
= [O’ﬂao[' if 0 <a<ag,
and in all cases is equal to [0, @f|u] > «][°.
(ii) A similar argument applies. (If any a; has infinite measure, then q; is irrelevant for ¢ > j.)

(d) Fix v > 0 for the moment, and consider
A={E: E Cly,o0[ is a Borel set, i, [u* € E] = a[|u| € E]},

Z = {]a,00[: a > v}

Then Z C A (by (a)), INJ € Zforall I, J € Z, E\F € A whenever E, FF € A and F C E (because
u e M, so iflul € E] < oc), and J,,cyy Bn € A whenever (E,),en is a non-decreasing sequence in A. So,
by the Monotone Class Theorem (136B), A includes the o-algebra of subsets of ]y, oo[ generated by Z; but
this must contain E N ]vy, oo| for every Borel set E C R.

Accordingly, for any Borel set E C ]0, oo|,

fo[u* € E] = sup, ey fic[u” € ENJ27", 0[] = afful € E].
(e) For any a > 0, E, = {t : h(t) > a} is a Borel subset of |0, co[. If u € M) then, using (d) above,
Aclh(u®) > o] = ir[u* € Eo] = Alu € o] = ilh(u) > o] = AL[(h(w))* > a].

As both (h(u))* and h(u*) are equivalence classes of non-increasing functions, they must be equal.
If h is continuous on the left, then E, = ]v, oo[ for some ~, so we no longer need to use (d), and the
0,00\ 4+
argument works for any u € (M; ™).

(f) Apply (e) with h(8) = max(0, § — ).
(g) Express u* as g°, where

9(s) = int{a : aflu| > o] < 5}

for every s > 0. Because ¢ is non-increasing, it is easy to check that, for ¢ > 0,

fot g=tg(t) + fooo max(0, g(s) — g(t))ds < at + fooo max(0, g(s) — a)ds

for every o > 0; so that
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fot u* = ming>o at + f(u* —ax)*t.

Now
Jo = oyt = [l -y > plas
0

= [ bl = axa)* > B1d5 = [ (ul - axt)*
0
for every « > 0, using (f) and 365A, and
t .
fo u* = ming>o ot + f(\u| —ax)t.
(h)
iluo > o] = flsup,cs [u > al) = sup,cs il > o
for any a > 0, using 364L(a-ii) and 321D. So
[ug > o] = [0, aluo > a][* = sup,e [0, alu > o][" = sup,e 4 [u* > o]
for every a, and uf = sup,c, u*.
373E Theorem Let (2, i) be a measure algebra. Then [ |u x v| < [u* x v* for all u, v € M (A, ).

proof (a) Consider first the case u, v > 0 in S(A). Then we may express u, v as ;" @iXai, y;_o Bixbj
where ag2a12 ... Dam, bp2 ... Db, in A and a;, B; > 0 for all 7, j (361Ec). Now u*, v* are given by

ut =300 aix [0, pait, vt =300 Bix [0, fubs[*
(373Dc). So

/uxvszalﬂju (ainb;) < ii a; 8; min(fa;, ib;)

=0 j=0 =0 j=0
=33 asBun (0. pa 0 0, yl) = [ v
i=0 j=0

(b) For the general case, we have non-decreasing sequences {(t, )nenN, (Un)nen in S(A)T with suprema |ul,
|v| respectively (364Jd), so that

lu x v| = |u] X |v] = sup, ey |u| X v, = SUD,, pen Um X Un = SUD, e Un X Un
and
f lux v| = fsupneNun X Uy = supneNfun X vy < supneNfu; x vy < fu* X V¥,

using 373Db.

373F Theorem Let (2, ji) be a measure algebra, and u any member of M (2L, ji).
(a) For any p € [1,00], w € LP(A, i) iff u* € LP(Ap, i), and in this case ||ull, = [Ju*||,.
(b)(l) u € Mo(maﬂ) iff u* € MO(vaﬂL);

(i) w € Moo, i) iff u* € MY>°(Ay, fir,), and in this case ||ul|1,c0 = [|[u*||1.00;

(111) u e Ml’O(QL ﬂ) iff u* € MI’O(Q[L,ﬂL);

(iv) w € MY, ) iff u* € M°1 (A, fir,), and in this case ||ulloo,1 = [[u*|co,1-

proof (a)(i) Consider first the case p = 1. In this case

Slul = [ allul > alda = [° aolu* > alda = [ u*.
(ii) If 1 < p < oo, then by 373De we have (|uP)* = (u*)P, so that

lullp = [ lulP = [(ul)* = [()? = |}
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if either ||ul|, or ||u*|, is finite. (iii) As for p = oo,
[ullo <7 == [lul>7] =0 &= [u" > =0 = [u"]lc <.
(b) (i)
uGMg < Aflu| > o] < oo for every a >0
<~ papfu* > a] < oo for every a > 0 < u* € MSL.
(ii) For any a > 0,
J(ul = ax)* = [(u* —ax1)*

as in the proof of 373Dg. So ||ull1,00 = ||u*|l1,00 if either is finite, by the formula in 3690Db.

(iii) This follows from (i) and (ii), because M10 = M% N M1,

(iv) Allowing oo as a value of an integral, we have
lu]l1,00 = min{a + /(|u| —ax)t:a>0}
= min{a + /(u* —ax)T:a >0} = |u*|l100
by 3690b; in particular, u € Mé’oo iff u* € M&’LOO.

373G Lemma Let (2, i) and (B, 7) be measure algebras. If
either u € M»>(U, i) and T € Ty »

oru€ MY, ) and T € 77;(?,;),
then fOt(Tu)* < f(f u* for every t > 0.

29

proof Set T} = T[Lj, so that ||Ty]| < 1in B(L};L}Y), and |T1| is defined in B(L}; L}), also with norm

o

at most 1. If o > 0, then we can express u as uj + uz where |u1]| < (Ju| — ax1)™ and |ug| < axl. (Let

w € L (A) be such that |w]s <1, u = |u| X w; set ug =w x (Ju| A axl).) So if [(Ju] —ax1)® < oo,

Tu| < [Tur| + [Tuz| < |ThJur] + ax1
and
J(Tul = ax))™ < [|T1]fw] < [fw] < [(Jul = axD)*.
The formula of 373Dg now tells us that fg (Tu)* < fg u* for every t.

373H Lemma Let (2, 1) be a measure algebra, and 6 : 2/ — R an additive functional, where 2/ = {a :

fa < oo}
(a) The following are equiveridical:

. . 1
(@) limg o supp,< [fa] = limy o0 - SUPpa< |#al = 0,

(B) there is some u € M'O(2, i) such that fa = [ u for every a € A7,
and in this case v is uniquely defined.
(b) Now suppose that (2, ) is localizable. Then the following are equiveridical:

. . 1
(@) limgyo sup,< [fa] =0, limsup, ., = SUDgq< |fa| < oo,

(B) there is some u € M'*°(2, i) such that fa = [, u for every a € A7,
and again this u is uniquely defined.

proof (a)(i) Assume (a). For a, ¢ € A, set 0.(a) = #(anc). Then for each ¢ € Af, there is a unique
Ue € L}] such that 0.a = fa u, for every a € Af (365Eb). Because u, is unique we must have u. = uq X xc
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whenever ¢ C d € 2. Next, given a > 0, there is a ty > 0 such that |fa| < afia whenever a € 2/ and
fia > to; so that fifu. > o] < to for every ¢ € Af, and e(a) = sup cqrs [ul > o] is defined in A, Of course
e(a) = [[uj(l) > a] for every a > 1, so infaere(a) = 0, and v1 = sup.cqr u) is defined in L° = LO(2A)
(3641 (a-ii) again). Because [v; > o] = e(a) € A for each a > 0, v; € MY. For any a € A7,

U1 X X = SUPgeqs UL X XA = Uy

S0 vy € M;’O and [ vy = [ uf for every a € D/
Similarly, vo = sup,cqs u, is defined in Mé’o and [ vy = [ ug for every a € A/, So we can set
1,0
U= V1 — V2 EMﬁ and get

o= f =00
for every a € /. Thus (B) is true.

(ii) Assume (3). If € > 0, there is a § > 0 such that [ (Ju| —ex1)™ < e whenever fia < § (365Ea), so
that | [, u| < e(1 + fia) whenever fia < §. As € is arbitrary, limjosup,<; | [, ul = 0. Moreover, whenever
t>0and fia <t, 1| [ ul <e+ 1 [(Jul — ex1)T. Thus

lim sup;_, o, § SUPga<; |fau\ <e
As € is arbitrary, 6 satisfies the conditions in («).
(iii) The uniqueness of u is a consequence of 366Gd.
(b) The argument for (b) uses the same ideas.

(i) Assume (a). Again, for each ¢ € A, we have a unique u, € L}, such that 6.a = [ u. for every
a € A5 again, set e(a) = sup,cqr [uf > ], which is still defined because 2l is supposed to be Dedekind
complete. This time, there are to, v > 0 such that |fa| < ~yfia whenever a € Af and fia > to; so that
Afue > ~] < to for every ¢ € 27, and fie(y) < co. Accordingly

inf,>, e(a) = infy>, [[u:(v) >a] =0,

and once more v; = Sup,.cqs uS is defined in LY = LO(2A). As before, v; X xa = u; € L}-L for any a € AS,
Because [v; > 7] =e(y) € A/, v, € M;—i’oo. Similarly, vo = sup,cqs u, is defined in Mé’oo, with vg X xa = u;
for every a € Af. Sou=v; — vy € Mplb’oo, and

Ju= v =00

for every a € A7,

(ii) Assume (8). Take v > 0 such that 8 = [(Ju| — yx1)* is finite. If € > 0, there is a § > 0 such
that [ (Jul —yx1)* < € whenever fia < 4, so that | [ u| < €+ yjia whenever fia < §. As € is arbitrary,
limy o sup,,<; | [, u| = 0. Moreover, whenever t > 0 and fia < t, then 1| [ u| <5+ 1 [(Ju| — ex1)". Thus

lim sup,_, ., %SUPﬁagt |fau| <y < oo,
and the function a — [ u satisfies the conditions in ().

(iii) v is uniquely defined because u x ya must be u,, as defined in (i), for every a € 2/, and (2, i) is
semi-finite.

3731 Lemma Suppose that u, v, w € M%>® (A, i) are all equivalence classes of non-negative non-
increasing functions. If fot u < fot v for every t > 0, then [ux w < [v x w.

proof Forn € N, i <4" set a,; = [w > 27™i]; set w,, = Zﬁl 27" Xay;. Then each a,; is of the form [0, ¢]*,
S0
oo U
fuanzzi:12 u< > 2

Ani

vzfvan.

Ani

Also (wp)nen is a non-decreasing sequence with supremum w, so
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fuxw:supneNfuan§supn€va><wn:fv><w.

373J Corollary Suppose that (2, i) and (B,7) are measure algebras and v € M%< (B, v). If
either u € MY°(A, i) and T € ’T(O)

orue MM, i) and T € Tp»
then [ |Tu x v| < [u* x v*.

proof Put 373E, 373G and 373I together.
373K The very weak operator topology Let (2, i) and (8,7) be two measure algebras. For u €
MY, 1) and w € M>1(B,v) set
Tuw(T) = | [ Tu x w| for T € B = B(M>°(2, n); M (B, 7).
Then 7, is a seminorm on B. I will call the topology generated by {7, : u € MY (A, i), w € M*1(B, )}
(2A5B) the very weak operator topology on B.

373L Theorem Let (2, fi) be a measure algebra and (B, 7) a localizable measure algebra. Then T = T »
is compact in the very weak operator topology.

proof Let F be an ultrafilter on 7. If u € Ml—i’oo and w € M2 then
|fTu><w|§fu*><w*<oo

for every T € T (373J); [u* x w* is finite because u* € MﬁL and w* € M,LL (373F).

In particular, { [ Tu x w : T € T} is bounded. Consequently h,(w) = limp_, 7 [Tu x w is defined in R
(2A3Se). Because w — [Tu x w is additive for every T € T, so is h,. Also

hu(w)] < [0 x w* < Jut|l1,s0llw* oo, = [lull1,00[[w]loc,1
for every w € M;O’l.

| (xb)| < fg u* whenever b € B/ and vb < t. So

. . t
limy o SUp,p<; [ (X0)| < limg o fo u* =0,

. . t o,
limsup,_, % SuPgy<¢ [hu(xb)| < limsup,_, %fo u” < 0o.

Of course b — h,(xb) is additive, so by 373Hb there is a unique Su € M—1 * such that ha( fb Su for
every b € B/. Since both h, and w — [ Su x w are linear and continuous on Mt and S(SB ) is dense in
Mt (3690d),

fSuxw:hu(w):limT_)]:fTuxw

for every w € M2>. And this is true for every u € Ml—i’oo.

For any particular w € M2>", all the maps u — J Tu x w are linear, so u — [ Su x w also is; that is,
S Mé’oo — MY is linear.
Now S e 7. P (o) If u € L}, and b, c € Bf, then

/Su—/Su— lim /Tux (xb—xc) < sup/Tux (xb — xc)
TeT
< sup [|Tufl1(Ixb — xclloo < [Jull1-
TeT

But, setting e = [Su > 0], we have

/|Su| = /Su— Su
e 1\e

= sup /Su—l— sup /(—Su) < |1

beBf bceJb ceBf ccle
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(8) If uw € L>®(A), then
| [, Sul < suprer | [ Tu x xb| < supper [ Tullooib < [|ul| b
for every b € B, So [Su > [[ulle] = [-Su > |[ullee] = 0 and ||Sul|ee < ||uflco- (Note that both parts of

this argument depend on knowing that (9B, 7) is semi-finite, so that we cannot be troubled by purely infinite
elements of B.) Q

Of course we now have limy_, 7 7y, (T — S) = 0 for all u € Mg’oo, w e M,;”’l, so that S =lim F in 7. As
F is arbitrary, 7 is compact (2A3R).

373M Corollary Let (A, ) be a measure algebra and (8,7) a localizable measure algebra, and u
any member of M1, ). Then B = {Tw : T € T} is compact in M1>°(B,7) for the topology
T, (M1(B, ), M (B 7).

proof The point is just that the map T — Tu : T p — M;’OO is continuous for the very weak operator

topology on Ty 5 and TS(M;’DO, M ’1). So B is a continuous image of a compact set, therefore compact
(2A3N(b-ii)).

373N Corollary Let (2, i) be a measure algebra, (B, 7) a localizable measure algebra and v any member
of MV, ji); set B={Tu:T € T} If (vp)nen is any non-decreasing sequence in B, then sup,,cy vy, is
defined in M*'*°(B,7) and belongs to B.

proof (a) The point is that (ML >)* is a closed set for T,(ME™, M2>Y). B If w € M2 > and w # 0, then
b=[-w > 0] #0. As (B, ) is semi-finite, there is a non-zero ¢ € B/ with ¢ C b, and [ (—w) > 0, that is,
[w x xe < 0. Now xc € M>" so {w' : J.w" < 0} is a neighbourhood of w disjoint from (M2°°)*. Thus
M2\ (MY>)* is open and (M2 )% is closed. Q

(b) Because T,(M2 >, M) is a linear space topology, the sets {w: v < w} = {w : w —v € (MY>)*}
and {w: w < v} = {w:v—w e (My>)*} are closed for every w € M. Now consider the given sequence
(Up)nen in B. By 373M, it has a cluster point v € B. Since {w : v, < w} is a closed set containing v;
whenever ¢ > n, v, < v, for every n € N. On the other hand, if v is any upper bound of {v, : n € N} in
My * then v < v because {w : w < v'}. Accordingly sup,,cy v, = v is defined and belongs to B.

3730 Theorem Suppose that (2, 1), (B, 7) are measure algebras, u € M*>°(2, i) and v € M1 (B, ).
Then the following are equiveridical:

(i) there is a T' € T 5 such that Tu = v,

(ii) Otv* < fot u* for every ¢t > 0.
In particular, given u € M'>°(2, 1), there are S € T, z,, T € Ta, s such that Su = u* and Tu* = u.

proof (i)=-(ii) is covered by Lemma 373G. Accordingly I shall devote the rest of the proof to showing that
(ii)=(i).

(a) If (A, 1), (B, ) are measure algebras, u € Mé’oo and v € M>>I will say that v < wu if there is
a T € Tpp such that Tu = v, and that v ~ u if v < w and u < v. (Properly speaking, I ought to write
(u, 1) < (v, D), because we could in principle have two different measures on the same algebra. But I do not
think any confusion is likely to arise in the argument which follows.) By 373Be, < is transitive and ~ is an
equivalence relation. Now we have the following facts.

(b) If (A, r) is a measure algebra and uq, ug € Mé’oo are such that |ui| < |ugl|, then uy < ug. P There
isaw € L*(2A) such that u; = w X ug and ||w||e < 1. Set Tv = w x v for for v € Mé’m; then T' € Ty
and Tug = u;. Q So u ~ |u| for every u € M;’OO.

(c)(@) If (A, ) is a measure algebra and u > 0 in S(2A), then v* < w. P If v = 0 this is trivial.

Otherwise, express u as Z?:o a;xa; where ag,... ,a, are disjoint and non-zero and ag > ay... > a, >
0 € R. If fia; = oo for any i, take m to be minimal subject to fia,, = oo; otherwise, set m = n. Then

u* = Z:io a; X [ﬁi, 51‘4_1[., Where Bj = Zz;g IL_LCL,L' fOI‘ ] S m + 1.
For i < m, and for i = m if fia,, < oo, define h; : M;—i’oo — R by setting
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1
hi(v) = fa fai v
for every v € M;’OO. If fia,, = oo, then we need a different idea to define h,,, as follows. Let I be
{a:a e f(aNay,) < oo}. Then I is an ideal of A not containing a,,, so there is a Boolean homomorphism
7 A — {0, 1} such that ma = 0 for a € I and 7wa,, = 1 (311D). This induces a corresponding || ||sc-continuous
linear operator h : L>® () — L*>°({0,1}) = R, as in 363F. Now h(xa) = 0 whenever fia < oo, and accordingly
h(v) = 0 whenever v € MEQ"l, since S(AS) is dense in Mgo’l for || ||so,1 and therefore also for || ||o. But this
means that h has a unique extension to a linear functional h,, : M, ;700 — R such that h,,(v) = 0 for every
v € L}, while hy,(xam) =1 and |hy, (v)] < [|v]|oo for every v € L(21).
Having defined h; for every i < m, define T : M/%’OC — ML by setting

127
Tv=32" 0 hi(v)x [Bi; Biva[”

for every v € Ml—i’oo.
For any i <m and v € L;l‘m

ﬁ'i+1 _ .
2 Tl = ha(w)las < [, Jol

summing over ¢, || Tv|1 < ||v|l1. Similarly, for any ¢ < m and v € L=(B), |h;(v)] < [|v]loo, 30 |[T0]|oo < [|¥]]00-
Thus T' € Tp,5,. - Since u* = T'u, we conclude that u* < u, as claimed. Q

(ii) If (™A, z) is a measure algebra and « > 0 in Mé’oo, then u* < u. P Let (uy,)nen be a non-decreasing
sequence in S(2A) with uy > 0 and sup,,cy 4, = u. Then (u)new is a non-decreasing sequence in Ml—ifo with
supremum u*, by 373Db and 373Dh. Also u! < u, < u for every n, by (b) above and (i) here. By 373N,
g u Q

(d)(i) If (A, ) is a measure algebra and « > 0 in S(2), then u < u*. P The argument is very similar
to that of (c-1). Again, the result is trivial if w = 0; suppose that u > 0 and define «;, a;, m, §; as before.
This time, set a} = a; for i <m, a;, = sup,,<;<, a;, & = St o aixas; then u < @ and @* = u*. Set

1 Bi+1

hi(v) = 55, )5,

if i <m, Bit1 < oo (that is, fia; < o) and v € M;’LOO; and if fia,, = oo, set
. 1 rk
hm(v) = hmkﬁf-%fo v
for some non-principal ultrafilter 7 on N. As before, we have
_ Bi
ho(o)la; < [ o,

whenever v € L}, and i < m, while |h;(v)] < [|[v]|oc Whenever v € L>(AL) and ¢ < m. So we can define

T € Tp,. by setting Tv = 31" hi(v)xa) for every v € Méfo, and get

uxu=Tu" <u*. Q

(if) If (A, @) is a measure algebra and « > 0 in M;’OO, then v < u*. I This time I seek to copy the
ideas of (c-ii); there is a new obstacle to circumvent, since (2, &) might not be localizable. Set

ap =inf{a:a >0, gflu>a] <o}, e=[u> a].

Then e = sup, ¢y [u > ag+27"] is a countable supremum of elements of finite measure, so the principal
ideal 2., with its induced measure fi., is o-finite. Now let (u,),en be a non-decreasing sequence in S(21)
with ug > 0 and sup,,ey U = u; set @ = u x xe and @, = u, X xe, regarded as members of S(2.), for each
n. In this case
Up = Uy, < U
for every n. Because (2, fie) is o-finite, therefore localizable, 373N tells us that 4 < u*.
Let S € T, a. be such that Su* = @. As in (i), choose a non-principal ultrafilter 7 on N and set
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h(v) = limkﬂf%f: v
for v € M;’LOO. Now define T : M;’LOO — M&’Oo by setting
Tv = Sv+h(v)x(1\e),
here regarding Sv as a member of M,—i’oo. (I am taking it to be obvious that Ml—i;oo can be identified with
{wx xe:we Méoo}) Then it is easy to see that T' € T, ;. Also u < Tu*, because
h(u*) = inf{e : gpfu* > a] < 0o} = ao,
while u x x(1\e) < agx(l\e). So we get u < Tu* < u*. Q

(e)(i) Now suppose that u, v > 0 in M;’LOO, that fot ut > fot v* for every t > 0, and that v is of the form

Z?:l a;xa; where oy > ... > a, > 0, ay,...,a, € Ay are disjoint and 0 < fipa; < oo for each 4. Then
v < u. PP Induce on n. If n = 0 then v = 0 and the result is trivial. For the inductive step to n > 1, if
v* < u* we have

v~ vt KUt~ o,
using (b)-(d) above. Otherwise, look at ¢(t) = %fot u* for t > 0. We have

() > 1 [F vt =

for t < B = fay, while lim; o () < aq, because (limy oo ¢(2))x1 < u* and v* < agxl and v* € u*.
Because ¢ is continuous, there is a v > 3 such that ¢(v) = ay. Define Ty € T, 5, by setting

1 (] L]
Tyw= (& [ w)x 091" + (w % x |3, 00[")
for every w € M,—ifo. Then Tou* < u* ~ u, and
* ° 1 * . 0
Tou* x x[0,7[" = (;fovu X (0,97 = arx [0,7[".

We need to know that [, Tou* > [, v* for every ¢; this is because

t ¢
/ Tou" = ayt > / v* whenever t < 7,
0 0
y t t t
/ Tou* +/ Tou* :/ ut > / v* whenever t > .
0 p 0 0

up = Tou* X x [B,00[", v =v* x x[B,00[".

Set

Then uj, vf are just translations of Tou*, v* to the left, so that
t B+t B+t B+t B+t t
fouT:fﬁ Tgu*:fo Tou*falﬂzfo v*falﬂzfﬁ v*:fovf

for every ¢ > 0. Also v1 = Y., a;x [Bi—1, 8" where 3; = Z;Zl fia; for each j. So by the inductive
hypothesis, v1 < uy.
Let S € Ty, n, be such that Su; = vy, and define T' € T, 5, by setting
Tw=wx x|[0,8["+ S(w x x[B,0[") x x[B, 0|

1 .
for every w € Mﬂfjil,' Then TThu* = v*, so v ~ v* < u* ~ u, as required. Q

(ii) We are nearly home. If u, v > 0 in Méfo and fot v* < f(f u* for every ¢t > 0, then v < u. I Let

(Un)nen be a non-decreasing sequence in S(Q(é)‘*‘ with supremum v. Then v} < v* for each n, so (i) tells us
that v, < u for every n. By 373N, for the last time, v < u. Q

(f) Finally, suppose that (2, z) and (2B, 7) are arbitrary measure algebras and that u € M;’Oo, v e MP™
are such that fot v < fot u* for every t > 0. Then
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v~ ol X Ju]* =0"

(by (b), (d) and 373Db)

Su
(by (e))

= Jul" < [u]
(by (c))

and v < u, as claimed

373P Theorem Let (2, i) be a measure algebra and (8, 7) a semi-finite measure algebra. Then for any
w€ M (U, i) and v € M°(B, ), there isa T € T = T, 5 such that [Tu xv= [u* x v*.

proof (a) It is convenient to dispose immediately of some elementary questions.

(i) We need only find a T € T such that [|Tu x v| > [u* x v*. P Take vy € L°°(B) such that
|Tu X v] =vp x Tu X v and ||vg]leo < 1, and set Tiw = vy X Tw for w € M;’OO; then Th € T and

leuxvzf|Tu><v\qu*xv*ZITluxv
by 373]. Q

(ii) Consequently it will be enough to consider v > 0, since of course [ |Tu x v| = [ |Tu x |v]|, while
|v]* = v*.

(iii) It will be enough to consider u = u*. P If we can find T' € Ty, 5 such that [ Tu*xv = [(u*)* xv*,
then we know from 3730 that there is an S € 7 5, such that Su = u*, so that 'S € T and

fTSuxv:f(u*)*xv*:fu*xv*.Q

(iv) It will be enough to consider localizable (2B, 7). P Assuming that v > 0, following (ii) above, set
e = [v > 0] = sup,ey [v>27"], and let 7. be the restriction of 7 to the principal ideal B, generated by
e. Then if we write ¢ for the member of L°(®8,) corresponding to v (so that [¢ > a] = [v > «] for every
a > 0), 0* = v*. Also (B, 7,.) is o-finite, therefore localizable. Now if we can find T' € Tj 5, such that
JTux = [u*xo*, then ST will belong to 7 5, where S : L%(B.) — L°(B) is the canonical embedding
defined by the formula
[Sw>a]=[w>a] ifa>0,
=[w>aJu(l\e)ifa<0,
and
fSTuxv:fTuxf):fu*xf)*:fu*xv*. Q
(b) So let us suppose henceforth that g = fr, u = u* is the equivalence class of a non-increasing

non-negative function, v > 0 and (B, 7) is localizable.
For n, 7 € N set

bpi =[v>2""], Bni=0bni, Cni =0bni\bnit1, Vni = VCni = Bni — Bn,i+1
(because fB,; < oo if i > 0; this is really where I use the hypothesis that v € M?). For n € N set
K,={i:i>1, v >0},

1 Bni
T, w= Z ( ‘ / w)xcm
i€k, Bt
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for w € M;’LOO; this is defined in L°(B) because K, is countable and {(c,;)iey is disjoint. Of course T, :

Mg’Loo — LO(B) is linear. If w € L>(Ay) then

1 Bni
HanHoo = SupieKJ% ﬂ::H w‘ < ||w||<>07

and if w € L1 then

HL
Vi ¥ Bnit1

ITwwlly = Siex, wlpen =Ciere, | [ w] < lwlhs

so Thyw € MY for every w € M2, and T, € T It will be helpful to observe that

AL
Bni
T, w=
Cni n Bn,i«l»l
whenever i > 1, since if ¢ ¢ K,, then both sides are 0.
Note next that for every n, i € N,
bni = bn+1,2i7 Bni = ﬁn+1,2i, Cni = Cn+1,2i YCnt12i+1,  Vni = Yn+1,2i T Vn+1,2i+1,

so that, for ¢ > 1,

Tou = Bri

Cni Brnit1

u:fc Thu.

This means that if T is any cluster point of (T,),en in T for the very weak operator topology (and such
a cluster point exists, by 373L), fc ~Tu must be a cluster point of <fc Thu)nen, and therefore equal to
fc T,nu, whenever m € N and ¢ > 1.

mi

Consequently, if m € N,

/Tuxv|2§;/

Cmi 4

o0
Tu| x v > 22_"%'/ x
=0 Cmi

(because ¢,,; C [ > 27™4])

Cmi

> iw’%/ Tul :izmz‘/ Tnu
i=1 Cmi i=1 i
_S o /

Bmi
u > /u x (v —27"x1) "

m,i+1

because
Bt Brni]® € [o* < 277(0 + 1)] = [(v* — 27"y 1)* < 2774]
for each ¢ € N. But letting m — oo, we have
f [Tu x v] > limy, e fu x (v* —27My1)t = fu X v

because (u X (v* —27™x1)"),,en is a non-decreasing sequence with supremum u x v*. In view of the
reductions in (a) above, this is enough to complete the proof.

373Q Corollary Let (2, i) be a measure algebra, (8, 7) a semi-finite measure algebra, u € M1>°(2, i)
and v € M%>(B, 7). Then

fu*Xv*:sup{f\TuxM:TEE’;}:sup{fTuxv:TEﬁ—L,,;}.

proof There is a non-decreasing sequence {(c,)nen in B7 such that v* = sup,,cy vy, Where v, = v X xc, for
each n. P For each rational ¢ > 0, we can find a countable non-empty set B, C 9B such that

b C [lv| > ¢, b < oo for every b € By,
supyep, Vb = v[|v] > q]
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(because (*B,7) is semi-finite). Let (b,)nen be a sequence running over | J B, and set ¢, = sup;,, b;,

q€Q,¢>0
vp = v X Xy, for each n. Then (|v,|)neny and (v}),en are non-decreasing and sup,,cy vy, < v* in LO(y).

But in fact sup,,cy v;, = v*, because
prlv” > al = pllvl > q] = suppen Alon > ¢] = suppen Arlvn, > ¢] = Arlsupen vy > dl

for every rational g > 0, by 373Da. Q
For each n € N we have a T}, € T; 5 such that anu X Uy = fu* x v (373P). Set S,,w = T,,w X xc¢, for
neN,we Mflt’oo; then every S, belongs to 7y 5, so

sup{/Tuxv:TG'EL,,;}Zsup Snuxv:sup/Tnuxvn
neN neN

:sup/u*xv;;:/u*xv*
neN
Zsup{/|Tu><v|:TG’Y}L’D}Zsup{/Tuxv:TG’E—M,}

by 373J, as usual.

373R Order-continuous operators: Proposition Let (2, 1) be a measure algebra, (B, /) a localizable
1)

(
measure algebra, and Ty € 7 = 7'—(70,;) . Then thereis aT € T* = T, extending Tp. If (2A

I LD ft) is semi-finite,
T is uniquely defined.

proof (a) Suppose first that Ty € 7O is non-negative, regarded as a member of LN(M;’O; Mﬁl’o). In this
case T has an extension to an order-continuous positive linear operator 7' : Ml—i’oo — LY(B) defined by
saying that Tw = sup{Tou : u € M/%’O, 0 <u < w} for every w > 0 in M;’Oo. P I use 355F. Mé’o is a solid
linear subspace of Mé’m. T} is order-continuous when its codomain is taken to be Ml—}’o, as noted in 371Gb,
and therefore if its codomain is taken to be L°(B), because M1 is a solid linear subspace in L, so the
embedding is order-continuous. If w > 0 in Ml—i’oo, let v > 0 be such that u; = (w — yx1)" is integrable. If
= M;’O and 0 < u < w, then (u —yx1)* < wuy, so
Tou = To(u — yx1)T + To(u A yx1) < Toug +yx1 € L°(B).

Thus {Tou: u € M°, 0 < u < w} is bounded above in L°(B), for any w > 0 in M&’OO. L°(B) is Dedekind
complete, because (B, ) is localizable, so sup{Tou : 0 < u < w} is defined in L°(B); and this is true for
every w € (Ml—i’oo)“‘. Thus the conditions of 355F are satisfied and we have the result. Q

(b) Now suppose that T is any member of 7(®). Then Ty has an extension to a member of 7. P |Tp|,
1" = 3(|To| + Tp) and Ty = 1(|To| — To), taken in LN(Mé’O;M;’O), all belong to 7(® (371G), so have
extensions S, S1 and Sy to order-continuous positive linear operators from M, ;’OO to L°(B) as defined in (a).
Now for any w € L%“

[Swlly = [[[Tofwlly < fJwls,
and for any w € L>(2A),
|Sw| < S|w| = sup{|To|u: u € M;—i’o, 0<u<w}t<||wleoxl,

S0 ||Swleo < |w|loo- Thus S € T similarly, S; and Se can be regarded as operators from Mé’oo to M2,
and as such belong to 7. Next, for w > 0 in Ml—i’oo,

Siw + Syw = sup{Tgru tu € Ml—i’07 O0<u<w}+sup{Tgu:uc Mé’07 0<u<w}
= sup{TJru—l—TO*u Tu € M,—i’o, 0<u<w}=Sw.
But this means that
S=5+5> |Sl—52|
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and T'= S; — Sy € T, by 373Bc; while of course T extends T, — T, = Tp. Finally, because S; and Sy are
order-continuous, T' € LX(MFIL’OO; MY>®),soTeT*. Q

(c) If (A, ) is semi-finite, then Mé’o is order-dense in M,—i’oo (because it includes L, which is order-dense
in LY(21)); so that the extension 7 is unique, by 355Fe.

373S Adjoints in 7(®: Theorem Let (%A, f) and (%B,7) be measure algebras, and 7' any member
of 771(09) Then there is a unique operator 7" € 7},(%) such that [ T"(xb) = [, T(xa) whenever a € 2Af and
be B/ and now [uxT'v = [ Tuxvwhenever u € MY (A, i), v € M (B, v) are such that [u* xv* < o0.

proof (a) For each v € M} we can define T'v € Mé’o by the formula

fa Tv = fT(Xa) X v
for every a € /. P Set a = [ T(xa) x v for each a € AS; because [(ya)* x v* < oo, the integral is defined
and finite (373J). Of course 6 : 27 — R is additive because x is additive and T, x and J are linear. Also

. . o
limy o SUpgq<, [fa| < limeyo fo vt =0,

. 1 . 1 t *
limy o0 T SUDp <y 0a| < lim; o0 7 , U =0

becaujsce v E Ml—}’o, so v* € M,—i’LO. By 373Ha, there is a unique T"v € Mé’o such that fa T'v = fa for every
acA. Q

0

b) Because the formula uniquely determines 7"v, we see that 7" : M+ — M2 is linear. Now 1" € 70
U I U,

P (i) If v € L., then (because T'v € Mg’o) |T"v| = sup,eqs |T"v| X xa, and

IT"v||1 :/|T'v| = Sup/\T’v| = sup (/T'v—/T'v)
acUf Ja b,eceAr Jb c

= sup /T(Xb— xc) X v < sup /(Xb— xe)* x v*
b,ceUf b,ceAf

- / = Jloll.

(ii) Now suppose that v € L>®(B) N My ", and set v = [|v]joo. T If a = [|T"0| > 4] # 0, then T'v # 0 so
v# 0 and v > 0 and fia < oo, because T'v € M;’O. Set b= [(T"v)* > ~], ¢ =[(T"v)~ > 4]; then

'y,aa</\T’U|:/T’v—/T'v:/T(Xb—Xc)xv
a b c

SANT(xb = x)lh < lIxb = xelly = v,
which is impossible. X Thus [|T'v] > 7] =0 and |[T"0]lcc < = ||9]|co-
Putting this together with (i), we see that T’ € 7;(31). Q
(c) Let |T| be the modulus of T in L™ (Mx*; Mz ), so that |T| € T.%, by 371Gb. If u > 0 in M3, v >0
in M} are such that Ju* x v* < o0, let (up)nen be a non-decreasing sequence in S(Af)* with supremum
u. In this case |T|u = sup, ey [T |tn, so [ |T|u x v =sup,cy [ |T|un X v and

|fTu><v—fTun><v|§f|T|(u—un)><v—>0
as n — 00, because
f\T|u><v§fu*><U*<oo.
At the same time,
|fu><T’v—fun><T’v|§f(u—un)><\T’v\—)O

because [u x |[T"v| < [u* x v* < 00. So
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Tuxv=1lim, o | Tup X v =1m,_ 4o [ up xT'v= [ uxTuv,
J S J J

the middle equality being valid because each u,, is a linear combination of indicator functions.
Because T and 7" are linear, it follows at once that [u x T"v = [Tu x v whenever u € MF—IL’O, v E M,—}’O
are such that [ u* x v* < oo.

(d) Finally, to see that T” is uniquely defined by the formula in the statement of the theorem, observe
that this surely defines T"(xb) for every b € B7, by the remarks in (a). Consequently it defines 7" on S(87).
Since S(B7) is order-dense in M., and any member of 7:—,(3—3 must belong to L* (M, M&’O) (371Gb), the
restriction of 7" to S(B7) determines 7" (355J).

373T Corollary Let (2, i) and (B, 7) be localizable measure algebras. Then for any T' € 7.7, there is a
unique 77 € T, such that [u x T"v = [Tu x v whenever u € M (2, i), v € M">(B, ) are such that
Ju* xv* < oo.

proof The restriction T[Ml%’o belongs to 7}501;) (373Bb), so there is a unique S € '77;(%) such that [ux Sv =
J Tux v whenever u € M, v € My are such that [u* x v* < co (373S). Now there is a unique 7" € 755
extending S (373R). If u > 0 in Mé’oo7 v>0in M,;l’OO are such that [ u*xv* < oo, then [uxT'v = [Tuxv.

P If T > 0, then both are
sup{fuoXT’UO:uoEM;’O,UGM;’O,Oguogu,ogvogv}

because both T and 7" are (order-)continuous. In general, we can apply the same argument to 7+ and
T, taken in LN(Mé’OO;M,;l’OO), since these belong to 7.5, by 373B and 355H, and we shall surely have
T =(T*) —(T7). Q As in 373S, it follows that [uxT'v = [Tu x v whenever u € M;’oo, v e M,™ are
such that [ u* x v* < co.

373U Corollary Let (2, 1) and (B,7) be localizable measure algebras, and = : 2 — 9B an order-
continuous measure-preserving Boolean homomorphism. Then the associated map T' € 77—},; (373Bd) has an
adjoint P € T.%; defined by the formula [, P(xb) = v(bna) for a € A/, b € B,

proof By 373T, T has an adjoint P = T" such that
fa P(xb) = fxa x P(xb) = fT(xa) X xb = fx(ﬂa) x xb =v(ranb)

whenever a € 2f and b € B7. To see that this defines P uniquely, let S € 7}Xﬁ be any other operator with
the same property. By 373Hb, S(xb) = P(xb) for every b € B/, so S and P agree on S(87). Because both
P and S are supposed to belong to L* (M2 Ml—i’oo), and S(B7) is order-dense in MY™, S = P, by 355J.

373X Basic exercises (a) Let (2, ) and (B, ) be measure algebras, and 7 : 2 — B a ring homomor-
phism such that 7ma < fia for every a € 2. (i) Show that there is a unique T’ € Tj 5 such that T'(xa) = x(7wa)
for every a € 2, and that T is a Riesz homomorphism. (ii) Show that T is (sequentially) order-continuous
iff 7 is.

>(b) Let (2, z) and (B, i) be measure algebras, and ¢ : R — R a convex function such that ¢(0) < 0.
Show that if 7' € T, and T > 0, then ¢(Tu) < T(¢(u)) whenever u € MP—lt’OO is such that ¢(u) € M,—i’oo.
(Hint: 371Gd.)

(c) Let (A, i) be a measure algebra. Show that if w € L (2() and ||w]|eo < 1 then u— u X w : Mg"x’ —
Mé’oo belongs to 7.

(d) Let (A, z) and (B, 7) be measure algebras. Show that if (a;)icr, (bi)icr are disjoint families in 2, B
respectively, and (T5);cr is any family in 7; 5, and either I is countable or B is Dedekind complete, then

we have an operator T € T 5 such that Tu x xb; = T;(u X xa;) x xb; for every u € M}L;O, 1€ 1.

>(e) Let I, J be sets and write p = fi, v = U for counting measure on I, J respectively. Show that
there is a natural one-to-one correspondence between ’7?,7 and the set of matrices (ai;)icr,jes such that
Dier laig| < 1forevery j € J, 37, ;laij| <1 for every i € I.
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>(f) Let (X, %, u) and (Y, T, v) be o-finite measure spaces, with measure algebras (2, i) and (8, 7), and
product measure A on X x Y. Let h: X x Y — R be a measurable function such that [ |h(z,y)|dz <1 for
v-almost every y € Y and [ |h(z,y)|dy < 1 for p-almost every € X. Show that there is a corresponding
T € T, defined by writing T(f*) = g* whenever f € £'(u) +£>°(u) and g(y) = [ h(z,y)f(x)dz for almost
every y.

>(g) Let p be Lebesgue measure on R, and (2, i) its measure algebra. Show that for any p-integrable
function h with [ |h|dp < 1 we have a corresponding T' € 7., defined by setting T'(f*) = (h* f)* whenever
g € LY (p) + £°(p), writing h x f for the convolution of h and f (255E). Explain how this may be regarded
as a special case of 373Xf.

>(h) Let (2, ji) be a probability algebra and u € L°(2)T; let v, be its distribution (364GB). Show that
each of u*, v, is uniquely determined by the other.

(i) Let (A, z) and (2B, 7) be measure algebras, and 7 : 20 — B a measure-preserving Boolean homomor-
phism; let T : M;’OO — MY be the corresponding operator (373Bd). Show that (Tw)* = u* for every
u€ M ;’OO.

(j) Let (A, zz) be a totally finite measure algebra, and A a subset of L]. Show that the following
are equiveridical: (i) A is uniformly integrable; (i) {u* : u € A} is uniformly integrable in L} ; (iii)

) ¢
limy o SUp,c 4 fo w* =0.

(k) Let (A, z) be a measure algebra, and A C (MJ)" a non-empty downwards-directed set. Show that
(inf A)* = inf,ecqu* in LO(AL).

(1) Let (A, &) be a measure algebra. Show that ||u||1,0o = fol u* for every u € MY (2, fi).

(m) Let (A, i) and (B, 7) be measure algebras, and ¢ a Young’s function (369Xc). Write Uy ; C L°(2),
Up» C LO(B) for the corresponding Orlicz spaces. (i) Show that if T € Tz, and u € Uy 5, then Tu € Uy 5
and || Tullg < ||ul|g. (ii) Show that u € Uy ; iff u* € Uy 5, , and in this case |[ullg = [|u*|4-

>(n) Let (A, i) be a measure algebra and (%B,7) a totally finite measure algebra. Show that if A C L}
is uniformly integrable, then {Tw:u € A, T € T, 5} is uniformly integrable in L;..

(0)(i) Give examples of u, v € L'(A) such that (u + v)* £ u* + v*. (i) Show that if (2, ) is any
measure algebra and u, v € MS’OO, then fot(u +v)* < fot uw* 4+ v* for every t > 0.
(p) Let (%A, 1) and (B, 7) be two measure algebras. For u € Mé’o, we M set
Puw (S, T) = |fSu X w — fTu x w| for S, T € T = 7;L—(Oﬁ)

The topology generated by the pseudometrics py,, is the very weak operator topology on 7(». Show
that 7 is compact in this topology.

(q) Let (A, z) and (2B, 7) be measure algebras and let u € M,—i’o. (i) Show that B = {Tu:T € 7;1(?7)} is
compact for the topology To(M2?, M2, (ii) Show that any non-decreasing sequence in B has a supremum
in LY(B) which belongs to B.

(r) Let (A, ) and (B, 7) be measure algebras, and u € Mplb’o, v e M}°. Show that the following are
equiveridical: (i) there is a T € 77—50,7) such that Tu = v; (ii) fot u* < fot v* for every t > 0.

(s) Let (A, ) and (B, 7) be measure algebras. Suppose that uj, ug € MEL’OO and v € M} are such
that fot v* < fot(ul + ug)* for every ¢t > 0. Show that there are vy, vo € M,;l’Oo such that v; +v9 = v and
fot v < fot u} for both i, every t > 0.
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>(t) Set g(t) =t/(t+1) for t > 0, and set v = g*, u = x[0,1]* € L>=(2A.). Show that [u* x v* =1 >
JTux v for every T € Tp, -

u) Let (2, ) and (B, ) be measure algebras, and for T € 79 define 7" € 7.9 as in 373S. Show that
iz 7,

T =T.

v) Let (A, ) and (*B,7) be measure algebras, and give 70 , T their very weak operator topologies

K a0 1oh

(373Xp). Show that the map T — T" : ﬂ(o,;) — 7;(%) is an isomorphism for the convex, order and topological
structures of the two spaces. (By the ‘convex structure’ of a convex set C' in a linear space I mean the
operation (z,y,t)—tex+ (1—t)y: C x C x[0,1] = C.)

373Y Further exercises (a) Let (2, i) be the measure algebra of Lebesgue measure on [0, 1]. Set u = f*
and v = g* in LO(A), where f(t) =t, g(t) =1—2[t — &| for t € [0,1]. Show that u* = v*, but that there is
no measure-preserving Boolean homomorphism 7 : 2 — 2l such that T,v = u, writing Ty : LO(A) — L°(A)
for the operator induced by , as in 364P. (Hint: show that {[v > o] : @ € R} does not 7-generate 2.)

(b) Let (2, 1) be a totally finite homogeneous measure algebra of uncountable Maharam type. Let u,
v e (M ;’Ooﬁ be such that u* = v*. Show that there is a measure-preserving automorphism 7 : 2 — 2 such
that T,u = v.

(c) Let u, v € M,%’LOO be such that v = u*, v = v* and f(f v < fot u for every ¢t > 0. (i) Show that there is
a non-negative T' € T, 5, such that Tu = v and fot Tw < fot w for every w € (M;%’LOO)*‘. (ii) Show that any
such 7' must belong to 73 4, -

(d) Let (A, ) and (B,7) be measure algebras, and u € M&"x’. (i) Suppose that w € S(Bf). Show
directly (without quoting the result of 3730, but possibly using some of the ideas of the proof) that for
every v < [u*xw* thereisaT € T such that [ Tuxw > ~. (ii) Suppose that (B, ) is localizable and that
v € My \{Tu:T € Ty} Show that there is a w € S(B) such that [vxw > sup{ [Tuxw:T € T}
(Hint: use 373M and the Hahn-Banach theorem in the following form: if U is a linear space with the
topology T(U, V) defined by a linear subspace V of L(U;R), C C U is a non-empty closed convex set, and
v € U\ C, then there is an f € V such that f(v) > sup,cc f(u).) (iii) Hence prove 3730 for localizable
(B, 7). (iv) Now prove 3730 for general (B, 7).

(e)(i) Define v € L*(A) as in 373Xt. Show that there is no T € T, ,, such that Tv = v*. (ii) Set

h(t) = 1+max(0, #2L) for ¢ > 0, w = h* € L>(A). Show that there is no T' € 7% ;, such that Tw* = w.

(f) Let (A, 1) be the measure algebra of Lebesgue measure on [0, 1]. Show that Ty 5z, = T4, can be
identified, as convex ordered space, with 77{1 1> and that this is a proper subset of Ty, ;.

(g) Show that the adjoint operation of 373T is not as a rule continuous for the very weak operator
topologies of 7., T4

373 Notes and comments 373A-373B are just alternative expressions of concepts already treated in 371F-
371H. My use of the simpler formula 7; ; symbolizes my view that 7, rather than TO) or T%, is the most
natural vehicle for these ideas; I used 7(© in §§371 only because that made it possible to give theorems
which applied to all measure algebras, without demanding localizability (compare 371Gb with 373Bc).

The obvious examples of operators in T are those derived from measure-preserving Boolean homomor-
phisms, as in 373Bd, and their adjoints (373U). Note that the latter include conditional expectation oper-
ators. In return, we find that operators in 7 share some of the characteristic properties of the operators
derived from Boolean homomorphisms (373Bb, 373Xb, 373Xm). Other examples are multiplication op-
erators (373Xc), operators obtained by piecing others together (373Xd) and kernel operators of the type
described in 373Xe-373Xf, including convolution operators (373Xg). (For a general theory of kernel opera-
tors, see §376 below.)
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Most of the section is devoted to the relationships between the classes 7 of operators and the ‘decreasing
rearrangements’ of 373C. If you like, the decreasing rearrangement u* of u describes the ‘distribution’ of |u|
(373Xh); but for u ¢ MY it loses some information (373Xt, 373Ye). It is important to be conscious that
even when u € LO(2(;), u* is not necessarily obtained by ‘rearranging’ the elements of the algebra 2, by a
measure-preserving automorphism (which would, of course, correspond to an automorphism of the measure
space ([0,00[, uur), by 344C). I will treat ‘rearrangements’ of this narrower type in the next section; for the
moment, see 373Ya. Apart from this, the basic properties of decreasing rearrangements are straightforward
enough (373D-373F). The only obscure area concerns the relationship between (u + v)* and u*, v* (see
373Xo).

In 373G I embark on results involving both decreasing rearrangements and operators in 7, leading to the
characterization of the sets {Tw : T € T} in 3730. In one direction this is easy, and is the content of 373G.
In the other direction it depends on a deeper analysis, and the easiest method seems to be through studying
the ‘very weak operator topology’ on T (373K-373L), even though this is an effective tool only when one
of the algebras involved is localizable (373L). A functional analyst is likely to feel that the method is both
natural and illuminating; but from the point of view of a measure theorist it is not perfectly satisfactory,
because it is essentially non-constructive. While it tells us that there are operators T' € T acting in the
required ways, it gives only the vaguest of hints concerning what they actually look like.

Of course the very weak operator topology is interesting in its own right; and see also 373Xp-373Xq.

The proof of 3730 can be thought of as consisting of three steps. Given that fot v* < fot u* for every t,
then I set out to show that v is expressible as Tyv* (parts (c)-(d) of the proof), that v* is expressible as Tou*
(part (g)) and that u* is expressible as Tsu (parts (e)-(f)), each T; belonging to an appropriate 7. In all
three steps the general case follows easily from the case in which v € S(2) and v € S(B). If we are willing
to use a more sophisticated version of the Hahn-Banach theorem than those given in 3A5A and 363R, there
is an alternative route (373Yd). I note that the central step above, from u* to v*, can be performed with an
order-continuous T3 (373Yc), but that in general neither of the other steps can (373Ye), so that we cannot
use 7 in place of T here.

A companion result to 3730, in that it also shows that {Tw : T € T} is large enough to reach natural
bounds, is 373P; given u and v, we can find T such that [Tw X v is as large as possible. In this form the
result is valid only for v € M©) (373Xt). But if we do not demand that the supremum should be attained,
we can deal with other v (373Q).

We already know that every operator in 7(9 is a difference of order-continuous operators, just because
M has an order-continuous norm (371Gb). Tt is therefore not surprising that members of 7(®) can be
extended to members of 7, at least when the codomain M;’Oo is Dedekind complete (373R). It is also very
natural to look for a correspondence between 7;; and Tj 5, because if T € T; 5 we shall surely have an
adjoint operator (T'IL})" from (L})* to (L})*, and we can hope that this will correspond to some member
of 75 5. But when we come to the details, the normed-space properties of a general member of 7 are not
enough (373Yf), and we need some kind of order-continuity. For members of 7 this is automatically
present (373S), and now the canonical isomorphism between 7(®) and 7 gives us an isomorphism between
T.» and T, when fi and 7 are localizable (373T).

Version of 15.6.09

374 Rearrangement-invariant spaces

As is to be expected, many of the most important function spaces of analysis are symmetric in various
ways; in particular, they share the symmetries of the underlying measure algebras. The natural expression
of this is to say that they are ‘rearrangement-invariant’ (374E). In fact it turns out that in many cases
they have the stronger property of ‘T-invariance’ (374A). In this section I give a brief account of the most
important properties of these two kinds of invariance. In particular, 7-invariance is related to a kind of
transfer mechanism, enabling us to associate function spaces on different measure algebras (374C-374D).
As for rearrangement-invariance, the salient fact is that on the most important measure algebras many
rearrangement-invariant spaces are 7-invariant (374K, 374M).

374A T-invariance: Definitions Let (2, i) be a measure algebra. Recall that I write
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loo
M = L}L + L(2A) C LO(A),
Mot = LL N L (),

MS’OO ={u:ue L), infoso aflul > a] < oo},
(369N, 373C).

(a) I will say that a subset A of Mé’oo is T-invariant if Tu € A whenever u € Aand T € T = Ty
(definition: 373Aa).

(b) An extended Fatou norm 7 on L° is T-invariant or fully symmetric if 7(Tu) < 7(u) whenever
u € M;’Oo and T € T.

(c) Asin §373, I will write (A, fir,) for the measure algebra of Lebesgue measure on [0, oo, and u* € MS’L‘X’
for the decreasing rearrangement of any u belonging to any M S’OO (373C).

374B The first step is to show that the associate of a T-invariant norm is 7 -invariant.

Theorem Let (2, i) be a semi-finite measure algebra and 7 a T-invariant extended Fatou norm on L°(2L).
Let L™ be the Banach lattice defined from 7 (369G), and 7’ the associate extended Fatou norm (369H-3691I).
Then

(i) M2 C L™ € My

(ii) 7/ is also T-invariant, and [ u* x v* < 7(u)7’(v) for all u, v € Mg’oo.
proof (a) I check first that L™ C MS’OC. P Take any u € LO(A) \ MS’OO. There is surely some w > 0in L7,
and we can suppose that w = ya for some a of finite measure. Now, for any n € N,

(lu] Anx1)* = nxl > nw*
in LO(2A.), because fif|u] > n] = oo. So there is a T € T ; such that T(|u| A nx1) = nw, by 3730, and
T(u) > 7(Ju| Anxl) > 7(T(Ju| Anxl)) = 7(nw) = nT(w).

As n is arbitrary, 7(u) = co. As u is arbitrary, L™ C MS’OO. Q

(b) Next, [u* x v* < 7(u)7'(v) for all u, v € M. P If u € M;™, then

/u* xv*:sup{/|Tu><v|:T€7}t,ﬁ}
(373Q)
<sup{r(Tw)r'(v) : T € Tpu}t = 7(w)7' (v).
Generally, setting u, = |u| Anx1, (u})nen is a non-decreasing sequence with supremum u* (373Db, 373Dh),
S0
fu* X v* = sup,cy fu;i X v* < sup, ey T(un)7 (v) = 7(u)7'(v). Q

(c) Consequently, L™ C Ml—i’oo. P If 2 = {0}, this is trivial. Otherwise, take uw € L7. There is surely

some non-zero a such that 7/(xa) < co; now, setting v = xa,
foﬂa ut = fu* x v* < 7(u)7’(v) < 0

by (b) above. But this means that u* € Mé’oo, so that u € Mé’oo (373F(b-ii)). Q

(d) Next, 7/ is T-invariant. PP Suppose that v € Mplb’oo, T € Tap, u € LOA) and 7(u) < 1. Then
u € M;’OO, by (c), so

f lu x Tv| < fu* x v* < 7(u)r'(v) < 7' (v),
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using 373J for the first inequality. Taking the supremum over u, we see that 7/(Tv) < 7/(v); as T and v are
arbitrary, 7’ is T-invariant. Q
(e) Finally, putting (d) and (c) together, L™ C M;"™°, so that L™ 2 M;>", using 369J and 3690.
374C For any T-invariant extended Fatou norm on L°(2(1) there are corresponding norms on LY(2l) for
any semi-finite measure algebra, as follows.

Theorem Let 6 be a T-invariant extended Fatou norm on L°(z), and (2, ji) a semi-finite measure algebra.
(a) There is a T-invariant extended Fatou norm 7 on L°(2) defined by setting

T(u) =0(u") if u € Mg’oo,
= o0 if u € LO(A) \ M.
(b) Writing &', 7" for the associates of  and 7, we now have
'(v) = 0'(v*) if v € MY,
= oo if v e LO(A) \ My™.
(c) If # is an order-continuous norm on the Banach lattice LY, then 7 is an order-continuous norm on L.
proof (a)(i) The argument seems to run better if I use a different formula to define 7: set
T(u) = sup{f luxTw|:T € Tpp g, w € LO(AL), 6 (w) < 1}
for u € LO(A). (By 374B(i), w € M/%’LOO whenever 6'(w) < 1, so there is no difficulty in defining Tw.) Now

7(u) = 6(u*) for every u € Mg’oo. P (o) If we L) and ¢ (w) < 1, then w € MFIL’LOO, so there is an

S € Ta, . such that Sw = w* (3730). Accordingly ¢'(w*) < 6'(w) (because ¢ is T-invariant, by 374B);

now
f |lu x Tw| < fu* x w* < O(u*)f (w*) < O0(u*)d (w) < 0(u*);
as w is arbitrary, 7(u) < 0(u*). (8) If w € L°(2L) and ¢'(w) < 1, then

Jiwxul < [y xw

:/u*Xw*:sup{/‘uXT’w‘:Te’Ejbg}

(373E)

(373Q)
< 7(u).

But because 6 is the associate of ¢’ (3691(ii)), this means that 6(u*) < 7(u). Q

(ii) Now 7 is an extended Fatou norm on L°(2(). P Of the conditions in 369F, (i)-(iv) are satisfied
just because 7(u) = sup,cp [ |u x v| for some set B C LY. As for (v) and (vi), observe that if u € lefo’l
then u* € M2>" (373F (b-iv)), so that 7(u) = 6(u*) < co, by 374B(i), while also

rL
u# 0= u*#0= 7(u) =0(u*) > 0.

As M:° ! is order-dense in L(2) (this is where I use the hypothesis that (2, i) is semi-finite), 369F(v)-(vi)
are satisfied, and 7 is an extended Fatou norm. Q

(iii) 7 is 7T-invariant. I Take u € M;’OO and T' € T 5. There are So € T;, 5z and S1 € T 5, such that
Sou* = u, S1Tu = (Tu)* (3730); now S17Sy € Tz, .z, (373Be), so

T(Tu) = 0((Tw)*) = 0(S1TSou*) < O(u*) = 7(u)

because 6 is T-invariant. Q
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(iv) We can now return to the definition of 7. I have already remarked that 7(u) = 6(u*) if u € Mg’oo.
For other u, we must have 7(u) = 0o just because 7 is a T-invariant extended Fatou norm (374B(i)). So the
definitions in the statement of the theorem and (i) above coincide.

(b) We surely have 7/(v) = oo if v € LO(2)\ MS’OO, by 374B, because 7/, like 7, is a T-invariant extended
Fatou norm. So take v € Mg’oo.
(i) If w € LO(A) and 7(u) < 1, then
f v x u| < fv* x u* <0 (v)0(u*) =0 (v*)T(u) < 0'(v*);
as u is arbitrary, 7’(v) < 6'(v*).

(ii) If w € L°(2) and O(w) < 1, then

/|v*><w|§/v*><w*:sup{/|v><Tw\:Teﬁhﬂ}
(373Q)
<sup{7' (v)T(Tw) : T € Ta, u} = sup{7' (V)0((Tw)*) : T € Tp, u}
< sup{7'(v)0(STw) : T € Tr, .5, S € Tajr
(because, given T, we can find an S such that STw = (Tw)*, by 3730)
<sup{7'(V)0(Tw) : T € Tuy.ar} <7 (v).

As w is arbitrary, 6'(v*) < 7/(v) and the two are equal. This completes the proof of (b).

(c)(i) The first step is to note that L™ C M7. B? Suppose that u € L™\ M, that is, that z[|u|] > o] = oo
for some a > 0. Then u* > ax1 in LO(AL), so L>=°(™Ay) € LY. For each n € N, set v, = x [n,00[". Then
v =g, so we can find a T;, € T;, 5, such that T,,v, = v (3730), and 6(v,) > 0(vy) for every n. But as
(Un)nen 1s a decreasing sequence with infimum 0, this means that € is not an order-continuous norm. XQ

(ii) Now suppose that A C L7 is non-empty and downwards-directed and has infimum 0. Then
inf,eca ifu > o] = 0 for every a > 0 (put 364L(b-ii) and 321F together). But this means that B = {u* : u €
A} must have infimum 0; since B is surely downwards-directed, inf,ecp 0(v) = 0, that is, inf,c4 7(u) = 0.
As A is arbitrary, 7 is an order-continuous norm.

374D What is more, every T -invariant extended Fatou norm can be represented in this way.

Theorem Let (2, i) be a semi-finite measure algebra, and 7 a T-invariant extended Fatou norm on L°(21).
Then there is a T-invariant extended Fatou norm 6 on L°(2(;) such that 7(u) = §(u*) for every u € M g,oo'

proof I use the method of 374C. If 2 = {0} the result is trivial; assume that 2 £ {0}.
(a) Set
O(w) = sup{f lwx Tv|: T € Tpp,, ve L), 7(v) <1}
for w € L°(2A). Note that
O(w) = sup{f w* x v* 1w e LOA), 7(v) <1}

for every w € MS’LOO, by 373Q again.

0 is an extended Fatou norm on L°(2(;). P As in 374C, the conditions 369F(i)-(iv) are elementary. If
w > 0in LO(AL), take any v € LO(A) such that 0 < 7/(v) < 1; then w* x v* # 0 so O(w) > [w* x v* > 0.
So 369F (v) is satisfied. As for 369F (vi), if w > 0 in L°(2A.), take a non-zero a € 2 of finite measure such

that o = 7(xa) < co. Let 8 >0, b € 2, be such that 0 < fipb < fia and Sxb < w; then
B(xb) = sup, (<1 [ (Xb)* X v* < sup(y<y1 [(xa)* x v* < 7(xa) < oo
by 374B(ii). So 6(8xb) < co and 369F(vi) is satisfied. Thus 6 is an extended Fatou norm. Q

(b) 0 is T-invariant. P If T € T, 5, and w € M;’L‘X’, then
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0(Tw) = sup,/ (<1 f(Tw)* X 0" < SUPL/(y)<1 fw* x v* = 6(w)
by 373G and 3731. Q

(¢) O(u*) = 7(u) for every u € Mg’oo. P We have

7(u) = Sup,/(y)<1 f lu x v| <sup,s(y)<1 fu* x v* < 7(u),
using 3691, 373E and 374B. So

O(u*) = sup,/(y)<1 fu* x v* = 71(u)
by the remark in (a) above. Q

374E I turn now to rearrangement-invariance. Let (2, i) be a measure algebra.

(a) I will say that a subset A of L = LO(2) is rearrangement-invariant if 7,u € A whenever u € A
and 7 : A — 2 is a measure-preserving Boolean automorphism, writing Ty : L — L for the isomorphism
corresponding to m (364P).

(b) T will say that an extended Fatou norm 7 on L° is rearrangement-invariant if 7(T,u) = 7(u)
whenever v € L% and 7 : 2l — 2 is a measure-preserving automorphism.

374F Remarks (a) If (2, i) is a semi-finite measure algebra and 7 : 2 — 2 is a sequentially order-
continuous measure-preserving Boolean homomorphism, then TWFMl—i’OO belongs to 7j 5; this is obvious
from the definition of M1 = L! + L* and the basic properties of T}, (364P). Accordingly, any 7T -invariant
extended Fatou norm 7 on L°(2() must be rearrangement-invariant, since (by 374B) we shall have 7(u) =
T(Tr(u)) = 0o when u ¢ M éoo Similarly, any 7 -invariant subset of M, é’oo will be rearrangement-invariant.

(b) I seek to describe cases in which rearrangement-invariance implies 7-invariance. This happens only
for certain measure algebras; in order to shorten the statements of the main theorems I introduce a special
phrase.

374G Definition I say that a measure algebra (2, i) is quasi-homogeneous if for any non-zero a,
b € 2 there is a measure-preserving Boolean automorphism 7 : 20 — 2( such that wanb # 0.

374H Proposition Let (2, i) be a semi-finite measure algebra. Then the following are equiveridical:

(i) (A, &) is quasi-homogeneous;

(ii) either 2 is purely atomic and every atom of 2 has the same measure or there is a £ > w such that
the principal ideal 2, is homogeneous, with Maharam type &, for every a € 2 of non-zero finite measure.

proof (i)=(ii) Suppose that (2, i) is quasi-homogeneous.

(a) Suppose that 2 has an atom a. In this case, for any b € 2\ {0} there is an automorphism 7 of
(2, i) such that manb # 0; now ma must be an atom, so ma = manb and mwa is an atom included in b. As b
is arbitrary, 2 is purely atomic; moreover, if b is an atom, then it must be equal to wa and therefore of the
same measure as a, so all atoms of 2 have the same measure.

(B8) Now suppose that 2 is atomless. In this case, if a € 2 has finite non-zero measure, 2, is homo-
geneous. PP? Otherwise, there are non-zero b, ¢ C a such that the principal ideals 23, 2. are homogeneous
and of different Maharam types, by Maharam’s theorem (332B, 332H). But now there is supposed to be an
automorphism 7 such that b n ¢ # 0, in which case 2y, Arp, Arpne and A, must all have the same Maharam
type. XQ

Consequently, if a, b € 2 are both of non-zero finite measure, the Maharam types of ,, A,.p and 2,
must all be the same infinite cardinal k.

(ii)=(i) Assume (ii), and take a, b € A\ {0}. If anb # 0 we can take 7 to be the identity automorphism
and stop. So let us suppose that anb = 0.
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(a) If 2 is purely atomic and every atom has the same measure, then there are atoms ag C a, by C b.
Set

me=cif cDaguUby or cn(aguby) =0,

= ¢ A (ag Ubg) otherwise.

Then it is easy to check that 7 is a measure-preserving automorphism of 2 such that mag = by, so that
manb# 0.

(B) If A, is Maharam-type-homogeneous with the same infinite Maharam type « for every non-zero
¢ of finite measure, set v = min(1, ia, ib) > 0. Because 2 is atomless, there are ag C a, by C b with
pag = pbg = v (331C). Now 2,, and 2, are homogeneous with the same Maharam type and the same
magnitude, so by Maharam’s theorem (331I) there is a measure-preserving isomorphism mg : A5, — Ap, -
Define 7 : 2 — 2 by setting

me = (c\ (ap Ubg)) Umo(cnag) umy H(enbp)
for ¢ € 2; then it is easy to see that 7 is a measure-preserving automorphism of 2( and that manb # 0.

Remark We shall return to these ideas in Chapter 38. In particular, the construction of 7 from m in the
last part of the proof will be of great importance; in the language of 381R, m = (ag , bo)-

3741 Corollary Let (2, i) be a quasi-homogeneous semi-finite measure algebra. Then

(a) whenever a, b € 2 have the same finite measure, the principal ideals 2, 2, are isomorphic as measure
algebras;

(b) there is a subgroup T" of the additive group R such that (@) fia € T' whenever a € 2 and fia < oo ()
whenever a € 2, v € I' and 0 < v < fia then there is a ¢ C a such that jic = 7.

proof If 2 is purely atomic, with all its atoms of measure 7y, set I' = vyZ, and the results are elementary.
If 2 is atomless, set I' = R; then (a) is a consequence of Maharam’s theorem, and (b) is a consequence of
331C, already used in the proof of 374H.

374J Lemma Let (2, 1) be a quasi-homogeneous semi-finite measure algebra and u, v € MS’OO. Let
Auty be the group of measure-preserving automorphisms of 2. Then
fu* X V" = SUPreut, f |u x Trvl,
where Ty : LY(21) — L°(2A) is the isomorphism corresponding to .
proof (a) Suppose first that u, v are non-negative and belong to S(2/), where 2/ is the ring {a : fia < 0o},
as usual. Then they can be expressed as u = Z:io Qi XA;, V= Z;:O Bjxb; where ag > ...apy > 0,

By > ...> Bn >0, ag,...,an, are disjoint and of finite measure, and by, ... ,b, are disjoint and of finite
measure. Extending each list by a final term having a coefficient of 0, if need be, we may suppose that

SUD; <, @i = SUDP, <, ;.
Let (tg,... ,ts) enumerate in ascending order the set
k- [
{0} U{dimo ftai s k <m}PuU{} ;_opbj : k <n}.
Then every t, belongs to the subgroup I' of 374Ib, and t, = Y . fia; = Z?:o pbj. For 1 <r < slet k(r),
I(r) be minimal subject to the requirements ¢, < ngo) paa;, t,. < Zé(;z) fb;. Then fia; = Zk(r):i ty —tr_1,
so (using 374Ib) we can find a disjoint family (c,)1<,<s such that ¢, C ap(y and fic, = t, — ¢, for each
r. Similarly, there is a disjoint family (d,)1<,<s such that d, C b,y and fid, = t, —t,_; for each r. Now
the principal ideals 2. ., 24, are isomorphic for every r, by 374la; let 7, : Aq, — 2., be measure-preserving
isomorphisms. Define 7 : % — 2 by setting
ma = (a\ SUP; << d)u SUp; << Tr(and,);

because

SUP, <4 Cr = SUDP; <, @i = SUP;<,, bj = sup, <, do,
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w2 — A is a measure-preserving automorphism.
Now
S S
u = Z’r’:l Ap(ryXCr, U= Z’r‘:l ﬂl(r)Xdrv
u* = Zizl Ap(r) X [trfla tr[.a v = Eizl Bl(r)X [trflv tr[.a

SO

Jux Tov =301 cneyBumyier = Yoy Q) Bury (br — tr1) = [u* x v,

(b) Now take any ug, vg € Mg’oo. Set
A={u:ue SN, 0<u<|ul}, B={v:veS®) 0<v< |vl}

Then A is an upwards-directed set with supremum |ug|, because (2, i) is semi-finite, so {u* : u € A} is an
upwards-directed set with supremum |ug|* = uf (373Db, 373Dh). Similarly {v* : v € B} is upwards-directed
and has supremum v, so {u* x v*:u € A, v € B} is upwards-directed and has supremum ug x vg.

Consequently, if v < [u X v§, there are u € A, v € B such that v < [u* x v*. Now, by (a), there is a
m € Auty such that

v < fu x Trv < f |ug| X T |vo| = f|u0 X Trvo]

because T is a Riesz homomorphism. As 7 is arbitrary,

fUS X ’US < Supﬂ’EAutﬁ f |u0 X vao"
But the reverse inequality is immediate from 373J.

374K Theorem Let (2, i) be a quasi-homogeneous semi-finite measure algebra, and 7 a rearrangement
-invariant extended Fatou norm on L° = L°(2A). Then 7 is T-invariant.
proof Write 7 for the associate of 7. Then 374J tells us that for any u, v € Mg"x’,
fu* X V" = SUPreput, f |Tru X v| < $uPrepus, T(Tru)7'(v) = 7(u)7'(v),

writing u*, v* for the decreasing rearrangements of u and v, and Auty for the group of measure-preserving
automorphisms of (2, 7). But now, if u € My* and T' € Tz,

(T = sup{/ Tu x o] 7/(v) < 1}
(3691)
< sup{/u* < vt T (v) < 1)
(3737)
< 7(u).

As T, u are arbitrary, 7 is T-invariant.

374L Lemma Let (2, 1) be a quasi-homogeneous semi-finite measure algebra. Suppose that u, v €
(M7>®)* are such that [u* x v* = co. Then there is a measure-preserving automorphism 7 : 2 — 2 such
that [u x Trv = .

proof I take three cases separately.

(a) Suppose that 2 is purely atomic; then u, v € L () and u*, v* € L* (1), so neither «* nor v* can
belong to L}zL and neither u nor v can belong to L}L. Let v be the common measure of the atoms of 2. For
each n € N, set

o =inf{la:a >0, gfu>a] <3"}, G, = [u> ja,].
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Then afu > «,] < 3™y; also a,, > 0, since otherwise u would belong to Llli, S0 fid, > 3™y. We can therefore
choose (a},)nen inductively such that a), C a,, and fia], = 3™y for each n (using 374Ib). For each n > 1, set

ap = a, \ sup,;., a;; then fiall > % - 37"y, so we can choose an a,, C al such that fia, = 3" 1.
Also, of course, (@, )nen is non-increasing. We now see that
. .. 1
(an)n>1 is disjoint, u > 5QnXan for every n > 1,
w* < lufloox [0,7(" V sup, ey anx [3"y, 3"y [

Similarly, there are a non-increasing sequence (8, )nen in [0, co[ and a disjoint sequence (by,)n>1 in A such
that

fib, =31y, v> %,anbn for every n > 1,

v* < [[ollsox [0, Y[* V sup,en Bux [37, 3" Ty [
We are supposing that

oo
00 = /u* X V" = y]|ulloo]|v|l0o + Z 23"y, fn
n=0

oo
= Y[Jullool[v]loo + 2700 + 27 Z 37" (a1 Bans1 + B02ni2Ban+2)

n=0
o0
< llullsolvlloo + 2ye0B0 + 24 Y 32" yaan 1 Ban 11,

n=0

80 >0 1 3% anpt1 Bont1 = 0.

At this point, recall that we are dealing with a purely atomic algebra in which every atom has measure ~.
Let A,, B,, be the sets of atoms included in a,, b, for each n > 1, and A =J,,~; A, U B,,. Then #(A,,) =
#(B,) = 3""! for each n > 1. We therefore have a permutation ¢ : A — A such that ¢[Ba, 1] = A2y
for every n. (The point is that A\ U, cyy A2nt1 and A\ J,,cyy B2ng1 are both countably infinite.) Define
7w 2A — A by setting

me=(c\ supA)u SUDPge A ,qc e PO

for ¢ € 2. Then 7 is well-defined (because A is countable), and it is easy to check that it is a measure-
preserving Boolean automorphism (because it is just a permutation of the atoms); and 7ba, 1 = agpy1 for
every n. Consequently

oo 1 _ 1 oo
JuxTow=30 10241 Bont1 0241 = 77307 o 32" Aant1 Bangr = 00.
So we have found a suitable automorphism.

(b) Next, consider the case in which (2, i) is atomless and of finite magnitude ~. Of course v > 0. For
each n € N set

anp =infla:a>0, glu>a] <37}, G, =[u> %an]].
Then (ay,)nen is non-decreasing and
u* < SUP, ey Ont1X [3*”’1% 37"y [’.
This time, fia, > 3~ ™y, and we are in an atomless measure algebra, so we can choose a,, C @, such that

_ : _ 1 _
pa,, = 3~"y; taking a, = al, \ sup;s., a;, fa, > 537", and we can choose a, C a!’ such that fia, = 37" 1y

1 . Ce
for every n. As before, u > 20nXan for every n, and (a,)nen is disjoint.

In the same way, we can find (3,)nen, (bn)nen such that (b,)nen is disjoint,
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—n— _ . 1
V" < suppen Brix [37771 37 [N v > supyey 3 Baxba

and jib, = 37"y for each n. In this case, we have
o0 = fU* x v* < ZZO:() 2- 37“717an+15n+17

and Y7 37"y, B, is infinite.
Now all the principal ideals 2, , 2,

are measure-preserving isomorphisms m, : 2, — 2, ; similarly, setting a = 1\ sup,eyan and b =
1\ sup, ¢y bn, there is a measure-preserving isomorphism 7 : 2y — 25. Define 7 : 2l — 2 by setting

are homogeneous and of the same Maharam type, so there

me = 7(cnb) U sup, ey Tlcnay)

for every c € 2; then 7 is a measure-preserving automorphism of 2, and 7b,, = a,, for each n. In this case,

fu X Trv > }1220:0 37" yay, B, = oo,
and again we have a suitable automorphism.

(c) Thirdly, consider the case in which 2( is atomless and not totally finite; take x to be the common
Maharam type of all the principal ideals 2, where 0 < fia < co. In this case, set

ap =inf{a: gu>a) <3}, B, =inf{a: gfv>a] <3}
for each n € Z. This time
u* < sup,ez o [37,3" T, vt <sup,eg Bax [37,3"TH[,
S0
= fu* x v* = 2220:_00 3", By < 82?:_00 32" oy, Bon.
For each n € Z, 3" < [i[u > 1a,], so there is an a], such that

an C [u>tay], fall =3

_ 1 _
Set al, = all \ SUP_,ocicn @f; then fial, > 5 3" for each n; choose a, C al, such that fia,, = 3"~ 1. Then

. C .. 1
(an)nen is disjoint and u > 5 Xan for each n.

Similarly, there is a disjoint sequence (b, )nen such that
,L_Lbn = 3n71, v > %anbn

for each n € N.
Set d* = sup,,cz an U sup,,cz b,. Then

@ = d*\ sup,,cz aan, b=d* \ sup,,cz ban

both have magnitude w and Maharam type x. So there is a measure-preserving isomorphism 7 : 2; — 215
(332J). At the same time, for each n € Z there is a measure-preserving isomorphism 7, : A, — A,,, . So
once again we can assemble these to form a measure-preserving automorphism 7 : A — 2{, defined by the
formula

me= (c\d*)ur(cnb)u sup, ez T (cnbay,).

Just as in (a) and (b) above,
Jux Tev > Zzo:_ooi 32" Loy, B, = o0

Thus we have a suitable 7 in any of the cases allowed by 374H.

374M Proposition Let (2, i) be a quasi-homogeneous localizable measure algebra, and U C L% = L°(2()
a solid linear subspace which, regarded as a Riesz space, is perfect. If U is rearrangement-invariant and
Mgo’l cCUC M;’Oo, then U is T-invariant.
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proof Set V = {v:uxv € L' for every u € U}, so that V is a solid linear subspace of L° which can be
identified with U* (369C), and U becomes {u : u x v € L* for every v € V}; note that Mgc’l CVC Mg’m
(using 369Q).

IfueUT,veVtandr: A — Alis a measure-preserving automorphism, then Tru € U, so [ vxTru < oo;
by 374L, [u* x v* is finite. But this means that if u € U, v € V and T € Ty z,

f\Tuxv|§fu*><v*<oo.

As v is arbitrary, Tu € U; as T and u are arbitrary, U is T-invariant.

374X Basic exercises >(a) Let (2, i) be a measure algebra and A C M;’OO a T-invariant set. (i)
Show that A is solid. (ii) Show that if A is a linear subspace and not {0}, then it includes Mgo’l. (iii)
Show that if u € A, v € My and fot v* < fot u* for every t > 0, then v € A. (iv) Show that if (B, 7) is
any other measure algebra, then B ={Tu:u € A, T € Tpp}and C ={v:v € M} Tv € A for every

T € Ty} are T-invariant subsets of M,—}’oo, and that B C C. Give two examples in which B C C. Show
that if (2, z) = (AL, fiy) then B =C.

>(b) Let (2, i) be a measure algebra. Show that the extended Fatou norm | ||, on L°(2l) is T-invariant
for every p € [1,00]. (Hint: 371Gd.)

(c) Let (A, 1) and (B, 7) be semi-finite measure algebras, and ¢ a Young’s function (369Xc). Let 74,
7, be the corresponding Orlicz norms on L°(21), L°(®B). Show that 74(Tu) < 74(u) for every u € L°(2),
T € Ty,p- (Hint: 369Xn, 373Xm.) In particular, 7, is 7-invariant.

(d) Show that if (2, ) is a semi-finite measure algebra and 7 is a T-invariant extended Fatou norm on
L°(2A), then the Banach lattice L™ defined from 7 is T-invariant.

(e) Let (2, ji) be a semi-finite measure algebra and 7 a T-invariant extended Fatou norm on L°(2() which
is an order-continuous norm on L”. Show that L™ C M 5’0.

(f) Let 6 be a T-invariant extended Fatou norm on L°(2A;) and (2, i), (B,7) two semi-finite measure
algebras. Let 71, 72 be the extended Fatou norms on L°(2(), L°(%8) defined from 6 by the method of 374C.
Show that 75(T'u) < 71(u) whenever u € M;’OO and T € Ty 5.

>(g) Let (2, 1) be a semi-finite measure algebra, not {0}, and set 7(u)

1
= SUPp<pa<oco \/ﬁfa |u| for

u € LO(2A). Show that 7 is a T-invariant extended Fatou norm. Find examples of (2, ji) for which 7 is, and
is not, order-continuous on L7.

(h) Let (A, ) and (B, 7) be semi-finite measure algebras and 7 a T-invariant extended Fatou norm on
LO(2A). (i) Show that there is a T-invariant extended Fatou norm 6 on L°(B) defined by setting (v) =
sup{7(Tv) : T € Ty} for v € My™. (ii) Show that when (2, i) = (2, i) then 6(v) = 7(v*) for every
v e M2™. (iii) Show that when (8B,7) = (U, i) then 7(u) = 0(u*) for every u € MS’OO.

(i) Let (A, 1) be a semi-finite measure algebra and 7 an extended Fatou norm on L° = L°(2(). Suppose
that L™ is a T-invariant subset of L°. Show that there is a T-invariant extended Fatou norm 7 which is
equivalent to 7 in the sense that, for some M > 0, 7(u) < M7(u) < M?7(u) for every u € LY. (Hint: show
first that [u* x v* < oo for every u € L™ and v € L7, then that SUD () <1,7/(v)<1 Ju* xv* < 0.)

(j) Suppose that 7 is a T-invariant extended Fatou norm on L°(2(1), and that 0 < w = w* € M&’LOO. Let
(A, i) be any semi-finite measure algebra. Show that the function u — 7(w X u*) extends to a 7-invariant
extended Fatou norm 6§ on L°(). (Hint: 7(w x u*) = sup{7(w x Tw) : T € Tz, } for u € Mg;oo.) (When
T = || ||, these norms are called Lorentz norms; see LINDENSTRAUSS & TZAFRIRI 79, p. 121.)

(k) Let (2, i) be PN with counting measure. Identify L°() with RY. Let U be {u: u € RN, {n : u(n) #
0} is finite}. Show that U is a perfect Riesz space, and is rearrangement-invariant but not 7-invariant.
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(1) Let (2, i) be an atomless quasi-homogeneous localizable measure algebra, and U C L°(2) a rearrange-
ment-invariant solid linear subspace which is a perfect Riesz space. Show that U C M, ;’OO and that U is T-
invariant. (Hint: assume U # {0}. Show that (i) xa € U whenever jia < oo (ii) V = {v:vxu € L' Vu € U}
is rearrangement-invariant (iii) U, V. C M 1)

374Y Further exercises (a) Let (2, i) be a localizable measure algebra and U C Mé’oo a non-zero
T-invariant Riesz subspace which, regarded as a Riesz space, is perfect. (i) Show that U includes M ;O o1,
(ii) Show that its dual {v:v € LO(2), v x u € L}, ¥V u € U} (which in this exercise I will denote by U*) is
also T-invariant, and is {v: v € Mg’oo, Ju* xv* <ocoVueU}. (iil) Show that for any localizable measure
algebra (B,7) the set V = {v:v € My™ Tv e UV T € T, } is a perfect Riesz subspace of L°(B), and
that V* = {v:v € My™, To € UV T € Ty s}. (iv) Show that if, in (i)-(iii), (A, 7) = (A, fir), then
V={v:ve M%»%° v* € U}. (v)Show that if, in (iii), (B,7) = (A, fir), then U = {u: u € Mg’oo, u* € Vi,

(b) Let (2, i) be a semi-finite measure algebra, and suppose that 1 < ¢ < p < co. Let wy, € LO(A.) be
the equivalence class of the function ¢ ~— t(4=P)/?_ (i) Show that for any u € L°(2),

prq x (u)? = pfooo t9= 1 (af|ul > t])2/"dt.
(ii) Show that we have an extended Fatou norm || ||, , on L°(2) defined by setting
g = (pfooo t= (@flul > )/ vt

for every u € L°(A). (Hint: use 374Xj with w = wzl,éq, Il = Illlg.) (iii) Show that if (%B,7) is another
semi-finite measure algebra and T' € Ty 5, then |Tu||, ¢ < |Jullp,q for every u € MF—IL’OO. (iv) Show that || |5,

u )1/q

is an order-continuous norm on Ll ll».a,

(c) Let (A, z) be a homogeneous measure algebra of uncountable Maharam type, and u, v > 0 in M 3
such that u* = v*. Show that there is a measure-preserving automorphism 7 of 2 such that T« = v, where
T, : LO(2) — LO(2A) is the isomorphism corresponding to 7.

(d) In L°(2AL) let u be the equivalence class of the function f(t) = te~*. Show that there is no Boolean
automorphism 7 of 2, such that Tru = u*. (Hint: show that 2y is 7-generated by {[u* > a] : & > 0}.)

(e) Let (A, i) be a quasi-homogeneous semi-finite measure algebra and C' C L°(2A) a solid convex order-
closed rearrangement-invariant set. Show that C N M 5’00 is T-invariant.

374 Notes and comments I gave this section the title ‘rearrangement-invariant spaces’ because it looks
good on the Contents page, and it follows what has been common practice since LUXEMBURG 67B; but
actually I think that it’s 7 -invariance which matters, and that rearrangement-invariant spaces are significant
largely because the important ones are T-invariant. The particular quality of T-invariance which I have
tried to bring out here is its transferability from one measure algebra (or measure space, of course) to
another. This is what I take at a relatively leisurely pace in 374B-374D and 374Xf, and then encapsulate
in 374Xh and 374Ya. The special place of the Lebesgue algebra (2, fiz,) arises from its being more or less
the simplest algebra over which every T-invariant set can be described; see 374Xa.

I don’t think this work is particularly easy, and (as in §373) there are rather a lot of unattractive names
in it; but once one has achieved a reasonable familiarity with the concepts, the techniques used can be seen
to amount to half a dozen ideas — non-trivial ideas, to be sure — from §§369 and 373. From §369 I take
concepts of duality: the symmetric relationship between a perfect Riesz space U C L° and the representation
of its dual (369C-369D), and the notion of associate extended Fatou norms (369H-369K). From §373 I take
the idea of ‘decreasing rearrangement’ and theorems guaranteeing the existence of useful members of 7 »
(3730-373Q). The results of the present section all depend on repeated use of these facts, assembled in a
variety of patterns.

There is one new method here, but an easy one: the construction of measure-preserving automorphisms
by joining isomorphisms together, as in the proofs of 374H and 374J. I shall return to this idea, in greater
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generality and more systematically investigated, in §381. I hope that the special cases here will give no
difficulty.

While T-invariance is a similar phenomenon for both extended Fatou norms and perfect Riesz spaces
(see 374Xh, 374Ya), the former seem easier to deal with. The essential difference is I think in 374B(i);
with a T-invariant extended Fatou norm, we are necessarily confined to M'*°, the natural domain of the
methods used here. For perfect Riesz spaces we have examples like RN = LO(PN) and its dual, the space of
eventually-zero sequences (374Xk); these are rearrangement-invariant but not 7-invariant, as I have defined
it. This problem does not arise over atomless algebras (374X1).

I think it is obvious that for algebras which are not quasi-homogeneous (374G) rearrangement-invariance
is going to be of limited interest; there will be regions between which there is no communication by means
of measure-preserving automorphisms, and the best we can hope for is a discussion of quasi-homogeneous
components, if they exist, corresponding to the partition of unity used in the proof of 332J. There is a
special difficulty concerning rearrangement-invariance in L°(2(r): two elements can have the same decreas-
ing rearrangement without being rearrangements of each other in the strict sense (373Ya, 374Yd). The
phenomenon of 373Ya is specific to algebras of countable Maharam type (374Yc). You will see that some of
the labour of 374L is because we have to make room for the pieces to move in. 374J is easier just because
in that context we can settle for a supremum, rather than an actual infinity, so the rearrangement needed
(part (a) of the proof) can be based on a region of finite measure.

Version of 30.1.10

375 Kwapien’s theorem

In §368 and the first part of §369 I examined maps from various types of Riesz space into L° spaces.
There are equally striking results about maps out of L° spaces. I start with some relatively elementary facts
about positive linear operators from L° spaces to Archimedean Riesz spaces in general (375A-375D), and
then turn to a remarkable analysis, due essentially to S.Kwapien, of the positive linear operators from a
general L° space to the L space of a semi-finite measure algebra (375J), with a couple of simple corollaries.

375A Theorem Let 2 be a Dedekind o-complete Boolean algebra and W an Archimedean Riesz space.
If T: L°(2A) — W is a positive linear operator, it is sequentially order-continuous.

proof (a) The first step is to observe that if (u,)nen is any non-increasing sequence in L% = LO(2)
with infimum 0, and ¢ > 0, then {n(u, — eug) : n € N} is bounded above in L°. ¥ For k € N set
ap = sup, ey [n(un — €ug) > kJ; set a = infrenag. T Suppose, if possible, that a # 0. Because u,, < ug,
n(u, — eug) < nug for every n and

a Cag C [ug > 0] = [eup > 0] = sup,,cy [euo — un > 0].
So there is some m € N such that o’ = an[eug — u,, > 0] # 0. Now, for any n > m, any k € N,
a’ 0 [n(uy, — eug) > k] C [eup — wm, > 0] N [y, — eug > 0] = 0.
But @’ C sup,,cy [n(un — €up) > K, so in fact
a’ C sup,<,, [n(u, — eup) > k] = [v > ],
where v = sup,,<,,, n(un, — €ug). And this means that infyey[v > k] 2a’ # 0, which is impossible. X
Accordingly a = 0; by 364L(a-1), {n(u, — €ug) : n € N} is bounded above. Q

(b) Now suppose that (u,)nen is a non-increasing sequence in L° with infimum 0, and that w € W is a
lower bound for {Tu,, : n € N}. Take any € > 0. By (a), {n(u, — €ug) : n € N} has an upper bound v in L°.
Because T is positive,

w < Tuy =T (uy — eug) + T(eug) < T(lv) + T(eup) = 1o+ eTug
n n
for every n > 1. Because W is Archimedean, w < eTug. But this is true for every € > 0, so (again because

W is Archimedean) w < 0. As w is arbitrary, inf,,cy Tun, = 0. As (up)nen is arbitrary, T is sequentially
order-continuous (351Gb).
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375B Proposition Let 2 be an atomless Dedekind o-complete Boolean algebra. Then L°(2()* = {0}.

proof ? Suppose, if possible, that h : LY(2l) — R is a non-zero order-continuous positive linear functional.
Then there is a u > 0 in L° such that h(v) > 0 whenever 0 < v < u (356H). Because 2 is atomless, there is
a disjoint sequence (ay)nen such that a,, C [u > 0] for each n, so that u, = u x xa, > 0, while u, Au, =0
if m # n. Now however

n
V= supneN 7h(un) Un

is defined in L°, by 368K, and h(v) > n for every n, which is impossible. X

375C Theorem Let 2 be a Dedekind complete Boolean algebra, W an Archimedean Riesz space, and
T : L°®2) — W an order-continuous Riesz homomorphism. Then V = T[L°(2l)] is an order-closed Riesz
subspace of W.

proof The kernel U of T is a band in L% = L°(2l) (3520e), and must be a projection band (353J), because
LY is Dedekind complete (364M). Since U + U+ = L° T[U] + T[U+] = V, that is, T[U*] = V; since
UNU* = {0}, T is an isomorphism between U+ and V. Now suppose that A C V is upwards-directed and
has a least upper bound w € W. Then B = {u:u € U+, Tu € A} is upwards-directed and 7[B] = A. The
point is that B is bounded above in L°. P? If not, then {u™ : u € B} cannot be bounded above, so there
is a ug > 0 in L° such that nug = sup,cpnug A u't for every n € N (368A). Since B C U™, ug € UL and
Tug > 0. But now, because T is an order-continuous Riesz homomorphism,

nTug = sup,ep T (nug A ut) = sup,cp nTug Avt < wh

for every n € N, which is impossible. X Q
Set u* = sup B; then Tu* =sup A = w and w € V. As A is arbitrary, V is order-closed.

375D Corollary Let W be a Riesz space and V an order-dense Riesz subspace which is isomorphic to
LO(21) for some Dedekind complete Boolean algebra 2. Then V = W.

proof By 353G, W is Archimedean. So we can apply 375C to an isomorphism 7" : LY(2) — V to see that
V' is order-closed in W.

375E Theorem Let (2, i) be a semi-finite measure algebra, (98, 7) any measure algebra, and T : L°(2) —
L°(B) an order-continuous positive linear operator. Then T is continuous for the topologies of convergence
in measure.

proof ? Otherwise, we can find w € LO(2), b € B/ and ¢ > 0 such that whenever a € A/ and § > 0
there is a u € L°(2l) such that ji(an [ju —w| > §]) < § and v(bn[|Tu — Tw| > €]) > € (367L, 2A3H). Of
course it follows that whenever a € 2/ and § > 0 there is a u € LO(A) such that fi(an [Ju| > d]) < 6 and
(b [|Tu| > €]) > e. Choose {a,)nen and (u,)nen inductively, as follows. ag = 0. Given that a,, € 27, let
un € LO°(A) be such that fi(a, n[Ju,| >27"]) < 27" and v(bn [|Tu,| > €]) > €. Of course it follows that
(b [T|uy| > €]) > e. Because (U, i) is semi-finite, [u,| = sup,cos [un| X xa); because T' is order-continuous,
T|un| = supgeqs T(|lun| x xa), and we can find ap+1 € A such that 2(bn [T(Jun| X Xant1) > €]) > Le.
Enlarging a,y; if necessary, arrange that a,,+1 2 a,. Continue.

At the end of the induction, set v, = 2"|u,| X X@n+1; then f(a, N v, > 1]) < 27", for each n € N. Tt
follows that {v, : n € N} is bounded above. P For k € N, set ¢, = sup,, ey [vn > k]. Then ¢, C sup,,cy an-
If n € Nand § > 0, let m > n be such that 27" < §, and k > 1 such that fi(a, N [sup,,, vm > k]) < 4.
Then

Alan nex) < filay, N [sup,, o, vm > k) + Z;’im fla; nv; > 1]) < 26.

As ¢ is arbitrary, a, n infgen ey = 0; as n is arbitrary, infren e = 0; by 364L(a-i) again, {v, : n € N} is
bounded above. Q

Set v = sup,,cy Un. Then 270 > |ty | X Xan41, 50 27" T0 2 T(|up| X Xan4+1) and (b0 [27"Tv > €]) > 3¢,
foreachn € N. But inf,,en27"Tv = 0, so inf,,en [27"Tv > €] = 0 (364L(b-ii)) and inf,,en 7(bN [27"Tv > €]) =
0. X

So we have the result.
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375F 1 come now to the deepest result of this section, concerning positive linear operators from L°(2l)
to L(B) where B is a measure algebra. I approach through a couple of lemmas which are striking enough
in their own right.

The following temporary definition will be useful.

Definition Let 2 and 8 be Boolean algebras. I will say that a function ¢ : A — B is a o-subhomomor-
phism if

dlaua’) = ¢(a)ug(a’) for all a, a’ € A,

inf, ey ¢(a,) = 0 whenever {(a,)nen is a non-increasing sequence in 2 with infimum 0.
Now we have the following easy facts.

375G Lemma Let 2 and 28 be Boolean algebras and ¢ : 2 — 28 a o-subhomomorphism.

(a) ¢(0) =0, ¢(a) C ¢(a’) whenever a C o', and ¢(a) \ ¢(a’) C ¢(a\ a’) for every a, o’ € 2.

(b) If fi, 7 are measures such that (2, ) and (B, ) are totally finite measure algebras, then for every
€ > 0 there is a ¢ > 0 such that 7¢(a) < € whenever fia < 6.

proof (a) This is elementary. Set every a, = 0 in the second clause of the definition 375F to see that
¢(0) = 0. The other two parts are immediate consequences of the first clause.

(b) (Compare 232Ba, 327Bb.) ? Suppose, if possible, otherwise. Then for every n € N there is an a,, € 2
such that fia,, < 27" and v¢(a,) > €. Set ¢, = SUpP; >, @i for each n; then (¢, )nen is non-increasing and has
infimum 0 (since fic, < 27" for each n), but v¢(c,) > € for every n, so inf, ey ¢c, cannot be 0. X

375H Lemma Let (2, ) and (B,7) be totally finite measure algebras and ¢ : 2 — 9B a o-subho-
momorphism. Then for every non-zero by € B there are a non-zero b C by and an m € N such that
bn infj<., (b(aj) = 0 whenever aq,... ,a,, € 2 are disjoint.

proof (a) Suppose first that 2 is atomless and that gl = 1.
Set € = Luby and let m > 1 be such that #¢(a) < e whenever ia < L (375Gb). We need to know that
(1 —-L)™ < I; this is because (if m >2) Inm —In(m—1) > L somIn(1 - L)< -1< —In2.
Set
C = {inf;<,, ¢(a;) : ag, ... ,an € A are disjoint}.

? Suppose, if possible, that by € supC. Then there are cp,...,cx € C such that v(by N sup;<; ¢;) > 4e.
For each ¢ < k choose disjoint aso, ... ,aim € A such that ¢; = inf,<,, ¢(a;;). Let D be the set of atoms of
the finite subalgebra of 2 generated by {a;; : i < k, j < m}, so that D is a finite partition of unity in 2,
and every a;; is the join of the members of D it includes. Set p = #(D), and for each d € D take a maximal
disjoint set E4 C {e:e C d, fie = p%}7 so that fi(d\ sup Eq) < —=; set

pm’
d* =1\ sup(Uyecp Fa) = supgep(d\ sup Ey),
so that fid* is a multiple of - and is less than &. Let E* be a disjoint set of elements of measure —1- with
pm m pm

union d*, and take £ = E*UJ,cp Fa, so that I is a partition of unity in 2, ie = ﬁ for every e € F, and
ai; \ d* is the join of the members of F it includes for every i < k and j < m.
Set

K={K:KCE, #K)=p}, M:#(’C):%'

For every K € K, i(sup K) = % so v¢(sup K) < e. So if we set
v =3 kex XO(sup K),
J v <eM. On the other hand,
U(bo N sup; <y, ¢i) > 4e,  vp(d*) <,
so vby > 3¢, where

by = bo N sup;<y, ¢i \ ¢(d*).
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Accordingly [v < 1Mwb; and
bzzblﬂ[[v< %Mﬂ

is non-zero.
Because by C by, there is an i < k such that by n¢; # 0. Now

bane; C e\ o(d*) = infj<p, daij) \ ¢(d*) C infj<y, dai; \ d¥).

But every a;; \ d* is the join of the members of E it includes, so
byne; € inf ¢ai;\d”) € inf d(suple:e € B, e C aj})
j=m I<m

= inf sup{¢(e):e € E, e C a;;}
j<m

= sup{ iilf o(ej) s €o,...,em € E and e; C a;; for every j}.
jsm
So there are eg,...,e, € E such that e; C a;; for each j and b3 = ban inf;<,, #(e;) # 0. Because
a0, - - -, Qim are disjoint, eq, . .. , e, are distinct; set J = {eg, ... , e, }. Then whenever K € K and KNJ # 0,

bs C o(sup K).
So let us calculate the size of K1 = {K : K € K, KN J # (}. This is

_ _(mp—m-1! _ _ (mp—p)(mp—p—1)...(mp—p—m)
pir— G mplmp—1) () )

mp—p\m+1 1
> M(1 - (PR > D

But this means that b3 C [v > £ M], while also b3 C [v < $M]; which is surely impossible. X
Accordingly by € sup C, and we can take b = by \ sup C.

(b) Now for the general case. Let A be the set of atoms of 2, and set d =1\ sup A. Then the principal
ideal 24 is atomless, so there are a non-zero b; C by and an n € N such that by n inf;<, ¢(aj) = 0 whenever
ag, - - ,an € g are disjoint. P If zd > 0 this follows from (a), if we apply it to ¢[2y and (jid) "1 Ag. If
id = 0 then we can just take by = by and n = 0. Q

Let § > 0 be such that v¢(a) < vb; whenever fia < §. Let A; C A be a finite set such that f(sup A1) >
f(sup A) — 9, and set r = #(A), d* = sup(A\ A1). Then gd* <dsob=>0b\¢(d*) #0. Try m =n+r.
If ag,...,an are disjoint, then at most r of them can meet sup A;, so (re-ordering if necessary) we can
suppose that ag, ... ,a, are disjoint from sup A;, in which case a; \ d* C d for each j < m. But in this case
(because bn ¢(d*) = 0)

bn infjgm ¢(aj) cbn infjgn ¢>(aj) =bn infjgn gb(aj ﬂd) =0

by the choice of n and b;.
Thus in the general case also we can find appropriate b and m.

3751 Lemma Let (2, z) and (B, 7) be totally finite measure algebras and ¢ : 2 — 9B a o-subhomomor-
phism. Then for every non-zero by € B there are a non-zero b C by and a finite partition of unity C' C A
such that a — bn¢(anc) is a ring homomorphism for every ¢ € C.

proof By 375H, we can find by, m such that 0 # by C by and by N inf<,, ¢(a;) = 0 whenever ag, ... ,am, €
2 are disjoint. Do this with the smallest possible m. If m = 0 then by n¢(1) = 0, so we can take
b = by, C = {1}. Otherwise, because m is minimal, there must be disjoint ¢1,...,¢,, € 2 such that
b= b1 ninficj<m @(c;) #0. Set co = 1\ sup;<;<,, ¢j, C = {co,c1,... ,cm}; then C is a partition of unity
in A. Set m;(a) =bng(anc;) for each a € A and j < m. Then we always have 7;(aud’) = mj(a) um;(a’)
for all a, a’ € 2, because ¢ is a subhomomorphism.

To see that every 7; is a ring homomorphism, we need only check that 7;(ana’) = 0 whenever ana’ = 0.
(Compare 312H(iv).) In the case j = 0, we actually have mo(a) = 0 for every a, because bn¢(cy) =
by N info<j<m ¢(c;) = 0 by the choice of by and m. When 1 < j <m, if ana’ = 0, then

g (a) n Wj(a/) = b1 n inflgigm’i;ﬁj ¢(Cj) N ¢(a) N (ﬁ((]/)

is again 0, because a, @', ¢1,... ,¢j—1,Cj+1,--. ,Cm are disjoint. So we have a suitable pair b, C.
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375J Theorem Let 2 be any Dedekind o-complete Boolean algebra and (28, 7) a semi-finite measure
algebra. Let T : LO(A) — L°(B) be a positive linear operator. Then we can find B, (A4;)pep such that B
is a partition of unity in 9B, each A, is a finite partition of unity in 2, and v — T'(u x xa) X xb is a Riesz
homomorphism whenever b € B and a € Ay.
proof (a) Write B* for the set of potential members of B; that is, the set of those b € B such that
there is a finite partition of unity A C 2 such that Ty, is a Riesz homomorphism for every a € A, writing
Tup(u) = T'(u x xa) x xb. If T can show that B* is order-dense in B, this will suffice, since there will then
be a partition of unity B C B*.

(b) So let by be any non-zero member of B; I seek a non-zero member of B* included in by. Of course
there is a non-zero by C by with ¥b; < oo. Let v > 0 be such that by = by n [T(x1) < ~] is non-zero. Define
w:2A — [0, 00 by setting pa = sz T(xa) for every a € 2. Then y is countably additive, because x, T and [
are all additive and sequentially order-continuous (using 375A). Set N' = {a : pa = 0}; then N is a o-ideal
of A, and (€, 1) is a totally finite measure algebra, where € = 20/ and jia® = pa for every a € 2 (just as
in 321H).

(c) We have a function ¢ from € to the principal ideal B, defined by saying that ¢a® = by n [T (xa) > 0]
for every a € 2. P If ay, az € A are such that aj = a3 in €, this means that a1 A az € N; now

[T(xa1) > 0] A [T(xaz) > 0] € [|IT(xa1) = T(xaz)| > 0]
< [T(Ixar = xaz|) > 0] = [Tx(a1 & ag) > 0]
is disjoint from by because be Tx(a1 & az) = 0. Accordingly be N [T (xa1) > 0] = b2 n[T(xaz) > 0] and we
can take this common value for ¢(a}) = ¢(a3). Q
(d) Now ¢ is a o-subhomomorphism. P (i) For any a;, as € 2 we have
[Tx(a1vaz) > 0] = [T'(xa1) > 0] u [T(xaz) > 0]
because
T'(xa1) VT(xaz) < Tx(a1vaz) < T(xa1) + T(xaz).

So ¢(c1Uca) = ¢(c1) Ud(ce) for all ¢, ca € €. (ii) If (¢, )nen is a non-increasing sequence in € with infimum
0, choose a,, € A such that a?, = ¢, for each n, and set a,, = inf;<,, a; \ inf;en a; for each n; then a;, = ¢, so
@d(cn) = [T (xan) > 0] for each n, while (G, )nen is non-increasing and inf, ey @, = 0. 2 Suppose, if possible,
that b' = infuen @(cn) # 0; set € = 10, Then (b N [T(xan) > 0]) > 2¢ for every n € N. For each n,
take v, > 0 such that v(bo N [T(x@n) > an]) > €. Then u = sup,,cy no, ' Xan, is defined in L°(A) (because
sup,en [nanXan > k] C @y, if k > max;<,, ia; ', so infren sup,,cy [na;x@, > k] = 0). But now
D(be n[Tu > n]) > v(ba 0 [T(xan) > an]) > €

for every n, so inf, ey [Tu > n] # 0, which is impossible. X Thus inf,en ¢(c,) = 0; as {¢p)nen is arbitrary,
¢ is a o-subhomomorphism. Q

(e) By 375, there are a non-zero b € By, and a finite partition of unity C' C € such that d — bn¢(dnc)
is a ring homomorphism for every ¢ € C. There is a partition of unity A C 2, of the same size as C, such
that C' = {a* : a € A}. Now T, is a Riesz homomorphism for every a € A. P It is surely a positive linear
operator. If uy, us € LO(A) and uy A ug = 0, set e; = [u; > 0] for each i, so that e; nea = 0. Observe that
U; = SUP, ey Us A NXE€;4, SO that

[Tapu; > 0] = sup,,en [Tas(us Anxe;) > 0] C [Tap(xes) > 0] =bn [Tx(e; na) > 0]
for both i (of course Ty, like T', is sequentially order-continuous). But this means that
[Topur > 0] N [Tapuz > 0] Cbn[Tx(e1na) > 0]n[Tx(e2na) > 0]
=bnglelna’)no(esna®) =0

because a* € C, so d — bn¢(dna®) is a ring homomorphism, while e} ne§ = 0. So Typus A Tepus = 0. As
uy and ug are arbitrary, T, is a Riesz homomorphism (352G(iv)). Q

(f) Thus b € B*. As by is arbitrary, B* is order-dense, and we’re home.
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375K Corollary Let 2 be a Dedekind o-complete Boolean algebra and U a Dedekind complete Riesz
space such that U separates the points of U. If T : LY(2l) — U is a positive linear operator, there is a
sequence (T},)nen of Riesz homomorphisms from L°(2A) to U such that 7 = Y7 (T, in the sense that
Tu = sup,ey > i Tiu for every u > 0 in LO(2A).

proof By 369A, U can be embedded as an order-dense Riesz subspace of LY(8B) for some localizable measure
algebra (B, 7); being Dedekind complete, it is solid in LY(B) (353L). Regard T as an operator from L°(2) to
L°(B), and take B, (Ap)pep as in 375J. Note that L°(B) can be identified with [, 5 L°(B) (364R, 322L).
For each b € B let f;, : A, — N be an injection. If b € B and n € f,[Ay], set Tpp(u) = xb x T'(u x xf; ' (n));
otherwise set Ty, = 0. Then T,,;, : L°(A) — L°(2B}) is a Riesz homomorphism; because Ay is a finite partition
of unity, Z:;O Trpu = xb x Tu for every u € L°(2). But this means that if we set T, u = (T,,pu)peB,

T LO(A) — [len LO(%By) = LO(B)

is a Riesz homomorphism for each n; and T' = " T,,. Of course every T}, is an operator from L°(2) to
U because |T,,u| < T|u| € U for every u € L°(2).

375L Corollary (a) If 2 is a Dedekind o-complete Boolean algebra, (B,7) is a semi-finite measure
algebra, and there is any non-zero positive linear operator from L°(2() to L°(8), then there is a non-trivial
sequentially order-continuous ring homomorphism from 2( to 5.

(b) If (A, ji) and (B, ¥) are homogeneous probability algebras and 7(4) > 7(8), then L™~ (L°(A); L°(B8)) =
{0}.
proof (a) It is probably quickest to look at the proof of 375J: starting from a non-zero positive linear
operator T : LO(2l) — L%(*B), we move to a non-zero o-subhomomorphism ¢ : A/N — 9B and thence to
a non-zero ring homomorphism from 2A/N to B, corresponding to a non-zero ring homomorphism from 2
to 9B, which is sequentially order-continuous because it is dominated by ¢. Alternatively, quoting 375J, we
have a non-zero Riesz homomorphism T} : L9(24) — L°(8), and it is easy to check that a — [T'(xa) > 0] is
a non-zero sequentially order-continuous ring homomorphism.

(b) Use (a) and 331J.

375X Basic exercises (a) Let 2 be a Dedekind complete Boolean algebra and W an Archimedean Riesz
space. Let T : L°(A) — W be a positive linear operator. Show that T is order-continuous iff Ty : 2 — W
is order-continuous.

(b) Let 2 be an atomless Dedekind o-complete Boolean algebra and W a Banach lattice. Show that the
only order-continuous positive linear operator from LY(2() to W is the zero operator.

(c) Let & be a Dedekind complete Boolean algebra and W a Riesz space. Let T : LY(2) — W be an
order-continuous Riesz homomorphism such that T[L°(21)] is order-dense in W. Show that T is surjective.

>(d) Let 2 and B be Boolean algebras and ¢ : 2 — 9B a o-subhomomorphism as defined in 375F. Show
that ¢ is sequentially order-continuous.

>(e) Let A be the measure algebra of Lebesgue measure on [0,1] and & the regular open algebra of
R. (i) Show that there is no non-zero positive linear operator from L°(®) to L°(2A). (Hint: suppose
T : L°(®) — L°(A) were such an operator. Reduce to the case T(x1) < x1. Let (b,)nen enumerate an
order-dense subset of & (316Yo). For each n € N take non-zero b/, C b, such that [ T(xb,) <2772 [T(x1)
and consider Tx(sup,cybl,). See also 375Yf-375Ye.) (ii) Show that there is no non-zero positive linear
operator from L°(2A) to L°(®). (Hint: suppose T : L°(2A) — L°(&) were such an operator. For each n € N
choose a,, € 2, oy, > 0 such that fa, < 27" and if b, C [T'(x1) > 0] then b, n [T (xan) > an] # 0. Consider
Tu where u =Y " noy, ' xan.)

(f) In 375K, show that for any u € L°(2)
inf e sup,, >, [|Tu — 27" Tiu| > 0] = 0.

MEASURE THEORY



375 Notes Kwapien’s theorem 59

>(g) Prove directly, without quoting 375F-375L, that if 2 is a Dedekind o-complete Boolean algebra
then every positive linear functional from L°(2l) to R is a finite sum of Riesz homomorphisms.

(h) Let 2 and B be Dedekind o-complete Boolean algebras, and T : LY(2) — L°(B) a Riesz homo-
morphism. Show that there are a sequentially order-continuous ring homomorphism 7 : 2l — 9 and a
w € LY(W)T such that Tu = w x Tyu for every u € LY(2), where T, : LO(A) — L°(B) is defined as in
364Yg.

375Y Further exercises (a) Let 2l and 8 be Dedekind o-complete Boolean algebras, and T : L°(2() —
L°(B) a linear operator. (i) Show that if T" is order-bounded, then (T'w,,)nen order*-converges to 0 in L°(B)
(definition: 367A) whenever (uy),en order*-converges to 0 in L(2(). (ii) Show that if B is ccc and weakly
(0, 00)-distributive and (Tu,)nen order*-converges to 0 in L°(%B) whenever (u,)nen order*-converges to 0
in L9(21), then T is order-bounded.

(b) Show that the following are equiveridical: (i) there is a purely atomic probability space (X, 3, ) such
that ¥ = PX and p{z} = 0 for every z € X; (ii) there are a set X and a Riesz homomorphism f : RX — R
which is not order-continuous; (iii) there are a Dedekind complete Boolean algebra 2 and a positive linear
operator f : L%(2) — R which is not order-continuous; (iv) there are a Dedekind complete Boolean algebra
2 and a sequentially order-continuous Boolean homomorphism 7 : 24 — {0, 1} which is not order-continuous;
(v) there are a Dedekind complete Riesz space U and a sequentially order-continuous Riesz homomorphism
f: U — R which is not order-continuous; *(vi) there are an atomless Dedekind complete Boolean algebra 2
and a sequentially order-continuous Boolean homomorphism 7 : 2 — {0,1} which is not order-continuous.
(Compare 363S.)

(c) Give an example of an atomless Dedekind o-complete Boolean algebra 2l such that LO(2()~ # {0}.

(d) Let A be the measure algebra of Lebesgue measure on [0, 1], and set L = L(21). Show that there is
a positive linear operator T': L° — L° such that T[L°] is not order-closed in L°.

(e) Show that the following are equiveridical: (i) there is a probability space (X, 3, ) such that ¥ = PX
and p{z} = 0 for every z € X; (ii) there are localizable measure algebras (2, i) and (B, 7) and a positive
linear operator T : LO(2) — L°(B) which is not order-continuous.

(f) Let A, B be Dedekind o-complete Boolean algebras of which B is weakly o-distributive. Let
T : LO°(2A) — L°(B) be a positive linear operator. Show that a — [T(ya) > 0] : 2 — B is a o-subho-
momorphism.

(g) Let A, B be Dedekind o-complete Boolean algebras of which 9B is weakly o-distributive. Let ¢ : 2 —
B be a o-subhomomorphism such that wa # 0 whenever a € 2\ {0}. Show that 2 is weakly o-distributive.

(h) Let 2 and % be Dedekind complete Boolean algebras, and ¢ : 2 — 9B a o-subhomomorphism such
that ¢lg = 1gs. Show that there is a sequentially order-continuous Boolean homomorphism 7 : A — 9B such
that ma C ¢a for every a € .

(i) Let & be the regular open algebra of R, and LY = L°(&). Give an example of a non-zero positive
linear operator T : L% — L° such that there is no non-zero Riesz homomorphism S : L® — L° with S < T.

375Z Problem Let ® be the regular open algebra of R, and L = L%(&). If T : L° — L° is a positive
linear operator, must T[L°] be order-closed?

375 Notes and comments Both this section, and the earlier work on linear operators into L° spaces,
can be regarded as describing different aspects of a single fact: L? spaces are very large. The most explicit
statements of this principle are 368E and 375D: every Archimedean Riesz space can be embedded into a
Dedekind complete L° space, but no such L° space can be properly embedded as an order-dense Riesz
subspace of any other Archimedean Riesz space. Consequently there are many maps into L spaces (368B).
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But by the same token there are few maps out of them (375B, 375Lb), and those which do exist have a
variety of special properties (375A, 375J).

The original version of Kwapien’s theorem (KWAPIEN 73) was the special case of 375J in which 2l is the
Lebesgue measure algebra. The ideas of the proof here are mostly taken from KALTON PECK & ROBERTS
84. I have based my account on the concept of ‘subhomomorphism’ (375F); this seems to be an effective
tool when 9B is weakly (o, 00)-distributive (375Yf), but less useful in other cases. The case B = {0,1},
L°(B) = R is not entirely trivial and is worth working through on its own (375Xg).

Version of 8.4.10

376 Kernel operators

The theory of linear integral equations is in large part the theory of operators T defined from formulae
of the type

(T)y) = [ klz,y)f(z)de

for some function k£ of two variables. I make no attempt to study the general theory here. However, the
concepts developed in this book make it easy to discuss certain aspects of such operators defined between
the ‘function spaces’ of measure theory, meaning spaces of equivalence classes of functions, and indeed allow
us to do some of the work in the abstract theory of Riesz spaces, omitting all formal mention of measures
(376D, 376H, 376P). I give a very brief account of two theorems characterizing kernel operators in the
abstract (376E, 376H), with corollaries to show the form these theorems can take in the ordinary language
of integral kernels (376J, 376N). To give an idea of the kind of results we can hope for in this area, I go a
bit farther with operators with domain L! (376Mb, 376P, 376S).

I take the opportunity to spell out versions of results from §253 in the language of this volume (376B-
376C).

376A Kernel operators To give an idea of where this section is going, I will try to describe the central
idea in a relatively concrete special case. Let (X, X, u) and (Y, T,v) be o-finite measure spaces; you can
take them both to be [0, 1] with Lebesgue measure if you like. Let A be the product measure on X x Y.
If k € LY(N), then [k(x,y)dz is defined for almost every y, by Fubini’s theorem; so if f € £°°(u) then
g(y) = [k(z,y)f(x)dz is defined for almost every y. Also

J 9wy = [ k(x,y) f(x)dzdy

is defined, because (z,y) — k(z,y)f(x) is A-virtually measurable, defined A-a.e. and is dominated by a
multiple of the integrable function k. Thus k defines a function from £%°(u) to £!(v). Changing f on a set
of measure 0 will not change g, so we can think of this as an operator from L (1) to £1(v); and of course we
can move immediately to the equivalence class of g in L*(v), so getting an operator T}, from L> (1) to L' (v).
This operator is plainly linear; also it is easy to check that +7}, < T}y, so that T}, € L™ (L>(u); LY(v)), and
that ||T%|| < [|k|. Moreover, changing k on a A-negligible set does not change T}, so that in fact we can
speak of T,, for any w € L*()).

I think it is obvious, even before investigating them, that operators representable in this way will be
important. We can immediately ask what their properties will be and whether there is any straightforward
way of recognising them. We can look at the properties of the map w + T, : LY(X) — L~ (L% (u); L*(v)).
And we can ask what happens when L>(u) and L'(v) are replaced by other function spaces, defined by
extended Fatou norms or otherwise. Theorems 376E and 376H are answers to questions of this kind.

It turns out that the formula g(y) = [ k(z,y)f(z)dz gives rise to a variety of technical problems, and
it is much easier to characterize T'u in terms of its action on the dual. In the language of the special case
above, if h € £L>°(v), then we shall have

[ Bz y) f(@)h(y)d(z,y) = [ g(y)h(y)dy:

since g* € L!(v) is entirely determined by the integrals [ g(y)h(y)dy as h runs over £L>°(v), we can define
the operator T' in terms of the functional (f,h) — [ k(z,y)f(x)h(y)d(z,y). This enables us to extend the
results from the case of o-finite spaces to general strictly localizable spaces; perhaps more to the point in the
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present context, it gives them natural expressions in terms of function spaces defined from measure algebras
rather than measure spaces, as in 376E.

Before going farther along this road, however, I give a couple of results relating the theorems of §253 to
the methods of this volume.

376B The canonical map L° x L° — L°: Proposition Let (2, i) and (B, 7) be semi-finite measure
algebras, and (€, \) their localizable measure algebra free product (325E). Then we have a bilinear operator
(u,v) »u®ov: LO(A) x LO(B) — LY(€) with the following properties.

(a) For any u € LO(21), v € L9(B) and « € R,

[udxls >a]=[u>a]®1ly, [xla®v>a]=1yQ [v>a]

where for a € 2, b € B I write a ® b for the corresponding member of 2A ® B (315N), identified with a
subalgebra of € (325Dc).

(b)(i) For any v € L°(A)*, the map v — u ® v : L°(B) — L°(€) is an order-continuous multiplicative
Riesz homomorphism.

(ii) For any v € L9(B)*, the map u — u® v : LO(A) — L°(€) is an order-continuous multiplicative

Riesz homomorphism.

(c) In particular, |u ® v| = |u| ® |v| for all u € LO(A) and v € LO(B).

(d) For any u € L))" and v € L°(B)*, [u®@v > 0] = [u > 0] ® [v > 0].

proof The canonical maps ¢ — a ® 1y, b — 1lg ® b from %A, B to € are order-continuous Boolean
homomorphisms (325Da), so induce order-continuous multiplicative Riesz homomorphisms from L°(2() and
LO°(B) to L°(€) (364P); write @, v for the images of u € LO(2A), v € L°(B). Observe that |i| = |ul|™,
[8] = |v]™ and (x1g)™~ = (x1s)~ = xle. Now set u ® v = @ x 9. The properties listed in (a)-(c) are just a
matter of putting the definition in 364Pa together with the fact that L°(¢) is an f-algebra (364D). As for
[u®wv > 0] =[x o> 0], this is (for non-negative u, v) just

[a>0]n]o>0]=(Ju>0]®1ls)n(la® [o>0]) = [u>0]® v > 0].

376C For L' spaces we have a similar result, with additions corresponding to the Banach lattice struc-
tures of the three spaces.

Theorem Let (2, i) and (9B, 7) be semi-finite measure algebras with localizable measure algebra free product
(€, A). _
(a) Ifue L, =L'(A g) and v € L, = L'(B, ) then u®v € L} = L*(¢, A) and

fu@v = fufv, lu@vllr = [lul[1|lv]1

(b) Let W be a Banach space and ¢ : L}i x LY — W a bounded bilinear operator. Then there is a
unique bounded linear operator T : L} — W such that T(u ® v) = ¢(u,v) for all u € L}, and v € L}, and
7| = (¢l
| |(|c) SHup”pose7 in (b), that W is a Banach lattice. Then
(i) T is positive iff ¢(u,v) > 0 for all u, v > 0;
(ii) T is a Riesz homomorphism iff u +— ¢(u,vo) : L, = W and v — ¢(ug,v) : L}
homomorphisms for all vg > 0 in L}; and ug > 0 in L}L.

proof (a) I refer to the proof of 325D. Let (X, %, 1) and (Y, T, v) be the Stone spaces of (2, i) and (B, D)
(321K), so that (€, \) can be identified with the measure algebra of the c.l.d. product measure A on X x Y
(part (a) of the proof of 325D), and L}, L}, Li can be identified with L'(u), L' (v) and L'(X) (365B). Now
if f € £%pu) and g € LO(v) then f® g € L°()\) (253Cb), and it is easy to check that (f ® g)* € L°()\)
corresponds to f* ® g° as defined in 376B. (Look first at the cases in which one of f, g is a constant function
with value 1.) By 253E, we have a canonical map (f*,¢°) — (f ® g)* from L'(u) x L*(v) to L()\), with
Jf®g=[f[g(253D); so that if u € L}, and v € L}, we must have u ® v € L}, with [u®v = [u [v.
As in 253E, it follows that ||ju ® v||1 = |Jull1]|v]1.

— W are Riesz

(b) In view of the situation described in (a) above, this is now just a translation of the same result about
LY(u), L'(v) and L'()\), which is Theorem 253F.
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(c) Identifying the algebraic free product 21 ® B with its canonical image in € (325Dc), I write (A ® B)7
for {c:c € A®B, Ac < 00}, so that (A ® B)f is a subring of €. Recall that any member of A @ B is
expressible as sup;,, a; ® b; where ao, ... ,a, are disjoint (3150a); evidently this will belong to (2 @ B)f
iff fia; - Ub; is finite for every i.

The next fact to lift from previous theorems is in part (e) of the proof of 253F: the linear span M of
{x(@a®b):a €W, be B} is norm-dense in L. Of course M can also be regarded as the linear span of
{xc:ce€ (ARB)F}, or S(ARB)f. (Strictly speaking, this last remark relies on 361J; the identity map from
(2l ® B)f to € induces an injective Riesz homomorphism from S(2 ® B)7 into S(¢) C L°(€). To see that
xc € M for every ¢ € (A®B)/, we need to know that ¢ can be expressed as a disjoint union of members of
2A ® B, as noted above.)

(i) If T is positive then of course ¢(u,v) = T(u ® v) > 0 whenever u, v > 0, since u @ v > 0. On
the other hand, if ¢ is non-negative on U™ x V¥, then, in particular, T'x(a ® b) = ¢(xa, xb) > 0 whenever
fia-vb < oo. Consequently T'(xc) > 0 for every ¢ € (A2B)7 and Tw > 0 whenever w > 0in M = S(AB)7,
as in 361Ga.

Now this means that T|w| > 0 whenever w € M. But as M is norm-dense in L}, w +— T'|w| is continuous
and W is closed, it follows that T|w| > 0 for every w € L/l\, that is, that T is positive.

(ii) If T is a Riesz homomorphism then of course u — ¢(u,vy) = T(u®wvp) and v — ¢(ug, v) = T (upRv)
are Riesz homomorphisms for vg, ug > 0. On the other hand, if all these maps are Riesz homomorphisms,
then, in particular,

Tx(a®b) ANTx(a' ®b') = ¢(xa, xb) A d(xa’, xb')
< d(xa, xb+ xb') A d(xa’, xb + xb")
= ¢(xa A xa',xb+ xb') =0

whenever a, a’ € A, b, ' € B and ana’ = 0. Similarly, Tx(a ® b) ATx(a’ @) = 0if bnb’ = 0. But this
means that Txc A Txc = 0 whenever ¢, ¢ € (A® B)f and cnc = 0. P Express ¢, ¢ as sup;,, a; @ b;,
sup,<,, @ ® b; where a;, aj, b;, b; all have finite measure. Now if i < m, j < n, (a;naj) ® (b; nb}) =
(ai®b;) N (a;@b’;) = 0, so one of a; N a’j, b; Nb; must be zero, and in either case T'x(a; ®@b;) AT'x(a;@b}) = 0.
Accordingly

m

Txe ATxc < () Tx(ai ®b;)) A (Y Tx(a) x b))
i=0 §=0

<N Tx(a; @ bi) ATx(d; @ b)) =0,
i=0 j=0

using 352F (a-ii) for the second inequality. Q
This implies that T|M must be a Riesz homomorphism (361Gc), that is, T|w| = |Tw| for all w € M.
Again because M is dense in L}, T|w| = [Tw| for every w € L, and T is a Riesz homomorphism.

376D Abstract integral operators: Definition The following concept will be used repeatedly in
the theorems below; it is perhaps worth giving it a name. Let U be a Riesz space and V a Dedekind
complete Riesz space, so that L*(U;V) is a Dedekind complete Riesz space (355H). If f € U* and v € V
write Pr,u = f(u)v for each v € U; then Py, € L*(U;V). P If f > 0in U™ and v > 0 in V* then
Py, is a positive linear operator from U to V which is order-continuous because if A C U is non-empty,
downwards-directed and has infimum 0, then (as V' is Archimedean)

infueA va (U) = infueA f(u)v =0.

Of course (f,g) — Pyg4 is bilinear, so Py, € L*(U; V) for every f € U*, v € V. Q Now I call a linear
operator from U to V an abstract integral operator if it is in the band in L*(U;V’) generated by
{Pg,: feU*,veV}

The first result describes these operators when U, V are expressed as subspaces of L°(2l), L°(B) for
measure algebras 2, B and V is perfect.
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376E Theorem Let (2, 1) and (B, 7) be semi-finite measure algebras, with localizable measure algebra
free product (€, \), and U C L°(2A), V C L°(B) order-dense Riesz subspaces. Write W for the set of those
w € L°%(€) such that w x (u ® v) is integrable for every u € U and v € V. Then we have an operator
wi Ty : W — LX(U; V*) defined by setting

Tw(u)(v) = [w x (u®wv)

for every w € W, u € U and v € V. The map w — T, is a Riesz space isomorphism between W and the
band of abstract integral operators in L™ (U; V™).

proof (a) The first thing to check is that the formula offered does define a member T,,(u) of V* for any
we W and u € U. P Of course T, (u) is a linear operator because [ is linear and ® and x are bilinear. It
belongs to V™ because, writing g(v) = [ |w| x (Ju|®wv), g is a positive linear operator and [T, (u)(v)| < g(|v])
for every v. (I am here using 376Bc to see that |w x (v ® Fv)| = |w| x (Ju| ® |[v]).) Also g € V* because
v |u|l @ v, w — |w] x w' and [ are all order-continuous; so T, (u) also belongs to V*. Q

(b) Next, for any given w € W, the map T, : U — V* is linear (again because ® and x are bilinear). It
is helpful to note that W is a solid linear subspace of L°(€). Now if w > 0 in W, then T, € L*(U;V*). P
Ifu,v>0thenu®v >0, wx (u®wv) >0 and T,(u)(v) > 0; as v is arbitrary, Ty, (u) > 0 whenever u > 0;
as u is arbitrary, T,, is positive. If A C U is non-empty, downwards-directed and has infimum 0, then T3, [A]
is downwards-directed, and for any v € VT

(inf T,,[A])(v) = inf,ea Ty (u)(v) = inf,ea f wXx (uv)=0

because u — u ® v is order-continuous. So inf T,,[A] = 0; as A is arbitrary, Ty, is order-continuous. Q
For general w € W, we now have T, = T+ — Tp,—- € L*(U; V™).

(¢) Ths shows that w +— T, is a map from W to L*(U; V). Running through the formulae once again,
it is linear, positive and order-continuous; this last because, given a non-empty downwards-directed C' C W
with infimum 0, then for any u € UT, v € VT

(infyec Tw)(u)(v) < infy,ec fw X (u®v)=0

(because [ and x are order-continuous); as v is arbitrary, (inf,ec Ty)(u) = 0; as u is arbitrary, inf,,ec Ty =

(d) All this is easy, being nothing but a string of applications of the elementary properties of ®, x
and [. But I think a new idea is needed for the next fact: the map w — T, : W — LX(U;V™) is
a Riesz homomorphism. PP Write © for the set of those d € € such that T,, A T,y = 0 whenever w,
w € WT, J[w>0]cd and [w' >0] Cle\d. (i) If di, do € D, w, w' € W, Jw>0] Cdyudy and
[w > 0] n(dyuds) =0, then set wy = w X xdi, wa = w — wy. In this case

[wi >0] Cdy, [we>0]Cdy,
SO
Ty, ATy =Ty ATy =0, Ty ATy < (Topy ATor) 4+ (T A Tor) = 0.

As w, w' are arbitrary, dyuds € ©. Thus © is closed under u. (ii) The symmetry of the definition of
D means that 1¢\d € D whenever d € D. (iii) Of course 0 € D, just because T}, = 0 if w € W+ and
[w > 0] = 0; so D is a subalgebra of €. (iv) If D C ® is non-empty and upwards-directed, with supremum ¢
in €, and if w, w’ € W are such that [w > 0] C ¢, [w’ > 0] nc¢ = 0, then consider {w x xd : d € D}. This is
upwards-directed, with supremum w; so T, = supge p Twxyd, because the map g — Ty, is order-continuous.
Also Tyxya ATy = 0 for every d € D, so T,, N T,y = 0. As w, w’ are arbitrary, ¢ € ©; as D is arbitrary,
D is an order-closed subalgebra of €. (v) If a € 2 and w, w’ € W are such that [w > 0] C a ® 1y and
[w' > 0]n(a® lg) =0, then any v € U™ is expressible as u; + us where u; = u x xa, ug = u x x(1g \ a).
Now

Tw(u2)(v) = fw X (ug @ v) = fw X x(a®1ly) X (u®v) X x((lg\a) ®1g) =0
for every v € V, so T, (u2) = 0. Similarly, T, (u1) = 0. But this means that
(To ATy )(u) < Toy(u2) + Ty (ur) = 0.
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As w is arbitrary, Ty, A Ty = 0; as w and w’ are arbitrary, a ® 1y € ©. (vi) Now suppose that b € B and
that w, w’ € W are such that [w > 0] C lg®b and [w’ > 0[N (ly®b) =0. Ifu e UT and v € VT then

(Tw AT )(W)(0) < [ x (u®@ (vx x(1s\ b)) + [w' x (u® (v x xb)) = 0.

As u, v are arbitrary, T, A T,y = 0; as w and w’ are arbitrary, 1y ® b € ©. (vii) This means that D is
an order-closed subalgebra of € including 20 ® 9B, and is therefore the whole of € (325D (c-ii)). (viii) Now
take any w, w’ € W such that w A w’ = 0, and consider ¢ = Jw > 0]. Then [w’ > 0] C 1¢\ ¢ and ¢ € D, so
T A Ty = 0. This is what we need to be sure that w — T, is a Riesz homomorphism (352G). Q

(e) The map w +— T, is injective. P (i) If w > 0 in W, then consider
A={a:ae,Juel, xa<u}, B={b:beB,JveV, xb<wv}
Because U and V are order-dense in L°(2) and L°(B) respectively, A and B are order-dense in 2 and B.

Also both are upwards-directed. So sup,c4epa ®b = 1¢ and 0 < [w = SUP,ea pep [oq, w- Take a € A,
b € B such that fa®bw > 0; then there are u € U, v € V such that ya < u and xb < v, so that

Ty (u)(v) > fa®bw >0

and Ty, > 0. (ii) For general non-zero w € W, we now have |T,| = Tj,,| > 0so T3, # 0. Q
Thus w +— T, is an order-continuous injective Riesz homomorphism.

(f) Write W for {T,, : w € W}, so that W is a Riesz subspace of L*(U;V*) isomorphic to W, and
W for the band it generates in L*(U;V*). Then W is order-dense in W. P Suppose that S > 0 in
W = W+t (353Ba). Then S ¢ W+, so there is a w € W such that S AT, > 0. Set w; = w A yle. Then
W = Sup,,cy W A nwy, s0 Ty, = sup,en Tw ATy, and R =S ATy, > 0.

Set Uy = U N LY(2A, ji). Because U is an order-dense Riesz subspace of L°(21), Uy is an order-dense Riesz
subspace of L}, = L'(2, i), therefore also norm-dense. Similarly V; = V' N L'(%B, 7) is a norm-dense Riesz
subspace of LL = L'(B, 7). Define ¢o : Uy x Vi — R by setting ¢o(u,v) = R(u)(v) for u € Uy and v € V.
Then ¢ is bilinear, and

0(us0)| = |R))| < R@I(ol) < Rlfu(o]) < T, Gul) o)
= [wxuioeh < [ ful@lel = fullol:

for all u € Uy, v € Vi, because 0 < R < Ty, in L*(U;V*). Because Uy, Vi are norm-dense in L}, L}
respectively, ¢g has a unique extension to a continuous bilinear operator ¢ : Lll1 x LL — R. (To reduce this
to standard results on linear operators, think of R as a function from U; to Vi*; since every member of Vj*
has a unique extension to a member of (LL)*, we get a corresponding function Ry : Uy — (LL)* which is
continuous and linear, so has a unique extension to a continuous linear operator R : L}L — (LL)*, and we
set (1, v) = Ra(u)(v).) )

By 376C, there is a unique h € (L;)* = L'(€, A\)* such that h(u ® v) = ¢(u,v) for every u € L, and
v € LY. Because (€, \) is localizable, this h corresponds to a w’ € L>(€) (365Lc), and

fw’ X (u®@v) =h(u®v) = ¢o(u,v) = R(u)(v)
for every u € Uy, v € V1.

Because U, is norm-dense in L, U is dense in (L},)", and similarly VT is dense in (LL)*, so U;” x VT
is dense in (L})* x (LL)™; now ¢ is non-negative on U;” x Vi, so ¢ (being continuous) is non-negative on
(Lp)Tx(Ly)*. By 376Cc, h > 0in (L})* and w’ > 0in L>°(€). In the same way, because ¢o(u,v) < To(u)(v)
for uw € U and v € VT, w’ < w; < w in LO(€), so w’ € W. We have

T (u)(v) = [w' x (u®v) = R(u)(v)

forallu € Uy, v € Vy. Ifu € Uy, then Ty (u) and R(u) are both order-continuous, so must be identical, since
V1 is order-dense in V. This means that T,,» and R agree on U;. But as both are themselves order-continuous
linear operators, and U is order-dense in U, they must be equal.

Thus 0 < T,y < S in L*(U;V*). As S is arbitrary, W is quasi-order-dense in /V[77 therefore order-dense
(353A). Q
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(g) Because w — Ty, : W — W is an injective Riesz homomorphism, we have an inverse map Q :
W — LO(€), setting Q(T),,) = w; this is a Riesz homomorphism, and it is order-continuous because W is
solid in LY(€), so that the embedding W g LO( ) is order-continuous. By 368B, @ has an extension to
an order-continuous Riesz homomorphism Q:W — LO(€). Because Q(S) > 0 whenever S > 0 in W,
Q(S) > 0 whenever S > 0 in W so Q is injective. Now Q(S) € W for every S € W. Pt is enough
to look at non-negative S. In this case, Q(S) must be sup{Q(T,) : w € W, T\, < S} = supC, where
C={w:T, <SS} CW. Take u € UT and v € V*. Then {w x (u®v) : w € C} is upwards-directed,
because C' is, and

SUDP e fw X (u®v) = sup,ec Tw(u)(v) < S(u)(v) < oco.
So Q(S) x (u®v) = sup,eccw x (u®v) belongs to L} (365Df). As u and v are arbitrary, QS)ewW.Q

(h) Of course this means that W =W and Q = Q, that is, that w — Ty : W W is a Riesz space
isomorphism.

(1) T have still to check on the identification of W as the band Z of abstract integral operators in
L*(U;V*). Write Pgg(u) = f(u)g for f e U*, ge V* andu e U.
Set

U# ={u:ue L°A), uxu €L for every u' € U},

v# :{U'UELO(‘B) v x v € LL for every v’ € V}.

From 369C we know that if we set f,,(v') = [uxu' foru € U# and v/ € U, then f, € U* for every u € U#,
and u — f, is an isomorphism between U# and an order-dense Riesz subspace of U*. Similarly, setting
g(v') = [vx v forv e V# and v/ € V, v +— g, is an isomorphism between V# and an order-dense Riesz

subspace of V*.
If u € U# and v € V# then

f(u@v)x(u’@v’):f(uxu) (v x ) fuxu fvxv (u')gy(v")
for every v € U, v' € V,so u®@v € W and Tygy = Py, g, -

Now take f € (U*)T andge (V)*. Set A={u:uecU?, u>0,f, < fland B={v:vecV# v>
0, g, < g}. These are upwards-directed, so C = {u ®v : u € A, v € B} is upwards-directed in L°(€).
Because {f, : u € U} is order-dense in U, f = sup,c4 fu; by 355Ed, f(u') = sup,ca fu(u') for every
u € UT. Similarly, g(v") = sup,ep fo(v') for every v’ € V.

? Suppose, if possible, that C' is not bounded above in L°(¢). Because € and L%(€) are Dedekind
complete,

¢ =1inf,enSup,eca pep [u®@v > n]
must be non-zero (364L(a-i)). Because U and V are order-dense in L°(21), L°(8) respectively,
ly =sup{[v/ > 0] : v/ € U}, 1y =sup{[v/ >0]:v €V},

and there are v’ € U, v' € V' such that ¢n [u’ > 0] ® [/ > 0] # 0, so that [ v’ ® v > 0. But now, for
any n € N,

fW)g@) = sup  fu(u')ge(v')

ucAveEB

= sup /(u®v)x(u'®v’)

uEAVEB

> sup /((u@v) Anxe) x (u' @v')
u€EAvEB

:/ sup  ((u®@wv) Anxe) x (v @)

ueAveB

(because w — [w x (u' ®v’) is order-continuous)
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:/(nxc) x (v ®@v") :n/u'®v',
C

which is impossible. X
Thus C is bounded above in L°(¢), and has a supremum w € L°(¢). If v’ € UT, v' € VT then

/wx(u’®v’): sup /(u@v)x(u’@v’)

u€AveEB

= sup  fu(u)gu(v') = f(u')g(v") = Py (u)(v').
u€AveEB

Thus w € W and
Py, =T, e W CW.

And this is true for any non-negative f € U* and g € V*. Of course it follows that Py, € W for every
feU” geV>;as W is a band, it must include Z.

(j) Finally, 1% C Z. P Since Z = Z++, it is enough to show that Wnzt = {0}. Take any T' > 0 in
W. There are u), € U+, v}, € V+ such that T'(u}))(v}) > 0. So there is a v € V# such that 0 < g, < T(u})
and g,(v)) > 0, that is, [v x v) > 0. Because V is order-dense in L°(B), there is a v} € V such that
0 < v} <o) x x[v> 0], so that

O < f’U X Ui - gv(v:/[) S T(UIO)(vi)

and [v] > 0] € [v > 0].

Now consider the functional u' +— h(u') = T(u')(v}) : U — R. This belongs to (U*)* and h(uj) > 0,
so there is a u € U# such that 0 < f, < h and f,(uj) > 0. This time, fu X uf, > 0 so (because U is
order-dense in L°(2()) there is a v} € U such that h(u}) > 0 and [u} > 0] € Ju > 0].

We can express T as T}, where w € WT. In this case, we have

fw x (uy @vy) =T (u))(v]) = h(u)) >0,

SO

0# [w>0]N[u) @v) > 0] =[w>0]N([u) > 0] [v; >0])
Clw>0]N(u>0]®[v>0])=[w>0Nuxv>0]

and w A (u®v) > 0, so
Tw N Pyg, = Tw N Tuge = wA(u@v) > 0.

Thus T ¢ Z+. Accordingly Wnzt= {0} and Wcztt=2Q
Since we already know that Z C W, this completes the proof.

376F Corollary Let (2, 1) and (B, ) be localizable measure algebras, with localizable measure algebra
free product (€, \). Let U C LO(A), V C L°(B) be perfect order-dense solid linear subspaces, and T': U — V/
a linear operator. Then the following are equiveridical:

(i) T is an abstract integral operator;

(ii) there is a w € LO(€) such that [w x (u® ') is defined and equal to [ Tu x v whenever u € U and
v" € LO(%B) is such that v’ x v is integrable for every v € V.

proof Setting V# = {v' : v/ € L°(B), v x v’ € L! for every v € V}, we know that we can identify V# with
V> and V with (V#)* (369C). So the equivalence of (i) and (ii) is just 376E applied to V# in place of V.

376G Lemma Let U be a Riesz space, V an Archimedean Riesz space, T': U — V a linear operator,
f € (U™)T and e € V. Suppose that 0 < Tu < f(u)e for every u € UT. Then if (u,)nen is a sequence
in U such that lim, o g(u,) = 0 whenever g € U™~ and |g| < f, (Tun)nen order*-converges to 0 in V
(definition: 367A).
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proof Let V. be the solid linear subspace of V' generated by e; then Tu € V, for every u € U. We can identify
V. with an order-dense and norm-dense Riesz subspace of C(X), where X is a compact Hausdorff' space,
with e corresponding to xX (353N). For 2 € X, set g, (u) = (Tu)(x) for every u € U; then 0 < g,(u) < f(u)
for u > 0, so |gz| < f and lim, o0 (T'uy)(z) = 0. As z is arbitrary, (T'u,)nen order*-converges to 0 in C'(X),
by 367K, and therefore in V., because V, is order-dense in C(X) (367E). But V,, regarded as a subspace of
V, is solid, so 367E tells us also that (T'uy,)nen order*-converges to 0 in V.

376H Theorem Let U be a Riesz space and V' a weakly (o, 00)-distributive Dedekind complete Riesz
space (definition: 368N). Suppose that T' € L*(U; V). Then the following are equiveridical:

(i) T is an abstract integral operator;

(i) whenever (u,)nen is an order-bounded sequence in U and lim,, o f(u,) = 0 for every f € U*,
then (T'uy,)nen order*-converges to 0 in V;

(iii) whenever (uy,)nen is an order-bounded sequence in U and lim,,—, f(u,) = 0 for every f € U*, then
(Tup)nen order*-converges to 0 in V.

proof For f € U*, v € V and u € U set Ps,(u) = f(u)v. Write Z C L*(U; V) for the band of abstract
integral operators.

(a)(i)=(iii) Suppose that T € Z7*, and that (u,)nen is an order-bounded sequence in U such that
lim,, o f(un) = 0 for every f € U*. Note that {Py, : f € U*t, v € V*} is upwards-directed, so that
T =sup{T A Py, : f e U*t v eV} (352Va).

Take u* € U™ such that |u,| < u* for every n, and set w = inf, ey sup,,~,, TtUm, which is defined because
|Tun| < Tu* for every n. Now w < (T — Pp,)t(u*) for every f € U*t and v € V*. P Setting Ty = T'A Py,
wo = (T — Pyy) T (u*) we have

Tu, — Thuy, <|T —Ti|(u*) = (T — Pg,) T (u*) = wp

for every n € N, so Tu,, < wg + Tiuy. On the other hand, 0 < Tyu < f(u)v for every u € U, so by 376G
we must have inf,ensup,, >, T1um = 0. Accordingly

w < wo + inf,en SUpP, >y T1Uum = wo. Q

But as inf{(T — Ps,)* : f € U*", v € VT} =0, w < 0. Similarly (or applying the same argument to
(—Un)nen), Sup, ey infpeny Tupn > 0 and (Tuy,)pen order*-converges to zero.

For general T' € Z, this shows that (T u,)nen and (T~ uy)nen both order*-converge to 0, so (T )nen
order*-converges to 0, by 367C(a-iv). As (u,)nen is arbitrary, (iii) is satisfied.

(b) (iii)=-(ii) is trivial.

(c)(ii)=(i) ? Now suppose, if possible, that (ii) is satisfied, but that T ¢ Z. Because L*(U;V) is
Dedekind complete (355H), Z is a projection band (353J), so T is expressible as T + T where T} € Z,
Ty € Z+ and Ty # 0. At least one of 7,7, T}y is non-zero; replacing 7' by —T if need be, we may suppose
that 7,5 > 0.

Because T;, like T, belongs to L*(U; V), its kernel Uy is a band in U, which cannot be the whole of U,
and there is a up > 0 in Ug-. In this case Ty ug > 0; because T, A (Ty + |T1]) = 0, there is a u; € [0, uo)
such that 75 (ug — u1) + (Ty + |T1])(u1) # Ty ug, so that

Tu1 Z T2U1 — |T1|(u1) ﬁ 0
and Tuy # 0. Now this means that the sequence (T'uy,Tuq,...) is not order*-convergent to zero, so there
must be some f € U* such that (f(u1), f(u1),...) does not converge to 0, that is, f(uy) # 0; replacing f
by |f| if necessary, we may suppose that f > 0 and that f(u;) > 0.

By 356H, there is a us such that 0 < us < wu; and g(us) = 0 whenever g € U* and g A f = 0. Because
0 < uz < ug, ug € Ug- and vy = T2+'LL2 > 0. Consider Py,, € Z. Because Ty € Z+, T2Jr A Pry, = 0; set
S = Py, + Ty, so that T;" A S = 0. Then

inf e 0,u) o' (U2 — u) + Su =0, SUPyc[0,us) Tofu — Su = vy
(use 355Ec for the first equality, and then subtract both sides from vg). Now Su > f(u)vg for every u > 0,
so that for any € > 0
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SUPyc[0,us], f (u) >e T;u —Su < (1—¢€)vy
and accordingly

SUPye[0,us], f(u)<e T2+u = Yo,

since the join of these two suprema is surely at least vy, while the second is at most vg. Note also that
V0 = SUDwe(0,us], f(u)<e T2 U = SUPO<ur <usus, f(uy<e 128 = SUPO<ur<uy fur)<e T2
For k € Nset Ay = {u:0<u<uy, f(u) <27%}. We know that
By, = {sup,c; Tou : I C Ay is finite}

is an upwards-directed set with supremum vy for each k. Because V is weakly (o, co)-distributive, we can
find a sequence (v} )ren such that vy, € By, for every k and vy = infrenvj, > 0. For each k let I, € Ay, be a
finite set such that v}, = sup,¢;, Tou.

Because each I}, is finite, we can build a sequence (u )nen in [0, u2] enumerating each in turn, so that
lim,, o f(u),) = 0 (since f(u) < 27F if u € I},) while sup,),~,, Teu!,, > v; for every n (since {u,, : m > n}
always includes some I;,). Now (Tht!,)nen does not order*-converge to 0.

However, lim,, o g(ul,) = 0 for every g € U*. P Express |g| as g1 + g2 where g1 belongs to the band
of U* generated by f and g2 A f = 0 (353Ic). Then ga(u,) = g2(u2) = 0 for every n, by the choice of us.
Also g1 = sup,,cy g1 A nf (352VDb); so, given € > 0, there is an m € N such that (g1 — mf)*(uz) < € and
(g1 —mf)*(ul,) < e for every n € N. But this means that

lg(u)| < lgl(u) < e+ mf(uy)

for every n, and limsup,,_, |g(ul,)| < € as € is arbitrary, lim, o g(u,) = 0. Q

Now, however, part (a) of this proof tells us that (Thu],)nen is order*-convergent to 0, because T € Z,
while (T'ul,)nen is order*-convergent to 0, by hypothesis; so (Tou] Ynen = (Tul, — T1ul, )nen order*-converges
to 0. X

This contradiction shows that every operator satisfying the condition (ii) must be in Z.

3761 The following elementary remark will be useful for the next corollary and also for Theorem 376S.

Lemma Let (X, Y, i) be a o-finite measure space and U an order-dense solid linear subspace of L°(j1). Then
there is a non-decreasing sequence (X,,),en of measurable subsets of X, with union X, such that xX;, € U
for every n € N.

proof Write 2 for the measure algebra of y, so that L°(u) can be identified with L°(2l) (364Ic). A = {a :
a € A\ {0}, xa € U} is order-dense in 2, so includes a partition of unity (a;);c;. Because p is o-finite, 2 is
cce (322G) and I is countable, so we can take I to be a subset of N. Choose E; € ¥ such that E? = a; for
i€lyset E=X\Uc; Bi, Xon = EUU,cq <, Bi for n €N
376J Corollary Let (X, X, 1) and (Y, T, v) be o-finite measure spaces, with product measure A on X xY.
Let U C L°(u), V C L°(v) be perfect order-dense solid linear subspaces, and T : U — V a linear operator.
Write W = {f : f € L%(p), f* € U}, V# = {h: h € LO(v), h* x v € L! for every v € V'}. Then the following
are equiveridical:
(i) T is an abstract integral operator;
(ii) there is a k € L°(\) such that
(@) [|k(x,y)f(x)h(y)|d(z,y) < oo for every f € U, h € V¥,
(B) if f € W and we set g(y) = [ k(z,y)f(x)dx wherever this is defined, then g € £L%(v) and T'f* = g¢*;
(iii) T € L~(U; V) and whenever (uy,)nen is an order-bounded sequence in U™ and lim,, o h(u,,) = 0 for
every h € U*, then (T'u,)nen order*-converges to 0 in V.

Remark I write ‘d(z,y)’ above to indicate integration with respect to the product measure A. Recall that
in the terminology of §251, A\ can be taken to be either the ‘primitive’ or ‘c.l.d.” product measure (251K).

proof The idea is of course to identify L°(u) and LO(v) with L°(2() and L°(8), where (2, i) and (B, ) are
the measure algebras of © and v, so that their localizable measure algebra free product can be identified with
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the measure algebra of A (325E), while V# = {h* : h € V#} can be identified with V>, because (T, T, v) is
localizable (see the last sentence in 369C).

(a)(i)=-(ii) By 376F, there is a w € L°(\) such that [w x (u ® v’) is defined and equal to [Tu x
v’ whenever v € U and v' € V# Express w as k* where k € £%()\). If f € U and h € V# then
S E(z,y) f(x)h(y)|d(z,y) = [ |w x (f* @ h*]| is finite, so (ii-«) is satisfied.

Now take any f € U, and set g(y) = [ k(z,y)f(z)dx whenever this is defined in R. Write F for the set
of those F € T such that yF € V¥, Then for any F' € F, g is defined almost everywhere in F' and g[F' is
v-virtually measurable. P [ k(z,y)f(z)xF(y)d(z,y) is defined in R, so by Fubini’s theorem (252B, 252C)
gr(y) = [ k(x,y) f(x)xF (y)dz is defined for almost every y, and is v-virtually measurable; now g| F = g | F.
Q Next, there is a sequence (Fy,)nen in F with union Y, by 3761, because V is perfect and order-dense, so
V# must also be order-dense in L(v).

For each n € N, there is a measurable set F) C F, Ndom g such that g| F,, is measurable and F,, \ F), is
negligible. Setting G = {J,,cy F}h, G is conegligible and g G is measurable, so g € £L°(v).

If g € L°(v) represents Tw € L°(v), then for any F € F

ng—fTux (xF)* fF

In particular, this is true whenever F' € T and F' C F,,. So g and g agree almost everywhere in F,,, for each
n, and g =, §. Thus g also represents T, as required in (ii-3).

(b)(ii)=(i) Set w = k* in LO()\). If f € U and h € V¥ the hypothesis () tells us that (z,y)
k(x,y)f(x)h(y) is integrable (because it surely belongs to £()\)). By Fubini’s theorem,

[ k@, ) f(@)h(y)d(z,y) = [ gy)h(y)dy

where g(y) = [ k(z,y)f(x)dz for almost every y, so that T'f* = g*, by (8). But this means that, setting

u= f*and v = h*,
fwx(u@v’):fTuxv’;

and this is true for every u € U, v’ € V#.
Thus T satisfies the condition 376F(ii), and is an abstract integral operator.

(b)(i)=(iii) Because V is weakly (o, c0)-distributive (368S), this is covered by 376H(i)=>(iii).

(c)(iii)=-(i) Suppose that T satisfies (iii). The point is that 7" is order-continuous. P? Otherwise,
let A C U be a non-empty downwards-directed set, with infimum 0, such that vy = infyea T (u) > 0.
Let (X,,)nen be a non-decreasing sequence of sets of finite measure covering X, and set a,, = X, for each
n. For each n, infyecau>2""] = 0, so we can find @, € A such that f(a, n[a, >27"]) < 27" Set
Uy, = inf;<,, @; for each n; then (u,)nen is non-increasing and has infimum 0; also, [0, u,] meets A for each
n, so that vg < sup{Tu : 0 < u < u,} for each n. Because V is weakly (o, c0)-distributive, we can find
a sequence (I,)nen of finite sets such that I,, C [0,uy,] for each n and v; = infneN sup,es, (Tu)t > 0.
Enumerating (J,, €N I,, as (u},)nen, as in part (c¢) of the proof of 376H, we see that (u),)nen is order-bounded
and lim,, o f(u},) = 0 for every f € U* (indeed, (u),)nen order*-converges to 0 in U), while (T'u], )nen A% 0
inV. XQ

Similarly, T~ is order-continuous, so 7' € L*(U; V). Accordingly T is an abstract integral operator by
condition (ii) of 376H.

376K As an application of the ideas above, I give a result due to N.Dunford (376N) which was one
of the inspirations underlying the theory. Following the method of ZAANEN 83, I begin with a couple of
elementary lemmas.

Lemma Let U and V be Riesz spaces. Then there is a Riesz space isomorphism T +— T' : L*(U; V*) —
L*(V;U*) defined by the formula

(T"v)(u) = (Tu)(v) for every u e U, v € V.
If we write Pry(u) = f(u)g for f € UX, g € V> and u € U, then Py, € L*(U;V*) and P;, = Pyy in
L*(V;U*). Consequently T is an abstract integral operator iff 7" is.
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proof All the ideas involved have already appeared. For positive T' € L*(U; V' *) the functional (u,v)
(T'w)(v) is bilinear and order-continuous in each variable separately; so (just as in the first part of the proof
of 376E) corresponds to a 7" € L*(V;U*). The map T — T" : L*(U; V)" — L*(V;U*)* is evidently an
additive, order-preserving bijection, so extends to an isomorphism between L*(U;V*) and L*(V;U*) given
by the same formula. I remarked in part (i) of the proof of 376E that every Py, belongs to L*(U; V), and
the identification P}g = P, is just a matter of checking the formulae. Of course it follows at once that the
bands of abstract integral operators must also be matched by the map T +— T".

376L Lemma Let U be a Banach lattice with an order-continuous norm. If w € U™ thereisa g € (UX)™"
such that for every € > 0 there is a 6 > 0 such that ||u|] < e whenever 0 < u < w and g(u) < 4.

proof (a) As remarked in 356D, U* = U~ = U*. Set
A={v:veU and there is an f € (U*)" such that f(u) > 0 whenever 0 < u < |v|}.

Then v' € A whenever |[v'| < |v| € Aand v+ 0" € A for all v, v' € A (if f(u) > 0 whenever 0 < u < |v| and
f'(u) > 0 whenever 0 < u < |v'|, then (f + f)(u) > 0 whenever 0 < u < |v + v'|); moreover, if vg > 0 in U,
there is a v € A such that 0 < v < vy. PP Because U* = U* separates the points of U, there is a ¢ > 0 in
U* such that g(vg) > 0; now by 356H there is a v € ]0,vg] such that g is strictly positive on ]0,v], so that
v € A. Q But this means that A is an order-dense solid linear subspace of U.

(b) In fact w € A. P w = sup B, where B = AN [0, w]. Because B is upwards-directed, w € B (354Ea),
and there is a sequence (u/,),en in B converging to w for the norm. For each n, choose f,, € (U*)" such
that f,(u) > 0 whenever 0 < u < ). Set

N 1
f=>n0 2n(1+||fn||)fn

in U* = U*. Then whenever 0 < u < w there is some n € N such that u A u), > 0, so that f,(u) > 0 and
f(u) > 0. So f witnesses that w € A. Q

(c) Take g € (U*)* such that g(u) > 0 whenever 0 < u < w. This g serves. PP? Otherwise, there
is some € > 0 such that for every n € N we can find a u, € [0,w] with g(u,) < 27" and |lu,|| > €. Set
Vp = SUP;s, Ui then 0 < v, < w, g(v,) < 277 and [jv,|| > € for every n € N. But (v,)nen is non-
decreasing, so v = inf,env, must be non-zero, while 0 < v < w and g(v) = 0; which is impossible. X

Q

Thus we have found an appropriate g.

376M Theorem (a) Let U be a Banach lattice with an order-continuous norm and V' a Dedekind
complete M-space. Then every bounded linear operator from U to V is an abstract integral operator.

(b) Let U be an L-space and V' a Banach lattice with order-continuous norm. Then every bounded linear
operator from U to V' * is an abstract integral operator.

proof (a) By 355Kb and 355C, L*(U;V) = L~(U;V) C B(U;V); but since norm-bounded sets in V are
also order-bounded, {Tu : |u| < ug} is bounded above in V for every T € B(U;V) and ug € U™, and
B(U; V) =L*(U;V).

I repeat ideas from the proof of 376H. (I cannot quote 376H directly as I am not assuming that V is
weakly (o, c0)-distributive.) ? Suppose, if possible, that B(U; V) is not the band Z of abstract integral
operators. In this case there is a 7 > 0 in Z+. Take u; > 0 such that vg = Tu; is non-zero. Let f > 0
in U* be such that for every e > 0 there is a 6 > 0 such that ||u| < e whenever 0 < u < u; and f(u) <4
(376L). Then, just as in part (c) of the proof of 376H,

SUPwe[0,u1],f(w)<5 Tu = vy

for every 6 > 0. But there is a § > 0 such that [|T[/[|ul| < $|lvo| whenever 0 < u < u; and f(u) < §; in
which case || Sup,e(o,u,1, fuy<s Tull < 1{lvo||, which is impossible. X
Thus Z = B(U; V), as required.

(b) Because V has an order-continuous norm, V* = V> = V™~; and the norm of V* is a Fatou norm with
the Levi property (356Da). So B(U;V*) = L*(U;V™*), by 371C. By 376K, this is canonically isomorphic
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to L*(V;U*). Now U* = U* is an M-space (356Pb). By (a), every member of L*(V;U*) is an abstract
integral operator; but the isomorphism between L*(V;U*) and L*(U; V) matches the abstract integral
operators in each space (376K), so every member of B(U; V*) is also an abstract integral operator, as claimed.

376N Corollary: Dunford’s theorem Let (X,3, ) and (Y, T,v) be o-finite measure spaces and
T : L'(u) — LP(v) a bounded linear operator, where 1 < p < oo. Then there is a measurable function
k: X xY — R such that T'f* = g3, where g¢(y) = [ k(z,y)f(x)dz almost everywhere, for every f € £1(p).

proof Set ¢ = £7 if p is finite, 1 if p = co. We can identify LP(v) with V', where V' = L1(v) = LP(v)*
(366Dc, 365Lc) has an order-continuous norm because 1 < ¢ < oco. By 376Mb, T is an abstract integral
operator. By 376F/376J, T is represented by a kernel, as claimed.

3760 Under the right conditions, weakly compact operators are abstract integral operators.

Lemma Let U be a Riesz space, and W a solid linear subspace of U~. If C' C U is relatively compact
for the weak topology T(U, W) (3A5E), then for every g € W and € > 0 there is a u* € U™ such that
g(Ju| —u*)T < e for every u € C.

proof Let W, be the solid linear subspace of W generated by g. Then W, is an Archimedean Riesz space
with order unit, so ng is a band in the L-space W5 =W (356Na), and is therefore an L-space in its own
right (3540). Foru € U, h € W set (Tw)(h) = h(u); then T is an order-continuous Riesz homomomorphism
from U to W (356F).

Now Wy is perfect. I I use 356K. W, is Dedekind complete because it is a solid linear subspace of the
Dedekind complete space U~. W separates the points of W because T[U] does. If A C W, is upwards-
directed and supy,c 4 ¢(h) is finite for every ¢ € W, then A acts on W as a set of bounded linear functionals
which, by the Uniform Boundedness Theorem (3A5Ha), is uniformly bounded; that is, there is some M > 0
such that sup,c 4 [¢(h)| < M||@|| for every ¢ € W, . Because g is the standard order unit of W,, we have
l9ll = |9l(g9) and |p(h)| < M|¢|(g) for every ¢ € W and h € A. In particular,

h(u) < [h(u)| = [(Tu)(h)| < M|Tu|(g) = M(Tu)(g) = Mg(u)
for every h € A and v € UT. But this means that h < Mg for every h € A and A is bounded above in W,,.
Thus all the conditions of 356K are satisfied and W) is perfect. Q

Accordingly T' is continuous for the topologies T;(U, W) and T¢(W <, W), because every element ¢ of
W, corresponds to a member of Wy C W, so 3A5Ec applies.

Now we are supposing that C' is relatively compact for T4(U, W), that is, is included in some compact set
C’; accordingly T'[C"] is compact and T'[C] is relatively compact for T,(W,<, W, <*). Since W is an L-space,
T|[C] is uniformly integrable (356Q); consequently (ignoring the trivial case C' = (}) there are ¢q,... , ¢, €
T|C] such that ||(|¢] — sup;<,, |¢:])T|| < € for every ¢ € T[C] (354Rb), so that (|¢| — sup,<,, |¢:|)*(g) < € for
every ¢ € T[C]. - -

Translating this back into terms of C itself, and recalling that T is a Riesz homomorphism, we see that
there are g, ... ,u, € C such that g(|u| — sup;<,, [u;|)T < € for every u € C. Setting u* = sup,,, |u;| we
have the result. - B

376P Theorem Let U be an L-space and V' a perfect Riesz space. If T': U — V is a linear operator such
that {Tu : v € U, |lu|| < 1} is relatively compact for the weak topology Ts(V, V), then T is an abstract
integral operator.

proof (a) For any g > 0 in V>, M, = sup|,<; 9(|T'u|) is finite. P By 3760, there is a v* € VT such
that g(|Tu| — v*)™ < 1 whenever [jul| < 1; now M, < g(v*) + 1. Q Considering ||u||~'u, we see that
g(|Tu|) < My||u|| for every u € U.

Next, we find that 7' € L~ (U; V). P Take u € UT. Set

B={"o|Tui| :up,... ,up €U, >0 juy=u} CV+.
Then B is upwards-directed. (Cf. 371A.) If g > 0 in V¥,
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vEB

sup 9(v) = sup{d_ g(|Twil) : Y wi = u}
i=0 i=0

n n
< sup{ S My il = 3wy = u} = M, |l
1=0 1=0

is finite. By 356K, B is bounded above in V; and of course any upper bound for B is also an upper bound
for {Tw' : 0 <u < wu}. As u is arbitrary, T is order-bounded. Q
Because U is a Banach lattice with an order-continuous norm, T' € L*(U; V') (355KDb).

(b) Since we can identify L*(U; V) with L*(U; V**), we have an adjoint operator T € L*(V*;U*), as
in 376K. Now if g > 0in V> and (g, )nen is a sequence in [0, g] such that lim,_,, gn(v) = 0 for every v € V,
(T' gn)nen order*-converges to 0 in U*. P For any € > 0, there is a v* € V1 such that g(|Tu| —v*)T < ¢
whenever |lu]| < 1; consequently

HT/gnH = Sup (T'gn)(u) = sup gn(Tu)
lull <1 lull <1

< gn(’U*) + sup gn(lTU| - U*)+
lull<1

< gn(v*) + sup g(|Tul —v)" < gn(v") +e
flull <1
for every n € N. As limy,—, o0 gn(v*) = 0, limsup,,_, . [|779x || < € as € is arbitrary, (||7”gn||)nen — 0. But as
U* is an M-space (356Pb), it follows that (T”g¢,)nen order*-converges to 0. Q

By 368Pc, U* is weakly (o, 00)-distributive. By 376H, T” is an abstract integral operator, so T also is,
by 376K.

376Q Corollary Let (X,%,u) and (Y, T,v) be o-finite measure spaces and T : L'(u) — L'(v) a
weakly compact linear operator. Then there is a function k& : X x Y — R such that T f* = g%, where
97 (y) = [ k(z,y)f(x)dz almost everywhere, for every f € L'(u).

proof This follows from 376P and 376J, just as in 376N.

376R So far T have mentioned actual kernel functions k(x,y) only as a way of giving slightly more
concrete form to the abstract kernels of 376E. But of course they can provide new structures and insights.
I give one result as an example. The following lemma is useful.

Lemma Let (X,%, ) be a measure space, (Y,T,v) a o-finite measure space, and A the c.l.d. product
measure on X X Y. Suppose that k is a A-integrable real-valued function. Then for any € > 0 there is a
finite partition Ey,..., E, of X into measurable sets such that ||k — k1]|1 < €, where

ki(z,y) =

i

115 / k(t,y)dt whenever x € E;, 0 < pE; < 0o
E;

and the integral is defined in R,

= 0 in all other cases.

proof Once again I refer to the proof of 253F: there are sets Hy,..., H, of finite measure in X, sets
Fo, ..., F, of finite measure in Y, and ay, ... ,a, such that ||k — ka|j; < %e, where ky = Z;:o a;X(Hj x Fj).
Let Ey,...,E, be the partition of X generated by {H; : ¢ < r}. Then for any i < n, fE,»xY |k — k1| is
defined and is at most 2fE’iXy |k — ko|. PP If pE; = 0, this is trivial, as both are zero. If uEi = 00, then
again the result is elementary, since both k; and ks are zero on E; X Y. So let us suppose that 0 < pFE; < oo.
In this case | B k(t,y)dt must be defined for almost every y, by Fubini’s theorem. So k; is defined almost
everywhere in F; x Y, and

fEiXY |k o kl' = fy fE1 |k3(957y) - k’l(l‘,y)|dxdy
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Now take some fixed y € Y such that

1
B = R k(t,y)dt

is defined. Then 8 = ki(z,y) for every z € E;. For every x € E;, we must have ky(z,y) = a where
a=3){a;: E; C Hj,y € F;}. But in this case, because sz k(z,y) — fdx =0, we have

S, max(0,k(z,y) — f)dz = [, max(0,5 — k(z,y))dz = %fEi k(z,y) — ki (z,y)|dz.
If5=>a

S, max(0, k(z,y) = B)dz < [, max(0, k(z,y) — a)dz < [ |k(z,y) — ka(,y)|da;
if f <a,

fEi max(0, 3 — k(x,y))dz < fEi max(0, o — k(z, y))dz < fEi \k(z,y) — ko(x,y)|dr;

in either case,

5o (B (@y) = k(2. 9)lde < [, |k(z,y) = ks(2, 9)|de.

This is true for almost every y, so integrating with respect to y we get the result. Q
Now, summing over i, we get

Sl —ka| <2f [k —ko| <e,

as required.

376S Theorem Let (X, X, 1) be a complete locally determined measure space, (Y, T, v) a o-finite measure
space, and \ the c.l.d. product measure on X x Y. Let 7 be an extended Fatou norm on L°(v) and write L
for {g: g € £L°(v), 7'(g°) < oo}, where 7/ is the associate extended Fatou norm of 7 (369H-3691I). Suppose
that k € £LO()\) is such that k x (f ® g) is integrable whenever f € £!(u) and g € £7. Then we have a
corresponding linear operator T': L'(y) — L7 defined by saying that [(T'f*) x g* = [k x (f ® g) whenever
fel(u) and ge L™,

For x € X set k.(y) = k(z,y) whenever this is defined. Then k, € L%(v) for almost every x; set
vy = k3 € LO(v) for such z. In this case x + 7(v,) is measurable and defined and finite almost everywhere,
and ||| = ess sup,, 7(vz)-

Remarks The discussion of extended Fatou norms in §369 regarded them as functionals on spaces of the
form LO(2A). I trust that no-one will be offended if I now speak of an extended Fatou norm on L°(v), with
the associated function spaces L7, L™ C L, taking for granted the identification in 364Ic.
Recall that (f ® g)(z,y) = f(x)g(y) for € dom f and y € dom g (253B).
By ‘ess sup,, 7(v;)’ I mean
inf{M : M >0, {z : v, is defined and 7(v,) < M} is conegligible}
(see 243D).

proof (a) To see that the formula (f,g) — [k X (f ® g) gives rise to an operator in L*(U; (L7)%), it is
perhaps quickest to repeat the argument of parts (a) and (b) of the proof of 376E. (We are not quite in
a position to quote 376E, as stated, because the localizable measure algebra free product there might be
strictly larger than the measure algebra of \; see 325B.) The first step, of course, is to note that changing
f or g on a negligible set does not affect the integral f k x (f ® g), so that we have a bilinear functional on
L' x L™: and the other essential element is the fact that the maps f* — (fexY), g — (xX ®g)* are
order-continuous (put 325A and 364Pc together).

By 369K, we can identify (L™ )* with L7, so that T becomes an operator in L*(U; L7). Note that it
must be norm-bounded (355C).

(b) By 3761, there is a non-decreasing sequence (Y,,)nen of measurable sets in Y, covering Y, such that
XY, € L™ for every n. Set Xo = {z: 2 € X, k, € L°(v)}. Then X is conegligible in X. P Let E € ¥ be
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any set of finite measure. Then for any n € N, k x (yE ® xY,,) is integrable, that is, fEXyn k is defined and
finite; so by Fubini’s theorem fYn k, is defined and finite for almost every = € E. Consequently, for almost
every x € E, ky x XY, € L0(v) for every n € N, that is, k, € £0(v), that is, z € Xo.

Thus F\ Xy is negligible for every set E of finite measure. Because p is complete and locally determined,
Xy is conegligible. Q

This means that v, and 7(v,) are defined for almost every x.

(c) 7(vz) < ||T for almost every z. I Take any E € ¥ of finite measure, and n € N. Then k x x(E xY},)
is integrable. For each r € N, there is a finite partition Eyo, ..., E;. () of E into measurable sets such that
Joxy, [k — kD] <277, where

k() (x,y) = u%/ k(t,y)dt whenever y € Y, x € Ep;, pEp; >0
K ET’i

and the integral is defined in R

= 0 otherwise

(376R). Now k(") also is integrable over E x Y;,, so kD e LO(v) for almost every x € E, writing 3 (y) =
k() (z,y), and we can speak of vy) = (k'g(f))‘ for almost every x. Note that k;r) = kg) whenever z, 2’ belong
to the same E,;.

If uE,; > 0, then va(f> must be defined for every z € E,;. If v/ € L™ is represented by g € £™ then

Er,-/L'XY,L
= pky; / k") (2, y)g(y)dy = pE,; / ol x o'

for any x € E,;. But this means that
uEMf o x o' = fT(XE;z) x v x xYy2

!
for every v’ € L™ | so
1

(r) _ . . (r) 1 -
o) = S TER) % Y, ) < T B = T

for every x € E,;. This is true whenever pFE,; > 0, so in fact T(vg(f)) < ||T|| for almost every x € E.
Because Y oy [pyy |k — k(| < 0o, we must have k(z,y) = lim, o k") (z,7) for almost every (z,y) €
E xY,. Consequently, for almost every = € E, k(z,y) = lim,_, o k") (z,y) for almost every y € Y;,, that is,

<vg(cr))r€N order*-converges to v, x xY,* (in L°(v)) for almost every € E. But this means that, for almost
every x € F,

T(vp X xY?) < Hminf, e 7(v8) < ||T|
(369Mc). Now
T(Uac) = limy, o0 T(Uac X ny;) < ”TH

for almost every = € E.
As in (b), this implies (since FE is arbitrary) that 7(v,) < ||T|| for almost every z € X. Q

(d) I now show that x — 7(v;) is measurable. I Take v € [0, 00[ and set A = {z:z € Xo, 7(vz) < 7}
Suppose that uF < co. Let G be a measurable envelope of ANE (132Ee). Set k(z,y) = k(z,y) when z € G
and (z,y) € domk, 0 otherwise. If f € £1(u) and g € £, then

[k y) f@gw)de,y) = [, kay)f(@)ay)dy) = [, f@) ],k y)e(y)dydz

is defined.
Take any g € £7. For # € X, set h(z) = [ |k(z,y)g(y)|dy. Then h is finite almost everywhere and
measurable. For x € ANE,
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[ k@, v)gW)ldy = [ vz x g°| <77'(g°).
So the measurable set G/ = {x : h(xz) < v7'(¢*)} includes AN E, and u(G \ G') = 0. Consequently

|| k(. y) f(2)g(y)d(z.y)| < [, 1f(@)|h(z)de < 7] 7 (9°),

and this is true whenever f € £1(u).
Now we have an operator T : L*(u) — L™ defined by the formula

f(Tf') x g° :fl::x (f ®g) when f € LY(v) and g € L7,

and the formula just above tells us that | [ Tu x v/| < y||ull17/(v/) for every u € L' (v) and v’ € L™'; that is,
7(Tu) < y|lul|y for every u € L(p); that is, |T|| < ~. But now (c) tells us that 7(#,) < 7 for almost every
x € X, where 0, is the equivalence class of y l;:(x,y), that is, 0, = v, for x € GN X,, 0 for x € X \ G.
So 7(v,) < v for almost every « € G, and G \ A is negligible. But this means that A N E is measurable. As
E is arbitrary, A is measurable; as v is arbitrary,  — 7(v,) is measurable. Q

(e) Finally, the ideas in (d) show that ||T'|| < ess sup, 7(v;). P Set M = ess sup, 7(v;). If f € LY(p)
and g € LT', then

J k(. y) f@)g()lde,y) < [ 1f@)r(v)r (g*)de < M| fllim'(9°);
as g is arbitrary, 7(T'f*) < M||f]]1; as f is arbitrary, |T|| < M. Q

376X Basic exercises >(a) Let p be Lebesgue measure on R. Let h be a u-integrable real-valued
function with ||h||; <1, and set k(x,y) = h(y —z) whenever this is defined. Show that if f is in either £!(u)
or £>°(u) then g(y) = [ k(z,y)f(z)dx is defined for almost every y € R, and that this formula gives rise to
an operator T' € T, as defined in 373Ab. (Hint: 255H.)

(b) Let (2, 1) and (B, ) be semi-finite measure algebras with localizable measure algebra free product
(€, )), and take p € [1,00]. Show that if u € LP(AU, ) and v € LP(B,7) then u ® v € LP(€, \) and
lu@vllp = [[ullpllvllp-

>(c) Let U, V, W be Riesz spaces, of which V' and W are Dedekind complete, and suppose that
T el*(U;V) and S € L*(V;W). Show that if either S or T is an abstract integral operator, so is ST

(d) Let h be a Lebesgue integrable function on R, and f a square-integrable function. Suppose that
(fr)nen is a sequence of measurable functions such that (@) |f,| < f for every n (8) limy, o0 [, fn = 0 for
every measurable set E of finite measure. Show that lim,, ... (h x f,,)(y) = 0 for almost every y € R, where
h x f, is the convolution of h and f,. (Hint: 376Xa, 376H.)

(e) Let U and V be Riesz spaces, of which V is Dedekind complete. Suppose that W C U™ is a solid
linear subspace, and that T belongs to the band in L™~ (U; V') generated by operators of the form u — f(u)v,
where f € W and v € V. Show that whenever (u,)nen is an order-bounded sequence in U such that
lim,, o f(u,) = 0 for every f € W, then (Tuy)nen order*-converges to 0 in V.

(f) Let (2, 1) be a semi-finite measure algebra and U C L° = L°(2l) an order-dense Riesz subspace
such that U™ separates the points of U. Let (un)nen be an order-bounded sequence in U. Show that the
following are equiveridical: (i) limy 00 f(|un|) = 0 for every f € U*; (ii) (un)nen — 0 for the topology of
convergence in measure on L. (Hint: by 367T, condition (ii) is intrinsic to U, so we can replace (2, 1) by
a localizable algebra and use the representation in 369D.)

(g) Let U be a Banach lattice with an order-continuous norm, and V' a weakly (o, 0co)-distributive Riesz
space. Show that for T € L™ (U; V) the following are equiveridical: (i) T belongs to the band in L™ (U; V)
generated by operators of the form u — f(u)v where f € U™, v € V; (ii) (T'upn)nen order*-converges to 0
in V whenever (u,)nen is an order-bounded sequence in U™ which is norm-convergent to 0; (iii) (Tup)nen
order*-converges to 0 in V' whenever (u,)nen is an order-bounded sequence in U which is weakly convergent
to 0.
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(h) Let (X,X,u) and (Y, T,v) be o-finite measure spaces, with product measure A on X x Y, and
measure algebras (2, i), (B, 7). Suppose that k € £°(X). Show that the following are equiveridical: (i)(«)
if f € LY(u) then g¢(y) = [ k(z,y)f(x)dz is defined for almost every y and gy € L£'(v) () there is an
operator T € T, defined by setting Tf* = g} for every f € L'(n); (ii) [[k(z,y)|dy < 1 for almost every
ze X, [|k(z,y)|de <1 for almost every y € Y.

>(i)(i) Show that there is a compact linear operator from ¢? to itself which is not in L™ (¢2;¢2). (Hint:
start from the operator S of 371Ye.) (ii) Show that the identity operator on ¢? is an abstract integral
operator.

>(j) Let u be Lebesgue measure on [0,1]. (i) Give an example of a measurable function % : [0,1]? — R
such that, for any f € £2(u), g7(y) = [ k(z,y)f(z)dz is defined for every y and | g¢||2 = || f||2, but & is not
integrable, so the linear isometry on L? = L?(u) defined by k does not belong to L~(L?; L?). (ii) Show that
the identity operator on L? is not an abstract integral operator.

(k) Let (X, %, ) be a o-finite measure space and (Y, T, v) a complete locally determined measure space.
Let U C L°u), V C L°(v) be solid linear subspaces, of which V is order-dense; write V# = {v : v €
LO(v), v x v is integrable for every o' € V}, W= {f: f € L°(v), f* € U}, V={g:9 € L), g* € V},
V# = {h : h € LO%v), h* € V#}. Let A be the c.l.d. product measure on X x Y, and k € £%(\) a
function such that k& x (f ® g) is integrable for whenever f € U and g € V. (i) Show that for any f € U,
he(y) = [ k(z,y)f(z)dz is defined for almost every y € Y, and that hy € V#. (ii) Show that we have a map
T € LX(U; V#) defined either by writing T f* = hy for every f € U or by writing [(Tf*) xg* = [kx(f®g)
for every f € Wand g € V.

(1) Let (X, %, p), (Y,T,v) and (Z,A, ) be o-finite measure spaces, and U, V, W perfect order-dense
solid linear subspaces of L°(u), L°(v) and L°(\) respectively. Suppose that T : U — V and S : V — W
are abstract integral operators corresponding to kernels k; € £°(u x v), ko € LO(v x N), writing u x v for
the (c.l.d. or primitive) product measure on X x Y. Show that ST : U — W is represented by the kernel
k € £L%(u x A) defined by setting k(x, z) = [ ki(z,y)k2(y, z)dy whenever this integral is defined.

(m) Let U be a perfect Riesz space. Show that a set C' C U is relatively compact for T,(U, U*) iff for
every g € (U*)*, € > 0 there is a u* € U such that g(Ju| — u*)*™ < e for every u € C. (Hint: 3760 and the
proof of 356Q.)

>(n) Let p be Lebesgue measure on [0, 1], and v counting measure on [0,1]. Set k(z,y) =1if z =y, 0
otherwise. Show that 376S fails in this context (with, e.g., 7 = || ||oc)-

(o) Suppose, in 376Xk, that U = L” for some extended Fatou norm on L°(x) and that V = L(v), so
that V# = L>=(v). Set ky(z) = k(z,y) whenever this is defined, w, = ky whenever k, € £°(p). Show that
w, € L™ for almost every y € Y, and that the norm of T in B(L7; L>) is ess sup, 7'(wy). (Hint: do the
case of totally finite Y first.)

376Y Further exercises (a) Let U, V and W be linear spaces (over any field F') and ¢ : U x V. — W
a bilinear operator. Let Wy be the linear subspace of W generated by ¢[U x V]. Show that the following
are equiveridical: (i) for every linear space Z over F' and every bilinear ¢ : U x V — Z, there is a (unique)
linear operator 7' : Wy — Z such that T'¢p = ¢ (ii) whenever ug,... ,u, € U are linearly independent
and vg,...,v, € V are non-zero, y . ,é(u;,v;) # 0 (iii) whenever ug,... ,u, € U are non-zero and
Vg, ... ,vn € V are linearly independent, > " ¢(u;,v;) # 0 (iv) for any Hamel bases (u;)ier, (v;)jes of U
and V, (¢(u;,v;))ier jes is a Hamel basis of Wy (v) for some pair (u;)icr, (vj);jes of Hamel bases of U and
V, {¢(ui,vj))ier,jes is a Hamel basis of W.

(b) Let (A, i), (B, 7) be semi-finite measure algebras, and (€, \) their localizable measure algebra free
product. Show that @ : LO(2) x L°(B) — L°(¢) satisfies the equivalent conditions of 376Ya.

(c) Let (X, %, ) and (Y, T, v) be semi-finite measure spaces and A the c.l.d. product measure on X x Y.
Show that the map (f,g) — f®g: £L%(u) x LO(v) — L°(\) induces a map (u,v) — u®v: LO(u) x LO(v) —
L°()\) possessing all the properties described in 376B and 376Ya, subject to a suitable interpretation of the
formula ® : A x B — €.
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(d) Let (%B,,,, 7w, ) be the measure algebra of {0, 1}** with its usual measure, and (a¢)e<w, @ stochastically
independent (definition: 325Xf) family of elements of measure 1 in B,,. Set U = L?(B,,,i,,) and
V={v:veR¥ {£:v(&) # 0} is countable}. Define T : U — R** by setting Tu () = 2fa£ u— [u for
¢ < wy, u € U. Show that (i) Tu € V for every u € U (ii) (Tun)nen order*-converges to 0 in V' whenever
(Un)nen is a sequence in U such that lim,, . f(u,) = 0 for every f € U* (iii) T ¢ L~ (U; V).

(e) Let U be a Riesz space with the countable sup property (definition: 241Ye) such that U* separates the
points of U, and (u,)nen a sequence in U. Show that the following are equiveridical: (i) limy,— o0 f(vA|uy]|) =
0 for every f € UX, v € UT; (ii) every subsequence of (u,),en has a sub-subsequence which is order*-
convergent to 0.

(f) Let U be an Archimedean Riesz space and 2 a weakly (o, co)-distributive Dedekind complete Boolean
algebra. Suppose that T : U — L° = LY(2) is a linear operator such that (|Tuy,|)nen order*-converges to
0 in L° whenever (up)nen is order-bounded and order*-convergent to 0 in U. Show that T € Ly (U; L°)
(definition: 355G), so that if U has the countable sup property then 7' € L*(U; L°).

(g) Suppose that (Y, T,v) is a probability space in which T = PY and v{y} = 0 for every y € Y. (See
363S.) Take X =Y and let u be counting measure on X; let A be the c.l.d. product measure on X x Y, and
set k(z,y) =1 if x =y, 0 otherwise. Show that we have an operator 7" : L*> () — L°*°(v) defined by setting
Tf = g* whenever f € L>(u) = (*°(X) and g(y) = [ k(z,y)f(z)dz = f(y) for every y € Y. Show that T'
satisfies the conditions (ii) and (iii) of 376J but does not belong to L™ (L (u); L= (v)).

(h) Give an example of an abstract integral operator T' : 2 — L (u), where u is Lebesgue measure on
[0,1], such that (Te,)nen is not order*-convergent in L!(u), where (e,)nen is the standard orthonormal
sequence in £2.

(i) Set k(m,n) = 1/m(n—m~+3) form, n € Z. (i) Show that Yo" k(m,n)? =1land > oo k(m,n)k(m’,n) =
0 for all distinct m, m’ € Z. (Hint: find the Fourier series of 2 — e/(™*2)% and use 282K.) (ii) Show that
there is a norm-preserving linear operator T' from ¢* = ¢*(Z) to itself given by the formula (Tu)(n) =
S k(m,n)u(m). (iii) Show that 72 is the identity operator on ¢?. (iv) Show that T ¢ L~(¢%;¢?).

(Hint: consider > > |k(m,n)|z(m)x(n) where x(n) = 1/4/|n|In|n| for |n| > 2.) (T is a form of the

m,n=—00

Hilbert transform.)

(j) Let U be an L-space and V' a Banach lattice with an order-continuous norm. Let T' € L~(U; V).
Show that the following are equiveridical: (i) T is an abstract integral operator; (ii) T'[C] is norm-compact
in V whenever C is weakly compact in U. (Hint: start with the case in which C is order-bounded, and
remember that it is weakly sequentially compact.)

(k) Let (X,%,u) be a complete locally determined measure space and (Y, T,v), (Z, A, \) two o-finite
measure spaces. Suppose that 7, 0 are extended Fatou norms on L°(v), L°(\) respectively, and that T :
L'(p) — L7 is an abstract integral operator, with corresponding kernel k € £°(u x v), while S € L*(L™; L),
so that ST : L'(;) — L is an abstract integral operator (376Xc); let k € £%(z x \) be the corresponding
kernel. For z € X set v, = kJ when this is defined in L", as in 376S, and similarly take w, = INC; e L’
Show that Sv, = w, for almost every = € X.

376 Notes and comments I leave 376Yb to the exercises because I do not rely on it for any of the work
here, but of course it is an essential aspect of the map ® : LO(A) x L°(B) — L°(€) I discuss in this section.
The conditions in 376Ya are characterizations of the ‘tensor product’ of two linear spaces, a construction of
great importance in abstract linear algebra (and, indeed, in modern applied linear algebra; it is by no means
trivial even in the finite-dimensional case). In particular, note that conditions (ii), (iii) of 376Ya apply to
arbitrary subspaces of U and V if they apply to U and V themselves.

The principal ideas used in 376B-376C have already been set out in §§253 and 325. Here I do little more
than list the references. I remark however that it is quite striking that L!(€, \) should have no fewer than
three universal mapping theorems attached to it (376Cb, 376C(c-i) and 376C(c-ii)).
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The real work of this section begins in 376E. As usual, much of the proof is taken up with relatively
straightforward verifications, as in parts (a) and (b), while part (i) is just a manoeuvre to show that it
doesn’t matter if 2 and B aren’t Dedekind complete, because € is. But I think that parts (d), (f) and (j)
have ideas in them. In particular, part (f) is a kind of application of the Radon-Nikodym theorem (through
the identification of L' (€, \)* with L°°(€)).

I have split 376E from 376H because the former demands the language of measure algebras, while the
latter can be put into the language of pure Riesz space theory. Asking for a weakly (o, co)-distributive space
V in 376H is a way of applying the ideas to V = L? as well as to Banach function spaces. (When V = L°,
indeed, variations on the hypotheses are possible, using 376Yf.) But it is a reminder of one of the directions
in which it is often possible to find generalizations of ideas beginning in measure theory.

The condition ‘lim, . f(u,) = 0 for every f € U’ (376H(ii)) seems natural in this context, and gives
marginally greater generality than some alternatives (because it does the right thing when U* does not
separate the points of U), but it is not the only way of expressing the idea; see 376Xf and 376Ye. Note that
the conditions (i) and (iii) of 376H are significantly different. In 376H(iii) we could easily have |u,| = u* for
every n; for instance, if u, = 2xa, — x1 for some stochastically independent sequence {(a,)nen of elements
of measure 3 in a probability algebra (272Ye).

If you have studied compact linear operators between Banach spaces (definition: 3A5La), you will have
encountered the condition ‘T'u,, — 0 strongly whenever u,, — 0 weakly’. The conditions in 376H and 376J
are of this type. If a sequence (u,)nen in a Riesz space U is order-bounded and order*-convergent to 0,
then lim, o f(u,) = 0 for every f € U* (367Xg). Visibly this latter condition is associated with weak
convergence, and order*-convergence is (in Banach lattices) closely related to norm convergence (367D). In
the context of 376H, an abstract integral operator is one which transforms convergent sequences of a weak
type into convergent sequences of a stronger type. The relationship between the classes of (weakly) compact
operators and abstract integral operators is interesting, but outside the scope of this book; I leave you with
376P-376Q and 376Y, and a pair of elementary examples to guard against extravagant conjecture (376Xi).

3760 belongs to an extensive general theory of weak compactness in perfect Riesz spaces, based on
adaptations of the concept of ‘uniform integrability’. I give the next step in 376Xm. For more information
see FREMLIN 7T4A, chap. 8.

Note that 376Mb and 376P overlap when V* in 376Mb is reflexive — for instance, when V' is an LP space
for some p € |1, 00[ — since then every bounded linear operator from L' to V* must be weakly compact. For
more information on the representation of operators see DUNFORD & SCHWARTZ 57, particularly Table VI
in the notes to Chapter VI.

As soon as we leave formulations in terms of the spaces L°() and their subspaces, and return to the
original conception of a kernel operator in terms of integrating functions against sections of a kernel, we
are necessarily involved in the pathology of Fubini’s theorem for general measure spaces. In general, the
repeated integrals [ k(z,y)dzdy, [[ k(z,y)dydx need not be equal, and something has to give (376Xn). Of
course this particular worry disappears if the spaces are o-finite, as in 376J. In 376S I take the trouble to
offer a more general condition, mostly as a reminder that the techniques developed in Volume 2 do enable
us sometimes to go beyond the o-finite case. Note that this is one of the many contexts in which anything
we can prove about probability spaces will be true of all o-finite spaces; but that we cannot make the next
step, to all strictly localizable spaces.

376S verges on the theory of integration of vector-valued functions, which I don’t wish to enter here;
but it also seems to have a natural place in the context of this chapter. It is of course a special property
of L' spaces. The formula ||T}| = ess sup, 7(k3) shows that ||| = [|T%||; now we know fron 376E that
T\ = |Tx|, so we get a special case of the Chacon-Krengel theorem (371D). Reversing the roles of X and Y,
we find ourselves with an operator from L™ to L> (376Xo), which is the other standard context in which
Tl = ||T)]] (371Xd). I include two exercises on L? spaces (376Xj, 376Yi) designed to emphasize the fact
that B(U;V) is included in L™ (U; V) only in very special cases.

The history of the theory here is even more confusing than that of mathematics in general, because so
many of the ideas were developed in national schools in very imperfect contact with each other. My own
account gives no hint of how this material arose; I ought in particular to note that 376N is one of the oldest
results, coming (essentially) from DUNFORD 1936. For further references, see ZAANEN 83, chap. 13.
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Version of 30.12.09

*377 Function spaces of reduced products

In §328 I introduced ‘reduced products’ of probability algebras. In this section I seek to describe the
function spaces of reduced products as images of subspaces of products of function spaces of the original
algebras. I add a group of universal mapping theorems associated with the constructions of projective and
inductive limits of directed families of probability algebras (377G-377H).

377A Proposition If (2;);cr is a non-empty family of Boolean algebras with simple product 2, then
L>°(2() can be identified, as normed space and f-algebra, with the subspace W, of [];o; L°°(2l;) consisting
of families u = (u;);er such that ||ul|cc = sup;e; ||u;|oo is finite.

proof (a) I begin by noting that W is, in itself, an Archimedean f-algebra and || || is a Riesz norm on
We. P W is a solid linear subspace of [],.; L°°(2l;), so inherits a Riesz space structure (352K, 3521Ia).
Now it is easy to check that e = (x1ly,)icsr is an order unit in Wy, and that |||/« is the corresponding
order-unit norm (354F-354G). Finally, because W is the solid linear subspace of [],.; L>°(2l;) generated
by e, and e is the multiplicative identity of [[,.; L>(2l;), Wy is closed under multiplication, and is an

f-algebra. Q

(b) We have a natural function 6 : 2 — W, defined by saying that 8a = (xa;);cr whenever a = (a;);cs €
2. Clearly 0 is additive and ||fal|s < 1 for every a € 2l; moreover, fa A b = 0 when a, b € 2 are disjoint.
By 363E, we have a corresponding Riesz homomorphism 7" : L™ () — W, of norm at most 1.

(c) In fact |Tw||oo = ||w||oo for every w € L (A). P If w = 0, this is trivial. If w € S(A)\ {0}, express it
as > r o arxa® where (a(®)); <, is a disjoint family of non-zero elements. Expressing each a'®) as (ax;)icr,

Tw = O"F_o CkXki)icl-

There must be a j such that |a;| = ||w||co; now there is an ¢ such that aj; # 0; as {(ar;)k<n is disjoint,
ITwlloo = I1325—0 @k Xkilloo = loj] = [lw]loo-

If now w is any member of L (2l),

[wlleo = sup{[lw’floo s w" € S(A), [w'| < Jwl}
= sup{[|Tw[|oo : w' € S(A), [0’ < Jw]} < [|[Tw]

because T is a Riesz homomorphism. Q
Thus T is norm-preserving, therefore injective.

(d) Next, T is surjective. I Suppose that (u;);c; € W is non-negative, and that € > 0. Let n € N be
such that ne > sup;c; ||t s, and for k < n, i € I set ag; = [u; > ke]. Set w = e> ,_; x({aki)icr). Then
w € L®°(RA) and Tw = (v;);er, where v; = ezzzl Xaki, so that v; < wu; and ||u; — vl < €, for every i € I.
Thus ||[Tw — (u)icrlloo < €.

As (u;)ier and € are arbitrary, T[L>°(2()] N W is norm-dense in WF. But T is an isometry and L>(2l)
is norm-complete, so T[L>(2)] is closed in W, and includes W1 and therefore W ; that is, T' is surjective.
Q

So T is a norm-preserving bijective Riesz homomorphism, that is, a normed Riesz space isomorphism.
Finally, by 353Qd or otherwise, 1" is multiplicative, so is an f-algebra isomorphism.

377B Theorem Let ((2;, fi;)):cs be a non-empty family of probability algebras, and (8, 7) a probability
algebra. Let 2 be the simple product of (2;);cr, and 7 : A — B a Boolean homomorphism such that
vr({ai)ier) < sup;er fia; whenever (a;)ic; € 2. Let Wy be the subspace of [],.; L°(2;) consisting of
families (u;);cr such that infyensup;e; s [|us| > k] = 0.

(a) Wp is a solid linear subspace and a subalgebra of [],.; L°(2;), and there is a unique Riesz homo-
morphism T : Wy — L%(B) such that T((xa;)ic;) = x7({ai)icr) whenever (a;);c; € 2A. Moreover, T is
multiplicative, and [Tu > 0] € 7({Ju; > 0]);er) whenever u = (u;);cs belongs to Wy.

(©) 2008 D. H. Fremlin
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(b) If h : R — R is a continuous function, and we write h for the corresponding maps from L° to itself

for any of the spaces L® = LO(2(;), L° = LO(B) (364H), then (h(u;))icr € Wy and T'((h(w;))ier) = h(Tw)
whenever u = (u;);es belongs to Wy.
proof (a) For u = (u;)icr € [[;c; L°(2:) and k € N, set vy (u) = sup;e; i [Jus| > k]
(i) Wo is a solid linear subspace and subalgebra of the f-algebra [,.; L°(2;). P For k € N and u,
(S Hiel Lo(mi)7
Yk (u) < v (v) whenever |u| < |v],

Yok (v +v) < yr(u) + v (v),

ez (u X v) < (u) + 7 (v)
for all u, v € [];c; L°(A;) and k € N. So Wy is solid, is closed under addition, and is closed under
multiplication. Q

(ii) Let W € Wy be the set of families (u;)icr € [[;c; L™°(:) such that supc; [|uilloo is finite; by
377A, we can identify W, with L (2(). We therefore have a corresponding multiplicative Riesz homomor-
phism S : Woo — L*°(B) such that S((xai)icr) = x7({ai)icr) whenever (a;);c; € 2 (363F); note that
S((xa )ier) = x1s.

(iii) If w = (u;)ier € Weo and k € N, then [Su > k] € m({[u; > k])icr). P Setting a; = Ju; > k], we
have u; x x(1g; \ a;) < kxly, for every i. Set a = (a;);cr. Since S is a multiplicative Riesz homomorphism,

Su x x(1s \ma) = Su x xm({La, \ ai)ier) = S((wi)ier) x S((x(La, \ @i))ier)
= S((ui)icr x (x(1a, \ @i)ier)) = S((ui x x(1a; \ @4))icr)
< S((kxla,)ier) = kxls

and [Su > k] C ma, as claimed. Q

(iv) If u = (u;)ier € W', then sup{Sv : v € W, 0 < v < u} is defined in LO(B). P Set A, =
SWs N [0,u]]. Because Wy, N [0,u] is upwards-directed, so is A. If v = (v;)ier € Wao N [0,u], then
IISU > k]] c ﬂ—(<[[vi > k]]>i61)7 by (111)7 SO

p[Sv > k] < sup;c; fivi > k] < e (w).
Thus 7w > k] < v (u) for every w € A. Since u € Wy, limy 00 v (1) = 0; so 364L(a-ii) tells us that sup 4,
is defined in L°(8). Q
By 355F, there is a Riesz homomorphism T : Wy — L°(B) extending S and such that Tu = A, for every

u € W, By 353Qd, T is multiplicative.

(v) Because T is multiplicative, we can repeat the calculations of (iii), with 7" in place of S, to see that

[Tu> k] € 7({[ui > kl)ier)

whenever u = (u;);e; € Wo; in particular, [Tu > 0] € w({Ju; > 0])ier)-

(vi) To see that T is uniquely defined, let T” : Wy — L°(B) be another Riesz homomorphism agreeing

with 7" on families of the form (xa;);e;. Then T and T” agree on W, = L*°(2l), by the uniqueness guaranteed
in 363Fa, and T" also is multiplicative, by 353Qd once more. As in (v), we therefore have

[Tu>KkJu[T'u > k] € 7({Ju; > k])icr), P([Tu>kJu[T'u > k]) < i (u)

whenever u € Wy and k € N.
Suppose that u € WO+ and € > 0. Then there is a k € N such that v, (u) < e. Set v; = u; A kxly, for each
i, and v = (v;)jer. Then Tv = T'v, so

P[|[Tu—T'u| > 0] < o([Tu—Tv >0Ju[T'u —T'v > 0]) < yo(u—v) =y(u) <e.

As € is arbitrary, Tu = T'u; as u is arbitrary, T = T".

MEASURE THEORY



377C Function spaces of reduced products 81

(b)(i) If € > 0, there is a k € N such that fi;[|u;| > k] < € for every i € I. Now there is an I € N such
that [h(t)| <1 whenever [t| < k. So [|h(u;)| > 1] C [lus| > k] and fi;[|(u;)] > 1] < € for every i € I. As e is
arbitrary, (h(u;))icr € Wo.

the Stone-Weierstrass theorem in the form 281E, there is a polynomial g : R — R such that |g(¢) — h(t)| <€
whenever |t| < k. Setting v; = h(u;), v = g(u;), v = (u;)ier and v' = (v});e1, we have [|v; — v}| > €] C a; for
every i (use 364Ib for a quick check of the calculation). Because T is multiplicative (and T'((x1a;)icr) = Xx13),
Tv' = g(Tu). So

(ii) Again take any € > 0. Let k € N be such that fi;a; < € for every i € I, where a; = [|Ju;| > k]. By

[[Tv — h(Tu)| > 2¢] C [T|v —v'| > €] u[|g(Tu) — h(Tu)| > €]
c m(([lvi — vi| > el)ier) V[|Tul > k]
(using (b))

¢ m({ai)ier)

(see (a-v) above), which has measure at most e. As € is arbitrary, Tv = h(Tu), as claimed.

377C Theorem Let ((2;, fi;))icr be a non-empty family of probability algebras, (8,7) a probability
algebra, and 7 : [[,c; 2 — B a Boolean homomorphism such that vm({a;)icr) < sup,e; fisa; whenever
(ai)ier € [lic; i- Let Wy C [l;c; LP(24) and T : Wy — LO(B) be as in 377B. Suppose either that every
2; is atomless or that there is an ultrafilter F on I such that om({a;)icr) = lim;_, 7 fi;a; whenever (a;);ecr
in JT;c; 2. For 1 < p < oo let W), be the subspace of [],.; L°(2;) consisting of families (u;);es such that
sup;e; ||uillp is finite. Then T[W,] C LP(B,7), and ||Tu||, < sup;c; ||uillp, whenever u = (u;)ier belongs to
W,

proof (a) I should begin by explaining why W; C Wj. All we need to observe is that if u = (u;);c; belongs
to W1, so that v = sup,¢; ||us||1 is finite, then

inszl Supie[ /7/1' [[u; > k]] S ll'lsz]_% = 07

so u € Wy. Of course we now have W, C W, for p > 1, because every (2;, ii;) is a probability algebra.

(b) I start real work on the proof with a note on the case in which every 2; is atomless. Suppose that
this is so, and that we are given a family (a;)icr € [[,c; % and v € QN [0, 1]. Then there is a family (a;)icr
such that a} C a; and fi;a; = yu;a, for every ¢ € I, and

yom((ai)ier) < vr({aj)ier)-

PP For each i € I, we can find a non-decreasing family <ait>te[o,1] in 2A; such that a;1 = a; and f;a; = tia;
for every t € [0,1]. Set b(t) = m({ast)icr) and 5(t) = vb(t) for t € [0, 1]; then 5(s) < S(t) < B(s) +t — s for
0 <s<t<1, because

B(t) — B(s) = vr({ait \ ais)icr) < sup;er fii(ai \ ais) = (t — s) sup;er fliai <t —s.
Let n > 1 be such that % < e and m = ny is an integer, and set a; = B() — B(L) for i < n; then
Yiso i = B(1) = wb(1).
Consider the possible values of v = ), . jc o for sets K € [n]™. (I am thinking of n as the set {0,1,... ,n—
1}.) The average value of yx over all m-element subsets of n is just Z23(1) = v/3(1), so there is some K

such that vx > ~v6(1).
Set

!
a; = SUDke i Qi (k+1)/n \ Qik/n

for ¢ € I. Then fi;a; = vfi;a; for every i, while
vr({af)ier) = suppe g P(O(FE)\B(R)) = Cpex
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is at least v3(1), as required. Q
(¢) We find now that under either of the hypotheses proposed,
D h—o eUT({aki)ier) < SUPjer Do p_o VeMiGki
whenever 7y, ... ,7, > 0 are rational and (ag;)k<n is a disjoint family in 2; for each i € I.

P (i) Consider first the case in which every 2; is atomless and every 7y is between 0 and 1. In this case,
given € > 0, (b) above tells us that we can find aj, C ax;, for ¢ € I and k < n, such that fi;a},;, = Yeliak:
and

Yevm({aki)ier) < vr({ay;)ier)-

Set ¢; = sup<,, ay,; for i € I; then

Y wim((aridier) < Y vn((ah)ier) = or(suplag;)ier) = vr((ci)ier)

k=0 k=0 k<n

n n
— — / —
< sup fi;¢; = sup E HiGy; = sup E Vi liCki,
i€l i€l 7 i€l

as required.

(ii) Because T is linear, it follows at once that the result is true for any rational 7g,...,v, > 0, if
every 2; is atomless.

(iii) Now consider the case in which there is an ultrafilter F on I such that vw({a;);cs) = lim;_, 7 fi;a;
for every (a;);cr. In this case, given € > 0, the set

J={j:jel, v({ari)icr) < fijar; + € for every k < n}
belongs to F and is not empty. Take any j € J; then
Do WP (aki)ier) < 3op_o W (Bjar; +€) < €3 oYk +SUPser Yo p_g VkliGki-
As € is arbitrary, we again have the result. Q

(d) Next, [Tu < sup,c; [u; whenever u = (u;);er belongs to W. PP Let € > 0 and let n € N be such
that ||u;|leo < ne for every ¢ € I. For i € I and k < n, set ap; = [u; > ke \ [u; > (k+ 1)e]; for i € I, set
ui = >3 _o kexag; then u) < u; <ul+ exly,. Setting v = (u})ier, Tu < Tu' + exlsy, so

/Tu— e < /Tu/ = /kiokEXW(<aki>i€I)

= Z kevm((agi)ier) < sup Z kepiak;

k=0 €l

:sup/ug §sup/ui.
i€l iel

As ¢ is arbitrary, we have the result. Q

(d) It follows that Tw € L'(B,7) and [Tu < sup;c; [ u; whenever u = (u;);e; belongs to Wi and
u>0. P Set v =sup;c; [u;. Let € > 0. Set v/ = ~/e. Fori € I set v; = u; Ay x1a,; set v = (v;);er. Then
v € Wy and

fTv < supielfvi < supielfui =7
by (c) above. Also [Tu —Tv > 0] € 7({Ju; > v'])icr), by 377Ba, so
v[Tu—Tv > 0] < sup;eg fiifu; > '] < e
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Thus for each n € N we can find a w,, € L°(B) such that 0 < w,, < Twu, [w, <~ and v[Tu —w, > 0] <
27", Set w], = inf;>, w; for each n; then (w,),en is a non-decreasing sequence with supremum 7w in L°(B),
while [w], <~ for every n. Consequently Tu € L'(%B,7) and [Tu < v, as claimed. Q

(e) Because T is a Riesz homomorphism, Tu € L'(%B,7) and ||Tuly = [T|u| is at most sup;¢; [ |u;| =
sup;e; |luil|1 for every uw € Wi.

(f) Now suppose that p € |1,00[ and that u = (u;);er belongs to W,. In this case, {|u;|P);cr belongs
to Wi, so T({|ui[P)ier) € L*(B,v) and [ T({|wi|P)ier) < sup;es [ |ui|P. By 377Bb, with h(t) = |t]?,
T({|ui|P)ier) = |TulP. So Tu € LP(B,v) and

Tull, = (f |Tu|p)1/p < Supie[(f |Ui|p)1/p = sup;e; [|uillp

as claimed.

377D The original motivation for the work of this section was to understand the function spaces as-
sociated with the reduced products of §328. For these we have various simplifications in addition to that
observed in 377C.

Theorem Let ((2;, [i;))icr be a family of probability algebras, F an ultrafilter on I, and (8, 7) a probability
algebra. Let 21 be the simple product [[,.;2l; and 7 : 2 — 9 a Boolean homomorphism such that
vr({ai)ier) = lim; 7 fi;a; whenever (a;)ic; € A Let Wy C [],¢; L°(2A;) and T : Wy — L°(B) be as in
377B-377C.

(a) If w = (u;)ser belongs to Wy and {i:4 € I, u; = 0} € F, then Tu = 0.

(b) For 1 < p < oo, write W, for the set of those families (u;)icr € [];c; LP (s, fi;) such that sup,e; [luqlp
is finite. Then Tw € LP(B,7) and ||Tul|, < lim;, 7 ||u;||, whenever u = (u;);e; belongs to W,,.

(c) Let Wy; be the subspace of [, ; L' (2, fi;) consisting of families (u;) ;e such that infey sup;e; [(|u|—
kxly,)t =0. Then [Tu =lim;,» [u; and ||Tul|y = lim;_, 7 |Ju;||; whenever u = (u;);cr belongs to Wy;.
(d) Suppose now that 7] = B.

(i) T[Wo] = LO(B).
(ii) T[Wyi] = LY(B,v).
(iii) If p € [1, 00], then T'[W,] = L?(B,7) and for every w € LP(*B, V) there is a u = (u;)icr in W), such
that Tu = w and sup;¢; ||uillp, = [Jw]|p-

proof (a) Setting
a; = 1Q[i lf (7 7é O7
=0 if U; = O7
(a;)ier € A and vr({a;)iecr) = lim;—, 7 fiza; = 0, so 7({a;)icr) = 0. Accordingly
Tu =T ({u; X xa;)icr) = Tu x T({xa;)icr) = Tu x x7({a;)icr) = 0.
(b) Suppose that u = (u;);er € W, and that J € F. Set
Vi = U; if7 € J,
—0ifiel\J;
then, putting (a) and 377C together,
[Tull, = 1Tl < supies lvillp, = supse s [Juillp-
As J is arbitrary, ||Tull, < lim;—,F ||usl]p.

(c)(i) Clearly W,; is a solid linear subspace of Wi. Suppose that u = (u;)ic; € W, and € > 0. Let
n > 1 be such that f(uz - nexlmi)-ir < e for every ¢ € I. For i € I and k < n, set ag; = [u; > ke]; set
v; = Y p_y kexari, so that

v; <u; < v+ exla, + (u —nexly,) ™, fuz < fUiJFZE-
If v = <'Ui>i617 then
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/Tu = ||Tull; < }LH}__HWHI = 111)151__/%

n
< i J— M I Ao
< 2e+ llin}: v; = 26+ kz_:l ke 11551__ i Qi

=2+ Z kevm({agi)icr) = 2¢ + /Z kexm({aki)ier)
k=1 k=1

:2e+/Tv§2e+/Tu.

As € is arbitrary, [Tu =lim;, 7 [ u;.
(ii) It follows at once that [Tw = lim; , 7 [ u; and that
Tully = [ |Tul = [ Tlu] =limisz [ fus] = limisz [l
whenever u = (u;);er € Wiy,

(d)(i) (@) Let Ty : L= (A) — L°°(B) be the Riesz homomorphism associated with the Boolean homomor-
phism 7 : 2l — B. Since 7 is surjective, 363Fd tells us that T} is surjective. Identifying Wy, with L (),
and T| Wy, with Ty, as in part (a) of the the proof of 377B, we see that T[W.] = L*°(B). Moreover, 363Fd
tells us also that if w € L there is a v € L () such that T,v = w and ||[v||ec = ||w||o; translating this
into terms of W, we have a u = (u;);er € Wy such that Tu = w and sup,¢; ||ti]lco = ||w]|oo-

It will be useful to know that if b € B and € > 0 there is a family (a;);c; € 2 such that 7w({a;)icr) = b
and sup;c; fiia; < b+ e. PP By hypothesis, there is a family (a});e; € 2 such that 7({a})icr) = b, and
vb = hmZ*)]: ﬂzaz Set

a; = a; if ga; < vb+ e,
= 0 for other i € I.
Then lim; 7 fi;(a} & a;) = 0 so w({a; & a;)icr) = 0 and w({a;);cr) = b, while fi;a; < Db+ € for every i € I.

Q

(B) Now suppose that w € LY(B)*. For eachn € N, set w,, = wAnxlyg and let u(™ = (UniYier € W
be such that Tu(™ = w,, 1 —w, and [[tnilloo < 1forevery i € I. Next, for each n, set b, = [wp41 — wy > 0],
and let (an;)icr € A be such that 7({ani)icr) = by and sup;c; fian; < vb, +27". If we set a),; = inf,<p, am;
and u!, = up; X xa.,, we shall have

ni’

T((up)icr) = T((uni)ier) X xm({an;)icr)

= (wn-‘rl - wn) X inf xbpy = wpp1 — wy
m<n

for every n. Also, for each i € I, (a},;)nen is non-increasing and
SO v; = SUP,en Dom—o Un; is defined in LO(2;), and
infrensup;ey fti[vi > k] < infrensup;e; fliay,; = 0.
Thus v = (v;)ier belongs to Wy and we can speak of Tv. Of course
Tvo> 370 o T((up;)ier) = Wnta
for every n, so Tv > w. On the other hand, for any n € N,
[vi = > =0 uni > 0] € ay;

for every i, so [Tv — wp41 > 0] C by, by 377B; as infren by, = 0, Tv = sup,,cy Wy, = w.

(7) Thus T[Wy] 2 L°(B)T; as T is linear, T[Wy] = L°(B).
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(ii) Now suppose that w € L'(B,7)". In this case, repeat the process of (i-3) above. This time,
observe that as xb,4+1 < wn41 — wy, for every n, Z;'LO:O vb, <1+ f w is finite. Consequently, in the first
place,

2o f Upi < 300 Bittng < D oploVbp +277
is finite, and v; € L'(4;, fi;), for every i € I. But also, for any k¥ € N and i € I,
J i = kxta)t <3002 g, < 3000 vbn +277 = 0
k — oo. So v € Wy; and w € T[Wy;]. Because W,; is a linear subspace of Wy, T[W,;] = L'(B,v).
(iii) () If p = oo the result has already been dealt with in (i-a)) above.
(B) For the case p = 1, take w € L'(B, 7). Let v = (v;);e; € Wy be such that Tv = w. Fori € I

set

vl
i =
[lvillx

= v; otherwise.

v if [lvill1 > |lwlly,

Then
A[(lui| =k > 0] < pf|vi| — k > 0]

forallk € Nandi € I, sou = (u;)ier € Wy;. Since lim;, 7 ||[v;]|1 = ||w||1, by (c) above, lim;_, = ||u;—v;|l1 =0
and Tu = Tv = w, by (b). And of course ||u;||; < |Jw]|; for every i.

() Now suppose that 1 < p < oo and that w € LP(%B,7). By (), there is a v = (v;)ier € W1
such that Tv = |w|? and sup;¢; [Jvill1 = [[w|b. Set v; = |v;| /P for each i; then v/ = (v)i;e; € W, and
Tv' = |w|, by 377Bb. Next, w is expressible as |w| X @, where @ € L*(B) and ||@0]|cc < 1. There is a
0 = (U;)ier € Woo such that T0 = @ and sup;c; [|0illcoc = 1. Set u; = v x ¥; for each ; then u = (u;)ier
belongs to Wp, |lullp, < ||w|l, for every 4, and Tu = w.

377E In the case of a reduced power of a probability algebra we can express these ideas in a slightly
different way.

Proposition Let (2, i) and (%8, 7) be probability algebras, I a set and F an ultrafilter on I. Let 7 : 2/ — B
be a Boolean homomorphism such that 7 ((a;)icr) = lim,;_, 7 fia; whenever (a;);cr € 2!, Let Wy be the set
of families in L°(2A)! which are bounded for the topology of convergence in measure on L°(2l).

(a)(i) Wy is a solid linear subspace and a subalgebra of L°()?, and there is a unique multiplicative Riesz
homomorphism 7 : Wy — L°(B) such that T((xa;)icr) = x7({a;)icr) whenever (a;);c; € A.

(ii) [Tw > 0] € w({Ju; > O])scr) whenever u = (u;);er belongs to Wyo.

(iii) If h : R — R is a continuous function, and we write h for the corresponding maps from L° to
itself for either of the spaces L° = LO(A), L = LO(B), then (h(u;))ier € Wo and T((h(u;))ier) = h(Tw)
whenever u = (u;);es belongs to Wy.

(b)(i) For 1 < p < oo let W, be the subspace of LP(2, 1)’ consisting of || ||,-bounded families. Then
T[W,] C LP(B,7), and ||[Tull, < lim;—, 7 ||u;||, whenever u = (u;);er belongs to W,.

(ii) Let Wy; be the subspace of L*(2;, fi;)" consisting of uniformly integrable families. Then [Tu =
lim;, 7 [w; and ||Tully = lim,;—, 7 |lu; |1 whenever u = (u;);er belongs to W;.

(c)(i) We have a measure-preserving Boolean homomorphism 7 : 20 — B defined by setting 7a = 7({(a)icr)
for each a € .

(i) Let P; : L*(B,7) — L'(2, 1) be the conditional-expectation operator corresponding to 7 : A — B
(3650). If (u;)ies is a uniformly integrable family in L' (), then PzT({u;)icz) is the limit lim;_, 7 u; for the
weak topology of L(2, ji).

(iii) Suppose that 1 < p < co and that (u;);es is a bounded family in LP(2, ). Then PzT ((u;)ier) is
the limit lim;_,  u; for the weak topology of L? (2, i).

proof (a) By 367Rd, a family (u;);c; in L°(2) is bounded for the topology of convergence in measure iff
infrensup;e; fif|us| > k] = 0. So we just have a special case of 377B.
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(b) Similarly, the condition ‘infxensup;c; [(|ui| — kxla,)™ = 0 translates into ‘{u; : 4 € I'} is uniformly
integrable’ (cf. 246Bd), so we are looking at a special case of 377Db-377Dc.

(c)(i) 7 is a Boolean homomorphism just because the function taking a € 2 into the constant family with
value a is a Boolean homomorphism from 2 to 2!. The formula ‘U7 ({(a;);c;) = lim;_, 7 jia;’ now ensures
that 7 is measure-preserving.

(ii) By the defining formula for Pz (3650a),

/ PaT((us)ier) = / T((us)ier) x x7(a) = / T({udier) % xr((aYier)
- / T((us)ier) x T((xa)icr)
= [ x xaien) =ty [ us xxa

(because {u; X xa : ¢ € I'} is uniformly integrable)

= lim Uj
1=F Ja

for every a € . Tt follows that P:T ({u;)icr) = lim;—, = u;. I We have

fPﬁT(<ui>i€1) XU = limi*)]-'ful‘ X v

whenever v = ya, for any a € 2; by linearity, whenever v € S(21), the space of 2-simple functions; and by
continuity, whenever v € L>(2) (because {u; : i € I'} is || ||1-bounded, and S(2A) is || [|so-dense in L™ (2A)).
Since L>°(2A) can be identified with the dual of L'(2, ji) (365Lc), we have the required weak convergence.

Q

(iii) If {w; : ¢ € I'} is || ||p-bounded, where 1 < p < oo, then it is uniformly integrable. I Set ¢ = —ct
Ith>1,

. . 1
infy>1 sup;er f(|uz| — kxla)* < infr>q Tt SUPier Juillp = 0. Q
So
fPﬁ—T(<Ui>i€]) X U= liml-%;fui X v

for every v € S(), and therefore for every v € L(2, i), since v can be || ||;-approximated by members of
S(2) (366C). Since L4(2, i) can be identified with LP(2(, i)*, we again have weak convergence.

377F Proposition Let (2, ) and (2',7") be probability algebras, I a set and F an ultrafilter on
I; let (B,7) and (B,7) be the reduced powers (2, i)!|F, (A, i')!|F as described in 328A-328C, with
corresponding homomorphisms 7 : A/ — B and 7’ : A’ .1

(a) Writing Wy, W{ for the spaces of topologically bounded families in L°(()?, L°(21")! respectively,
we have unique Riesz homomorphisms T : Wy — L°(B) and T" : W} — L°(B’) such that T((xa;)ic1) =
xm({a:i)ier), T'((xal)icr) = x7'({al)icr) whenever (a;);cr € A and (a})ic; € (A)L.

(b) Suppose that S : LY, 1) — LY, i) is a bounded linear operator. Then we have a unique
bounded linear operator S : L' (B, 7) — LY(B', ') such that ST((u;)ier) = T ((Sui)icr) whenever (u;)ier
is a uniformly integrable family in L*(2, ji).

(¢) The map S +— S is a norm-preserving Riesz homomorphism from B(L (2, i); L' (', &) to B(L' (B, p);
LY(®B',1)).

proof (a) Once again, this is nothing but a specialization of the corresponding fragments of 377Ba and
377Ea.

(b) Write W,; for the space of uniformly integrable families in L}, = L*(2, ). If (us)ier € Wiy, then

(Su;i)ier is uniformly integrable in L}], = LY, i) (because {u; : i € I} and {Su; : i € I} are relatively
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weakly compact, as in 247D), so belongs to W, and we can speak of 7" ({Su;);cr). If moreover T'({u;);er) = 0,
then lim;, = |lu;|l1 = 0 (377E(b-ii)), so lim;, = [|Su;||1 = 0 and T’({Sw;)icr) = 0. Finally, T[W,;] = L. =

LY(B, ) by 377D(d-ii). So the given formula defines a linear operator S : LY — L, = L1(%B’, 7). Next, if
w € LL, we can take any family (u;);er € Wy; such that T'({u;);er) = w, and

[1Sw]ly = IT"((Sus)ien)ll = lin || Sus ]y

(377E(b-ii))
<118 Jimg el = 15wl

As w is arbitrary, S is a bounded linear operator, and ||S|| < ||S||. On the other hand, if u € L), and
[ully <1, IT((u)ier)lly < 1 so

IS1 = ST (w)ien)ll = I T ((Sw)ier)lh = |Sulls;
as u is arbitrary, ||S| > ||S].

(c)(i) Recall from 371D that the Banach space B(Lj; L),) of continuous linear operators is also the
Dedekind complete Riesz space LN(L}Z;L}Z,) of order-bounded linear operators, and its norm is a Riesz
norm; similarly, B(LL; LL,) = L~(LL; LL,). We have already seen that S S is norm-preserving, and it is
clearly linear. If w € (LL)*, then, by 377D(d-ii), w = T'((u;)ics) for a family (u;);c; € Wy; since T is a
Riesz homomorphism, w = wt = T((u] )icr; so that if § > 0 we shall have Sw = T ((Su; )ic;) > 0. This

shows that S > 0 whenever S > 0, so that S +— S is a positive linear operator.

(ii) To show that S +— S is a Riesz homomorphism, I argue as follows. Take any bounded linear
operator S : L}L — L}z/ and € > 0. Then

B= {ZZ:O |S’Uk| U, ...,V € (L/}—t)+, ZZ:O Vg = le}
is an upwards-directed set in L}ﬂ with supremum |S|(x1a) (371A, part (b) of the proof of 371B). So we can
find vo, ... ,v, € (L})" such that Y77 v, = x1la and [[v/[|} <€, where o' = [S|(x1a) — >_;_q [Svi| > 0.
Next, if 0 < u < xly in L}, set w' = x1o — u; we have

n

181012 — v = 3 [Sul < 37 IS x vl + 37 [S(W x vy
k

k=0 =0 k=0
< |8](w) + 18](w') = [S](x1a)-

So |S](u) = ko 1S(u x vi)| < v" and [|[S](u) — 325 _o |S(u x vi)lll1 < e.

Now take any w € L. such that 0 < w < xlg. Again because T is a Riesz homomorphism and
T((x1la)ier) = x1s, we can express w as T'((u;);cr) where 0 < u; < xlg for every i. Consequently, setting
v] = [S|u; — Y p_o |S(u; x vg)| for each i, and w’ = T"((v})icr),

n

S (w) = T'({|Sluidier) = T (Y 1S (us x vg)| + vj)ier)
k=0

= Z IT"((S(u; x vg))ier)| + T ((vi)ier)

k=0

ST ((ui x vk)ier)| +w' =D |S(T((s)icr) x T((vi)ier))| + w'
k=0

I
M=

x>
Il
=]

ST ((uidier) x T((vk)ien)) +w' = |8|(w) +w’

NE

ES
I
=3

because
> k=0 T({vr)ier) = T((da)ier) = x1s-
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But we also have ||w’||; = lim;_, = ||v}]}1 <€, while |S| < S| So we conclude that |||S]~(w) — [S|(w)] < €
as e is arbitrary, |S|"(w) = |S|(w).

This is true whenever 0 < w < ylg. But as both |S|™ and |S| are continuous linear operators, and
L>°(%B) is dense in LY, |S|"=|S|. As S is arbitrary, we have a Riesz homomorphism (352G).

377G Projective limits: Proposition Let (I, <), (2, &i))ier and (m;;)i<; be such that (I, <) is a
non-empty upwards-directed partially ordered set, every (2, fi;) is a probability algebra, m;; : 2; — 2, is a
measure-preserving Boolean homomorphism whenever ¢ < j in I, and 7, = m;;7, whenever 4 < j < k. Let
(€, X, (mi)ier) be the corresponding projective limit (328I). Write L, for L'(2;, i;) and L} for L*(€, X). For
i<jin I, let T : L}” — L, and Py : L}, — L}lj be the norm-preserving Riesz homomorphism and the
positive linear operator corresponding to m;; : 2; — 2; (365N, 3650), and T; : L%\ — L;l-w P L;l‘u — L}\
the operators corresponding to 7; : € — 2f;. Let X be any set.

(a) Suppose that for each i € I we are given a function S; : L}M — X such that S;T;; = S; whenever
i < jin I. Then there is a unique function S : L%\ — X such that S = S;T; for every i € I.

(b) Suppose that for each i € I we are given a function S; : X — L}L such that T;;5; = S; whenever
i < jin I. Then there is a unique function S : X — L}\ such that T;5 = S; for every i € I.

(c) Suppose that X is a topological space, and for each ¢ € I we are given a norm-continuous function
S; - L}Li — X such that S;P;; = S; whenever ¢ < j in I. Then there is a unique function S : L%\ — X such
that SP; = 5; for every i € I.

(d) Suppose that for each i € I we are given a function S; : X — Li—t such that P;;S; = S; whenever
i < jin I. Then there is a unique function S : X — L%\ such that S = P;S; for every i € I.

proof: preliminary remarks (i) It will be helpful to recall some basic facts from §§328 and 365. If i < j
in I, then by the definition of ‘projective limit’ we have m;;m; = m; so T3;1; = T; and PPy = P;. Also
P;;T;; is the identity operator on Li—tj, and P;T; is the identity operator on L}—\.

(ii) At a deeper level, we have useful concretizations of (€, \), as follows. Fix i € I for the moment.
For j > 1, set B; = m;;[2A;], 7; = [i;[B;; then B, is a closed subalgebra of 2;, isomorphic (as probability
algebra) to ;. If u € L}, and b € B;, set b’ =7, ;'b € 2Aj; then

fbu = fm_,»b' U= fb’ Piju= fb Tij Piju;

thus T;; P;; is the conditional expectation Py, : LY, — L*(B;,7;), identifying L' (B, #;) with L}, N L%(B;)
as in 365Qa.

If £ > j, then m;, = m;mj5 so By, C Bj; thus B = {B; : j > i} is downwards-directed. Set © = (B,
Uv=qal®.

For k > i, set ¢, = Tl'i_kl [D D — Ag; then ¢y is a measure-preserving Boolean homomorphism, and
¢; = mjr¢r whenever i < j < k. We can therefore define ¢; : ® — ;, for any j € I, by saying that
¢; = TjrPr whenever k € I is greater than or equal to both i and j, and we shall have ¢; = 7;,¢, whenever
j<kinI. PIf j €I and kg, k; are two upper bounds of {i,j} in I, take an upper bound k of {ko, k1 };
then

Tiko Pho = TjkoThok Pk = Tjk®Pk = Tjky Thyk Pk = Tjky ks »
so ¢; is well-defined. If j, k € I and j < k, let k' be an upper bound of {7, k}; then
TikPr = TjpTre Ppr = Tjp Py = @5 Q
Of course every ¢; is a measure-preserving Boolean homomorphism.

By the definition of (€, ), there is a measure-preserving Boolean homomorphism ¢ : ® — € such that
mwj¢ = ¢; for every j € I. In this case, m;¢ = ¢; is the identity embedding of ® in 2;, and 7;[¢] = D.
Accordingly Pp = T; P;. By the generalized reverse martingale theorem 367Qa, T; P; is the limit of Py as B
decreases in B, in the sense that for every u € L'(2l;) and € > 0 there is a j > i in I such that

| T; Piu — Ty Pigully = [[Pou — Py, ully <€
whenever k > j in I. If we write F(I7) for the filter on I generated by {{k : k > j} :j € I}, we have
T Pou = lim;_, x(1p) T35 Piju,
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for the norm in L , for every u € L1
Now let us turn to (a)-(d) as hbted above.
(a) All we have to know is that
SiTi = SiﬂjTj = SJ,TJ

89

whenever ¢ < j in I; because I is upwards-directed, S;T; = S;7; for all ¢, j € I, and we have a sound

definition for S.

(b) The point is that T; P;S; = S; for every i € I. P For j > i,

TijPijSi = TijPijTijS; = TijSj = Si.
IfzeX,
TiP;Six = lim;_, 71y T3 P Siz = Siw. Q
If now ¢ < jin I,
P;S; = PjP;;T;;S; = P;S;.
As I is upwards-directed, P;S; = P;S; for all 4, j € I; write S for this common value. Then
1,5 =T,PS5; = S,

for every i € I. As T; is injective for every ¢ € I, the formula uniquely defines the function S.

(c) This time, we have S;,T;P; = S; for every i € I. P For any u € L%\,

S;T;P;u = lim STZJP”u
J—=F (1)

(because S; is continuous)

= lim S;P;T;jPju= lim S;Pju=Su Q
= F (1) =TT

Ifi <jin I,
SiTi = 9Py Ty Ty = SiTj;

consequently S;T; = S;T}; for all 4, j € I, and we can call this common function S. In this case, SP; =

S;T; P; = S; for every i € I. Since Pl[Llll] = L}\, this defines S uniquely.
(d) Asin (a), all we have to check is that if ¢ < j in I then
P;S; = PjP,;S; = P,S..

377H Inductive limits: Proposition Let (I, <), (2, [:))ier and (mj;);<; be such that (I,<) is a
non-empty upwards-directed partially ordered set, every (2;, fi;) is a probability algebra, mj; : ; — 2 is
a measure-preserving Boolean homomorphism whenever ¢ < j in I, and m; = m;7;; whenever ¢ < 7 < k.
Let (€, A, (m;)ie) be the corresponding inductive limit (328H). Write L, for L'(2;, fi;) and L} for L'(€, X).
Fori<jin I, let T}; : L}“ — L}LJ_ and Pj; : L}lj — L1 be the Riesz homomorphism and the positive linear
operator corresponding to m;; : A; — 2, and T : L1 N L}, P;: Lj — L}, the operators corresponding to

7; %A — €. Let X be a set.

(a) Suppose that for each ¢ € I we are given a function S; : L}L — X such that §;Tj;; = S;
i < jin I. Then there is a function S : L%\ — X such that S; = S7T; for every i € I.

(b) Suppose that for each i € I we are given a function S; : X — L}L such that 7;;5; = S;
i < jin I. Then there is a unique function S : X — L%\ such that T;5; = S for every i € I.

(c) Suppose that for each i € I we are given a function S; : L}“ — X such that S;Pj; = S;
i < jin I. Then there is a unique function S : L}\ — X such that S = S;P; for every i € I.

(d) Suppose that for each i € I we are given a function S; : X — L}-Li such that P;;S; = S,
i1 < jin I, and that

whenever

whenever

whenever

whenever
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infjen sup;e; f(\51m| —kxly,)T =0
for every = € X. Then there is a unique function S : X — L%\ such that S; = P;S for every i € I.
proof We can follow the same programme as in the proof of 377G, but with a couple of new twists.

preliminary remarks (i) If ¢ < j in I, then by the definition of ‘inductive limit’ we have m;7;; = m; so
TjTji = le and Pjin = P7 PjiTji and PZE are the identity operator on Lllia

(ii) Let F(I1) be the filter on I generated by {{k : k > j} : j € I}. Then lim;_, r(ry) TiPiu = u for
every u € Li. P Setting B; = T;[;] for each i € I, B = {%B; : i € I} is an upwards-directed family

of closed subalgebras of €; set ® = (B and o = A[D, so that (D,7) is a probability algebra. Since
m; + A; — D is a measure-preserving Boolean homomorphism and m; = 7;m;; whenever ¢ < j in I, there is a
measure-preserving Boolean homomorphism ¢ : € — ® such that ¢m; = 7; for every i. But this means that
c=9.

As in 377G, we can identify each T; P; : L}\ — L}\ with the conditional expectation Py,. This time, 367Qb
tells us that Pgu — Ppu = u as B increases through B, that is, u = lim;_, 71y T; Pu, for every u € L}\. Q

(a) The point is that if i, j € I, u € L}L_, v E L};j and Tyu = Tjv, then S;u = S;v. P Let k € I be such
that ¢ < k and j < k. Then

Tkaiu = Tzu = ij = Tka]'U;
since T}, is injective, Ti;u = Tyjv. Accordingly
Siu == Skaiu = SkajU = Sjv. Q

There is therefore a function S : J;¢; Si[L),] — X defined by saying that S(Tju) = S;u whenever i € I
and u € L%Li; extending S’ arbitrarily to a function S : L%\ — X, we get the result.

(b) All we have to do is to check that if ¢ < j in I, then
TS, = T;T;:S; = T;5;.
(c) In this case, we have
S;P; = S;P;;P; = S; P;
whenever ¢ < j in 1.
(d)(i) For each z € X, {T;S;z : i € I} C Li is uniformly integrable. P If k € N and i € I,
IT:Siz| < T;(|Six| — kxla,) T + Ti(kxla,) < T3(|Siz| — kxla,)t + kxle,
o
f(\TiSix| —kxle)T < le(|Sla:| —kxly,)t = f(|Sla:| — kxly,)T.
Accordingly
infren sup;ey f(|TzSz$\ —kxle)t <infrensup;e; f(‘szﬂ —kxly,)T=0. Q

(ii) Fix an ultrafilter G on I including F(I?1). For each z € X, {T;S;x : i € I} is relatively weakly
compact in L%\, so Sz = lim;_,¢g T;S;x is defined for the weak topology on L%\. Now for any i € 1,

Jj—g
(for the weak topology on Lél)
(because {j:j > 1} € G)

J—=g
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(iii) To see that S is uniquely defined, it is enough to recall that
St = limiﬁf(”) TIPZSJJ = limiH].-(IT) TlSzl‘
is uniquely defined by the family (S;x);c, for every z € X.

377X Basic exercises (a) In 377B, show that (u;)ics € [];c; L°(2:) belongs to Wy iff {u} : i € I} is
bounded above in L°(2(;), where 2, is the measure algebra of Lebesgue measure on [0, o[, and u} is the
decreasing rearrangement of w; for each i (373C).

(b) In 377D, suppose that u = (u;)ic; and v = (v;);es belong to W, and that at least one of |u|?, |v|?
belongs to W,,;. Show that (Tu|Tv) = lim;_, 7 (u;|v;).

(c) Let {(2;,fi;))ier be a family of probability algebras, and suppose that we have u; € L(2l;, ji;) for
each i. Show that the following are equiveridical: (i) infrensup;e; [(Jus] — kxley)™ = 0; (ii) {uf : i €
I} is uniformly integrable in L'(uy), where uy is Lebesgue measure on [0,00[, and u} is the decreasing
rearrangement of u; for each i € I.

(d) Take any p € ]1,00[. Show that 377G remains true if we replace every ‘L'’ by ‘LP’.

(e) Take any p € ]1,00[. Show that 377H remains true if we replace every ‘L'’ by ‘LP’ and in part (d)
we replace ‘infrensup;c; [([Siz] — kxla,)t =0 by ‘sup;e; [|Siz|l, < o0’.

(f) In 377Ha, suppose that X has a metric p under which it is complete, and that (S;);c; is uniformly
equicontinuous in the sense that for every € > 0 there is a 6 > 0 such that p(S;u, S;v) < € whenever ¢ € I, u,
ve Ly, and |lu—wv|[; <J. Show that there is a unique continuous function S : L3 — X such that S; = ST;
for every i € I.

377Y Further exercises (a) Find a non-empty family ((2;, ii;))icr of probability algebras, a probability
algebra (B8, 7), a Boolean homomorphism 7 : [[,; % — B such that vm((a;)ier) < sup;e; fiza; whenever
(a;)ier € [1;e; i, and an element u = (u;);cr of Wi, as described in 377B, such that || Tull; > sup;e; [luill1,
where T : Wy — LY(B) is the Riesz homomorphism of 377B-377C. (Hint: #(I) = 2.)

(b) Show that if, in 377Gc, we omit the hypothesis that the S; are to be continuous, then the result can
fail.

(c) Let (Ui)icr be a non-empty family of L-spaces and F an ultrafilter on I. (i) Show that [],.; U; is
a Dedekind complete Riesz space (see 352K) in which Wy = {(u;)ier : sup;c; ||ui]| < oo} is a solid linear
subspace. (ii) Let Wy C Woo be {{(ws)icr : sup;es |ui|| < oo, lim;, 7 ||u;|| = 0}; show that Wy is a solid
linear subspace of W (iii) Let U be the quotient Riesz space Woo /Wy (352U). Show that U is an L-space
under the norm ||{u;)$c || = lim;_ 7 [|w;]| for (u;)ier € Woo.

(d) Let V be a normed space, and suppose that for every finite-dimensional subspace Vy of V' there are
an L-space U and a norm-preserving linear map T : Vi — U. Show that there are an L-space U and a
norm-preserving linear map 7 : V — U.

377 Notes and comments Although my main target in this section has been to understand the function
spaces of reduced products of probability algebras, I have as usual felt that the ideas are clearer if each is
developed in a context closer to the most general case in which it is applicable. Only in part (b) of the proof
of 377C, I think, does this involve us in extra work.

The new techniques of this section are forced on us by the fact that we are looking at Boolean homomor-
phisms 7 : [[,.;2; — B which are not normally sequentially order-continuous. While we have a natural
Riesz homomorphism from L>(]];c; %) to L>°(®B), as in 363F, we cannot expect a similar operator from
the whole of LO([T,c; %) = [Lic; L°(2;) to L°(B). However the condition ‘wm({a;)icr) < sup;e; flia;” en-
sures that there is a space Wy C [],c; L°(2;) on which an operator to L°(%B) can be defined, and which is
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large enough to give us a method of investigating the spaces L” (8, ) as images of subspaces W), of products
Hie] LP(Q[Z-, /ll)

In 377E, the case p = 1 is special because we can identify W,,; as the space of relatively weakly compact
families in L' (2, fi), and for such a family u = (u;);e; we have ||Tul|; = lim;_, 7 ||u;||1. So the Banach space
L'(B,7) is a kind of reduced power, describable in terms of the normed space L*(2l, 7). For other LP spaces
we need to know something more, e.g., the lattice structure, if we are to identify those u € W), such that
Tw = 0. The difference becomes significant when we come to look at morphisms of LP (2B, ) corresponding
to morphisms of LP (2, i), as in 377F.

In 377G-377H I give a string of results which are visibly mass-produced. What is striking is that in
eight cases out of eight we have a straightforward formula corresponding to the idea that (€, )) is a limit of
(s, fi;)Yicr- What is curious is that in two of the eight cases (377Gc, 377Hd) we have to impose different
special conditions on the functions S; which the target S is supposed to approximate, and in just one case
(377Ha) the target S is not uniquely defined in the absence of further constraints (377Xf). I think the ideas
take up enough room when given only in their application to L! spaces, but of course there are versions,
only slightly modified, which apply to other LP spaces (377Xd-377Xe).

The repeated conditions of the form

infrensup;er fif|us| > k] =0,

infren sup;ey f(‘uz‘ —kxla,)*" =0,

(377B, 377Dc, 377Hd) both have expressions in terms of decreasing rearrangements (377Xa, 377Xc). The
latter is clearly associated with uniform integrability and weak compactness, and unsurprisingly we use it
to show that a weak limit will be defined. The former is there to ensure that a set appearing in an L° space
will be bounded above, so that we can apply 355F to extend a Riesz homomorphism.

Version of 7.12.08

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

3721 The version of the Ergodic Theorem in 3721, referred to in the 2003 and 2006 editions of Volume
4, is now 372H.

372K The version of the Ergodic Theorem in 372K, referred to in the 2003 and 2006 editions of Volume
4, is now 372J.

372P Mixing and ergodic transformations The definitions in 372P are now in 3720.

372Xm The tent map, referred to in the 2003 and 2006 editions of Volume 4, is now in 372Xp.
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