
Version of 10.9.13

One of the first things one learns, as a student of measure theory, is that sets of measure zero are
frequently ‘negligible’ in the straightforward sense that they can safely be ignored. This is not quite a
universal principle, and one of my purposes in writing this treatise is to call attention to the exceptional
cases in which negligible sets are important. But very large parts of the theory, including some of the topics
already treated in Volume 2, can be expressed in an appropriately abstract language in which negligible
sets have been factored out. This is what the present volume is about. A ‘measure algebra’ is a quotient of
an algebra of measurable sets by a null ideal; that is, the elements of the measure algebra are equivalence
classes of measurable sets. At the cost of an extra layer of abstraction, we obtain a language which can give
concise and elegant expression to a substantial proportion of the ideas of measure theory, and which offers
insights almost everywhere in the subject.

It is here that I embark wholeheartedly on ‘pure’ measure theory. I think it is fair to say that the
applications of measure theory to other branches of mathematics are more often through measure spaces

rather than measure algebras. Certainly there will be in this volume many theorems of wide importance
outside measure theory; but typically their usefulness will be in forms translated back into the language of
the first two volumes. But it is also fair to say that the language of measure algebras is the only reasonable
way to discuss large parts of a subject which, as pure mathematics, can bear comparison with any.

In the structure of this volume I can distinguish seven ‘working’ and two ‘accessory’ chapters. The
‘accessory’ chapters are 31 and 35. In these I develop the theories of Boolean algebras and Riesz spaces (=
vector lattices) which are needed later. As in Volume 2 you have a certain amount of choice in the order in
which you take the material. Everything except Chapter 35 depends on Chapter 31, and everything except
Chapters 31 and 35 depends on Chapter 32. Chapters 33, 34 and 36 can be taken in any order, but Chapter
36 relies on Chapter 35. (I do not mean that Chapter 33 is never referred to in Chapter 34, nor even that the
later chapters do not rely on results from Chapter 33. What I mean is that their most important ideas are
accessible without learning the material of Chapter 33 properly.) Chapter 37 depends on Chapters 35 and
36. Chapter 38 would be difficult to make sense of without some notion of what has been done in Chapter
33. Chapter 39 uses fragments of Chapters 35 and 36.

The first third of the volume follows almost the only line permitted by the structure of the subject. If we
are going to study measure algebras at all, we must know the relevant facts about Boolean algebras (Chapter
31) and how to translate what we know about measure spaces into the new language (Chapter 32). Then
we must get a proper grip on the two most important theorems: Maharam’s theorem on the classification of
measure algebras (Chapter 33) and the von Neumann-Maharam lifting theorem (Chapter 34). Since I am
now writing for readers who are committed – I hope, happily committed – to learning as much as they can
about the subject, I take the space to push these ideas as far as they can easily go, giving a full classification
of closed subalgebras of probability algebras, for instance (§333), and investigating special types of lifting
(§§345-346). I mention here three sections interpolated into Chapter 34 (§§342-344) which attack a subtle
and important question: when can we expect homomorphisms between measure algebras to be realizable in
terms of transformations between measure spaces, as discussed briefly in §234 and elsewhere.

Chapters 36 and 37 are devoted to re-working the ideas of Chapter 24 on ‘function spaces’ in the more
abstract context now available, and relating them to the general Riesz spaces of Chapter 35. I am concerned
here not to develop new structures, nor even to prove striking new theorems, but rather to offer new ways
of looking at the old ones. Only in the Ergodic Theorem (§372) do I come to a really important new result.
Chapter 38 looks at two questions, both obvious ones to ask if you have been trained in twentieth-century
pure mathematics: what does the automorphism group of a measure algebra look like, and inside such an
automorphism group, what do the conjugacy classes look like? (The second question is a fancy way of asking
how to decide, given two automorphisms of one of the structures considered in this volume, whether they
are really different, or just copies of each other obtained by looking at the structure a different way up.)
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Finally, in Chapter 39, I discuss what is known about the question of which Boolean algebras can appear
as measure algebras.

Concerning the prerequisites for this volume, we certainly do not need everything in Volume 2. The
important chapters there are 21, 23, 24, 25 and 27. If you are approaching this volume without having
read the earlier parts of this treatise, you will need the Radon-Nikodým theorem and product measures
(of arbitrary families of probability spaces), for Maharam’s theorem; a simple version of the martingale
theorem, for the lifting theorem; and an acquaintance with Lp spaces (particularly, with L0 spaces) for
Chapter 36. But I would recommend the results-only versions of Volumes 1 and 2 in case some reference
is totally obscure. Outside measure theory, I call on quite a lot of terms from general topology, but none
of the ideas needed are difficult (Baire’s and Tychonoff’s theorems are the deepest); they are sketched in
§§3A3 and 3A4. We do need some functional analysis for Chapters 36 and 39, but very little more than was
already used in Volume 2, except that I now call on versions of the Hahn-Banach theorem (§3A5).

In this volume I assume that readers have substantial experience in both real and abstract analysis, and
I make few concessions which would not be appropriate when addressing active researchers, except that
perhaps I am a little gentler when calling on ideas from set theory and general topology than I should be
with my own colleagues, and I continue to include all the easiest exercises I can think of. I do maintain
my practice of giving proofs in very full detail, not so much because I am trying to make them easier, but
because one of my purposes here is to provide a complete account of the ideas of the subject. I hope that
the result will be accessible to most doctoral students who are studying topics in, or depending on, measure
theory.
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Version of 29.10.12

Chapter 31

Boolean algebras

The theory of measure algebras naturally depends on certain parts of the general theory of Boolean
algebras. In this chapter I collect those results which will be useful later. Since many students encounter
the formal notion of Boolean algebra for the first time in this context, I start at the beginning; and indeed I
include in the Appendix (§3A2) a brief account of the necessary part of the theory of rings, as not everyone
will have had time for this bit of abstract algebra in an undergraduate course. But unless you find the
algebraic theory of Boolean algebras so interesting that you wish to study it for its own sake – in which case
you should perhaps turn to Sikorski 64 or Koppelberg 89 – I do not think it would be very sensible to
read the whole of this chapter before proceeding to the main work of the volume in Chapter 32. Probably
§311 is necessary to get an idea of what a Boolean algebra looks like, and a glance at the statements of
the theorems in §312 and 313A-313B would be useful, but the later sections can wait until you have need
of them, on the understanding that apparently innocent formal manipulations may depend on concepts
which take some time to master. I hope that the cross-references will be sufficiently well-targeted to make
it possible to read this material in parallel with its applications.

As for the actual material covered, §311 introduces Boolean rings and algebras, with M.H.Stone’s theorem
on their representation as rings and algebras of sets. §312 is devoted to subalgebras, homomorphisms and
quotients, following a path parallel to the corresponding ideas in group theory, ring theory and linear algebra.
In §313 I come to the special properties of Boolean algebras associated with their lattice structures, with
notions of order-preservation, order-continuity and order-closure. §314 continues this with a discussion of
order-completeness, and the elaboration of the Stone representation of an arbitrary Boolean algebra into
the Loomis-Sikorski representation of a σ-complete Boolean algebra; this brings us to regular open algebras.
§315 deals with ‘simple’ and ‘free’ products of Boolean algebras, corresponding to ‘products’ and ‘tensor
products’ of linear spaces, and to projective and inductive limits of families of Boolean algebras. Finally,
§316 examines three special topics: the countable chain condition, weak distributivity and homogeneity.

Version of 15.10.08

311 Boolean algebras

In this section I try to give a sufficient notion of the character of abstract Boolean algebras to make the
calculations which will appear on almost every page of this volume seem both elementary and natural. The
principal result is of course M.H.Stone’s theorem: every Boolean algebra can be expressed as an algebra of
sets (311E). So the section divides naturally into the first part, proving Stone’s theorem, and the second,
consisting of elementary consequences of the theorem and a little practice in using the insights it offers.

311A Definitions (a) A Boolean ring is a ring (A,+, .) in which a2 = a for every a ∈ A.

(b) A Boolean algebra is a Boolean ring A with a multiplicative identity 1 = 1A; I allow 1 = 0 in this
context.

Remark For notes on those parts of the elementary theory of rings which we shall need, see §3A2.
I hope that the rather arbitrary use of the word ‘algebra’ here will give no difficulties; it gives me the

freedom to insist that the ring {0} should be accepted as a Boolean algebra.

311B Examples (a) For any set X, (PX,△,∩) is a Boolean algebra; its zero is ∅ and its multiplicative
identity is X. PPP We have to check the following, which are all easily established, using Venn diagrams or
otherwise:

A△B ⊆ X for all A, B ⊆ X,

(A△B)△C = A△(B△C) for all A, B, C ⊆ X,

so that (PX,△) is a semigroup;

c© 1996 D. H. Fremlin
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4 Boolean algebras 311B

A△∅ = ∅△A = A for every A ⊆ X,

so that ∅ is the identity in (PX,△);

A△A = ∅ for every A ⊆ X,

so that every element of PX is its own inverse in (PX,△), and (PX,△) is a group;

A△B = B△A for all A, B ⊆ X,

so that (PX,△) is an abelian group;

A ∩B ⊆ X for all A, B ⊆ X,

(A ∩B) ∩ C = A ∩ (B ∩ C) for all A, B, C ⊆ X,

so that (PX,∩) is a semigroup;

A ∩ (B△C) = (A ∩B)△(A ∩ C), (A△B) ∩ C = (A ∩ C)△(B ∩ C) for all A, B, C ⊆ X,

so that (PX,△,∩) is a ring;

A ∩A = A for every A ⊆ X,

so that (PX,△,∩) is a Boolean ring;

A ∩X = X ∩A = A for every A ⊆ X,

so that (PX,△,∩) is a Boolean algebra and X is its identity. QQQ

(b) Recall that an ‘algebra of subsets of X’ (136E) is a family Σ ⊆ PX such that ∅ ∈ Σ, X \ E ∈ Σ for
every E ∈ Σ, and E ∪ F ∈ Σ for all E, F ∈ Σ. In this case (Σ,△,∩) is a Boolean algebra with zero ∅ and
identity X. PPP If E, F ∈ Σ, then

E ∩ F = X \ ((X \ E) ∪ (X \ F )) ∈ Σ,

E△F = (E ∩ (X \ F )) ∪ (F ∩ (X \ E)) ∈ Σ.

Because ∅ and X = X \ ∅ both belong to Σ, we can work through the identities in (a) above to see that Σ,
like PX, is a Boolean algebra. QQQ

(c) Consider the ring Z2 = {0, 1}, with its ring operations +2, · given by setting

0 +2 0 = 1 +2 1 = 0, 0 +2 1 = 1 +2 0 = 1,

0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

I leave it to you to check, if you have not seen it before, that this is a ring. Because 0 · 0 = 0 and 1 · 1 = 1,
it is a Boolean algebra.

311C Proposition Let A be a Boolean ring.
(a) a+ a = 0, that is, a = −a, for every a ∈ A.
(b) ab = ba for all a, b ∈ A.

proof (a) If a ∈ A, then

a+ a = (a+ a)(a+ a) = a2 + a2 + a2 + a2 = a+ a+ a+ a,

so we must have 0 = a+ a.

(b) Now for any a, b ∈ A,

a+ b = (a+ b)(a+ b) = a2 + ab+ ba+ b2 = a+ ab+ ba+ b,

so

0 = ab+ ba = ab+ ab

and ab = ba.

311D Lemma Let A be a Boolean ring, I an ideal of A (3A2E), and a ∈ A \ I. Then there is a ring
homomorphism φ : A → Z2 such that φa = 1 and φd = 0 for every d ∈ I.

proof (a) Let I be the family of those ideals J of A which include I and do not contain a. Then I has a
maximal element K say. PPP Apply Zorn’s lemma. Since I ∈ I, I 6= ∅. If J is a non-empty totally ordered
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311E Boolean algebras 5

subset of I, then set J∗ =
⋃
J . If b, c ∈ J∗ and d ∈ A, then there are J1, J2 ∈ J such that b ∈ J1 and

c ∈ J2; now J = J1 ∪ J2 is equal to one of J1, J2, so belongs to J , and 0, b + c, bd all belong to J , so all
belong to J∗. Thus J∗ ⊳ A; of course I ⊆ J∗ and a /∈ J∗, so J∗ ∈ I and is an upper bound for J in I. As
J is arbitrary, the hypotheses of Zorn’s lemma are satisfied and I has a maximal element. QQQ

(b) For b ∈ A set Kb = {d : d ∈ A, bd ∈ K}. The following are easy to check:
(i) K ⊆ Kb for every b ∈ A, because K is an ideal.
(ii) Kb ⊳ A for every b ∈ A. PPP 0 ∈ K ⊆ Kb. If d, d′ ∈ Kb and c ∈ A then

b(d+ d′) = bd+ bd′, b(dc) = (bd)c

belong to K, so d+ d′, dc ∈ Kb. QQQ
(iii) If b ∈ A and a /∈ Kb, then Kb ∈ I so Kb = K.
(iv) Now a2 = a /∈ K, so a /∈ Ka and Ka = K.
(v) If b ∈ A \K then b /∈ Ka, that is, ba = ab /∈ K, and a /∈ Kb; consequently Kb = K.
(vi) If b, c ∈ A \K then c /∈ Kb so bc /∈ K.
(vii) If b, c ∈ A \K then

bc(b+ c) = b2c+ bc2 = bc+ bc = 0 ∈ K,

so b+ c ∈ Kbc. By (vi) and (v), Kbc = K so b+ c ∈ K.

(c) Now define φ : A → Z2 by setting φd = 0 if d ∈ K, φd = 1 if d ∈ A \ K. Then φ is a ring
homomorphism. PPP

(i) If b, c ∈ K then b+ c, bc ∈ K so

φ(b+ c) = 0 = φb+2 φc, φ(bc) = 0 = φb φc.

(ii) If b ∈ K, c ∈ A \K then

c = (b+ b) + c = b+ (b+ c) /∈ K

so b+ c /∈ K, while bc ∈ K, so

φ(b+ c) = 1 = φb+2 φc, φ(bc) = 0 = φb φc.

(iii) Similarly,

φ(b+ c) = 1 = φb+2 φc, φ(bc) = 0 = φb φc

if b ∈ A \K and c ∈ K.
(iv) If b, c ∈ A \K, then by (b-vi) and (b-vii) we have b+ c ∈ K, bc /∈ K so

φ(b+ c) = 0 = φb+2 φc, φ(bc) = 1 = φb φc.

Thus φ is a ring homomorphism. QQQ

(d) Finally, if d ∈ I then d ∈ K so φd = 0; and φa = 1 because a /∈ K.

311E M.H.Stone’s theorem: first form Let A be any Boolean ring, and let Z be the set of ring
homomorphisms from A onto Z2. Then we have an injective ring homomorphism a 7→ â : A → PZ, setting
â = {z : z ∈ Z, z(a) = 1}. If A is a Boolean algebra, then 1̂A = Z.

proof (a) If a, b ∈ A, then

â+b = {z : z(a+b) = 1} = {z : z(a) +2 z(b) = 1} = {z : {z(a), z(b)} = {0, 1}} = â△b̂,

âb = {z : z(ab) = 1} = {z : z(a)z(b) = 1} = {z : z(a) = z(b) = 1} = â ∩ b̂.

Thus a 7→ â is a ring homomorphism.

(b) If a ∈ A and a 6= 0, then by 311D, with I = {0}, there is a z ∈ Z such that z(a) = 1, that is, z ∈ â;
so that â 6= ∅. This shows that the kernel of a 7→ â is {0}, so that the homomorphism is injective (3A2Db).

(c) If A is a Boolean algebra, and z ∈ Z, then there is some a ∈ A such that z(a) = 1, so that

z(1A)z(a) = z(1Aa) 6= 0 and z(1A) 6= 0; thus 1̂A = Z.

D.H.Fremlin



6 Boolean algebras 311F

311F Remarks (a) For any Boolean ring A, I will say that the Stone space of A is the set Z of non-zero
ring homomorphisms from A to Z2, and the canonical map a 7→ â : A → PZ is the Stone representation.

(b) Because the map a 7→ â : A → PZ is an injective ring homomorphism, A is isomorphic, as Boolean
ring, to its image E = {â : a ∈ A}, which is a subring of PZ. Thus the Boolean rings PX of 311Ba are
leading examples in a very strong sense.

(c) I have taken the set Z of the Stone representation to be actually the set of homomorphisms from A

onto Z2. Of course we could equally well take any set which is in a natural one-to-one correspondence with
Z; a popular choice is the set of maximal proper ideals of A, since a subset of A is a maximal ideal iff it is
the kernel of a member of Z, which is then uniquely defined.

311G The operations ∪ , \ , △ on a Boolean ring Let A be a Boolean ring.

(a) Using the Stone representation, we can see that the elementary operations ∪, ∩, \, △ of set theory
all correspond to operations on A. If we set

a ∪ b = a+ b+ ab, a ∩ b = ab, a \ b = a+ ab, a△ b = a+ b

for a, b ∈ A, then we see that

â∪b = â△b̂△(â ∩ b̂) = â ∪ b̂,

â∩b = â ∩ b̂,

â\b = â \ b̂,

â△b = â△b̂.

Consequently all the familiar rules for manipulation of ∩, ∪, etc. will apply also to ∩ , ∪ , and we shall have,
for instance,

a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c), a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)

for any members a, b, c of any Boolean ring A.

(b) Still importing terminology from elementary set theory, I will say that a set A ⊆ A is disjoint if
a ∩ b = 0, that is, ab = 0, for all distinct a, b ∈ A; and that an indexed family 〈ai〉i∈I in A is disjoint if
ai ∩ aj = 0 for all distinct i, j ∈ I. (Just as I allow ∅ to be a member of a disjoint family of sets, I allow
0 ∈ A or ai = 0 in the present context.)

(c) A partition of unity in A will be either a disjoint set C ⊆ A such that there is no non-zero a ∈ A

such that a ∩ c = 0 for every c ∈ C or a disjoint family 〈ci〉i∈I in A such that there is no non-zero a ∈ A

such that a ∩ ci = 0 for every i ∈ I. (In the first case I allow 0 ∈ C, and in the second I allow ci = 0.)

(d) Note that a set C ⊆ A is a partition of unity iff C ∪ {0} is a maximal disjoint set. PPP If C is a
partition of unity and a ∈ A \ (C ∪ {0}), then there must be a c ∈ C such that a ∩ c 6= 0, so that C ∪ {0, a}
is not disjoint; thus C ∪ {0} is a maximal disjoint set. If C ∪ {0} is a maximal disjoint set, and a ∈ A \ {0},
then either a ∈ C and a ∩ a 6= 0, or C ∪ {0, a} is not disjoint, so there is a c ∈ C such that a ∩ c 6= 0; thus C
is a partition of unity. QQQ

If A ⊆ A is any disjoint set, there is a partition of unity including A. PPP Apply Zorn’s Lemma to {C : C
is a disjoint set including A}. QQQ

(e) If C and D are two partitions of unity, I say that C refines D if for every c ∈ C there is a d ∈ D
such that cd = c (that is, c ⊆ d in the language of 311H below). Note that if C refines D and D refines E
then C refines E. PPP If c ∈ C, there is a d ∈ D such that cd = c; now there is an e ∈ E such that de = d; in
this case,

ce = (cd)e = c(de) = cd = c;

as c is arbitrary, C refines E. QQQ

Measure Theory



311I Boolean algebras 7

311H The order structure of a Boolean ring Again treating a Boolean ring A as an algebra of sets,

it has a natural ordering, setting a ⊆ b if ab = a, so that a ⊆ b iff â ⊆ b̂. This translation makes it obvious
that ⊆ is a partial order on A, with least element 0, and with greatest element 1 iff A is a Boolean algebra.
Moreover, A is a lattice (definition: 2A1Ad), with a ∪ b = sup{a, b} and a ∩ b = inf{a, b} for all a, b ∈ A.
Generally, for a0, . . . , an ∈ A,

supi≤n ai = a0 ∪ . . . ∪ an, infi≤n ai = a0 ∩ . . . ∩ an;

suprema and infima of finite subsets of A correspond to unions and intersections of the corresponding families
in the Stone space. (But suprema and infima of infinite subsets of A are a very different matter; see §313
below.)

It may be obvious, but it is nevertheless vital to recognise that when A is a ring of sets then ⊆ agrees
with ⊆.

311I The topology of a Stone space: Theorem Let Z be the Stone space of a Boolean ring A, and
let T be

{G : G ⊆ Z and for every z ∈ G there is an a ∈ A such that z ∈ â ⊆ G}.

Then T is a topology on Z, under which Z is a locally compact zero-dimensional Hausdorff space, and
E = {â : a ∈ A} is precisely the set of compact open subsets of Z. A is a Boolean algebra iff Z is compact.

proof (a) Because E is closed under ∩, and
⋃
E = Z (recall that Z is the set of surjective homomorphisms

from A to Z2, so that every z ∈ Z is somewhere non-zero and belongs to some â), E is a topology base, and
T is a topology.

(b) T is Hausdorff. PPP Take any distinct z, w ∈ Z. Then there is an a ∈ A such that z(a) 6= w(a);
let us take it that z(a) = 1, w(a) = 0. There is also a b ∈ A such that w(b) = 1, so that w(b + ab) =
w(b) +2 w(a)w(b) = 1 and w ∈ (b+ ab) ;̂ also

a(b+ ab) = ab+ a2b = ab+ ab = 0,

so

â ∩ (b+ ab)̂ = (a(b+ ab))̂ = 0̂ = ∅,

and â, (b+ ab)̂ are disjoint members of T containing z, w respectively. QQQ

(c) If a ∈ A then â is compact. PPP Let F be an ultrafilter on Z containing â. For each b ∈ A,
z0(b) = limz→F z(b) must be defined in Z2, since one of the sets {z : z(b) = 0}, {z : z(b) = 1} must belong
to F . If b, c ∈ A, then the set

F = {z : z(b) = z0(b), z(c) = z0(c), z(b+ c) = z0(b+ c), z(bc) = z0(bc)}

belongs to F , so is not empty; take any z1 ∈ F ; then

z0(b+ c) = z1(b+ c) = z1(b) +2 z1(c) = z0(b) +2 z0(c),

z0(bc) = z1(bc) = z1(b)z1(c) = z0(b)z0(c).

As b, c are arbitrary, z0 : A → Z2 is a ring homomorphism. Also z0(a) = 1, because â ∈ F , so z0 ∈ â.

Now let G be any open subset of Z containing z0; then there is a b ∈ A such that z0 ⊆ b̂ ⊆ G; since

limz→F z(b) = z0(b) = 1, we must have b̂ = {z : z(b) = 1} ∈ F and G ∈ F . Thus F converges to z0. As F
is arbitrary, â is compact (2A3R). QQQ

(d) This shows that â is a compact open set for every a ∈ A. Moreover, since every point of Z belongs to
some â, every point of Z has a compact neighbourhood, and Z is locally compact. Every â is closed (because
it is compact, or otherwise), so E is a base for T consisting of open-and-closed sets, and T is zero-dimensional.

(e) Now suppose that E ⊆ Z is an open compact set. If E = ∅ then E = 0̂. Otherwise, set

G = {â : a ∈ A, â ⊆ E}.

Then G is a family of open subsets of Z and
⋃

G = E, because E is open. But E is also compact, so there
is a finite G0 ⊆ G such that E =

⋃
G0. Express G0 as {â0, . . . , ân}. Then

D.H.Fremlin



8 Boolean algebras 311I

E = â0 ∪ . . . ∪ ân = (a0 ∪ . . . ∪ an) .̂

This shows that every compact open subset of Z is of the form â for some a ∈ A.

(f) Finally, if A is a Boolean algebra then Z = 1̂ is compact, by (c); while if Z is compact then (e) tells
us that Z = â for some a ∈ A, and of course this a must be a multiplicative identity for A, so that A is a
Boolean algebra.

311J We have a kind of converse of Stone’s theorem.

Proposition Let X be a locally compact zero-dimensional Hausdorff space. Then the set A of open-and-
compact subsets of X is a subring of PX. If Z is the Stone space of A, there is a unique homeomorphism
θ : Z → X such that â = θ−1[a] for every a ∈ A.

proof (a) Because X is Hausdorff, all its compact sets are closed, so every member of A is closed. Conse-
quently a ∪ b, a \ b, a ∩ b and a△b belong to A for all a, b ∈ A, and A is a subring of PX.

It will be helpful to know that A is a base for the topology of X. PPP If G ⊆ X is open and x ∈ G,
then (because X is locally compact) there is a compact set K ⊆ X such that x ∈ intK; now (because X is
zero-dimensional) there is an open-and-closed set a ⊆ X such that x ∈ a ⊆ G ∩ intK; because a is a closed
subset of a compact subset of X, it is compact, and belongs to A, while x ∈ a ⊆ G. QQQ

(b) Let R ⊆ Z ×X be the relation

{(z, x): for every a ∈ A, x ∈ a ⇐⇒ z(a) = 1}.

Then R is the graph of a bijective function θ : Z → X.

PPP (i) If z ∈ Z and x, x′ ∈ X are distinct, then, because X is Hausdorff, there is an open set G ⊆ X
containing x and not containing x′; because A is a base for the topology of X, there is an a ∈ A such that
x ∈ a ⊆ G, so that x′ /∈ a. Now either z(a) = 1 and (z, x′) /∈ R, or z(a) = 0 and (z, x) /∈ R. Thus R is the
graph of a function θ with domain included in Z and taking values in X.

(ii) If z ∈ Z, there is an a0 ∈ A such that z(a0) = 1. Consider A = {a : z(a) = 1}. This is a family
of closed subsets of X containing the compact set a0, and a ∩ b ∈ A for all a, b ∈ A. So

⋂
A is not empty

(3A3Db); take x ∈
⋂
A. Then x ∈ a whenever z(a) = 1. On the other hand, if z(a) = 0, then

z(a0 \ a) = z(a0△(a ∩ a0)) = z(a0) +2 z(a0)z(a) = 1,

so x ∈ a0 \ a and x /∈ a. Thus (z, x) ∈ R and θ(z) = x is defined. As z is arbitrary, the domain of θ is the
whole of Z.

(iii) If x ∈ X, define z : A → Z2 by setting z(a) = 1 if x ∈ a, 0 otherwise. It is elementary to check
that z is a ring homomorphism form A to Z2. To see that it takes the value 1, note that because A is a
base for the topology of X there is an a ∈ A such that x ∈ a, so that z(a) = 1. So z ∈ Z, and of course
(z, x) ∈ R. As x is arbitrary, θ is surjective.

(iv) If z, z′ ∈ Z and θ(z) = θ(z′), then, for any a ∈ A,

z(a) = 1 ⇐⇒ θ(z) ∈ a ⇐⇒ θ(z′) ∈ a ⇐⇒ z′(a) = 1,

so z = z′. Thus θ is injective. QQQ

(c) For any a ∈ A,

θ−1[a] = {z : θ(z) ∈ a} = {z : z(a) = 1} = â.

It follows that θ is a homeomorphism. PPP (i) If G ⊆ X is open, then (because A is a base for the topology
of X) G =

⋃
{a : a ∈ A, a ⊆ G} and

θ−1[G] =
⋃
{θ−1[a] : a ∈ A, a ⊆ G} =

⋃
{â : a ∈ A, a ⊆ G}

is an open subset of Z. As G is arbitrary, θ is continuous. (ii) On the other hand, if G ⊆ X and θ−1[G] is
open, then θ−1[G] is of the form

⋃
a∈A â for some A ⊆ A, so that G =

⋃
A is an open set in X. Accordingly

θ is a homeomorphism. QQQ

(d) Finally, I must check the uniqueness of θ. But of course if θ̃ : Z → X is any function such that

θ̃−1[a] = â for every a ∈ A, then the graph of θ̃ must be R, so θ̃ = θ.

Measure Theory



311L Boolean algebras 9

311K Remark Thus we have a correspondence between Boolean rings and zero-dimensional locally
compact Hausdorff spaces which is (up to isomorphism, on the one hand, and homeomorphism, on the
other) one-to-one. Every property of Boolean rings which we study will necessarily correspond to some
property of zero-dimensional locally compact Hausdorff spaces.

311L Complemented distributive lattices I have introduced Boolean algebras through the theory
of rings; this seems to be the quickest route to them from an ordinary undergraduate course in abstract
algebra. However there are alternative approaches, taking the order structure rather than the algebraic
operations as fundamental, and for the sake of an application in Chapter 35 I give the details of one of these.

Proposition Let A be a lattice such that

(i) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c ∈ A;
(ii) there is a permutation a 7→ a′ : A → A which is order-reversing, that is, a ≤ b iff b′ ≤ a′,

and such that a′′ = a for every a;
(iii) A has a least element 0 and a ∧ a′ = 0 for every a ∈ A.

Then A has a Boolean algebra structure for which a ⊆ b iff a ≤ b.

proof (a) Write 1 for 0′; if a ∈ A, then a′ ≥ 0 so a = a′′ ≤ 0′ = 1, and 1 is the greatest element of A.
If a, b ∈ A then, because ′ is an order-reversing permutation, a′ ∨ b′ = (a ∧ b)′. PPP For c ∈ A,

a′ ∨ b′ ≤ c ⇐⇒ a′ ≤ c & b′ ≤ c ⇐⇒ c′ ≤ a & c′ ≤ b

⇐⇒ c′ ≤ a ∧ b ⇐⇒ (a ∧ b)′ ≤ c. QQQ

Similarly, a′ ∧ b′ = (a ∨ b)′. If a, b, c ∈ A then

(a ∧ b) ∨ c = ((a′ ∨ b′) ∧ c′)′ = ((a′ ∧ c′) ∨ (b′ ∧ c′))′ = (a ∨ c) ∧ (b ∨ c).

(b) Define addition and multiplication on A by setting

a+ b = (a ∧ b′) ∨ (a′ ∧ b), ab = a ∧ b

for a, b ∈ A.

(c)(i) If a, b ∈ A then

(a+ b)′ = (a′ ∨ b) ∧ (a ∨ b′) = (a′ ∧ a) ∨ (a′ ∧ b′) ∨ (b ∧ a) ∨ (b ∧ b′)

= 0 ∨ (a′ ∧ b′) ∨ (b ∧ a) = (a′ ∧ b′) ∨ (a ∧ b).

So if a, b, c ∈ A then

(a+ b) + c = ((a+ b) ∧ c′) ∨ ((a+ b)′ ∧ c)

= (((a ∧ b′) ∨ (a′ ∧ b)) ∧ c′) ∨ (((a′ ∧ b′) ∨ (a ∧ b)) ∧ c)

= (a ∧ b′ ∧ c′) ∨ (a′ ∧ b ∧ c′) ∨ (a′ ∧ b′ ∧ c) ∨ (a ∧ b ∧ c);

as this last formula is symmetric in a, b and c, it is also equal to a+ (b+ c). Thus addition is associative.

(ii) For any a ∈ A,

a+ 0 = 0 + a = (a′ ∧ 0) ∨ (a ∧ 0′) = 0 ∨ (a ∧ 1) = a,

so 0 is the additive identity of A. Also

a+ a = (a ∧ a′) ∨ (a′ ∧ a) = 0 ∨ 0 = 0

so each element of A is its own additive inverse, and (A,+) is a group. It is abelian because ∨ and ∧ are
commutative.

(d) Because ∧ is associative and commutative, (A, ·) is a commutative semigroup; also 1 is its identity,
because a ∧ 1 = a for every a ∈ A. As for the distributive law in A,

D.H.Fremlin



10 Boolean algebras 311L

ab+ ac = (a ∧ b ∧ (a ∧ c)′) ∨ ((a ∧ b)′ ∧ a ∧ c)

= (a ∧ b ∧ (a′ ∨ c′)) ∨ ((a′ ∨ b′) ∧ a ∧ c)

= (a ∧ b ∧ a′) ∨ (a ∧ b ∧ c′) ∨ (a′ ∧ a ∧ c) ∨ (b′ ∧ a ∧ c)

= (a ∧ b ∧ c′) ∨ (b′ ∧ a ∧ c)

= a ∧ ((b ∧ c′) ∨ (b′ ∧ c)) = a(b+ c)

for all a, b, c ∈ A. Thus (A,+, ·) is a ring; because a ∧ a = a for every a, it is a Boolean ring.

(e) For a, b ∈ A,

a ⊆ b ⇐⇒ ab = a ⇐⇒ a ∧ b = a ⇐⇒ a ≤ b,

so the order relations of A coincide.

Remark It is the case that the Boolean algebra structure of A is uniquely determined by its order structure,
but I delay the proof to the next section (312M).

311X Basic exercises (a) Let A0, . . . , An be sets. Show that

A0△ . . .△An = {x : #({i : i ≤ n, x ∈ Ai}) is odd}.

(b) Let X be a set, and Σ ⊆ PX. Show that the following are equiveridical: (i) Σ is an algebra of subsets
of X; (ii) Σ is a subring of PX (that is, contains ∅ and is closed under △ and ∩) and contains X; (iii) ∅ ∈ Σ,
X \ E ∈ Σ for every E ∈ Σ, and E ∩ F ∈ Σ for all E, F ∈ Σ.

(c) Let A be any Boolean ring. Let a 7→ a′ be any bijection between A and a set B disjoint from A. Set
B = A ∪ B, and extend the addition and multiplication of A to form binary operations on B by using the
formulae

a+ b′ = a′ + b = (a+ b)′, a′ + b′ = a+ b,

a′b = b+ ab, ab′ = a+ ab, a′b′ = (a+ b+ ab)′.

Show that B is a Boolean algebra and that A is an ideal in B.

>>>(d) Let A be a Boolean ring, and K a finite subset of A. Show that the subring of A generated by K

has at most 22
#(K)−1 members. (Hint : count its minimal non-zero elements.)

>>>(e) Show that any finite Boolean ring is isomorphic to PX for some finite set X (and, in particular, is
a Boolean algebra).

(f) Let A be any Boolean ring. Show that

a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c), a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)

for all a, b, c ∈ A directly from the definitions in 311G, without using Stone’s theorem.

>>>(g) Let A be any Boolean ring. Show that if we regard the Stone space Z of A as a subset of {0, 1}A,
then the topology of Z (311I) is just the subspace topology induced by the ordinary product topology of
{0, 1}A.

(h) Let I be any set, and set X = {0, 1}I with its usual topology (3A3K). Show that for a subset E of
X the following are equiveridical: (i) E is open-and-compact; (ii) E is determined by coordinates in a finite
subset of I (definition: 254M); (iii) E belongs to the algebra of subsets of X generated by {Ei : i ∈ I},
where Ei = {x : x(i) = 1} for each i.

(i) Let (A,≤) be a lattice such that (α) A has a least element 0 and a greatest element 1 (β) for every
a, b, c ∈ A, a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (γ) for every a ∈ A there is an
a′ ∈ A such that a ∨ a′ = 1 and a ∧ a′ = 0. Show that there is a Boolean algebra structure on A for which
≤ agrees with ⊆ .

Measure Theory
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311Y Further exercises (a) Let A be a Boolean ring, and B the Boolean algebra constructed by the
method of 311Xc. Show that the Stone space of B can be identified with the one-point compactification
(3A3O) of the Stone space of A.

(b) Let (A,∨,∧, 0, 1) be such that (i) (A,∨) is a commutative semigroup with identity 0 (ii) (A,∧) is a
commutative semigroup with identity 1 (iii) a∧ (b∨ c) = (a∧ b)∨ (a∧ c), a∨ (b∧ c) = (a∨ b)∧ (a∨ c) for all
a, b, c ∈ A (iv) a ∨ a = a ∧ a = a for every a ∈ A (v) for every a ∈ A there is an a′ ∈ A such that a ∨ a′ = 1
and a ∧ a′ = 0. Show that there is a Boolean algebra structure on A for which ∨ = ∪ , ∧ = ∩ .

(c) Let (A,∨,′ ) be such that (i) (A,∨) is a non-empty commutative semigroup (ii) ′ : A → A is a function
(iii) ((a∨ b)′ ∨ (a∨ b′)′)′ = a for all a, b ∈ A. Show that there is a Boolean algebra structure on A for which
∨ = ∪ and ′ is complementation. (Hint : McCune 97.)

(d) Let P be a distributive lattice, and Z the set of surjective lattice homomorphisms from P to {0, 1}.
Show that there is a sublattice of PZ isomorphic to P .

311 Notes and comments My aim in this section has been to get as quickly as possible to Stone’s theorem,
since this is surely the best route to a picture of general Boolean algebras; they are isomorphic to algebras
of sets. This means that all their elementary algebraic properties – indeed, all their first-order properties
– can be effectively studied in the context of elementary set theory. In 311G-311H I describe a few of the
ways in which the Stone representation suggests algebraic properties of Boolean algebras.

You should not, however, come too readily to the conclusion that Boolean algebras will never be able to
surprise you. In this book, in particular, we shall need to work a good deal with suprema and infima of
infinite sets in Boolean algebras, for the ordering of 311H; and even though this corresponds to the ordering
⊆ of ordinary sets, we find that (supA)̂ is sufficiently different from

⋃
a∈A â to need new kinds of intuition.

(The point is that
⋃
a∈A â is an open set in the Stone space, but need not be compact if A is infinite, so

may well be smaller than (supA) ,̂ even when supA is defined in A.) There is also the fact that Stone’s
theorem depends crucially on a fairly strong form of the axiom of choice (employed through Zorn’s Lemma
in the argument of 311D). Of course I shall be using the axiom of choice without scruple throughout this
volume. But it should be clear that such results as 312B-312C in the next section cannot possibly need the
axiom of choice for their proofs, and that to use Stone’s theorem in such a context is slightly misleading.

Nevertheless, it is so useful to be able to regard a Boolean algebra as an algebra of sets – especially when
dealing with only finitely many elements of the algebra at a time – that henceforth I will almost always use
the symbols △ , ∩ for the addition and multiplication of a Boolean ring, and will use ∪ , \ , ⊆ without
further comment, just as if I were considering ∪, \ and ⊆ in the Stone space. (In 311Gb I have given a
definition of ‘disjointness’ in a Boolean algebra based on the same idea.) Even without the axiom of choice
this approach can be justified, once we have observed that finitely-generated Boolean algebras are finite
(311Xd), since relatively elementary methods show that any finite Boolean algebra is isomorphic to PX for
some finite set X.

I have taken a Boolean algebra to be a particular kind of commutative ring with identity. Of course
there are other approaches. If we wish to think of the order relation as primary, then 311L and 311Xi are
reasonably natural. Other descriptions can be based on a list of the properties of the binary operations ∪ ,
∩ and the complementation operation a 7→ a′ = 1 \ a, as in 311Yb. (The hardest I know of is in 311Yc.) I
give extra space to 311L only because this is well adapted to an application in 352Q below.

Version of 29.5.07

312 Homomorphisms

I continue the theory of Boolean algebras with a section on subalgebras, ideals and homomorphisms.
From now on, I will relegate Boolean rings which are not algebras to the exercises; I think there is no need
to set out descriptions of the (mostly trifling) modifications necessary to deal with the extra generality. The
first part of the section (312A-312L) concerns the translation of the basic concepts of ring theory into the

c© 1994 D. H. Fremlin
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12 Boolean algebras §312 intro.

language which I propose to use for Boolean algebras. 312M shows that the order relation on a Boolean
algebra defines the algebraic structure, and in 312N-312O I give a fundamental result on the extension of
homomorphisms. I end the section with results relating the previous ideas to the Stone representation of a
Boolean algebra (312P-312T).

312A Subalgebras Let A be a Boolean algebra. I will use the phrase subalgebra of A to mean a
subring of A containing its multiplicative identity 1 = 1A.

312B Proposition Let A be a Boolean algebra, and B a subset of A. Then the following are equiveridical,
that is, if one is true so are the others:

(i) B is a subalgebra of A;
(ii) 0 ∈ B, a ∪ b ∈ B for all a, b ∈ B, and 1 \ a ∈ B for all a ∈ B;
(iii) B 6= ∅, a ∩ b ∈ B for all a, b ∈ B, and 1 \ a ∈ B for all a ∈ B.

proof (i)⇒(iii) If B is a subalgebra of A, and a, b ∈ B, then of course we shall have

0, 1 ∈ B, so B 6= ∅,

a ∩ b ∈ B, 1 \ a = 1 △ a ∈ B.

(iii)⇒(ii) If (iii) is true, then there is some b0 ∈ B; now 1 \ b0 ∈ B, so

0 = b0 ∩ (1 \ b0) ∈ B.

If a, b ∈ B, then

a ∪ b = 1 \ ((1 \ a) ∩ (1 \ b)) ∈ B.

So (ii) is true.

(ii)⇒(i) If (ii) is true, then for any a, b ∈ B,

a ∩ b = 1 \ ((1 \ a) ∪ (1 \ b)) ∈ B,

a△ b = (a ∩ (1 \ b)) ∪ (b ∩ (1 \ a)) ∈ B,

so (because also 0 ∈ B) B is a subring of A, and

1 = 1 \ 0 ∈ B,

so B is a subalgebra.

Remark Thus an algebra of subsets of a set X, as defined in 136E or 311Bb, is just a subalgebra of the
Boolean algebra PX.

312C Ideals in Boolean algebras: Proposition If A is a Boolean algebra, a set I ⊆ A is an ideal of
A iff 0 ∈ I, a ∪ b ∈ I for all a, b ∈ I, and a ∈ I whenever b ∈ I and a ⊆ b.

proof (a) Suppose that I is an ideal. Then of course 0 ∈ I. If a, b ∈ I then a ∩ b ∈ I so a ∪ b =
(a△ b) △ (a ∩ b) ∈ I. If b ∈ I and a ⊆ b then a = a ∩ b ∈ I.

(b) Now suppose that I satisfies the conditions proposed. If a, b ∈ I then

a△ b ⊆ a ∪ b ∈ I

so a△ b ∈ I, while of course −a = a ∈ I, and also 0 ∈ I, by hypothesis; thus I is a subgroup of (A,△).
Finally, if a ∈ I and b ∈ A then

a ∩ b ⊆ a ∈ I,

so b ∩ a = a ∩ b ∈ I; thus I is an ideal.

312D Principal ideals Of course, while an ideal I in a Boolean algebra A is necessarily a subring, it is
not as a rule a subalgebra, except in the special case I = A. But if we say that a principal ideal of A is
the ideal Aa generated by a single element a of A, we have a special phenomenon.
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312H Homomorphisms 13

312E Proposition Let A be a Boolean algebra, and a any element of A. Then the principal ideal Aa of
A generated by a is just {b : b ∈ A, b ⊆ a}, and (with the inherited operations ∩ ↾Aa × Aa, △ ↾Aa × Aa) is
a Boolean algebra in its own right, with multiplicative identity a.

proof b ⊆ a iff b ∩ a = b, so that

Aa = {b : b ⊆ a} = {b ∩ a : b ∈ A}

is an ideal of A, and of course it is the smallest ideal of A containing a. Being an ideal, it is a subring; the
idempotent relation b ∩ b = b is inherited from A, so it is a Boolean ring; and a is plainly its multiplicative
identity.

312F Boolean homomorphisms Now suppose that A and B are two Boolean algebras. I will use the
phrase Boolean homomorphism to mean a function π : A → B which is a ring homomorphism (that is,
π(a△ b) = πa△ πb, π(a ∩ b) = πa ∩ πb for all a, b ∈ A) and is uniferent, that is, π(1A) = 1B.

312G Proposition Let A, B and C be Boolean algebras.
(a) If π : A → B is a Boolean homomorphism, then π[A] is a subalgebra of B.
(b) If π : A → B and θ : B → C are Boolean homomorphisms, then θπ : A → C is a Boolean

homomorphism.
(c) If π : A → B is a bijective Boolean homomorphism, then π−1 : B → A is a Boolean homomorphism.

proof These are all immediate consequences of the corresponding results for ring homomorphisms (3A2D).

312H Proposition Let A and B be Boolean algebras, and π : A → B a function. Then the following
are equiveridical:

(i) π is a Boolean homomorphism;
(ii) π(a ∩ b) = πa ∩ πb and π(1A \ a) = 1B \ πa for all a, b ∈ A;
(iii) π(a ∪ b) = πa ∪ πb and π(1A \ a) = 1B \ πa for all a, b ∈ A;
(iv) π(a ∪ b) = πa ∪ πb and πa ∩ πb = 0B whenever a, b ∈ A and a ∩ b = 0A, and π(1A) = 1B.

proof (i)⇒(iv) If π is a Boolean homomorphism then of course π(1A) = 1B; also, given that a ∩ b = 0 in A,

πa ∩ πb = π(a ∩ b) = π(0A) = 0B,

π(a ∪ b) = π(a△ b) = πa△ πb = πa ∪ πb.

(iv)⇒(iii) Assume (iv), and take a, b ∈ A. Then

πa = π(a ∩ b) ∪ π(a \ b), πb = π(a ∩ b) ∪ π(b \ a),

so

π(a ∪ b) = πa ∪ π(b \ a) = π(a ∩ b) ∪ π(a \ b) ∪ π(b \ a) = πa ∪ πb.

Taking b = 1 \ a, we must have

1B = π(1A) = πa ∪ π(1A \ a), 0B = πa ∩ π(1A \ a),

so π(1A \ a) = 1B \ πa. Thus (iii) is true.

(iii)⇒(ii) If (iii) is true and a, b ∈ A, then

π(a ∩ b) = π(1A \ ((1A \ a) ∪ (1A \ b)))

= 1B \ ((1B \ πa) ∪ (1B \ πb))) = πa ∩ πb.

So (ii) is true.

(ii)⇒(i) If (ii) is true, then

π(a△ b) = π((1A \ ((1A \ a) ∩ (1A \ b))) ∩ (1A \ (a ∩ b)))

= (1B \ ((1B \ πa) ∩ (1B \ πb)) ∩ (1B \ (πa ∩ πb))) = πa△ πb
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14 Boolean algebras 312H

for all a, b ∈ A, so π is a ring homomorphism; and now

π(1A) = π(1A \ 0A) = 1B \ π(0A) = 1B \ 0B = 1B,

so that π is a Boolean homomorphism.

312I Proposition If A, B are Boolean algebras and π : A → B is a Boolean homomorphism, then
πa ⊆ πb whenever a ⊆ b in A.

proof

a ⊆ b =⇒ a ∩ b = a =⇒ πa ∩ πb = πa =⇒ πa ⊆ πb.

312J Proposition Let A be a Boolean algebra, and a any member of A. Then the map b 7→ a ∩ b is a
surjective Boolean homomorphism from A onto the principal ideal Aa generated by a.

proof This is an elementary verification.

*312K Fixed-point subalgebras For future reference I introduce the following idea. If A is a Boolean
algebra and π : A → A is a Boolean homomorphism, then {a : a ∈ A, πa = a} is a subalgebra of A (put the
definitions 312A and 312F together); I will call it the fixed-point subalgebra of π.

312L Quotient algebras: Proposition Let A be a Boolean algebra and I an ideal of A. Then the
quotient ring A/I (3A2F) is a Boolean algebra, and the canonical map a 7→ a• : A → A/I is a Boolean
homomorphism, so that

(a△ b)• = a• △ b•, (a ∪ b)• = a• ∪ b•, (a ∩ b)• = a• ∩ b•, (a \ b)• = a• \ b•

for all a, b ∈ A.
(b) The order relation on A/I is defined by the formula

a• ⊆ b• ⇐⇒ a \ b ∈ I.

For any a ∈ A,

{u : u ⊆ a•} = {b• : b ⊆ a}.

proof (a) Of course the map a 7→ a• = {a△ b : b ∈ I} is a ring homomorphism (3A2Fd). Because

(a•)2 = (a2)• = a•

for every a ∈ A, A/I is a Boolean ring; because 1• is a multiplicative identity, it is a Boolean algebra, and
a 7→ a• is a Boolean homomorphism. The formulae given are now elementary.

(b) We have

a• ⊆ b• ⇐⇒ a• \ b• = 0 ⇐⇒ a \ b ∈ I.

Now

{u : u ⊆ a•} = {u ∩ a• : u ∈ A/I} = {(b ∩ a)• : b ∈ A} = {b• : b ⊆ a}.

312M The above results are both repetitive and nearly trivial. Now I come to something with a little
more meat to it.

Proposition If A and B are Boolean algebras and π : A → B is a bijection such that πa ⊆ πb whenever
a ⊆ b, then π is a Boolean algebra isomorphism.

proof (a) Because π is surjective, there must be c0, c1 ∈ A such that πc0 = 0B, πc1 = 1B; now π(0A) ⊆ πc0
and πc1 ⊆ π(1A), so we must have π(0A) = 0B and π(1A) = 1B.

(b) If a ∈ A, then πa ∪ π(1A \ a) = 1B. PPP There is a c ∈ A such that πc = 1B \ (πa ∪ π(1A \ a)). Now

π(c ∩ a) ⊆ πc ∩ πa = 0B, π(c \ a) ⊆ πc ∩ π(1A \ a) = 0B;
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as π is injective, c ∩ a = c \ a = 0A and c = 0A, πc = 0B, πa ∪ π(1A \ a) = 1B. QQQ

(c) If a ∈ A, then πa ∩ π(1A \ a) = 0B. PPP It may be clear to you that this is just a dual form of (b). If not,
I repeat the argument in the form now appropriate. There is a c ∈ A such that πc = 1B \ (πa ∩ π(1A \ a)).
Now

π(c ∪ a) ⊇ πc ∪ πa = 1B, π(c ∪ (1A \ a)) ⊇ πc ∪ π(1A \ a) = 1B;

as π is injective, c ∪ a = c ∪ (1A \ a) = 1A and c = 1A, πc = 1B, πa ∩ π(1A \ a) = 0B. QQQ

(d) Putting (b) and (c) together, we have π(1A \ a) = 1B \ πa for every a ∈ A. Now π(a ∪ b) = πa ∪ πb
for every a, b ∈ A. PPP Surely πa ∪ πb ⊆ π(a ∪ b). Let c ∈ A be such that πc = π(a ∪ b) \ (πa ∪ πb). Then

π(c ∩ a) ⊆ πc ∩ πa = 0B, π(c ∩ b) ⊆ πc ∩ πb = 0B,

so c ∩ a = c ∩ b = 0 and c ⊆ 1A \ (a ∪ b); accordingly

πc ⊆ π(1A \ (a ∪ b)) = 1B \ π(a ∪ b);

as also πc ⊆ π(a ∪ b), πc = 0B and π(a ∪ b) = πa ∪ πb. QQQ

(e) So the conditions of 312H(iii) are satisfied and π is a Boolean homomorphism; being bijective, it is
an isomorphism.

312N I turn next to a fundamental lemma on the construction of homomorphisms. We need to start
with a proper description of a certain type of subalgebra.

Lemma Let A be a Boolean algebra, and A0 a subalgebra of A; let c be any member of A. Then

A1 = {(a ∩ c) ∪ (b \ c) : a, b ∈ A0}

is a subalgebra of A; it is the subalgebra of A generated by A0 ∪ {c}.

proof We have to check the following:

a = (a ∩ c) ∪ (a \ c) ∈ A1

for every a ∈ A0, so A0 ⊆ A1; in particular, 0 ∈ A1.

1 \ ((a ∩ c) ∪ (b \ c)) = ((1 \ a) ∩ c) ∪ ((1 \ b) \ c) ∈ A1

for all a, b ∈ A0, so 1 \ d ∈ A1 for every d ∈ A1.

(a ∩ c) ∪ (b \ c) ∪ (a′ ∩ c) ∪ (b′ \ c) = ((a ∪ a′) ∩ c) ∪ ((b ∪ b′) \ c) ∈ A1

for all a, b, a′, b′ ∈ A0, so d ∪ d′ ∈ A1 for all d, d′ ∈ A1. Thus A1 is a subalgebra of A (using 312B).

c = (1 ∩ c) ∪ (0 \ c) ∈ A1,

so A1 includes A0∪{c}; and finally it is clear that any subalgebra of A including A0∪{c}, being closed under
∩ , ∪ and complementation, must include A1, so that A1 is the subalgebra of A generated by A0 ∪ {c}.

312O Lemma Let A and B be Boolean algebras, A0 a subalgebra of A, π : A0 → B a Boolean
homomorphism, and c ∈ A. If v ∈ B is such that πa ⊆ v ⊆ πb whenever a, b ∈ A0 and a ⊆ c ⊆ b, then there
is a unique Boolean homomorphism π1 from the subalgebra A1 of A generated by A0 ∪ {c} such that π1
extends π and π1c = v.

proof (a) The basic fact we need to know is that if a, a′, b, b′ ∈ A0 and

(a ∩ c) ∪ (b \ c) = d = (a′ ∩ c) ∪ (b′ \ c),

then

(πa ∩ v) ∪ (πb \ v) = (πa′ ∩ v) ∪ (πb′ \ v).

PPP We have

a ∩ c = d ∩ c = a′ ∩ c.

Accordingly (a△ a′) ∩ c = 0 and c ⊆ 1 \ (a△ a′). Consequently (since a△ a′ surely belongs to A0)
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16 Boolean algebras 312O

v ⊆ π(1 \ (a△ a′)) = 1 \ (πa△ πa′),

and

πa ∩ v = πa′ ∩ v.

Similarly,

b \ c = d \ c = b′ \ c,

so

(b△ b′) \ c = 0, b△ b′ ⊆ c, πb△ πb′ = π(b△ b′) ⊆ v

and

πb \ v = πb′ \ v.

Putting these together, we have the result. QQQ

(b) Consequently, we have a function π1 defined by writing

π1((a ∩ c) ∪ (b \ c)) = (πa ∩ v) ∪ (πb \ v)

for all a, b ∈ A0; and 312N tells us that the domain of π1 is just A1. Now π1 is a Boolean homomorphism.
PPP This amounts to running through the proof of 312N again.

(i) If a, b ∈ A0, then

π1(1 \ ((a ∩ c) ∪ (b \ c))) = π1(((1 \ a) ∩ c) ∪ ((1 \ b) \ c))

= (π(1 \ a) ∩ v) ∪ (π(1 \ b) \ v)

= ((1 \ πa) ∩ v) ∪ ((1 \ πb) \ v)

= 1 \ ((πa ∩ v) ∪ (πb \ v)) = 1 \ π1((a ∩ c) ∪ (b \ c)).

So π1(1 \ d) = 1 \ π1d for every d ∈ A1.

(ii) If a, b, a′, b′ ∈ A0, then

π1((a ∩ c) ∪ (b \ c) ∪ (a′ ∩ c) ∪ (b′ \ c)) = π1(((a ∪ a′) ∩ c) ∪ ((b ∪ b′) \ c))

= (π(a ∪ a′) ∩ v) ∪ (π(b ∪ b′) \ v)

= ((πa ∪ πa′) ∩ v) ∪ ((πb ∪ πb′) \ v)

= (πa ∩ v) ∪ (πb \ v) ∪ (πa′ ∩ v) ∪ (πb′ \ v)

= π1((a ∩ c) ∪ (b \ c)) ∪ π1((a′ ∩ c) ∪ (b′ \ c)).

So π1(d ∪ d′) = π1d ∪ π1d
′ for all d, d′ ∈ A1.

By 312H(iii), π1 is a Boolean homomorphism. QQQ

(c) If a ∈ A0, then

π1a = π1((a ∩ c) ∪ (a \ c)) = (πa ∩ v) ∪ (πa \ v) = πa,

so π1 extends π. As for the action of π1 on c,

π1c = π1((1 ∩ c) ∪ (0 \ c)) = (π1 ∩ v) ∪ (π0 \ v) = (1 ∩ v) ∪ (0 \ v) = v,

as required.

(d) Finally, the formula of (b) is the only possible definition for any Boolean homomorphism from A1 to
B which will extend π and take c to v. So π1 is unique.

312P Homomorphisms and Stone spaces Because the Stone space Z of a Boolean algebra A (311E)
can be constructed explicitly from the algebraic structure of A, it must in principle be possible to describe
any feature of the Boolean structure of A in terms of Z. In the next few paragraphs I work through the
most important identifications.
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Proposition Let A be a Boolean algebra, and Z its Stone space; write â ⊆ Z for the open-and-closed set
corresponding to a ∈ A. Then there is a one-to-one correspondence between ideals I of A and open sets
G ⊆ Z, given by the formulae

G =
⋃
a∈I â, I = {a : â ⊆ G}.

proof (a) For any ideal I ⊳ A, set H(I) =
⋃
a∈I â; then H(I) is a union of open subsets of Z, so is open.

For any open set G ⊆ Z, set J(G) = {a : a ∈ A, â ⊆ G}; then J(G) satisfies the conditions of 312C, so is
an ideal of A.

(b) If I ⊳ A, then J(H(I)) = I. PPP (i) If a ∈ I, then â ⊆ H(I) so a ∈ J(H(I)). (ii) If a ∈ J(H(I)), then

â ⊆ H(I) =
⋃
b∈I b̂. Because â is compact and all the b̂ are open, there must be finitely many b0, . . . , bn ∈ I

such that â ⊆ b̂0 ∪ . . . ∪ b̂n. But now a ⊆ b0 ∪ . . . ∪ bn ∈ I, so a ∈ I. QQQ

(c) If G ⊆ Z is open, then H(J(G)) = G. PPP (i) If z ∈ G, then (because {â : a ∈ A} is a base for the
topology of Z) there is an a ∈ A such that z ∈ â ⊆ G; now a ∈ J(G) and z ∈ H(J(G)). (ii) If z ∈ H(J(G)),
there is an a ∈ J(G) such that z ∈ â; now â ⊆ G, so z ∈ G. QQQ

This shows that the maps G 7→ J(G), I 7→ H(I) are two halves of a one-to-one correspondence, as
required.

312Q Theorem Let A, B be Boolean algebras, with Stone spaces Z, W ; write â ⊆ Z, b̂ ⊆ W for the
open-and-closed sets corresponding to a ∈ A, b ∈ B. Then we have a one-to-one correspondence between
Boolean homomorphisms π : A → B and continuous functions φ : W → Z, given by the formula

πa = b ⇐⇒ φ−1[â] = b̂,

that is, φ−1[â] = π̂a.

proof (a) Recall that I have constructed Z and W as the sets of Boolean homomorphisms from A and B

to Z2 (311F). So if π : A → B is any Boolean homomorphism, and w ∈ W , ψπ(w) = wπ is a Boolean
homomorphism from A to Z2 (312Gb), and belongs to Z. Now ψ−1

π [â] = π̂a for every a ∈ A. PPP

ψ−1
π [â] = {w : ψπ(w) ∈ â} = {w : wπ ∈ â} = {w : wπ(a) = 1} = {w : w ∈ π̂a}. QQQ

Consequently ψπ is continuous. PPP Let G be any open subset of Z. Then G =
⋃
{â : â ⊆ G}, so

ψ−1
π [G] =

⋃
{ψ−1

π [â] : â ⊆ G} =
⋃
{π̂a : â ⊆ G}

is open. As G is arbitrary, ψπ is continuous. QQQ

(b) If φ : W → Z is continuous, then for any a ∈ A the set φ−1[â] must be an open-and-closed set in

W ; consequently there is a unique member of B, call it θφa, such that φ−1[â] = θ̂φa. Observe that, for any
w ∈W and a ∈ A,

w(θφa) = 1 ⇐⇒ w ∈ θ̂φa ⇐⇒ φ(w) ∈ â ⇐⇒ (φ(w))(a) = 1,

so φ(w) = wθφ.
Now θφ is a Boolean homomorphism. PPP (i) If a, b ∈ A then

θφ(a ∪ b)̂ = φ−1[(a ∪ b)̂] = φ−1[â ∪ b̂] = φ−1[â] ∪ φ−1 [̂b] = θ̂φa ∪ θ̂φb = (θφa ∪ θφb) ,̂

so θφ(a ∪ b) = θφa ∪ θφb. (ii) If a ∈ A, then

θφ(1 \ a)̂ = φ−1[(1 \ a)̂] = φ−1[Z \ â] = W \ φ−1[â] = W \ θ̂φa = (1 \ θφa) ,̂

so θφ(1 \ a) = 1 \ θφa. (iii) By 312H, θφ is a Boolean homomorphism. QQQ

(c) For any Boolean homomorphism π : A → B, π = θψπ
. PPP For a ∈ A,

(θψπ
a)̂ = ψ−1

π [â] = π̂a,

so θψπ
a = a. QQQ

(d) For any continuous function φ : W → Z, φ = ψθφ . PPP For any w ∈W ,

ψθφ(w) = wθφ = φ(w). QQQ
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(e) Thus π 7→ ψπ, φ 7→ θφ are the two halves of a one-to-one correspondence, as required.

312R Theorem Let A, B, C be Boolean algebras, with Stone spaces Z, W and V . Let π : A → B

and θ : B → C be Boolean homomorphisms, with corresponding continuous functions φ : W → Z and
ψ : V → W . Then the Boolean homomorphism θπ : A → C corresponds to the continuous function
φψ : V → Z.

proof For any a ∈ A,

θ̂πa = (θ(πa))̂ = ψ−1[π̂a] = ψ−1[φ−1[â]] = (φψ)−1[â].

312S Proposition Let A and B be Boolean algebras, with Stone spaces Z and W , and π : A → B a
Boolean homomorphism, with associated continuous function φ : W → Z. Then

(a) π is injective iff φ is surjective;
(b) π is surjective iff φ is injective.

proof (a) If a ∈ A, then

â ∩ φ[W ] = ∅ ⇐⇒ φ−1[â] = ∅ ⇐⇒ π̂a = ∅ ⇐⇒ πa = 0.

Now W is compact, so φ[W ] also is compact, therefore closed, and

φ is not surjective ⇐⇒ Z \ φ[W ] 6= ∅

⇐⇒ there is a non-zero a ∈ A such that â ⊆ Z \ φ[W ]

⇐⇒ there is a non-zero a ∈ A such that πa = 0

⇐⇒ π is not injective

(3A2Db).

(b)(i) If π is surjective and w, w′ are distinct members of W , then there is a b ∈ B such that w ∈ b̂

and w′ /∈ b̂. Now b = πa for some a ∈ A, so φ(w) ∈ â and φ(w′) /∈ â, and φ(w) 6= φ(w′). As w and w′ are
arbitrary, φ is injective.

(ii) If φ is injective and b ∈ B, then K = φ[̂b], L = φ[W \ b̂] are disjoint compact subsets of Z. Consider
I = {a : a ∈ A, L ∩ â = ∅}. Then

⋃
a∈I â = Z \ L ⊇ K. Because K is compact and every â is open, there

is a finite family a0, . . . , an ∈ I such that K ⊆ â0 ∪ . . . ∪ ân. Set a = a0 ∪ . . . ∪ an. Then â = â0 ∪ . . . ∪ ân
includes K and is disjoint from L. So π̂a = φ−1[â] includes b̂ and is disjoint from W \ b̂; that is, π̂a = b̂ and
πa = b. As b is arbitrary, π is surjective.

312T Principal ideals If A is a Boolean algebra and a ∈ A, we have a natural surjective Boolean
homomorphism b 7→ b ∩ a : A → Aa, the principal ideal generated by a (312J). Writing Z for the Stone space
of A and Za for the Stone space of Aa, this homomorphism must correspond to an injective continuous
function φ : Za → Z (312Sb). Because Za is compact and Z is Hausdorff, φ must be a homeomorphism
between Za and its image φ[Za] ⊆ Z (3A3Dd). To identify φ[Za], note that it is compact, therefore closed,
and that

Z \ φ[Za] =
⋃

{b̂ : b ∈ A, b̂ ∩ φ[Za] = ∅}

=
⋃

{b̂ : φ−1 [̂b] = ∅} =
⋃

{b̂ : b ∩ a = 0} = Z \ â,

so that φ[Za] = â. It is therefore natural to identify Za with the open-and-closed set â ⊆ Z.

312X Basic exercises (a) Let A be a Boolean ring, and B a subset of A. Show that B is a subring of
A iff 0 ∈ B and a ∪ b, a \ b ∈ B for all a, b ∈ B.

(b) Let A be a Boolean algebra and B a subset of A. Show that B is a subalgebra of A iff 1 ∈ B and
a \ b ∈ B for all a, b ∈ B.
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(c) Let A be a Boolean algebra. Suppose that I ⊆ A ⊆ A are such that 1 ∈ A, a ∩ b ∈ I for all a, b ∈ I
and a \ b ∈ A whenever a, b ∈ A and b ⊆ a. Show that A includes the subalgebra of A generated by I.
(Hint : 136Xf.)

(d) Show that if A is a Boolean ring, a set I ⊆ A is an ideal of A iff 0 ∈ I, a ∪ b ∈ I for all a, b ∈ I, and
a ∈ I whenever b ∈ I and a ⊆ b.

(e) Let A and B be Boolean algebras, and π : A → B a function such that (i) π(a) ⊆ π(b) whenever
a ⊆ b (ii) π(a) ∩ π(b) = 0B whenever a ∩ b = 0A (iii) π(a) ∪ π(b) ∪ π(c) = 1B whenever a ∪ b ∪ c = 1A. Show
that π is a Boolean homomorphism.

(f) Let A be a Boolean ring, and a any member of A. Show that the map b 7→ a∩b is a ring homomorphism
from A onto the principal ideal Aa generated by a.

(g) Let A1 and A2 be Boolean rings, and let B1, B2 be the Boolean algebras constructed from them
by the method of 311Xc. Show that any ring homomorphism from A1 to A2 has a unique extension to a
Boolean homomorphism from B1 to B2.

(h) Let A and B be Boolean rings, A0 a subalgebra of A, π : A0 → B a ring homomorphism, and c ∈ A.
Show that if v ∈ B is such that πa \ v = πb ∩ v = 0 whenever a, b ∈ A0 and a \ c = b ∩ c = 0, then there is
a unique ring homomorphism π1 from the subring A1 of A generated by A0 ∪ {c} such that π1 extends π0
and π1c = v.

(i) Let A be a Boolean ring, and Z its Stone space. Show that there is a one-to-one correspondence
between ideals I of A and open sets G ⊆ Z, given by the formulae G =

⋃
a∈I â, I = {a : â ⊆ G}.

(j) Let A be a Boolean algebra, and suppose that A is the subalgebra of itself generated by A0 ∪ {c},
where A0 is a subalgebra of A and c ∈ A. Let Z be the Stone space of A and Z0 the Stone space of A0. Let
ψ : Z → Z0 be the continuous surjection corresponding to the embedding of A0 in A. Show that ψ↾ ĉ and
ψ↾Z \ ĉ are injective.

Now let B be another Boolean algebra, with Stone space W , and π : A0 → B a Boolean homomorphism,
with corresponding function φ : W → Z0. Show that there is a continuous function φ1 : W → Z such that
ψφ1 = φ iff there is an open-and-closed set V ⊆W such that φ[V ] ⊆ ψ[ĉ] and φ[W \ V ] ⊆ ψ[Z \ ĉ].

(k) Let A be a Boolean algebra, with Stone space Z, and I an ideal of A, corresponding to an open set
G ⊆ Z. Show that the Stone space of the quotient algebra A/I may be identified with Z \G.

(l) Let A be a Boolean algebra, and A ⊆ A a set, closed under ∪ and ∩ , such that 0, 1 ∈ A. Let B be
the set of elements of A expressible as a \ a′ where a, a′ ∈ A, and C the set of elements of A expressible as
b0 ∪ . . . ∪ bn where b0, . . . , bn ∈ B are disjoint. Show that C is a subalgebra of A.

(m) Let A, B be Boolean algebras, and A ⊆ A a set, closed under ∪ and ∩ , such that 0A, 1A ∈ A;
let C be the subalgebra of A generated by A. Let π : A → B be such that π0A = 0B and π1A = 1B, and
π(a ∪ a′) = πa ∪ πa′, π(a ∩ a′) = πa ∩ πa′ for all a, a′ ∈ A. Show that π has a unique extension to a Boolean
homomorphism from C to B.

312Y Further exercises (a) Find a function φ : P{0, 1, 2} → Z2 such that φ(1 \ a) = 1 \ φa for every
a ∈ P{0, 1, 2} and φ(a) ⊆ φ(b) whenever a ⊆ b, but φ is not a Boolean homomorphism.

(b) Let A be the Boolean ring of finite subsets of N. Show that there is a permutation π : A → A such
that πa ⊆ πb whenever a ⊆ b but π is not a ring homomorphism.

(c) Let A, B be Boolean rings, with Stone spaces Z, W . Show that we have a one-to-one correspondence
between ring homomorphisms π : A → B and continuous functions φ : H → Z, where H ⊆W is an open set,

such that φ−1[K] is compact for every compact set K ⊆ Z, given by the formula πa = b ⇐⇒ φ−1[â] = b̂.
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(d) Let A, B, C be Boolean rings, with Stone spaces Z, W and V . Let π : A → B and θ : B → C be
ring homomorphisms, with corresponding continuous functions φ : H → Z and ψ : G → W . Show that the
ring homomorphism θπ : A → C corresponds to the continuous function φψ : ψ−1[H] → Z.

(e) Let A and B be Boolean rings, with Stone spaces Z and W , and π : A → B a ring homomorphism,
with associated continuous function φ : H → Z. Show that π is injective iff φ[H] is dense in Z, and that π
is surjective iff φ is injective and H = W .

(f) Let A be a Boolean ring and a ∈ A. Show that the Stone space of the principal ideal Aa of A generated
by a can be identified with the compact open set â in the Stone space of A. Show that the identity map is
a ring homomorphism from Aa to A, and corresponds to the identity function on â.

312 Notes and comments The definitions of ‘subalgebra’ and ‘Boolean homomorphism’ (312A, 312F),
like that of ‘Boolean algebra’, are a trifle arbitrary, but will be a convenient way of mandating appropriate
treatment of multiplicative identities. I run through the work of 312A-312J essentially for completeness;
once you are familiar with Boolean algebras, they should all seem obvious. 312M has a little bit more to it.
It shows that the order structure of a Boolean algebra defines the ring structure, in a fairly strong sense.

I call 312O a ‘lemma’, but actually it is the most important result in this section; it is the basic tool we have
for extending a homomorphism from a subalgebra to a slightly larger one, and with Zorn’s Lemma (another
‘lemma’ which deserves a capital L) will provide us with general methods of constructing homomorphisms.

In 312P-312T I describe the basic relationships between the Boolean homomorphisms and continuous
functions on Stone spaces. 312Q-312R show that, in the language of category theory, the Stone representation
provides a ‘contravariant functor’ from the category of Boolean algebras with Boolean homomorphisms to the
category of topological spaces with continuous functions. Using 311I-311J, we know exactly which topological
spaces appear, the zero-dimensional compact Hausdorff spaces; and we know also that the functor is faithful,
that is, that we can recover Boolean algebras and homomorphisms from the corresponding topological spaces
and continuous functions. There is an agreeable duality in 312S. All of this can be done for Boolean rings,
but there are some extra complications (312Yc-312Yf).

To my mind, the very essence of the theory of Boolean algebras is the fact that they are abstract rings,
but at the same time can be thought of ‘locally’ as algebras of sets. Consequently we can bring two
quite separate kinds of intuition to bear. 312O gives an example of a ring-theoretic problem, concerning the
extension of homomorphisms, which has a resolution in terms of the order relation, a concept most naturally
described in terms of algebras-of-sets. It is very much a matter of taste and habit, but I myself find that a
Boolean homomorphism is easiest to think of in terms of its action on finite subalgebras, which are directly
representable as PX for some finite X (311Xe); the corresponding continuous map between Stone spaces is
less helpful. I offer 312Xj, the Stone-space version of 312O, for you to test your own intuitions on.

Version of 8.6.11

313 Order-continuous homomorphisms

Because a Boolean algebra has a natural partial order (311H), we have corresponding notions of upper
bounds, lower bounds, suprema and infima. These are particularly important in the Boolean algebras
arising in measure theory, and the infinitary operations ‘sup’ and ‘inf’ require rather more care than the
basic binary operations ‘ ∪ ’, ‘ ∩ ’, because intuitions from elementary set theory are sometimes misleading.
I therefore take a section to work through the most important properties of these operations, together with
the homomorphisms which preserve them.

313A Relative complementation: Proposition Let A be a Boolean algebra, e a member of A, and
A a non-empty subset of A.

(a) If supA is defined in A, then inf{e \ a : a ∈ A} is defined and equal to e \ supA.
(b) If inf A is defined in A, then sup{e \ a : a ∈ A} is defined and equal to e \ inf A.

c© 1995 D. H. Fremlin
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proof (a) Writing a0 for supA, we have e \ a0 ⊆ e \ a for every a ∈ A, so e \ a0 is a lower bound for
C = {e \ a : a ∈ A}. Now suppose that c is any lower bound for C. Then (because A is not empty) c ⊆ e,
and

a = (a \ e) ∪ (e \ (e \ a)) ⊆ (a0 \ e) ∪ (e \ c)

for every a ∈ A. Consequently a0 ⊆ (a0 \ e) ∪ (e \ c) is disjoint from c and

c = c ∩ e ⊆ e \ a0.

Accordingly e \ a0 is the greatest lower bound of C, as claimed.

(b) This time set a0 = inf A, C = {e \ a : a ∈ A}. As before, e \ a0 is surely an upper bound for C. If c
is any upper bound for C, then

e \ c ⊆ e \ (e \ a) = e ∩ a ⊆ a

for every a ∈ A, so e \ c ⊆ a0 and e \ a0 ⊆ c. As c is arbitrary, e \ a0 is indeed the least upper bound of C.

Remark In the arguments above I repeatedly encourage you to treat ∩ , ∪ , \ , ⊆ as if they were the
corresponding operations and relation of basic set theory. This is perfectly safe so long as we take care that
every manipulation so justified has only finitely many elements of the Boolean algebra in hand at once.

313B General distributive laws: Proposition Let A be a Boolean algebra.
(a) If e ∈ A and A ⊆ A is a non-empty set such that supA is defined in A, then sup{e ∩ a : a ∈ A} is

defined and equal to e ∩ supA.
(b) If e ∈ A and A ⊆ A is a non-empty set such that inf A is defined in A, then inf{e ∪ a : a ∈ A} is

defined and equal to e ∪ inf A.
(c) Suppose that A, B ⊆ A are non-empty and supA, supB are defined in A. Then sup{a ∩ b : a ∈ A, b ∈

B} is defined and is equal to supA ∩ supB.
(d) Suppose that A, B ⊆ A are non-empty and inf A, inf B are defined in A. Then inf{a ∪ b : a ∈ A, b ∈ B}

is defined and is equal to inf A ∪ inf B.

proof (a) Set

B = {e \ a : a ∈ A}, C = {e \ b : b ∈ B} = {e ∩ a : a ∈ A}.

Using 313A, we have

inf B = e \ supA, supC = e \ inf B = e ∩ supA,

as required.

(b) Set a0 = inf A, B = {e ∪ a : a ∈ A}. Then e ∪ a0 ⊆ e ∪ a for every a ∈ A, so e ∪ a0 is a lower bound
for B. If c is any lower bound for B, then c \ e ⊆ a for every a ∈ A, so c \ e ⊆ a0 and c ⊆ e ∪ a0; thus e ∪ a0
is the greatest lower bound for B, as claimed.

(c) By (a), we have

a ∩ supB = supb∈B a ∩ b

for every a ∈ A, so

supa∈A,b∈B a ∩ b = supa∈A(a ∩ supB) = supA ∩ supB,

using (a) again.

(d) Similarly, using (b) twice,

infa∈A,b∈B a ∪ b = infa∈A(a ∪ inf B) = inf A ∪ inf B.

313C As always, it is worth developing a representation of the concepts of sup and inf in terms of Stone
spaces.

Proposition Let A be a Boolean algebra, and Z its Stone space; for a ∈ A write â for the corresponding
open-and-closed subset of Z.
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(a) If A ⊆ A and a0 ∈ A then a0 = supA in A iff â0 =
⋃
a∈A â.

(b) If A ⊆ A is non-empty and a0 ∈ A then a0 = inf A in A iff â0 = int
⋂
a∈A â.

(c) If A ⊆ A is non-empty then inf A = 0 in A iff
⋂
a∈A â is nowhere dense in Z.

proof (a) For any b ∈ A,

b is an upper bound for A ⇐⇒ â ⊆ b̂ for every a ∈ A

⇐⇒
⋃

a∈A

â ⊆ b̂ ⇐⇒
⋃

a∈A

â ⊆ b̂

because b̂ is certainly closed in Z. It follows at once that if â0 is actually equal to
⋃
a∈A â then a0 must be

the least upper bound of A in A. On the other hand, if a0 = supA, then
⋃
a∈A â ⊆ â0. ??? If â0 6=

⋃
a∈A â,

then â0 \
⋃
a∈A â is a non-empty open set in Z, so includes b̂ for some non-zero b ∈ A; now â ⊆ â0 \ b̂, so

a ⊆ a0 \ b for every a ∈ A, and a0 \ b is an upper bound for A strictly less than a0. XXX Thus â0 must be

exactly
⋃
a∈A â.

(b) Take complements: setting a1 = 1 \ a0, we have

a0 = inf A ⇐⇒ a1 = sup
a∈A

1 \ a

(by 313A)

⇐⇒ â1 =
⋃

a∈A

Z \ â

⇐⇒ â0 = Z \
⋃

a∈A

Z \ â = int
⋂

a∈A

â.

(c) Since
⋂
a∈A â is surely a closed set, it is nowhere dense iff it has empty interior, that is, iff 0 = inf A.

313D I started the section with the results above because they are easily stated and of great importance.
But I must now turn to some new definitions, and I think it may help to clarify the ideas involved if I give
them in their own natural context, even though this is far more general than we have any immediate need
for here.

Definitions Let P be a partially ordered set and C a subset of P .

(a) C is order-closed if supA ∈ C whenever A is a non-empty upwards-directed subset of C such that
supA is defined in P , and inf A ∈ C whenever A is a non-empty downwards-directed subset of C such that
inf A is defined in P .

(b) C is sequentially order-closed if supn∈N pn ∈ C whenever 〈pn〉n∈N is a non-decreasing sequence
in C such that supn∈N pn is defined in P , and infn∈N pn ∈ C whenever 〈pn〉n∈N is a non-increasing sequence
in C such that infn∈N pn is defined in P .

Remark I hope it is obvious that an order-closed set is sequentially order-closed.

313E Order-closed subalgebras and ideals Of course, in the very special cases of a subalgebra
or ideal of a Boolean algebra, the concepts ‘order-closed’ and ‘sequentially order-closed’ have expressions
simpler than those in 313D. I spell them out.

(a) Let B be a subalgebra of a Boolean algebra A.

(i) The following are equiveridical:
(α) B is order-closed in A;
(β) supB ∈ B whenever B ⊆ B and supB is defined in A;
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(β′) inf B ∈ B whenever B ⊆ B and inf B is defined in A;
(γ) supB ∈ B whenever B ⊆ B is non-empty and upwards-directed and supB is defined in A;
(γ′) inf B ∈ B whenever B ⊆ B is non-empty and downwards-directed and inf B is defined in A.

PPP Of course (β) ⇒ (γ). If (γ) is true and B ⊆ B is any set with a supremum in A, then B′ =
{0} ∪ {b0 ∪ . . . ∪ bn : b0, . . . , bn ∈ B} is a non-empty upwards-directed set with the same upper bounds as
B, so supB = supB′ ∈ B. Thus (γ) ⇒ (β) and (β), (γ) are equiveridical. Next, if (β) is true and B ⊆ B is
a set with an infimum in A, then B′ = {1 \ b : b ∈ B} ⊆ B and supB′ = 1 \ inf B is defined, so supB′ and
inf B belong to B . Thus (β) ⇒ (β′). In the same way, (γ′) ⇐⇒ (β′) ⇒ (β) and (β), (β′), (γ), (γ′) are all
equiveridical. But since we also have (α) ⇐⇒ (γ)&(γ′), (α) is equiveridical with the others. QQQ

Replacing the sets B above by sequences, the same arguments provide conditions for B to be sequentially
order-closed, as follows.

(ii) The following are equiveridical:
(α) B is sequentially order-closed in A;
(β) supn∈N bn ∈ B whenever 〈bn〉n∈N is a sequence in B and supn∈N bn is defined in A;
(β′) infn∈N bn ∈ B whenever 〈bn〉n∈N is a sequence in B and infn∈N bn is defined in A;
(γ) supn∈N bn ∈ B whenever 〈bn〉n∈N is a non-decreasing sequence in B and supn∈N bn is defined in

A;
(γ′) infn∈N bn ∈ B whenever 〈bn〉n∈N is a non-increasing sequence in B and infn∈N bn is defined in

A.

(b) Now suppose that I is an ideal of A. Then if A ⊆ I is non-empty all lower bounds of A necessarily
belong to I; so that

I is order-closed iff supA ∈ I whenever A ⊆ I is non-empty, upwards-directed and has a
supremum in A;

I is sequentially order-closed iff supn∈N an ∈ I whenever 〈an〉n∈N is a non-decreasing sequence
in I with a supremum in A.

Moreover, because I is closed under ∪ ,

I is order-closed iff supA ∈ I whenever A ⊆ I has a supremum in A;

I is sequentially order-closed iff supn∈N an ∈ I whenever 〈an〉n∈N is a sequence in I with a
supremum in A.

(c) If A = PX is a power set, then a sequentially order-closed subalgebra of A is just a σ-algebra of sets,
while a sequentially order-closed ideal of A is a what I have called a σ-ideal of sets (112Db). If A is itself a
σ-algebra of sets, then a sequentially order-closed subalgebra of A is a ‘σ-subalgebra’ in the sense of 233A.

Accordingly I will normally use the phrases σ-subalgebra, σ-ideal for sequentially order-closed subal-
gebras and ideals of Boolean algebras.

313F Order-closures and generated sets (a) It is an immediate consequence of the definitions that
(i) if S is any non-empty family of subalgebras of a Boolean algebra A, then

⋂
S is a subalgebra of A;

(ii) if F is any non-empty family of order-closed subsets of a partially ordered set P , then
⋂
F is an

order-closed subset of P ;
(iii) if F is any non-empty family of sequentially order-closed subsets of a partially ordered set P , then⋂
F is a sequentially order-closed subset of P .

(b) Consequently, given any Boolean algebra A and a subset B of A, we have a smallest subalgebra B of
A including B, being the intersection of all the subalgebras of A which include B; a smallest σ-subalgebra
Bσ of A including B, being the intersection of all the σ-subalgebras of A which include B; and a smallest
order-closed subalgebra Bτ of A including B, being the intersection of all the order-closed subalgebras of
A which include B. We call B, Bσ and Bτ the subalgebra, σ-subalgebra and order-closed subalgebra
generated by B. (I will return to this in 331E.)

(c) If A is a Boolean algebra and B any subalgebra of A, then the smallest order-closed subset B of A
which includes B is again a subalgebra of A (so is the order-closed subalgebra of A generated by B). PPP
(i) 0 ∈ B ⊆ B. (ii) The set {b : 1 \ b ∈ B} is order-closed (use 313A) and includes B, so includes B; thus
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1 \ b ∈ B for every b ∈ B. (iii) If c ∈ B, the set {b : b ∪ c ∈ B} is order-closed (use 313Bb) and includes
B, so includes B; thus b ∪ c ∈ B whenever b ∈ B and c ∈ B. (iv) If c ∈ B, the set {b : b ∪ c ∈ B} is
order-closed and includes B (by (iii)), so includes B; thus b ∪ c ∈ B whenever b, c ∈ B. (v) By 312B(ii), B
is a subalgebra of A. QQQ

313G This is a convenient moment at which to spell out an abstract version of the Monotone Class
Theorem (136B).

Lemma Let A be a Boolean algebra.
(a) Suppose that 1 ∈ I ⊆ A ⊆ A and that

a ∩ b ∈ I for all a, b ∈ I,

b \ a ∈ A whenever a, b ∈ A and a ⊆ b.

Then A includes the subalgebra of A generated by I.
(b) If moreover supn∈N an ∈ A for every non-decreasing sequence 〈an〉n∈N in A with a supremum in A,

then A includes the σ-subalgebra of A generated by I.
(c) And if supC ∈ A whenever C ⊆ A is an upwards-directed set with a supremum in A, then A includes

the order-closed subalgebra of A generated by I.

proof (a)(i) Let P be the family of all sets J such that I ⊆ J ⊆ A and a ∩ b ∈ J for all a, b ∈ J . Then
I ∈ P and if Q ⊆ P is upwards-directed and not empty,

⋃
Q ∈ P. By Zorn’s Lemma, P has a maximal

element B.

(ii) Now

B = {c : c ∈ A, c ∩ b ∈ A for every b ∈ B}.

PPP If c ∈ B, then of course c ∩ b ∈ B ⊆ A for every b ∈ B, because B ∈ P. If c ∈ A \B, consider

J = B ∪ {c ∩ b : b ∈ B}.

Then c = c ∩ 1 ∈ J so J properly includes B and cannot belong to P. On the other hand, if b1, b2 ∈ B,

b1 ∩ b2 ∈ B ⊆ J , (c ∩ b1) ∩ b2 = b1 ∩ (c ∩ b2) = (c ∩ b1) ∩ (c ∩ b2) = c ∩ (b1 ∩ b2) ∈ J ,

so c1 ∩ c2 ∈ J for all c1, c2 ∈ J ; and of course I ⊆ B ⊆ J . So J cannot be a subset of A, and there must be
a b ∈ B such that c ∩ b /∈ A. QQQ

(iii) Consequently c \ b ∈ B whenever b, c ∈ B and b ⊆ c. PPP If a ∈ B, then b ∩ a, c ∩ a ∈ B ⊆ A and
b ∩ a ⊆ c ∩ a, so

(c \ b) ∩ a = (c ∩ a) \ (b ∩ a) ∈ A

by the hypothesis on A. By (ii), c \ b ∈ B. QQQ

(iv) It follows that B is a subalgebra of A. PPP If b ∈ B, then

b ⊆ 1 ∈ I ⊆ B,

so 1 \ b ∈ B. If a, b ∈ B, then

a ∪ b = 1 \ ((1 \ a) ∩ (1 \ b)) ∈ B.

0 = 1 \ 1 ∈ B, so that the conditions of 312B(ii) are satisfied. QQQ
Now the subalgebra of A generated by I is included in B and therefore in A, as required.

(b) Now suppose that supn∈N an belongs to A whenever 〈an〉n∈N is a non-decreasing sequence in A with
a supremum in A. Then B, as defined in part (a) of the proof, is a σ-subalgebra of A. PPP Let 〈bn〉n∈N be a
non-decreasing sequence in B with a supremum c in A. Then for any b ∈ B, 〈bn ∩ b〉n∈N is a non-decreasing
sequence in A with a supremum c ∩ b in A (313Ba). So c ∩ b ∈ A. As b is arbitrary, c ∈ B, by the criterion
in (a-ii) above. As 〈bn〉n∈N is arbitrary, B is a σ-subalgebra, by 313Ea. QQQ

Accordingly the σ-subalgebra of A generated by I is included in B and therefore in A.
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(c) Finally, if supC ∈ A whenever C is a non-empty upwards-directed subset of A with a least upper
bound in A, B is order-closed. PPP Let C ⊆ B be a non-empty upwards-directed set with a supremum c in
A. Then for any b ∈ B, {c ∩ b : c ∈ C} is a non-empty upwards-directed set in A with supremum c ∩ b in A.
So c ∩ b ∈ A. As b is arbitrary, c ∈ B. As C is arbitrary, B is order-closed in A (313Ea(i-α)). QQQ

Accordingly the order-closed subalgebra of A generated by I is included in B and therefore in A.

313H Definitions It is worth distinguishing various types of supremum- and infimum-preserving func-
tion. Once again, I do this in almost the widest possible context. Let P and Q be two partially ordered sets,
and φ : P → Q an order-preserving function, that is, a function such that φ(p) ≤ φ(q) in Q whenever
p ≤ q in P .

(a) I say that φ is order-continuous if (i) φ(supA) = supp∈A φ(p) whenever A is a non-empty upwards-
directed subset of P and supA is defined in P (ii) φ(inf A) = infp∈A φ(p) whenever A is a non-empty
downwards-directed subset of P and inf A is defined in P .

(b) I say that φ is sequentially order-continuous or σ-order-continuous if (i) φ(p) = supn∈N φ(pn)
whenever 〈pn〉n∈N is a non-decreasing sequence in P and p = supn∈N pn in P (ii) φ(p) = infn∈N φ(pn)
whenever 〈pn〉n∈N is a non-increasing sequence in P and p = infn∈N pn in P .

Remark You may feel that one of the equivalent formulations in Proposition 313Lb gives a clearer idea of
what is really being demanded of φ in the ordinary cases we shall be looking at.

313I Proposition Let P , Q and R be partially ordered sets, and φ : P → Q, ψ : Q→ R order-preserving
functions.

(a) ψφ : P → R is order-preserving.
(b) If φ and ψ are order-continuous, so is ψφ.
(c) If φ and ψ are sequentially order-continuous, so is ψφ.
(d) φ is order-continuous iff φ−1[B] is order-closed for every order-closed B ⊆ Q.

proof (a)-(c) I think the only point that needs remarking is that if A ⊆ P is upwards-directed, then
φ[A] ⊆ Q is upwards-directed, because φ is order-preserving. So if supA is defined in P and φ, ψ are
order-continuous, we shall have

ψ(φ(supA)) = ψ(supφ[A]) = supψ[φ[A]].

Similarly, if A ⊆ P is downwards-directed and has an infimum, then φ[A] is downwards-directed, and if φ
and ψ are order-continuous then

ψ(φ(inf A)) = ψ(inf φ[A]) = inf ψ[φ[A]].

For sequential order-continuity we argue in the same way but with sequences.

(d)(i) Suppose that φ is order-continuous and that B ⊆ Q is order-closed. Let A ⊆ φ−1[B] be a non-
empty upwards-directed set with supremum p ∈ P . Then φ[A] ⊆ B is non-empty and upwards-directed,
because φ is order-preserving, and φ(p) = supφ[A] because φ is order-continuous. Because B is order-closed,
φ(p) ∈ B and p ∈ φ−1[B]. Similarly, if A ⊆ φ−1[B] is non-empty and downwards-directed, and inf A is
defined in P , then φ(inf A) = inf φ[A] ∈ B and inf A ∈ φ−1[B]. Thus φ−1[B] is order-closed; as B is
arbitrary, φ satisfies the condition.

(ii) Now suppose that φ−1[B] is order-closed in P whenever B ⊆ Q is order-closed in Q. Let A ⊆ P
be a non-empty upwards-directed subset of P with a supremum p ∈ P . Then φ(p) is an upper bound of
φ[A]. Let q be any upper bound of φ[A] in Q. Consider B = {r : r ≤ q}; then B ⊆ Q is upwards-directed
and order-closed, so φ−1[B] is order-closed. Also A ⊆ φ−1[B] is non-empty and upwards-directed and has
supremum p, so p ∈ φ−1[B] and φ(p) ∈ B, that is, φ(p) ≤ q. As q is arbitrary, φ(p) = supφ[A]. Similarly,
φ(inf A) = inf φ[A] whenever A ⊆ P is non-empty, downwards-directed and has an infimum in P ; so φ is
order-continuous.

313J It is useful to introduce here the following notion.
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Definition Let A be a Boolean algebra. A set D ⊆ A is order-dense if for every non-zero a ∈ A there is
a non-zero d ∈ D such that d ⊆ a.

Remark Many authors use the simple word ‘dense’ where I have insisted on the phrase ‘order-dense’. In
the work of this treatise it will be important to distinguish clearly between this concept of ‘dense’ set and
the topological concept (2A3U).

313K Lemma If A is a Boolean algebra and D ⊆ A is order-dense, then for any a ∈ A there is a disjoint
C ⊆ D such that supC = a; in particular, a = sup{d : d ∈ D, d ⊆ a} and there is a partition of unity
C ⊆ D.

proof Set Da = {d : d ∈ D, d ⊆ a}. Applying Zorn’s lemma to the family C of disjoint sets C ⊆ Da, we
have a maximal C ∈ C. Now if b ∈ A and b 6⊇ a, there is a d ∈ D such that 0 6= d ⊆ a \ b. Because C is
maximal, there must be a c ∈ C such that c ∩ d 6= 0, so that c 6⊆ b. Turning this round, any upper bound of
C must include a, so that a = supC. It follows at once that a = supDa.

Taking a = 1 we obtain a partition of unity included in D.

313L Proposition Let A and B be Boolean algebras and π : A → B a Boolean homomorphism.
(a) π is order-preserving.
(b) The following are equiveridical:

(i) π is order-continuous;
(ii) whenever A ⊆ A is non-empty and downwards-directed and inf A = 0 in A, then inf π[A] = 0 in B;
(iii) whenever A ⊆ A is non-empty and upwards-directed and supA = 1 in A, then supπ[A] = 1 in B;
(iv) whenever A ⊆ A and supA is defined in A, then π(supA) = supπ[A] in B;
(v) whenever A ⊆ A and inf A is defined in A, then π(inf A) = inf π[A] in B;
(vi) whenever C ⊆ A is a partition of unity, then π[C] is a partition of unity in B.

(c) The following are equiveridical:
(i) π is sequentially order-continuous;
(ii) whenever 〈an〉n∈N is a non-increasing sequence in A and infn∈N an = 0 in A, then infn∈N πan = 0

in B;
(iii) whenever A ⊆ A is countable and supA is defined in A, then π(supA) = supπ[A] in B;
(iv) whenever A ⊆ A is countable and inf A is defined in A, then π(inf A) = inf π[A] in B;
(v) whenever C ⊆ A is a countable partition of unity, then π[C] is a partition of unity in B.

(d) If π is bijective, it is order-continuous.

proof (a) This is 312I.

(b)(i)⇒(ii) is trivial, as π0 = 0.

(ii)⇒(iv) Assume (ii), and let A be any subset of A such that c = supA is defined in A. If A = ∅,
then c = 0 and supπ[A] = 0 = πc. Otherwise, set

A′ = {a0 ∪ . . . ∪ an : a0, . . . , an ∈ A}, C = {c \ a : a ∈ A′}.

Then A′ is upwards-directed and has the same upper bounds as A, so c = supA′ and 0 = inf C, by 313Aa.
Also C is downwards-directed, so inf π[C] = 0 in B. But now

π[C] = {πc \ πa : a ∈ A′} = {πc \ b : b ∈ π[A′]},

π[A′] = {πa0 ∪ . . . ∪ πan : a0, . . . , an ∈ A} = {b0 ∪ . . . ∪ bn : b0, . . . , bn ∈ π[A]},

because π is a Boolean homomorphism. Again using 313Aa and the fact that b ⊆ πc for every b ∈ π[A′], we
get

πc = supπ[A′] = supπ[A].

As A is arbitrary, (iv) is satisfied.

(iv)⇒(v) If A ⊆ A and c = inf A is defined in A, then 1 \ c = supa∈A 1 \ a, so

πc = 1 \ π(1 \ c) = 1 \ supa∈A π(1 \ a) = infa∈A 1 \ π(1 \ a) = infa∈A πa.
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(v)⇒(ii) is trivial, because π0 = 0.

(iv)⇒(iii) is similarly trivial.

(iii)⇒(vi) Assume (iii), and let C be a partition of unity in A. Then C ′ = {c0 ∪ . . . ∪ cn : c0, . . . , cn ∈
C} is upwards-directed and has supremum 1, so supπ[C ′] = 1. But (because π is a Boolean homomorphism)
π[C] and π[C ′] have the same upper bounds, so supπ[C] = 1, as required.

(vi)⇒(ii) Assume (vi), and let A ⊆ A be a set with infimum 0. Set

D = {d : d ∈ A, ∃ a ∈ A, d ∩ a = 0}.

Then D is order-dense in A. PPP If e ∈ A \ {0}, then there is an a ∈ A such that e 6⊆ a, so that e \ a is a
non-zero member of D included in e. QQQ Consequently there is a partition of unity C ⊆ D, by 313K. But
now if b is any lower bound for π[A] in B, we must have b ∩ πd = 0 for every d ∈ D, so πc ⊆ 1 \ b for every
c ∈ C, and 1 \ b = 1, b = 0. Thus inf π[A] = 0. As A is arbitrary, (ii) is satisfied.

(v)&(iv)⇒(i) is trivial.

(c) We can use nearly identical arguments, remembering only to interpolate the word ‘countable’ from
time to time. I spell out the new version of (ii)⇒(iv), even though it requires no more than an adaptation
of the language. Assume (ii), and let A be a countable subset of A with a supremum c ∈ A. If A = ∅, then
c = 0 so πc = 0 = supπ[A]. Otherwise, let 〈an〉n∈N be a sequence running over A; set a′n = a0 ∪ . . . ∪ an and
cn = c \ a′n for each n. Then 〈a′n〉n∈N is non-decreasing, with supremum c, and 〈cn〉n∈N is non-increasing,
with infimum 0; so infn∈N πcn = 0 and

supn∈N πan = supn∈N πa
′
n = πc.

For (v)⇒(ii), however, a different idea is involved. Assume (v), and suppose that 〈an〉n∈N is a non-
increasing sequence in A with infimum 0. Set c0 = 1 \ a0, cn = an−1 \ an for n ≥ 1; then C = {cn : n ∈ N}
is a partition of unity in A (because if c ∩ cn = 0 for every n, then c ⊆ an for every n), so π[C] is a partition
of unity in B. Now if b ⊆ πan for every n, b ∩ πcn for every n, so b = 0; thus infn∈N πan = 0. As 〈an〉n∈N is
arbitrary, (ii) is satisfied.

(d) Suppose that A ⊆ A is non-empty and inf A = 0 in A. Let b ∈ B be a lower bound for π[A]. Because
π is surjective, there is a c ∈ A such that πc = b. If a ∈ A, then

π(a ∩ c) = πa ∩ πc = πa ∩ b = b = πc;

because π is injective, a ∩ c = c and c ⊆ a. As a is arbitrary, c is a lower bound of A and must be 0; so
b0 = π0 = 0. As b is arbitrary, inf π[A] = 0; as A is arbitrary, π is order-continuous, by (b)(ii)⇒(i).

313M The following result is perfectly elementary, but it will save a moment later on to have it spelt
out.

Lemma Let A and B be Boolean algebras and π : A → B an order-continuous Boolean homomorphism.
(a) If D is an order-closed subalgebra of B, then π−1[D] is an order-closed subalgebra of A.
(b) If C is the order-closed subalgebra of A generated by C ⊆ A, then the order-closed subalgebra D of

B generated by π[C] includes π[C].
(c) Now suppose that π is surjective and that C ⊆ A is such that the order-closed subalgebra of A

generated by C is A itself. Then the order-closed subalgebra of B generated by π[C] is B.

proof (a) Setting C = π−1[D]: if a, a′ ∈ C then π(a ∩ b) = πa ∩ πb, π(a△ a′) = πa△ πa′ ∈ D, so a ∩ a′,
a△ a′ ∈ C; π1 = 1 ∈ D so 1 ∈ C; thus C is a subalgebra of A. By 313Id, C is order-closed.

(b) By (a), π−1[D] is an order-closed subalgebra of A. It includes C so includes C, and π[C] ⊆ D.

(c) In the language of (b), we have C = A, so D must be B.

313N Definition The phrase regular embedding is sometimes used to mean an injective order-
continuous Boolean homomorphism; a subalgebra B of a Boolean algebra A is said to be regularly embed-
ded in A if the identity map from B to A is order-continuous, that is, if whenever b ∈ B is the supremum
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(in B) of B ⊆ B, then b is also the supremum in A of B; and similarly for infima. One important case is
when B is order-dense (313O); another is in 314Ga below.

It will be useful to be able to say ‘B can be regularly embedded in A’ to mean that there is an injective
order-continuous Boolean homomorphism from B to A; that is, that B is isomorphic to a regularly embedded
subalgebra of A. In this form it is obvious from 313Ib that if C can be regularly embedded in B, and B can
be regularly embedded in A, then C can be regularly embedded in A.

313O Proposition Let A be a Boolean algebra and B an order-dense subalgebra of A. Then B is
regularly embedded in A. In particular, if B ⊆ B and c ∈ B then c = supB in B iff c = supB in A.

proof I have to show that the identity homomorphism ι : B → A is order-continuous. ??? Suppose, if
possible, otherwise. By 313L(b-ii), there is a non-empty set B ⊆ B such that inf B = 0 in B but B = ι[B]
has a non-zero lower bound a ∈ A. In this case, however (because B is order-dense) there is a non-zero
d ∈ B with d ⊆ a, in which case d is a non-zero lower bound for B in B. XXX

313P The most important use of these ideas to us concerns quotient algebras (313Q); I approach by
means of a superficially more general result.

Theorem Let A and B be Boolean algebras and π : A → B a Boolean homomorphism with kernel I.
(a)(i) If π is order-continuous then I is order-closed.

(ii) If π[A] is regularly embedded in B and I is order-closed then π is order-continuous.
(b)(i) If π is sequentially order-continuous then I is a σ-ideal.

(ii) If π[A] is regularly embedded in B and I is a σ-ideal then π is sequentially order-continuous.

proof (a)(i) If A ⊆ I is upwards-directed and has a supremum c ∈ A, then πc = supπ[A] = 0, so c ∈ I. As
remarked in 313Eb, this shows that I is order-closed.

(ii) We are supposing that the identity map from π[A] to B is order-continuous, so it will be enough to
show that π is order-continuous when regarded as a map from A to π[A]. Suppose that A ⊆ A is non-empty
and downwards-directed and that inf A = 0. ??? Suppose, if possible, that 0 is not the greatest lower bound
of π[A] in π[A]. Then there is a c ∈ A such that 0 6= πc ⊆ πa for every a ∈ A. Now

π(c \ a) = πc \ πa = 0

for every a ∈ A, so c \ a ∈ I for every a ∈ A. The set C = {c \ a : a ∈ A} is upwards-directed and has
supremum c; because I is order-closed, c = supC ∈ I, and πc = 0, contradicting the specification of c. XXX
Thus inf π[A] = 0 in either π[A] or B. As A is arbitrary, π is order-continuous, by the criterion (ii) of 313Lb.

(b) Argue in the same way, replacing each set A by a sequence.

313Q Corollary Let A be a Boolean algebra and I an ideal of A; write π for the canonical map from A

to A/I.
(a) π is order-continuous iff I is order-closed.
(b) π is sequentially order-continuous iff I is a σ-ideal.

proof π[A] = A/I is surely regularly embedded in A/I.

313R For order-continuous homomorphisms, at least, there is an elegant characterization in terms of
Stone spaces.

Proposition Let A and B be Boolean algebras, and π : A → B a Boolean homomorphism. Let Z and W
be their Stone spaces, and φ : W → Z the corresponding continuous function (312Q). Then the following
are equiveridical:

(i) π is order-continuous;
(ii) φ−1[M ] is nowhere dense in W for every nowhere dense set M ⊆ Z;
(iii) intφ[H] 6= ∅ for every non-empty open set H ⊆W .

proof (a)(i)⇒(iii) Suppose that π is order-continuous. ??? Suppose, if possible, that H ⊆W is a non-empty

open set and intφ[H] = ∅. Let b ∈ B \ {0} be such that b̂ ⊆ H. Then φ[̂b] has empty interior; but also it
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is a closed set, so its complement is dense. Set A = {a : a ∈ A, â ∩ φ[̂b] = ∅}. Then
⋃
a∈A â = Z \ φ[̂b] is a

dense open set, so supA = 1 in A (313Ca). Because π is order-continuous, supπ[A] = 1 in B (313L(b-iii)),

and there is an a ∈ A such that πa ∩ b 6= 0. But this means that b̂ ∩ φ−1[â] 6= ∅ and φ[̂b] ∩ â 6= ∅, contrary
to the definition of A. XXX

Thus there is no such set H, and (iii) is true.

(b)(iii)⇒(ii) Now assume (iii). If M ⊆ Z is nowhere dense, set N = φ−1[M ], so that N ⊆W is a closed
set. If H = intN , then intφ[H] ⊆ intM = ∅, so (iii) tells us that H is empty; thus N and φ−1[M ] are
nowhere dense, as required by (ii).

(c)(ii)⇒(i) Assume (ii), and let A ⊆ A be a non-empty set such that inf A = 0 in A. Then M =
⋂
a∈A â

has empty interior in Z (313Cb), so (being closed) is nowhere dense, and φ−1[M ] also is nowhere dense. If
b ∈ B \ {0}, then

b̂ 6⊆ φ−1[M ] =
⋂
a∈A φ

−1[â] =
⋂
a∈A π̂a,

so b is not a lower bound for π[A]. This shows that inf π[A] = 0 in B. As A is arbitrary, π is order-continuous
(313L(b-ii)).

313S Upper envelopes(a) Let A be a Boolean algebra, and C a subalgebra of A. For a ∈ A, the upper
envelope of a in C, or projection of a on C, is

upr(a,C) = inf{c : c ∈ C, a ⊆ c}

if the infimum is defined in C.

Remark Note that the infima here are to be taken in the subalgebra, so that upr(a,C) will always belong
to C. In the great majority of elementary applications, C will be order-closed in A, so that we do not need
to distinguish between infima in C and infima in A. But see 313Yh.

(b) If A ⊆ A is such that upr(a,C) is defined for every a ∈ A, a0 = supA is defined in A and c0 =
supa∈A upr(a,C) is defined in C, then c0 = upr(a0,C). PPP If c ∈ C then

c0 ⊆ c ⇐⇒ upr(a,C) ⊆ c for every a ∈ A

⇐⇒ a ⊆ c for every a ∈ A ⇐⇒ a0 ⊆ c. QQQ

In particular, upr(a ∪ a′,C) = upr(a,C) ∪ upr(a′,C) whenever the right-hand side is defined.

(c) If a ∈ A is such that upr(a,C) is defined, then upr(a ∩ c,C) = c ∩ upr(a,C) for every c ∈ C. PPP For
c′ ∈ C,

a ∩ c ⊆ c′ ⇐⇒ a ⊆ c′ ∪ (1 \ c)

⇐⇒ upr(a,C) ⊆ c′ ∪ (1 \ c) ⇐⇒ c ∩ upr(a,C) ⊆ c′. QQQ

313X Basic exercises (a) Use 313C to give alternative proofs of 313A and 313B.

(b) Let P be a partially ordered set. Show that there is a topology on P for which the closed sets are
just the order-closed sets.

(c) Let P be a partially ordered set, Q ⊆ P an order-closed set, and R a subset of Q which is order-closed
in Q when Q is given the partial ordering induced by that of P . Show that R is order-closed in P .

>>>(d) Let A be a Boolean algebra. Suppose that 1 ∈ I ⊆ A and that a ∩ b ∈ I for all a, b ∈ I. (i) Let
B be the intersection of all those subsets A of A such that I ⊆ A and b \ a ∈ A whenever a, b ∈ A and
a ⊆ b. Show that B is a subalgebra of A. (ii) Let Bσ be the intersection of all those subsets A of A such
that I ⊆ A, b \ a ∈ A whenever a, b ∈ A and a ⊆ b and supn∈N bn ∈ A whenever 〈bn〉n∈N is a non-decreasing
sequence in A with a supremum in A. Show that Bσ is a σ-subalgebra of A. (iii) Let Bτ be the intersection
of all those subsets A of A such that I ⊆ A, b \ a ∈ A whenever a, b ∈ A and a ⊆ b and supB ∈ A whenever
B is a non-empty upwards-directed subset of A with a supremum in A. Show that Bτ is an order-closed
subalgebra of A. (iv) Hence give a proof of 313G not relying on Zorn’s Lemma or any other use of the axiom
of choice.
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(e) Let A be a Boolean algebra, and B a subalgebra of A. Let Bσ be the smallest sequentially order-closed
subset of A including B. Show that Bσ is a subalgebra of A.

>>>(f) Let X be a set, and A a subset of PX. Show that A is an order-closed subalgebra of PX iff it is
of the form {f−1[F ] : F ⊆ Y } for some set Y and function f : X → Y .

(g) Let P and Q be partially ordered sets, and φ : P → Q an order-preserving function. Show that φ is
sequentially order-continuous iff φ−1[C] is sequentially order-closed in A for every sequentially order-closed
C ⊆ B.

(h) For partially ordered sets P and Q, let us call a function φ : P → Q monotonic if it is either

order-preserving or order-reversing. State and prove definitions and results corresponding to 313H, 313I and
313Xg for general monotonic functions.

>>>(i) Let A be a Boolean algebra. Show that the operations (a, b) 7→ a ∪ b and (a, b) 7→ a ∩ b are order-
continuous operations from A×A to A, if we give A×A the product partial order, saying that (a, b) ≤ (a′, b′)
iff a ⊆ a′ and b ⊆ b′.

(j) Let A be a Boolean algebra. Show that if a subalgebra of A is order-dense then it is dense in the
topology of 313Xb.

>>>(k) Let A be a Boolean algebra and A ⊆ A any disjoint set. Show that there is a partition of unity in
A including A.

>>>(l) Let A, B be Boolean algebras and π1, π2 : A → B two order-continuous Boolean homomorphisms.
Show that {a : π1a = π2a} is an order-closed subalgebra of A.

(m) Let A and B be Boolean algebras and π1, π2 : A → B two Boolean homomorphisms. Suppose that
π1 and π2 agree on some order-dense subset of A, and that one of them is order-continuous. Show that they
are equal. (Hint : if π1 is order-continuous, π2a ⊇ π1a for every a.)

(n) Let A and B be Boolean algebras, A0 an order-dense subalgebra of A, and π : A → B a Boolean
homomorphism. Show that π is order-continuous iff π↾A0 : A0 → B is order-continuous.

(o) Let A be a Boolean algebra and π : A → A a Boolean homomorphism with fixed-point subalgebra C

(312K). (i) Show that if π is sequentially order-continuous then C is a σ-subalgebra of A. (ii) Show that if
π is order-continuous then C is order-closed.

>>>(p) Let A be a Boolean algebra. For A ⊆ A set A⊥ = {b : a ∩ b = 0 ∀ a ∈ A}. (i) Show that A⊥ is an
order-closed ideal of A. (ii) Show that a set A ⊆ A is an order-closed ideal of A iff A = A⊥⊥. (iii) Show
that if I ⊆ A is an order-closed ideal then {a• : a ∈ I⊥} is an order-dense ideal in the quotient algebra A/I.

(q) Let A and B be Boolean algebras, with Stone spaces Z and W ; let π : A → B be a Boolean
homomorphism, and φ : W → Z the corresponding continuous function. Show that the following are
equiveridical: (i) π is order-continuous; (ii) intφ−1[F ] = φ−1[intF ] for every closed F ⊆ Z (iii) φ−1[G] =
φ−1[G] for every open G ⊆ Z.

(r) Let A and B be Boolean algebras, π : A → B an injective Boolean homomorphism and C a Boolean
subalgebra of A. Suppose that a ∈ A is such that c = upr(a,C) is defined. Show that upr(πa, π[C]) is defined
and equal to πc.

(s) Let A and B be Boolean algebras, π : A → B a Boolean homomorphism and D an order-dense subset
of A containing 0. Show that π is injective iff π↾D is injective.

(t) Let A be a Boolean algebra and A0, . . . , An subsets of A such that supAi is defined for each i ≤ n.
Set B = {a0 ∩ . . . ∩ an : ai ∈ Ai for each i}. Show that supB is defined and equal to infi<n supAi.
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313Y Further exercises (a) Prove 313A-313C for general Boolean rings.

(b) Let P be any partially ordered set, and let T be the topology of 313Xb. (i) Show that a sequence
〈pn〉n∈N in P is T-convergent to p ∈ P iff every subsequence of 〈pn〉n∈N has a monotonic sub-subsequence
with supremum or infimum equal to p. (ii) Show that a subset A of P is sequentially order-closed, in the
sense of 313Db, iff the T-limit of any T-convergent sequence in A belongs to A. (iii) Suppose that A is an
upwards-directed subset of P with supremum p0 ∈ P . For a ∈ A set Fa = {p : a ≤ p ∈ A}, and let F
be the filter on P generated by {Fa : a ∈ A}. Show that F → p0 for T. (iv) Show that if Q is another
partially ordered set, endowed with a topology S in the same way, then a monotonic function φ : P → Q is
order-continuous iff it is continuous for the topologies T and S, and is sequentially order-continuous iff it is
sequentially continuous for these topologies.

(c) Let U be a Banach lattice (242G, 354Ab). Show that its norm is order-continuous in the sense of
242Yg and 354Dc iff its restriction to {u : u ≥ 0} is order-continuous in the sense of 313Ha.

(d) Let P and Q be lattices, and f : P → Q a bijective lattice homomorphism. Show that f is order-
continuous.

(e) Let A and B be Boolean algebras, with Stone spaces Z and W , and π : A → B a Boolean homo-
morphism, with associated continuous function φ : W → Z. Show that π is sequentially order-continuous
iff φ−1[M ] is nowhere dense for every nowhere dense zero set M ⊆ Z.

(f) Let A and B be Boolean algebras with Stone spaces Z and W respectively, π : A → B a Boolean
homomorphism and φ : W → Z the corresponding continuous function. Show that π[A] is order-dense in B

iff φ is irreducible, that is, φ[F ] 6= φ[W ] for any proper closed subset F of W .

(g) Let A and B be Boolean algebras with Stone spaces Z and W respectively, π : A → B a Boolean
homomorphism and φ : W → Z the corresponding continuous function. Show that the following are
equiveridical: (i) π is injective and order-continuous; (ii) for M ⊆ Z, M is nowhere dense iff φ−1[M ] is
nowhere dense.

(h) Let A be a Boolean algebra and C a Boolean subalgebra of A. Let I be the set of those a ∈ A such
that the upper envelope upr(a,C) is zero. (i) Show that I is an ideal in A. (ii) Show that C is regularly
embedded in A iff I = {0}. (iii) Let π : A → A/I be the canonical map. Show that π↾C is injective and
order-continuous.

313 Notes and comments I give ‘elementary’ proofs of 313A-313B because I believe that they help to
exhibit the relevant aspects of the structure of Boolean algebras; but various abbreviations are possible,
notably if we allow ourselves to use the Stone representation (313Xa). 313A and 313Ba-b can be expressed
by saying that the Boolean operations ∪ , ∩ and \ are (separately) order-continuous. Of course, \ is order-
reversing, rather than order-preserving, in the second variable; but the natural symmetry in the concept of
partial order means that the ideas behind 313H-313I can be applied equally well to order-reversing functions
(313Xh). In fact, ∪ and ∩ can be regarded as order-continuous functions on the product space (313Bc-d,
313Xi). Clearly 313Bc-d can be extended into forms valid for any finite sequence A0, . . . , An of subsets of
A in place of A, B. But if we seek to go to infinitely many subsets of A we find ourselves saying something
new; see 316G-316J below.

Proposition 313C, and its companions 313R, 313Xq and 313Ye, are worth studying not only as a useful
technique, but also in order to understand the difference between supA, where A is a set in a Boolean
algebra, and

⋃
A, where A is a family of sets. Somehow supA can be larger, and inf A smaller, than one’s

first intuition might suggest, corresponding to the fact that not every subset of the Stone space corresponds
to an element of the Boolean algebra.

I should like to use the words ‘order-closed’ and ‘sequentially order-closed’ to mean closed, or sequentially
closed, for some more or less canonical topology. The difficulty is that while a great many topologies can be
defined from a partial order (one is described in 313Xb and 313Yb, and another in 367Yb and 393L), none
of them has such pre-eminence that it can be called ‘the’ order-topology, except in the very special context
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of totally ordered spaces (see 4A2R in Volume 4). Accordingly there is a degree of arbitrariness in the
language I use here. Nevertheless (sequentially) order-closed subalgebras and ideals are of such importance
that they seem to deserve a concise denotation. The same remarks apply to (sequential) order-continuity.
Concerning the term ‘order-dense’ in 313J, this has little to do with density in any topological sense, but
the word ‘dense’, at least, is established in this context.

With all these definitions, there is a good deal of scope for possible interrelations. The most important
to us is 313Q, which will be used repeatedly (typically, with A an algebra of sets), but I think it is worth
having the expanded version in 313P available.

I take the opportunity to present an abstract form of an important lemma on σ-algebras generated by
families closed under ∩ (136B, 313Gb). This time round I use the Zorn’s Lemma argument in the text
and suggest the alternative, ‘elementary’ method in the exercises (313Xd). The two methods are opposing
extremes in the sense that the Zorn’s Lemma argument looks for maximal subalgebras included in A (which
are not unique, and have to be picked out using the axiom of choice) and the other approach seeks minimal
subalgebras including I (which are uniquely defined, and can be described without the axiom of choice).

Note that the concept of ‘order-closed algebra of sets’ is not particularly useful; there are too few order-
closed subalgebras of PX and they are of too simple a form (313Xf). It is in abstract Boolean algebras
that the idea becomes important. In many of the most important partially ordered sets of measure theory,
the sequentially order-closed sets are the same as the order-closed sets (see, for instance, 316Fb below), and
most of the important order-closed subalgebras dealt with in this chapter can be thought of as σ-subalgebras
which are order-closed because they happen to lie in the right kind of algebra.

Version of 26.7.07

314 Order-completeness

The results of §313 are valid in all Boolean algebras, but of course are of most value when many suprema
and infima exist. I now set out the most useful definitions which guarantee the existence of suprema and
infima (314A) and work through their elementary relationships with the concepts introduced so far (314C-
314J). I then embark on the principal theorems concerning order-complete Boolean algebras: the extension
theorem for homomorphisms to a Dedekind complete algebra (314K), the Loomis-Sikorski representation of
a Dedekind σ-complete algebra as a quotient of a σ-algebra of sets (314M), the characterization of Dedekind
complete algebras in terms of their Stone spaces (314S), and the idea of ‘Dedekind completion’ of a Boolean
algebra (314T-314U). On the way I describe ‘regular open algebras’ (314O-314Q).

314A Definitions Let P be a partially ordered set.

(a) P is Dedekind complete, or order-complete, or conditionally complete if every non-empty
subset of P with an upper bound has a least upper bound.

(b) P is Dedekind σ-complete, or σ-order-complete, if (i) every countable non-empty subset of P
with an upper bound has a least upper bound (ii) every countable non-empty subset of P with a lower
bound has a greatest lower bound.

314B Remarks (a) I give these definitions in the widest possible generality because they are in fact
of great interest for general partially ordered sets, even though for the moment we shall be concerned only
with Boolean algebras. Indeed I have already presented the same idea in the context of Riesz spaces (241F).

(b) You will observe that the definition in (a) of 314A is asymmetric, unlike that in (b). This is because
the inverted form of the definition is equivalent to that given; that is, P is Dedekind complete (on the
definition 314Aa) iff every non-empty subset of P with a lower bound has a greatest lower bound. PPP (i)
Suppose that P is Dedekind complete, and that B ⊆ P is non-empty and bounded below. Let A be the set
of lower bounds for B. Then A has at least one upper bound (since any member of B is an upper bound
for A) and is not empty; so a0 = supA is defined. Now if b ∈ B, b is an upper bound for A, so a0 ≤ b; thus
a0 ∈ A and must be the greatest member of A, that is, the greatest lower bound of B. (ii) Similarly, if every
non-empty subset of P with a lower bound has a greatest lower bound, P is Dedekind complete. QQQ

Measure Theory



314D Order-completeness 33

(c) In the special case of Boolean algebras, we do not need both halves of the definition 314Ab; in fact
we have, for any Boolean algebra A,

A is Dedekind σ-complete

⇐⇒ every non-empty countable subset of A has a least upper bound

⇐⇒ every non-empty countable subset of A has a greatest lower bound.

PPP Because A has a least element 0 and a greatest element 1, every subset of A has upper and lower
bounds; so the two one-sided conditions together are equivalent to saying that A is Dedekind σ-complete.
I therefore have to show that they are equiveridical. Now if A ⊆ A is a non-empty countable set, so is
B = {1 \ a : a ∈ A}, and

inf A = 1 \ supB, supA = 1 \ inf B

whenever the right-hand-sides are defined (313A). So if the existence of a supremum (resp. infimum) of B
is guaranteed, so is the existence of an infimum (resp. supremum) of A. QQQ

The real point here is of course that (A, ⊆ ) is isomorphic to (A, ⊇ ).

(d) Most specialists in Boolean algebra speak of ‘complete’, or ‘σ-complete’, Boolean algebras. I prefer
the longer phrases ‘Dedekind complete’ and ‘Dedekind σ-complete’ because we shall be studying metrics on
Boolean algebras and shall need the notion of metric completeness as well as that of order-completeness.

(e) I have had to make some rather arbitrary choices in the definition here. The principal examples of
partially ordered set to which we shall apply these definitions are Boolean algebras and Riesz spaces, which
are all lattices. Consequently it is not possible to distinguish in these contexts between the property of
Dedekind completeness, as defined above, and the weaker property, which we might call ‘monotone order-
completeness’,

(i) whenever A ⊆ P is non-empty, upwards-directed and bounded above then A has a least
upper bound in P (ii) whenever A ⊆ P is non-empty, downwards-directed and bounded below
then A has a greatest lower bound in P .

(See 314Xa below. ‘Monotone order-completeness’ is the property involved in 314Ya, for instance.) Never-
theless I am prepared to say, on the basis of my own experience of working with other partially ordered sets,
that ‘Dedekind completeness’, as I have defined it, is at least of sufficient importance to deserve a name.
Note that it does not imply that P is a lattice, since it allows two elements of P to have no common upper
bound.

(f) The phrase complete lattice is sometimes used to mean a Dedekind complete lattice with greatest
and least elements; equivalently, a Dedekind complete partially ordered set with greatest and least elements.
Thus a Dedekind complete Boolean algebra is a complete lattice in this sense, but R is not.

(g) The most important Dedekind complete Boolean algebras (at least from the point of view of measure
theory) are the ‘measure algebras’ of the next chapter. I shall not pause here to give other examples, but
will proceed directly with the general theory.

314C Proposition Let A be a Dedekind σ-complete Boolean algebra and I a σ-ideal of A. Then the
quotient Boolean algebra A/I is Dedekind σ-complete.

proof I use the description in 314Bc. Let B ⊆ A/I be a non-empty countable set. For each u ∈ B, choose
an au ∈ A such that u = a•

u. Then c = supu∈B au is defined in A; consider v = c• in A/I. Because the map
a 7→ a• is sequentially order-continuous (313Qb), v = supB. As B is arbitrary, A/I is Dedekind σ-complete.

314D Corollary Let X be a set, Σ a σ-algebra of subsets of X, and I a σ-ideal of subsets of X. Then
Σ ∩ I is a σ-ideal of the Boolean algebra Σ, and Σ/Σ ∩ I is Dedekind σ-complete.

proof Of course Σ is Dedekind σ-complete, because if 〈En〉n∈N is any sequence in Σ then
⋃
n∈N

En is
the least upper bound of {En : n ∈ N} in Σ. It is also easy to see that Σ ∩ I is a σ-ideal of Σ, since
F ∩

⋃
n∈N

En ∈ I whenever F ∈ Σ and 〈En〉n∈N is a sequence in Σ ∩ I. So 314C gives the result.
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314E Proposition Let A be a Boolean algebra.
(a) If A is Dedekind complete, then all its order-closed subalgebras and principal ideals are Dedekind

complete.
(b) If A is Dedekind σ-complete, then all its σ-subalgebras and principal ideals are Dedekind σ-complete.

proof All we need to note is that if C is either an order-closed subalgebra or a principal ideal of A, and
B ⊆ C is such that b = supB is defined in A, then b ∈ C (see 313E(a-i-β)), so b is still the supremum of B
in C; while the same is true if C is a σ-subalgebra and B ⊆ C is countable, using 313E(a-ii-β).

314F I spell out some further connexions between the concepts ‘order-closed set’, ‘order-continuous
function’ and ‘Dedekind complete Boolean algebra’ which are elementary without being quite transparent.

Proposition Let A and B be Boolean algebras and π : A → B a Boolean homomorphism.
(a)(i) If A is Dedekind complete and π is order-continuous, then π[A] is order-closed in B.

(ii) If B is Dedekind complete and π is injective and π[A] is order-closed then π is order-continuous.
(b)(i) If A is Dedekind σ-complete and π is sequentially order-continuous, then π[A] is a σ-subalgebra of

B.
(ii) If B is Dedekind σ-complete and π is injective and π[A] is a σ-subalgebra of B then π is sequentially

order-continuous.

proof (a)(i) If B ⊆ π[A], then a0 = sup(π−1[B]) is defined in A; now

πa0 = sup(π[π−1[B]]) = supB

in B (313L(b-iv)), and of course πa0 ∈ π[A]. By 313E(a-i-β) again, this is enough to show that π[A] is
order-closed in B.

(ii) Suppose that A ⊆ A and inf A = 0 in A. Then π[A] has an infimum b0 in B, which belongs to
π[A] because π[A] is an order-closed subalgebra of B (313E(a-i-β′)). Now if a0 ∈ A is such that πa0 = b0,
we have

π(a ∩ a0) = πa ∩ πa0 = πa0

for every a ∈ A, so (because π is injective) a ∩ a0 = a0 and a0 ⊆ a for every a ∈ A. But this means that
a0 = 0 and b0 = π0 = 0. As A is arbitrary, π is order-continuous (313L(b-ii)).

(b) Use the same arguments, but with sequences in place of the sets B, A above.

314G Corollary Let A be a Boolean algebra and B a subalgebra of A.
(a) If A is Dedekind complete, then B is order-closed iff it is Dedekind complete in itself and is regularly

embedded in A.
(b) If A is Dedekind σ-complete, then B is a σ-subalgebra iff it is Dedekind σ-complete in itself and the

identity map from B to A is sequentially order-continuous.

proof (a) Let ι : B → A be the identity map; then it is an injective Boolean homomorphism.

(i) If B is order-closed, then it is Dedekind complete in itself by 314Ea. By 314F(a-ii), ι : B → A is
order-continuous, that is, B is regularly embedded in A.

(ii) If B is Dedekind complete in itself and ι is order-continuous, then B = ι[B] is order-closed in A

by 314F(a-i).

(b) Use the same arguments, but with 314Eb and 314Fb in place of 314Ea and 314Fa.

314H Corollary Let A be a Dedekind complete Boolean algebra, B a Boolean algebra and π : A → B

an order-continuous Boolean homomorphism. If C ⊆ A and C is the order-closed subalgebra of A generated
by C, then π[C] is the order-closed subalgebra of B generated by π[C].

proof Let D be the order-closed subalgebra of B generated by π[C]. By 313Mb, π[C] ⊆ D. On the
other hand, the identity homomorphism ι : C → A is order-continuous, by 314Ga, so πι : C → B is order-
continuous, and π[C] = πι[C] is order-closed in B, by 314F(a-i). But since π[C] is surely included in π[C], D
also is included in π[C]. Accordingly π[C] = D, as claimed.
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314I Corollary (a) If A is a Dedekind complete Boolean algebra, B is a Boolean algebra, π : A → B is
an injective Boolean homomorphism and π[A] is order-dense in B, then π is an isomorphism.

(b) If A is a Boolean algebra and B is an order-dense subalgebra of A which is Dedekind complete in
itself, then B = A.

proof (a) Because π[A] is order-dense, it is regularly embedded in B (313O); also, the kernel of π is {0},
which is surely order-closed in A, so 313P(a-ii) tells us that π is order-continuous. By 314F(a-i), π[A] is
order-closed in B; being order-dense, it must be the whole of B (313K). Thus π is surjective; being injective,
it is an isomorphism.

(b) Apply (a) to the identity map from B to A.

314J When we come to applications of the extension procedure in 312O, the following will sometimes
be needed.

Lemma Let A be a Boolean algebra and A0 a subalgebra of A. Take any c ∈ A, and set

A1 = {(a ∩ c) ∪ (b \ c) : a, b ∈ A0},

the subalgebra of A generated by A0 ∪ {c} (312N).
(a) Suppose that A is Dedekind complete. If A0 is order-closed in A, so is A1.
(b) Suppose that A is Dedekind σ-complete. If A0 is a σ-subalgebra of A, so is A1.

proof (a) Let D be any subset of A1. Set

E = {e : e ∈ A, there is some d ∈ D such that e ⊆ d},

A = {a : a ∈ A0, a ∩ c ∈ E}, B = {b : b ∈ A0, b \ c ∈ E}.

Because A is Dedekind complete, a∗ = supA and b∗ = supB are defined in A; because A0 is order-closed,
both belong to A0, so d∗ = (a∗ ∩ c) ∪ (b∗ \ c) belongs to A1.

Now if d ∈ D, it is expressible as (a ∩ c) ∪ (b \ c) for some a, b ∈ A0; since a ∈ A and b ∈ B, we have
a ⊆ a∗ and b ⊆ b∗, so d ⊆ d∗. Thus d∗ is an upper bound for D. On the other hand, if d′ is any other upper
bound for D in A, it is also an upper bound for E, so we must have

a∗ ∩ c = supa∈A a ∩ c ⊆ d′, b∗ \ c = supb∈B b \ c ⊆ d′,

and d∗ ⊆ d′. Thus d∗ = supD. This shows that the supremum of any subset of A1 belongs to A1, so that
A1 is order-closed.

(b) The argument is the same, except that we replace D by a sequence 〈dn〉n∈N, and A, B by sequences
〈an〉n∈N, 〈bn〉n∈N in A0 such that dn = (an ∩ c) ∪ (bn \ c) for every n.

314K Extension of homomorphisms The following is one of the most striking properties of Dedekind
complete Boolean algebras.

Theorem Let A be a Boolean algebra and B a Dedekind complete Boolean algebra. Let A0 be a Boolean
subalgebra of A and π0 : A0 → B a Boolean homomorphism. Then there is a Boolean homomorphism
π1 : A → B extending π0.

proof (a) Let P be the set of all Boolean homomorphisms π such that domπ is a Boolean subalgebra of
A including A0 and π extends π0. Identify each member of P with its graph, which is a subset of A ×B,
and order P by inclusion, so that π ⊆ θ means just that θ extends π. Then any non-empty totally ordered
subset Q of P has an upper bound in P . PPP Let π∗ be the simple union of these graphs. (i) If (a, b) and
(a, b′) both belong to π∗, then there are π, π′ ∈ Q such that πa = b, π′a = b′; now either π ⊆ π′ or π′ ⊆ π;
in either case, θ = π ∪ π′ ∈ Q, so that

b = πa = θa = π′a = b′.

This shows that π∗ is a function. (ii) Because Q 6= ∅,

domπ0 ⊆ domπ ⊆ domπ∗
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for some π ∈ Q; thus π∗ extends π0 (and, in particular, 0 ∈ domπ∗). (iii) Now suppose that a, a′ ∈ dom(π∗).
Then there are π, π′ ∈ Q such that a ∈ domπ, a′ ∈ domπ′; once again, θ = π∪π′ ∈ Q, so that a, a′ ∈ dom θ,
and

a ∩ a′ ∈ dom θ ⊆ domπ∗, 1 \ a ∈ dom θ ⊆ domπ∗,

π∗(a ∩ a′) = θ(a ∩ a′) = θa ∩ θa′ = π∗a ∩ π∗a′,

π∗(1 \ a) = θ(1 \ a) = 1 \ θa = 1 \ π∗a.

(iv) This shows that domπ∗ is a subalgebra of A and that π∗ is a Boolean homomorphism, that is, that
π∗ ∈ P ; and of course π∗ is an upper bound for Q in P . QQQ

(b) By Zorn’s Lemma, P has a maximal element π1 say.
??? Suppose, if possible, that A1 = domπ1 is not the whole of A; take c ∈ A \ A1. Set A = {a : a ∈

A1, a ⊆ c}. Because B is Dedekind complete, d = supπ1[A] is defined in B. If a′ ∈ A1 and c ⊆ a′, then of
course a ⊆ a′ and π1a ⊆ π1a

′ whenever a ∈ A, so that π1a
′ is an upper bound for π1[A], and d ⊆ π1a

′.
But this means that there is an extension of π1 to a Boolean homomorphism π on the Boolean subalgebra

of A generated by A1 ∪ {c} (312O). And this π must be a member of P properly extending π1, which is
supposed to be maximal. XXX

Thus domπ1 = A and π1 is an extension of π0 to A, as required.

314L The Loomis-Sikorski representation of a Dedekind σ-complete Boolean algebra The
construction in 314D is not only the commonest way in which new Dedekind σ-complete Boolean algebras
appear, but is adequate to describe them all. I start with an elementary general fact.

Lemma Let X be any topological space, and write M for the family of meager subsets of X. Then M is a
σ-ideal of subsets of X.

proof The point is that if A ⊆ X is nowhere dense, so is every subset of A; this is obvious, since if B ⊆ A
then B ⊆ A so intB ⊆ intA = ∅. So if B ⊆ A ∈ M, let 〈An〉n∈N be a sequence of nowhere dense sets with
union A; then 〈B ∩ An〉n∈N is a sequence of nowhere dense sets with union B, so B ∈ M. If 〈An〉n∈N is a
sequence in M with union A, then for each n we may choose a sequence 〈Anm〉m∈N of nowhere dense sets
with union An; then the countable family 〈Anm〉n,m∈N may be re-indexed as a sequence of nowhere dense
sets with union A, so A ∈ M. Finally, ∅ is nowhere dense, so belongs to M.

314M Theorem Let A be a Dedekind σ-complete Boolean algebra, and Z its Stone space. Let E be the
algebra of open-and-closed subsets of Z, and M the σ-ideal of meager subsets of Z. Then Σ = {E△A : E ∈
E , A ∈ M} is a σ-algebra of subsets of Z, M is a σ-ideal of Σ, and A is isomorphic, as Boolean algebra, to
Σ/M.

proof (a) I start by showing that Σ is a σ-algebra. PPP Of course ∅ = ∅△∅ ∈ Σ. If F ∈ Σ, express it as
E△A where E ∈ E , A ∈ M; then Z \ F = (Z \ E)△A ∈ Σ.

If 〈Fn〉n∈N is a sequence in Σ, express each Fn as En△An, where En ∈ E and An ∈ M. Now each En
is expressible as ân, where an ∈ A. Because A is Dedekind σ-complete, a = supn∈N an is defined in A. Set

E = â ∈ E . By 313Ca, E =
⋃
n∈N

En, so the closed set E \
⋃
n∈N

En has empty interior and is nowhere
dense. Accordingly, setting A = E△

⋃
n∈N

Fn, we have

A ⊆ (E \
⋃
n∈N

En) ∪
⋃
n∈N

An ∈ M,

so that
⋃
n∈N

Fn = E△A ∈ Σ. Thus Σ is closed under countable unions and is a σ-algebra. QQQ
Evidently M ⊆ Σ, because ∅ ∈ E .

(b) For each F ∈ Σ, there is exactly one E ∈ E such that F△E ∈ M. PPP There is surely some E ∈ E
such that F is expressible as E△A where A ∈ M, so that F△E = A ∈ M. If E′ is any other member of
E , then E′△E is a non-empty open set in X, while E′△E ⊆ A ∪ (F△E′); by Baire’s theorem for compact
Hausdorff spaces (3A3G), A ∪ (F△E′) /∈ M and F△E′ /∈ M. Thus E is unique. QQQ

(c) Consequently the maps E 7→ E• : E → Σ/M is a bijection. But since it is also a Boolean homomor-
phism, it is an isomorphism, and A ∼= E ∼= Σ/M, as claimed.
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314N Corollary A Boolean algebra A is Dedekind σ-complete iff it is isomorphic to a quotient Σ/I
where Σ is a σ-algebra of sets and I is a σ-ideal of Σ.

proof Put 314D and 314M together.

314O Regular open algebras For Boolean algebras which are Dedekind complete in the full sense,
there is another general method of representing them, which leads to further very interesting ideas.

Definition Let X be a topological space. A regular open set in X is an open set G ⊆ X such that
G = intG.

Note that if F ⊆ X is any closed set, then G = intF is a regular open set, because G ⊆ G ⊆ F so

G ⊆ intG ⊆ intF = G

and G = intG.

314P Theorem Let X be any topological space, and write RO(X) for the set of regular open sets in X.
Then RO(X) is a Dedekind complete Boolean algebra, with 1RO(X) = X and 0RO(X) = ∅, and with Boolean
operations given by

G∩RO H = G ∩H, G△RO H = intG△H,

G∪RO H = intG ∪H, G\RO H = G \H,

with Boolean ordering given by

G ⊆RO H ⇐⇒ G ⊆ H,

and with suprema and infima given by

supH = int
⋃
H, inf H = int

⋂
H = int

⋂
H

for all non-empty H ⊆ RO(X).

Remark I use the expressions

∩RO ∪RO △ RO \RO ⊆RO

in case the distinction between

∩ ∪ △ \ ⊆

and

∩ ∪ △ \ ⊆

is insufficiently marked.

proof I base the proof on the study of an auxiliary algebra of sets which involves some of the ideas already
used in 314M.

(a) Let I be the family of nowhere dense subsets of X. Then I is an ideal of subsets of X. PPP Of course
∅ ∈ I. If A ⊆ B ∈ I then intA ⊆ intB = ∅. If A, B ∈ I and G is a non-empty open set, then G \ A is
a non-empty open set and (G \ A) \ B is non-empty; accordingly G cannot be a subset of A ∪ B = A ∪B.
This shows that intA ∪B = ∅, so that A ∪B ∈ I. QQQ

(b) For any set A ⊆ X, write ∂A for the boundary of A, that is, A \ intA. Set

Σ = {E : E ⊆ X, ∂E ∈ I}.

The Σ is an algebra of subsets of X. PPP (i) ∂∅ = ∅ ∈ I so ∅ ∈ Σ. (ii) If A, B ⊆ X, then A ∪B = A ∪ B,
while int(A ∪ B) ⊇ intA ∪ intB; so ∂(A ∪ B) ⊆ ∂A ∪ ∂B. So if E, F ∈ Σ, ∂(E ∪ F ) ⊆ ∂E ∪ ∂F ∈ I and
E ∪ F ∈ Σ. (iii) If A ⊆ X, then

∂(X \A) = X \A \ int(X \A) = (X \ intA) \ (X \A) = A \ intA = ∂A.

So if E ∈ Σ, ∂(X \ E) = ∂E ∈ I and X \ E ∈ Σ. QQQ
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If A ∈ I, then of course ∂A = A ∈ I, so A ∈ Σ; accordingly I is an ideal in the Boolean algebra Σ, and
we can form the quotient Σ/I.

It will be helpful to note that every open set belongs to Σ, since if G is open then ∂G = G \ G cannot
include any non-empty open set (since any open set meeting G must meet G).

(c) For each E ∈ Σ, set VE = intE; then VE is the unique member of RO(X) such that E△VE ∈ I.
PPP (i) Being the interior of a closed set, VE ∈ RO(X). Since intE ⊆ VE ⊆ E, E△VE ⊆ ∂E ∈ I. (ii) If
G ∈ RO(X) is such that E△G ∈ I, then

G \ VE ⊆ G \ VE ⊆ (G△E) ∪ (VE△E) ∈ I,

so G \ VE , being open, must be actually empty, and G ⊆ VE ; but this means that G ⊆ intVE = VE .
Similarly, VE ⊆ G and VE = G. This shows that VE is unique. QQQ

(d) It follows that the map G 7→ G• : RO(X) → Σ/I is a bijection, and we have a Boolean algebra
structure on RO(X) defined by the Boolean algebra structure of Σ/I. What this means is that for each of the
binary Boolean operations ∩RO , △RO , ∪RO , \RO and for G, H ∈ RO(X) we must have G∗ROH = intG ∗H,
writing ∗RO for the operation on the algebra RO(X) and ∗ for the corresponding operation on Σ or PX.

(e) Before working through the identifications, it will be helpful to observe that if H is any non-empty

subset of RO(X), then int
⋂

H = int
⋂
H. PPP Set G = int

⋂
H. For every H ∈ H, G ⊆ H so G ⊆ intH = H;

thus

G ⊆ int
⋂

H ⊆ int
⋂
H = G,

so G = int
⋂

H. QQQ Consequently int
⋂
H, being the interior of a closed set, belongs to RO(X).

(f)(i) If G, H ∈ RO(X) then their intersection in the algebra RO(X) is

G∩RO H = intG ∩H = int(G ∩H) = G ∩H,

using (d) for the first equality and (e) for the second.

(ii) Of course X ∈ RO(X) and X• = 1Σ/I , so X = 1RO(X).

(iii) If G ∈ RO(X) then its complement 1RO(X) \RO G in RO(X) is

intX \G = int(X \G) = X \G.

(iv) If G, H ∈ RO(X), then the relative complement in RO(X) is

G\RO H = G∩RO (1RO(X) \RO H) = G ∩ (X \H) = G \H = int(G \H).

(v) If G, H ∈ RO(X), then G∪RO H = intG ∪H and G△RO H = intG△H, by the remarks in (d).

(g) We must note that for G, H ∈ RO(X),

G ⊆RO H ⇐⇒ G∩RO H = G ⇐⇒ G ∩H = G ⇐⇒ G ⊆ H;

that is, the ordering of the Boolean algebra RO(X) is just the partial ordering induced on RO(X) by the
Boolean ordering ⊆ of PX or Σ.

(h) If H is any non-empty subset of RO(X), consider G0 = int
⋂

H and G1 = int
⋃

H.
G0 = inf H in RO(X). PPP By (e), G0 ∈ RO(X). Of course G0 ⊆ H for every H ∈ H, so G0 is a lower

bound for H. If G is any lower bound for H in RO(X), then G ⊆ H for every H ∈ H, so G ⊆
⋂
H; but also

G is open, so G ⊆ int
⋂
H = G0. Thus G0 is the greatest lower bound for H. QQQ

G1 = supH in RO(X). PPP Being the interior of a closed set, G1 ∈ RO(X), and of course

H = intH ⊆ int
⋃
H = G1

for every H ∈ H, so G1 is an upper bound for H in RO(X). If G is any upper bound for H in RO(X), then

G = intG ⊇ int
⋃
H = G1;

thus G1 is the least upper bound for H in RO(X). QQQ
This shows that every non-empty H ⊆ RO(X) has a supremum and an infimum in RO(X); consequently

RO(X) is Dedekind complete, and the proof is finished.
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314Q Remarks (a) RO(X) is called the regular open algebra of the topological space X.

(b) Note that the map E 7→ VE : Σ → RO(X) of part (c) of the proof above is a Boolean homomorphism,
if RO(X) is given its Boolean algebra structure. Its kernel is of course I; the induced map E• 7→ VE :
Σ/I → RO(X) is just the inverse of the isomorphism G 7→ G• : RO(X) → Σ/I.

*314R I interpolate a lemma corresponding to 313R, with a couple of other occasionally useful facts.

Lemma (a) Let X and Y be topological spaces, and f : X → Y a continuous function such that f−1[M ]
is nowhere dense in X for every nowhere dense M ⊆ Y . Then we have an order-continuous Boolean
homomorphism π from the regular open algebra RO(Y ) of Y to the regular open algebra RO(X) of X

defined by setting πH = int f−1[H] for every H ∈ RO(Y ).
(b) Let X be a topological space.

(i) If U ⊆ X is open, then G 7→ G ∩ U is a surjective order-continuous Boolean homomorphism from
RO(X) onto RO(U).

(ii) If U ∈ RO(X) then RO(U) is the principal ideal of RO(X) generated by U .

proof (a)(i) By the remark in 314O, the formula for πH always defines a member of RO(X); and of course
π is order-preserving.

Observe that if H ∈ RO(Y ), then f−1[H] is open, so f−1[H] ⊆ πH. It will be convenient to note straight
away that if V ⊆ Y is a dense open set then f−1[V ] is dense in X. PPP M = Y \ V is nowhere dense, so
f−1[M ] is nowhere dense and its complement f−1[V ] is dense. QQQ

(ii) If H1, H2 ∈ RO(Y ) then π(H1∩H2) = πH1∩πH2. PPP Because π is order-preserving, π(H1∩H2) ⊆
πH1 ∩ πH2. ??? Suppose, if possible, that they are not equal. Then (because π(H1 ∩H2) is a regular open

set) G = πH1 ∩ πH2 \ π(H1 ∩H2) is non-empty. Set M = f [G]. Then f−1[M ] ⊇ G is not nowhere dense,

so H = intM must be non-empty. Now G ⊆ πH1 ⊆ f−1[H1], so

f [G] ⊆ f [f−1[H1]] ⊆ f [f−1[H1]] ⊆ H1,

so M ⊆ H1 and H ⊆ intH1 = H1. Similarly, H ⊆ H2, and f−1[H] ⊆ f−1[H1 ∩H2] ⊆ π(H1 ∩H2). But also
H ∩ f [G] is not empty, so

∅ 6= G ∩ f−1[H] ⊆ G ∩ π(H1 ∩H2),

which is impossible. XXXQQQ

(iii) If H ∈ RO(Y ) and H ′ = Y \H is its complement in RO(Y ) then πH ′ = X \πH is the complement
of πH in RO(X). PPP By (b), πH and πH ′ are disjoint. Now H ∪H ′ is a dense open subset of Y , so

πH ∪ πH ′ ⊇ f−1[H] ∪ f−1[H ′] = f−1[H ∪H ′]

is dense in X, and the regular open set πH ′ must include the complement of πH in RO(X). QQQ
Putting this together with (b), we see that the conditions of 312H(ii) are satisfied, so that π is a Boolean

homomorphism.

(iv) To see that it is order-continuous, let H ⊆ RO(Y ) be a non-empty set with supremum Y . Then
H0 =

⋃
H is a dense open subset of Y (see the formula in 314P). So

⋃
H∈H πH ⊇

⋃
H∈H f−1[H] = f−1[H0]

is dense in X, and supH∈H πH = X in RO(X). By 313L(b-iii), π is order-continuous.

(b)(i) The idea is to apply (a) to the identity function f : U → X. If M ⊆ X is nowhere dense, then
any non-empty open subset of U has a non-empty open subset disjoint from M , so f−1[M ] = M ∩ U is
nowhere dense in U ; thus the condition is satisfied, and we have an order-continuous Boolean homomorphism

π : RO(X) → RO(U) defined by setting πH = intU H ∩ U
(U)

for every H ∈ RO(X). (I write intU ,
(U)

to
indicate interior and closure in the subspace topology.) Now for any open set G ⊆ X,

U ∩G = U ∩ (G ∩ U ∪G \ U) = U ∩G ∩ U = G ∩ U
(U)

.

So if H ∈ RO(X), then
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πH = intU H ∩ U
(U)

= intU (U ∩H) = U ∩ intH = U ∩G.

So π takes the required form. To see that it is surjective, take any V ∈ RO(U). Then intV ∈ RO(X), and

V = intU V
(U)

= intU (U ∩ V ) = U ∩ intV = π(intV )

is a value of π.

(ii) If G ∈ RO(X) and G ⊆ U , then G = G ∩ U ∈ RO(U). Conversely, if V ∈ RO(U), there is a
G ∈ RO(X) such that V = G ∩ U ; but G ∩ U ∈ RO(X), by 314P, so V ∈ RO(X).

314S It is now easy to characterize the Stone spaces of Dedekind complete Boolean algebras.

Theorem Let A be a Boolean algebra, and Z its Stone space; write E for the algebra of open-and-closed
subsets of Z, and RO(Z) for the regular open algebra of Z. Then the following are equiveridical:

(i) A is Dedekind complete;
(ii) Z is extremally disconnected (definition: 3A3Af);
(iii) E = RO(Z).

proof For a ∈ A, let â be the corresponding member of E .

(i)⇒(ii) If A is Dedekind complete, let G be any open set in Z. Set A = {a : a ∈ A, â ⊆ G}, a0 = supA.
Then G =

⋃
{â : a ∈ A}, because E is a base for the topology of Z, so â0 = G, by 313Ca. Consequently G

is open. As G is arbitrary, Z is extremally disconnected.

(ii)⇒(iii) If E ∈ E , then of course E = E = intE, so E is a regular open set. Thus E ⊆ RO(Z). On the
other hand, suppose that G ⊆ Z is a regular open set. Because Z is extremally disconnected, G is open; so
G = intG = G is open-and-closed, and belongs to E . Thus E = RO(Z).

(iii)⇒(i) Since RO(Z) is Dedekind complete (314P), E and A are also Dedekind complete Boolean
algebras.

Remark Note that if the conditions above are satisfied, either 312M or the formulae in 314P show that the
Boolean structures of E and RO(Z) are identical.

314T I come now to a construction of great importance, both as a foundation for further constructions
and as a source of insight into the nature of Dedekind completeness.

Theorem Let A be a Boolean algebra, with Stone space Z; for a ∈ A let â be the corresponding open-and-

closed subset of Z. Let Â be the regular open algebra of Z (314P).
(a) The map a 7→ â is an injective order-continuous Boolean homomorphism from A onto an order-dense

subalgebra of Â.
(b) If B is any Dedekind complete Boolean algebra and π : A → B is an order-continuous Boolean

homomorphism, there is a unique order-continuous Boolean homomorphism π1 : Â → B such that π1â = πa
for every a ∈ A.

proof (a)(i) Setting E = {â : a ∈ A}, every member of E is open-and-closed, so is surely equal to the

interior of its closure, and is a regular open set; thus â ∈ Â for every a ∈ A. The formulae in 314P tell us

that if a, b ∈ A, then â ∩ b̂, taken in Â, is just the set-theoretic intersection â ∩ b̂ = (a ∩ b)̂ ; while 1 \ â,

taken in Â, is

Z \ â = Z \ â = (1 \ a)̂ .

And of course 0̂ = ∅ is the zero of Â. Thus the map a 7→ â : A → Â preserves ∩ and complementation, so
is a Boolean homomorphism (312H). Of course it is injective.

(ii) If A ⊆ A is non-empty and inf A = 0, then
⋂
a∈A â is nowhere dense in Z (313Cc), so

inf{â : a ∈ A} = int(
⋂
a∈A â) = ∅

(314P again). As A is arbitrary, the map a 7→ â : A → Â is order-continuous.
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(iii) If G ∈ Â is not empty, then there is a non-empty member of E included in it, by the definition of

the topology of Z (311I). So E is an order-dense subalgebra of Â.

(b) Now suppose that B is a Dedekind complete Boolean algebra and π : A → B is an order-continuous

Boolean homomorphism. Write ιa = â for a ∈ A, so that ι : A → Â is an isomorphism between A and the

order-dense subalgebra E of Â. Accordingly πι−1 : E → B is an order-continuous Boolean homomorphism,
being the composition of the order-continuous Boolean homomorphisms π and ι−1. By 314K, it has an

extension to a Boolean homomorphism π1 : Â → B, and π1ι = π, that is, π1â = πa for every a ∈ A. Now

π1 is order-continuous. PPP Suppose that H ⊆ Â has supremum 1 in Â. Set

H′ = {E : E ∈ E , E ⊆ H for some H ∈ H}.

Because E is order-dense in Â,

H = supE∈E,E⊆H E = supE∈H′,E⊆H E

for every H ∈ H (313K), and supH′ = 1 in Â. It follows at once that supH′ = 1 in E , so supπ1[H′] =
sup(πι−1)[H′] = 1. Since any upper bound for π1[H] must also be an upper bound for π1[H′], supπ1[H] = 1
in B. As H is arbitrary, π1 is order-continuous (313L(b-iii)). QQQ

If π′
1 : Â → B is any other Boolean homomorphism such that π′

1â = πa for every a ∈ A, then π1 and π′
1

agree on E , and the argument just above shows that π′
1 is also order-continuous. But if G ∈ Â, G is the

supremum (in Â) of F = {E : E ∈ E , E ⊆ G}, so

π′
1G = supE∈F π

′
1E = supE∈F π1E = π1G.

As G is arbitrary, π′
1 = π1. Thus π1 is unique.

314U The Dedekind completion of a Boolean algebra (a) For any Boolean algebra A, I will say

that the Boolean algebra Â constructed in 314T is the Dedekind completion of A.

When using this concept I shall frequently suppress the distinction between a ∈ A and â ∈ Â, and treat

A as itself an order-dense subalgebra of Â.

(b) The universal mapping theorem in 314Tb assures us that the Dedekind completion is essentially
unique. The commonest way in which this fact appears is the following. If C is a Dedekind complete Boolean
algebra and A is an order-dense subalgebra of C, then the embedding A ⊂→ C induces an isomorphism from

Â to C. PPP Write πa = a for a ∈ A. Because A is order-dense, π is order-continuous (313O), so extends to

an order-continuous Boolean homomorphism π1 : Â → C. If b ∈ Â is non-zero, there is a non-zero a ∈ A

such that a ⊆ b; now

0 6= a = πa = π1a ⊆ π1b.

As b is arbitrary, π1 is injective. Next, π1[Â] must be order-closed in C, by 314F(a-i); since it includes A

and A is order-dense in C, π1[Â] = C and π1 is an isomorphism. QQQ

(c) Looking at the construction in 314T from a different angle, we get the following. Suppose that Z is
a zero-dimensional compact Hausdorff space, and E is the algebra of open-and-closed subsets of Z. Then E
is order-dense in the regular open algebra RO(Z), so the Dedekind completion of E can be identified with
RO(Z). (For by 311J we can identify Z with the Stone space of E .)

314X Basic exercises >>>(a) Let A be a Boolean algebra. (i) Show that the following are equiveridical:
(α) A is Dedekind complete (β) every upwards-directed subset of A has a least upper bound (γ) every
downwards-directed subset of A has a greatest lower bound (δ) every disjoint subset of A has a least upper
bound. (ii) Show that the following are equiveridical: (α) A is Dedekind σ-complete (β) every non-decreasing
sequence in A has a least upper bound (γ) every non-increasing sequence in A has a greatest lower bound
(δ) every disjoint sequence in A has a least upper bound.

(b) Let A be a Boolean algebra. Show that any principal ideal of A is order-closed. Show that A is
Dedekind complete iff every order-closed ideal is principal.
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(c) Let A be a Dedekind complete Boolean algebra, B an order-closed subalgebra of A, and a ∈ A; let
Aa be the principal ideal of A generated by a. Show that {a ∩ b : b ∈ B} is an order-closed subalgebra of
Aa.

>>>(d) Let A be a Dedekind complete Boolean algebra, B a Boolean algebra and π : A → B a surjective
order-continuous Boolean homomorphism. (i) Show that the kernel of π is a principal ideal in A. (ii) Show
that B is isomorphic to the complementary principal ideal in A, and in particular is Dedekind complete.

(e) Let A be a Dedekind complete Boolean algebra and C an order-closed subalgebra of A. Show that an
element a of A belongs to C iff upr(1 \ a,C) = 1 \ upr(a,C) iff upr(1 \ a,C) ∩ upr(a,C) = 0, writing upr(a,C)
for the upper envelope of a in C, as in 313S.

>>>(f) Let A be a Dedekind complete Boolean algebra, C an order-closed subalgebra of A, a0 ∈ A and
c0 ∈ C. Show that the following are equiveridical: (i) there is a Boolean homomorphism π : A → C such
that πc = c for every c ∈ C and πa0 = c0 (ii) 1 \ upr(1 \ a0,C) ⊆ c0 ⊆ upr(a0,C).

>>>(g) Let A be a Dedekind σ-complete Boolean algebra, B a Boolean algebra and π : A → B a sequentially
order-continuous Boolean homomorphism. If C ⊆ A and C is the σ-subalgebra of A generated by C, show
that π[C] is the σ-subalgebra of B generated by π[C].

(h) Let X and Y be extremally disconnected compact Hausdorff spaces, RO(X) and RO(Y ) their regular
open algebras, and φ : X → Y a continuous surjection. Show that the following are equiveridical: (i) the
Boolean homomorphism V 7→ φ−1[V ] from RO(Y ) to RO(X) (312Q, 314S) is order-continuous; (ii) φ[U ] is
open-and-closed in Y for every open-and-closed set U ⊆ X; (iii) φ[G] is open in Y for every open set G ⊆ X.

(i) Find a proof of 314Tb which does not appeal to 314K.

(j) Let B be a Dedekind complete Boolean algebra, and A a Boolean algebra which can be regularly
embedded in B. Show that the Dedekind completion of A can be regularly embedded in B.

(k) Let X be a topological space and Y a dense subset of X. Show that G 7→ G ∩ Y is a Boolean
isomorphism from RO(X) to RO(Y ).

(l) Let A be a Dedekind complete Boolean algebra, B an order-closed subalgebra of A, c a member of A
and C the subalgebra of A generated by B ∪ {c}. Show that c ∩ a = c ∩ upr(c ∩ a,B) for every a ∈ C.

314Y Further exercises (a) Let P be a Dedekind complete partially ordered set. Show that a set
Q ⊆ P is order-closed iff supR, inf R belong to Q whenever R ⊆ Q is a totally ordered subset of Q with
upper and lower bounds in P . (Hint : show by induction on κ that if A ⊆ Q is upwards-directed and bounded
above and #(A) ≤ κ then supA ∈ Q.)

(b) Let P be a lattice. Show that P is Dedekind complete iff every non-empty totally ordered subset of
P with an upper bound in P has a least upper bound in P . (Hint : if A ⊆ P is non-empty and bounded
below in P , let B be the set of lower bounds of A and use Zorn’s Lemma to find a maximal element of B.)

(c) Give an example of a Boolean algebra A with an order-closed subalgebra A0 and an element c such
that the subalgebra generated by A0 ∪ {c} is not order-closed.

(d) Let X be any topological space. Let M be the σ-ideal of meager subsets of X, and set

B̂ = {G△A : G ⊆ X is open, A ∈ M}.

(i) Show that B̂ is a σ-algebra of subsets of X, and that B̂/M is Dedekind complete. (Members of B̂ are

said to be the subsets of X with the Baire property; B̂ is the Baire-property algebra of X.) (ii) Show

that if A ⊆ X and
⋃
{G : G ⊆ X is open, A ∩ G ∈ B̂} is dense, then A ∈ B̂. (iii) Show that there is a

largest open set V ∈ M. (iv) Let RO(X) be the regular open algebra of X. Show that the map G 7→ G•

is an order-continuous Boolean homomorphism from RO(X) onto B̂/M, so induces a Boolean isomorphism

between the principal ideal of RO(X) generated by X \V and B̂/M. (B̂/M is the category algebra of X;

it is a Dedekind complete Boolean algebra. X is called a Baire space if V = ∅; in this case RO(X) ∼= B̂/M.
See 4A3S in Volume 4.)
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(e) Let A be a Dedekind σ-complete Boolean algebra, and 〈an〉n∈N any sequence in A. For n ∈ N set
En = {x : x ∈ {0, 1}N, x(n) = 1}, and let B be the σ-algebra of subsets of {0, 1}N generated by {En : n ∈ N}.
(B is the ‘Borel σ-algebra’ of {0, 1}N; see 4A3E in Volume 4.) Show that there is a unique sequentially order-
continuous Boolean homomorphism θ : B → A such that θ(En) = an for every n ∈ N. (Hint : define a suitable
function φ from the Stone space Z of A to {0, 1}N, and consider {E : E ⊆ {0, 1}N, φ−1[E] has the Baire
property in Z}.) Show that θ[B] is the σ-subalgebra of A generated by {an : n ∈ N}.

(f) Let A be a Boolean algebra, and Z its Stone space. Show that A is Dedekind σ-complete iff G is open
whenever G is a cozero set in Z. (Such spaces are called basically disconnected or quasi-Stonian.)

(g) Let A, B be Dedekind complete Boolean algebras and D ⊆ A an order-dense set. Suppose that
φ : D → B is such that (i) φ[D] is order-dense in B (ii) for all d, d′ ∈ D, d ∩ d′ = 0 iff φd ∩ φd′ = 0. Show
that φ has a unique extension to a Boolean isomorphism from A to B.

(h) Let A be any Boolean algebra. Let J be the family of order-closed ideals in A. Show that (i) J
is a Dedekind complete Boolean algebra with operations defined by the formulae I ∩ J = I ∩ J , 1 \ J =
{a : a ∩ b = 0 for every b ∈ J} (ii) the map a 7→ Aa, the principal ideal generated by a, is an injective
order-continuous Boolean homomorphism from A onto an order-dense subalgebra of J (iii) J is isomorphic
to the Dedekind completion of A.

314 Notes and comments At the risk of being tiresomely long-winded, I have taken the trouble to spell out
a large proportion of the results in this section and the last in their ‘sequential’ as well as their ‘unrestricted’
forms. The point is that while (in my view) the underlying ideas are most clearly and dramatically expressed
in terms of order-closed sets, order-continuous functions and Dedekind complete algebras, a large proportion
of the applications in measure theory deal with sequentially order-closed sets, sequentially order-continuous
functions and Dedekind σ-complete algebras. As a matter of simple technique, therefore, it is necessary
to master both, and for the sake of later reference I generally give the statements of both versions in full.
Perhaps the points to look at most keenly are just those where there is a difference in the ideas involved, as
in 314Bb, or in which there is only one version given, as in 314M and 314T.

If you have seen the Hahn-Banach theorem (3A5A), it may have been recalled to your mind by Theorem
314K; in both cases we use an order relation and a bit of algebra to make a single step towards an extension
of a function, and Zorn’s lemma to turn this into the extension we seek. A good part of this section has
turned out to be on the borderland between the theory of Boolean algebra and general topology; naturally
enough, since (as always with the general theory of Boolean algebra) one of our first concerns is to establish
connexions between algebras and their Stone spaces.

I think 314T is the first substantial ‘universal mapping theorem’ in this volume; it is by no means the

last. The idea of the construction Â is not just that we obtain a Dedekind complete Boolean algebra in
which A is embedded as an order-dense subalgebra, but that we simultaneously obtain a theorem on the

canonical extension to Â of order-continuous Boolean homomorphisms defined on A. This characterization

is enough to define the pair (Â, a 7→ â) up to isomorphism, so the exact method of construction of Â becomes
of secondary importance. The one used in 314T is very natural (at least, if we believe in Stone spaces), but
there are others (see 314Yh), with different virtues.

314K and 314T both describe circumstances in which we can find extensions of Boolean homomorphisms.
Clearly such results are fundamental in the theory of Boolean algebras, but I shall not attempt any systematic
presentation here. 314Ye can also be regarded as belonging to this family of ideas.

Version of 13.11.12

315 Products and free products

I describe here two algebraic constructions of fundamental importance. They are very different in char-
acter, indeed may be regarded as opposites, despite the common use of the word ‘product’. The first part
of the section (315A-315H) deals with the easier construction, the ‘simple product’; the second part (315I-
315Q) with the ‘free product’. These constructions lead to descriptions of projective and inductive limits
(315R-315S).

c© 1994 D. H. Fremlin
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315A Products of Boolean algebras (a) Let 〈Ai〉i∈I be any family of Boolean algebras. Set A =∏
i∈I Ai, with the natural ring structure

a△ b = 〈a(i) △ b(i)〉i∈I ,

a ∩ b = 〈a(i) ∩ b(i)〉i∈I

for a, b ∈ A. Then A is a ring (3A2H); it is a Boolean ring because

a ∩ a = 〈a(i) ∩ a(i)〉i∈I = a

for every a ∈ A; and it is a Boolean algebra because if we set 1A = 〈1Ai
〉i∈I , then 1A ∩ a = a for every a ∈ A.

I will call A the simple product of the family 〈Ai〉i∈I .
I should perhaps remark that when I = ∅ then A becomes {∅}, to be interpreted as the singleton Boolean

algebra.

(b) The Boolean operations on A are now defined by the formulae

a ∪ b = 〈a(i) ∪ b(i)〉i∈I , a \ b = 〈a(i) \ b(i)〉i∈I

for all a, b ∈ A.

315B Theorem Let 〈Ai〉i∈I be a family of Boolean algebras, and A their simple product.
(a) The maps a 7→ πi(a) = a(i) : A → Ai are all Boolean homomorphisms.
(b) If B is any other Boolean algebra, then a map φ : B → A is a Boolean homomorphism iff πiφ : B → Ai

is a Boolean homomorphism for every i ∈ I.

proof Verification of these facts amounts just to applying the definitions with attention.

315C Products of partially ordered sets (a) It is perhaps worth spelling out the following elementary
definition. If 〈Pi〉i∈I is any family of partially ordered sets, its product is the set P =

∏
i∈I Pi ordered by

saying that p ≤ q iff p(i) ≤ q(i) for every i ∈ I; it is easy to check that P is now a partially ordered set.

(b) The point is that if A is the simple product of a family 〈Ai〉i∈I of Boolean algebras, then the ordering
of A is just the product partial order:

a ⊆ b⇐⇒ a ∩ b = a ⇐⇒ a(i) ∩ b(i) = a(i) ∀ i ∈ I ⇐⇒ a(i) ⊆ b(i) ∀ i ∈ I.

Now we have the following elementary, but extremely useful, general facts about products of partially
ordered sets.

315D Proposition Let 〈Pi〉i∈I be a family of non-empty partially ordered sets with product P .
(a) For any non-empty set A ⊆ P and q ∈ P ,

(i) supA = q in P iff supp∈A p(i) = q(i) in Pi for every i ∈ I,
(ii) inf A = q in P iff infp∈A p(i) = q(i) in Pi for every i ∈ I.

(b) The coordinate maps p 7→ πi(p) = p(i) : P → Pi are all order-preserving and order-continuous.
(c) For any partially ordered set Q and function φ : Q→ P , φ is order-preserving iff πiφ is order-preserving

for every i ∈ I.
(d) For any partially ordered set Q and order-preserving function φ : Q→ P ,

(i) φ is order-continuous iff πiφ is order-continuous for every i,
(ii) φ is sequentially order-continuous iff πiφ is sequentially order-continuous for every i.

(e)(i) P is Dedekind complete iff every Pi is Dedekind complete.
(ii) P is Dedekind σ-complete iff every Pi is Dedekind σ-complete.

proof All these are elementary verifications. Of course parts (b), (d) and (e) rely on (a).

315E Factor algebras as principal ideals Because Boolean algebras have least elements, we have a
second type of canonical homomorphism associated with their products. If 〈Ai〉i∈I is a family of Boolean
algebras with simple product A, define θi : Ai → A by setting (θia)(i) = a, (θia)(j) = 0Aj

if i ∈ I, a ∈ Ai and
j ∈ I \ {i}. Each θi is a ring homomorphism, and is a Boolean isomorphism between Ai and the principal
ideal of A generated by θi(1Ai

). The family 〈θi(1Ai
)〉i∈I is a partition of unity in A.

Associated with these embeddings is the following important result.
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315F Proposition Let A be a Boolean algebra and 〈ei〉i∈I a partition of unity in A. Suppose
either (i) that I is finite
or (ii) that I is countable and A is Dedekind σ-complete
or (iii) that A is Dedekind complete.

Then the map a 7→ 〈a ∩ ei〉i∈I is a Boolean isomorphism between A and
∏
i∈I Aei , writing Aei for the

principal ideal of A generated by ei for each i.

proof The given map is a Boolean homomorphism because each of the maps a 7→ a ∩ ei : A → Aei is (312J).
It is injective because supi∈I ei = 1, so if a ∈ A \ {0} there is an i such that a ∩ ei 6= 0. It is surjective
because 〈ei〉i∈I is disjoint and if c ∈

∏
i∈I Aei then a = supi∈I c(i) is defined in A and

a ∩ ej = supi∈I c(i) ∩ ej = c(j)

for every j ∈ I (using 313Ba). The three alternative versions of the hypotheses of this proposition are
designed to ensure that the supremum is always well-defined in A.

315G Algebras of sets and their quotients The Boolean algebras of measure theory are mostly
presented as algebras of sets or quotients of algebras of sets, so it is perhaps worth spelling out the ways in
which the product construction applies to such algebras.

Proposition Let 〈Xi〉i∈I be a family of sets, and Σi an algebra of subsets of Xi for each i.
(a) The simple product

∏
i∈I Σi may be identified with the algebra

Σ = {E : E ⊆ X, {x : (x, i) ∈ E} ∈ Σi for every i ∈ I}

of subsets of X = {(x, i) : i ∈ I, x ∈ Xi}, with the canonical homomorphisms πi : Σ → Σi being given by

πiE = {x : (x, i) ∈ E}

for each E ∈ Σ.
(b) Now suppose that Ji is an ideal of Σi for each i. Then

∏
i∈I Σi/Ji may be identified with Σ/J , where

J = {E : E ∈ Σ, {x : (x, i) ∈ E} ∈ Ji for every i ∈ I},

and the canonical homomorphisms π̃i : Σ/J → Σi/Ji are given by the formula π̃i(E
•) = (πiE)• for every

E ∈ Σ.

proof (a) It is easy to check that Σ is a subalgebra of PX, and that the map E 7→ 〈πiE〉i∈I : Σ →
∏
i∈I Σi

is a Boolean isomorphism.

(b) Again, it is easy to check that J is an ideal of Σ, that the proposed formula for π̃i does indeed define
a map from Σ/J to Σi/Ji, and that E• 7→ 〈π̃iE

•〉i∈I is an isomorphism between Σ/J and
∏
i∈I Σi/Ji.

*315H There is a particular kind of simple product which arises naturally when we look at regular open
algebras.

Proposition Let X be a topological space, and U a disjoint family of open subsets of X with union dense
in X. Then the regular open algebra RO(X) is isomorphic to the simple product

∏
U∈U RO(U).

proof By 314R(b-i), G 7→ G ∩ U is a Boolean homomorphism from RO(X) onto RO(U), for any U ∈ U .
By 315B, we have a Boolean homomorphism G 7→ πG = 〈G ∩ U〉U∈U : RO(X) →

∏
U∈U RO(U). If

G ∈ RO(X) \ {∅}, then G ∩
⋃

U 6= ∅, because
⋃
U is dense; now there is a U ∈ U such that G ∩ U 6= ∅, so

πG is non-zero in the Boolean algebra
∏
U∈U RO(U). As G is arbitrary, π is injective (3A2Db).

To see that π is surjective, suppose that we are given a family 〈VU 〉U∈U with VU ∈ RO(U) for every

U ∈ U . Set H =
⋃
U∈U VU , G = intH ∈ RO(X). Then, for any U ∈ U , (writing intU and

(U)
for interior

and closure in the subspace topology on U , as in part (b) of the proof of 314R)

G ∩ U = U ∩ intH = intU H ∩ U
(U)

= intU V
(U)

U = VU ,

so πG = 〈VU 〉U∈U . Thus π is bijective and is a Boolean isomorphism.

315I Free products I come now to the second construction of this section.

D.H.Fremlin



46 Boolean algebras 315I

(a) Definition Let 〈Ai〉i∈I be a family of Boolean algebras. For each i ∈ I, let Zi be the Stone space
of Ai. Set Z =

∏
i∈I Zi, with the product topology. Then the free product of 〈Ai〉i∈I is the algebra A of

open-and-closed sets in Z; I will denote it by
⊗

i∈I Ai.

(b) For i ∈ I and a ∈ Ai, the set â ⊆ Zi representing a is an open-and-closed subset of Zi; because
z 7→ z(i) : Z → Zi is continuous, εi(a) = {z : z(i) ∈ â} is open-and-closed, so belongs to A. In this context
I will call εi : Ai → A the canonical map.

(c) The topological space Z may be identified with the Stone space of the Boolean algebra A. PPP By
Tychonoff’s theorem (3A3J), Z is compact. If z ∈ Z and G is an open subset of Z containing z, then there
are J , 〈Gj〉i∈J such that J is a finite subset of I, Gj is an open subset of Zj for each j ∈ J , and

z ∈ {w : w ∈ Z, w(j) ∈ Gj for every j ∈ J} ⊆ G.

Because each Zj is zero-dimensional, we can find an open-and-closed set Ej ⊆ Zj such that z(j) ∈ Ej ⊆ Gj .
Now

H = Z ∩
⋂
j∈J{w : w(j) ∈ Ej}

is a finite intersection of open-and-closed subsets of Z, so is open-and-closed; and z ∈ H ⊆ G. As z and G
are arbitrary, Z is zero-dimensional. Finally, Z, being the product of Hausdorff spaces, is Hausdorff. So the
result follows from 311J. QQQ

315J Theorem Let 〈Ai〉i∈I be a family of Boolean algebras, with free product A.
(a) The canonical map εi : Ai → A is a Boolean homomorphism for every i ∈ I.
(b) For any Boolean algebra B and any family 〈φi〉i∈I such that φi is a Boolean homomorphism from Ai

to B for every i, there is a unique Boolean homomorphism φ : A → B such that φi = φεi for each i.

proof These are both consequences of 312Q-312R. As in 315I, write Zi for the Stone space of A, and Z for∏
i∈I Zi, identified with the Stone space of A, as observed in 315Ic. The maps εi : Ai → A are defined as

the homomorphisms corresponding to the continuous maps z 7→ ε̃i(z) = z(i) : Z → Zi, so (a) is surely true.
Now suppose that we are given a Boolean homomorphism φi : Ai → B for each i ∈ I. Let W be the

Stone space of B, and let φ̃i : W → Zi be the continuous function corresponding to φi. By 3A3Ib, the map
w 7→ φ̃(w) = 〈φ̃i(w)〉i∈I : W → Z is continuous, and corresponds to a Boolean homomorphism φ : A → B;

because φ̃i = ε̃iφ̃, φεi = φi for each i. Moreover, φ is the only Boolean homomorphism with this property,
because if ψ : A → B is a Boolean homomorphism such that ψεi = φi for every i, then ψ corresponds to
a continuous function ψ̃ : W → Z, and we must have ε̃iψ̃ = φ̃i for each i, so that ψ̃ = φ̃ and ψ = φ. This
proves (b).

315K Of course 315J is the defining property of the free product (see 315Xi below). I list a few further
basic facts.

Proposition Let 〈Ai〉i∈I be a family of Boolean algebras, and A their free product; write εi : Ai → A for
the canonical homomorphisms.

(a) A is the subalgebra of itself generated by
⋃
i∈I εi[Ai].

(b) Write C for the set of those members of A expressible in the form infj∈J εj(aj), where J ⊆ I is finite
and aj ∈ Aj for every j. Then every member of A is expressible as the supremum of a disjoint finite subset
of C. In particular, C is order-dense in A.

(c) Every εi is order-continuous.
(d) A = {0A} iff there is some i ∈ I such that Ai = {0Ai

}.
(e) Now suppose that Ai 6= {0Ai

} for every i ∈ I.
(i) εi is injective for every i ∈ I.
(ii) If J ⊆ I is finite and aj is a non-zero member of Aj for each j ∈ J , then infj∈J εj(aj) 6= 0.
(iii) If i, j are distinct members of I, a ∈ Ai and b ∈ Aj , then εi(a) = εj(b) iff either a = 0Ai

and
b = 0Aj

or a = 1Ai
and b = 1Aj

.

proof As usual, write Zi for the Stone space of Ai, and Z =
∏
i∈I Zi, identified with the Stone space of A

(315Ic).
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(a) Write A′ for the subalgebra of A generated by
⋃
i∈I εi[Ai]. Then εi : Ai → A′ is a Boolean homo-

morphism for each i, so by 315Jb there is a Boolean homomorphism φ : A → A′ such that φεi = εi for each
i. Now, regarding φ as a Boolean homomorphism from A to itself, the uniqueness assertion of 315Jb (with
B = A) shows that φ must be the identity, so that A′ = A.

(b) Write D for the set of finite partitions of unity in A consisting of members of C, and A for the set of
members of A expressible in the form supD′ where D′ is a subset of a member of D. Then A is a subalgebra
of A. PPP (i) 1A ∈ C (set J = ∅ in the definition of members of C) so {1A} ∈ D and 0A, 1A ∈ A. (ii) Note that
if c, d ∈ C then c ∩ d ∈ C. (iii) If a, b ∈ A, express them as supD′, supE′ where D′ ⊆ D ∈ D, E′ ⊆ E ∈ D.
Then

F = {d ∩ e : d ∈ D, e ∈ E} ∈ D,

so

1A \ a = sup(D \D′) ∈ A,

a ∪ b = sup{f : f ∈ F, f ⊆ a ∪ b} ∈ A. QQQ

Also, εi[Ai] ⊆ A for each i ∈ I. PPP If a ∈ Ai, then {εi(a), εi(1Ai
\ a)} ∈ D, so εi(a) ∈ A. QQQ

So (a) tells us that A = A, and every member of A is a finite disjoint union of members of C.

(c) If i ∈ I and A ⊆ Ai and inf A = 0 in Ai, take any non-zero c ∈ A. By (b), we can find a finite J ⊆ I
and a family 〈aj〉j∈J such that c′ = infj∈J εj(aj) ⊆ c and c′ 6= 0. Regarding c′ as a subset of Z, we have
a point z ∈ c′. Adding i to J and setting ai = 1Ai

if necessary, we may suppose that i ∈ J . Now c′ 6= 0A
so ai 6= 0Ai

and there is an a ∈ A such that ai 6⊆ a, so there is a t ∈ âi \ â. In this case, setting w(i) = t,
w(j) = z(j) for j 6= i, we have w ∈ c′ \ εi(a), and c′, c are not included in εi(a). As c is arbitrary, this shows
that inf εi[A] = 0. As A is arbitrary, εi is order-continuous.

(d) The point is that A = {0A} iff Z = ∅, which is so iff some Zi is empty.

(e)(i) Because no Zi is empty, all the coordinate maps from Z to Zi are surjective, so the corresponding
homomorphisms εi are injective (312Sa).

(ii) Because J is finite,

infj∈J εj(aj) = {z : z ∈ Z, z(j) ∈ âj for every j ∈ J}

is not empty.

(iii) If εi(a) = εj(b) = 0A then (using (i)) a = 0Ai
and b = 0Aj

; if εi(a) = εj(b) = 1A then a = 1Ai
and

b = 1Aj
. ??? If εi(a) = εj(b) ∈ A \ {0A, 1A}, then there are t ∈ â and u ∈ Zj \ b̂. Now there is a z ∈ Z such

that z(i) = t and z(j) = u, so that z ∈ εi(a) \ εj(b). XXX

315L Proposition Let 〈Ai〉i∈I be any family of Boolean algebras, and 〈Jk〉k∈K any partition (that is,
disjoint cover) of I. Then the free product A of 〈Ai〉i∈I is isomorphic to the free product B of 〈Bk〉k∈K ,
where each Bk is the free product of 〈Ai〉i∈Jk .

proof Write εi : Ai → A, ε′i : Ai → Bk and δk : Bk → B for the canonical homomorphisms when k ∈ K
and i ∈ Jk. Then the homomorphisms δkε

′
i : Ai → B correspond to a homomorphism φ : A → B such that

φεi = δkε
′
i whenever i ∈ Jk. Next, for each k, the homomorphisms εi : Ai → A, for i ∈ Jk, correspond to

a homomorphism ψk : Bk → A such that ψkε
′
i = εi for i ∈ Jk; and the family 〈ψk〉k∈K corresponds to a

homomorphism ψ : B → A such that ψδk = ψk for k ∈ K. Consequently

ψφεi = ψδkε
′
i = ψkε

′
i = εi

whenever k ∈ K, i ∈ Jk. Once again using the uniqueness assertion in 315Jb, ψφ is the identity homomor-
phism on A. On the other hand, if we look at φψ : B → B, then we see that

φψδkε
′
i = φψkε

′
i = φεi = δkε

′
i

whenever k ∈ K, i ∈ Jk. Now, for given k, {b : b ∈ Bk, φψδkb = δkb} is a subalgebra of Bk including⋃
i∈Jk

ε′i[Ai], and must be the whole of Bk, by 315Ka. So {b : b ∈ B, φψb = b} is a subalgebra of B

including
⋃
k∈K δk[Bk], and is the whole of B. Thus φψ is the identity on B and φ, ψ are the two halves of

an isomorphism between A and B.
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315M Algebras of sets and their quotients Once again I devote a paragraph to spelling out the
application of the construction to the algebras most important to us.

Proposition Let 〈Xi〉i∈I be a family of sets, and Σi an algebra of subsets of Xi for each i.
(a) The free product

⊗
i∈I Σi may be identified with the algebra Σ of subsets of X =

∏
i∈I Xi generated

by the set {εi(E) : i ∈ I, E ∈ Σi}, where εi(E) = {x : x ∈ X, x(i) ∈ E}.
(b) Now suppose that Ji is an ideal of Σi for each i. Then

⊗
i∈I Σi/Ji may be identified with Σ/J , where

J is the ideal of Σ generated by {εi(E) : i ∈ I, E ∈ Ji}; the corresponding canonical maps ε̃i : Σi/Ji → Σ/J
being defined by the formula ε̃i(E

•) = (εi(E))• for i ∈ I, E ∈ Σi.

proof I start by proving (b) in detail; the argument for (a) is then easy to extract. Write Ai = Σi/Ji,
A = Σ/J .

(i) Fix i ∈ I for the moment. By the definition of Σ, εi(E) ∈ Σ for E ∈ Σi, and it is easy to check that
εi : Σi → Σ is a Boolean homomorphism. Again, because εi(E) ∈ J whenever E ∈ Ji, the kernel of the
homomorphism E 7→ (εi(E))• : Σi → A includes Ji, so the formula for ε̃i defines a homomorphism from Ai
to A.

Now let C =
⊗

i∈I Ai be the free product, and write ε′i : Ai → C for the canonical homomorphisms. By
315J, there is a Boolean homomorphism φ : C → A such that φε′i = ε̃i for each i. The set

{H : H ∈ Σ, H• ∈ φ[C]}

is a subalgebra of Σ including εi[Σi] for every i, so is Σ itself, and φ is surjective.

(ii) We need a simple description of the ideal J , as follows: a set H ∈ Σ belongs to J iff there are a finite
K ⊆ I and a family 〈Fk〉k∈K such that Fk ∈ Jk for each k and H ⊆

⋃
k∈K εk(Fk). For evidently such sets

have to belong to J , since the εk(Fk) will be in J , while the family of all these sets is an ideal containing
εi(F ) whenever i ∈ I and F ∈ Ji.

(iii) Now we can see that φ : C → A is injective. PPP Take any non-zero c ∈ C. By 315Kb, we can find a
finite J ⊆ I and a family 〈aj〉j∈J in

∏
j∈J Aj such that 0 6= infj∈J ε

′
jaj ⊆ c. Express each aj as E•

j , where

Ej ∈ Σj , and consider H = X ∩
⋂
j∈J εj(Ej) ∈ Σ. Then

H• = infj∈J ε̃jaj = φ(infj∈J ε
′
jaj) ⊆ φ(c).

Also, because ε′jaj 6= 0, Ej /∈ Jj for each j. But it follows that H /∈ J , because if K ⊆ I is finite and
Fk ∈ Jk for each k ∈ K, set Ei = Xi for i ∈ I \ J , Fi = ∅ for i ∈ I \K; then there is an x ∈ X such that
x(i) ∈ Ei \ Fi for each i ∈ I, so that x ∈ H \

⋃
k∈K εk(Fk). By the criterion of (ii), H /∈ J . So

0 6= E• ⊆ φ(c).

As c is arbitrary, the kernel of φ is {0}, and φ is injective. QQQ
So φ : C → A is the required isomorphism.

(iv) This proves (b). Reading through the arguments above, it is easy to see the simplifications which
compose a proof of (a), reading Σi for Ai and {∅} for Ji.

315N Notation Free products are sufficiently surprising that I think it worth taking a moment to look
at a pair of examples relevant to the kinds of application I wish to make of the concept in the next chapter.
First let me introduce a somewhat more direct notation which seems appropriate for the free product of
finitely many factors. If A and B are two Boolean algebras, I write A ⊗B for their free product, and for
a ∈ A, b ∈ B I write a ⊗ b for ε1(a) ∩ ε2(b), where ε1 : A → A ⊗ B, ε2 : B → A ⊗ B are the canonical
maps. Observe that (a1 ⊗ b1) ∩ (a2 ⊗ b2) = (a1 ∩ a2) ⊗ (b1 ∩ b2), and that the maps a 7→ a⊗ b0, b 7→ a0 ⊗ b
are always ring homomorphisms. Now 315K(e-ii) tells us that a ⊗ b = 0 only when one of a, b is 0. In the
context of 315M, we can identify E ⊗ F with E × F for E ∈ Σ1 and F ∈ Σ2, and E• ⊗ F • with (E × F )•.

315O Lemma Let A, B be Boolean algebras.
(a) Any element of A⊗B is expressible as supi∈I ai ⊗ bi where 〈ai〉i∈I is a finite partition of unity in A.
(b) If c ∈ A⊗B is non-zero there are non-zero a ∈ A, b ∈ B such that a⊗ b ⊆ c.
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proof (a) Let C be the set of elements of A ⊗ B representable in this form. Then C is a subalgebra of
A ⊗B. PPP (i) If 〈ai〉i∈I , 〈a

′
j〉j∈J are finite partitions of unity in A, and bi, b

′
j members of B for i ∈ I and

j ∈ J , then 〈ai ∩ a
′
j〉i∈I,j∈J is a partition of unity in A, and

(sup
i∈I

ai ⊗ bi) ∩ (sup
j∈J

a′j ⊗ b′j) = sup
i∈I,j∈J

(ai ⊗ bi) ∩ (a′j ⊗ b′j)

= sup
i∈I,j∈J

(ai ∩ a
′
j) ⊗ (bi ∩ b

′
j) ∈ C.

So c ∩ c′ ∈ C for all c, c′ ∈ C. (ii) If 〈ai〉i∈I is a finite partition of unity in A and bi ∈ B for each i, then

1 \ supi∈I ai ⊗ bi = (supi∈I ai ⊗ 1) \ (supi∈I ai ⊗ bi) = supi∈I ai ⊗ (1 \ bi) ∈ C.

Thus 1 \ c ∈ C for every c ∈ C. QQQ
Since a ⊗ 1 = (a ⊗ 1) ∪ ((1 \ a) ⊗ 0) and 1 ⊗ b belong to C for every a ∈ A and b ∈ B, C must be the

whole of A⊗B, by 315Ka.

(b) Now this follows at once, as well as being a special case of 315Kb.

315P Example A = PN⊗PN is not Dedekind σ-complete. PPP Consider A = {{n} ⊗ {n} : n ∈ N} ⊆ A.
??? If A has a least upper bound c in A, then c is expressible as a supremum supj≤k aj ⊗ bj , by 315Kb.
Because k is finite, there must be distinct m, n such that {j : m ∈ aj} = {j : n ∈ aj}. Now {n} × {n} ⊆ c,
so there is a j ≤ k such that

(aj ∩ {n}) ⊗ (bj ∩ {n}) = ({n} ⊗ {n}) ∩ (aj ⊗ bj) 6= 0,

so that neither aj ∩ {n} nor bj ∩ {n} is empty, that is, n ∈ aj ∩ bj . But this means that m ∈ aj , so that

(aj ⊗ bj) ∩ ({m} ⊗ {n}) = (aj ∩ {m}) ⊗ (bj ∩ {n}) 6= 0,

and c ∩ ({m} ⊗ {n}) 6= 0, even though a ∩ ({m} ⊗ {n}) = 0 for every a ∈ A. XXX Thus we have found a
countable subset of A with no supremum in A, and A is not Dedekind σ-complete. QQQ

315Q Example Now let A be any non-trivial atomless Boolean algebra, and B the free product A⊗A.
Then the identity homomorphism from A to itself induces a homomorphism φ : B → A given by setting
φ(a ⊗ b) = a ∩ b for every a, b ∈ A. The point I wish to make is that φ is not order-continuous. PPP Let C
be the set {a ⊗ b : a, b ∈ A, a ∩ b = 0}. Then φ(c) = 0A for every c ∈ C. If d ∈ B is non-zero, then by
315Ob there are non-zero a, b ∈ A such that a⊗b ⊆ d; now, because A is atomless, there is a non-zero a′ ⊆ a
such that a \ a′ 6= 0. At least one of b \ a′, b \ (a \ a′) is non-zero; suppose the former. Then a′ ⊗ (b \ a′) is a
non-zero member of C included in d. As d is arbitrary, this shows that supC = 1B. So

supc∈C φ(c) = 0A 6= 1A = φ(supC),

and φ is not order-continuous. QQQ
Thus the free product (unlike the product, see 315Dd) does not respect order-continuity.

*315R Projective and inductive limits: Proposition Let 〈Ai〉i∈I be a family of Boolean algebras,
and R a subset of I × I; suppose that πji : Ai → Aj is a Boolean homomorphism for each (i, j) ∈ R.

(a) There are a Boolean algebra C and a family 〈πi〉i∈I such that

πi : C → Ai is a Boolean homomorphism for each i ∈ I,
πj = πjiπi whenever (i, j) ∈ R,

and whenever B, 〈φi〉i∈I are such that

B is a Boolean algebra,
φi : B → Ai is a Boolean homomorphism for each i ∈ I,
φj = πjiφi whenever (i, j) ∈ R,

then there is a unique Boolean homomorphism φ : B → C such that πiφ = φi for every i ∈ I.
(b) There are a Boolean algebra C and a family 〈πi〉i∈I such that

πi : Ai → C is a Boolean homomorphism for each i ∈ I,
πi = πjπji whenever (i, j) ∈ R,
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and whenever B, 〈φi〉i∈I are such that

B is a Boolean algebra,
φi : Ai → B is a Boolean homomorphism for each i ∈ I,
φi = φjπji whenever (i, j) ∈ R,

then there is a unique Boolean homomorphism φ : C → B such that φπi = φi for every i ∈ I.

proof (a) Let A be the simple product
∏
i∈I Ai, and set

C = {a : a ∈ A, a(j) = πjia(i) whenever (i, j) ∈ R}.

Because every πji is a Boolean homomorphism, C is a subalgebra of A. Set πi(a) = a(i) for i ∈ I and a ∈ C;
then πi : C → Ai is a Boolean homomorphism for every i, and πj = πjiπi whenever (i, j) ∈ R.

Now suppose that B and 〈φi〉i∈I have the declared properties. For b ∈ B, set φb = 〈φib〉i∈I ∈ A; because
φj = πjiφi whenever (i, j) ∈ R, φb ∈ C. Of course φb is the unique member of C such that πiφb = φib
for every i ∈ I. And φ : B → A is a Boolean homomorphism by 315Bb, so φ : B → C is a Boolean
homomorphism.

(b) This time, let A =
⊗

i∈I Ai be the free product of 〈Ai〉i∈I ; for each i ∈ I, let εi : Ai → A be the
canonical map. Let J be the ideal of A generated by elements of the form εia△ εjπjia where (i, j) ∈ R and
a ∈ Ai; let C be the quotient algebra A/J , and set πia = (εia)• ∈ C for i ∈ I and a ∈ Ai. Then every πi is
a Boolean homomorphism, and if (i, j) ∈ R and a ∈ Ai, then

πia = (εia)• = (εjπjia)• = πjπjia

because εia△ εjπjia belongs to J .
Once again, suppose that B and 〈φi〉i∈I have the properties declared in this part of the proposition. By

315Jb, there is a Boolean homomorphism φ̃ : A → B such that φ̃εi = φi for every i ∈ I. Now the kernel
of φ̃ includes J . PPP The kernel of φ̃ is an ideal of A, so all we have to check is that it contains εia△ εjπjia
whenever (i, j) ∈ R and a ∈ Ai; but in this case

φ̃(εia△ εjπjia) = φ̃εia△ φ̃εjπjia = φia△ φjπjia = φia△ φia = 0. QQQ

Accordingly there is a unique ring homomorphism φ : C → B defined by saying that φc• = φ̃c for every
c ∈ A (3A2G). As

φ1C = φ(1•

A) = φ̃1A = 1B,

φ is a Boolean homomorphism. Now, of course,

φπia = φ(εia)• = φ̃εia = φia

whenever i ∈ I and a ∈ Ai.
To see that φ is unique, observe that if φ′ : C → B has the same property, then we have a Boolean

homomorphism φ̃′ : A → B defined by setting φ̃′c = φ′c• for every c ∈ A; in which case

φ̃′εia = φ′(εia)• = φ′πia = φia

whenever i ∈ I and a ∈ Ai, so that φ̃′ = φ̃ and φ′ = φ.

*315S Definitions In 315Ra, we call A, together with 〈πi〉i∈I , ‘the’ projective limit of (〈Ai〉i∈I , 〈πji〉(i,j)∈R);
in 315Rb, we call A, together with 〈πi〉i∈I , ‘the’ inductive limit of (〈Ai〉i∈I , 〈πji〉(i,j)∈R).

315X Basic exercises (a) Let 〈Ai〉i∈I be any family of Boolean algebras, with simple product A, and πi :
A → Ai the coordinate homomorphisms. Suppose we have another Boolean algebra A′, with homomorphisms
π′
i : A′ → Ai, such that for every Boolean algebra B and every family 〈φi〉i∈I of homomorphisms from B

to the Ai there is a unique homomorphism φ : B → A′ such that φi = π′
iφ for every i. Show that there is a

unique isomorphism ψ : A → A′ such that π′
iψ = πi for every i ∈ I.

(b) Let 〈Ai〉i∈I be a family of Boolean algebras with simple product A =
∏
i∈I Ai. (i) Show that A is

Dedekind complete iff every Ai is Dedekind complete. (ii) Show that A is Dedekind σ-complete iff every Ai
is Dedekind σ-complete.
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(c) Let 〈Ai〉i∈I be a family of Boolean algebras with simple product A =
∏
i∈I Ai. Suppose that for every

i ∈ I we are given a subalgebra Bi of Ai. (i) Show that the simple product B =
∏
i∈I Bi is a subalgebra of

A. (ii) Show that B is order-closed in A iff Bi is order-closed in Ai for every i ∈ I.

(d) Let 〈Pi〉i∈I be a family of non-empty partially ordered sets, with product partially ordered set P .
Show that P is a lattice iff every Pi is a lattice, and that in this case it is the product lattice in the sense
that p ∨ q = 〈p(i) ∨ q(i)〉i∈I , p ∧ q = 〈p(i) ∧ q(i)〉i∈I for all p, q ∈ P .

(e) Let 〈Ai〉i∈I be a family of Boolean algebras with simple product A. For each i ∈ I let Zi be the Stone
space of Ai, and let Z be the Stone space of A. (i) Show that the coordinate maps from A onto Ai induce
homeomorphisms between the Zi and open-and-closed subsets Z∗

i of Z. (ii) Show that 〈Z∗
i 〉i∈I is disjoint.

(iii) Show that
⋃
i∈I Z

∗
i is dense in Z, and is equal to Z iff {i : Ai 6= {0}} is finite.

(f) Let 〈Ai〉i∈I be a family of Boolean algebras, with simple product A. Suppose that for each i ∈ I we
are given an ideal Ii of Ai. Show that I =

∏
i∈I Ii is an ideal of A, and that A/I may be identified, as

Boolean algebra, with
∏
i∈I Ai/Ii.

(g) Let 〈Xi〉i∈I be any family of topological spaces. Let X be their disjoint union {(x, i) : i ∈ I, x ∈ Xi},
with the disjoint union topology; that is, a set G ⊆ X is open in X iff {x : (x, i) ∈ G} is open in Xi for
every i ∈ I. Show that the algebra of open-and-closed subsets of X can be identified, as Boolean algebra,
with the simple product of the algebras of open-and-closed sets of the Xi.

(h) Show that the topological product of any family of zero-dimensional spaces is zero-dimensional.

(i) Let 〈Ai〉i∈I be any family of Boolean algebras, with free product A, and εi : Ai → A the canonical
homomorphisms. Suppose we have another Boolean algebra A′, with homomorphisms ε′i : Ai → A′, such
that for every Boolean algebra B and every family 〈φi〉i∈I of homomorphisms from the Ai to B there is a
unique homomorphism φ : A′ → B such that φi = φε′i for every i. Show that there is a unique isomorphism
ψ : A → A′ such that ε′i = ψεi for every i ∈ I.

(j) Let I be any set, and let A be the algebra of open-and-closed sets of {0, 1}I ; for each i ∈ I set
ai = {x : x ∈ {0, 1}I , x(i) = 1} ∈ A. Show that for any Boolean algebra B and any family 〈bi〉i∈I in B

there is a unique Boolean homomorphism φ : A → B such that φ(ai) = bi for every i ∈ I.

(k) Let 〈Ai〉i∈I , 〈Bj〉j∈J be two families of Boolean algebras. Show that there is a natural injective
homomorphism φ :

∏
i∈I Ai ⊗

∏
j∈J Bj →

∏
i∈I,j∈J Ai ⊗Bj defined by saying that

φ(a⊗ b) = 〈a(i) ⊗ b(j)〉i∈I,j∈J

for a ∈
∏
i∈I Ai, b ∈

∏
j∈J Bj . Show that φ is surjective if I and J are finite.

(l) Let 〈J(i)〉i∈I be a family of sets, with product Q =
∏
i∈I J(i). Let 〈Aij〉i∈I,j∈J(i) be a family of

Boolean algebras. Describe a natural injective homomorphism φ :
⊗

i∈I

∏
j∈J(i) Aij →

∏
q∈Q

⊗
i∈I Ai,q(i).

(m) Let A and B be Boolean algebras with partitions of unity 〈ai〉i∈I , 〈bj〉j∈J . Show that 〈ai⊗bj〉i∈I,j∈J
is a partition of unity in A⊗B.

(n) Let A and B be Boolean algebras and a ∈ A, b ∈ B. Write Aa, Bb for the corresponding principal
ideals. Show that there is a canonical isomorphism between Aa ⊗ Bb and the principal ideal of A ⊗ B

generated by a⊗ b.

(o) Let 〈Ai〉i∈I be any family of Boolean algebras, with free product
⊗

i∈I Ai, and εi : Ai → A the
canonical maps. Show that εi[Ai] is an order-closed subalgebra of A for every i.

(p) Let A be a Boolean algebra. Let us say that a family 〈Ai〉i∈I of subalgebras of A is Boolean-
independent if infj∈J aj 6= 0 whenever J ⊆ I is finite and aj ∈ Aj \ {0} for every j ∈ J . Show that in this
case the subalgebra of A generated by

⋃
i∈I Ai is isomorphic to the free product

⊗
i∈I Ai.
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(q) Let 〈Ai〉i∈I and 〈Bi〉i∈I be two families of Boolean algebras, and suppose that for each i ∈ I we are
given a Boolean homomorphism φi : Ai → Bi with kernel Ki ⊳ Ai. Show that the φi induce a Boolean
homomorphism φ :

⊗
i∈I Ai →

⊗
i∈I Bi with kernel generated by

⋃
i∈I ε[Ki], where εi : Ai → A is the

canonical homomorphism. Show that if every φi is surjective, so is φ.

(r) Let 〈Ai〉i∈I be any family of non-trivial Boolean algebras. Show that if J ⊆ I and Bj is a subalgebra
of Aj for each j ∈ J , then

⊗
j∈J Bj is canonically embedded as a subalgebra of

⊗
i∈I Ai.

(s) Let A and B be Boolean algebras, neither {0}. Show that any element of A⊗B is uniquely expressible
as supi∈I ai ⊗ bi where 〈ai〉i∈I is a partition of unity in A, with no ai equal to 0, and bi 6= bj in B for i 6= j.

315Y Further exercises (a) Let 〈Ai〉i∈I and 〈Bi〉i∈I be two families of Boolean algebras, and suppose
that we are given Boolean homomorphisms φi : Ai → Bi for each i; let φ :

⊗
i∈I Ai →

⊗
i∈I Bi be the

induced homomorphism. (i) Show that if every φi is order-continuous, so is φ. (ii) Show that if every φi is
sequentially order-continuous, so is φ.

(b) Let 〈Zi〉i∈I be any family of topological spaces with product Z. For i ∈ I, z ∈ Z set ε̃i(z) = z(i).
Show that if M ⊆ Zi is nowhere dense in Zi then ε̃−1

i [M ] is nowhere dense in Z. Use this to prove 315Kc.

(c) Let 〈Ai〉i∈I be a family of Boolean algebras, and suppose that we are given subalgebras Bi of Ai
for each i; set A =

⊗
i∈I Ai and B =

⊗
i∈I Bi, and let φ : B → A be the homomorphism induced by the

embeddings Bi ⊂→ Ai. (i) Show that if every Bi is order-closed in Ai, then φ[B] is order-closed in A. (ii)
Show that if every Bi is a σ-subalgebra of Ai, then φ[B] is a σ-subalgebra in A.

(d) Let 〈Xi〉i∈I be a family of topological spaces, with product X. Let RO(Xi), RO(X) be the cor-
responding regular open algebras. Show that RO(X) can be identified with the Dedekind completion of⊗

i∈I RO(Xi).

(e) Use the ideas of 315Xj and 315M to give an alternative construction of ‘free product’, for which 315J
and 315K(e-ii) are true, and which does not depend on the concept of Stone space nor on any other use of
the axiom of choice. (Hint : show that for any Boolean algebra A there is a canonical surjection from the
algebra EA onto A, where EJ is the algebra of subsets of {0, 1}J generated by sets of the form {x : x(j) = 1};
show that for such algebras EJ , at least, the method of 315I-315J can be used; now apply the method of
315M to describe

⊗
i∈I Ai as a quotient of EJ where J = {(a, i) : i ∈ I, a ∈ Ai}. Finally check 315K(e-ii).)

(f) Let A and B be Boolean algebras. Show that A ⊗ B is Dedekind complete iff either A = {0} or

B = {0} or A is finite and B is Dedekind complete or B is finite and A is Dedekind complete.

(g) Let 〈Pi〉i∈I be any family of partially ordered spaces. (i) Give a construction of a partially ordered
space P , together with a family of order-preserving maps εi : Pi → P , such that whenever Q is a partially
ordered set and φi : Pi → Q is order-preserving for every i ∈ I, there is a unique order-preserving map
φ : P → Q such that φi = φεi for every i. (ii) Show that φ will be order-continuous iff every φi is. (iii)
Show that P will be Dedekind complete iff every Pi is, but (except in trivial cases) is not a lattice.

(h) Let 〈Ai〉i∈I be a family of Boolean algebras, and R a subset of I × I; suppose that πji : Ai → Aj is a
Boolean homomorphism for each (i, j) ∈ R. For each i ∈ I, let Zi be the Stone space of Ai; for (i, j) ∈ R, let
fji : Zj → Zi be the continuous function corresponding to πji. Show that the Stone space of the inductive
limit of the system (〈Ai〉i∈I , 〈πji〉(i,j)∈R) can be identified with {z : z ∈

∏
i∈I Zi, fji(z(j)) = z(i) whenever

(i, j) ∈ R}.

315 Notes and comments In this section I find myself asking for slightly more sophisticated algebra than
seems necessary elsewhere. The point is that simple products and free products are best regarded as defined
by the properties described in 315B and 315J. That is, it is sometimes right to think of a simple product
of a family 〈Ai〉i∈I of Boolean algebras as being a structure (A, 〈πi〉i∈I) where A is a Boolean algebra,
πi : A → Ai is a homomorphism for every i ∈ I, and every family of homomorphisms from a Boolean algebra
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B to the Ai can be uniquely represented by a single homomorphism from B to A. Similarly, reversing the
direction of the homomorphisms, we can speak of a free product (it would be natural to say ‘coproduct’)
(A, 〈εi〉i∈I) of 〈Ai〉i∈I . On such definitions, it is elementary that any two simple products, or free products,
are isomorphic in the obvious sense (315Xa, 315Xi), and very general arguments from abstract algebra, not
restricted to Boolean algebras (see Bourbaki 68, IV.3.2), show that they exist. (But in order to prove such
basic facts as that the πi are surjective, or that the εi are, except when the construction collapses altogether,
injective, we do of course have to look at the special properties of Boolean algebras.) Now in the case of
simple products, the Cartesian product construction is so direct and so familiar that there seems no need
to trouble our imaginations with any other. But in the case of free products, things are more complicated.
I have given primacy to the construction in terms of Stone spaces because I believe that this is the fastest
route to effective mental pictures. But in some ways this approach seems to be inappropriate. If you take
what in my view is a tenable position, and say that a Boolean algebra is best regarded as the limit of its
finite subalgebras, then you might prefer a construction of a free product as a limit of free products of finitely
many finite subalgebras. Or you might feel that it is wrong to rely on the axiom of choice to prove a result
which certainly does not need it (see 315Ye).

Because I believe that the universal mapping theorem 315J is the right basis for the study of free products,
I am naturally led to use it as the starting point for proofs of theorems about free products, as in 315L. But
315K(e-ii) seems to lie deeper. (Note, for instance, that in 315M we do need the axiom of choice, in part
(a-iii) of the proof, since without it the product

∏
i∈I Xi could be empty.)

Both ‘simple product’ and ‘free product’ are essentially algebraic constructions involving the category of
Boolean algebras and Boolean homomorphisms, and any relationships with such concepts as order-continuity
can be regarded as accidental, in so far as there are accidents in mathematics. 315Cb and 315D show that
simple products behave very straightforwardly when the homomorphisms involved are order-continuous.
315Q, 315Xo and 315Ya-315Yc show that free products are much more complex and subtle.

For finite products, we have a kind of distributivity; (A×B)⊗C can be identified with (A⊗C)× (B⊗C)
(315Xk, 315Xl). There are contexts in which this makes it seem more natural to write A ⊕ B in place
of A × B, and indeed I have already spoken of a ‘direct sum’ of measure spaces (214L) in terms which
correspond closely to the simple product of algebras of sets described in 315Ga. Generally, the simple
product corresponds to disjoint unions of Stone spaces (315Xe) and the free product to products of Stone
spaces. But the simple product is indeed the product Boolean algebra, in the ordinary category sense;
the universal mapping theorem 315B is exactly of the type we expect from products of topological spaces
(3A3Ib) or partially ordered sets (315Dc), etc. It is the ‘free product’ which is special to Boolean algebras.
The nearest analogy that I know of elsewhere is with the concept of ‘tensor product’ of linear spaces (cf.
§253).

It is perhaps worth noting that projective limits of systems of Boolean algebras have a straightforward
description in terms of the algebras themselves (315Ra), while inductive limits have a similarly direct
description in terms of Stone spaces (315Yh).

Version of 26.1.09

316 Further topics

I introduce three special properties of Boolean algebras which will be of great importance in the rest of this
volume: the countable chain condition (316A-316F), weak (σ,∞)-distributivity (316G-316J) and homogene-
ity (316N-316Q). I add some brief notes on atoms in Boolean algebras (316K-316L), with a characterization
of the algebra of open-and-closed subsets of {0, 1}N (316M).

316A Definitions (a) A Boolean algebra A is ccc, or satisfies the countable chain condition, if every
disjoint subset of A is countable.

(b) A topological space X is ccc, or satisfies the countable chain condition, or has Souslin’s prop-
erty, if every disjoint collection of open sets in X is countable.

c© 2000 D. H. Fremlin
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316B Theorem A Boolean algebra A is ccc iff its Stone space Z is ccc.

proof (a) If A is ccc and G is a disjoint family of open sets in Z, then for each G ∈ G′ = G \ {∅} we can find
a non-zero aG ∈ A such that the corresponding open-and-closed set âG is included in G. Now {aG : G ∈ G′}
is a disjoint family in A, so is countable; since aG 6= aH for distinct G, H ∈ G′, G′ and G must be countable.
As G is arbitrary, Z is ccc.

(b) If Z is ccc and A ⊆ A is disjoint, then {â : a ∈ A} is a disjoint family of open subsets of Z, so must
be countable, and A is countable. As A is arbitrary, A is ccc.

316C Proposition Let A be a Dedekind σ-complete Boolean algebra and I a σ-ideal of A. Then the
quotient algebra B = A/I is ccc iff every disjoint family in A \ I is countable.

proof (a) Suppose that B is ccc and that A is a disjoint family in A \ I. Then {a• : a ∈ A} is a disjoint
family in B, therefore countable, and a• 6= b• when a, b are distinct members of A; so A is countable.

(b) Now suppose that B is not ccc. Then there is an uncountable disjoint set B ⊆ B. Of course B \ {0}
is still uncountable, so may be enumerated as 〈bξ〉ξ<κ, where κ is an uncountable cardinal (2A1K), so that
ω1 ≤ κ. For each ξ < ω1, choose aξ ∈ A such that a•

ξ = bξ. Of course aξ /∈ I. If η < ξ < ω1, then bη ∩ bξ = 0,
so aξ ∩ aη ∈ I. Because ξ < ω1, it is countable; because I is a σ-ideal, and A is Dedekind σ-complete,

dξ = supη<ξ aξ ∩ aη,

belongs to I, and

cξ = aξ \ dξ ∈ A \ I.

But now of course

cξ ∩ cη ⊆ cξ ∩ aη ⊆ cξ ∩ dξ = 0

whenever η < ξ < ω1, so {cξ : ξ < ω1} is an uncountable disjoint family in A \ I.

Remark An ideal I satisfying the conditions of this proposition is said to be ω1-saturated in A.

316D Corollary Let X be a set, Σ a σ-algebra of subsets of X, and I a σ-ideal of Σ. Then the quotient
algebra Σ/I is ccc iff every disjoint family in Σ \ I is countable.

316E Proposition Let A be a ccc Boolean algebra. Then for any A ⊆ A there is a countable B ⊆ A
such that B has the same upper and lower bounds as A.

proof (a) Set

D =
⋃
a∈A{d : d ⊆ a}.

Applying Zorn’s lemma to the family C of disjoint subsets of D, we have a maximal C0 ∈ C. For each c ∈ C0

choose a bc ∈ A such that c ⊆ bc, and set B0 = {bc : c ∈ C0}. Because A is ccc, C0 is countable, so B0 also is
countable. ??? If there is an upper bound e for B0 which is not an upper bound for A, take a ∈ A such that
c′ = a \ e 6= 0; then c′ ∈ D and c′ ∩ c = c′ ∩ bc = 0 for every c ∈ C0, so C0 ∪ {c′} ∈ C; but C0 was supposed
to be maximal in C. XXX Thus every upper bound for B0 is also an upper bound for A.

(b) Similarly, there is a countable set B′
1 ⊆ A′ = {1 \ a : a ∈ A} such that every upper bound for B′

1 is
an upper bound for A′. Set B1 = {1 \ b : b ∈ B′

1}; then B1 is a countable subset of A and every lower bound
for B1 is a lower bound for A. Try B = B0 ∪B1. Then B is a countable subset of A and every upper (resp.
lower) bound for B is an upper (resp. lower) bound for A; so that B must have exactly the same upper and
lower bounds as A has.

316F Corollary Let A be a ccc Boolean algebra.
(a) If A is Dedekind σ-complete it is Dedekind complete.
(b) If A ⊆ A is sequentially order-closed it is order-closed.
(c) If Q is any partially ordered set and φ : A → Q is a sequentially order-continuous order-preserving

function, it is order-continuous.
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(d) If B is another Boolean algebra and π : A → B is a sequentially order-continuous Boolean homomor-
phism, it is order-continuous.

proof (a) If A is any subset of A, let B ⊆ A be a countable set with the same upper bounds as A; then
supB is defined in A and must be supA.

(b) Suppose that B ⊆ A is non-empty and upwards-directed and has a supremum a in A. Then there is
a non-empty countable set C ⊆ B with the same upper bounds as B. Let 〈cn〉n∈N be a sequence running
over C. Because B is upwards-directed, we can choose 〈bn〉n∈N inductively such that

b0 = c0, bn+1 ∈ B, bn+1 ⊇ bn ∪ cn+1 for every n ∈ N.

Now any upper bound for {bn : n ∈ N} must also be an upper bound for {cn : n ∈ N} = C, so is an upper
bound for the whole set B. But this means that a = supn∈N bn. As 〈bn〉n∈N is a non-decreasing sequence in
A, and A is sequentially order-closed, a ∈ A.

In the same way, if B ⊆ A is downwards-directed and has an infimum in A, this is also the infimum of
some non-increasing sequence in B, so must belong to A. Thus A is order-closed.

(c)(i) Suppose that A ⊆ A is a non-empty upwards-directed set with supremum a0 ∈ A. As in (b), there
is a non-decreasing sequence 〈cn〉n∈N in A with supremum a0. Because φ is sequentially order-continuous,
φa0 = supn∈N φcn in Q. But this means that φa0 must be the least upper bound of φ[A].

(ii) Similarly, if A ⊆ A is a non-empty downwards-directed set with infimum a0, there is a non-increasing
sequence 〈cn〉n∈N in A with infimum a0, so that

inf φ[A] = infn∈N φcn = φa0.

Putting this together with (i), we see that φ is order-continuous, as claimed.

(d) This is a special case of (c).

316G Definition Let A be a Boolean algebra. I will say that A is weakly (σ,∞)-distributive if
whenever 〈An〉n∈N is a sequence of downwards-directed subsets of A and inf An = 0 for every n, then
inf B = 0, where

B = {b : b ∈ A, for every n ∈ N there is an a ∈ An such that b ⊇ a}.

316H Proposition Let A be a Boolean algebra. Then the following are equiveridical:
(i) A is weakly (σ,∞)-distributive;
(ii) whenever 〈An〉n∈N is a sequence of partitions of unity in A, there is a partition of unity B in A such

that {a : a ∈ An, a ∩ b 6= 0} is finite for every n ∈ N and b ∈ B;
(iii) whenever 〈An〉n∈N is a sequence of upwards-directed subsets of A, each with a supremum cn = supAn,

and

B = {b : b ∈ A, for every n ∈ N there is an a ∈ An such that b ⊆ a},

then inf{cn \ b : n ∈ N, b ∈ B} = 0;
(iv) whenever 〈An〉n∈N is a sequence of upwards-directed subsets of A, each with a supremum cn = supAn,

and infn∈N cn = c is defined, then c = supB, where

B = {b : b ∈ A, for every n ∈ N there is an a ∈ An such that b ⊆ a}.

proof (i)⇒(ii) Suppose that A is weakly (σ,∞)-distributive and that 〈An〉n∈N is a sequence of partitions
of unity in A. For each n ∈ N, set

Cn = {1 \ supD : D ∈ An is finite},

so that Cn is downwards-directed and has infimum 0. Set E = {e : for every n ∈ N there is a c ∈ Cn such
that c ⊆ e}; then inf E = 0. So B0 = {b : b ∩ e = 0 for some e ∈ E} is order-dense in A and includes a
partition B of unity. If n ∈ N and b ∈ B, take e ∈ E such that b ∩ e = 0, c ∈ Cn such that c ⊆ e, and a finite
set D ⊆ An such that c = 1 \ supD; then

b ⊆ 1 \ e ⊆ 1 \ c ⊆ supD
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and {a : a ∈ An, a ∩ b 6= 0} ⊆ D is finite. As 〈An〉n∈N is arbitrary, (ii) is true.

(ii)⇒(iii) Suppose that (ii) is true, and that 〈An〉n∈N is a sequence of upwards-directed subsets of A,
each with a supremum cn = supAn. For each n ∈ N,

Dn = {d : d ⊆ 1 \ cn} ∪
⋃
a∈An

{d : d ⊆ a}

is order-dense in A, so there is a partition of unity D′
n ⊆ Dn (313K). By (ii), there is a partition of unity

E such that {d : d ∈ D′
n, d ∩ e 6= 0} is finite for every n ∈ N and e ∈ E. ??? Suppose, if possible, that

{cn \ b : n ∈ N, b ∈ B} has a non-zero lower bound c. Let e ∈ E be such that c ∩ e 6= 0. For each n ∈ N, set
D′′
n = {d : d ∈ D′

n, c ∩ e ∩ d 6= 0}. Then D′′
n is finite so dn = supD′′

n is defined and c ∩ e ⊆ dn. Also, because
c ⊆ cn, each element of D′′

n is included in a member of An; as An is upwards-directed, so are dn and c ∩ e.
As n is arbitrary, c ∩ e ∈ B; and c was supposed to be disjoint from every member of B. XXX

Thus inf{cn \ b : n ∈ N, b ∈ B} = 0; as 〈An〉n∈N is arbitrary, (iii) is true.

(iii)⇒(iv) Suppose that (iii) is true and that An, cn, c and B are as in the statement of (iv). Then

inf{c \ b : b ∈ B} = inf{cn \ b : n ∈ N, b ∈ B} = 0;

as b ⊆ cn whenever b ∈ B and n ∈ N, we have b ⊆ c for every b ∈ B, and supB = c, by 313Ab. Thus (iv) is
true.

(iv)⇒(i) Suppose that (iv) is true and that An and B are as in 316G. Set A′
n = {1 \ a : a ∈ An}, so that

A′
n is an upwards-directed set with supremum 1 for each n, and

B′ = {b : for every n ∈ N there is an a ∈ A′
n such that b ⊆ a} = {1 \ b : b ∈ B};

then

inf B = 1 \ supB′ = 1 \ infn∈N supA′
n = 0,

as required.

316I As usual, a characterization of the property in terms of the Stone spaces is extremely valuable.

Theorem Let A be a Boolean algebra, and Z its Stone space. Then A is weakly (σ,∞)-distributive iff every
meager set in Z is nowhere dense.

proof (a) The point is that if M ⊆ Z then M is nowhere dense iff there is a partition of unity A in A such
that M ∩ â = ∅ for every a ∈ A. PPP If M is nowhere dense, then {a : M ∩ â = ∅} is order-dense in A, so
includes a partition of unity. In the other direction, if A is a partition of unity such that M is disjoint from
â for every a ∈ A, then supA = 1 so G =

⋃
a∈A â is dense (313Ca); now G is a dense open set disjoint from

M , so M is nowhere dense. QQQ

(b) Suppose that A is weakly (σ,∞)-distributive and that M is a meager subset of Z. Then M can
be expressed as

⋃
n∈N

Mn where each Mn is nowhere dense. For each n ∈ N, let An be a partition of
unity such that Mn ∩ â = ∅ for every a ∈ An. By 316H(i)⇒(ii), there is a partition of unity B such that

{a : a ∈ An, a ∩ b 6= 0} is finite for every n ∈ N and b ∈ B. Now Mn ∩ b̂ = ∅ for every n ∈ N and b ∈ B.

PPP C = {a : a ∈ An, b ∩ a 6= 0} is finite. So F =
⋃
a∈C â is closed and G = b̂ \ F is open. But G ∩ â = ∅

for every a ∈ A, so G is empty and b̂ ⊆ F ⊆ Z \Mn. QQQ Accordingly M ∩ b̂ = ∅ for every b ∈ B and M is
nowhere dense.

(c) Suppose that every meager set in Z is nowhere dense, and that 〈An〉n∈N is a sequence of partitions
of unity in A. Then Mn = Z \

⋃
a∈An

â is nowhere dense for each n (313Cc), so M =
⋃
n∈N

Mn is meager,

therefore nowhere dense. Let B be a partition of unity in A such that M ∩ b̂ = ∅ for every b ∈ B. If n ∈ N

and b ∈ B, then

b̂ ⊆ Z \M ⊆ Z \Mn =
⋃
a∈An

â.

As b̂ is compact, there is some finite C ⊆ A such that b̂ ⊆
⋃
a∈C â and b ⊆ supC; but this means that

{a : a ∈ An, a ∩ b 6= 0} ⊆ C is finite. As 〈An〉n∈N is arbitrary, A is weakly (σ,∞)-distributive, by
316H(ii)⇒(i).
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316J The regular open algebra of R For examples of weakly (σ,∞)-distributive algebras, I think we
can wait for Chapter 32 (see also 393C). But the standard example of an algebra which is not weakly (σ,∞)-
distributive is of such importance that (even though it has nothing to do with measure theory, narrowly
defined) I think it right to describe it here.

Proposition The algebra RO(R) of regular open subsets of R (314O) is not weakly (σ,∞)-distributive.

proof Enumerate Q as 〈qn〉n∈N. For each n ∈ N, set

An = {G : G ∈ RO(R), qi ∈ G for every i ≤ n}.

Then An is downwards-directed, and

inf An = int
⋂
An = int{qi : i ≤ n} = ∅.

But if A ⊆ RO(R) is such that

for every n ∈ N, G ∈ A there is an H ∈ An such that H ⊆ G,

then we must have Q ⊆ G for every G ∈ A, so that

R = intQ ⊆ intG = G

for every G ∈ A, and A ⊆ {R}; which means that inf A 6= ∅ in RO(R), and 316G cannot be satisfied.

316K Atoms in Boolean algebras (a) If A is a Boolean algebra, an atom in A is a non-zero a ∈ A

such that the only elements included in a are 0 and a.

(b) A Boolean algebra is atomless if it has no atoms.

(c) A Boolean algebra is purely atomic if every non-zero element includes an atom.

316L Proposition Let A be a Boolean algebra, with Stone space Z.
(a) There is a one-to-one correspondence between atoms a of A and isolated points z ∈ Z, given by the

formula â = {z}.
(b) A is atomless iff Z has no isolated points.
(c) A is purely atomic iff the isolated points of Z form a dense subset of Z.

proof (a)(i) If z is an isolated point in Z, then {z} is an open-and-closed subset of Z, so is of the form â

for some a ∈ A; now if b ⊆ a, b̂ must be either ∅ or {z}, so b must be either a or 0, and a is an atom.

(ii) If a ∈ A and â has two points z and w, then (because Z is Hausdorff, 311I) there is an open set G
containing z but not w. Now there is a c ∈ A such that z ∈ ĉ ⊆ G, so that a ∩ c must be different from both
0 and a, and a is not an atom.

(b) This follows immediately from (a).

(c) From (a) we see that A is purely atomic iff â contains an isolated point for every non-zero a ∈ A; since
every non-empty open set in Z includes a non-empty set of the form â, this happens iff every non-empty
open set in Z contains an isolated point, that is, iff the set of isolated points is dense.

316M Proposition Let B be the algebra of open-and-closed subsets of {0, 1}N. Then a Boolean algebra
A is isomorphic to B iff it is atomless, countable and not {0}.

proof (a) I must check that B has the declared properties. The point is that it is the subalgebra B′ of
PX generated by {bi : i ∈ N}, where I write X = {0, 1}N, bi = {x : x ∈ X, x(i) = 1}. PPP Of course bi
and its complement {x : x(i) = 0} are open, so bi ∈ B for each i, and B′ ⊆ B. In the other direction, the
open cylinder sets of X are all of the form cz = {x : x(i) = z(i) for every i ∈ J}, where J ⊆ I is finite and
z ∈ {0, 1}J ; now

cz = X ∩
⋂
z(i)=1 bi \

⋃
z(i)=0 bi ∈ B′.

If b ∈ B then b is expressible as a union of such cylinder sets, because it is open; but also it is compact, so
is the union of finitely many of them, and must belong to B′. Thus B = B′, as claimed. QQQ
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For each n ∈ N let Bn be the finite subalgebra of B generated by {bi : i < n} (so that B0 = {0, 1}).
Then 〈Bn〉n∈N is an increasing sequence of subalgebras of B with union B; so B is countable. Also b ∩ bn,
b \ bn are non-zero for every n ∈ N and non-zero b ∈ Bn, so no member of any Bn can be an atom in B,
and B is atomless.

(b) Now suppose that A is another algebra with the same properties. Enumerate A as 〈an〉n∈N. Choose
finite subalgebras An ⊆ A and isomorphisms πn : An → Bn as follows. A0 = {0, 1}, π00 = 0, π01 = 1.
Given An and πn, let An be the set of atoms of An. For a ∈ An, choose a′ ∈ A such that

if an ∩ a, an \ a are both non-zero, then a′ = an ∩ a;

otherwise, a′ ⊆ a is any element such that a′, a \ a′ are both non-zero.

(This is where I use the hypothesis that A is atomless.) Set a′n = supa∈An
a′. Then we see that a ∩ a′n, a \ a′n

are non-zero for every a ∈ An and therefore for every non-zero a ∈ An, that is, that

sup{a : a ∈ An, a ⊆ a′n} = 0, inf{a : a ∈ An, a ⊇ a′n} = 1.

Let An+1 be the subalgebra of A generated by An ∪ {a′n}. Since we have

sup{b : b ∈ Bn, b ⊆ bn} = 0, inf{b : b ∈ Bn, b ⊇ bn} = 1,

there is a (unique) extension of πn : An → Bn to a homomorphism πn+1 : An+1 → Bn+1 such that
πn+1a

′
n = bn (312O). Since we similarly have an extension φ of π−1

n to a homomorphism from Bn+1 to
An+1 with φbn = a′n, and since φπn+1, πn+1φ must be the respective identity homomorphisms, πn+1 is an
isomorphism, and the induction continues.

Since πn+1 extends πn for each n, these isomorphisms join together to give us an isomorphism

π :
⋃
n∈N

An →
⋃
n∈N

Bn = B.

Observe next that the construction ensures that an ∈ An+1 for each n, since an ∩ a is either 0 or a or a′n ∩ a
for every a ∈ An, and in all cases belongs to An+1. So

⋃
n∈N

An contains every an and (by the choice of
〈an〉n∈N) must be the whole of A. Thus π : A → B witnesses that A ∼= B.

316N Definition A Boolean algebra A is homogeneous if every non-trivial principal ideal of A is
isomorphic to A.

*316O Lemma Let A be a Dedekind complete Boolean algebra such that

D = {d : d ∈ A, A is isomorphic to the principal ideal Ad}

is order-dense in A. Then A is homogeneous.

proof (a) If A = {0} then it has no non-trivial principal ideals, so is homogeneous. If A is not atomless,
let a ∈ A be an atom; then there is a non-zero d ∈ D such that d ⊆ a and d = a; so A ∼= Ad = {0, d} and
A = {0, 1} is homogeneous because its only non-trivial principal ideal is itself. So suppose henceforth that
A is atomless and not {0}.

(b) Take any a ∈ A\{0}. Choose 〈an〉n∈N inductively in A in such a way that a0 = a and that an+1 ⊆ an
is neither 0 nor an for any n. Let D′ be

{d : d ∈ D, either d ⊆ infn∈N an or d ⊆ an \ an+1 for some n or d ⊆ 1 \ a0}.

Then D′ ⊆ D is still order-dense. Let C ⊆ D′ be a partition of unity (313K); then C is infinite. We have

A ∼=
∏
c∈C Ac ∼= AC

(315F). Moreover, every member of C is either included in a or disjoint from it, so setting C ′ = {c : c ∈ C,
c ⊆ a} we see that C ′ is a partition of unity in Aa; as Aa is Dedekind complete (314Ea),

Aa ∼=
∏
c∈C′ Ac ∼= AC

′ ∼= (AC)C
′ ∼= AC×C′ ∼= AC ∼= A

(because C is infinite and C ′ is not empty, so #(C × C ′) = #(C)). As a is arbitrary, A is homogeneous.

*316P Proposition Let A be a homogeneous Boolean algebra. Then its Dedekind completion Â is
homogeneous.
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proof Regarding A as a subset of Â, it is order-dense. Next, if a ∈ A, then the principal ideal Âa which it

generates in Â can be identified with the Dedekind completion of the principal ideal Aa which it generates

in A. PPP Aa is order-dense in Âa and Âa is Dedekind complete, so we can use 314Ub. QQQ But this means
that

Âa ∼= Âa ∼= Â

for every a ∈ A \ {0}. As A \ {0} is order-dense in Â, 316O tells us that Â is homogeneous.

*316Q Proposition The free product of any family of homogeneous Boolean algebras is homogeneous.

proof (a) Let 〈Ai〉i∈I be a family of homogeneous Boolean algebras and A =
⊗

i∈I Ai their free product;
let εi : Ai → A be the canonical homomorphisms. If any of the Ai is {0}, so is A (315Kd), and the result
is trivial; so let us suppose that every Ai has at least two elements. If Ai = {0, 1} for every i ∈ I, then
A = {0, 1} is homogeneous; so we may suppose that at least one Ai is infinite.

(b) If we have a family 〈ai〉i∈I such that ai ∈ Ai for every i and J = {i : ai 6= 1} is finite, consider
a = infi∈J εi(ai) in A. Then Aa ∼=

⊗
i∈I(Ai)ai . PPP For j ∈ I, let ε′j be the canonical homomorphism from

(Aj)aj to
⊗

i∈I(Ai)ai . Set φi(c) = a ∩ εi(c) for i ∈ I and c ∈ (Ai)ai . Then φi : (Ai)ai → Aa is always a
Boolean homomorphism, so we have a Boolean homomorphism φ :

⊗
i∈I(Ai)ai → Aa such that φi = φε′i for

each i (315J).
If K ⊆ I is finite, J ⊆ K, bk ∈ (Ak)ak for each k ∈ K and b is the infimum infk∈K ε

′
k(bk) taken in⊗

i∈I(Ai)ai , then

φ(b) = inf
k∈K

φε′k(bk)

(here taking the infimum in Aa)

= inf
k∈K

φk(bk) = inf
k∈K

a ∩ εk(bk) = a ∩ inf
k∈K

εk(bk)

(here taking the infimum in A)

= inf
k∈K

εk(bk)

because K ⊇ J .
Now suppose that b ∈

⊗
i∈I(Ai)ai is non-zero. Then there are a finite K ⊆ I and a family 〈bk〉k∈K such

that bk ∈ (Ak)ak \ {0} for each k and b includes infk∈K ε
′
kbk in

⊗
i∈I(Ai)ai (315Kb). Set K ′ = J ∪K and

bk = ak for k ∈ J \K. Then

φ(b) ⊇ φ(infk∈K ε
′
k(bk)) ⊇ infk∈K′ φε′k(bk) = infk∈K′ εk(bk) 6= 0

(315K(e-ii)). As b is arbitrary, φ is injective.
To see that φ is surjective, use 315Kb; every element of Aa is expressible as a finite union of elements of

the form c = infk∈K εk(ck) where K ⊆ I is finite and ck ∈ Ak for each k ∈ K. Again set K ′ = J ∪K; this
time, take ck = 1 for any k ∈ J \K. Then

c = c ∩ a = inf
k∈K′

εk(ck) ∩ inf
k∈K′

εk(ak)

= inf
k∈K′

(εk(ck) ∩ εk(ak)) = inf
k∈K′

(εk(ck ∩ ak))

= φ( inf
k∈K′

ε′k(ck ∩ ak) ∈ φ[
⊗

i∈I

(Ai)ai ].

So Aa ⊆ φ[
⊗

i∈I(Ai)ai ]. QQQ

(c) Let A be the set of those a ∈ A expressible in the form considered in (b), with every ai non-zero. If
a ∈ A, then

Aa ∼=
⊗

i∈I(Ai)ai
∼=

⊗
i∈I Ai = A

because every Ai is homogeneous.
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(d) We need to know that A is isomorphic to the simple power An for every n ≥ 1. PPP We are supposing
that there is a k ∈ I such that Ak is infinite. In this case there must be a partition of unity (d1, . . . , dn)
in Ak \ {0}. (Induce on n, noting at the inductive step that if {d1, . . . , dn} is a partition of unity then not
all the dj can be atoms, because #(Ak) > 2n.) Now, setting a(j) = εk(dj) for each j, (a(1), . . . , a(n)) is a
partition of unity in A and (by (c)) all the principal ideals Aa(j) are isomorphic to A, so

A ∼=
∏
j≤n Aa(j)

∼= An

by 315F(i). QQQ

(e) Now take any a ∈ A \ {0}. Then a is expressible as sup1≤j≤n a
(j) where a(1), . . . , a(n) are disjoint

members of A (315Kb). So, putting (c) and (d) together,

Aa ∼=
∏

1≤j≤n Aa(j)
∼= An ∼= A.

As a is arbitrary, A is homogeneous.

*316R It will be useful in later volumes to be able to quote a simple fact.

Proposition Let A be a Boolean algebra, and B a subalgebra of A which is regularly embedded in A.
(a) Every atom of A is included in an atom of B.
(b) If B is atomless, so is A.

proof (a) If a ∈ A is an atom, consider B = {b : b ∈ B, a ⊆ b}. Then B has a non-zero lower bound b0 in
B. PPP??? Otherwise, inf B = 0 in B; as b 7→ b : B → A is order-continuous and B is downwards-directed,
inf B = 0 in A; but a is a non-zero lower bound for B in A. XXXQQQ If now b ∈ B, b ⊆ b0 and b 6= 0, b0 6⊆ 1 \ b
so 1 \ b /∈ B, a 6⊆ 1 \ b and a ∩ b 6= 0; as a is an atom in A, a \ b = 0, a ⊆ b, b ∈ B and b = b0. Thus b0 is
an atom in B. Repeating the argument just above with b0 in the place of b, we see that a ⊆ b0. Thus a is
included in an atom of B.

(b) follows at once.

316X Basic exercises (a) Let A be a Dedekind σ-complete Boolean algebra. Show that it is ccc iff
there is no family 〈aξ〉ξ<ω1

in A such that aξ ⊂ aη whenever ξ < η < ω1.

(b) Let A be a ccc Boolean algebra. Show that if I is a σ-ideal of A, then it is order-closed, and A/I is
ccc.

(c) Let A be a Boolean algebra and I an order-closed ideal of A. Show that A/I is ccc iff there is no
uncountable disjoint family in A \ I.

(d) Let A be a Boolean algebra. Show that the following are equiveridical: (i) A is ccc; (ii) every σ-ideal
of A is order-closed; (iii) every σ-subalgebra of A is order-closed; (iv) every sequentially order-continuous
Boolean homomorphism from A to another Boolean algebra is order-continuous. (Hint : 313Q.)

(e) Show that any purely atomic Boolean algebra is weakly (σ,∞)-distributive.

>>>(f) Let A be a Dedekind complete purely atomic Boolean algebra. Show that it is isomorphic to PA,
where A is the set of atoms of A.

(g) Show that a homogeneous Boolean algebra is either atomless or {0, 1}.

(h) Let A be a Boolean algebra, and B a subalgebra of A. Show that if A is ccc, then B is ccc.

(i) Let A be a Boolean algebra, and B a subalgebra of A which is regularly embedded in A. (i) Show that
if A is purely atomic, so is B. (ii) Show that if A is weakly (σ,∞)-distributive, then B is weakly (σ,∞)-
distributive.

(j) Let A be a Boolean algebra, and B an order-dense subalgebra of A. (i) Show that A is ccc iff B is
ccc. (ii) Show that A is weakly (σ,∞)-distributive iff B is weakly (σ,∞)-distributive. (iii) Show that A and
B have the same atoms, so that A is atomless, or purely atomic, iff B is.
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(k) Let A and B be Boolean algebras, and π : A → B a surjective order-continuous Boolean homomor-
phism. (i) Show that if A is ccc, then B is ccc. (ii) Show that if A is weakly (σ,∞)-distributive, then B

is weakly (σ,∞)-distributive. (iii) Show that if A is atomless, then B is atomless. (iv) Show that if A is
purely atomic, then B is purely atomic.

(l) Let A and B be Boolean algebras, neither {0}, and A⊗B their free product. (i) Show that if A⊗B

is ccc, then A and B are both ccc. (ii) Show that if A⊗B is weakly (σ,∞)-distributive, then A and B are
both weakly (σ,∞)-distributive. (iii) Show that A⊗B is atomless iff either A or B is atomless. (iv) Show
that A⊗B is purely atomic iff A and B are both purely atomic.

(m) Let A be a Boolean algebra and Aa a principal ideal of A. (i) Show that of A is ccc, then Aa is ccc.
(ii) Show that if A is weakly (σ,∞)-distributive, then Aa is weakly (σ,∞)-distributive. (iii) Show that if A
is atomless, then Aa is atomless. (iv) Show that if A is purely atomic, then Aa is purely atomic. (v) Show
that if A is homogeneous, then Aa is homogeneous.

(n) Let 〈Ai〉i∈I be a family of Boolean algebras, with simple product A. (i) Show that A is ccc iff every
Ai is ccc and {i : Ai 6= {0}} is countable. (ii) Show that A is weakly (σ,∞)-distributive iff every Ai is weakly
(σ,∞)-distributive. (iii) Show that A is atomless iff every Ai is atomless. (iv) Show that A is purely atomic
iff every Ai is purely atomic.

>>>(o) Let X be a separable topological space. Show that X is ccc.

(p) Let X be a topological space, and RO(X) its regular open algebra. Show that X is ccc iff RO(X) is
ccc.

(q) Let X be a zero-dimensional compact Hausdorff space. Show that the regular open algebra of X is
weakly (σ,∞)-distributive iff the algebra of open-and-closed subsets of X is weakly (σ,∞)-distributive.

(r) Show that the algebra of open-and-closed subsets of {0, 1}N, with its usual topology, is ccc, homoge-
neous and not weakly (σ,∞)-distributive.

(s) Show that the regular open algebra RO(R) is ccc and homogeneous.

316Y Further exercises (a) Let I be any set. Show that {0, 1}I , with its usual topology, is ccc. (Hint :
show that if E ⊆ {0, 1}I is a non-empty open-and-closed set, then νIE > 0, where νI is the usual measure
on {0, 1}I .)

(b) Let A be a Boolean algebra and Z its Stone space. Show that A is ccc iff every nowhere dense subset
of Z is included in a nowhere dense zero set.

(c) Let X be a zero-dimensional topological space. Show that X is ccc iff the regular open algebra of X
is ccc iff the algebra of open-and-closed subsets of X is ccc.

(d) Set X = {0, 1}ω1 , and for ξ < ω1 set Eξ = {x : x ∈ X, x(ξ) = 1}. Let Σ be the algebra of subsets
of X generated by {Eξ : ξ < ω1} ∪ {{x} : x ∈ X}, and I the σ-ideal of Σ generated by {Eξ ∩ Eη : ξ < η <
ω1} ∪ {{x} : x ∈ X}. Show that Σ/I is not ccc, but that there is no uncountable disjoint family in Σ \ I.

(e) Let A be a Boolean algebra. A is weakly σ-distributive if whenever 〈An〉n∈N is a sequence of
countable partitions of unity in A then there is a partition B of unity such that {a : a ∈ An, a ∩ b 6= 0}
is finite for every b ∈ B and n ∈ N. (Dedekind complete weakly σ-distributive algebras are also called
ωω-bounding.) A has the Egorov property if whenever 〈An〉n∈N is a sequence of countable partitions of
unity in A then there is a countable partition B of unity such that {a : a ∈ An, a ∩ b 6= 0} is finite for every
b ∈ B and n ∈ N. (i) Show that if A is ccc then it is weakly (σ,∞)-distributive iff it has the Egorov property
iff it is weakly σ-distributive. (ii) Show that P(NN) does not have the Egorov property, even though it is
weakly (σ,∞)-distributive. (Hint : try anm = {f : f(n) = m}.)
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(f) Let A be a Dedekind σ-complete Boolean algebra with the Egorov property and I a σ-ideal of A.
Show that A/I has the Egorov property.

(g) Let X be a regular topological space and RO(X) its regular open algebra. Show that RO(X) is
weakly (σ,∞)-distributive iff every meager set in X is nowhere dense.

(h) Let A be a Boolean algebra and Z its Stone space. (i) Show that A is weakly σ-distributive iff the
union of any sequence of nowhere dense zero sets in Z is nowhere dense. (ii) Show that A has the Egorov
property iff the union of any sequence of nowhere dense zero sets in Z is included in a nowhere dense zero
set.

(i) Let A be a Dedekind σ-complete weakly (σ,∞)-distributive Boolean algebra, Z its Stone space, E
the algebra of open-and-closed subsets of Z, M the σ-ideal of meager subsets of Z, and Σ the algebra
{E△M : E ∈ E , M ∈ M}, as in 314M. (i) Let f : Z → R be a function. Show that f is Σ-measurable iff
there is a dense open set G ⊆ Z such that f↾G is continuous. (ii) Now suppose that A is Dedekind complete
and that f : Z → R is a bounded function. Show that f is Σ-measurable iff there is a continuous function
g : Z → R such that {z : f(z) 6= g(z)} is meager. (Hint : if G is a dense open set and f↾G is continuous, the
closure in Z × R of the graph of f↾G is a function, because Z is extremally disconnected.)

(j) Show that the Stone space of RO(R) is separable. More generally, show that if a topological space X
is separable so is the Stone space of its regular open algebra.

(k)(i) Let X be a non-empty separable Hausdorff space without isolated points. Show that its regular
open algebra is not weakly (σ,∞)-distributive. (ii) Let (X, ρ) be a non-empty metric space without isolated
points. Show that its regular open algebra is not weakly (σ,∞)-distributive. (iii) Let I be any infinite set.
Show that the algebra of open-and-closed subsets of {0, 1}I is not weakly (σ,∞)-distributive. Show that the
regular open algebra of {0, 1}I is not weakly (σ,∞)-distributive.

(l) For any set X, write

CX = {I : I ⊆ X is finite} ∪ {X \ I : I ⊆ X is finite}.

(i) Show that CX is an algebra of subsets of X (the finite-cofinite algebra). (ii) Show that a Boolean
algebra is purely atomic iff it has an order-dense subalgebra isomorphic to the finite-cofinite algebra of
some set. (iii) Show that a Dedekind σ-complete Boolean algebra is purely atomic iff it has an order-dense
subalgebra isomorphic to the countable-cocountable algebra of some set.

(m) Let 〈Ai〉i∈I be a family of Boolean algebras, none of them {0}, with free product A. (i) Show that
A is purely atomic iff every Ai is purely atomic and {i : Ai 6= {0, 1}} is finite. (ii) Show that A is atomless
iff either some Ai is atomless or {i : Ai 6= {0, 1}} is infinite.

(n) Let X be a Hausdorff space and RO(X) its regular open algebra. (i) Show that the atoms of RO(X)
are precisely the sets {x} where x is an isolated point in X. (ii) Show that RO(X) is atomless iff X has no
isolated points. (iii) Show that RO(X) is purely atomic iff the set of isolated points in X is dense in X.

(o) Show that a Boolean algebra is isomorphic to RO(R) iff it is atomless, Dedekind complete, has a
countable order-dense subalgebra and is not {0}.

(p) Let 〈Ai〉i∈I be a family of Boolean algebras, none of them {0}, and A their simple product. Show
that A is homogeneous iff (i) Ai is isomorphic to Aj for all i, j ∈ I (ii) for every i ∈ I there is a partition of
unity A ⊆ Ai \ {0} with #(A) = #(I).

(q) Let A be a Boolean algebra such that {d : d ∈ A, Ad ∼= A} is order-dense in A. Show that the

Dedekind completion Â is homogeneous.

(r) Write [N]<ω for the ideal of PN consisting of the finite subsets of N. Show that PN/[N]<ω is atomless,
weakly (σ,∞)-distributive and not ccc, and that its Dedekind completion is homogeneous.
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(s) Show that the regular open algebra of {0, 1}I is homogeneous for any infinite set I.

(t) Suppose that A is a weakly (σ,∞)-distributive Boolean algebra, and that 〈An〉n∈N is a sequence of
non-empty upwards-directed subsets of A. Set

B =
⋂
n∈N

{b : b ∈ A, {b ∩ a : a ∈ An} has a greatest member}.

Show that B is upwards-directed and supB = 1.

316 Notes and comments The phrase ‘countable chain condition’ is perhaps unfortunate, since the
disjoint sets to which the definition 316A refers could more naturally be called ‘antichains’; but there is in
fact a connexion between countable chains and countable antichains (316Xa). While some authors speak of
the ‘countable antichain condition’ or ‘cac’, the term ‘ccc’ has become solidly established. In the Boolean
algebra context, it could equally well be called the ‘countable sup property’ (316E).

The countable chain condition can be thought of as a restriction on the ‘width’ of a Boolean algebra; it
means that the algebra cannot spread too far laterally (see 316Xn(i)), though it may be indefinitely complex
in other ways. Generally it means that in a wide variety of contexts we need look only at countable families
and monotonic sequences, rather than arbitrary families and directed sets (316E, 316F, 316Ye). Many of
the ideas of 316C-316E have already appeared in 215B; see 322G below.

I remarked in the notes to §313 that the distributive laws described in 313B have important generaliza-
tions, of which ‘weak (σ,∞)-distributivity’ and its cousin ‘weak σ-distributivity’ (316Ye) are two. They are
characteristic of the measure algebras which are the chief subject of this volume. The ‘Egorov property’
(316Ye again) is an alternative formulation applicable to ccc spaces.

Of course every property of Boolean algebras has a reflection in a topological property of their Stone
spaces; happily, most of the concepts of this section correspond to reasonably natural topological expressions
(316B, 316I, 316L, 316Yh). ‘Homogeneity’ is the odd one out. In fact only the definition of ‘homogeneous’
Boolean algebra is particularly worth noting at this stage. The homogeneous algebras we are primarily
interested in will appear in §331, and they are too special for any general theory to be very helpful.

With five new properties (ccc, weakly (σ,∞)-distributive, atomless, purely atomic, homogeneous) to
incorporate into the constructions of the last few sections, a very large number of questions can be asked;
most are elementary. In 316Xh-316Xn I list the properties which are inherited by subalgebras, order-
continuous homomorphic images, free products, principal ideals and simple products. The countable chain
condition is so important that it is worth noting that a sequentially order-continuous image of a ccc algebra is
ccc (316Xb), and that there is a useful necessary and sufficient condition for a sequentially order-continuous
image of a σ-complete algebra to be ccc (316C, 316D, 316Xc; but see also 316Yd). To see that sequentially
order-continuous images do not inherit weak (σ,∞)-distributivity, recall that the regular open algebra of R

is isomorphic to the quotient of the Baire-property algebra B̂ of R by the meager ideal M (314Yd); but that

B̂ is purely atomic (since it contains all singletons), therefore weakly (σ,∞)-distributive (316Xe). Similarly,
PN/[N]<ω is a non-ccc image of a ccc algebra (316Yr). Free products of weakly (σ,∞)-distributive algebras
need not be weakly (σ,∞)-distributive (325Ye). There are important cases in which the simple product of
homogeneous algebras is homogeneous (316Yp).

The definitions here provide a language in which a remarkably interesting question can be asked: is
the free product of ccc Boolean algebras always ccc? equivalently, is the product of ccc topological spaces
always ccc? What is special about this question is that it cannot be answered within the ordinary rules of
mathematics (even including the axiom of choice); it is undecidable, in the same way that the continuum
hypothesis is. I will deal with a variety of undecidable questions in Volume 5; this particular one is mentioned
in 516U, 517G and 553J.

I have taken the opportunity to mention three of the most important of all Boolean algebras: the algebra
of open-and-closed subsets of {0, 1}N (316M, 316Xr), the regular open algebra of R (316J, 316Xs, 316Yo) and
the quotient PN/[N]<ω (316Yr). A fourth algebra which belongs in this company is the Lebesgue measure
algebra, which is atomless, ccc, weakly (σ,∞)-distributive and homogeneous (so that every countable subset
of its Stone space Z is nowhere dense, and Z is a non-separable ccc space); but for this I wait for the next
chapter.
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Version of 30.9.07

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

314V Upper envelopes The note on upper envelopes, referred to in the 2003 and 2006 printings of
Volume 4, has been moved to 313S.

315H Paragraphs 315H-315N, referred to in the 2003 and 2006 printings of Volume 4 and the 2008
printing of Volume 5, are now 315I-315O.

316J Weakly (σ,∞)-distributive algebras The reference to 316J in the 2003 printing of Volume 4
should be changed to 316H.

c© 2007 D. H. Fremlin
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