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Appendix to Volume 2

Useful Facts

In the course of writing this volume, I have found that a considerable number of concepts and facts from
various branches of mathematics are necessary to us. Nearly all of them are embedded in important and
well-established theories for which many excellent textbooks are available and which I very much hope that
you will one day study in depth. Nevertheless, I am reluctant to send you off immediately to courses in
general topology, functional analysis and set theory, as if these were essential prerequisites for our work
here, along with real analysis and basic linear algebra. For this reason I have written this Appendix, setting
out those results which we actually need at some point in this volume. The great majority of them really
are elementary – indeed, some are so elementary that they are not always spelt out in detail in orthodox
treatments of their subjects.

While I do not put this book forward as the proper place to learn any of these topics, I have tried to set
them out in a way that you will find easy to integrate into regular approaches. I do not expect anybody
to read systematically through this work, and I hope that the references given in the main chapters of this
volume will be adequate to guide you to the particular items you need.

Version of 20.1.13

2A1 Set theory

Especially for the examples in Chapter 21, we need some non-trivial set theory, which is best approached
through the standard theory of cardinals and ordinals; and elsewhere in this volume I make use of Zorn’s
Lemma. Here I give a very brief outline of the results involved, largely omitting proofs. Most of this material
should be in any sound introduction to set theory. The references I give are to books which happen to have
come my way and which I can recommend as reasonably suitable for beginners.

I do not discuss axiom systems or logical foundations. The set theory I employ is ‘naive’ in the sense
that I rely on my understanding of the collective experience of the last hundred years, rather than on any
attempt at formal description, to distinguish legitimate from unsafe arguments. There are, however, points
in Volume 5 at which such a relaxed philosophy becomes inappropriate, and I therefore use arguments which
can, I believe, be translated into standard Zermelo-Fraenkel set theory without new ideas being invoked.

Although in this volume I use the axiom of choice without scruple whenever appropriate, I will divide this
section into two parts, starting with ideas and results not dependent on the axiom of choice (2A1A-2A1I)
and continuing with the remainder (2A1J-2A1P). I believe that even at this level it helps us to understand
the nature of the arguments better if we maintain a degree of separation.

2A1A Ordered sets (a) Recall that a partially ordered set is a set P together with a relation ≤ on
P such that

if p ≤ q and q ≤ r then p ≤ r,
p ≤ p for every p ∈ P ,
if p ≤ q and q ≤ p then p = q.

In this context, I will write p ≥ q to mean q ≤ p, and p < q or q > p to mean ‘p ≤ q and p 6= q’. ≤ is a
partial order on P .

(b) Let (P,≤) be a partially ordered set, and A ⊆ P . A maximal element of A is a p ∈ A such that
p 6< a for any a ∈ A. Note that A may have more than one maximal element. An upper bound for A is
a p ∈ P such that a ≤ p for every a ∈ A; a supremum or least upper bound is an upper bound p such
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2 Appendix 2A1A

that p ≤ q for every upper bound q of A. There can be at most one such. Accordingly we may safely write
p = supA if p is the least upper bound of A.

Similarly, a minimal element of A is a p ∈ A such that p 6> a for every a ∈ A; a lower bound of A is a
p ∈ P such that p ≤ a for every a ∈ A; and inf A = p means that

for every q ∈ P , p ≥ q ⇐⇒ a ≥ q ∀ a ∈ A.

A subset A of P is order-bounded if it has both an upper bound and a lower bound.
A subset A of P is upwards-directed if for any p, p′ ∈ A there is a q ∈ A such that p ≤ q and p′ ≤ q.

Similarly, A ⊆ P is downwards-directed if for any p, p′ ∈ A there is a q ∈ A such that q ≤ p and q ≤ p′.
[p, q] will be {r : p ≤ r ≤ q}.

(c) A totally ordered set is a partially ordered set (P,≤) such that

for any p, q ∈ P , either p ≤ q or q ≤ p.

≤ is then a total or linear order on P .
In any totally ordered set we have a median function: for p, q, r ∈ P set

med(p, q, r) = max(min(p, q),min(p, r),min(q, r))

= min(max(p, q),max(p, r),max(q, r)).

(d) A lattice is a partially ordered set (P,≤) such that

for any p, q ∈ P , p ∨ q = sup{p, q} and p ∧ q = inf{p, q} are defined in P .

(e) A well-ordered set is a totally ordered set (P,≤) such that every non-empty subset of P has a least
element. In this case ≤ is a well-ordering of P .

2A1B Transfinite Recursion: Theorem Let (P,≤) be a well-ordered set and X any class. For
p ∈ P write Lp for the set {q : q ∈ P, q < p} and XLp for the class of all functions from Lp to X. Let
F :

⋃

p∈P X
Lp → X be any function. Then there is a unique function f : P → X such that f(p) = F (f↾Lp)

for every p ∈ P .

2A1C Ordinals An ordinal (sometimes called a ‘von Neumann ordinal’) is a set ξ such that

if η ∈ ξ then η is a set and η 6∈ η,
if η ∈ ζ ∈ ξ then η ∈ ξ,
writing ‘η ≤ ζ’ to mean ‘η ∈ ζ or η = ζ’, (ξ,≤) is well-ordered.

2A1D Basic facts about ordinals (a) If ξ is an ordinal, then every member of ξ is an ordinal.

(b) If ξ, η are ordinals then either ξ ∈ η or ξ = η or η ∈ ξ (and no two of these can occur together). It
is customary to write η < ξ if η ∈ ξ and η ≤ ξ if either η ∈ ξ or η = ξ. Note that η ≤ ξ iff η ⊆ ξ.

(c) If A is any non-empty class of ordinals, then there is an α ∈ A such that α ≤ ξ for every ξ ∈ A.

(d) If ξ is an ordinal, so is ξ ∪ {ξ}; call it ‘ξ + 1’. ξ + 1 is the least ordinal greater than ξ. For any
ordinal ξ, either there is a greatest ordinal η < ξ, in which case ξ = η+1 and we call ξ a successor ordinal,
or ξ =

⋃

ξ, in which case we call ξ a limit ordinal.

(e) The first few ordinals are 0 = ∅, 1 = 0 + 1 = {0} = {∅}, 2 = 1 + 1 = {0, 1} = {∅, {∅}}, 3 = 2 + 1 =
{0, 1, 2}, . . . . The first infinite ordinal is ω = {0, 1, 2, . . . }, which may be identified with N.

(f) The union of any set of ordinals is an ordinal.

(g) If (P,≤) is any well-ordered set, there is a unique ordinal ξ such that P is order-isomorphic to ξ, and
the order-isomorphism is unique.

Measure Theory (abridged version)



2A1Kb Set theory 3

2A1E Initial ordinals An initial ordinal is an ordinal κ such that there is no bijection between κ and
any member of κ.

2A1F Basic facts about initial ordinals (a) All finite ordinals, and the first infinite ordinal ω, are
initial ordinals.

(b) For every well-ordered set P there is a unique initial ordinal κ such that there is a bijection between
P and κ.

(c) For every ordinal ξ there is a least initial ordinal greater than ξ. If κ is an initial ordinal, write κ+

for the least initial ordinal greater than κ. We write ω1 for ω+, ω2 for ω+
1 , and so on.

(d) For any initial ordinal κ ≥ ω there is a bijection between κ×κ and κ; consequently there are bijections
between κ and κr for every r ≥ 1.

2A1G Schröder-Bernstein theorem If X and Y are sets and there are injections f : X → Y ,
g : Y → X then there is a bijection h : X → Y .

2A1H Countable subsets of PN (a) There is a bijection between PN and R.

(b) Suppose that X is any set such that there is an injection from X into PN. Let C be the set of
countable subsets of X. Then there is a surjection from PN onto C.

(c) Again suppose that X is a set such that there is an injection from X to PN, and write H for the
set of functions h such that domh is a countable subset of X and h takes values in {0, 1}. Then there is a
surjection from PN onto H.

2A1I Filters (a) Let X be a non-empty set. A filter on X is a family F of subsets of X such that

X ∈ F , ∅ /∈ F ,
E ∩ F ∈ F whenever E, F ∈ F ,
E ∈ F whenever X ⊇ E ⊇ F ∈ F .

The second condition implies (inducing on n) that F0 ∩ . . . ∩ Fn ∈ F whenever F0, . . . , Fn ∈ F .

(b) Let X, Y be non-empty sets, F a filter on X and f : D → Y a function, where D ∈ F . Then

{E : E ⊆ Y, f−1[E] ∈ F}
is a filter on Y ; I will call it f [[F ]], the image filter of F under f .

2A1J The Axiom of Choice Let me remind you of the statement of this axiom:

(AC) ‘whenever I is a set and 〈Xi〉i∈I is a family of non-empty sets indexed by I, there is a function
f , with domain I, such that f(i) ∈ Xi for every i ∈ I’.

The function f is a choice function.

2A1K Zermelo’s Well-Ordering Theorem (a) The Axiom of Choice is equiveridical with each of the
statements

‘for every set X there is a well-ordering of X’,

‘for every set X there is a bijection between X and some ordinal’,

‘for every set X there is a unique initial ordinal κ such that there is a bijection between X
and κ.’

(b) When assuming the axiom of choice, I write #(X) for that initial ordinal κ such that there is a
bijection between κ and X; I call this the cardinal of X.

D.H.Fremlin



4 Appendix 2A1L

2A1L Fundamental consequences of the Axiom of Choice (a) For any two sets X and Y , there
is a bijection between X and Y iff #(X) = #(Y ). More generally, there is an injection from X to Y iff
#(X) ≤ #(Y ), and a surjection from X onto Y iff either #(X) ≥ #(Y ) > 0 or #(X) = #(Y ) = 0.

(b) #(PN) = #(R); write c for this common value, the cardinal of the continuum. ω1 ≤ c.

(c) If X is any infinite set, and r ≥ 1, then there is a bijection between Xr and X.

(d) Suppose that κ is an infinite cardinal. If I is a set with cardinal at most κ and 〈Ai〉i∈I is a family
of sets with #(Ai) ≤ κ for every i ∈ I, then #(

⋃

i∈I Ai) ≤ κ. Consequently #(
⋃A) ≤ κ whenever A is a

family of sets such that #(A) ≤ κ and #(A) ≤ κ for every A ∈ A. ω1 cannot be expressed as a countable
union of countable sets, and ω2 cannot be expressed as a countable union of sets with cardinal at most ω1.

(e) Now we can rephrase 2A1Hc as: if #(X) ≤ c, then #(H) ≤ c, where H is the set of functions from a
countable subset of X to {0, 1}.

(f) Any non-empty class of cardinals has a least member.

2A1M Zorn’s Lemma I come now to another proposition which is equiveridical with the axiom of
choice:

‘Let (P,≤) be a non-empty partially ordered set such that every non-empty totally ordered
subset of P has an upper bound in P . Then P has a maximal element.’

This is Zorn’s Lemma.

2A1N Ultrafilters A filter F on a set X is an ultrafilter if for every A ⊆ X either A ∈ F or X \A ∈ F .
If F is an ultrafilter on X and f : D → Y is a function, where D ∈ F , then f [[F ]] is an ultrafilter on Y .
One type of ultrafilter can be described easily: if x is any point of a set X, then F = {F : x ∈ F ⊆ X}

is an ultrafilter on X. (Ultrafilters of this type are called principal ultrafilters.)

2A1O The Ultrafilter Theorem Let X be any non-empty set, and F a filter on X. Then there is an
ultrafilter H on X such that F ⊆ H.

2A1P Theorem (a) Let 〈Kα〉α∈A be a family of countable sets, with #(A) strictly greater than c, the
cardinal of the continuum. Then there are a set M , with cardinal at most c, and a set B ⊆ A, with cardinal
strictly greater than c, such that Kα ∩Kβ ⊆M whenever α, β are distinct members of B.

(b) Let I be a set, and 〈fα〉α∈A a family in {0, 1}I , the set of functions from I to {0, 1}, with #(A) > c.
If 〈Kα〉α∈A is any family of countable subsets of I, then there is a set B ⊆ A, with cardinal greater than c,
such that fα and fβ agree on Kα ∩Kβ for all α, β ∈ B.

(c) In particular, under the conditions of (b), there are distinct α, β ∈ A such that fα and fβ agree on
Kα ∩Kβ .

Version of 30.11.09

2A2 The topology of Euclidean space

In the appendix to Volume 1 I discussed open and closed sets in R
r; the chief aim there was to support the

idea of ‘Borel set’, which is vital in the theory of Lebesgue measure, but of course they are also fundamental
to the study of continuous functions, and indeed to all aspects of real analysis. I give here a very brief
introduction to the further elementary facts about closed and compact sets and continuous functions which
we need for this volume. Much of this material can be derived from the generalizations in §2A3, but
nevertheless I sketch the proofs, since for the greater part of the volume (most of the exceptions are in
Chapter 24) Euclidean space is sufficient for our needs.

c© 2000 D. H. Fremlin
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2A2I The topology of Euclidean space 5

2A2A Closures: Definition For any r ≥ 1 and any A ⊆ R
r, the closure of A, A, is the intersection of

all the closed subsets of Rr including A. This is the smallest closed set including A. A is closed iff A = A.

2A2B Lemma Let A ⊆ R
r be any set. Then for x ∈ R

r the following are equiveridical:

(i) x ∈ A;

(ii) B(x, δ) ∩A 6= ∅ for every δ > 0, where B(x, δ) = {y : ‖y − x‖ ≤ δ};
(iii) there is a sequence 〈xn〉n∈N in A such that limn→∞ ‖xn − x‖ = 0.

2A2C Continuous functions (a) If r, s ≥ 1, D ⊆ R
r and φ : D → R

s is a function, we say that φ
is continuous if for every x ∈ D and ǫ > 0 there is a δ > 0 such that ‖φ(y) − φ(x)‖ ≤ ǫ whenever y ∈ D
and ‖y − x‖ ≤ δ. φ is continuous iff for every open set G ⊆ R

s there is an open set H ⊆ R
r such that

φ−1[G] = D ∩H.

(b) Using the ǫ-δ definition of continuity, it is easy to see that a function φ from a subset D of Rr to R
s

is continuous iff all its components φi are continuous, writing φ(x) = (φ1(x), . . . , φs(x)) for x ∈ D.

(c) If r, s ≥ 1, D ⊆ R
r and φ : D → R

s is a function, we say that φ is uniformly continuous if for
every ǫ > 0 there is a δ > 0 such that ‖φ(y)− φ(x)‖ ≤ ǫ whenever x, y ∈ D and ‖y − x‖ ≤ δ. A uniformly
continuous function is continuous.

2A2D Compactness in R
r: Definition A subset F of Rr is called compact if whenever G is a family

of open sets covering F then there is a finite subset G0 of G still covering F .

2A2E Elementary properties of compact sets Take any r ≥ 1, and subsets D, F , G and K of Rr.

(a) If K is compact and F is closed, then K ∩ F is compact.

(b) If s ≥ 1, φ : D → R
s is a continuous function, K is compact and K ⊆ D, then φ[K] is compact.

(c) If K is compact, it is closed.

(d) If K is compact and G is open and K ⊆ G, then there is a δ > 0 such that K +B(0, δ) ⊆ G.

2A2F Theorem For any r ≥ 1, a subset K of Rr is compact iff it is closed and bounded.

2A2G Corollary If φ : D → R is continuous, where D ⊆ R
r, and K ⊆ D is a non-empty compact set,

then φ is bounded and attains its bounds on K.

2A2H Lim sup and lim inf revisited In §1A3 I briefly discussed lim supn→∞ an, lim infn→∞ an for
real sequences 〈an〉n∈N. In this volume we need the notion of lim supδ↓0 f(δ), lim infδ↓0 f(δ) for real functions
f . I say that lim supδ↓0 f(δ) = u ∈ [−∞,∞] if (i) for every v > u there is an η > 0 such that f(δ) is defined
and less than or equal to v for every δ ∈ ]0, η] (ii) for every v < u and η > 0 there is a δ ∈ ]0, η] such that
f(δ) is defined and greater than or equal to v. Similarly, lim infδ↓0 f(δ) = u ∈ [−∞,∞] if (i) for every v < u
there is an η > 0 such that f(δ) is defined and greater than or equal to v for every δ ∈ ]0, η] (ii) for every
v > u and η > 0 there is an δ ∈ ]0, η] such that f(δ) is defined and less than or equal to v.

2A2I Proposition If G ⊆ R is any open set, it is expressible as the union of a countable disjoint family
of open intervals.

D.H.Fremlin
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Version of 25.7.07

2A3 General topology

At various points – principally §§245-247, but also for certain ideas in Chapter 27 – we need to know
something about non-metrizable topologies. I must say that you should probably take the time to look at
some book on elementary functional analysis which has the phrases ‘weak compactness’ or ‘weakly compact’
in the index. But I can list here the concepts actually used in this volume, in a good deal less space than
any orthodox, complete treatment would employ.

2A3A Topologies If X is any set, a topology on X is a family T of subsets of X such that (i) ∅,
X ∈ T (ii) if G, H ∈ T then G ∩H ∈ T (iii) if G ⊆ T then

⋃G ∈ T. (X,T) is now a topological space.
In this context, members of T are called open and their complements are called closed.

2A3B Continuous functions (a) If (X,T) and (Y,S) are topological spaces, a function φ : X → Y is
continuous if φ−1[G] ∈ T for every G ∈ S.

(b) If (X,T), (Y,S) and (Z,U) are topological spaces and φ : X → Y and ψ : Y → Z are continuous,
then ψφ : X → Z is continuous.

(c) If (X,T) is a topological space, a function f : X → R is continuous iff {x : a < f(x) < b} is open
whenever a < b in R.

(d) If r ≥ 1, (X,T) is a topological space, and φ : X → R
r is a function, then φ is continuous iff

φi : X → R is continuous for each i ≤ r, where φ(x) = (φ1(x), . . . , φr(x)) for each x ∈ X.

(e) If (X,T) is a topological space, f1, . . . , fr are continuous functions from X to R, and h : Rr → R is
continuous, then h(f1, . . . , fr) : X → R is continuous. In particular, f + g, f × g and f − g are continuous
for all continuous functions f , g : X → R.

(f) If (X,T) and (Y,S) are topological spaces and φ : X → Y is a continuous function, then φ−1[F ] is
closed in X for every closed set F ⊆ Y .

2A3C Subspace topologies If (X,T) is a topological space and D ⊆ X, then TD = {G ∩D : G ∈ T}
is a topology on D.

TD is called the subspace topology on D, or the topology on D induced by T. If (Y,S) is another
topological space, and φ : X → Y is (T,S)-continuous, then φ↾D : D → Y is (TD,S)-continuous.

2A3D Closures and interiors (a) Let (X,T) be any topological space and A any subset of X. Write

intA =
⋃{G : G ∈ T, G ⊆ A}.

Then intA is the largest open set included in A, and is called the interior of A.

(b) Because a set is closed iff its complement is open, we have a complementary notion:

A =
⋂

{F : F is closed, A ⊆ F} = X \ int(X \A).

A is the smallest closed set including A; it is called the closure of A. A ∪B = A ∪B for all A, B ⊆ X.

(c)

x ∈ A ⇐⇒ every open set containing x meets A.

c© 1995 D. H. Fremlin
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2A3Ka General topology 7

2A3E Hausdorff topologies (a) A topological space X is Hausdorff if for all distinct x, y ∈ X there
are disjoint open sets G, H ⊆ X such that x ∈ G and y ∈ H.

(b) In a Hausdorff space X, finite sets are closed.

2A3F Pseudometrics(a) Let X be a set. A pseudometric on X is a function ρ : X × X → [0,∞[
such that

ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X

ρ(x, y) = ρ(y, x) for all x, y ∈ X;
ρ(x, x) = 0 for all x ∈ X.

A metric is a pseudometric ρ satisfying the further condition

if ρ(x, y) = 0 then x = y.

(b) Examples (i) For x, y ∈ R, set ρ(x, y) = |x− y| (the ‘usual metric’ on R).

(ii) For x, y ∈ R
r, where r ≥ 1, set ρ(x, y) = ‖x − y‖, defining ‖z‖ =

√

∑r
i=1 ζ

2
i , as usual. Then ρ is

the Euclidean metric on R
r.

(c) Now let X be a set and P a non-empty family of pseudometrics on X. Let T be the family of those
subsets G of X such that for every x ∈ G there are ρ0, . . . , ρn ∈ P and δ > 0 such that

U(x; ρ0, . . . , ρn; δ) = {y : y ∈ X, maxi≤n ρi(y, x) < δ} ⊆ G.

Then T is a topology on X.
T is the topology defined by P.

(d) You may wish to have a convention to deal with the case in which P is the empty set; in this case
the topology on X defined by P is {∅, X}.

(f) A topology T is metrizable if it is the topology defined by a family P consisting of a single metric.
Thus the Euclidean topology on R

r is the metrizable topology defined by {ρ}, where ρ is the metric of
(b-ii) above.

2A3G Proposition Let X be a set with a topology defined by a non-empty set P of pseudometrics on
X. Then U(x; ρ0, . . . , ρn; ǫ) is open for all x ∈ X, ρ0, . . . , ρn ∈ P and ǫ > 0.

2A3H Proposition Let X and Y be sets; let P be a non-empty family of pseudometrics on X, and Θ
a non-empty family of pseudometrics on Y ; let T and S be the corresponding topologies. Then a function
φ : X → Y is continuous iff whenever x ∈ X, θ ∈ Θ and ǫ > 0, there are ρ0, . . . , ρn ∈ P and δ > 0 such that
θ(φ(y), φ(x)) ≤ ǫ whenever y ∈ X and maxi≤n ρi(y, x) ≤ δ.

2A3J Subspaces: Proposition If X is a set, P a non-empty family of pseudometrics on X defining a
topology T on X, and D ⊆ X, then

(a) for every ρ ∈ P, the restriction ρ(D) of ρ to D ×D is a pseudometric on D;

(b) the topology defined by PD = {ρ(D) : ρ ∈ P} on D is precisely the subspace topology TD described
in 2A3C.

2A3K Closures and interiors Let X be a set, P a non-empty family of pseudometrics on X and T the
topology defined by P.

(a) For any A ⊆ X and x ∈ X,

x ∈ intA ⇐⇒ there are ρ0, . . . , ρn ∈ P, δ > 0 such that U(x; ρ0, . . . , ρn; δ) ⊆ A.

D.H.Fremlin



8 Appendix 2A3Kb

(b) For any A ⊆ X and x ∈ X, x ∈ A iff U(x; ρ0, . . . , ρn; δ)∩A 6= ∅ for every ρ0, . . . , ρn ∈ P and δ > 0.

2A3L Hausdorff topologies Now a topology defined on a set X by a non-empty family P of pseudo-
metrics is Hausdorff iff for any two different points x, y of X there is a ρ ∈ P such that ρ(x, y) > 0.

In particular, metrizable topologies are Hausdorff.

2A3M Convergence of sequences (a) If (X,T) is any topological space, and 〈xn〉n∈N is a sequence in
X, we say that 〈xn〉n∈N converges to x ∈ X, or that x is a limit of 〈xn〉n∈N, or 〈xn〉n∈N → x, if for every
open set G containing x there is an n0 ∈ N such that xn ∈ G for every n ≥ n0.

(b) Warning In general topological spaces, it is possible for a sequence to have more than one limit.
But in Hausdorff spaces, this does not occur. In particular, a sequence in a metrizable space can have at
most one limit.

(c) Let X be a set, and P a non-empty family of pseudometrics on X, generating a topology T; let
〈xn〉n∈N be a sequence in X and x ∈ X. Then 〈xn〉n∈N converges to x iff limn→∞ ρ(xn, x) = 0 for every
ρ ∈ P.

(d) Let (X, ρ) be a metric space, A a subset of X and x ∈ X. Then x ∈ A iff there is a sequence in A
converging to x.

2A3N Compactness (a) If (X,T) is any topological space, a subset K of X is compact if whenever G
is a family in T covering K, then there is a finite G0 ⊆ G covering K. A set A ⊆ X is relatively compact
in X if there is a compact subset of X including A.

(b)(i) If K is compact and E is closed, then K ∩ E is compact.

(ii) If K ⊆ X is compact and φ : K → Y is continuous, where (Y,S) is another topological space, then
φ[K] is a compact subset of Y .

(iii) If K ⊆ X is compact and φ : K → R is continuous, then φ is bounded and attains its bounds.

2A3O Cluster points (a) If (X,T) is a topological space, and 〈xn〉n∈N is a sequence in X, then a
cluster point of 〈xn〉n∈N is an x ∈ X such that whenever G is an open set containing x and n ∈ N then
there is a k ≥ n such that xk ∈ G.

(b) Now if (X,T) is a topological space and A ⊆ X is relatively compact, every sequence 〈xn〉n∈N in A
has a cluster point in X.

2A3Q Convergent filters (a) Let (X,T) be a topological space, F a filter on X and x a point of X.
We say that F is convergent to x, or that x is a limit of F , and write F → x, if every open set containing
x belongs to F .

(b) Let (X,T) and (Y,S) be topological spaces, φ : X → Y a continuous function, x ∈ X and F a filter
on X converging to x. Then φ[[F ]] converges to φ(x).

2A3R Theorem Let X be a topological space, and K a subset of X. Then K is compact iff every
ultrafilter on X containing K has a limit in K.

2A3S Further calculations with filters (a) It is possible for a filter to have more than one limit; but
in Hausdorff spaces this does not occur.

Accordingly we can safely write x = limF when F → x in a Hausdorff space.

(b) Now suppose that X is a set, F is a filter on X, (Y,S) is a Hausdorff space, D ∈ F and φ : D → Y
is a function. Then we write limx→F φ(x) for limφ[[F ]] if this is defined in Y ; that is, limx→F φ(x) = y iff
φ−1[H] ∈ F for every open set H containing y.

If Z is another set, G is a filter on Z, and ψ : Z → X is such that F = ψ[[G]], then the composition φψ is
defined on ψ−1[D] ∈ G, and if one of the limits limx→F φ(x), limz→G φψ(z) is defined in Y so is the other,
and they are then equal.

In the special case Y = R, limx→F φ(x) = a iff {x : |φ(x)− a| ≤ ǫ} ∈ F for every ǫ > 0.

Measure Theory (abridged version)
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(c) Suppose that X and Y are sets, F is a filter on X, Θ is a non-empty family of pseudometrics on Y
defining a topology S on Y , and φ : X → Y is a function. Then the image filter φ[[F ]] converges to y ∈ Y
iff limx→F θ(φ(x), y) = 0 in R for every θ ∈ Θ.

(d) In particular, if X has a topology T defined by a non-empty family P of pseudometrics, then a filter
F on X converges to x ∈ X iff limy→F ρ(y, x) = 0 for every ρ ∈ P.

(e)(i) If X is any set, F is an ultrafilter on X, (Y,S) is a Hausdorff space, and h : X → Y is a function
such that h[F ] is relatively compact in Y for some F ∈ F , then limx→F h(x) is defined in Y .

(ii) If X is any set, F is an ultrafilter on X, and h : X → R is a function such that h[F ] is bounded
in R for some set F ∈ F , then limx→F h(x) exists in R.

(f) Suppose that F is a filter on a set X, and that f : X → [−∞,∞] is any function. Then

lim sup
x→F

f(x) = inf
F∈F

sup
x∈F

f(x) ∈ [−∞,∞],

lim inf
x→F

f(x) = sup
F∈F

inf
x∈F

f(x).

For any two functions f , g : X → R,

limx→F f(x) = a iff a = lim supx→F f(x) = lim infx→F f(x),

and

lim supx→F f(x) + g(x) ≤ lim supx→F f(x) + lim supx→F g(x),

lim infx→F f(x) + g(x) ≥ lim infx→F f(x) + lim infx→F g(x),

lim infx→F (−f(x)) = − lim supx→F f(x), lim supx→F (−f(x)) = − lim infx→F f(x),

lim infx→F cf(x) = c lim infx→F f(x), lim supx→F cf(x) = c lim supx→F f(x)

whenever the right-hand-sides are defined in [−∞,∞] and c ≥ 0. So if a = limx→F f(x) and b = limx→F (x)
exist in R, limx→F f(x) + g(x) exists and is equal to a + b and limx→F cf(x) exists and is equal to
c limx→F f(x) for every c ∈ R.

If f : X → R is such that

for every ǫ > 0 there is an F ∈ F such that supx∈F f(x) ≤ ǫ+ infx∈F f(x),

then limx→F f(x) is defined in [−∞,∞].

(g) limn→∞, lim supn→∞, lim infn→∞ correspond to limn→FFr
, lim supn→FFr

, lim infn→FFr
where FFr

is the Fréchet filter on N, the filter {N \ A : A ⊆ N is finite} of cofinite subsets of N. Similarly, limδ↓a,
lim supδ↓a, lim infδ↓a correspond to limδ→F , lim supδ→F , lim infδ→F where

F = {A : A ⊆ R, ∃h > 0 such that ]a, a+ h] ⊆ A}.

2A3T Product topologies (a) Let (X,T) and (Y,S) be topological spaces. Let U be the set of subsets
U of X × Y such that for every (x, y) ∈ U there are G ∈ T, H ∈ S such that (x, y) ∈ G×H ⊆ U . Then U

is a topology on X × Y .
U is called the product topology on X × Y .

(b) Suppose, in (a), that T and S are defined by non-empty families P, Θ of pseudometrics. Then U is
defined by the family Υ = {ρ̃ : ρ ∈ P} ∪ {θ̄ : θ ∈ Θ} of pseudometrics on X × Y , where

ρ̃((x, y), (x′, y′)) = ρ(x, x′), θ̄((x, y), (x′, y′)) = θ(y, y′)

whenever x, x′ ∈ X, y, y′ ∈ Y , ρ ∈ P and θ ∈ Θ.

D.H.Fremlin



10 Appendix 2A3Tc

(c) In particular, the product topology on R
r ×R

s is the Euclidean topology if we identify R
r ×R

s with
R

r+s.

2A3U Dense sets (a) If X is a topological space, a set D ⊆ X is dense in X if D = X. More generally,
if D ⊆ A ⊆ X, then D is dense in A if it is dense for the subspace topology of A.

(b) If T is defined by a non-empty family P of pseudometrics on X, then D ⊆ X is dense iff

U(x; ρ0, . . . , ρn; δ) ∩D 6= ∅
whenever x ∈ X, ρ0, . . . , ρn ∈ P and δ > 0.

(c) If (X,T), (Y,S) are topological spaces, of which Y is Hausdorff (in particular, if (X, ρ) and (Y, θ) are
metric spaces), and f , g : X → Y are continuous functions which agree on some dense subset D of X, then
f = g.

(d) A topological space is called separable if it has a countable dense subset.

Version of 4.3.14

2A4 Normed spaces

In Chapter 24 I discuss the spaces Lp, for 1 ≤ p ≤ ∞, and describe their most basic properties. These
spaces form a cluster of fundamental examples for the general theory of ‘normed spaces’, the basis of
functional analysis. This is not the book from which you should learn that theory, but once again it may
save you trouble if I briefly outline those parts of the general theory which are essential if you are to make
sense of the ideas here.

2A4A The real and complex fields While the most important parts of the theory, from the point
of view of measure theory, are most effectively dealt with in terms of real linear spaces, there are many
applications in which complex linear spaces are essential. I will therefore use the phrase

‘U is a linear space over R

C
’

to mean that U is either a linear space over the field R or a linear space over the field C; it being understood
that in any particular context all linear spaces considered will be over the same field. In the same way, I

will write ‘α ∈ R

C
’ to mean that α belongs to whichever is the current underlying field.

2A4B Definitions (a) A normed space is a linear space U over R

C
together with a norm, that is, a

functional ‖ ‖ : U → [0,∞[ such that
‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ U ,

‖αu‖ = |α|‖u‖ for u ∈ U , α ∈ R

C
,

‖u‖ = 0 only when u = 0, the zero vector of U .

(b) If U is a normed space, then we have a metric ρ on U defined by saying that ρ(u, v) = ‖u− v‖ for u,
v ∈ U .

(c) If U is a normed space, a set A ⊆ U is bounded if {‖u‖ : u ∈ A} is bounded in R.

2A4C Linear subspaces (a) If U is any normed space and V is a linear subspace of U , then V is also
a normed space, if we take the norm of V to be just the restriction to V of the norm of U .

(b) If V is a linear subspace of U , so is its closure.

2A4D Banach spaces (a) If U is a normed space, a sequence 〈un〉n∈N in U is Cauchy if ‖um−un‖ → 0
as m, n→ ∞.

c© 1996 D. H. Fremlin
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(b) A normed space U is complete if every Cauchy sequence has a limit; a complete normed space is
called a Banach space.

2A4E Lemma Let U be a normed space such that 〈un〉n∈N is convergent in U whenever 〈un〉n∈N is a
sequence in U such that ‖un+1 − un‖ ≤ 4−n for every n ∈ N. Then U is complete.

2A4F Bounded linear operators (a) Let U , V be two normed spaces. A linear operator T : U → V
is bounded if {‖Tu‖ : u ∈ U, ‖u‖ ≤ 1} is bounded. Write B(U ;V ) for the space of all bounded linear
operators from U to V , and for T ∈ B(U ;V ) write ‖T‖ = sup{‖Tu‖ : u ∈ U, ‖u‖ ≤ 1}.

(b) ‖Tu‖ ≤ ‖T‖‖u‖ whenever T ∈ B(U ;V ) and u ∈ U .

(c) A linear operator T : U → V is bounded iff it is continuous for the norm topologies on U and V .

(d) If U , V and W are normed spaces, S ∈ B(U ;V ) and T ∈ B(V ;W ) then TS ∈ B(U ;W ) and
‖TS‖ ≤ ‖T‖‖S‖.

2A4G Theorem B(U ;V ) is a linear space over R

C
, and ‖ ‖ is a norm on B(U ;V ).

2A4H Dual spaces The most important case of B(U ;V ) is when V is the scalar field R

C
itself. In this

case we call B(U ; R
C
) the dual of U ; it is commonly denoted U ′ or U∗; I use the latter.

2A4I Extensions of bounded operators: Theorem Let U be a normed space and V ⊆ U a dense
linear subspace. Let W be a Banach space and T0 : V → W a bounded linear operator; then there is a
unique bounded linear operator T : U →W extending T0, and ‖T‖ = ‖T0‖.

2A4J Normed algebras (a) A normed algebra is a normed space (U, ‖ ‖) together with a multipli-
cation, a binary operator × on U , such that

u× (v × w) = (u× v)× w,

u× (v + w) = (u× v) + (u× w), (u+ v)× w = (u× w) + (v × w),

(αu)× v = u× (αv) = α(u× v),

‖u× v‖ ≤ ‖u‖‖v‖
for all u, v, w ∈ U and α ∈ R

C
.

(b) A Banach algebra is a normed algebra which is a Banach space. A normed algebra is commutative
if its multiplication is commutative.

*2A4K Definition A normed space U is uniformly convex if for every ǫ > 0 there is a δ > 0 such
that ‖u+ v‖ ≤ 2− δ whenever u, v ∈ U , ‖u‖ = ‖v‖ = 1 and ‖u− v‖ ≥ ǫ.

Version of 13.11.07

2A5 Linear topological spaces

The principal objective of §2A3 is in fact the study of certain topologies on the linear spaces of Chapter
24. I give some fragments of the general theory.

2A5A Linear space topologies: Definition A linear topological space or topological vector

space over R

C
is a linear space U over R

C
together with a topology T such that the maps

(u, v) 7→ u+ v : U × U → U ,

D.H.Fremlin
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(α, u) 7→ αu : R

C
× U → U

are both continuous, where the product spaces U ×U and R

C
×U are given their product topologies. Given

a linear space U , a topology on U satisfying the conditions above is a linear space topology. Note that

(u, v) 7→ u− v = u+ (−1)v : U × U → U

will also be continuous.

2A5B Proposition Suppose that U is a linear space over R

C
, and T is a family of functionals τ : U →

[0,∞[ such that
(i) τ(u+ v) ≤ τ(u) + τ(v) for all u, v ∈ U and τ ∈ T;
(ii) τ(αu) ≤ τ(u) if u ∈ U , |α| ≤ 1 and τ ∈ T;
(iii) limα→0 τ(αu) = 0 whenever u ∈ U and τ ∈ T.

For τ ∈ T, define ρτ : U × U → [0,∞[ by setting ρτ (u, v) = τ(u − v) for all u, v ∈ U . Then each ρτ is a
pseudometric on U , and the topology defined by P = {ρτ : τ ∈ T} renders U a linear topological space.

Remark Functionals satisfying the conditions (i)-(iii) above are called F-seminorms; an F-seminorm τ
such that τ(u) 6= 0 for every non-zero u is an F-norm.

*2A5C Theorem Let U be a linear space and T a linear space topology on U .
(a) There is a family T of F-seminorms defining T as in 2A5B.
(b) If T is metrizable, we can take T to consist of a single functional.

2A5D Definition Let U be a linear space over R

C
. Then a seminorm on U is a functional τ : U → [0,∞[

such that
(i) τ(u+ v) ≤ τ(u) + τ(v) for all u, v ∈ U ;

(ii) τ(αu) = |α|τ(u) if u ∈ U , α ∈ R

C
.

2A5E Convex sets (a) Let U be a linear space over R

C
. A subset C of U is convex if αu+(1−α)v ∈ C

whenever u, v ∈ C and α ∈ [0, 1]. The intersection of any family of convex sets is convex, so for every set
A ⊆ U there is a smallest convex set including A; this is the set of vectors expressible as

∑n
i=0 αiui where

u0, . . . , un ∈ A, α0, . . . , αn ∈ [0, 1] and
∑n

i=0 αi = 1; it is the convex hull of A. If C, C ′ ⊆ U are convex,

and α ∈ R

C
, then αC and C + C ′ are convex. If C ⊆ U is convex, V is another linear space over R

C
, and

T : U → V is a linear operator, then T [C] ⊆ V is convex.

(b) If U is a linear topological space, the closure of any convex set is convex. It follows that, for any
A ⊆ U , the closure of the convex hull of A is the smallest closed convex set including A; this is the closed
convex hull of A.

(c) I note for future reference that in a linear topological space, the closure of any linear subspace is a
linear subspace.

2A5F Completeness in linear topological spaces: Definitions Let U be a linear space over R

C
, and

T a linear space topology on U . A filter F on U is Cauchy if for every open set G in U containing 0 there
is an F ∈ F such that F − F = {u − v : u, v ∈ F} is included in G. U is complete if every Cauchy filter
on U is convergent.

2A5G Lemma Let U be a linear space over R

C
, and let T be a family of F-seminorms defining a linear

space topology on U , as in 2A5B. Then a filter F on U is Cauchy iff for every τ ∈ T and ǫ > 0 there is an
F ∈ F such that τ(u− v) ≤ ǫ for all u, v ∈ F .

2A5H Normed spaces and sequential completeness: Proposition Let (U, ‖ ‖) be a normed space

over R

C
, and let T be the linear space topology on U defined by the method of 2A5B from the set T = {‖ ‖}.

Then U is complete in the sense of 2A5F iff it is complete in the sense of 2A4D.

Measure Theory (abridged version)
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2A5I Weak topologies Let U be a normed linear space over R

C
.

(a) Write U∗ for its dual B(U ; R
C
). T = {|h| : h ∈ U∗} defines a linear space topology on U ; this is the

weak topology of U .

(b) A filter F on U converges to u ∈ U for the weak topology of U iff limv→F h(v) = h(u) for every
h ∈ U∗.

(c) A set C ⊆ U is called weakly compact if it is compact for the weak topology of U . So a set C ⊆ U is
weakly compact iff for every ultrafilter F on U containing C there is a u ∈ C such that limv→F h(v) = h(u)
for every h ∈ U∗.

(d) A subset A of U is called relatively weakly compact if it is a subset of some weakly compact
subset of U .

(e) If h ∈ U∗, then h : U → R

C
is continuous for the weak topology on U and the usual topology of R

C
.

So if A ⊆ U is relatively weakly compact, h[A] must be bounded in R

C
.

(f) If V is another normed space and T : U → V is a bounded linear operator, then T is continuous for
the respective weak topologies.

(g) Corresponding to the weak topology on a normed space U , we have the weak* or w*-topology on
its dual U∗, defined by the set T = {|û| : u ∈ U}, where I write û(f) = f(u) for every f ∈ U∗, u ∈ U . As in
(a), this is a linear space topology on U∗.

*2A5J Angelic spaces First, a topological space X is regular if whenever G ⊆ X is open and x ∈ G
then there is an open set H such that x ∈ H ⊆ H ⊆ G. Next, a regular Hausdorff space X is angelic if
whenever A ⊆ X is such that every sequence in A has a cluster point in X, then A is compact and every
point of A is the limit of a sequence in A. Now any normed space is angelic in its weak topology.

Version of 10.11.14

2A6 Factorization of matrices

I spend a couple of pages on the linear algebra of Rr required for Chapter 26. I give only one proof,
because this is material which can be found in any textbook of elementary linear algebra; but I think it may
be helpful to run through the basic ideas in the language which I use for this treatise.

2A6A Determinants

(i) Every r × r real matrix T has a real determinant detT .

(ii) For any r × r matrices S and T , detST = detS detT .

(iii) If T is a diagonal matrix, its determinant is just the product of its diagonal entries.

(iv) For any r × r matrix T , detT⊤ = detT , where T⊤ is the transpose of T .

(v) detT is a continuous function of the coefficients of T .

2A6B Orthonormal families For x = (ξ1, . . . , ξr), y = (η1, . . . , ηr) ∈ R
r, write x .y =

∑r
i=1 ξiηi; ‖x‖

is
√
x .x. x1, . . . , xk are orthonormal if xi .xj = 0 for i 6= j, 1 for i = j.

(i) If x1, . . . , xk are orthonormal vectors in R
r, where k < r, then there are vectors xk+1, . . . , xr

in R
r such that x1, . . . , xr are orthonormal.

(ii) An r×r matrix P is orthogonal if P⊤P is the identity matrix; equivalently, if the columns
of P are orthonormal.

(iii) For an orthogonal matrix P , detP must be ±1.

(iv) If P is orthogonal, then Px .Py = x .y for all x, y ∈ R
r.

(v) If P is orthogonal, so is P⊤ = P−1.

(vi) If P and Q are orthogonal, so is PQ.

c© 1994 D. H. Fremlin
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2A6C Proposition Let T be any real r × r matrix. Then T is expressible as PDQ where P and Q are
orthogonal matrices and D is a diagonal matrix with non-negative coefficients.
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