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Chapter 28

Fourier analysis

For the last chapter of this volume, I attempt a brief account of one of the most important topics in
analysis. This is a bold enterprise, and I cannot hope to satisfy the reasonable demands of anyone who
knows and loves the subject as it deserves. But I also cannot pass it by without being false to my own
subject, since problems contributed by the study of Fourier series and transforms have led measure theory
throughout its history. What I will try to do, therefore, is to give versions of those results which everyone
ought to know in language unifying them with the rest of this treatise, aiming to open up a channel for
the transfer of intuitions and techniques between the abstract general study of measure spaces, which is the
centre of our work, and this particular family of applications of the theory of integration.

I have divided the material of this chapter, conventionally enough, into three parts: Fourier series, Fourier
transforms and the characteristic functions of probability theory. While it will be obvious that many ideas
are common to all three, I do not think it useful, at this stage, to try to formulate an explicit generalization
to unify them; that belongs to a more general theory of harmonic analysis on groups, which must wait until
Volume 4. I begin however with a section on the Stone-Weierstrass theorem (§281), which is one of the
basic tools of functional analysis, as well as being useful for this chapter. The final section (§286), a proof
of Carleson’s theorem, is at a rather different level from the rest.

Version of 4.12.12

281 The Stone-Weierstrass theorem

Before we begin work on the real subject of this chapter, it will be helpful to have a reasonably general
statement of a fundamental theorem on the approximation of continuous functions. In fact I give a variety
of forms (281A, 281E, 281F and 281G, together with 281Ya, 281Yd and 281Yg), all of which are sometimes
useful. I end the section with a version of Weyl’s Equidistribution Theorem (281M-281N).

281A Stone-Weierstrass theorem: first form Let X be a topological space and K a compact subset
of X. Write Cb(X) for the space of all bounded continuous real-valued functions on X, so that Cb(X) is a
linear space over R. Let A ⊆ Cb(X) be such that

A is a linear subspace of Cb(X);

|f | ∈ A for every f ∈ A;

χX ∈ A;

whenever x, y are distinct points of K there is an f ∈ A such that f(x) 6= f(y).

Then for every continuous h : K → R and ǫ > 0 there is an f ∈ A such that

|f(x)− h(x)| ≤ ǫ for every x ∈ K,

if K 6= ∅, infx∈X f(x) ≥ infx∈K h(x) and supx∈X f(x) ≤ supx∈K h(x).

Remark I have stated this theorem in its natural context, that of general topological spaces. But if these
are unfamiliar to you, you do not in fact need to know what they are. If you read ‘let X be a topological
space’ as ‘let X be a subset of Rr’ and ‘K is a compact subset of X’ as ‘K is a subset of X which is closed
and bounded in Rr’, you will have enough for all the applications in this chapter. In order to follow the
proof, of course, you will need to know a little about compactness in Rr; I have written out the necessary
facts in §2A2.
proof (a) If K is empty, then we can take f = 0 to be the constant function with value 0. So henceforth
let us suppose that K 6= ∅.
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2 Fourier analysis 281A

(b) The first point to note is that if f , g ∈ A then f ∧ g and f ∨ g belong to A, where

(f ∧ g)(x) = min(f(x), g(x)), (f ∨ g)(x) = max(f(x), g(x))

for every x ∈ X; this is because

f ∧ g =
1

2
(f + g − |f − g|), f ∨ g =

1

2
(f + g + |f − g|).

It follows by induction on n that f0 ∧ . . . ∧ fn and f0 ∨ . . . ∨ fn belong to A for all f0, . . . , fn ∈ A.

(c) If x, y are distinct points of K, and a, b ∈ R, there is an f ∈ A such that f(x) = a and f(y) = b.
PPP Start from g ∈ A such that g(x) 6= g(y); this is the point at which we use the last of the list of four
hypotheses on A. Set

α =
a−b

g(x)−g(y)
, β =

bg(x)−ag(y)

g(x)−g(y)
, f = αg + βχX ∈ A. QQQ

(d) (The heart of the proof lies in the next two paragraphs.) Let h : K → [0,∞[ be a continuous function
and x any point of K. For any ǫ > 0, there is an f ∈ A such that f(x) = h(x) and f(y) ≤ h(y) + ǫ for
every y ∈ K. PPP Let Gx be the family of those open sets G ⊆ X for which there is some f ∈ A such that
f(x) = h(x) and f(w) ≤ h(w) + ǫ for every w ∈ K ∩ G. I claim that K ⊆ ⋃Gx. To see this, take any
y ∈ K. By (c), there is an f ∈ A such that f(x) = h(x) and f(y) = h(y). Now h − f↾K : K → R is a
continuous function, taking the value 0 at y, so there is an open subset G of X, containing y, such that
(h− f↾K)(w) ≥ −ǫ for every w ∈ G ∩K, that is, f(w) ≤ h(w) + ǫ for every w ∈ G ∩K. Thus G ∈ Gx and
y ∈ ⋃Gx, as required.

Because K is compact, Gx has a finite subcover G0, . . . , Gn say. For each i ≤ n, take fi ∈ A such that
fi(x) = h(x) and fi(w) ≤ h(w) + ǫ for every w ∈ Gi ∩K. Then

f = f0 ∧ f1 ∧ . . . ∧ fn ∈ A,

by (b), and evidently f(x) = h(x), while if y ∈ K there is some i ≤ n such that y ∈ Gi, so that

f(y) ≤ fi(y) ≤ h(y) + ǫ. QQQ

(e) If h : K → R is any continuous function and ǫ > 0, there is an f ∈ A such that |f(y)− h(y)| ≤ ǫ for
every y ∈ K. PPP This time, let G be the set of those open subsets G of X for which there is some f ∈ A
such that f(y) ≤ h(y) + ǫ for every y ∈ K and f(x) ≥ h(x) − ǫ for every x ∈ G ∩ K. Once again, G is
an open cover of K. To see this, take any x ∈ K. By (d), there is an f ∈ A such that f(x) = h(x) and
f(y) ≤ h(y) + ǫ for every y ∈ K. Now h − f↾K : K → R is a continuous function which is zero at x, so
there is an open subset G of X, containing x, such that (h − f↾K)(w) ≤ ǫ for every w ∈ G ∩K, that is,
f(w) ≥ h(w)− ǫ for every w ∈ G ∩K. Thus G ∈ G and x ∈ ⋃G, as required.

Because K is compact, G has a finite subcover G0, . . . , Gm say. For each j ≤ m, take fj ∈ A such that
fj(y) ≤ h(y) + ǫ for every y ∈ K and fj(w) ≥ h(w)− ǫ for every w ∈ Gj ∩K. Then

f = f0 ∨ f1 ∨ . . . ∨ fm ∈ A,

by (b), and evidently f(y) ≤ h(y)+ ǫ for every y ∈ K, while if x ∈ K there is some j ≤ m such that x ∈ Gj ,
so that

f(x) ≥ fj(x) ≥ h(x)− ǫ.

Thus |f(x)− h(x)| ≤ ǫ for every x ∈ K, as required. QQQ

(f) Thus we have an f satisfying the first of the two requirements of the theorem. But for the second,
set M0 = infx∈K h(x) and M1 = supx∈K h(x), and

f1 = med(M0χX, f,M1χX) = (M0χX) ∨ (f ∧M1χX);

f1 satisfies the second condition as well as the first. (I am tacitly assuming here what is in fact the case,
that M0 and M1 are finite; this is because K is compact – see 2A2G or 2A3N.)

281B We need some simple tools, belonging to the basic theory of normed spaces; but I hope they will
be accessible even if you have not encountered ‘normed spaces’ before, if you keep a finger at the beginning
of §2A4 as you read the next lemma.
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281C The Stone-Weierstrass theorem 3

Lemma Let X be any set. Write ℓ∞(X) for the set of bounded functions from X to R. For f ∈ ℓ∞(X), set

‖f‖∞ = supx∈X |f(x)|,
counting the supremum as 0 if X is empty. Then

(a) ℓ∞(X) is a normed space.
(b) Let A ⊆ ℓ∞(X) be a subset and A its closure (2A3D).
(i) If A is a linear subspace of ℓ∞(X), so is A.
(ii) If f × g ∈ A whenever f , g ∈ A, then f × g ∈ A whenever f , g ∈ A.
(iii) If |f | ∈ A whenever f ∈ A, then |f | ∈ A whenever f ∈ A.

proof (a) This is a routine verification. To confirm that ℓ∞(X) is a linear space over R, we have to check
that f +g, cf belong to ℓ∞(X) whenever f , g ∈ ℓ∞(X) and c ∈ R; simultaneously we can confirm that ‖ ‖∞
is a norm on ℓ∞(X) by observing that

|(f + g)(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞,

|cf(x)| = |c||f(x)| ≤ |c|‖f‖∞
whenever f , g ∈ ℓ∞(X) and c ∈ R. It is worth noting at the same time that if f , g ∈ ℓ∞(X), then

|(f × g)(x)| = |f(x)||g(x)| ≤ ‖f‖∞‖g‖∞
for every x ∈ X, so that ‖f × g‖∞ ≤ ‖f‖∞‖g‖∞.

(Of course all these remarks are very elementary special cases of parts of §243; see 243Xl.)

(b) Recall that

A = {f : f ∈ ℓ∞(X), ∀ ǫ > 0 ∃ f1 ∈ A, ‖f − f1‖∞ ≤ ǫ}
(2A3Kb). Take f , g ∈ A and c ∈ R, and let ǫ > 0. Set

η = min(1,
ǫ

2+|c|+‖f‖∞+‖g‖∞

) > 0.

Then there are f1, g1 ∈ A such that ‖f − f1‖∞ ≤ η and ‖g − g1‖∞ ≤ η.
Now

‖(f + g)− (f1 + g1)‖∞ ≤ ‖f − f1‖∞ + ‖g − g1‖∞ ≤ 2η ≤ ǫ,

‖cf − cf1‖∞ = |c|‖f − f1‖∞ ≤ |c|η ≤ ǫ,

‖(f × g)− (f1 × g1)‖∞ = ‖(f − f1)× g + f × (g − g1)− (f − f1)× (g − g1)‖∞
≤ ‖(f − f1)× g‖∞ + ‖f × (g − g1)‖∞ + ‖(f − f1)× (g − g1)‖∞
≤ ‖f − f1‖∞‖g‖∞ + ‖f‖∞‖g − g1)‖∞ + ‖f − f1‖∞‖g − g1‖∞
≤ η(‖g‖∞ + ‖f‖∞ + η) ≤ η(‖g‖∞ + ‖f‖∞ + 1) ≤ ǫ,

‖|f | − |f1|‖∞ ≤ ‖f − f1‖∞ ≤ η ≤ ǫ.

(i) If A is a linear subspace, then f1 + g1 and cf1 belong to A. As ǫ is arbitrary, f + g and cf belong
to A. As f , g and c are arbitrary, A is a linear subspace of ℓ∞(X).

(ii) If A is closed under multiplication, then f1 × g1 ∈ A. As ǫ is arbitrary, f × g ∈ A.
(iii) If the absolute values of functions in A belong to A, then |f1| ∈ A. As ǫ is arbitrary, |f | ∈ A.

281C Lemma There is a sequence 〈pn〉n∈N of real polynomials such that limn→∞ pn(x) = |x| uniformly
for x ∈ [−1, 1].

proof (a) By the Binomial Theorem we have
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4 Fourier analysis 281C

(1− x)1/2 = 1− 1

2
x− 1

4·2!x
2 − 1·3

23·3!x
3 − . . . = −∑∞

n=0
(2n)!

(2n−1)(2nn!)2
xn

whenever |x| < 1, with the convergence being uniform on any interval [−a, a] with 0 ≤ a < 1. (For a proof of
this, see almost any book on real or complex analysis. If you have no favourite text to hand, you can try to
construct a proof from the following facts: (i) the radius of convergence of the series is 1, so on any interval
[−a, a], with 0 ≤ a < 1, it is uniformly absolutely summable (ii) writing f(x) for the sum of the series
for |x| < 1, use Lebesgue’s Dominated Convergence Theorem to find expressions for the indefinite integrals
∫ x

0
f , −

∫ 0

−x f and show that these are 2
3 (1 − (1 − x)f(x)), 2

3 (1 − (1 + x)f(−x)) for 0 ≤ x < 1 (iii) use the

Fundamental Theorem of Calculus to show that f(x) + 2(1− x)f ′(x) = 0 (iv) show that d
dx

( f(x)2

1−x
)

= 0 and

hence (v) that f(x)2 = 1− x whenever |x| < 1. Finally, show that because f is continuous and non-zero in
]−1, 1[, f(x) must be the positive square root of 1− x throughout.)

We have a further fragment of information. If we set

q0(x) = 1, q1(x) = 1− 1

2
x, qn(x) = −∑n

k=0
(2k)!

(2k−1)(2kk!)2
xk

for n ≥ 2 and x ∈ [0, 1], so that qn is the nth partial sum of the binomial series for (1− x)1/2, then we have
limn→∞ qn(x) = (1− x)1/2 for every x ∈ [0, 1[. But also every qn is non-increasing on [0, 1], and 〈qn(x)〉n∈N

is a non-increasing sequence for each x ∈ [0, 1]. So we must have
√
1− x ≤ qn(x) ∀ n ∈ N, x ∈ [0, 1[,

and therefore, because all the qn are continuous,
√
1− x ≤ qn(x) ∀ n ∈ N, x ∈ [0, 1].

Moreover, given ǫ > 0, set a = 1 − 1
4ǫ

2, so that
√
1− a = ǫ

2 . Then there is an n0 ∈ N such that qn(x) −√
1− x ≤ ǫ

2 for every x ∈ [0, a] and n ≥ n0. In particular, qn(a) ≤ ǫ, so qn(x) ≤ ǫ and qn(x) −
√
1− x ≤ ǫ

whenever x ∈ [a, 1] and n ≥ n0. This means that

0 ≤ qn(x)−
√
1− x ≤ ǫ ∀ n ≥ n0, x ∈ [0, 1];

as ǫ is arbitrary, 〈qn(x)〉n∈N →
√
1− x uniformly on [0, 1].

(b) Now set pn(x) = qn(1− x2) for x ∈ R. Because each qn is a real polynomial of degree n, each pn is a
real polynomial of degree 2n. Next,

sup
|x|≤1

|pn(x)− |x|| = sup
|x|≤1

|qn(1− x2)−
√

1− (1− x2)|

= sup
y∈[0,1]

|qn(y)−
√

1− y| → 0

as n→ ∞, so limn→∞ pn(x) = |x| uniformly for |x| ≤ 1, as required.

281D Corollary Let X be a set, and A a norm-closed linear subspace of ℓ∞(X) containing χX and such
that f × g ∈ A whenever f , g ∈ A. Then |f | ∈ A for every f ∈ A.

proof Set

f1 =
1

1+‖f‖∞

f ,

so that f1 ∈ A and ‖f1‖∞ ≤ 1. Because A contains χX and is closed under multiplication, p◦f1 ∈ A for
every polynomial p with real coefficients. In particular, gn = pn ◦f1 ∈ A for every n, where 〈pn〉n∈N is the
sequence of 281C. Now, because |f1(x)| ≤ 1 for every x ∈ X,

‖gn − |f1|‖∞ = supx∈X |pn(f1(x))− |f1(x)|| ≤ sup|y|≤1 |pn(y)− |y|| → 0

as n→ ∞. Because A is ‖ ‖∞-closed, |f1| ∈ A; consequently |f | ∈ A, as claimed.

281E Stone-Weierstrass theorem: second form Let X be a topological space and K a compact
subset ofX. Write Cb(X) for the space of all bounded continuous real-valued functions onX. Let A ⊆ Cb(X)
be such that
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281G The Stone-Weierstrass theorem 5

A is a linear subspace of Cb(X);

f × g ∈ A for every f , g ∈ A;

χX ∈ A;

whenever x, y are distinct points of K there is an f ∈ A such that f(x) 6= f(y).

Then for every continuous h : K → R and ǫ > 0 there is an f ∈ A such that

|f(x)− h(x)| ≤ ǫ for every x ∈ K,

if K 6= ∅, infx∈X f(x) ≥ infx∈K h(x) and supx∈X f(x) ≤ supx∈K h(x).

proof Let A be the ‖ ‖∞-closure of A in ℓ∞(X). It is helpful to know that A ⊆ Cb(X); this is because the
uniform limit of continuous functions is continuous. (But if this is new to you, or your memory has faded,
don’t take time to look it up now; just read ‘A ∩ Cb(X)’ in place of ‘A’ in the rest of this argument.) By
281B-281D, A is a linear subspace of Cb(X) and |f | ∈ A for every f ∈ A, so the conditions of 281A apply
to A.

Take a continuous h : K → R and an ǫ > 0. The cases in which K = ∅ or h is constant are trivial,
because all constant functions belong to A; so I suppose that M0 = infx∈K h(x) and M1 = supx∈K h(x) are
defined and distinct. As observed at the end of the proof of 281A, M0 and M1 are finite. Set

η = min( 13ǫ,
1
2 (M1 −M2)) > 0, h̃(x) = med(M0 + η, h(x),M1 − η) for x ∈ K

(definition: 2A1Ac), so that h̃ : K → R is continuous and M0 + η ≤ h̃(x) ≤ M1 − η for every x ∈ K. By

281A, there is an f0 ∈ A such that |f0(x) − h̃(x)| ≤ η for every x ∈ K and M0 + η ≤ f0(x) ≤ M1 − η for
every x ∈ X. Now there is an f ∈ A such that ‖f − f0‖∞ ≤ η, so that

|f(x)− h(x)| ≤ |f(x)− f0(x)|+ |f0(x)− h̃(x)|+ |h̃(x)− h(x)| ≤ 3η ≤ ǫ

for every x ∈ K, while

M0 ≤ f0(x)− η ≤ f(x) ≤ f0(x) + η ≤M1

for every x ∈ X.

281F Corollary: Weierstrass’ theorem Let K be any closed bounded subset of R. Then every
continuous h : K → R can be uniformly approximated on K by polynomials.

proof Apply 281E with X = K (noting that K, being closed and bounded, is compact), and A the set of
polynomials with real coefficients, regarded as functions from K to R.

281G Stone-Weierstrass theorem: third form Let X be a topological space and K a compact
subset of X. Write Cb(X;C) for the space of all bounded continuous complex-valued functions on X, so
that Cb(X;C) is a linear space over C. Let A ⊆ Cb(X;C) be such that

A is a linear subspace of Cb(X;C);

f × g ∈ A for every f , g ∈ A;

χX ∈ A;

the complex conjugate f̄ of f belongs to A for every f ∈ A;

whenever x, y are distinct points of K there is an f ∈ A such that f(x) 6= f(y).

Then for every continuous h : K → C and ǫ > 0 there is an f ∈ A such that

|f(x)− h(x)| ≤ ǫ for every x ∈ K,

if K 6= ∅, supx∈X |f(x)| ≤ supx∈K |h(x)|.
proof If K = ∅, or h is identically zero, we can take f = 0. So let us suppose that M = supx∈K |h(x)| > 0.

(a) Set

AR = {f : f ∈ A, f(x) is real for every x ∈ X}.
Then AR satisfies the conditions of 281E. PPP (i) Evidently AR is a subset of Cb(X) = Cb(X;R), is closed
under addition, multiplication by real scalars and pointwise multiplication of functions, and contains χX.
If x, y are distinct points of K, there is an f ∈ A such that f(x) 6= f(y). Now

D.H.Fremlin



6 Fourier analysis 281G

Re f =
1

2
(f + f̄), Im f =

1

2i
(f − f̄)

both belong to A and are real-valued, so belong to AR, and at least one of them takes different values at x
and y. QQQ

(b) Consequently, given a continuous function h : K → C and ǫ > 0, we may apply 281E twice to find
f1, f2 ∈ AR such that

|f1(x)−Re(h(x))| ≤ η, |f2(x)− Im(h(x))| ≤ η

for every x ∈ K, where η = min( 12 ,M, 16ǫ) > 0. Setting g = f1 + if2, we have g ∈ A and |g(x)− h(x)| ≤ 2η
for every x ∈ K.

(c) Set M1 = ‖g‖∞. If M1 ≤M we can take f = g and stop. Otherwise, consider the function

φ(t) =
M−η

max(M,
√
t)

for t ∈ [0,M2
1 ]. By Weierstrass’ theorem (281F), there is a real polynomial p such that |φ(t) − p(t)| ≤ η

M1

whenever 0 ≤ t ≤M2
1 . Note that |g|2 = g × ḡ ∈ A, so that

f = g × p(|g|2) ∈ A.

Now

|p(t)| ≤ φ(t) +
η

M1

≤ φ(t) +
η

max(M,
√
t)

=
M

max(M,
√
t)

whenever 0 ≤ t ≤M2
1 , so

|f(x)| ≤ |g(x)| M

max(M,|g(x)|) ≤M

for every x ∈ X. Next, if 0 ≤ t ≤ min(M1,M + 2η)2,

|1− p(t)| ≤ η

M1

+ 1− φ(t) ≤ η

M
+ 1− M−η

M+2η
≤ 4η

M
.

Consequently, if x ∈ K, so that

|g(x)| ≤ min(M1, |h(x)|+ 2η) ≤ min(M1,M + 2η),

we shall have

|1− p(|g(x)|2)| ≤ 4η

M
,

and

|f(x)− h(x)| ≤ |g(x)− h(x)|+ |g(x)||1− p(|g(x)|2)|

≤ 2η +
4η

M
(M + 2η) ≤ 2η +

4η

M
(M + 1) ≤ ǫ,

as required.

Remark Of course we could have saved ourselves effort by settling for

supx∈X |f(x)| ≤ 2 supx∈K |h(x)|,
which would be quite good enough for the applications below.

281H Corollary Let [a, b] ⊆ R be a non-empty bounded closed interval and h : [a, b] → C a continuous
function. Then for any ǫ > 0 there are y0, . . . , yn ∈ R and c0, . . . , cn ∈ C such that

|h(x)−∑n
k=0 cke

iykx| ≤ ǫ for every x ∈ [a, b],

supx∈R |∑n
k=0 cke

iykx| ≤ supx∈[a,b] |h(x)|.
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281N The Stone-Weierstrass theorem 7

proof Apply 281G with X = R, K = [a, b] and A the linear span of the functions x 7→ eiyx as y runs over
R.

281I Corollary Let S1 be the unit circle {z : |z| = 1} ⊆ C. Then for any continuous function h : S1 → C

and ǫ > 0, there are n ∈ N and c−n, c−n+1, . . . , c0, . . . , cn ∈ C such that |h(z)−∑n
k=−n ckz

k| ≤ ǫ for every

z ∈ S1.

proof Apply 281G with X = K = S1 and A the linear span of the functions z 7→ zk for k ∈ Z.

281J Corollary Let h : [−π, π] → C be a continuous function such that h(π) = h(−π). Then for any
ǫ > 0 there are n ∈ N, c−n, . . . , cn ∈ C such that |h(x)−∑n

k=−n cke
ikx| ≤ ǫ for every x ∈ [−π, π].

proof The point is that h̃ : S1 → C is continuous on S1, where h̃(z) = h(arg z); this is because arg is
continuous everywhere except at −1, and

limx↓−π h(x) = h(−π) = h(π) = limx↑π h(x),

so

limz∈S1,z→−1 h̃(z) = h(π) = h̃(−1).

Now by 281I there are c−n, . . . , cn ∈ C such that |h̃(z) − ∑n
k=−n ckz

k| ≤ ǫ for every z ∈ S1, and these
coefficients serve equally for h.

281K Corollary Suppose that r ≥ 1 and thatK ⊆ Rr is a non-empty closed bounded set. Let h : K → C

be a continuous function, and ǫ > 0. Then there are y0, . . . , yn ∈ Qr and c0, . . . , cn ∈ C such that

|h(x)−∑n
k=0 cke

iyk .x| ≤ ǫ for every x ∈ K,

supx∈Rr |
∑n
k=0 cke

iyk .x| ≤ supx∈K |h(x)|,
writing y .x =

∑r
j=1 ηjξj when y = (η1, . . . , ηr) and x = (ξ1, . . . , ξr) belong to Rr.

proof Apply 281G with X = Rr and A the linear span of the functions x 7→ eiy .x as y runs over Qr.

281L Corollary Suppose that r ≥ 1 and that K ⊆ Rr is a non-empty closed bounded set. Let h : K → R

be a continuous function, and ǫ > 0. Then there are y0, . . . , yn ∈ Rr and c0, . . . , cn ∈ C such that, writing
g(x) =

∑n
k=0 cke

iyk .x, g is real-valued and

|h(x)− g(x)| ≤ ǫ for every x ∈ K,

infy∈K h(y) ≤ g(x) ≤ supy∈K h(y) for every x ∈ Rr.

proof Apply 281E with X = Rr and A the set of real-valued functions on Rr which are complex linear
combinations of the functions x 7→ eiy .x; as remarked in part (a) of the proof of 281G, A satisfies the
conditions of 281E.

281M Weyl’s Equidistribution Theorem We are now ready for one of the basic results of number
theory. I shall actually apply it to provide an example in §285 below, but (at least in the one-variable case)
it is surely on the (rather long) list of things which every pure mathematician should know. For the sake of
the application I have in mind, I give the full r-dimensional version, but you may wish to take it in the first
place with r = 1.

It will be helpful to have a notation for ‘fractional part’. For any real number x, write <x> for that
number in [0, 1[ such that x−<x> is an integer. Now for the theorem.

281N Theorem Let η1, . . . , ηr be real numbers such that 1, η1, . . . , ηr are linearly independent over Q.
Then whenever 0 ≤ αj ≤ βj ≤ 1 for each j ≤ r,

limn→∞
1

n+1
#({m : m ≤ n, <mηj> ∈ [αj , βj ] for every j ≤ r}) = ∏r

j=1(βj − αj).

D.H.Fremlin



8 Fourier analysis 281N

Remark Thus the theorem says that the long-term proportion of the r-tuples (<mη1>, . . . , <mηr>) which
belong to the interval [a, b] ⊆ [0,1] is just the Lebesgue measure µ[a, b] of the interval. Of course the
condition ‘1, η1, . . . , ηr are linearly independent over Q’ is necessary as well as sufficient (281Xg).

proof (a) Write y = (η1, . . . , ηr) ∈ Rr,

<my> = (<mη1>, . . . , <mηr>) ∈ [0,1[ = [0, 1[
r

for each m ∈ N. Set I = [0,1] = [0, 1]r, and for any function f : I → R write

L(f) = lim supn→∞
1

n+1

∑n
m=0 f(<my>),

L(f) = lim infn→∞
1

n+1

∑n
m=0 f(<my>);

and for f : I → C write

L(f) = limn→∞
1

n+1

∑n
m=0 f(<my>)

if the limit exists. It will be worth noting that for non-negative functions f , g, h : I → R such that h ≤ f+g,

L(h) ≤ L(f) + L(g),

and that L(cf + g) = cL(f) + L(g) for any two functions f , g : I → C such that L(f) and L(g) exist, and
any c ∈ C.

(b) I mean to show that L(f) exists and is equal to
∫

I
f for (many) continuous functions f . The key step

is to consider functions of the form

f(x) = e2πik .x,

where k = (κ1, . . . , κr) ∈ Zr. In this case, if k 6= 0,

k .y =
∑r
j=1 κjηj /∈ Z

because 1, η1, . . . , ηr are linearly independent over Q. So

L(f) = lim
n→∞

1

n+1

n
∑

m=0

e2πik .<my> = lim
n→∞

1

n+1

n
∑

m=0

e2πimk .y

(because mk .y − k .<my> =
∑r
j=1 κj(mηj −<mηj>) is an integer)

= lim
n→∞

1− e2πi(n+1)k .y

(n+ 1)(1− e2πik .y)

(because e2πik .y 6= 1)

= 0,

because |1− e2πi(n+1)k .y| ≤ 2 for every n. Of course we can also calculate the integral of f over I, which is

∫

I

f(x)dx =

∫

I

e2πik .xdx =

∫

I

r
∏

j=1

e2πiκjξjdx

(writing x = (ξ1, . . . , ξr))

=

∫ 1

0

. . .

∫ 1

0

r
∏

j=1

e2πiκjξjdξr . . . dξ1

=

∫ 1

0

e2πiκrξrdξr . . .

∫ 1

0

e2πiκ1ξ1dξ1 = 0

because at least one κj is non-zero, and for this j we must have

Measure Theory



281N The Stone-Weierstrass theorem 9

∫ 1

0
e2πiκjξjdξj =

1

2πiκj

(e2πiκj − 1) = 0.

So we have L(f) =
∫

I
f = 0 when k 6= 0. On the other hand, if k = 0, then f is constant with value 1, so

L(f) = limn→∞
1

n+1

∑n
m=0 f(<my>) = limn→∞ 1 = 1 =

∫

I
f(x)dx.

(c) Now write ∂I = [0,1] \ ]0,1[, the boundary of I. If f : I → C is continuous and f(x) = 0 for x ∈ ∂I,
then L(f) =

∫

I
f . PPP As in 281I, let S1 be the unit circle {z : z ∈ C, |z| = 1}, and set K = (S1)r ⊆ Cr. If

we think of K as a subset of R2r, it is closed and bounded. Let φ : K → I be given by

φ(ζ1, . . . , ζr) = (
1

2
+

arg ζ1

2π
, . . . ,

1

2
+

arg ζr

2π
)

for ζ1, . . . , ζr ∈ S1. Then h = fφ : K → C is continuous, because φ is continuous on (S1 \ {−1})r and

limw→z fφ(w) = fφ(z) = 0

for any z ∈ K \ (S1 \ {−1})r. (Compare 281J.) Now apply 281G with X = K and A the set of polynomials
in ζ1, . . . , ζr, ζ

−1
1 , . . . , ζ−1

r to see that, given ǫ > 0, there is a function of the form

g(z) =
∑

k∈J ckζ
κ1
1 . . . ζκr

r ,

for some finite set J ⊆ Zr and constants ck ∈ C for k ∈ J , such that

|g(z)− h(z)| ≤ ǫ for every z ∈ K.

Set

g̃(x) = g(eπi(2ξ1−1), . . . , eπi(2ξr−1)) =
∑

k∈J cke
πik . (2x−1) =

∑

k∈J(−1)k.1cke
2πik .x,

so that g̃φ = g, and see that

supx∈I |g̃(x)− f(x)| = supz∈K |g(z)− h(z)| ≤ ǫ.

Now g̃ is of the form dealt with in (a), so we must have L(g̃) =
∫

I
g̃. Let n0 be such that

∣

∣

∫

I
g̃ − 1

n+1

∑n
m=0 g̃(<my>)

∣

∣ ≤ ǫ

for every n ≥ n0. Then

|
∫

I
f −

∫

I
g̃| ≤

∫

I
|f − g̃| ≤ ǫ

and

| 1

n+1

n
∑

m=0

g̃(<my>)− 1

n+1

n
∑

m=0

f(<my>)| ≤ 1

n+1

n
∑

m=0

|g̃(<my>)− f(<my>)|

≤ 1

n+1
(n+ 1)ǫ = ǫ

for every n ∈ N. So for n ≥ n0 we must have

| 1

n+1

∑n
m=0 f(<my>)−

∫

I
f | ≤ 3ǫ.

As ǫ is arbitrary, L(f) =
∫

I
f , as required. QQQ

(d) Observe next that if a, b ∈ ]0,1[ = ]0, 1[
r
, and ǫ > 0, there are continuous functions f1, f2 such that

f1 ≤ χ[a, b] ≤ f2 ≤ χ ]0,1[,
∫

I
f2 −

∫

I
f1 ≤ ǫ.

PPP This is elementary. For n ∈ N, define hn : R → [0, 1] by setting hn(ξ) = 0 if ξ ≤ 0, 2nξ if 0 ≤ ξ ≤ 2−n

and 1 if ξ ≥ 2−n. Set

f1n(x) =
∏r
j=1 hn(ξj − αj)hn(βj − ξj),

f2n(x) =
∏r
j=1(1− hn(αj − ξj))(1− hn(ξj − βj))

D.H.Fremlin



10 Fourier analysis 281N

for x = (ξ1, . . . , ξr) ∈ Rr. (Compare the proof of 242Oa.) Then f1n ≤ χ[a, b] ≤ f2n for each n, f2n ≤ χ ]0,1[
for all n so large that

2−n ≤ min(minj≤r αj ,minj≤r(1− βj)),

and limn→∞ f2n(x)− f1n(x) = 0 for every x, so

limn→∞
∫

I
f2n −

∫

I
f1n = 0.

Thus we can take f1 = f1n, f2 = f2n for any n large enough. QQQ

(e) It follows that if a, b ∈ ]0,1[ and a ≤ b, L(χ[a, b]) = µ[a, b]. PPP Let ǫ > 0. Take f1, f2 as in (d). Then,
using (c),

L(χ[a, b]) ≤ L(f2) = L(f2) =
∫

I
f2 ≤

∫

I
f1 + ǫ ≤ µ[a, b] + ǫ,

L(χ[a, b]) ≥ L(f1) = L(f1) =
∫

I
f1 ≥

∫

I
f2 − ǫ ≥ µ[a, b]− ǫ,

so

µ[a, b]− ǫ ≤ L(χ[a, b]) ≤ L(χ[a, b]) ≤ µ[a, b] + ǫ.

As ǫ is arbitrary,

µ[a, b] = L(χ[a, b]) = L(χ[a, b]) = L(χ[a, b]),

as required. QQQ

(f) To complete the proof, take any a, b ∈ I with a ≤ b. For 0 < ǫ ≤ 1
2 , set Iǫ = [ǫ1, (1− ǫ)1], so that Iǫ

is a closed interval included in ]0,1[ and µIǫ = (1− 2ǫ)r. Of course L(χI) = µI = 1, so

L(χ(I \ Iǫ)) = L(χI)− L(χIǫ) = 1− µIǫ,

and

µ[a, b]− 1 + µIǫ ≤ µ[a, b] + µIǫ − µ([a, b] ∪ Iǫ) = µ([a, b] ∩ Iǫ)
= L(χ([a, b] ∩ Iǫ)) ≤ L(χ([a, b]))

≤ L(χ([a, b])) ≤ L(χ([a, b] ∩ Iǫ)) + L(χ(I \ Iǫ))
= L(χ([a, b] ∩ Iǫ)) + 1− µIǫ

= µ([a, b] ∩ Iǫ) + 1− µIǫ ≤ µ[a, b] + 1− µIǫ.

As ǫ is arbitrary,

µ[a, b] = L(χ[a, b]) = L(χ[a, b]) = L(χ[a, b]),

as stated.

281X Basic exercises (a) Let A be the set of those bounded continuous functions f : Rr × Rr → R

which are expressible in the form f(x, y) =
∑n
k=0 gk(x)g

′
k(y), where all the gk, g

′
k are continuous functions

from Rr to R. Show that for any bounded continuous function h : Rr × Rr → R and any bounded set
K ⊆ Rr × Rr and any ǫ > 0, there is an f ∈ A such that |f(x, y) − h(x, y)| ≤ ǫ for every (x, y) ∈ K and
supx,y∈Rr |f(x, y)| ≤ supx,y∈Rr |h(x, y)|.

(b) Let K be a closed bounded set in Rr, where r ≥ 1, and h : K → R a continuous function. Show that
for any ǫ > 0 there is a polynomial p in r variables such that |h(x)− p(x)| ≤ ǫ for every x ∈ K.

>>>(c) Let [a, b] be a non-empty closed interval of R and h : [a, b] → R a continuous function. Show that
for any ǫ > 0 there are y0, . . . , yn, a0, . . . , an, b0, . . . , bn ∈ R such that

|h(x)−∑n
k=0(ak cos ykx+ bk sin ykx)| ≤ ǫ for every x ∈ [a, b],

supx∈R |∑n
k=0(ak cos ykx+ bk sin ykx)| ≤ supx∈[a,b] |h(x)|.

Measure Theory



281Ye The Stone-Weierstrass theorem 11

(d) Let h be a complex-valued function on ]−π, π] such that |h|p is integrable, where 1 ≤ p < ∞. Show
that for every ǫ > 0 there is a function of the form x 7→ f(x) =

∑n
k=−n cke

ikx, where c−k, . . . , ck ∈ C, such

that
∫ π

−π |h− f |p ≤ ǫ. (Compare 244H.)

>>>(e) Let h : [−π, π] → R be a continuous function such that h(π) = h(−π), and ǫ > 0. Show that there
are a0, . . . , an, b1, . . . , bn ∈ R such that

|h(x)− 1

2
a0 −

∑n
k=1(ak cos kx+ bk sin kx)| ≤ ǫ

for every x ∈ [−π, π].

(f) Let K be a non-empty closed bounded set in Rr, where r ≥ 1, and h : K → R a continuous function.
Show that for any ǫ > 0 there are y0, . . . , yn ∈ Rr, a0, . . . , an, b0, . . . , bn ∈ R such that

|h(x)−∑n
k=0(ak cos(yk .x) + bk sin(yk .x))| ≤ ǫ for every x ∈ K,

supx∈R |∑n
k=0(ak cos(yk .x) + bk sin(yk .x))| ≤ supx∈K |h(x)|,

interpreting y .x as in 281K.

(g) Let y1, . . . , yr be real numbers such that 1, y1, . . . , yr are not linearly independent over Q. Show that
there is a non-trivial interval [a, b] ⊆ [0,1] ⊆ Rr such that (<my1>, . . . , <myr>) /∈ [a, b] for every m ∈ Z.

(h) Let η1, . . . , ηr be real numbers such that 1, η1, . . . , ηr are linearly independent over Q. Suppose that
0 ≤ αj ≤ βj ≤ 1 for each j ≤ r. Show that for every ǫ > 0 there is an n0 ∈ N such that

|∏r
j=1(βj − αj)− 1

n+1
#({m : k ≤ m ≤ k + n, <mηj> ∈ [αj , βj ] for every j ≤ r})| ≤ ǫ

whenever n ≥ n0 and k ∈ N. (Hint : in the proof of 281N, set

L(f) = lim supn→∞ supk∈N

1

n+1

∑k+n
m=k f(<my>).)

281Y Further exercises (a) Show that under the hypotheses of 281A, there is an f ∈ A, the ‖ ‖∞-
closure of A in Cb(X), such that f↾K = h. (Hint : take f = limn→∞ fn where

‖fn+1 − fn‖∞ ≤ supx∈K |fn(x)− h(x)| ≤ 2−n

for every n ∈ N.)

(b) Let X be a topological space and K ⊆ X a compact subset. Suppose that for any distinct points x,
y of K there is a continuous function f : X → R such that f(x) 6= f(y). Show that for any r ∈ N and any
continuous h : K → Rr there is a continuous f : X → Rr extending h. (Hint : consider r = 1 first.)

(c) Let 〈Xi〉i∈I be any family of compact Hausdorff spaces, and X their product as topological spaces.
For each i, write C(Xi) for the set of continuous functions from Xi to R, and πi : X → Xi for the coordinate
map. Show that the subalgebra of C(X) generated by {fπi : i ∈ I, f ∈ C(Xi)} is ‖ ‖∞-dense in C(X).
(Note: you will need to know that X is compact, and that if Z is any compact Hausdorff space then for any
distinct z, w ∈ Z there is an f ∈ C(Z) such that f(z) 6= f(w). For references see 3A3J and 3A3Bf in the
next volume.)

(d) Let X be a topological space and K a compact subset of X. Let A be a linear subspace of the
space Cb(X) of bounded real-valued continuous functions on X such that |f | ∈ A for every f ∈ A. Let
h : K → R be a continuous function such that whenever x, y ∈ K there is an f ∈ A such that f(x) = h(x)
and f(y) = h(y). Show that for every ǫ > 0 there is an f ∈ A such that |f(x)− h(x)| ≤ ǫ for every x ∈ K.

(e) Let X be a compact topological space and write C(X) for the set of continuous functions from X to
R. Suppose that h ∈ C(X), and let A ⊆ C(X) be such that

A is a linear subspace of C(X);
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12 Fourier analysis 281Ye

either |f | ∈ A for every f ∈ A or f × g ∈ A for every f , g ∈ A or f × f ∈ A for every f ∈ A;

whenever x, y ∈ X and δ > 0 there is an f ∈ A such that |f(x)−h(x)| ≤ δ and |f(y)−h(y)| ≤ δ.

Show that for every ǫ > 0 there is an f ∈ A such that |h(x)− f(x)| ≤ ǫ for every x ∈ X.

(f) Let X be a compact topological space and A a ‖ ‖∞-closed linear subspace of the space C(X) of
continuous functions from X to R. Show that the following are equiveridical:

(i) |f | ∈ A for every f ∈ A;
(ii) f × f ∈ A for every f ∈ A;
(iii) f × g ∈ A for all f , g ∈ A,

and that in this case A is closed in C(X) for the topology defined by the pseudometrics

(f, g) 7→ |f(x)− g(x)| : C(X)× C(X) → [0,∞[

as x runs over X (the ‘topology of pointwise convergence’ on C(X)).

(g) Show that under the hypotheses of 281G there is an f ∈ A, the ‖ ‖∞-closure of A in Cb(X;C), such
that f↾K = h and (if K 6= ∅) ‖f‖∞ = supx∈K |h(x)|.

(h) Let y ∈ R be irrational. Show that for any Riemann integrable function f : [0, 1] → R,

∫ 1

0
f(x)dx = limn→∞

1

n+1

∑n
m=0 f(<my>),

writing <my> for the fractional part of my. (Hint : recall Riemann’s criterion: for any ǫ > 0, there are
a0, . . . , an with 0 = a0 ≤ a1 ≤ . . . ≤ an = 1 and

∑{aj − aj−1 : j ≤ n, supx∈[aj−1,aj ] f(x)− infx∈[aj−1,aj ] f(x) ≥ ǫ} ≤ ǫ.)

(i) Let 〈tn〉n∈N be a sequence in [0, 1]. Show that the following are equiveridical: (i) limn→∞
1

n+1

∑n
k=0 f(tk)

=
∫ 1

0
f for every continuous function f : [0, 1] → R; (ii) limn→∞

1
n+1

∑n
k=0 f(tk) =

∫ 1

0
f for every Riemann

integrable function f : [0, 1] → R; (iii) lim infn→∞
1

n+1#({k : k ≤ n, tk ∈ G}) ≥ µG for every open set

G ⊆ [0, 1], where µ is Lebesgue measure on R; (iv) limn→∞
1

n+1#({k : k ≤ n, tk ≤ α}) = α for every

α ∈ [0, 1]; (v) limn→∞
1

n+1#({k : k ≤ n, tk ∈ E}) = µE for every E ⊆ [0, 1] such that µ(intE) = µE (vi)

limn→∞
1

n+1

∑n
k=0 e

2πimtk = 0 for every m ≥ 1. (Cf. 273J. Such sequences 〈tn〉n∈N are called equidis-

tributed or uniformly distributed.)

(j) Show that the sequence 〈< ln(n+ 1)>〉n∈N is not equidistributed.

(k) Give [0, 1]N its product measure λ. Show that λ-almost every sequence 〈tn〉n∈N ∈ [0, 1]N is equidis-
tributed in the sense of 281Yi. (Hint : 273J.)

(l) Let f : [0, 1]2 → C be a continuous function. Show that if γ ∈ R is irrational then lima→∞
1
a

∫ a

0
f(<t>,<γt>)dt

=
∫

[0,1]2
f . (Hint : first consider functions of the form x 7→ e2πik .x.)

(m) A sequence 〈tn〉n∈N in [0, 1] is well-distributed (with respect to Lebesgue measure µ) if

lim infn→∞ inf l∈N

1

n+1
#({k : l ≤ k ≤ l + n, tk ∈ G}) ≥ µG

for every open setG ⊆ [0, 1] (i) Show that 〈tn〉n∈N is well-distributed iff limn→∞ supl∈N |
∫ 1

0
f− 1

n+1

∑l+n
k=l f(tk)| =

0 for every continuous f : [0, 1] → R. (ii) Show that 〈<nα>〉n∈N is well-distributed for every irrational α.

281 Notes and comments I have given three statements (281A, 281E and 281G) of the Stone-Weierstrass
theorem, with an acknowledgment (281F) of Weierstrass’ own version, and three further forms (281Ya,
281Yd, 281Yg) in the exercises. Yet another will appear in §4A6 in Volume 4. Faced with such a multiplicity,
you may wish to try your own hand at writing out theorems which will cover some or all of these versions. I
myself see no way of doing it without setting up a confusing list of alternative hypotheses and conclusions.
At which point, I ask ‘what is a theorem, anyway?’, and answer, it is a stopping-place on our journey; it is
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a place where we can rest, and congratulate ourselves on our achievement; it is a place which we can learn
to recognise, and use as a starting point for new adventures; it is a place we can describe, and share with
others. For some theorems, like Fermat’s last theorem, there is a canonical statement, an exactly locatable
point. For others, like the Stone-Weierstrass theorem here, we reach a mass of closely related results, all
depending on some arrangement of the arguments laid out in 281A-281G and 281Ya (which introduces a
new idea), and all useful in different ways. I suppose, indeed, that most authors would prefer the versions
281Ya and 281Yg, which eliminate the variable ǫ which appears in 281A, 281E and 281G, at the expense of
taking a closed subspace A. But I find that the corollaries which will be useful later (281H-281L) are more
naturally expressed in terms of linear subspaces which are not closed.

The applications of the theorem, or the theorems, or the method – choose your own expression – are
legion; only a few of them are here. An apparently innocent one is in 281Xa and, in a different variant, in
281Yc; these are enormously important in their own domains. In this volume the principal application will
be to 285L below, depending on 281K, and it is perhaps right to note that there is an alternative approach
to this particular result, based on ideas in 282G. But I offer Weyl’s equidistribution theorem (281M-281N)
as evidence that we can expect to find good use for these ideas in almost any branch of mathematics.

Version of 24.9.09

282 Fourier series

Out of the enormous theory of Fourier series, I extract a few results which may at least provide a basis for
further study. I give the definitions of Fourier and Fejér sums (282A), with five of the most important results
concerning their convergence (282G, 282H, 282J, 282L, 282O). On the way I include the Riemann-Lebesgue
lemma (282E). I end by mentioning convolutions (282Q).

282A Definition Let f be an integrable complex-valued function defined almost everywhere in ]−π, π].

(a) The Fourier coefficients of f are the complex numbers

ck =
1

2π

∫ π

−π
f(x)e−ikxdx

for k ∈ Z.

(b) The Fourier sums of f are the functions

sn(x) =

n
∑

k=−n
cke

ikx

for x ∈ ]−π, π], n ∈ N.

(c) The Fourier series of f is the series
∑∞
k=−∞ cke

ikx, or (because we ordinarily consider the symmetric

partial sums sn) the series c0 +
∑∞
k=1(cke

ikx + c−ke−ikx).

(d) The Fejér sums of f are the functions

σm =
1

m+1

m
∑

n=0

sn

for m ∈ N.

(e) It will be convenient to have a further phrase available. If f is any function with dom f ⊆ ]−π, π],
its periodic extension is the function f̃ , with domain

⋃

k∈Z
(dom f + 2kπ), such that f̃(x) = f(x − 2kπ)

whenever k ∈ Z and x ∈ dom f + 2kπ.

c© 1996 D. H. Fremlin
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282B Remarks I have made two more or less arbitrary choices here.

(a) I have chosen to express Fourier series in their ‘complex’ form rather than their ‘real’ form. From the
point of view of pure measure theory (and, indeed, from the point of view of the nineteenth-century origins
of the subject) there are gains in elegance from directing attention to real functions f and looking at the
real coefficients

ak =
1

π

∫ π

−π
f(x) cos kx dx for k ∈ N,

bk =
1

π

∫ π

−π
f(x) sin kx dx for k ≥ 1.

If we do this we have

c0 =
1

2
a0,

and for k ≥ 1 we have

ck =
1

2
(ak − ibk), c−k =

1

2
(ak + ibk), ak = ck + c−k, bk = i(ck − c−k),

so that the Fourier sums become

sn(x) =
1

2
a0 +

n
∑

k=1

ak cos kx+ bk sin kx.

The advantage of this is that real functions f correspond to real coefficients ak, bk, so that it is obvious that
if f is real-valued so are its Fourier and Fejér sums. The disadvantages are that we have to use a variety of
trigonometric equalities which are rather more complicated than the properties of the complex exponential
function which they reflect, and that we are farther away from the natural generalizations to locally compact
abelian groups. So both electrical engineers and harmonic analysts tend to prefer the coefficients ck.

(b) I have taken the functions f to be defined on the interval ]−π, π] rather than on the circle S1 = {z :
z ∈ C, |z| = 1}. There would be advantages in elegance of language in using S1, though I do not recall often
seeing the formula

ck =
∫

zkf(z)dz

which is the natural translation of ck = 1
2π

∫

eikxf(x)dx under the substitution x = arg z, dx = 2πν(dz).
However, applications of the theory tend to deal with periodic functions on the real line, so I work with
]−π, π], and accept the fact that its group operation +2π, writing x+2π y for whichever of x+ y, x+ y+2π,
x+ y − 2π belongs to ]−π, π], is less familiar than multiplication on S1.

(c) The remarks in (b) are supposed to remind you of §255.

(d) Observe that if f =a.e. g then f and g have the same Fourier coefficients, Fourier sums and Fejér
sums. This means that we could, if we wished, regard the ck, sn and σm as associated with a member of L1

C
,

the space of equivalence classes of integrable functions (§242), rather than as associated with a particular
function f . Since however the sn and σm appear as actual functions, and since many of the questions we
are interested in refer to their values at particular points, it is more natural to express the theory in terms
of integrable functions f rather than in terms of members of L1

C
.

282C The problems (a) Under what conditions, and in what senses, do the Fourier and Fejér sums sn
and σm of a function f converge to f?

(b) How do the properties of the double-ended sequence 〈ck〉k∈Z reflect the properties of f , and vice
versa?

Measure Theory
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Remark The theory of Fourier series has been one of the leading topics of analysis for nearly two hundred
years, and innumerable further problems have contributed greatly to our understanding. (For instance: can
one characterize those sequences 〈ck〉k∈Z which are the Fourier coefficients of some integrable function?)
But in this outline I will concentrate on the question (a) above, with one and a half results (282K, 282Rb)
addressing (b), which will give us more than enough material to work on.

While most people would feel that the Fourier sums are somehow closer to what we really want to know,
it turns out that the Fejér sums are easier to analyse, and there are advantages in dealing with them first.
So while you may wish to look ahead to the statements of 282J, 282L and 282O for an idea of where we
are going, the first half of this section will be largely about Fejér sums. Note that in any case in which we
know that the Fourier sums converge (which is quite common; see, for instance, the examples in 282Xh and
282Xo), then if we know that the Fejér sums converge to f , we can deduce that the Fourier sums also do,
by 273Ca.

The first step is a basic lemma showing that both the Fourier and Fejér sums of a function f can be
thought of as convolutions of f with kernels describable in terms of familiar functions.

282D Lemma Let f be a complex-valued function which is integrable over ]−π, π], and
ck = 1

2π

∫ π

−π f(x)e
−ikxdx, sn(x) =

∑n
k=−n cke

ikx, σm(x) = 1
m+1

∑m
n=0 sn(x)

its Fourier coefficients, Fourier sums and Fejér sums. Write f̃ for the periodic extension of f (282Ae). For
m ∈ N, write

ψm(t) =
1−cos(m+1)t

2π(m+1)(1−cos t)

for 0 < |t| ≤ π. (If you like, you can set ψm(0) = m+1
2π to make ψm continuous on [−π, π].)

(a) For each n ∈ N, x ∈ ]−π, π],

sn(x) =
1

2π

∫ π

−π
f(t)

sin(n+ 1

2
)(x−t)

sin 1

2
(x−t)

dt

=
1

2π

∫ π

−π
f̃(x+ t)

sin(n+ 1

2
)t

sin 1

2
t
dt

=
1

2π

∫ π

−π
f(x−2π t)

sin(n+ 1

2
)t

sin 1

2
t
dt,

writing x−2π t for whichever of x− t, x− t− 2π, x− t+ 2π belongs to ]−π, π].
(b) For each m ∈ N, x ∈ ]−π, π],

σm(x) =

∫ π

−π
f̃(x+ t)ψm(t)dt

=

∫ π

0

(f̃(x+ t) + f̃(x− t))ψm(t)dt

=

∫ π

−π
f(x−2π t)ψm(t)dt.

(c) For any n ∈ N,

1

2π

∫ 0

−π

sin(n+ 1

2
)t

sin 1

2
t
dt =

1

2π

∫ π

0

sin(n+ 1

2
)t

sin 1

2
t
dt =

1

2
,

1

2π

∫ π

−π

sin(n+ 1

2
)t

sin 1

2
t
dt = 1.

(d) For any m ∈ N,

(i) 0 ≤ ψm(t) ≤ m+1

2π
for every t;

(ii) for any δ > 0, limm→∞ ψm(t) = 0 uniformly on {t : δ ≤ |t| ≤ π};
(iii)

∫ 0

−π ψm =
∫ π

0
ψm =

1

2
,

∫ π

−π ψm = 1.
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proof Really all that these amount to is summing geometric series.

(a) For (a), we have

n
∑

k=−n
e−ikt =

eint − e−i(n+1)t

1− e−it

=
ei(n+

1
2 )t − e−i(n+

1
2 )t

e
1
2 it − e−

1
2 it

=
sin(n+ 1

2 )t

sin 1
2 t

.

So

sn(x) =

n
∑

k=−n
cke

ikx =
1

2π

∫ π

−π
f(t)

(

n
∑

k=−n
eik(x−t)

)

dt

=
1

2π

∫ π

−π
f(t)

sin(n+ 1

2
)(x−t)

sin 1

2
(x−t)

dt =
1

2π

∫ π

−π
f̃(t)

sin(n+ 1

2
)(x−t)

sin 1

2
(x−t)

dt

=
1

2π

∫ π−x

−π−x
f̃(x+ t)

sin(n+ 1

2
)t

sin 1

2
t
dt =

1

2π

∫ π

−π
f̃(x+ t)

sin(n+ 1

2
)t

sin 1

2
t
dt

because f̃ and t 7→ sin(n+ 1
2 )t

sin 1
2 t

are periodic with period 2π, so that the integral from −π − x to −π must be

the same as the integral from π − x to π.

For the expression in terms of f(x−2π t), we have

sn(x) =
1

2π

∫ π

−π
f̃(x+ t)

sin(n+ 1

2
)t

sin 1

2
t
dt =

1

2π

∫ π

−π
f̃(x− t)

sin(n+ 1

2
)(−t)

sin 1

2
(−t)

dt

(substituting −t for t)

=
1

2π

∫ π

−π
f(x−2π t)

sin(n+ 1

2
)t

sin 1

2
t
dt

because (for x, t ∈ ]−π, π]) f(x−2π t) = f̃(x− t) whenever either is defined, and sin is an odd function.

(b) In the same way, we have

m
∑

n=0

sin(n+
1

2
)t = Im

(

m
∑

n=0

ei(n+
1
2 )t

)

= Im
(

e
1
2 it

m
∑

n=0

eint
)

= Im
(

e
1
2 it

1− ei(m+1)t

1− eit
)

= Im
(1− ei(m+1)t

e−
1
2 it − e

1
2 it

)

= Im
(1− ei(m+1)t

−2i sin 1
2 t

)

= Im
( i(1− ei(m+1)t)

2 sin 1
2 t

)

=
1− cos(m+ 1)t

2 sin 1
2 t

.

So

∑m
n=0

sin(n+ 1

2
)t

sin 1

2
t

=
1−cos(m+1)t

2 sin2 1

2
t

=
1−cos(m+1)t

1−cos t
= 2π(m+ 1)ψm(t).

Accordingly,
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σm(x) =
1

m+1

m
∑

n=0

sn(x)

=
1

m+1

m
∑

n=0

1

2π

∫ π

−π
f̃(x+ t)

sin(n+ 1

2
)t

sin 1

2
t
dt

=
1

2π

∫ π

−π
f̃(x+ t)

( 1

m+1

m
∑

n=0

sin(n+ 1

2
)t

sin 1

2
t

)

dt

=

∫ π

−π
f̃(x+ t)ψm(t)dt =

∫ π

−π
f(x−2π t)ψm(t)dt

as in (a), because cos and ψm are even functions. For the same reason,

∫ π

0

f̃(x− t)ψm(t)dt =

∫ 0

−π
f̃(x+ t)ψm(t)dt,

so

σm(x) =

∫ π

0

(f̃(x+ t) + f̃(x− t))ψm(t)dt.

(c) We need only look at where the formula
sin(n+ 1

2 )t

sin 1
2 t

came from to see that

1

2π

∫

I

sin(n+ 1

2
)t

sin 1

2
t
dt =

1

2π

∫

I

n
∑

k=−n
eiktdt

=
1

2π

∫

I

(1 + 2

n
∑

k=1

cos kt)dt =
1

2

for both I = [−π, 0] and I = [0, π], because
∫

I
cos kt dt = 0 for every k 6= 0.

(d)(i) ψm(t) ≥ 0 for every t because 1− cos(m+1)t, 1− cos t are always greater than or equal to 0. For
the upper bound, we have, using the constructions in (a) and (b),

∣

∣

sin(n+ 1

2
)t

sin 1

2
t

∣

∣ =
∣

∣

n
∑

k=−n
eikt

∣

∣ ≤ 2n+ 1

for every n, so

ψm(t) =
1

2π(m+1)

m
∑

n=0

sin(n+ 1

2
)t

sin 1

2
t

≤ 1

2π(m+1)

m
∑

n=0

2n+ 1 =
m+1

2π
.

(ii) If δ ≤ |t| ≤ π,

ψm(t) ≤ 1

π(m+1)(1−cos t)
≤ 1

π(m+1)(1−cos δ)
→ 0

as m→ ∞.

(iii) also follows from the construction in (b), because

∫

I

ψm =
1

2π(m+1)

m
∑

n=0

∫

I

sin(n+ 1

2
)t

sin 1

2
t
dt =

1

m+1

m
∑

n=0

1

2
=

1

2
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for both I = [−π, 0] and I = [0, π], using (c).

Remarks For a discussion of substitution in integrals, if you feel any need to justify the manipulations in
part (a) of the proof, see 263J.

The functions

t 7→ sin(n+ 1

2
)t

sin 1

2
t

, t 7→ 1−cos(m+1)t

(m+1)(1−cos t)

are called respectively the Dirichlet kernel and the Fejér kernel.
I give the formulae in terms of f(x−2π t) in (a) and (b) in order to provide a link with the work of 255O.

282E The next step is a vital lemma, with a suitably distinguished name which (you will be glad to
know) reflects its importance rather than its difficulty.

The Riemann-Lebesgue lemma Let f be a complex-valued function which is integrable over R. Then

limy→∞
∫

f(x)e−iyxdx = limy→−∞
∫

f(x)e−iyxdx = 0.

proof (a) Consider first the case in which f = χ ]a, b[, where a < b. Then

|
∫

f(x)e−iyxdx| = |
∫ b

a
e−iyxdx| = | 1

−iy
(e−iyb − e−iya)| ≤ 2

|y|

if y 6= 0. So in this case the result is obvious.

(b) It follows at once that the result is true if f is a step-function with bounded support, that is, if there
are a0 ≤ a1 . . . ≤ an such that f is constant on every interval ]aj−1, aj [ and zero outside [a0, an].

(c) Now, for a given integrable f and ǫ > 0, there is a step-function g such that
∫

|f − g| ≤ ǫ (242Oa).
So

|
∫

f(x)e−iyxdx−
∫

g(x)e−iyxdx| ≤
∫

|f(x)− g(x)|dx ≤ ǫ

for every y, and

lim supy→∞ |
∫

f(x)e−iyxdx| ≤ ǫ,

lim supy→−∞ |
∫

f(x)e−iyxdx| ≤ ǫ.

As ǫ is arbitrary, we have the result.

282F Corollary (a) Let f be a complex-valued function which is integrable over ]−π, π], and 〈ck〉k∈Z

its sequence of Fourier coefficients. Then limk→∞ ck = limk→−∞ ck = 0.
(b) Let f be a complex-valued function which is integrable over R. Then limy→∞

∫

f(x) sin yx dx = 0.

proof (a) We need only identify

ck =
1

2π

∫ π

−π
f(x)e−ikxdx

with
∫

g(x)e−ikxdx, where g(x) = f(x)/2π for x ∈ dom f and 0 for |x| > π.

(b) This is just because

∫

f(x) sin yx dx =
1

2i
(
∫

f(x)eiyxdx−
∫

f(x)e−iyxdx).

282G We are now ready for theorems on the convergence of Fejér sums. I start with an easy one, almost
a warming-up exercise.

Theorem Let f : ]−π, π] → C be a continuous function such that limt↓−π f(t) = f(π). Then its sequence
〈σm〉m∈N of Fejér sums converges uniformly to f on ]−π, π].
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proof The conditions on f amount just to saying that its periodic extension f̃ is defined and continu-
ous everywhere on R. Consequently it is bounded and uniformly continuous on any bounded interval, in
particular, on the interval [−2π, 2π]. Set K = sup|t|≤2π |f̃(t)| = supt∈]−π,π] |f(t)|. Write

ψm(t) =
1−cos(m+1)t

2π(m+1)(1−cos t)

for m ∈ N, 0 < |t| ≤ π, as in 282D.

Given ǫ > 0 we can find a δ ∈ ]0, π] such that |f̃(x+ t)− f̃(x)| ≤ ǫ whenever x ∈ [−π, π] and |t| ≤ δ. Next,
we can find an m0 ∈ N such that Mm ≤ ǫ

4πK for every m ≥ m0, where Mm = supδ≤|t|≤π ψm(t) (282D(d-ii)).

Now suppose that m ≥ m0 and x ∈ ]−π, π]. Set g(t) = f̃(x+ t)− f(x) for |t| ≤ π. Then |g(t)| ≤ 2K for all
t ∈ [−π, π] and |g(t)| ≤ ǫ if |t| ≤ δ, so

∣

∣

∫ π

−π
g × ψm

∣

∣ ≤
∫ −δ

−π
|g| × ψm +

∫ δ

−δ
|g| × ψm +

∫ π

δ

|g| × ψm

≤ 2MmK(π − δ) + ǫ

∫ δ

−δ
ψm + 2MmK(π − δ)

≤ 4πMmK + ǫ ≤ 2ǫ.

Consequently, using 282Db and 282D(d-iii),

|σm(x)− f(x)| = |
∫ π

−π
(f̃(x+ t)− f(x))ψm(t)dt| ≤ 2ǫ

for every m ≥ m0; and this is true for every x ∈ ]−π, π]. As ǫ is arbitrary, 〈σm〉m∈N converges to f uniformly
on ]−π, π].

282H I come now to a theorem describing the behaviour of the Fejér sums of general functions f . The
hypothesis of the theorem may take a little bit of digesting; you can get an idea of its intended scope by
glancing at Corollary 282I.

Theorem Let f be a complex-valued function which is integrable over ]−π, π], and 〈σm〉m∈N its sequence
of Fejér sums. Suppose that x ∈ ]−π, π] and c ∈ C are such that

lim
δ↓0

1

δ

∫ δ

0

|f̃(x+ t) + f̃(x− t)− 2c|dt = 0,

writing f̃ for the periodic extension of f , as usual; then limm→∞ σm(x) = c.

proof Set φ(t) = |f̃(x+t)+ f̃(x−t)−2c| when this is defined, which is almost everywhere, and Φ(t) =
∫ t

0
φ,

which is defined for every t ≥ 0, because f̃ is integrable over ]−π, π] and therefore over every bounded interval.
As in 282D, set

ψm(t) =
1−cos(m+1)t

2π(m+1)(1−cos t)

for m ∈ N, 0 < |t| ≤ π. We have

|σm(x)− c| = |
∫ π

0

(f̃(x+ t) + f̃(x− t)− 2c)ψm(t)dt| ≤
∫ π

0

φ(t)ψm

by (b) and (d) of 282D.
Let ǫ > 0. By hypothesis, limt↓0 Φ(t)/t = 0; let δ ∈ ]0, π] be such that Φ(t) ≤ ǫt for every t ∈ [0, δ]. Take

any m ≥ π/δ. I break the integral
∫ π

0
φ× ψm up into three parts.

(i) For the integral from 0 to 1/m, we have

∫ 1/m

0

φ× ψm ≤
∫ 1/m

0

m+1

2π
φ =

m+1

2π
Φ(

1

m
) ≤ ǫ(m+1)

2πm
≤ ǫ,
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because ψm(t) ≤ m+1
2π for every t (282D(d-i)).

(ii) For the integral from 1/m to δ, we have

∫ δ

1/m

φ× ψm ≤ 1

2π(m+ 1)

∫ δ

1/m

φ(t)
1

1− cos t
dt ≤ π

4(m+ 1)

∫ δ

1/m

φ(t)

t2
dt

(because 1− cos t ≥ 2t2

π2
for |t| ≤ π)

=
π

4(m+ 1)

(Φ(δ)

δ2
− Φ( 1

m )

( 1
m )2

+

∫ δ

1/m

2Φ(t)

t3
dt
)

(integrating by parts – see 225F)

≤ π

4(m+ 1)

( ǫ

δ
+

∫ δ

1/m

2ǫ

t2
dt
)

(because Φ(t) ≤ ǫt for 0 ≤ t ≤ δ)

≤ π

4(m+ 1)

( ǫ

δ
+ 2ǫm

)

≤ πǫ

4(m+ 1)δ
+
πǫ

2
≤ ǫ

4
+
πǫ

2
≤ 2ǫ.

(iii) For the integral from δ to π, we have

∫ π

δ

φ× ψm ≤
∫ π

δ

1

π(m+1)(1−cos δ)
φ→ 0 as m→ ∞

because φ is integrable over [−π, π]. There must therefore be an m0 ∈ N such that

∫ π

δ

φ× ψm ≤ ǫ

for every m ≥ m0.

Putting these together, we see that

∫ π

0

φ× ψm ≤ ǫ+ 2ǫ+ ǫ = 4ǫ

for every m ≥ max(m0,
π
δ ). As ǫ is arbitrary, limm→∞ σm(x) = c, as claimed.

282I Corollary Let f be a complex-valued function which is integrable over ]−π, π], and 〈σm〉m∈N its
sequence of Fejér sums.

(a) f(x) = limm→∞ σm(x) for almost every x ∈ ]−π, π].
(b) limm→∞

∫ π

−π |f − σm| = 0.

(c) If g is another integrable function with the same Fourier coefficients, then f =a.e. g.
(d) If x ∈ ]−π, π[ is such that a = limt∈dom f,t↑x f(t) and b = limt∈dom f,t↓x f(t) are both defined in C,

then

limm→∞ σm(x) =
1

2
(a+ b).

(e) If a = limt∈dom f,t↑π f(t) and b = limt∈dom f,t↓−π f(t) are both defined in C, then

limm→∞ σm(π) =
1

2
(a+ b).

(f) If f is defined and continuous at x ∈ ]−π, π[, then
limm→∞ σm(x) = f(x).

(g) If f̃ , the periodic extension of f , is defined and continuous at π, then

limm→∞ σm(π) = f(π).

Measure Theory



282J Fourier series 21

proof (a) We have only to recall that by 223D

lim sup
δ↓0

1

δ

∫ δ

0

|f(x+ t) + f(x− t)− 2f(x)|dt

≤ lim sup
δ↓0

1

δ

(

∫ δ

0

|f(x+ t)− f(x)|dt+
∫ δ

0

|f(x− t)− f(x)|dt
)

= lim sup
δ↓0

1

δ

∫ δ

−δ
|f(x+ t)− f(x)|dt = 0

for almost every x ∈ ]−π, π[.
(b) Next observe that, in the language of 255O,

σm = f ∗ ψm,

by the last formula in 282Db. Consequently, by 255Od,

‖σm‖1 ≤ ‖f‖1‖ψm‖1,
writing ‖σm‖1 =

∫ π

−π |σm|. But this means that we have

f(x) = limm→∞ σm(x) for almost every x, lim supm→∞ ‖σm‖1 ≤ ‖f‖1;
and it follows from 245H that limm→∞ ‖f − σm‖1 = 0.

(c) If g has the same Fourier coefficients as f , then it has the same Fourier and Fejér sums, so we have

g(x) = limm→∞ σm(x) = f(x)

almost everywhere.

(d)-(e) Both of these amount to considering x ∈ ]−π, π] such that

limt∈dom f̃ ,t↑x f̃(t) = a, limt∈dom f̃ ,t↓x f̃(t) = b.

Setting c = 1
2 (a+b), φ(t) = |f̃(x+ t)+ f̃(x− t)−2c| whenever this is defined, we have limt∈domφ,t↓0 φ(t) = 0,

so surely limδ↓0
1
δ

∫ δ

0
φ = 0, and the theorem applies.

(f)-(g) are special cases of (d) and (e).

282J I now turn to conditions for the convergence of Fourier sums. Probably the easiest result – one
which is both striking and satisfying – is the following.

Theorem Let f be a complex-valued function which is square-integrable over ]−π, π]. Let 〈ck〉k∈Z be its
Fourier coefficients and 〈sn〉n∈N its Fourier sums (282A). Then

(i)
∑∞
k=−∞ |ck|2 =

1

2π

∫ π

−π |f |2,
(ii) limn→∞

∫ π

−π |f − sn|2 = 0.

proof (a) I recall some notation from 244N/244P. Let L2
C
be the space of square-integrable complex-valued

functions on ]−π, π]. For g, h ∈ L
2
C
, write

(g|h) =
∫ π

−π
g × h̄, ‖g‖2 =

√

(g|g).

Recall that ‖g+h‖2 ≤ ‖g‖2+‖h‖2 for all g, h ∈ L
2
C
(244Fb/244Pb). For k ∈ Z, x ∈ ]−π, π] set ek(x) = eikx,

so that

(f |ek) =
∫ π

−π
f(x)e−ikxdx = 2πck.

Moreover, if |k| ≤ n,
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(sn|ek) =
n
∑

j=−n
cj

∫ π

−π
eijxe−ikxdx = 2πck,

because

∫ π

−π
eijxe−ikxdx = 2π if j = k,

= 0 if j 6= k.

So

(f − sn|ek) = 0 whenever |k| ≤ n;

in particular,

(f − sn|sn) =
n
∑

k=−n
c̄k(f − sn|ek) = 0

for every n ∈ N.

(b) Fix ǫ > 0. The next element of the proof is the fact that there are m ∈ N, a−m, . . . , am ∈ C such that
‖f − h‖2 ≤ ǫ, where h =

∑m
k=−m akek. PPP By 244Hb/244Pb we know that there is a continuous function

g : [−π, π] → C such that ‖f − g‖2 ≤ ǫ
3 . Next, modifying g on a suitably short interval ]π − δ, π], we

can find a continuous function g1 : [−π, π] → C such that ‖g − g1‖2 ≤ ǫ
3 and g1(−π) = g1(π). (Set M =

supx∈[−π,π] |g(x)|, take δ ∈ ]0, 2π] such that (2M)2δ ≤ (ǫ/3)2, and set g1(π−tδ) = tg(π−δ)+(1−t)g(−π) for
t ∈ [0, 1].) Either by the Stone-Weierstrass theorem (281J), or by 282G above, there are a−m, . . . , am such

that |g1(x)−
∑m
k=−m ake

ikx| ≤ ǫ

3
√
2π

for every x ∈ [−π, π]; setting h =
∑m
k=−m akek, we have ‖g1−h‖2 ≤ 1

3ǫ,

so that

‖f − h‖2 ≤ ‖f − g‖2 + ‖g − g1‖2 + ‖g1 − h‖2 ≤ ǫ. QQQ

(c) Now take any n ≥ m. Then sn − h is a linear combination of e−n, . . . , en, so (f − sn|sn − h) = 0.
Consequently

ǫ2 ≥ (f − h|f − h)

= (f − sn|f − sn) + (f − sn|sn − h) + (sn − h|f − sn) + (sn − h|sn − h)

= ‖f − sn‖22 + ‖sn − h‖22 ≥ ‖f − sn‖22.
Thus ‖f − sn‖2 ≤ ǫ for every n ≥ m. As ǫ is arbitrary, limn→∞ ‖f − sn‖22 = 0, which proves (ii).

(d) As for (i), we have

n
∑

k=−n
|ck|2 =

1

2π

n
∑

k=−n
c̄k(sn|ek) = 1

2π
(sn|sn) = 1

2π
‖sn‖22.

But of course
∣

∣‖sn‖2 − ‖f‖2
∣

∣ ≤ ‖sn − f‖2 → 0

as n→ ∞, so

∞
∑

k=−∞
|ck|2 =

1

2π
lim
n→∞

‖sn‖22 =
1

2π
‖f‖22 =

1

2π

∫ π

−π
|f |2,

as required.

282K Corollary Let L2
C
be the Hilbert space of equivalence classes of square-integrable complex-valued

functions on ]−π, π], with the inner product
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(f•|g•) =

∫ π

−π
f × ḡ

and norm

‖f•‖2 =
(

∫ π

−π
|f |2

)1/2
,

writing f• ∈ L2
C
for the equivalence class of a square-integrable function f . Let ℓ2

C
(Z) be the Hilbert space

of square-summable double-ended complex sequences, with the inner product

(ccc|ddd) =
∞
∑

k=−∞
ckd̄k

and norm

‖ccc‖2 =
(

∞
∑

k=−∞
|ck|2

)1/2

for ccc = 〈ck〉k∈Z, ddd = 〈dk〉k∈Z in ℓ2
C
(Z). Then we have an inner-product-space isomorphism S : L2

C
→ ℓ2

C
(Z)

defined by saying that

S(f•)(k) =
1√
2π

∫ π

−π f(x)e
−ikxdx

for every square-integrable function f and every k ∈ Z.

proof (a) As in 282J, write L
2
C
for the space of square-integrable functions. If f , g ∈ L

2
C
and f• = g•, then

f =a.e. g, so

1√
2π

∫ π

−π f(x)e
−ikxdx =

1√
2π

∫ π

−π g(x)e
−ikxdx

for every k ∈ N. Thus S is well-defined.

(b) S is linear. PPP This is elementary. If f , g ∈ L
2
C
and c ∈ C,

S(f• + g•)(k) =
1√
2π

∫ π

−π
(f(x) + g(x))e−ikxdx

=
1√
2π

∫ π

−π
f(x)e−ikxdx+

1√
2π

∫ π

−π
g(x)e−ikxdx

= S(f•)(k) + S(g•)(k)

for every k ∈ Z, so that S(f• + g•) = S(f•) + S(g•). Similarly,

S(cf•)(k) =
1√
2π

∫ π

−π cf(x)e
−ikxdx =

c√
2π

∫ π

−π f(x)e
−ikxdx = cS(f•)(k)

for every k ∈ Z, so that S(cf•) = cS(f•). QQQ

(c) If f ∈ L
2
C
has Fourier coefficients ck, then S(f

•) = 〈ck
√
2π〉k∈Z, so by 282J(i)

‖S(f•)‖22 = 2π

∞
∑

k=−∞
|ck|2 =

∫ π

−π
|f |2 = ‖f•‖22.

Thus Su ∈ ℓ2
C
(Z) and ‖Su‖2 = ‖u‖2 for every u ∈ L2

C
. Because S is linear and norm-preserving, it is surely

injective.

(d) It now follows that (Sv|Su) = (v|u) for every u, v ∈ L2
C
. PPP (This is of course a standard fact about

Hilbert spaces.) We know that for any t ∈ R
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‖u‖22 + 2Re(eit(v|u)) + ‖v‖22 = (u|u) + eit(v|u) + e−it(u|v) + (v|v)
= (u+ eitv|u+ eitv)

= ‖u+ eitv‖22 = ‖S(u+ eitv)‖22
= ‖Su‖22 + 2Re(eit(Sv|Su)) + ‖Sv‖22
= ‖u‖22 + 2Re(eit(Sv|Su)) + ‖v‖22,

so that Re(eit(Sv|Su)) = Re(eit(v|u)). As t is arbitrary, (Sv|Su) = (v|u). QQQ
(e) Finally, S is surjective. PPP Let ccc = 〈ck〉k∈Z be any member of ℓ2

C
(Z). Set c

(n)
k = ck if |k| ≤ n, 0

otherwise, and ccc(n) = 〈c(n)k 〉k∈N. Consider

sn =

n
∑

k=−n
ckek, un = s•n

where I write ek(x) =
1√
2π
eikx for x ∈ ]−π, π]. Then Sun = ccc(n), by the same calculations as in part (a) of

the proof of 282J. Now

‖ccc(n) − ccc‖2 =
√

∑

|k|>n |ck|2 → 0

as n→ ∞, so

‖um − un‖2 = ‖ccc(m) − ccc(n)‖2 → 0

as m, n → ∞, and 〈un〉n∈N is a Cauchy sequence in L2
C
. Because L2

C
is complete (244G/244Pb), 〈un〉n∈N

has a limit u ∈ L2
C
, and now

Su = limn→∞ Sun = limn→∞ ccc(n) = ccc. QQQ

Thus S : L2
C
→ ℓ2

C
(Z) is an inner-product-space isomorphism.

Remark In the language of Hilbert spaces, all that is happening here is that 〈e•k〉k∈Z is a ‘Hilbert space
basis’ or ‘complete orthonormal sequence’ in L2

C
, which is matched by S with the standard basis of ℓ2

C
(Z).

The only step which calls on non-trivial real analysis, as opposed to the general theory of Hilbert spaces, is
the check that the linear subspace generated by {e•k : k ∈ Z} is dense; this is part (b) of the proof of 282J.

Observe that while S : L2 → ℓ2 is readily described, its inverse is more of a problem. If ccc ∈ ℓ2, we should
like to say that S−1ccc is the equivalence class of f , where f(x) = 1√

2π

∑∞
k=−∞ cke

ikx for every x. This works

very well if {k : ck 6= 0} is finite, but for the general case it is less clear how to interpret the sum. It is in
fact the case that if ccc ∈ ℓ2 then

g(x) =
1√
2π

limn→∞
∑n
k=−n cke

ikx

is defined for almost every x ∈ ]−π, π], and that S−1ccc = g• in L2; this is, in effect, Carleson’s theorem
(286V). A proof of Carleson’s theorem is out of our reach for the moment. What is covered by the results
of this section is that

h(x) =
1√
2π

limm→∞
1

m+1

∑m
n=0

∑n
k=−n cke

ikx

is defined for almost every x ∈ ]−π, π], and that h• = S−1ccc. (The point is that we know from the result just
proved that there is some square-integrable f such that ccc is the sequence of Fourier coefficients of f ; now
282Ia declares that the Fejér sums of f converge to f almost everywhere, that is, that h =a.e.

1√
2π
f .)

282L The next result is the easiest, and one of the most useful, theorems concerning pointwise conver-
gence of Fourier sums.

Theorem Let f be a complex-valued function which is integrable over ]−π, π], and 〈sn〉n∈N its sequence of
Fourier sums.

(i) If f is differentiable at x ∈ ]−π, π[, then f(x) = limn→∞ sn(x).

(ii) If the periodic extension f̃ of f is differentiable at π, then f(π) = limn→∞ sn(π).

Measure Theory



282N Fourier series 25

proof (a) Take x ∈ ]−π, π] such that f̃ is differentiable at x; of course this covers both parts. We have

sn(x) =
1

2π

∫ π

−π

f̃(x+t)

sin 1

2
t
sin(n+

1

2
)t dt

for each n, by 282Da.

(b) Next,

∫ π

−π

f̃(x+t)−f̃(x)

t
dt

exists in C, because there is surely some δ ∈ ]0, π] such that (f̃(x+t)−f̃(x))/t is bounded on {t : 0 < |t| ≤ δ},
while

∫ −δ

−π

f̃(x+t)−f̃(x)

t
dt,

∫ π

δ

f̃(x+t)−f̃(x)

t
dt

exist because 1/t is bounded on those intervals. It follows that

∫ π

−π

f̃(x+t)−f̃(x)

sin 1

2
t

dt

exists, because |t| ≤ π| sin 1
2 t| if |t| ≤ π. So by the Riemann-Lebesgue lemma (282Fb),

lim
n→∞

∫ π

−π

f̃(x+t)−f̃(x)

sin 1

2
t

sin(n+
1

2
)t dt = 0.

(c) Because

1

2π

∫ π

−π
f̃(x)

sin(n+ 1

2
)t

sin 1

2
t
dt = f̃(x)

for every n (282Dc),

sn(x) = f̃(x) +
1

2π

∫ π

−π

f̃(x+t)−f̃(x)

sin 1

2
t

sin(n+
1

2
)t dt→ f̃(x)

as n→ ∞, as required.

282M Lemma Suppose that f is a complex-valued function, defined almost everywhere and of bounded
variation on ]−π, π]. Then supk∈Z |kck| <∞, where ck is the kth Fourier coefficient of f , as in 282A.

proof Set

M = limx∈dom f,x↑π |f(x)|+Var]−π,π[(f).

By 224J,

|kck| = 1

2π

∣

∣

∫ π

−π
kf(t)e−iktdt

∣

∣ ≤ 1

2π
M sup

c∈[−π,π]

∣

∣

∫ c

−π
ke−iktdt

∣

∣

=
M

2π
sup

c∈[−π,π]
|e−ikc − eikπ| ≤ M

π

for every k.

282N I give another lemma, extracting the technical part of the proof of the next theorem. (Its most
natural application is in 282Xn.)

Lemma Let 〈dk〉k∈N be a complex sequence, and set tn =
∑n
k=0 dk, τm = 1

m+1

∑m
n=0 tn for n, m ∈ N.

Suppose that supk∈N |kdk| =M <∞. Then for any j ≥ 1 and any c ∈ C,
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|tn − c| ≤ M

j
+ (2j + 3) supm≥n−n/j |τm − c|

for every n ≥ j2.

proof (a) The first point to note is that for any n, n′ ∈ N,

|tn − tn′ | ≤ M |n−n′|
1+min(n,n′)

.

PPP If n = n′ this is trivial. Suppose that n′ < n. Then

|tn − tn′ | = |
n
∑

k=n′+1

dk| ≤
n
∑

k=n′+1

M

k
≤ M(n−n′)

n′+1
=

M |n−n′|
1+min(n′,n)

.

Of course the case n < n′ is identical. QQQ

(b) Now take any n ≥ j2. Set η = supm≥n−n/j |τm − c|. Let m ≥ j be such that jm ≤ n < j(m + 1);
then n < jm+m; also

n(1− 1
j ) ≤ m(j + 1)(1− 1

j ) ≤ mj.

Set

τ∗ =
1

m

jm+m
∑

n′=jm+1

tn′ =
jm+m+1

m
τjm+m − jm+1

m
τjm.

Then

|τ∗ − c| = |jm+m+1

m
τjm+m − jm+1

m
τjm − c|

= |jm+m+1

m
(τjm+m − c)− jm+1

m
(τjm − c)|

≤ jm+m+1

m
η +

jm+1

m
η ≤ (2j + 3)η.

On the other hand,

|τ∗ − tn| =
∣

∣

1

m

jm+m
∑

n′=jm+1

(tn′ − tn)
∣

∣ ≤ 1

m

jm+m
∑

n′=jm+1

M |n−n′|
1+min(n,n′)

≤ 1

m

jm+m
∑

n′=jm+1

Mm

1+jm
=

Mm

1+jm
≤ M

j
.

Putting these together, we have

|tn − c| ≤ |tn − τ∗|+ |τ∗ − c| ≤ M

j
+ (2j + 3)η =

M

j
+ (2j + 3) supm≥n−n/j |τm − c|,

as required.

282O Theorem Let f be a complex-valued function of bounded variation, defined almost everywhere in
]−π, π], and let 〈sn〉n∈N be its sequence of Fourier sums.

(i) If x ∈ ]−π, π[, then

limn→∞ sn(x) =
1

2
(limt∈dom f,t↑x f(t) + limt∈dom f,t↓x f(t)).

(ii) limn→∞ sn(π) =
1

2
(limt∈dom f,t↑π f(t) + limt∈dom f,t↓−π f(t)).

(iii) If f is defined throughout ]−π, π], is continuous, and limt↓−π f(t) = f(π), then sn(x) → f(x)
uniformly on ]−π, π].
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proof (a) Note first that 224F shows that the limits limt∈dom f,t↓x f(t), limt∈dom f,t↑x f(t) required in the
formulae above always exist. We know also from 282M that M = supk∈Z |kck| < ∞, where ck is the kth
Fourier coefficient of f .

Take any x ∈ ]−π, π], and set

c = 1
2 (limt∈dom f,t↑x f̃(t) + limt∈dom f̃ ,t↓x f̃(t)),

writing f̃ for the periodic extension of f , as usual. We know from 282Id-282Ie that c = limm→∞ σm(x),
writing σm for the Fejér sums of f . Let ǫ > 0. Take any j ≥ max(2, 2M/ǫ), and m0 ≥ 1 such that
|σm(x)− c| ≤ ǫ/(2j + 3) for every m ≥ m0.

Now if n ≥ max(j2, 2m0), apply Lemma 282N with

d0 = c0, dk = cke
ikx + c−ke−ikx for k ≥ 1,

so that tn = sn(x), τm = σm(x) and |kdk| ≤ 2M for every k, n, m ∈ N. We have n− n/j ≥ 1
2n ≥ m0, so

η = supm≥n−n/j |τm − c| ≤ supm≥m0
|τm − c| ≤ ǫ

2j+3
.

So 282N tells us that

|sn(x)− c| = |tn − c| ≤ 2M

j
+ (2j + 3) supm≥n−n/j |τm − c| ≤ ǫ+ (2j + 3)η ≤ 2ǫ.

As ǫ is arbitrary, limn→∞ sn(x) = c, as required.

(b) This proves (i) and (ii) of this theorem. Finally, for (iii), observe that under these conditions
σm(x) → f(x) uniformly as m → ∞, by 282G. So given ǫ > 0 we choose j ≥ max(2, 2M/ǫ) and m0 ∈ N

such that |σm(x)−f(x)| ≤ ǫ/(2j+3) whenever m ≥ m0 and x ∈ ]−π, π]. By the same calculation as before,

|sn(x)− f(x)| ≤ 2ǫ

for every n ≥ max(j2, 2m0) and every x ∈ ]−π, π]. As ǫ is arbitrary, limn→∞ sn(x) = f(x) uniformly for
x ∈ ]−π, π].

282P Corollary Let f be a complex-valued function which is integrable over ]−π, π], and 〈sn〉n∈N its
sequence of Fourier sums.

(i) Suppose that x ∈ ]−π, π[ is such that f is of bounded variation on some neighbourhood of x. Then

limn→∞ sn(x) =
1

2
(limt∈dom f,t↑x f(t) + limt∈dom f,t↓x f(t)).

(ii) If there is a δ > 0 such that f is of bounded variation on both ]−π,−π + δ] and [π − δ, π], then

limn→∞ sn(π) =
1

2
(limt∈dom f,t↑π f(t) + limt∈dom f,t↓−π f(t)).

proof In case (i), take δ > 0 such that f is of bounded variation on [x − δ, x + δ] and set f1(t) = f(t) if
x ∈ dom f ∩ [x− δ, x+ δ], 0 for other t ∈ ]−π, π]; in case (ii), set f1(t) = f(t) if t ∈ dom f and |t| ≥ π− δ, 0
for other t ∈ ]−π, π], and say that x = π. In either case, f1 is of bounded variation, so by 282O the Fourier
sums 〈s′n〉n∈N of f1 converge at x to the value given by the formulae above. But now observe that, writing

f̃ and f̃1 for the periodic extensions of f and f1, f̃ − f̃1 = 0 on a neighbourhood of x, so

∫ π

−π

f̃(x+t)−f̃1(x+t)

sin 1

2
t

dt

exists in C, and by 282Fb

lim
n→∞

∫ π

−π

f̃(x+ t)− f̃1(x+ t)

sin 1
2 t

sin(n+
1

2
)t dt = 0,

that is, limn→∞ sn(x)− s′n(x) = 0. So 〈sn〉n∈N also converges to the right limit.

282Q I cannot leave this section without mentioning one of the most important facts about Fourier
series, even though I have no space here to discuss its consequences.
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Theorem Let f and g be complex-valued functions which are integrable over ]−π, π], and 〈ck〉k∈N, 〈dk〉k∈N

their Fourier coefficients. Let f ∗ g be their convolution, defined by the formula

(f ∗ g)(x) =
∫ π

−π
f(x−2π t)g(t)dt =

∫ π

−π
f̃(x− t)g(t)dt,

as in 255O, writing f̃ for the periodic extension of f . Then the Fourier coefficients of f ∗ g are 〈2πckdk〉k∈Z.

proof By 255O(c-i),

1

2π

∫ π

−π
(f ∗ g)(x)e−ikxdx =

1

2π

∫ π

−π

∫ π

−π
e−ik(t+u)f(t)g(u)dtdu

=
1

2π

∫ π

−π
e−iktf(t)dt

∫ π

−π
e−ikug(u)du = 2πckdk.

*282R In my hurry to get to the theorems on convergence of Fejér and Fourier sums, I have rather
neglected the elementary manipulations which are essential when applying the theory. One basic result is
the following.

Proposition (a) Let f : [−π, π] → C be an absolutely continuous function such that f(−π) = f(π), and
〈ck〉k∈Z its sequence of Fourier coefficients. Then the Fourier coefficients of f ′ are 〈ikck〉k∈Z.

(b) Let f : R → C be a differentiable function such that f ′ is absolutely continuous on [−π, π], and
f(π) = f(−π). If 〈ck〉k∈Z are the Fourier coefficients of f↾ ]−π, π], then ∑∞

k=−∞ |ck| is finite.
proof (a) By 225Cb, f ′ is integrable over [−π, π]; by 225E, f is an indefinite integral of f ′. So 225F tells
us that

∫ π

−π f
′(x)e−ikxdx = f(π)e−ikπ − f(−π)eikπ + ik

∫ π

−π f(x)e
−ikxdx = ikck

for every k ∈ Z.

(b)(i) Suppose first that f ′(π) = f ′(−π). By (a), applied twice, the Fourier coefficients of f ′′ are

〈−k2ck〉k∈Z, so supk∈Z k
2|ck| is finite; because

∑∞
k=1

1

k2
<∞,

∑∞
k=−∞ |ck| <∞.

(ii) Next, suppose that f(x) = x2 for every x. Then, for k 6= 0,

ck =
1

2π

∫

x2e−ikxdx =
1

2π

(

− 1

ik
(π2e−ikπ − π2eikπ) +

∫ π

−π

2x

ik
e−ikxdx

)

=
1

ikπ

(

− 1

ik
(πe−ikπ + πeikπ) +

1

ik

∫ π

−π
eikxdx

)

=
2

k2
(−1)k,

so
∑

k∈Z
|ck| ≤ |c0|+ 4

∑∞
k=1

1

k2
is finite.

(iii) In general, we can express f as f1 + cf2 where f2(x) = x2 for every x, c =
1

4π
(f ′(π) − f ′(−π)),

and f1 satisfies the conditions of (i); so that 〈ck〉k∈Z is the sum of two summable sequences and is itself
summable.

282X Basic exercises >>>(a) Suppose that 〈ck〉k∈N is an absolutely summable double-ended sequence
of complex numbers. Show that f(x) =

∑∞
k=−∞ cke

ikx exists for every x ∈ R, that f is continuous and
periodic, and that its Fourier coefficients are the ck.

(c) Set φn(t) = 2
t sin(n + 1

2 t) for t 6= 0. (This is sometimes called the modified Dirichlet kernel.)

Show that for any integrable function f on ]−π, π], with Fourier sums 〈sn〉n∈N and periodic extension f̃ ,

limn→∞ |sn(x)− 1
2π

∫ π

−π φn(t)f̃(x+ t)dt| = 0

for every x ∈ ]−π, π]. (Hint : show that 2
t − 1

sin 1
2 t

is bounded, and use 282E.)
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(d) Give a proof of 282Ib from 242O, 255O and 282G.

(e) Give another proof of 282Ic, based on 222D, 281J and an idea in the proof of 242O instead of on
282H.

(f) Use the idea of 255Ya to shorten one of the steps in the proof of 282H, taking

gm(t) = min(m+1
2π , π

4(m+1)t2 )

for |t| ≤ δ, so that gm ≥ ψm on [−δ, δ].

>>>(g)(i) Let f be a real square-integrable function on ]−π, π], and 〈ak〉k∈N, 〈bk〉k≥1 its real Fourier
coefficients (282Ba). Show that 1

2a
2
0 +

∑∞
k=1(a

2
k + b2k) = 1

π

∫ π

−π |f |2. (ii) Show that f 7→ (
√

π
2 a0,

√
πa1,√

πb1, . . . ) defines an inner-product-space isomorphism between the real Hilbert space L2
R
of equivalence

classes of real square-integrable functions on ]−π, π] and the real Hilbert space ℓ2
R

of square-summable
sequences.

(h) Show that π
4 = 1 − 1

3 + 1
5 − 1

7 + . . . . (Hint : find the Fourier series of f where f(x) = x/|x|, and
compute the sum of the series at π

2 . Of course there are other methods, e.g., examining the Taylor series
for arctan π

4 .)

(i) Let f be an integrable complex-valued function on ]−π, π], and 〈sn〉n∈N its sequence of Fourier sums.

Suppose that x ∈ ]−π, π[, a ∈ C are such that
∫ π

−π
f(t)−a

t−x
dt exists and is finite. Show that limn→∞ sn(x) = a.

Explain how this generalizes 282L. What modification is appropriate to obtain a limit limn→∞ sn(π)?

(j) Suppose that α > 0, K ≥ 0 and f : ]−π, π[ → C are such that |f(x) − f(y)| ≤ K|x − y|α for all x,
y ∈ ]−π, π[. (Such functions are called Hölder continuous.) Show that the Fourier sums of f converge to
f everywhere in ]−π, π[. (Hint : use 282Xi.) (Compare 282Yb.)

(k) In 282L, show that it is enough if f̃ is differentiable with respect to its domain at x or π (see 262Fb),
rather than differentiable in the strict sense.

(l) Show that lima→∞
∫ a

0
sin t
t dt exists and is finite. (Hint : use 224J to estimate

∫ b

a
sin t
t dt for 0 < a ≤ b.)

(m) Show that
∫∞
0

| sin t|
t dt = ∞. (Hint : show that supa≥0 |

∫ a

1
cos 2t
t dt| < ∞, and therefore that

supa≥0

∫ a

1
sin2 t
t dt = ∞.)

>>>(n) Let 〈dk〉k∈N be a sequence in C such that supk∈N |kdk| <∞ and

limm→∞
1

m+1

∑m
n=0

∑n
k=0 dk = c ∈ C.

Show that c =
∑∞
k=0 dk. (Hint : 282N.)

>>>(o) Show that
∑∞
n=1

1
n2 = π2

6 . (Hint : (b-ii) of the proof of 282R.)

(p) Let f be an integrable complex-valued function on ]−π, π], and 〈sn〉n∈N its sequence of Fourier sums.
Suppose that x ∈ ]−π, π[ is such that

(i) there is an a ∈ C such that

either
∫ x

−π
a−f(t)

x−t
dt exists in C

or there is some δ > 0 such that f is of bounded variation on [x−δ, x], and a = limt∈dom f,t↑x f(t)
(ii) there is a b ∈ C such that

either
∫ π

x

f(t)−b

t−x
dt exists in C

or there is some δ > 0 such that f is of bounded variation on [x, x+δ], and b = limt∈dom f,t↓x f(t).
Show that limn→∞ sn(x) =

1
2 (a+ b). What modification is appropriate to obtain a limit limn→∞ sn(π)?
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>>>(q) Let f , g be integrable complex-valued functions on ]−π, π], and ccc = 〈ck〉k∈Z, ddd = 〈dk〉k∈Z their
sequences of Fourier coefficients. Suppose that either

∑∞
k=−∞ |ck| <∞ or

∑∞
k=−∞ |ck|2 + |dk|2 <∞. Show

that the sequence of Fourier coefficients of f × g is just the convolution ccc ∗ ddd of ccc and ddd (255Xk).

(r) In 282Ra, what happens if f(π) 6= f(−π)?

(s) Suppose that 〈ck〉k∈N is a double-ended sequence of complex numbers such that
∑∞
k=−∞ |kck| < ∞.

Show that f(x) =
∑∞
k=−∞ cke

ikx exists for every x ∈ R and that f is differentiable everywhere.

(t) Let 〈ck〉k∈Z be a double-ended sequence of complex numbers such that supk∈Z |kck| <∞. Show that
there is a square-integrable function f on ]−π, π] such that the ck are the Fourier coefficients of f , that f
is the limit almost everywhere of its Fourier sums, and that f ∗ f ∗ f is differentiable. (Hint : use 282K to
show that there is an f , and 282Xn to show that its Fourier sums converge wherever its Fejér sums do; use
282Q and 282Xs to show that f ∗ f ∗ f is differentiable.)

282Y Further exercises (a) Let f be a non-negative integrable function on ]−π, π], with Fourier
coefficients 〈ck〉k∈Z. Show that

∑n
j=0

∑n
k=0 aj ākcj−k ≥ 0

for all complex numbers a0, . . . , an. (See also 285Xu below.)

(b) Let f : ]−π, π] → C, K ≥ 0, α > 0 be such that |f(x) − f(y)| ≤ K|x − y|α for all x, y ∈ ]−π, π].
Let ck, sn be the Fourier coefficients and sums of f . (i) Show that supk∈Z |k|α|ck| < ∞. (Hint : show that

ck = 1
4π

∫ π

−π(f(x) − f̃(x + π
k ))e

−ikxdx.) (ii) Show that if f(π) = limx↓−π f(x) then sn → f uniformly.

(Compare 282Xj.)

(c) Let f be a measurable complex-valued function on ]−π, π], and suppose that p ∈ [1,∞[ is such that
∫ π

−π |f |p < ∞. Let 〈σm〉m∈N be the sequence of Fejér sums of f . Show that limm→∞
∫ π

−π |f − σm|p = 0.

(Hint : use 245Xl, 255Yk and the ideas in 282Ib.)

(d) Construct a continuous function h : [−π, π] → R such that h(π) = h(−π) but the Fourier sums of h

are unbounded at 0, as follows. Set α(m,n) =
∫ π

0

sin(m+ 1
2 )t sin(n+

1
2 )t

sin 1
2 t

dt. Show that limn→∞ α(m,n) = 0 for

every m, but limn→∞ α(n, n) = ∞. Set h0(x) =
∑∞
k=0 δk sin(mk +

1
2 )x for 0 ≤ x ≤ π, 0 for −π ≤ x ≤ 0,

where δk > 0, mk ∈ N are such that (α) δk ≤ 2−k, δk|α(mk,mn)| ≤ 2−k for every n < k (choosing δk) (β)
δkα(mk,mk) ≥ k, δn|α(mk,mn)| ≤ 2−n for every n < k (choosing mk). Now modify h0 on [−π, 0[ by adding
a function of bounded variation.

(e)(i) Show that limn→∞
∫ π

−π |
sin(n+ 1

2 )t

sin 1
2 t

|dt = ∞. (Hint : 282Xm.) (ii) Show that for any δ > 0 there are

n ∈ N, f ≥ 0 such that
∫ π

−π f ≤ δ,
∫ π

−π |sn| ≥ 1, where sn is the nth Fourier sum of f . (Hint : take n such

that
1

2π

∫ π

−π |
sin(n+ 1

2 )t

sin 1
2 t

|dt > 1

δ
and set f(x) =

δ

η
for 0 ≤ x ≤ η, 0 otherwise, where η is small.) (iii) Show

that there is an integrable function f : ]−π, π] → R such that supn∈N ‖sn‖1 is infinite, where 〈sn〉n∈N is the
sequence of Fourier sums of f . (Hint : it helps to know the ‘Uniform Boundedness Theorem’ of functional
analysis, but f can also be constructed bare-handed by the method of 282Yd.)

(f) Let u : [−π, π] → R be an absolutely continuous function such that u(π) = u(−π) and
∫ π

−π u = 0.

Show that ‖u‖2 ≤ ‖u′‖2. (This is Wirtinger’s inequality.)

(g) For 0 ≤ r < 1, t ∈ R set Ar(t) =
1−r2

1−2r cos t+r2
. (Ar is the Poisson kernel; see 478Xl1 in Volume 4.)

(i) Show that
1

2π

∫ π

−π Ar = 1. (ii) For a real function f which is integrable over ]−π, π], with real Fourier

coefficients ak, bk (282Ba), set Sr(x) =
1

2
a0 +

∑∞
k=1 r

k(ak cos kx+ bk sin kx) for x ∈ ]−π, π], r ∈ [0, 1[. Show

1Later editions only.
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that Sr(x) =
1

2π

∫ π

−π Ar(x− t)f(t)dt for every x ∈ ]−π, π]. (Hint : Ar(t) = 1 + 2
∑∞
n=1 r

n cosnt.) (iii) Show

that limr↑1 Sr(x) = f(x) for every x ∈ ]−π, π[ which is in the Lebesgue set of f . (Hint : 223Yg.) (iv)
Show that limr↑1

∫ π

−π |Sr − f | = 0. (v) Show that if f is defined everywhere on ]−π, π], is continuous, and

f(π) = limx↓−π f(x), then limr↑1 supx∈]−π,π] |Sr(x)− f(x)| = 0.

282 Notes and comments This has been a long section with a potentially confusing collection of results, so
perhaps I should recapitulate. Associated with any integrable function on ]−π, π] we have the corresponding
Fourier sums, being the symmetric partial sums

∑n
k=−n cke

ikx of the complex series
∑∞
k=−∞ cke

ikx, or,

equally, the partial sums 1
2a0+

∑n
k=1 ak cos kx+ bk sin kx of the real series 1

2a0+
∑∞
k=1 ak cos kx+ bk sin kx.

The Fourier coefficients ck, ak, bk are the only natural ones, because if the series is to converge with any
regularity at all then

1

2π

∫ π

−π

(

∑∞
k=−∞ cke

ikx
)

e−ilxdx

ought to be simultaneously

∑∞
k=−∞

1

2π

∫ π

−π cke
ikxe−ilxdx = cl

and

1

2π

∫ π

−π f(x)e
−ilxdx.

(Compare the calculations in 282J.) The effect of taking Fejér sums σm(x) rather than the Fourier sums
sn(x) is to smooth the sequence out; recall that if limn→∞ sn(x) = c then limm→∞ σm(x) = c, by 273Ca in
the last chapter.

Most of the work above is concerned with the question of when Fourier or Fejér sums converge, in some
sense, to the original function f . As has happened before, in §245 and elsewhere, we have more than one kind
of convergence to consider. Norm convergence, for ‖ ‖1 or ‖ ‖2 or ‖ ‖∞, is the simplest; the three theorems
282G, 282Ib and 282J at least are relatively straightforward. (I have given 282Ib as a corollary of 282Ia;
but there is an easier proof from 282G. See 282Xd.) Respectively, we have

if f is continuous (and matches at ±π, that is, f(π) = limt↓−π f(t)) then σm → f uniformly,
that is, for ‖ ‖∞ (282G);

if f is any integrable function, then σm → f for ‖ ‖1 (282Ib);

if f is a square-integrable function, then sn → f for ‖ ‖2 (282J);

if f is continuous and of bounded variation (and matches at ±π), then sn → f uniformly
(282O).

There are some similar results for other ‖ ‖p (282Yc); but note that the Fourier sums need not converge for
‖ ‖1 (282Ye).

Pointwise convergence is harder. The results I give are

if f is any integrable function, then σm → f almost everywhere (282Ia);

this relies on some careful calculations in 282H, and also on the deep result 223D. Next we have the results
which look at the average of the limits of f from the two sides. Suppose I write

f±(x) =
1

2
(limt↑x f(t) + limt↓x f(t))

whenever this is defined, taking f±(π) = 1
2 (limt↑π f(t) + limt↓−π f(t)). Then we have

if f is any integrable function, σm → f± wherever f± is defined (282I);

if f is of bounded variation, sn → f± everywhere (282O).

Of course these apply at any point at which f is continuous, in which case f(x) = f±(x). Yet another result
of this type is

if f is any integrable function, sn → f at any point at which f is differentiable (282L);

in fact, this can be usefully extended for very little extra labour (282Xi, 282Xp).
I cannot leave this list without mentioning the theorem I have not given. This is Carleson’s theorem:
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if f is square-integrable, sn → f almost everywhere

(Carleson 66). I will come to this in §286. There is an elementary special case in 282Xt. The result is in
fact valid for many other f (see the notes to §286).

The next glaring lacuna in the exposition here is the absence of any examples to show how far these
results are best possible. There is no suggestion, indeed, that there are any natural necessary and sufficient
conditions for

sn → f at every point.

Nevertheless, we have to make an effort to find a continuous function for which this is not so, and the
construction of an example by du Bois-Reymond (Bois-Reymond 1876) was an important moment in the
history of analysis, not least because it forced mathematicians to realise that some comfortable assumptions
about the classification of functions – essentially, that functions are either ‘good’ or so bad that one needn’t
trouble with them – were false. The example is instructive but I have had to omit it for lack of space;
I give an outline of a possible method in 282Yd. (You can find a detailed construction in Körner 88,
chapter 18, and a proof that such a function exists in Dudley 89, 7.4.3.) If you allow general integrable
functions, then you can do much better, or perhaps I should say much worse; there is an integrable f such
that supn∈N |sn(x)| = ∞ for every x ∈ ]−π, π] (Kolmogorov 1926; see Zygmund 59, §§VIII.3-4).

In 282C I mentioned two types of problem. The first – when is a Fourier series summable? – has at least
been treated at length, even though I cannot pretend to have given more than a sample of what is known.
The second – how do properties of the ck reflect properties of f? – I have hardly touched on. I do give what
seem to me to be the three most important results in this area. The first is

if f and g have the same Fourier coefficients, they are equal almost everywhere (282Ic).

This at least tells us that we ought in principle to be able to learn almost anything about f by looking at its
Fourier series. (For instance, 282Ya describes a necessary and sufficient condition for f to be non-negative
almost everywhere.) The second is

f is square-integrable iff
∑∞
k=−∞ |ck|2 <∞;

in fact,

∑∞
k=−∞ |ck|2 =

1

2π

∫ π

π
|f |2 (282J).

Of course this is fundamental, since it shows that Fourier coefficients provide a natural Hilbert space iso-
morphism between L2 and ℓ2 (282K). I should perhaps remark that while the real Hilbert spaces L2

R
, ℓ2

R

are isomorphic as inner product spaces (282Xg), they are certianly not isomorphic as Banach lattices; for
instance, ℓ2

R
has ‘atomic’ elements ccc such that if 0 ≤ ddd ≤ ccc then ddd is a multiple of ccc, while L2

R
does not.

Perhaps even more important is

the Fourier coefficients of a convolution f ∗ g are just a scalar multiple of the products of the
Fourier coefficients of f and g (282Q);

but to use this effectively we need to study the Banach algebra structure of L1, and I have no choice but to
abandon this path immediately. (It will form a conspicuous part of Chapter 44 in Volume 4.) 282Xt gives an
elementary consequence, and 282Xq a very partial description of the relationship between a product f × g
of two functions and the convolution product of their sequences of Fourier coefficients.

The Fejér sums considered in this section are one way of working around the convergence difficulties
associated with Fourier sums. When we come to look at Fourier transforms in the next two sections we
shall need some further manoeuvres. A different type of smoothing is obtained by using the Poisson kernel
in place of the Dirichlet or Fejér kernel (282Yg).

I end these notes with a remark on the number 2π. This enters nearly every formula involving Fourier
series, but could I think be removed totally from the present section, at least, by re-normalizing the measure
of ]−π, π]. If instead of Lebesgue measure µ we took the measure ν = 1

2πµ throughout, then every 2π would

disappear. (Compare the remark in 282Bb concerning the possibility of doing integrals over S1.) But I think
most of us would prefer to remember the location of a 2π in every formula than to deal with an unfamiliar
measure.
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Version of 31.3.13

283 Fourier transforms I

I turn now to the theory of Fourier transforms on R. In the first of two sections on the subject, I present
those parts of the elementary theory which can be dealt with using the methods of the previous section
on Fourier series. I find no way of making sense of the theory, however, without introducing a fragment of
L.Schwartz’ theory of distributions, which I present in §284. As in §282, of course, this treatment also is
nothing but a start in the topic.

The whole theory can also be done in Rr. I leave this extension to the exercises, however, since there are
few new ideas, the formulae are significantly more complicated, and I shall not, in this volume at least, have
any use for the multidimensional versions of these particular theorems, though some of the same ideas will
appear, in multidimensional form, in §285.

283A Definitions Let f be a complex-valued function which is integrable over R.

(a) The Fourier transform of f is the function
∧

f : R → C defined by setting

∧

f(y) =
1√
2π

∫∞
−∞ e−iyxf(x)dx

for every y ∈ R. (Of course the integral is always defined because x 7→ e−iyx is bounded and continuous,
therefore measurable.)

(b) The inverse Fourier transform of f is the function
∨

f : R → C defined by setting

∨

f(y) =
1√
2π

∫∞
−∞ eiyxf(x)dx

for every y ∈ R.

283B Remarks (a) It is a mildly vexing feature of the theory of Fourier transforms – vexing, that is,
for outsiders like myself – that there is in fact no standard definition of ‘Fourier transform’. The commonest
definitions are, I think,

∧

f(y) =
1√
2π

∫∞
−∞ e∓iyxf(x)dx,

∧

f(y) =
∫∞
−∞ e∓iyxf(x)dx,

∧

f(y) =
∫∞
−∞ e∓2πiyxf(x)dx,

corresponding to inverse transforms

∨

f(y) =
1√
2π

∫∞
−∞ e±iyxf(x)dx,

∨

f(y) =
1

2π

∫∞
−∞ e±iyxf(x)dx,

∨

f(y) =
∫∞
−∞ e±2πiyxf(x)dx.

I leave it to you to check that the whole theory can be carried through with any of these six pairs, and to
investigate other possibilities (see 283Xa-283Xb below).

(b) The phrases ‘Fourier transform’, ‘inverse Fourier transform’ make it plain that (
∧

f)∨ is supposed to
be f , at least some of the time. This is indeed the case, but the class of f for which this is true in the literal
sense is somewhat constrained, and we shall have to wait a little while before investigating it.

c© 1994 D. H. Fremlin
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(c) No amount of juggling with constants, in the manner of (a) above, can make
∧

f and
∨

f quite the same.

However, on the definitions I have chosen, we do have
∨

f(y) =
∧

f(−y) for every y, so that
∨

f and
∧

f will share
essentially all the properties of interest to us here; in particular, everything in the next proposition will be
valid with ∨ in place of ∧, if you change signs at the right points in parts (c), (h) and (i).

283C Proposition Let f and g be complex-valued functions which are integrable over R.

(a) (f + g)∧ =
∧

f +
∧

g.

(b) (cf)∧ = c
∧

f for every c ∈ C.

(c) If c ∈ R and h(x) = f(x+ c) whenever this is defined, then
∧

h(y) = eicy
∧

f(y) for every y ∈ R.

(d) If c ∈ R and h(x) = eicxf(x) for every x ∈ dom f , then
∧

h(y) =
∧

f(y − c) for every y ∈ R.

(e) If c > 0 and h(x) = f(cx) whenever this is defined, then
∧

h(y) =
1

c

∧

f(
y

c
) for every y ∈ R.

(f)
∧

f : R → C is continuous.

(g) limy→∞
∧

f(y) = limy→−∞
∧

f(y) = 0.

(h) If
∫∞
−∞ |xf(x)|dx <∞, then

∧

f is differentiable, and its derivative is

∧

f ′(y) = − i√
2π

∫∞
−∞ e−iyxxf(x)dx

for every y ∈ R.

(i) If f is absolutely continuous on every bounded interval and f ′ is integrable, then (f ′)∧(y) = iy
∧

f(y)
for every y ∈ R.

proof (a) and (b) are trivial, and (c), (d) and (e) are elementary substitutions.

(f) If 〈yn〉n∈N is any convergent sequence in R with limit y, then

∧

f(y) =
1√
2π

∫ ∞

−∞
lim
n→∞

e−iynxf(x)dx

= lim
n→∞

1√
2π

∫ ∞

−∞
e−iynxf(x)dx = lim

n→∞

∧

f(yn)

by Lebesgue’s Dominated Convergence Theorem, because |e−iynxf(x)| ≤ |f(x)| for every n ∈ N and x ∈
dom f . As 〈yn〉n∈N is arbitrary,

∧

f is continuous.

(g) This is just the Riemann-Lebesgue lemma (282E).

(h) The point is that | ∂∂y e−iyxf(x)| = |xf(x)| whenever x ∈ dom f and y ∈ R. So by 123D

∧

f ′(y) =
1√
2π

d

dy

∫ ∞

−∞
e−iyxf(x)dx =

1√
2π

d

dy

∫

dom f

e−iyxf(x)dx

=
1√
2π

∫

dom f

∂

∂y
e−iyxf(x)dx =

1√
2π

∫ ∞

−∞
−ixe−iyxf(x)dx

= − i√
2π

∫ ∞

−∞
xe−iyxf(x)dx.

(i) Because f is absolutely continuous on every bounded interval,

f(x) = f(0) +
∫ x

0
f ′ for x ≥ 0, f(x) = f(0)−

∫ 0

x
f ′ for x ≤ 0.

Because f ′ is integrable,

limx→∞ f(x) = f(0) +
∫∞
0
f ′, limx→−∞ f(x) = f(0)−

∫ 0

−∞ f ′

both exist. Because f also is integrable, both limits must be zero. Now we can integrate by parts (225F) to
see that
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(f ′)∧(y) =
1√
2π

∫ ∞

−∞
e−iyxf ′(x)dx =

1√
2π

lim
a→∞

∫ a

−a
e−iyxf ′(x)dx

=
1√
2π

(

lim
a→∞

e−iyaf(a)− lim
a→−∞

e−iyaf(a)
)

+
iy√
2π

∫ ∞

−∞
e−iyxf(x)dx

= iy
∧

f(y).

283D Lemma (a) lima→∞
∫ a

0
sin x
x dx = π

2 , lima→∞
∫ a

−a
sin x
x dx = π.

(b) There is a K <∞ such that |
∫ b

a
sin cx
x dx| ≤ K whenever a ≤ b and c ∈ R.

proof (a)(i) Set

F (a) =
∫ a

0

sinx

x
dx if a ≥ 0, F (a) = −

∫ 0

−a
sinx

x
dx if a ≤ 0,

so that F (a) = −F (−a) and
∫ b

a
sin x
x dx = F (b)− F (a) for all a ≤ b.

If 0 < a ≤ b, then by 224J

|
∫ b

a

sinx

x
dx| ≤ (

1

b
+

1

a
− 1

b
) supc∈[a,b] |

∫ c

a
sinx dx| ≤ 1

a
supc∈[a,b] | cos a− cos c| ≤ 2

a
.

In particular, |F (n)−F (m)| ≤ 2
m if 0 < m ≤ n in N, and 〈F (n)〉n∈N is a Cauchy sequence with limit γ say;

now

|γ − F (a)| = limn→∞ |F (n)− F (a)| ≤ 2

a

for every a > 0, so lima→∞ F (a) = γ. Of course we also have

lima→∞
∫ a

−a
sinx

x
dx = lima→∞(F (a)− F (−a)) = lima→∞ 2F (a) = 2γ.

(ii) So now I have to calculate γ. For this, observe first that

2γ = lima→∞
∫ πa

−πa
sinx

x
dx = lima→∞

∫ π

−π
sin at

t
dt

(substituting x = t/a). Next,

limt→0
1

t
− 1

2 sin 1

2
t
= limu→0

sinu−u

2u sinu
= 0,

so
∫ π

−π

∣

∣

1

t
− 1

2 sin 1

2
t

∣

∣dt <∞,

and by the Riemann-Lebesgue lemma (282Fb)

lima→∞
∫ π

−π

(1

t
− 1

2 sin 1

2
t

)

sin at dt = 0.

But we know that
∫ π

−π
sin(n+ 1

2
)t

2 sin 1

2
t
dt = π

for every n (using 282Dc), so we must have

lim
a→∞

∫ a

−a

sin t

t
dt = lim

a→∞

∫ π

−π

sin at

t
dt = lim

a→∞

∫ π

−π

sin at

2 sin 1

2
t
dt

= lim
n→∞

∫ π

−π

sin(n+ 1

2
)t

2 sin 1

2
t
dt = π,

and γ = π/2, as claimed.
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(b) Because F is continuous and

lima→∞ F (a) = γ =
π

2
, lima→−∞ F (a) = −γ = −π

2
,

F is bounded; say |F (a)| ≤ K1 for all a ∈ R. Try K = 2K1. Now suppose that a < b and c ∈ R. If c > 0,
then

|
∫ b

a

sin cx

x
dx| = |

∫ bc

ac

sin t

t
dt| = |F (bc)− F (ac)| ≤ 2K1 = K,

substituting x = t/c. If c < 0, then

|
∫ b

a

sin cx

x
dx| = | −

∫ b

a

sin(−c)x

x
dx| ≤ K;

while if c = 0 then

|
∫ b

a

sin cx

x
dx| = 0 ≤ K.

283E The hardest work of this section will lie in the ‘pointwise inversion theorems’ 283I and 283K below.
I begin however with a relatively easy, and at least equally important, result, showing (among other things)
that an integrable function f can (essentially) be recovered from its Fourier transform.

Lemma Whenever c < d in R,

lim
a→∞

∫ a

−a
e−iyx

eidy−eicy

y
dy = 2πi if c < x < d,

= πi if x = c or x = d,

= 0 if x < c or x > d.

proof We know that for any b > 0

lima→∞
∫ a

−a
sin bx

x
dx = lima→∞

∫ ab

−ab
sin t

t
dt = π

(subsituting x = t/b), and therefore that for any b < 0

lima→∞
∫ a

−a
sin bx

x
dx = − lima→∞

∫ a

−a
sin(−b)x

x
dx = −π.

Now consider, for x ∈ R,

lima→∞
∫ a

−a e
−iyx eidy−eicy

y
dy.

First note that all the integrals
∫ a

−a exist, because

limy→0
eidy−eicy

y
= i(d− c)

is finite, and the integrand is certainly continuous except at 0. Now we have

∫ a

−a
e−iyx

eidy−eicy

y
dy

=

∫ a

−a

ei(d−x)y−ei(c−x)y

y
dy

=

∫ a

−a

cos(d−x)y−cos(c−x)y

y
dy + i

∫ a

−a

sin(d−x)y−sin(c−x)y

y
dy

= i

∫ a

−a

sin(d−x)y−sin(c−x)y

y
dy
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because cos is an even function, so
∫ a

−a
cos(d−x)y−cos(c−x)y

y
dy = 0

for every a ≥ 0. (Once again, this integral exists because

limy→0
cos(d−x)y−cos(c−x)y

y
= 0.)

Accordingly

lim
a→∞

∫ a

−a
e−iyx

eidy−eicy

y
dy = i lim

a→∞

∫ a

−a

sin(d−x)y

y
dy − i lim

a→∞

∫ a

−a

sin(c−x)y

y
dy

= iπ − iπ = 0 if x < c,

= iπ − 0 = πi if x = c,

= iπ + iπ = 2πi if c < x < d,

= 0 + iπ = πi if x = d,

= −iπ + iπ = 0 if x > d.

283F Theorem Let f be a complex-valued function which is integrable over R, and
∧

f its Fourier
transform. Then whenever c ≤ d in R,

∫ d

c

f =
i√
2π

lim
a→∞

∫ a

−a

eicy−eidy

y

∧

f(y)dy.

proof If c = d this is trivial; let us suppose that c < d.

(a) Writing

θa(x) =

∫ a

−a
e−iyx

eidy−eicy

y
dy

for x ∈ R and a ≥ 0, 283E tells us that

lima→∞ θa(x) = 2πiθ(x)

where θ = 1
2 (χ[c, d] + χ ]c, d[) takes the value 1 inside the interval [c, d], 0 outside and the value 1

2 at the
endpoints. At the same time,

|θa(x)| = |
∫ a

−a

sin(d−x)y−sin(c−x)y

y
dy|

(see the proof of 283E)

≤ |
∫ a

−a

sin(d−x)y

y
dy|+ |

∫ a

−a

sin(c−x)y

y
dy| ≤ 2K

for all a ≥ 0 and x ∈ R, where K is the constant of 283Db. Consequently |f × θa| ≤ 2K|f | everywhere
on dom f , for every a ≥ 0, and (applying Lebesgue’s Dominated Convergence Theorem to sequences 〈f ×
θan〉n∈N, where an → ∞)

lima→∞
∫

f × θa = 2πi
∫

f × θ = 2πi
∫ d

c
f .

(b) Now consider the limit in the statement of the theorem. We have
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∫ a

−a

eicy − eidy

y

∧

f(y)dy =
1√
2π

∫ a

−a

∫ ∞

−∞

eicy − eidy

y
e−iyxf(x)dxdy

=
1√
2π

∫ ∞

−∞

∫ a

−a

eicy − eidy

y
e−iyxf(x)dydx

= − 1√
2π

∫ ∞

−∞
f × θa

by Fubini’s and Tonelli’s theorems (252H), using the fact that (eicy − eidy)/y is bounded to see that
∫∞
−∞

∫ a

−a

∣

∣

eicy−eidy
y e−iyxf(x)

∣

∣dydx

is finite. Accordingly

i√
2π

lim
a→∞

∫ a

−a

eicy − eidy

y

∧

f(y)dy = − i

2π
lim
a→∞

∫ ∞

−∞
f × θa

= − i

2π
2πi

∫ d

c

f =

∫ d

c

f,

as required.

283G Corollary If f and g are complex-valued functions which are integrable over R, then
∧

f =
∧

g iff
f =a.e. g.

proof If f =a.e. g then of course

∧

f(y) =
1√
2π

∫∞
−∞ e−iyxf(x)dx =

1√
2π

∫∞
−∞ e−iyxg(x)dx =

∧

g(y)

for every y ∈ R. Conversely, if
∧

f =
∧

g, then by the last theorem
∫ d

c
f =

∫ d

c
g

for all c ≤ d, so f = g almost everywhere, by 222D.

283H Lemma Let f be a complex-valued function which is integrable over R, and
∧

f its Fourier transform.
Then

1√
2π

∫ a

−a e
ixy

∧

f(y)dy =
1

π

∫∞
−∞

sin a(x−t)

x−t
f(t)dt =

1

π

∫∞
−∞

sin at

t
f(x− t)dt

whenever a > 0 and x ∈ R.

proof We have
∫ a

−a

∫∞
−∞ |eixye−iytf(t)|dtdy ≤ 2a

∫∞
−∞ |f(t)|dt <∞,

so (because the function (t, y) 7→ eixye−iytf(t) is surely jointly measurable) we may reverse the order of
integration, and get

1√
2π

∫ a

−a
eixy

∧

f(y)dy =
1

2π

∫ a

−a

∫ ∞

−∞
eixye−iytf(t)dt dy

=
1

2π

∫ ∞

−∞
f(t)

∫ a

−a
ei(x−t)ydy dt

=
1

2π

∫ ∞

−∞

2 sin(x−t)a

x−t
f(t)dt =

1

π

∫ ∞

−∞

sin au

u
f(x− u)du,

substituting t = x− u.
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283I Theorem Let f be a complex-valued function which is integrable over R, and suppose that f is
differentiable at x ∈ R. Then

f(x) =
1√
2π

lima→∞
∫ a

−a e
ixy

∧

f(y)dy =
1√
2π

lima→∞
∫ a

−a e
−ixy ∨

f(y)dy.

proof Set g(u) = f(x) if |u| ≤ 1, 0 otherwise, and observe that limu→0
1
u (f(x − u) − g(u)) = −f ′(x) is

finite, so that there is a δ ∈ ]0, 1] such that

K = sup0<|u|≤δ
∣

∣

f(x−u)−g(u)

u

∣

∣ <∞.

Consequently

∫ ∞

−∞

∣

∣

f(x−u)−g(u)

u

∣

∣du ≤ 1

δ

∫ −δ

−∞
|f(x− u)|du+

1

δ

∫ 1

−1

|g|

+

∫ δ

−δ
K +

1

δ

∫ ∞

δ

|f(x− u)|du

≤ 1

δ

∫ ∞

−∞
|f |+ 2

δ
|f(x)|+ 2δK <∞.

By the Riemann-Lebesgue lemma (282Fb again),

lima→∞
∫∞
−∞

sin au

u
(f(x− u)− g(u))du = 0.

If we now examine
∫

sin au
u g(u)du, we get

∫ ∞

−∞

sin au

u
g(u)du =

∫ 1

−1

sin au

u
f(x)du = f(x)

∫ a

−a

sin v

v
dv,

substituting u = v/a. So we get

lim
a→∞

∫ ∞

−∞

sin au

u
f(x− u)du = lim

a→∞

∫ ∞

−∞

sin au

u
g(u)du

= lim
a→∞

f(x)

∫ a

−a

sin v

v
dv = πf(x),

by 283Da. Accordingly

1√
2π

lim
a→∞

∫ a

−a
eixy

∧

f(y)dy =
1

π
lim
a→∞

∫ ∞

−∞

sin au

u
f(x− u)du = f(x),

using 283H. As for the second equality,

1√
2π

lim
a→∞

∫ a

−a
e−ixy

∨

f(y)dy =
1√
2π

lim
a→∞

∫ a

−a
e−ixy

∧

f(−y)dy

=
1√
2π

lim
a→∞

∫ a

−a
eixu

∧

f(u)du = f(x)

(substituting y = −u).
Remark Compare 282L.

283J Corollary Let f : R → C be an integrable function such that f is differentiable and
∧

f is integrable.

Then f = (
∧

f)∨ = (
∨

f)∧.

proof Because
∧

f is integrable,
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∧

f
∨

(x) = lima→∞
1√
2π

∫ a

−a e
ixy

∧

f(y)dy = f(x)

for every x ∈ R. Similarly,

∨

f
∧

(x) = lima→∞
1√
2π

∫ a

−a e
−ixy ∨

f(y)dy = f(x).

Remark See also 283Wk below.

283K The next proposition gives a class of functions to which the last corollary can be applied.

Proposition Suppose that f is a twice-differentiable function from R to C such that f , f ′ and f ′′ are all

integrable. Then
∧

f is integrable.

proof Because f ′ and f ′′ are integrable, f and f ′ are absolutely continuous on any bounded interval (225L).
So by 283Ci we have

(f ′′)∧(y) = iy(f ′)∧(y) = −y2
∧

f(y)

for every y ∈ R. At the same time, by 283Cf-283Cg, (f ′′)∧ and
∧

f must be bounded; say |
∧

f(y)|+ |(f ′′)∧(y)| ≤
K for every y ∈ R. Now

|
∧

f(y)| ≤ K

1+y2

for every y, so that
∫∞
−∞ |

∧

f | ≤ K
∫ −1

−∞
1

y2
dy + 2K +K

∫∞
1

1

y2
dy = 4K <∞.

Remark Compare 282Rb.

283L I turn now to the result corresponding to 282O, using a slightly different approach.

Theorem Let f be a complex-valued function which is integrable over R, with Fourier transform
∧

f and

inverse Fourier transform
∨

f , and suppose that f is of bounded variation on some neighbourhood of x ∈ R.
Set a = limt∈dom f,t↑x f(t), b = limt∈dom f,t↓x f(t). Then

1√
2π

limγ→∞
∫ γ

−γ e
ixy

∧

f(y)dy =
1√
2π

limγ→∞
∫ γ

−γ e
−ixy ∨

f(y)dy =
1

2
(a+ b).

proof (a) The limits limt∈dom f,t↑x f(t) and limt∈dom f,t↓x f(t) exist because f is of bounded variation near
x (224F). Recall from 283Db that there is a constant K <∞ such that

|
∫ δ

γ

sin cx

x
dx| ≤ K

whenever γ ≤ δ and c ∈ R.

(b) Let ǫ > 0. The hypothesis is that there is some δ > 0 such that Var[x−δ,x+δ](f) <∞. Consequently

limη↓0 Var]x,x+η](f) = limη↓0 Var[x−η,x[(f) = 0

(224E). There is therefore an η > 0 such that

max(Var[x−η,x[(f),Var]x,x+η](f)) ≤ ǫ.

Of course

|f(t)− f(u)| ≤ Var[x−η,x[(f) ≤ ǫ

whenever t, u ∈ dom f and x− η ≤ t ≤ u < x, so we shall have

|f(t)− a| ≤ ǫ for every t ∈ dom f ∩ [x− η, x[,

and similarly
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|f(t)− b| ≤ ǫ whenever t ∈ dom f ∩ ]x, x+ η].

(c) Now set

g1(t) = f(t) when t ∈ dom f and |x− t| > η, 0 otherwise,

g2(t) = a when x− η ≤ t < x, b when x < t ≤ x+ η, 0 otherwise,

g3 = f − g1 − g2.

Then f = g1 + g2 + g3; each gj is integrable; g1 is zero on a neighbourhood of x;

supt∈dom g3,t 6=x |g3(t)| ≤ ǫ,

Var[x−η,x[(g3) ≤ ǫ, Var]x,x+η](g3) ≤ ǫ.

(d) Consider the three parts g1, g2, g3 separately.

(i) For the first, we have

limγ→∞
1√
2π

∫ γ

−γ e
ixy∧

g1(y)dy = 0

by 283I.

(ii) Next,

1√
2π

∫ γ

−γ
eixy

∧

g2(y)dy =
1

π

∫ ∞

−∞

sin(x−t)γ

x−t
g2(t)dt

(by 283H)

=
a

π

∫ x

x−η

sin(x−t)γ

x−t
dt+

b

π

∫ x+η

x

sin(x−t)γ

x−t
dt

=
a

π

∫ γη

0

sinu

u
du+

b

π

∫ γη

0

sinu

u
du

(substituting t = x− 1
γu in the first integral, t = −x+ 1

γu in the second)

→ a+b

2
as γ → ∞

by 283Da.

(iii) As for the third, we have, for any γ > 0,

∣

∣

1√
2π

∫ γ

−γ
eixy

∧

g3(y)dy
∣

∣ =
1

π

∣

∣

∫ ∞

−∞

sin(x−t)γ

x−t
g3(t)dt

∣

∣ =
1

π

∣

∣

∫ ∞

−∞

sin tγ

t
g3(x− t)dt

∣

∣

≤ 1

π

∣

∣

∫ 0

−η

sin tγ

t
g3(x− t)dt

∣

∣+
1

π

∣

∣

∫ η

0

sin tγ

t
g3(x− t)dt

∣

∣

≤ K

π

(

sup
t∈dom g3∩]x−η,x[

|g3(t)|+ Var
]x−η,x[

(g3)

+ sup
t∈dom g3∩]x,x+η[

|g3(t)|+ Var
]x,x+η[

(g3)
)

≤ 4ǫ
K

π
,

using 224J again to bound the integrals in terms of the variation and supremum of g3 and integrals of sin γt
t

over subintervals.
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(e) We therefore have

lim sup
γ→∞

∣

∣

1√
2π

∫ γ

−γ
eixy

∧

f(y)dy − a+b

2

∣

∣

≤ lim sup
γ→∞

1√
2π

∣

∣

∫ γ

−γ
eixy

∧

g1(y)dy
∣

∣

+ lim sup
γ→∞

∣

∣

1√
2π

∫ γ

−γ
eixy

∧

g2(y)dy −
a+b

2

∣

∣

+ lim sup
γ→∞

1√
2π

∣

∣

∫ γ

−γ
eixy

∧

g3ydy
∣

∣

≤ 0 + 0 +
4K

π
ǫ

by the calculations in (d). As ǫ is arbitrary,

limγ→∞
1√
2π

∫ γ

−γ e
ixy

∧

f(y)dy − a+b

2
= 0.

(f) This is the first half of the theorem. But of course the second half follows at once, because

1√
2π

lim
γ→∞

∫ γ

−γ
e−ixy

∨

f(y)dy =
1√
2π

lim
γ→∞

∫ γ

−γ
e−ixy

∧

f(−y)dy

=
1√
2π

lim
γ→∞

∫ γ

−γ
eixy

∧

f(y)dy =
a+b

2
.

Remark You will see that this argument uses some of the same ideas as those in 282O-282P. It is more direct
because (i) I am not using any concept corresponding to Fejér sums (though a very suitable one is available;
see 283Xf) (ii) I do not trouble to give the result concerning uniform convergence of the Fejér integrals when
f is continuous and of bounded variation (283Xj) (iii) I do not give any pointer to the significance of the

fact that if f is of bounded variation then supy∈R |y
∧

f(y)| <∞ (283Xk).

283M Corresponding to 282Q, we have the following.

Theorem Let f and g be complex-valued functions which are integrable over R, and f ∗ g their convolution
product, defined by setting

(f ∗ g)(x) =
∫∞
−∞ f(t)g(x− t)dt

whenever this is defined (255E). Then

(f ∗ g)∧(y) =
√
2π

∧

f(y)
∧

g(y), (f ∗ g)∨(y) =
√
2π

∨

f(y)
∨

g(y)

for every y ∈ R.

proof For any y,

(f ∗ g)∧(y) = 1√
2π

∫ ∞

−∞
e−iyx(f ∗ g)(x)dx

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
e−iy(t+u)f(t)g(u)dtdu

(using 255G)

=
1√
2π

∫ ∞

−∞
e−iytf(t)dt

∫ ∞

−∞
e−iyug(u)du =

√
2π

∧

f(y)
∧

g(y).

Now, of course,

(f ∗ g)∨(y) = (f ∗ g)∧(−y) =
√
2π

∧

f(−y)∧g(−y) =
√
2π

∨

f(y)
∨

g(y).
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283N I show how to compute a special Fourier transform, which will be used repeatedly in the next
section.

Lemma For σ > 0, set ψσ(x) =
1

σ
√
2π
e−x

2/2σ2

for x ∈ R. Then its Fourier transform and inverse Fourier

transform are
∧

ψσ =
∨

ψσ =
1

σ
ψ1/σ.

In particular,
∧

ψ1 = ψ1.

proof (a) I begin with the special case σ = 1, using the Maclaurin series

e−iyx =
∑∞
k=0

(−iyx)k

k!

and the expressions for
∫∞
−∞ xke−x

2/2dx from §263.
Fix y ∈ R. Writing

gk(x) =
(−iyx)k

k!
e−x

2/2, hn(x) =
∑n
k=0 gk(x), h(x) = e|yx|−x

2/2,

we see that

|gk(x)| ≤ |yx|k
k!

e−x
2/2,

so that

|hn(x)| ≤
∑∞
k=0 |gk(x)| ≤ e|yx|e−x

2/2 = h(x)

for every n; moreover, h is integrable, because |h(x)| ≤ e−|x| whenever |x| ≥ 2(1+ |y|). Consequently, using
Lebesgue’s Dominated Convergence Theorem,

∧

ψ1(y) =
1

2π

∫ ∞

−∞
lim
n→∞

hn =
1

2π
lim
n→∞

∫ ∞

−∞
hn

=
1

2π

∞
∑

k=0

∫ ∞

−∞
gk =

1

2π

∞
∑

k=0

(−iy)k

k!

∫ ∞

−∞
xke−x

2/2dx

=
1

2π

∞
∑

j=0

(−iy)2j

(2j)!

(2j)!

2jj!

√
2π

(by 263H)

=
1√
2π

∞
∑

j=0

(−y2)j

2jj!
=

1√
2π
e−y

2/2 = ψ1(y),

as claimed.

(b) For the general case, ψσ(x) =
1

σ
ψ1(

x

σ
), so that

∧

ψσ(y) =
1

σ
· σ

∧

ψ1(σy) =
1

σ
ψ1/σ(y)

by 283Ce. Of course we now have

∨

ψσ(y) =
∧

ψσ(−y) =
1

σ
ψ1/σ(y)

because ψ1/σ is an even function.

283O To lead into the ideas of the next section, I give the following very simple fact.

Proposition Let f and g be two complex-valued functions which are integrable over R. Then
∫∞
−∞ f × ∧

g =
∫∞
−∞

∧

f × g and
∫∞
−∞ f × ∨

g =
∫∞
−∞

∨

f × g.
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proof Of course
∫∞
−∞

∫∞
−∞ |e−ixyf(x)g(y)|dxdy =

∫∞
−∞ |f |

∫∞
−∞ |g| <∞,

so

∫ ∞

∞
f × ∧

g =
1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(y)e−iyxg(x)dxdy

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(y)e−ixyg(x)dydx =

∫ ∞

−∞

∧

f × g.

For the other half of the proposition, replace every e−ixy in the argument by eixy.

283W Higher dimensions I offer a series of exercises designed to provide hints on how the work of this
section may be done in the r-dimensional case, where r ≥ 1.

(a) Let f be an integrable complex-valued function defined almost everywhere in Rr. Its Fourier

transform is the function
∧

f : Rr → C defined by the formula

∧

f(y) =
1

(
√
2π)r

∫

e−iy .xf(x)dx,

writing y .x = η1ξ1 + . . . + ηrξr for x = (ξ1, . . . , ξr) and y = (η1, . . . , ηr) ∈ Rr, and
∫

. . . dx for integration

with respect to Lebesgue measure on Rr. Similarly, the inverse Fourier transform of f is the function
∨

f
given by

∨

f(y) =
1

(
√
2π)r

∫

eiy .xf(x)dx =
∧

f(−y).

Show that, for any integrable complex-valued function f on Rr,

(i)
∧

f : Rr → C is continuous;

(ii) lim‖y‖→∞
∧

f(y) = 0, writing ‖y‖ =
√
y .y as usual;

(iii) if
∫

‖x‖|f(x)|dx <∞, then
∧

f is differentiable, and

∂

∂ηj

∧

f(y) = − i

(
√
2π)r

∫

e−iy .xξjf(x)dx

for j ≤ r, y ∈ Rr, always taking ξj to be the jth coordinate of x ∈ Rr;

(iv) if j ≤ r and ∂f
∂ξj

is defined everywhere and is integrable, then ( ∂f∂ξj )
∧(y) = iηj

∧

f(y) for every y ∈ Rr.

(Use 225L to show that if e ∈ Rr is a unit vector, then γ 7→ f(x + γe) is absolutely continuous on every
bounded interval for almost every x.)

(b) Show that if f1, . . . , fr are integrable complex-valued functions on R with Fourier transforms g1, . . . , gr,
and we write f(x) = f1(ξ1) . . . fr(ξr) for x = (ξ1, . . . , ξr) ∈ Rr, then the Fourier transform of f is
y 7→ g1(η1) . . . gr(ηr).

(c) Let f be an integrable complex-valued function on Rr, and
∧

f its Fourier transform. If c ≤ d in Rr,
show that

∫

[c,d]

f = (
i√
2π

)r lim
α1,... ,αr→∞

∫

[−a,a]

r
∏

j=1

eiγjηj − eiδjηj

ηj

∧

f(y)dy,

setting a = (α1, . . . ), c = (γ1, . . . ), d = (δ1, . . . ).

(d) Let f be an integrable complex-valued function on Rr, and
∧

f its Fourier transform. Show that if we
write

B∞(0, a) = {y : |ηj | ≤ a for every j ≤ r},
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then

1

(
√
2π)r

∫

B∞(0,a)
eix .y

∧

f(y)dy =
∫

φa(t)f(x− t)dt

for every a ≥ 0, where

φa(t) =
1

πr

∏r
j=1

sin aτj

τj

for t = (τ1, . . . , τr) ∈ Rr.

(e) Show that
∫

Rr

1

1+‖x‖r+1
dx <∞.

(f) Let f : Rr → C be an integrable function. Show that if all the partial derivatives
∂kf

∂ξkj
, for k ≤ r + 1

and j ≤ r, are defined almost everywhere and integrable, then
∧

f is integrable.

(g) Show that if f and g are integrable complex-valued functions on Rr, then (defining convolution as in

255L) (f ∗ g)∧ = (
√
2π)r

∧

f × ∧

g.

(h) Let f and g be integrable complex-valued functions on Rr. Show that f ∗ ∨

g = (
√
2π)r(

∧

f × g)∨.

(i) For σ > 0, define ψσ : Rr → C by setting

ψσ(x) =
1

(σ
√
2π)r

e−x .x/2σ
2

, (
∧

ψσ)
∨ = ψσ.

for every x ∈ Rr. Show that

∧

ψσ =
∨

ψσ =
1

σr
ψ1/σ.

(j) Defining ψσ as in (e), show that limσ→0(f ∗ ψσ)(x) = f(x) whenever x ∈ Rr and f : Rr → C is
continuous and either integrable or bounded. (Cf. 261Ye, 262Yi.)

(k) Show that if f : Rr → C is continuous and integrable, and
∧

f also is integrable, then f =
∧

f
∨

. (Hint :

Show that both are equal at every point to limσ→0(
√
2π)r(

∧

f ×
∧

ψσ)
∨.)

(l) Show that if f and g are integrable complex-valued functions on Rr, then
∫

f × ∧

g =
∫ ∧

f × g.

(m)(i) Show that
∫ 2(k+1)π

2kπ
sin t
t
√
t
dt > 0 for every k ∈ N, and hence that

∫∞
0

sin t
t
√
t
dt > 0.

(ii) Set f1(ξ) = 1/
√

|ξ| for 0 < |ξ| ≤ 1, 0 for other ξ. Show that lima→∞
1√
a

∫ a

−a
∧

f1(η)dη exists in R

and is greater than 0.
(iii) Construct an integrable function f2, zero on some neighbourhood of 0, such that there are infinitely

many m ∈ N for which |
∫m

−m
∧

f2(η)dη| ≥ 1√
m
. (Hint : take f2(ξ) = 2−k sinmkξ for k + 1 ≤ ξ < k + 2, for a

sufficiently rapidly increasing sequence 〈mk〉k∈N.)
(iv) Set f(x) = f1(ξ1)f2(ξ2) for x ∈ R2. Show that f is integrable, that f is zero in a neighbourhood

of 0, but that

lim supa→∞
1

2π
|
∫

B∞(0,a)

∧

f(y)dy| > 0,

defining B∞ as in 283Wd.

283X Basic exercises (a) Confirm that the six alternative definitions of the transforms
∧

f ,
∨

f offered in
283B all lead to the same theory; find the constants involved in the new versions of 283Ch, 283Ci, 283L,
283M and 283N.
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(b) If we redefined
∧

f(y) to be α
∫∞
−∞ eiβxyf(x)dx, what would

∨

f(y) be?

(c) Show that nearly every 2π would disappear from the theorems of this section if we defined a measure
ν on R by saying that νE = 1√

2π
µE for every Lebesgue measurable set E, where µ is Lebesgue measure,

and wrote
∧

f(y) =
∫∞
−∞ e−iyxf(x)ν(dx),

∨

f(y) =
∫∞
−∞ eiyxf(x)ν(dx),

(f ∗ g)(x) =
∫∞
−∞ f(t)g(x− t)ν(dt).

What is lima→∞
∫ a

−a
sin t
t ν(dt)?

>>>(d) Let f be an integrable complex-valued function on R, with Fourier transform
∧

f . Show that (i) if

g(x) = f(−x) whenever this is defined, then ∧

g(y) =
∧

f(−y) for every y ∈ R; (ii) if g(x) = f(x) whenever this

is defined, then
∧

g(y) =
∧

f(−y) for every y.

(e) Let f be an integrable complex-valued function on R, with Fourier transform
∧

f . Show that

∫ d

c

∧

f(y)dy =
i√
2π

∫∞
−∞

e−idx−e−icx

x
f(x)dx

whenever c ≤ d in R.

>>>(f) For an integrable complex-valued function f on R, let its Fejér integrals be

σc(x) =
1

c
√
2π

∫ c

0

(∫ a

−a e
ixy

∧

f(y)dy
)

da

for c > 0. Show that

σc(x) =
1

π

∫∞
−∞

1−cos ct

ct2
f(x− t)dt.

(g) Show that
∫∞
−∞

1−cos at

at2
dt = π for every a > 0. (Hint : integrate by parts and use 283Da.) Show that

lima→∞
∫∞
δ

1−cos at

at2
dt = lima→∞ supt≥δ

1−cos at

at2
= 0

for every δ > 0.

(h) Let f be an integrable complex-valued function on R, and define its Fejér integrals σa as in 283Xf
above. Show that if x ∈ R, c ∈ C are such that

limδ↓0
1

δ

∫ δ

0
|f(x+ t) + f(x− t)− 2c|dt = 0,

then lima→∞ σa(x) = c. (Hint : adapt the argument of 282H.)

>>>(i) Let f be an integrable complex-valued function on R, and define its Fejér integrals σa as in 283Xf
above. Show that f(x) = lima→∞ σa(x) for almost every x ∈ R.

(j) Let f : R → C be a continuous integrable complex-valued function of bounded variation, and define
its Fejér integrals σa as in 283Xf above. Show that f(x) = lima→∞ σa(x) uniformly for x ∈ R.

>>>(k) Let f be an integrable complex-valued function of bounded variation on R, and
∧

f its Fourier

transform. Show that supy∈R |y
∧

f(y)| <∞.

(l) Let f and g be integrable complex-valued functions on R. Show that f ∗ ∨

g =
√
2π(

∧

f × g)∨.
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(m) Let f be an integrable complex-valued function on R, and fix x ∈ R. Set

f̂x(y) =
∫∞
−∞ f(t) cos y(x− t)dt

for y ∈ R. Show that
(i) if f is differentiable at x,

f(x) =
1

π
lima→∞

∫ a

0
f̂x(y)dy;

(ii) if there is a neighbourhood of x in which f has bounded variation, then

1

π
lima→∞

∫ a

0
f̂x(y)dy =

1

2
(limt∈dom f,t↑0 f(t) + limt∈dom f,t↓0 f(t));

(iii) if f is twice differentiable and f ′, f ′′ are integrable then f̂x is integrable and f(x) = 1
π

∫∞
0
f̂x. (The

formula

f(x) =
1

π

∫∞
0

(∫∞
−∞ f(t) cos y(x− t)dt

)

dy,

valid for such functions f , is called Fourier’s integral formula.)

(n) Show that if f is a complex-valued function of bounded variation, defined almost everywhere in R,
and converging to 0 (along its domain) at ±∞, then

g(y) =
1√
2π

lima→∞
∫ a

−a e
−iyxf(x)dx

is defined in C for every y 6= 0, and that the limit is uniform in any region bounded away from 0.

(o) Let f be an integrable complex-valued function on R. Set

∧

f c(y) =
1√
2π

∫∞
−∞ cos yx f(x)dx,

∧

f s(y) =
1√
2π

∫∞
−∞ sin yx f(x)dx

for y ∈ R. Show that

1√
2π

∫ a

−a e
ixy

∧

f(y)dy =

√

2

π

∫ a

0
cosxy

∧

f c(y)dy +

√

2

π

∫ a

0
sinxy

∧

f s(y)dy

for every x ∈ R and a ≥ 0.

(p) Use the fact that
∫ a

0

∫∞
0
e−xy sin y dxdy =

∫∞
0

∫ a

0
e−xy sin y dydx whenever a ≥ 0 to show that

∫∞
0

1
1+x2 dx = lima→∞

∫ a

0
sin y
y dy.

>>>(q) Show that if f(x) = e−σ|x|, where σ > 0, then
∧

f(y) = 2σ√
2π(σ2+y2)

. Hence, or otherwise, find the

Fourier transform of y 7→ 1

1+y2
.

(r) Find the inverse Fourier transform of the indicator function of a bounded interval in R. Show that
in a formal sense 283F can be regarded as a special case of 283O.

(s) Let f be a non-negative integrable function on R, with Fourier transform
∧

f . Show that

∑n
j=0

∑n
k=0 aj āk

∧

f(yj − yk) ≥ 0

whenever y0, . . . , yn in R and a0, . . . , an ∈ C.

(t) Let f be an integrable complex-valued function on R. Show that f̃(x) =
∑∞
n=−∞ f(x+2πn) is defined

in C for almost every x. (Hint :
∑∞
n=−∞

∫ π

−π |f(x+ 2πn)|dx <∞.) Show that f̃ is periodic. Show that the

Fourier coefficients of f̃↾ ]−π, π] are 〈 1√
2π

∧

f(k)〉k∈Z.
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283Y Further exercises (a) Show that if f : R → C is absolutely continuous in every bounded interval,
f ′ is of bounded variation on R, and limx→∞ f(x) = limx→−∞ f(x) = 0, then

g(y) =
1√
2π

lima→∞
∫ a

−a e
−iyxf(x)dx = − i

y
√
2π

lima→∞
∫ a

−a e
−iyxf ′(x)dx

is defined, with

y2|g(y)| ≤ 4√
2π

VarR(f
′),

for every y 6= 0.

(b) Let f : R → C be an integrable function which is absolutely continuous on every bounded interval,

and suppose that its derivative f ′ is of bounded variation on R. Show that
∧

f is integrable and that f =
∧

f
∨

.
(Hint : 225Yd, 283Ci, 283Xk.)

(c) Let f : R → [0,∞[ be an even function such that f is convex on [0,∞[ and limx→∞ f(x) = 0.

(i) Show that, for any y > 0 and k ∈ N,
∫ 2kπ/y

−2kπ/y
e−iyxf(x)dx ≥ 0.

(ii) Show that g(y) = 1√
2π

lima→∞
∫ a

−a e
−iyxf(x)dx exists in [0,∞[ for every y 6= 0.

(iii) For n ∈ N, set fn(x) = e−|x|/(n+1)f(x) for every x. Show that fn is integrable and convex on
[0,∞[.

(iv) Show that g(y) = limn→∞
∧

fn(y) for every y 6= 0.
(vi) Show that if f is integrable then

∫ a

−a
∧

f =
4√
2π

∫∞
0

sin at

t
f(t)dt ≤ 4a√

2π

∫ π/a

0
f ≤ 2

√
2πf(0)

for every a ≥ 0. Hence show that whether f is integrable or not, g is integrable and fn = (
∧

fn)
∨ for every n.

(vii) Show that lima↓0 supn∈N

∫ a

−a
∧

fn = 0.

(viii) Show that if f ′ is bounded (on its domain) then {
∧

fn : n ∈ N} is uniformly integrable (hint : use

(vii) and 283Ya), so that limn→∞ ‖
∧

fn − g‖1 = 0 and f =
∨

g.
(ix) Show that if f ′ is unbounded then for every ǫ > 0 we can find h1, h2 : R → [0,∞[, both even,

convex and converging to 0 at ∞, such that f = h1 + h2, h
′
1 is bounded,

∫

h2 ≤ ǫ and h2(0) ≤ ǫ. Hence

show that in this case also f =
∨

g.

(d) Suppose that f : R → R is even, twice differentiable and convergent to 0 at ∞, that f ′′ is continuous
and that {x : f ′′(x) = 0} is bounded in R. Show that f is the Fourier transform of an integrable function.
(Hint : use 283Yc and 283Yb.)

(e) Let g : R → R be an odd function of bounded variation such that
∫∞
1

1
xg(x)dx = ∞. Show that g

cannot be the Fourier transform of any integrable function f . (Hint : show that if g =
∧

f then

−i
∫ 1

0
f =

2√
2π

lima→∞
∫ a

0

1−cosx

x
g(x)dx = ∞.)

283 Notes and comments I have tried in this section to give the elementary theory of Fourier transforms
of integrable functions on R, with an eye to the extension of the concept which will be attempted in the next
section. Following §282, I have given prominence to two theorems (283I and 283L) describing conditions
for the inversion of the Fourier transform to return to the original function; we find ourselves looking at
improper integrals lima→∞

∫ a

−a, just as earlier we needed to look at symmetric sums limn→∞
∑n
k=−n. I

do not go quite so far as in §282, and in particular I leave the study of square-integrable functions for the
moment, since their Fourier transforms may not be describable by the simple formulae used here.

One of the most fundamental obstacles in the subject is the lack of any effective criteria for determin-
ing which functions are the Fourier transforms of integrable functions. (Happily, things are better for
square-integrable functions; see 284O-284P.) In 283Yc-283Yd I sketch an argument showing that ‘ordinary’
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non-oscillating even functions which converge to 0 at ±∞ are Fourier transforms of integrable functions.

Strikingly, this is not true of odd functions; thus y 7→ 1

ln(e+y2)
is the Fourier transform of an integrable

function, but y 7→ arctan y

ln(e+y2)
is not (283Ye).

In 283W I sketch the corresponding theory of Fourier transforms in Rr. There are few surprises. One
point to note is that where in the one-dimensional case we ask for a well-behaved second derivative, in
the r-dimensional case we may need to differentiate r + 1 times (283Wf). Another is that we lose the
‘localization principle’. In the one-dimensional case, if f is integrable and zero on an interval ]c, d[, then

lima→∞
∫ a

−a e
ixy

∧

f(y)dy = 0 for every x ∈ ]c, d[; this is immediate from either 283I or 283L. But in higher

dimensions the most natural formulation of a corresponding result is false (283Wm).

Version of 30.8.13

284 Fourier transforms II

The basic paradox of Fourier transforms is the fact that while for certain functions (see 283J-283K)

we have (
∧

f)∨ = f , ‘ordinary’ integrable functions f (for instance, the indicator functions of non-trivial

intervals) give rise to non-integrable Fourier transforms
∧

f for which there is no direct definition available

for
∧

f
∨

, making it a puzzle to decide in what sense the formula f =
∧

f
∨

might be true. What now seems
by far the most natural resolution of the problem lies in declaring the Fourier transform to be an operation
on distributions rather than on functions. I shall not attempt to describe this theory properly (almost any
book on ‘Distributions’ will cover the ground better than I can possibly do here), but will try to convey the
fundamental ideas, so far as they are relevant to the questions dealt with here, in language which will make
the transition to a fuller treatment straightforward. At the same time, these methods make it easy to prove
strong versions of the ‘classical’ theorems concerning Fourier transforms.

284A Test functions: Definition Throughout this section, a rapidly decreasing test function or
Schwartz function will be a function h : R → C such that h is smooth, that is, differentiable everywhere
any finite number of times, and moreover

supx∈R |x|k|h(m)(x)| <∞
for all k, m ∈ N, writing h(m) for the mth derivative of h.

284B The following elementary facts will be useful.

Lemma (a) If g and h are rapidly decreasing test functions, so are g + h and ch, for any c ∈ C.
(b) If h is a rapidly decreasing test function and y ∈ R, then x 7→ h(y − x) is a rapidly decreasing test

function.
(c) If h is any rapidly decreasing test function, then h and h2 are integrable.
(d) If h is a rapidly decreasing test function, so is its derivative h′.
(e) If h is a rapidly decreasing test function, so is the function x 7→ xh(x).

(f) For any ǫ > 0, the function x 7→ e−ǫx
2

is a rapidly decreasing test function.

proof (a) is trivial.

(b) Write g(x) = h(y−x) for x ∈ R. Then g(m)(x) = (−1)mh(m)(y−x) for every m, so g is smooth. For
any k ∈ N,

|x|k ≤ 2k(|y|k + |y − x|k)
for every x, so

sup
x∈R

|x|k|g(m)(x)| = sup
x∈R

|x|k|h(m)(y − x)|

≤ 2k|y|k sup
x∈R

|h(m)(y − x)|+ 2k sup
x∈R

|y − x|k|h(m)(y − x)|

= 2k|y|k sup
x∈R

|h(m)(x)|+ 2k sup
x∈R

|x|k|h(m)(x)| <∞.
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(c) Because

M = supx∈R |h(x)|+ x2|h(x)|
is finite, we have

∫

|h| ≤
∫ M

1+x2
dx <∞.

Of course we now have |h2| ≤M |h|, so h2 also is integrable.

(d) This is immediate from the definition, as every derivative of h′ is a derivative of h.

(e) Setting g(x) = xh(x), g(m)(x) = xh(m)(x) +mh(m−1)(x) for m ≥ 1, so

supx∈R |xkg(m)(x)| ≤ supx∈R |xk+1h(m)(x)|+m supx∈R |xkh(m−1)(x)|
is finite, for all k ∈ N, m ≥ 1.

(f) If h(x) = e−ǫx
2

, then for each m ∈ N we have h(m)(x) = pm(x)h(x), where p0(x) = 1 and pm+1(x) =

p′m(x)− 2ǫxpm(x), so that pm is a polynomial. Because eǫx
2 ≥ ǫk+1x2k+2/(k + 1)! for all x, k ≥ 0,

lim|x|→∞ |x|kh(x) = limx→∞ xk/eǫx
2

= 0

for every k, and lim|x|→∞ p(x)h(x) = 0 for every polynomial p; consequently

lim|x|→∞ xkh(m)(x) = lim|x|→∞ xkpm(x)h(x) = 0

for all k, m, and h is a rapidly decreasing test function.

284C Proposition Let h : R → C be a rapidly decreasing test function. Then
∧

h : R → C and
∨

h : R → C

are rapidly decreasing test functions, and
∧

h
∨

=
∨

h
∧

= h.

proof (a) Let k, m ∈ N. Then supx∈R(|x|m + |x|m+2)|h(k)(x)| <∞ and
∫∞
−∞ |xmh(k)(x)|dx <∞. We may

therefore use 283Ch-283Ci to see that y 7→ ik+myk
∧

h(m)(y) is the Fourier transform of x 7→ xmh(k)(x), and

therefore that lim|y|→∞ yk
∧

h(m)(y) = 0, by 283Cg, so that (because
∧

h(m) is continuous) supy∈R |yk
∧

h(m)(y)| is
finite. As k and m are arbitrary,

∧

h is a rapidly decreasing test function.

(b) Since
∨

h(y) =
∧

h(−y) for every y, it follows at once that
∨

h is a rapidly decreasing test function.

(c) By 283J, it follows from (a) and (b) that
∧

h
∨

=
∨

h
∧

= h.

284D Definition I will use the phrase tempered function on R to mean a measurable complex-valued
function f , defined almost everywhere in R, such that

∫∞
−∞

1

1+|x|k |f(x)|dx <∞

for some k ∈ N.

284E As in 284B I spell out some elementary facts.

Lemma (a) If f and g are tempered functions, so are |f |, f + g and cf , for any c ∈ C.
(b) If f is a tempered function then it is integrable over any bounded interval.
(c) If f is a tempered function and x ∈ R, then t 7→ f(x+t) and t 7→ f(x−t) are both tempered functions.

proof (a) is elementary; if

∫∞
−∞

1

1+|x|j f(x)dx <∞,
∫∞
−∞

1

1+|x|k g(x)dx <∞,

then
∫∞
−∞

1

1+|x|j+k
|(f + g)(x)|dx <∞
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because

1 + |x|j+k ≥ max(1, |x|j+k) ≥ max(1, |x|j , |x|k) ≥ 1

2
max(1 + |x|j , 1 + |x|k)

for all x.

(b) If

∫∞
−∞

1

1+|x|k |f(x)|dx =M <∞,

then for any a ≤ b
∫ b

a
|f | ≤M(1 + |a|k + |b|k)(b− a) <∞.

(c) The idea is the same as in 284Bb. If k ∈ N is such that

∫∞
−∞

1

1+|t|k |f(t)|dt =M <∞,

then we have

1 + |x+ t|k ≤ 2k(1 + |x|k)(1 + |t|k)
so that

1

1+|t|k ≤ 2k(1 + |x|k) 1

1+|x+t|k

for every t, and
∫∞
−∞

|f(x+t)|
1+|t|k dt ≤ 2k(1 + |x|k)

∫∞
−∞

|f(x+t)|
1+|x+t|k dt ≤ 2k(1 + |x|k)M <∞.

Similarly,
∫∞
−∞

|f(x−t)|
1+|t|k dt ≤ 2k(1 + |x|k)M <∞.

284F Linking the two concepts, we have the following.

Lemma Let f be a tempered function on R and h a rapidly decreasing test function. Then f × h is
integrable.

proof Of course f × h is measurable. Let k ∈ N be such that
∫∞
−∞

1
1+|x|k |f(x)|dx < ∞. There is an M

such that (1 + |x|k)|h(x)| ≤M for every x ∈ R, so that

∫∞
−∞ |f × h| ≤M

∫∞
−∞

1

1+|x|k |f(x)|dx <∞.

284G Lemma Suppose that f1 and f2 are tempered functions and that
∫

f1 × h =
∫

f2 × h for every
rapidly decreasing test function h. Then f1 =a.e. f2.

proof (a) Set g = f1 − f2; then
∫

g × h = 0 for every rapidly decreasing test function h. Of course g is a
tempered function, so is integrable over any bounded interval. By 222D, it will be enough if I can show that
∫ b

a
g = 0 whenever a < b, since then we shall have g = 0 a.e. on every bounded interval and f1 =a.e. f2.

(b) Consider the function φ̃(x) = e−1/x for x > 0. Then φ̃ is differentiable arbitrarily often everywhere in

]0,∞[, 0 < φ̃(x) < 1 for every x > 0, and limx→∞ φ̃(x) = 1. Moreover, writing φ̃(m) for the mth derivative

of φ̃,

limx↓0 φ̃(m)(x) = limx↓0
1

x
φ̃(m)(x) = 0

for every m ∈ N. PPP (Compare 284Bf.) We have φ̃(m)(x) = pm( 1x )φ̃(x), where p0(t) = 1 and pm+1(t) =

t2(pm(t)− p′m(t)), so that pm is a polynomial for each m ∈ N. Now for any k ∈ N,
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0 ≤ lim supt→∞ tke−t ≤ limt→∞
(k+1)!tk

tk+1
= 0,

so

limx↓0 φ̃(m)(x) = limt→∞ pm(t)e−t = 0,

limx↓0
1

x
φ̃(m)(x) = limt→∞ tpm(t)e−t = 0. QQQ

(c) Consequently, setting φ(x) = 0 for x ≤ 0, e−1/x for x > 0, φ is smooth, with mth derivative

φ(m)(x) = 0 for x ≤ 0, φ(m)(x) = φ̃(m)(x) for x > 0.

(The proof is an easy induction on m.) Also 0 ≤ φ(x) ≤ 1 for every x ∈ R, and limx→∞ φ(x) = 1.

(d) Now take any a < b, and for n ∈ N set

φn(x) = φ(n(x− a))φ(n(b− x)).

Then φn will be smooth and φn(x) = 0 if x /∈ ]a, b[, so surely φn is a rapidly decreasing test function, and
∫∞
−∞ g × φn = 0.

Next, 0 ≤ φn(x) ≤ 1 for every x, n, and if a < x < b then limn→∞ φn(x) = 1. So
∫ b

a
g =

∫

g × χ(]a, b[) =
∫

g × (limn→∞ φn) = limn→∞
∫

g × φn = 0,

using Lebesgue’s Dominated Convergence Theorem. As a and b are arbitrary, g = 0 a.e., as required.

284H Definition Let f and g be tempered functions in the sense of 284D. Then I will say that g
represents the Fourier transform of f if

∫∞
−∞ g × h =

∫∞
−∞ f ×

∧

h

for every rapidly decreasing test function h.

284I Remarks (a) As usual, when shifting definitions in this way, we have some checking to do. If f is an

integrable complex-valued function on R and
∧

f is its Fourier transform, then surely
∧

f is a tempered function,

being a bounded continuous function; and if h is any rapidly decreasing test function, then
∫ ∧

f×h =
∫

f×
∧

h

by 283O. Thus
∧

f ‘represents the Fourier transform of f ’ in the sense of 284H above.

(b) Note also that 284G assures us that if g1, g2 are two tempered functions both representing the Fourier
transform of f , then g1 =a.e. g2, since we must have

∫

g1 × h =
∫

f ×
∧

h =
∫

g2 × h

for every rapidly decreasing test function h.

(c) It is I suppose obvious that if f1, f2, g1 and g2 are tempered functions and gi represents the Fourier
transform of fi for both i, then cg1 + g2 represents the Fourier transform of cf1 + f2 for every c ∈ C.

(d) Of course the value of this indirect approach is that we can assign Fourier transforms, in a sense, to
many more functions. But we must note at once that if g ‘represents the Fourier transform of f ’ then so
will any function equal almost everywhere to g; we can no longer expect to be able to speak of ‘the’ Fourier
transform of f as a function. We could say that ‘the’ Fourier transform of f is a functional φ on the space

of rapidly decreasing test functions, defined by setting φ(h) =
∫

f ×
∧

h; alternatively, we could say that ‘the’
Fourier transform of f is a member of L0

C
, the space of equivalence classes of almost-everywhere-defined

measurable functions (241J).

(e) It is now natural to say that g represents the inverse Fourier transform of f just when f

represents the Fourier transform of g; that is, when
∫

f×h =
∫

g×
∧

h for every rapidly decreasing test function
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h. Because
∧

h
∨

=
∨

h
∧

= h for every such h (284C), this is the same thing as saying that
∫

g × h =
∫

f ×
∨

h
for every rapidly decreasing test function h, which is the other natural expression of what it might mean to
say that ‘g represents the inverse Fourier transform of f ’.

(f) If f , g are tempered functions and we write
↔

g (x) = g(−x) whenever this is defined, then ↔

g will also
be a tempered function, and we shall always have

∫

↔

g ×
∧

h =
∫

g(−x)
∧

h(x)dx =
∫

g(x)
∧

h(−x)dx =
∫

g ×
∨

h,

so that
g represents the Fourier transform of f

⇐⇒
∫

g × h =
∫

f ×
∧

h for every test function h

⇐⇒
∫

g ×
∨

h =
∫

f ×
∨

h
∧

for every h

⇐⇒
∫

↔

g ×
∧

h =
∫

f × h for every h

⇐⇒ ↔

g represents the inverse Fourier transform of f .
Combining this with (d), we get

g represents the Fourier transform of f

⇐⇒
↔
↔

f = f represents the inverse Fourier transform of g

⇐⇒
↔

f represents the Fourier transform of g.

(g) Yet again, we ought to be conscious that a check is called for: if f is integrable and
∨

f is its inverse
Fourier transform as defined in 283Ab, then

∫ ∨

f ×
∧

h =
∫

f ×
∧

h
∨

=
∫

f × h

for every rapidly decreasing test function h, so
∨

f ‘represents the inverse Fourier transform of f ’ in the sense
given here.

284J Lemma Let f be any tempered function and h a rapidly decreasing test function. Then f ∗ h,
defined by the formula

(f ∗ h)(y) =
∫∞
−∞ f(t)h(y − t)dt,

is defined everywhere.

proof Take any y ∈ R. By 284Bb, t 7→ h(y − t) is a rapidly decreasing test function, so the integral is
always defined in C, by 284F.

284K Proposition Let f and g be tempered functions such that g represents the Fourier transform of
f , and h a rapidly decreasing test function.

(a) The Fourier transform of the integrable function f × h is 1√
2π
g ∗

∧

h.

(b) The Fourier transform of the continuous function f ∗ h is represented by the product
√
2πg ×

∧

h.

proof (a) Of course f × h is integrable, by 284F, while g ∗
∧

h is defined everywhere, by 284C and 284J.

Fix y ∈ R. Set h1(x) =
∧

h(y − x) for x ∈ R; then h1 is a rapidly decreasing test function because
∧

h is
(284Bb). Now

∧

h1(t) =
1√
2π

∫ ∞

−∞
e−itx

∧

h(y − x)dx =
1√
2π

∫ ∞

−∞
e−it(y−x)

∧

h(x)dx

=
1√
2π
e−ity

∫ ∞

−∞
eitx

∧

h(x)dx = e−ity
∧

h
∨

(t) = e−ityh(t),

using 284C. Accordingly
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(f × h)∧(y) =
1√
2π

∫ ∞

−∞
e−ityf(t)h(t)dt

=
1√
2π

∫ ∞

−∞
f(t)

∧

h1(t)dt =
1√
2π

∫ ∞

−∞
g(t)h1(t)dt

(because g represents the Fourier transform of f)

=
1√
2π

∫ ∞

−∞
g(t)

∧

h(y − t)dt =
1√
2π

(g ∗
∧

h)(y).

As y is arbitrary,
1√
2π
g ∗

∧

h is the Fourier transform of f × h.

(b) Write f1 for the Fourier transform of g ×
∧

h,
↔

f (x) = f(−x) when this is defined, and
↔

h(x) = h(−x)
for every x, so that

↔

f represents the Fourier transform of g, by 284If, and
↔

h is the Fourier transform of
∧

h. By (a), we have f1 =
1√
2π

↔

f ∗
↔

h. This means that the inverse Fourier transform of
√
2πg ×

∧

h must be
√
2π

↔

f 1 = (
↔

f ∗
↔

h)↔; and as

(
↔

f ∗
↔

h)↔(y) = (
↔

f ∗
↔

h)(−y) =
∫ ∞

−∞

↔

f (t)
↔

h(−y − t)dt

=

∫ ∞

−∞
f(−t)h(y + t)dt =

∫ ∞

−∞
f(t)h(y − t)dt = (f ∗ h)(y),

the inverse Fourier transform of
√
2πg ×

∧

h is f ∗ h (which is therefore continuous), and
√
2πg ×

∧

h must
represent the Fourier transform of f ∗ h.

Remark Compare 283M. It is typical of the theory of Fourier transforms that we have formulae valid in a
wide variety of contexts, each requiring a different interpretation and a different proof.

284L We are now ready for a result corresponding to 282H. I use a different method, or at least a
different arrangement of the ideas, through the following fact, which is important in other ways.

Proposition Let f be a tempered function. Writing ψσ(x) =
1

σ
√
2π
e−x

2/2σ2

for x ∈ R and σ > 0, then

limσ↓0(f ∗ ψσ)(x) = c

whenever x ∈ R and c ∈ C are such that

limδ↓0
1

δ

∫ δ

0
|f(x+ t) + f(x− t)− 2c|dt = 0.

proof (a) By 284Bf, every ψσ is a rapidly decreasing test function, so that f ∗ψσ is defined everywhere, by
284J. We need to know that

∫∞
−∞ ψσ = 1; this is because (substituting u = x/σ)

∫∞
−∞ ψσ =

1√
2π

∫∞
−∞ e−u

2/2du = 1,

by 263G. The argument now follows the lines of 282H. Set

φ(t) = |f(x+ t) + f(x− t)− 2c|

when this is defined, which is almost everywhere, and Φ(t) =
∫ t

0
φ, defined for all t ≥ 0 because f is integrable

over every bounded interval (284Eb). We have
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|(f ∗ ψσ)(x)− c| = |
∫ ∞

−∞
f(x− t)ψσ(t)dt− c

∫ ∞

−∞
ψσ(t)dt|

= |
∫ 0

−∞
(f(x− t)− c)ψσ(t)dt+

∫ ∞

0

(f(x− t)− c)ψσ(t)dt|

= |
∫ ∞

0

(f(x+ t)− c)ψσ(t)dt+

∫ ∞

0

(f(x− t)− c)ψσ(t)dt|

(because ψσ is an even function)

= |
∫ ∞

0

(f(x+ t) + f(x− t)− 2c)ψσ(t)dt|

≤
∫ ∞

0

|f(x+ t) + f(x− t)− 2c|ψσ(t)dt =
∫ ∞

0

φ× ψσ.

(b) I should explain why this last integral is finite. Because f is a tempered function, so are the
functions t 7→ f(x + t), t 7→ f(x − t) (284Ec); of course constant functions are tempered, so t 7→ φ(t) =
|f(x + t) + f(x − t) − 2c| is tempered, and because ψσ is a rapidly decreasing test function we may apply
284F to see that the product is integrable.

(c) Let ǫ > 0. By hypothesis, limt↓0 Φ(t)/t = 0; let δ > 0 be such that Φ(t) ≤ ǫt for every t ∈ [0, δ]. Take
any σ ∈ ]0, δ]. I break the integral

∫∞
0
φ× ψσ up into three parts.

(i) For the integral from 0 to σ, we have

∫ σ

0

φ× ψσ ≤
∫ σ

0

1

σ
√
2π
φ =

1

σ
√
2π

Φ(σ) ≤ ǫσ

σ
√
2π

≤ ǫ,

because ψσ(t) ≤ 1
σ
√
2π

for every t.

(ii) For the integral from σ to δ, we have

∫ δ

σ

φ× ψσ ≤ 1

σ
√
2π

∫ δ

σ

φ(t)
2σ2

t2
dt

(because e−t
2/2σ2

= 1/et
2/2σ2 ≤ 1/(t2/2σ2) = 2σ2/t2 for every t 6= 0)

= σ

√

2

π

∫ δ

σ

φ(t)

t2
dt = σ

√

2

π

(Φ(δ)

δ2
− Φ(σ)

σ2
+

∫ δ

σ

2Φ(t)

t3
dt
)

(integrating by parts – see 225F)

≤ σ
(ǫ

δ
+

∫ δ

σ

2ǫ

t2
dt
)

(because Φ(t) ≤ ǫt for 0 ≤ t ≤ δ and
√

2/π ≤ 1)

≤ σ
(ǫ

δ
+

2ǫ

σ

)

≤ 3ǫ.

(iii) For the integral from δ to ∞, we have

∫ ∞

δ

φ× ψσ =
1√
2π

∫ ∞

δ

φ(t)
e−t

2/2σ2

σ
dt.

Now for any t ≥ δ,

σ 7→ 1

σ
e−t

2/2σ2

: ]0, δ] → R

is monotonically increasing, because its derivative
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d

dσ

1

σ
e−t

2/2σ2

=
1

σ2

( t2

σ2
− 1

)

e−t
2/2σ2

is positive, and

limσ↓0
1

σ
e−t

2/2σ2

= lima→∞ ae−a
2t2/2 = 0.

So we may apply Lebesgue’s Dominated Convergence Theorem to see that

lim
n→∞

∫ ∞

δ

φ(t)
e−t

2/2σ2
n

σn
dt = 0

whenever 〈σn〉n∈N is a sequence in ]0, δ] converging to 0, so that

lim
σ↓0

∫ ∞

δ

φ(t)
e−t

2/2σ2

σ
dt = 0.

There must therefore be a σ0 ∈ ]0, δ] such that
∫∞
δ
φ× ψσ ≤ ǫ

for every σ ≤ σ0.

(iv) Putting these together, we see that

|(f ∗ ψσ)(x)− c| ≤
∫∞
0
φ× ψσ ≤ ǫ+ 3ǫ+ ǫ = 5ǫ

whenever 0 < σ ≤ σ0. As ǫ is arbitrary, limσ↓0(f ∗ ψσ)(x) = c, as claimed.

284M Theorem Let f and g be tempered functions such that g represents the Fourier transform of f .
Then

(a)(i) g(y) = limǫ↓0
1√
2π

∫∞
−∞ e−iyxe−ǫx

2

f(x)dx for almost every y ∈ R.

(ii) If y ∈ R is such that a = limt∈dom g,t↑y g(t) and b = limt∈dom g,t↓y g(t) are both defined in C, then

limǫ↓0
1√
2π

∫∞
−∞ e−iyxe−ǫx

2

f(x)dx =
1

2
(a+ b).

(b)(i) f(x) = limǫ↓0
1√
2π

∫∞
−∞ eixye−ǫy

2

g(y)dy for almost every x ∈ R.

(ii) If x ∈ R is such that a = limt∈dom f,t↑x f(t) and b = limt∈dom f,t↓x f(t) are both defined in C, then

limǫ↓0
1√
2π

∫∞
−∞ eixye−ǫy

2

g(y)dy =
1

2
(a+ b).

proof (a)(i) By 223D,

limδ↓0
1

2δ

∫ δ

−δ |g(y + t)− g(y)|dt = 0

for almost every y ∈ R, because g is integrable over any bounded interval. Fix any such y. Set φ(t) =
|g(y + t) + g(y − t)− 2g(y)| whenever this is defined. Then, as in the proof of 282Ia,

∫ δ

0
φ ≤

∫ δ

−δ |g(y + t)− g(y)|dt,

so limδ↓0
1
δ

∫ δ

0
φ = 0. Consequently, by 284L,

g(y) = limσ→∞(g ∗ ψ1/σ)(y).

We know from 283N that the Fourier transform of ψσ is 1
σψ1/σ for any σ > 0. Accordingly, by 284K, g∗ψ1/σ

is the Fourier transform of σ
√
2πf × ψσ, that is,

(g ∗ ψ1/σ)(y) =
∫∞
−∞ e−iyxσψσ(x)f(x)dx.

So
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g(y) = lim
σ→∞

∫ ∞

−∞
e−iyxσψσ(x)f(x)dx

= lim
σ→∞

1√
2π

∫ ∞

−∞
e−iyxe−x

2/2σ2

f(x)dx

= lim
ǫ↓0

1√
2π

∫ ∞

−∞
e−iyxe−ǫx

2

f(x)dx.

And this is true for almost every y.

(ii) Again, setting c = 1
2 (a + b), φ(t) = |g(y + t) + g(y − t) − 2c| whenever this is defined, we have

limt∈domφ,t↓0 φ(t) = 0, so of course limδ↓0
1
δ

∫ δ

0
φ = 0, and

c = lim
σ→∞

(g ∗ ψ1/σ)(y) = lim
ǫ↓0

1√
2π

∫ ∞

−∞
e−iyxe−ǫx

2

f(x)dx

as before.

(b) This can be shown by similar arguments; or it may be actually deduced from (a), by observing that

x 7→
↔

f (x) = f(−x) represents the Fourier transform of g (see 284Ie), and applying (a) to g and
↔

f .

284N L2 spaces We are now ready for results corresponding to 282J-282K.

Lemma Let L2
C
be the space of square-integrable complex-valued functions on R, and S the space of rapidly

decreasing test functions. Then for every f ∈ L
2
C
and ǫ > 0 there is an h ∈ S such that ‖f − h‖2 ≤ ǫ.

proof Set φ(x) = e−1/x for x > 0, zero for x ≤ 0; recall from the proof of 284G that φ is smooth. For any
a < b, the functions

x 7→ φn(x) = φ(n(x− a))φ(n(b− x))

provide a sequence of test functions converging to χ ]a, b[ from below, so (as in 284G)

infh∈S ‖χ ]a, b[− h‖22 ≤ limn→∞
∫ b

a
|1− φn|2 = 0.

Because S is a linear space (284Ba), it follows that for every step-function g with bounded support and every
ǫ > 0 there is an h ∈ S such that ‖g− h‖2 ≤ 1

2ǫ. But we know from 244H/244Pb that for every f ∈ L
2
C
and

ǫ > 0 there is a step-function g with bounded support such that ‖f − g‖2 ≤ 1
2ǫ; so there must be an h ∈ S

such that

‖f − h‖2 ≤ ‖f − g‖2 + ‖g − h‖2 ≤ ǫ.

As f and ǫ are arbitrary, we have the result.

284O Theorem (a) Let f be any complex-valued function which is square-integrable over R. Then f is
a tempered function and its Fourier transform is represented by another square-integrable function g, and
‖g‖2 = ‖f‖2.

(b) If f1 and f2 are complex-valued functions, square-integrable over R, with Fourier transforms repre-
sented by functions g1, g2, then

∫∞
−∞ f1 × f̄2 =

∫∞
−∞ g1 × ḡ2.

(c) If f1 and f2 are complex-valued functions, square-integrable over R, with Fourier transforms repre-
sented by functions g1, g2, then the integrable function f1 × f2 has Fourier transform 1√

2π
g1 ∗ g2.

(d) If f1 and f2 are complex-valued functions, square-integrable over R, with Fourier transforms repre-

sented by functions g1, g2, then
√
2πg1 × g2 represents the Fourier transform of the continuous function

f1 ∗ f2.
proof (a)(i) Consider first the case in which f is a rapidly decreasing test function and g is its Fourier
transform; we know that g is also a rapidly decreasing test function, and that f is the inverse Fourier
transform of g (284C). Now the complex conjugate g of g is given by the formula
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g(y) =
1√
2π

∫∞
−∞ e−iyxf(x)dx =

1√
2π

∫∞
−∞ eiyxf(x)dx,

so that g is the inverse Fourier transform of f . Accordingly

∫

f × f =
∫

∨

g × f =
∫

g ×
∨

f =
∫

g × g,

using 283O for the middle equality.

(ii) Now suppose that f ∈ L
2
C
. I said that f is a tempered function; this is simply because

∫∞
−∞

( 1

1+|x|
)2
dx <∞,

so
∫∞
−∞

|f(x)|
1+|x| dx <∞

(244Eb). By 284N, there is a sequence 〈fn〉n∈N of rapidly decreasing test functions such that limn→∞ ‖f −
fn‖2 = 0. By (i),

limm,n→∞ ‖
∧

fm −
∧

fn‖2 = limm,n→∞ ‖fm − fn‖2 = 0,

and the sequence 〈
∧

f •

n〉n∈N of equivalence classes is a Cauchy sequence in L2
C
. Because L2

C
is complete

(244G/244Pb), 〈
∧

f •

n〉n∈N has a limit in L2
C
, which is representable as g• for some g ∈ L

2
C
. Like f , g must be

a tempered function. Of course

‖g‖2 = limn→∞ ‖
∧

fn‖2 = limn→∞ ‖fn‖2 = ‖f‖2.

Now if h is any rapidly decreasing test function, h and
∧

h are square-integrable (284Bc, 284C), so we shall
have

∫

g × h = limn→∞
∫ ∧

fn × h = limn→∞
∫

fn ×
∧

h =
∫

f ×
∧

h.

So g represents the Fourier transform of f .

(b) By 284Ib, any functions representing the Fourier transforms of f1 and f2 must be equal almost
everywhere to square-integrable functions, and therefore square-integrable, with the right norms. It follows
as in 282K (part (d) of the proof) that if g1, g2 represent the Fourier transforms of f1, f2, so that ag1 + bg2
represents the Fourier transform of af1+ bf2 and ‖ag1+ bg2‖2 = ‖af1+ bf2‖2 for all a, b ∈ C, we must have

∫

f1 × f2 = (f1|f2) = (g1|g2) =
∫

g1 × g2.

(c)Of course f1×f2 is integrable because it is the product of two square-integrable functions (244E/244Pb).
(i) Let y ∈ R and set f(x) = f2(x)e

iyx for x ∈ R. Then f ∈ L
2
C
. We need to know that the Fourier

transform of f is represented by g, where g(u) = g2(y − u). PPP Let h be a rapidly decreasing test function.
Then

∫

g × h =

∫

g2(y − u)h(u)du =

∫

g2(u)h(y − u)du

=

∫

g2 × h1 =

∫

f2 ×
∧

h1,

where h1(u) = h(y − u). To compute
∧

h1, we have

∧

h1(v) =
1√
2π

∫ ∞

−∞
e−ivuh1(u)du =

1√
2π

∫ ∞

−∞
e−ivuh(y − u)du

=
1√
2π

∫ ∞

−∞
eivuh(y − u)du =

1√
2π

∫ ∞

−∞
eiv(y−u)h(u)du = eivy

∧

h(v).

So
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∫

g × h =
∫

f2 ×
∧

h1 =
∫

f2(v)
∧

h1(v)dv =
∫

f2(v)e
ivy

∧

h(v)dv =
∫

f ×
∧

h;

as h is arbitrary, g represents the Fourier transform of f . QQQ

(ii) We now have

(f1 × f2)
∧(y) =

1√
2π

∫ ∞

−∞
e−iyxf1(x)f2(x)dx

=
1√
2π

∫ ∞

−∞
f1 × f̄ =

1√
2π

∫ ∞

−∞
g1 × ḡ

(using part (b))

=
1√
2π

∫ ∞

−∞
g1(u)g2(y − u)du =

1√
2π

(g1 ∗ g2)(y).

As y is arbitrary, (f1 × f2)
∧ = 1√

2π
g1 ∗ g2, as claimed.

(d) By (c), the Fourier transform of
√
2πg1×g2 is

↔

f 1 ∗
↔

f 2, writing
↔

f 1(x) = f1(−x), so that
↔

f 1 represents

the Fourier transform of g1. So the inverse Fourier transform of
√
2πg1 × g2 is (

↔

f 1 ∗
↔

f 2)
↔. But, just as in

the proof of 284Kb, (
↔

f 1 ∗
↔

f 2)
↔ = f1 ∗ f2, so f1 ∗ f2 is the inverse Fourier transform of

√
2πg1 × g2, and√

2πg1 × g2 represents the Fourier transform of f1 ∗ f2, as claimed. Also f1 ∗ f2, being the Fourier transform
of an integrable function, is continuous (283Cf; see also 255K).

284P Corollary Writing L2
C
for the Hilbert space of equivalence classes of square-integrable complex-

valued functions on R, we have a linear isometry T : L2
C
→ L2

C
given by saying that T (f•) = g• whenever f ,

g ∈ L
2
C
and g represents the Fourier transform of f .

284Q Remarks (a) 284P corresponds, of course, to 282K, where the similar isometry between ℓ2
C
(Z)

and L2
C
(]−π, π]) is described. In that case there was a marked asymmetry which is absent from the present

situation; because the relevant measure on Z, counting measure, gives non-zero mass to every point, members
of ℓ2

C
are true functions, and it is not surprising that we have a straightforward formula for S(f•) ∈ ℓ2

C
for

every f ∈ L
2
C
(]−π, π]). The difficulty of describing S−1 : ℓ2

C
(Z) → L2

C
(]−π, π]) is very similar to the difficulty

of describing T : L2
C
(R) → L2

C
(R) and its inverse. 284Yg and 286U-286V show just how close this similarity

is.

(b) I have spelt out parts (c) and (d) of 284O in detail, perhaps in unnecessary detail, because they give

me an opportunity to insist on the difference between ‘
√
2πg1×g2 represents the Fourier transform of f1 ∗f2’

and ‘ 1√
2π
g1 ∗ g2 is the Fourier transform of f1 × f2’. The actual functions g1 and g2 are not well-defined by

the hypothesis that they represent the Fourier transforms of f1 and f2, though their equivalence classes g•

1,
g•

2 ∈ L2
C
are. So the product g1 × g2 is also not uniquely defined as a function, though its equivalence class

(g1× g2)• = g•

1× g•

2 is well-defined as a member of L1
C
. However the continuous function g1 ∗ g2 is unaffected

by changes to g1 and g2 on negligible sets, so is well defined as a function; and since f1 × f2 is integrable,
and has a true Fourier transform, it is to be expected that (f1 × f2)

∧ should be exactly equal to 1√
2π
g1 ∗ g2.

This distinction between ‘being’ a Fourier transform and ‘representing’ a Fourier transform echoes a
question which arose in 233D concerning conditional expectations. I spoke there of ‘a’ conditional expectation
on T of a function f as being ‘a µ↾T-integrable function g such that

∫

F
g dµ =

∫

F
fdµ for every F ∈ T’; the

point being that any µ↾T-integrable function equal almost everywhere to g would equally be a conditional
expectation of f . Here we see that if g represents the Fourier transform of f then any function almost
everywhere equal to g will also represent the Fourier transform of f . In 242J I suggested resolving this
complication by regarding conditional expectation as a map between L1 spaces rather than between L

1

spaces. Here, similarly, we could think of the Fourier transform considered in 284H as being a linear
operator defined on a certain subspace of L0(µ).

In the case of conditional expectations, I think that there are solid reasons for taking the operators on
L1 spaces as the real embodiment of the idea; I will expand on these in Chapter 36 of the next volume. In
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the case of Fourier transforms, I do not think the arguments have the same force. In 284R below, and in
§285, we shall see that there are important cases in which we want to talk about Fourier transforms which
cannot be represented by members of L0, so that this would still be only a half-way house.

(c) Of course 284Oc-284Od also exhibit a characteristic feature of arguments involving Fourier transforms,
the extension by continuity of relations valid for test functions.

(d) 284Oa is a version of Plancherel’s theorem. The formula ‖f‖2 = ‖
∧

f‖2 is Parseval’s identity.

284R Dirac’s delta function Consider the tempered function χR with constant value 1. In what sense,
if any, can we assign a Fourier transform to χR?

If we examine
∫

χR×
∧

h, as suggested in 284H, we get
∫∞
−∞ χR×

∧

h =
∫∞
−∞

∧

h =
√
2π

∧

h
∨

(0) =
√
2πh(0)

for every rapidly decreasing test function h. Of course there is no function g such that
∫

g × h =
√
2πh(0)

for every rapidly decreasing test function h, since (using the arguments of 284G) we should have to have
∫ b

a
g =

√
2π whenever a < 0 < b, so that the indefinite integral of g could not be continuous at 0. However

there is a measure on R with exactly the right property, the Dirac measure δ0 concentrated at 0; this is a
Radon probability measure (257Xa), and

∫

h dδ0 = h(0) for every function h defined at 0. So we shall have
∫∞
−∞ χR×

∧

h =
√
2π
∫

h dδ0

for every rapidly decreasing test function h, and we can reasonably say that the measure ν =
√
2πδ0

‘represents the Fourier transform of χR’.
We note with pleasure at this point that

1√
2π

∫

eixyν(dy) = 1

for every x ∈ R, so that χR can be called the inverse Fourier transform of ν.
If we look at the formulae of Theorem 284M, we get ideas consistent with this pairing of χR with ν. We

have

1√
2π

∫∞
−∞ e−iyxe−ǫx

2

χR(x)dx =
1√
2π

∫∞
−∞ e−iyxe−ǫx

2

dx =
1√
2ǫ
e−y

2/4ǫ

for every y ∈ R, using 283N with σ = 1/
√
2ǫ. So

limǫ↓0
1√
2π

∫∞
−∞ e−iyxe−ǫx

2

χR(x)dx = 0

for every y 6= 0, and the Fourier transform of χR should be zero everywhere except at 0. On the other

hand, the functions y 7→ 1√
2ǫ
e−y

2/4ǫ all have integral
√
2π, concentrated more and more closely about 0 as

ǫ decreases to 0, so also point us directly to ν, the measure which gives mass
√
2π to 0.

Thus allowing measures, as well as functions, enables us to extend the notion of Fourier transform. Of
course we can go very much farther than this. If h is any rapidly decreasing test function, then (because
∨

h
∧

= h)
∫∞
−∞ x

∧

h(x)dx = −i
√
2πh′(0),

so that the identity function x 7→ x can be assigned, as a Fourier transform, the operator h 7→ −i
√
2πh′(0).

At this point we are entering the true theory of (Schwartzian) distributions or ‘generalized functions’,
and I had better stop. The ‘Dirac delta function’ is most naturally regarded as the measure δ0 above;

alternatively, as
1√
2π

∧

χR.

284W The multidimensional case As in §283, I give exercises designed to point the way to the
r-dimensional generalization.
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(a) A rapidly decreasing test function on Rr is a function h : Rr → C such that (i) h is smooth,
that is, all repeated partial derivatives

∂mh

∂ξj1 ...∂ξjm

are defined and continuous everywhere in Rr (ii)

supx∈Rr ‖x‖k|h(x)| <∞, supx∈Rr ‖x‖k| ∂mh

∂ξj1 ...∂ξjm
(x)| <∞

for every k ∈ N, j1, . . . , jm ≤ r. A tempered function on Rr is a measurable complex-valued function f ,
defined almost everywhere in Rr, such that, for some k ∈ N,

∫

Rr

1

1+‖x‖k
|f(x)|dx <∞.

Show that if f is a tempered function on Rr and h is a rapidly decreasing test function on Rr then f × h is
integrable.

(b) Show that if h is a rapidly decreasing test function on Rr so is
∧

h, and that in this case
∧

h
∨

= h.

(c) Show that if f is a tempered function on Rr and
∫

f×h = 0 for every rapidly decreasing test function
h on Rr, then f = 0 a.e.

(d) If f and g are tempered functions on Rr, I say that g represents the Fourier transform of f if
∫

g × h =
∫

f ×
∧

h for every rapidly decreasing test function h on Rr. Show that if f is integrable then
∧

f
represents the Fourier transform of f in this sense.

(e) Let f be any tempered function on Rr. Writing ψσ(x) = 1
(σ

√
2π)r

e−x .x/2σ
2

for x ∈ Rr, show that

limσ↓0(f ∗ ψσ)(x) = c whenever x ∈ Rr, c ∈ C are such that limδ↓0
1
δr

∫

B(x,δ)
|f(t) − c|dt = 0, writing

B(x, δ) = {t : ‖t− x‖ ≤ δ}.

(f) Let f and g be tempered functions on Rr such that g represents the Fourier transform of f , and h a

rapidly decreasing test function. Show that (i) the Fourier transform of f ×h is 1
(
√
2π)r

g ∗
∧

h (ii) (
√
2π)rg×

∧

h

represents the Fourier transform of f ∗ h.

(g) Let f and g be tempered functions on Rr such that g represents the Fourier transform of f . Show
that

g(y) = limǫ↓0
1

(
√
2π)r

∫

Rr
e−iy .xe−ǫx .xf(x)dx

for almost every y ∈ Rr.

(h) Show that for any square-integrable complex-valued function f on Rr and any ǫ > 0 there is a rapidly
decreasing test function h such that ‖f − h‖2 ≤ ǫ.

(i) Let L2
C
be the space of square-integrable complex-valued functions on Rr. Show that

(i) for every f ∈ L
2
C
there is a g ∈ L

2
C
which represents the Fourier transform of f , and in this case

‖g‖2 = ‖f‖2;
(ii) if g1, g2 ∈ L

2
C
represent the Fourier transforms of f1, f2 ∈ L

2
C
, then 1

(
√
2π)r

g1 ∗ g2 is the Fourier

transform of f1 × f2, and (
√
2π)rg1 × g2 represents the Fourier transform of f1 ∗ f2.

(j) Let T be an invertible real r× r matrix, regarded as a linear operator from Rr to itself. (i) Show that
∧

f = | detT |(fT )∧T⊤ for every integrable complex-valued function f on Rr. (ii) Show that hT is a rapidly
decreasing test function for every rapidly decreasing test function h. (iii) Show that if f , g are a tempered

functions and g represents the Fourier transform of f , then
1

| detT |g(T
⊤)−1 represents the Fourier transform

of fT ; so that if T is orthogonal, then gT represents the Fourier transform of fT .
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284X Basic exercises (a) Show that if g and h are rapidly decreasing test functions, so is g × h.

(b) Show that there are non-zero continuous integrable functions f , g : R → C such that f ∗ g = 0
everywhere. (Hint : take them to be Fourier transforms of suitable test functions.)

(c) Suppose that f : R → C is a differentiable function such that its derivative f ′ is a tempered function
and, for some k ∈ N,

limx→∞ x−kf(x) = limx→−∞ x−kf(x) = 0.

(i) Show that
∫

f × h′ = −
∫

f ′ × h for every rapidly decreasing test function h. (ii) Show that if g is a
tempered function representing the Fourier transform of f , then y 7→ iyg(y) represents the Fourier transform
of f ′.

(d) For a tempered function f and α ∈ R, set

(Sαf)(x) = f(x+ α), (Mαf)(x) = eiαxf(x), (Dαf)(x) = f(αx)

whenever these are defined. (i) Show that Sαf , Mαf and (if α 6= 0) Dαf are tempered functions. (ii)
Show that if g is a tempered function which represents the Fourier transform of f , then M−αg represents

the Fourier transform of Sαf , S−αg represents the Fourier transform of Mαf ,
↔̄

g =
↔

ḡ represents the Fourier

transform of f̄ , and if α 6= 0 then
1

|α|D1/αg represents the Fourier transform of Dαf .

(e) Show that if h is a rapidly decreasing test function and f is any measurable complex-valued function,
defined almost everywhere in R, such that

∫∞
−∞ |x|k|f(x)|dx <∞ for every k ∈ N, then the convolution f ∗h

is a rapidly decreasing test function. (Hint : show that the Fourier transform of f ∗ h is a test function.)

>>>(f) Let f be a tempered function such that lima→∞
∫ a

−a f exists in C. Show that this limit is also

equal to limǫ↓0
∫∞
−∞ e−ǫx

2

f(x)dx. (Hint : set g(x) = f(x) + f(−x). Use 224J to show that if 0 ≤ a ≤
b then |

∫ b

a
g(x)e−ǫx

2

dx| ≤ supc∈[a,b] |
∫ c

a
g|, so that lima→∞

∫ a

0
g(x)e−ǫx

2

dx exists uniformly in ǫ, while

limǫ↓0
∫ a

0
g(x)e−ǫx

2

dx =
∫ a

0
g for every a ≥ 0.)

>>>(g) Let f and g be tempered functions on R such that g represents the Fourier transform of f . Show
that

g(y) = lima→∞
1√
2π

∫ a

−a e
−iyxf(x)dx

at almost all points y for which the limit exists. (Hint : 284Xf, 284M.)

>>>(h) Let f be an integrable complex-valued function on R such that
∧

f also is integrable. Show that
∧

f
∨

= f at any point at which f is continuous.

(i) Show that for every p ∈ [1,∞[, f ∈ L
p
C
and ǫ > 0 there is a rapidly decreasing test function h such

that ‖f − h‖p ≤ ǫ.

>>>(j) Let f and g be square-integrable complex-valued functions on R such that g represents the Fourier
transform of f . Show that

∫ d

c
f =

i√
2π

∫∞
−∞

eicy−eidy

y
g(y)dy

whenever c < d in R.

(k) Let f be a measurable complex-valued function, defined almost everywhere in R, such that
∫

|f |p <∞,
where 1 < p ≤ 2. Show that f is a tempered function and that there is a tempered function g representing
the Fourier transform of f . (Hint : express f as f1 + f2, where f1 is integrable and f2 is square-integrable.)
(Remark Defining ‖f‖p, ‖g‖q as in 244D, where q = p/(p − 1), we have ‖g‖q ≤ (2π)(p−2)/2p‖f‖p; see
Zygmund 59, XVI.3.2.)
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(l) Let f , g be square-integrable complex-valued functions on R such that g represents the Fourier
transform of f .

(i) Show that

1√
2π

∫ a

−a e
ixyg(y)dy =

1

π

∫∞
−∞

sin at

t
f(x− t)dt

whenever x ∈ R and a > 0. (Hint : find the inverse Fourier transform of y 7→ e−ixyχ[−a, a](y), and use
284Ob.)

(ii) Show that if f(x) = 0 for x ∈ ]c, d[ then

1√
2π

lima→∞
∫ a

−a e
ixyg(y)dy = 0

for x ∈ ]c, d[.
(iii) Show that if f is differentiable at x ∈ R, then

1√
2π

lima→∞
∫ a

−a e
ixyg(y)dy = f(x).

(iv) Show that if f has bounded variation over some interval properly containing x, then

1√
2π

lima→∞
∫ a

−a e
ixyg(y)dy =

1

2
(limt∈dom f,t↑x f(t) + limt∈dom f,t↓x f(t)).

(m) Let f be an integrable complex function on R. Show that if
∧

f is square-integrable, so is f .

(n) Let f1, f2 be square-integrable complex-valued functions on R with Fourier transforms represented
by g1, g2. Show that

∫∞
−∞ f1(t)f2(−t)dt =

∫∞
−∞ g1(t)g2(t)dt.

(o) Suppose x ∈ R. Write δx for Dirac measure on R concentrated at x. Describe a sense in which
√
2πδx

can be regarded as the Fourier transform of the function t 7→ eixt.

(p) For any tempered function f and x ∈ R, let δx be the Dirac measure on R concentrated at x, and set

(δx ∗ f)(u) =
∫

f(u− t)δx(dt) = f(u− x)

for every u for which u − x ∈ dom f (cf. 257Xe). If g represents the Fourier transform of f , find a corre-
sponding representation of the Fourier transform of δx ∗ f , and relate it to the product of g with the Fourier
transform of δx.

(q)(i) Show that

limδ↓0,a→∞
(

∫ −δ
−a

1

x
e−iyxdx+

∫ a

δ

1

x
e−iyxdx

)

= −πi sgn y

for every y ∈ R, writing sgn y = y/|y| if y 6= 0 and sgn 0 = 0. (Hint : 283Da.)
(ii) Show that

limc→∞
1

c

∫ c

0

∫ a

−a e
ixy sgn y dy da =

2i

x

for every x 6= 0.
(iii) Show that for any rapidly decreasing test function h,

∫ ∞

0

1

x
(
∧

h(x)−
∧

h(−x))dx = lim
δ↓0,a→∞

(

∫ −δ

−a

1

x

∧

h(x)dx+

∫ a

δ

1

x

∧

h(x)dx
)

= − iπ√
2π

∫ ∞

−∞
h(y) sgn y dy.

(iv) Show that for any rapidly decreasing test function h,

iπ√
2π

∫∞
−∞

∧

h(x) sgnx dx =
∫∞
0

1

y
(h(y)− h(−y))dy.
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(r) Let 〈hn〉n∈N be a sequence of rapidly decreasing test functions such that φ(f) = limn→∞
∫∞
−∞ hn × f

is defined for every rapidly decreasing test function f . Show that limn→∞
∫∞
−∞ h′n × f , limn→∞

∫∞
−∞

∧

hn × f

and limn→∞
∫∞
−∞(hn ∗ g)× f are defined for all rapidly decreasing test functions f and g, and are zero if φ

is identically zero. (Hint : 255G will help with the last.)

284Y Further exercises (a) Let f be an integrable complex-valued function on ]−π, π], and f̃ its

periodic extension, as in 282Ae. Show that f̃ is a tempered function. Show that for any rapidly decreasing

test function h,
∫

f̃ ×
∧

h =
√
2π

∑∞
k=−∞ ckh(k), where 〈ck〉k∈N is the sequence of Fourier coefficients of f .

(Hint : begin with the case f(x) = einx. Next show that

M =
∑∞
k=−∞ |h(k)|+∑∞

k=−∞ supx∈[(2k−1)π,(2k+1)π] |
∧

h(x)| <∞,

and that

|
∫

f̃ ×
∧

h−
√
2π

∑∞
k=−∞ ckh(k)| ≤M‖f‖1.

Finally apply 282Ib.)

(b) Let f be a complex-valued function, defined almost everywhere in R, such that f × h is integrable
for every rapidly decreasing test function h. Show that f is tempered.

(c) Let f and g be tempered functions on R such that g represents the Fourier transform of f . Show that

∫ d

c

f =
i√
2π

lim
σ→∞

∫ ∞

−∞

eicy−eidy

y
e−y

2/2σ2

g(y)dy

whenever c ≤ d in R. (Hint : set θ = χ[c, d]. Show that both sides are limσ→∞
∫

f × (θ ∗ ψ1/σ), defining ψσ
as in 283N and 284L.)

(d) Show that if g : R → R is an odd function of bounded variation such that
∫∞
1

1
xg(x)dx = ∞, then g

does not represent the Fourier transform of any tempered function. (Hint : 283Ye, 284Yc.)

(e) Let S be the space of rapidly decreasing test functions. For k,m ∈ N set τkm(h) = supx∈R |x|k|h(m)(x)|
for every h ∈ S, writing h(m) for the mth derivative of h as usual. (i) Show that each τkm is a seminorm
and that S is complete and separable for the metrizable linear space topology T they define. (ii) Show that

h 7→
∧

h : S → S is continuous for T. (iii) Show that if f is any tempered function, then h 7→
∫

f × h is

T-continuous. (iv) Show that if f is an integrable function such that
∫

|xkf(x)|dx < ∞ for every k ∈ N,
then h 7→ f ∗ h : S → S is T-continuous.

(f) Show that if f is a tempered function on R and

γ = limc→∞
1

c

∫ c

0

∫ a

−a f(x)dxda

is defined in C, then γ is also

limǫ↓0
∫∞
−∞ f(x)e−ǫ|x|dx.

(g) Let f , g be square-integrable complex-valued functions on R such that g represents the Fourier

transform of f . Suppose that m ∈ Z and that (2m− 1)π < x < (2m+ 1)π. Set f̃(t) = f(t+ 2mπ) for those

t ∈ ]−π, π] such that t+ 2mπ ∈ dom f . Let 〈ck〉k∈Z be the sequence of Fourier coefficients of f̃ . Show that

1√
2π

lima→∞
∫ a

−a e
ixyg(y)dy = limn→∞

∑n
k=−n cke

ikx

in the sense that if one limit exists in C so does the other, and they are then equal. (Hint : 284Xl(i), 282Da.)

(h) Show that if f is integrable over R and there is some M ≥ 0 such that f(x) =
∧

f(x) = 0 for |x| ≥M ,
then f = 0 a.e. (Hint : reduce to the case M = π. Looking at the Fourier series of f↾ ]−π, π], show that f

is expressible in the form f(x) =
∑m
k=−m cke

ikx for almost every x ∈ ]−π, π]. Now compute
∧

f(2n + 1
2 ) for

large n.)
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(i) Let ν be a Radon measure on R which is ‘tempered’ in the sense that
∫∞
−∞

1

1+|x|k ν(dx) is finite for

some k ∈ N. (i) Show that every rapidly decreasing test function is ν-integrable. (ii) Show that if ν has
bounded support (definition: 256Xf), and h is a rapidly decreasing test function, then ν ∗ h is a rapidly
decreasing test function, where (ν ∗h)(x) =

∫∞
−∞ h(x−y)ν(dy) for x ∈ R. (iii) Show that there is a sequence

〈hn〉n∈N of rapidly decreasing test functions such that limn→∞
∫∞
−∞ hn × f =

∫∞
−∞ fdν for every rapidly

decreasing test function f .

(j) Let φ : S → R be a functional defined by the formula of 284Xr. Show that φ is continuous for the
topology of 284Ye. (Note: it helps to know a little more about metrizable linear topological spaces than is
covered in §2A5.)

284 Notes and comments Yet again I must warn you that the material above gives a very restricted
view of the subject. I have tried to indicate how the theory of Fourier transforms of ‘good’ functions –
here taken to be the rapidly decreasing test functions – may be extended, through a kind of duality, to a
very much wider class of functions, the ‘tempered functions’. Evidently, writing S for the linear space of
rapidly decreasing test functions, we can seek to investigate a Fourier transform of any linear functional

φ : S → C, writing
∧

φ(h) = φ(
∧

h) for any h ∈ S. (It is actually commoner at this point to restrict attention
to functionals φ which are continuous for the standard topology on S, described in 284Ye; these are called
tempered (Schwartzian) distributions.) By 284F-284G, we can identify some of these functionals with
equivalence classes of tempered functions, and then set out to investigate those tempered functions whose
Fourier transforms can again be represented by tempered functions.

I suppose the structure of the theory of Fourier transforms is best laid out through the formulae involved.

Our aim is to set up pairs (f, g) = (f,
∧

f) = (
∨

g, g) in such a way that we have

Inversion:
∧

h
∨

=
∨

h
∧

= h;

Reversal :
∨

h(y) =
∧

h(−y);
Linearity : (h1 + h2)

∧ =
∧

h1 +
∧

h2, (ch)∧ = c
∧

h;

Differentiation: (h′)∧(y) = iy
∧

h(y);

Shift : if h1(x) = h(x+ c) then
∧

h1(y) = eiyc
∧

h(y);

Modulation: if h1(x) = eicxh(x) then
∧

h1(y) =
∧

h(y − c);

Symmetry : if h1(x) = h(−x) then
∧

h1(y) =
∧

h(−y);
Complex Conjugate: (h)∧(y) =

∧

h(−y);
Dilation: if h1(x) = h(cx), where c > 0, then

∧

h1(y) =
1

c

∧

h(
y

c
);

Convolution: (h1 ∗ h2)∧ =
√
2π

∧

h1 ×
∧

h2, (h1 × h2)
∧ =

1√
2π

∧

h1 ∗
∧

h2;

Duality :
∫∞
−∞ h1 ×

∧

h2 =
∫∞
−∞

∧

h1 × h2;

Parseval :
∫∞
−∞ h1 × h2 =

∫∞
−∞

∧

h1 ×
∧

h2;
and, of course,

∧

h(y) =
1√
2π

∫∞
−∞ e−iyxh(x)dx,

∫ d

c

∧

h(y)dy =
i√
2π

∫∞
−∞

e−icy−e−idy

y
h(y)dy.

(I have used the letter h in the list above to suggest what is in fact the case, that all the formulae here are

valid for rapidly decreasing test functions.) On top of all this, it is often important that the operation h 7→
∧

h
should be continuous in some sense.

The challenge of the ‘pure’ theory of Fourier transforms is to find the widest possible variety of objects h
for which the formulae above will be valid, subject to appropriate interpretations of ∧, ∗ and

∫∞
−∞. I must of

course remark here that from the very beginnings, the subject has been enriched by its applications in other
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parts of mathematics, the physical sciences and the social sciences, and that again and again these have

suggested further possible pairs (f,
∧

f), making new demands on our power to interpret the rules we seek to
follow. Even the theory of distributions does not seem to give a full canonical account of what can be done.
First, there are great difficulties in interpreting the ‘product’ of two arbitrary distributions, making several
of the formulae above problematic; and second, it is not obvious that only one kind of distribution need be
considered. In this section I have looked at just one space of ‘test functions’, the space S of rapidly decreasing
test functions; but at least two others are significant, the space D of smooth functions with bounded support
and the space Z of Fourier transforms of functions in D. The advantage of starting with S is that it gives

a symmetric theory, since
∧

h ∈ S for every h ∈ S; but it is easy to find objects (e.g., the function x 7→ ex
2

,
or the function x 7→ 1/|x|) which cannot be interpreted as functionals on S, so that their Fourier transforms
must be investigated by other methods, if at all. In 284Xq I sketch some of the arguments which can be
used to justify the assertion that the Fourier transform of the function x 7→ 1/x is, or can be represented
by, the function y 7→ −i

√

π
2 sgn y; the general principle in this case being that we approach both 0 and ∞

symmetrically. For a variety of such matching pairs, established by arguments based on the idea in 284Xr,
see Lighthill 59, chap. 3.

Accordingly it seems that, after two centuries, we must still proceed by carefully examining particular
classes of function, and checking appropriate interpretations of the formulae. In the work above I have
repeatedly used the concepts

lima→∞
∫ a

−a f , limǫ↓0
∫∞
−∞ e−ǫx

2

f(x)dx

as alternative interpretations of
∫∞
−∞ f . (Of course they are closely related; see 284Xf.) The reasons for using

the particular kernel e−ǫx
2

are that it belongs to S, it is an even function, its Fourier transform is calculable

and easy to manipulate, and it is associated with the normal probability density function 1
σ
√
2π
e−x

2/2σ2

, so

that any miscellaneous facts we gather have a chance of being valuable elsewhere. But there are applications
in which alternative kernels are more manageable – e.g., e−ǫ|x| (283Xq, 283Yc, 284Yf).

One of the guiding principles here is that purely formal manipulations, along the lines of those in the list
above, and (especially) changes in the order of integration, with other exchanges of limit, again and again
give rise to formulae which, suitably interpreted, are valid. First courses in analysis are often inhibitory;
students are taught to distrust any manipulation which they cannot justify. To my own eye, the delight
of this topic lies chiefly in the variety of the arguments demanded by a rigorous approach, the ground
constantly shifting with the context; but there is no doubt that cheerful sanguinity is often the best guide
to the manipulations which it will be right to try to justify.

This being a book on measure theory, I am of course particularly interested in the possibility of a measure
appearing as a Fourier transform. This is what happens if we seek the Fourier transform of the constant
function χR (284R). More generally, any periodic tempered function f with period 2π can be assigned
a Fourier transform which is a ‘signed measure’ (for our present purposes, a complex linear combination
of measures) concentrated on Z, the mass at each k ∈ Z being determined by the corresponding Fourier
coefficient of f↾ ]−π, π] (284Xo, 284Ya). In the next section I will go farther in this direction, with particular
reference to probability distributions on Rr. But the reason why positivemeasures have not forced themselves
on our attention so far is that we do not expect to get a positive function as a Fourier transform unless some
very special conditions are satisfied, as in 283Yc.

As in §282, I have used the Hilbert space structure of L2
C
as the basis of the discussion of Fourier transforms

of functions in L
2
C
(284O-284P). But as with Fourier series, Carleson’s theorem (286U) provides a more direct

description.
In 284Wj, I offer a calculation based on the change-of-variable formula in 263A to present a multidimen-

sional version of Reversal and Dilation. But what I am really trying to do is to show that Fourier transforms
on Rr are based on the geometry of the Euclidean inner product, not on the Cartesian coordinate system.

Version of 18.9.14

285 Characteristic functions

I come now to one of the most effective applications of Fourier transforms, the use of ‘characteristic func-
tions’ to analyse probability distributions. It turns out not only that the Fourier transform of a probability
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distribution determines the distribution (285M) but that many of the things we want to know about a distri-
bution are easily calculated from its transform (285G, 285Xi). Even more strikingly, pointwise convergence
of Fourier transforms corresponds (for sequences) to convergence for the vague topology in the space of
distributions, so they provide a new and extremely powerful method for proving such results as the Central
Limit Theorem and Poisson’s theorem (285Q).

As the applications of the ideas here mostly belong to probability theory, I return to probabilists’ ter-
minology, as in Chapter 27. There will nevertheless be many points at which it is appropriate to speak of
integrals, and there will often be more than one measure in play; so I should say directly that an integral
∫

f(x)dx will be with respect to Lebesgue measure (usually, but not always, one-dimensional), as in the
rest of this chapter, while integrals with respect to other measures will be expressed in the forms

∫

fdν or
∫

f(x)ν(dx).

285A Definition (a) Let ν be a Radon probability measure on Rr (256A). Then the characteristic
function of ν is the function ϕν : Rr → C given by the formula

ϕν(y) =
∫

eiy .xν(dx)

for every y ∈ Rr, writing y .x = η1ξ1 + . . .+ ηrξr if y = (η1, . . . , ηr) and x = (ξ1, . . . , ξr).

(b) Let X1, . . . , Xr be real-valued random variables on the same probability space. The characteristic
function ofXXX = (X1, . . . , Xr) is the characteristic function ϕXXX = ϕνXXX of their joint probability distribution
νXXX as defined in 271C.

285B Remarks (a) By one of the ordinary accidents of history, the definitions of ‘characteristic function’
and ‘Fourier transform’ have evolved independently. In 283Ba I remarked that the definition of the Fourier
transform remains unfixed, and that the formulae

∧

f(y) =
∫∞
−∞ eiyxf(x)dx,

∨

f(y) =
1

2π

∫∞
−∞ e−iyxf(x)dx

are sometimes used. On the other hand, I think that nearly all authors agree on the definition of the
characteristic function as given above. You may feel therefore that I should have followed their lead, and
chosen the definition of Fourier transform which best matches the definition of characteristic function. I did
not do so largely because I wished to emphasise the symmetry between the Fourier transform and the inverse
Fourier transform, and the correspondence between Fourier transforms and Fourier series. The principal
advantage of matching the definitions up would be to make the constants in such theorems as 283F, 285Xk

the same, and would be balanced by the need to remember different constants for
∧

f and
∨

f in such results
as 283M.

(b) A secondary reason for not trying too hard to make the formulae of this section match directly those
of §§283-284 is that the r-dimensional case is at the heart of some of the most important applications of
characteristic functions, so that it seems right to introduce it from the beginning; and consequently the
formulae of this section will necessarily have new features compared with those in the body of the work so
far.

285C Of course there is a direct way to describe the characteristic function of a family (X1, . . . , Xr) of
random variables, as follows.

Proposition Let X1, . . . , Xr be real-valued random variables on the same probability space, and νXXX their
joint distribution. Then their characteristic function ϕνXXX is given by

ϕνXXX (y) = E(eiy .XXX) = E(eiη1X1eiη2X2 . . . eiηrXr )

for every y = (η1, . . . , ηr) ∈ Rr.

proof Apply 271E to the functions h1, h2 : Rr → R defined by
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h1(x) = cos(y .x), h2(y) = sin(y .x),

to see that

ϕνXXX (y) =

∫

h1(x)νXXX(dx) + i

∫

h2(x)νXXX(dx)

= E(h1(XXX)) + iE(h2(XXX)) = E(eiy .XXX).

285D I ought to spell out the correspondence between Fourier transforms, as defined in 283A, and
characteristic functions.

Proposition Let ν be a Radon probability measure on R. Write

∧

ν(y) =
1√
2π

∫∞
−∞ e−iyxν(dx)

for every y ∈ R, and ϕν for the characteristic function of ν.

(a)
∧

ν(y) =
1√
2π
ϕν(−y) for every y ∈ R.

(b) For any Lebesgue integrable complex-valued function h defined almost everywhere in R,
∫∞
−∞

∧

ν(y)h(y)dy =
∫∞
−∞

∧

h(x)ν(dx).

(c) For any rapidly decreasing test function h on R (see §284),
∫∞
−∞ h(x)ν(dx) =

∫∞
−∞

∨

h(y)
∧

ν(y)dy.

(d) If ν is an indefinite-integral measure over Lebesgue measure, with Radon-Nikodým derivative f , then
∧

ν is the Fourier transform of f .

proof (a) This is immediate from the definitions of ϕν and
∧

ν.

(b) Because
∫∞
−∞

∫∞
−∞ |h(y)|ν(dx)dy =

∫∞
−∞ |h(y)|dy <∞,

we may change the order of integration to see that

∫ ∞

−∞

∧

ν(y)h(y)dy =
1√
2π

∫ ∞

−∞

∫ ∞

−∞
e−iyxh(y)ν(dx)dy

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
e−iyxh(y)dy ν(dx) =

∫ ∞

−∞

∧

h(x)ν(dx).

(c) This follows immediately from (b), because
∨

h is integrable and
∨

h
∧

= h (284C).

(d) The point is just that
∫

h dν =
∫

h(x)f(x)dx

for every bounded Borel measurable h : R → R (235K), and therefore for the functions x 7→ e−iyx : R → C.
Now

∧

ν(y) =
1√
2π

∫∞
−∞ e−iyxν(dx) =

1√
2π

∫∞
−∞ e−iyxf(x)dx =

∧

f(y)

for every y.

285E Lemma Let X be a normal random variable with expectation a and variance σ2, where σ > 0.
Then the characteristic function of X is given by the formula

ϕ(y) = eiyae−σ
2y2/2.

proof This is just 283N with the constants changed. We have
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ϕ(y) = E(eiyX) =
1

σ
√
2π

∫ ∞

−∞
eiyxe−(x−a)2/2σ2

dx

(taking the density function for X given in 274Ad, and applying 271Ic)

=
1√
2π

∫ ∞

−∞
eiy(σt+a)e−t

2/2dt

(substituting x = σt+ a)

= eiya
√
2π

∧

ψ1(−yσ)
(setting ψ1(x) =

1√
2π
e−x

2/2, as in 283N)

= eiyae−σ
2y2/2.

285F I now give results corresponding to parts of 283C, with an extra refinement concerning independent
random variables (285I).

Proposition Let ν be a Radon probability measure on Rr, and ϕ its characteristic function.
(a) ϕ(0) = 1.
(b) ϕ : Rr → C is uniformly continuous.

(c) ϕ(−y) = ϕ(y), |ϕ(y)| ≤ 1 for every y ∈ Rr.
(d) If r = 1 and

∫

|x|ν(dx) <∞, then ϕ′(y) exists and is equal to i
∫

xeixyν(dx) for every y ∈ R.
(e) If r = 1 and

∫

x2ν(dx) <∞, then ϕ′′(y) exists and is equal to −
∫

x2eixyν(dx) for every y ∈ R.

proof (a) ϕ(0) =
∫

χRr dν = ν(Rr) = 1.

(b) Let ǫ > 0. Let M > 0 be such that

ν{x : ‖x‖ ≥M} ≤ ǫ,

writing ‖x‖ =
√
x .x as usual. Let δ > 0 be such that |eia − 1| ≤ ǫ whenever |a| ≤ δ. Now suppose that y,

y′ ∈ Rr are such that ‖y − y′‖ ≤ δ/M . Then whenever ‖x‖ ≤M ,

|eiy .x − eiy
′
.x| = |eiy′ .x||ei(y−y′) .x − 1| = |ei(y−y′) .x − 1| ≤ ǫ

because

|(y − y′) .x| ≤ ‖y − y′‖‖x‖ ≤ δ.

Consequently, writing B for {x : ‖x‖ ≤M},

|ϕ(y)− ϕ(y′)| ≤
∫

B

|eiy .x − eiy
′
.x|ν(dx)

+

∫

Rr\B
|eiy .x|ν(dx) +

∫

Rr\B
|eiy′ .x|ν(dx)

≤ ǫ+ ǫ+ ǫ = 3ǫ.

As ǫ is arbitrary, ϕ is uniformly continuous.

(c) This is elementary;

ϕ(−y) =
∫

e−iy .xν(dx) =
∫

eiy .xν(dx) = ϕ(y),

|ϕ(y)| = |
∫

eiy .xν(dx)| ≤
∫

|eiy .x|ν(dx) = 1.

(d) The point is that | ∂∂y eiyx| = |x| for every x, y ∈ R. So by 123D (applied, strictly speaking, to the

real and imaginary parts of the function)

ϕ′(y) =
d

dy

∫

eiyxν(dx) =
∫ ∂

∂y
eiyxν(dx) =

∫

ixeiyxν(dx).

D.H.Fremlin



70 Fourier analysis 285F

(e) Since we now have | ∂∂yxeiyx| = x2 for every x, y, we can repeat the argument to get

ϕ′′(y) = i
d

dy

∫

xeiyxν(dx) = i
∫ ∂

∂y
xeiyxν(dx) = −

∫

x2eiyxν(dx).

285G Corollary (a) Let X be a real-valued random variable with finite expectation, and ϕ its charac-
teristic function. Then ϕ′(0) = iE(X).

(b) Let X be a real-valued random variable with finite variance, and ϕ its characteristic function. Then
ϕ′′(0) = −E(X2).

proof We have only to match X to its distribution ν, and say that

‘X has finite expectation’

corresponds to

‘
∫

|x|ν(dx) = E(|X|) <∞’,

so that

ϕ′(0) = i
∫

x ν(dx) = iE(X),

and that

‘X has finite variance’

corresponds to

‘
∫

x2ν(dx) = E(X2) <∞’,

so that

ϕ′′(0) = −
∫

x2 ν(dx) = −E(X2),

as in 271E.

285H Remark Observe that there is no result corresponding to 283Cg (‘lim|y|→∞
∧

f(y) = 0’). If ν is the
Dirac measure on R concentrated at 0, that is, the distribution of a random variable which is zero almost
everywhere, then ϕ(y) = 1 for every y.

285I Proposition Let X1, . . . , Xn be independent real-valued random variables, with characteristic
functions ϕ1, . . . , ϕn. Let ϕ be the characteristic function of their sum X = X1 + . . .+Xn. Then

ϕ(y) =
∏n
j=1 ϕj(y)

for every y ∈ R.

proof Let y ∈ R. By 272E, the variables

Yj = eiyXj

are independent, so by 272R

ϕ(y) = E(eiyX) = E(eiy(X1+...+Xn)) = E(
∏n
j=1 Yj) =

∏n
j=1 E(Yj) =

∏n
j=1 ϕj(y),

as required.

Remark See also 285R below.

285J There is an inversion theorem for characteristic functions, corresponding to 283F; I give it in 285Xk,
with an r-dimensional version in 285Yb. However, this does not seem to be as useful as the following group
of results.

Lemma Let ν be a Radon probability measure on Rr, and ϕ its characteristic function. Then for 1 ≤ j ≤ r
and a > 0,

ν{x : |ξj | ≥ a} ≤ 7a
∫ 1/a

0
(1−Reϕ(tej))dt,

where ej ∈ Rr is the jth unit vector.
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proof We have

7a

∫ 1/a

0

(1−Reϕ(tej))dt = 7a

∫ 1/a

0

(

1−Re

∫

Rr

eitξjν(dx)
)

dt

= 7a

∫ 1/a

0

∫

Rr

1− cos(tξj)ν(dx)dt

= 7a

∫

Rr

∫ 1/a

0

1− cos(tξj)dt ν(dx)

(because (x, t) 7→ 1− cos(tξj) is bounded and νRr · 1
a
is finite)

= 7a

∫

Rr

(1

a
− 1

ξj
sin

ξj
a

)

ν(dx)

≥ 7a

∫

|ξj |≥a

(1

a
− 1

ξj
sin

ξj
a

)

ν(dx)

(because
1

ξ
sin

ξ

a
≤ 1

a
for every ξ 6= 0)

≥ ν{x : |ξj | ≥ a},

because

sin η

η
≤ sin 1

1
≤ 6

7
if η ≥ 1,

so

a(
1

a
− 1

ξj
sin

ξj

a
) ≥ 1

7

if |ξj | ≥ a.

285K Characteristic functions and the vague topology The time has come to return to ideas
mentioned briefly in 274L. Fix r ≥ 1 and let P be the set of all Radon probability measures on Rr. For any
bounded continuous function h : Rr → R, define ρh : P × P → R by setting

ρh(ν, ν
′) = |

∫

h dν −
∫

h dν ′|
for ν, ν ′ ∈ P . Then the vague topology on P is the topology generated by the pseudometrics ρh (274Ld).

285L Theorem Let ν, 〈νn〉n∈N be Radon probability measures on Rr, with characteristic functions ϕ,
〈ϕn〉n∈N. Then the following are equiveridical:

(i) ν = limn→∞ νn for the vague topology;
(ii)

∫

h dν = limn→∞
∫

h dνn for every bounded continuous h : Rr → R;
(iii) limn→∞ ϕn(y) = ϕ(y) for every y ∈ Rr.

proof (a) The equivalence of (i) and (ii) is virtually the definition of the vague topology; we have

lim
n→∞

νn = ν for the vague topology

⇐⇒ lim
n→∞

ρh(νn, ν) = 0 for every bounded continuous h

(2A3Mc)

⇐⇒ lim
n→∞

|
∫

h dνn −
∫

h dν| = 0 for every bounded continuous h.

(b) Next, (ii) obviously implies (iii), because
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Reϕ(y) =
∫

hy dν = limn→∞ hy dνn = limn→∞ Reϕn(y),

setting hy(x) = cos(x .y) for each x, and similarly

Imϕ(y) = limn→∞ Imϕn(y)

for every y ∈ Rr.

(c) So we are left to prove that (iii)⇒(ii). I start by showing that, given ǫ > 0, there is a closed bounded
set K such that

νn(R
r \K) ≤ ǫ for every n ∈ N.

PPP We know that ϕ(0) = 1 and that ϕ is continuous at 0 (285Fb). Let a > 0 be so large that whenever j ≤ r
and |t| ≤ 1/a we have

1−Reϕ(tej) ≤ ǫ

14r
,

writing ej for the jth unit vector, as in 285J. Then

7a
∫ 1/a

0
(1−Reϕ(tej))dt ≤ ǫ

2r

for each j ≤ r. By Lebesgue’s Dominated Convergence Theorem (since of course the functions t 7→ 1 −
Reϕn(tej) are uniformly bounded on [0, 1a ]), there is an n0 ∈ N such that

7a
∫ 1/a

0
(1−Reϕn(tej))dt ≤ ǫ

r

for every j ≤ r and n ≥ n0. But 285J tells us that now

νn{x : |ξj | ≥ a} ≤ ǫ

r

for every j ≤ r, n ≥ n0. On the other hand, there is surely a b ≥ a such that

νn{x : |ξj | ≥ b} ≤ ǫ

r

for every j ≤ r, n < n0. So, setting K = {x : |ξj | ≤ b for every j ≤ r},
νn(R

r \K) ≤ ǫ

for every n ∈ N, as required. QQQ

(d) Now take any bounded continuous h : Rr → R and ǫ > 0. Set M = 1+ supx∈Rr |h(x)|, and let K be
a bounded closed set such that

νn(R
r \K) ≤ ǫ

M
for every n ∈ N, ν(Rr \K) ≤ ǫ

M
,

using (b) just above. By the Stone-Weierstrass theorem (281K) there are y0, . . . , ym ∈ Qr and c0, . . . , cm ∈ C

such that

|h(x)− g(x)| ≤ ǫ for every x ∈ K,

|g(x)| ≤M for every x ∈ Rr,

writing g(x) =
∑m
k=0 cke

iyk .x for x ∈ Rr. Now

limn→∞
∫

g dνn = limn→∞
∑m
k=0 ckϕn(yk) =

∑m
k=0 ckϕ(yk) =

∫

g dν.

On the other hand, for every n ∈ N,

|
∫

g dνn −
∫

h dνn| ≤
∫

K
|g − h|dνn + 2Mνn(R \K) ≤ 3ǫ,

and similarly |
∫

g dν −
∫

h dν| ≤ 3ǫ. Consequently

lim supn→∞ |
∫

h dνn −
∫

h dν| ≤ 6ǫ.

As ǫ is arbitrary,
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limn→∞
∫

h dνn =
∫

h dν,

and (ii) is true.

285M Corollary (a) Let ν, ν ′ be two Radon probability measures on Rr with the same characteristic
functions. Then they are equal.

(b) Let (X1, . . . , Xr) and (Y1, . . . , Yr) be two families of real-valued random variables. If

E(eiη1X1+...+iηrXr ) = E(eiη1Y1+...+iηrYr )

for all η1, . . . , ηr ∈ R, then (X1, . . . , Xr) has the same joint distribution as (Y1, . . . , Yr).

proof (a) Applying 285L with νn = ν ′ for every n, we see that
∫

h dν ′ =
∫

h dν for every bounded continuous
h : Rr → R. By 256D(iv), ν = ν ′.

(b) Apply (a) with ν, ν ′ the two joint distributions.

285N Remarks Probably the most important application of this theorem is to the standard proof of
the Central Limit Theorem. I sketch the ideas in 285Xq and 285Yl-285Yo; details may be found in most
serious probability texts; two on my shelf are Shiryayev 84, §III.4, and Feller 66, §XV.6. However, to
get the full strength of Lindeberg’s version of the Central Limit Theorem we have to work quite hard, and I
therefore propose to illustrate the method with a version of Poisson’s theorem (285Q) instead. I begin with
two lemmas which are very frequently used in results of this kind.

285O Lemma Let c0, . . . , cn, d0, . . . , dn be complex numbers of modulus at most 1. Then

|∏n
k=0 ck −

∏n
k=0 dk| ≤

∑n
k=0 |ck − dk|.

proof Induce on n. The case n = 0 is trivial. For the case n = 1 we have

|c0c1 − d0d1| = |c0(c1 − d1) + (c0 − d0)d1|
≤ |c0||c1 − d1|+ |c0 − d0||d1| ≤ |c1 − d1|+ |c0 − d0|,

which is what we need. For the inductive step to n+ 1, we have

|
n+1
∏

k=0

ck −
n+1
∏

k=0

dk| ≤ |
n
∏

k=0

ck −
n
∏

k=0

dk|+ |cn+1 − dn+1|

(by the case just done, because cn+1, dn+1,
∏n
k=0 ck and

∏n
k=0 dk all have modulus at most 1)

≤
n
∑

k=0

|ck − dk|+ |cn+1 − dn+1|

(by the inductive hypothesis)

=

n+1
∑

k=0

|ck − dk|,

so the induction continues.

285P Lemma Suppose that M ≥ 0 and ǫ > 0. Then there are η > 0 and y0, . . . , yn ∈ R such that
whenever X, Z are two real-valued random variables with E(|X|) ≤M , E(|Z|) ≤M and |ϕX(yj)−ϕZ(yj)| ≤
η for every j ≤ n, then FX(a) ≤ FZ(a + ǫ) + ǫ for every a ∈ R, where I write ϕX for the characteristic
function of X and FX for the distribution function of X.

proof The case M = 0 is trivial, as then both X and Z are zero a.e., so I will suppose henceforth that

M > 0. Set δ =
ǫ

7
> 0, b =

M

δ
.
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(a) Define h0 : R → [0, 1] by setting h0(x) = med(0, 1 − x

δ
, 1) for x ∈ R. Then h0 is continuous. Let

m = ⌊ bδ ⌋ be the integer part of bδ , and for −m ≤ k ≤ m+ 1 set hk(x) = h0(x− kδ).
By the Stone-Weierstrass theorem (281K again), there are y0, . . . , yn ∈ R and c0, . . . , cn ∈ C such that,

writing g0(x) =
∑n
j=0 cje

iyjx,

|h0(x)− g0(x)| ≤ δ for every x ∈ [−b− (m+ 1)δ, b+mδ],

|g0(x)| ≤ 1 for every x ∈ R.

For −m ≤ k ≤ m+ 1, set

gk(x) = g0(x− kδ) =
∑n
j=0 cje

−iyjkδeiyjx.

Set η = δ/(1 +
∑n
j=0 |cj |) > 0.

(b) Now suppose that X, Z are random variables such that E(|X|) ≤ M , E(|Z|) ≤ M and |ϕX(yj) −
ϕZ(yj)| ≤ η for every j ≤ n. Then for any k we have

E(gk(X)) = E(
∑n
j=0 cje

−iyjkδeiyjX) =
∑n
j=0 cje

−iyjkδϕX(yj),

and similarly

E(gk(Z)) =
∑n
j=0 cje

−iyjkδϕZ(yj),

so

|E(gk(X))− E(gk(Z))| ≤
∑n
j=0 |cj ||ϕX(yj)− ϕZ(yj)| ≤

∑n
j=0 |cj |η ≤ δ.

Next,

|hk(x)− gk(x)| ≤ δ for every x ∈ [−b− (m+ 1)δ + kδ, b+mδ + kδ] ⊇ [−b, b],

|hk(x)− gk(x)| ≤ 2 for every x,

Pr(|X| ≥ b) ≤ M

b
= δ,

so E(|hk(X)− gk(X)|) ≤ 3δ; and similarly E(|hk(Z)− gk(Z)|) ≤ 3δ. Putting these together,

|E(hk(X))− E(hk(Z))| ≤ 7δ = ǫ

whenever −m ≤ k ≤ m+ 1.

(c) Now suppose that −b ≤ a ≤ b. Then there is a k such that −m ≤ k ≤ m + 1 and a ≤ kδ ≤ a + δ.
Since

χ ]−∞, a] ≤ χ ]−∞, kδ] ≤ hk ≤ χ ]−∞, (k + 1)δ] ≤ χ ]−∞, a+ 2δ],

we must have

Pr(X ≤ a) ≤ E(hk(X)),

E(hk(Z)) ≤ Pr(Z ≤ a+ 2δ) ≤ Pr(Z ≤ a+ ǫ).

But this means that

Pr(X ≤ a) ≤ E(hk(X)) ≤ E(hk(Z)) + ǫ ≤ Pr(Z ≤ a+ ǫ) + ǫ

whenever a ∈ [−b, b].
(d) As for the cases a ≥ b, a ≤ −b, we surely have

b(1− FZ(b)) = bPr(Z > b) ≤ E(|Z|) ≤M ,

so if a ≥ b then

FX(a) ≤ 1 ≤ FZ(a) + 1− FZ(b) ≤ FZ(a) +
M

b
= FZ(a) + δ ≤ FZ(a+ ǫ) + ǫ.

Similarly,
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bFX(−b) ≤ E(|X|) ≤M ,

so

FX(a) ≤ δ ≤ FZ(a+ ǫ) + ǫ

for every a ≤ −b. This completes the proof.

285Q Law of Rare Events: Theorem For any M ≥ 0 and ǫ > 0 there is a δ > 0 such that whenever
X0, . . . , Xn are independent {0, 1}-valued random variables with Pr(Xk = 1) = pk ≤ δ for every k ≤ n and
∑n
k=0 pk = λ ≤M , and X = X0 + . . .+Xn, then

|Pr(X = m)− λm

m!
e−λ| ≤ ǫ

for every m ∈ N.

proof (a) We should begin by calculating some characteristic functions. First, the characteristic function
ϕk of Xk will be given by

ϕk(y) = (1− pk)e
iy0 + pke

iy1 = 1 + pk(e
iy − 1).

Next, if Z is a Poisson random variable with parameter λ (that is, if Pr(Z = m) = λme−λ/m! for every
m ∈ N; all you need to know at this point about the Poisson distribution is that

∑∞
m=0 λ

me−λ/m! = 1),
then its characteristic function ϕZ is given by

ϕZ(y) =
∑∞
m=0

λm

m!
e−λeiym = e−λ

∑∞
m=0

(λeiy)m

m!
= e−λeλe

iy

= eλ(e
iy−1).

(b) Before getting down to δ’s and η’s, I show how to estimate ϕX(y)− ϕZ(y). We know that

ϕX(y) =
∏n
k=0 ϕk(y)

(using 285I), while

ϕZ(y) =
∏n
k=0 e

pk(e
iy−1).

Because ϕk(y), e
pk(e

iy−1) all have modulus at most 1 (we have

|epk(eiy−1)| = e−pk(1−cos y) ≤ 1,)

285O tells us that

|ϕX(y)− ϕZ(y)| ≤
∑n
k=0 |ϕk(y)− epk(e

iy−1)| = ∑n
k=0 |epk(e

iy−1) − 1− pk(e
iy − 1)|.

(c) So we have a little bit of analysis to do. To estimate |ez−1−z| where Re z ≤ 0, consider the function

g(t) = Re(c(etz − 1− tz))

where |c| = 1. We have g(0) = g′(0) = 0 and

|g′′(t)| = |Re(c(z2etz))| ≤ |c||z2||etz| ≤ |z|2

for every t ≥ 0, so that

|g(1)| ≤ 1

2
|z|2

by the (real-valued) Taylor theorem with remainder, or otherwise. As c is arbitrary,

|ez − 1− z| ≤ 1

2
|z|2

whenever Re z ≤ 0. In particular,

|epk(eiy−1) − 1− pk(e
iy − 1)| ≤ 1

2
p2k|eiy − 1|2 ≤ 2p2k

for each k, and

|ϕX(y)− ϕZ(y)| ≤
∑n
k=0 |epk(e

iy−1) − 1− pk(e
iy − 1)| ≤ 2

∑n
k=0 p

2
k
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for each y ∈ R.

(d) Now for the detailed estimates. Given M ≥ 0 and ǫ > 0, let η > 0 and y0, . . . , yl ∈ R be such that

Pr(X ≤ a) ≤ Pr(Z ≤ a+
1

2
) +

ǫ

2

whenever X, Z are real-valued random variables, E(|X|) ≤ M , E(|Z|) ≤ M and |ϕX(yj)− ϕX(yj)| ≤ η for
every j ≤ l (285P). Take δ = η

2M+1 and suppose that X0, . . . , Xn are independent {0, 1}-valued random

variables with Pr(Xk = 1) = pk ≤ δ for every k ≤ n, where λ =
∑n
k=0 pk is less than or equal to M . Set

X = X0 + . . . + Xn and let Z be a Poisson random variable with parameter λ; then by the arguments of
(a)-(c),

|ϕX(y)− ϕZ(y)| ≤ 2
∑n
k=0 p

2
k ≤ 2δ

∑n
k=0 pk = 2δλ ≤ η

for every y ∈ R. Also

E(|X|) = E(X) =
∑n
k=0 pk = λ ≤M ,

E(|Z|) = E(Z) =
∑∞
m=0m

λm

m!
e−λ = e−λ

∑∞
m=1

λm

(m−1)!
= e−λ

∑∞
m=0

λm+1

m!
= λ ≤M .

So

Pr(X ≤ a) ≤ Pr(Z ≤ a+
1

2
) +

ǫ

2
,

Pr(Z ≤ a) ≤ Pr(X ≤ a+
1

2
) +

ǫ

2

for every a. But as both X and Z take all their values in N,

|Pr(X ≤ m)− Pr(Z ≤ m)| ≤ ǫ

2

for every m ∈ N, and

|Pr(X = m)− λm

m!
e−λ| = |Pr(X = m)− Pr(Z = m)| ≤ ǫ

for every m ∈ N, as required.

285R Convolutions Recall from 257A that if ν, ν̃ are Radon probability measures on Rr then they
have a convolution ν ∗ ν̃ defined by writing

(ν ∗ ν̃)(E) = (ν × ν̃){(x, y) : x+ y ∈ E}
for every Borel set E ⊆ Rr, which is also a Radon probability measure. We can readily compute the
characteristic function ϕν∗ν̃ from 257B: we have

ϕν∗ν̃(y) =

∫

eiy .x(ν ∗ ν̃)(dx) =
∫

eiy . (x+x
′)ν(dx)ν̃(dx′)

=

∫

eiy .xeiy .x
′

ν(dx)ν̃(dx′) =

∫

eiy .xν(dx)

∫

eiy .x
′

ν̃(dx′) = ϕν(y)ϕν̃(y)

for every y ∈ Rr. (Thus convolution of measures corresponds to pointwise multiplication of characteristic
functions, just as convolution of functions corresponds to pointwise multiplication of Fourier transforms.)
Recalling that the sum of independent random variables corresponds to convolution of their distributions
(272T), this gives another way of looking at 285I. Remember also that if ν, ν̃ have Radon-Nikodým derivatives

f , f̃ with respect to Lebesgue measure then f ∗ f̃ is a Radon-Nikodým derivative of ν ∗ ν̃ (257F).

285V Proposition Let ν be a Radon probability measure on Rr such that ν ∗ ν = ν. Then ν is the
Dirac measure δ0 concentrated at 0.

proof By 285R, ϕ2
ν = ϕν , so ϕν is {0, 1}-valued; as ϕν(0) = 1 (285Fa) and ϕν is continuous (285Fb),

ϕν(y) = 1 for every y ∈ R, that is, ϕν = ϕδ0 (285H). By 285Ma, ν = δ0.
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285S The vague topology and pointwise convergence of characteristic functions In 285L we
saw that a sequence 〈νn〉n∈N of Radon probability measures on Rr converges in the vague topology to a
Radon probability measure ν if and only if

limn→∞
∫

eiy .xνn(dx) =
∫

eiy .xν(dx)

for every y ∈ Rr; that is, iff

limn→∞ ρ′y(νn, ν) = 0 for every y ∈ Rr,

writing

ρ′y(ν, ν
′) = |

∫

eiy .xν(dx)−
∫

eiy .xν ′(dx)|
for Radon probability measures ν, ν ′ on Rr and y ∈ Rr. It is natural to ask whether the pseudometrics
ρ′y actually define the vague topology. Writing T for the vague topology and S for the topology defined by
{ρ′y : y ∈ Rr}, we surely have S ⊆ T, just because every ρ′y is one of the pseudometrics used in the definition
of T. Also we know that S and T give the same convergent sequences, and incidentally that T is metrizable
(see 285Xt). But all this does not quite amount to saying that the two topologies are the same, and indeed
they are not, as the next result shows.

285T Proposition Suppose that y0, . . . , yn ∈ R and η > 0. Then there are infinitely many m ∈ N such
that |1− eiykm| ≤ η for every k ≤ n.

proof Let η1, . . . , ηr ∈ R be such that 1 = η0, η1, . . . , ηr are linearly independent over Q and every yk/2π
is a linear combination of the ηj over Q; say yk = 2π

∑r
j=0 qkjηj where every qkj ∈ Q. Express the qkj as

pkj/p where each pkj ∈ Z and p ∈ N \ {0}. Set M = maxk≤n
∑r
j=0 |pkj |.

Take any m0 ∈ N and let δ > 0 be such that |1 − e2πix| ≤ η whenever |x| ≤ 2πMδ. By Weyl’s
Equidistribution Theorem (281N), there are infinitely many m such that <mηj> ≤ δ whenever 1 ≤ j ≤ r;
in particular, there is such an m ≥ m0. Set mj = ⌊mηj⌋, so that |mηj −mj | ≤ δ for 0 ≤ j ≤ r. Then

|mpyk − 2π
∑r
j=0 pkjmj | ≤ 2π

∑r
j=0 |pkj ||mηj −mj | ≤ 2πMδ,

so that

|1− eiykmp| = |1− exp(i(mpyk − 2π
∑r
j=0 pkjmj))| ≤ η

for every k ≤ n. As mp ≥ m0 and m0 is arbitrary, this proves the result.

285U Corollary The topologies S and T on the space of Radon probability measures on R, as described
in 285S, are different.

proof Let δx be the Dirac measure on R concentrated at x. By 285T, every member of S which contains
δ0 also contains δm for infinitely many m ∈ N. On the other hand, the set

G = {ν :
∫

e−x
2

ν(dx) >
1

2
}

is a member of T, containing δ0, which does not contain δm for any integer m 6= 0. So G ∈ T\S and T 6= S.

285X Basic exercises (a) Let ν be a Radon probability measure on Rr, where r ≥ 1, and suppose that
∫

‖x‖ν(dx) < ∞. Show that the characteristic function ϕ of ν is differentiable (in the full sense of 262Fa)

and that ∂ϕ
∂ηj

(y) = i
∫

ξje
iy .xν(dx) for every j ≤ r and y ∈ Rr, using ξj , ηj to represent the coordinates of

x and y as usual.

>>>(b) LetXXX = (X1, . . . , Xr) be a family of real-valued random variables, with characteristic function ϕXXX .
Show that the characteristic function ϕXj

of Xj is given by

ϕXj
(y) = ϕXXX(yej) for every y ∈ R,

where ej is the jth unit vector of Rr.
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>>>(c) Let X be a real-valued random variable and ϕX its characteristic function. Show that

ϕaX+b(y) = eiybϕX(ay)

for any a, b, y ∈ R.

(d) Let X be a real-valued random variable which is not essentially constant, and ϕ its characteristic
function. Show that |ϕ(y)| < 1 for all but countably many y ∈ R. (Hint : the support (256Xf) of the

distribution of X has distinct points x, x′ and if eiyx 6= eiyx
′

then |ϕ(y)| < 1.)

(e) Let X be a real-valued random variable and ϕ its characteristic function.
(i) Show that for any integrable complex-valued function h on R,

E(
∧

h(X)) =
1√
2π

∫∞
−∞ ϕ(−y)h(y)dy,

writing
∧

h for the Fourier transform of h.
(ii) Show that for any rapidly decreasing test function h,

E(h(X)) =
1√
2π

∫∞
−∞ ϕ(y)

∧

h(y)dy.

(f) Let ν be a Radon probability measure on R, and suppose that its characteristic function ϕ is square-
integrable. Show that ν is an indefinite-integral measure over Lebesgue measure and that its Radon-Nikodým
derivatives are also square-integrable. (Hint : use 284O to find a square-integrable f such that

∫

f × h =
1√
2π

∫

ϕ ×
∧

h for every rapidly decreasing test function h, and ideas from the proof of 284G to show that
∫ b

a
f = ν ]a, b[ whenever a < b in R.)

(g) Let ν be a Radon probability measure on Rr with bounded support (definition: 256Xf). Show that
its characteristic function is smooth.

(h) Let X be a normal random variable with expectation a and variance σ2. Show that E(eX) =
exp(a+ 1

2σ
2).

>>>(i) Let XXX = (X1, . . . , Xr) be a family of real-valued random variables with characteristic function ϕXXX .
Suppose that ϕXXX is expressible in the form

ϕXXX(y) =
∏r
j=1 ϕj(ηj)

for some functions ϕ1, . . . , ϕr, writing y = (η1, . . . , ηr) as usual. Show that X1, . . . , Xr are independent.
(Hint : show that the ϕj must be multiples of the characteristic functions of the Xj ; now show that the
distribution of XXX has the same characteristic function as the product of the distributions of the Xj .)

(j) Let X1, X2 be independent real-valued random variables with the same distribution, and ϕ the
characteristic function of X1 −X2. Show that ϕ(t) = ϕ(−t) ≥ 0 for every t ∈ R.

(k) Let ν be a Radon probability measure on R, with characteristic function ϕ. Show that

1

2
(ν[c, d] + ν ]c, d[) =

i

2π
lima→∞

∫ a

−a
e−idy−e−icy

y
ϕ(y)dy

whenever c < d in R. (Hint : use part (a) of the proof of 283F.)

(l) Let X be a real-valued random variable and ϕX its characteristic function. Show that

Pr(|X| ≥ a) ≤ 7a
∫ 1/a

0
(1−Re(ϕX(y))dy

for every a > 0.

(m) We say that a set Q of Radon probability measures on R is uniformly tight if for every ǫ > 0 there
is an M ≥ 0 such that ν(R \ [−M,M ]) ≤ ǫ for every ν ∈ Q. Show that if Q is any uniformly tight family of
Radon probability measures on R, and ǫ > 0, then there are η > 0 and y0, . . . , yn ∈ R such that
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ν ]−∞, a] ≤ ν ′ ]−∞, a+ ǫ] + ǫ

whenever ν, ν ′ ∈ Q and |ϕν(yj)− ϕν ′(yj)| ≤ η for every j ≤ n, writing ϕν for the characteristic function of
ν.

(n) Let 〈νn〉n∈N be a sequence of Radon probability measures on R. Show that it converges for the
vague topology to a Radon probability measure ν iff {ν} ∪ {νn : n ∈ N} is uniformly tight in the sense of
285Xm and lim supn→∞ νn ]−∞, a] ≤ lim infn→∞ νn ]−∞, b] whenever a < b in R. (Hint : Setting g(x) =
inf lim infn→∞ νn ]−∞, b] : x < b} for x ∈ R, show that the Lebesgue-Stieltjes measure ν associated with g
is a probability measure and 〈νn〉n∈N converges to ν for the vague topology.)

>>>(o) Let ν, ν ′ be two totally finite Radon measures on Rr which agree on all closed half-spaces, that is,
sets of the form {x : x .y ≥ c} where y ∈ Rr is non-zero and c ∈ R. Show that ν = ν ′. (Hint : reduce to the
case νRr = ν ′Rr = 1 and use 285M.)

>>>(p) For γ > 0, the Cauchy distribution with centre 0 and scale parameter γ is the Radon probability
measure νγ defined by the formula

νγ(E) =
γ

π

∫

E

1

γ2+t2
dt.

(i) Show that if X is a random variable with distribution νγ then Pr(X ≥ 0) = Pr(|X| ≥ γ) = 1
2 . (ii)

Show that the characteristic function of νγ is y 7→ e−γ|y|. (Hint : 283Xq.) (iii) Show that if X and Y are
independent random variables with Cauchy distributions, both centered at 0 and with scale parameters γ, δ
respectively, and α, β are not both 0, then αX +βY has a Cauchy distribution centered at 0 and with scale
parameter |α|γ + |β|δ. (iv) Show that if X and Y are independent normally distributed random variables
with expectation 0 then X/Y has a Cauchy distribution.

>>>(q) Let X1, X2, . . . be an independent identically distributed sequence of random variables, all with
zero expectation and variance 1; let ϕ be their common characteristic function. For each n ≥ 1, set
Sn = 1√

n
(X1 + . . .+Xn).

(i) Show that the characteristic function ϕn of Sn is given by the formula ϕn(y) = (ϕ(
y√
n
))n for each

n.

(ii) Show that |ϕn(y)− e−y
2/2| ≤ n|ϕ( y√

n
)− e−y

2/2n| for n ≥ 1 and y ∈ R.

(iii) Setting h(y) = ϕ(y) − e−y
2/2, show that h(0) = h′(0) = h′′(0) = 0 and therefore that

limn→∞ nh(y/
√
n) = 0, so that limn→∞ ϕn(y) = e−y

2/2 for every y ∈ R.

(iv) Show that limn→∞ Pr(Sn ≤ a) =
1√
2π

∫ a

−∞ e−x
2/2dx for every a ∈ R.

>>>(r) A random variable X has a Poisson distribution with parameter λ > 0 if Pr(X = n) = e−λλn/n!
for every n ∈ N. (i) Show that in this case E(X) = Var(X) = λ. (ii) Show that if X and Y are independent
random variables with Poisson distributions then X +Y has a Poisson distribution. (iii) Find a proof of (ii)
based on 285Q.

>>>(s) For x ∈ Rr, let δx be the Dirac measure on Rr concentrated at x. Show that δx ∗ δy = δx+y for all
x, y ∈ Rr.

(t) Let P be the set of Radon probability measures on Rr. For y ∈ Rr, set ρ′y(ν, ν
′) = |ϕν(y) − ϕν ′(y)|

for all ν, ν ′ ∈ P , writing ϕν for the characteristic function of ν. Set ψ(x) = 1
(
√
2π)r

e−x .x/2 for x ∈ Rr. Show

that the vague topology on P is defined by the family {ρψ} ∪ {ρ′y : y ∈ Qr}, defining ρψ as in 285K, and is
therefore metrizable. (Hint : 281K; cf. 285Xm.)

>>>(u) Let ϕ : Rr → C be the characteristic function of a Radon probability measure on Rr. Show that
ϕ(0) = 1 and that

∑n
j=0

∑n
k=0 cj c̄kϕ(aj−ak) ≥ 0 whenever a0, . . . , an ∈ Rr and c0, . . . , cn ∈ C. (‘Bochner’s

theorem’ states that these conditions are sufficient, as well as necessary, for ϕ to be a characteristic function;
see 445N in Volume 4.)
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(v) Let 〈νn〉n∈N be a sequence of Radon probability measures on R such that ψ(y) = limn→∞ ϕνn(y) is
defined for every y ∈ R and ψ : R → C is continuous at 0. Show that ψ is the characteristic function of a
Radon probability measure ν and that 〈νn〉n∈N converges to ν for the vague topology. (Hint : as in part (c)
of the proof of 285L, show that {νn : n ∈ N} is uniformly tight. Show that there is a subsequence 〈νnk

〉k∈N

such that f(q) = limk→∞ νnk
]−∞, q] is defined for every q ∈ Q. Use 285Xn to show that 〈νnk

〉k∈N converges
for the vague topology.)

285Y Further exercises (a) Let ν be a Radon probability measure on Rr. Write

∧

ν(y) =
1

(
√
2π)r

∫

e−iy .xν(dx)

for every y ∈ Rr.

(i) Writing ϕν for the characteristic function of ν, show that
∧

ν(y) =
1

(
√
2π)r

ϕν(−y) for every y ∈ Rr.

(ii) Show that
∫

h(y)
∧

ν(y)dy =
∫ ∧

h(x)ν(dx) for any Lebesgue integrable complex-valued function h on

Rr, defining the Fourier transform
∧

h as in 283Wa.

(iii) Show that
∫

h(x)ν(dx) =
∫ ∨

h(y)
∧

ν(y)dy for any rapidly decreasing test function h on Rr.
(iv) Show that if ν is an indefinite-integral measure over Lebesgue measure, with Radon-Nikodým

derivative f , then
∧

ν is the Fourier transform of f .

(b) Let ν be a Radon probability measure on Rr, with characteristic function ϕ. Show that whenever
c ≤ d in Rr then

( i

2π

)r
lim

α1,... ,αr→∞

∫

[−a,a]

(

r
∏

j=1

e−iδjηj−e−iγjηj

ηj

)

ϕ(y)dy

exists and lies between ν ]c, d[ and ν[c, d], writing a = (α1, . . . , αr) and ]c, d[ =
∏

j≤r ]γj , δj [ if c = (γ1, . . . , γr)

and d = (δ1, . . . , δr).

(c) Let 〈Xn〉n∈N be an independent identically distributed sequence of (not-essentially-constant) random
variables. Show that limn→∞ Pr(|∑n

k=0Xk| ≤ α) = 0 for every α ∈ R.

(d) For Radon probability measures ν, ν ′ on Rr set

ρ(ν, ν ′) = inf{ǫ : ǫ ≥ 0, ν ]−∞, a] ≤ ν ′ ]−∞, a+ ǫ1] + ǫ ≤ ν ]−∞, a+ 2ǫ1] + 2ǫ

for every a ∈ Rr},
writing ]−∞, a] = {(ξ1, . . . , ξr) : ξj ≤ αj for every j ≤ r} when a = (α1, . . . , αr), and 1 = (1, . . . , 1) ∈ Rr.
Show that ρ is a metric on the set of Radon probability measures on Rr, and that the topology it defines is
the vague topology. (Cf. 274Yc.)

(e) Let r ≥ 1 and let P be the set of Radon probability measures on Rr. For m ∈ N let ρ∗m be the
pseudometric on P defined by setting ρ∗m(ν, ν ′) = sup‖y‖≤m |ϕν(y) − ϕν ′(y)| for ν, ν ′ ∈ P , writing ϕν for

the characteristic function of ν. Show that {ρ∗m : m ∈ N} defines the vague topology on P .

(f) Let r ≥ 1. We say that a set Q of Radon probability measures on Rr is uniformly tight if for every
ǫ > 0 there is a compact setK ⊆ Rr such that ν(Rr\K) ≤ ǫ for every ν ∈ Q. Show that if Q is any uniformly
tight family of Radon probability measures on Rr, and ǫ > 0, then there are η > 0, y0, . . . , yn ∈ Rr such
that ν ]−∞, a] ≤ ν ′ ]−∞, a+ ǫ1] + ǫ whenever ν, ν ′ ∈ Q and a ∈ Rr and |ϕν(yj) − ϕν ′(yj)| ≤ η for every
j ≤ n, writing ϕν for the characteristic function of ν.

(g) Show that for any M ≥ 0 the set of Radon probability measures ν on Rr such that
∫

‖x‖ν(dx) ≤M
is uniformly tight in the sense of 285Yf.

(h) Let Cb(R
r) be the Banach space of bounded continuous real-valued functions on Rr.
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(i) Show that any Radon probability measure ν on Rr corresponds to a continuous linear functional
hν : Cb(R

r) → R, writing hν(f) =
∫

fdν for f ∈ Cb(R
r).

(ii) Show that if hν = hν ′ then ν = ν ′.
(iii) Show that the vague topology on the set of Radon probability measures corresponds to the weak*

topology on the dual (Cb(R
r))∗ of Cb(R

r).

(i) Let r ≥ 1 and let P be the set of Radon probability measures on Rr. For m ∈ N let ρ̃∗m be the
pseudometric on P defined by setting

ρ̃∗m(ν, ν ′) =
∫

{y:‖y‖≤m} |ϕν(y)− ϕν ′(y)|dy

for ν, ν ′ ∈ P , writing ϕν for the characteristic function of ν. Show that {ρ̃∗m : m ∈ N} defines the vague
topology on P .

(j) Let (Ω,Σ, µ) be a probability space. Suppose that 〈Xn〉n∈N is a sequence of real-valued random
variables on Ω, and X another real-valued random variable on Ω; let ϕXn

, ϕX be the corresponding char-
acteristic functions. Show that the following are equiveridical: (i) limn→∞ E(h(Xn)) = E(h(X)) for every
bounded continuous function h : R → R; (ii) limn→∞ ϕXn

(y) = ϕX(y) for every y ∈ R.

(k) Let (Ω,Σ, µ) be a probability space, and P the set of Radon probability measures on R. (i) Show
that we have a function ψ : L0(µ) → P defined by saying that ψ(X•) is the distribution of X whenever X
is a real-valued random variable on Ω. (ii) Show that ψ is continuous for the topology of convergence in
measure on L0(µ) and the vague topology on P . (Compare 271Yd.)

(l) Let X be a real-valued random variable with finite variance. Show that for any η ≥ 0,

|ϕ(y)− 1− iyE(X) +
1

2
y2E(X2)| ≤ 1

6
η|y|3E(X2) + y2E(ψη(X)),

writing ϕ for the characteristic function of X and ψη(x) = 0 for |x| ≤ η, x2 for |x| > η.

(m) Suppose that ǫ ≥ δ > 0 and that X0, . . . , Xn are independent real-valued random variables such
that

E(Xk) = 0 for every k ≤ n,
∑n
k=0 Var(Xk) = 1,

∑n
k=0 E(ψδ(Xk)) ≤ δ

(writing ψδ(x) = 0 if |x| ≤ δ, x2 if |x| > δ). Set γ = ǫ/
√
δ2 + δ, and let Z be a standard normal random

variable. Show that

|ϕ(y)− e−y
2/2| ≤ 1

3
ǫ|y|3 + y2(δ + E(ψγ(Z)))

for every y ∈ R, writing ϕ for the characteristic function of X =
∑n
k=0Xk.

(n) Show that for every ǫ > 0 there is a δ > 0 such that whenever X0, . . . , Xn are independent real-valued
random variables such that

E(Xk) = 0 for every k ≤ n,
∑n
k=0 Var(Xk) = 1,

∑n
k=0 E(ψδ(Xk)) ≤ δ

(writing ψδ(x) = 0 if |x| ≤ δ, x2 if |x| > δ), then |ϕ(y)− e−y
2/2| ≤ ǫ(y2 + |y3|) for every y ∈ R, writing ϕ for

the characteristic function of X = X0 + . . .+Xn.

(o) Use 285Yn to prove Lindeberg’s theorem (274F).

(p) Let r ≥ 1 and let P be the set of Radon probability measures on Rr. Show that convolution, regarded
as a map from P × P to P , is continuous when P is given the vague topology.

(q) Let S be the topology on R defined by {ρ′y : y ∈ R}, where ρ′y(x, x′) = |eiyx − eiyx
′ | (compare 285S).

Show that addition and subtraction are continuous for S in the sense of 2A5A.

(r) Let ν be a probability measure on R. Show that |ϕν(y)− ϕν(y
′)|2 ≤ 2(1−Reϕν(y − y′)) for any y,

y′ ∈ R.
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(s) Let 〈νn〉n∈N be a sequence of probability measures on R. Set E = {y : y ∈ R, limn→∞ ϕνn(y) = 1}.
(i) Show that E − E and E + E are included in E. (ii) Show that if E is not Lebesgue negligible it is the
whole of R.

(t) Let 〈Xn〉n∈N be an independent sequence of real-valued random variables and set Sn =
∑n
j=0Xj for

each n ∈ N. Suppose that the sequence 〈νSn
〉n∈N of distributions is convergent for the vague topology to a

distribution. Show that 〈Sn〉n∈N converges in measure, therefore a.e.

285 Notes and comments Just as with Fourier transforms, the power of methods which use the charac-
teristic functions of distributions is based on three points: (i) the characteristic function of a distribution
determines the distribution (285M); (ii) the properties of interest in a distribution are reflected in accessible
properties of its characteristic function (285G, 285I, 285J) (iii) these properties of the characteristic function
are actually different from the corresponding properties of the distribution, and are amenable to different
kinds of investigation. Above all, the fact that (for sequences!) convergence in the vague topology of dis-
tributions corresponds to pointwise convergence for characteristic functions (285L) provides us with a path
to the classic limit theorems, as in 285Q and 285Xq. In 285S-285U I show that this result for sequences
does not correspond immediately to any alternative characterization of the vague topology, though it can
be adapted in more than one way to give such a characterization (see 285Ye-285Yi).

Concerning the Central Limit Theorem there is one conspicuous difference between the method suggested
here and that of §274. The previous approach offered at least a theoretical possibility of giving an explicit
formula for δ in 274F as a function of ǫ, and hence an estimate of the rate of convergence to be expected
in the Central Limit Theorem. The arguments in the present chapter, involving as they do an entirely
non-constructive compactness argument in 281A, leave us with no way of achieving such an estimate. But
in fact the method of characteristic functions, suitably refined, is the basis of the best estimates known, such
as the Berry-Esséen theorem (274Hc).

In 285D I try to show how the characteristic function ϕν of a Radon probability measure can be related
to a ‘Fourier transform’

∧

ν of ν which corresponds directly to the Fourier transforms of functions discussed
in §§283-284. If f is a non-negative Lebesgue integrable function and we take ν to be the corresponding

indefinite-integral measure, then
∧

ν =
∧

f . Thus the concept of ‘Fourier transform of a measure’ is a natural
extension of the Fourier transform of an integrable function. Looking at it from the other side, the formula
of 285Dc shows that ν can be thought of as representing the inverse Fourier transform of

∧

ν in the sense
of 284H-284I. Taking ν to be the measure which assigns a mass 1 to the point 0, we get the Dirac delta
function, with Fourier transform the constant function χR. These ideas can be extended without difficulty
to handle convolutions of measures (285R).

It is a striking fact that while there is no satisfactory characterization of the functions which are Fourier
transforms of integrable functions, there is a characterization of the characteristic functions of probability
distributions. This is ‘Bochner’s theorem’. I give the condition in 285Xu, asking you to prove its necessity
as an exercise; we already have three-quarters of the machinery to prove its sufficiency, but the last step will
have to wait for Volume 4.

Version of 30.3.16

286 Carleson’s theorem

Carleson’s theorem (Carleson 66) was the (unexpected) solution to a long-standing problem. Remark-
ably, it can be proved by ‘elementary’ methods. The hardest part of the work below, in 286J-286L, demands
only the laborious verification of inequalities. How the inequalities were chosen is a different matter; for
once, some of the ideas of the proof are embodied in the statements of the lemmas. The argument here is a
greatly expanded version of Lacey & Thiele 00.

The Hardy-Littlewood Maximal Theorem (286A) is important, and worth learning even if you leave the
rest of the section as an unexamined monument. I bring 286B-286D forward to the beginning of the section,
even though they are little more than worked exercises, because they also have potential uses in other
contexts.

c© 2000 D. H. Fremlin
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The complexity of the argument is such that it is useful to introduce a substantial number of special
notations. Rather than include these in the general index, I give a list in 286W. Among them are ten
constants C1, . . . , C10. The values of these numbers are of no significance. The method of proof here is quite
inappropriate if we want to estimate rates of convergence. I give recipes for the calculation of the Cn only
for the sake of the linear logic in which this treatise is written, and because they occasionally offer clues
concerning the tactics being used.

In this section all integrals are with respect to Lebesgue measure µ on R unless otherwise stated.

286A The Maximal Theorem Suppose that 1 < p <∞ and that f ∈ L
p
C
(µ) (definition: 244P). Set

f∗(x) = sup{ 1

b−a

∫ b

a
|f | : a ≤ x ≤ b, a < b}

for x ∈ R. Then ‖f∗‖p ≤ 21/pp

p−1
‖f‖p.

proof (a) It is enough to consider the case f = |f |. Note that if E ⊆ R has finite measure, then
∫

E
f =

∫

(f × χE)× χE ≤ ‖f × χE‖p(µE)1/q ≤ ‖f‖p(µE)1/q

is finite, where q =
p

p−1
, by Hölder’s inequality (244Eb). Consequently, if t > 0 and

∫

E
f ≥ tµE, we must

have tµE ≤ ‖f × χE‖p(µE)1/q, t(µE)1/p ≤ ‖f × χE‖p and

µE ≤ 1

tp
‖f × χE‖pp =

1

tp

∫

E
fp.

(b) For t > 0, set

Gt = {x : t(y − x) <
∫ y

x
f for some y > x}.

(i) Gt is an open set. PPP For any y ∈ R,

Gty = {x : x < y, t(y − x) <
∫ y

x
f}

is open, because x 7→ t(y − x) and x 7→
∫ y

x
f are continuous (225A); so Gt =

⋃

y∈R
Gty is open. QQQ

(ii) By 2A2I, there is a partition C of Gt into open intervals. Now C is bounded and tµC ≤
∫

C
f for

every C ∈ C.

PPP(ααα) For x ∈ C, consider Fx = {y : y ≥ x, t(y − x) ≤
∫ y

x
f}. x ∈ Fx and y − x ≤ 1

tp

∫∞
−∞ fp for

every y ∈ Fx, by (a), so Fx is bounded above. Set zx = supFx. Because y 7→ t(y − x)−
∫ y

x
f is continuous,

zx ∈ Fx. ??? If zx ∈ Gt, there is a y > zx such that t(y − zx) <
∫ y

zx
f ; but now

t(y − x) ≤
∫ zx

x
f +

∫ y

zx
f =

∫ y

x
f

and y ∈ Fx, which is impossible. XXX Thus zx /∈ Gt and zx /∈ C, so that zx is an upper bound of C.

(βββ) This shows that

supC ≤ zx ≤ x+
1

tp

∫∞
−∞ fp

for every x ∈ C. So in fact C is bounded and is of the form ]a, b[ where a < b in R. ??? If t(b−a) >
∫ b

a
f , there

is an x ∈ ]a, b[ such that t(b−x) >
∫ b

x
f . Now we know that b ≤ zx and b /∈ Gt, so we have t(zx− b) ≥

∫ zx
b
f .

Adding, t(zx − x) >
∫ zx
x
f and zx /∈ Fx. XXX

(γγγ) Thus tµC ≤
∫

C
f , as claimed. QQQ

(iii) Accordingly, because C is countable and f is non-negative, we can apply (a) in its full strength to
see that

µGt =
∑

C∈C µC ≤ ∑

C∈C
1

tp

∫

C
fp ≤ 1

tp

∫∞
−∞ fp
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is finite, and
∫

Gt
f =

∑

C∈C
∫

C
f ≥ ∑

C∈C tµC = tµGt.

(c) All this is true for every t > 0. Now if we set

f∗1 (x) = supb>x
1

b−x

∫ a

b
f

for x ∈ R, we have {x : f∗1 (x) > t} = Gt for every t > 0.
For any t > 0,

1

p
tµGt = (1− 1

q
)tµGt ≤

∫

Gt
f − 1

q
tχR ≤

∫∞
−∞(f − 1

q
tχR)+.

So

∫ ∞

−∞
(f∗1 )

p =

∫ ∞

0

µ{x : f∗1 (x)
p > t}dt

(see 252O)

= p

∫ ∞

0

up−1µ{x : f∗1 (x) > u}du

(substituting t = up)

= p

∫ ∞

0

up−1µGudu ≤ p2
∫ ∞

0

up−2
(

∫ ∞

−∞
(f − 1

q
uχR)+

)

du

= p2
∫ ∞

−∞

∫ ∞

0

max(0, f(x)− 1

q
u)up−2dudx

(by Fubini’s theorem, 252B, because (x, u) 7→ up−2 max(0, f(x)− 1
qu) is measurable and non-negative)

= p2
∫ ∞

−∞

∫ qf(x)

0

up−2(f(x)− 1

q
u)dudx

=
p2qp−1

p(p−1)

∫ ∞

−∞
fp = (

p

p−1
)p‖f‖pp.

(d) Similarly, setting f∗2 (x) = supa<x
1

x−a

∫ x

a
f for x ∈ R,

∫∞
−∞(f∗2 )

p ≤ (
p

p−1
)p‖f‖pp. But f∗ = max(f∗1 , f

∗
2 ).

PPP Of course f∗1 ≤ f∗ and f∗2 ≤ f∗. But also, if f∗(x) > t, there must be a non-trivial interval I containing x

such that
∫

I
f > tµI; if a = inf I and b = sup I, then either

∫ x

a
f > (x−a)t and f∗2 (x) > t, or

∫ b

x
f > (b−x)t

and f∗1 (x) > t. As x and t are arbitrary, f∗ = max(f∗1 , f
∗
2 ). QQQ

Accordingly

‖f∗‖pp =
∫ ∞

−∞
(f∗)p =

∫ ∞

−∞
max((f∗1 )

p, (f∗2 )
p)

≤
∫ ∞

−∞
(f∗1 )

p + (f∗2 )
p ≤ 2(

p

p−1
)p‖f‖pp.

Taking pth roots, we have the inequality we seek.

286B Lemma Let g : R → [0,∞[ be a function which is non-decreasing on ]−∞, α], non-increasing on
[β,∞[ and constant on [α, β], where α ≤ β. Then for any measurable function f : R → [0,∞],

∫∞
−∞ f × g ≤

∫∞
−∞ g · supa≤α,b≥β,a<b

1

b−a

∫ b

a
f .

proof Set γ = supa≤α,b≥β,a<b
1

b−a

∫ b

a
f . For n, k ∈ N set Enk = {x : α−2n ≤ x ≤ β+2n, g(x) ≥ 2−n(k+1)},

so that Enk is either empty or a bounded interval including [α, β], and
∫

Enk
f ≤ γµEnk. For n ∈ N, set

gn = 2−n
∑4n−1
k=0 χEnk; then 〈gn〉n∈N is a non-decreasing sequence of functions with supremum g, and
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∫ ∞

−∞
f × g = sup

n∈N

∫ ∞

−∞
f × gn = sup

n∈N

2−n
4n−1
∑

k=0

∫

Enk

f

≤ sup
n∈N

2−n
4n−1
∑

k=0

γµEnk = sup
n∈N

γ

∫ ∞

−∞
gn = γ

∫ ∞

−∞
g,

as claimed.

Remark Compare 224J.

286C Shift, modulation and dilation Some of the calculations below will be easier if we use the
following formalism. For any function f with domain included in R, and α ∈ R, we can define

(Sαf)(x) = f(x+ α), (Mαf)(x) = eiαxf(x), (Dαf)(x) = f(αx)

whenever the right-hand sides are defined. In the case of Sαf and Dαf it is sometimes convenient to allow
±∞ as a value of the function. We have the following elementary facts.

(a) S−αSαf = f , D1/αDαf = f if α 6= 0.

(b) Sα(f × g) = Sαf × Sαg, Dα(f × g) = Dαf ×Dαg.

(c) Dα|f | = |Dαf |.

(d) If f is integrable, then

(Mαf)
∧ = S−α

∧

f , (Sαf)
∧ =Mα

∧

f , (Sαf)
∨ =M−α

∨

f ;

if moreover α > 0, then

α(Dαf)
∧ = D1/α

∧

f , α(Dαf)
∨ = D1/α

∨

f

(283Cc-283Ce).

(e) If f belongs to L
1
C
= L

1
C
(µ), so do Sαf , Mαf and (if α 6= 0) Dαf , and in this case

‖Sαf‖1 = ‖Mαf‖1 = ‖f‖1, ‖Dαf‖1 =
1

|α|‖f‖1.

(f) If f belongs to L
2
C
so do Sαf , Mαf and (if α 6= 0) Dαf , and in this case

‖Sαf‖2 = ‖Mαf‖2 = ‖f‖2, ‖Dαf‖2 =
1√
|α|‖f‖2.

(g) If h is a rapidly decreasing test function (284A), so are Mαh and Sαh and (if α 6= 0) Dαh.

286D Lemma Suppose that g : R → [0,∞] is a measurable function such that, for some constant C ≥ 0,
∫

E
g ≤ C

√
µE whenever µE <∞. Then g is finite almost everywhere and

∫∞
−∞

1

1+|x|g(x)dx is finite.

proof For any n ≥ 1, set En = {x : |x| ≤ n, g(x) ≥ n}; then
nµEn ≤

∫

En
g ≤ C

√
µEn,

so µEn ≤ C2

n2
and

{x : g(x) = ∞} =
⋂

n≥1

⋃

m≥nEm

has measure at most infn≥1

∑∞
m=n µEm = 0.

As for the integral, set G(x) =
∫ x

0
g for x ≥ 0. Then, for any a ≥ 0,
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∫ a

0

g(x)

1+x
dx =

G(a)

1+a
+

∫ a

0

G(x)

(1+x)2
dx

(225F)

≤ C
(

√
a

1+a
+

∫ a

0

√
x

(1+x)2
dx

)

≤ C
(

1 +

∫ ∞

0

√
x

(1+x)2
dx

)

,

so
∫∞
0

g(x)

1+x
dx ≤ C

(

1 +
∫∞
0

√
x

(1+x)2
dx
)

is finite. Similarly,
∫ 0

−∞
g(x)

1−x
dx is finite, so we have the result.

286E The Lacey-Thiele construction (a) Let I be the family of all dyadic intervals of the form
[

2kn, 2k(n+ 1)
[

where k, n ∈ Z. The essential geometric property of I is that if I, J ∈ I then either I ⊆ J

or J ⊆ I or I ∩ J = ∅. Let Q be the set of all pairs σ = (Iσ, Jσ) ∈ I2 such that µIσ · µJσ = 1. For σ ∈ Q,
let kσ ∈ Z be such that µJσ = 2kσ and µIσ = 2−kσ ; let xσ be the midpoint of Iσ, yσ the midpoint of Jσ,
J lσ ∈ I the left-hand half-interval of Jσ, J

r
σ ∈ I the right-hand half-interval of Jσ, and y

l
σ the lower quartile

of Jσ, that is, the midpoint of J lσ.

(b) There is a rapidly decreasing test function φ such that
∧

φ is real-valued and χ[− 1
6 ,

1
6 ] ≤

∧

φ ≤ χ[− 1
5 ,

1
5 ].

PPP Look at parts (b)-(d) of the proof of 284G. The process there can be used to provide us with a smooth
function ψ1 which is zero outside the interval [ 16 ,

1
5 ] and strictly positive on

]

1
6 ,

1
5

[

; multiplying by a suitable

factor, we can arrange that
∫∞
−∞ ψ1 = 1. So if we set ψ2(x) = 1−

∫ x

−∞ ψ1 for x ∈ R, ψ2 will be smooth, and

χ
]

−∞, 16
]

≤ ψ2 ≤ χ
]

−∞, 15
]

. Now set ψ0(x) = ψ2(x)ψ2(−x) for x ∈ R, and φ =
∨

ψ0;
∧

φ = ψ0 (284C) will
have the required property. QQQ

For σ ∈ Q, set φσ = 2kσ/2Mylσ
S−xσ

D2kσφ, so that

φσ(x) =
√
µJσe

iylσxφ((x− xσ)µJσ).

Observe that φσ is a rapidly decreasing test function. Now
∧

φσ = 2−kσ/2S−ylσM−xσ
D2−kσ

∧

φ, that is,

∧

φσ(y) =
√
µIσe

−ixσ(y−ylσ)
∧

φ((y − ylσ)µIσ),

which is zero unless |y − ylσ| ≤ 1
5µJσ; since the length of J lσ is 1

2µJσ, this can be so only when y ∈ J lσ. We
have the following simple facts.

(i) ‖φσ‖2 =
√
µJσ · √µIσ‖φ‖2 =‖φ‖2 for every σ ∈ Q.

(ii) ‖
∧

φσ‖1 =
√
µIσ · µJσ‖

∧

φ‖1 =
√
µJσ‖

∧

φ‖1 for every σ ∈ Q.
(iii) If σ, τ ∈ Q and J lσ ∩ J lτ = ∅ then

(φσ|φτ ) = (
∧

φσ|
∧

φτ ) = 0,

by 284Ob. (For f , g ∈ L
2
C
, I write (f |g) for

∫∞
−∞ f × ḡ.)

(iv) If σ, τ ∈ Q and Jσ 6= Jτ and Jrσ ∩ Jrτ is non-empty, then J lσ ∩ J lτ = ∅ so (φσ|φτ ) = 0.

(c) Set w(x) =
1

(1+|x|)3 for x ∈ R. For σ ∈ Q, set wσ = 2kσS−xσ
D2kσw, so that

wσ(x) = w((x− xσ)µJσ)µJσ ≤ µJσ = 2kσ

for every x. Note that wσ = wτ whenever Iσ = Iτ .

286F A partial order (a) For σ, τ ∈ Q say that τ ≤ σ if Jτ ⊆ Jσ and Iσ ⊆ Iτ . Then ≤ is a partial
order on Q. We have the following elementary facts.

(i) If τ ≤ σ, then kτ ≤ kσ.
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(ii) If σ and τ are incomparable (that is, σ 6≤ τ and τ 6≤ σ), then (Iσ × Jσ)∩ (Iτ × Jτ ) is empty. PPP We
may suppose that kσ ≤ kτ . If Jσ ∩ Jτ 6= ∅, then Jσ ⊆ Jτ , because both are dyadic intervals, and Jσ is the
shorter; but as σ 6≤ τ , this means that Iτ 6⊆ Iσ and Iσ ∩ Iτ = ∅. QQQ

(iii) If σ, σ′ are incomparable and both greater than or equal to τ , then Iσ ∩ Iσ′ = ∅, because Jτ ⊆
Jσ ∩ Jσ′ .

(iv) If τ ≤ σ and kτ ≤ k ≤ kσ, then there is a (unique) υ such that τ ≤ υ ≤ σ and kυ = k. (The
point is that there is a unique I ∈ I such that Iσ ⊆ I ⊆ Iτ and µI = 2−k; and similarly there is just one
candidate for Jυ.)

(b) It will be convenient to have a shorthand for the following: if R ⊆ Q, say that

R+ =
⋃

τ∈R{σ : τ ≤ σ ∈ Q}.

(c) For τ ∈ Q set

Tτ = {σ : σ ∈ Q, τ ≤ σ, Jrτ ⊆ Jrσ}.
Note that if σ, σ′ ∈ Tτ and kσ 6= kσ′ then Jσ 6= Jσ′ and Jrσ ∩ Jrσ′ 6= ∅, so (φσ|φσ′) = 0 (286E(b-iv)).

286G We shall need the results of some elementary calculations. The first four are nearly trivial.

Lemma (a)
∫∞
−∞ wσ =

∫∞
−∞ w = 1 for every σ ∈ Q.

(b) For any m ∈ N,
∑∞
n=m w(n+ 1

2 ) ≤
1

2(1+m)2
.

(c) Suppose that σ ∈ Q and that I is an interval not containing xσ in its interior. Then
∫

I
wσ ≥ wσ(x)µI,

where x is the midpoint of I.

(d) For any x ∈ R,
∑∞
n=−∞ w(x− n) ≤ 2.

(e) There is a constant C1 ≥ 0 such that |φ(x)| ≤ C1 min(w(3), w(x)2) for every x ∈ R and

|φσ(x)| ≤ C1

√
µIσwσ(x)min(1, wσ(x)µIσ)

for every x ∈ R and σ ∈ Q.

(f) There is a constant C2 ≥ 0 such that
∫∞
−∞ w(x)w(αx + β)dx ≤ C2w(β) whenever 0 ≤ α ≤ 1 and

β ∈ R.

(g) There is a constant C3 ≥ 0 such that |(φσ|φτ )| ≤ C3

√
µIσ

√
µJτ

∫

Iτ
wσ whenever σ, τ ∈ Q and

kσ ≤ kτ .

(h) There is a constant C4 ≥ 0 such that
∑

σ∈Q,σ≥τ,kσ=k
∫

R\Iτ
wσ ≤ C4

whenever τ ∈ Q and k ∈ Z.

proof (a) Immediate from the definition in 286Ec, the formulae in 286Ce and the fact that
∫∞
0

1

(1+x)3
dx =

1

2
.

(b) The point is just that w is convex on ]−∞, 0] and [0,∞[. So we can apply 233Ib with f(x) = x,
or argue directly from the fact that w(n + 1

2 ) ≤ 1
2 (w(n + 1

2 + x) + w(n + 1
2 − x)) for |x| ≤ 1

2 , to see that

w(n+ 1
2 ) ≤

∫ n+1

n
w for every n ≥ 0. Accordingly

∑∞
n=m w(n+ 1

2 ) ≤
∫∞
m
w =

1

2(1+m)2
.

(c) Similarly, because I lies all on the same side of xσ, wσ is convex on I, so the same inequality yields
wσ(x)µI ≤

∫

I
wσ.

(d) Let m be such that |x −m| ≤ 1
2 . Then, using the same inequalities as before to estimate w(x − n)

for n 6= m, we have
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∞
∑

n=−∞
w(x− n) ≤ w(x−m) +

∫ x−m− 1
2

−∞
w +

∫ ∞

x−m+ 1
2

w

≤ 1 +

∫ ∞

−∞
w = 2.

(e) Because limx→∞ x6φ(x) = limx→−∞ x6φ(x) = 0, there is a C1 > 0 such that |φ(x)| ≤ C1 min(w(3), w(x)2)
for every x ∈ R. Now |φ(x)| ≤ C1w(x)

2 = C1w(x)min(1, w(x)) for every x, so

|φσ(x)| =
√

µJσ|φ((x− xσ)µJσ| ≤ C1

√

µJσw((x− xσ)µJσ)min(1, w((x− xσ)µJσ))

= C1

√

µJσwσ(x)µIσmin(1, wσ(x)µIσ) = C1

√

µIσwσ(x)min(1, wσ(x)µIσ)

whenever σ ∈ Q and x ∈ R.

(f)(i) The first step is to note that

w( 12 (1 + β))

w(β)
=

8(1 + β)3

(3 + β)3
≤ 8

for every β ≥ 0. Now αw(α+ αβ) ≤ 4w(β) whenever β ≥ 0 and α ≥ 1
2 . PPP For t ≥ 1

2 ,

d

dt
tw(t+ tβ) =

1−2t(1+β)

(1+t+tβ)4
≤ 0,

so

αw(α+ αβ) ≤ 1
2w(

1
2 + 1

2β) ≤ 4w(β). QQQ

Of course this means that

1

α
w(

1+β

2α
) ≤ 8w(β)

whenever β ≥ 0 and 0 < α ≤ 1.

(ii) Try C2 = 16. If 0 < α ≤ 1 and β ≥ 0, set γ =
1+β

2α
. Then, for any x ≥ −γ,

1 + αx+ β = (1 + β)(1 +
αx

1+β
) ≥ 1

2
(1 + β),

so w(αx+ β) ≤ 8w(β) and
∫∞
−γ w(x)w(αx+ β)dx ≤ 8w(β)

∫∞
−γ w ≤ 8w(β).

On the other hand,

∫ −γ

−∞
w(x)w(αx+ β)dx ≤ w(γ)

∫ ∞

−∞
w(αx+ β)dx

=
1

α
w(

1+β

2α
)

∫ ∞

−∞
w ≤ 8w(β).

Putting these together,
∫∞
−∞ w(x)w(αx+ β)dx ≤ 16w(β); and this is true whenever 0 < α ≤ 1 and β ≥ 0.

(iii) If α = 0, then
∫∞
−∞ w(x)w(αx+ β)dx = w(β)

∫∞
−∞ w = w(β) ≤ C2w(β)

for any β. If 0 < α ≤ 1 and β < 0, then

∫ ∞

−∞
w(x)w(αx+ β)dx =

∫ ∞

−∞
w(−x)w(−αx− β)dx

(because w is an even function)
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=

∫ ∞

−∞
w(x)w(αx− β)dx ≤ C2w(−β)

(by (ii) above)

= C2w(β).

So we have the required inequality in all cases.

(g) Set C3 = max(C2
1C2, ‖φ‖22/

∫ 1/2

−1/2
w).

(i) It is worth disposing immediately of the case σ = τ . In this case,

|(φσ|φτ )| = ‖φσ‖22 = ‖φ‖22,
while

∫

Iτ

wσ = µJσ

∫ xσ+
1
2µIσ

xσ− 1
2µIσ

w((x− xσ)µJσ)dx =

∫ 1/2

−1/2

w,

so certainly |(φσ|φτ )| ≤ C3

∫

Iτ
wσ.

(ii) If σ 6= τ and Iσ = Iτ then Jσ ∩ Jτ = ∅ so (φσ|φτ ) = 0, by 286E(b-iii).

(iii) Now suppose that Iσ 6= Iτ . In this case, because µIτ ≤ µIσ, Iτ must lie all on the same side of
xσ, so

∫

Iτ
wσ ≥ wσ(xτ )µIτ , by (c). Accordingly

|(φσ|φτ )| ≤
∫ ∞

−∞
|φσ| × |φτ | ≤ C2

1

√

µIσ
√

µIτ

∫ ∞

−∞
wσ × wτ

(using (e) twice)

= C2
1

√

µJσ
√

µJτ

∫ ∞

−∞
w((x− xσ)µJσ)w((x− xτ )µJτ )dx

= C2
1

√

µJσ
√

µIτ

∫ ∞

−∞
w(xµJσµIτ + (xτ − xσ)µJσ)w(x)dx

≤ C2
1C2

√

µJσ
√

µIτw((xτ − xσ)µJσ)

(by (f), since µJσµIτ ≤ 1)

≤ C3

√

µIσ
√

µIτwσ(xτ ) ≤ C3

√

µIσ
√

µJτ

∫

Iτ

wσ,

as required.

(h) Set C4 = 2
∑∞
j=0

∫∞
j+ 1

2
w; this is finite because

∫∞
α
w =

1

2(1+α)2
for every α ≥ 0.

If k < kτ then kσ 6= k for any σ ≥ τ , so the result is trivial. If k ≥ kτ , then for each dyadic subinterval
I of Iτ of length 2−k there is exactly one σ ≥ τ such that Iσ = I, since Jσ must be the unique dyadic
interval of length 2k including Jτ . List these as σ0, . . . in ascending order of the centres xσj

, so that if

Iτ = [mµIτ , (m+ 1)µIτ [ then xσj
= mµIτ + 2−k(j + 1

2 ), for j < 2k−kτ . Now

2k−kτ −1
∑

j=0

∫ mµIτ

−∞
wσj

= 2k
2k−kτ −1
∑

j=0

∫ mµIτ

−∞
w(2k(x−mµIτ )− j − 1

2
)dx

=

2k−kτ −1
∑

j=0

∫ 0

−∞
w(x− j − 1

2
)dx

≤
∞
∑

j=0

∫ ∞

j+ 1
2

w =
1

2
C4.
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Similarly (since w is an even function, so the whole picture is symmetric about xτ )

∑2k−kτ −1
j=0

∫∞
(m+1)µIτ

wσj
≤ 1

2
C4,

and
∑

σ≥τ,kσ=k
∫

R\Iτ
wσ ≤ C4,

as required.

286H ‘Mass’ and ‘energy’ (Lacey & Thiele 00) If P is a subset of Q, E ⊆ R is measurable, g : R → R

is measurable, and f ∈ L
2
C
, set

massEg(P ) = supσ∈P,τ∈Q,τ≤σ
∫

E∩g−1[Jτ ]
wτ ≤ supτ∈Q

∫∞
−∞ wτ = 1,

∆f (P ) =
∑

σ∈P |(f |φσ)|2,

energyf (P ) = supτ∈Q
√
µJτ

√

∆f (P ∩ Tτ ).
If P ′ ⊆ P then massEg(P

′) ≤ massEg(P ) and energyf (P
′) ≤ energyf (P ). Note that energyf ({σ}) =√

µJσ|(f |φσ)| for any σ ∈ Q, since if σ ∈ Tτ then µJτ ≤ µJσ.

286I Lemma If P ⊆ Q is finite and f ∈ L
2
C
, then

(a) ∆f (P ) ≤ ‖∑σ∈P (f |φσ)φσ‖2‖f‖2,
(b)

∑

σ,τ∈P,Jσ=Jτ
∣

∣(f |φσ)(φσ|φτ )(φτ |f)
∣

∣ ≤ C3∆f (P ).

proof (a)

∆f (P ) =
∑

σ∈P (f |φσ)(φσ|f) =
(
∑

σ∈P (f |φσ)φσ
∣

∣f
)

≤ ‖∑σ∈P (f |φσ)φσ‖2‖f‖2
by Cauchy’s inequality (244Eb).

(b)

∑

σ,τ∈P
Jσ=Jτ

∣

∣(f |φσ)(φσ|φτ )(φτ |f)
∣

∣ ≤
∑

σ,τ∈P
Jσ=Jτ

1

2

(

|(f |φσ)|2 + |(f |φτ )|2
)

|(φσ|φτ )|

(because |ξζ| ≤ 1
2 (|ξ|2 + |ζ|2) for all complex numbers ξ, ζ)

=
∑

σ∈P

∑

τ∈P
Jσ=Jτ

|(f |φσ)|2|(φσ|φτ )|

≤
∑

σ∈P
|(f |φσ)|2

∑

τ∈P
Jσ=Jτ

C3

∫

Iτ

wσ

(by 286Gg, since kσ = kτ if Jσ = Jτ )

≤
∑

σ∈P
|(f |φσ)|2C3

∫ ∞

−∞
wσ

(because if τ , τ ′ are distinct members of P and Jτ = Jτ ′ , then Iτ and Iτ ′ are disjoint)

= C3

∑

σ∈P
|(f |φσ)|2 = C3∆f (P ).

286J Lemma Set C5 = 212. If P ⊆ Q is finite, E ⊆ R is measurable, g : R → R is measurable, and
γ ≥ massEg(P ), then we can find R ⊆ Q such that γ

∑

τ∈R µIτ ≤ C5µE and (in the notation of 286Fb)

massEg(P \R+) ≤ 1
4γ.
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proof (a) If γ = 0 we can take R = ∅. Otherwise, set P1 = {σ : σ ∈ P , massEg({σ}) > 1
4γ}. For each

σ ∈ P1 let σ
′ ∈ Q be such that σ′ ≤ σ and

∫

E∩g−1[Jσ′ ]
wσ′ > 1

4γ. Let R be the set of elements of {σ′ : σ ∈ P1}
which are minimal for ≤. Then P \R+ ⊆ {σ : massEg({σ}) ≤ 1

4γ} so massEg(P \R+) ≤ 1
4γ.

(b) For k ∈ N set

Rk = {τ : τ ∈ R, µJτ · µ(E ∩ g−1[Jτ ] ∩ I(k)τ ) ≥ 22k−9γ},
where I

(k)
τ is the half-open interval with the same centre as Iτ and 2k times its length. Now R =

⋃

k∈N
Rk.

PPP Take τ ∈ R. If k ∈ N and x ∈ R \ I(k)τ , then |x− xτ | ≥ 1
2µI

(k)
τ = 2k−1µIτ , so

wτ (x) = w((x− xτ )µJτ )µJτ ≤ w(2k−1)µJτ = (1 + 2k−1)−3µJτ .

Accordingly

1

4
γ <

∫

E∩g−1[Jτ ]

wτ =

∫

E∩g−1[Jτ ]∩Iτ
wτ +

∞
∑

k=0

∫

E∩g−1[Jτ ]∩I(k+1)
τ \I(k)

τ

wτ

≤ µJτ · µ(E ∩ g−1[Jτ ] ∩ Iτ ) +
∞
∑

k=0

(1 + 2k−1)−3µJτ · µ(E ∩ g−1[Jτ ] ∩ I(k+1)
τ ).

It follows that either

µJτ · µ(E ∩ g−1[Jτ ] ∩ Iτ ) ≥ 1

8
γ

and τ ∈ R0, or there is some k ∈ N such that

(1 + 2k−1)−3µJτ · µ(E ∩ g−1[Jτ ] ∩ I(k+1)
τ ) ≥ 2−k−4γ

and

µJτ · µ(E ∩ g−1[Jτ ] ∩ I(k+1)
τ ) ≥ (1 + 2k−1)32−k−4γ ≥ 22k−7γ,

so that τ ∈ Rk+1. QQQ

(c) For every k ∈ N, γ
∑

τ∈Rk
µIτ ≤ 211−kµE. PPP If Rk = ∅, this is trivial. Otherwise, enumerate Rk as

〈τj〉j≤n in such a way that kτj ≤ kτl if j ≤ l ≤ n. Define q : {0, . . . , n} → {0, . . . , n} inductively by the rule

q(l) = min({l} ∪ {j : j < l, q(j) = j, (I
(k)
τj × Jτj ) ∩ (I

(k)
τl × Jτl) 6= ∅})

for each l ≤ n. Note that, for l ≤ n, q(q(l)) = q(l) ≤ l and I
(k)
τq(l) ∩ I(k)τl 6= ∅, so that

Iτl ⊆ I
(k)
τl ⊆ I

(k+2)
τq(l) ,

because µI
(k)
τl ≤ µI

(k)
τq(l) . Moreover, if j < l ≤ n and q(j) = q(l), then both Jτj and Jτl meet Jτq(j) , therefore

include it, and Jτj ⊆ Jτl . But as τj and τl are distinct members of R, τj 6≤ τl and Iτj ∩ Iτl must be empty.
Set M = {q(j) : j ≤ n}. We have

γ
∑

τ∈Rk

µIτ = γ
∑

m∈M

∑

j≤n
q(j)=m

µIτj ≤ γ
∑

m∈M
µI(k+2)
τm = 2k+2γ

∑

m∈M
µIτm

≤ 2k+2
∑

m∈M
29−2kµ(E ∩ g−1[Jτm ] ∩ I(k)τm )

≤ 2k+2 · 29−2kµE = 211−kµE

because if l, m ∈ M and l < m then I
(k)
τl × Jτl and I

(k)
τm × Jτm are disjoint (since q(m) = m)), so that

g−1[Jτl ] ∩ I
(k)
τl and g−1[Jτm ] ∩ I(k)τm are disjoint. QQQ

(d) Accordingly

γ
∑

τ∈R µIτ ≤ γ
∑∞
k=0

∑

τ∈Rk
µIτ ≤ 212µE,

as required.
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286K Lemma Set C6 = 4(C3 + 4C3

√
2C4). Suppose that P ⊆ Q is a finite set, f ∈ L

2
C
, ‖f‖2 = 1 and

γ ≥ energyf (P ). Then we can find R ⊆ Q such that γ2
∑

τ∈R µIτ ≤ C6 and energyf (P \R+) ≤ 1
2γ.

proof (a) We may suppose that γ > 0 and that P 6= ∅, since otherwise we can take R = ∅.

(i) There are only finitely many sets of the form P ∩ Tτ for τ ∈ Q; let R̃ ⊆ Q be a non-empty finite

set such that whenever τ ∈ Q and P ∩ Tτ is not empty, there is a τ ′ ∈ R̃ such that P ∩ Tτ = P ∩ Tτ ′ and
kτ ′ ≥ kτ ; this is possible because if A ⊆ P is not empty then kτ ≤ minσ∈A kσ whenever Tτ ⊇ A.

(ii) Choose τ0, τ1, . . . , P0, P1, . . . inductively, as follows. P0 = P . Given that Pj ⊆ P is not empty,
consider

Rj = {τ : τ ∈ R̃, ∆f (Pj ∩ Tτ ) ≥ 1

4
γ2µIτ}.

If Rj = ∅, stop the induction and set n = j and R = {τl : l < j}. Otherwise, among the members of Rj
take one with yτ as far to the left as possible, and call it τj ; set Pj+1 = Pj \ {τj}+, and continue. Note that
as Rj+1 ⊆ Rj for every j, yτj+1

≥ yτj for every j.

The induction must stop at a finite stage because if it does not stop with n = j then ∆f (Pj ∩ Tτj ) > 0,
so Pj ∩ Tτj is not empty and Pj+1 ⊆ Pj \ Tτj is a proper subset of Pj , while P0 = P is finite. Since Rn = ∅,

energyf (P \R+) = energyf (Pn) = sup
τ∈Q

√

µJτ

√

∆f (Pn ∩ Tτ )

= max
τ∈R̃

√

µJτ

√

∆f (Pn ∩ Tτ ) ≤ 1

2
γ.

(iii) Set P ′
j = Pj ∩Tτj ⊆ Pj \Pj+1 for j < n, so that 〈P ′

j〉j<n is disjoint, and P ′ =
⋃

j<n P
′
j ⊆ P . Then

if σ ∈ P ′, j < n and Jτj ⊆ J lσ, Iσ ∩ Iτj = ∅. PPP Let l < n be such that σ ∈ P ′
l . Then yτj ∈ Jτj ⊆ J lσ and

yτl ∈ Jrτl ⊆ Jrσ, so yτj < yτl and j < l. Accordingly Pj+1 ⊇ Pl contains σ, so σ 6≥ τj ; as Jτj ⊆ Jσ, Iσ 6⊆ Iτj ,
while µIσ ≤ µIτj , so Iσ is disjoint from Iτj . QQQ

It follows that if σ, τ ∈ P ′ are distinct and J lσ ∩ J lτ is not empty, then Iσ ∩ Iτ = ∅. PPP If Jσ = Jτ this
is true just because σ 6= τ . Otherwise, since Jσ and Jτ intersect, one is included in the other; suppose that
Jσ ⊂ Jτ . Since Jσ meets J lτ , Jσ ⊆ J lτ . Now let j < n be such that σ ∈ P ′

j ; then σ ≥ τj , so Jτj ⊆ Jσ ⊆ J lτ ,
and Iσ ∩ Iτ ⊆ Iτj ∩ Iτ = ∅ by the last remark. QQQ

(b) Now let us estimate

γ2
∑

j<n µIτj ≤ 4
∑

j<n∆f (P
′
j) = 4∆f (P

′) = 4α

say. Because ‖f‖2 = 1, we have α ≤ ‖∑σ∈P ′(f |φσ)φσ‖2 (286Ia). So

α2 ≤ ‖
∑

σ∈P ′

(f |φσ)φσ‖22 =
∑

σ,τ∈P ′

(f |φσ)(φσ|φτ )(φτ |f)

=
∑

σ,τ∈P ′

Jσ=Jτ

(f |φσ)(φσ|φτ )(φτ |f)

+
∑

σ,τ∈P ′

Jσ⊆Jl
τ

(f |φσ)(φσ|φτ )(φτ |f) +
∑

σ,τ∈P ′

Jτ⊆Jl
σ

(f |φσ)(φσ|φτ )(φτ |f)

because (φσ|φτ ) = 0 unless J lσ ∩ J lτ 6= ∅, as noted in 286E(b-iii).

Take these three terms separately. For the first, we have
∑

σ,τ∈P ′,Jσ=Jτ

∣

∣(f |φσ)(φσ|φτ )(φτ |f)
∣

∣ ≤ C3α

by 286Ib. For the second term, we have
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∑

σ,τ∈P ′

Jσ⊆Jl
τ

∣

∣(f |φσ)(φσ|φτ )(φτ |f)
∣

∣ ≤
∑

σ∈P ′

|(f |φσ)|
∑

τ∈P ′

Jσ⊆Jl
τ

|(φσ|φτ )(φτ |f)|

≤
√

∑

σ∈P ′

|(f |φσ)|2
√

√

√

√

√

∑

σ∈P ′

(

∑

τ∈P ′

Jσ⊆Jl
τ

|(φσ|φτ )(φτ |f)|
)2

=
√
α

√

∑

j<n

Hj ,

where for j < n I set

Hj =
∑

σ∈P ′

j

(

∑

τ∈P ′

Jσ⊆Jl
τ

|(φσ|φτ )(φτ |f)|
)2
.

Now we can estimate Hj by observing that, for any τ ∈ P ′,

|(φτ |f)| =
√
µIτ energyf ({τ}) ≤ γ

√
µIτ ,

while if σ, τ ∈ P ′ and J lτ ⊇ Jσ then

|(φσ|φτ )| ≤ C3

√
µIσ

√
µJτ

∫

Iτ
wσ

by 286Gg. We also need to know that if σ ∈ P ′
j and τ , τ

′ are distinct elements of P ′ such that Jσ ⊆ J lτ ∩J lτ ′ ,
then Iτ , Iτ ′ and Iτj are all disjoint, by (a-iii) above, because Jτj ⊆ Jσ. So we have

Hj ≤
∑

σ∈P ′

j

(

∑

τ∈P ′

Jσ⊆Jl
τ

γ
√

µIτ · C3

√

µIσ
√

µJτ

∫

Iτ

wσ
)2

= C2
3γ

2
∑

σ∈P ′

j

µIσ
(

∑

τ∈P ′

Jσ⊆Jl
τ

∫

Iτ

wσ
)2 ≤ C2

3γ
2
∑

σ∈P ′

j

µIσ(

∫

R\Iτj
wσ)

2

≤ C2
3γ

2
∞
∑

k=kτj

2−k
∑

σ∈P ′

j

kσ=k

∫

R\Iτj
wσ ·

∫ ∞

−∞
wσ ≤ C2

3γ
2

∞
∑

k=kτj

2−kC4

(by 286Ga and 286Gh, since σ ≥ τj for every σ ∈ P ′
j)

= C2
3γ

22−kτj+1C4 = 2C2
3C4γ

2µIτj .

Accordingly
∑

j<nHj ≤ 2C2
3γ

2C4

∑

j<n µIτj ≤ 2C2
3C4 · 4α,

and
∑

σ,τ∈P ′,Jσ⊆Jl
τ
|(f |φσ)(φσ|φτ )(φτ |f)| ≤

√

α
∑

j<nHj ≤ 2C3α
√
2C4.

Similarly,
∑

σ,τ∈P ′,Jτ⊆Jl
σ
|(f |φσ)(φσ|φτ )(φτ |f)| ≤ 2C3α

√
2C4;

putting these together,

α2 ≤ α(C3 + 4C3

√
2C4) =

1

4
αC6

and α ≤ 1
4C6. But this means that
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γ2
∑

j<n µIτj ≤ 4α ≤ C6,

and R = {τj : j < n} has both the properties required.

286L Lemma Set

C7 = C1

(7

2
+

8

7
+

28

w(3/2)
+

4
√
14C3

w(3/2)

)

.

Suppose that P is a finite subset of Q with a lower bound τ in Q for the ordering ≤, E ⊆ R is measurable,
g : R → R is measurable and f ∈ L

2
C
. Then

∑

σ∈P |(f |φσ)
∫

E∩g−1[Jr
σ]
φσ| ≤ C7 energyf (P )massEg(P )µIτ .

proof Set γ = energyf (P ), γ
′ = massEg(P ). If P = ∅ the result is trivial, so suppose that P 6= ∅.

(a)(i) Note that
⋃

σ∈P Iσ ⊆ Iτ , Jτ ⊆ ⋂

σ∈P Jσ and kτ ≤ minσ∈P kσ. So if σ, σ′ ∈ P are distinct and
µIσ = µIσ′ , then Jσ = Jσ′ and Iσ ∩ Iσ′ = ∅.

(ii) For a dyadic interval I let I∗ be the half-open interval with the same centre as I and three times
its length. Let J be the family of those I ∈ I such that Iσ 6⊆ I∗ for any σ ∈ P such that µIσ ≤ µI. Because
P is finite, all sufficiently small intervals belong to J , and

⋃J = R; let K be the set of maximal members
of J , so that K is disjoint. Then

⋃K = R. PPP The point is that P 6= ∅; fix σ ∈ P for the moment. If I ∈ J ,

consider for each n ∈ N the interval Ĩ(n) ∈ I including I with length 2nµI. Then there is some n ∈ N such
that µĨ(n) ≥ µIσ and Iσ ⊆ (Ĩ(n))∗, so that Ĩ(k) /∈ J for any k ≥ n, and there must be some k < n such that

Ĩ(k) ∈ K. Thus I ⊆ Ĩ(k) ⊆ ⋃K; as I is arbitrary,
⋃K =

⋃J = R. QQQ

(iii) For K ∈ K, let lK ∈ Z be such that µK = 2−lK . If lK ≥ kτ , that is, µK ≤ µIτ , then K must lie

within the half-open interval Î with centre xτ and length 7µIτ , since otherwise we should have Iτ ∩ K̃∗ = ∅,
where K̃ is the dyadic interval of length 2µK including K, and K̃ would belong to J . But this means that

∑

K∈K,µK≤µIτ µK ≤ µÎ = 7µIτ ,

because K is disjoint.

(iv) For any l < kτ , there are just three members K of K such that lK = l. PPP If I ∈ I and µI > µIτ ,
then either Iτ ⊆ I∗ or Iτ ∩ I∗ = ∅, and I ∈ J iff Iτ ∩ I∗ is empty. This means that if K ∈ I and µK = 2−l,
K ∈ K iff Iτ ∩K∗ is empty and Iτ ⊆ K̃∗. So if Iτ ⊆

[

2−ln, 2−l(n+ 1)
[

and K =
[

2−lm, 2−l(m+ 1)
[

, we
shall have K ∈ K iff

either m = n− 2 or m = n+ 2 or m = n− 3 is even or m = n+ 3 is odd;

which for any given n happens for just three values of m. QQQ

(b) For σ ∈ P , let ζσ be a complex number of modulus 1 such that ζσ(f |φσ)
∫

E∩g−1[Jr
σ]
φσ is real and

non-negaive. Set W = P ×K. For (σ,K) ∈W , set

ασK = (f |φσ)
∫

E∩g−1[Jr
σ]∩K

φσ.

The aim of the proof is to estimate
∑

σ∈P
∣

∣(f |φσ)
∫

E∩g−1[Jr
σ]
φσ
∣

∣ =
∑

(σ,K)∈W ζσασK .

It will be helpful to note straight away that
∑

(σ,K)∈W |ασK | ≤ ∑

σ∈P |(f |φσ)|
∫∞
−∞ |φσ|

is finite.
Set

W0 = {(σ,K) : σ ∈ P , K ∈ K, µIσ ≤ µK ≤ µIτ},

W1 = {(σ,K) : σ ∈ P , K ∈ K, µIτ < µK},

W2 = {(σ,K) : σ ∈ P \ Tτ , K ∈ K, µK < µIσ},
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W3 = {(σ,K) : σ ∈ P ∩ Tτ , K ∈ K, µK < µIσ}.
Because µIσ ≤ µIτ for every σ ∈ P , W =W0 ∪W1 ∪W2 ∪W3. I will give estimates for

αj =
∑

(σ,K)∈Wj
ζσασK

for each j; the four components in the expression for C7 given above are bounds for |α0|, |α1|, |α2| and |α3|
respectively.

(c)(i) If K ∈ K and lK = l, then for any k ≥ l
∑

σ∈P,kσ=k |ασK | ≤ 2−kC1γγ
′(1 + 2k−l)−2 ≤ 2−k−2C1γγ

′.

PPP For any σ ∈ P ,

|(f |φσ)| =
√
µIσ energyf ({σ}) ≤ γ

√
µIσ

as noted in 286H, and

∫

E∩g−1[Jr
σ]∩K

|φσ| ≤ C1µIσ
√

µIσ

∫

E∩g−1[Jr
σ]∩K

w2
σ

(286Ge)

≤ C1µIσ
√

µIσ

∫

E∩g−1[Jσ]

wσ · sup
x∈K

wσ(x)

≤ C1µIσ
√

µIσγ
′ sup
x∈K

wσ(x) = C1

√

µIσγ
′w(µJσρ(xσ,K)),

where I write ρ(xσ,K) for infx∈K |x− xσ|. So, for k ≥ l,

∑

σ∈P
kσ=k

|ασK | ≤
∑

σ∈P
kσ=k

C1γγ
′µIσw(µJσρ(xσ,K))

= 2−kC1γγ
′ ∑

σ∈P
kσ=k

w(2kρ(xσ,K)) ≤ 2−kC1γγ
′ · 2

∞
∑

n=2k−l

w(n+ 1
2 )

because the xσ, for σ ∈ P and kσ = k, are all distinct (see (a-i) above) and all a distance at least µK =
2k−l2−k from K (because Iσ 6⊆ K∗); so there are at most two such σ with ρ(xσ,K) = 2−k(n+ 1

2 ) for each

n ≥ 2k−l. So we have
∑

σ∈P,kσ=k |ασK | ≤ 2−kC1γγ
′(1 + 2k−l)−2 ≤ 2−k−2C1γγ

′

by 286Gb. QQQ

(ii) Now

|α0| ≤
∑

(σ,K)∈W0

|ασK | =
∑

K∈K
µK≤µIτ

∑

σ∈P
µIσ≤µK

|ασK |

=
∑

K∈K
µK≤µIτ

∞
∑

k=lK

∑

σ∈P
kσ=k

|ασK | ≤
∑

K∈K
µK≤µIτ

∞
∑

k=lK

2−k−2C1γγ
′

= C1γγ
′ ∑

K∈K
µK≤µIτ

2−lK−1 =
1

2
C1γγ

′ ∑

K∈K
µK≤µIτ

µK ≤ 7

2
C1γγ

′µIτ

by the formula in (a-iii). This deals with α0.

(d) Next consider W1. We have
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|α1| ≤
∑

(σ,K)∈W1

|ασK | =
kτ−1
∑

l=−∞

∞
∑

k=kτ

∑

K∈K
lK=l

∑

σ∈P
kσ=k

|ασK |

≤
kτ−1
∑

l=−∞

∞
∑

k=kτ

∑

K∈K
lK=l

2−kC1γγ
′(1 + 2k−l)−2

(by (c-i) above)

= 3C1γγ
′
kτ−1
∑

l=−∞

∞
∑

k=kτ

2−k(1 + 2k−l)−2

(by (a-iv))

≤ 3C1γγ
′
kτ−1
∑

l=−∞

∞
∑

k=kτ

2−3k22l = 3C1γγ
′22(kτ−1)2−3kτ

∞
∑

l=0

2−2l
∞
∑

k=0

2−3k

=
3

4
C1γγ

′2−kτ · 4
3
· 8
7
=

8

7
C1γγ

′µIτ .

This deals with α1.

(e) For K ∈ K, set GK = K ∩ E ∩⋃

σ∈P,µIσ>µK g
−1[Jσ]. Then µGK ≤ 2γ′µK/w( 32 ). PPP If µIτ ≤ µK,

then GK = ∅, so we may suppose that µK < µIτ . Let K̃ ∈ I be the dyadic interval containing K and with
twice the length. Then K̃ /∈ J , so there is a σ ∈ P such that K̃∗ ⊇ Iσ and

µIσ ≤ µK̃ = 2µK ≤ µIτ .

Let υ ∈ Q be such that τ ≤ υ ≤ σ and µIυ = 2µK (286F(a-iv)). Then Iυ meets K̃∗, so K̃ is either equal to

Iυ or adjacent to it, and |x− xυ| ≤ 3
2 · µIυ for every x ∈ K̃, therefore for every x ∈ K. Accordingly

wυ(x) ≥ w( 32 )µJυ = w( 32 )/2µK

for every x ∈ K. On the other hand, because σ ∈ P and υ ≤ σ,
∫

E∩g−1[Jυ ]
wυ ≤ γ′. So

µ(E ∩ g−1[Jυ] ∩K) ≤ 2γ′µK/w( 32 ).

Now suppose that σ′ ∈ P and µIσ′ > µK. Then kσ′ ≤ kυ and Jσ′ is the dyadic interval of length 2kσ′

including Jτ . But Jυ is the dyadic interval of length 2kυ including Jτ , so includes Jσ′ , and g−1[Jσ′ ] ⊆ g−1[Jυ].
As σ′ is arbitrary, GK ⊆ E ∩ g−1[Jυ] ∩K and µGK ≤ 2γ′µK/w( 32 ), as claimed. QQQ

(f)(i) If σ, υ ∈ P \ Tτ and kσ 6= kυ, then J
r
σ ∩ Jrυ = ∅. PPP It is enough to consider the case µJσ < µJυ,

so that µJσ ≤ µJrυ . As Jσ includes Jτ , but J
r
υ does not, Jσ is disjoint from Jrυ and we have the result. QQQ

(ii) For x ∈ R, set

v2(x) =
∣

∣

∑

(σ,K)∈W2
ζσ(f |φσ)φσ(x)χ(E ∩ g−1[Jrσ] ∩K)(x)

∣

∣.

(The sum is finite because there is at most one K ∈ K containing x.) Then for any x ∈ R there is a k ≥ kτ
such that

v2(x) =
∣

∣

∑

σ∈P,kσ=k ζσ(f |φσ)φσ(x)
∣

∣.

PPP If v2(x) = 0, any sufficiently large k will serve. Otherwise, x ∈ E and we have a pair (υ, L) ∈ W2 such
that x ∈ g−1[Jrυ ] ∩ L. Try k = kυ. L is the only member of K containing x, so

v2(x) =
∣

∣

∑

σ∈Px
(f |φσ)φσ(x)

∣

∣,

where Px = {σ : σ ∈ P \ Tτ , µIσ > µL, g(x) ∈ Jrσ}. Now if σ ∈ P and kσ = k, then µIσ = µIυ > µL,
Jσ = Jυ and Jrσ = Jrυ does not include Jrτ , so that σ ∈ P \ Tτ , g(x) ∈ Jrσ and σ ∈ Px. On the other hand,
(i) above tells us that kσ = k whenever σ ∈ P \ Tτ and g(x) ∈ Jrσ. So Px = {σ : σ ∈ P , kσ = k} and

v2(x) =
∣

∣

∑

σ∈P,kσ=k ζσ(f |φσ)φσ(x)
∣

∣. QQQ
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(iii) It follows that v2(x) ≤ 2C1γ for every x ∈ R. PPP If v2(x) = 0 this is trivial. Otherwise, take k
from (ii). Then

v2(x) ≤
∑

σ∈P
kσ=k

|(f |φσ)φσ(x)| ≤
∑

σ∈P
kσ=k

√

µIσγ ·
√

µIσC1wσ(x)

(by 286H and 286Ge)

= C1γ
∑

σ∈P
kσ=k

w(2k(x− xσ)) ≤ C1γ
∞
∑

n=−∞
w(2kx− n− 1

2 )

(because the xσ, for σ ∈ P and kσ = k, are all distinct and of the form 2−k(n+ 1
2 ))

≤ 2C1γ

by 286Gd. QQQ

(iv) Note also that, if v2(x) > 0, there is a pair (σ,K) ∈ W2 such that x ∈ g−1[Jσ] ∩ K, so that
µK < µIσ ≤ µIτ and x ∈ GK . But now we have

|α2| =
∣

∣

∑

(σ,K)∈W2

ζσ(f |φσ)
∫ ∞

−∞
φσ × χ(E ∩ g−1[Jrσ] ∩K)

∣

∣

≤
∫ ∞

−∞
v2 ≤

∑

K∈K
µK<µIτ

∫

GK

v2 ≤
∑

K∈K
µK<µIτ

4C1γγ
′µK

w( 32 )

(putting the estimates in (e) and (iii) just above together)

≤ 28 · C1γγ
′µIτ

w( 32 )

by (a-iii). This deals with α2.

(g) Set P ′ = P ∩ Tτ and f̃ =
∑

σ∈P ′ ζσ(f |φσ)φσ. Then
‖f̃‖22 ≤ C3γ

2µIτ .

PPP If σ, σ′ ∈ P ′ and kσ 6= kσ′ , then (φσ|φσ′) = 0 (286Fc). While if kσ = kσ′ , then Jσ = Jσ′ , by (a-i). So

‖f̃‖22 =
∑

σ,σ′∈P ′

ζσ(f |φσ)(φσ|φσ′)(φσ′ |f)ζ̄σ′

≤
∑

σ,σ′∈P ′

Jσ=Jσ′

∣

∣(f |φσ)(φσ|φσ′)(φσ′ |f)
∣

∣ ≤ C3∆f (P
′)

(286Ib)

≤ C3γ
2µIτ

by the definition of ‘energy’, because P ′ ⊆ Tτ . QQQ

(h) For m ∈ N, set

f̃m =
∑

σ∈P ′,kσ≤m ζσ(f |φσ)φσ.

Then whenever x, x′ ∈ R and |x− x′| ≤ 2−m, |f̃m(x)| ≤ 1
2C1f̃

∗(x′), where

f̃∗(x′) = supa≤x′≤b,a<b
1

b−a

∫ b

a
|f̃ |
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as in 286A. PPP (i) Since kσ ≥ kτ for every σ ∈ P ′, we may take it that m ≥ kτ . Let Ĵ be the dyadic interval

of length 2m including Jτ , and ŷ its midpoint. Set ψ = S−ŷD2−m/3

∧

φ, that is, ψ(y) =
∧

φ( 132
−m(y − ŷ)) for

y ∈ R.

(ii) If σ ∈ P ′ and kσ ≤ m and
∧

φσ(y) 6= 0, then y ∈ J lσ. But Jσ ∩ Ĵ ⊇ Jτ is not empty, so Jσ ⊆ Ĵ ,
|y − ŷ| ≤ 1

22
m, | 132−m(y − ŷ)| ≤ 1

6 and ψ(y) = 1.

(iii) If σ ∈ P ′ and kσ > m and
∧

φσ(y) 6= 0, then Jrσ ∩ Ĵ ⊇ Jrτ is non-empty, so Ĵ ⊆ Jrσ and y ≤ yσ ≤ ŷ;
now

ŷ − y = (ŷ − yσ) + (yσ − y) ≥ 1

2
· 2m +

1

20
µJσ ≥ 3

5
· 2m, |1

3
· 2−m(y − ŷ)| ≥ 1

5

and ψ(y) = 0.

(iv) What this means is that if σ ∈ P ′ then

∧

φσ × ψ =
∧

φσ if kσ ≤ m,

= 0 if kσ > m,

so that
∧

f̃m = ψ ×
∧

f̃ .

(v) By 283M, f̃m =
1√
2π
f̃ ∗

∨

ψ, where f̃ ∗
∨

ψ is the convolution of f̃ and the inverse Fourier transform
∨

ψ

of ψ. (Strictly speaking, 283M, with the help of 284C, tells us that f̃m and
1√
2π
f̃ ∗

∨

ψ have the same Fourier

transforms. By 283G, they are equal almost everywhere; by 255K, the convolution is defined everywhere
and is continuous; so in fact they are the same function.) Now

∨

ψ = 3 · 2mMŷD3·2m
∧

φ
∨

= 3 · 2mMŷD3·2mφ,

that is,
∨

ψ(x) = 3 · 2meixŷφ(3 · 2mx)
for x ∈ R.

(vi) Set w1(x) = min(w(3), w(x)) for x ∈ R, so that w1 is non-decreasing on ]−∞,−3], non-increasing
on [3,∞[, and constant on [−3, 3], and |φ(x)| ≤ C1w1(x) for every x, by the choice of C1 (286Ge). Take x,
x′ ∈ R such that |x− x′| ≤ 2−m. Then

|f̃m(x)| ≤ 1√
2π

∫ ∞

−∞
|f̃(x− t)||

∨

ψ(t)|dt = 3·2m

√
2π

∫ ∞

−∞
|f̃(x− t)||φ(3 · 2mt)|dt

≤ 3·2m

√
2π
C1

∫ ∞

−∞
|f̃(x− t)|w1(3 · 2mt)dt = 3·2m

√
2π
C1

∫ ∞

−∞
|f̃(x+ t)|w1(3 · 2mt)dt

(because w1 is an even function)

≤ 3·2m

√
2π
C1

∫ ∞

−∞
w1(3 · 2mt)dt · sup

a≤−2−m

b≥2−m

1

b−a

∫ b

a

|f̃(x+ t)|dt

(by 286B, because t 7→ w1(3 · 2mt) is non-decreasing on ]−∞,−2−m], non-increasing on [2−m,∞[ and

constant on [−2−m, 2−m])

=
1√
2π
C1

∫ ∞

−∞
w1 · sup

a≤x−2−m

b≥x+2−m

1

b−a

∫ b

a

|f̃ | ≤ 1

2
C1

∫ ∞

−∞
w · f̃∗(x′)

(because if a ≤ x− 2−m and b ≥ x+ 2−m then a ≤ x′ ≤ b)

=
1

2
C1f̃

∗(x′)
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(286Ga), as required. QQQ

(i) For x ∈ R, set

v3(x) =
∣

∣

∑

(σ,K)∈W3
ζσ(f |φσ)φσ(x)χ(E ∩ g−1[Jrσ] ∩K)(x)

∣

∣.

Then whenever L ∈ K and x, x′ ∈ L, |v3(x)| ≤ C1f̃
∗(x′). PPP We may suppose that v3(x) 6= 0, so that, in

particular, x ∈ E. The only pairs (σ,K) contributing to the sum forming v3(x) are those in which x ∈ K,
so that K = L, and g(x) ∈ Jrσ. Moreover, since we are looking only at σ ∈ Tτ , so that Jrτ ⊆ Jrσ, J

r
σ will

always be the dyadic interval of length 2kσ−1 including Jrτ . So these intervals are nested, and there will be
some m such that (for σ ∈ Tτ ) g(x) ∈ Jrσ iff kσ ≥ m. Accordingly

v3(x) =
∣

∣

∑

σ∈P ′,m≤kσ<lL ζσ(f |φσ)φσ(x)
∣

∣ = |f̃lL−1(x)− f̃m−1(x)|

(we must have m < lL because v3(x) 6= 0). Now |x− x′| ≤ 2−lL ≤ 2−m, so (h) tells us that both |f̃lL−1(x)|
and |f̃m−1(x)| are at most 1

2C1f̃
∗(x′), and v3(x) ≤ C1f̃

∗(x′), as claimed. QQQ

It follows that v3(x) ≤ C1

µL

∫

L
f̃∗ for every x ∈ L.

(j) Now we are in a position to estimate

|α3| = |
∑

(σ,K)∈W3

ζσασK | ≤
∫ ∞

−∞
v3 ≤

∑

K∈K
µK<µIτ

∫

GK

v3

(because if v3(x) 6= 0 there are (σ,K) ∈W3 such that x ∈ K, and in this case x ∈ GK and µK < µIσ ≤ µIτ )

≤
∑

K∈K
µK<µIτ

µGK · C1

µK

∫

K

f̃∗

(by (i) above, because GK ⊆ K)

≤ C1

∑

K∈K
µK<µIτ

2γ′

w( 32 )

∫

K

f̃∗

(by (e))

≤ 2C1γ
′

w( 32 )

∫

Î

f̃∗

(because if µK < µIτ then K ⊆ Î, as noted in (a-iii))

≤ 2C1γ
′

w( 32 )

√

µÎ · ‖f̃∗‖2

(by Cauchy’s inequality)

≤ 2C1γ
′

w( 32 )

√

7µIτ ·
√
8‖f̃‖2

(by the Maximal Theorem, 286A)

≤ 4C1γ
′√14

w( 32 )

√

µIτ · γ
√

C3µIτ

(by (g))

=
4C1

√
14C3

w( 32 )
γγ′µIτ .

(k) Assembling these,
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∑

σ∈P

∣

∣(f |φσ)
∫

E∩g−1[Jr
σ]

φσ
∣

∣ =
∑

σ∈P
K∈K

ζσασK =

3
∑

j=0

∑

(σ,K)∈Wj

ζσασK ≤
3

∑

j=0

|αj |

≤ 7

2
· C1γγ

′µIτ +
8

7
· C1γγ

′µIτ + 28 · C1γγ
′µIτ/w(

3
2 )

+ 4
√

14C3 · C1γγ
′µIτ/w(

3
2 )

= C7γγ
′µIτ ,

as claimed.

286M The Lacey-Thiele lemma Set C8 = 3C7(C5 + C6). Then
∑

σ∈Q |(f |φσ)
∫

E∩g−1[Jr
σ]
φσ| ≤ C8

whenever f ∈ L
2
C
, ‖f‖2 = 1, µE ≤ 1 and g : R → R is measurable.

proof (a) The first step is to combine 286J and 286K, as follows: if P ⊆ Q is finite and max(
√

massEg(P ), energyf (P ))

≤ γ, there is an R ⊆ Q such that γ2
∑

τ∈R µIτ ≤ C5 +C6 and max(
√

massEg(P \R+), energyf (P \R+)) ≤
1
2γ. PPP Since massEg(P ) ≤ γ2, 286J tells us that there is an R0 ⊆ Q such that γ2

∑

τ∈R0
µIτ ≤ C5 and

massEg(P \R+
0 ) ≤ 1

4γ
2. Turn to 286K: since energyf (P \R+

0 ) ≤ energyf (P ) ≤ γ, we can find R1 ⊆ Q such

that γ2
∑

τ∈R1
µIτ ≤ C6 and energyf ((P \R+

0 ) \R+
1 ) ≤ 1

2γ. Set R = R0 ∪R1. Then

γ2
∑

τ∈R µIτ ≤ C5 + C6, massEg(P \R+) ≤ massEg(P \R+
0 ) ≤ 1

4γ
2

so max(
√

massEg(P \R+), energyf (P \R+)) ≤ 1
2γ. QQQ

(b) Now take any finite P ⊆ Q. Let k ∈ N be such that max(
√

massEg(P ), energyf (P )) ≤ 2k. By (a),
we can choose 〈Pn〉n∈N, 〈Rn〉n∈N inductively such that P0 = P and, for each n ∈ N,

Pn+1 = Pn \R+
n ,

22k−2n
∑

τ∈Rn
µIτ ≤ C5 + C6, max(

√

massEg(Pn), energyf (Pn)) ≤ 2k−n.

Since energyf ({σ}) =
√
µJσ|(f |φσ)| > 0 whenever (f |φσ) 6= 0 (286H), (f |φσ) = 0 whenever σ ∈ ⋂

n∈N
Pn,

and

∑

σ∈P

∣

∣(f |φσ)
∫

E∩g−1[Jr
σ]

φσ
∣

∣ =
∑

σ∈⋃

n∈N
Pn\Pn+1

∣

∣(f |φσ)
∫

E∩g−1[Jr
σ]

φσ
∣

∣

=
∞
∑

n=0

∑

σ∈Pn\Pn+1

∣

∣(f |φσ)
∫

E∩g−1[Jr
σ]

φσ
∣

∣

≤
∞
∑

n=0

∑

τ∈Rn

∑

σ∈Pn
σ≥τ

∣

∣(f |φσ)
∫

E∩g−1[Jr
σ]

φσ
∣

∣

≤
∞
∑

n=0

∑

τ∈Rn

C7 energyf (Pn)massEg(Pn)µIτ

(by 286L)

≤ C7

∞
∑

n=0

2k−nmin(1, 22k−2n)
∑

τ∈Rn

µIτ

(because massEg(Pn) ≤ 1 for every n, as noted in 286H)
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≤ C7

∞
∑

n=0

2k−nmin(1, 22k−2n)22n−2k(C5 + C6)

= C7(C5 + C6)

∞
∑

n=0

min(2n−k, 2k−n)

≤ C7(C5 + C6)

∞
∑

n=−∞
min(2n, 2−n) = 3C7(C5 + C6).

(c) Since this true for every finite P ⊆ Q,
∑

σ∈Q |(f |φσ)
∫

E∩g−1[Jr
σ]
φσ| ≤ 3C7(C5 + C6) = C8,

as claimed.

286N Lemma Set C9 = C8

√
2. Suppose that f ∈ L

2
C
, g : R → R is measurable and µF <∞. Then

∑

σ∈Q |(f |φσ)
∫

F∩g−1[Jr
σ]
φσ| ≤ C9‖f‖2

√
µF .

proof This is trivial if ‖f‖2 = 0, that is, f = 0 a.e. So we may take it that ‖f‖2 > 0. Dividing both sides
by ‖f‖2, we may suppose that ‖f‖2 = 1.

Let k ∈ Z be such that 2k−1 < µF ≤ 2k. We have a permutation σ 7→ σ∗ : Q→ Q defined by saying that
σ∗ = (2−kIσ, 2kJσ); so that kσ∗ = kσ + k, xσ∗ = 2−kxσ, ylσ∗ = 2kylσ, J

r
σ∗ = 2kJrσ, and for every x ∈ R

φσ(2
kx) =

√

µJσe
2kiylσxφ((2kx− xσ)µJσ)

=
√

µJσe
iylσ∗xφ(2kσ+k(x− 2−kxσ))

= 2−k/2
√

µJσ∗eiy
l
σ∗xφ((x− xσ∗)µJσ∗) = 2−k/2φσ∗(x).

Write F̃ = 2−kF , so that µF̃ ≤ 1, and g̃(x) = 2kg(2kx) for every x. Then, for σ ∈ Q,

F ∩ g−1[Jrσ] = {x : x ∈ F, g(x) ∈ Jrσ} = {x : 2−kx ∈ F̃ , 2−kg̃(2−kx) ∈ Jrσ}
= {x : 2−kx ∈ F̃ , g̃(2−kx) ∈ Jrσ∗} = 2k{x : x ∈ F̃ , g̃(x) ∈ Jrσ∗}.

Write f̃(x) = 2k/2f(2kx), so that

‖f̃‖2 = 2k/2‖D2kf‖2 = ‖f‖2 = 1,

while

(f |φσ) =
∫∞
−∞ f × φ̄σ = 2k

∫∞
−∞ f(2kx)φσ(2kx)dx = (f̃ |φσ∗)

for every σ ∈ Q. Putting all these together,

∑

σ∈Q

∣

∣(f |φσ)
∫

F∩g−1[Jr
σ]

φσ
∣

∣ = 2k
∑

σ∈Q

∣

∣(f |φσ)
∫

2−k(F∩g−1[Jr
σ])

φσ(2
kx)dx

∣

∣

= 2k/2
∑

σ∈Q

∣

∣(f̃ |φσ∗)

∫

F̃∩g̃−1[Jr
σ∗ ]

φσ∗

∣

∣

= 2k/2
∑

τ∈Q

∣

∣(f̃ |φτ )
∫

F̃∩g̃−1[Jr
τ ]

φτ
∣

∣

≤ 2k/2C8

(by the Lacey-Thiele lemma, applied to g̃, F̃ and f̃)

≤ C9

√

µF = C9‖f‖2
√

µF .
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286O Lemma (a) For z ∈ R, define θz : R → [0, 1] by setting

θz(y) =
∧

φ(2−k(y − ŷ))2

whenever there is a dyadic interval J ∈ I of length 2k such that z belongs to the right-hand half of J and
y belongs to the left-hand half of J and ŷ is the lower quartile of J , and zero if there is no such J . Then
(y, z) 7→ θz(y) is Borel measurable, 0 ≤ θz(y) ≤ 1 for all y, z ∈ R, and θz(y) = 0 if y ≥ z.

(b) For k ∈ Z, set Qk = {σ : σ ∈ Q, kσ = k}. Let [Q]<ω be the set of finite subsets of Q, [Z]<ω the set of
finite subsets of Z and L the set of subsets L of Q such that L ∩Qk is finite for every k. If K ∈ [Z]<ω and
L ∈ L, set

PKL = {P : P ∈ [Q]<ω, P ∩Qk ⊇ L ∩Qk whenever k ∈ Z

and either k ∈ K or P ∩Qk 6= ∅};
set

F = {P : P ⊆ [Q]<ω and there are K ∈ [Z]<ω, L ∈ L such that P ⊇ PKL}.
Then F is a filter on [Q]<ω and

2π
∫

F
(
∧

h× θz)
∨ = limP→F

∑

σ∈P,z∈Jr
σ
(h|φσ)

∫

F
φσ

for every z ∈ R and rapidly decreasing test function h and measurable set F ⊆ R of finite measure.

proof (a)(i) I had better start by explaining why the recipe above defines a function θz. Let M be the set

of those k ∈ Z such that z belongs to the right-hand half of the dyadic interval Ĵk of length 2k containing

z. For k ∈ M , let ŷk be the midpoint of the left-hand half Ĵ lk of Ĵk, and set ψk(y) =
∧

φ(2−k(y − ŷk))
2 for

y ∈ R; then ψk is smooth and zero outside Ĵ lk. But now observe that if k, k′ are distinct members of M ,

then Ĵ lk and Ĵ lk′ are disjoint, as remarked in 286E(b-iv). So θz is just the sum
∑

k∈M ψk. Because
∧

φ takes

values in [0, 1], so does θz. If y ≥ z, then of course y /∈ Ĵ lk for any k ∈M , so θz(y) = 0.

(ii) To see that (y, z) 7→ θz(y) is Borel measurable, observe that

{(y, z) : θz(y) ≥ γ} =
⋃

σ∈Q{(y, z) : φ̂((y − ylσ)µIσ)
2 ≥ γ, z ∈ Jrσ}

for every γ ∈ R.

(b)(i) ∅ belongs to both [Z]<ω and L and [Q]<ω = P∅∅ belongs to F . If K ∈ [Z]<ω and L ∈ L then
⋃

k∈K L ∩Qk belongs to PKL. So no PKL is empty and ∅ /∈ F .
If P, P ′ ∈ F , there are K, K ′ ∈ [Z]<ω and L, L′ ∈ L such that PKL ⊆ P and PK′L′ ⊆ P ′. Now

K ∪K ′ ∈ [Z]<ω, L ∪ L′ ∈ L and

PK∪K′,L∪L′ ⊆ PKL ∩ PK′L′ ⊆ P ∩ P ′,

so P ∩ P ′ ∈ F .
If P ∈ F and P ⊆ P ′ ⊆ [Q]<ω, then of course P ′ ∈ F . So F is a filter on [Q]<ω.

(ii) Now fix on z ∈ R, a rapidly decreasing test function h and a set F of finite measure. Take M

and ψk, Ĵk, ŷk for k ∈ M from (a-i) above; it will be convenient to set ψk = 0 for k ∈ Z \M , so that
θz =

∑

k∈Z
ψk.

For k ∈ Z,

2π
∫

F
(
∧

h× ψk)
∨ =

∑

σ∈Qk,z∈Jr
σ
(h|φσ)

∫

F
φσ.

PPP If k /∈M , then z /∈ Jrσ for any σ ∈ Qk, while ψk = 0, so the result is trivial. So I will suppose that k ∈M
and that ŷk is defined. If σ ∈ Qk and z ∈ Jrσ, y

l
σ = ŷk and xσ is of the form 2−k(n+ 1

2 ) for some n ∈ Z. So

(h|φσ) =
∫ ∞

−∞

∧

h×
∧̄

φσ

(284O)

Measure Theory



286O Carleson’s theorem 103

=

∫ ∞

−∞

∧

h(t) · 2−k/2e2−ki(n+ 1
2 )(t−ŷk)

∧

φ(2−k(t− ŷk))dt

(by the formula in 286Eb, because
∧

φ is real-valued)

= 2k/2
∫ ∞

−∞

∧

h(2kt+ ŷk)e
i(n+ 1

2 )t
∧

φ(t)dt = 2k/2
∫ π

−π

∧

h(2kt+ ŷk)e
i(n+ 1

2 )t
∧

φ(t)dt

(because
∧

φ(t) = 0 if |t| ≥ 1
5 )

= 2k/2
∫ π

−π
g(t)eintdt,

where g(t) =
∧

h(2kt+ ŷk)e
it/2

∧

φ(t) for −π < t ≤ π. So if we set cn =
1

2π

∫ π

−π g(t)e
−intdt, as in 282A, we have

(h|φσ) = 2k/2 · 2πc−n
when σ ∈ Qk, z ∈ Jrσ and xσ = 2−k(n+ 1

2 ). Note that as g is smooth and zero outside [− 1
5 ,

1
5 ],

∑∞
n=−∞ |cn| <

∞ (282Rb).

Now, for any y ∈ Ĵ lk, writing Rk for

{σ : σ ∈ Qk, z ∈ Jrσ} = {σ : σ ∈ Qk, Jσ = Ĵk} = {(I, Ĵk) : I ∈ I, µI = 2−k},
we have

∑

σ∈Rk

(h|φσ)
∧

φσ(y) =

∞
∑

n=−∞
2k/2 · 2πc−n · 2−k/2e−2−ki(n+ 1

2 )(y−ŷk)
∧

φ(2−k(y − ŷk))

= 2π
∧

φ(2−k(y − ŷk))e
−2−k−1i(y−ŷk)

∞
∑

n=−∞
c−ne

−2−kin(y−ŷk)

= 2π
∧

φ(2−k(y − ŷk))e
−2−k−1i(y−ŷk)

∞
∑

n=−∞
cne

in2−k(y−ŷk)

= 2π
∧

φ(2−k(y − ŷk))e
−2−k−1i(y−ŷk)g(2−k(y − ŷk))

(by 282L(i), because 2−k|y − ŷk| ≤ 1
4 < π and g is smooth)

= 2πe−2−k−1i(y−ŷk)∧

φ(2−k(y − ŷk))
∧

h(y)e2
−k−1i(y−ŷk)∧

φ(2−k(y − ŷk))

= 2π
∧

h(y)ψk(y).

On the other hand, if y ∈ R \ Ĵ lk, ψk(y) =
∧

φσ(y) = 0 for every σ ∈ Rk, so again
∑

σ∈Rk
(h|φσ)

∧

φσ(y) =

2π
∧

h(y)ψk(y).

Next,
∑

σ∈Rk
|(h|φσ)| = 2π · 2k/2∑∞

n=−∞ |cn|
and

supσ∈Rk

∫∞
−∞ |

∧

φσ| = 2k/2
∫∞
−∞ |

∧

φ|

are finite, while of course
∧

χF is bounded. So

2π

∫

F

(
∧

h× ψk)
∨ = 2π(

∧

h× ψk)
∨|χF ) = 2π((

∧

h× ψk)
∨)∧|

∧

χF )

(284Ob again)
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= 2π(
∧

h× ψk|
∧

χF ) =

∫ ∞

−∞
2π

∧

h× ψk ×
∧

χF

=

∫ ∞

−∞

∑

σ∈Rk

(h|φσ)
∧

φσ ×
∧

χF =
∑

σ∈Rk

(h|φσ)
∫ ∞

−∞

∧

φσ ×
∧

χF

(226E)

=
∑

σ∈Rk

(h|φσ)
∫

F

φσ =
∑

σ∈Qk,z∈Jr
σ

(h|φσ)
∫

F

φσ. QQQ

(iii) In the last sentence of the argument just above, I quoted B.Levi’s theorem in the form 226E, even
though Rk has a natural enumeration, because I shall specifically want to say later that

for every ǫ > 0 there is a finite L0 ⊆ Rk such that

|2π
∫

F
(
∧

h× ψk)
∨ −∑

σ∈L(h|φσ)
∫

F
φσ| ≤ ǫ

whenever L ⊆ Rk is finite and L ⊇ L0;

it follows at once that

for every ǫ > 0 there is a finite L0 ⊆ Qk such that

|2π
∫

F
(
∧

h× ψk)
∨ −∑

σ∈L,z∈Jr
σ
(h|φσ)

∫

F
φσ| ≤ ǫ

whenever L ⊆ Qk is finite and L ⊇ L0.

(iv) Now let us consider (
∧

h× θz)
∨. Because every ψk is non-negative, θz =

∑

k∈Z
ψk is bounded above

by 1, and
∧

h is integrable,

∫

F

(
∧

h× θz)
∨ =

∫ ∞

−∞

∧

h× θz ×
∧

χF

=
∑

k∈Z

∫ ∞

−∞

∧

h× ψk ×
∧

χF =
∑

k∈Z

∫

F

(
∧

h× ψk)
∨.

So here we can say

for every ǫ > 0 there is a K0 ∈ [Z]<ω such that

|
∫

F
(
∧

h× θz)
∨ −∑

k∈K
∫

F
(
∧

h× ψk)
∨| ≤ ǫ

whenever K ∈ [Z]<ω and K ⊇ K0.

(v) To express the facts above in terms of a limit along the filter F , we can argue as follows. Take any
ǫ > 0. For each k ∈ Z, (iii) tells us that there is a finite set Lk ⊆ Qk such that

|2π
∫

F
(
∧

h× ψk)
∨ −∑

σ∈L′,z∈Jr
σ
(h|φσ)

∫

F
φσ| ≤ 2−|k|ǫ

whenever L′ ⊆ Qk is finite and L′ ⊇ Lk; of course we can suppose that every Lk is non-empty. Set
L =

⋃

k∈Z
Lk, so that L ∩Qk = Lk is finite for each k, and L ∈ L. Next, there is a K ∈ [Z]<ω such that

|
∫

F
(
∧

h× θz)
∨ −∑

k∈K′

∫

F
(
∧

h× ψk)
∨| ≤ ǫ

whenever K ′ ∈ [Z]<ω and K ′ ⊇ K. Take any P ∈ PKL. Setting K ′ = {k : P ∩ Qk 6= ∅}, we have K ′ ⊇ K
and P ∩Qk ⊇ L ∩Qk for every k ∈ K ′. Accordingly
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|2π
∫

F

(
∧

h× θz)
∨ −

∑

σ∈P,z∈Jr
σ

(h|φσ)
∫

F

φσ|

= |2π
∫

F

(
∧

h× θz)
∨ −

∑

k∈K′

∑

σ∈P∩Qk

z∈Jr
σ

(h|φσ)
∫

F

φσ|

≤ 2π|
∫

F

(
∧

h× θz)
∨ −

∑

k∈K′

∫

F

(
∧

h× ψk)
∨|

+
∑

k∈K′

|2π
∫

F

(
∧

h× ψk)
∨ −

∑

σ∈P∩Qk

z∈Jr
σ

(h|φσ)
∫

F

φσ|

≤ 2πǫ+
∑

k∈K′

2−|k|ǫ ≤ (2π + 3)ǫ.

As PKL ∈ F , and ǫ was arbitrary,

2π
∫

F
(
∧

h× θz)
∨ = limP→F

∑

σ∈P,z∈Jr
σ
(h|φσ)

∫

F
φσ

as claimed.

286P Lemma Suppose that h is a rapidly decreasing test function. For x ∈ R, set

Ah(x) = supz∈R |2π(
∧

h× θz)
∨(x)|.

Then Ah : R → [0,∞] is Borel measurable, and
∫

F
Ah ≤ 4C9‖h‖2

√
µF whenever µF <∞.

proof (a) As (
∧

h× θz)
∨ is continuous for every z, Ah is lower semi-continuous, therefore Borel measurable,

by 256Ma. By 256Mb,
∫

F
Ah = sup{

∫

F
supi≤n |2π(

∧

h× θzi)
∨| : z0, . . . , zn ∈ R}.

(b) Fix z0, . . . , zn ∈ R for the moment.

(i) Set vi = 2π(
∧

h× θzi)
∨ for i ≤ n, and v = supi≤n |vi|. Set Ei = {x : v(x) = |vi(x)|} \

⋃

j<i{x : v(x) =

|vj(x)|} for i ≤ n, so that (E0, . . . , En) is a partition of R into Borel sets, and
∫

F
v =

∫

F

∑n
i=0 |vi| × χEi =

∫

F
|∑n

i=0 vi × χEi| ≤ 4|
∫

F ′

∑n
i=0 vi × χEi|

for a suitable measurable F ′ ⊆ F (246K). Setting g(x) = zi for x ∈ Ei, g : R → R is Borel measurable.

(ii) For each i ≤ n,

∫

F ′

vi × χEi =

∫

F ′∩Ei

vi = lim
P→F

∑

σ∈P,zi∈Jr
σ

(h|φσ)
∫

F ′∩Ei

φσ

(where F is the filter on [Q]<ω described in 286O)

= lim
P→F

∫

F ′∩Ei

∑

σ∈P,zi∈Jr
σ

(h|φσ)φσ

= lim
P→F

∫

F ′∩Ei

∑

σ∈P,g(x)∈Jr
σ

(h|φσ)φσ(x)dx.

So
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∫

F ′

n
∑

i=0

vi × χEi = lim
P→F

n
∑

i=0

∫

F ′∩Ei

∑

σ∈P,g(x)∈Jr
σ

(h|φσ)φσ(x)dx

= lim
P→F

∫

F ′

∑

σ∈P,g(x)∈Jr
σ

(h|φσ)φσ(x)dx.

Now for any finite set P ⊆ Q,
∫

F ′

∑

σ∈P,g(x)∈Jr
σ
(h|φσ)φσ(x)dx =

∑

σ∈P
∫

F ′∩g−1[Jr
σ]
(h|φσ)φσ;

if you like, you can think of this as an application of Fubini’s theorem, if you give counting measure to Q
and look at the function

(x, σ) 7→ (h|φσ)φσ(x) if x ∈ F ′, σ ∈ P and g(x) ∈ Jrσ,

7→ 0 otherwise.

But this means that

|
∫

F ′

∑

σ∈P,g(x)∈Jr
σ
(h|φσ)φσ(x)dx| ≤

∑

σ∈P |(h|φσ)
∫

F ′∩g−1[Jr
σ]
φσ| ≤ C9‖h‖2

√
µF ′

by 286N. Taking the limit as P → F ,

|
∫

F ′

∑n
i=0 vi × χEi| ≤ C9‖h‖2

√
µF ′.

(iii) Thus we have

∫

F

sup
i≤n

|2π(
∧

h× θzi)
∨| =

∫

F

v ≤ 4|
∫

F ′

n
∑

i=0

vi × χEi|

≤ 4C9‖h‖2
√

µF ′ ≤ 4C9‖h‖2
√

µF .

(c) As z0, . . . , zn were arbitrary,
∫

F
Ah ≤ 4C9‖h‖2

√
µF , as claimed.

286Q Lemma For α > 0 and y, z, β ∈ R, set θ′zαβ(y) = θαz+β(αy + β). Then

(a) the function (α, β, y, z) 7→ θ′zαβ(y) : ]0,∞[× R3 → [0, 1] is Borel measurable;

(b) θ′zαβ(y) = 0 whenever y ≥ z;

(c) for any rapidly decreasing test function h, and any z ∈ R,

2π|(
∧

h× θ′zαβ)
∨| ≤ D1/αAMβDαh

(in the notation of 286C) at every point.

proof (a) We need only recall that (y, z) 7→ θz(y) : R2 → R is Borel measurable (286Oa), and that
(α, β, y, z) 7→ θ′zαβ(y) is built up from this, + and ×.

(b) Again, this is immediate from 286Oa, because α > 0.

(c) Set v = αz + β, so that θ′zαβ = DαSβθv. Then

∧

h× θ′zαβ =
∧

h×DαSβθv = DαSβ(S−βD1/α

∧

h× θv)

= αDαSβ(S−β(Dαh)
∧ × θv) = αDαSβ((MβDαh)

∧ × θv),

so

(
∧

h× θ′zαβ)
∨ = α

(

DαSβ((MβDαh)
∧ × θv)

)

∨

= D1/α

(

Sβ((MβDαh)
∧ × θv)

)

∨

= D1/αM−β
(

(MβDαh)
∧ × θv

)

∨

and

2π|(
∧

h× θ′zαβ)
∨| = 2πD1/α

∣

∣

(

(MβDαh)
∧ × θv

)

∨
∣

∣ ≤ D1/αA(MβDαh).
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286R Lemma For any y, z ∈ R,

θ̃z(y) =
∫ 2

1

1

α

(

limn→∞
1

n

∫ n

0
θ′zαβ(y)dβ

)

dα

is defined, and

θ̃z(y) = θ̃1(0) > 0 if y < z,

= 0 if y ≥ z.

proof (a) The case y ≥ z is trivial, because if y ≥ z then θ′zαβ(y) = 0 for all α > 0 and β ∈ R (286Qb) and

θ̃z(y) = 0. For the rest of the proof, therefore, I look at the case y < z.

(b)(i) Given y < z ∈ R and α > 0, set l = ⌊log2(20α(z − y))⌋. Then θ′z,α,β+2l(y) = θ′zαβ(y) for every

β ∈ R. PPP If θ′zαβ(y) = θαz+β(αy + β) is non-zero, there must be k, m ∈ Z such that

2k(m+
1

2
) ≤ αz + β < 2k(m+ 1)

and
∧

φ(2−k(αy + β)− (m+
1

4
))2 = θ′zαβ(y) 6= 0,

so

2km ≤ αy + β ≤ 2k(m+
9

20
)

because
∧

φ is zero outside [− 1
5 ,

1
5 ]. In this case,

1

20
· 2k < α(z − y), so that k ≤ l. We therefore have

2k(m+ 2l−k +
1

2
) ≤ αz + β + 2l < 2k(m+ 2l−k + 1),

2k(m+ 2l−k) ≤ αy + β + 2l < 2k(m+ 2l−k +
1

2
),

so

θ′z,α,β+2l(y) =
∧

φ(2−k(αy + β + 2l)− (m+ 2l−k +
1

4
))2 = θ′zαβ(y).

Similarly,

2k(m− 2l−k +
1

2
) ≤ αz + β − 2l < 2k(m− 2l−k + 1),

2k(m− 2l−k) ≤ αy + β − 2l < 2k(m− 2l−k +
1

2
),

so

θ′z,α,β−2l(y) =
∧

φ(2−k(αy + β − 2l)− (m− 2l−k +
1

4
))2 = θ′zαβ(y).

What this shows is that θ′z,α,β+2l(y) = θ′zαβ(y) if either is non-zero, so we have the equality in any case. QQQ

(ii) It follows that g(α, y, z) = limb→∞
1

b

∫ b

0
θ′zαβ(y)dβ is defined. PPP Set

γ = 2−l
∫ 2l

0
θ′zαβ(y)dβ.

From (i) we see that

γ = 2−l
∫ 2l(m+1)

2lm
θ′zαβ(y)dβ

for every m ∈ Z, and therefore that

γ =
1

2lm

∫ 2lm

0
θ′zαβ(y)dβ
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for every m ≥ 1. Now θ′zαβ(y) is always greater than or equal to 0, so if 2lm ≤ b ≤ 2l(m+ 1) then

m

m+1
γ =

1

2l(m+1)

∫ 2lm

0
θ′zαβ ≤ 1

b

∫ b

0
θ′zαβ ≤ 1

2lm

∫ 2l(m+1)

0
θ′zαβ =

m+1

m
γ,

which approach γ as b→ ∞. QQQ

(c) Because (α, y) 7→ θ′zαβ(y) is always Borel measurable, each of the functions α 7→ 1

n

∫ n

0
θ′zαβ , for

n ≥ 1, is Borel measurable (putting 251M and 252P together), and α 7→ g(α, y, z) : ]0,∞[ → R is Borel
measurable; at the same time, since 0 ≤ θ′zαβ(y) ≤ 1 for all α and β, 0 ≤ g(α, y, z) ≤ 1 for every α, and

θ̃z(y) =
∫ 2

1

1

α
g(α, y, z)dα is defined in [0, 1].

(d) For any y < z, γ ∈ R and α > 0, g(α, y + γ, z + γ) = g(α, y, z). PPP It is enough to consider the case
γ ≥ 0. In this case

g(α, y + γ, z + γ) = lim
b→∞

1

b

∫ b

0

θ′z+γ,α,β(y + γ)dβ

= lim
b→∞

1

b

∫ b

0

θαz+αγ+β(αy + αγ + β)dβ

= lim
b→∞

1

b

∫ b+αγ

αγ

θαz+β(αy + β)dβ = lim
b→∞

1

b

∫ b+αγ

αγ

θ′zαβ(y)dβ,

so

|g(α, y + γ, z + γ)− g(α, y, z)| = lim
b→∞

1

b

∣

∣

∫ b+αγ

b

θ′zαβ(y)dβ −
∫ αγ

0

θ′zαβ(y)dβ
∣

∣

≤ lim
b→∞

2αγ

b
= 0. QQQ

It follows that whenever y < z and γ ∈ R,

θ̃z+γ(y + γ) =
∫ 1

0

1

α
g(α, y + γ, z + γ)dα =

∫ 1

0

1

α
g(α, y, z)dα = θ̃z(y).

(e) The next essential fact to note is that θ2z(2y) is always equal to θz(y). PPP If θz(y) 6= 0, then (as in
(b) above) there are k, m ∈ Z such that

2k(m+
1

2
) ≤ z < 2k(m+ 1), 2km ≤ y < 2k(m+

1

2
), θz(y) =

∧

φ(2−ky − (m+
1

4
))2.

In this case,

2k+1(m+
1

2
) ≤ 2z < 2k+1(m+ 1), 2k+1m ≤ 2y < 2k+1(m+

1

2
),

so

θ2z(2y) =
∧

φ(2−k−1 · 2y − (m+
1

4
))2 = θz(y).

Similarly,

2k−1(m+
1

2
) ≤ 1

2
z < 2k−1(m+ 1), 2k−1m ≤ 1

2
y < 2k−1(m+

1

2
),

so

θ 1
2 z
(
1

2
y) =

∧

φ(2−k+1 · 1
2
y − (m+

1

4
))2 = θz(y).

This shows that θ2z(2y) = θz(y) if either is non-zero, and therefore in all cases. QQQ
Accordingly

θ′z,2α,2β(y) = θ2αz+2β(2αy + 2β) = θαz+β(αy + β) = θ′zαβ(y)
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for all y, z, β ∈ R and all α > 0.

(f) Consequently

g(2α, y, z) = lim
b→∞

1

b

∫ b

0

θ′z,2α,β(y)dβ = lim
b→∞

2

b

∫ b/2

0

θ′z,2α,2β(y)dβ

= lim
b→∞

2

b

∫ b/2

0

θ′zαβ(y)dβ = lim
b→∞

1

b

∫ b

0

θ′zαβ(y)dβ = g(α, y, z)

whenever α > 0 and y, z ∈ R. It follows that
∫ δ

γ

1

α
g(α, y, z)dα =

∫ δ

γ

1

α
g(2α, y, z)dα =

∫ 2δ

2γ

1

α
g(α, y, z)dα

whenever 0 < γ ≤ δ, and therefore that
∫ 2γ

γ

1

α
g(α, y, z)dα =

∫ 2

1

1

α
g(α, y, z)dα

for every γ > 0. PPP Take k ∈ Z such that 2k ≤ γ < 2k+1. Then

∫ 2γ

γ

1

α
g(α, y, z)dα =

∫ 2k+1

2k

1

α
g(α, y, z)dα−

∫ γ

2k

1

α
g(α, y, z)dα+

∫ 2γ

2k+1

1

α
g(α, y, z)dα

=

∫ 2k+1

2k

1

α
g(α, y, z)dα =

∫ 2

1

1

α
g(α, y, z)dα. QQQ

(g) Now if α, γ > 0 and y < z,

g(α, γy, γz) = limb→∞
1

b

∫ b

0
θαγz+β(αγy + β)dβ = g(αγ, y, z).

So if γ > 0 and y < z,

θ̃γz(γy) =

∫ 2

1

1

α
g(α, γy, γz)dα =

∫ 2

1

1

α
g(αγ, y, z)dα

=

∫ 2γ

γ

1

α
g(α, y, z)dα =

∫ 2

1

1

α
g(α, y, z)dα = θ̃z(y).

Putting this together with (d), we see that if y < z then

θ̃z(y) = θ̃z−y(0) = θ̃1(0).

(h) I have still to check that θ̃1(0) is not zero. But suppose that 1 ≤ α < 7
6 and that there is some m ∈ Z

such that 2(m+ 1
12 ) ≤ β ≤ 2(m+ 5

12 ). Then 2(m+ 1
2 ) ≤ α+ β < 2(m+ 1), while | 12β − (m+ 1

4 )| ≤ 1
6 , so

θα+β(β) =
∧

φ(
1

2
β − (m+

1

4
))2 = 1.

What this means is that, for 1 ≤ α < 7
6 ,

g(α, 0, 1) = lim
m→∞

1

2m

∫ 2m

0

θα+β(β)dβ

≥ lim
m→∞

1

2m

m−1
∑

j=0

µ[2(j +
1

12
), 2(j +

5

12
)] =

1

3
.

So

θ̃1(0) =
∫ 2

1

1

α
g(α, 0, 1)dα ≥ 1

3

∫ 7/6

1

1

α
dα > 0.

This completes the proof.
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286S Lemma Suppose that h is a rapidly decreasing test function.

(a) For every x ∈ R,

(Ãh)(x) = lim infn→∞
1

n

∫ 2

1

1

α

∫ n

0
(D1/αAMβDαh)(x)dβdα

is defined in [0,∞], and Ãh : R → [0,∞] is Borel measurable.

(b)
∫

F
Ãh ≤ 3C9‖h‖2

√
µF whenever µF <∞.

(c) If z ∈ R, 2π|(
∧

h× θ̃z)
∨| ≤ Ãh at every point.

proof (a) The point here is that the function

(α, β, x) 7→ (D1/αAMβDαh)(x) : ]0,∞[× R2 → [0,∞]

is Borel measurable. PPP

(D1/αAMβDαh)(x) = (AMβDαh)(
x

α
)

= sup
z∈R

|2π((MβDαh)
∧ × θz)

∨(
x

α
)|

=
2π

α
sup
z∈R

|(S−βD1/α

∧

h× θz)
∨(

x

α
)|.

Now, for any z ∈ R,

(S−βD1/α

∧

h× θz)
∨( xα ) =

1√
2π

∫∞
−∞ eixy/α

∧

h(y−βα )θz(y)dy.

We know that
∧

h is a rapidly decreasing test function, so there is some γ ≥ 0 such that |
∧

h(t)| ≤ γ

1+t2
for every

t ∈ R. This means that if α > 0 and β ∈ R and 〈αn〉n∈N, 〈βn〉n∈N are sequences in ]0, 2α] and [β − 1, β +1],

converging to α, β respectively, and we set g(t) = supn∈N |
∧

h(
t−βn

αn

)θz(t)|, then

g(t) ≤ 4γα2

(|t|−|β|−1)2
if |t| ≥ |β|+ 2,

≤ γ otherwise,

and g is integrable. (Remember that 0 ≤ θz(y) ≤ 1 for every y, as noted in 286Oa.) So Lebesgue’s
Dominated Convergence Theorem tells us that if 〈αn〉n∈N → α and 〈βn〉n∈N → β and 〈xn〉n∈N → x, then

∫∞
−∞ eixny/αn

∧

h(y−βn

αn
)θz(y)dy →

∫∞
−∞ eixy/α

∧

h(y−βα )θz(y)dy.

Thus (α, β, x) 7→ (S−βD1/α

∧

h× θz)
∨( xα ) is continuous; and this is true for every z ∈ R. Consequently

(α, β, x) 7→ supz∈R |(S−βD1/α

∧

h× θz)
∨(

x

α
)|

and (α, β, x) 7→ (D1/αAMβDαh)(x) are lower semi-continuous, therefore Borel measurable, by 256Ma again.
QQQ

It follows that the repeated integrals
∫ 2

1

1

α

∫ n

0
(D1/αAMβDαh)(x)dβdα

are defined in [0,∞] and are Borel measurable functions of x (252P again), so that Ãf is Borel measurable.

(b) For any n ∈ N,
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∫

F

1

n

∫ 2

1

1

α

∫ n

0

(D1/αAMβDαh)(x)dβdαdx

=
1

n

∫ 2

1

1

α

∫ n

0

∫

F

(D1/αAMβDαh)(x)dxdβdα

(by Fubini’s theorem, 252H)

=
1

n

∫ 2

1

∫ n

0

∫

F

1

α
(AMβDαh)(

x

α
)dxdβdα

=
1

n

∫ 2

1

∫ n

0

∫

α−1F

(AMβDαh)(x)dxdβdα

≤ 1

n

∫ 2

1

∫ n

0

4C9‖MβDαh‖2
√

µ(α−1F )dβdα

(286P)

= 4C9 · 1
n

∫ 2

1

∫ n

0

1√
α
‖h‖2 · 1√

α

√

µFdβdα

= 4C9‖h‖2
√

µF · 1
n

∫ 2

1

1

α

∫ n

0

dβdα

= 4C9‖h‖2
√

µF ln 2 ≤ 3C9‖h‖2
√

µF .

So

∫

F

Ãh =

∫

F

lim inf
n→∞

1

n

∫ 2

1

1

α

∫ n

0

(D1/αAMβDαh)(x)dβdαdx

≤ lim inf
n→∞

∫

F

1

n

∫ 2

1

1

α

∫ n

0

(D1/αAMβDαh)(x)dβdαdx

(by Fatou’s lemma)

≤ 3C9‖h‖2
√

µF .

(c) For any x ∈ R,

∫∞
−∞ |

∧

h(y)|
∫ 2

1

1

α

(

supn∈N

1

n

∫ n

0
θ′zαβ(y)dβ

)

dαdy ≤ ln 2 ·
∫∞
−∞ |

∧

h|

is finite. So

(
∧

h× θ̃z)
∨(x) =

1√
2π

∫ ∞

−∞
eixy

∧

h(y)θ̃z(y)dy

=
1√
2π

∫ ∞

−∞
eixy

∧

h(y)

∫ 2

1

1

α
lim
n→∞

1

n

∫ n

0

θ′zαβ(y)dβdαdy

=
1√
2π

lim
n→∞

∫ ∞

−∞
eixy

∧

h(y)

∫ 2

1

1

αn

∫ n

0

θ′zαβ(y)dβdαdy

(by Lebesgue’s Dominated Convergence Theorem)

=
1√
2π

lim
n→∞

∫ 2

1

1

αn

∫ n

0

∫ ∞

−∞
eixy

∧

h(y)θ′zαβ(y)dydβdα

(by Fubini’s theorem)

= lim
n→∞

∫ 2

1

1

αn

∫ n

0

(
∧

h× θ′zαβ)
∨(x)dβdα,
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and

2π|(
∧

h× θ̃z)
∨(x)| = 2π

∣

∣ lim
n→∞

∫ 2

1

1

αn

∫ n

0

(
∧

h× θ′zαβ)
∨(x)dβdα

∣

∣

≤ 2π lim inf
n→∞

∫ 2

1

1

αn

∫ n

0

|(
∧

h× θ′zαβ)
∨(x)|dβdα

≤ lim inf
n→∞

∫ 2

1

1

αn

∫ n

0

(D1/αAMβDαh)(x)dβdα

(286Qb)

= (Ãh)(x).

286T Lemma Set C10 = 3C9/πθ̃1(0). For f ∈ L
2
C
, define Âf : R → [0,∞] by setting

(Âf)(y) = supa≤b
1√
2π

|
∫ b

a
e−ixyf(x)dx|

for each y ∈ R. Then
∫

F
Âf ≤ C10‖f‖2

√
µF whenever µF <∞.

proof (a)As usual, the first step is to confirm that Âf is measurable. PPP For a ≤ b, y 7→ | 1√
2π

∫ b

a
e−ixyf(x)dx|

is continuous (by 283Cf, since f × χ[a, b] is integrable), so Âf is lower semi-continuous, therefore Borel
measurable (256Ma once more). QQQ

(b) Suppose that h is a rapidly decreasing test function. Then

(Âh)(y) ≤ 1

πθ̃1(0)
(Ã

∨

h)(−y)

for every y ∈ R. PPP If a ∈ R then

1√
2π

|
∫ a

−∞
e−ixyh(x)dx| = 1

θ̃1(0)
√
2π

|
∫ ∞

−∞
e−ixy θ̃a(x)h(x)dx|

(286R)

=
1

θ̃1(0)
|(h× θ̃a)

∨(−y)| = 1

θ̃1(0)
|(

∨

h
∧

× θ̃a)
∨(−y)|

(284C once more)

≤ 1

2πθ̃1(0)
(Ã

∨

h)(−y)

(286Sc). So if a ≤ b in R,

1√
2π

|
∫ b

a
e−ixyh(x)dx| ≤ 1

πθ̃1(0)
(Ã

∨

h)(−y);

taking the supremum over a and b, we have the result. QQQ
It follows that

∫

F

Âh ≤ 1

πθ̃1(0)

∫

−F
Ã

∨

h ≤ 3

πθ̃1(0)
C9‖h‖2

√

µ(−F )

(286Sb, 284Oa)

= C10‖h‖2
√

µF .

(c) For general square-integrable f , take any ǫ > 0 and any n ∈ N. Set
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(Ânf)(y) = sup−n≤a≤b≤n
1√
2π

|
∫ b

a
e−ixyf(x)dx|

for each y ∈ R. Let h be a rapidly decreasing test function such that ‖f − h‖2 ≤ ǫ (284N). Then

Âh ≥ Ânh ≥ Ânf −
√
2n√
2π
ǫ

(using Cauchy’s inequality), so
∫

F
Ânf ≤

∫

F
Âh+

√

n
π ǫµF ≤ C10(‖f‖2 + ǫ)

√
µF +

√

n
π ǫµF .

As ǫ is arbitrary,
∫

F
Ânf ≤ C10‖f‖2

√
µF ; letting n→ ∞, we get

∫

F
Âf ≤ C10‖f‖2

√
µF .

286U Theorem If f ∈ L
2
C
then

g(y) = lima→−∞,b→∞
1√
2π

∫ b

a
e−ixyf(x)dx

is defined in C for almost every y ∈ R, and g represents the Fourier transform of f .

proof (a) For n ∈ N, y ∈ R set

γn(y) = supa≤−n,b≥n
1√
2π

∣

∣

∫ b

a
e−ixyf(x)dx−

∫ n

−n e
−ixyf(x)dx

∣

∣.

Then g(y) is defined whenever infn∈N γn(y) = 0. PPP If infn∈N γn(y) = 0 and ǫ > 0, take m ∈ N such that

γm(y) ≤ 1
2ǫ; then

1√
2π

|
∫ b

a
e−ixyf(x)dx −

∫ n

−n e
−ixyf(x)dx| ≤ ǫ whenever n ≥ m, a ≤ −n and b ≥ n. But

this means, first, that 〈
∫ n

−n e
−ixyf(x)dx〉n∈N is a Cauchy sequence, so has a limit ζ say, and, second, that

ζ = lima→−∞,b→∞
∫ b

a
e−ixyf(x)dx, so that g(y) =

ζ√
2π

is defined. QQQ

Also each γn is lower-semicontinuous (cf. part (a) of the proof of 286T).

(b) ??? Suppose, if possible, that {y : infn∈N γn(y) > 0} is not negligible. Then

limm→∞ µ{y : |y| ≤ m, infn∈N γn(y) ≥ 1

m
} > 0,

so there is an ǫ > 0 such that

F = {y : |y| ≤ 1

ǫ
, infn∈N γn(y) ≥ ǫ}

has measure greater than ǫ. Let n ∈ N be such that

4C2
10(

∫∞
−∞ |f(x)|2dx−

∫ n

−n |f(x)|
2dx) ≤ ǫ3,

and set f1 = f − f × χ[−n, n]; then 2C10‖f1‖2 ≤ ǫ3/2.
We have

γn(y) = sup
a≤−n,b≥n

1√
2π

∣

∣

∫ b

a

e−ixyf1(x)dx−
∫ n

−n
e−ixyf1(x)dx

∣

∣

≤ 2 sup
a≤b

1√
2π

|
∫ b

a

e−ixyf1(x)dx| ≤ 2(Âf1)(y),

so that

ǫµF ≤
∫

F

γn ≤ 2

∫

F

Âf1 ≤ 2C10‖f1‖2
√

µF

(286T)

≤ ǫ3/2
√

µF

and µF ≤ ǫ; but we chose ǫ so that µF would be greater than ǫ. XXX
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(c) Thus g(y) is defined for almost every y ∈ R. Now g represents the Fourier transform of f . PPP Let h

be a rapidly decreasing test function. The restriction of Âf to the set on which it is finite is a tempered
function, by 286D, so

∫∞
−∞(Âf)× |h| is finite, by 284F. Now

∫ ∞

−∞
g × h =

1√
2π

∫ ∞

−∞

(

lim
n→∞

∫ n

−n
e−ixyf(x)dx

)

h(y)dy

=
1√
2π

lim
n→∞

∫ ∞

−∞

∫ n

−n
e−ixyf(x)h(y)dxdy

(because
1√
2π

|
∫ n

−n e
−ixyf(x)dx| ≤ Âf(y) for every n and y, so we can use Lebesgue’s Dominated Convergence

Theorem)

=
1√
2π

lim
n→∞

∫ n

−n

∫ ∞

−∞
e−ixyf(x)h(y)dydx

(because
∫∞
−∞

∫ n

−n |f(x)h(y)|dxdy is finite for each n)

= lim
n→∞

∫ n

−n
f ×

∧

h =

∫ ∞

−∞
f ×

∧

h

because f ×
∧

h is certainly integrable. As h is arbitrary, g represents the Fourier transform of f . QQQ

286V Theorem For any square-integrable complex-valued function on ]−π, π], its sequence of Fourier
sums converges to it almost everywhere.

proof Suppose that f ∈ L
2
C
(µ]−π,π]). Set f1(x) = f(x) for x ∈ dom f , 0 for x ∈ R \ ]−π, π]; then

f1 ∈ L
2
C
(µ). Let g ∈ L

2
C
(µ) represent the inverse Fourier transform of f1 (284O). Then 286U tells us

that f2(x) = lima→∞
1√
2π

∫ a

−a e
−ixyg(y)dy is defined for almost every x, and that f2 represents the Fourier

transform of g, so is equal almost everywhere to f1 (284Ib).
Now, for any a ≥ 0, x ∈ R,

∫ a

−a
e−ixyg(y)dy = (g|hax)

(where hax(y) = eixy if |y| ≤ a, 0 otherwise)

= (f2|
∧

hax)

(284Ob)

=
1√
2π

∫ ∞

−∞
f2(t)

∫ ∞

−∞
e−ityhax(y)dy dt

=
2√
2π

∫ ∞

−∞

sin(x−t)a

x−t
f2(t)dt =

2√
2π

∫ π

−π

sin(x−t)a

x−t
f(t)dt.

So

f(x) = f2(x) = lima→∞
1

π

∫ π

−π
sin(x−t)a

x−t
f(t)dt

for almost every x ∈ ]−π, π].
On the other hand, writing 〈sn〉n∈N for the sequence of Fourier sums of f , we have, for any x ∈ ]−π, π[,

sn(x) =
1

2π

∫ π

−π f(t)
sin(n+ 1

2
)(x−t)

sin 1

2
(x−t)

dt

for each n, by 282Da. Now
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1

2π

∫ π

−π
f(t)

sin(n+ 1

2
)(x−t)

sin 1

2
(x−t)

dt− 1

π

∫ π

−π
f(t)

sin(n+ 1

2
)(x−t)

x−t
dt

=
1

π

∫ π

−π
f(t)

( sin(n+ 1

2
)(x−t)

2 sin 1

2
(x−t)

− sin(n+ 1

2
)(x−t)

x−t

)

dt

=
1

π

∫ x+π

x−π

( 1

2 sin 1

2
t
− 1

t

)

f(x− t) sin(n+ 1
2 )t dt.

But if we look at the function

px(t) =
( 1

2 sin 1

2
t
− 1

t

)

f(x− t) if x− π < t < x+ π and t 6= 0,

= 0 otherwise,

px is integrable, because f is integrable over ]−π, π] and limt→0
1

2 sin 1

2
t
−1

t
= 0, so supt 6=0,x−π≤t≤x+π |

1

2 sin 1

2
t
−

1

t
| is finite. (This is where we need to know that |x| < π.) So

lim
n→∞

sn(x)− 1

π

∫ π

−π
f(t)

sin(n+ 1

2
)(x−t)

x−t
dt = lim

n→∞

∫ ∞

−∞
px(t) sin(n+ 1

2 )t dt = 0

by the Riemann-Lebesgue lemma (282Fb). But this means that limn→∞ sn(x) = f(x) for any x ∈ ]−π, π[
such that f(x) = lima→∞

1

π

∫ π

−π
sin(x−t)a

x−t
f(t)dt, which is almost every x ∈ ]−π, π].

286W Glossary The following special notations are used in more than one paragraph of this section:

µ for Lebesgue measure on R. 286G: C1, C2, C3, C4. 286O: θz, F .
286A: f∗. 286H: mass, ∆f , energy. 286P: Ah.
286C: Sαf , Mαf , Dαf . 286J: C5. 286Q: θ′zαβ .

286Ea: I, Q, Iσ, Jσ, kσ, xσ, yσ, J
l
σ, J

r
σ, y

l
σ. 286K: C6. 286R: θ̃z.

286Eb: φ, φσ, (f |g). 286L: C7. 286S: Ãh.

286Ec: w, wσ. 286M: C8. 286T: C10, Âf .
286F: ≤, R+, Tτ . 286N: C9.

286X Basic exercises (a) Use 284Oa and 284Xg to shorten part (c) of the proof of 286U.

(b) Show that if 〈ck〉k∈N is a sequence of complex numbers such that
∑∞
k=0 |ck|2 is finite, then

∑∞
k=0 cke

ikx

is defined in C for almost all x ∈ R.

286Y Further exercises (a) Show that if f is a square-integrable function on Rr, where r ≥ 2, then

g(y) =
1

(
√
2π)r

limα1,... ,αr→−∞,β1,... ,βr→∞
∫ b

a
e−iy .xf(x)dx

is defined in C for almost every y ∈ Rr, and that g represents the Fourier transform of f .

286 Notes and comments This is not the longest single section in this treatise as a whole, but it is
by a substantial margin the longest in the present volume, and thirty pages of sub-superscripts must tax
the endurance of the most enthusiastic. You will easily understand why Carleson’s theorem is not usually
presented at this level. But I am trying in this book to present complete proofs of the principal theorems,
there is no natural place for Carleson’s theorem in later volumes as at present conceived, and it is (just)
accessible at this point; so I take the space to do it here.

The proof here divides naturally into two halves: the ‘combinatorial’ part in 286E-286M, up to the
Lacey-Thiele lemma, followed by the ‘analytic’ part in 286N-286V, in which the averaging process
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∫ 2

1

1

α
limb→∞

1

b

∫ b

0
. . . dβdα

is used to transform the geometrically coherent, but analytically irregular, functions θz into the indicator

functions
1

θ̃1(0)
θ̃z. From the standpoint of ordinary Fourier analysis, this second part is essentially routine;

there are many paths we could follow, and we have only to take the ordinary precautions against illegitimate
operations.2

Carleson (Carleson 66) stated his theorem in the Fourier-series form of 286V; but it had long been
understood that this was equiveridical with the Fourier-transform version in 286U. There are of course many
ways of extending the theorem. In particular, there are corresponding results for functions in L

p for any
p > 1, and even for functions f such that f × ln(1 + |f |) × ln ln ln(16 + |f |) is integrable (Antonov 96).

The methods here do not seem to reach so far. I ought also to remark that if we define Âf as in 286T, then
there is for every p > 1 a constant C such that ‖Âf‖p ≤ C‖f‖p for every f ∈ L

p
C
(Hunt 67, Mozzochi

71, Jørsboe & Mejlbro 82, Arias de Reyna 02, Lacey 05).
Note that the point of Carleson’s theorem, in either form, is that we take special limits. In the formulae

∧

f(y) =
1√
2π

lima→−∞,b→∞
∫ b

a
e−ixyf(x)dx,

f(x) = limn→∞
∑n

−n cke
ikx,

valid almost everywhere for square-integrable functions f , we are not taking the ordinary integral
∫∞
−∞ e−ixyf(x)dx or the unconditional sum

∑

k∈Z
cke

ikx. If f is not integrable, or
∑∞
k=−∞ |ck| is infi-

nite, these will not be defined at even one point. Carleson’s theorem makes sense only because we have a
natural preference for particular kinds of improper integral and conditional sum. So when we return, in
Chapter 44 of Volume 4, to Fourier analysis on general topological groups, there will simply be no language
in which to express the theorem, and while versions have been proved for other groups (e.g., Schipp 78),
they necessarily depend on some structure beyond the simple notion of ‘locally compact Hausdorff abelian
topological group’. Even in R2, I understand that it is still unknown whether

lima→∞
1

2π

∫

B(0,a)
e−iy .xf(x)dx

will be defined a.e. for any square-integrable function f , if we use ordinary Euclidean balls B(0, a) in place
of the rectangles in 286Ya.

2I ought at this point to confess that I blundered badly in the 2001 edition of this volume, and failed to notice my error

until it was brought to my attention by A.Derighetti at the end of 2013. I hope that the version presented here is essentially
correct.
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Version of 6.1.10

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

285Xm Cauchy distribution The exercise introducing the Cauchy distribution, referred to in the 2002,
2004 and 2012 printings of Volume 3, is now 285Xp.

285Xo Poisson distribution The exercise naming the Poisson distribution, referred to in the 2003,
2006 and 2013 printings of Volume 4, is now 285Xr.

285Xr Bochner’s theorem The exercise on a special case of Bochner’s theorem, referred to in the 2003,
2006 and 2013 printings of Volume 4, is now 285Xu.

286U Carleson’s theorem The sequential form, referred to in Bogachev 07, is now in 286V.
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