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Chapter 28
Fourier analysis

For the last chapter of this volume, I attempt a brief account of one of the most important topics in
analysis. This is a bold enterprise, and I cannot hope to satisfy the reasonable demands of anyone who
knows and loves the subject as it deserves. But I also cannot pass it by without being false to my own
subject, since problems contributed by the study of Fourier series and transforms have led measure theory
throughout its history. What I will try to do, therefore, is to give versions of those results which everyone
ought to know in language unifying them with the rest of this treatise, aiming to open up a channel for
the transfer of intuitions and techniques between the abstract general study of measure spaces, which is the
centre of our work, and this particular family of applications of the theory of integration.

I have divided the material of this chapter, conventionally enough, into three parts: Fourier series, Fourier
transforms and the characteristic functions of probability theory. While it will be obvious that many ideas
are common to all three, I do not think it useful, at this stage, to try to formulate an explicit generalization
to unify them; that belongs to a more general theory of harmonic analysis on groups, which must wait until
Volume 4. T begin however with a section on the Stone-Weierstrass theorem (§281), which is one of the
basic tools of functional analysis, as well as being useful for this chapter. The final section (§286), a proof
of Carleson’s theorem, is at a rather different level from the rest.

Version of 4.12.12
281 The Stone-Weierstrass theorem

Before we begin work on the real subject of this chapter, it will be helpful to have a reasonably general
statement of a fundamental theorem on the approximation of continuous functions. In fact I give a variety
of forms (281A, 281E, 281F and 281G, together with 281Ya, 281Yd and 281Yg), all of which are sometimes
useful. T end the section with a version of Weyl’s Equidistribution Theorem (281M-281N).

281 A Stone-Weierstrass theorem: first form Let X be a topological space and K a compact subset
of X. Write Cy(X) for the space of all bounded continuous real-valued functions on X, so that Cy(X) is a
linear space over R. Let A C C,(X) be such that

A is a linear subspace of Cp(X);

|f| € A for every f € A;

xX € A;

whenever x, y are distinct points of K there is an f € A such that f(x) # f(y).
Then for every continuous h : K — R and € > 0 there is an f € A such that

|f(z) — h(z)| < e for every z € K,

if K #0, infyex f(r) > infyex h(r) and sup,cy f(z) < sup,e h(2).

Remark I have stated this theorem in its natural context, that of general topological spaces. But if these
are unfamiliar to you, you do not in fact need to know what they are. If you read ‘let X be a topological
space’ as ‘let X be a subset of R™” and ‘K is a compact subset of X’ as ‘K is a subset of X which is closed
and bounded in R"™’, you will have enough for all the applications in this chapter. In order to follow the
proof, of course, you will need to know a little about compactness in R”; I have written out the necessary
facts in §2A2.

proof (a) If K is empty, then we can take f = 0 to be the constant function with value 0. So henceforth
let us suppose that K # ().
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2 Fourier analysis 281A

(b) The first point to note is that if f, g € A then f A g and fV g belong to A, where
(f A g)(@) =min(f(z),9(x)), (fVg)(x)=max(f(z) g(z))

for every z € X; this is because

1 1
fhg=5(F+9=1f =g, fVg=5(F+g+If—gl
It follows by induction on n that fo A... A f, and fo V...V f,, belong to A for all fy,..., f, € A.

(c) If z, y are distinct points of K, and a, b € R, there is an f € A such that f(z) = a and f(y) = b.
P Start from g € A such that g(z) # g(y); this is the point at which we use the last of the list of four
hypotheses on A. Set

__a-b _ bg(z)—ag(y) _
i T g TSI EAQ

(d) (The heart of the proof lies in the next two paragraphs.) Let h : K — [0, 0o be a continuous function
and z any point of K. For any € > 0, there is an f € A such that f(z) = h(z) and f(y) < h(y) + € for
every y € K. PP Let G, be the family of those open sets G C X for which there is some f € A such that
f(z) = h(z) and f(w) < h(w) + € for every w € K N G. 1 claim that K C [JG,. To see this, take any
y € K. By (c), there is an f € A such that f(x) = h(z) and f(y) = h(y). Now h — fI[K : K - Ris a
continuous function, taking the value 0 at y, so there is an open subset G of X, containing y, such that
(h— fIK)(w) > —¢ for every w € GN K, that is, f(w) < h(w) + € for every w € GN K. Thus G € G, and
y € UGz, as required.

Because K is compact, G, has a finite subcover Gy, ... ,G, say. For each i < n, take f; € A such that
fi(xz) = h(z) and f;(w) < h(w) + € for every w € G; N K. Then

f=foNfiN...Nfn €A,
by (b), and evidently f(z) = h(x), while if y € K there is some ¢ < n such that y € G;, so that

fly) < fily) <h(y) +e Q

(e) If h: K — R is any continuous function and e > 0, there is an f € A such that |f(y) — h(y)| < € for
every y € K. PP This time, let G be the set of those open subsets G of X for which there is some f € A
such that f(y) < h(y) + € for every y € K and f(z) > h(z) — € for every € G N K. Once again, G is
an open cover of K. To see this, take any x € K. By (d), there is an f € A such that f(z) = h(z) and
fly) < h(y) 4+ € for every y € K. Now h — fIK : K — R is a continuous function which is zero at z, so
there is an open subset G of X, containing z, such that (h — f]K)(w) < € for every w € G N K, that is,
f(w) > h(w) — e for every w € GN K. Thus G € G and = € |JG, as required.

Because K is compact, G has a finite subcover Go,... ,G,, say. For each j < m, take f; € A such that
fi(y) < h(y) + ¢ for every y € K and f;(w) > h(w) — € for every w € G; N K. Then

f=fViVv...Vfn€A,

by (b), and evidently f(y) < h(y)+ € for every y € K, while if z € K there is some j < m such that z € G},
so that

f(@) = fj(x) = h(z) — e
Thus |f(z) — h(x)| < € for every z € K, as required. Q

(f) Thus we have an f satisfying the first of the two requirements of the theorem. But for the second,
set Mo = infye i h(z) and My = sup,cg h(x), and

fi = med(Mox X, f, MixX) = (MoxX) V (f A MixX);
/1 satisfies the second condition as well as the first. (I am tacitly assuming here what is in fact the case,

that My and M; are finite; this is because K is compact — see 2A2G or 2A3N.)

281B We need some simple tools, belonging to the basic theory of normed spaces; but I hope they will
be accessible even if you have not encountered ‘normed spaces’ before, if you keep a finger at the beginning
of §2A4 as you read the next lemma.
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281C The Stone-Weierstrass theorem 3

Lemma Let X be any set. Write £°°(X) for the set of bounded functions from X to R. For f € £*°(X), set
1 fllee = supsex [f(2)];

counting the supremum as 0 if X is empty. Then
(a) €°°(X) is a normed space.
(b) Let A C £°°(X) be a subset and A its closure (2A3D).
(i) If A is a linear subspace of £°°(X), so is A.
(ii) If f x g € A whenever f, g € A, then f x g € A whenever f, g € A.
(iii) If | f| € A whenever f € A, then |f| € A whenever f € A.

proof (a) This is a routine verification. To confirm that ¢>°(X) is a linear space over R, we have to check
that f+ g, ¢f belong to £>°(X) whenever f, g € £>°(X) and ¢ € R; simultaneously we can confirm that || ||
is a norm on £*°(X) by observing that

[(f +9)@) < |f(@)] +lg@)] < [ Flleo + llglloo:

lef ()| = le|[f ()] < lel| fllo
whenever f, g € £°(X) and ¢ € R. It is worth noting at the same time that if f, g € £>°(X), then

[(f x g9) (@) = |f(@)llg(@)] < [[fllocllglloo

for every x € X, so that || X glleo < [|floollg]]co-
(Of course all these remarks are very elementary special cases of parts of §243; see 243X1.)

(b) Recall that
A={f:fel=(X)Ve>03fie A |f - filo <¢}
(2A3KD). Take f, g € A and ¢ € R, and let € > 0. Set

€
" 24|+ flloo gl

Then there are f1, g1 € A such that ||f — fillco <7 and ||g — g1lcc < 7
Now

7 = min(1 ) > 0.

I(f +9) = (fi + g0)lloo S NIf = fillso + g = g1llec <20 <¢,
lef = cfilloe = lelllf = filloo < leln <'e,

I(fxg) = (fi X g)lloo = I(f=f1) xg+Fx(g—9g1) = (f = f1) x (9 —91)|l=
<(f = f1) X glloo + I1f X (g = g)lloo + I1(f = f1) x (9 = 91) |0
<|f = fillsollgllos + [[fllocllg = g1)lloo + 1f = filloollg — g1llee
< nllgllse + 1 fllso + 1) < nlllglloc + 1 flloc +1) <,

1= 1fillloo < f = fillo <m < e

(i) If A is a linear subspace, then f; + g1 and ¢f; belong to A. As € is arbitrary, f + ¢ and ¢f belong
to A. As f, g and c are arbitrary, A is a linear subspace of /*°(X).

(ii) If A is closed under multiplication, then f; x g; € A. As € is arbitrary, f x g € A.

(iii) If the absolute values of functions in A belong to A, then |fi| € A. As € is arbitrary, |f| € A.

281C Lemma There is a sequence (p,)nen of real polynomials such that lim,,_« pn(z) = |2| uniformly
for x € [-1,1].

proof (a) By the Binomial Theorem we have
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4 Fourier analysis 281C

1 1 1-3 2n)!
(1 — x)1/2 =1- 51' — H"Lz — 23.3!1'3 — ... = _Z;.LO:O miﬂn
whenever |x| < 1, with the convergence being uniform on any interval [—a, a] with 0 < a < 1. (For a proof of
this, see almost any book on real or complex analysis. If you have no favourite text to hand, you can try to
construct a proof from the following facts: (i) the radius of convergence of the series is 1, so on any interval
[—a,a], with 0 < a < 1, it is uniformly absolutely summable (ii) writing f(z) for the sum of the series
for |z| < 1, use Lebesgue’s Dominated Convergence Theorem to find expressions for the indefinite integrals

[3f, — [ f and show that these are 2(1 — (1 — z)f(x)), 2(1 — (1 + 2)f(—=)) for 0 < z < 1 (iii) use the

Fundamental Theorem of Calculus to show that f(z) +2(1 —z)f/(z) = 0 (iv) show that - (fl(ff) =0 and

hence (v) that f(x)? =1 — 2 whenever |z| < 1. Finally, show that because f is continuous and non-zero in
]-1,1[, f(z) must be the positive square root of 1 — z throughout.)
We have a further fragment of information. If we set

n !
@) =1, qz)=1- %33, () = => 1— mxk

for n > 2 and = € [0,1], so that g, is the nth partial sum of the binomial series for (1 —z)'/2, then we have
lim,, 00 gn(z) = (1 — 2)'/2 for every x € [0, 1[. But also every g, is non-increasing on [0, 1], and (g, (x))nen
is a non-increasing sequence for each x € [0, 1]. So we must have

Vi—-z<g,(z)VneN, xzel0,1]
and therefore, because all the ¢,, are continuous,
V1—z<g,(z)VneN, zel01].

Moreover, given € > 0, set a = 1 — ieQ, so that v/1 —a = §. Then there is an ng € N such that g,(z

) —
V1—x < § for every x € [0,a] and n > ng. In particular, g,(a) <€, s0 gn(z) < e and g,(z) — V1 -2 <¢
whenever z € [a,1] and n > ng. This means that
0<gn(z)—V1I—xz<eVn>ng zeclll]
as € is arbitrary, (¢, (z))nen — V1 — z uniformly on [0, 1].

(b) Now set p,,(r) = ¢,(1 — 22) for 2 € R. Because each g, is a real polynomial of degree n, each p,, is a
real polynomial of degree 2n. Next,

sup |pn (@) = |zf] = sup |gn(1 —2%) — /1 - (1 —a?)|

|z|<1 |z|<1
= sup [gn(y) — vl—y|—>0
y€[0,1]

as n — 00, 80 limy, o pr(x) = || uniformly for |z| < 1, as required.

281D Corollary Let X be a set, and A a norm-closed linear subspace of £>°(X) containing x X and such
that f x g € A whenever f, g € A. Then |f| € A for every f € A.

proof Set

1
=t

so that f1 € A and ||f1]lc < 1. Because A contains xX and is closed under multiplication, po f; € A for
every polynomial p with real coefficients. In particular, g, = ppo fi € A for every n, where (p,)nen is the
sequence of 281C. Now, because |fi(z)| < 1 for every x € X,

lgn = [f1llloe = supzex [pn(f1(2)) = [f1(@)|] < supjy <1 [Paly) = lyll = 0
as n — oo. Because A is || ||so-closed, |f1| € A; consequently |f| € A, as claimed.
281E Stone-Weierstrass theorem: second form Let X be a topological space and K a compact
subset of X. Write Cj,(X) for the space of all bounded continuous real-valued functions on X. Let A C Cp(X)
be such that
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281G The Stone-Weierstrass theorem 5

A is a linear subspace of Cp(X);

fxge Aforevery f,ge A;

xX € A;

whenever x, y are distinct points of K there is an f € A such that f(x) # f(y).
Then for every continuous h : K — R and € > 0 there is an f € A such that

|f(z) — h(z)| < € for every z € K,

if K #0, infzex f(z) = infaex h(z) and sup,ex f(2) < sup,ex h(@).

proof Let A be the || ||s-closure of A in £°°(X). It is helpful to know that A C Cy,(X); this is because the
uniform limit of continuous functions is continuous. (But if this is new to you, or your memory has faded,
don’t take time to look it up now; just read ‘A N Cy(X)’ in place of ‘A’ in the rest of this argument.) By
281B-281D, A is a linear subspace of Cy(X) and |f| € A for every f € A, so the conditions of 281A apply
to A.

Take a continuous h : K — R and an ¢ > 0. The cases in which K = () or h is constant are trivial,
because all constant functions belong to A; so I suppose that My = inf,cx h(z) and My = sup,¢ i h(z) are
defined and distinct. As observed at the end of the proof of 281A, My and M; are finite. Set

n=min(ie, 5(My — My)) > 0, h(x) = med(My + 1, h(z), M, —n) for z € K

(definition: 2A1Ac), so that h : K — R is continuous and My 4+ 1 < h(z) < M; — 5 for every # € K. By
281A, there is an fy € A such that |fo(z) — h(x)| < n for every x € K and My +n < fo(x) < My —n for
every € X. Now there is an f € A such that ||f — folleo < 7, so that

f(z) = h(@)| < |f(2) = folw)| + | fo(x) — h(x)| + [A(x) — h(z)| < 3n < €
for every z € K, while
Mo < fo(z) —n < f(z) < folx) +n < My
for every z € X.

281F Corollary: Weierstrass’ theorem Let K be any closed bounded subset of R. Then every
continuous A : K — R can be uniformly approximated on K by polynomials.

proof Apply 281E with X = K (noting that K, being closed and bounded, is compact), and A the set of
polynomials with real coefficients, regarded as functions from K to R.

281G Stone-Weierstrass theorem: third form Let X be a topological space and K a compact

subset of X. Write C,(X;C) for the space of all bounded continuous complex-valued functions on X, so
that Cp(X; C) is a linear space over C. Let A C Cy(X;C) be such that

A is a linear subspace of Cy(X;C);

fxge Aforevery f, g€ A;

xX € A4;

the complex conjugate f of f belongs to A for every f € A;

whenever x, y are distinct points of K there is an f € A such that f(x) # f(y).
Then for every continuous h : K — C and € > 0 there is an f € A such that

|f(z) — h(z)| < € for every = € K,

if K70, sup,ex |f(2)| < sup,ex [h(z)].
proof If K = (), or h is identically zero, we can take f = 0. So let us suppose that M = sup,c |h(z)| > 0.
(a) Set
Ar ={f: f € A, f(x) is real for every z € X}.

Then Ag satisfies the conditions of 281E. I (i) Evidently Ag is a subset of Cp(X) = Cp(X;R), is closed
under addition, multiplication by real scalars and pointwise multiplication of functions, and contains yX.
If x, y are distinct points of K, there is an f € A such that f(z) # f(y). Now
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6 Fourier analysis 281G

Ref=2(f+), Imf=_(f-1])

both belong to A and are real-valued, so belong to Ar, and at least one of them takes different values at x
and y. Q

(b) Consequently, given a continuous function h : K — C and € > 0, we may apply 281E twice to find
fi, f2 € Ap such that

[f1(z) = Re(h(x))] < n,  [fa(z) = Im(h(z))| <n

for every z € K, where n = min(%, M, %e) > 0. Setting g = f1 +ifa, we have g € A and |g(x) — h(z)| < 27

27
for every = € K.

(c) Set M1 = ||g|loo- If My < M we can take f = g and stop. Otherwise, consider the function

o(t) =

_ M-
max(M,\/t)
for t € [0, M?]. By Weierstrass’ theorem (281F), there is a real polynomial p such that |¢(t) — p(t)] < Ml
1
whenever 0 <t < MZ. Note that |g|> = g x § € A, so that
f=gxp(gP) € A

Now

o n__ M
‘p(t)| S ¢(t) + M, é QS(t) + max(M,\ﬁ) o max(M,\/E)

whenever 0 < ¢ < M12, So

M
@ <o)ty <M

for every x € X. Next, if 0 < ¢ < min(M;, M + 27n)?,

_ M=
M+2n

_ U/ _ /R
LpO)] < fE+1-6() < 2 +1

35

Consequently, if z € K, so that
l9(z)| < min(My, [h(z)] + 2n) < min(My, M + 2),
we shall have
_ 2y < 4
11 =p(lg()")| < 5

and
(@) = h(z)] < |g(z) = h(z)] +|g(2)]]1 = p(lg(x)]*)]
<o+ LM +2m) <2+ M +1) <6,
as required.

Remark Of course we could have saved ourselves effort by settling for

supgex | f(2)] < 2sup,ef [A(z)],

which would be quite good enough for the applications below.

281H Corollary Let [a,b] C R be a non-empty bounded closed interval and h : [a,b] — C a continuous
function. Then for any € > 0 there are yg,... ,yn € R and cg, ... ,c, € C such that

|h(z) — > p_g cre™¥ | < € for every x € [a,b],
SUPer |2 ko k€| < sup,efa ) ()]
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281N The Stone-Weierstrass theorem 7

proof Apply 281G with X = R, K = [a,b] and A the linear span of the functions x ~ e as y runs over

R.

2811 Corollary Let S be the unit circle {z : |z| = 1} C C. Then for any continuous function h : S* — C
and € > 0, there are n € N and c_,,,c_p41,... ,Co,... ,cn € Csuch that |h(z) — > p_ cx2¥| < € for every
z e Sh

proof Apply 281G with X = K = S' and A the linear span of the functions z — z* for k € Z.

281J Corollary Let h : [-m, 7] — C be a continuous function such that h(7) = h(—n). Then for any
€ > 0 there are n €N, c_, ... ,c, € C such that |h(z) — Y}_  cxe’ | < ¢ for every z € [—, 7).

proof The point is that & : S' — C is continuous on S', where h(z) = h(argz); this is because arg is
continuous everywhere except at —1, and

limg|_ h(z) = h(—7) = h(n) = limg4, h(x),
lim,egi .1 h(2) = h(n) = h(—1).

Now by 2811 there are ¢_,,... ,c, € C such that |h(z) — Sh__, ckzf| < e for every z € ST, and these
coefficients serve equally for h.

281K Corollary Suppose that » > 1 and that K C R" is a non-empty closed bounded set. Let h : K — C
be a continuous function, and € > 0. Then there are yg, ... ,y, € Q" and ¢y, ... ,c, € C such that

|h(z) — > p_g ke’ “| < e for every xz € K,

SUP,err |2 kg €™V ®| < sup,c i [h(2))],
writing y.x = 25:1 n;€; when y = (n1,...,n,) and z = (&, ... ,&) belong to R".
proof Apply 281G with X = R" and A the linear span of the functions x +— e¢®** as y runs over Q.

281L Corollary Suppose that r > 1 and that K C R" is a non-empty closed bounded set. Let h : K — R
be a continuous function, and € > 0. Then there are yg,... ,y, € R” and ¢y, ... , ¢, € C such that, writing
g(x) =Y p_o ke, g is real-valued and

|h(z) — g(x)] < € for every z € K,
infyer M(y) < g(x) < sup,ec g M(y) for every x € RT.

proof Apply 281E with X = R" and A the set of real-valued functions on R” which are complex linear
combinations of the functions x + e%-%; as remarked in part (a) of the proof of 281G, A satisfies the
conditions of 281E.

281M Weyl’s Equidistribution Theorem We are now ready for one of the basic results of number
theory. I shall actually apply it to provide an example in §285 below, but (at least in the one-variable case)
it is surely on the (rather long) list of things which every pure mathematician should know. For the sake of
the application I have in mind, I give the full 7-dimensional version, but you may wish to take it in the first
place with r = 1.

It will be helpful to have a notation for ‘fractional part’. For any real number x, write <x> for that
number in [0, 1] such that x — <x> is an integer. Now for the theorem.

281N Theorem Let 71, ... ,7, be real numbers such that 1,7y,...,7, are linearly independent over Q.
Then whenever 0 < a; < 8; <1 for each j <,
#{m :m <n, <mn;> € [ay, B] for every j <r}) = H;Zl(ﬁj — o).

n
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8 Fourier analysis 281N

Remark Thus the theorem says that the long-term proportion of the r-tuples (<mn;>,... , <mn,>) which
belong to the interval [a,b] C [0,1] is just the Lebesgue measure pla,b] of the interval. Of course the
condition ‘1,71,...,n, are linearly independent over Q’ is necessary as well as sufficient (281Xg).

proof (a) Write y = (91,... ,m) € R",
<my> = (<mm>,...,<mn,.>) € [0,1[ = [0,1]"
for each m € N. Set I =[0,1] = [0, 1]", and for any function f : I — R write

- . 1 n
L(f) = Hmsup, o s S50 F(<my>),
.. 1 n
L(f) =liminf, THZWL:O f(<my>);
and for f: I — C write
. 1
L(f) = limy, o0 T—HZ;:O f(<my>)

if the limit exists. It will be worth noting that for non-negative functions f, g, h : I — R such that h < f+g,
L(h) < L(f) + L(g),

and that L(cf + g) = cL(f) + L(g) for any two functions f, g : I — C such that L(f) and L(g) exist, and
any ¢ € C.

(b) I mean to show that L(f) exists and is equal to [ ; f for (many) continuous functions f. The key step
is to consider functions of the form

f(x) — eZm‘k.x’
where k = (k1,...,Kk,) € Z". In this case, if k # 0,

because 1,71, ... ,n, are linearly independent over Q. So
1 < L&
L = lim — e2mik.<my> _ imn e2mimk.y
(f) n—oo n+l n—oo n+1 Z
m=0 m=0

(because mk.y — k.<my> = 22:1 kj(mmn; — <mn;>) is an integer)

i 1— e271'1'(71+1)k.y
T oo (n+ 1)(1 — e2riky)

(because e2™*-Y =£ 1)

:O7

2mi(n+k-y| < 2 for every n. Of course we can also calculate the integral of f over I, which is

/f(x)da: = /eQﬂik'mdz‘ = /He%m-’fjdx
I I 155

1 1" )
:/ / [[e%de, ... d&
0 0 5y

1 1
= / >t de, / XM de) = 0
0

0

because |1 —e

(writing = (&1,...,&))

because at least one x; is non-zero, and for this j we must have
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281N The Stone-Weierstrass theorem 9

1

2K

(€2mimi — 1) = 0.

1 o £
fo e2mik;E; df] _
So we have L(f) = [, f =0 when k # 0. On the other hand, if k = 0, then f is constant with value 1, so

1

L(f) = limy, 00 —— ol

—> o f(<my>) =lim, ool =1= fl f(x)dx

(c) Now write 9 = [0, 1]\ ]0,1[, the boundary of I. If f: I — C is continuous and f(z) = 0 for x € 91,
then L(f) = [, f. P As in 2811, let S* be the unit circle {z : z € C, |2| = 1}, and set K = (S')" C C". If
we think of K as a subset of R2", it is closed and bounded. Let ¢ : K — I be given by

1 T
¢(C1,...,Cr):(§+%’“. 7+arg7r§)
for ¢1,...,¢ € S'. Then h = f¢: K — C is continuous, because ¢ is continuous on (S*\ {~1})" and

for any z € K\ (S*\ {—1})". (Compare 281J.) Now apply 281G with X = K and A the set of polynomials
in¢,...,G, Cfl, ..., ¢ to see that, given € > 0, there is a function of the form

9(2) = 2pes -G
for some finite set J C Z" and constants ¢ € C for k € J, such that
lg(z) — h(z)| < € for every z € K.
Set
§(z) = g(emia-1 _ emi(&-1)) = Shes cpemik - (20-1) = e, (1) kel o2mik.w
so that g¢ = g, and see that
sup, e [5(x) — £(2)] = sup.cx |g<z> ~h(z) <
Now g is of the form dealt with in (a), so we must have L(§) = [; §. Let ng be such that

Lﬁéfﬁgzlﬂékmw>ﬂée

for every n > ng. Then

[ = [al< [ 1f—agl<e

and
1 = 1 = 1 =
T—H EO g(<my>) " E f <my>)| ST E g(<my>) — f(<my>)|
m—
1
< p—t (n+1le=¢

for every n € N. So for n > ng we must have

Y om=o f(<my>) — fl f] < 3e.

As € is arbitrary, L(f) = fl f, as required. Q

1
n+1

(d) Observe next that if a, b €]0,1[ =]0,1[", and € > 0, there are continuous functions fi, fo such that
fr<xlab < f2<x101 [ fa— [, i<e

P This is elementary. For n € N, define h,, : R — [0, 1] by setting h,(§) =01if £ <0,2"¢if 0 < &< 27™
and 1if € > 27", Set

fin(@) = ITjo1 ha(§5 — )R (B85 — &),
fon(@) = TTj=1 (1 = by — §))(1 = ha(& = By))

D.H.FREMLIN



10 Fourier analysis 281N
for x = (&1,...,&) € R". (Compare the proof of 2420a.) Then f1,, < x[a,b] < fa, for each n, fo, < x]0,1]
for all n so large that
27" < min(min; <, a;, minj<, (1 = 5;)),
and limy, oo fon(z) — fin(z) = 0 for every x, so
limy, o0 [, fan = [, fin = 0.
Thus we can take f1 = fi,, fo = fon, for any n large enough. Q

(e) It follows that if a, b € ]0,1] and a < b, L(x[a,b]) = u[a,b]. B Let € > 0. Take f1, f2 asin (d). Then,
using (c),

Lixla, b)) < L(fo) = L(f2) = [, f2 < [, i+ e < pla,b] + €
L(x[a,b]) > L(f1) = L(f1) = [, f1 > [, f2— € > pla,b] — ¢,

pla,b] — e < L(x[a, b)) < L(x[a,0]) < pla, b] + ¢
As € is arbitrary,
pla, b] = L(x|a, b)) = L(x[a,b]) = L(x[a,b]),
as required. Q

(f) To complete the proof, take any a, b € I with a < b. For 0 < ¢ < %, set I. = [e1, (1 — €)1], so that I,
is a closed interval included in ]0,1[ and pl. = (1 — 2¢)". Of course L(xI) = ul =1, so

L(x(I\ 1)) = L(xI) — L(x1c) = 1 — pul.,

and

u[a, b] -1+ :Ufle

IN

[a,b] + ple — p(la, b] U L) = p([a, b] N L)
(x([a,b] N 1e)) < L(x([a, b]

(x([a,8])) < L(x([a,b] N I

(x([a, 0] N 1e)) +1 = pl
([a,b) N I) + 1 — pl. < pla,b] +1 — pl..

u
L

IN

L
L
u

As € is arbitrary,

pla,b] = L(x[a,b]) = L(x[a,b]) = L(x[a, b)),

as stated.

281X Basic exercises (a) Let A be the set of those bounded continuous functions f : R” x R™ — R
which are expressible in the form f(z,y) = > ;_, gx(2)g(y), where all the g, g}, are continuous functions
from R" to R. Show that for any bounded continuous function A : R” x R™ — R and any bounded set
K CR" x R" and any € > 0, there is an f € A such that |f(z,y) — h(z,y)| < € for every (z,y) € K and

Supx,yeR’“ |f(x,y)| < Supx,yE]RT |h(.13, y)|

(b) Let K be a closed bounded set in R”, where r > 1, and h : K — R a continuous function. Show that
for any € > 0 there is a polynomial p in r variables such that |h(z) — p(z)| < € for every z € K.

>(c) Let [a,b] be a non-empty closed interval of R and h : [a,b] — R a continuous function. Show that
for any € > 0 there are yg,... ,Yn,00,--- ,an,bg, ... ,b, € R such that

|h(z) — > p_o(ak cosypx + by sinyga)| < € for every z € [a, b],

SUD,er | p—o (@ cos yra + by sinypx)| < sup,e(q g [R(2)]-

MEASURE THEORY



281Ye The Stone-Weierstrass theorem 11

(d) Let h be a complex-valued function on |—m, 7] such that |h|P is integrable, where 1 < p < co. Show
that for every ¢ > 0 there is a function of the form z — f(z) = ZZ:_R cre™ where c_y, ... ¢, € C, such
that [7_|h— f|P <e. (Compare 244H.)

>(e) Let h: [—m, 7] — R be a continuous function such that h(7) = h(—m), and € > 0. Show that there

are ag,... ,Qn,b1,...,b, € R such that

|h(x) — %ao — >k (apcoskx + by sinkx)| < e

for every x € [—m, 7.
(f) Let K be a non-empty closed bounded set in R", where r > 1, and h : K — R a continuous function.
Show that for any € > 0 there are yo,... ,yn € R", ag,... ,an,bo,... by € R such that
|h(x) — > p_o(ak cos(yk . @) + by sin(yy . z))| < € for every z € K,

SUP, g [2oj—o(@k cOS(yk - ) + brsin(ye . 2))| < sup,c g [h(@)],
interpreting y.x as in 281K.

(g) Let y1,. .. ,y, be real numbers such that 1,y1,... ,y, are not linearly independent over Q. Show that
there is a non-trivial interval [a,b] C [0,1] C R" such that (<my;>,...,<my,>) ¢ [a,b] for every m € Z.
(h) Let n1, ... ,n, be real numbers such that 1,7;,... ,n, are linearly independent over Q. Suppose that

0 <a; < B <1 for each j < r. Show that for every € > 0 there is an ny € N such that
r 1 .
[Tj=1(8; —aj) — n—ﬂ#({m tk<m < k+4+n, <mn;> € oy, B;] for every j <r})| <e

whenever n > ng and k € N. (Hint: in the proof of 281N, set

T . 1 k+n
L(f) = 10 $p, o SUPyery g S5 F(<my>).)

281Y Further exercises (a) Show that under the hypotheses of 281A, there is an f € A, the || ||co-
closure of A in Cy(X), such that f[K = h. (Hint: take f = lim,,_,, f, where

an+1 - anOO < SUPze i |f7l(x) - h($)| < 27
for every n € N.)

(b) Let X be a topological space and K C X a compact subset. Suppose that for any distinct points z,
y of K there is a continuous function f : X — R such that f(z) # f(y). Show that for any » € N and any
continuous i : K — R” there is a continuous f : X — R" extending h. (Hint: consider r = 1 first.)

(c) Let (X;)ics be any family of compact Hausdorff spaces, and X their product as topological spaces.
For each ¢, write C'(X;) for the set of continuous functions from X; to R, and 7; : X — X for the coordinate
map. Show that the subalgebra of C(X) generated by {fm; : i € I, f € C(X;)} is || ||co-dense in C(X).
(Note: you will need to know that X is compact, and that if Z is any compact Hausdorff space then for any
distinct z, w € Z there is an f € C(Z) such that f(z) # f(w). For references see 3A3J and 3A3Bf in the
next volume.)

(d) Let X be a topological space and K a compact subset of X. Let A be a linear subspace of the
space Cp(X) of bounded real-valued continuous functions on X such that |f| € A for every f € A. Let
h: K — R be a continuous function such that whenever x, y € K there is an f € A such that f(z) = h(x)
and f(y) = h(y). Show that for every € > 0 there is an f € A such that |f(z) — h(z)| < € for every = € K.

(e) Let X be a compact topological space and write C'(X) for the set of continuous functions from X to
R. Suppose that h € C(X), and let A C C(X) be such that
A is a linear subspace of C(X);

D.H.FREMLIN



12 Fourier analysis 281Ye

either |f| € A for every f € A or f x g€ A for every f, g€ A or f x f € A for every f € A;
whenever z, y € X and 6 > 0 thereis an f € A such that |f(z)—h(z)| < and |f(y)—h(y)| <.
Show that for every e > 0 there is an f € A such that |h(z) — f(x)| < € for every z € X.

(f) Let X be a compact topological space and A a ||||co-closed linear subspace of the space C(X) of
continuous functions from X to R. Show that the following are equiveridical:
(i) |f| € A for every f € A;
(ii) f x f € A for every f € A;
(iii) fx ge Aforall f, g€ A,
and that in this case A is closed in C'(X) for the topology defined by the pseudometrics
(f:9) = [f (@) = g(2)] : C(X) x C(X) = [0,00]

as x runs over X (the ‘topology of pointwise convergence’ on C'(X)).

(g) Show that under the hypotheses of 281G there is an f € A, the || ||oo-closure of A in Cy(X;C), such
that fIK = h and (if K #0) ||f]lcc = supgex |h(2)].

(h) Let y € R be irrational. Show that for any Riemann integrable function f : [0,1] — R,
1 . n
fo f(z)dx = limy, o0 Do f(<my>),

writing <mgy> for the fractional part of my. (Hint: recall Riemann’s criterion: for any € > 0, there are
ag,...,ap with0=a9g<a; <...<a,=1and

1
n+1

Z{a] - aj_l :j S n? Susz[aj_haj] f(ﬂj) - infiﬂe[(lj—l,aj] f(.'l:) Z E} S 6')

(1) Let (¢, )nen be asequence in [0, 1]. Show that the following are equiveridical: (i) lim,, o %H Sono f(tr)
= fol f for every continuous function f :[0,1] — R; (ii) lim, %H Yoreo f(t) = fol f for every Riemann
integrable function f : [0,1] — R; (iii) liminf, %H#({k :k < n,tp € G}) > pG for every open set
G C [0,1], where p is Lebesgue measure on R; (iv) lim, o n%rl#({k‘ k< n,tp < a}) = a for every
a € [0,1]; (v) limp—oo %_H#({k ik <n,ty € E}) = uFE for every E C [0,1] such that u(int E) = uE (vi)
lim,, o0 r%&-l ZZ:O e?mimt. — () for every m > 1. (Cf. 273J. Such sequences (t,),en are called equidis-
tributed or uniformly distributed.)

(j) Show that the sequence (< In(n + 1)>)pen is not equidistributed.

(k) Give [0,1]" its product measure A\. Show that A-almost every sequence (t,)nen € [0, 1]V is equidis-
tributed in the sense of 281Yi. (Hint: 273J.)

(1) Let f : [0,1] — C be a continuous function. Show that if v € R is irrational then lim, o + foa f(<t>, <yt>)dt

= f[o 2 f- (Hint: first consider functions of the form x ~ e27ik-2))

(m) A sequence (t,)nen in [0,1] is well-distributed (with respect to Lebesgue measure p) if
1iminfwocinfleNn$l#({k I<k<l+n,ty€G})>ud

for every open set G C [0, 1] (i) Show that (t,,),en is well-distributed iff lim,, o sup;cy | fol f—n%_l Zi:;’ll (tr)| =
0 for every continuous f : [0,1] — R. (ii) Show that (<na>),en is well-distributed for every irrational a.

281 Notes and comments I have given three statements (281A, 281E and 281G) of the Stone-Weierstrass
theorem, with an acknowledgment (281F) of Weierstrass’ own version, and three further forms (281Ya,
281Yd, 281Yg) in the exercises. Yet another will appear in §4A6 in Volume 4. Faced with such a multiplicity,
you may wish to try your own hand at writing out theorems which will cover some or all of these versions. I
myself see no way of doing it without setting up a confusing list of alternative hypotheses and conclusions.
At which point, I ask ‘what is a theorem, anyway?’, and answer, it is a stopping-place on our journey; it is
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282Ae Fourier series 13

a place where we can rest, and congratulate ourselves on our achievement; it is a place which we can learn
to recognise, and use as a starting point for new adventures; it is a place we can describe, and share with
others. For some theorems, like Fermat’s last theorem, there is a canonical statement, an exactly locatable
point. For others, like the Stone-Weierstrass theorem here, we reach a mass of closely related results, all
depending on some arrangement of the arguments laid out in 281A-281G and 281Ya (which introduces a
new idea), and all useful in different ways. I suppose, indeed, that most authors would prefer the versions
281Ya and 281Yg, which eliminate the variable e which appears in 281A, 281E and 281G, at the expense of
taking a closed subspace A. But I find that the corollaries which will be useful later (281H-281L) are more
naturally expressed in terms of linear subspaces which are not closed.

The applications of the theorem, or the theorems, or the method — choose your own expression — are
legion; only a few of them are here. An apparently innocent one is in 281Xa and, in a different variant, in
281Yc; these are enormously important in their own domains. In this volume the principal application will
be to 285L below, depending on 281K, and it is perhaps right to note that there is an alternative approach
to this particular result, based on ideas in 282G. But I offer Weyl’s equidistribution theorem (281M-281N)
as evidence that we can expect to find good use for these ideas in almost any branch of mathematics.

Version of 24.9.09

282 Fourier series

Out of the enormous theory of Fourier series, I extract a few results which may at least provide a basis for
further study. I give the definitions of Fourier and Fejér sums (282A), with five of the most important results
concerning their convergence (282G, 282H, 282J, 282L, 2820). On the way I include the Riemann-Lebesgue
lemma (282E). I end by mentioning convolutions (282Q).

282A Definition Let f be an integrable complex-valued function defined almost everywhere in |—, 7].

(a) The Fourier coefficients of f are the complex numbers

_ 1 " —ikx
k= o [w flx)e " dx
for k € Z.

(b) The Fourier sums of f are the functions

n

sn(x) = Z cpetk®

k=—n

for x € |-m, 7], n € N.

(c) The Fourier series of f is the series > p- __ cxe®™®, or (because we ordinarily consider the symmetric

partial sums s,,) the series co + > po; (cre™™ + c_pe ™).

(d) The Fejér sums of f are the functions

m

g _L S

m—m+1§ n
n=0

for m € N.

(e) Tt will be convenient to have a further phrase available. If f is any function with dom f C |-, ],
its periodic extension is the function f, with domain | J; o, (dom f 4 2k7), such that f(z) = f(z — 2km)
whenever k € Z and x € dom f + 2km.

(© 1996 D. H. Fremlin
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14 Fourier analysis 282B
282B Remarks I have made two more or less arbitrary choices here.

(a) T have chosen to express Fourier series in their ‘complex’ form rather than their ‘real’ form. From the
point of view of pure measure theory (and, indeed, from the point of view of the nineteenth-century origins
of the subject) there are gains in elegance from directing attention to real functions f and looking at the
real coefficients

a = %/ f(z) cos kx dx for k € N,

by :%/ f(z)sin kx dx for k > 1.

If we do this we have

and for £ > 1 we have
1 ) 1 . )
cr = 5(011@ —ibg), c_p = i(ak +iby), ap=cp+cp, b =1i(ck —c_p),

so that the Fourier sums become

n
sn(x) = %ao + Z ay cos kx + by, sin kz.
k=1

The advantage of this is that real functions f correspond to real coefficients ay, by, so that it is obvious that
if f is real-valued so are its Fourier and Fejér sums. The disadvantages are that we have to use a variety of
trigonometric equalities which are rather more complicated than the properties of the complex exponential
function which they reflect, and that we are farther away from the natural generalizations to locally compact
abelian groups. So both electrical engineers and harmonic analysts tend to prefer the coefficients cg.

(b) T have taken the functions f to be defined on the interval |—m, 7] rather than on the circle St = {2 :
z € C, |z| = 1}. There would be advantages in elegance of language in using S', though I do not recall often
seeing the formula

ck = fzkf(z)dz

which is the natural translation of ¢; = % [ € f(z)dx under the substitution x = argz, dv = 27v(dz).
However, applications of the theory tend to deal with periodic functions on the real line, so I work with
]—m, 7], and accept the fact that its group operation +o, writing « +2, y for whichever of x +y, = +y + 2,
x 4y — 27 belongs to |—n, 7], is less familiar than multiplication on S?.

(c) The remarks in (b) are supposed to remind you of §255.

(d) Observe that if f =, g then f and g have the same Fourier coefficients, Fourier sums and Fejér
sums. This means that we could, if we wished, regard the cg, s, and 0., as associated with a member of L{,
the space of equivalence classes of integrable functions (§242), rather than as associated with a particular
function f. Since however the s, and o, appear as actual functions, and since many of the questions we
are interested in refer to their values at particular points, it is more natural to express the theory in terms
of integrable functions f rather than in terms of members of Lf.

282C The problems (a) Under what conditions, and in what senses, do the Fourier and Fejér sums s,,
and oy, of a function f converge to f?

(b) How do the properties of the double-ended sequence (cy)rez reflect the properties of f, and vice
versa?!

MEASURE THEORY



282D Fourier series 15

Remark The theory of Fourier series has been one of the leading topics of analysis for nearly two hundred
years, and innumerable further problems have contributed greatly to our understanding. (For instance: can
one characterize those sequences (ci)rez which are the Fourier coefficients of some integrable function?)
But in this outline I will concentrate on the question (a) above, with one and a half results (282K, 282Rb)
addressing (b), which will give us more than enough material to work on.

While most people would feel that the Fourier sums are somehow closer to what we really want to know,
it turns out that the Fejér sums are easier to analyse, and there are advantages in dealing with them first.
So while you may wish to look ahead to the statements of 282J, 282L and 2820 for an idea of where we
are going, the first half of this section will be largely about Fejér sums. Note that in any case in which we
know that the Fourier sums converge (which is quite common; see, for instance, the examples in 282Xh and
282Xo0), then if we know that the Fejér sums converge to f, we can deduce that the Fourier sums also do,
by 273Ca.

The first step is a basic lemma showing that both the Fourier and Fejér sums of a function f can be
thought of as convolutions of f with kernels describable in terms of familiar functions.

282D Lemma Let f be a complex-valued function which is integrable over |-, 7], and
= %f_ﬂ f@)e *ode,  s,(x) =3, cke*®, o (z) = #HZZLO sn ()

its Fourier coefficients, Fourier sums and Fejér sums. Write f for the periodic extension of f (282Ae). For
m € N, write

_ 1—cos(m+1)t
Ym(t) = 2m(m~+1)(1—cost)

for 0 < [¢t| < . (If you like, you can set ¢, (0) = 2t to make 1, continuous on [—m, 7].)
(a) For each n € N, z € |—m, ],

) = & [ 5o Dy

2 J_ . sin £ (z—t)

a0 : 1

_ 1 5 sin(n+3)t

T on / f(x + t) sin 2t dt
—T 2
™ : 1

_ 1 B 51n(n+§)t

Cor o f@ =2 t) sin 3t dt,

writing © —a, ¢ for whichever of z — t, x — t — 27, © — ¢ + 27 belongs to |—m, 7].
(b) For each m € N, z € |—m, 7],

/ F + Om(t)dt
A 0+ F(@ - ) m(b)dt

/f £~ Ol (1)
(c) For any n € N,

1 sm(nJr ! sin(n+2 )t 1 1 g sin(n+%)tdt 1
21 sin 1t T om 0 sin 1¢ T2 or _p  singt o
(d) For any m € N,
(1) 0 <Y (t) < ?1 for every t;
(ii) for any 6 > 0, lim,,— 00 ¥m (t) = 0 uniformly on {t: § < |¢t| < 7};
(iif)

1

iii fi, - foﬂ U = . ffﬂ thm = 1.
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16 Fourier analysis 282D

proof Really all that these amount to is summing geometric series.

(a) For (a), we have

n int efi(nJrl)t

} { ekt ¢ 7€ 7
1 —e it

k=—n
ein+3)t _ p—i(n+3)t sin(n + %)t

1, 1 .
ezt — ezt sin %t

So

= 1
- Y a2 [ (3 e
2

k=—n k=—n
sin(n+1)(z— t sin(n+1)(z—1)
“on / F®) C sini(z—t) 5 (x—t) / f sin 2 (z—t) iy W

27T f(ﬂ? i t) sm(.n—i- di— L / f i t sin .n—&- )tdt

—TT—x

sin(n+2)t
sin %t
the same as the integral from ™ — x to .

because f and t — are periodic with period 2w, so that the integral from —7 — x to —7 must be

For the expression in terms of f(z —a, t), we have

sm n+ ) 1 (" = sin(n+3)(—t)
sn( gﬂ/ o+ 0=t = ﬂf_wf@‘”mdt
(substituting —t for t)

sin = t

/ f " sm (n+2 ) sin(nt5)t o

because (for z, t € |—m,7|) f(x —ar t) = f(x — t) whenever either is defined, and sin is an odd function.

(b) In the same way, we have

5t + 3t =235+ el 3
n=0 n=0
1 — etilm+1)t 1 — ei(m+1)t
Im(e”t ‘ ) =7m 671_
1—eit efizt ezt
1 — eilm+1)t (1 — eilm+1)t
—Tm(- )= m(w
—2isin 5t 2sin 5t
1 —cos(m+ 1)t
=
2sin 5t
So
m  sin(n4+3)t  1—cos(m41)t _ 1—cos(m+1)t
2 n=o anlt T zew?lt T Tocost 27 (m + 1)1 (¢).
Accordingly,
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as in (a), because cos and v, are even functions. For the same reason,

/O o mdi = [ Fat om0

—T

SO

aula) = [ (Flet 0+ Fa— ) m(t)dt

0

(c) We need only look at where the formula %ﬁ%)t

1 sin(n+ 3 )t ikt
— [ —2= et dt
2r sin 1t Z

I I p=—n

came from to see that

—Qﬂ ’ 1+22005kzt

for both I = [—,0] and I = [0, 7], because [; cosktdt = 0 for every k # 0.

(d) (i) ¥m(t) > 0 for every ¢ because 1 — cos(m + 1)t, 1 — cost are always greater than or equal to 0. For
the upper bound, we have, using the constructions in (a) and (b),

‘smn+ )t’—’Z 7kt’<2n+1

sin =t
k=—n

for every n, so

Yt) = 5 Z““?"*é)t

2m(m+1) 4= sin 1t
1 . _ m+1
< oty 2 2=
n=0
(i) I 6 < |¢] <,
Y (t) < - < ! -0

w(m+1)(1—cost) w(m+1)(1—cosd)
as m — 00.

(iii) also follows from the construction in (b), because

smn+ 1 1 1
/Iwm_ 7rm+1)z/ sin = t m+125_5
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18 Fourier analysis 282D

for both I = [—m,0] and I = [0, 7], using (c).

Remarks For a discussion of substitution in integrals, if you feel any need to justify the manipulations in
part (a) of the proof, see 263J.

The functions
sin(n+3)t

P
sm2t

1—cos(m+1)t

b (m~+1)(1—cost)

.t

are called respectively the Dirichlet kernel and the Fejér kernel.
I give the formulae in terms of f(z —2,t) in (a) and (b) in order to provide a link with the work of 2550.

282E The next step is a vital lemma, with a suitably distinguished name which (you will be glad to
know) reflects its importance rather than its difficulty.

The Riemann-Lebesgue lemma Let f be a complex-valued function which is integrable over R. Then

limy oo [ f(z)e™¥de = lim,_, o [ f(x)e"¥"dz = 0.
proof (a) Consider first the case in which f = x]a, b, where a < b. Then

z)e”Wridx| = e~ Wy = |— (e~ Wb — e~ Wa)| < =
S S@e s = | [} eveda] = |- <2
if y # 0. So in this case the result is obvious.

(b) It follows at once that the result is true if f is a step-function with bounded support, that is, if there
are ap < a1 ... < ay such that f is constant on every interval |a;_1, ;[ and zero outside [ag, a,].

(c) Now, for a given integrable f and e > 0, there is a step-function g such that [ |f — g| < € (2420a).
So

[ f@)emvede — [ g(x)e v*dz| < [|f(x) - g(z)|de < e
for every y, and

limsup, . | [ f(z)e~dz| <,

limsup,,_, ., |f flx)e~wodz| <e.

As € is arbitrary, we have the result.

282F Corollary (a) Let f be a complex-valued function which is integrable over |—m, 7], and {c)rez
its sequence of Fourier coefficients. Then limy_, o ¢ = limg_,_ o ¢ = 0.
(b) Let f be a complex-valued function which is integrable over R. Then lim,_,« [ f(z)sinyzdz = 0.

proof (a) We need only identify

cp = i/ f(x)e e dy

with [ g(z)e~**dz, where g(z) = f(z)/2n for x € dom f and 0 for |z| > .
(b) This is just because

f f(z)sinyx de = %(f f(x)e*dr — f f(x)e~¥dx).

282G We are now ready for theorems on the convergence of Fejér sums. I start with an easy one, almost
a warming-up exercise.

Theorem Let f : |—m, 7] — C be a continuous function such that lim;|_. f(¢t) = f(7). Then its sequence
(0m)men of Fejér sums converges uniformly to f on |—m, 7).
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proof The conditions on f amount just to saying that its periodic extension f is defined and continu-
ous everywhere on R. Consequently it is bounded and uniformly continuous on any bounded interval, in
particular, on the interval [—2m, 27]. Set K = supy <o, |f(t)| = sup,ej_r - [f(t)|. Write

1—cos(m+1)t
2m(m~+1)(1—cost)

Um (t) =

for m € N, 0 < |t| <, as in 282D.
Given € > 0 we can find a § € ]0, 7] such that | f(x+t) — f(x)| < € whenever = € [, 7] and [¢t| < J. Next,
we can find an mg € N such that M, < ;5 for every m > mo, where M, = sups<|sj<r Vm(t) (282D(d-ii)).

Now suppose that m > mg and z € |—,7]. Set g(t) = f(z +t) — f(x) for |t| < . Then |g(t)| < 2K for all
t € [—m 7] and |g(t)| < eif [t] <6, so

-9 é ™
[ axvnl< [ lalxtnt [ lol s+ [lalx v
5
<2M,, K(m —9) +e/ U + 2M, K (7 — )
-6
<A4rM, K + ¢ < 2¢.
Consequently, using 282Db and 282D(d-iii),

(@)~ 1@ = [ (Fla+6) = om0t < 2

for every m > my; and this is true for every « € |—m, 7|. As € is arbitrary, (0,,)men converges to f uniformly
on |—m, 7.

282H I come now to a theorem describing the behaviour of the Fejér sums of general functions f. The
hypothesis of the theorem may take a little bit of digesting; you can get an idea of its intended scope by
glancing at Corollary 2821.

Theorem Let f be a complex-valued function which is integrable over |—7, 7], and {(0.,)men its sequence
of Fejér sums. Suppose that z € |—m, 7| and ¢ € C are such that

)

o1 3 s
161&}3 ; [flz+1t)+ f(x —t) —2¢|dt =0,

writing f for the periodic extension of f, as usual; then lim, oo om(x) =c.

proof Set ¢(t) = | f(x+1t)+ f(x—t) —2¢| when this is defined, which is almost everywhere, and ®(t fo o,

which is defined for every ¢ > 0, because f is integrable over |—n, 7] and therefore over every bounded 1nterval.
As in 282D, set

1—cos(m+1)t
2m(m~+1)(1—cost)

U (1) =
for m e N, 0 < |¢t| < 7. We have
lom(z) —c| = |/ fl@+t)+ flz —t) — 2¢)Pm(t dt|</ B(t)
by (b) and (d) of 282D.

Let € > 0. By hypothesis, lim; o ®(¢)/t = 0; let § € |0, ] be such that ®(t) < et for every ¢ € [0, d]. Take
any m > 7/d. I break the integral foﬂ ¢ X 1, up into three parts.

(i) For the integral from 0 to 1/m, we have

1/m 1/m 1 1 1 1
/ ¢X7//m§/ ﬂ(b:ﬂ@(i)ge(rrﬂr)ée,
0 0
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because ¥y, (1) < ZEL for every ¢ (282D(d-i)).

(ii) For the integral from 1/m to 0, we have

J 1 J 1 T S p(t)
/1/mqb>< Ym < 2w(m + 1) /1/m¢(t)1—costdt = dm+1) Ji/m, tTdt

2
(because 1 — cost > 2% for |t| <)
s

(integrating by parts — see 225F)

5
us € 2e
< - (= -
~4(m+1) (5 +/1/m tzdt)
(because ®(t) < et for 0 < ¢ < 9)
s

m €
— 492 ks
+ 2em 5

= 4(m+1)(5

)< TE _|_E
2

< < 2e.
= A(m+1)0 EVRECTEE

N

(iii) For the integral from ¢ to m, we have

s s 1
< 3
/5 ¢><¢m_/5 7r(m_‘_l)(l_ws(s)qﬁ—>0amm—)oo

because ¢ is integrable over [—m, 7r]. There must therefore be an mgy € N such that

/:¢><1/Jm§6

for every m > my.

Putting these together, we see that

/ O X Uy <€+ 2+ €=4e
0

for every m > max(mo, §). As € is arbitrary, lim,, ;o 0m(z) = ¢, as claimed.

2821 Corollary Let f be a complex-valued function which is integrable over |—m, 7], and (0., )men its
sequence of Fejér sums.

(a) f(z) = lim,, 00 o (x) for almost every x € |—m, 7).

(b) limpy—so0 J"_|f — om| = 0.
(c) If g is another integrable function with the same Fourier coefficients, then f =, g.
(d) If z € |]—m,n[ is such that a = limyecdom f,112 f(t) and b = limycdom f,¢« f(t) are both defined in C,
then

T o0 0 (%) = £ (a + D).
(e) If a = lim¢cdom f,¢4x f(t) and b = limscdom f,t)—x f(t) are both defined in C, then
Tt o0 0 () = 2 (a + D).
(f) If f is defined and continuous at x € |—m, 7|, then
limy, 00 om () = f(2).
(g) If f, the periodic extension of f, is defined and continuous at 7, then

limyy,—s 00 o () = f(71).
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proof (a) We have only to recall that by 223D

4
lim sup 2 / o +1) + flo— 1) — 2f(2)|dt
510 0

0 0
<timsupd ([ If@+0) = @it + [ 1f@ 1)~ fa)ld)

410

1 4
- limsupg[5 F(z+1) — f(a)|dt =0

610
for almost every = € |—m, 7].
(b) Next observe that, in the language of 2550,
Om = [ * U,
by the last formula in 282Db. Consequently, by 2550d,
lomlly < 112 llbmlls,

writing || |l1 = 7 _|om|. But this means that we have
f(z) =limy, o0 om(z) for almost every z, limsup,,_, . llomllt < | fl1;

and it follows from 245H that lim,, o ||f — om|l1 = 0.

(c) If g has the same Fourier coefficients as f, then it has the same Fourier and Fejér sums, so we have

9(x) = limy 00 om () = f()

almost everywhere.

(d)-(e) Both of these amount to considering x € |—m, 7] such that

UMy gom 7,610 ft)=a, MMy e qom 7,100 fy=bo.

Setting ¢ = 3 (a+b), ¢(t) = |f(z41)+ f(z —t) —2¢| whenever this is defined, we have limseqom .40 ¢(t) = 0,
so surely lims o f(f ¢ = 0, and the theorem applies.

(£)-(g) are special cases of (d) and (e).
282J I now turn to conditions for the convergence of Fourier sums. Probably the easiest result — one
which is both striking and satisfying — is the following.

Theorem Let f be a complex-valued function which is square-integrable over |—m, 7|. Let (ck)rez be its
Fourier coefficients and (s, )nen its Fourier sums (282A). Then

. [e’s) 1 T
() SR oo lerl? = o= [T, 112,
(i) limpyoe 7 _[f = sn|?> = 0.

proof (a) I recall some notation from 244N /244P. Let L2 be the space of square-integrable complex-valued
functions on |—m, wr]. For g, h € L4, write

(o) = | Tgxh lglle = Vglg).

—T

Recall that ||g+h|2 < ||lgll2 +]||h]l2 for all g, h € £2 (244Fb/244Pb). For k € Z, x € |—m, 7| set ey (z) = e'*®,
so that

(flex) = f(z)e~* e de = 27y
Moreover, if |k| < n,

D.H.FREMLIN



22 Fourier analysis 282J

(snlex) = Z Cj/ ek dy — 27y,
j=—m /-7
because
/ ereT ke dy — o if § =k,
=0if j #k.
So

(f — snlex) = 0 whenever |k| < n;
in particular,

n

(f = snlsn) = Z ck(f — snlex) =0

k=—n
for every n € N.

(b) Fix € > 0. The next element of the proof is the fact that there are m € N, a_,,, ... ,a;, € C such that
|f = hll2 < e, where h =" arey. B By 244Hb/244Pb we know that there is a continuous function
g : [=m,n] — C such that ||f — gl < §. Next, modifying g on a suitably short interval |m —d, 7], we
can find a continuous function g; : [~7, 7] — C such that ||g — g1]|2 < § and gi(—7) = g1(7). (Set M =
SUD, e[ 1 [9(7)], take & € ]0,27] such that (2M)?5 < (¢/3)?, and set g1 (7 —td) = tg(m—&)+(1—t)g(—) for
t € [0,1].) Either by the Stone-Weierstrass theorem (281J), or by 282G above, there are a_,,, ... ,a such

that [g1(z)—>_pe_,, are™®| < 3\/6ﬂ for every x € [—, m]; setting h = )L axex, we have [|g1—hl2 < i,

so that

If =Rl <IIf —gll2+llg —g1ll2 + g1 = hll2 < e Q

(c) Now take any n > m. Then s, — h is a linear combination of e_,,... ,e,, so (f — su|sp, —h) = 0.
Consequently
¢ > (f = hlf—h)
= (f = snlf = sn) + (f = snlsn = h) + (sp = h|f = sn) + (sn — hlsn — h)
= If = sall3 + llsn = hll3 2 [If = sall3.
Thus ||f — su||2 < € for every n > m. As ¢ is arbitrary, lim,, o ||f — s, 3 = 0, which proves (ii).

(d) As for (i), we have

n

n
1 _ 1 1
Do lel =2 D Enlsaler) = - (salsn) = 5-llsall3-

k=—n k=—n
But of course
llsnlla = [1fll2] < llsn = fllz =0
as n — 00, SO

oo

1. 1 1 ["
>l = 55 Jim lsal = 5ol 1 = o [ 11

k=—oc0 -

as required.

282K Corollary Let L% be the Hilbert space of equivalence classes of square-integrable complex-valued
functions on |-, 7], with the inner product
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s

(flg*)=[ fxg

—T

and norm

11l = ([ )2

writing f* € L2 for the equivalence class of a square-integrable function f. Let ¢Z(Z) be the Hilbert space
of square-summable double-ended complex sequences, with the inner product

and norm

lello = (3 fenl?)?

k=—o00

for ¢ = (ck)kez, d = (di)kez in €2(Z). Then we have an inner-product-space isomorphism S : L& — (4(Z)
defined by saying that

[ 1 ™ —ikx
SR = = [T fa)ehed
for every square-integrable function f and every k € Z.

proof (a) As in 282J, write L2 for the space of square-integrable functions. If f, g € £L2 and f* = ¢*, then
f =a.e. 9, SO

L 4 —ikx _ L 4 —ikx
\/ﬂfﬂf flx)e dx = mfiﬂg(m)e dx
for every k € N. Thus S is well-defined.
b) S is linear. P This is elementary. If f, g € £2 and ¢ € C,
C

S+ 90 = 7= [ () + glae s

— V% /_: flx)e e dy + V% /_: g(a)e~ e dy
= S(f*)(k) +S(g°) (k)
for every k € Z, so that S(f* +g°) = S(f*) + S(g°*). Similarly,
S(ef k) = 7= [ ef e de = = [T f(a)e™ " dw = eS(f*)(k)
for every k € Z, so that S(cf*) = cS(f*). Q
(c) If f € L2 has Fourier coefficients c, then S(f*) = (cxV27) ez, so by 282J(i)

IsUg=2n 3l = [ 12 =151

k=—o00

Thus Su € (4(Z) and ||Sul|2 = ||ul|2 for every u € LZ. Because S is linear and norm-preserving, it is surely
injective.

(d) It now follows that (Sv|Su) = (v|u) for every u, v € LZ. P (This is of course a standard fact about
Hilbert spaces.) We know that for any ¢t € R
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[ull3 + 2 Re(e™ (v]u) + [0]l3 = (ulu) + e (v]u) + e~ (ulv) + (v]v)
= (u+ e"vju + e'v)
= llu+e"vll3 = S (u+e"v)|l3
= |[Sull3 +2Re(e (Sv|Su)) + || Svll3
= [[ull3 + 2Re(e" (Sv[Su)) + ||v]3,
so that Re(e®(Sv|Su)) = Re(e'(v|u)). As t is arbitrary, (Sv|Su) = (v|u). Q

(e) Finally, S is surjective. I Let ¢ = (ci)rez be any member of ¢2(Z). Set c,(:b) = ¢ if |k] < n, 0

otherwise, and ¢(™ = <c,(€”)>k€N. Consider

n
Sp = E Crel, Up =S,

k=—n

where T write ey (z) = —2=e** for 2 € |-, 7]. Then Su,, = ¢™, by the same calculations as in part (a) of

Var
le™) —ella = /35 lerl? = 0

the proof of 282J. Now
[um — unll2 = Hc(m) - c(n)”Q —0

as n — 00, SO

as m, n — o0, and (u,)nen is a Cauchy sequence in L. Because LZ is complete (244G /244Pb), (un)nen
has a limit v € L%, and now

Thus S : L — (2(Z) is an inner-product-space isomorphism.

Remark In the language of Hilbert spaces, all that is happening here is that (e})rez is a ‘Hilbert space
basis’ or ‘complete orthonormal sequence’ in L(2C7 which is matched by S with the standard basis of E(%(Z).
The only step which calls on non-trivial real analysis, as opposed to the general theory of Hilbert spaces, is
the check that the linear subspace generated by {e}, : k € Z} is dense; this is part (b) of the proof of 282J.
Observe that while S : L? — ¢? is readily described, its inverse is more of a problem. If ¢ € (2, we should
like to say that S~1e is the equivalence class of f, where f(z) = \/% > re . cke™® for every x. This works
very well if {k : ¢ # 0} is finite, but for the general case it is less clear how to interpret the sum. It is in
fact the case that if ¢ € £ then
1 . ik
g(z) = TS My o0 Y ope,, CEERT
is defined for almost every x € |—m, 7], and that S~'¢ = g¢* in L?; this is, in effect, Carleson’s theorem
(286V). A proof of Carleson’s theorem is out of our reach for the moment. What is covered by the results
of this section is that
1 .. 1 i
h(z) = T im0 m—HZZ;O S, cpetke
is defined for almost every = € ]—m, 7], and that h* = S~1e. (The point is that we know from the result just
proved that there is some square-integrable f such that ¢ is the sequence of Fourier coefficients of f; now
282Ia declares that the Fejér sums of f converge to f almost everywhere, that is, that h =, ¢, \/%f)

282L The next result is the easiest, and one of the most useful, theorems concerning pointwise conver-
gence of Fourier sums.

Theorem Let f be a complex-valued function which is integrable over |—m, 7|, and (s, )nen its sequence of
Fourier sums.

(i) If f is differentiable at « € |—m, x|, then f(z) = limy, 00 $n ().

(i) If the periodic extension f of f is differentiable at 7, then f(m) = lim,_o0 5, (7).
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proof (a) Take = € |—, 7] such that f is differentiable at x; of course this covers both parts. We have

_ 7 et 1
sn(z) = 2 | sl sin(n 4+ 2)t dt

for each n, by 282Da.
(b) Next,

t

l/”fm+wzﬂ>ﬁ

exists in C, because there is surely some & € 0, 7] such that (f(z+t)— f(z))/t is bounded on {t : 0 < |t| < 6},

while
/ ﬂﬂwf /fWH

exist because 1/t is bounded on those intervals. It follows that

f (z+t)—

sin t

exists, because |¢| < m|sin 2¢| if [¢| < 7. So by the Riemann-Lebesgue lemma (282Fb),

" Jatt)—f(x)

. . 1
nh_}rr;o sy sin(n + 5)75 dt =0.
(c) Because
1 5, sin(n+1)t 7
a [ R e

for every n (282Dc),

sn(z) = f(2) 27r/ fat)—f(x) b1n(n—|—%)tdt — f(x)

sin t

as n — 00, as required.

282M Lemma Suppose that f is a complex-valued function, defined almost everywhere and of bounded
variation on |—m, w]. Then supcy |kcg| < 0o, where ¢ is the kth Fourier coefficient of f, as in 282A.

proof Set
M = lileedom frxtm |f($)‘ + Va‘r]—ﬂ',ﬂ'[(f)'
By 224J,
_ 1 " —ikt RS © ikt
|kex| = 2”‘/77r kf(t)e dt} < QWMCG?EEW]| g ke dt|
_ M sup |e—ikc _ eikﬂ‘ < M
2m c€[—m,m] 4
for every k.

282N I give another lemma, extracting the technical part of the proof of the next theorem. (Its most
natural application is in 282Xn.)

Lemma Let (dj)ren be a complex sequence, and set t, = >, _odi, T = m+1 > otn for n, m € N.
Suppose that supycy |kdi| = M < co. Then for any j > 1 and any ¢ € C,
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M .
|tn - C‘ < 7 + (2] + 3) SUPm>n—n/j |Tm —-C

for every n > j2.
proof (a) The first point to note is that for any n, n’ € N,

M|n—n'|
‘tn tn/| — 1+4min(n,n’)’

P If n = n’ this is trivial. Suppose that n’ < n. Then

n n

] = M _ Mnon) _ M|

[t —tn| =| Z d| < Z S T " 14min(n',n)’
k=n’+1 k=n'

Of course the case n < n' is identical. Q

(b) Now take any n > j%. Set 1) = SupP,,5,_/; [Tm — ¢|. Let m > j be such that jm < n < j(m + 1);
then n < jm + m; also

n(l—2) <m(j+1)(1 - 1) <mj.

Set
jm+m 1
1 jm—+m+1 jm—+
T* = E Z t'n/ = %ij"ﬂm‘ — %T]m
'=jm+1
Then
jm+m+1 m—+1
T | = m Jjm-+m m — |
jm+m~+1 jm+1
= | ooy (Tjmtm —€) ™ (Tjm —©)|

On the other hand,

1 jm+m 1 Jjm+4m M| /)
. 1 B 1 _Min=n|
‘7‘ — tn| = |m g (tn' t”)| < m Z 1+min(n,n’)
n/=jm+1 n'=jm+1
1 jm—+m M M M
<= = == <=
~ m Z 1+jm 1+jm = j

Putting these together, we have
M . M .
ltn —c| <[tn — 77|+ 7" — ] < 5T (2 +3)n= 5T (25 +3)supp>p—pyj [Tm —

as required.

2820 Theorem Let f be a complex-valued function of bounded variation, defined almost everywhere in

|—m, 7], and let (s,,)nen be its sequence of Fourier sums.
(i) If z € |—m, [, then

. 1,,. .
limy, 00 Sn(x) = E(hmtedom fittzx f(t) + hmtedom fitlx f(t))

Lo\ 7e 1,. .
(11) hmn%oo Sn(ﬂ') = E(hmtedom fittm f(t) + hmtedom fitd—m f(t))

(iii) If f is defined throughout |—m, 7], is continuous, and lim; _. f(t) = f(x), then s,(x) — f(x)
uniformly on |-, 7].
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proof (a) Note first that 224F shows that the limits limscdom f,ty2 f(t), liMicdom f,¢42 f(t) required in the
formulae above always exist. We know also from 282M that M = sup,cy |kck| < oo, where ¢ is the kth
Fourier coefficient of f.

Take any x € |—m, 7|, and set

c= %(hmtedom fittz f(t) + 1irntedom fitlz .f(t))v

writing f for the periodic extension of f, as usual. We know from 282Id-282Ie that ¢ = lim,,—c0 om (),
writing o, for the Fejér sums of f. Let ¢ > 0. Take any j > max(2,2M/¢), and my > 1 such that
lom(x) — ¢| < €/(25 + 3) for every m > my.
Now if n > max(j2, 2myg), apply Lemma 282N with
do =co, di = cpe™ +c_pe”* for k> 1,

so that t,, = s, (), 7 = om(x) and |kdy| < 2M for every k, n, m € N. We have n —n/j > %n > mg, SO

€
n= Sumenfn/j |Tm - C| < SUP>my ‘Tm - C| < 2j+3"
So 282N tells us that
2M . .
lsn(z) —¢| = |tn — | < e + (25 + 3) Supy>p—pyj [Tm — ¢ < €+ (25 + 3)n < 2e.

As € is arbitrary, lim,,_,« s,(z) = ¢, as required.

(b) This proves (i) and (ii) of this theorem. Finally, for (iii), observe that under these conditions
om(x) = f(z) uniformly as m — oo, by 282G. So given € > 0 we choose j > max(2,2M/e) and my € N
such that |o,,(z) — f(2)| < €/(2j +3) whenever m > mg and x € |-, 7]. By the same calculation as before,

lsn(z) — f(2)] < 2€

for every n > max(j2,2mg) and every z € |—m,m]. As € is arbitrary, lim, o s,(z) = f(z) uniformly for
x € |—m, 7.

282P Corollary Let f be a complex-valued function which is integrable over |—7, x], and (s,,)nen its
sequence of Fourier sums.
(i) Suppose that x € |—m, [ is such that f is of bounded variation on some neighbourhood of 2. Then

. 1,,. .
hmn—)oo Sn(m) = 5(hmt€dom fittzx f(t) + hmtedom fitlx f(t))

(ii) If there is a 6 > 0 such that f is of bounded variation on both |—m, —7 + §] and [r — §, 7], then
. 1. .
hmn%oo Sn (7T) = 5(hmt€dom fittm f(t) + hrntGdom fitd—m f(t))

proof In case (i), take 0 > 0 such that f is of bounded variation on [z — §,z + d] and set f1(t) = f(¢) if
x € dom f N[z — 0,z + 6], 0 for other ¢ € |—m, 7]; in case (ii), set f1(¢) = f(¢) if t € dom f and |t| > 7 — 4, 0
for other t € |—m, 7], and say that = 7. In either case, f; is of bounded variation, so by 2820 the Fourier
sums (s}, )nen of f1 converge at  to the value given by the formulae above. But now observe that, writing

f and f; for the periodic extensions of f and fi, f — fi = 0 on a neighbourhood of z, so

T ) —fi @) g
o sin %t

exists in C, and by 282Fb

- /” fla+t)— filz+1)
o sin

7 sin(nJrl)t dt =0,
3t 2

n—oo

that is, lim, 00 $n(x) — s}, () = 0. So (sp)nen also converges to the right limit.

282Q I cannot leave this section without mentioning one of the most important facts about Fourier
series, even though I have no space here to discuss its consequences.
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Theorem Let f and g be complex-valued functions which are integrable over |—m, ], and (¢ )ken, (di)ren
their Fourier coefficients. Let f % g be their convolution, defined by the formula

T

(Fro)@ = [ s antigtyat= [ fla g0,

as in 2550, writing f for the periodic extension of f. Then the Fourier coefficients of f x g are (2mwcdy)kez.

proof By 2550(c-i),

T s

e_iktf(t)dt/ " g(u)du = 2meydy.

—T —T

1" ke g _ L [T T ikt

5= | Gra@etdn = o [ [ e g i
-1
o

*282R In my hurry to get to the theorems on convergence of Fejér and Fourier sums, I have rather
neglected the elementary manipulations which are essential when applying the theory. One basic result is
the following.

Proposition (a) Let f : [—m, 7] — C be an absolutely continuous function such that f(—n) = f(r), and
(ck)kez its sequence of Fourier coefficients. Then the Fourier coefficients of f’ are (ikck)kez.

(b) Let f : R — C be a differentiable function such that f’ is absolutely continuous on [—,x], and
f(m) = f(—=m). If {cx)rez are the Fourier coefficients of f]]—m, 7], then > o |cx| is finite.

proof (a) By 225Cb, f’ is integrable over [—m, 7r|; by 225E, f is an indefinite integral of f’. So 225F tells
us that

f:r f(x)e~*odx = f(m)e ™ — f(—m)e*™ + zkf:r f(x)e *2dy = ikey,
for every k € Z.
(b)(i) Suppose first that f'(7) = f'(—7). By (a), applied twice, the Fourier coefficients of f” are

(—k*ci) ez, S0 supyey k?|cg| is finite; because > oo, ’?12 <00, > ope o ler] < o0,

(ii) Next, suppose that f(z) = 22 for every x. Then, for k # 0,

T
1 2 —ikx 1 1/ 2 _ikr 2 ikm 2z _ika
¢, =— | z°€ dr = —(——(7“e — 7le e dx
k= or 27r( ik( )+ ik )

—T

s
11 ikn ikm 1 ikx 2 Nk
_ilwr( Z,k(ﬁe + 7e )—&—ik/_ﬂe dx)—k2( 1)~

1. o
0 Y ez lew| <leol +43707, -5 is finite.

iii) In general, we can express f as fi + cfs where fo(z) = 22 for every z, ¢ = L f(m) — f'(=m)),
4

and f; satisfies the conditions of (i); so that (cix)recz is the sum of two summable sequences and is itself
summable.

282X Basic exercises >(a) Suppose that (ck)ken is an absolutely summable double-ended sequence
of complex numbers. Show that f(z) = > po__ cre'™™ exists for every x € R, that f is continuous and
periodic, and that its Fourier coefficients are the cg.

(c) Set ¢n(t) = Zsin(n + £t) for t # 0. (This is sometimes called the modified Dirichlet kernel.)
Show that for any integrable function f on |—m, 7], with Fourier sums (s, ),en and periodic extension 1,

limp, o0 [$0(2) = 5= 7 ¢n(t) f(z + t)dt| = 0

for every x € |—m, 7). (Hint: show that # — — is bounded, and use 282E.)
2
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(d) Give a proof of 282Ib from 2420, 2550 and 282G.

(e) Give another proof of 282Ic, based on 222D, 281J and an idea in the proof of 2420 instead of on
282H.

(f) Use the idea of 255Ya to shorten one of the steps in the proof of 282H, taking

gm(t) = min(%,m)

for |t| <4, so that g, > 1, on [—4,4].

>(g)(i) Let f be a real square- integrable function on ] ™, 7, and (ak)ken, (bg)k>1 its real Fourier
coefficients (282Ba). Show that a3 + >, (a2 +b2) = L [T |f[>. (ii) Show that f — (\/Fao,V/7a1,
\/7b1,...) defines an inner—product space isomorphism between the real Hilbert space L2 of equivalence
classes of real square-integrable functions on |-, 7| and the real Hilbert space % of square—summable
sequences.

14 .... (Hint: find the Fourier series of f where f(z) = z/|z|, and

(h) Show that T =1 — %+ 1
ie . Of course there are other methods, e.g., examining the Taylor series

5
compute the sum of the series at
for arctan 7.)

ISIER

(i) Let f be an integrable complex-valued function on |—m, 7], and (s, )nen its sequence of Fourier sums.
Suppose that « € |—m, [, a € C are such that f f( L2724t exists and is finite. Show that lim,, e 5, (2) = a.
—T

Explain how this generalizes 282L.. What modlﬁcatlon is appropriate to obtain a limit lim,,_,, s, (7)?
(j) Suppose that &« > 0, K > 0 and f : |]—m,n[ = C are such that |f(z) — f(y)| < K|z — y|* for all z,

y € ]—m, w[. (Such functions are called Holder continuous.) Show that the Fourier sums of f converge to
f everywhere in |—m, w[. (Hint: use 282Xi.) (Compare 282Yb.)

(k) In 282L, show that it is enough if f is differentiable with respect to its domain at z or 7 (see 262Fb),
rather than differentiable in the strict sense.

(1) Show that lim, 0 foa Si;‘tdt exists and is finite. (Hint: use 224J to estimate fab Si;‘tdt for 0 <a<b.)

(m) Show that [ |Sitnt|dt = oco. (Hint: show that sup,s | [, €2tdt| < oo, and therefore that
a :,m t B
SUP,>g [y Stdt = 00.)

>(n) Let (di)ren be a sequence in C such that sup,cy |kdy| < oo and

> om0 2p—odx = c € C.

1

lim —
m—yoo 7T

Show that ¢ = >~ dy. (Hint: 282N.)
>(0) Show that } 7 | 1 = %2. (Hint: (b-ii) of the proof of 282R.)

(p) Let f be an integrable complex-valued function on |—m, 7], and (s, )nen its sequence of Fourier sums.
Suppose that z € |-, 7] is such that
(i) there is an a € C such that

either [*_ a;i{it)dt exists in C

orthere is some § > 0 such that f is of bounded variation on [ —6, z], and ¢ = limycdom f,11z f ()
(ii) there is a b € C such that

either f f O 4 exists in C

orthere is some 5 > 0 such that f is of bounded variation on [z, z+4], and b = limicdom 142 f(%).
Show that lim,, e sp(z) = %(a + b). What modification is appropriate to obtain a limit lim,, o Sn(7)?
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>(q) Let f, g be integrable complex-valued functions on |—m, 7], and ¢ = (cx)rez, d = {(di)rez their
sequences of Fourier coefficients. Suppose that either > |ci| < o0 or > pe|cxk|® + |di|? < 0o. Show
that the sequence of Fourier coefficients of f x ¢ is just the convolution ¢ xd of ¢ and d (255Xk).

(r) In 282Ra, what happens if f(7) # f(—n)?

(s) Suppose that (cx)ken is a double-ended sequence of complex numbers such that > - |kex| < oo.
Show that f(z) =Y po_ . cke™*® exists for every z € R and that f is differentiable everywhere.

(t) Let (cx)rez be a double-ended sequence of complex numbers such that sup,cy |kci| < 0o. Show that
there is a square-integrable function f on |—m, 7| such that the ¢y are the Fourier coefficients of f, that f
is the limit almost everywhere of its Fourier sums, and that f * f * f is differentiable. (Hint: use 282K to
show that there is an f, and 282Xn to show that its Fourier sums converge wherever its Fejér sums do; use
282Q and 282Xs to show that f * f x f is differentiable.)

282Y Further exercises (a) Let f be a non-negative integrable function on |—m, 7|, with Fourier
coefficients (cg)gez. Show that

22 j—0 2h—0 4OkCj—k = 0

for all complex numbers ag, ... ,a,. (See also 285Xu below.)

(b) Let f:]—mn] = C, K >0, @ > 0 be such that |f(x) — f(y)] < K|z —y|* for all z, y € |—7,7].
Let ¢k, s, be the Fourier coefficients and sums of f. (i) Show that sup,cy |k|*|ck| < co. (Hint: show that
a == (f(z) - flz + T))e~*edx.) (i) Show that if f(m) = lims,_r f(x) then s, — f uniformly.
(Compare 282Xj.)

(c) Let f be a measurable complex-valued function on |-, 7], and suppose that p € [1, 00 is such that
ffw |f|P < oco. Let (0.n)men be the sequence of Fejér sums of f. Show that lim,,— o ffﬂ |f —om|P = 0.
(Hint: use 245X1, 255Yk and the ideas in 282Ib.)

(d) Construct a continuous function h : [—m, 7] — R such that h(7) = h(—7) but the Fourier sums of h

sin(m+ 1)t sin(n+ 2 .
are unbounded at 0, as follows. Set a(m,n) = [ * ( +§i)rflt( +2) 3¢ Show that lim, e a(m,n) =0 for
2

every m, but lim,_,o a(n,n) = co. Set ho(x) = > pe Ok sin(my, + %)x for0 <z <m0for —7m <x<0,
where 6, > 0, m;, € N are such that (o) & < 27F, §gla(me, m,)| < 27F for every n < k (choosing d3) (3)
dpo(mi, my) >k, dpla(my, my)| < 27" for every n < k (choosing my,). Now modify hg on [—m, 0] by adding
a function of bounded variation.

(e)(i) Show that lim, o [ |w|dt = oo. (Hint: 282Xm.) (ii) Show that for any ¢ > 0 there are

inl
sin 51

n € N, f > 0 such that f:r f <9, ffﬂ |sn| > 1, where s, is the nth Fourier sum of f. (Hint: take n such

in(ng L

that % [ \%\dt > % and set f(x) = % for 0 < 2 < n, 0 otherwise, where 7 is small.) (iii) Show
2

that there is an integrable function f : |-, 7] — R such that sup,,cy ||sn |1 is infinite, where (s,,),en is the

sequence of Fourier sums of f. (Hint: it helps to know the ‘Uniform Boundedness Theorem’ of functional

analysis, but f can also be constructed bare-handed by the method of 282Yd.)

(f) Let w : [-m,7] — R be an absolutely continuous function such that u(r) = uw(—m) and [7 u = 0.
Show that ||ull2 < ||u/||2. (This is Wirtinger’s inequality.)

1—r2

(g) For 0 <7 <1, t€Rset Ant) = 15—

(A, is the Poisson kernel; see 478X1! in Volume 4.)

(i) Show that % J7_A, = 1. (ii) For a real function f which is integrable over |—m, ], with real Fourier

coefficients ay, by (282Ba), set S,.(z) = %ao + > 72, r*(ak cos kx + by sinkx) for x € ]—m, 7], r € [0, 1[. Show
ILater editions only.
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that S,.(z) = i ST Ap(z —t) f(t)dt for every @ € |—m, 7). (Hint: Ap(t) =1+2> 7 r"cosnt.) (iii) Show

that lim,41 S, (z) = f(x) for every & € |—m, [ which is in the Lebesgue set of f. (Hint: 223Yg.) (iv)
Show that lim41 [ _|S, — f| = 0. (v) Show that if f is defined everywhere on ]—m, 7], is continuous, and
f(m) =limg )~ f(z), then lim,44 SUPge]— x| |S-(z) — f(x)] = 0.

282 Notes and comments This has been a long section with a potentially confusing collection of results, so
perhaps I should recapitulate. Associated with any integrable function on |—m, 7] we have the corresponding
Fourier sums, being the symmetric partial sums Y ,_  cxe’*® of the complex series Y 2 cpe™™®, or
equally, the partial sums 2ag -+ > j_, ai cos kz + by, sin kz of the real series 2ag + > pe; a cos kx + by sin kz.
The Fourier coefficients ¢y, ar, by are the only natural ones, because if the series is to converge with any
regularity at all then

)

i 7\' e ikx\ ,—ilz
pyl (Zk:_oo cre™ ™) e dy
ought to be simultaneously
oo 1 rr ikx ,—ilx _
Y e oo gf,,, creem U dy = ¢
and
i 7T —ilz
o f_ﬂ fl@x)e “*dzx.

(Compare the calculations in 282J.) The effect of taking Fejér sums oy, (z) rather than the Fourier sums
sn(z) is to smooth the sequence out; recall that if lim, o0 85, (2) = ¢ then lim,, o om () = ¢, by 273Ca in
the last chapter.

Most of the work above is concerned with the question of when Fourier or Fejér sums converge, in some
sense, to the original function f. As has happened before, in §245 and elsewhere, we have more than one kind
of convergence to consider. Norm convergence, for || ||; or || ||2 or || ||eo, is the simplest; the three theorems
282G, 282Ib and 282J at least are relatively straightforward. (I have given 282Ib as a corollary of 282Ia;
but there is an easier proof from 282G. See 282Xd.) Respectively, we have

if f is continuous (and matches at +m, that is, f(7w) = lim¢;_, f(t)) then o, — f uniformly,
that is, for || || (282G);
if f is any integrable function, then o,,, — f for || ||1 (282Ib);
if f is a square-integrable function, then s, — f for || |2 (282J);
if f is continuous and of bounded variation (and matches at +m), then s, — f uniformly
(2820).
There are some similar results for other || ||, (282Y¢); but note that the Fourier sums need not converge for
[l (282Ye).
Pointwise convergence is harder. The results I give are
if f is any integrable function, then o,, — f almost everywhere (282Ia);
this relies on some careful calculations in 282H, and also on the deep result 223D. Next we have the results
which look at the average of the limits of f from the two sides. Suppose I write

(@) = 5 (imyp f(2) +lime £(2))

whenever this is defined, taking f*(r) = 1 (limyr f(¢) + limgy— f(¢)). Then we have
if f is any integrable function, o, — f* wherever f* is defined (282I);
if f is of bounded variation, s,, — f¥ everywhere (2820).
Of course these apply at any point at which f is continuous, in which case f(x) = f*(z). Yet another result
of this type is
if f is any integrable function, s,, — f at any point at which f is differentiable (282L);
in fact, this can be usefully extended for very little extra labour (282Xi, 282Xp).
I cannot leave this list without mentioning the theorem I have not given. This is Carleson’s theorem:
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if f is square-integrable, s,, — f almost everywhere

(CARLESON 66). I will come to this in §286. There is an elementary special case in 282Xt. The result is in
fact valid for many other f (see the notes to §286).

The next glaring lacuna in the exposition here is the absence of any examples to show how far these
results are best possible. There is no suggestion, indeed, that there are any natural necessary and sufficient
conditions for

sp, — f at every point.

Nevertheless, we have to make an effort to find a continuous function for which this is not so, and the
construction of an example by du Bois-Reymond (BOI1s-REYMOND 1876) was an important moment in the
history of analysis, not least because it forced mathematicians to realise that some comfortable assumptions
about the classification of functions — essentially, that functions are either ‘good’ or so bad that one needn’t
trouble with them — were false. The example is instructive but I have had to omit it for lack of space;
I give an outline of a possible method in 282Yd. (You can find a detailed construction in KORNER 88,
chapter 18, and a proof that such a function exists in DUDLEY 89, 7.4.3.) If you allow general integrable
functions, then you can do much better, or perhaps I should say much worse; there is an integrable f such
that sup,,cy |sn(z)] = oo for every z € |—m, 7] (KOLMOGOROV 1926; see ZYGMUND 59, §§VIIL.3-4).

In 282C I mentioned two types of problem. The first — when is a Fourier series summable? — has at least
been treated at length, even though I cannot pretend to have given more than a sample of what is known.
The second — how do properties of the ¢ reflect properties of f? — I have hardly touched on. I do give what
seem to me to be the three most important results in this area. The first is

if f and g have the same Fourier coefficients, they are equal almost everywhere (282Ic).

This at least tells us that we ought in principle to be able to learn almost anything about f by looking at its
Fourier series. (For instance, 282Ya describes a necessary and sufficient condition for f to be non-negative
almost everywhere.) The second is

[ is square-integrable iff Y77 |ex|? < oo;

in fact,

oo 1 T
Sl = L 12 (220,

Of course this is fundamental, since it shows that Fourier coefficients provide a natural Hilbert space iso-
morphism between L? and ¢? (282K). I should perhaps remark that while the real Hilbert spaces L2, (2
are isomorphic as inner product spaces (282Xg), they are certianly not isomorphic as Banach lattices; for
instance, Eﬂ%{ has ‘atomic’ elements ¢ such that if 0 < d < ¢ then d is a multiple of ¢, while LH% does not.
Perhaps even more important is

the Fourier coefficients of a convolution f x g are just a scalar multiple of the products of the
Fourier coefficients of f and g (282Q);

but to use this effectively we need to study the Banach algebra structure of L', and I have no choice but to
abandon this path immediately. (It will form a conspicuous part of Chapter 44 in Volume 4.) 282Xt gives an
elementary consequence, and 282Xq a very partial description of the relationship between a product f x g
of two functions and the convolution product of their sequences of Fourier coefficients.

The Fejér sums considered in this section are one way of working around the convergence difficulties
associated with Fourier sums. When we come to look at Fourier transforms in the next two sections we
shall need some further manoeuvres. A different type of smoothing is obtained by using the Poisson kernel
in place of the Dirichlet or Fejér kernel (282Yg).

I end these notes with a remark on the number 27. This enters nearly every formula involving Fourier
series, but could I think be removed totally from the present section, at least, by re-normalizing the measure
of |—m, w]. If instead of Lebesgue measure p we took the measure v = % u throughout, then every 27 would
disappear. (Compare the remark in 282Bb concerning the possibility of doing integrals over S*.) But I think
most of us would prefer to remember the location of a 27 in every formula than to deal with an unfamiliar
measure.
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Version of 31.3.13

283 Fourier transforms I

I turn now to the theory of Fourier transforms on R. In the first of two sections on the subject, I present
those parts of the elementary theory which can be dealt with using the methods of the previous section
on Fourier series. I find no way of making sense of the theory, however, without introducing a fragment of
L.Schwartz’ theory of distributions, which I present in §284. As in §282, of course, this treatment also is
nothing but a start in the topic.

The whole theory can also be done in R". T leave this extension to the exercises, however, since there are
few new ideas, the formulae are significantly more complicated, and I shall not, in this volume at least, have
any use for the multidimensional versions of these particular theorems, though some of the same ideas will
appear, in multidimensional form, in §285.

283 A Definitions Let f be a complex-valued function which is integrable over R.

(a) The Fourier transform of f is the function f : R — C defined by setting

Jw) = 7= [ e fla)da

for every y € R. (Of course the integral is always defined because x +— e~%? is bounded and continuous,
therefore measurable.)

(b) The inverse Fourier transform of f is the function J% : R — C defined by setting

f) = = [ e H ()de

for every y € R.

283B Remarks (a) It is a mildly vexing feature of the theory of Fourier transforms — vexing, that is,
for outsiders like myself — that there is in fact no standard definition of ‘Fourier transform’. The commonest
definitions are, I think,

Fy) = 5= [ ¥ f(x)da,

fly) = [ eFwrf(z)da,

Fy) = [ ¥ f(a)da,

corresponding to inverse transforms

\4

o) = 5= [ e f(x)da,

fly) = o= [ e f(a)da,

fly) = [ ex2mive f(a)da.

o0

I leave it to you to check that the whole theory can be carried through with any of these six pairs, and to
investigate other possibilities (see 283Xa-283Xb below).

A
(b) The phrases ‘Fourier transform’, ‘inverse Fourier transform’ make it plain that (f)" is supposed to

be f, at least some of the time. This is indeed the case, but the class of f for which this is true in the literal
sense is somewhat constrained, and we shall have to wait a little while before investigating it.

(©) 1994 D. H. Fremlin
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A 4
(c) No amount of juggling with constants, in the manner of (a) above, can make f and f quite the same.

A A Vv N
However, on the definitions I have chosen, we do have f(y) = f(—y) for every y, so that f and f will share
essentially all the properties of interest to us here; in particular, everything in the next proposition will be
valid with ¥ in place of ", if you change signs at the right points in parts (c), (h) and (i).

283C Proposition Let f and g be complex-valued functions which are integrable over R.
) (f+9)" =Af+?1~
b) (¢f)" = c¢f for every ¢ € C.
¢) If c € R and h(z) = f(x + ¢) whenever this is defined, then (y icyf(y) for every y € R.

(a

(

< -

(d) If ¢ € R and h(z) = ¢*“® f(z) for every x € dom f, then h( ) = f(y —c¢) for every y € R.
(

(

(

(

e) If ¢ > 0 and h(x) = f(cx) whenever this is defined, then ﬁ(y) Y (Z) for every y € R.

c

)
f) f R — C is continuous.

limy, o f( ) =lim, , f(y) =0.
If [*_|zf(z)|dz < oo, then f is differentiable, and its derivative is

2)
h)
J/%/(y) — _\/%TTf_OOOO e*iyzxf(:r)dx

for every y € R.

A

(i) If f is absolutely continuous on every bounded interval and f’ is integrable, then (f')"(y) = iyf(y)
for every y € R.

proof (a) and (b) are trivial, and (c), (d) and (e) are elementary substitutions.

(£) If (yn)nen is any convergent sequence in R with limit y, then

_L > : —iYnT
= m[m nl;rgoe f(z)dz

T 1 > — iy 1 g
= Jim = [ e pa)dn = lim fon)

n—oo

by Lebesgue’s Dominated Convergence Theorem, because |e~%¥® f(x)| < |f(x)| for every n € N and z €

dom f. As (yn)nen is arbitrary, f is continuous.
(g) This is just the Riemann-Lebesgue lemma (282E).
(h) The point is that \a%e_iy”f(xﬂ = |z f(z)| whenever x € dom f and y € R. So by 123D

1 d d

]@/(y) = rn / e~ W f(x)dr = \/%Iy /d , e f(x)dx
\/ﬁ / —e*’ymf (z)dx \/% /700 —ize” T f(2)dx
= —\/% /_Oo e~ W f(x)dx

(i) Because f is absolutely continuous on every bounded interval,

f@) = FO) + [} ffor =0, f()=f(0)— [, f forw<0.

Because f’ is integrable,

limy oo f(2) = £(0) + [7 F/, limy oo f(z ~ [

both exist. Because f also is integrable, both limits must be zero. Now we can integrate by parts (225F) to
see that
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a

=g [ @ = g [ e

a

a—r o0

— iyf(y).

= 5= (lim e f(a) = lim e f(a)) + Z2 / e f(x)dx

283D Lemma (a) lim, oo foa Si%da: =7, lim, 0 ffa Si%da: =T.
(b) There is a K < oo such that |fab sincz dy| < K whenever a < b and ¢ € R.

proof (a)(i) Set

F(a):fa Sinxd:cifaZO, F(a):ffo Si;lzdxifag(),

0 T —a

so that F(a) = —F(—a) and [ 224y = F(b) — F(a) for all a < b.
If 0 < a < b, then by 224J

SN

b sinx 1,1 1 c . 1
|fa " dx| < (3 +-- E)SUPce[a,b] |fa sinx dz| < ~ SUD 4] |cosa — cosc| <

In particular, |F(n) — F(m)| < % if 0 <m <nin N, and (F(n)),en is a Cauchy sequence with limit v say;
now

[y = F(a)] = limy, 0 [F(n) — F(a)] <

ISR

for every a > 0, so lim, 0 F'(a) = 7. Of course we also have

. a sinx
limg o0 [

dz =limg oo (F(a) — F(—a)) = lim, o 2F (a) = 2.

T

(ii) So now I have to calculate «. For this, observe first that

sin x sin at
—d —d

. Ta . ™
2y = limg 00 f_m —dr = limg_ oo f_ﬂ . t

(substituting = = ¢/a). Next,

. 1 1 . sinu—u

im0 ¢t 2sin it = limy o Qusinu 0,
so
T 1 1
ffﬂlz - 2sin ¢ dt < oo,

and by the Riemann-Lebesgue lemma (282FDb)

. ™ 1 1 .

limg o0 f_ﬂ (Z ~ 3o %t) sinat dt = 0.
But we know that

7, Sty
-7 2sin3t
for every n (using 282Dc), so we must have
int " sinat in at
lim Tdt = lim 2 dt = lim e
amoo J_ .t a—oo J_ a—oo [__ 2sin;t
T . 1
. Lyt
— lim Mdt =,

1
n—oo J_ 2sin ¢

and v = /2, as claimed.
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(b) Because F' is continuous and

limg 00 Fa) = = T limg— oo Fla)=—y=—

™
27 27

F' is bounded; say |F(a)| < K; for all « € R. Try K = 2K;. Now suppose that a < band c € R. If ¢ > 0,
then

) S da] = | [ ] = P (be) — F(ac)| < 26K, = K,

substituting = t/c. If ¢ < 0, then
b sincx B b sin(—c)z .
\fa Td:c\ = | ffa de| <K;
while if ¢ = 0 then
b sincx
|f de| =0< K.

a

283E The hardest work of this section will lie in the ‘pointwise inversion theorems’ 2831 and 283K below.
I begin however with a relatively easy, and at least equally important, result, showing (among other things)
that an integrable function f can (essentially) be recovered from its Fourier transform.

Lemma Whenever ¢ < d in R,

a

. idy _ pic
lim e T %dy =2miifc < x < d,
a o0
—a
=miifx =corxz=d,
=0ifz<corazxz>d.
proof We know that for any b > 0
. a sinb . ab sint
limg—seo f_a SH; Tdr = limg 0o f_ab Sl: dt =m
(subsituting z = ¢/b), and therefore that for any b < 0
. a sinbr , . a sin(—b)x ,
lim, oo fia wa = —limy 0o fia de = —.
Now consider, for x € R,
A a . idy __ ,icy
limg—seo f_a e T %dy.
First note that all the integrals ffa exist, because
li eldy _gicy .
my—o ——— = i(d—c)

is finite, and the integrand is certainly continuous except at 0. Now we have

a eidy _gicy

a y
a ei(d—w)y_ei(c—m)y
—u Y

_ /a cos(d—x)yfcos(cfm)ydyJrl_/a sjn(d—x)yfsin(cf:t)ydy
a Y ,a

Yy
_ ’L/ sin(d—:c)y;sin(c—$)ydy
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because cos is an even function, so

fa cos(dfx)yfcos(cfx)ydy -0
—a Y

for every a > 0. (Once again, this integral exists because

lim, o cos(df:):)yyfcos(cfx)y ~0.)

Accordingly

a

lim e
a—oco [

) idy _ icy o a . d— o
—iyr € e i Tim sin(d=2)y g, lim

a—oo | _ a—oo [ _

“ sin(c—z)y dy

a a a Y

=ir—in=0ifz <e¢,
=ir—0=miif z =,
=irt+ir =2miifc< x <d,
=0+ir=miif z =d,
=—im+ir=0if x > d.

283F Theorem Let f be a complex-valued function which is integrable over R, and JA” its Fourier
transform. Then whenever ¢ < d in R,

d i a eicy _gidy A
/C f=rdm | ———fW)dy.

a

proof If ¢ = d this is trivial; let us suppose that ¢ < d.

a
. idy _ pics
ea(x)z/ e"wrl ¢ yye “dy

a

(a) Writing

for x € R and a > 0, 283E tells us that
limg o0 0o (z) = 2mi6(x)

where 6 = 1(x[c,d] 4+ x]c, d[) takes the value 1 inside the interval [c,d], 0 outside and the value % at the
endpoints. At the same time,

|9a(1')| _ | sin(d—x)y;sin(c—w)ydm

(see the proof of 283E)

sin(d—x

<| Way| +| [ ==EDWay) < 2K

for all @ > 0 and = € R, where K is the constant of 283Db. Consequently |f x 0,| < 2K|f| everywhere

on dom f, for every a > 0, and (applying Lebesgue’s Dominated Convergence Theorem to sequences (f x
oan,>n6N, where Ay —> OO)

limg yoo [ f % 0o = 2mi [ f x 0= 2mi [ f.
(b) Now consider the limit in the statement of the theorem. We have
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a eicy _ eidy A 1 a 00 icy _ eidy 72' "
/ Y fy)dy = \ﬁ/ / e W f(z)dxdy

m / / = v () dyde

:ﬁifxﬁ

by Fubini’s and Tonelli’s theorems (252H), using the fact that (e’¥ — ') /y is bounded to see that

f f etey e 7,Ly$f }dyd:p
is finite. Accordingly
i ) a eicy _ eidy A
i [ S o= [ g

:—2*27”/ / I

as required.

283G Corollary If f and g are complex-valued functions which are integrable over R, then ]Ac =g iff
f =a.e. 9-
proof If f =,. g then of course

A

Jw) = 7= [ e fla)de = o= [ e eg(a)da = (y)

for every y € R. Conversely, if f = g, then by the last theorem

Jir=1'

for all ¢ < d, so f = g almost everywhere, by 222D.

283H Lemma Let f be a complex-valued function which is integrable over R, and f its Fourier transform.

Then
\/%fja eizyf(y)dy = %ff; %f(t)dt = %ffooo %atf(x — t)dt
whenever ¢ > 0 and = € R.
proof We have
SO e p(o)lddy < 2a [ |F(D]dt < o,

so (because the function (t,y) + e™¥e~ Wi f(t) is surely jointly measurable) we may reverse the order of
integration, and get

s L= [ [ som

== f(t)/ =t gy dt
_ i/ QSin(x—t)af(t)dt _ l/ sinauf(w — w)du,

2 x—t T u

substituting t = x — u.
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2831 Theorem Let f be a complex-valued function which is integrable over R, and suppose that f is
differentiable at € R. Then

1 . a o B 1 . a
f(x) = \/72771— hma—)oo f—a eizyf(y)dy = \/_27 hma—>oo f_a € yf(y)dy

proof Set g(u) = f(z) if |u| < 1, 0 otherwise, and observe that lim,_,o =(f(z — u) — g(u)) = —f'(z) is
finite, so that there is a 0 € ]0,1] such that

z—u)—g(u

K= sup0<‘u|§5|f( )| < 00.

Consequently

oo -0 '
/ |W‘du§%/ If(x—“)|d“+§/ 9

-1

+/_66K+§/;|f(a:—u)du

g%/ 1431 ()] + 20K < oc.

By the Riemann-Lebesgue lemma (282Fb again),

limg s 00 ffooo sin au (f(x —u) — g(u))du

u

|
e

sin au
u

If we now examine [ g(u)du, we get

/_‘: sir;aug(u)du: /_11 S AU )y = f(z) /“ sinv g,

substituting v = v/a. So we get

[ele] . oo .
lim SN f(z — w)du = lim SR g(u)du
a—oo [_ U a—oo [_ o u

a

= Jin f(@) [ o= (o)

by 283Da. Accordingly

a

A o0 1
—_tim [ e f(y)dy == lim U f (o — u)du = f(a),

\/ﬂ a— 00 —a ™ a—00 —00 u
using 283H. As for the second equality,
1 i “ —izy § d 1 i “ —izy d
Vo fly)dy = = lim o f(=y)dy

a

- \/% alglc}o —a emu}(U)du N f(x)

(substituting y = —u).

Remark Compare 282L.

283J Corollary Let f : R — C be an integrable function such that f is differentiable and f is integrable.

A

Then f = (f)* = (f)".

A
proof Because f is integrable,
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AV

@) = timaoe o= [ e f(y)dy = f()

for every z € R. Similarly,

VA

: 1 a —ix a
[ () =limg o0 ﬁf—a e " f(y)dy = f(z).
Remark See also 283Wk below.

283K The next proposition gives a class of functions to which the last corollary can be applied.

Proposition Suppose that f is a twice-differentiable function from R to C such that f, f' and f” are all
integrable. Then f is integrable.

proof Because f’ and f” are integrable, f and f’ are absolutely continuous on any bounded interval (225L).
So by 283Ci we have

() () = iy (1) (y) = —* F(v)

for every y € R. At the same time, by 283Cf-283Cg, (f”)" and ]A“ must be bounded; say |]A”(y)| +|(f")(y)] <
K for every y € R. Now

Fw)l <+

+y?

for every y, so that

oo A -1 1 oo 1
f,m|f|§Kf7my7dy+2K+Kfl Edy:4K<oo.
Remark Compare 282Rb.

283L I turn now to the result corresponding to 2820, using a slightly different approach.

N
Theorem Let f be a complex-valued function which is integrable over R, with Fourier transform f and

inverse Fourier transform }7 and suppose that f is of bounded variation on some neighbourhood of € R.
Set a = limscqom fiite f(t), b = limscqom fitle f(t) Then
1 . Y ir » 1 . vy iz M 1
xS lim, 0 f—v e f(y)dy = T im0 f—v e Y f(y)dy = 5(& +0b).

proof (a) The limits limscdom ¢tz f(t) and limiedom f,t12 f(t) exist because f is of bounded variation near
x (224F). Recall from 283Db that there is a constant K < oo such that

0 sincx
7| < K

whenever v < § and ¢ € R.
(b) Let € > 0. The hypothesis is that there is some J > 0 such that Varp,_s,45(f) < oo. Consequently
limy 0 Var, o) (f) = limyyo Var_p .((f) =0
(224E). There is therefore an n > 0 such that
max(Varp, ., .((f), Varyz ;4 (f)) < e

Of course
F(H) = Fu)] < Varg_y.((f) < ¢
whenever ¢, u € dom f and z — n <t < u < z, so we shall have
|f(t) —a|] < eforevery ¢t € dom f N[z —n,

and similarly
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| f(t) — b] < e whenever ¢ € dom f N ]z, x + 7).
(c) Now set
g1(t) = f(t) when t € dom f and |z — t| > 7, 0 otherwise,
g2(t) =a when x —n <t <z, b when x <t <z+1, 0 otherwise,
93=1/f—91— 92
Then f = g1 + g2 + g3; each g; is integrable; g; is zero on a neighbourhood of z;
SUPtedom gs,t£x ‘93 (t)| <e
Var,_p »1(93) <€, Var, ,i1n,(g93) <e

(d) Consider the three parts g1, g2, g3 separately.
(i) For the first, we have

. 1 vy I TIA
hm»y_>oo ﬁf—’y e ygl(’y)dy =0
by 2831
(ii) Next,

-
(by 283H)
T . x+n .
_a sin(z—t)y b sin(z—t)y
T / z—t di+ ™ / z—t dt
r—n T
a [ sinu b [ sinu
== / du + 7/ du
7 Jo u T Jo u
(substituting t = x — %u in the first integral, t = —x + %u in the second)
- %rb as 7y — 00
by 283Da.

(iii) As for the third, we have, for any v > 0,

1 K izy A dul = 1 o sin(z—t)y Ndt| = 1 o sin try Ddi
’ﬁ _76 93(y) y|—;’ I 93(t) |—;’ _Ongg(m— ) ’

1 0 sin ty 1 " sinty
< ’T’/—n —g3(x — t)dt| +;]/0 —g3(x — t)dt|

K
<E( s g0+ Var (g9)
tedom gzN]z—n,z| Jz—n,z]

+ sup lgs(t)] + Var
tedom gzN]z,z+n| lz,z+n

[

K
< de—,
™

41

using 224J again to bound the integrals in terms of the variation and supremum of g3 and integrals of %’”

over subintervals.
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(e) We therefore have
lim su Y f(y)dy — a——'—b
mownl 5z [ |
< hmsupr’/ ey dy‘

+limsup!r/ e o ( )dy—“ib

Y00

—|—hmsupr|/ Yy, ydy|
<0+0+ K

by the calculations in (d). As € is arbitrary,

y)dy — 2 = 0.

hm'y~>00 \/7] zlyf 5

(f) This is the first half of the theorem. But of course the second half follows at once, because
gl gl

—izyv —iwy/\ _
v m, [Ty = g i [y

- im ’yeiwyfc( )d _ atb
_\/ﬂ'y%oo v vy = 2

Remark You will see that this argument uses some of the same ideas as those in 2820-282P. It is more direct
because (i) I am not using any concept corresponding to Fejér sums (though a very suitable one is available;
see 283Xf) (ii) I do not trouble to give the result concerning uniform convergence of the Fejér integrals when
f is continuous and of bounded variation (283Xj) (iii) I do not give any pointer to the significance of the

fact that if f is of bounded variation then sup, g |yf(y)| < 0o (283Xk).

283M Corresponding to 282Q, we have the following.

Theorem Let f and g be complex-valued functions which are integrable over R, and f * g their convolution
product, defined by setting

(f+g)(@) = [ f(t)g(x — t)dt
whenever this is defined (255E). Then

(F+9) () = V2R i), (f+9)"(y) = V2 f©)3(y)
for every y € R.
proof For any y,

W (f % g)(z)dx

e/
S / / ¢ f(t)g(u)dtdu
5

V() /°° g (u)du = V21 [ (1) (y).

— 00

(using 255G)

Now, of course,

(f*9)" () = (f % 9)" (=y) = V2 (=9)§(—y) = V27 [ () ().
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283N I show how to compute a special Fourier transform, which will be used repeatedly in the next
section.

1

2 2 . . . .
ﬁe_” /29" for £ € R. Then its Fourier transform and inverse Fourier
[ea T

Lemma For o > 0, set ¢,(z) =
transform are

A

v 1
o =Vo = ~¥1/0-

In particular, 1?)1 =Y.

proof (a) I begin with the special case 0 = 1, using the Maclaurin series
_ (=iyz)*
WE — Zk 0 k!

and the expressions for ffooo zke="/2dz from §263.
Fix y € R. Writing

gk(x) = (*i:!x) e—z2/2, ho(z) =Y 0o gk(x), h(z)= €|yz\_12/2,

we see that

so that
h ()] < 32080 lgn ()| < elvele=2"/2 = p(x)

for every m; moreover, h is integrable, because |h(z)| < el whenever |z| > 2(1 + |y|). Consequently, using
Lebesgue’s Dominated Convergence Theorem,

1?’1(21) :i/ lim A, :% lim I

I
oo M0 n—o00

IR IR N TR G L A gy
_EZ/ gk—%z 2 / ahe ™ 2dy
k=0" "% k=0 e
_ 1 o (—iy)* (29)! /o
_27r§% (29)! 295! 27
=
(by 263H)
1l () 1 —y?/2 _
= 2#2% 2951 _\/ﬂ 1#1(1/);
=
as claimed.

(b) For the general case, 1), (x) = %wl(g)’ so that

by 283Ce. Of course we now have

because 1y /, is an even function.

2830 To lead into the ideas of the next section, I give the following very simple fact.

Proposition Let f and g be two complex-valued functions which are integrable over R. Then [ fom fxg=
[S . fxgand [ fxg=["_ fxg.
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proof Of course

57 e v f(a)g(y)ldady = [ 1£1 7 lgl < oo,

SO

[ =g [ s orasay

== /O; /O; fly)e ¥ g(z)dydz = /O;f X g-

For the other half of the proposition, replace every e %Y in the argument by e™V.

283W Higher dimensions I offer a series of exercises designed to provide hints on how the work of this
section may be done in the r-dimensional case, where r > 1.

(a) Let f be an integrable complex-valued function defined almost everywhere in R”". Its Fourier
transform is the function f’ : R™ — C defined by the formula
N 1

fly) = (m)rfe_w'”f(x)dx,

writing y.o = mé& + ...+ & for o = (&,...,&) and y = (n1,... ,m) € R", and [ ...dz for integration

with respect to Lebesgue measure on R”. Similarly, the inverse Fourier transform of f is the function }
given by
f4) = = J e f(@)dz = f(-y).
(vV2m)"

Show that, for any integrable complex-valued function f on R",

(1) f : R" — C is continuous;

(i) limy) oo f(y) = 0, writing [|y|| = /¥~y as usual;

(iii) if [||z[||f(z)|dz < oo, then ]A” is differentiable, and

—f(y) = *ﬁf efiy'mfjf(x)df

for j <r,y € R", always taking &; to be the jth coordinate of z € R";
J
(iv) if j < r and % is defined everywhere and is integrable, then (g—gj)A(y) = inj]A”(y) for every y € R".
(Use 225L to show that if e € R” is a unit vector, then v — f(z + ve) is absolutely continuous on every
bounded interval for almost every z.)

(b) Show that if f1, ... , f. are integrable complex-valued functions on R with Fourier transforms g1, ... , gr,
and we write f(x) = f1(&)... fr(&) for ¢ = (&,...,&) € R", then the Fourier transform of f is

Y= g1(m) - gr(n)

(c) Let f be an integrable complex-valued function on R", and JA‘ its Fourier transform. If ¢ < d in R",
show that

7 r ei'anj — eiéjnj A
f=(—%=)" lm / ——f(y)dy,
/[c,d] 2 Q] yee , QU —>00 [7a,a] H 77]-

Jj=1

setting a = (a1,...), ¢= (y1,...), d = (01,...).

(d) Let f be an integrable complex-valued function on R", and JA‘ its Fourier transform. Show that if we
write

B (0,a) ={y : |n;| < a for every j <r},
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then

T35 500 € F W)y = [ 6u(0)] (@ — 1)t

for every a > 0, where

( ) 771—[ smém']

fort=(m,...,7) € R".

(e) ShOW that fR’ de < Q.

(f) Let f: R" — C be an integrable function. Show that if all the partial derivatives 85f for k<r+41

and j < r, are defined almost everywhere and integrable, then f is integrable.

(g) Show that if f and g are integrable complex-valued functions on R”, then (defining convolution as in

255L) (f % 9)" = (V2m)"f x §.
(h) Let f and g be integrable complex-valued functions on R”. Show that f x § = (\/27r)r(f X g)V.

(i) For o > 0, define ¢, : R" — C by setting

for every z € R”. Show that

" 1
ﬂja = 1/}0' - ;wl/a'

(j) Defining v, as in (e), show that lim,_o(f * ¥,)(z) = f(z) whenever x € R” and f : R" — C is
continuous and either integrable or bounded. (Cf. 261Ye, 262Y1.)

(k) Show that if f: R" — C is continuous and integrable, and f also is integrable, then f = fv. (Hint:
Show that both are equal at every point to lim,_o(v/ 27T)T(} X @U)V.)

(1) Show that if f and g are integrable complex-valued functions on R", then [ f x g = [ ]A‘ X g.

(m)(i) Show that fz(kﬂ T bl‘”tdt > 0 for every k € N, and hence that [ 2 ““tdt > 0.

(ii) Set f1(¢) = 1/4/]€] for 0 < €] < 1, 0 for other &. Show that lim, o, — 7= I, f n)dn exists in R
and is greater than 0.
(iii) Construct an integrable function fs, zero on some neighbourhood of 0, such that there are infinitely

many m € N for which | [ fz(n)d77| > \/% (Hint: take fo(&) = 2 Fsinmpé for k+1< €& < k42, for a
sufficiently rapidly increasing sequence (mg)xen.)

(iv) Set f(x) = f1(&1)f2(&) for o € R2. Show that f is integrable, that f is zero in a neighbourhood
of 0, but that

. 1 N
i sup, o0 3= | [ 0.0y @)yl > 0,

defining B, as in 283Wd.

283X Basic exercises (a) Confirm that the six alternative definitions of the transforms ﬁ f offered in
283B all lead to the same theory; find the constants involved in the new versions of 283Ch, 283Ci, 283L,
283M and 283N.

D.H.FREMLIN



46 Fourier analysis 283Xb
(b) If we redefined JA“(y) to be a [ €Y f(x)dx, what would J%(y) be?

(c) Show that nearly every 27 would disappear from the theorems of this section if we defined a measure
v on R by saying that vE = \/% uFE for every Lebesgue measurable set E, where p is Lebesgue measure,
and wrote

Fw) = [Z e felde),  fly) = [ e f(a)w(de),

(f*g)(x f fW)g(z —t)v(dt).
What is limg—y 0o ffa Si?ty(dt)?

>(d) Let f be an integrable complex-valued function on R, with Fourier transform f Show that (i) if
g(z) = f(—z) whenever this is defined, then g(y) = f(—y) for every y € R; (ii) if g(x) = f(z) whenever this

A

is defined, then §(y) = f(—y) for every y.

(e) Let f be an integrable complex-valued function on R, with Fourier transform f Show that

S i@y = o= [ S f(ayda

whenever ¢ < d in R.

>(f) For an integrable complex-valued function f on R, let its Fejér integrals be

0e() = g Jy (J e )y da

for ¢ > 0. Show that
oo(w) = 2 [ 1 pyat,

TJ—00  ct?

(g) Show that foo Lcosal yy — 1 for every a > 0. (Hint: integrate by parts and use 283Da.) Show that

oo 1—cosat 1—cosat
dt =limg,_ o SUPy>s —— o = =0
at

limg 00 f

for every § > 0.

(h) Let f be an integrable complex-valued function on R, and define its Fejér integrals o, as in 283Xf
above. Show that if x € R, ¢ € C are such that

. 1 6
limgyo 5 [i 1f (2 +1) + f(x — 1) — 2cldt = 0,
then lim, o0 04(x) = ¢. (Hint: adapt the argument of 282H.)

>(i) Let f be an integrable complex-valued function on R, and define its Fejér integrals o, as in 283Xf
above. Show that f(z) = lim,_,oc 04(x) for almost every = € R.

(j) Let f : R — C be a continuous integrable complex-valued function of bounded variation, and define
its Fejér integrals o, as in 283Xf above. Show that f(x) = lim, o0 04 (z) uniformly for = € R.

>(k) Let f be an integrable complex-valued function of bounded variation on R, and JAC its Fourier

transform. Show that sup,cg |y]A”(y)\ < 00.

(1) Let f and g be integrable complex-valued functions on R. Show that f g = v/ 27r(f x g)¥.
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(m) Let f be an integrable complex—valued function on R, and fix x € R. Set
f f(t) cosy(x —t)dt

for y € R. Show that
(i) if f is differentiable at z,

f(z) = hma_,oo f fac )dy;
(ii) if there is a neighbourhood of 2 in which f has bounded variation, then
- hma%oo f fac dy - (hmtedom f,t10 f(t) + lirntEdom f,td0 f(t))a

. (iu) if f is twice differentiable and f’, f” are integrable then fg; is integrable and f(z) = 1 fo fz (The
ormula

F@) =2 [ (7 £t cosy(w — t)dt)dy,

valid for such functions f, is called Fourier’s integral formula.)

(n) Show that if f is a complex-valued function of bounded variation, defined almost everywhere in R,
and converging to 0 (along its domain) at oo, then

g(y) = \/% lim, 00 fja e~ f(x)dw

is defined in C for every y # 0, and that the limit is uniform in any region bounded away from 0.

(o) Let f be an integrable complex-valued function on R. Set

Foly) = 7= [ cosya f(@)da,  foly) = 7= [ sinyx f(a)da
for y € R. Show that

\/%fja e f(y)dy = \/%foa cosy fo(y)dy + \/%foa sinzy £, (y)dy

for every z € R and a > 0.

(p) Use the fact that _foa fooo e Wsinydxdy = fooo foa e " sinydydx whenever a > 0 to show that
fooo —HIZQ dr = limg_eo foa %dy

>(q) Show that if f(x) = e~ *l, where ¢ > 0, then f’(y) = m Hence, or otherwise, find the

14y2°

(r) Find the inverse Fourier transform of the indicator function of a bounded interval in R. Show that
in a formal sense 283F can be regarded as a special case of 2830.

(s) Let f be a non-negative integrable function on R, with Fourier transform ]A” Show that

Di—0 2oh=o @jarf(y; — yr) =0

whenever yg, ... ,y, in R and ag, ... ,a, € C.

(t) Let f be an integrable complex-valued function on R. Show that f(z) = Sooe o f@+2mn) is defined
in C for almost every z. (Hint: Y oo [* | f(z + 27n)|dz < cc.) Show that f is periodic. Show that the

Fourier coefficients of f|]—m,7] are <\/%f(k)>kez.
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283Y Further exercises (a) Show that if f : R — C is absolutely continuous in every bounded interval,
1" is of bounded variation on R, and lim,_,« f(z) = lim;—, _ f(z) = 0, then

1 . a iz _ i : ¢ —iyx
g(y) = ﬁ limg_y 00 f—a e~ f(:L')diE - 7y\/_ﬂ limg o0 f—a e f/(:ﬂ)dl'
is defined, with

4
yvla(y)| < 7= Vara(f"),
for every y # 0.

(b) Let f: R — C be an integrable function which is absolutely continuous on every bounded interval,

and suppose that its derivative f’ is of bounded variation on R. Show that JA‘ is integrable and that f = fv.
(Hint: 225Yd, 283Ci, 283Xk.)

(c) Let f: R — [0,00[ be an even function such that f is convex on [0, 0o and lim,_,« f(z) = 0.
(i) Show that, for any y >0 and k € N, f2gg/z//y e~ W f(x)dx > 0.
ii) Show that g(y) = \/ﬁ lim,— o0 [, €7 f(x)dx exists in [0, 00[ for every y # 0.

iii) For n € N, set f,(x) = e~ 121/(»+1) f(2) for every x. Show that f, is integrable and convex on

iv) Show that g(y) = lim, 00 ]A”n(y) for every y # 0.
vi) Show that if f is integrable then

fa rfooslnat ( dt<_fﬂ'/af<2mf()

(
(
[0, 00l.
(
(

for every a > 0. Hence show that whether f is integrable or not, ¢ is integrable and f,, = (]Qn)v for every n.
(vii) Show that limgosup,cy [, JA”n =0.
(viii) Show that if f’ is bounded (on its domain) then {}n :n € N} is uniformly integrable (hint: use

(vii) and 283Ya), so that lim, . || f,, — gli = 0 and f = §.

(ix) Show that if f’ is unbounded then for every e > 0 we can find hi, hy : R — [0, 00[, both even,
convex and converging to 0 at oo, such that f = hy + ho, h} is bounded, [ hy < € and hy(0) < e. Hence
show that in this case also f = g.

(d) Suppose that f: R — R is even, twice differentiable and convergent to 0 at oo, that f” is continuous
and that {x : f”(z) = 0} is bounded in R. Show that f is the Fourier transform of an integrable function.
(Hint: use 283Yc and 283Yb.)

(e) Let g : R — R be an odd function of bounded variation such that [~ lg(z)dz = co. Show that g

cannot be the Fourier transform of any integrable function f. (Hint: show that if g = ]A‘ then

_zf f= hma%oo fa - Coszg(x)dx = 00.)

283 Notes and comments I have tried in this section to give the elementary theory of Fourier transforms
of integrable functions on R, with an eye to the extension of the concept which will be attempted in the next
section. Following §282, I have given prominence to two theorems (2831 and 283L) describing conditions
for the inversion of the Fourier transform to return to the original function; we find ourselves looking at
improper integrals limg, ffa, just as earlier we needed to look at symmetric sums lim, o0 > o . I
do not go quite so far as in §282, and in particular I leave the study of square-integrable functions for the
moment, since their Fourier transforms may not be describable by the simple formulae used here.

One of the most fundamental obstacles in the subject is the lack of any effective criteria for determin-
ing which functions are the Fourier transforms of integrable functions. (Happily, things are better for
square-integrable functions; see 2840-284P.) In 283Yc-283Yd I sketch an argument showing that ‘ordinary’
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non-oscillating even functions which converge to 0 at +co are Fourier transforms of integrable functions.

Strikingly, this is not true of odd functions; thus y — = ! is the Fourier transform of an integrable

(e+v?)
. arctany .
function, but y — Tn(ery?) not (283Ye).

In 283W I sketch the corresponding theory of Fourier transforms in R”. There are few surprises. One
point to note is that where in the one-dimensional case we ask for a well-behaved second derivative, in
the r-dimensional case we may need to differentiate r + 1 times (283Wf). Another is that we lose the
‘localization principle’. In the one-dimensional case, if f is integrable and zero on an interval |e,d[, then

. A
lim,e0 [, €Y f(y)dy = O for every x € ]c,d[; this is immediate from either 283 or 283L. But in higher

dimensions the most natural formulation of a corresponding result is false (283Wm).

Version of 30.8.13

284 Fourier transforms II
The basic paradox of Fourier transforms is the fact that while for certain functions (see 283J-283K)
we have (?)v = f, ‘ordinary’ integrable functions f (for instance, the indicator functions of non-trivial
intervals) give rise to non-integrable Fourier transforms JAC for which there is no direct definition available

for fv, making it a puzzle to decide in what sense the formula f = ]A“V might be true. What now seems
by far the most natural resolution of the problem lies in declaring the Fourier transform to be an operation
on distributions rather than on functions. I shall not attempt to describe this theory properly (almost any
book on ‘Distributions’ will cover the ground better than I can possibly do here), but will try to convey the
fundamental ideas, so far as they are relevant to the questions dealt with here, in language which will make
the transition to a fuller treatment straightforward. At the same time, these methods make it easy to prove
strong versions of the ‘classical’ theorems concerning Fourier transforms.

284A Test functions: Definition Throughout this section, a rapidly decreasing test function or
Schwartz function will be a function i : R — C such that h is smooth, that is, differentiable everywhere
any finite number of times, and moreover

sup,,c |2[* A0 ()] < 00

for all k, m € N, writing (™ for the mth derivative of h.

284B The following elementary facts will be useful.

Lemma (a) If g and h are rapidly decreasing test functions, so are g + h and ch, for any ¢ € C.

(b) If h is a rapidly decreasing test function and y € R, then x — h(y — x) is a rapidly decreasing test
function.

(c) If h is any rapidly decreasing test function, then h and h? are integrable.

(d) If h is a rapidly decreasing test function, so is its derivative h'.

(e) If h is a rapidly decreasing test function, so is the function x — zh(z).

(f) For any € > 0, the function = — e~ is a rapidly decreasing test function.
proof (a) is trivial.

(b) Write g(x) = h(y —z) for 2 € R. Then g™ (2) = (—1)"h(™ (y — 2) for every m, so g is smooth. For
any k € N,

jol* < 2%(lyl* + 1y — )

for every z, so
sup [z|*|g"™) (z)| = sup [2[*|n™) (y — )|
z€R SN
< 2|y|* sup [h™) (y — x)| + 2" sup |y — 2*|n0™) (y — 2)|
z€eR zeR
= 2k|y|k sup |h(m) ()] + 2F sup |x|k|h(m) (2)] < 0.
z€eR x€R
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(c) Because
M = sup, ez [h(@)] + 22h(o)|

is finite, we have

f|h| Sfli;da:<oo.

Of course we now have |h?| < M|h|, so h? also is integrable.

(d) This is immediate from the definition, as every derivative of h’ is a derivative of h.

(e) Setting g(z) = xh(z), g™ (x) = 2h™) (2) + mh(™=V(z) for m > 1, so

sup, ez |59 ()] < sup,ep |25 AU (2)] + msup, g [*A D (2)]

is finite, for all kK € N, m > 1.

(f) If h(z) = e~ then for each m € N we have h(™) (x) = pm(z)h(z), where po(z) =1 and pp41(x) =
Pl (x) — 2expp (), so that p, is a polynomial. Because e > b +122k+2 /(k 4 1)! for all z, k > 0,

1m0 [2]Fh(2) = limy 00 2% /e =0
for every k, and lim||—o p(z)h(x) = 0 for every polynomial p; consequently
lim| o0 zFh(m) (z) = lim| | oo 2Fp (z)h(z) =0

for all k, m, and h is a rapidly decreasing test function.

284C Proposition Let h : R — C be aArvapidi}i decreasing test function. Then h:R=Candh:R —C
are rapidly decreasing test functions, and h =h =h.
proof (a) Let k, m € N. Then sup,cp(|z|™ + |z|™F2)|h*) (2)| < 0o and [7_ |2™h*¥) (z)|dz < co. We may
therefore use 283Ch-283Ci to see that y — ik+mykléb(m) (y) is the Fourier transform of x + 2™h®*)(z), and
therefore that limy|_, ykiAz(m)(y) = 0, by 283Cg, so that (because hm) s continuous) sup,cg |ykiAl(m) (y)| is

finite. As k and m are arbitrary, his a rapidly decreasing test function.
(b) Since fVL(y) = fAL(—y) for every y, it follows at once that his a rapidly decreasing test function.

(c) By 283J, it follows from (a) and (b) that ho=h"=h.

284D Definition I will use the phrase tempered function on R to mean a measurable complex-valued
function f, defined almost everywhere in R, such that

7 e @)l < oo

for some k € N.

284E As in 284B I spell out some elementary facts.

Lemma (a) If f and g are tempered functions, so are |f|, f + g and cf, for any ¢ € C.
(b) If f is a tempered function then it is integrable over any bounded interval.
(c) If f is a tempered function and = € R, then ¢ — f(x+t) and t — f(xz—t) are both tempered functions.

proof (a) is elementary; if
1

3 1 o
f—oo 1+|z] f(l')dx < 00, f—oo mg(x)dx < o0,

then
[ —|(f + 9)(@)lde < o0

—00 14|z|itk
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because

L+ [27+E > max(1, |2[+%) > max(1, |2}, [2) > S max(1 + |27, 1+ [2]*)

for all z.
(b) If

e} 1

then for any a < b
b
S 1< M@ faf* + [pF) (b — a) < oo

(c) The idea is the same as in 284Bb. If k € N is such that

e} 1

then we have
L+ |z +tF <28+ |zF) (1 + |¢]F)
so that

1
1—Ht|’c -

1
1+|z+t|*

25 (1 + |2]*)
for every t, and

|f(z+t)] By [0 |f(z+t)] &
J 7 e < 241 ) [ 7 (Tt < 251U+ Jaf )M < oo,

Similarly,

|f(@=0)]
[ g < 28 (1 4 |z[*)M < oc.

284F Linking the two concepts, we have the following.

Lemma Let f be a tempered function on R and h a rapidly decreasing test function. Then f x h is
integrable.

proof Of course f x h is measurable. Let k € N be such that [ 1+|x\’“ |f(z)|dx < oo. There is an M
such that (1 + |z|¥)|h(x)] < M for every z € R, so that

f |f><h|<Mf

o Tis |k| (z)|dx < 0.

284G Lemma Suppose that f; and fo are tempered functions and that [ f; x h = [ fo x h for every
rapidly decreasing test function h. Then f; =,.. fo.

proof (a) Set g = f1 — f2; then [ g x h = 0 for every rapidly decreasing test function h. Of course g is a
tempered function, so is integrable over any bounded interval. By 222D, it will be enough if I can show that

f; g = 0 whenever a < b, since then we shall have g = 0 a.e. on every bounded interval and f; =, fo.

(b) Consider the function o(z) = e V" for z > 0. Then ¢ is differentiable arbitrarily often everywhere in
]0,00[, 0 < ¢(x) < 1 for every = > 0, and lim; o0 ¢(z) = 1. Moreover, writing (™ for the mth derivative
of ¢,

. b . 17
lim, 0 0™ (2) = lim,yo ;qﬁ(m) (x)=0

for every m € N. P (Compare 284Bf.) We have ¢(™ (z) = pm(%)é(z), where po(t) = 1 and pp,41(t) =
t2(pm (t) — ph, (1)), so that p,, is a polynomial for each m € N. Now for any k € N,
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. _ . k41)1tk
0 < limsup,_, ., t*e™ < lim; .o ( =0,

SO

lim, o gzNS(m)(x) =limy o0 pm(t)e t =0,
limg o iqg(m) () = limy_s o0 tpm (t)e”t = 0. Q

(c) Consequently, setting ¢(z) = 0 for = < 0, e~/ for > 0, ¢ is smooth, with mth derivative
o™ (x) =0 for . <0, ¢ (z)= ¢ (z) for z > 0.

(The proof is an easy induction on m.) Also 0 < ¢(z) <1 for every z € R, and lim,_,, ¢(z) = 1.

(d) Now take any a < b, and for n € N set

b (@) = (& — a))$(n(b — ).
Then ¢,, will be smooth and ¢, (x) =0 if x ¢ |a, b, so surely ¢,, is a rapidly decreasing test function, and
[T gxén=0.

Next, 0 < ¢, (z) < 1 for every z, n, and if a < 2 < b then lim, o ¢n(z) = 1. So

[Pg=[gxxa.b) = [gx (limu o dn) = limy oo [ g% 6 =0,

using Lebesgue’s Dominated Convergence Theorem. As a and b are arbitrary, g = 0 a.e., as required.

284H Definition Let f and g be tempered functions in the sense of 284D. Then I will say that g
represents the Fourier transform of f if

Jogxn= [ 1 xh

for every rapidly decreasing test function h.

2841 Remarks (a) As usual, when shifting definitions in this way, we have some checking to do. If f is an

A N
integrable complex-valued function on R and f is its Fourier transform, then surely f is a tempered function,
being a bounded continuous function; and if & is any rapidly decreasing test function, then [ fxh = [ fxh

by 2830. Thus f‘ ‘represents the Fourier transform of f’ in the sense of 284H above.

(b) Note also that 284G assures us that if g1, g2 are two tempered functions both representing the Fourier
transform of f, then g1 =, .. g2, since we must have

f91><h=ff><iAL:fgg><h

for every rapidly decreasing test function h.

(c) Tt is I suppose obvious that if f1, fa, g1 and go are tempered functions and g; represents the Fourier
transform of f; for both i, then cg1 + g2 represents the Fourier transform of cf; + fs for every ¢ € C.

(d) Of course the value of this indirect approach is that we can assign Fourier transforms, in a sense, to
many more functions. But we must note at once that if g ‘represents the Fourier transform of f’ then so
will any function equal almost everywhere to g; we can no longer expect to be able to speak of ‘the’ Fourier
transform of f as a function. We could say that ‘the’ Fourier transform of f is a functional ¢ on the space
of rapidly decreasing test functions, defined by setting ¢(h) = [ f x iAz; alternatively, we could say that ‘the’
Fourier transform of f is a member of L2, the space of equivalence classes of almost-everywhere-defined
measurable functions (241J).

(e) It is now natural to say that g represents the inverse Fourier transform of f just when f

N
represents the Fourier transform of g; that is, when [ fxh = [ gxh for every rapidly decreasing test function
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AV VA Vv
h. Because h = h = h for every such h (284C), this is the same thing as saying that [gx h = [ f X h
for every rapidly decreasing test function h, which is the other natural expression of what it might mean to
say that ‘g represents the inverse Fourier transform of f’.

(f) If f, g are tempered functions and we write g(z) = g(—z) whenever this is defined, then § will also
be a tempered function, and we shall always have

fﬁ X h = fg(—x)h(:ﬁ)dx = fg(m)h(—a:)dx = fg X h,

so that

g represents the Fourier transform of f
J g xh=[fxhforevery test function h
fg><va:ff><fVLA for every h
fﬁxﬁ:fthforeveryh
g represents the inverse Fourier transform of f.
Combining this with (d), we get

g represents the Fourier transform of f

1117

<= f = f represents the inverse Fourier transform of g

= ? represents the Fourier transform of g.

(g) Yet again, we ought to be conscious that a check is called for: if f is integrable and ]vf is its inverse
Fourier transform as defined in 283Ab, then

f]vfxlAzszxiALv:fth

\A
for every rapidly decreasing test function h, so f ‘represents the inverse Fourier transform of f’ in the sense
given here.

284J Lemma Let f be any tempered function and h a rapidly decreasing test function. Then f * h,
defined by the formula

(fh)(y) = [ f(Ohly - t)dt,
is defined everywhere.

proof Take any y € R. By 284Bb, t — h(y — t) is a rapidly decreasing test function, so the integral is
always defined in C, by 284F.

284K Proposition Let f and g be tempered functions such that g represents the Fourier transform of
f, and h a rapidly decreasing test function.

(a) The Fourier transform of the integrable function f x h is \/% g * h.
(b) The Fourier transform of the continuous function f * h is represented by the product v/2rg x h.

proof (a) Of course f x h is integrable, by 284F, while g * h is defined everywhere, by 284C and 284J.

Fix y € R. Set hy(z) = lAL(y — x) for € R; then h; is a rapidly decreasing test function because h is
(284Bb). Now

_ L > —itw ) _ 1 > —it(y—m) 7
hi(t) = T 7006 h(y — x)dx = m[me h(zx)dx
o0 A . AV .
= Le_ity/ e h(x)dr = e Wh (t) = e "Wh(t),
—00

using 284C. Accordingly
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U w) == [ e
— \/% /O; F&)h (B)dt = ——= /OO g(t)hy ()t

(because g represents the Fourier transform of f)
o0
1

7=/ g(Oh(y — t)dt = 5= (g% h)(y).

AN
As y is arbitrary, \/%g * h is the Fourier transform of f x h.

(b) Write f; for the Fourier transform of g x fAL, ?(x) = f(—2) when this is defined, and ﬁ(m) = h(—2x)
for every x, so that ? represents the Fourier transform of g, by 284If, and h is the Fourier transform of

h. By (a), we have f1 = —L_% % h. This means that the inverse Fourier transform of v/ 2mg X h must be

vzt
\/ﬂ?l = (7” * Z)“; and as

(F o T ) = (Fulion) = [~ FOi-y - oy
SRG y+wm:/ F(t)hy — t)dt = (F * )()
the inverse Fourier transform of +/2mwg % his f = h (which is therefore continuous), and v2mg x h must

represent the Fourier transform of f * h.

Remark Compare 283M. It is typical of the theory of Fourier transforms that we have formulae valid in a
wide variety of contexts, each requiring a different interpretation and a different proof.

284L We are now ready for a result corresponding to 282H. I use a different method, or at least a
different arrangement of the ideas, through the following fact, which is important in other ways.

Proposition Let f be a tempered function. Writing v, (z) = ﬁe‘wz/%z for x € R and o > 0, then
limg o (f * ¥o)(2) = ¢

whenever z € R and ¢ € C are such that

5
limgyo 5[5 |f(z+1) + f(x = t) = 2cldt = 0.

proof (a) By 284Bf, every v, is a rapidly decreasing test function, so that f x4, is defined everywhere, by
284J. We need to know that [* 1, = 1; this is because (substituting u = z /o)

o0 _ 1 oo —u?/2 —
f_oowo—\/—Z—ﬂ_f_ooe /du—l,
by 263G. The argument now follows the lines of 282H. Set
ot) = [f(z+1) +f($ — 1) —2¢|

when this is defined, which is almost everywhere, and ®(¢ fo ¢, defined for all t > 0 because f is integrable
over every bounded interval (284Eb). We have
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(F % bo)(@) — | = | / =ttt [ votoi
[ (e —t) - ety + / T — 1) — ot

oy / O (t)dt + / (1) — b (t)dt]

(because 1, is an even function)

-y / )+ F — ) — 20 ()]
f/ @+ 1)+ f— 1) — 2e (1)t = /¢xwa

0

(b) I should explain why this last integral is finite. Because f is a tempered function, so are the
functions ¢ — f(x +t), t — f(x —t) (284Ec); of course constant functions are tempered, so t — ¢(t) =
[f(x+1t)+ f(x —t) — 2¢| is tempered, and because v, is a rapidly decreasing test function we may apply
284F to see that the product is integrable.

(c) Let € > 0. By hypothesis, lim; o ®(¢)/t = 0; let § > 0 be such that ®(t) < et for every t € [0, d]. Take
any o € ]0,6]. I break the integral fooo ¢ X 1, up into three parts.

(i) For the integral from 0 to o, we have

7 7 1 1 €o
/0 ¢X¢US/O o 27r¢_0 2W@(U)§0m§€,

because ¥, (t) < a\}ﬁ for every t.

(ii) For the integral from o to ¢, we have

[ oxves e [owa

(because e~t"/20" = 1/et’/20" < 1/(t2/202) = 202/t for every t # 0)

<z> 60 gy — g [2(20 _ 20) " 2000 )
o? s B
(integrating by parts — see 225F)

5
<o +/ )
(because ®(t) < et for 0 <t < and /2/7 < 1)

€ 2e
< 0'(5 + ;) < 3e.
(iii) For the integral from 4 to co, we have

/ ¢ XYy = r/ _tz/% —dt.

o~ %642/2”2 :]0,0] = R

Now for any t > 4§,

is monotonically increasing, because its derivative
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d1 —t%/202 1t —t2 /202
—=e =—(=—1)e
do o o2 (0'2 )

is positive, and

—t2 /202 —a*t?/2 _ 0.

. 1 .
lim, o —e = lim,_, o ae
ag

So we may apply Lebesgue’s Dominated Convergence Theorem to see that

o e_t2/20721,
lim [ ¢(t)—dt =0

n=oo Js On
whenever (o,,)nen is a sequence in |0, d] converging to 0, so that

00 e—t?/20"

Liirol/é o(t) ——dt = 0.

There must therefore be a o¢ € 10, d] such that

[ o x v, <e
for every o < ogy.

(iv) Putting these together, we see that
[(f *15)(x) —c|] < fooogb X o < €+ 3€+ € = be

whenever 0 < 0 < g¢. As € is arbitrary, lim,o(f * ¥ )(z) = ¢, as claimed.

284M Theorem Let f and g be tempered functions such that g represents the Fourier transform of f.
Then

a)(i) g(y) = lim¢g L > e*iywe’”rzf x)dz for almost every y € R.
4 Var J—oo
(ii) If y € R is such that a = limycdom g,¢4y 9(t) and b = limicdom g,¢1y g(t) are both defined in C, then

lim, o —iyze—er’ f(3)dy = %(a +b).

v
(b)(1) f(z) = limejo \/% 1. eV’ g(y)dy for almost every z € R.
(i) If = € R is such that a = limyedom /142 f(t) and b = lim;edom f,¢)o f(¢) are both defined in C, then
lim, o \/%f_ozo eimyeféng(y)dy = %(a +b).
proof (a)(i) By 223D,

s
limo 5z 75 l9(y +1) — g(y)ldt = 0

for almost every y € R, because g is integrable over any bounded interval. Fix any such y. Set ¢(t) =
lg(y +t) + g(y — t) — 2g(y)| whenever this is defined. Then, as in the proof of 282Ia,

1) &
Jo o< [ 519ty +1) = g(y)ldt,
so limgyo § fO(S ¢ = 0. Consequently, by 284L,

9(y) = limg 0 (g * ¥1/5)(y)-

We know from 283N that the Fourier transform of v, is %1% /o for any o > 0. Accordingly, by 284K, g*1; /,
is the Fourier transform of ov27f X 1., that is,

(9*¢1/a)(y) = foo

— 00

e~ Wi, (x) f(x)dx.
So
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o0

g9(y) = lim e oty () f(2)dx

o—oo |

—zyx —z%/20°
£&¢*/ Jle)de

~lim L / S [ () d

And this is true for almost every y.

(ii) Again, setting ¢ = $(a +b), ¢(t) = [g(y +t) + g(y — t) — 2c| whenever this is defined, we have
limy e dom o,¢0 #(t) = 0, so of course lims o % f(f ¢ =0, and

c= lim (g#¢i/,)(y )—hmr/ T

el0
as before.

(b) This can be shown by similar arguments; or it may be actually deduced from (a), by observing that

T~ ?(x) = f(—=) represents the Fourier transform of g (see 284le), and applying (a) to g and ?

284N L? spaces We are now ready for results corresponding to 282J-282K.

Lemma Let £2 be the space of square-integrable complex-valued functions on R, and 8 the space of rapidly
decreasing test functions. Then for every f € £2Z and € > 0 there is an h € 8 such that ||f — hlj2 < e.

proof Set ¢(z) = e~ 1/* for & > 0, zero for 2 < 0; recall from the proof of 284G that ¢ is smooth. For any
a < b, the functions

z = dn(r) = ¢(n(z — a))¢(n(b — z))

provide a sequence of test functions converging to x ]a, b[ from below, so (as in 284G)

. . b
infres [[x]a,b[ = All3 < limpeo f'[1 = ¢nl” =0
Because 8 is a linear space (284Ba), it follows that for every step-function g with bounded support and every
€ > 0 there is an h € 8 such that ||g — hll2 < Je. But we know from 244H/244Pb that for every f € £2 and

€ > 0 there is a step-function g with bounded support such that ||f — g||2 < 3¢; so there must be an h € 8
such that

If = hll2 <[If —glla+1lg—hll2<e

As f and € are arbitrary, we have the result.

2840 Theorem (a) Let f be any complex-valued function which is square-integrable over R. Then f is
a tempered function and its Fourier transform is represented by another square-integrable function g, and

lgllz = [1f]l2-

(b) If f1 and fy are complex-valued functions, square-integrable over R, with Fourier transforms repre-
sented by functions gi, g2, then

ff fix fa= f g1 X g2.

(¢) If f1 and fy are complex-valued functions, square-integrable over R, with Fourier transforms repre-
sented by functions gi, g2, then the integrable function f; x fo has Fourier transform \/% g1 * go.

(d) If f1 and fo are complex-valued functions, square-integrable over R, with Fourier transforms repre-
sented by functions g1, g2, then v/2mg; X go represents the Fourier transform of the continuous function

f1* fa.

proof (a)(i) Consider first the case in which f is a rapidly decreasing test function and g is its Fourier
transform; we know that ¢ is also a rapidly decreasing test function, and that f is the inverse Fourier
transform of g (284C). Now the complex conjugate g of g is given by the formula
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— 1 [e’e] . 1 o iur T
g(y) = Wor Jo e f(x)de = ﬁf_w eV f(x)dx,
so that g is the inverse Fourier transform of f. Accordingly
Jrxf=[agxf=[gxf=[gx7
using 2830 for the middle equality.

(ii) Now suppose that f € £Z. I said that f is a tempered function; this is simply because

S () e <

SO

[ U@l g < o
~o 1+fz]

(244EDb). By 284N, there is a sequence (f,)nen of rapidly decreasing test functions such that lim,_, || f —
fll2 = 0. By (i),

A A
hmm,n%o@ ||fm - fn||2 = limm,nﬁoo ||fm - an2 =0,

and the sequence (f;)neN of equivalence classes is a Cauchy sequence in L%. Because L(QC is complete
(244G /244PD), (f;)neN has a limit in L2, which is representable as g* for some g € £Z. Like f, g must be
a tempered function. Of course

A
lgll2 = Ty oo [[ £ ll2 = limn oo [ frll2 = [[fll2-

Now if h is any rapidly decreasing test function, h and h are square-integrable (284Bc, 284C), so we shall
have

[gxh=limy o [ foxh=limp o [ fuxh=[fxh.
So g represents the Fourier transform of f.

(b) By 284Ib, any functions representing the Fourier transforms of f; and fo must be equal almost
everywhere to square-integrable functions, and therefore square-integrable, with the right norms. It follows
as in 282K (part (d) of the proof) that if g;, g2 represent the Fourier transforms of f1, fo, so that ag; + bgo
represents the Fourier transform of afi +bfs and ||agy + bg2|l2 = ||afi + bfz2]|2 for all a, b € C, we must have

[ i x Fa=(filf2) = (91l92) = [ 91 X G-

(c) Of course fi X f is integrable because it is the product of two square-integrable functions (244E/244Pb).

(i) Let y € R and set f(z) = fo(x)e™® for € R. Then f € £LZ. We need to know that the Fourier

transform of f is represented by g, where g(u) = g2(y — u). PP Let h be a rapidly decreasing test function.
Then

/g X h = /mh(u)du = /Mh(y —u)du

:/92><h1:/f2><h1,

where hq(u) = h(y —w). To compute lAzl, we have

A

1 o —jvu 1 > —ivug 0
hi(v) = oz / e ""hy(u)du = Nor / e ""h(y — u)du

= \/% / evuh(y — u)du = \/% / e h(u)du = evh(v).

So

MEASURE THEORY



284Qb Fourier transforms II 59

[gxh=[foxh=[fr(v)hi(v)dv= [ fo(v)e™h(v)dv= [ f x h;
as h is arbitrary, g represents the Fourier transform of f. Q

(ii) We now have

(x50 =S [ e @) )

:V%[mf1Xf:¢%[mgl X g
(using part (b))

= J% /_Z g1(w)ga(y — u)du = \/%(91 *92)(y)

As y is arbitrary, (f1 X f2)" = \/%gl * g2, as claimed.

(d) By (c), the Fourier transform of v/27g; X gs is ?1 * ?2, writing ?1(x) = fi1(—x), so that ?1 represents
the Fourier transform of g;. So the inverse Fourier transform of v/2mg; X g2 is (f1 % f2)°. But, just as in

the proof of 284Kb, (?1 * ?Q)H = f1 % fa, S0 f1 * fo is the inverse Fourier transform of v2mwg; X g2, and
V2mwgy X go represents the Fourier transform of f; x fa, as claimed. Also fi * f5, being the Fourier transform
of an integrable function, is continuous (283Cf; see also 255K).

284P Corollary Writing L% for the Hilbert space of equivalence classes of square-integrable complex-
valued functions on R, we have a linear isometry 7T : L<2c — L(QC given by saying that T'(f*) = ¢g* whenever f,
gE L?C and g represents the Fourier transform of f.

284Q Remarks (a) 284P corresponds, of course, to 282K, where the similar isometry between ¢2(Z)
and LZ(]—m, ) is described. In that case there was a marked asymmetry which is absent from the present
situation; because the relevant measure on Z, counting measure, gives non-zero mass to every point, members
of % are true functions, and it is not surprising that we have a straightforward formula for S(f*) € ¢2 for
every f € LZ(]—m, 7). The difficulty of describing S=1 : ¢2(Z) — L&(]—m, m]) is very similar to the difficulty
of describing 7" : LA(R) — L(R) and its inverse. 284Yg and 286U-286V show just how close this similarity
is.

(b) I have spelt out parts (¢) and (d) of 2840 in detail, perhaps in unnecessary detail, because they give
me an opportunity to insist on the difference between ‘v/2mg, x go represents the Fourier transform of f; * fo’
and ‘\/%gl x go 1s the Fourier transform of f; x fo’. The actual functions g; and go are not well-defined by
the hypothesis that they represent the Fourier transforms of f; and fs, though their equivalence classes g1,
g5 € L2 are. So the product g1 X go is also not uniquely defined as a function, though its equivalence class
(g1 X g2)* = g} x g5 is well-defined as a member of L{.. However the continuous function g * go is unaffected
by changes to g1 and g on negligible sets, so is well defined as a function; and since f; X fo is integrable,
and has a true Fourier transform, it is to be expected that (f; x f2)" should be exactly equal to \/% g1 * go.

This distinction between ‘being’ a Fourier transform and ‘representing’ a Fourier transform echoes a
question which arose in 233D concerning conditional expectations. I spoke there of ‘a’ conditional expectation
on T of a function f as being ‘a u|T-integrable function g such that fF gdu = fF fdu for every F' € T’; the
point being that any p[T-integrable function equal almost everywhere to g would equally be a conditional
expectation of f. Here we see that if g represents the Fourier transform of f then any function almost
everywhere equal to g will also represent the Fourier transform of f. In 242J I suggested resolving this
complication by regarding conditional expectation as a map between L' spaces rather than between £!
spaces. Here, similarly, we could think of the Fourier transform considered in 284H as being a linear
operator defined on a certain subspace of L%(u).

In the case of conditional expectations, I think that there are solid reasons for taking the operators on
L' spaces as the real embodiment of the idea; I will expand on these in Chapter 36 of the next volume. In
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the case of Fourier transforms, I do not think the arguments have the same force. In 284R below, and in
6285, we shall see that there are important cases in which we want to talk about Fourier transforms which
cannot be represented by members of L, so that this would still be only a half-way house.

(c) Of course 2840¢-2840d also exhibit a characteristic feature of arguments involving Fourier transforms,
the extension by continuity of relations valid for test functions.

(d) 2840a is a version of Plancherel’s theorem. The formula ||f|l2 = ||]A‘||2 is Parseval’s identity.

284R Dirac’s delta function Consider the tempered function yR with constant value 1. In what sense,
if any, can we assign a Fourier transform to yR?

If we examine [ xR x fAL, as suggested in 284H, we get
J o xRxh=["_h=+2rh (0) = v27h(0)

for every rapidly decreasing test function k. Of course there is no function g such that [ g x h = V27h(0)
for every rapidly decreasing test function h, since (using the arguments of 284G) we should have to have
f; g = V21 whenever a < 0 < b, so that the indefinite integral of g could not be continuous at 0. However
there is a measure on R with exactly the right property, the Dirac measure Jy concentrated at 0; this is a
Radon probability measure (257Xa), and [ hddy = h(0) for every function h defined at 0. So we shall have

[7° xR x h = v2r [ hdd,

for every rapidly decreasing test function h, and we can reasonably say that the measure v = /274
‘represents the Fourier transform of yR’.
We note with pleasure at this point that
1 Ty _
Nors f e™Vy(dy) =1
for every z € R, so that YR can be called the inverse Fourier transform of v.

If we look at the formulae of Theorem 284M, we get ideas consistent with this pairing of YR with v. We
have

_iyze—exsz(x)dx _ —iyze—erdx — 12 e—y2/45
V2e

e e
for every y € R, using 283N with o = 1/v/2¢. So

lim, o \/%fjooo e~ Wre=<* yR(z)dx = 0
for every y # 0, and the Fourier transform of YR should be zero everywhere except at 0. On the other

hand, the functions y — \/%e_yz/ 4¢ all have integral v/2m, concentrated more and more closely about 0 as

€ decreases to 0, so also point us directly to v, the measure which gives mass v/27 to 0.
Thus allowing measures, as well as functions, enables us to extend the notion of Fourier transform. Of

course we can go very much farther than this. If h is any rapidly decreasing test function, then (because
VA

i =h)
[%° ah(z)de = —iv/2ah'(0),

— 00

so that the identity function z — z can be assigned, as a Fourier transform, the operator h — —iy/2wh/(0).
At this point we are entering the true theory of (Schwartzian) distributions or ‘generalized functions’,
and I had better stop. The ‘Dirac delta function’ is most naturally regarded as the measure &g above;

. 1 A
alternatively, as o xR.

284W The multidimensional case As in §283, I give exercises designed to point the way to the
r-dimensional generalization.
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(a) A rapidly decreasing test function on R" is a function i : R™ — C such that (i) & is smooth,
that is, all repeated partial derivatives
O™h
0j, -0,

are defined and continuous everywhere in R" (ii)

o0™h
supgerr ]| (@) <00, supsep- 2" 52 ()] < o0

105,

for every k € N, j1,... ,5m <r. A tempered function on R" is a measurable complex-valued function f,
defined almost everywhere in R”, such that, for some k € N,

1

Show that if f is a tempered function on R” and h is a rapidly decreasing test function on R” then f x h is
integrable.

(b) Show that if h is a rapidly decreasing test function on R” so is }Al, and that in this case h = h.

(c) Show that if f is a tempered function on R” and [ f x h = 0 for every rapidly decreasing test function
h on R", then f =0 a.e.

(d) If f and g are tempered functions on R", I say that g represents the Fourier transform of f if

Jgxh=[fx h for every rapidly decreasing test function h on R”. Show that if f is integrable then JA‘
represents the Fourier transform of f in this sense.

(e) Let f be any tempered function on R”. Writing ¢, (x) = (0\/127)7,6’1‘9”/2"2 for x € R", show that

limyo(f * ¥5)(x) = ¢ whenever x € R", ¢ € C are such that limsg %fB(I 5) |f(t) — c¢|dt = 0, writing
B(z,0) ={t: |t — x| < 4}.

(f) Let f and g be tempered functions on R” such that g represents the Fourier transform of f, and h a
rapidly decreasing test function. Show that (i) the Fourier transform of f x h is ﬁg h (i) (v2m)"g x h
represents the Fourier transform of f x h.

(g) Let f and g be tempered functions on R” such that g represents the Fourier transform of f. Show
that
=i 1 —iY . T, —€ET.T d
g(y) - lmﬁio (\/ﬂ)r er € € f(x) xz

for almost every y € R”.

(h) Show that for any square-integrable complex-valued function f on R” and any e > 0 there is a rapidly
decreasing test function h such that || f — hlj2 <e.

i) Let £2 be the space of square-integrable complex-valued functions on R”. Show that
C
(i) for every f € L2 there is a g € £LZ which represents the Fourier transform of f, and in this case

ligllz = 11£ll2;

(ii) if g1, go € L2 represent the Fourier transforms of fi, fo € £Z, then g1 * go is the Fourier

1
(V2m)r
transform of fi x fo, and (v/27)"g1 X g2 represents the Fourier transform of fi * fo.

(j) Let T be an invertible real r x r matrix, regarded as a linear operator from R" to itself. (i) Show that

f = |det T|(fT)"T" for every integrable complex-valued function f on R”. (ii) Show that AT is a rapidly
decreasing test function for every rapidly decreasing test function h. (iii) Show that if f, g are a tempered
1
| det T'|
of fT; so that if T is orthogonal, then gT represents the Fourier transform of fT.

functions and g represents the Fourier transform of f, then g(TT)~" represents the Fourier transform
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284X Basic exercises (a) Show that if g and h are rapidly decreasing test functions, so is g X h.

(b) Show that there are non-zero continuous integrable functions f, g : R — C such that fxg = 0
everywhere. (Hint: take them to be Fourier transforms of suitable test functions.)

(c) Suppose that f: R — C is a differentiable function such that its derivative f’ is a tempered function
and, for some k € N,
limg, oo 2% f(2) = limy s o 27 % f(z) = 0.

(i) Show that [ f x k' = — [ f' x h for every rapidly decreasing test function h. (ii) Show that if g is a
tempered function representing the Fourier transform of f, then y — iyg(y) represents the Fourier transform

of f'.

(d) For a tempered function f and a € R, set

(Saf)(@) = flz+a), (Maf)(z)=e*f(z), (Daf)(z)= f(azx)
whenever these are defined. (i) Show that S, f, M,f and (if a # 0) D,f are tempered functions. (ii)
Show that if g is a tempered function which represents the Fourier transform of f, then M_,g represents

the Fourier transform of S, f, S_ag represents the Fourier transform of M f, § = g represents the Fourier

transform of f, and if a # 0 then ﬁDl /ag represents the Fourier transform of D, f.
«

(e) Show that if h is a rapidly decreasing test function and f is any measurable complex-valued function,
defined almost everywhere in R, such that ffooo |z|*| f(x)|dz < oo for every k € N, then the convolution f*h
is a rapidly decreasing test function. (Hint: show that the Fourier transform of f x h is a test function.)

>(f) Let f be a tempered function such that lim,_, e ffa f exists in C. Show that this limit is also
equal to limeyo /7 e’E””Qf(z)d:c. (Hint: set g(z) = f(x) + f(—x). Use 224J to show that if 0 < a <
b then |ffg(x)e_“2dx| < SUDelap | [ g1, s0 that limg oo [ g(z)e=<""dz exists uniformly in e, while
lim, o foag(x)e_“de = [y g for every a > 0.)

>(g) Let f and g be tempered functions on R such that g represents the Fourier transform of f. Show
that

g9(y) = limg 00 \/%fja e~ f(z)da

at almost all points y for which the limit exists. (Hint: 284Xf, 284M.)

>(h) Let f be an integrable complex-valued function on R such that ]Ac also is integrable. Show that

AV
f = f at any point at which f is continuous.

(i) Show that for every p € [1,00[, f € L and e > 0 there is a rapidly decreasing test function h such
that ||f — hl[, <e

>(j) Let f and g be square-integrable complex-valued functions on R such that g represents the Fourier
transform of f. Show that

d i oo eicy_eidy
o f=gm 9wy

whenever ¢ < d in R.

(k) Let f be a measurable complex-valued function, defined almost everywhere in R, such that [ |f|P < oo,
where 1 < p < 2. Show that f is a tempered function and that there is a tempered function g representing
the Fourier transform of f. (Hint: express f as f1 + f2, where f; is integrable and fs is square-integrable.)
(Remark Defining ||f||,, |lgll; as in 244D, where ¢ = p/(p — 1), we have |g|, < (2m)P=2/2P| f|,; see
ZYGMUND 59, XVI1.3.2.)
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(1) Let f, g be square-integrable complex-valued functions on R such that g represents the Fourier

transform of f.
(i) Show that

rf wyg dy _ _f smat t)dt

whenever € R and a > 0. (Hint: find the inverse Fourier transform of y — e~ *¥x[—a,a](y), and use

2840D.)
(ii) Show that if f(x) =0 for = € ]e, d] then

1 : a ix
\/T? hma—>oo ffa € yg(y)dy = 0

for z € Jc, d].
(iii) Show that if f is differentiable at x € R, then

oz limassoe [ € g(y)dy = f(2).

(iv) Show that if f has bounded variation over some interval properly containing x, then

1 . a iz 1,,. .
o iMa—soo I e™va(y)dy = 5 (i caom f.e1a f(£) + limiedom .40 £(2))-

(m) Let f be an integrable complex function on R. Show that if JA“ is square-integrable, so is f.

(n) Let f1, fo be square-integrable complex-valued functions on R with Fourier transforms represented
by g1, g2 Show that [0 fi(t)fo(—t)dt = [ gi(t)ga(t)dt.

(o) Suppose = € R. Write d, for Dirac measure on R concentrated at x. Describe a sense in which v/27d,,
can be regarded as the Fourier transform of the function ¢ — e®?.

(p) For any tempered function f and z € R, let §, be the Dirac measure on R concentrated at z, and set

(6, % )(w) = [ Flu—)5.(dt) = F(u—2)

for every u for which w — z € dom f (cf. 257Xe). If g represents the Fourier transform of f, find a corre-
sponding representation of the Fourier transform of §, * f, and relate it to the product of g with the Fourier
transform of ¢,.

(q)(i) Show that

51

lims 0,000 (f o« e~ Wrdy + f _”’xdm) = —misgny

for every y € R, writing sgny = y/|y| if y # 0 and sgn0 = 0. (Hint: 283Da.)
(ii) Show that

limg_, o % /. OC ffa e sgny dy da = %

for every = # 0.
(iii) Show that for any rapidly decreasing test function h,

(iv) Show that for any rapidly decreasing test function h,

oo 1

Ja ST b s de = 77 ) = b))
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(r) Let (hn)nen be a sequence of rapidly decreasing test functions such that ¢(f) = lim,— o ffooo hp X< f

is defined for every rapidly decreasing test function f. Show that lim,_, ffooo Rl x f, limy, 0o ffooo ﬁn x f

and lim,,_, o ffom(hn * g) x f are defined for all rapidly decreasing test functions f and g, and are zero if ¢
is identically zero. (Hint: 255G will help with the last.)

284Y Further exercises (a) Let f be an integrable complex-valued function on |—m, 7], and f its
periodic extension, as in 282Ae. Show that f is a tempered function. Show that for any rapidly decreasing

test function h, [ f x h =21 Sore o ckh(k), where (cx)ren is the sequence of Fourier coefficients of f.
(Hint: begin with the case f(z) = ™. Next show that

M =302 Ih(R)| A+ 3002 o SUDse((2k—1)m, (24 1)x] [P ()] < 00,
and that
| > h =2y enh(k) < M| [l
Finally apply 282Ib.)

(b) Let f be a complex-valued function, defined almost everywhere in R, such that f x h is integrable
for every rapidly decreasing test function h. Show that f is tempered.

(c) Let f and g be tempered functions on R such that g represents the Fourier transform of f. Show that

d i . o0 gicy _gidy —y?/202
f=7 im [ — e 9(y)dy
. _

o Y
whenever ¢ < d in R. (Hint: set 0 = x[c,d]. Show that both sides are lim, o [ f X (0 % 1)1 /,), defining ¢,
as in 283N and 284L.)

(d) Show that if g : R — R is an odd function of bounded variation such that [~ g(z)dz = oo, then g
does not represent the Fourier transform of any tempered function. (Hint: 283Ye, 284Yc.)

(e) Let 8 be the space of rapidly decreasing test functions. For k, m € N set 7, (h) = sup, g ||¥|h™ ()|
for every h € 8, writing h(™ for the mth derivative of h as usual. (i) Show that each 74, is a seminorm
and that 8 is complete and separable for the metrizable linear space topology ¥ they define. (ii) Show that

his h:8 — 8 is continuous for . (iii) Show that if f is any tempered function, then h — [ f x h is
T-continuous. (iv) Show that if f is an integrable function such that [ |2* f(z)|dz < oo for every k € N,
then h — fxh:8 — 8 is T-continuous.

(f) Show that if f is a tempered function on R and

. 1 pc pa
v =lim. o Efo fia f(z)dzda
is defined in C, then ~ is also
lim, o ffooo f(x)e’6|z|d:r.

(g) Let f, g be square-integrable complex-valued functions on R such that g represents the Fourier
transform of f. Suppose that m € Z and that (2m — )7 <z < (2m+ 1)7. Set f(t) = f(t + 2mn) for those
t € |—m, 7] such that ¢t + 2mz € dom f. Let (cx)rez be the sequence of Fourier coefficients of f. Show that

1 3. a o . ;
Vo limg o0 f—a em’yg(y)dy = lim, 0 ZZ:—n Ckelkx

in the sense that if one limit exists in C so does the other, and they are then equal. (Hint: 284X1(i), 282Da.)

(h) Show that if f is integrable over R and there is some M > 0 such that f(z) = }(m) =0 for |z| > M,
then f = 0 a.e. (Hint: reduce to the case M = . Looking at the Fourier series of f[|]—m, 7], show that f

is expressible in the form f(z) = > ;. c,e™*® for almost every = € |-, w]. Now compute JAC(2n + 1) for
large n.)
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(i) Let v be a Radon measure on R which is ‘tempered’ in the sense that fix;c 1+|1x\k

some k € N. (i) Show that every rapidly decreasing test function is v-integrable. (ii) Show that if v has
bounded support (definition: 256Xf), and h is a rapidly decreasing test function, then v % h is a rapidly
decreasing test function, where (v*h)(z) = [>_h(x —y)v(dy) for z € R. (iii) Show that there is a sequence

o0

v(dz) is finite for

(hn)nen of rapidly decreasing test functions such that lim, o ffooo hp X f = ffooo fdv for every rapidly
decreasing test function f.

(j) Let ¢ : 8 — R be a functional defined by the formula of 284Xr. Show that ¢ is continuous for the
topology of 284Ye. (Note: it helps to know a little more about metrizable linear topological spaces than is
covered in §2A5.)

284 Notes and comments Yet again I must warn you that the material above gives a very restricted
view of the subject. I have tried to indicate how the theory of Fourier transforms of ‘good’ functions —
here taken to be the rapidly decreasing test functions — may be extended, through a kind of duality, to a
very much wider class of functions, the ‘tempered functions’. Evidently, writing 8 for the linear space of
rapidly decreasing test functions, we can seek to investigate a Fourier transform of any linear functional

¢ 8 — C, writing gAb(h) = (b(i\L) for any h € 8. (It is actually commoner at this point to restrict attention
to functionals ¢ which are continuous for the standard topology on 8, described in 284Ye; these are called
tempered (Schwartzian) distributions.) By 284F-284G, we can identify some of these functionals with
equivalence classes of tempered functions, and then set out to investigate those tempered functions whose
Fourier transforms can again be represented by tempered functions.
I suppose the structure of the theory of Fourier transforms is best laid out through the formulae involved.

Our aim is to set up pairs (f,g) = (f, f) = (g,9) in such a way that we have

Inversion: h =h = ;

Reversal: lvz(y) = h(—y);

Linearity: (hy + ho)" = iAzl + lAzg, (ch)" = ciAL;

Differentiation: (h')"(y) = zyfAL(y),

Shift: if hi(x) = h(z + ¢) then fALl(y) = eiycfz(y);

Modulation: if hy(z) = e*h(x) then iAzl(y) = iAL(y —¢);

Symmetry: if hy(z) = h(—x) then lAll(y) = lAz(—y);

Complex Conjugate: (h)"(y) = /éL(fy);

>

Dilation: if hi(x) = h(cx), where ¢ > 0, then fALl(y) = %]/”\L(%),
Convolution: (hy * he)® = \/27rlA11 X iAzg, (hy X ho)" = \/%lgl * fALg;

.D’LLCLl’Lty ffooo hl X i\LQ = fi)ooo }All X hg;

oo - © 7 N
Parseval: [~ hi X hy = [~ h1 X hy;
and, of course,

A

h(y) = \/%fj; e~ W*h(z)dz,

00 e—icy _g—idy

fcd fz(y)dy = \/LTTJLOO Th(y)dy.

(T have used the letter h in the list above to suggest what is in fact the case, that all the formulae here are

valid for rapidly decreasing test functions.) On top of all this, it is often important that the operation h — h
should be continuous in some sense.

The challenge of the ‘pure’ theory of Fourier transforms is to find the widest possible variety of objects h
for which the formulae above will be valid, subject to appropriate interpretations of *, * and ffooo I must of
course remark here that from the very beginnings, the subject has been enriched by its applications in other
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parts of mathematics, the physical sciences and the social sciences, and that again and again these have
N

suggested further possible pairs (f, f), making new demands on our power to interpret the rules we seek to
follow. Even the theory of distributions does not seem to give a full canonical account of what can be done.
First, there are great difficulties in interpreting the ‘product’ of two arbitrary distributions, making several
of the formulae above problematic; and second, it is not obvious that only one kind of distribution need be
considered. In this section I have looked at just one space of ‘test functions’, the space S of rapidly decreasing
test functions; but at least two others are significant, the space D of smooth functions with bounded support
and the space Z of Fourier transforms of functions in D. The advantage of starting with 8 is that it gives

a symmetric theory, since h € § for every h € §; but it is easy to find objects (e.g., the function z — e”z,
or the function x — 1/|z|) which cannot be interpreted as functionals on 8, so that their Fourier transforms
must be investigated by other methods, if at all. In 284Xq I sketch some of the arguments which can be
used to justify the assertion that the Fourier transform of the function x — 1/ is, or can be represented
by, the function y +— —i\/g sgny; the general principle in this case being that we approach both 0 and oo
symmetrically. For a variety of such matching pairs, established by arguments based on the idea in 284Xr,
see LIGHTHILL 59, chap. 3.

Accordingly it seems that, after two centuries, we must still proceed by carefully examining particular
classes of function, and checking appropriate interpretations of the formulae. In the work above I have
repeatedly used the concepts

limg o0 f_aa e hme,l,o ffooo e_Emzf(x)dx

as alternative interpretations of [ _OOOO f. (Of course they are closely related; see 284Xf.) The reasons for using

2 . . . . . . .
—°*" are that it belongs to 8, it is an even function, its Fourier transform is calculable
1 —z%/20°
27 € ’

the particular kernel e

and easy to manipulate, and it is associated with the normal probability density function = SO
that any miscellaneous facts we gather have a chance of being valuable elsewhere. But there are applications
in which alternative kernels are more manageable — e.g., e ¢/l (283Xq, 283Yc, 284YT).

One of the guiding principles here is that purely formal manipulations, along the lines of those in the list
above, and (especially) changes in the order of integration, with other exchanges of limit, again and again
give rise to formulae which, suitably interpreted, are valid. First courses in analysis are often inhibitory;
students are taught to distrust any manipulation which they cannot justify. To my own eye, the delight
of this topic lies chiefly in the variety of the arguments demanded by a rigorous approach, the ground
constantly shifting with the context; but there is no doubt that cheerful sanguinity is often the best guide
to the manipulations which it will be right to try to justify.

This being a book on measure theory, I am of course particularly interested in the possibility of a measure
appearing as a Fourier transform. This is what happens if we seek the Fourier transform of the constant
function xR (284R). More generally, any periodic tempered function f with period 27 can be assigned
a Fourier transform which is a ‘signed measure’ (for our present purposes, a complex linear combination
of measures) concentrated on Z, the mass at each k € Z being determined by the corresponding Fourier
coefficient of f|]—m, 7] (284Xo0, 284Ya). In the next section I will go farther in this direction, with particular
reference to probability distributions on R”. But the reason why positive measures have not forced themselves
on our attention so far is that we do not expect to get a positive function as a Fourier transform unless some
very special conditions are satisfied, as in 283Yec.

As in §282, T have used the Hilbert space structure of L as the basis of the discussion of Fourier transforms
of functions in £2 (2840-284P). But as with Fourier series, Carleson’s theorem (286U) provides a more direct
description.

In 284Wj, 1 offer a calculation based on the change-of-variable formula in 263A to present a multidimen-
sional version of Reversal and Dilation. But what I am really trying to do is to show that Fourier transforms
on R" are based on the geometry of the Euclidean inner product, not on the Cartesian coordinate system.

Version of 18.9.14

285 Characteristic functions

I come now to one of the most effective applications of Fourier transforms, the use of ‘characteristic func-
tions’ to analyse probability distributions. It turns out not only that the Fourier transform of a probability
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distribution determines the distribution (285M) but that many of the things we want to know about a distri-
bution are easily calculated from its transform (285G, 285Xi). Even more strikingly, pointwise convergence
of Fourier transforms corresponds (for sequences) to convergence for the vague topology in the space of
distributions, so they provide a new and extremely powerful method for proving such results as the Central
Limit Theorem and Poisson’s theorem (285Q).

As the applications of the ideas here mostly belong to probability theory, I return to probabilists’ ter-
minology, as in Chapter 27. There will nevertheless be many points at which it is appropriate to speak of
integrals, and there will often be more than one measure in play; so I should say directly that an integral
J f(z)dx will be with respect to Lebesgue measure (usually, but not always, one-dimensional), as in the
rest of this chapter, while integrals with respect to other measures will be expressed in the forms f fdv or

[ f(z)v(dz).

285A Definition (a) Let v be a Radon probability measure on R" (256A). Then the characteristic
function of v is the function ¢, : R™ — C given by the formula

ou(y) = [ ¥ " (dx)
for every y € R", writing y.x = mé& + ...+ n.&- if y = (m1,... ,n) and . = (&1,... ,&).

(b) Let X1,...,X, be real-valued random variables on the same probability space. The characteristic
function of X = (X;,... , X,) is the characteristic function px = ¢,, of their joint probability distribution
vx as defined in 271C.

285B Remarks (a) By one of the ordinary accidents of history, the definitions of ‘characteristic function’
and ‘Fourier transform’ have evolved independently. In 283Ba I remarked that the definition of the Fourier
transform remains unfixed, and that the formulae

F) = [ e f(a)de,

}(y) = if_ozo e~ f(z)da

are sometimes used. On the other hand, I think that nearly all authors agree on the definition of the
characteristic function as given above. You may feel therefore that I should have followed their lead, and
chosen the definition of Fourier transform which best matches the definition of characteristic function. I did
not do so largely because I wished to emphasise the symmetry between the Fourier transform and the inverse
Fourier transform, and the correspondence between Fourier transforms and Fourier series. The principal
advantage of matching the definitions up would be to make the constants in such theorems as 283F, 285Xk

the same, and would be balanced by the need to remember different constants for JA” and Jv“ in such results
as 283M.

(b) A secondary reason for not trying too hard to make the formulae of this section match directly those
of §8283-284 is that the r-dimensional case is at the heart of some of the most important applications of
characteristic functions, so that it seems right to introduce it from the beginning; and consequently the
formulae of this section will necessarily have new features compared with those in the body of the work so
far.

285C Of course there is a direct way to describe the characteristic function of a family (Xi,...,X,) of
random variables, as follows.

Proposition Let X,..., X, be real-valued random variables on the same probability space, and vx their
joint distribution. Then their characteristic function ¢, is given by

oy (y) — E(eiy.X) — E(eimxleinzxz o eim,Xy,)
for every y = (m1,...,n,) € R".
proof Apply 271E to the functions hq, ho : R” — R defined by
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hi(xz) = cos(y.xz), ha(y) =sin(y.x),
to see that

Vux (Y / x)vx (dz) +z/h2(x)yx(da:)
=E(h (X)) +iE(ho(X)) = E(eV-X).

285D I ought to spell out the correspondence between Fourier transforms, as defined in 283A, and
characteristic functions.

Proposition Let v be a Radon probability measure on R. Write

" 1 o —iyx
v(y) = ﬁffoo e~ Wy (dx)
for every y € R, and ¢, for the characteristic function of v.
A 1
() D(y) = S5=pu () for every y € R.
(b) For any Lebesgue integrable complex-valued function h defined almost everywhere in R,
Jo by = [ h(z)v(d).
(c) For any rapidly decreasing test function h on R (see §284),
Jo awlde) = [ h(y)b(y)dy.

(d) If v is an indefinite-integral measure over Lebesgue measure, with Radon-Nikodym derivative f, then
v is the Fourier transform of f.

proof (a) This is immediate from the definitions of ¢, and .
(b) Because
o [T @) v(da)dy = [~ |h(y)ldy < oo,

we may change the order of integration to see that

/O:O v(y)h(y)dy = V%Tr /0; /O:o e~V h(y)v(dx)dy
=V /_O; /_Z by ) = [ O:O h(w)v(da).

(c) This follows immediately from (b), because I is integrable and Bo=n (2840C).
(d) The point is just that

fhdu = fh(x)f(x)dx

for every bounded Borel measurable h : R — R (235K), and therefore for the functions z + e~%* : R — C.
Now

Dly) = 7= [ e wlde) = o= [T e f(a)de = f(y)

for every y.

285E Lemma Let X be a normal random variable with expectation a and variance o2, where o > 0.
Then the characteristic function of X is given by the formula

ply) = evre V2,
proof This is just 283N with the constants changed. We have
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(o9}
o(y) = B(e?X) = —, / T (=a)*/20% gy,
—o0

oV 2T

(taking the density function for X given in 274Ad, and applying 271Ic)

-7 / T ot t/2 gy

— ¢W/2ri), (—yo)

(setting ¢y (z) = ﬁe_lz/Q, as in 283N)

(substituting = = ot + a)

. _ 2.2
— oY, Uy/2.

285F I now give results corresponding to parts of 283C, with an extra refinement concerning independent
random variables (285I).

Proposition Let v be a Radon probability measure on R", and ¢ its characteristic function.

(a) ¢(0) = 1.
(b) ¢ : R"™ — C is uniformly continuous.

(c) p(—y) = ¢(y), l(y)| <1 for every y € R". _
(d) If r =1 and [ |z|v(dz) < oo, then ¢'(y) exists and is equal to i [ ze'¥v(dz) for every y € R.
(e) If r =1 and [ z%v(dz) < oo, then ¢”(y) exists and is equal to — [ z%e“*Yv(dx) for every y € R.

proof (a) ¢(0) = [ xR"dv =v(R") = 1.
(b) Let € > 0. Let M > 0 be such that
v{z : ||z|| > M} <,

writing ||| = \/z.x as usual. Let 6 > 0 be such that |e!® — 1] < e whenever |a] < §. Now suppose that v,
y' € R" are such that ||y — y/|] < 6/M. Then whenever ||z| < M,

|eiy..'1c _ eiy'.fcl _ ‘eiy/.mHei(y—y’).m _ 1| _ |ei(y—y’).x _ 1| <e
because

[y =y ezl <lly = y'llllz]l < 0.
Consequently, writing B for {z : ||z| < M},

lo(y) — o(4)] < /B e — -2 |y (dr)

+ / €9°% |1(dx) + / €9 | (d)
R™\B R™\B
<e+e+e=3e

As € is arbitrary, ¢ is uniformly continuous.

(c) This is elementary;
p(—y) = [ e "u(de) = [ev-u(de) = o(y),
o)l =1 [ e *v(da)| < [ e *[v(dx) = 1.

(d) The point is that |6%e"y’”| = |z| for every x, y € R. So by 123D (applied, strictly speaking, to the
real and imaginary parts of the function)

O (y) = d%f ey (dx) = fa%eiywy(dx) = fixeiy‘”z/(dx).
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(e) Since we now have |a%xeiy‘”\ = 2 for every x, y, we can repeat the argument to get
¢"(y) = id% Jeerv(dz) =i [ a%:veiy%(dx) = — [ a2ery(da).

285G Corollary (a) Let X be a real-valued random variable with finite expectation, and ¢ its charac-
teristic function. Then ¢’(0) = iE(X).

(b) Let X be a real-valued random variable with finite variance, and ¢ its characteristic function. Then
¢"(0) = —E(X?).

proof We have only to match X to its distribution v, and say that
‘X has finite expectation’

corresponds to

[ lzlv(de) = E(1X]) < o0,
so that

¢'(0) = ifxv(da:) =E(X),
and that

‘X has finite variance’

corresponds to

‘f 2?v(dz) = E(X?) < o0,
so that

¢"(0) = — [ @? v(dz) = ~E(X?),

as in 271E.

285H Remark Observe that there is no result corresponding to 283Cg (‘lim),| oo f(y) =0’). If v is the
Dirac measure on R concentrated at 0, that is, the distribution of a random variable which is zero almost
everywhere, then ¢(y) = 1 for every y.

2851 Proposition Let X;,...,X,, be independent real-valued random variables, with characteristic
functions @1, ... ,¢,. Let ¢ be the characteristic function of their sum X = X; + ...+ X,,. Then

e(y) = I1j=1 i)
for every y € R.
proof Let y € R. By 272E, the variables
Y}» = einj
are independent, so by 272R
o(y) = E(ein) _ E(eiy(XlJl‘...Jan)) = E(H;_lzl Y;) = H;?:l E(Y;) = H;}Zl ©i(y),
as required.
Remark See also 285R below.
285J There is an inversion theorem for characteristic functions, corresponding to 283F; I give it in 285Xk,

with an r-dimensional version in 285Yb. However, this does not seem to be as useful as the following group
of results.

Lemma Let v be a Radon probability measure on R”, and ¢ its characteristic function. Then for 1 < j <r
and a > 0,

vl lg] > a) < Taf) (1 - Reglte;))dt,

where e; € R" is the jth unit vector.
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proof We have

1/a 1/a )
7a/ (1 —Rep(te;))dt = 7a/ (1- Re/ et v(dz))dt
0 0 R™
1/a
~7a / / 1 — cos(t&, )(da)dt
O i

1/a
= 7a/r/0 1 — cos(t&;)dt v(dx)

(because (x,t) — 1 — cos(t{;) is bounded and vR” - é is finite)

_ 1158

_7a/w(a—€j51n aj)u(dz)
11 g

> 7a/|§j>a(a - g—jsm EJ)I/(dSC)

(because %sing < i for every £ #0)

> viz:|§] = a},

because
Slnn<51n1<§if'l7>1,
n — 1 =7
SO
1 1 . i 1
(ff—smg—])zf
a & a 7
if ¢ = a.

285K Characteristic functions and the vague topology The time has come to return to ideas
mentioned briefly in 274L. Fix > 1 and let P be the set of all Radon probability measures on R”. For any
bounded continuous function h : R” — R, define py : P x P — R by setting

pn(v, V') = |fhdu— fhdz/|
for v, v’ € P. Then the vague topology on P is the topology generated by the pseudometrics pp, (274Ld).

285L Theorem Let v, (v,)nen be Radon probability measures on R”, with characteristic functions ¢,
{pn)nen- Then the following are equiveridical:

(i) v = limy,—s o0 vy, for the vague topology;

(ii) [hdv =lim, . [ hdv, for every bounded continuous h : R" — R;

(iil) limy, 00 on(y) = @(y) for every y € R”.

proof (a) The equivalence of (i) and (ii) is virtually the definition of the vague topology; we have

lim v,, = v for the vague topology
n—oo

<= lim pp(vy,v) =0 for every bounded continuous h
n— oo
(2A3Mc)
<— lim | /hdun - /hdz/| = 0 for every bounded continuous h.

n— oo

(b) Next, (ii) obviously implies (iii), because
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Rep(y f hy dv = lim,,_, o0 by dvy, = lim, oo Re o (y),
setting hy(x) = cos(z.y) for each z, and similarly

Imp(y) = limy, 00 Im ¢y, (y)
for every y € R".

(c) So we are left to prove that (iii)=-(ii). I start by showing that, given e > 0, there is a closed bounded
set K such that

vn(R™\ K) < ¢ for every n € N.
P We know that ¢(0) = 1 and that ¢ is continuous at 0 (285Fb). Let a > 0 be so large that whenever j < r
and |t| < 1/a we have

€
1 —Reop(te;) < e

writing e; for the jth unit vector, as in 285J. Then

7a f — Rep(te))dt < =

2r

for each j < r. By Lebesgue’s Dominated Convergence Theorem (since of course the functions ¢ — 1 —
Re g, (te;) are uniformly bounded on [0, 1]), there is an ng € N such that

€

7af01/a(1 — Repy,(te;))dt < -

<

for every j <r and n > ng. But 285J tells us that now
vafz: gl 2 a} <°
for every j <7, n > ng. On the other hand, there is surely a b > a such that
Vn{x : |§J| > b} < E
for every j <r, n < ng. So, setting K = {z : |[§;| < b for every j <7},
v (RT\ K) <e
for every n € N, as required. Q

(d) Now take any bounded continuous & : R” — R and € > 0. Set M =1+ sup,cp- |h(z)|, and let K be
a bounded closed set such that

vn(R™\ K) < ﬁ for every n € N, v(R"\ K) < —

using (b) just above. By the Stone-Weierstrass theorem (281K) there are yg, ... ,ym € Q" and ¢g, ... , ¢ € C
such that

|h(z) — g(x)| < € for every x € K,
lg(x)] < M for every x € R",
writing g(z) = > jr, cke™* ® for x € R". Now
11mn~>oo fgdyn = hmn%oo ZZL:O Cr¥n (yk) Zk 0 Ckw yk f gdl/
On the other hand, for every n € N,
|[gdvy — [ hdvy| < [, |g = hldv, +2Mv,(R\ K) < 3e,
and similarly | [ gdv — [ hdv| < 3e. Consequently
limsup,, o, |fhd1/n - fhdl/| < Ge.

As € is arbitrary,
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limp, o0 [hdvy = [ hdv,

and (ii) is true.

285M Corollary (a) Let v, v’ be two Radon probability measures on R” with the same characteristic
functions. Then they are equal.
(b) Let (X4,...,X,) and (Y7,...,Y;) be two families of real-valued random variables. If

E(ein1X1+---+ianT) — E(einlyl+~»-+i"7ryr)
for all ny,...,nm, € R, then (Xy,...,X,) has the same joint distribution as (Y1,...,Y;).

proof (a) Applying 285L with v, = v/’ for every n, we see that [ hdv’ = [ hdv for every bounded continuous
h:R"™ = R. By 256D(iv), v = v/'.

(b) Apply (a) with v, ' the two joint distributions.

285N Remarks Probably the most important application of this theorem is to the standard proof of
the Central Limit Theorem. I sketch the ideas in 285Xq and 285Y1-285Y0; details may be found in most
serious probability texts; two on my shelf are SHIRYAYEV 84, §I11.4, and FELLER 66, §XV.6. However, to
get the full strength of Lindeberg’s version of the Central Limit Theorem we have to work quite hard, and I
therefore propose to illustrate the method with a version of Poisson’s theorem (285Q) instead. I begin with
two lemmas which are very frequently used in results of this kind.

2850 Lemma Let cq, ... ,c,,do, ... ,d, be complex numbers of modulus at most 1. Then
I Tke—o cx — IThmo @kl < 2ok lex — dil.

proof Induce on n. The case n = 0 is trivial. For the case n = 1 we have

lcocr — dodi| = |eo(c1 — dr) + (co — do)d |
<leoller —di| + [co — dolld1| < |er — di| + |eo — dol,

which is what we need. For the inductive step to n + 1, we have

n+1 n+1

n n
TT e = T del < 1T ex = T k] + lensa — dnal
k=0 k=0 k=0 k=0

by the case just done, because c,i1, dni1, [[r—ncr and [];_,, di all have modulus at most 1
+ + k=0 k=0

n
< Z ek — di| + [eny1 — dnyal
k=0
(by the inductive hypothesis)
n+1

= Z |Ck _dk‘v
k=0

so the induction continues.

285P Lemma Suppose that M > 0 and ¢ > 0. Then there are n > 0 and ¥, ... ,y, € R such that
whenever X, Z are two real-valued random variables with E(| X |) < M, E(|Z]) < M and |¢x (y;) —z(y;)| <
n for every j < m, then Fx(a) < Fz(a + €) + € for every a € R, where I write ¢x for the characteristic
function of X and F'x for the distribution function of X.

proof The case M = 0 is trivial, as then both X and Z are zero a.e., so I will suppose henceforth that
M

€
M > 0. Set6—5>0,b—?.
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(a) Define hg : R — [0,1] by setting ho(z) = med(0,1 — %, 1) for x € R. Then hg is continuous. Let

m = L%J be the integer part of %, and for —m <k <m+ 1 set hy(z) = ho(z — kJ).
By the Stone-Weierstrass theorem (281K again), there are yo,... ,y, € R and ¢y, ..., ¢, € C such that,
writing go(z) = Y7 ¢je'%”,
|ho(z) — go(z)| < & for every = € [=b — (m + 1)3,b+ md],
lgo(x)] < 1 for every z € R.
For —m <k <m+1, set
gk((g) — go(;[; — ]{;6) — Z;’L:O cje—iyjkéeiij_
Set n=46/(1+ Z?:O le;]) > 0.

(b) Now suppose that X, Z are random variables such that E(|X|) < M, E(|Z|) < M and |px(y;) —
wz(y;j)| <n for every j < n. Then for any k we have

E(gx (X)) = E(XC)_g cje”WikeiX) = 370 cje Wik px (),
and similarly
E(ge(2)) = Xj_g cie” " 0z (y;),
S0
E(gx(X)) = E(gr(2))] < 350 lejllox () — 0z (ys)] < Xoj_glejln < 0.
Next,
|hi(z) — gi(z)] < 6 for every @ € [=b— (m +1)6 + kd,b+ md + kd] D [—b, b],

|hi(z) — gi(2)| < 2 for every z,

Pr(|X|>0) < — =4,

?
so E(Jhk(X) — gx(X)]) < 36; and similarly E(|hi(Z) — gr(2)
[E(hi (X)) — E(hx(2))]

) < 36. Putting these together,
<7
whenever —m < k <m + 1.

(c) Now suppose that —b < a < b. Then there is a k such that —-m <k <m+1and a < kd < a+ 0.
Since

x]—00,a] < x]—00,ké] < hy < x]—00, (k +1)d] < x]—00,a+ 2],
we must have
Pr(X < a) < E(he(X)),
E(hi(2)) <Pr(Z <a+26) <Pr(Z <a+e).
But this means that
Pr(X <a) <E(hp(X)) <Ehp(2) +e<Pr(Z<a-+e)+e
whenever a € [—b,b].
(d) As for the cases a > b, a < —b, we surely have
b(1—Fz(b)) =bPr(Z>b) <E(Z|) <M

so if a > b then

Fx(a) S 1 SFz(a)ﬂ’l*Fz(b) SFz((l)+

S = Fr(a) +0 < Frlate) +e

Similarly,
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bFx(—b) < E(|X|) < M,
SO

Fx(a) <6< Fz(a+e€)+e
for every a < —b. This completes the proof.

285Q Law of Rare Events: Theorem For any M > 0 and € > 0 there is a 6 > 0 such that whenever
Xo, ..., X, are independent {0, 1}-valued random variables with Pr(Xy = 1) = p; < ¢ for every k < n and
Sreope =A< M,and X = Xg+ ...+ X, then

[Pr(X =m) -2 e X <e

for every m € N.

proof (a) We should begin by calculating some characteristic functions. First, the characteristic function
i of X will be given by

or(y) = (1 — pr)e™” + pre’! =14 pp(e® — 1).
Next, if Z is a Poisson random variable with parameter A (that is, if Pr(Z = m) = A™e~*/m! for every

m € N; all you need to know at this point about the Poisson distribution is that Y o-_  A™e™*/m! = 1),
then its characteristic function ¢z is given by

o AT X _iym _axoo  (e)m ZA e e —1
@z(y)=2mzoge eV =e Y, T =e e = e ).

(b) Before getting down to ¢’s and n’s, I show how to estimate ¢x(y) — pz(y). We know that

ox(y) = szo or(y)

(using 2851), while
@Z(y) — 2:0 epk(eiy_l).
e—1)

Because ¢y (y), eP*( all have modulus at most 1 (we have

‘epk(eit1)| = gPr(l=cosy) < 1)
2850 tells us that
lox(¥) = e2()] < Xiep lonly) — er 0] = S0 ere =D — 1 — py (e — 1)].
(c) So we have a little bit of analysis to do. To estimate |e* — 1 — z| where Re z < 0, consider the function
g(t) = Re(c(e — 1 —t2))
where |¢| = 1. We have ¢g(0) = ¢’(0) = 0 and
19" ()] = | Re(c(z%™))| < [el|2?[]e™] < [2[*
for every t > 0, so that
()] < 5122
by the (real-valued) Taylor theorem with remainder, or otherwise. As c is arbitrary,
e —1— 2 < 2
whenever Re z < 0. In particular,
P (=D 1 — (e — 1) < 2pRle” — 1 < 23
for each k, and

lox (y) — @z ()| < g leP =D — 1 — pp(e¥ — 1) < 23 p}
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for each y € R.
(d) Now for the detailed estimates. Given M > 0 and € > 0, let n > 0 and yo, ...,y € R be such that

Pr(Xga)gPr(Zga—i—%)—l—;

whenever X, Z are real-valued random variables, E(|X|) < M, E(|Z]) < M and |px(y;) — ox(y;)| < n for
every j <[ (285P). Take § = ﬁ“ and suppose that Xo,..., X, are independent {0,1}-valued random
variables with Pr(Xy = 1) = p, < 6 for every k < n, where A = Y ;' pi is less than or equal to M. Set
X =Xp+ ...+ X, and let Z be a Poisson random variable with parameter \; then by the arguments of

(a)-(c),
lox(y) = z(y)] < 2374 Pk <2035 _opk =200 <1
for every y € R. Also
E(|X]) =E(X) = Yj_opk =A< M,

E(|2]) = E(2) = Tngmire™ = e Y o = e T o =A< M
So
Pr(X <a) <Pr(Z<a+)+5,
Pr(Z<a)<Pr(X <a+i)+5
for every a. But as both X and Z take all their values in N|
|Pr(X <m) —Pr(Z <m)| <7

for every m € N, and

|Pr(X =m) — A”;e_/\| =|Pr(X =m)—-Pr(Z=m)| <e

m!
for every m € N, as required.

285R Convolutions Recall from 257A that if v, 7 are Radon probability measures on R” then they
have a convolution v * U defined by writing
(vx0)(E) = xv){(z,y):z+ycE}

for every Borel set E C R", which is also a Radon probability measure. We can readily compute the
characteristic function ¢, from 257B: we have

o (y)) = / ¢ (1) 5 ) (dz) = / -2 () (da)
= [emmer=uanitan) = [evmuida) [enotde) = o, w)es)

for every y € R". (Thus convolution of measures corresponds to pointwise multiplication of characteristic
functions, just as convolution of functions corresponds to pointwise multiplication of Fourier transforms.)
Recalling that the sum of independent random variables corresponds to convolution of their distributions
(272T), this gives another way of looking at 2851. Remember also that if v, 7 have Radon-Nikodym derivatives
f, f with respect to Lebesgue measure then f x f is a Radon-Nikodym derivative of v x & (257F).

285V Proposition Let v be a Radon probability measure on R” such that v x v = v. Then v is the
Dirac measure ¢y concentrated at 0.

proof By 285R, p2 = ¢,, so ¢, is {0,1}-valued; as ¢,(0) = 1 (285Fa) and ¢, is continuous (285Fb),
v, (y) =1 for every y € R, that is, ¢, = s, (285H). By 285Ma, v = §;.
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285S The vague topology and pointwise convergence of characteristic functions In 285L we
saw that a sequence (v,)nen of Radon probability measures on R” converges in the vague topology to a
Radon probability measure v if and only if

limnﬁocfeiy'wun(dm) = feiy""u(da:)
for every y € R"; that is, iff
limy, 00 py, (v, v) = 0 for every y € R”,
writing
Py (v, ") \fezy “*y(dx) fely Y (dx)|

for Radon probability measures v, v’ on R” and y € R”. It is natural to ask whether the pseudometrics
p, actually define the vague topology. Writing ¥ for the vague topology and & for the topology defined by
{p; :y € R"}, we surely have & C T, just because every p; is one of the pseudometrics used in the definition
of T. Also we know that G and ¥ give the same convergent sequences, and incidentally that ¥ is metrizable
(see 285Xt). But all this does not quite amount to saying that the two topologies are the same, and indeed
they are not, as the next result shows.

285T Proposition Suppose that yg,...,y, € R and n > 0. Then there are infinitely many m € N such
that |1 — e®™| < 5 for every k < n.

proof Let ny,...,n, € R be such that 1 = ng,n,...,n, are linearly independent over Q and every y; /27
is a linear combination of the n; over Q; say y;, = 2w Z;:o qr;n; where every gi; € Q. Express the g; as
Prj/p where each py; € Z and p € N\ {0}. Set M = maxp<n Y [Pkjl-

Take any mo € N and let § > 0 be such that |1 — ¢*™®| < 5 whenever |z| < 2rMJ§. By Weyl's
Equidistribution Theorem (281N), there are infinitely many m such that <mmn;> < § whenever 1 < j < r;
in particular, there is such an m > mg. Set m; = |mn;], so that |mn; —m;| < § for 0 < j <r. Then

Impys, — 27375 prymy| < 21377 |pkgllmn; —my| < 2w M,
so that
|1 — eWemP| = |1 — exp(i(mpyr — 27325 prjm;))| < n

for every kK < mn. As mp > mg and my is arbitrary, this proves the result.

285U Corollary The topologies G and ¥ on the space of Radon probability measures on R, as described
in 2855, are different.

proof Let d, be the Dirac measure on R concentrated at z. By 285T, every member of & which contains
dg also contains 4, for infinitely many m € N. On the other hand, the set

G= {er‘” dw>}

is a member of T, containing dp, which does not contain d,, for any integer m # 0. So G € ¥\ & and T # 6.

285X Basic exercises (a) Let v be a Radon probability measure on R”, where r > 1, and suppose that
S llv( dw ) < oo. Show that the characteristic function ¢ of v is dlfferentlable (in the full sense of 262Fa)

and that 2 5 £ (y) =i [&eVTv(dx) for every j <r and y € R”, using &;, n; to represent the coordinates of
z and y as usual.

>(b) Let X = (X1,...,X,) be a family of real-valued random variables, with characteristic function ¢x.
Show that the characteristic function ¢x; of Xj is given by

ox;(y) = px(ye;) for every y € R,

where e; is the jth unit vector of R".
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>(c) Let X be a real-valued random variable and ¢x its characteristic function. Show that

Pax+b(y) = € ox (ay)

for any a, b, y € R.
(d) Let X be a real-valued random variable which is not essentially constant, and ¢ its characteristic

function. Show that |p(y)| < 1 for all but countably many y € R. (Hint: the support (256Xf) of the
distribution of X has distinct points 2, 2/ and if €?¥* # €™ then |o(y)| < 1.)

(e) Let X be a real-valued random variable and ¢ its characteristic function.
(i) Show that for any integrable complex-valued function h on R,

E(h(X)) = 5= [, e(=u)h(y)dy,

writing h for the Fourier transform of h.
(ii) Show that for any rapidly decreasing test function h,

E(h(X)) = 5= [0, e)h(v)dy.

(f) Let v be a Radon probability measure on R, and suppose that its characteristic function ¢ is square-
integrable. Show that v is an indefinite-integral measure over Lebesgue measure and that its Radon-Nikodym
derivatives are also square-integrable. (Hint: use 2840 to find a square-integrable f such that [ f x h =

\/% e x h for every rapidly decreasing test function h, and ideas from the proof of 284G to show that
f; f =v]a,b] whenever a < b in R.)

(g) Let v be a Radon probability measure on R” with bounded support (definition: 256Xf). Show that
its characteristic function is smooth.

(h) Let X be a normal random variable with expectation a and variance o?. Show that E(eX) =
exp(a + 10?).

>(i) Let X = (X1,...,X,) be a family of real-valued random variables with characteristic function ¢x.
Suppose that @x is expressible in the form

ex(y) = [Tj= ¢i(n))

for some functions ¢1,... , ., writing y = (n1,...,7n,) as usual. Show that Xi,..., X, are independent.
(Hint: show that the ¢; must be multiples of the characteristic functions of the X;; now show that the
distribution of X has the same characteristic function as the product of the distributions of the Xj.)

(j) Let Xy, X5 be independent real-valued random variables with the same distribution, and ¢ the
characteristic function of X7 — X5. Show that ¢(t) = ¢(—t) > 0 for every ¢t € R.

(k) Let v be a Radon probability measure on R, with characteristic function ¢. Show that
1

_ iy
E(V[Q dl +vle,d]) = o im0 fia .

a e—idy_e—icy

e(y)dy
whenever ¢ < d in R. (Hint: use part (a) of the proof of 283F.)
(1) Let X be a real-valued random variable and yx its characteristic function. Show that

Pr(X| > a) < 7a )" (1 - Re(px(y))dy

for every a > 0.

(m) We say that a set @ of Radon probability measures on R is uniformly tight if for every ¢ > 0 there
is an M > 0 such that v(R\ [-M, M]) < € for every v € ). Show that if Q) is any uniformly tight family of
Radon probability measures on R, and € > 0, then there are n > 0 and vy, ... ,yn € R such that
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v]—oo,al <v']—oo,a+ € +e

whenever v, v' € Q and |, (y;) — v (y;)| < n for every j < n, writing ¢, for the characteristic function of
v.

(n) Let (vn)nen be a sequence of Radon probability measures on R. Show that it converges for the
vague topology to a Radon probability measure v iff {v} U {v,, : n € N} is uniformly tight in the sense of
285Xm and limsup,,_, o, Vs |]—00,a] < liminf,,_, vy, |—00,b] whenever a < b in R. (Hint: Setting g(z) =
inf liminf,, o0 v ]—00,0] : < b} for € R, show that the Lebesgue-Stieltjes measure v associated with g
is a probability measure and (v,,),en converges to v for the vague topology.)

>(0) Let v, v’ be two totally finite Radon measures on R” which agree on all closed half-spaces, that is,
sets of the form {z : z.y > ¢} where y € R" is non-zero and ¢ € R. Show that v = v'. (Hint: reduce to the
case VR"™ = v'R" =1 and use 285M.)

>(p) For v > 0, the Cauchy distribution with centre 0 and scale parameter ~ is the Radon probability
measure v, defined by the formula

7 1
vy(E) = ol S dt.

(i) Show that if X is a random variable with distribution v, then Pr(X > 0) = Pr(|X| > ) = 3. (ii)
Show that the characteristic function of v, is y — e~ 7I¥l. (Hint: 283Xq.) (iii) Show that if X and Y are
independent random variables with Cauchy distributions, both centered at 0 and with scale parameters -y, ¢
respectively, and «, 8 are not both 0, then X + Y has a Cauchy distribution centered at 0 and with scale
parameter |a|y 4 |3[0. (iv) Show that if X and Y are independent normally distributed random variables
with expectation 0 then X/Y has a Cauchy distribution.

>(q) Let X3, X5,... be an independent identically distributed sequence of random variables, all with
zero expectation and variance 1; let ¢ be their common characteristic function. For each n > 1, set

S, = ﬁ(Xl +.. 4+ X,).

(i) Show that the characteristic function ¢, of S, is given by the formula ¢, (y) = (@(%))" for each

(i) Show that |, (y) — e ¥ /2| < n|<p(%) —e ¥/ forn >1and y € R.

(i) Setting h(y) = ¢(y) — e ¥ /2, show that h(0) = h'(0) = R”(0) = O and therefore that
lim,, oo h(y/+/n) = 0, so that lim, . ©n(y) = ev’/2 for every y € R.

. . _ 1 ra
(iv) Show that lim,_ Pr(S, < a) = T Jo e

—2*/2qy for every a € R.

>(r) A random variable X has a Poisson distribution with parameter A > 0 if Pr(X = n) = e *\"/n!
for every n € N. (i) Show that in this case E(X) = Var(X) = A. (ii) Show that if X and Y are independent
random variables with Poisson distributions then X + Y has a Poisson distribution. (iii) Find a proof of (ii)
based on 285Q.

>(s) For z € R", let 0, be the Dirac measure on R” concentrated at x. Show that d, * d, = 0,4, for all
x,y € R".

(t) Let P be the set of Radon probability measures on R". For y € R", set pj (v,v’) = |¢.(y) — ¢ (y)]

for all v, v’ € P, writing ¢, for the characteristic function of v. Set ¥ (z) = (\/217)T e~*@/2 for x € R”. Show

that the vague topology on P is defined by the family {py} U {p, : y € Q"}, defining p, as in 285K, and is
therefore metrizable. (Hint: 281K; cf. 285Xm.)

>(u) Let ¢ : R” — C be the characteristic function of a Radon probability measure on R”. Show that
¢(0) = 1 and that >7_, >3 cjérp(a; —ax) > 0 whenever ag, ... ,a, € R" and cq, ... , ¢, € C. (‘Bochner’s
theorem’ states that these conditions are sufficient, as well as necessary, for ¢ to be a characteristic function;
see 445N in Volume 4.)

D.H.FREMLIN



80 Fourier analysis 285Xv

(v) Let (vy)nen be a sequence of Radon probability measures on R such that ¢(y) = limy, o0 @u, (y) is
defined for every y € R and ¢ : R — C is continuous at 0. Show that v is the characteristic function of a
Radon probability measure v and that (v, ),en converges to v for the vague topology. (Hint: as in part (c)
of the proof of 285L, show that {v,, : n € N} is uniformly tight. Show that there is a subsequence (v, )ren
such that f(q) = limy_ 00 Vp, ]—00, ¢| is defined for every ¢ € Q. Use 285Xn to show that (v, )ren converges
for the vague topology.)

285Y Further exercises (a) Let v be a Radon probability measure on R”. Write

") =

f e~ W -y (dx)

for every y € R".

(i) Writing ¢, for the characteristic function of v, show that v(y) = W%ygo,,(—y) for every y € R".

(ii) Show that [ h(y)v(y)dy = [ }AL(Z‘)I/(d.I) for any Lebesgue integrable complex-valued function h on
R", defining the Fourier transform h as in 283Wa.

(iii) Show that [ h(z)v(dz) = fivz(y)ﬁ(y)dy for any rapidly decreasing test function h on R”.

(iv) Show that if v is an indefinite-integral measure over Lebesgue measure, with Radon-Nikodym
derivative f, then © is the Fourier transform of f.

(b) Let v be a Radon probability measure on R”, with characteristic function ¢. Show that whenever
c<din R" then

r

AN . e~ 105 _e=ivjnj
(%) lim /[a’a] (]1:[1 — ) (y)dy

Q1 yene ,Qp—>00

exists and lies between v ]e, d[ and ve, d|, writing @ = (a1, ... ,ap) and Je, d[ = [[, <, |75, ;[ if e = (71, ... )
and d = (01,...,0,).

(c) Let (X,,)nen be an independent identically distributed sequence of (not-essentially-constant) random
variables. Show that lim,, . Pr(] ZZ:O Xi| < a) =0 for every a € R.

(d) For Radon probability measures v, v’ on R" set

p(v,v') =inf{e: e >0, v]—00,a] < v']—0c0,a+ €l] + € < v]—o0,a + 2€l] + 2¢
for every a € R"},

writing |—o0,a] = {(&1,... &) 1 & < a; for every j < r} whena = (ay,...,0), and 1 = (1,...,1) € R".
Show that p is a metric on the set of Radon probability measures on R", and that the topology it defines is
the vague topology. (Cf. 274Yc.)

(e) Let r > 1 and let P be the set of Radon probability measures on R". For m € N let p}, be the
pseudometric on P defined by setting py, (v, V") = supy<m l¢v(y) — o (y)| for v, v’ € P, writing ¢, for
the characteristic function of v. Show that {p}, : m € N} defines the vague topology on P.

(f) Let r > 1. We say that a set @) of Radon probability measures on R” is uniformly tight if for every
€ > 0 there is a compact set K C R" such that v(R"\ K) < € for every v € Q. Show that if @) is any uniformly
tight family of Radon probability measures on R”, and € > 0, then there are n > 0, yo,... ,yn € R" such
that v]—o0,a] < v']—00,a + €l] + € whenever v, v’ € Q and a € R” and |¢,(y;) — ¢ (y;)| < n for every
7 < n, writing ¢, for the characteristic function of v.

(g) Show that for any M > 0 the set of Radon probability measures v on R” such that [ ||z|v(dz) < M
is uniformly tight in the sense of 285YT.

(h) Let Cy(R") be the Banach space of bounded continuous real-valued functions on R”.
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(i) Show that any Radon probability measure v on R” corresponds to a continuous linear functional
hy : Cp(R") — R, writing h, (f) = [ fdv for f € Cy(R").

(ii) Show that if h, = h,/ then v ="

(iii) Show that the vague topology on the set of Radon probability measures corresponds to the weak*
topology on the dual (Cy(R"))* of Cp(R").

(i) Let » > 1 and let P be the set of Radon probability measures on R”. For m € N let p}, be the
pseudometric on P defined by setting

ﬁ:n(l/ﬂ VI) = f{yl\yl\ﬁfﬂ} |90V(y) - Pur (y)‘dy

for v, v/ € P, writing ¢, for the characteristic function of v. Show that {p%, : m € N} defines the vague
topology on P.

(j) Let (©,%, 1) be a probability space. Suppose that (X, ),en is a sequence of real-valued random
variables on (2, and X another real-valued random variable on 2; let px , ¢x be the corresponding char-
acteristic functions. Show that the following are equiveridical: (i) lim, o E(h(X,)) = E(h(X)) for every
bounded continuous function ~ : R — R; (ii) lim, 0 ¢x,, (y) = ©x(y) for every y € R.

(k) Let (2,%, 1) be a probability space, and P the set of Radon probability measures on R. (i) Show
that we have a function 1 : L°(u) — P defined by saying that 1(X*) is the distribution of X whenever X
is a real-valued random variable on Q. (ii) Show that 4 is continuous for the topology of convergence in
measure on L°(x) and the vague topology on P. (Compare 271Yd.)

(1) Let X be a real-valued random variable with finite variance. Show that for any n > 0,
. 1 1
lo(y) =1 = iyB(X) + 5y*E(X?)| < cnlyPE(X?) + y?E(y (X)),
writing ¢ for the characteristic function of X and v, (z) = 0 for |z| <, 22 for |z| > 7.

(m) Suppose that € > § > 0 and that X,..., X, are independent real-valued random variables such
that

E(Xy) =0for every k <n, >} _,Var(Xy)=1, >} _ Es(Xy)) <o

(writing ¥s(z) = 0 if |z| < 6, 2 if |[#| > §). Set v = €¢/v/0%2 + 6, and let Z be a standard normal random
variable. Show that

—q? 1
lo(y) — e /2] < Sely’ + 470 + E(¥,(2)))
for every y € R, writing ¢ for the characteristic function of X =, _, Xj.

(n) Show that for every e > 0 there is a § > 0 such that whenever Xy, ..., X,, are independent real-valued
random variables such that

E(Xy) =0for every k <n, >} _ Var(Xy)=1, >} (E(s(Xy)) <9

(writing 1s(z) = 0 if |z < 8, 22 if |2| > &), then |p(y) — e~¥ /2| < e(y® + |y?|) for every y € R, writing ¢ for
the characteristic function of X = Xo + ...+ X,,.

(o) Use 285Yn to prove Lindeberg’s theorem (274F).

(p) Let r > 1 and let P be the set of Radon probability measures on R". Show that convolution, regarded
as a map from P x P to P, is continuous when P is given the vague topology.

(q) Let & be the topology on R defined by {p;, : y € R}, where pj (z,2") = [¢"¥* — ¢¥*'| (compare 2859).
Show that addition and subtraction are continuous for & in the sense of 2A5A.

(r) Let v be a probability measure on R. Show that |¢,(y) — ¢, (v')|> < 2(1 — Rep,(y — y')) for any v,
y €R.
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(s) Let (vn)nen be a sequence of probability measures on R. Set £ = {y : y € R, lim,, o ¢, (y) = 1}.
(i) Show that F — E and E + E are included in E. (ii) Show that if E is not Lebesgue negligible it is the
whole of R.

(t) Let (X,,)nen be an independent sequence of real-valued random variables and set S,, = Z?:o X; for
each n € N. Suppose that the sequence (vg, )nen of distributions is convergent for the vague topology to a
distribution. Show that (S, )nen converges in measure, therefore a.e.

285 Notes and comments Just as with Fourier transforms, the power of methods which use the charac-
teristic functions of distributions is based on three points: (i) the characteristic function of a distribution
determines the distribution (285M); (ii) the properties of interest in a distribution are reflected in accessible
properties of its characteristic function (285G, 2851, 285J) (iii) these properties of the characteristic function
are actually different from the corresponding properties of the distribution, and are amenable to different
kinds of investigation. Above all, the fact that (for sequences!) convergence in the vague topology of dis-
tributions corresponds to pointwise convergence for characteristic functions (285L) provides us with a path
to the classic limit theorems, as in 285Q and 285Xq. In 285S-285U I show that this result for sequences
does not correspond immediately to any alternative characterization of the vague topology, though it can
be adapted in more than one way to give such a characterization (see 285Ye-285Y1).

Concerning the Central Limit Theorem there is one conspicuous difference between the method suggested
here and that of §274. The previous approach offered at least a theoretical possibility of giving an explicit
formula for ¢ in 274F as a function of €, and hence an estimate of the rate of convergence to be expected
in the Central Limit Theorem. The arguments in the present chapter, involving as they do an entirely
non-constructive compactness argument in 281A, leave us with no way of achieving such an estimate. But
in fact the method of characteristic functions, suitably refined, is the basis of the best estimates known, such
as the Berry-Esséen theorem (274Hc).

In 285D I try to show how the characteristic function ¢, of a Radon probability measure can be related
to a ‘Fourier transform’ 2 of v which corresponds directly to the Fourier transforms of functions discussed
in §§283-284. If f is a non-negative Lebesgue integrable function and we take v to be the corresponding

indefinite-integral measure, then v = JA‘ Thus the concept of ‘Fourier transform of a measure’ is a natural
extension of the Fourier transform of an integrable function. Looking at it from the other side, the formula
of 285Dc shows that v can be thought of as representing the inverse Fourier transform of © in the sense
of 284H-2841. Taking v to be the measure which assigns a mass 1 to the point 0, we get the Dirac delta
function, with Fourier transform the constant function xR. These ideas can be extended without difficulty
to handle convolutions of measures (285R).

It is a striking fact that while there is no satisfactory characterization of the functions which are Fourier
transforms of integrable functions, there is a characterization of the characteristic functions of probability
distributions. This is ‘Bochner’s theorem’. I give the condition in 285Xu, asking you to prove its necessity
as an exercise; we already have three-quarters of the machinery to prove its sufficiency, but the last step will
have to wait for Volume 4.

Version of 30.3.16

286 Carleson’s theorem

Carleson’s theorem (CARLESON 66) was the (unexpected) solution to a long-standing problem. Remark-
ably, it can be proved by ‘elementary’ methods. The hardest part of the work below, in 286J-286L, demands
only the laborious verification of inequalities. How the inequalities were chosen is a different matter; for
once, some of the ideas of the proof are embodied in the statements of the lemmas. The argument here is a
greatly expanded version of LACEY & THIELE 00.

The Hardy-Littlewood Maximal Theorem (286A) is important, and worth learning even if you leave the
rest of the section as an unexamined monument. I bring 286B-286D forward to the beginning of the section,
even though they are little more than worked exercises, because they also have potential uses in other
contexts.

(©) 2000 D. H. Fremlin
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The complexity of the argument is such that it is useful to introduce a substantial number of special
notations. Rather than include these in the general index, I give a list in 286W. Among them are ten
constants C1, ... ,Cig. The values of these numbers are of no significance. The method of proof here is quite
inappropriate if we want to estimate rates of convergence. I give recipes for the calculation of the C), only
for the sake of the linear logic in which this treatise is written, and because they occasionally offer clues
concerning the tactics being used.

In this section all integrals are with respect to Lebesgue measure 1 on R unless otherwise stated.

286A The Maximal Theorem Suppose that 1 < p < oo and that f € L (x) (definition: 244P). Set

f*(x):sup{éfjﬂ:a§:c§b,a<b}

21/pp
p—1

for @ € R. Then ||£*[l, < 22|/ ]

proof (a) It is enough to consider the case f = |f|. Note that if F C R has finite measure, then
S £ = J(F X XE) X XE < |If x XE|p(uE)/1 < | fll,(nE)"*

is finite, where ¢ = 1%7 by Holder’s inequality (244Eb). Consequently, if ¢ > 0 and | g = tpE, we must

have tuB < ||f % xEllp(nE)"/?, H(uB)'/? < || x xEl| and
1 1
pE < If < xBlp = [, £

(b) For ¢ > 0, set
Gi={z:tly—z) < fzyf for some y > x}.

(i) G; is an open set. P For any y € R,
y
Gy ={e:z <y tly—=z)< [ f}
is open, because z — t(y — =) and = — fj f are continuous (225A); so Gy = Uye]R Gy is open. Q

(ii) By 2A2I, there is a partition C of G; into open intervals. Now C' is bounded and tuC < fc f for
every C € C.

P(a) For x € C, consider F, = {y 1y >z, tly—2) < [/ f}. 2 € Fpandy —a < tipffooofp for

every y € F,, by (a), so F, is bounded above. Set z, = sup F,. Because y > t(y — x) — [ f is continuous,
2g € Fy. T If 2, € Gy, there is a y > z, such that t(y — z,) < fzy f; but now

ty—a)y< [Tr+ [ r=[]r
and y € F,, which is impossible. X Thus z, ¢ G; and z, ¢ C, so that z, is an upper bound of C.
(B) This shows that

supC’Swax—i-tipffooofp

for every « € C. So in fact C is bounded and is of the form ]a,b] where a < bin R. ? If t(b—a) > f; f, there

is an « € ]a, b[ such that t(b—z) > f; f- Now we know that b < z, and b ¢ Gy, so we have t(z, —b) > [, f.
Adding, t(z, —2) > [ f and 2z, ¢ F,. X

() Thus tuC < [ f, as claimed. Q

(iii) Accordingly, because C is countable and f is non-negative, we can apply (a) in its full strength to
see that
1 1 poo
pGe =Y e pC < chc;fc fr< _f_oo fP

=1
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is finite, and
fGt f=2cec fc =3 cectnC =tuG.
(c) All this is true for every ¢t > 0. Now if we set
w0 L ra
fi(z) = supys, Efb f

for x € R, we have {z : f{(x) >t} = G, for every t > 0.
For any ¢ > 0,

1 1 1 o5} 1
“tuGy = (1 — 2)tuGy < —=txR < — =txR)*.
StGy = (1= tpGy < [, f =20 R < [T (f = StxR)

So

[ e = [T ute: pwr > g

(see 2520)

p [ el £ @) > wdu
0
(substituting ¢ = uP)

p/ P G du < p? / U”_Q(/ (f—éuxR)ﬂd“
0 —00
=p? / / max (0, f(z )up 2dudz

(by Fubini’s theorem, 252B, because (x,u) — uP~2? max(0, f ( ) — éu) is measurable and non-negative)

qf(w) 1

—p/ / ““(f(z) — ~u)dudx
q
Pt P (2 P
e [ = G

(d) Simnilarly, setting f; () = sup,c, [ ffor € R, [ (f5)7 < CLPIfI5. But f* = max(ff, /5).
P Of course f; < f* and f5 < f*. But also7 if f*(x) > t, there must be a non-trivial interval I containing x
such that [, f > tul; if a = inf I and b = sup I, then either [ f > (z—a)t and f3(z) > t, or fwb f>(b—x)
and ff(z) > t. As x and ¢ are arbitrary, f* = max(fy, f5). Q

Accordingly

1= [ = [ maxi s
s/w 1P + (3 < 22 P,

— 00

Taking pth roots, we have the inequality we seek.

286B Lemma Let g : R — [0, 00[ be a function which is non-decreasing on |—o0, a], non-increasing on
[8, o[ and constant on [«, 8], where a@ < 8. Then for any measurable function f : R — [0, o0], ffooo fxg<

00 1 b
S0 9 SUPa<a bz 5,0 —a Ja I

proof Sety = sup,<, p>s.a<b ﬁ f: f. Forn,k € Nset B, = {2 :a—2" <z < 42", g(x) > 27"(k+1)},
so that B,y is either empty or a bounded interval including [a, 8], and [ B, f < yuFE,i. For n € N; set

gn =277 Zi 61 XEnk; then (g, )nen is a non-decreasing sequence of functlons with supremum g, and
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oo 41

o0
fxg=sup fxgnfsupwz/ /
— 00 neN
4™ —1 00
<sup2 ™" ZwEnk—bupv/ gn—v/ g,
neN k—0 —o0

as claimed.

Remark Compare 224J.

286C Shift, modulation and dilation Some of the calculations below will be easier if we use the
following formalism. For any function f with domain included in R, and a € R, we can define

(Saf)(@) = flz+a), (Maf)(x)=e"f(z), (Daf)(z)=f(ox)

whenever the right-hand sides are defined. In the case of S, f and D, f it is sometimes convenient to allow
+o00 as a value of the function. We have the following elementary facts.

(a) S—aSaf = [, DijaDaf = fif a #0.
(b) Sa(f x g) = Saf x Sag, Da(f x g) = Daf x Dag.
(¢) Dalf| = [Dafl-
(d) If f is integrable, then
(Maf)" =S-af, (Saf)* =Maf, (Saf)’ =M of;

if moreover o > 0, then

a(Dof)* = Dijaf,  a(Dof)’ = Dijuf
(283Cc-283Ce).

(e) If f belongs to L& = L{(u), so do Saf, My f and (if a # 0) Do f, and in this case

[Saflls = IMaflly = flls I1Dafll = ﬁlIle-

(f) If f belongs to LZ so do Saf, M, f and (if & # 0) D, f, and in this case

IS0l = Maflle = 1Fl2: 1Dafllz = <=l fllz-

(g) If h is a rapidly decreasing test function (284A), so are M,h and Syh and (if « # 0) Dyh

286D Lemma Suppose that g : R — [0, 00] is a measurable function such that, for some constant C' > 0,

J g9 < CypE whenever pE < oo. Then g is finite almost everywhere and f rll g(z)dz is finite.

proof For any n > 1, set E, = {z : |z| <n, g(z) > n}; then
npk, < fE g < CvVpky,

2

so uk, < % and

2

{z:g(z) =00} = ngI Umzn En

has measure at most inf,, > Zfrf n Em = 0.
As for the integral, set G(z fo g for x > 0. Then, for any a > 0,

D.H.FREMLIN



86 Fourier analysis 286D

“9(x) , _ Gla) * G(o)
/0 1+xd$ " 14a +/0 (1+z)2 dx

Va ¢ vz < v
SC(E+[) (1+$)2dI) SC(1+/O (1+$)2d1‘),

(225F)

SO

fo ()d <C(1+f (1+)2 )

0
is finite. Similarly, f - #dm is finite, so we have the result.
- —X

286E The Lacey-Thiele construction (a) Let Z be the family of all dyadic intervals of the form
[2’“117 2F(n + 1)[ where k, n € Z. The essential geometric property of Z is that if I, J € Z then either I C J
or JCTorINnJ=1{. Let Q be the set of all pairs o = (I,,J,) € Z? such that ul, - uJ, = 1. For o € Q,
let k, € Z be such that puJ, = 2k and wl, = 27 ks let 2, be the midpoint of I,, y, the midpoint of J,,
J. € T the left-hand half-interval of J,, JI € T the right-hand half-interval of J,, and 3’ the lower quartile
of J,, that is, the midpoint of J..

(b) There is a rapidly decreasing test function ¢ such that (?) is real-valued and X[—g, 5] < ¢ < X[—ga 5}
P Look at parts (b)-(d) of the proof of 284G. The process there can be used to provide us with a smooth
function 1 which is zero outside the interval [6, 5] and strictly positive on ] é, % [; multiplying by a suitable
factor, we can arrange that ffoo Y1 = 1. So if we set Po(x) =1 — ffoo i for x € R, 19 will be smooth, and

X]—oo, %] <y < X}—oo, %} Now set ¥g(z) = a(z)ha(—2) for z € R, and ¢ = 1?10; g% = 1)y (284C) will
have the required property. Q
For o € Q, set ¢, = de/zMyé S_z, Dok, ¢, so that

¢U($) = \//TJaeiyil¢((x - xa),ng).

Observe that ¢, is a rapidly decreasing test function. Now (?5 = 2_’“0/25’,% M_; Dok, (?5, that is,

/\

by (y) = VT e~ =82 d((y — yl )ul,),

which is zero unless |y — 3| < %MJU; since the length of J! is %,uJU, this can be so only when y € J.. We
have the following simple facts.

(i) éollz = Vido - Vils|l9ll2 =[]z for every o € Q.

(i) 95/l = Viulo - plolloll =vpJs|[6l|1 for every o € Q.
(iii) If o, 7 € Q and J. N JL = 0 then

A A

(¢0‘¢T) = ( |¢-r) =
by 2840b. (For f, g € L2, I write (f|g) for [*_f x g.)
(iv) If o, 7 € Q and J, # J, and JZ N JT is non-empty, then J. N JL = 0 so (¢,|¢,) =0

(c) Set w(z) = for x € R. For o € Q, set w, = 257 S_,_Dor, w, so that

1
(I+]x])®
wg(x) - 'LU((.T - xU)H’JJ),U'JU < ,LLJo' = 2ko

for every x. Note that w, = w, whenever I, = I,.

286F A partial order (a) For o, 7 € Q say that 7 < ¢ if J; C J, and I, C I,. Then < is a partial
order on ). We have the following elementary facts.
(i) If 7 < o, then k. < k,.
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(ii) If o and 7 are incomparable (that is, 0 £ 7 and 7 € o), then (I, x J,) N (I; x J;) is empty. I We
may suppose that k, < k,. If J, N J, # (0, then J, C J,, because both are dyadic intervals, and J, is the
shorter; but as ¢ £ 7, this means that I € I, and I, NI, = 0. Q

(iii) If o, o’ are incomparable and both greater than or equal to 7, then I, N I, = @, because J, C
Jo N Iy

(iv) If 7 < o and k; < k < k,, then there is a (unique) v such that 7 < v < o and k, = k. (The
point is that there is a unique I € Z such that I, C I C I, and pul = 27%; and similarly there is just one
candidate for J,,.)

(b) It will be convenient to have a shorthand for the following: if R C @, say that
Rt =U,epfo:7<0oe @}

(c) For 7 € Q set
Ir={0c:0€Q,7<0,J] CJg}
Note that if o, 0’ € T, and k, # ko then J, # Jor and JL N JL, # 0, so (¢g|pe) = 0 (286E(b-iv)).

286G We shall need the results of some elementary calculations. The first four are nearly trivial.
Lemma (a) [* w, = [ w =1 for every ¢ € Q.
oo 1y b
(b) For any m e N, 77 w(n+ 3) < 2
(c) Suppose that o € Q and that I is an interval not containing z,, in its interior. Then fI Wy > we ()l
where z is the midpoint of I.
(d) Forany z € R, >0° _ w(z —n) <2.

(e) There is a constant C; > 0 such that |¢(z)| < Cy min(w(3),w(z)?) for every z € R and
‘(]5[,(33” < Civ /LL,’U)G(J’J) min(L wo’(m):u[tr)

for every z € R and ¢ € Q.

(f) There is a constant Co > 0 such that [* w(z)w(ax + B)dz < Cow(B) whenever 0 < o < 1 and
B eR.

(g) There is a constant C3 > 0 such that |(¢s|¢;)| < Csv/uls/pJr [, ws whenever o, 7 € Q and
ko < k.

(h) There is a constant Cy > 0 such that

Yocozrhoh Jars, We < Ca
whenever 7 € @ and k € Z.

proof (a) Immediate from the definition in 286Ec, the formulae in 286Ce and the fact that fooo mdx = %

(b) The point is just that w is convex on |—o0,0] and [0,00[. So we can apply 233Ib with f(x) = «,
or argue directly from the fact that w(n + 1) < J(w(n+ 1 +z) + w(n + % —z)) for |z| < 1, to see that
w(n+ 3) < f:+1 w for every n > 0. Accordingly

[e%) 1 oo . 1
Stmwn+3) < [ Cw =g

(c) Similarly, because I lies all on the same side of z,, w, is convex on I, so the same inequality yields
wo (z)pl < [ we.

(d) Let m be such that |z — m| < 1. Then, using the same inequalities as before to estimate w(z — n)
for n # m, we have
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N

Zw(m—n)gw(x—m)—i—/ w+/ w
—0o0 w7m+%

o o
§1+/ w = 2.
—00

lim, o 2°¢(z) = 0, thereis a C; > 0 such that |¢(x)| < C; min(w(3), w(x)?)

(e) Because lim, o, 2%¢(7) =
| < Ciw(r)? = Crw(z) min(1, w(z)) for every x, so

for every z € R. Now |¢(x)
160 (@) = VT |8(( — 20)pds| < Cov/iTyw((z — o)l min(L w((z — 20)1Ts))
= C1/ pdowe () pl, min(1, wy (2) ply) = Civ/ plowe (z) min(l, we (x)pul,)
whenever o € @ and x € R.
(£) (1) The first step is to note that

w(z(1+8) _ 8(1+p)°

= <8
w(p3) (3+5)3
for every 8 > 0. Now aw(a + of) < 4w(f) whenever 5 > 0 and o > % P Fort > %,
d, 1 26(1+6)

SO

aw(a +af) < guw(z + 58) < 4w(B). Q
Of course this means that

L) < 8u(B)

« 2a

whenever § >0 and 0 < a < 1.

(ii) Try Co = 16. If 0 < o<l and 8 > 0, set v = % Then, for any x > —~,

Ltaz+8=(1+8)(1+755) 2 ;(1+8),

so w(ax + ) < 8w(f) and

On the other hand,
-
/ w(z)w(az + B)dx < w(’y)/ w(ax + B)dx
Lol [T w < su),

a 20’ [
Putting these together, [~
(iii) If & = 0, then
[ wzyw(az + B)dz = w(B) [~ w=w(B) < Cyw(B)
for any 5. If 0 < a <1 and 8 < 0, then

w(z)w(ar + B)dr < 16w(B); and this is true whenever 0 < a < 1 and 5 > 0.

/OO w(z)w(ar + B)dr = /°° w(—x)w(—ax — B)dx

—00 — 00

(because w is an even function)

MEASURE THEORY



286G Carleson’s theorem 89

= /OO w(r)w(ar — f)dr < Cow(—p)

— 00

(by (ii) above)
= Cow(p).

So we have the required inequality in all cases.

(g) Set Cg = maX(ClC% H¢||2/ f1{32

(i) It is worth disposing immediately of the case ¢ = 7. In this case,

(dolp-)] = lléo I3 = ll2l3,

;cg—i-%ulg 1/2
/ Wy = uJU/ w((x — o)ty )dr = / w,
I ma—%ulg —1/2

T

while

so certainly |(¢q|¢-)| < Cs [; w,.
(i) If o # 7 and I, = I, then J, N Jy = 0 50 (¢ ]cbr) = 0, by 286E(b-iii).

(iii) Now suppose that I, # I,. In this case, because ul, < pl,, I must lie all on the same side of
Ty, SO f] Wy > We(x)puly, by (). Accordingly

(Poldr)] < / (60| % 6+] < C2/uIo/ul, / wy X 0,

(using (e) twice)
C3/ o/ 1, / (x — o) pds)w((x — ) pd;)de
=Ci/pd, \//7/ w(zpdyply + (2 — 25)pdo)w(z)de

< C2Co/ pdo/ plrw((zr — T ) ptds)
(by (f), since pJoul; <1)

Co/iTo /i (er) < CoVRI /i, [ o,
IT

as required.

o0 o0 . . . . o0 . 1
(h) Set Cy =237, fj+% w; this is finite because [~ w = PREPSE for every a > 0.

If k < k, then k, # k for any o > 7, so the result is trivial. If k > k., then for each dyadic subinterval
I of I, of length 27% there is exactly one ¢ > 7 such that I, = I, since .J, must be the unique dyadic
interval of length 2* including .J,. List these as op,... in ascending order of the centres Ty, so that if
I = [mpl;, (m + 1)pl; [ then x5, = mul, + 27k (5 + %), for j < 28—k Now

2b=kr 1 mul, mul, 1
Z / Z / Qkx—m/i])—j—i)dx

= / w(x—j—%)dm

j=0 77
o0 oo
< Z/ w=:-Cy
j=07i+3
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Similarly (since w is an even function, so the whole picture is symmetric about x)

2k—kr 1

oo 1
Zj:O j‘(m—s-l)ulf Wo; < 5047
and
ZUZT,kU:k R\ I, Wy < 04’
as required.
286H ‘Mass’ and ‘energy’ (LACEY & THIELE 00) If P is a subset of @, E C R is measurable, g : R - R

is measurable, and f € L%, set

maSSEQ(P) = SupUEP,TEQ,TSU fEﬁg*l[JT] wr < Sup‘rEQ ffoo Wr = 1’
Ap(P) =3 ,cp|(floo),
energy ¢ (P) = sup,cq ViJr /A (PNT;).

If P" C P then massg,(P') < massg,(P) and energy,(P’) < energy;(P). Note that energy,({c}) =
Vids|(flgs)| for any o € Q, since if o € T, then pJ, < pJ,.

2861 Lemma If P C @ is finite and f € £Z, then
(a) Ap(P) < || Xogep(floo)dollal fll2,
(b) X0 rep s, | (F160)(0o|dr)(9r )| < C3Af(P).

proof (a)

Af(P) = ZoEP(f|¢U)(¢o|f) = (EoEP(f|¢U)¢U‘f) < ||dep(f|¢a)¢a|‘2||f”2
by Cauchy’s inequality (244ED).

(b)

3 |(f160)@olé) @10 < D2 Z(1(F160)® +1(F16)1%) (60l¢7)]
2

o,TeEP o,TeP
Jo=Jr Jo=J

(because |£¢| < (€% 4 |¢[?) for all complex numbers ¢, ()

=D D (f160)Plesler)]

oceP T€EP
Jo=dJ,
< Sl Y 03/1 wo
o€P TE T

Jo=J,
(by 286Gg, since k, = k, if J, = J;)

<160 [ v
oceP -
(because if 7, 7/ are distinct members of P and J,. = J,/, then I. and I,/ are disjoint)

=05 ) |(f160)]° = C3A4(P).

o€eP

286J Lemma Set C5 = 2!2. If P C @ is finite, £ C R is measurable, ¢ : R — R is measurable, and
v > massgy(P), then we can find R C @ such that v} . ul; < CspE and (in the notation of 286Fb)
massgy(P\ RT) < 17.
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proof (a) If v = 0 we can take R = (). Otherwise, set P, = {0 : 0 € P, massgy({0}) > 17}. For each
o € P let o/ € Q be such that ¢/ < o and fEmg,l[J ) Wor > i’y. Let R be the set of elements of {0’ : 0 € P;}

which are minimal for <. Then P\ R C {0 : massg,({c}) < 17} so massp,(P\ RT) < 14.
(b) For k € N set
Rp={r:7€R, plr w(ENg ' [J)NIY) > 22694},
where Iﬁk) is the half-open interval with the same centre as I, and 2* times its length. Now R = Uren B
P Taker € R. If ke Nand z € R\ I then |z — x| > %u[ﬁk) =2k=1ul, so
wr(z) = w((x — z,)pJ)pdy <w@ENpd, = (142813,
Accordingly

oo
/ w
Eng—1[J,] I7(-k+1)\17(-k)

1
T g™ = oy, R
Ng—1[J-] Eng—1t[J.]NI, k=0

(oo}
<pdr w(ENg LN+ (1+28 )P ud, - w(Eng ' [J]nIHHY).
k=0

It follows that either

N’J‘r : /J(Eﬁ gil[J‘r] N I‘r) > =

| =

and 7 € Ry, or there is some k € N such that
(L+ 25 P (B0 g [T L) > 27y
and
pdr - p(EN g™ N I£k+1)) > (14 2k-1)327k—4y > 92k=T7,

so that 7 € Rr4+1. Q

(c) For every k e N, v 3" ply <2V'FuE. P If Ry, = (), this is trivial. Otherwise, enumerate Ry, as
(Tj)j<n in such a way that k., <k, if j <1 <n. Define ¢:{0,... ,n} = {0,... ,n} inductively by the rule

a() =min({1} U {j:j <1 q(G) = 4. (1) x Jo) N (IR % T) # 0})

for each I < n. Note that, for I <n, g(¢q(1)) = ¢(I) <[ and Igf()l) N Iﬁlk) # (), so that

I, c 1 c b2

Tq(1) >

because ,ulilk) < /AILZ)[). Moreover, if j <1 < n and q(j) = q(l), then both J;, and J;, meet J;_, therefore
include it, and J-; C J;,. But as 7; and 7; are distinct members of R, 7; £ 7, and I, N I;, must be empty.
Set M = {q(j) : 7 <n}. We have

v plr=y > Y pl <y > pIFTD =08y N

TER meM j<n meM meM
q(j)=m
<N 2B g [Ty, N I
meM

S 2/€+2 . 2972kuE _ 2117k/,LE

because if [, m € M and | < m then Iﬁ{” x Jr, and 157’3) x Jr.
g I N I%k) and g~ t[J,, ] N Iﬁkn) are disjoint. Q

(d) Accordingly

are disjoint (since g(m) = m)), so that

YV rer il SYERZ0 Xren, My < 2PpE,

as required.
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286K Lemma Set Cs = 4(C5 + 4C3+/2Cy). Suppose that P C Q is a finite set, f € £LZ, || f]l2 = 1 and
v > energy ;(P). Then we can find R C @ such that 72 > rer il < Cp and energy ¢ (P \ RT) < %7.

proof (a) We may suppose that v > 0 and that P # (), since otherwise we can take R = ().

(i) There are only finitely many sets of the form P N T, for 7 € Q; let R C Q be a non-empty finite
set such that whenever 7 € Q and P NT, is not empty, there is a 7/ € R such that PNT, = PN T, and
kr» > k,; this is possible because if A C P is not empty then k; < mingca k, whenever T, O A.

(ii) Choose 79, T1,..., Py, P1,... inductively, as follows. Py = P. Given that P; C P is not empty,
consider

Rj={r:7€R, Af(P;NT;) > ivzub}

If R; = 0, stop the induction and set n = j and R = {7, : | < j}. Otherwise, among the members of R;
take one with y, as far to the left as possible, and call it 7;; set Pj41 = P; \ {7;}", and continue. Note that
as Rj1 C R for every j, yr, ., > yr, for every j.

The induction must stop at a finite stage because if it does not stop with n = j then Ay(P; N7T%,) >
so P; N T, is not empty and Pj 1 C P;\ T, is a proper subset of P;, while Py = P is finite. Since R,, =

energy ¢ (P \ RY) = energy ;(P,) = sup \/puJr\/Ap (P, N T5)
TEQ

=max/pJr\/Ap(P, NT;) < %’y.
TER

(iii) Set Pj = P;NT;; C P\ Pj41 for j <n, so that (P});<y is disjoint, and P’ = J,_,, P; € P. Then
ifc e P, 7 <nand Jr, C Jf,, I,NI, = (. P Let | < n be such that o € Pl’. Then y,, € J;, C Jf, and
Yr, € J7, € J7, 50 yr, < yr, and j <. Accordingly Pjy1 2 P, contains o, so o 2 755 as J-, € Jy, I, € I,
while ul, < pl;;, so I, is disjoint from I.,. Q

It follows that if o, 7 € P’ are distinct and Jé N Ji is not empty, then I, NI, = 0. P If J, = J, this
is true just because o # 7. Otherwise, since J, and J. intersect, one is included in the other; suppose that
Jy C J.. Since J, meets J', J, C J.. Now let j < n be such that o € PJ(; then o > 75, so J;, C J, C JL,
and I, NI C I, N I; = () by the last remark. Q

0,
0,

(b) Now let us estimate
722j<n plr, < 4Zj<n Af(ij) = 4A4(P') = 4o
say. Because || f|l2 = 1, we have a < || Y p/ (fl¢s)0s|l2 (2861a). So

<Y (flea)tolls = D (Floe)(@oldr) (0] )
oeP’ o,TeP’
= Z (f|¢0)(¢a|¢7’)(¢7’|f)
J,TEP'
Jo=J-

Y (F1o0) @l @rl )+ 3 (Flow) @oldr) s1f)
en en

because (¢, |p,) = 0 unless JL N JL # (), as noted in 286E(b-iii).
Take these three terms separately. For the first, we have

ZU,TEPQJ(,:JT}(f|¢0)(¢0|¢7’)(¢7’|f)| < Cza
by 286Ib. For the second term, we have

MEASURE THEORY



286K Carleson’s theorem 93

> (F166)(@oldr) (@1 5] < D 1(Flea)l D [(doldr) (@01 )]

o,T€P’ ocEP’ TeP’

JoCJL JoCJL
ST [ S 16162 (0-15))°
oceP’ oceP' recp’

J,CJL
=va [y H
j<n
where for j < n I set

2
Hi=3 (> |@lén)(é-11))"

O’GPJ{ TeP’

J,CJL

Now we can estimate H; by observing that, for any 7 € P’,

[(¢-1)| = VuIr energy s ({7}) < vV/ulr,

while if o, 7 € P’ and J. D J, then
(o16:)| < Cov/pI,VinT: [, wo

by 286Gg. We also need to know that if ¢ € Pj and 7, 7" are distinct elements of P’ such that J, C JinJt,,
then I, I and I, are all disjoint, by (a-iii) above, because J,, C J,. So we have

< Y (X il Cov il /i [ o)’

o€EP] reP’
JoCJL
T (L [ wot et outol [ wor
o€EP] TeP’ o€EP] R\I-,
J,CJL '
oo
QZMZ/ wr [wscpt 3 oty
GP’ k=k7—j
ko= '

(by 286Ga and 286Gh, since o > 7; for every o € P))
= C3y?2 M 0y = 20302l

Accordingly
> jen Hy < 20372003, Iy, < 2030, - 4a,
and
S rerrscn [(100)(@0l6n)(@-|1)] < \Ja o, Hj < 2C30y2Cs,
Similarly,

ZU,TGP’,JTQJ}, |(f|¢a)(¢al¢7)(¢‘r‘f)| < 2C500/2C0;
putting these together,

a? < a(Cd + 4C3+/ 204) = iOlCG
and a < %C’G. But this means that
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’YQZK” plr;, < 4da < Cs,
and R = {7 : j < n} has both the properties required.

286L Lemma Set

7.8 28 4/TAC,
Cr= 01(2 Tr e T wiEn) )-

Suppose that P is a finite subset of ) with a lower bound 7 in @ for the ordering <, E C R is measurable,
g: R — R is measurable and f € £2. Then

Yocr |(F160) fppygr (g @ol < Crenergy ((P) masspy (P)ul,.

proof Set v = energy;(P), 7' = massgy(P). If P = () the result is trivial, so suppose that P # 0.

(a)(i) Note that (J,cplo € I, Jr € (\,cpJo and k; < mingep ky. So if 0, 0/ € P are distinct and

wly, = ply, then J, = J,v and I, N Iy = 0.

(ii) For a dyadic interval I let I* be the half-open interval with the same centre as I and three times
its length. Let J be the family of those I € Z such that I,  I* for any o € P such that ul, < ul. Because
P is finite, all sufficiently small intervals belong to J, and | JJ = R; let K be the set of maximal members
of J, so that K is disjoint. Then |JK = R. P The point is that P # ; fix o € P for the moment. If [ € 7,
consider for each n € N the interval 1) € T including I with length 2" uI. Then there is some n € N such
that I > ul, and I, C (I™)*, so that I*) ¢ 7 for any k > n, and there must be some k < n such that
I®) ¢ K. Thus I € I®) C UK, as I is arbitrary, JL=UJJT =R. Q

(iii) For K € K, let lx € Z be such that uK = 274 If I > k., that is, uK < pl,, then K must lie
within tNhe half-open interval I with centre x, and length Tul., sipce otherwise we should have I, N K* = 0,
where K is the dyadic interval of length 2u K including K, and K would belong to J. But this means that

Yker ur<ut, MK < pl =17yl
because K is disjoint.

(iv) For any I < k., there are just three members K of K such that Ix =1. P I I € 7 and pl > pul;,
then either I, C I* or I, NI* =), and I € J iff I, N I* is empty. This means that if K € Z and uK = 27,
K € Kiff I, N K* is empty and I, € K*. So if I, C 27,27 (n+ 1)[ and K = [27'm, 27 (m + 1), we
shall have K € K iff

eitherm=n—2orm=n+2orm=mn—3is even or m =n + 3 is odd;
which for any given n happens for just three values of m. Q

(b) For 0 € P, let (, be a complex number of modulus 1 such that (,(f|o,) fEﬂg—l[JT] ¢, is real and
non-negaive. Set W = P x K. For (o, K) € W, set

QoK = (f|¢g)fEﬂg*1[J;]ﬂK -

The aim of the proof is to estimate

ZUEP|(f|¢O')fEmg_1[Jg] ¢o“ - Z(U7K)6W Ca’aa'K.
It will be helpful to note straight away that

Y oxyew [k < Xoep (£160)] [ 16|

is finite.
Set

Wo={(0,K):0€ P, K€K, ul, <uK < pul.},
Wiy ={(0,K):0€ P, Ke K, ul, < uK},
Wy ={(0,K):0€ P\T;, K e K, uK < ul,},
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286L Carleson’s theorem 95

Ws={(0,K):0e PNT,, K€ K, uK < pl;}.
Because ul, < pl, for every o € P, W = Wy U Wy U Wy U W3, T will give estimates for
Qj = Z(U,K)ewj CooK

for each j; the four components in the expression for C7 given above are bounds for |ag|, |a1|, |az| and |as]
respectively.

(c)(i) If K € K and I =, then for any k >
Yoeph,—k 0| < 27FC1yy (14287072 < 27F 201y
P For any o € P,
|(fl¢a)l = v1uly energy ;({o}) < yW/ls

as noted in 286H, and

/ 60| < CruI, /i, w?
Eng—[JrInK

Eng—[JrINnK
(286Ge)
< Cipdo/ ply - sup w, ()
Eng—1[J, ] zeK

< Ol,UIa ﬂIU’Y sup wo(x) =Ch ILLLT’}/’LU(,LLJU,O(SUU,K)),
zeK

where I write p(z,, K) for inf,cx |z — x| So, for k > 1,

D laokl < Y Oy ulew(pdoplas, K))

o€cP oeP
ko=k ko =k
o0
=270y D w(@ (o, K)) <27FC1yy -2 > w(n+ )
Ige_lz n=2k—1

because the z,, for o € P and k, = k, are all distinct (see (a-i) above) and all a distance at least pK =
2k=127F from K (because I, Z K*); so there are at most two such o with p(z,, K) = 27%(n + 3) for each
n > 281 So we have

ZO’GP,ka=k‘ |0¢<7K‘ < 27}6611’)/’7/(1 + 2kil)72 < 27]“726'17'}/
by 286Gb. Q
(ii) Now

| < Z laok| = Z Z oo Kk |

(o,K)EWy Kek geP
pK<pl: plo<pK

Z i Z loo k| < Z iQ_k_QCW’Y'

KeK k=lkg oc€eP KeKk k=g
pK<ul, ko=k pK<ul,
_ ’ —lg-1_1 ’ 7 ’
= Cryy E 2 = 20177 § pkK < 20177 puly
Kek Kek
pK<plr nK<plr

by the formula in (a-iii). This deals with «p.
(d) Next consider W;. We have
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kr—1 oo
ol Y aoxl= 30 D0 > > laox]
(o, K)eW l=—oc0 k=k, KeEK oc€P

k=l ko=Fk

kr—1 oo

< Z Z Z 27k0177/(1+2k7l)72

l=—o0 k=k; KEK
k=l

(by (c-i) above)

kr—1 oo

=30y Y D 242

l=—o0 k=k,

(by (a-iv))

kr—1 oo

S 3C1’7’Y/ Z Z 273/(?22[ — 30177/22(16771)273]67 Z 272[ Z 273/(?
=0 k=0

l=—o0 k=k,

K, 4 8

_3 rg—ks 48
—4017’72 :

8
= Cvyy'uly.

This deals with «;.

(e) For K € K, set Gk = KNEN UU€P7;LIU>,U,Kg_1[‘]U]' Then uGg < QW’MK/w(%). PIf pl, < uk,
then Gx = 0, so we may suppose that uK < pl;. Let Kel be the dyadic interval containing K and with
twice the length. Then K ¢ 7, so there is a 0 € P such that K* D I, and

ply < pK = 2uK < pl,.
Let v € @ be such that 7 < v < ¢ and ul,, = 2uK (286F (a-iv)). Then I,, meets f(*, so K is either equal to
I, or adjacent to it, and |z — x| < % - ul, for every x € K, therefore for every x € K. Accordingly
wy(z) > w(3)pty = w(3)/2pK
for every z € K. On the other hand, because ¢ € P and v < o, fEmg,l[J | Wy <~'. So
pw(ENg J)NK) <29/ pk/w(3).

Now suppose that o' € P and pl, > pK. Then ko < k, and J,. is the dyadic interval of length 2%+’
including .J,. But J, is the dyadic interval of length 2*> including .J,, so includes J,+, and g~ [J,/] C g~ *[J,].
As ¢’ is arbitrary, Gx € ENg~'[J,]N K and uGg < 2v'puK/w(3), as claimed. Q

(f)() If o, v € P\ T, and ks # k,, then J. N J] = (. P It is enough to consider the case pJ, < pJy,
so that pJ, < pJ;. As J, includes J,, but J;, does not, J, is disjoint from J; and we have the result. Q

(ii) For z € R, set
v2(2) = | 0. )ews Co (floe)bo (@)X (E N g~ 7] N K) ()]

(The sum is finite because there is at most one K € K containing x.) Then for any « € R there is a k > k,
such that

’U2(33) = ’dep,kgzk Ca(f‘(bo)d)o(m)}'

P If vo(z) = 0, any sufficiently large k will serve. Otherwise, © € E and we have a pair (v, L) € W such
that x € g~ 1[J7] N L. Try k = k,. L is the only member of K containing z, so

’Ug(x) = |depw (f|¢0)¢0’(x)|a

where P, = {0 : 0 € P\ Ty, pul, > pL, g(z) € Ji}. Now if o € P and k, = k, then pl, = pl, > pL,
Jo = J, and JJ = J} does not include JI, so that o € P\ T, g(x) € J, and o € P,. On the other hand,
(i) above tells us that k, = k whenever 0 € P\ T, and g(x) € J,. So P, ={0:0 € P, k, = k} and

va(w) = |Za€P,k(,=k (o (floo)dos(z)]. Q

MEASURE THEORY



286L Carleson’s theorem 97

(iii) It follows that va(x) < 2C7v for every x € R. PP If vy(z) = 0 this is trivial. Otherwise, take k
from (ii). Then

va(2) < Y (floe)de (@) < Y Viploy Vs Cruwg ()
oeP oeP
ko=k fie
(by 286H and 286Ge)
:sz 2kx—$0)<Cwa(2km—n—%)
oceP n=—o0
ko=k
(because the z,, for o € P and k, = k, are all distinct and of the form 27%(n + 1))
< 2Cyy

by 286Gd. Q

(iv) Note also that, if va(x) > 0, there is a pair (0, K) € Wy such that € g~![J,] N K, so that
uK < ply, < pl: and z € Gi. But now we have

sl = 3 cafm/ 6o x X(ENg [T N K)]

(o, K)EW>
> 4 "WK
sfoms X [ we ¥ TS
—0 Kek YGk KeK w(3)
K <plr pEK<pl:

(putting the estimates in (e) and (iii) just above together)
28 - Cr1yy'pl,
< 3
w(3)

by (a-iii). This deals with as.
(g) Set PP =PNT, and f = > wep Co(fldo)do. Then

1713 < Cay*uls.
P If o, 0’ € P and k, # ko, then (¢4|ps ) = 0 (286Fc). While if k, = k,/, then J, = J,/, by (a-i). So

”JE||§ = Z Ca(f|¢a)(¢a|¢o/)(¢a’|f)<_cr’

o,0'€P’
< N (16 (@eldor) (@or | )] < CsAp(P)

o,0'eP’
Jo=Jd g1

(2861b)
< C3y*ul,

by the definition of ‘energy’, because P’ C T,. Q

(h) For m € N, set
fm = ZJGP/,kUSm Co(flbo)bo

Then whenever z, ' € R and |z — 2| <27, | fm(z)] < %le*(x'), where

1 rbz
f*(.T/) = Supa§1'§b7a<b Efa ‘f|

D.H.FREMLIN



98 Fourier analysis 286L

as in 286A. P (i) Since k, > k, for every o € P’, we may take it that m > k,. Let J be the dyadic interval
of length 2™ including J,, and ¢ its midpoint. Set 1) = ngszm/E}(%, that is, ¥(y) = (?5(%2_7"(31 —¢)) for
y € R.

(ii) If o € P’ and k, < m and (%a(y) £ 0, then y € JL. But J, N.J D J, is not empty, so J, C J,
ly =91 < 527|327 (y — 9)| < § and Y(y) =

(iii) If o € P’ and k, > m and (?So(y) #0, then J7 N J D JT is non-empty, so J C J7 and y < y, < ;
now

1 3 1 A
2t e 2 2227, 2 27y =) =

[N

N N 1
I=y=00 o)+ (Y —y) 2 5"

and ¢(y) =
(iv) What this means is that if o € P’ then

by X =, if ky <m,
=0if k, > m,

so that }m =1 X f
(v) By 283M, f,,, = \/% [ 12, where f *1?} is the convolution of f and the inverse Fourier transform 1Z

of 9. (Strictly speaking, 283M, with the help of 284C, tells us that fm and ff *va have the same Fourier

transforms. By 283G, they are equal almost everywhere; by 255K, the convolution is defined everywhere
and is continuous; so in fact they are the same function.) Now

w - 3 . QmMZ)Dg)Qm(b - 3 . 27"1]\4@1)3.2111,(]57
that is,
b(z) =3 2meIH(3 - 2M)
for x € R.

(vi) Set wy(x) = min(w(3), w(x)) for € R, so that w; is non-decreasing on |—oo, —3], non-increasing
on [3,00[, and constant on [—3,3], and |¢(z)| < Crwi(z) for every z, by the choice of C; (286Ge). Take x,
x' € R such that |z — 2’| < 27™. Then

3-2™ m
o)l < o [ 1= 0lb0Ie =22 [~ 1~ 0lots- 270

3 2m 0 ~ m . oo - .

< —Cl/oo|f(a:—t)|w1(3-2 t)dtzﬁcl [m|f(x+t)|w1(3-2 t)dt
(because wy is an even function)
00 b

3 2m m 1 ~

=~ fCl/oowl(?) -2 t)dt . a<Si1£m E‘/a |f($ + t)|dt
{ZQ*"YL

(by 286B, because t — wi(3 - 2™t) is non-decreasing on |—oo, —2~™], non-increasing on [27™, oo[ and

constant on [—27", 27™])

:ﬁgfm.M1f/m<a/wﬁw

oS} alz—2"™
b>z+27"
(because if a <x—27™ and b > x + 27™ then a < 2’ < b)

= %le*(xl)
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(286Ga), as required. Q

(i) For z € R, set
) = [ X (0, 10)ews Co (F100) b0 (@)X (E N g™ [J7] N K)(2)].

Then whenever L € K and z, 2/ € L, |vs(z)| < C1f*(2’). P We may suppose that vs(x) # 0, so that, in
particular, € E. The only pairs (o, K) contributing to the sum forming v3(x) are those in which = € K,
so that K = L, and g(z) € J,. Moreover, since we are looking only at o € T, so that JI C JI, JI will
always be the dyadic interval of length 2¥-~! including J. So these intervals are nested, and there will be
some m such that (for oeT;) g(x) € JI iff k, > m. Accordingly

= [Xoerrme, <ty Co(F160) 00 (2)] = |frr—1(2) = Fns(2)]
(we must have m < [, because vs(z) # 0). Now |z — 2’| < 271t < 927™ g0 (h) tells us that both |f;, _1(z)]
and | fr,—1(z)| are at most $C1 f*(2'), and v3(z) < C1f*(2), as claimed. Q

It follows that vs(z) < % fL f* for every z € L.

(j) Now we are in a position to estimate

=l 3 Gels [Tus 5[

(o, K)EW3 Kek
pK<plr

(because if vz(z) # 0 there are (0, K) € W3 such that z € K, and in this case € G and pK < pl, < pl;)
C ok
> uGw G [
Kek K
pK<ulr
(by (i) above, because Gx C K)

KeKk
pK<pls

261’7/ T
<

(because if pK < pl, then K C I, as noted in (a-iii))

2C
<= ” \/ NN

(by (e))

(by Cauchy’s inequality)

A

201+ N
< =Tl VB fl
w(3)
(by the Maximal Theorem, 286A)
4C1+v'V14
< %\/ plr v/ Caply
2

(by (g))
AC, \/TAC;

/
VY
w(3)

(k) Assembling these,
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Z| f|¢0 / . d)a‘ = Z CUOZUK*Z Z CJOQTK <Z|a]|

o - o o
cP 7er =0 (0, K)eW;
7 8
<5 O uly + - - Cryy'uly + 28 - Ciyy'uly fw(3)

+4V/14C5 - Cry Iy Jw(3)
= Cryy' pls,

as claimed.

286M The Lacey-Thiele lemma Set Cs = 3C7(C5 + Cg). Then
ZO’EQ |(f|¢o-)fEﬁg_1[J;] ¢U| < 08
whenever f € L2, ||fll2 =1, puE < 1 and g : R — R is measurable.

proof (a) The first step is to combine 286J and 286K, as follows: if P C @ is finite and max(y/massg,(P), energy ;(P))
<, there is an R C @Q such that 4* ", ul> < C5 + Cg and max(y/massg,y (P \ R*), energy (P \ R")) <

1~. P Since massgy(P) < 72, 286J tells us that there is an Ry C @ such that ~? > rer, M7 < Cs and
masspg(P\ Ry) < 37°. Turn to 286K: since energy ; (P \ R7) < energy ;(P) <, we can find By C Q such

that v*>°_cp ulr g C’6 and energy ;((P\ Ry) \ Rf) < 37. Set R = Ry U Ry. Then

7QZT€RMIT < Cs5+Cs, massg,(P\ RT) <massp,(P\ Rj) < i’yZ

SO max(\/HW, energyf(P\R+)) < %’Y' Q

(b) Now take any finite P C Q. Let k € N be such that max(y/massg,(P), energy ;(P)) < 2%. By (a),
we can choose (P,)nen, (Rn)nen inductively such that Py = P and, for each n € N,

PTL+1 = PTL \ RTJLra
222y gl < Cs+Cs,  max(y/massgy(Py), energy ;(P,)) < 287"

Since energy ;({c}) = VuJo|(f|¢o)| > 0 whenever (f|d,) # 0 (286H), (f|¢,) = 0 whenever o € ),y Pn
and

Slten) [ eel= X (Gl [ el

71
oeP [J ] UeUnEN Pn\Pn«{»l

= 3 e [ el

n=0c€P,\Ppt1

S Zlf\%/ o]

n=07€R, c€EP, Ng=1'[Jz]

o>T
< Z Z Crenergy ¢ (P,) massg,y (P )l
n=01€R,
(by 286L)
< Cry 2" " min(1,2272) Y ol
n=0 TER,

(because massgy(Py,) < 1 for every n, as noted in 286H)

MEASURE THEORY



286N Carleson’s theorem 101

< Cr Y 2P min(1, 22672220 2R (Cy + C)
n=0

= C7(Cs+ Cg) Y_min(2"7F, 267m)
n=0

< C7(C5+Cg) Y min(2",27") = 3C7(Cs + Co).
(c) Since this true for every finite P C @,
Z{TEQ ‘(f|¢0')fEmg—1[Jg] QSU‘ S 3C7(C5 + 06) = CS’

as claimed.

286N Lemma Set Cy = Cgv/2. Suppose that f € L2, g : R — R is measurable and uF < oo. Then
5 e (F100) [y 230y b1 < Coll loV/iF

proof This is trivial if || f||2 = 0, that is, f = 0 a.e. So we may take it that || f||2 > 0. Dividing both sides
by ||f|l2, we may suppose that || f]l2 = 1.

Let k € Z be such that 28~ < uF < 2. We have a permutation o — ¢* : Q — Q defined by saying that
o* = (27%1,,28J,); so that ko« = ko + k, 25« = 27%2,, yb. = 2%yl Jr. = 2K ] and for every z € R
00 (20) = /pToe® V(20 — o))
,ngeiyf’*xqﬁ(Qk“—"_k(l‘ _ 2—kx0))

= 272 ST €V (@ — T on) = 272G ().

Write F = 27%F, so that uF < 1, and g(z) = 2Fg(2%x) for every z. Then, for o € Q,
Fng T ={z:zecF glx)eJ}={x:27 cec F,27%g27%z) e J'}
={z:27FzeF g2 x)e sy =2z x e F, §lz) e J.}.
Write f(z) = 25/2f(2Fz), so that
[1Fll2 = 2572 Dox fll2 = || fll2 = 1,

while

(Floo) = [ f x @0 =2 [ f(252) 5 (PFa)da = (fldo-)
for every o € (). Putting all these together,

(flds) ¢>a =283 |(floo) by (2%z)d
U%‘ | / s | UEE;J | /2"“(Fﬂg—1[J§]) (a)da
= 2k/2 f(ba* ¢O’*
U%i( | )/Fﬂalwm
=252 "|(fl47) s
726;2| /ﬂg‘l[ﬂ] |
§2k/208

(by the Lacey-Thiele lemma, applied to §, F and f )

< Co/ k' = G| fllav/ pF-
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2860 Lemma (a) For z € R, define 6, : R — [0, 1] by setting

0-(y) = 627" (y — ))?
whenever there is a dyadic interval J € T of length 2* such that z belongs to the right-hand half of J and
y belongs to the left-hand half of J and g is the lower quartile of J, and zero if there is no such J. Then
(y,z) — 0.(y) is Borel measurable, 0 < 6,(y) <1 forall y, z € R, and 0,(y) =0if y > z.
(b) For k € Z, set Q. = {0 : 0 € Q, ks = k}. Let [Q]<“ be the set of finite subsets of @, [Z]<* the set of
finite subsets of Z and L the set of subsets L of @ such that L N Qy is finite for every k. If K € [Z]<¥ and
LeL, set

Prr ={P:Pe[Q]~¥, PNQy 2D LNQy whenever k € Z
and either k € K or PN Qy, # 0};
set
F={P:P C Q)% and there are K € [Z]<%, L € L such that P 2 Pk}.
Then F is a filter on [Q]<“ and

QW‘[F(h X GZ)V = hIIlp_>]-‘ ZUEP,ZEJZ;(h|¢U)fF ¢¢7

for every z € R and rapidly decreasing test function h and measurable set F' C R of finite measure.
proof (a)(i) I had better start by explaining why the recipe above defines a function 6,. Let M be the set
of those k € 7 such that z belongs to the right-hand half of the dyadic interval J; of length 2* containing

z. For k € M, let §, be the midpoint of the left-hand half j,i of Ji, and set ¢ (y) = %(Q_k(y — x))? for
y € R; then 1 is smooth and zero outside J]i. But now observe that if k, k' are distinct members of M,

then j]i and j,i, are disjoint, as remarked in 286E(b-iv). So 6. is just the sum }, _, 1. Because (?5 takes
values in [0, 1], so does .. If y > z, then of course y ¢ j,i for any k € M, so 6,(y) = 0.

(ii) To see that (y, z) — 6.(y) is Borel measurable, observe that

{(,2) 1 0-(y) 2 7} = Uyeolw: 2) s 6((y — ¥} )uls)? > 7, 2 € J5}
for every v € R.
(b)(i) 0 belongs to both [Z]<¥ and £ and [Q]<* = Pyy belongs to F. If K € [Z]|<¥ and L € L then
Ukex LN Qr belongs to Pxr. So no Pk, is empty and ) ¢ F.
If P, P € F, there are K, K’ € [Z]<* and L, L' € L such that Px; C P and Pgrr C P’. Now
KUK’ €[Z)<%, LUL' € £ and
Prukr, o € Pk NP CP AP,

soPNP € F.
IfPeFand PCP CIQ]¥, then of course P’ € F. So F is a filter on [Q]<*.

(ii) Now fix on z € R, a rapidly decreasing test function h and a set F' of finite measure. Take M
and Yk, Jk, Gr for k € M from (a-i) above; it will be convenient to set ¥, = 0 for k € Z \ M, so that

0, = ZkEZ Y.
For k € Z,

27TfF(]/jL X wk:)v = ZUGQk,ZGJ; (h|¢o)fF ¢o’~

P If k ¢ M, then z ¢ J) for any o € Qy, while ¢, = 0, so the result is trivial. So I will suppose that k € M
and that g is defined. If 0 € Qy and z € J7, y'. = g, and x, is of the form 27%(n + %) for some n € Z. So

(Wow) = [ hix s,

— 00

(2840)
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= / }Al(t) .Q*k/2e2”“i(n+%)(t7@w%(ka(t — §r))dt

(by the formula in 286Eb, because g?) is real-valued)
A . A T A . 1y, A
- 2k/2/ h(2t + §i) e’ T2 g(t)dt = 2’f/2/ h(28t + g )e' " T2 (1) dt
—c0 -7
(because ¢(t) = 0 if [¢t| > 1)
= 2k/2/ g(t)e™dt,

—T

where g(t) = iAz(2kt + Qk)eit/QQAﬁ(t) for —m <t < 7. So if we set ¢, = i J7_g(t)em""dt, as in 282A, we have

(h|pg) = 2¥/% - 27c_,,

oo
n=—oo

when o € Q, z € J7 and z, = 27¥(n+3). Note that as g is smooth and zero outside [—1, 1],
oo (282Rb).

Now, for any y € j,i, writing Ry, for
{o0:0€Qr 2} ={0:0€Qu, Jo=I}={(I,Ji): T €T, pI =275}

len| <

we have

oo
o - —27%i(n+ 1) (y—91) D ro— ~
7 (Moo, (y) = Y 282 2me_,, 2R 22 T EDWII o7k (y — g ))
oERy n=—oo
— 22 (y — g))e 2" i) Z e e=2 Finy=ix)
n=-—00
= 2mp(27 (y — gr))e > I N e i

A N _ —k71i A _ R
=212 " (y —gu))e > T g(27 M (y — i)
(by 282L(i), because 27|y — x| < 1 < 7 and g is smooth)

= 2me=2 =B (27K (y — ) h(y)e
= 2mh(y) v (y).

g—k—1

=) §(27 (y — iix))

On the other hand, if y € R\ J%, ¢p(y) = (?Sg(y) = 0 for every o € Ry, so again > cp. (h|¢g)$5a(y) =

27 (y) vk (y).-
Next,

Yoen, |(Mldo)| = 2m - 2F2570  enl

and

SUPseR,, f 0o |¢)J| = 2k/2f_oo ‘¢|

are finite, while of course XAF is bounded. So

27T/ (h x )" = 2m(h x )" |XF) = 20 ((h x 1)) |X F)
F

(2840b again)
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A A o0 A A
227T(h><’l/}k|XF)=/ 2rh x g X xF

= [T oty 5 = X o) [y x

“° 0ERy 0ERy
(226E)

> o) [ o= 3 ien) [ 0 @

cERy 0EQ,2€EJT

(iii) In the last sentence of the argument just above, I quoted B.Levi’s theorem in the form 226E, even
though Rj has a natural enumeration, because I shall specifically want to say later that

for every € > 0 there is a finite Ly C Ry such that
|27T fF(h X "/Jk)v - ZaeL(h|¢0) fF (ZSU‘ <e

whenever L C Ry, is finite and L D Lo;
it follows at once that

for every € > 0 there is a finite Ly C Qj such that

27 [ (h X r)Y — ZoeL,zng(h|¢a) Jrdol <€
whenever L C @y, is finite and L O Ly.

(iv) Now let us consider (fAL x 6.)". Because every 1, is non-negative, 6. = >, _, ¥ is bounded above

by 1, and his integrable,

/(}ALXQZ)V:/ /AzxﬁzxXAF
F —00
:Z/ flx¢k><XAF:Z/(}AlX1/)k)v~
kez” —> kez ¥

So here we can say

for every € > 0 there is a Ky € [Z]<“ such that

[ Jp(h % 02)" =3 e [p(h X gn)Y| < e
whenever K € [Z]< and K D K.

(v) To express the facts above in terms of a limit along the filter F, we can argue as follows. Take any
e > 0. For each k € Z, (iii) tells us that there is a finite set Ly C @ such that

|2wa(ﬁ X i)Y — ZaeL',zeJ;(h\%)fF bo| < 27 1Hle

whenever L' C @y, is finite and L’ D Ly; of course we can suppose that every Lj is non-empty. Set
L = ez Lk, so that L N Qg = Ly is finite for each k, and L € L. Next, there is a K € [Z]<* such that

|fF(}Al X 0:)" = pex fF(fAL X Pp)Y| <€

whenever K’ € [Z]<% and K’ D K. Take any P € Pgy. Setting K’ = {k: PN Qy # 0}, we have K/ D K
and PN Qg 2 LNQy for every k € K'. Accordingly
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m/(ﬁxezw— (Hldw) /%
F ocEP,zeJy

:\%/the -> > h|¢>(,/¢c,

kEK' c€PNQs

ZGJ
<27r|/ hx6.) Z/ (h x 1)
keK’
+ 3 |27r/ (h x i) — (hlw) /%
keK’ aerQ

z€J]

< 2me + Z 27 lkle < (21 + 3)e.
keK’

As Pk € F, and € was arbitrary,

ZWIF(h x 0,)Y =limp_,r deP,zng(h|¢0)fF o

as claimed.

286P Lemma Suppose that h is a rapidly decreasing test function. For x € R, set
Ah(x) = sup,cp |27r(fAL x 6,)Y(x)|.
Then Ah : R — [0, oc] is Borel measurable, and [, Ah < 4Cy||h||2y/uF whenever pF < co.

proof (a) As (}Al x 0,)" is continuous for every z, Ah is lower semi-continuous, therefore Borel measurable,
by 256Ma. By 256Mb,

fF Ah = sup{fF Sup; <, [27(h x 02,)¥] : 20, ... , 20 € R}.
(b) Fix zg, ..., 2, € R for the moment.

(i) Set v; = 27r(iAl x 0,)" for i < n, and v = sup;<,, [vi|. Set E; = {z : v(z) = [v;(2)[} \U; ;{2 : v(z) =
|vj(x)|} for i < n, so that (Ey,...,E,) is a partition of R into Borel sets, and
Jev= Lo Xio ol x xBi = [ [T gve x xEil <41 [, 20 gvi x xEif
for a suitable measurable F' C F' (246K). Setting g(x) = z; for € E;, g : R — R is Borel measurable.

(ii) For each i <n,

// V; X XEl = /F/mEi Vi = Plgn]-‘ Z (h|¢a-) /F,mEi ¢0'

o€P,z;€J”
(where F is the filter on [Q]<% described in 2860)

= lim > (hlee)ds

P—F F’ﬂEi o'EP,ZiEJ;

= lim > (hlee)bo(z)dx
P=F FINE; cEP,g(z)e]

So
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/FZ XX = Jim Z / (hl0) o (2)dx

F'NE,; aePg(m)EJ'
—Jim [ 3 (tlen)ss(@)de
oc€P,g(x)e]
Now for any finite set P C Q,
fF/ ZUEP*](I)EJ;(h|¢l7)¢(7(x)dx = ZO’EP F/mg—l[.];] (h|¢ﬂ)¢ﬂ"

if you like, you can think of this as an application of Fubini’s theorem, if you give counting measure to @)
and look at the function

(x,0) = (h|po)do(z) if 2 € F', 0 € P and g(z) € J},
— 0 otherwise.

But this means that
|fF’ ZUGP,g(:E)EJ;“(h|¢0)¢0(x)dx| S ZO‘EP |(h|¢o-)fF’ﬁg_1[J;] ¢U| S 09||hH2 \% MFI
by 286N. Taking the limit as P — F,
| [ Yigvi X XEi| < Collhllav/iE".

(iii) Thus we have

n
/sup|27r(h><92i)v|:/v§4|/ ZvixxEﬂ
Fi F P

i<n
< AGy[h|[2n/ pF" < ACo]|hl2v/ pF
(c) As 2o, ..., 2z, were arbitrary, [, Ah < 4Cq||h||2y/pF, as claimed.

286Q Lemma For o > 0 and y, 2, 8 € R, set 0 5(y) = 0a-15(cy + 3). Then
(a) the function (o, B,y, 2) = 0.,5(y) : ]0,00[ x R® = [0, 1] is Borel measurable;
(b) 0.,5(y) = 0 whenever y > z;
(c) for any rapidly decreasing test function h, and any z € R,
27|(h x 0,5)"| < D1ja AMsDoh
(in the notation of 286C) at every point.

proof (a) We need only recall that (y,2) — 6.(y) : R?> — R is Borel measurable (2860a), and that
(o, Byy,2) — G’Za,@(y) is built up from this, + and x.

(b) Again, this is immediate from 2860a, because o > 0.
(c) Set v = az + 3, so that 0 5 = Dy Ss0,. Then

hx 0 = h x DaSpby = DaSa(S_sDyjah x 0,)
= OLDQSB(S_g(DQh)A X 01)) = aDa55((M@Dah)A X 91,),
SO

(h % 0.0p)" = a(DaSs((MsDoh)" x 6,))"
= D10 (Ss((MgDah)" x 0,))" = Dy;o M_g((MgDah)" x 6,)"
and

27|(h x 0,5)"| = 27D1 0| (MsDah)* x 0,)"| < Dyjo A(MsDoh).
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286R Lemma For any y, z € R,
éz(y) = f (hmnHOO f 9mﬁ )dﬁ) do
is defined, and

0.(y) =6,(0)>0if y < z,
=0ify > z.

proof (a) The case y > z is trivial, because if y > z then 0 5(y) = 0 for all @ > 0 and 8 € R (286Qb) and
f.(y) = 0. For the rest of the proof, therefore, I look at the case y < z.

(b)(i) Given y < z € R and o > 0, set | = [log,(20a(z — y))]. Then 0 | ;. ,.(y) = 0.,5(y) for every
BeR. PIfO, 5(y) = 0az+ps(ay + B) is non-zero, there must be k, m € Z such that

2(m+3) <az+ B <2(m+1)

and

S (ay + B) — (m+ )2 = 0l0p(y) #0,

2m <ay+B< 2k(m+2%)
because $S is zero outside [—1, 1]. In this case, % .28 < a(z —y), so that k < [. We therefore have

28(m + 27 + %) <az+B+28 <2k (m+ 27k + 1),

2k(m+27F) <ay+ B +28 < 28(m + 217k + %),

SO
B(9— e 1
0. (V) = 02 (ay + B +2') = (m+27F + 1)) = 0L ,5(v).
Similarly,
2 (m —2!7F 4 %) <az+pB -2 <2k(m -2k 4 1),
28(m —2F) <ay + -2 < 2F(m — 2!k + %),
SO

s (0) = 2 ay + 5= 2) = (m— 27 4 )2 = 01 (y)

What this shows is that ¢ ;... (y) = 0.,4(y) if either is non-zero, so we have the equality in any case. Q

(ii) It follows that g(a,y, z) = limp_ 00 + f 0..5(y)dp is defined. I Set

l
=2" f 0,05
From (i) we see that

m+1)

for every m € Z, and therefore that

!
1 2m/

T=5Jo Hzaﬂ(y)dﬁ
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for every m > 1. Now ¢’ ,5(y) is always greater than or equal to 0, so if 2!m < b < 2(m+ 1) then

m o 1 2lm 1 2! (m+1) , omA1
mt1) = 2’(m+1)f0 O < bf 0ap < 2m 0 = “m

which approach v as b — co. Q

(c) Because (a,y) = 0,,5(y) is always Borel measurable, each of the functions o fo Laps for

n > 1, is Borel measurable (putting 251M and 252P together), and o — g(«,y,z) : ]0,00[ — R is Borel
measurable' at the same time, since 0 < @ 5(y) < 1 for all @ and 8, 0 < g(a,y,2) < 1 for every a, and

f1 =9 g(a,y, 2)da is defined in [0, 1].

(d) For any y < z, y € Rand a > 0, g(a,y + v, 2 +7) = g(a,y,z). P It is enough to consider the case
v > 0. In this case

gla,y+v,2+7)

b—oo b

lim — / eer'y [ B(y + ’Y)dﬁ

lim - / eaz+a'y+ﬂ (Oéy + ary + B) ﬁ

b—oo b

b+ary b+-ary
lim b/ Oazyp(ay + B)dS = hm / wﬂ y)dp,
b—oo

SO

b+ary
|g(04,y+%z+’7) _g(aayv | - hm 7‘/ zaﬁ dﬁ / Hzozﬁ )dﬁ‘

b—oo0 b
< lim 2"‘—” -0.Q
b—s00
It follows that whenever y < z and v € R,

~ 11 11 -
Ouin(y+7) = [ ~glasy +7,2 +7)da = [ ~g(a,y,z)da = 6.(y).

(e) The next essential fact to note is that 6o, (2y) is always equal to 6,(y). P If 6,(y) # 0, then (as in
(b) above) there are k, m € Z such that

P(m+3) <z <2(m+1), 2m<y<P(m+3), 0:(y) =62 Py — (m+7))
In this case,

(i 4 1) <22 <2 m 1), 2 < 29 < 2 (m 1),

SO
0a-(2y) = 2751 2 — (m +7))? = 0.(y).
Similarly,
P+ 1) <2< 2 m4 1), 2im <y <2 (m ),
SO

LGy =07 Ly — (m+ 1)) = 6.(y).

This shows that 65, (2y) = 0, (y) if either is non-zero, and therefore in all cases. Q
Accordingly

0

1
2

9;,2a,2ﬁ(y) = 0202+26(20y + 2B) = Oazip(ay + ) = elzaﬂ(y)
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for all y, z, B € R and all & > 0.
(f) Consequently
b b/2

1 2
g(2avy7 ) = lim — 92 204,6( )dﬁ = lim g /zQa Zﬁ(y)dﬁ

b—oo b b—oo

b/2
= Jim 2 [ a5 - bgrgob/ 0,5 ()5 = glcvy,2)
whenever a > 0 and y, z € R. It follows that

51 51 26 1
f’Y ;g(a7yaz)da - f’y Eg(2a7y7z)da - »/;’Y &g(a7y7z)da

whenever 0 < v < §, and therefore that

2y 1 - 2l
f'y ;g(a,y,z)da—fl ag(avyvz)da

for every v > 0. P Take k € Z such that 2¥ < v < 2**1 Then

2k+1

ST 1 "1 S
—g(a,y, z)da = g(a,y, —g(a, vy, da—l—/ —g(a,y, z)da
L J9(ay, 2) /2k ~9(a.y, 2 /Qka Ui 2 o a9 0:2)

gk+1 2
1 1
= - ) d.
/Qk S g(a,y, z /1a g(a,y, z)da. Q
(g) Now if o, v > 0 and y < z,

. 1
9(a, 7y, 72) =limpoo 3 [ Oayzrs(ary + B)dB = g(ar,y, 2).

Soify>0and y < z,
21 21
/1; a, Yy, vz doc—/1 ~glav,y, z)do

27/ 2 1 ~
/ Oé 'Y, % dOé = / Eg(aaya Z)da = Hz(y)
¥ 1

Putting this together with (d), we see that if y < z then

0-(y) = 0.4 (0) = 6:(0).

(h) T have still to check that 51(0) is not zero. But suppose that 1 < o < % and that there is some m cZ
such that 2(m + 15) < 8 <2(m+ 3%). Then 2(m + 3) <+ B < 2(m+ 1), while [§3 — (m+ )| < ¢, so

Outs(B) = (58 — (m+7))? = 1.

What this means is that, for 1 < a < %,

2m
9(,0,1) = lim i/ O 5(8)dB

So

This completes the proof.
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286S Lemma Suppose that h is a rapidly decreasing test function.
(a) For every x € R,

(AR)(z) = liminf, o0 - g = [ (D1 /o AM Do) (2)dBdax

1

is defined in [0, 0], and Ah : R — [0,00] is Borel measurable.
(b) [ Ah < 3Cy]|h||2y/uF whenever uF < oo.

(c) If z e R, 27T|(]Al x 0,)| < Ah at every point.

proof (a) The point here is that the function

(Oé7ﬂ7l‘) = (Dl/aAMBDah)('r) : ]0,00[ X RQ - [0,00}
is Borel measurable. P

(D1/aAMpDoh)(z) = (AMsDah)(%)

= sup [2m((MsDah)" x 6.)" ()|
z€R

2 A v/
= ;ig% |(S—gD1/ah x 0) (;)\-

Now, for any z € R,

7 v(z 1 oo i P y—
(S—BDl/ah X ez) (E) = ﬁffoo € Zy/ah(%)GZ(y)dy'
We know that 7 is a rapidly decreasing test function, so there is some v > 0 such that |fAL(t)| < 11t2 for every

t € R. This means that if & > 0 and 8 € R and (@, )nen, (Bn)nen are sequences in ]0,2a] and [8 —1, 5+ 1],
converging to «, 3 respectively, and we set g(t) = sup,,¢y |fAL(t_’8" )0.(¢)|, then

Qn

4ya?
[
90) < Tmiaiy

< ~ otherwise,

if [t] > |B] + 2,

and g is integrable. (Remember that 0 < 6,(y) < 1 for every y, as noted in 2860a.) So Lebesgue’s
Dominated Convergence Theorem tells us that if {(ap)neny = @ and (Bp)neny — 8 and (z,)neny — 2, then

S el (U0, (y)dy — [ e h(L2)0. (y)dy.
Thus (o, 8, ) — (S,ng/aiAL x 0.)"(%) is continuous; and this is true for every z € R. Consequently
(@, B,2) = sup,ep [(S—pD1/ah x 6:) ()]

and (o, B,z) = (D1, AMgDyh)(z) are lower semi-continuous, therefore Borel measurable, by 256Ma again.

Q
It follows that the repeated integrals

21 pn
/ - Jy (D1/aAMsDyh)(x)dBda
are defined in [0, 0] and are Borel measurable functions of z (252P again), so that Af is Borel measurable.
(b) For any n € N,
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2 n
/F%/1 i/o (D1)a AMgDyh)(z)dfBdodz

2 n
=1 / 1 / / (D1 /0 AMgDoh)(x)dzdBda
S *Jo JF

:;AQ/OnL;(AMﬂDah)(Z)dxdﬁda
_111/12/071 /Q_lF(AMﬁDah)(x)d;vdﬂda

2 rn
<2 [ [ 46olMs Dbl /ila= Frdpda
1 J0

(by Fubini’s theorem, 252H)

(286P)
2 n
1 1 1
=aCo-t [ " ol =i dsda
2 n
= 1cla/iF -2 [ L [ dpaa
1 0
= 40y ||h]|2y/pF In 2 < 3Co||hll2\/1F.
So

/ Ah = / lim inf = / / (D10 AMgDoh)(z)dBdads
F F n—oo N
Sliminf/ 7/ 7/ (D1/a AMpDoh)(z)dBdodx
FJ1 % Jo

n—oo

(by Fatou’s lemma)

< 3Cy||hllzv/ pF.
(¢) For any z € R,

ffooo |fAL(y)\f12 (supneN fo Lo (Y )dﬁ)dady <In2- fjooo |l/;|

is finite. So

— 00

(by Lebesgue’s Dominated Convergence Theorem)

V2r nlggo/ an / / myh Zaﬁ( Jdydpda

= lim / / (h x 0.5)" (x)dBda,
n—oo an

(by Fubini’s theorem)

111
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and
27| (h % 6.)"(z)| = 27| 1131/ an/ hxamﬁ ()dBda|
< 27 lim inf/ / h X 0 .5)" (x)|dBda
n—oo an
< liminf / — /0 (D10 AMgDoh)(x)dBdo
(286Qb)

= (Ah)(x).

286T Lemma Set Cy = 3Cy /70 (0). For f € L2, define Af : R — [0,00] by setting
A 1 b —ix
(AN() = supacy =I [, € f(x)da|
for each y € R. Then [}, Af < Ciol|fll2v/iF whenever uF < oo.

proof (a) As usual, the first step is to confirm that Af is measurable. I For a < b, y — |\/% fab e~ f(x)dx|

is continuous (by 283Cf, since f x x|a,b] is integrable), so Af is lower semi-continuous, therefore Borel
measurable (256Ma once more). Q
(b) Suppose that h is a rapidly decreasing test function. Then

~ 1 ~V

(Anw) < Fg (AW(Y)

for every y € R. PP If ¢ € R then

[ e a)ds] = g | e bmnan
(286R)

(284C once more)

(286Sc). So if a < b in R,

m'f e~ h(x)da] < ——(Ah)(~y);

taking the supremum over a and b, we have the result. Q
It follows that

/ wel(o)/ 70, (0)C9||hH VH
(286Sb, 2840a)

= Crol|hll2v/ pF.

(c) For general square-integrable f, take any € > 0 and any n € N. Set
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A 1 b —ix
(Anf)y) = Supfngagbgnﬁtfa e~ f(x)dx|

for each y € R. Let h be a rapidly decreasing test function such that ||f — k|2 < e (284N). Then

i i i 2

AhZAnhZAnff%e
(using Cauchy’s inequality), so

fF Anf < fF Ah + \/EGMF < Cro([|fll2 + €)vVuE + \/ge,uF.

As e is arbitrary, [, A, f < Cuol|fll2v/iF; letting n — oo, we get [ Af < Ciol fll2v/RE.

286U Theorem If f € L then

. 1 b _;
g(y) = hmaﬂfoo,b%oo ﬁfa € zzyf'(x)dl.
is defined in C for almost every y € R, and g represents the Fourier transform of f.

proof (a) Forn € N, y € R set

Y (Y) = SUPg< _ppsn \/%Uab e~ f(x)dx — f_nn e*”"”f(x)dx{.
Then g¢(y) is defined whenever inf,cyv,(y) = 0. P If inf,cyvn(y) = 0 and € > 0, take m € N such that
Ym(y) < 3¢ then \/%| f: e f(x)dx — [ e~V f(x)dz| < € whenever n > m, a < —n and b > n. But
this means, first, that <ffn e~ f(x)dx),en is a Cauchy sequence, so has a limit ¢ say, and, second, that
¢ =limgs oobooo fab e~ f(x)dx, so that g(y) = \/% is defined. Q

Also each 7, is lower-semicontinuous (cf. part (a) of the proof of 286T).

(b) ? Suppose, if possible, that {y : inf,en v, (y) > 0} is not negligible. Then
lim oo iy £ 9] <m0, infrenia(y) = -3 > 0,
so there is an € > 0 such that
F={y:lyl <2, infpenya(y) > e}

has measure greater than e. Let n € N be such that

n

ACH ([ |f(@)Pdz — 7
and set fi = f — f x x[—n,n]; then 2C1ol| f1]]2 < €¥/2.

|f(@)]*dz) < €2,

n

‘We have
) b no
n(y)= sup — e " f1(x)dx — e Y fi(x)dx
i) = s | [ s = [ e @
b
1 —izy i
<221£\/27r|/a e "™ f1(x)dx| < 2(Af1)(y),
so that
nf < [ <2 [ Afi <200] 7 J2v/iF
F F
(286T)

S 63/2 /,LLF
and pF < ¢€; but we chose € so that uF would be greater than e. X
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(c) Thus g(y) is defined for almost every y € R. Now g represents the Fourier transform of f. I Let h

be a rapidly decreasing test function The restriction of Af to the set on which it is finite is a tempered
function, by 286D, so [~ x |h| is finite, by 284F. Now

/_ gxh—r/ ( lim_ " e f(a)da)h(y)dy

7my
i [ [ o

(because \/%| ffn e f(z)dx| < flf(y) for every n and y, so we can use Lebesgue’s Dominated Convergence
™

Theorem)
7zzy
v dm [ [ e remas
(because [ [" Yh(y)|dxdy is finite for each n)
—lim [ fxh= / fxh
n—oo —n — 00

AN
because f X h is certainly integrable. As h is arbitrary, g represents the Fourier transform of f. Q

286V Theorem For any square-integrable complex-valued function on |—m, 7], its sequence of Fourier
sums converges to it almost everywhere.

proof Suppose that f € L%(M]_,m]). Set fi(x) = f(z) for x € dom f, 0 for x € R\ |—m,7]; then
fi € Li(u). Let g € LZ(p) represent the inverse Fourier transform of f; (2840). Then 286U tells us
that fo(z) = limg— oo \/% ffa e~ @Y g(y)dy is defined for almost every z, and that f, represents the Fourier

transform of g, so is equal almost everywhere to f; (284Ib).
Now, for any a > 0, x € R,

/ " () dy = (glhas)

—a

(where hg.(y) = €Y if |y| < a, 0 otherwise)

= (falhaz)
(2840D)
-7 | _rO / 1 )y
sm xr— t sm r— t
=7 / =/ / F(t)dt.
So

(@) = o) = limg oo = [T S0 (g

r—1

for almost every x € |—m, 7).
On the other hand, writing (s, )nen for the sequence of Fourier sums of f, we have, for any = € |—m, 7|,

in(n+ r—1
Sn 27rf f S—( )( )dt

sin £ (z—t)

for each n, by 282Da. Now
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L/ f(t) sm(n+ o dt _ 7/ f sm (n+t )(x t) sin(nt)@=h) o

2 sm

/ £0) sm (n+3)(z—t) _ sm(n+%)(x7t))dt

2sin 1 (z—t) x—t

:7/7 ( ! 1)f(1;—t)51n(n—|— 3)tdt.

T 2sin Et t
But if we look at the function

1 1 .
2sin%t_2)f(z_t) ifr—m<t<az+mandt#0,

p:c(t) = (
= 0 otherwise,

1

.. o . 1 1
p. is integrable, because f is integrable over |—m, 7] and lim;_, T I 0, S0 SUD} 20 4 r<t<wtr P
2

2

%| is finite. (This is where we need to know that |z| < 7.) So
s . 1 _ oo
lim so() — 2 [ p) 220D gy [ @) sintn 4+ Dedt =0

n—oo L - r—t n—oo J_

by the Riemann-Lebesgue lemma (282Fb). But this means that lim, . s,(x) = f(z) for any = € |-, 7]
such that f(x) = limg— 0 % f:r %J‘(t)dt, which is almost every x € |—m, 7).

286W Glossary The following special notations are used in more than one paragraph of this section:

1 for Lebesgue measure on R. 286G: Cq, Cy, C3, Cy. 2860: 0, F.
286A: f*. 286H: mass, Ay, energy. 286P: Ah.
286C: Sof, Mof, Dof. 286J: Cs. 286Q: 0. 5.
286Ea: Z, Q, I, Jo, koy Ty Yo, JL, J5 Yl 286K: Cg. 286R: 6,.
286Eb: ¢, ¢o, (flg)- 286L: Cr. 286S: Ah.
286Ec: w, wg. 286M: Cs. 286T: Cho, Af.
286F: <, R, T. 286N: Cy.

286X Basic exercises (a) Use 2840a and 284Xg to shorten part (c) of the proof of 286U.
(b) Show that if (cj)ken is a sequence of complex numbers such that > - |cx|? is finite, then > oo cre®®
is defined in C for almost all x € R.

286Y Further exercises (a) Show that if f is a square-integrable function on R", where r > 2, then

1 . b iy
g(y) = V2m)" hmtxl,...,a7‘—>—oo,[31,4..,[3r—>oo fa e f(l‘)dx

is defined in C for almost every y € R", and that g represents the Fourier transform of f.

286 Notes and comments This is not the longest single section in this treatise as a whole, but it is
by a substantial margin the longest in the present volume, and thirty pages of sub-superscripts must tax
the endurance of the most enthusiastic. You will easily understand why Carleson’s theorem is not usually
presented at this level. But I am trying in this book to present complete proofs of the principal theorems,
there is no natural place for Carleson’s theorem in later volumes as at present conceived, and it is (just)
accessible at this point; so I take the space to do it here.

The proof here divides naturally into two halves: the ‘combinatorial’ part in 286E-286M, up to the
Lacey-Thiele lemma, followed by the ‘analytic’ part in 286N-286V, in which the averaging process
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S iy e 3 [ dBda

is used to transform the geometrically coherent, but analytically irregular, functions 6, into the indicator

functions %@éz From the standpoint of ordinary Fourier analysis, this second part is essentially routine;
1

there are many paths we could follow, and we have only to take the ordinary precautions against illegitimate
operations.?

Carleson (CARLESON 66) stated his theorem in the Fourier-series form of 286V; but it had long been
understood that this was equiveridical with the Fourier-transform version in 286U. There are of course many
ways of extending the theorem. In particular, there are corresponding results for functions in L£? for any
p > 1, and even for functions f such that f x In(1 + |f|) x InlnIn(16 + |f|) is integrable (ANTONOV 96).
The methods here do not seem to reach so far. I ought also to remark that if we define A f asin 286T, then
there is for every p > 1 a constant C' such that [|Af]|, < C||f|, for every f € L (HUNT 67, MOzzOCHI
71, JORSBOE & MEJLBRO 82, ARIAS DE REYNA 02, LACEY 05).

Note that the point of Carleson’s theorem, in either form, is that we take special limits. In the formulae

P 1 5. b .
f(y) = ﬁ hmaﬁfoo,b—)oo fa eizzyf(x)dim

(@) =limy e Y., cre*®,

valid almost everywhere for square-integrable functions f, we are not taking the ordinary integral
JZ5 e f(x)dx or the unconditional sum Y, ., cee™™™. If f is not integrable, or Y27 _ __|ck| is infi-
nite, these will not be defined at even one point. Carleson’s theorem makes sense only because we have a
natural preference for particular kinds of improper integral and conditional sum. So when we return, in
Chapter 44 of Volume 4, to Fourier analysis on general topological groups, there will simply be no language
in which to express the theorem, and while versions have been proved for other groups (e.g., SCHIPP 78),
they necessarily depend on some structure beyond the simple notion of ‘locally compact Hausdorff abelian
topological group’. Even in R2, I understand that it is still unknown whether

3 1 —iy.x
limg oo ng(O)a) e~ " f(x)dx

will be defined a.e. for any square-integrable function f, if we use ordinary Euclidean balls B(0,a) in place
of the rectangles in 286Ya.

2] ought at this point to confess that I blundered badly in the 2001 edition of this volume, and failed to notice my error
until it was brought to my attention by A.Derighetti at the end of 2013. I hope that the version presented here is essentially
correct.
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Version of 6.1.10

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

285X m Cauchy distribution The exercise introducing the Cauchy distribution, referred to in the 2002,
2004 and 2012 printings of Volume 3, is now 285Xp.

285Xo0 Poisson distribution The exercise naming the Poisson distribution, referred to in the 2003,
2006 and 2013 printings of Volume 4, is now 285Xr.

285Xr Bochner’s theorem The exercise on a special case of Bochner’s theorem, referred to in the 2003,
2006 and 2013 printings of Volume 4, is now 285Xu.

286U Carleson’s theorem The sequential form, referred to in BOGACHEV 07, is now in 286V.
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