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Chapter 27

Probability theory

Lebesgue created his theory of integration in response to a number of problems in real analysis, and
all his life seems to have thought of it as a tool for use in geometry and calculus (Lebesgue 72, vols. 1
and 2). Remarkably, it turned out, when suitably adapted, to provide a solid foundation for probability
theory. The development of this approach is generally associated with the name of Kolmogorov. It has so
come to dominate modern abstract probability theory that many authors ignore all other methods. I do not
propose to commit myself to any view on whether σ-additive measures are the only way to give a rigorous
foundation to probability theory, or whether they are adequate to deal with all probabilistic ideas; there are
some serious philosophical questions here, since probability theory, at least in its applied aspects, seeks to
help us to understand the material world outside mathematics. But from my position as a measure theorist,
it is incontrovertible that probability theory is among the central applications of the concepts and theorems
of measure theory, and is one of the most vital sources of new ideas; and that every measure theorist must
be alert to the intuitions which probabilistic methods can provide.

I have written the preceding paragraph in terms suggesting that ‘probability theory’ is somehow distin-
guishable from the rest of measure theory; this is another point on which I should prefer not to put forward
any opinion as definitive. But undoubtedly there is a distinction, rather deeper than the elementary point
that probability deals (almost) exclusively with spaces of measure 1. M.Loève argues persuasively (Loève
77, §10.2) that the essence of probability theory is the artificial nature of the probability spaces themselves.
In measure theory, when we wish to integrate a function, we usually feel that we have a proper function
with a domain and values. In probability theory, when we take the expectation of a random variable, the
variable is an ‘observable’ or ‘the result of an experiment’; we are generally uncertain, or ignorant, or indif-
ferent concerning the factors underlying the variable. Let me give an example from the theorems below. In
the proof of the Central Limit Theorem (274F), I find that I need an auxiliary list Z0, . . . , Zn of random
variables, independent of each other and of the original sequence X0, . . . , Xn. I create such a sequence
by taking a product space Ω × Ω′, and writing X ′

i(ω, ω
′) = Xi(ω), while the Zi are functions of ω′. Now

the difference between the Xi and the X ′
i is of a type which a well-trained analyst would ordinarily take

seriously. We do not think that the function x 7→ x2 : [0, 1] → [0, 1] is the same thing as the function
(x1, x2) 7→ x21 : [0, 1]2 → [0, 1]. But a probabilist is likely to feel that it is positively pedantic to start writing
X ′

i instead of Xi. He did not believe in the space Ω in the first place, and if it turns out to be inadequate
for his intuition he enlarges it without a qualm. Loève calls probability spaces ‘fictions’, ‘inventions of the
imagination’ in Larousse’s words; they are necessary in the models Kolmogorov has taught us to use, but
we have a vast amount of freedom in choosing them, and in their essence they are nothing so definite as a
set with points.

A probability space, therefore, is somehow a more shadowy entity in probability theory than it is in
measure theory. The important objects in probability theory are random variables and distributions, partic-
ularly joint distributions. In this volume I shall deal exclusively with random variables which can be thought
of as taking values in some power of R; but this is not the central point. What is vital is that somehow
the codomain, the potential set of values, of a random variable, is much better defined than its domain.
Consequently our attention is focused not on any features of the artificial space which it is convenient to
use as the underlying probability space – I write ‘underlying’, though it is the most superficial and easily
changed aspect of the model – but on the distribution on the codomain induced by the random variable.
Thus the Central Limit Theorem, which speaks only of distributions, is actually more important in applied
probability than the Strong Law of Large Numbers, which claims to tell us what a long-term average will
almost certainly be.
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2 Probability theory Chap. 27 intro.

W.Feller (Feller 66) goes even farther than Loève, and as far as possible works entirely with distri-
butions, setting up machinery which enables him to go for long stretches without mentioning probability
spaces at all. I make no attempt to emulate him. But the approach is instructive and faithful to the essence
of the subject.

Probability theory includes more mathematics than can easily be encompassed in a lifetime, and I have
selected for this introductory chapter the two limit theorems I have already mentioned, the Strong Law of
Large Numbers and the Central Limit Theorem, together with some material on martingales (§§275-276).
They illustrate not only the special character of probability theory – so that you will be able to form your
own judgement on the remarks above – but also some of its chief contributions to ‘pure’ measure theory,
the concepts of ‘independence’ and ‘conditional expectation’.

Version of 11.12.08

271 Distributions

I start this chapter with a discussion of ‘probability distributions’, the probability measures on Rn defined
by families (X1, . . . , Xn) of random variables. I give the basic results describing the circumstances under
which two distributions are equal (271G), integration with respect to a distribution (271E), and probability
density functions (271H-271K).

271A Notation I have just spent some paragraphs on an attempt to describe the essential difference
between probability theory and measure theory. But there is a quicker test by which you may discover
whether your author is a measure theorist or a probabilist: open any page, and look for the phrases ‘mea-
surable function’ and ‘random variable’, and the formulae ‘

∫
fdµ’ and ‘E(X)’. The first member of each

pair will enable you to diagnose ‘measure’ and the second ‘probability’, with little danger of error. So far
in this treatise I have firmly used measure theorists’ terminology, with a few individual quirks. But in a
chapter on probability theory I find that measure-theoretic notation, while perfectly adequate in a formal
sense, does such violence to the familiar formulations as to render them unnatural. Moreover, you must
surely at some point – if you have not already done so – become familiar with probabilists’ language. So in
this chapter I will make a substantial step in that direction. Happily, I think that this can be done without
setting up any direct conflicts, so that I shall be able, in later volumes, to call upon this work in whichever
notation then seems appropriate, without needing to re-formulate it.

(a) So let (Ω,Σ, µ) be a probability space. I take the opportunity given by a new phrase to make a
technical move. A real-valued random variable on Ω will be a member of L0(µ), as defined in 241A;
that is, a real-valued function X defined on a conegligible subset of Ω such that X is measurable with respect
to the completion µ̂ of µ, or, if you prefer, such that X↾E is Σ-measurable for some conegligible set E ⊆ Ω.1

(b) If X is a real-valued random variable on a probability space (Ω,Σ, µ), write E(X) =
∫
X dµ if this

is defined in [−∞,∞] in the sense of Chapter 12 and §133. In this case I will call E(X) the mean or
expectation of X. Thus we may say that ‘X has a finite expectation’ in place of ‘X is integrable’.
133A says that ‘E(X+Y ) = E(X)+E(Y ) whenever E(X) and E(Y ) and their sum are defined in [−∞,∞]’,
and 122P becomes ‘a real-valued random variable X has a finite expectation iff E(|X|) <∞’.

(c) If X is a real-valued random variable with finite expectation, the variance of X is

Var(X) = E(X − E(X))2 = E(X2 − 2E(X)X + E(X)2) = E(X2)− (E(X))2

(Note that this formula shows that E(X)2 ≤ E(X2); compare 244Xd(i).) Var(X) is finite iff E(X2) < ∞,
that is, iff X ∈ L

2(µ) (244A). In particular, X + Y and cX have finite variance whenever X and Y do and
c ∈ R.

(d) I shall allow myself to use such formulae as

c© 1995 D. H. Fremlin
1For an account of how this terminology became standard, see http://www.dartmouth.edu/∼chance/Doob/conversation.html.
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271B Distributions 3

Pr(X > a), Pr(X − ǫ ≤ Y ≤ X + δ),

where X and Y are random variables on the same probability space (Ω,Σ, µ), to mean respectively

µ̂{ω : ω ∈ domX, X(ω) > a},

µ̂{ω : ω ∈ domX ∩ domY, X(ω)− ǫ ≤ Y (ω) ≤ X(ω) + δ},
writing µ̂ for the completion of µ as usual. There are two points to note here. First, Pr depends on µ̂, not
on µ; in effect, the notation automatically directs us to complete the probability space (Ω,Σ, µ). I could, of
course, equally well write

Pr(X2 + Y 2 > 1) = µ∗{ω : ω ∈ domX ∩ domY, X(ω)2 + Y (ω)2 > 1},
taking µ∗ to be the outer measure on Ω associated with µ (132B). Secondly, I will use this notation only for

predicates corresponding to Borel measurable sets; that is to say, I shall write

Pr(ψ(X1, . . . , Xn)) = µ̂{ω : ω ∈ ⋂
i≤n domXi, ψ(X1(ω), . . . , Xn(ω))}

only when the set

{(α1, . . . , αn) : ψ(α1, . . . , αn)}
is a Borel set in Rn. Part of the reason for this restriction will appear in the next few paragraphs;
Pr(ψ(X1, . . . , Xn)) must be something calculable from knowledge of the joint distribution of X1, . . . , Xn,
as defined in 271C. In fact we can safely extend the idea to ‘universally measurable’ predicates ψ, to be
discussed in Volume 4. But it could happen that µ gave a measure to a set of the form {ω : X(ω) ∈ A}
for some exceedingly irregular set A, and in such a case it would be prudent to regard this as an accidental
pathology of the probability space, and to treat it in a rather different way.

(I see that I have rather glibly assumed that the formula above defines Pr(ψ(X1, . . . , Xn)) for every Borel
predicate ψ. This is a consequence of 271Bb below.)

271B Theorem Let (Ω,Σ, µ) be a probability space, and X1, . . . , Xn real-valued random variables on
Ω. Set XXX(ω) = (X1(ω), . . . , Xn(ω)) for ω ∈ ⋂

i≤n domXi.

(a) There is a unique Radon measure ν on Rn such that

ν ]−∞, a] = Pr(Xi ≤ αi for every i ≤ n)

whenever a = (α1, . . . , αn) ∈ Rn, writing ]−∞, a] for
∏

i≤n ]−∞, αi];

(b) νRn = 1 and νE = µ̂(XXX−1[E]) whenever νE is defined, where µ̂ is the completion of µ; in particular,
νE = Pr((X1, . . . , Xn) ∈ E) for every Borel set E ⊆ Rn.

proof Let Σ̂ be the domain of µ̂, and set D =
⋂

i≤n domXi = domXXX; then D is conegligible, so belongs

to Σ̂. Let µ̂D = µ̂↾PD be the subspace measure on D (131B, 214B), and ν0 the image measure µ̂DXXX
−1

(234D); let T be the domain of ν0.
Write B for the algebra of Borel sets in Rn. Then B ⊆ T. PPP For i ≤ n, α ∈ R set Fiα = {x : x ∈ Rn, ξi ≤

α}, Hiα = {ω : ω ∈ domXi, Xi(ω) ≤ α}. Xi is Σ̂-measurable and its domain is in Σ̂, so Hiα ∈ Σ̂, and
XXX−1[Fiα] = D ∩Hiα is µ̂D-measurable. Thus Fiα ∈ T. As T is a σ-algebra of subsets of Rn, B ⊆ T (121J).
QQQ

Accordingly ν0↾B is a measure on Rn with domain B; of course ν0Rn = µ̂D = 1. By 256C, the completion
ν of ν0↾B is a Radon measure on Rn, and νRn = ν0R

n = 1.
For E ∈ B,

νE = ν0E = µ̂DXXX
−1[E] = µ̂XXX−1[E] = Pr((X1, . . . , Xn) ∈ E).

More generally, if E ∈ dom ν, then there are Borel sets E′, E′′ such that E′ ⊆ E ⊆ E′′ and ν(E′′ \E′) = 0,

so that XXX−1[E′] ⊆XXX−1[E] ⊆XXX−1[E′′] and µ̂(XXX−1[E′′] \XXX−1[E′]) = 0. This means that XXX−1[E] ∈ Σ̂ and

µ̂XXX−1[E] = µ̂XXX−1[E′] = νE′ = νE.

As for the uniqueness of ν, if ν ′ is any Radon measure on Rn such that ν ′ ]−∞, a] = Pr(Xi ≤ αi ∀ i ≤ n)
for every a ∈ Rn, then surely

D.H.Fremlin



4 Probability theory 271B

ν ′Rn = limk→∞ ν ′ ]−∞, k1] = limk→∞ ν ]−∞, k1] = 1 = νRn.

Also I = {]−∞, a] : a ∈ Rn} is closed under finite intersections, and ν and ν ′ agree on I. By the Monotone
Class Theorem (or rather, its corollary 136C), ν and ν ′ agree on the σ-algebra generated by I, which is B
(121J), and are identical (256D).

271C Definition Let (Ω,Σ, µ) be a probability space and X1, . . . , Xn real-valued random variables on Ω.
By the (joint) distribution or law νXXX of the family XXX = (X1, . . . , Xn) I shall mean the Radon probability
measure ν of 271B. If we think of XXX as a function from

⋂
i≤n domXi to Rn, then νXXXE = Pr(XXX ∈ E) for

every Borel set E ⊆ Rn.

271D Remarks (a) The choice of the Radon probability measure νXXX as ‘the’ distribution of XXX, with
the insistence that ‘Radon measures’ should be complete, is of course somewhat arbitrary. Apart from the
general principle that one should always complete measures, these conventions fit better with some of the
work in Volume 4 and with such results as 272G below.

(b) Observe that in order to speak of the distribution of a familyXXX = (X1, . . . , Xn) of random variables,
it is essential that all the Xi should be based on the same probability space.

(c) I see that the language I have chosen allows the Xi to have different domains, so that the family
(X1, . . . , Xn) may not be exactly identifiable with the corresponding function from

⋂
i≤n domXi to Rn. I

hope however that using the same symbol XXX for both will cause no confusion.

(d) It is not useful to think of the whole image measure ν0 = µ̂DXXX
−1 in the proof of 271B as the

distribution of XXX, unless it happens to be equal to ν = νXXX . The ‘distribution’ of a random variable is
exactly that aspect of it which can be divorced from any consideration of the underlying space (Ω,Σ, µ),
and the point of such results as 271K and 272G is that distributions can be calculated from each other,
without going back to the relatively fluid and uncertain model of a random variable in terms of a function
on a probability space.

(e) If XXX = (X1, . . . , Xn) and YYY = (Y1, . . . , Yn) are such that Xi =a.e. Yi for each i, then

{ω : ω ∈ ⋂
i≤n domXi, Xi(ω) ≤ αi ∀ i ≤ n}△{ω : ω ∈ ⋂

i≤n domYi, Yi(ω) ≤ αi ∀ i ≤ n}
is negligible, so

Pr(Xi ≤ αi ∀ i ≤ n) = µ̂{ω : ω ∈
⋂

i≤n

domXi, Xi(ω) ≤ αi ∀ i ≤ n}

= Pr(Yi ≤ αi ∀ i ≤ n)

for all α0, . . . , αn ∈ R, and νXXX = νYYY . This means that we can, if we wish, think of a distribution as a measure
νuuu where uuu = (u0, . . . , un) is a finite sequence in L0(µ). In the present chapter I shall not emphasize this
approach, but it will always be at the back of my mind.

271E Measurable functions of random variables: Proposition Let XXX = (X1, . . . , Xn) be a family
of random variables (as always in such a context, I mean them all to be on the same probability space
(Ω,Σ, µ)); write TXXX for the domain of the distribution νXXX , and let h be a TXXX -measurable real-valued
function defined νXXX -a.e. on Rn. Then we have a random variable Y = h(X1, . . . , Xn) defined by setting

h(X1, . . . , Xn)(ω) = h(X1(ω), . . . , Xn(ω)) for every ω ∈XXX−1[domh].

The distribution νY of Y is the measure on R defined by the formula

νY F = νXXXh
−1[F ]

for just those sets F ⊆ R such that h−1[F ] ∈ TXXX . Also

E(Y ) =
∫
h dνXXX

in the sense that if one of these exists in [−∞,∞], so does the other, and they are then equal.

Measure Theory



271Gb Distributions 5

proof (a)(i) Once again, write (Ω, Σ̂, µ̂) for the completion of (Ω,Σ, µ). Since

Ω \ domY ⊆ ⋃
i≤n(Ω \ domXi) ∪XXX−1[Rn \ domh]

is negligible (using 271Bb), domY is conegligible. If a ∈ R, then

E = {x : x ∈ domh, h(x) ≤ a} ∈ TXXX ,

so

{ω : ω ∈ Ω, Y (ω) ≤ a} =XXX−1[E] ∈ Σ̂.

As a is arbitrary, Y is Σ̂-measurable, and is a random variable.

(ii) Let h̃ : Rn → R be any extension of h to the whole of Rn. Then h̃ is TXXX -measurable, so the

ordinary image measure νXXX h̃
−1, defined on {F : h̃−1[F ] ∈ dom νXXX}, is a Radon probability measure on R

(256G). But for any A ⊆ R,

h̃−1[A]△h−1[A] ⊆ Rn \ domh

is νXXX -negligible, so νXXXh
−1[F ] = νXXX h̃

−1[F ] if either is defined.
If F ⊆ R is a Borel set, then

νY F = µ̂{ω : Y (ω) ∈ F} = µ̂(XXX−1[h−1[F ]]) = νXXX(h−1[F ]).

So νY and νXXX h̃
−1 agree on the Borel sets and are equal (256D again).

(b) Now apply Theorem 235E to the measures µ̂ and νXXX and the function φ =XXX. We have∫
χ(XXX−1[F ])dµ̂ = µ̂(XXX−1[F ]) = νXXXF

for every F ∈ TXXX , by 271Bb. Because h is νXXX -virtually measurable and defined νXXX -a.e., 235Eb tells us that∫
h(XXX)dµ =

∫
h(XXX)dµ̂ =

∫
h dνXXX

whenever either side is defined in [−∞,∞], which is exactly the result we need.

271F Corollary If X is a single random variable with distribution νX , then

E(X) =
∫∞
−∞ x νX(dx)

if either is defined in [−∞,∞]. Similarly

E(X2) =
∫∞
−∞ x2 νX(dx)

(whatever X may be). If X, Y are two random variables (on the same probability space!) then we have

E(X × Y ) =
∫
xy ν(X,Y )d(x, y)

if either side is defined in [−∞,∞].

Remark If ν is the distribution of a real-valued random variable, that is, a Radon probability measure on
R, I will say that the expectation E(ν) of ν is

∫∞
−∞ x ν(dx) if this is defined; if ν has finite expectation,

then its variance Var(ν) will be
∫
x2 ν(dx) − (E(ν))2. Thus if X is a real-valued random variable with

distribution νX , E(X) = E(νX) and Var(X) = Var(νX) whenever these are defined.

271G Distribution functions (a) If X is a real-valued random variable, its distribution function is
the function FX : R → [0, 1] defined by setting

FX(a) = Pr(X ≤ a) = νX ]−∞, a]

for every a ∈ R. (Warning! some authors prefer FX(a) = Pr(X < a).) Observe that FX is non-decreasing,
that lima→−∞ FX(a) = 0, that lima→∞ FX(a) = 1 and that limx↓a FX(x) = FX(a) for every a ∈ R. By
271Ba, X and Y have the same distribution iff FX = FY .

(b) If X1, . . . , Xn are real-valued random variables on the same probability space, their (joint) distri-
bution function is the function FXXX : Rn → [0, 1] defined by writing

D.H.Fremlin



6 Probability theory 271Gb

FXXX(a) = Pr(Xi ≤ αi ∀ i ≤ n)

whenever a = (α1, . . . , αn) ∈ Rn. If XXX and YYY have the same distribution function, they have the same
distribution, by the n-dimensional version of 271B.

271H Densities Let XXX = (X1, . . . , Xn) be a family of random variables, all defined on the same
probability space. A density function for (X1, . . . , Xn) is a Radon-Nikodým derivative, with respect to
Lebesgue measure, for the distribution νXXX ; that is, a non-negative function f , integrable with respect to
Lebesgue measure µL on Rn, such that∫

E
fdµL = νXXXE = Pr(XXX ∈ E)

for every Borel set E ⊆ Rn (256J) – if there is such a function, of course.

271I Proposition Let XXX = (X1, . . . , Xn) be a family of random variables, all defined on the same
probability space. Write µL for Lebesgue measure on Rn.

(a) There is a density function for XXX iff Pr(XXX ∈ E) = 0 for every Borel set E such that µLE = 0.

(b) A non-negative Lebesgue integrable function f is a density function for XXX iff
∫
]−∞,a]

fdµL = Pr(XXX ∈
]−∞, a]) for every a ∈ Rn.

(c) Suppose that f is a density function for XXX, and G = {x : f(x) > 0}. Then if h is a Lebesgue
measurable real-valued function defined almost everywhere in G,

E(h(XXX)) =
∫
h dνXXX =

∫
h× fdµL

if any of the three integrals is defined in [−∞,∞], interpreting (h× f)(x) as 0 if f(x) = 0 and x /∈ domh.

proof (a) Apply 256J to the Radon probability measure νXXX .

(b) Of course the condition is necessary. If it is satisfied, then (by B.Levi’s theorem)∫
fdµL = limk→∞

∫
]−∞,k111]

fdµL = limk→∞ νXXX ]−∞, k111] = 1.

So we have a Radon probability measure ν defined by writing

νE =
∫
E
fdµL

whenever E ∩{x : f(x) > 0} is Lebesgue measurable (256E). We are supposing that ν ]−∞, a] = νXXX ]−∞, a]
for every a ∈ Rn; by 271Ba, as usual, ν = νXXX , so∫

E
fdµL = νE = νXXXE = Pr(XXX ∈ E)

for every Borel set E ⊆ Rn, and f is a density function for XXX.

(c) By 256E, νXXX is the indefinite-integral measure over µ associated with f . So, writing G = {x : f(x) >
0}, we have ∫

h dνXXX =
∫
h× fdµL

whenever either is defined in [−∞,∞] (235K). By 234La, h is TXXX -measurable and defined νXXX -almost every-
where, where TXXX = dom νXXX , so E(h(XXX)) =

∫
h dνXXX by 271E.

271J The machinery developed in §263 is sufficient to give a very general result on the densities of
random variables of the form φ(XXX), as follows.

Theorem Let XXX = (X1, . . . , Xn) be a family of random variables, and D ⊆ Rn a Borel set such that
Pr(XXX ∈ D) = 1. Let φ : D → Rn be a function which is differentiable relative to its domain everywhere in
D; for x ∈ D, let T (x) be a derivative of φ at x, and set J(x) = | detT (x)|. Suppose that J(x) 6= 0 for each
x ∈ D, and that XXX has a density function f ; and suppose moreover that 〈Dk〉k∈N is a disjoint sequence of
Borel sets, with union D, such that φk = φ↾Dk is injective for every k. Then φ(XXX) has a density function
g =

∑∞
k=0 gk where

Measure Theory



*271L Distributions 7

gk(y) =
f(φ−1

k (y))

J(φ−1
k (y))

for y ∈ φ[Dk ∩ dom f ],

= 0 for y ∈ Rn \ φ[Dk].

proof By 262Ia, φ is continuous, therefore Borel measurable, so φ(XXX) is a random variable.
For the moment, fix k ∈ N and a Borel set F ⊆ Rn. By 263D(iii), φ[Dk] is measurable, and by 263D(ii)

φ[Dk \ dom f ] is negligible. The function gk is such that f(x) = J(x)gk(φ(x)) for every x ∈ Dk ∩ dom f , so
by 263D(v) we have

∫

F

gk dµ =

∫

φ[Dk]

gk × χF dµ =

∫

Dk

J(x)gk(φ(x))χF (φ(x))µ(dx)

=

∫

Dk∩φ−1[F ]

fdµ = Pr(XXX ∈ Dk ∩ φ−1[F ]).

(The integral
∫
φ[Dk]

gk × χF is defined because
∫
Dk

J × (gk ×χF )φ is defined, and the integral
∫
gk ×χF is

defined because φ[Dk] is measurable and g is zero off φ[Dk].)
Now sum over k. Every gk is non-negative, so by B.Levi’s theorem (123A, 123Xa)

∫

F

g dµ =

∞∑

k=0

∫

F

gk dµ =

∞∑

k=0

Pr(XXX ∈ Dk ∩ φ−1[F ])

= Pr(XXX ∈ φ−1[F ]) = Pr(φ(XXX) ∈ F ).

As F is arbitrary, g is a density function for φ(XXX), as claimed.

271K The application of the last theorem to ordinary transformations is sometimes indirect, so I give
an example.

Proposition Let X, Y be two random variables with a joint density function f . Then X ×Y has a density
function h, where

h(u) =
∫∞
−∞

1

|v|f(
u
v , v)dv

whenever this is defined in R.

proof Set φ(x, y) = (xy, y) for x, y ∈ R2. Then φ is differentiable, with derivative T (x, y) =

(
y x
0 1

)
, so

J(x, y) = | detT (x, y)| = |y|. Set D = {(x, y) : y 6= 0}; then D is a conegligible Borel set in R2 and φ↾D is
injective. Now φ[D] = D and φ−1(u, v) = (uv , v) for v 6= 0. So φ(X,Y ) = (X × Y, Y ) has a density function
g, where

g(u, v) =
f(u/v,v)

|v| if v 6= 0.

To find a density function for X × Y , we calculate

Pr(X × Y ≤ a) =
∫
]−∞,a]×R

g =
∫ a

−∞

∫∞
−∞ g(u, v)dv du =

∫ a

−∞ h

by Fubini’s theorem (252B, 252C). In particular, h is defined and finite almost everywhere; and by 271Ib it
is a density function for X × Y .

*271L When a random variable is presented as the limit of a sequence of random variables the following
can be very useful.

Proposition Let 〈Xn〉n∈N be a sequence of real-valued random variables converging in measure to a random
variable X (definition: 245A). Writing FXn

, FX for the distribution functions of Xn, X respectively,

FX(a) = infb>a lim infn→∞ FXn
(b) = infb>a lim supn→∞ FXn

(b)

D.H.Fremlin



8 Probability theory *271L

for every a ∈ R.

proof Set γ = infb>a lim infn→∞ FXn
(b), γ′ = infb>a lim supn→∞ FXn

(b).

(a) FX(a) ≤ γ. PPP Take any b > a and ǫ > 0. Then there is an n0 ∈ N such that Pr(|Xn−X| ≥ b−a) ≤ ǫ
for every n ≥ n0 (245F). Now, for n ≥ n0,

FX(a) = Pr(X ≤ a) ≤ Pr(Xn ≤ b) + Pr(Xn −X ≥ b− a) ≤ FXn
(b) + ǫ.

So FX(a) ≤ lim infn→∞ FXn
(b)+ǫ; as ǫ is arbitrary, FX(a) ≤ lim infn→∞ FXn

(b); as b is arbitrary, FX(a) ≤ γ.
QQQ

(b) γ′ ≤ FX(a). PPP Let ǫ > 0. Then there is a δ > 0 such that FX(a+ 2δ) ≤ FX(a) + ǫ (271Ga). Next,
there is an n0 ∈ N such that Pr(|Xn −X| ≥ δ) ≤ ǫ for every n ≥ n0. In this case, for n ≥ n0,

FXn
(a+ δ) = Pr(Xn ≤ a+ δ) ≤ Pr(X ≤ a+ 2δ) + Pr(X −Xn ≥ δ)

≤ FX(a+ 2δ) + ǫ ≤ FX(a) + 2ǫ.

Accordingly

γ′ ≤ lim supn→∞ FXn
(a+ δ) ≤ FX(a) + 2ǫ.

As ǫ is arbitrary, γ′ ≤ FX(a). QQQ

(c) Since of course γ ≤ γ′, we must have FX(a) = γ = γ′, as claimed.

271X Basic exercises >>>(a) Let X be a real-valued random variable with finite expectation, and ǫ > 0.

Show that Pr(|X − E(X)| ≥ ǫ) ≤ 1

ǫ2
Var(X). (This is Chebyshev’s inequality.)

>>>(b) Let F : R → [0, 1] be a non-decreasing function such that (i) lima→−∞ F (a) = 0 (ii) lima→∞ F (a) =
1 (iii) limx↓a F (x) = F (a) for every a ∈ R. Show that there is a unique Radon probability measure ν in R

such that F (a) = ν ]−∞, a] for every a ∈ R. (Hint : 114Xa.) Hence show that F is the distribution function
of some random variable.

>>>(c) Let X be a real-valued random variable with a density function f . (i) Show that |X| has a density
function g1 where g1(x) = f(x) + f(−x) whenever x ≥ 0 and f(x), f(−x) are both defined, 0 otherwise.
(ii) Show that X2 has a density function g2 where g2(x) = (f(

√
x) + f(−√

x))/2
√
x whenever x > 0 and

this is defined, 0 for other x. (iii) Show that if Pr(X = 0) = 0 then 1/X has a density function g3 where

g3(x) =
1
x2 f(

1
x ) whenever this is defined. (iv) Show that if Pr(X < 0) = 0 then

√
X has a density function

g4 where g4(x) = 2xf(x2) if x ≥ 0 and f(x2) is defined, 0 otherwise.

>>>(d) Let X and Y be random variables with a joint density function f : R2 → R. Show that X + Y has
a density function h where h(u) =

∫
f(u− v, v)dv for almost every u.

(e) Let X, Y be random variables with a joint density function f : R2 → R. Show that X/Y has a
density function h where h(u) =

∫
|v|f(uv, v)dv for almost every u.

(f) Devise an alternative proof of 271K by using Fubini’s theorem and one-dimensional substitutions to
show that

∫ b

a

∫∞
−∞

1

|v|f(
u
v , v)dv du =

∫
{(u,v):a≤uv≤b} f

whenever a ≤ b in R.

271Y Further exercises (a) Let T be the topology of RN and B the σ-algebra of Borel sets (256Yf).
(i) Let I be the family of sets of the form

{x : x ∈ RN, x(i) ≤ αi ∀ i ≤ n},
where n ∈ N and αi ∈ R for each i ≤ n. Show that B is the smallest family of subsets of RN such that (α)
I ⊆ B (β) B \ A ∈ B whenever A, B ∈ B and A ⊆ B (γ)

⋃
k∈N

Ak ∈ B for every non-decreasing sequence

Measure Theory



§272 intro. Independence 9

〈Ak〉k∈N in B. (ii) Show that if µ, µ′ are two totally finite measures defined on RN, and µF and µ′F are
defined and equal for every F ∈ I, then µE and µ′E are defined and equal for every E ∈ B. (iii) Show that
if Ω is a set and Σ a σ-algebra of subsets of Ω and X : Ω → RN is a function, then X−1[E] ∈ Σ for every
E ∈ B iff πiX is Σ-measurable for every i ∈ N, where πi(x) = x(i) for each x ∈ RN, i ∈ N. (iv) Show that if
XXX = 〈Xi〉i∈N is a sequence of real-valued random variables on a probability space (Ω,Σ, µ), then there is a
unique probability measure νBXXX , with domain B, such that νBXXX{x : x(i) ≤ αi ∀ i ≤ n} = Pr(Xi ≤ αi ∀ i ≤ n)
for every α0, . . . , αn ∈ R. (v) Under the conditions of (iv), show that there is a unique Radon measure
νXXX on RN (in the sense of 256Yf) such that νXXX{x : x(i) ≤ αi ∀ i ≤ n} = Pr(Xi ≤ αi ∀ i ≤ n) for every
α0, . . . , αn ∈ R.

(b) Let F : R2 → [0, 1] be a function. Show that the following are equiveridical: (i) F is the distribu-
tion function of some pair (X1, X2) of random variables (ii) there is a probability measure ν on R2 such
that ν ]−∞, a] = F (a) for every a ∈ R2 (iii)(α) F (α1, α2) + F (β1, β2) ≥ F (α1, β2) + F (α2, β1) whenever
α1 ≤ β1 and α2 ≤ β2 (β) F (α1, α2) = limξ1↓α1,ξ2↓α2

F (ξ1, ξ2) for every α1, α2 (γ) limα→−∞ F (α, β) =
limα→−∞ F (β, α) = 0 for all β (δ) limα→∞ F (α, α) = 1. (Hint : for non-empty half-open intervals ]a, b], set
λ ]a, b] = F (α1, α2) + F (β1, β2)− F (α1, β2)− F (α2, β1), and continue as in 115B-115F.)

(c) Generalize (b) to higher dimensions, finding a suitable formula to stand in place of that in (iii-α) of
(b).

(d) Let (Ω,Σ, µ) be a probability space and F a filter on L
0(µ) converging to X0 ∈ L

0(µ) for the topology
of convergence in measure. Show that, writing FX for the distribution function of X ∈ L

0(µ),

FX0
(a) = infb>a lim infX→F FX(b) = infb>a lim supX→F FX(b)

for every a ∈ R.

(e) Let X, Y be non-negative random variables with the same distribution, and h : [0,∞[ → [0,∞[ a
non-decreasing function. Show that E(X×hY ) ≤ E(Y ×hY ). (Hint : in the language of 252Yo, (Y ×hY )∗ =
Y ∗ × (hY )∗.)

271 Notes and comments Most of this section seems to have been taken up with technicalities. This
is perhaps unsurprising in view of the fact that it is devoted to the relationship between a vector random
variable XXX and the associated distribution νXXX , and this necessarily leads us into the minefield which I
attempted to chart in §235. Indeed, I call on results from §235 twice; once in 271E, with a φ(ω) = XXX(ω)
and J(ω) = 1, and once in 271I, with φ(x) = x and J(x) = f(x).

Distribution functions of one-dimensional random variables are easily characterized (271Xb); in higher
dimensions we have to work harder (271Yb-271Yc). Distributions, rather than distribution functions, can
be described for infinite sequences of random variables (271Ya); indeed, these ideas can be extended to
uncountable families, but this requires proper topological measure theory, and belongs in Volume 4.

The statement of 271J is elaborate, not to say cumbersome. The point is that many of the most important
transformations φ are not themselves injective, but can easily be dissected into injective fragments (see, for
instance, 271Xc and 263Xd). The point of 271K is that we frequently wish to apply the ideas here to
transformations which are singular, and indeed change the dimension of the random variable. I have not
given the theorems which make such applications routine and suggest rather that you seek out tricks such
as that used in the proof of 271K, which in any case are necessary if you want amenable formulae. Of course
other methods are available (271Xf).

Version of 3.4.09

272 Independence

I introduce the concept of ‘independence’ for families of events, σ-algebras and random variables. The
first part of the section, down to 272G, amounts to an analysis of the elementary relationships between
the three manifestations of the idea. In 272G I give the fundamental result that the joint distribution of a

c© 2000 D. H. Fremlin
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10 Probability theory §272 intro.

(finite) independent family of random variables is just the product of the individual distributions. Further
expressions of the connexion between independence and product measures are in 272J, 272M and 272N. I
give a version of the zero-one law (272O), and I end the section with a group of basic results from probability
theory concerning sums and products of independent random variables (272R-272W).

272A Definitions Let (Ω,Σ, µ) be a probability space.

(a) A family 〈Ei〉i∈I in Σ is (stochastically) independent if

µ(Ei1 ∩ Ei2 ∩ . . . ∩ Ein) =
∏n

j=1 µEij

whenever i1, . . . , in are distinct members of I.

(b) A family 〈Σi〉i∈I of σ-subalgebras of Σ is (stochastically) independent if

µ(E1 ∩ E2 ∩ . . . ∩ En) =
∏n

j=1 µEj

whenever i1, . . . , in are distinct members of I and Ej ∈ Σij for every j ≤ n.

(c) A family 〈Xi〉i∈I of real-valued random variables on Ω is (stochastically) independent if

Pr(Xij ≤ αj for every j ≤ n) =
∏n

j=1 Pr(Xij ≤ αj)

whenever i1, . . . , in are distinct members of I and α1, . . . , αn ∈ R.

272B Remarks (a) This is perhaps the central contribution of probability theory to measure theory,
and as such deserves the most careful scrutiny. The idea of ‘independence’ comes from outside mathematics
altogether, in the notion of events which have independent causes. I suppose that 272G and 272M are the
results below which most clearly show the measure-theoretic aspects of the concept. It is not an accident that
both involve product measures; one of the wonders of measure theory is the fact that the same technical
devices are used in establishing the probability theory of stochastic independence and the geometry of
multi-dimensional volume.

(b) In the following paragraphs I will try to describe some relationships between the three notions of
independence just defined. But it is worth noting at once the fact that, in all three cases, a family is
independent iff all its finite subfamilies are independent. Consequently any subfamily of an independent
family is independent. Another elementary fact which is immediate from the definitions is that if 〈Σi〉i∈I is
an independent family of σ-algebras, and Σ′

i is a σ-subalgebra of Σi for each i, then 〈Σ′
i〉i∈I is an independent

family.

(c) A useful reformulation of 272Ab is the following: A family 〈Σi〉i∈I of σ-subalgebras of Σ is independent
iff

µ(
⋂

i∈I Ei) =
∏

i∈I µEi

whenever Ei ∈ Σi for every i and {i : Ei 6= Ω} is finite. (Here I follow the convention of 254F, saying that
for a family 〈αi〉i∈I in [0, 1] we take

∏
i∈I αi = 1 if I = ∅, and otherwise it is to be infJ⊆I,J is finite

∏
i∈J αj .)

(d) In 272Aa-b I speak of sets Ei ∈ Σ and algebras Σi ⊆ Σ. In fact (272Ac already gives a hint of this)

we shall more often than not be concerned with Σ̂ rather than with Σ, if there is a difference, where (Ω, Σ̂, µ̂)
is the completion of (Ω,Σ, µ).

272C The σ-subalgebra defined by a random variable To relate 272Ab to 272Ac we need the
following notion. Let (Ω,Σ, µ) be a probability space and X a real-valued random variable defined on Ω.
Write B for the σ-algebra of Borel subsets of R, and ΣX for

{X−1[F ] : F ∈ B} ∪ {(Ω \ domX) ∪X−1[F ] : F ∈ B}.
Then ΣX is a σ-algebra of subsets of Ω. PPP

∅ = X−1[∅] ∈ ΣX ;

Measure Theory



272D Independence 11

if F ∈ B then

Ω \X−1[F ] = (Ω \ domX) ∪X−1[R \ F ] ∈ ΣX ,

Ω \ ((Ω \ domX) ∪X−1[F ]) = X−1[R \ F ] ∈ ΣX ;

if 〈Fk〉k∈N is any sequence in B then
⋃

k∈N
X−1[Fk] = X−1[

⋃
k∈N

Fk],

so
⋃

k∈N
X−1[Fk], (Ω \ domX) ∪⋃

k∈N
X−1[Fk]

belong to ΣX . QQQ
Evidently ΣX is the smallest σ-algebra of subsets of Ω, containing domX, for which X is measurable.

Also ΣX is a subalgebra of Σ̂, where Σ̂ is the domain of the completion of µ (271Aa).
Now we have the following result.

272D Proposition Let (Ω,Σ, µ) be a probability space and 〈Xi〉i∈I a family of real-valued random
variables on Ω. For each i ∈ I, let Σi be the σ-algebra defined by Xi, as in 272C. Then the following are
equiveridical:

(i) 〈Xi〉i∈I is independent;
(ii) whenever i1, . . . , in are distinct members of I and F1, . . . , Fn are Borel subsets of R, then

Pr(Xij ∈ Fj for every j ≤ n) =
∏n

j=1 Pr(Xij ∈ Fj);

(iii) whenever 〈Fi〉i∈I is a family of Borel subsets of R, and {i : Fi 6= R} is finite, then

µ̂
(⋂

i∈I(X
−1
i [Fi] ∪ (Ω \ domXi))

)
=

∏
i∈I Pr(Xi ∈ Fi),

where µ̂ is the completion of µ;
(iv) 〈Σi〉i∈I is independent with respect to µ̂.

proof (a)(i)⇒(ii) Write XXX = (Xi1 , . . . , Xin). Write νXXX for the joint distribution of XXX, and for each j ≤ n
write νj for the distribution of Xij ; let ν be the product of ν1, . . . , νn as described in 254A-254C. (I wrote
§254 out as for infinite products. If you are interested only in finite products of probability spaces, which
are adequate for our needs in this paragraph, I recommend reading §§251-252 with the mental proviso that
all measures are probabilities, and then §254 with the proviso that the set I is finite.) By 256K, ν is a
Radon measure on Rn. (This is an induction on n, relying on 254N for assurance that we can regard ν as
the repeated product (. . . ((ν1 × ν2)× ν3)× . . . νn−1)× νn.) Then for any a = (α1, . . . , αn) ∈ Rn, we have

ν ]−∞, a] = ν
( n∏

j=1

]−∞, αj ]
)
=

n∏

j=1

νj ]−∞, αj ]

(using 254Fb)

=

n∏

j=1

Pr(Xij ≤ αj) = Pr(Xij ≤ αj for every j ≤ n)

(using the condition (i))

= νXXX ]−∞, a] .

By the uniqueness assertion in 271Ba, ν = νXXX . In particular, if F1, . . . , Fn are Borel subsets of R,

Pr(Xij ∈ Fj for every j ≤ n) = Pr(XXX ∈
∏

j≤n

Fj) = νXXX(
∏

j≤n

Fj)

= ν(
∏

j≤n

Fj) =
n∏

j=1

νjFj =
n∏

j=1

Pr(Xij ∈ Fj),

as required.
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12 Probability theory 272D

(b)(ii)⇒(i) is trivial, if we recall that all sets ]−∞, α] are Borel sets, so that the definition of independence
given in 272Ac is just a special case of (ii).

(c)(ii)⇒(iv) Assume (ii), and suppose that i1, . . . , in are distinct members of I and Ej ∈ Σij for each

j ≤ n. For each j, set E′
j = Ej ∩ domXij , so that E′

j may be expressed as X−1
ij

[Fj ] for some Borel set

Fj ⊆ R. Then µ̂(Ej \ E′
j) = 0 for each j, so

µ̂(
⋂

1≤j≤n

Ej) = µ̂(
⋂

1≤j≤n

E′
j) = Pr(Xi1 ∈ F1, . . . , Xin ∈ Fn)

=

n∏

j=1

Pr(Xij ∈ Fj)

(using (ii))

=

n∏

i=1

µ̂Ej .

As E1, . . . , Ek are arbitrary, 〈Σi〉i∈I is independent.

(d)(iv)⇒(ii) Now suppose that 〈Σi〉i∈I is independent. If i1, . . . , in are distinct members of I and
F1, . . . , Fn are Borel sets in R, then X−1

ij
[Fj ] ∈ Σij for each j, so

Pr(Xi1 ∈ F1, . . . , Xin ∈ Fn) = µ̂(
⋂

1≤j≤n

X−1
ij

[Fj ])

=
n∏

i=1

µ̂X−1
ij

[Fj ] =
n∏

j=1

Pr(Xij ∈ Fj)

.

(e) Finally, observe that (iii) is nothing but a re-formulation of (ii), because if Fi = R then Pr(Xi ∈ Fi) = 1
and X−1

i [Fi] ∪ (Ω \ domXi) = Ω.

272E Corollary Let 〈Xi〉i∈I be an independent family of real-valued random variables, and 〈hi〉i∈I any
family of Borel measurable functions from R to R. Then 〈hi(Xi)〉i∈I is independent.

proof Writing Σi for the σ-algebra defined by Xi, Σ
′
i for the σ-algebra defined by h(Xi), h(Xi) is Σi-

measurable (121Eg) so Σ′
i ⊆ Σi for every i and 〈Σ′

i〉i∈I is independent, as in 272Bb.

272F Similarly, we can relate the definition in 272Aa to the others.

Proposition Let (Ω,Σ, µ) be a probability space, and 〈Ei〉i∈I a family in Σ. Set Σi = {∅, Ei,Ω\Ei,Ω}, the
(σ-)algebra of subsets of Ω generated by Ei, and Xi = χEi, the indicator function of Ei. Then the following
are equiveridical:

(i) 〈Ei〉i∈I is independent;

(ii) 〈Σi〉i∈I is independent;

(iii) 〈Xi〉i∈I is independent.

proof (i)⇒(iii) If i1, . . . , in are distinct members of I and α1, . . . , αn ∈ R, then for each j ≤ n the set
Gj = {ω : Xij (ω) ≤ αj} is either Eij or ∅ or Ω. If any Gj is empty, then

Pr(Xij ≤ αj for everyj ≤ n} = 0 =
∏n

j=1 Pr(Xij ≤ αj).

Otherwise, set K = {j : Gj = Eij}; then

Measure Theory
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Pr(Xij ≤ αj for everyj ≤ n} = µ(
⋂

j≤n

Gj) = µ(
⋂

j∈K

Eij )

=
∏

j∈K

µEij =
n∏

j=1

Pr(Xij ≤ αj).

As i1, . . . , in and α1, . . . , αn are arbitrary, 〈Xi〉i∈I is independent.

(iii)⇒(ii) follows from (i)⇒(iii) of 272D, because Σi is the σ-algebra defined by Xi.

(ii)⇒(i) is trivial, because Ei ∈ Σi for each i.

Remark You will I hope feel that while the theory of product measures might be appropriate to 272D, it
is surely rather heavy machinery to use on what ought to be a simple combinatorial problem like (iii)⇒(ii)
of this proposition. I suggest that you construct an ‘elementary’ proof, and examine which of the ideas of
the theory of product measures (and the Monotone Class Theorem, 136B) are actually needed here.

272G Distributions of independent random variables I have not tried to describe the ‘joint dis-
tribution’ of an infinite family of random variables. (Indications of how to deal with a countable family are
offered in 271Ya and 272Yb. For uncountable families I will wait until §454 in Volume 4.) As, however, the
independence of a family of random variables is determined by the behaviour of finite subfamilies, we can
approach it through the following proposition.

Theorem Let XXX = (X1, . . . , Xn) be a finite family of real-valued random variables on a probability space.
Let νXXX be the corresponding distribution on Rn. Then the following are equiveridical:

(i) X1, . . . , Xn are independent;
(ii) νXXX can be expressed as a product of n probability measures ν1, . . . , νn, one for each factor R of Rn;
(iii) νXXX is the product measure of νX1

, . . . , νXn
, writing νXi

for the distribution of the random variable
Xi.

proof (a)(i)⇒(iii) In the proof of (i)⇒(ii) of 272D above I showed that νXXX is the product ν of νX1
, . . . , νXn

.

(b)(iii)⇒(ii) is trivial.

(c)(ii)⇒(i) Suppose that νXXX is expressible as a product ν1 × . . . × νn. Take a = (α1, . . . , αn) in Rn.
Then

Pr(Xi ≤ αi ∀ i ≤ n) = Pr(XXX ∈ ]−∞, a]) = νXXX(]−∞, a]) =
∏n

i=1 νi ]−∞, αi].

On the other hand, setting Fi = {(ξ1, . . . , ξn) : ξi ≤ αi}, we must have

νi ]−∞, αi] = νXXXFi = Pr(XXX ∈ Fi) = Pr(Xi ≤ αi)

for each i. So we get

Pr(Xi ≤ αi for every i ≤ n) =
∏n

i=1 Pr(Xi ≤ αi),

as required.

272H Corollary Suppose that 〈Xi〉i∈I is an independent family of real-valued random variables on a
probability space (Ω,Σ, µ), and that for each i ∈ I we are given another real-valued random variable Yi on
Ω such that Yi =a.e. Xi. Then 〈Yi〉i∈I is independent.

proof For every distinct i1, . . . , in ∈ I, if we setXXX = (Xi1 , . . . , Xin) and YYY = (Yi1 , . . . , Yin), thenXXX =a.e. YYY ,
so νXXX , νYYY are equal (271De). By 272G, Yi1 , . . . , Yin must be independent because Xi1 , . . . , Xin are. As
i1, . . . , in are arbitrary, the whole family 〈Yi〉i∈I is independent.

Remark It follows that we may speak of independent families in the space L0(µ) of equivalence classes of
random variables (241C), saying that 〈X•

i 〉i∈I is independent iff 〈Xi〉i∈I is.

272I Corollary Suppose that X1, . . . , Xn are independent real-valued random variables with density
functions f1, . . . , fn (271H). Then XXX = (X1, . . . , Xn) has a density function f given by setting f(x) =∏n

i=1 fi(ξi) whenever x = (ξ1, . . . , ξn) ∈
∏

i≤n dom(fi) ⊆ Rn.

proof For n = 2 this is covered by 253I; the general case follows by induction on n.
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272J The most important theorems of the subject refer to independent families of random variables,
rather than independent families of σ-algebras. The value of the concept of independent σ-algebras lies in
such results as the following.

Proposition Let (Ω,Σ, µ) be a complete probability space, and 〈Σi〉i∈I a family of σ-subalgebras of Σ. For
each i ∈ I let µi be the restriction of µ to Σi, and let (ΩI ,Λ, λ) be the product probability space of the
family 〈(Ω,Σi, µi)〉i∈I . Define φ : Ω → ΩI by setting φ(ω)(i) = ω whenever ω ∈ Ω and i ∈ I. Then φ is
inverse-measure-preserving iff 〈Σi〉i∈I is independent.

proof This is virtually a restatement of 254Fb and 254G. (i) If φ is inverse-measure-preserving, i1, . . . , in ∈ I
are distinct and Ej ∈ Σij for each j, then

⋂
j≤nEij = φ−1[{x : x(ij) ∈ Ej for every j ≤ n}], so that

µ(
⋂

j≤nEij ) = λ{x : x(ij) ∈ Ej for every j ≤ n} =
∏n

j=1 µijEij =
∏n

j=1 µEij .

(ii) If 〈Σi〉i∈I is independent, Ei ∈ Σi for every i ∈ I and {i : Ei 6= Ω} is finite, then

µφ−1[
∏

i∈I Ei] = µ(
⋂

i∈I Ei) =
∏

i∈I µEi =
∏

i∈I µiEi.

So the conditions of 254G are satisfied and µφ−1[W ] = λW for every W ∈ Λ.

272K Proposition Let (Ω,Σ, µ) be a probability space and 〈Σi〉i∈I an independent family of σ-subalgebras

of Σ. Let 〈J(s)〉s∈S be a disjoint family of subsets of I, and for each s ∈ S let Σ̃s be the σ-algebra of subsets

of Ω generated by
⋃

i∈J(s) Σi. Then 〈Σ̃s〉s∈S is independent.

proof Let (Ω, Σ̂, µ̂) be the completion of (Ω,Σ, µ). On ΩI let λ be the product of the measures µ↾Σi, and
let φ : Ω → ΩI be the diagonal map, as in 272J. φ is inverse-measure-preserving for µ̂ and λ, by 272J.

We can identify λ with the product of 〈λs〉s∈S , where for each s ∈ S λs is the product of 〈µ↾Σi〉i∈J(s)

(254N). For s ∈ S, let Λs be the domain of λs, and set πs(x) = x↾J(s) for x ∈ ΩI , so that πs is inverse-
measure-preserving for λ and λs (254Oa), and φs = πsφ is inverse-measure-preserving for µ̂ and λs; of course

φs is the diagonal map from Ω to ΩJ(s). Set Σ∗
s = {φ−1

s [H] : H ∈ Λs}. Then Σ∗
s is a σ-subalgebra of Σ̂, and

Σ∗
s ⊇ Σ̃s, because

E = φ−1
s [{x : x(i) ∈ E}] ∈ Σ∗

s

whenever i ∈ J(s)a dn E ∈ Σi.

Now suppose that s1, . . . , sn ∈ S are distinct and that Ej ∈ Σ̃sj for each j. Then Ej ∈ Σ∗
sj , so there are

Hj ∈ Λsj such that Ej = φ−1
sj [Hj ] for each j. Set

W = {x : x ∈ ΩI , x↾J(sj) ∈ Hj for every j ≤ n}.
Because we can identify λ with the product of the λs, we have

λW =
∏n

j=1 λsjHj =
∏n

j=1 µ̂(φ
−1
sj [Hj ]) =

∏n
j=1 µ̂Ej =

∏n
j=1 µEj .

On the other hand, φ−1[W ] =
⋂

j≤nEj , so, because φ is inverse-measure-preserving,

µ(
⋂

j≤nEj) = µ̂(
⋂

j≤nEj) = λW =
∏n

j=1 µEj .

As E1, . . . , En are arbitrary, 〈Σ̃s〉s∈S is independent.

272L I give a typical application of this result as a sample.

Corollary Let X,X1, . . . , Xn be independent real-valued random variables and h : Rn → R a Borel
measurable function. Then X and h(X1, . . . , Xn) are independent.

proof Let ΣX , ΣXi
be the σ-algebras defined by X, Xi (272C). Then ΣX ,ΣX1

, . . . ,ΣXn
are independent

(272D). Let Σ∗ be the σ-algebra generated by ΣX1
∪ . . . ∪ ΣXn

. Then 272K (perhaps working in the
completion of the original probability space) tells us that ΣX and Σ∗ are independent. But every Xj is
Σ∗-measurable so Y = h(X1, . . . , Xn) is Σ∗-measurable (121Kb); also domY ∈ Σ∗, so ΣY ⊆ Σ∗ and ΣX ,
ΣY are independent. By 272D again, X and Y are independent, as claimed.

Remark Nearly all of us, when teaching elementary probability theory, would invite our students to treat
this corollary (with an explicit function h, of course) as ‘obvious’. In effect, the proof here is a confirmation
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that the formal definition of ‘independence’ offered is a faithful representation of our intuition of independent
events having independent causes.

272M Products of probability spaces and independent families of random variables We have
already seen that the concept of ‘independent random variables’ is intimately linked with that of ‘product
measure’. I now give some further manifestations of the connexion.

Proposition Let 〈(Ωi,Σi, µi)〉i∈I be a family of probability spaces, and (Ω,Σ, µ) their product.

(a) For each i ∈ I write Σ̃i = {π−1
i [E] : E ∈ Σi}, where πi : Ω → Ωi is the coordinate map. Then 〈Σ̃i〉i∈I

is an independent family of σ-subalgebras of Σ.
(b) For each i ∈ I let 〈Xij〉j∈J(i) be an independent family of real-valued random variables on Ωi, and

for i ∈ I, j ∈ J(i) write X̃ij(ω) = Xij(ω(i)) for those ω ∈ Ω such that ω(i) ∈ domXij . Then 〈X̃ij〉i∈I,j∈J(i)

is an independent family of random variables, and each X̃ij has the same distribution as the corresponding
Xij .

proof (a) It is easy to check that each Σ̃i is a σ-algebra of sets. The rest amounts just to recalling from
254Fb that if J ⊆ I is finite and Ei ∈ Σi for i ∈ J , then

µ(
⋂

i∈J π
−1
i [Ei]) = µ{ω : ω(i) ∈ Ei for every i ∈ I} =

∏
i∈I µiEi

if we set Ei = Xi for i ∈ I \ J .

(b) We know also that (Ω,Σ, µ) is the product of the completions (Ωi, Σ̂i, µ̂i) (254I). From this, we see

that each X̃ij is defined µ-a.e., and is Σ-measurable, with the same distribution as Xij . Now apply condition
(iii) of 272D. Suppose that 〈Fij〉i∈I,j∈J(i) is a family of Borel sets in R, and that {(i, j) : Fij 6= R} is finite.
Consider

Ei =
⋂

j∈J(i)(X
−1
ij [Fij ] ∪ (Ωi \ domXij)),

E =
∏

i∈I Ei =
⋂

i∈I,j∈J(i)(X̃
−1
ij [Fij ] ∪ (Ω \ dom X̃ij)).

Because each family 〈Xij〉j∈J(i) is independent, and {j : Fij 6= R} is finite,

µ̂iEi =
∏

j∈J(i) Pr(Xij ∈ Eij)

for each i ∈ I. Because

{i : Ei 6= Ωi} ⊆ {i : ∃ j ∈ J(i), Fij 6= R}
is finite,

µE =
∏

i∈I µ̂iEi =
∏

i∈I,j∈J(i) Pr(X̃ij ∈ Fij);

as 〈Fij〉i∈I,j∈J(i) is arbitrary, 〈X̃ij〉i∈I,j∈J(i) is independent.

Remark The formulation in (b) is more complicated than is necessary to express the idea, but is what is
needed for an application below.

272N A special case of 272J is of particular importance in general measure theory, and is most useful
in an adapted form.

Proposition Let (Ω,Σ, µ) be a complete probability space, and 〈Ei〉i∈I an independent family in Σ such
that µEi =

1
2 for every i ∈ I. Define φ : Ω → {0, 1}I by setting φ(ω)(i) = 1 if ω ∈ Ei, 0 if ω ∈ Ω \Ei. Then

φ is inverse-measure-preserving for the usual measure λ on {0, 1}I (254J).

proof I use 254G again. For each i ∈ I let Σi be the algebra {∅, Ei,Ω \Ei,Ω}; then 〈Σi〉i∈I is independent
(272F). For i ∈ I set φi(ω) = φ(ω)(i). Let ν be the usual measure of {0, 1}. Then it is easy to check that

µφ−1
i [H] =

1

2
#(H) = νH

for every H ⊆ {0, 1}. If 〈Hi〉i∈I is a family of subsets of {0, 1}, and {i : Hi 6= {0, 1}} is finite, then
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µφ−1[
⋂

i∈I

Hi] = µ(
⋂

i∈I

φ−1
i [Hi]) =

∏

i∈J

µφ−1
i [Hi]

(because φ−1[Hi] ∈ Σi for each i, and 〈Σi〉i∈I is independent)

=
∏

i∈I

νHi = λ(
∏

i∈I

Hi).

As 〈Hi〉i∈I is arbitrary, 254G gives the result.

272O Tail σ-algebras and the zero-one law I have never been able to make up my mind whether
the following result is ‘deep’ or not. I think it is one of the many cases in mathematics where a theorem is
surprising and exciting if one comes on it unprepared, but is natural and straightforward if one approaches
it from the appropriate angle.

Proposition Let (Ω,Σ, µ) be a probability space and 〈Σn〉n∈N an independent sequence of σ-subalgebras of
Σ. Let Σ∗

n be the σ-algebra generated by
⋃

m≥n Σm for each n, and set Σ∗
∞ =

⋂
n∈N

Σ∗
n. Then µE is either

0 or 1 for every E ∈ Σ∗
∞.

proof For each n, the family (Σ0, . . . ,Σn,Σ
∗
n+1) is independent, by 272K. So (Σ0, . . . ,Σn,Σ

∗
∞) is indepen-

dent, because Σ∗
∞ ⊆ Σ∗

n+1. But this means that every finite subfamily of (Σ∗
∞,Σ0,Σ1, . . . ) is independent,

and therefore that the whole family is (272Bb). Consequently (Σ∗
∞,Σ

∗
0) must be independent, by 272K

again.
Now if E ∈ Σ∗

∞, then E also belongs to Σ∗
0, so we must have

µ(E ∩ E) = µE · µE,

that is, µE = (µE)2; so that µE ∈ {0, 1}, as claimed.

272P To support the claim that somewhere we have achieved a non-trivial insight, I give a corollary,
which will be fundamental to the understanding of the limit theorems in the next section, and does not seem
to be obvious.

Corollary Let (Ω,Σ, µ) be a probability space, and 〈Xn〉n∈N an independent sequence of real-valued random
variables on Ω. Then

lim supn→∞
1

n+1
(X0 + . . .+Xn)

is almost everywhere constant – that is, there is some u ∈ [−∞,∞] such that

lim supn→∞
1

n+1
(X0 + . . .+Xn) = u

almost everywhere.

proof We may suppose that each Xn is Σ-measurable and defined everywhere in Ω, because (as re-
marked in 272H) changing the Xn on a negligible set does not affect their independence, and it affects

lim supn→∞
1

n+1
(X0 + . . . + Xn) only on a negligible set. For each n, let Σn be the σ-algebra generated

by Xn (272C), and Σ∗
n the σ-algebra generated by

⋃
m≥n Σm; set Σ∗

∞ =
⋂

n∈N
Σ∗

n. By 272D, 〈Σn〉n∈N is

independent, so µE ∈ {0, 1} for every E ∈ Σ∗
∞ (272O).

Now take any a ∈ R and set

Ea = {ω : lim supm→∞
1

m+1
(X0(ω) + . . .+Xm(ω)) ≤ a}.

Then

lim supm→∞
1

m+1
(X0 + . . .+Xm) = lim supm→∞

1

m+1
(Xn + . . .+Xm+n),

so
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Ea = {ω : lim supm→∞
1

m+1
(Xn(ω) + . . .+Xn+m(ω)) ≤ a}

belongs to Σ∗
n for every n, because Xi is Σ

∗
n-measurable for every i ≥ n. So E ∈ Σ∗

∞ and

Pr(lim supm→∞
1

m+1
(X0 + . . .+Xm) ≤ a) = µEa

must be either 0 or 1. Setting

u = sup{a : a ∈ R, µEa = 0}
(allowing sup ∅ = −∞ and supR = ∞, as usual in such contexts), we see that

lim supn→∞
1

n+1
(X0 + . . .+Xn) = u

almost everywhere.

*272Q I add here a result which will be useful in Volume 5 and which gives further insight into the
nature of large independent families.

Theorem Let (Ω,Σ, µ) be a probability space, and 〈Σi〉i∈I an independent family of σ-subalgebras of Σ. Let
E ⊆ Σ be a family of measurable sets, and T the σ-algebra generated by E . Then there is a set J ⊆ I such that
#(I \J) ≤ max(ω,#(E)) and T, 〈Σj〉j∈J are independent, in the sense that µ(F ∩⋂r≤nEr) = µF ·∏n

r=1 µEr

whenever F ∈ T, j1, . . . , jr are distinct members of J and Er ∈ Σjr for each r ≤ n.

proof (a) As in 272J, give ΩI the probability measure λ which is the product of the measures µ↾Σi, and
let φ : Ω → ΩI be the diagonal map, so that φ is inverse-measure-preserving for µ̂ and λ, where µ̂ is the
completion of µ. Write Λ for the domain of λ. Set κ = max(ω,#(E)), and let E∗ be the set {⋂r≤n Fr : n ∈ N,

Fr ∈ E for every r ≤ n}. Because #(En) ≤ κ for each n (2A1Lc), #(E∗) ≤ κ (2A1Ld). For each F ∈ E∗,
define νF : Λ → [0, 1] by setting νFW = µ̂(F ∩φ−1[W ]); then νF is countably additive and dominated by λ.
It therefore has a Radon-Nikodým derivative hF with respect to λ, so that µ̂(F ∩ φ−1[W ]) =

∫
W
hF dλ for

every W ∈ Λ (232F). By 254Qc or 254Rb, we can find a function h′F equal λ-almost everywhere to hF and
determined by coordinates in a countable set JF , in the sense that h′F (w) = h′F (w

′) whenever w, w′ ∈ ΩI

and w↾JF = w′↾JF . (I am taking it for granted that we chose h′F to be defined everywhere on ΩI .)

(b) Set J = I \ ⋃
F∈E∗ JF ; by 2A1Ld, I \ J =

⋃
F∈E∗ JF has cardinal at most κ. If F ∈ E∗, j1, . . . , jr

are distinct members of J and Er ∈ Σjr for each r ≤ n, µ(F ∩ ⋂
r≤nEr) = µF · ∏n

r=1 µEr. PPP Set

W = {w : w ∈ ΩI , w(jr) ∈ Er for each r ≤ n}. Then
µ(F ∩⋂

r≤nEr) = µ̂(F ∩ φ−1[W ]) =
∫
W
h′F dλ =

∫
h′F × χW dλ.

But observe that W is determined by coordinates in J , while h′F is determined by coordinates in JF ⊆ I \J ;
putting 272Ma, 272K and 272R together (or otherwise), we have

µ(F ∩⋂
r≤nEr) =

∫
h′F × χW dλ =

∫
h′F dλ · λW = µF ·∏n

r=1 µEr. QQQ

(c) Now consider the family A of those sets F ∈ Σ such that µ(F ∩⋂
r≤nEr) = µF ·∏n

r=1 µEr whenever
j1, . . . , jn ∈ J are distinct and Er ∈ Σjr for every r ≤ n. It is easy to check that A is a Dynkin class, and
we have just seen that A includes E∗; as E∗ is closed under ∩, A includes the σ-algebra T of sets generated
by E∗ (136B). And this is just what the theorem asserts.

272R I must now catch up on some basic facts from elementary probability theory.

Proposition Let X, Y be independent real-valued random variables with finite expectation (271Ab). Then
E(X × Y ) exists and is equal to E(X)E(Y ).

proof Let ν(X,Y ) be the joint distribution of the pair (X,Y ). Then ν(X,Y ) is the product of the distributions

νX and νY (272G). Also
∫
xνX(dx) = E(X) and

∫
yνY (dy) = E(Y ) exist in R (271F). So∫

xyν(X,Y )d(x, y) exists = E(X)E(Y )

(253D). But this is just E(X × Y ), by 271E with h(x, y) = xy.
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18 Probability theory 272S

272S Bienaymé’s Equality Let X1, . . . , Xn be independent real-valued random variables. Then
Var(X1 + . . .+Xn) = Var(X1) + . . .+Var(Xn).

proof (a) Suppose first that all the Xi have finite variance. Set ai = E(Xi), Yi = Xi−ai, X = X1+. . .+Xn,
Y = Y1 + . . .+ Yn; then E(X) = a1 + . . .+ an, so Y = X − E(X) and

Var(X) = E(Y 2) = E(
n∑

i=1

Yi)
2

= E(
n∑

i=1

n∑

j=1

Yi × Yj) =
n∑

i=1

n∑

j=1

E(Yi × Yj).

Now observe that if i 6= j then E(Yi × Yj) = E(Yi)E(Yj) = 0, because Yi and Yj are independent (by 272E)
and we may use 272R, while if i = j then

E(Yi × Yj) = E(Y 2
i ) = E(Xi − E(Xi))

2 = Var(Xi).

So

Var(X) =
∑n

i=1 E(Y
2
i ) =

∑n
i=1 Var(Xi).

(b)(i) I show next that if Var(X1 +X2) <∞ then Var(X1) <∞. PPP We have

∫∫
(x+ y)2νX1

(dx)νX2
(dy) =

∫
(x+ y)2ν(X1,X2)(d(x, y))

(by 272G and Fubini’s theorem)

= E((X1 +X2)
2)

(by 271E)

<∞.

So there must be some a ∈ R such that
∫
(x+ a)2µX1

(dx) is finite, that is, E((X1 + a)2) <∞; consequently
E(X2

1 ) and Var(X1) are finite. QQQ

(ii) Now an easy induction (relying on 272L!) shows that if Var(X1 + . . . +Xn) is finite, so is VarXj

for every j. Turning this round, if
∑n

j=1 Var(Xj) = ∞, then Var(X1 + . . . +Xn) = ∞, and again the two
are equal.

272T The distribution of a sum of independent random variables: Theorem Let X, Y be
independent real-valued random variables on a probability space (Ω,Σ, µ), with distributions νX , νY . Then
the distribution of X + Y is the convolution νX ∗ νY (257A).

proof Set ν = νX ∗ νY . Take a ∈ R and set h = χ ]−∞, a]. Then h is ν-integrable, so

ν ]−∞, a] =

∫
h dν =

∫
h(x+ y)(νX × νY )(d(x, y))

(by 257B, writing νX × νY for the product measure on R2)

=

∫
h(x+ y)ν(X,Y )(d(x, y))

(by 272G, writing ν(X,Y ) for the joint distribution of (X,Y ); this is where we use the hypothesis that X and

Y are independent)

= E(h(X + Y ))

(applying 271E to the function (x, y) 7→ h(x+ y))

= Pr(X + Y ≤ a).

As a is arbitrary, νX ∗ νY is the distribution of X + Y .
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272U Corollary Suppose that X and Y are independent real-valued random variables, and that they
have densities f and g. Then the convolution f ∗ g is a density function for X + Y .

proof By 257F, f ∗ g is a density function for νX ∗ νY = νX+Y .

272V The following simple result will be very useful when we come to stochastic processes in Volume
4, as well as in the next section.

Etemadi’s lemma (Etemadi 96) Let X0, . . . , Xn be independent real-valued random variables. For
m ≤ n, set Sm =

∑m
i=0Xi. Then

Pr(supm≤n |Sm| ≥ 3γ) ≤ 3maxm≤n Pr(|Sm| ≥ γ)

for every γ > 0.

proof As in 272P, we may suppose that every Xi is a measurable function defined everywhere on a measure
space Ω. Set α = maxm≤n Pr(|Sm| ≥ γ). For each r ≤ n, set

Er = {ω : |Sm(ω)| < 3γ for every m < r, |Sr(ω)| ≥ 3γ}.
Then E0, . . . , En is a partition of {ω : maxm≤n |Sm(ω)| ≥ 3γ}. Set E′

r = {ω : ω ∈ Er, |Sn(ω)| < γ}.
Then E′

r ⊆ {ω : ω ∈ Er, |(Sn − Sr)(ω)| > 2γ}. But Er depends on X0, . . . , Xr so is independent of
{ω : |(Sn − Sr)(ω)| > 2γ}, which can be calculated from Xr+1, . . . , Xn (272K). So

µE′
r ≤ µ{ω : ω ∈ Er, |(Sn − Sr)(ω)| > 2γ} = µEr · Pr(|Sn − Sr| > 2γ)

≤ µEr(Pr(|Sn| > γ) + Pr(|Sr| > γ)) ≤ 2αµEr,

and µ(Er \ E′
r) ≥ (1− 2α)µEr. On the other hand, 〈Er \ E′

r〉r≤n is a disjoint family of sets all included in
{ω : |Sn(ω)| ≥ γ}. So

α ≥ µ{ω : |Sn(ω)| ≥ γ} ≥ ∑n
r=0 µ(Er \ E′

r) ≥ (1− 2α)
∑n

r=0 µEr,

and

Pr(supr≤n |Sr| ≥ 3γ) =
∑n

r=0 µEr ≤ min(1,
α

1−2α
) ≤ 3α,

(considering α ≤ 1
3 , α ≥ 1

3 separately), as required.

*272W The next result is a similarly direct application of the ideas of this section. While it will not be
used in this volume, it is an accessible and useful representative of a very large number of results on tails of
sums of independent random variables.

Theorem (Hoeffding 63) Let X0, . . . , Xn be independent real-valued random variables such that 0 ≤
Xi ≤ 1 a.e. for every i. Set S = 1

n+1

∑n
i=0Xi and a = E(S). Then

Pr(S − a ≥ c) ≤ exp(−2(n+ 1)c2)

for every c ≥ 0.

proof (a) Set ai = E(Xi) for each i. If b ≥ 0 and i ≤ n, then

E(ebXi) ≤ exp(bai +
1

8
b2).

PPP Set φ(x) = ebx for x ∈ R. Then φ is convex, so

φ(x) ≤ 1 + x(eb − 1)

whenever x ∈ [0, 1],

φ(Xi) ≤a.e. 1 + (eb − 1)Xi

and

E(ebXi) = E(φ(Xi)) ≤ 1 + (eb − 1)ai = eh(b)

where h(t) = ln(1− ai + aie
t) for t ∈ R. Now h(0) = 0,
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h′(t) =
aiet

1−ai+aiet
= 1− 1−ai

1−ai+aiet
, h′(0) = ai,

h′′(t) =
1−ai

1−ai+aiet
· aiet

1−ai+aiet
≤ 1

4

because aie
t and 1 − ai are both greater than or equal to 0. By Taylor’s theorem with remainder, there is

some t ∈ [0, b] such that

h(b) = h(0) + bh′(0) +
1

2
b2h′′i (t) ≤ bai +

1

8
b2,

and

E(ebXi) ≤ exp(bai +
1

8
b2). QQQ

(b) Take any b ≥ 0. Then

Pr(S − a ≥ c) = Pr(

n∑

i=0

(Xi − ai − c) ≥ 0) ≤ E(exp(b

n∑

i=0

Xi − ai − c))

(because exp(b
∑n

i=0Xi − ai − c) ≥ 1 whenever
∑n

i=0Xi − ai − c ≥ 0)

= e−(n+1)bc
n∏

i=0

e−baiE(

n∏

i=0

exp(bXi))

= e−(n+1)bc
n∏

i=0

e−bai

n∏

i=0

E(exp(bXi))

(because the random variables exp(bXi) are independent, by 272E, so the expectation of the product is the

product of the expectations, by 272R)

≤ e−(n+1)bc
n∏

i=0

e−bai exp(bai +
1

8
b2)

((a) above)

= exp(−(n+ 1)bc+
n+1

8
b2).

Now the minimum value of the quadratic
n+1

8
b2 − (n+1)cb is −2(n+1)c2 when b = 4c, so Pr(S − a ≥ c) ≤

exp(−2(n+ 1)c2), as claimed.

272X Basic exercises (a) Let (Ω,Σ, µ) be an atomless probability space, and 〈ǫn〉n∈N any sequence in
[0, 1]. Show that there is an independent sequence 〈En〉n∈N in Σ such that µEn = ǫn for every n. (Hint :
215D.)

>>>(b) Let 〈Xi〉i∈I be a family of real-valued random variables. Show that it is independent iff

E(h1(Xi1)× . . .× hn(Xin)) =
∏n

j=1 E(hj(Xij ))

whenever i1, . . . , in are distinct members of I and h1, . . . , hn are Borel measurable functions from R to R

such that E(hj(Xij )) are all finite.

(c) Write out a proof of 272F which does not use the theory of product measures.

(d) LetXXX = (X1, . . . , Xn) be a family of real-valued random variables all defined on the same probability
space, and suppose thatXXX has a density function f expressible in the form f(ξ1, . . . , ξn) = f1(ξ1)f2(ξ2) . . . fn(ξn)
for suitable functions f1, . . . , fn of one real variable. Show that X1, . . . , Xn are independent.
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(e) Let X1, X2 be independent real-valued random variables both with distribution ν and distribution
function F . Set Y = max(X1, X2). Show that the distribution of Y is absolutely continuous with respect
to ν, with a Radon-Nikodým derivative F + F−, where F−(x) = limt↑x F (t) for every x ∈ R.

(f) Use 254Sa and the idea of 272J to give another proof of 272O.

(g) Let (Ω,Σ, µ) be a probability space and 〈Σn〉n∈N a non-decreasing sequence of σ-subalgebras of Σ.
Let Σ∞ be the σ-algebra generated by

⋃
n∈N

Σn. Let T be another σ-subalgebra of Σ such that Σn and
T are independent for each n. Show that Σ∞ and T are independent. (Hint : apply the Monotone Class
Theorem to {E : µ(E ∩ F ) = µE · µF for every F ∈ T}.) Use this to prove 272O.

(h) Let 〈Xn〉n∈N be a sequence of real-valued random variables and Y a real-valued random variable
such that Y and Xn are independent for each n ∈ N. Suppose that Pr(Y ∈ N) = 1 and that

∑∞
n=0 Pr(Y ≥

n)E(|Xn|) is finite. Set Z =
∑Y

n=0Xn (that is, Z(ω) =
∑Y (ω)

n=0 Xn(ω) whenever ω ∈ domY is such that
Y (ω) ∈ N and ω ∈ domXn for every n ≤ Y (ω)). (i) Show that E(Z) =

∑∞
n=0 Pr(Y ≥ n)E(Xn). (Hint : set

X ′
n(ω) = Xn(ω) if Y (ω) ≥ n, 0 otherwise.) (ii) Show that if E(Xn) = γ for every n ∈ N then E(Z) = γE(Y ).

(This is Wald’s equation.)

>>>(i) Let X1, . . . , Xn be independent real-valued random variables. Show that if X1 + . . .+Xn has finite
expectation so does every Xj . (Hint : part (b) of the proof of 272S.)

>>>(j) Let X and Y be independent real-valued random variables with densities f and g. Show that X×Y
has a density function h where h(x) =

∫∞
−∞

1
|y|g(y)f(

x
y )dy for almost every x. (Hint : 271K.)

(k) Let X0, . . . , Xn be independent real-valued random variables such that di ≤ Xi ≤ d′i a.e. for every

i. (i) Show that if b ≥ 0 then E(ebXi) ≤ exp(bai +
1

8
b2(d′i − di)

2) for each i, where ai = E(Xi). (ii) Set

S = 1
n+1

∑n
i=0Xi and a = E(S). Show that

Pr(S − a ≥ c) ≤ exp(−2(n+1)2c2

d
)

for every c ≥ 0, where d =
∑n

i=0(d
′
i − di)

2.

(l) Suppose that X0, . . . , Xn are independent real-valued random variables, all with expectation 0, such

that Pr(|Xi| ≤ 1) = 1 for every i. Set S =
1√
n+1

∑n
i=0Xi. Show that Pr(S ≥ c) ≤ exp(−c2/2) for every

c ≥ 0.

272Y Further exercises (a) Let X0, . . . , Xn be independent real-valued random variables with dis-
tributions ν0, . . . , νn and distribution functions F0, . . . , Fn. Show that, for any Borel set E ⊆ R,

Pr(supi≤nXi ∈ E) =
∑n

i=0

∫
E

∏i−1
j=0 F

−
j (x)

∏n
j=i+1 Fj(x)νi(dx),

where F−
j (x) = limt↑x Fj(t) for each j, and we interpret the empty products

∏−1
j=0 F

−
j (x),

∏n
j=n+1 Fj(x) as

1.

(b) Let XXX = 〈Xn〉n∈N be an independent sequence of real-valued random variables on a complete prob-

ability space (Ω,Σ, µ). Let B be the Borel σ-algebra of RN (271Ya). Let ν
(B)
XXX be the probability measure

with domain B defined by setting ν
(B)
XXX E = µXXX−1[E] for every E ∈ B, and write νXXX for the completion of

ν
(B)
XXX . Show that νXXX is just the product of the distributions νXn

.

(c) Let X1, . . . , Xn be real-valued random variables such that for each j < n the family

(X1, . . . , Xj ,−Xj+1, . . . ,−Xn)

has the same joint distribution as the original family (X1, . . . , Xn). Set Sj = X1 + . . .+Xj for each j ≤ n.
(i) Show that for any a ≥ 0
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Pr(sup1≤j≤n |Sj | ≥ a) ≤ 2Pr(|Sn| ≥ a).

(Hint : show that if Ej = {ω : ω ∈ ⋂
i≤n domXi, |Si(ω)| < a for i < j, |Sj(ω)| ≥ a} then µ{ω : ω ∈

Ej , |Sn(ω)| ≥ |Sj(ω)|} ≥ 1
2µEj .) (ii) Show that E(supj≤n |Sj |) ≤ 2E(|Sn|). (iii) Show that E(supi≤n S

2
i ) ≤

2E(S2
n).

(d) Let 〈Xi〉i∈N be an independent sequence of real-valued random variables, and set Sn =
∑n

i=0Xi for
each n. Show that if 〈Sn〉n∈N converges to S in L

0 for the topology of convergence in measure, then 〈Sn〉n∈N

converges to S a.e.

(e) Let (Ω,Σ, µ) be a probability space.
(i) Let 〈En〉n∈N be an independent sequence in Σ. Show that for any real-valued random variable X

with finite expectation,

limn→∞
∫
En
X dµ− µEnE(X) = 0.

(Hint : let T0 be the subalgebra of Σ generated by {En : n ∈ N} and T the σ-subalgebra of Σ generated by
{En : n ∈ N}. Start by considering X = χE for E ∈ T0 and then X = χE for E ∈ T. Move from L

1(µ↾T)
to L

1(µ) by using conditional expectations.)
(ii) Let 〈Xn〉n∈N be a uniformly integrable independent sequence of real-valued random variables on

Ω. Show that for any bounded real-valued random variable Y ,

limn→∞ E(Xn × Y )− E(Xn)E(Y ) = 0.

(iii) Suppose that 1 < p ≤ ∞ and set q = p/(p − 1) (taking q = 1 if p = ∞). Let 〈Xn〉n∈N be an
independent sequence of real-valued random variables with supn∈N ‖Xn‖p <∞, and Y a real-valued random
variable with ‖Y ‖q <∞. Show that

limn→∞ E(Xn × Y )− E(Xn)E(Y ) = 0.

(f) Let (Ω,Σ, µ) be a probability space and 〈Zn〉n∈N a sequence of random variables on Ω such that
Pr(Zn ∈ N) = 1 for each n, and Pr(Zm = Zn) = 0 for all m 6= n. Let 〈Xn〉n∈N be a sequence of real-valued
random variables on Ω, all with the same distribution ν, and independent of each other and the Zn, in
the sense that if Σn is the σ-algebra defined by Xn, and Tn the σ-algebra defined by Zn, and T is the
σ-algebra generated by

⋃
n∈N

Tn, then (T,Σ0,Σ1, . . . ) is independent. Set Yn(ω) = XZn(ω)(ω) whenever
this is defined, that is, ω ∈ domZn, Zn(ω) ∈ N and ω ∈ domXZn(ω). Show that 〈Yn〉n∈N is an independent
sequence of random variables and that every Yn has the distribution ν.

(g) Show that all the ideas of this section apply equally to complex-valued random variables, subject to
suitable adjustments (to be devised).

(h) Develop a theory of independence for random variables taking values in Rr, following through as
many as possible of the ideas of this section.

272 Notes and comments This section is lengthy for two reasons: I am trying to pack in the basic results
associated with one of the most fertile concepts of mathematics, and it is hard to know where to stop; and I
am trying to do this in language appropriate to abstract measure theory, insisting on a variety of distinctions
which are peripheral to the essential ideas. For while I am prepared to be flexible on the question of whether
the letter X should denote a space or a function, some of the applications of these results which are most
important to me are in contexts where we expect to be exactly clear what the domains of our functions are.
Consequently it is necessary to form an opinion on such matters as what the σ-algebra defined by a random
variable really is (272C).

The point of 272Q is that the family E does not have to be related in any way to the family 〈Σi〉i∈I ,
except, of course, that we are dealing with measurable sets. All we need to know is that I should be large
compared with E ; for instance, that E is countable and I is uncountable. The family 〈Σj〉j∈J is now a kind
of ‘tail’ of 〈Σi〉i∈I , safely independent of the ‘head’ σ-algebra generated by E .

Of course I should emphasize again that such proofs as those in 272R-272S are to be thought of as
confirmations that we have a suitable model of probability theory, rather than as reasons for believing the
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results to be valid in statistical contexts. Similarly, 272T-272U can be approached by a variety of intuitions
concerning discrete random variables and random variables with continuous densities, and while the elegant
general results are delightful, they are more important to the pure mathematician than to the statistician.
But I came to an odd obstacle in the proof of 272S, when showing that if X1 + . . .+Xn has finite variance
then so does every Xj . We have done enough measure theory for this to be readily dealt with, but the
connexion with ordinary probabilistic intuition, both here and in 272Xi, remains unclear to me.

There are four ideas in 272W worth storing for future use. The first is the estimate

E(ebXi) ≤ 1− ai + ebai

in part (a), a crude but effective way of using the hypothesis that Xi is bounded. The second is the use of
Taylor’s theorem to show that 1− ai + ebai ≤ exp(ai +

1
8b

2). The third is the estimate

Pr(Y ≥ 0) ≤ E(ebY ) if b ≥ 0

used in part (b); and the fourth is 272R. After this one need only be sufficiently determined to reach 272Xk.
But even the special case 272W is both striking and useful.

Version of 2.12.09

273 The strong law of large numbers

I come now to the first of the three main theorems of this chapter. Perhaps I should call it a ‘principle’,
rather than a ‘theorem’, as I shall not attempt to enunciate any fully general form, but will give three
theorems (273D, 273H, 273I), with a variety of corollaries, each setting out conditions under which the
averages of a sequence of independent random variables will almost surely converge. At the end of the
section (273N) I add a result on norm-convergence of averages.

273A It will be helpful to start with an explicit statement of a very simple but very useful lemma.

Lemma Let 〈En〉n∈N be a sequence of measurable sets in a measure space (Ω,Σ, µ), and suppose that∑∞
n=0 µEn <∞. Then {n : ω ∈ En} is finite for almost every ω ∈ Ω.

proof We have

µ{ω : {n : ω ∈ En} is infinite} = µ(
⋂

n∈N

⋃

m≥n

Em) = inf
n∈N

µ(
⋃

m≥n

Em)

≤ inf
n∈N

∞∑

m=n

µEm = 0.

273B Lemma Let 〈Xn〉n∈N be an independent sequence of real-valued random variables, and set Sn =∑n
i=0Xi for each n ∈ N.
(a) If 〈Sn〉n∈N is convergent in measure, then it is convergent almost everywhere.
(b) In particular, if E(Xn) = 0 for every n and

∑∞
n=0 E(X

2
n) < ∞, then

∑∞
n=0Xn is defined, and finite,

almost everywhere.

proof (a) Let (Ω,Σ, µ) be the underlying probability space. If we change each Xn on a negligible set, we
do not change the independence of 〈Xn〉n∈N (272H), and the Sn are also changed only on a negligible set;
so we may suppose from the beginning that every Xn is a measurable function defined on the whole of Ω.

Because the functional X 7→ E(min(1, |X|)) is one of the pseudometrics defining the topology of conver-
gence in measure (245A), limm,n→∞ E(min(1, |Sm − Sn|)) = 0, and we can find for each k ∈ N an nk ∈ N

such that E(min(1, |Sm−Snk
|)) ≤ 4−k for every m ≥ nk. So Pr(|Sm−Snk

| ≥ 2−k) ≤ 2−k for every m ≥ nk.
By Etemadi’s lemma (272V) applied to 〈Xi〉i≥nk

,

Pr(supnk≤m≤n |Sm − Snk
| ≥ 3 · 2−k) ≤ 3 · 2−k

for every n ≥ nk. Setting

Hkn = {ω : supnk≤m≤n |Sm(ω)− Snk
(ω)| ≥ 3 · 2−k} for n ≥ nk,
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Hk =
⋃

n≥nk
Hkn,

we have

µHk = limn→∞ µHkn ≤ 3 · 2−k

for each k, so
∑∞

k=0 µHk is finite and almost every ω ∈ Ω belongs to only finitely many of the Hk (273A).
Now take any such ω. Then there is some r ∈ N such that ω /∈ Hk for any k ≥ r. In this case, for every

k ≥ r, ω /∈ ⋃
n≥nk

Hkn, that is, |Sn(ω)−Snk
(ω)| < 3 ·2−k for every n ≥ nk. But this means that 〈Sn(ω)〉n∈N

is a Cauchy sequence, therefore convergent. Since this is true for almost every ω, 〈Sn〉n∈N converges almost
everywhere, as claimed.

(b) Now suppose that E(Xn) = 0 for every n and that
∑∞

n=0 E(X
2
n) <∞. In this case, for any m < n,

‖Sn − Sm‖21 ≤ ‖χΩ‖22‖Sn − Sm‖22
(by Cauchy’s inequality, 244Eb)

= E(Sn − Sm)2 = Var(Sn − Sm)

(because E(Sn − Sm) =
∑n

i=m+1 E(Xi) = 0)

=

n∑

i=m+1

Var(Xi)

(by Bienaymé’s equality, 272S)

→ 0

as m → ∞. So 〈S•
n〉n∈N is a Cauchy sequence in L1(µ) and converges in L1(µ), by 242F; by 245G, it

converges in measure in L0(µ), that is, 〈Sn〉n∈N converges in measure in L
0(µ). By (a), 〈Sn〉n∈N converges

almost everywhere, that is,
∑∞

i=0Xi is defined and finite almost everywhere.

Remark The proof above assumes familiarity with the ideas of Chapter 24. However part (b), at least, can
be established without any of these; see 273Xa. In 276B there is a generalization of (b) based on a different
approach.

273C We now need a lemma (part (b) below) from the theory of summability. I take the opportunity
to include an elementary fact which will be useful later in this section and elsewhere.

Lemma (a) If limn→∞ xn = x, then limn→∞
1

n+1

∑n
i=0 xi = x.

(b) Let 〈xn〉n∈N be such that
∑∞

i=0 xi is defined in R, and 〈bn〉n∈N a non-decreasing sequence in [0,∞[

diverging to ∞. Then limn→∞
1

bn

∑n
k=0 bkxk = 0.

proof (a) Let ǫ > 0. Let m be such that |xn − x| ≤ ǫ whenever n ≥ m. Let m′ ≥ m be such that

|∑m−1
i=0 x− xi| ≤ ǫm′. Then for n ≥ m′ we have

|x− 1

n+1

n∑

i=0

xi| = 1

n+1
|

n∑

i=0

x− xi|

≤ 1

n+1
|
m−1∑

i=0

x− xi|+ 1

n+1

n∑

i=m

|x− xi|

≤ ǫm′

n+1
+

ǫ(n−m+1)

n+1
≤ 2ǫ.

As ǫ is arbitrary, limn→∞
1

n+1

∑n
i=0 xi = x.

(b) Let ǫ > 0. Write sn =
∑n

i=0 xi for each n, and

s = limn→∞ sn =
∑∞

i=0 xi;
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set s∗ = supn∈N |sn| < ∞. Let m ∈ N be such that |sn − s| ≤ ǫ whenever n ≥ m; then |sn − sj | ≤ 2ǫ
whenever j, n ≥ m. Let m′ ≥ m be such that bms

∗ ≤ ǫbm′ .
Take any n ≥ m′. Then

|
n∑

k=0

bkxk| = |b0s0 + b1(s1 − s0) + . . .+ bn(sn − sn−1)|

= |(b0 − b1)s0 + (b1 − b2)s1 + . . .+ (bn−1 − bn)sn−1 + bnsn|

= |b0sn +

n−1∑

i=0

(bi+1 − bi)(sn − si)|

≤ b0|sn|+
m−1∑

i=0

(bi+1 − bi)|sn − si|+
n−1∑

i=m

(bi+1 − bi)|sn − si|

≤ b0s
∗ + 2s∗

m−1∑

i=0

(bi+1 − bi) + 2ǫ

n−1∑

i=m

(bi+1 − bi)

= b0s
∗ + 2s∗(bm − b0) + 2ǫ(bn − bm) ≤ 2s∗bm + 2ǫbn.

Consequently, because bn ≥ bm′ ,

| 1
bn

∑n
k=0 bkxk| ≤ 2

s∗bm

bn
+ 2ǫ ≤ 4ǫ.

As ǫ is arbitrary,

limn→∞
1

bn

∑n
k=0 bkxk = 0,

as required.

Remark Part (b) above is sometimes called ‘Kronecker’s lemma’.

273D The strong law of large numbers: first form Let 〈Xn〉n∈N be an independent sequence of
real-valued random variables, and suppose that 〈bn〉n∈N is a non-decreasing sequence in ]0,∞[, diverging to

∞, such that
∑∞

n=0
1

b2n
Var(Xn) <∞. Then

limn→∞
1

bn

∑n
i=0(Xi − E(Xi)) = 0

almost everywhere.

proof As usual, write (Ω,Σ, µ) for the underlying probability space. Set

Yn =
1

bn
(Xn − E(Xn))

for each n; then 〈Yn〉n∈N is independent (272E), E(Yn) = 0 for each n, and

∑∞
n=0 E(Y

2
n ) =

∑∞
n=0

1

b2n
Var(Xn) <∞.

By 273B, 〈Yn(ω)〉n∈N is summable for almost every ω ∈ Ω. But by 273Cb,

limn→∞
1

bn

∑n
i=0(Xi(ω)− E(Xi)) = limn→∞

1

bn

∑n
i=0 biYi(ω) = 0

for all such ω. So we have the result.

273E Corollary Let 〈Xn〉n∈N be an independent sequence of random variables such that E(Xn) = 0 for
every n and supn∈N E(X2

n) <∞. Then

limn→∞
1

bn
(X0 + . . .+Xn) = 0
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almost everywhere whenever 〈bn〉n∈N is a non-decreasing sequence of strictly positive numbers and
∑∞

n=0
1

b2n
is finite. In particular,

limn→∞
1

n+1
(X0 + . . .+Xn) = 0

almost everywhere.

Remark For most of the rest of this section, we shall take bn = n+1. The special virtue of 273D is that it
allows other bn, e.g., bn =

√
n lnn. A direct strengthening of this theorem is in 276C below.

273F Corollary Let 〈En〉n∈N be an independent sequence of measurable sets in a probability space
(Ω,Σ, µ). and suppose that

limn→∞
1

n+1

∑n
i=0 µEi = c.

Then

limn→∞
1

n+1
#({i : i ≤ n, ω ∈ Ei}) = c

for almost every ω ∈ Ω.

proof In 273D, set Xn = χEn, bn = n+ 1. For almost every ω, we have

limn→∞
1

n+1

∑n
i=0(χEi(ω)− ai) = 0,

writing ai = µEi = E(Xi) for each i. (I see that I am relying on 272F to support the claim that 〈Xn〉n∈N is
independent.) But for any such ω,

lim
n→∞

( 1

n+1
#({i : i ≤ n, ω ∈ Ei})− 1

n+1

n∑

i=0

ai
)

= lim
n→∞

1

n+1

n∑

i=0

(χEi(ω)− ai) = 0;

because we are supposing that limn→∞
1

n+1

∑n
i=0 ai = c, we must have

limn→∞
1

n+1
#({i : i ≤ n, ω ∈ Ei}) = c,

as required.

273G Corollary Let µ be the usual measure on PN, as described in 254Jb. Then for µ-almost every set
a ⊆ N,

limn→∞
1

n+1
#(a ∩ {0, . . . , n}) = 1

2 .

proof The sets En = {a : n ∈ a} are independent, with measure 1
2 .

Remark The limit limn→∞
1

n+1
#(a∩ {0, . . . , n}), when it is defined, is called the asymptotic density of

a.

273H Strong law of large numbers: second form Let 〈Xn〉n∈N be an independent sequence of
real-valued random variables, and suppose that supn∈N E(|Xn|1+δ) <∞ for some δ > 0. Then

limn→∞
1

n+1

∑n
i=0(Xi − E(Xi)) = 0

almost everywhere.
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proof As usual, call the underlying probability space (Ω,Σ, µ); as in 273B we can adjust theXn on negligible
sets so as to make them measurable and defined everywhere on Ω, without changing E(Xn), E(|Xn|) or the
convergence of the averages except on a negligible set.

(a) For each n, define a random variable Yn on Ω by setting

Yn(ω) = Xn(ω) if |Xn(ω)| ≤ n,

= 0 if |Xn(ω)| > n.

Then 〈Yn〉n∈N is independent (272E). For each n ∈ N,

Var(Yn) ≤ E(Y 2
n ) ≤ E(n1−δ|Xn|1+δ) ≤ n1−δK,

where K = supn∈N E(|Xn|1+δ), so

∑∞
n=0

1

(n+1)2
Var(Yn) ≤

∑∞
n=0

n1−δ

(n+1)2
K <∞.

By 273D,

G = {ω : limn→∞
1

n+1

∑n
i=0(Yi(ω)− E(Yi)) = 0}

is conegligible.

(b) On the other hand, setting

En = {ω : Yn(ω) 6= Xn(ω)} = {ω : |Xn(ω)| > n},
we have K ≥ n1+δµEn for each n, so

∑∞
n=0 µEn ≤ 1 +K

∑∞
n=1

1

n1+δ
<∞,

and the set H = {ω : {n : ω ∈ En} is finite} is conegligible (273A). But of course

limn→∞
1

n+1

∑n
i=0(Xi(ω)− Yi(ω)) = 0

for every ω ∈ H.

(c) Finally,

|E(Yn)− E(Xn)| ≤
∫
En

|Xn| ≤
∫
En
n−δ|Xn|1+δ ≤ n−δK

whenever n ≥ 1, so limn→∞ E(Yn)− E(Xn) = 0 and

limn→∞
1

n+1

∑n
i=0 E(Yi)− E(Xi) = 0

(273Ca). Putting these three together, we get

limn→∞
1

n+1

∑n
i=0Xi(ω)− E(Xi) = 0

whenever ω belongs to the conegligible set G ∩H. So

limn→∞
1

n+1

∑n
i=0Xi − E(Xi) = 0

almost everywhere, as required.

273I Strong law of large numbers: third form Let 〈Xn〉n∈N be an independent sequence of real-
valued random variables with finite expectation, and suppose that they are identically distributed, that
is, all have the same distribution. Then

limn→∞
1

n+1

∑n
i=0(Xi − E(Xi)) = 0

almost everywhere.
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proof The proof follows the same line as that of 273H, but some of the inequalities require more delicate
arguments. As usual, call the underlying probability space (Ω,Σ, µ) and suppose that the Xn are all
measurable and defined everywhere on Ω. (We need to remember that changing a random variable on a
negligible set does not change its distribution.) Let ν be the common distribution of the Xn.

(a) For each n, define a random variable Yn on Ω by setting

Yn(ω) = Xn(ω) if |Xn(ω)| ≤ n,

= 0 if |Xn(ω)| > n.

Then 〈Yn〉n∈N is independent (272E). For each n ∈ N,

Var(Yn) ≤ E(Y 2
n ) =

∫
[−n,n]

x2ν(dx)

(271E). To estimate
∑∞

n=0
1

(n+1)2
E(Y 2

n ), set

fn(x) =
x2

(n+1)2
if |x| ≤ n, 0 if |x| > n,

so that
1

(n+1)2
Var(Yn) ≤

∫
fndν. If r ≥ 1 and r < |x| ≤ r + 1 then

∞∑

n=0

fn(x) ≤
∞∑

n=r+1

1

(n+1)2
(r + 1)|x|

≤ (r + 1)|x|
∞∑

n=r+1

(
1

n
− 1

n+1
) ≤ |x|,

while if |x| ≤ 1 then

∑∞
n=0 fn(x) ≤

∑∞
n=0

1

(n+1)2
=

π2

6
≤ 2 <∞.

(You do not need to know that the sum is π2

6 , only that it is finite; but see 282Xo.) Consequently

f(x) =
∑∞

n=0 fn(x) ≤ 2 + |x|
for every x, and

∫
fdν < ∞, because

∫
|x|ν(dx) is the common value of E(|Xn|), and is finite. By any of

the great convergence theorems,

∑∞
n=0

1

(n+1)2
Var(Yn) ≤

∑∞
n=0

∫
fndν =

∫
fdν <∞.

By 273D,

G = {ω : limn→∞
1

n+1

∑n
i=0(Yi(ω)− E(Yi)) = 0}

is conegligible.

(b) Next, setting

En = {ω : Xn(ω) 6= Yn(ω)} = {ω : |Xn(ω)| > n},
we have

En =
⋃

i≥n Fni,

where

Fni = {ω : i < |Xn(ω)| ≤ i+ 1}.
Now

µFni = ν{x : i < |x| ≤ i+ 1}
for every n and i. So
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∞∑

n=0

µEn =
∞∑

n=0

∞∑

i=n

µFni =
∞∑

i=0

i∑

n=0

µFni

=
∞∑

i=0

(i+ 1)ν{x : i < |x| ≤ i+ 1} ≤
∫
(1 + |x|)ν(dx) <∞.

Consequently the set H = {ω : {n : Xn(ω) 6= Yn(ω)} is finite} is conegligible (273A). But of course

limn→∞
1

n+1

∑n
i=0Xi(ω)− Yi(ω) = 0

for every ω ∈ H.

(c) Finally,

|E(Yn)− E(Xn)| ≤
∫
En

|Xn| =
∫
R\[−n,n]

|x|ν(dx)

whenever n ∈ N, so limn→∞ E(Yn)− E(Xn) = 0 and

limn→∞
1

n+1

∑n
i=0 E(Yi)− E(Xi) = 0

(273Ca). Putting these three together, we get

limn→∞
1

n+1

∑n
i=0Xi(ω)− E(Xi) = 0

whenever ω belongs to the conegligible set G ∩H. So

limn→∞
1

n+1

∑n
i=0Xi − E(Xi) = 0

almost everywhere, as required.

Remarks In my own experience, this is the most important form of the strong law from the point of view
of ‘pure’ measure theory. I note that 273G above can also be regarded as a consequence of this form.

For a very striking alternative proof, see 275Yq. Yet another proof treats this result as a special case of
the Ergodic Theorem (see 372Xg in Volume 3).

273J Corollary Let (Ω,Σ, µ) be a probability space. If f is a real-valued function such that
∫
fdµ is

defined in [−∞,∞], then

limn→∞
1

n+1

∑n
i=0 f(ωi) =

∫
fdµ

for λ-almost every ωωω = 〈ωn〉n∈N ∈ ΩN, where λ is the product measure on ΩN (254A-254C).

proof (a) To begin with, suppose that f is integrable. Define functions Xn on ΩN by setting

Xn(ωωω) = f(ωn) whenever ωn ∈ dom f .

Then 〈Xn〉n∈N is an independent sequence of random variables, all with the same distribution as f (272M).
So

limn→∞
1

n+1

∑n
i=0 f(ωi)−

∫
fdµ = limn→∞

1

n+1

∑n
i=0Xi(ωωω)− E(Xi) = 0

for almost every ωωω, by 273I, and

limn→∞
1

n+1

∑n
i=0 f(ωi) =

∫
fdµ

for almost every ωωω.

(b) Next, suppose that f ≥ 0 and
∫
f = ∞. In this case, for every m ∈ N,
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lim inf
n→∞

1

n+1

n∑

i=0

f(ωi) ≥ lim inf
n→∞

1

n+1

n∑

i=0

min(m, f(ωi))

=

∫
min(m, f(ω))µ(dω)

for almost every ωωω, so

lim infn→∞
1

n+1

∑n
i=0 f(ωi) ≥ supm∈N

∫
min(m, f(ω))µ(dω) = ∞

and

limn→∞
1

n+1

∑n
i=0 f(ωi) = ∞ =

∫
f

for almost every ωωω.

(c) In general, if
∫
f = ∞, this is because

∫
f+ = ∞ and f− is integrable, so

lim
n→∞

1

n+1

n∑

i=0

f(ωi) = lim
n→∞

1

n+1

n∑

i=0

f+(ωi)− lim
n→∞

1

n+1

n∑

i=0

f−(ωi)

= ∞−
∫
f− =

∫
f

for almost every ωωω. Similarly,

limn→∞
1

n+1

∑n
i=0 f(ωi) = −∞

for almost every ωωω if
∫
fdµ = −∞.

Remark I find myself slipping here into measure-theorists’ terminology; this corollary is one of the basic
applications of the strong law to measure theory. Obviously, in view of 272J and 272M, this corollary covers
273I. It could also (in theory) be used as a definition of integration on a probability space (see 273Ya); it is
sometimes called the ‘Monte Carlo’ method of integration.

273K It is tempting to seek extensions of 273I in which the Xn are not identically distributed, but are
otherwise well-behaved. Any such idea should be tested against the following example. I find that I need
another standard result, complementing that in 273A.

Borel-Cantelli lemma Let (Ω,Σ, µ) be a probability space and 〈En〉n∈N a sequence of measurable subsets
of Ω such that

∑∞
n=0 µEn = ∞ and µ(Em ∩ En) ≤ µEm · µEn whenever m 6= n. Then almost every point

of Ω belongs to infinitely many of the En.

proof For n, k ∈ N set Xn =
∑n

i=0 χEi, βn =
∑n

i=0 µEn = E(Xn) and Fnk = {x : x ∈ Ω, #({i : i ≤ n,
x ∈ Ei}) ≤ k}. Then

E(X2
n) =

n∑

i=0

n∑

j=0

µ(Ei ∩ Ej) ≤
n∑

i=0

µEi +
n∑

i=0

∑

j 6=i

µEi · µEj

= βn + β2
n −

n∑

i=0

(µEi)
2,

so

Var(Xn) = βn −∑n
i=0(µEi)

2 ≤ βn.

Now if k < βn,

(βn − k)2µFnk = (βn − k)2 Pr(Xn ≤ k) ≤ E(Xn − βn)
2 = Var(Xn) ≤ βn

and µFnk ≤ βn

(βn−k)2
.
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Now recall that we are assuming that limn→∞ βn = ∞. So for any k ∈ N,

µ(
⋂

n∈N
Fnk) = limn→∞ µFnk ≤ limn→∞

βn

(βn−k)2
= 0.

Accordingly

µ{x : x belongs to only finitely many En} = µ(
⋃

k∈N

⋂
n∈N

Fnk) = 0,

and almost every point of Ω belongs to infinitely many En.

Remark Of course this result is usually applied to an independent sequence 〈En〉n∈N. But very occasionally
it is of interest to know that it is enough to assume that weaker hypotheses suffice. See also 273Yb.

273L Now for the promised example.

Example There is an independent sequence 〈Xn〉n∈N of non-negative random variables such that limn→∞ E(Xn) =
0 but

lim supn→∞
1

n+1

∑∞
i=0Xi − E(Xi) = ∞,

lim infn→∞
1

n+1

∑∞
i=0Xi − E(Xi) = 0

almost everywhere.

proof Let (Ω,Σ, µ) be a probability space with an independent sequence 〈En〉n∈N of measurable sets such

that µEn =
1

(n+3) ln(n+3)
for each n. (I have nowhere explained exactly how to build such a sequence.

Two obvious methods are available to us, and another a trifle less obvious. (i) Take Ω = {0, 1}N and µ to

be the product of the probabilities µn on {0, 1}, defined by saying that µn{1} =
1

(n+3) ln(n+3)
for each n;

set En = {ω : ω(n) = 1}, and appeal to 272M to check that the En are independent. (ii) Build the En

inductively as subsets of [0, 1], arranging that each En should be a finite union of intervals, so that when
you come to choose En+1 the sets E0, . . . , En define a partition In of [0, 1] into intervals, and you can take

En+1 to be the union of (say) the left-hand subintervals of length a proportion
1

(n+3) ln(n+3)
of the intervals

in In. (iii) Use 215D to see that the method of (ii) can be used on any atomless probability space, as in
272Xa.)

Set Xn = (n + 3) ln ln(n + 3)χEn for each n; then 〈Xn〉n∈N is an independent sequence of real-valued

random variables (272F) and E(Xn) =
ln ln(n+3)

ln(n+3)
for each n, so that E(Xn) → 0 as n → ∞. Thus,

for instance, {Xn : n ∈ N} is uniformly integrable and 〈Xn〉n∈N → 0 in measure (246Jc); while surely

limn→∞
1

n+1

∑n
i=0 E(Xi) = 0.

On the other hand,

∞∑

n=0

µEn =
∞∑

n=0

1

(n+3) ln(n+3)
≥

∫ ∞

0

1

(x+3) ln(x+3)
dx

= lim
a→∞

(ln ln(a+ 3)− ln ln 3) = ∞,

so almost every ω belongs to infinitely many of the En, by the Borel-Cantelli lemma (273K). Now if we

write Yn =
1

n+1

∑n
i=0Xi, then if ω ∈ En we have Xn(ω) = (n+ 3) ln ln(n+ 3) so

Yn(ω) ≥ n+3

n+1
ln ln(n+ 3).

This means that

D.H.Fremlin



32 Probability theory 273L

{ω : lim sup
n→∞

1

n+1

n∑

i=0

(Xi(ω)− E(Xi)) = ∞} = {ω : lim sup
n→∞

1

n+1

n∑

i=0

Xi(ω) = ∞}

= {ω : sup
n∈N

Yn(ω) = ∞} ⊇ {ω : {n : ω ∈ En} is infinite}

is conegligible, and the strong law of large numbers does not apply to 〈Xn〉n∈N.
Because

limn→∞ ‖Yn‖1 = limn→∞ E(Yn) = limn→∞ E(Xn) = 0

(273Ca), 〈Yn〉n∈N → 0 for the topology of convergence in measure, and 〈Yn〉n∈N has a subsequence converging
to 0 almost everywhere (245K). So

lim infn→∞
1

n+1

∑n
i=0(Xi(ω)− E(Xi)) = lim infn→∞ Yn(ω) = 0

for almost every ω. The fact that both lim supn→∞ Yn and lim infn→∞ Yn are constant almost everywhere
is of course a consequence of the zero-one law (272P).

*273M All the above has been concerned with pointwise convergence of the averages of independent
random variables, and that is the important part of the work of this section. But it is perhaps worth
complementing it with a brief investigation of norm-convergence. To deal efficiently with convergence in L

p,
we need the following. (I should perhaps remark that, compared with the general case treated here, the case
p = 2 is trivial; see 273Xl.)

Lemma For any p ∈ ]1,∞[ and ǫ > 0, there is a δ > 0 such that ‖S +X‖p ≤ 1+ ǫ‖X‖p whenever S and X
are independent random variables, ‖S‖p = 1, ‖X‖p ≤ δ and E(X) = 0.

proof (a) Take ζ ∈ ]0, 1] such that pζ ≤ 2 and

(1 + ξ)p ≤ 1 + pξ +
p2

2
ξ2

whenever |ξ| ≤ ζ; such exists because

limξ→0
(1+ξ)p−1−pξ

ξ2
=

p(p−1)

2
<

p2

2
.

Observe that

(1 + ξ)p ≤ (1 +
1

ζ
)p + ξp + 2pξp−1

for every ξ ≥ 0. PPP If ξ ≤ 1

ζ
, this is trivial. If ξ ≥ 1

ζ
, then

(1 + ξ)p = ξp(1 +
1

ξ
)p ≤ ξp(1 +

p

ξ
+

p2

2ξ2
)

≤ ξp(1 +
p

ξ
+

p2ζ

2ξ
) = ξp + pξp−1(1 +

pζ

2
) ≤ ξp + 2pξp−1. QQQ

Define η > 0 by declaring that 3ηp−1 =
ǫ

2
(this is one of the places where we need to know that p > 1).

Let δ > 0 be such that

δ ≤ ηζ,
p2

2η2
δ + (1 +

1

ζ
)pδp−1 ≤ pǫ

2
.

(b) Now suppose that S andX are independent random variables with ‖S‖p = 1, ‖X‖p ≤ δ and E(X) = 0.
If ‖X‖p = 0 then of course ‖S +X‖p ≤ 1+ ǫ‖X‖p, so suppose that X is non-trivial. Write (Ω,Σ, µ) for the
underlying probability space and adjust S and X on negligible sets so that they are measurable and defined
everywhere on Ω. Set α = ‖X‖p, γ = α/η,

E = {ω : S(ω) 6= 0}, F = {ω : |X(ω)| > γ|S(ω)|}, β = ‖S × χF‖p.
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Then

∫
|S +X|p =

∫

F

|S +X|p +
∫

E\F
|S +X|p

(because S and X are both zero on Ω \ (E ∪ F ))

= ‖(S × χF ) + (X × χF )‖pp +
∫

E\F
|S|p|1 + X

S
|p

≤ (‖S × χF‖p + ‖X × χF )‖p)p +
∫

E\F
|S|p(1 + p

X

S
+

p2

2
γ2)

(because |X
S
| ≤ γ ≤ δ

η
≤ ζ ≤ 1 everywhere on E \ F )

≤ (β + α)p + (1 +
p2

2
γ2)

∫

E\F
|S|p + p

∫

E\F
|S|p−1 × sgnS ×X

(writing sgn(ξ) = ξ/|ξ| if ξ 6= 0, 0 if ξ = 0)

= (β + α)p + (1 +
p2

2
γ2)

∫

Ω\F
|S|p + p

∫

Ω\F
|S|p−1 × sgnS ×X

(because S = 0 on Ω \ E)

= αp(1 +
β

α
)p + (1 +

p2

2
γ2)(1− βp)− p

∫

F

|S|p−1 × sgnS ×X

(becauseX and |S|p−1×sgnS are independent, by 272L, so
∫
|S|p−1×sgnS×X = E(|S|p−1×sgnS)E(X) = 0)

≤ αp
(
(1 +

1

ζ
)p + 2p(

β

α
)p−1 + (

β

α
)p
)
+ (1 +

p2

2
γ2)(1− βp)

+ p

∫

F

|S|p−1 × |X|

(see (a) above)

≤ αp(1 +
1

ζ
)p + βp + 2pβp−1α+ (1 +

p2

2
γ2)(1− βp)

+ p

∫

F

1

γp−1
|X|p

≤ αp(1 +
1

ζ
)p + 2p

αp

γp−1
+ 1 +

p2

2
γ2 + p

αp

γp−1

(because β = ‖S × χF‖p ≤ 1

γ
‖X × χF‖p ≤ α

γ
)

= αp(1 +
1

ζ
)p + 3pηp−1α+ 1 +

p2α2

2η2

= 1 +
(
αp−1(1 +

1

ζ
)p + 3pηp−1 +

p2α

2η2

)
α

≤ 1 +
(
δp−1(1 +

1

ζ
)p + 3pηp−1 +

p2δ

2η2

)
α

≤ 1 + pαǫ ≤ (1 + ǫ‖X‖p)p.

So ‖S +X‖p ≤ 1 + ǫ‖X‖p, as required.
*Remark What is really happening here is that φ = ‖ ‖pp : Lp → R is differentiable (as a real-valued function
on the normed space Lp) and

φ′(S•)(X•) = p
∫
|S|p−1 × sgnS ×X,

so that in the context here

φ((S +X)•) = φ(S•) + φ′(S•)(X•) + o(‖X‖p) = 1 + o(‖X‖p)

D.H.Fremlin



34 Probability theory *273M

and ‖S +X‖p = 1 + o(‖X‖p). The calculations above are elaborate partly because they do not appeal to
any non-trivial ideas about normed spaces, and partly because we need the estimates to be uniform in S.

273N Theorem Let 〈Xn〉n∈N be an independent sequence of real-valued random variables with zero
expectation, and set Yn = 1

n+1 (X0 + . . .+Xn) for each n ∈ N.

(a) If 〈Xn〉n∈N is uniformly integrable, then limn→∞ ‖Yn‖1 = 0.
*(b) If p ∈ ]1,∞[ and supn∈N ‖Xn‖p <∞, then limn→∞ ‖Yn‖p = 0.

proof (a) Let ǫ > 0. Then there is an M ≥ 0 such that E(|Xn| −M)+ ≤ ǫ for every n ∈ N. Set

X ′
n = (−MχΩ) ∨ (Xn ∧MχΩ), αn = E(X ′

n), X̃n = X ′
n − αn, X ′′

n = Xn −X ′
n

for each n ∈ N. Then 〈X ′
n〉n∈N and 〈X̃n〉n∈N are independent and uniformly bounded, and ‖X ′′

n‖1 ≤ ǫ for
every n. So if we write

Ỹn =
1

n+1

∑n
i=0 X̃i, Y ′′

n =
1

n+1

∑n
i=0X

′′
i ,

〈Ỹn〉n∈N → 0 almost everywhere, by 273E (for instance), while ‖Y ′′
n ‖1 ≤ ǫ for every n. Moreover,

|αn| = |E(X ′
n −Xn)| ≤ E(|X ′′

n |) ≤ ǫ

for every n. As |Ỹn| ≤ 2M almost everywhere for each n, limn→∞ ‖Ỹn‖1 = 0, by Lebesgue’s Dominated
Convergence Theorem. So

lim sup
n→∞

‖Yn‖1 = lim sup
n→∞

‖Ỹn + Y ′′
n + αn‖1

≤ lim
n→∞

‖Ỹn‖1 + sup
n∈N

‖Y ′′
n ‖1 + sup

n∈N

|αn|

≤ 2ǫ.

As ǫ is arbitrary, limn→∞ ‖Yn‖1 = 0, as claimed.

*(b) Set M = supn∈N ‖Xn‖p. For n ∈ N, set Sn =
∑n

i=0Xi. Let ǫ > 0. Then there is a δ > 0 such
that ‖S+X‖p ≤ 1+ ǫ‖X‖p whenever S and X are independent random variables, ‖S‖p = 1, ‖X‖p ≤ δ and
E(X) = 0 (273M). It follows that ‖S +X‖p ≤ ‖S‖p + ǫ‖X‖p whenever S and X are independent random
variables, ‖S‖p is finite, ‖X‖p ≤ δ‖S‖p and E(X) = 0. In particular, ‖Sn+1‖p ≤ ‖Sn‖p + ǫM whenever
‖Sn‖p ≥M/δ. An easy induction shows that

‖Sn‖p ≤ M

δ
+M + nǫM

for every n ∈ N. But this means that

lim supn→∞ ‖Yn‖p = lim supn→∞
1

n+1
‖Sn‖p ≤ ǫM .

As ǫ is arbitrary, limn→∞ ‖Yn‖p = 0.

Remark There are strengthenings of (a) in 276Xe, and of (b) in 276Ya.

273X Basic exercises (a) In part (b) of the proof of 273B, use Bienaymé’s equality to show that
limm→∞ supn≥m Pr(|Sn − Sm| ≥ ǫ) = 0 for every ǫ > 0, so that we can apply the argument of part (a) of
the proof directly, without appealing to 242F or 245G or even 244E.

(b) Show that
∑∞

n=0
(−1)ω(n)

n+1
is defined in R for almost every ωωω = 〈ω(n)〉n∈N in {0, 1}N, where {0, 1}N is

given its usual measure (254J).

(c) Let 〈En〉n∈N be an independent sequence of measurable sets in a probability space, all with the same
non-zero measure. Let 〈an〉n∈N be a sequence of non-negative real numbers such that

∑∞
n=0 an = ∞. Show

that
∑∞

n=0 anχEn = ∞ a.e. (Hint : Take a strictly increasing sequence 〈kn〉n∈N such that dn =
∑kn+1

i=kn+1 ai ≥
1 for each n. Set ci =

ai

(n+1)dn

for kn < i ≤ kn+1; show that
∑∞

n=0 c
2
n < ∞ =

∑∞
n=0 cn. Apply 273D with

Xn = cnχEn and bn =
√∑n

i=0 ci.)
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>>>(d) Take any q ∈ [0, 1], and give PN a measure µ such that

µ{a : I ⊆ a} = q#(I)

for every I ⊆ N, as in 254Xg. Show that for µ-almost every a ⊆ N,

limn→∞
1

n+1
#(a ∩ {0, . . . , n}) = q.

>>>(e) Let µ be the usual probability measure on PN (254Jb), and for r ≥ 1 let µr be the product
probability measure on (PN)r. Show that

limn→∞
1

n+1
#(a1 ∩ . . . ∩ ar ∩ {0, . . . , n}) = 2−r,

limn→∞
1

n+1
#((a1 ∪ . . . ∪ ar) ∩ {0, . . . , n}) = 1− 2−r

for µr-almost every (a1, . . . , ar) ∈ (PN)r.

(f) Let µ be the usual probability measure on PN, and b any infinite subset of N. Show that limn→∞
#(a∩b∩{0,... ,n})
#(b∩{0,... ,n})

=
1

2
for almost every a ⊆ N.

>>>(g) For each x ∈ [0, 1], let ǫk(x) be the kth digit in the decimal expansion of x (choose for yourself
what to do with 0·100 . . . = 0·099 . . . ). Show that limk→∞

1
k#({j : j ≤ k, ǫj(x) = 7}) = 1

10 for almost every
x ∈ [0, 1].

(h) Let 〈Fn〉n∈N be a sequence of distribution functions for real-valued random variables, in the sense
of 271Ga, and F another distribution function; suppose that limn→∞ Fn(q) = F (q) for every q ∈ Q and
limn→∞ Fn(a

−) = F (a−) whenever F (a−) < F (a), where I write F (a−) for limx↑a F (x). Show that Fn → F
uniformly.

>>>(i) Let (Ω,Σ, µ) be a probability space and 〈Xn〉n∈N an independent identically distributed sequence
of real-valued random variables on Ω with common distribution function F . For a ∈ R, n ∈ N and
ω ∈ ⋂

i≤n domXi set

Fn(ω, a) =
1

n+1
#({i : i ≤ n, Xi(ω) ≤ a}).

Show that

limn→∞ supa∈R |Fn(ω, a)− F (a)| = 0

for almost every ω ∈ Ω.

(j) Let (Ω,Σ, µ) be a probability space, and λ the product measure on ΩN. Let f : Ω → R be a function,

and set f∗(ωωω) = lim supn→∞
1

n+1

∑n
i=0 f(ωi) for ωωω = 〈ωn〉n∈N ∈ ΩN. Show that

∫
f∗dλ =

∫
fdµ whenever

the right-hand-side is finite. (Hint : 133J(a-i).)

(k) Find an independent sequence 〈Xn〉n∈N of random variables with zero expectation such that ‖Xn‖1 =
1 and ‖ 1

n+1

∑n
i=0Xi‖1 ≥ 1

2 for every n ∈ N. (Hint : take Pr(Xn 6= 0) very small.)

(l) Use 272S to prove 273Nb in the case p = 2.

(m) Find an independent sequence 〈Xn〉n∈N of random variables with zero expectation such that ‖Xn‖∞ =
‖ 1
n+1

∑n
i=0Xi‖∞ = 1 for every n ∈ N.

(n) Repeat the work of this section for complex-valued random variables.
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(o) Let (X,Σ, µ) be a probability space and 〈En〉n∈N an independent sequence in Σ such that α =
limn→∞ µEn is defined. For x ∈ X set Ix = {n : x ∈ En}. Show that Ix has asymptotic density α for almost
every x.

273Y Further exercises (a) Let (Ω,Σ, µ) be a probability space, and λ the product measure on ΩN.
Suppose that f is a real-valued function, defined on a subset of Ω, such that

h(ωωω) = limn→∞
1

n+1

∑n
i=0 f(ωi)

exists in R for λ-almost every ωωω = 〈ωn〉n∈N in ΩN. Show (i) that f has conegligible domain (ii) f is Σ̂-

measurable, where Σ̂ is the domain of the completion of µ (iii) there is an a ∈ R such that h = a almost
everywhere in ΩN (iv) f is integrable, with

∫
fdµ = a.

(b) Let 〈Xn〉n∈N be a sequence of random variables with finite variance. Suppose that limn→∞ E(Xn) =

∞ and lim infn→∞
E(X2

n)

(E(Xn))2
≤ 1. Show that lim supn→∞Xn = ∞ a.e.

273 Notes and comments I have tried in this section to offer the most useful of the standard criteria
for pointwise convergence of averages of independent random variables. In my view the strong law of large
numbers, like Fubini’s theorem, is one of the crucial steps in measure theory, where the subject changes
character. Theorems depending on the strong law have a kind of depth and subtlety to them which is missing
in other parts of the subject. I have described only a handful of applications here, but I hope that 273G,
273J, 273Xd, 273Xg and 273Xi will give an idea of what is to be expected. These do have rather different
weights. Of the four, only 273J requires the full resources of this chapter; the others can be deduced from
the essentially simpler version in 273Xi.

273Xi is the ‘fundamental theorem of statistics’ or ‘Glivenko-Cantelli theorem’. The Fn(., a) are ‘statis-
tics’, computed from the Xi; they are the ‘empirical distributions’, and the theorem says that, almost surely,
Fn → F uniformly. (I say ‘uniformly’ to make the result look more striking, but of course the real content
is that Fn(., a) → F (a) almost surely for each a; the extra step is just 273Xh.)

I have included 273N to show that independence is quite as important in questions of norm-convergence as
it is in questions of pointwise convergence. It does not really rely on any form of the strong law; in the proof
I quote 273E as a quick way of disposing of the ‘uniformly bounded parts’ X ′

n, but of course Bienaymé’s
equality (272S) is already enough to show that if 〈X ′

n〉n∈N is an independent uniformly bounded sequence
of random variables with zero expectation, then ‖ 1

n+1 (X0 + . . . + Xn)‖p → 0 for p = 2, and therefore for
every p <∞.

The proofs of 273H, 273I and 273Na all involve ‘truncation’; the expression of a random variable X as the
sum of a bounded random variable and a tail. This is one of the most powerful techniques in the subject,
and will appear again in §276 and (in a rather different way) in §274. In 273Na I used a slightly different
formulation of the method, solely because it matched the definition of ‘uniformly integrable’ more closely.

Version of 13.4.10

274 The central limit theorem

The second of the great theorems to which this chapter is devoted is of a new type. It is a limit theorem,
but the limit involved is a limit of distributions, not of functions (as in the strong limit theorem above or the
martingale theorem below), nor of equivalence classes of functions (as in Chapter 24). I give three forms of
the theorem, in 274I-274K, all drawn as corollaries of Theorem 274G; the proof is spread over 274C-274G.
In 274A-274B and 274M I give the most elementary properties of the normal distribution.

274A The normal distribution We need some facts from basic probability theory.

(a) Recall that

c© 1995 D. H. Fremlin
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∫∞
−∞ e−x2/2dx =

√
2π

(263G). Consequently, if we set

µGE =
1√
2π

∫
E
e−x2/2dx

for every Lebesgue measurable set E, µG is a Radon probability measure (256E); we call it the standard
normal distribution. The corresponding distribution function is

Φ(a) = µG ]−∞, a] =
1√
2π

∫ a

−∞ e−x2/2dx

for a ∈ R; for the rest of this section I will reserve the symbol Φ for this function.
Writing Σ for the algebra of Lebesgue measurable subsets of R, (R,Σ, µG) is a probability space. Note

that it is complete, and has the same negligible sets as Lebesgue measure, because e−x2/2 > 0 for every x
(cf. 234Lc).

(b) A random variable X is standard normal if its distribution is µG; that is, if the function x 7→
1√
2π
e−x2/2 is a density function for X. The point of the remarks in (a) is that there are such random

variables; for instance, take the probability space (R,Σ, µG) there, and set X(x) = x for every x ∈ R.

(c) If X is a standard normal random variable, then

E(X) =
1√
2π

∫∞
−∞ xe−x2/2dx = 0,

Var(X) =
1√
2π

∫∞
−∞ x2e−x2/2dx = 1

by 263H.

(d) More generally, a random variable X is normal if there are a ∈ R and σ > 0 such that Z = (X−a)/σ
is standard normal. In this case X = σZ + a so E(X) = σE(Z) + a = a, Var(X) = σ2 Var(Z) = σ2.

We have, for any c ∈ R,

1

σ
√
2π

∫ c

∞
e−(x−a)2/2σ2

dx =
1√
2π

∫ (c−a)/σ

−∞
e−y2/2dy

(substituting x = a+ σy for −∞ < y ≤ (c− a)/σ)

= Pr(Z ≤ c−a

σ
) = Pr(X ≤ c).

So x 7→ 1

σ
√
2π
e−(x−a)2/2σ2

is a density function for X (271Ib). Conversely, of course, a random variable with

such a density function is normal, with expectation a and variance σ2. The normal distributions are the
distributions with these density functions.

(e) If Z is standard normal, so is −Z, because

Pr(−Z ≤ a) = Pr(Z ≥ −a) = 1√
2π

∫∞
−a
e−x2/2dx =

1√
2π

∫ a

−∞ e−x2/2dx.

The definition in the first sentence of (d) now makes it obvious that if X is normal, so is a + bX for any
a ∈ R and b ∈ R \ {0}.

274B Proposition Let X1, . . . , Xn be independent normal random variables. Then Y = X1 + . . .+Xn

is normal, with E(Y ) = E(X1) + . . .+ E(Xn) and Var(Y ) = Var(X1) + . . .+Var(Xn).

proof There are innumerable proofs of this fact; the following one gives me a chance to show off the power
of Chapter 26, but of course (at the price of some disagreeable algebra) 272U also gives the result.
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(a) Consider first the case n = 2. Setting ai = E(Xi), σi =
√

Var(Xi), Zi = (Xi − ai)/σi we get

independent standard normal variables Z1, Z2. Set ρ =
√
σ2
1 + σ2

2 , and express σ1, σ2 as ρ cos θ, ρ sin θ.
Consider U = cos θZ1 + sin θZ2. We know that (Z1, Z2) has a density function

(ζ1, ζ2) 7→ g(ζ1, ζ2) =
1

2πσ1σ2

e−(ζ2
1+ζ2

2 )/2

(272I). Consequently, for any c ∈ R,

Pr(U ≤ c) =
∫
F
g(z)dz,

where F = {(ζ1, ζ2) : ζ1 cos θ + ζ2 sin θ ≤ c}. But now let T be the matrix

(
cos θ − sin θ
sin θ cos θ

)
.

Then it is easy to check that

T−1[F ] = {(η1, η2) : η1 ≤ c},

detT = 1, g(Ty) = g(y) for every y ∈ R2,

so by 263A

Pr(U ≤ c) =
∫
F
g(z)dz =

∫
T−1[F ]

g(Ty)dy =
∫
]−∞,c]×R

g(y)dy = Pr(Z1 ≤ c) = Φ(c).

As this is true for every c ∈ R, U also is standard normal (I am appealing to 271Ga again). But

X1 +X2 = σ1Z1 + σ2Z2 + a1 + a2 = ρU + a1 + a2,

so X1 +X2 is normal.

(b) Now we can induce on n. If n = 1 the result is trivial. For the inductive step to n+ 1 ≥ 2, we know
that X1 + . . .+Xn is normal, by the inductive hypothesis, and that Xn+1 is independent of X1 + . . .+Xn,
by 272L. So X1 + . . .+Xn +Xn+1 is normal, by (a).

The computation of the expectation and variance of X1 + . . .+Xn is immediate from 271Ab and 272S.

274C Lemma Let U0, . . . , Un, V0, . . . , Vn be independent real-valued random variables and h : R → R

a bounded Borel measurable function. Then

|E
(
h(
∑n

i=0 Ui)− h(
∑n

i=0 Vi)
)
| ≤ ∑n

i=0 supt∈R |E
(
h(t+ Ui)− h(t+ Vi)

)
|.

proof For 0 ≤ j ≤ n+ 1, set Zj =
∑j−1

i=0 Ui +
∑n

i=j Vi, taking Z0 =
∑n

i=0 Vi and Zn+1 =
∑n

i=0 Ui, and for

j ≤ n set Wj =
∑j−1

i=0 Uj +
∑n

i=j+1 Vj , so that Zj = Wj + Vj and Zj+1 = Wj + Uj and Wj , Uj and Vj are

independent (I am appealing to 272K, as in 272L). Then

|E
(
h(

n∑

i=0

Ui)− h(

n∑

i=0

Vi)
)
| = |E

( n∑

i=0

h(Zi+1)− h(Zi)
)
|

≤
n∑

i=0

|E
(
h(Zi+1)− h(Zi)

)
|

=
n∑

i=0

|E
(
h(Wi + Ui)− h(Wi + Vi)

)
|.

To estimate this sum I turn it into a sum of integrals, as follows. For each i, let νWi
be the distribution

of Wi, and so on. Because (w, u) 7→ w + u is continuous, therefore Borel measurable, (w, u) 7→ h(w, u) also
is Borel measurable; accordingly (w, u, v) 7→ h(w + u) − h(w + v) is measurable for each of the product
measures νWi

× νUi
× νVi

on R3, and 271E and 272G give us
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∣∣E
(
h(Wi + Ui)−h(Wi + Vi)

)∣∣

=
∣∣
∫
h(w + u)− h(w + v)(νWi

× νUi
× νVi

)d(w, u, v)
∣∣

=
∣∣
∫ (∫

h(w + u)− h(w + v)(νUi
× νVi

)d(u, v)
)
νWi

(dw)
∣∣

≤
∫ ∣∣

∫
h(w + u)− h(w + v)(νUi

× νVi
)d(u, v)

∣∣νWi
(dw)

=

∫ ∣∣E
(
h(w + Ui)− h(w + Vi)

)∣∣νWi
(dw)

≤ sup
t∈R

∣∣E
(
h(t+ Ui)− h(t+ Vi)

)∣∣.

So we get

|E
(
h(

n∑

i=0

Ui)− h(

n∑

i=0

Vi)
)
| ≤

n∑

i=0

|E
(
h(Wi + Ui)− h(Wi + Vi)

)
|

≤
n∑

i=0

sup
t∈R

|E
(
h(t+ Ui)− h(t+ Vi)

)
|,

as required.

274D Lemma Let h : R → R be a bounded three-times-differentiable function such that M2 =
supx∈R |h′′(x)|, M3 = supx∈R |h′′′(x)| are both finite. Let ǫ > 0.

(a) Let U be a real-valued random variable with zero expectation and finite variance σ2. Then for any
t ∈ R we have

|E(h(t+ U))− h(t)− σ2

2
h′′(t)| ≤ 1

6
ǫM3σ

2 +M2E(ψǫ(U))

where ψǫ(x) = 0 if |x| ≤ ǫ, x2 if |x| > ǫ.

(b) Let U0, . . . , Un, V0, . . . , Vn be independent random variables with finite variances, and suppose that
E(Ui) = E(Vi) = 0 and Var(Ui) = Var(Vi) = σ2

i for every i ≤ n. Then

|E
(
h(

n∑

i=0

Ui)− h(

n∑

i=0

Vi)
)
|

≤ 1

3
ǫM3

n∑

i=0

σ2
i +M2

n∑

i=0

E
(
ψǫ(Ui)

)
+M2

n∑

i=0

E
(
ψǫ(Vi)

)
.

proof (a) The point is that, by Taylor’s theorem with remainder,

|h(t+ x)− h(t)− xh′(t)| ≤ 1

2
M2x

2,

|h(t+ x)− h(t)− xh′(t)− 1

2
x2h′′(t)| ≤ 1

6
M3|x|3

for every x ∈ R. So

|h(t+ x)− h(t)− xh′(t)− 1

2
x2h′′(t)| ≤ min(

1

6
M3|x|3,M2x

2) ≤ 1

6
ǫM3x

2 +M2ψǫ(x).

Integrating with respect to the distribution of U , we get
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|E
(
h(t+ U))− h(t)− 1

2
h′′(t)σ2

)
| = |E(h(t+ U))− h(t)− h′(t)E(U)− 1

2
h′′(t)E(U2)|

= |E
(
h(t+ U)− h(t)− h′(t)U − 1

2
h′′(t)U2

)
|

≤ E
(
|h(t+ U)− h(t)− h′(t)U − 1

2
h′′(t)U2|

)

≤ E
(1
6
ǫM3U

2 +M2ψǫ(U)
)

=
1

6
ǫM3σ

2 +M2E(ψǫ(U)),

as claimed.

(b) By 274C,

|E
(
h(

n∑

i=0

Ui)− h(

n∑

i=0

Vi)
)
| ≤

n∑

i=0

sup
t∈R

|E
(
h(t+ Ui)− h(t+ Vi)

)
|

≤
n∑

i=0

sup
t∈R

(
|E(h(t+ Ui))− h(t)− 1

2
h′′(t)σ2

i |

+ |E(h(t+ Vi))− h(t)− 1

2
h′′(t)σ2

i |
)
,

which by (a) above is at most

∑n
i=0

1

3
ǫM3σ

2
i +M2E(ψǫ(Ui)) +M2E(ψǫ(Vi)),

as claimed.

274E Lemma For any ǫ > 0, there is a three-times-differentiable function h : R → [0, 1], with continuous
third derivative, such that h(x) = 1 for x ≤ −ǫ and h(x) = 0 for x ≥ ǫ.

proof Let f : ]−ǫ, ǫ[ → ]0,∞[ be any twice-differentiable function such that

limx↓−ǫ f
(n)(x) = limx↑ǫ f (n)(x) = 0

for n = 0, 1 and 2, writing f (n) for the nth derivative of f ; for instance, you could take f(x) = (ǫ2 − x2)3,

or f(x) = exp(− 1

ǫ2−x2
). Now set

h(x) = 1−
∫ x

−ǫ
f/
∫ ǫ

−ǫ
f

for |x| ≤ ǫ.

274F Lindeberg’s theorem Let ǫ > 0. Then there is a δ > 0 such that whenever X0, . . . , Xn are
independent real-valued random variables such that

E(Xi) = 0 for every i ≤ n,

∑n
i=0 Var(Xi) = 1,

∑n
i=0 E(ψδ(Xi)) ≤ δ

(writing ψδ(x) = 0 if |x| ≤ δ, x2 if |x| > δ), then
∣∣Pr(∑n

i=0Xi ≤ a)− Φ(a)
∣∣ ≤ ǫ

for every a ∈ R.

proof (a) Let h : R → [0, 1] be a three-times-differentiable function, with continuous third derivative, such
that χ ]−∞,−ǫ] ≤ h ≤ χ ]−∞, ǫ], as in 274E. Set
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M2 = supx∈R |h′′(x)| = sup|x|≤ǫ |h′′(x)|,

M3 = supx∈R |h′′′(x)| = sup|x|≤ǫ |h′′′(x)|;

because h′′′ is continuous, both are finite. Write ǫ′ = ǫ(1− 2√
2π

) > 0, and let η > 0 be such that

(
1

3
M3 + 2M2)η ≤ ǫ′.

Note that limm→∞ ψm(x) = 0 for every x, so if X is a random variable with finite variance we must
have limm→∞ E(ψm(X)) = 0, by Lebesgue’s Dominated Convergence Theorem; let m ≥ 1 be such that
E(ψm(Z)) ≤ η, where Z is some (or any) standard normal random variable. Finally, take δ > 0 such that
δ + δ2 ≤ (η/m)2; note that δ ≤ η.

(I hope that you have seen enough ǫ-δ arguments not to be troubled by any expectation of understanding
the reasons for each particular formula here before reading the rest of the argument. But the formula
1
3M3 + 2M2, in association with ψδ, should recall 274D.)

(b) Let X0, . . . , Xn be independent random variables with zero expectation such that
∑n

i=0 Var(Xi) = 1
and

∑n
i=0 E(ψδ(Xi)) ≤ δ. We need an auxiliary sequence Z0, . . . , Zn of standard normal random variables

to match against the Xi. To create this, I use the following device. Suppose that the probability space
underlying X0, . . . , Xn is (Ω,Σ, µ). Set Ω′ = Ω × Rn+1, and let µ′ be the product measure on Ω′, where
Ω is given the measure µ and each factor R of Rn+1 is given the measure µG. Set X ′

i(ω, z) = Xi(ω)
and Zi(ω, z) = ζi for ω ∈ domXi, z = (ζ0, . . . , ζn) ∈ Rn+1, i ≤ n. Then X ′

0, . . . , X
′
n, Z0, . . . , Zn are

independent, and each X ′
i has the same distribution as Xi (272Mb). Consequently S′ = X ′

0 + . . .+X ′
n has

the same distribution as S = X0 + . . .+Xn (using 272T, or otherwise); so that E(g(S′)) = E(g(S)) for any
bounded Borel measurable function g (using 271E). Also each Zi has distribution µG, so is standard normal.

(c) Write σi =
√

Var(Xi) for each i, and set K = {i : i ≤ n, σi > 0}. Observe that η/σi ≥ m for each
i ∈ K. PPP We know that

σ2
i = Var(Xi) = E(X2

i ) ≤ E(δ2 + ψδ(Xi)) = δ2 + E(ψδ(Xi)) ≤ δ2 + δ,

so

η

σi

≥ η√
δ+δ2

≥ m

by the choice of δ. QQQ

(d) Consider the independent normal random variables σiZi. We have E(σiZi) = E(X ′
i) = 0 and

Var(σiZi) = Var(X ′
i) = σ2

i for each i, so that Z = σ0Z0 + . . . + σnZn has expectation 0 and variance∑n
i=0 σ

2
i = 1; moreover, by 274B, Z is normal, so in fact it is standard normal. Now we have

n∑

i=0

E(ψη(σiZi)) =
∑

i∈K

E(ψη(σiZi)) =
∑

i∈K

σ2
i E(ψη/σi

(Zi))

(because σ2ψη/σ(x) = ψη(σx) whenever x ∈ R, σ > 0)

=
∑

i∈K

σ2
i E(ψη/σi

(Z)) ≤
∑

i∈K

σ2
i E(ψm(Z))

(because, by (c), η/σi ≥ m for every i ∈ K, so ψη/σi
(t) ≤ ψm(t) for every t)

= E(ψm(Z)) ≤ η

(by the choice of m). On the other hand, we surely have
∑n

i=0 E(ψη(X
′
i)) =

∑n
i=0 E(ψη(Xi)) ≤

∑n
i=0 E(ψδ(Xi)) ≤ δ ≤ η.

(e) For any real number t, set

ht(x) = h(x− t)
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for each x ∈ R. Then ht is three-times-differentiable, with supx∈R |h′′t (x)| = M2 and supx∈R |h′′′(x)| = M3.
Consequently

|E(ht(S))− E(ht(Z))| ≤ ǫ′.

PPP By 274Db,

|E(ht(S))− E(ht(Z))| = |E(ht(S′))− E(ht(Z))|

= |E(ht(
n∑

i=0

X ′
i))− E(ht(

n∑

i=0

σiZi))|

≤ 1

3
ηM3

n∑

i=0

σ2
i +M2

n∑

i=0

E(ψη(Xi)) +M2

n∑

i=0

E(ψη(σiZi))

≤ 1

3
ηM3 +M2η +M2η ≤ ǫ′,

by the choice of η. QQQ

(f) Now take any a ∈ R. We have

χ ]−∞, a− 2ǫ] ≤ ha−ǫ ≤ χ ]∞, a] ≤ ha+ǫ ≤ χ ]−∞, a+ ǫ].

Note also that, for any b,

Φ(b+ 2ǫ) = Φ(b) +
1√
2π

∫ b+2ǫ

b
e−x2/2dx ≤ Φ(b) +

2ǫ√
2π

= Φ(b) + ǫ− ǫ′.

Consequently

Φ(a)− ǫ ≤ Φ(a− 2ǫ)− ǫ′ = Pr(Z ≤ a− 2ǫ)− ǫ′ ≤ E(ha−ǫ(Z))− ǫ′ ≤ E(ha−ǫ(S))

≤ Pr(S ≤ a)

≤ E(ha+ǫ(S)) ≤ E(ha+ǫ(Z)) + ǫ′ ≤ Pr(Z ≤ a+ 2ǫ) + ǫ′ = Φ(a+ 2ǫ) + ǫ′

≤ Φ(a) + ǫ.

But this means just that
∣∣Pr(∑n

i=0Xi ≤ a)− Φ(a)
∣∣ ≤ ǫ,

as claimed.

274G Central Limit Theorem Let 〈Xn〉n∈N be an independent sequence of random variables, all with

zero expectation and finite variance; write sn =
√∑n

i=0 Var(Xi) for each n. Suppose that

limn→∞
1

s2n

∑n
i=0 E(ψδsn(Xi)) = 0 for every δ > 0,

writing ψδ(x) = 0 if |x| ≤ δ, x2 if |x| > δ. Set

Sn =
1

sn
(X0 + . . .+Xn)

for each n ∈ N such that sn > 0. Then

limn→∞ Pr(Sn ≤ a) = Φ(a)

uniformly for a ∈ R.

proof Given ǫ > 0, take δ > 0 as in Lindeberg’s theorem (274F). Then for all n large enough,

1

s2n

∑n
i=0 E(ψδsn(Xi)) ≤ δ.

Fix on any such n. Of course we have sn > 0. Set

X ′
i =

1

sn
Xi for i ≤ n;
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then X ′
0, . . . , X

′
n are independent, with zero expectation,

∑n
i=0 Var(X

′
i) =

∑n
i=0

1

s2n
Var(Xi) = 1,

∑n
i=0 E(ψδ(X

′
i)) =

∑n
i=0

1

s2n
E(ψδsn(Xi)) ≤ δ.

By 274F,
∣∣Pr(Sn ≤ a)− Φ(a)

∣∣ =
∣∣Pr(∑n

i=0X
′
i ≤ a)− Φ(a)

∣∣ ≤ ǫ

for every a ∈ R. Since this is true for all n large enough, we have the result.

274H Remarks (a) The condition

limn→∞
1

s2n

∑n
i=0 E(ψǫsn(Xi)) = 0 for every ǫ > 0

is called Lindeberg’s condition, following Lindeberg 1922.

(b) Lindeberg’s condition is necessary as well as sufficient, in the following sense. Suppose that 〈Xn〉n∈N

is an independent sequence of real-valued random variables with zero expectation and finite variance; write

σn =
√

Var(Xn), sn =
√∑n

i=0 Var(Xi) for each n. Suppose that limn→∞ sn = ∞, limn→∞
σn

sn
= 0 and that

limn→∞ Pr(Sn ≤ a) = Φ(a) for each a ∈ R, where Sn =
1

sn
(X0 + . . .+Xn). Then

limn→∞
1

s2n

∑n
i=0 E(ψǫsn(Xi)) = 0

for every ǫ > 0. (Feller 66, §XV.6, Theorem 3; Loève 77, §21.2.)

(c) The proof of 274F-274G here is adapted from Feller 66, §VIII.4. It has the virtue of being
‘elementary’, in that it does not involve characteristic functions. Of course this has to be paid for by a
number of detailed estimations; and – what is much more serious – it leaves us without one of the most
powerful techniques for describing distributions. The proof does offer a method of bounding

|Pr(Sn ≤ a)− Φ(a)|;
but it should be said that the bounds obtained are not useful ones, being grossly over-pessimistic, at least
in the readily analysable cases. (For instance, a better bound, in many cases, is given by the Berry-Esséen
theorem: if 〈Xn〉n∈N is independent and identically distributed, with zero expectation, and the common

values of
√
E(X2

n), E(|Xn|3) are σ, ρ <∞, then

|Pr(Sn ≤ a)− Φ(a)| ≤ 33ρ

4σ3
√
n+1

;

see Feller 66, §XVI.5, Loève 77, §21.3, or Hall 82.) Furthermore, when |a| is large, Φ(a) is exceedingly
close to either 0 or 1, so that any uniform bound for |Pr(S ≤ a)−Φ(a)| gives very little information; a great
deal of work has been done on estimating the tails of such distributions more precisely, subject to special
conditions. For instance, if X0, . . . , Xn are independent random variables with zero expectation, uniformly
bounded with |Xi| ≤ K almost everywhere for each i, Y = X0 + . . .+Xn, s =

√
Var(Y ) > 0, S = 1

sY , then
for any α ∈ [0, s/K]

Pr(|S| ≥ α) ≤ 2 exp
( −α2

2(1 + αK
2s )2

)
≏ 2e−α2/2

if s≫ αK (Rényi 70, §VII.4, Theorem 1). A less precise result of the same kind is in 272Xl.

I now list some of the standard cases in which Lindeberg’s condition is satisfied, so that we may apply
the theorem.
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274I Corollary Let 〈Xn〉n∈N be an independent sequence of real-valued random variables, all with the
same distribution, and suppose that their common expectation is 0 and their common variance is finite and
not zero. Write σ for the common value of

√
Var(Xn), and set

Sn =
1

σ
√
n+1

(X0 + . . .+Xn)

for each n ∈ N. Then

limn→∞ Pr(Sn ≤ a) = Φ(a)

uniformly for a ∈ R.

proof In the language of 274G-274H, we have σn = σ, sn = σ
√
n+ 1 and Sn =

1

sn

∑n
i=0Xi. Moreover, if

ν is the common distribution of the Xn, then

E(ψǫsn(Xn)) =
∫
{x:|x|>ǫσ

√
n} x

2ν(dx) → 0

by Lebesgue’s Dominated Convergence Theorem; so that

1

s2n

∑n
i=0 E(ψǫsn(Xn)) → 0

by 273Ca. Thus Lindeberg’s condition is satisfied and 274G gives the result.

274J Corollary Let 〈Xn〉n∈N be an independent sequence of real-valued random variables with zero
expectation, and suppose that {X2

n : n ∈ N} is uniformly integrable and that

lim infn→∞
1

n+1

∑n
i=0 Var(Xi) > 0.

Set

sn =
√∑n

i=0 Var(Xi), Sn =
1

sn
(X0 + . . .+Xn)

for large n ∈ N. Then

limn→∞ Pr(Sn ≤ a) = Φ(a)

uniformly for a ∈ R.

proof The condition

lim infn→∞
1

n+1

∑n
i=0 Var(Xi) > 0

means that there are c > 0, n0 ∈ N such that sn ≥ c
√
n+ 1 for every n ≥ n0. Let the underlying space be

(Ω,Σ, µ), and take ǫ, η > 0. Writing ψδ(x) = 0 for |x| ≤ δ, x2 for |x| > δ, as in 274F-274G, we have

E(ψǫsn(Xi)) ≤ E(ψcǫ
√
n+1(Xi)) =

∫
F (i,cǫ

√
n+1)

X2
i dµ

for n ≥ n0, i ≤ n, where F (i, γ) = {ω : ω ∈ domXi, |Xi(ω)| > γ}. Because {X2
i : i ∈ N} is uniformly

integrable, there is a γ ≥ 0 such that
∫
F (i,γ)

X2
i dµ ≤ ηc2 for every i ∈ N (246I). Let n1 ≥ n0 be such that

cǫ
√
n1 + 1 ≥ γ; then for any n ≥ n1

1

s2n

∑n
i=0 E(ψǫsn(Xi)) ≤ 1

c2(n+1)

∑n
i=0 ηc

2 = η.

As ǫ and η are arbitrary, the conditions of 274G are satisfied and the result follows.

274K Corollary Let 〈Xn〉n∈N be an independent sequence of real-valued random variables with zero
expectation, and suppose that

(i) there is some δ > 0 such that supn∈N E(|Xn|2+δ) <∞,

(ii) lim infn→∞
1

n+1

∑n
i=0 Var(Xi) > 0.

Set sn =
√∑n

i=0 Var(Xi) and
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Sn =
1

sn
(X0 + . . .+Xn)

for large n ∈ N. Then

limn→∞ Pr(Sn ≤ a) = Φ(a)

uniformly for a ∈ R.

proof The point is that {X2
n : n ∈ N} is uniformly integrable. PPP Set K = 1 + supn∈N E(|Xn|2+δ). Given

ǫ > 0, set M = (K/ǫ)1/δ. Then (X2
n −M)+ ≤M−δ|Xn|2+δ, so

E(X2
n −M)+ ≤ KM−δ = ǫ

for every n ∈ N. As ǫ is arbitrary, {X2
n : n ∈ N} is uniformly integrable. QQQ

Accordingly the conditions of 274J are satisfied and we have the result.

274L Remarks (a) All the theorems of this section are devoted to finding conditions under which a
random variable S is ‘nearly’ standard normal, in the sense that Pr(S ≤ a) ≏ Pr(Z ≤ a) uniformly for
a ∈ R, where Z is some (or any) standard normal random variable. In all cases the random variable S is
normalized to have expectation 0 and variance 1, and is a sum of a large number of independent random
variables. (In 274G and 274I-274K it is explicit that there must be many Xi, since they refer to a limit as
n → ∞. This is not said in so many words in the formulation I give of Lindeberg’s theorem, but the proof
makes it evident that n(δ + δ2) ≥ 1, so surely n will have to be large there also.)

(b) I cannot leave this section without remarking that the form of the definition of ‘nearly standard
normal’ may lead your intuition astray if you try to apply it to other distributions. If we take F to be the
distribution function of S, so that F (a) = Pr(S ≤ a), I am saying that S is ‘nearly standard normal’ if
supa∈R |F (a)− Φ(a)| is small. It is natural to think of this as approximation in a metric, writing

ρ̃(ν, ν ′) = supa∈R |Fν(a)− Fν ′(a)|
for distributions ν, ν ′ on R, where Fν(a) = ν ]−∞, a]. In this form, the theorems above can be read as
finding conditions under which limn→∞ ρ̃(νSn

, µG) = 0. But the point is that ρ̃ is not really the right metric
to use. It works here because µG is atomless. But suppose, for instance, that ν is the Dirac measure on
R concentrated at 0, and that νn is the distribution of a normal random variable with expectation 0 and
variance 1

n , for each n ≥ 1. Then Fν(0) = 1 and Fνn
(0) = 1

2 , so ρ̃(νn, ν) = 1
2 for each n ≥ 1. However,

for most purposes one would regard the difference between νn and ν as small, and surely ν is the only
distribution which one could reasonably call a limit of the νn.

(c) The difficulties here present themselves in more than one form. A statistician would be unhappy
with the idea that the νn of (b) above were far from ν (and from each other), on the grounds that any
measurement involving random variables with these distributions must be subject to error, and small errors
of measurement will render them indistinguishable. A pure mathematician, looking forward to the possibility
of generalizing these results, will be unhappy with the emphasis given to the values of ν ]−∞, a], for which
it may be difficult to find suitable equivalents in more abstract spaces.

(d) These considerations join together to lead us to a rather different definition for a topology on the
space P of probability distributions on R. For any bounded continuous function h : R → R we have a
pseudometric ρh : P × P → [0,∞[ defined by writing

ρh(ν, ν
′) = |

∫
h dν −

∫
h dν ′|

for all ν, ν ′ ∈ P . The vague topology on P is that generated by the pseudometrics ρh (2A3F). I will
not go into its properties in detail here (some are sketched in 274Yc-274Yf below; see also 285K-285L, 285S
and 437J-437T and 454T-454V in Volume 4). But I maintain that the right way to look at the results
of this chapter is to say that (i) the distributions νS are close to µG for the vague topology (ii) the sets
{ν : ρ̃(ν, µG) < ǫ} are open for that topology, and that is why ρ̃(νS , µG) is small.

*274M I conclude with a simple pair of inequalities which are frequently useful when studying normal
random variables.
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Lemma (a)
∫∞
x
e−t2/2dt ≤ 1

x
e−x2/2 for every x > 0.

(b)
∫∞
x
e−t2/2dt ≥ 1

2x
e−x2/2 for every x ≥ 1.

proof (a)

∫ ∞

x

e−t2/2dt =

∫ ∞

0

e−(x+s)2/2ds ≤ e−x2/2

∫ ∞

0

e−xsds =
1

x
e−x2/2.

(b) Set

f(t) = e−t2/2 − (1− x(t− x))e−x2/2.

Then f(x) = f ′(x) = 0 and f ′′(t) = (t2−1)e−t2/2 is positive for t ≥ x (because x ≥ 1). Accordingly f(t) ≥ 0

for every t ≥ x, and
∫ x+1/x

x
f(t)dt ≥ 0. But this means just that

∫ ∞

x

e−t2/2dt ≥
∫ x+ 1

x

x

e−t2/2dt ≥
∫ x+ 1

x

x

(1− x(t− x))e−x2/2dt =
1

2x
e−x2/2,

as required.

274X Basic exercises >>>(a) Use 272U to give an alternative proof of 274B.

(b) Suppose that f : R → R is absolutely continuous on every closed bounded interval, and that∫∞
−∞ |f ′(x)|e−ax2

dx < ∞ for every a > 0. Let X be a normal random variable with zero expectation.

Show that E(Xf(X)) and E(X2)E(f ′(X)) are defined and equal.

(c) Prove 274D when h′′ is M3-Lipschitz but not necessarily differentiable.

(d) Let 〈mk〉k∈N be a strictly increasing sequence in N such that m0 = 0 and limk→∞mk/mk+1 = 0. Let
〈Xn〉n∈N be an independent sequence of random variables such that Pr(Xn =

√
mk) = Pr(Xn = −√

mk) =
1/2mk, Pr(Xn = 0) = 1 − 1/mk whenever mk−1 ≤ n < mk. Show that the Central Limit Theorem is not
valid for 〈Xn〉n∈N. (Hint : setting Wk = (X0 + . . . +Xmk−1)/

√
mk, show that Pr(Wk ∈ [ǫ, 1 − ǫ]) → 0 for

every ǫ > 0.)

(e) Let 〈Xn〉n∈N be any independent sequence of random variables all with the same distribution; suppose

that they all have finite variance σ2 > 0, and that their common expectation is c. Set Sn =
1√
n+1

(X0 +

. . .+Xn) for each n, and let Y be a normal random variable with expectation c and variance σ2. Show that
limn→∞ Pr(Sn ≤ a) = Pr(Y ≤ a) uniformly for a ∈ R.

>>>(f) Show that for any a ∈ R,

lim
n→∞

1

2n

⌊n
2 +a

√
n
2 ⌋∑

r=0

n!

r!(n− r)!
= lim

n→∞
1

2n
#({I : I ⊆ n, #(I) ≤ n

2
+ a

√
n

2
}) = Φ(a).

(g) Show that 274I is a special case of 274J.

(h) Let 〈Xn〉n∈N be an independent sequence of real-valued random variables with zero expectation. Set

sn =
√∑n

i=0 Var(Xi) and

Sn =
1

sn
(X0 + . . .+Xn)

for each n ∈ N. Suppose that there is some δ > 0 such that

limn→∞
1

s2+δ
n

∑n
i=0 E(|Xi|2+δ) = 0.

Show that limn→∞ Pr(Sn ≤ a) = Φ(a) uniformly for a ∈ R. (This is a form of Liapounoff’s central limit
theorem; see Liapounoff 1901.)
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(i) Let P be the set of Radon probability measures on R. Let ν0 ∈ P , a ∈ R. Show that the map
ν 7→ ν ]−∞, a] : P → [0, 1] is continuous at ν0 for the vague topology on P iff ν0{a} = 0.

(j) Let 〈Xn〉n∈N be an independent identically distributed sequence of random variables with non-zero
finite variance. Let 〈tn〉n∈N be a sequence in R such that

∑∞
n=0 t

2
n = ∞. Show that

∑∞
n=0 tnXn is undefined

or infinite a.e. (Hint : First deal with the case in which 〈tn〉n∈N does not converge to 0. Otherwise, use 274G
to show that, for any n ∈ N, limm→∞ Pr(|∑m

i=n tiXi| ≥ 1) ≥ 1
2 ). See also 276Xd.)

(k) Let 〈Xn〉n∈N be an independent sequence of real-valued random variables with zero expectation.
Suppose that M ≥ 0 is such that |Xn| ≤ M a.e. for every n, and that

∑∞
n=0 Var(Xn) = ∞. Set sn =

√∑n
i=0 Var(Xi) for each n, and Sn =

1

sn

∑n
i=0Xi when sn > 0. Show that limn→∞ Pr(Sn ≤ a) = Φ(a) for

every a ∈ R.

274Y Further exercises (a) (Steele 86) Suppose thatX0, . . . , Xn, Y0, . . . , Yn are independent random
variables such that, for each i ≤ n, Xi and Yi have the same distribution. Let h : Rn+1 → R be a Borel
measurable function, and set Z = h(X0, . . . , Xn), Zi = h(X0, . . . , Xi−1, Yi, Xi+1, . . . , Xn) for each i (with
Z0 = h(Y0, X1, . . . , Xn) and Zn = h(X0, . . . , Xn−1, Yn), of course). Suppose that Z has finite expectation.
Show that Var(Z) ≤ 1

2

∑n
i=0 E(Zi − Z)2.

(b) Show that for any ǫ > 0 there is a smooth function h : R → [0, 1] such that χ ]−∞,−ǫ] ≤ h ≤ χ [ǫ,∞[.

(c) Write P for the set of Radon probability measures on R. For ν, ν ′ ∈ P set

ρ(ν, ν ′) = inf{ǫ : ǫ ≥ 0, ν ]−∞, a− ǫ]− ǫ ≤ ν ′ ]−∞, a] ≤ ν ]−∞, a+ ǫ] + ǫ

for every a ∈ R}.

Show that ρ is a metric on P and that it defines the vague topology on P . (ρ is called Lévy’s metric.)

(d) Write P for the set of Radon probability measures on R, and let ρ̃ be the metric on P defined in
274Lb. Show that if ν ∈ P is atomless and ǫ > 0, then {ν ′ : ν ′ ∈ P, ρ̃(ν ′, ν) < ǫ} is open for the vague
topology on P .

(e) Let 〈Sn〉n∈N be a sequence of real-valued random variables, and Z a standard normal random variable.
Show that the following are equiveridical:

(i) µG = limn→∞ νSn
for the vague topology, writing νSn

for the distribution of Sn;
(ii) E(h(Z)) = limn→∞ E(h(Sn)) for every bounded continuous function h : R → R;
(iii) E(h(Z)) = limn→∞ E(h(Sn)) for every bounded function h : R → R such that (α) h has continuous

derivatives of all orders (β) {x : h(x) 6= 0} is bounded;
(iv) limn→∞ Pr(Sn ≤ a) = Φ(a) for every a ∈ R;
(v) limn→∞ Pr(Sn ≤ a) = Φ(a) uniformly for a ∈ R;
(vi) {a : limn→∞ Pr(Sn ≤ a) = Φ(a)} is dense in R.

(See also 285L.)

(f) Let (Ω,Σ, µ) be a probability space and P the set of Radon probability measures on R. Show that
X 7→ νX : L0(µ) → P is continuous for the topology of convergence in measure on L

0(µ) and the vague
topology on P .

(g) Let 〈Xn〉n∈N be an independent sequence of real-valued random variables. Suppose that there is an
M ≥ 0 such that |Xn| ≤ M a.e. for every n ∈ N, and that

∑∞
n=0Xn is defined, as a real number, almost

everywhere. Show that
∑∞

n=0 Var(Xn) <∞.

274 Notes and comments For more than two hundred years the Central Limit Theorem has been one
of the glories of mathematics, and no branch of mathematics or science would be the same without it. I
suppose it is the most important single theorem of probability theory; and I observe that the proof hardly
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uses measure theory. To be sure, I have clothed the arguments above in the language of measure and
integration. But if you look at their essence, the vital elements of the proof are

(i) a linear combination of independent normal random variables is normal (274Ae, 274B);

(ii) if U , V , W are independent random variables, and h is a bounded continuous function,
then |E(h(U, V,W ))| ≤ supt∈R |E(h(U, V, t))| (274C);

(iii) if (X0, . . . , Xn) are independent random variables, then we can find independent ran-
dom variables (X ′

0, . . . , X
′
n, Z0, . . . , Zn) such that Zj is standard normal and X ′

j has the same
distribution as Xj , for each j (274F).

The rest of the argument consists of elementary calculus, careful estimations and a few of the most fun-
damental properties of expectations and independence. Now (ii) and (iii) are justified above by appeals
to Fubini’s theorem, but surely they belong to the list of probabilistic intuitions which take priority over
the identification of probabilities with countably additive functionals. If they had given any insuperable
difficulty it would have been a telling argument against the model of probability we were using, but would
not have affected the Central Limit Theorem. In fact (i) seems to be the place where we really need a
mathematical model of the concept of ‘distribution’, and all the relevant calculations can be done in terms
of the Riemann integral on the plane, with no mention of countable additivity. So while I am happy and
proud to have written out a version of these beautiful ideas, I have to admit that they are in no essential
way dependent on the rest of this treatise.

In §285 I will describe a quite different approach to the theorem, using much more sophisticated machinery;
but it will again be the case, perhaps more thoroughly hidden, that the relevance of measure theory will
not be to the theorem itself, but to our imagination of what an arbitrary distribution is. For here I do
have a claim to make for my subject. The characterization of distribution functions as arbitrary monotonic
functions, continuous on the right, and with the correct limits at ±∞ (271Xb), together with the analysis
of monotonic functions in §226, gives us a chance of forming a mental picture of the proper class of objects
to which such results as the Central Limit Theorem can be applied.

Theorem 274F is a trifling modification of Theorem 3 of Lindeberg 1922. Like the original, it emphasizes
what I believe to be vital to all the limit theorems of this chapter: they are best founded on a proper
understanding of finite sequences of random variables. Lindeberg’s condition was the culmination of a long
search for the most general conditions under which the Central Limit Theorem would be valid. I offer
a version of Laplace’s theorem (274Xf) as the starting place, and Liapounoff’s condition (274Xh) as an
example of one of the intermediate stages. Naturally the corollaries 274I, 274J, 274K and 274Xe are those
one seeks to apply by choice. There is an intriguing, but as far as I know purely coincidental, parallel between
273H/274K and 273I/274Xe. As an example of an independent sequence 〈Xn〉n∈N of random variables, all
with expectation zero and variance 1, to which the Central Limit Theorem does not apply, I offer 274Xd.

Version of 3.12.12

275 Martingales

This chapter so far has been dominated by independent sequences of random variables. I now turn to
another of the remarkable concepts to which probabilistic intuitions have led us. Here we study evolving
systems, in which we gain progressively more information as time progresses. I give the basic theorems
on pointwise convergence of martingales (275F-275H, 275K) and a very brief account of ‘stopping times’
(275L-275P).

275A Definition Let (Ω,Σ, µ) be a probability space with completion (Ω, Σ̂, µ̂), and 〈Σn〉n∈N a non-

decreasing sequence of σ-subalgebras of Σ̂. (Such sequences 〈Σn〉n∈N are called filtrations.) A martingale
adapted to 〈Σn〉n∈N is a sequence 〈Xn〉n∈N of integrable real-valued random variables on Ω such that
(i) domXn ∈ Σn and Xn is Σn-measurable for each n ∈ N (ii) whenever m ≤ n ∈ N and E ∈ Σm then∫
E
Xn =

∫
E
Xm.

Note that for (ii) it is enough if
∫
E
Xn+1 =

∫
E
Xn whenever n ∈ N and E ∈ Σn.

c© 2001 D. H. Fremlin
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275B Examples We have seen many contexts in which such sequences appear naturally; here are a few.

(a) Let (Ω,Σ, µ) be a probability space and 〈Σn〉n∈N a non-decreasing sequence of σ-subalgebras of Σ.
Let X be any real-valued random variable on Ω with finite expectation, and for each n ∈ N let Xn be a
conditional expectation of X on Σn, as in §233. Subject to the conditions that domXn ∈ Σn and Xn is
actually Σn-measurable for each n (a purely technical point – see 232He), 〈Xn〉n∈N will be a martingale
adapted to 〈Σn〉n∈N, because

∫
E
Xn+1 =

∫
E
X =

∫
E
Xn whenever E ∈ Σn.

(b) Let (Ω,Σ, µ) be a probability space and 〈Xn〉n∈N an independent sequence of random variables all

with zero expectation. For each n ∈ N let Σ̃n be the σ-algebra generated by
⋃

i≤n ΣXi
, writing ΣXi

for the

σ-algebra defined by Xi (272C), and set Sn = X0 + . . .+Xn. Then 〈Sn〉n∈N is a martingale adapted to Σ̃n.

(Use 272K to see that ΣXn+1
is independent of Σ̃n, so that

∫
E
Xn+1 =

∫
Xn+1 × χE = 0 for every E ∈ Σ̃n,

by 272R.)

(c) Let (Ω,Σ, µ) be a probability space and 〈Xn〉n∈N an independent sequence of random variables all

with expectation 1. For each n ∈ N let Σ̃n be the σ-algebra generated by
⋃

i≤n ΣXi
, writing ΣXi

for the

σ-algebra defined by Xi, and set Wn = X0 × . . .×Xn. Then 〈Wn〉n∈N is a martingale adapted to 〈Σ̃n〉n∈N.

275C Remarks (a) It seems appropriate to the concept of a random variable X being ‘adapted’ to a
σ-algebra Σ to require that domX ∈ Σ and that X should be Σ-measurable, even though this may mean
that other random variables, equal almost everywhere to X, may fail to be ‘adapted’ to Σ.

(b) Technical problems of this kind evaporate, of course, if all µ-negligible subsets of X belong to Σ0.
But examples such as 275Bb make it seem unreasonable to insist on such a simplification as a general rule.

(c) The concept of ‘martingale’ can readily be extended to other index sets than N; indeed, if I is any
partially ordered set, we can say that 〈Xi〉i∈I is a martingale on (Ω,Σ, µ) adapted to 〈Σi〉i∈I if (i) each Σi

is a σ-subalgebra of Σ̂ (ii) each Xi is an integrable real-valued Σi-measurable random variable such that
domXi ∈ Σi (iii) whenever i ≤ j in I, then Σi ⊆ Σj and

∫
E
Xi =

∫
E
Xj for every E ∈ Σi. The principal

case, after I = N, is I = [0,∞[; I = Z also is interesting, and I think it is fair to say that the most important
ideas can already be expressed in theorems about martingales indexed by finite sets I. But in this volume
I will generally take martingales to be indexed by N.

(d) Given just a sequence 〈Xn〉n∈N of integrable real-valued random variables on a probability space
(Ω,Σ, µ), we can say simply that 〈Xn〉n∈N is a martingale on (Ω,Σ, µ) if there is some non-decreasing

sequence 〈Σn〉n∈N of σ-subalgebras of Σ̂ (the completion of Σ) such that 〈Xn〉n∈N is a martingale adapted

to 〈Σn〉n∈N. If we write Σ̃n for the σ-algebra generated by
⋃

i≤n ΣXi
, where ΣXi

is the σ-algebra defined by

Xi, as in 275Bb, then it is easy to see that 〈Xn〉n∈N is a martingale iff it is a martingale adapted to 〈Σ̃n〉n∈N.

(e) Continuing from (d), it is also easy to see that if 〈Xn〉n∈N is a martingale on (Ω,Σ, µ), andX ′
n =a.e. Xn

for every n, then 〈X ′
n〉n∈N is a martingale on (Ω,Σ, µ). (The point is that if 〈Xn〉n∈N is adapted to 〈Σn〉n∈N,

then both 〈Xn〉n∈N and 〈X ′
n〉n∈N are adapted to 〈Σ̂n〉n∈N, where

Σ̂n = {E△F : E ∈ Σn, F is negligible}.)
Consequently we have a concept of ‘martingale’ as a sequence in L1(µ), saying that a sequence 〈X•

n〉n∈N in
L1(µ) is a martingale iff 〈Xn〉n∈N is a martingale.

Nevertheless, I think that the concept of ‘martingale adapted to a sequence of σ-algebras’ is the primary
one, since in all the principal applications the σ-algebras reflect some essential aspect of the problem, which
may not be fully encompassed by the random variables alone.

(f) The word ‘martingale’ originally (in English; the history in French is more complex) referred to a strap
used to prevent a horse from throwing its head back. Later it was used as the name of a gambling system
in which the gambler doubles his stake each time he loses, and (in French) as a general term for gambling
systems. These may be regarded as a class of ‘stopped-time martingales’, as described in 275L-275P below.

D.H.Fremlin



50 Probability theory 275D

275D A large part of the theory of martingales consists of inequalities of various kinds. I give two of
the most important, both due to J.L.Doob. (See also 276Xa-276Xb.)

Lemma Let (Ω,Σ, µ) be a probability space, and 〈Xn〉n∈N a martingale on Ω. Fix n ∈ N and set X∗ =
max(X0, . . . , Xn). Then for any ǫ > 0,

Pr(X∗ ≥ ǫ) ≤ 1

ǫ
E(X+

n ),

writing X+
n = max(0, Xn).

proof Write µ̂ for the completion of µ, and Σ̂ for its domain. Let 〈Σn〉n∈N be a non-decreasing sequence of

σ-subalgebras of Σ̂ to which 〈Xn〉n∈N is adapted. For each i ≤ n set

Ei = {ω : ω ∈ domXi, Xi(ω) ≥ ǫ},

Fi = Ei \
⋃

j<iEj .

Then F0, . . . , Fn are disjoint and F =
⋃

i≤n Fi =
⋃

i≤nEi; moreover, writing H for the conegligible set⋂
i≤n domXi,

{ω : X∗(ω) ≥ ǫ} = F ∩H,

so that

Pr(X∗ ≥ ǫ) = µ̂{ω : X∗(ω) ≥ ǫ} = µ̂F =
∑n

i=0 µ̂Fi.

On the other hand, Ei and Fi belong to Σi for each i ≤ n, so∫
Fi
Xn =

∫
Fi
Xi ≥ ǫµ̂Fi

for every i, and

ǫµ̂F = ǫ
∑n

i=0 µ̂Fi ≤
∑n

i=0

∫
Fi
Xn =

∫
F
Xn ≤

∫
F
X+

n ≤ E(X+
n ),

as required.

Remark Note that in fact we have ǫµ̂F ≤
∫
F
Xn, where F = {ω : X∗(ω) ≥ ǫ}; this is of great importance

in many applications.

275E Up-crossings The next lemma depends on the notion of ‘up-crossing’. Let x0, . . . , xn be any list
of real numbers, and a < b in R. The number of up-crossings from a to b in the list x0, . . . , xn is the
number of pairs (j, k) such that 0 ≤ j < k ≤ n, xj ≤ a, xk ≥ b and a < xi < b for j < i < k. Note that this
is also the largest m such that sm <∞, if we write

r1 = inf{i : i ≤ n, xi ≤ a},

s1 = inf{i : r1 < i ≤ n, xi ≥ b},

r2 = inf{i : s1 < i ≤ n, xi ≤ a},

s2 = inf{i : r2 < i ≤ n, xi ≥ b}
and so on, taking inf ∅ = ∞.

275F Lemma Let (Ω,Σ, µ) be a probability space and 〈Xn〉n∈N a martingale on Ω. Suppose that n ∈ N

and that a < b in R. For each ω ∈ ⋂
i≤n domXi, let U(ω) be the number of up-crossings from a to b in the

list X0(ω), . . . , Xn(ω). Then

E(U) ≤ 1

b−a
E((Xn −X0)

+),

writing (Xn −X0)
+(ω) = max(0, Xn(ω)−X0(ω)) for ω ∈ domXn ∩ domX0.

proof Each individual step in the proof is ‘elementary’, but the structure as a whole is non-trivial.
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(a) The following fact will be useful. Suppose that x0, . . . , xn are real numbers; let u be the number of
up-crossings from a to b in the list x0, . . . , xn. Set yi = max(xi, a) for each i; then u is also the number of
up-crossings from a to b in the list y0, . . . , yn. For each k ≤ n, set ck = 1 if there is a j ≤ k such that xj ≤ a
and xi < b for j ≤ i ≤ k, 0 otherwise. Then

(b− a)u ≤ ∑n−1
k=0 ck(yk+1 − yk).

PPP I induce on m to show that (defining rm, sm as in 275E)

(b− a)m ≤ ∑sm−1
k=0 ck(yk+1 − yk)

whenever m ≤ u. For m = 0 (taking s0 = −1) we have 0 = 0. For the inductive step to m ≥ 1, we have
sm−1 < rm < sm ≤ n (because I am supposing that m ≤ u), and ck = 0 if sm−1 ≤ k < rm, ck = 1 if
rm ≤ k < sm. So

sm−1∑

k=0

ck(yk+1 − yk) =

sm−1−1∑

k=0

ck(yk+1 − yk) +

sm−1∑

k=rm

(yk+1 − yk)

≥ (b− a)(m− 1) + ysm − yrm

(by the inductive hypothesis)

≥ (b− a)m

(because ysm ≥ b, yrm = a), and the induction proceeds.
Accordingly

∑su−1
k=0 ck(yk+1 − yk) ≥ (b− a)u.

As for the sum
∑n−1

k=su
ck(yk+1 − yk), we have ck = 0 for su ≤ k < ru+1, ck = 1 for ru+1 ≤ k < su+1, while

su+1 > n, so if n ≤ ru+1 we have
∑n−1

k=0 ck(yk+1 − yk) =
∑su−1

k=0 ck(yk+1 − yk) ≥ (b− a)u,

while if n > ru+1 we have

n−1∑

k=0

ck(yk+1 − yk) =

su−1∑

k=0

ck(yk+1 − yk) +
n−1∑

k=ru+1

yk+1 − yk

≥ (b− a)u+ yn − yru+1

≥ (b− a)u

because yn ≥ a = yru+1
. Thus in both cases we have the required result. QQQ

(b)(i) Now define

Yk(ω) = max(a,Xk(ω)) for ω ∈ domXk,

Fk = {ω : ω ∈ ⋂
i≤k domXi, ∃ j ≤ k, Xj(ω) ≤ a, Xi(ω) < b if j ≤ i ≤ k}

for each k ∈ N. If 〈Σn〉n∈N is a non-decreasing sequence of σ-algebras to which 〈Xn〉n∈N is adapted, then
Fk ∈ Σk (because if j ≤ k all the sets domXj , {ω : Xj(ω) ≤ a}, {ω : Xj(ω) < b} belong to Σj ⊆ Σk).

(ii) We find that
∫
F
Yk ≤

∫
F
Yk+1 if F ∈ Σk. PPP Set G = {ω : Xk(ω) > a} ∈ Σk. Then

∫

F

Yk =

∫

F∩G

Xk + aµ̂(F \G)

=

∫

F∩G

Xk+1 + aµ̂(F \G)

≤
∫

F∩G

Yk+1 +

∫

F\G
Yk+1 =

∫

F

Yk+1. QQQ
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(iii) Consequently
∫
F
Yk+1 − Yk ≤

∫
Yk+1 − Yk for every F ∈ Σk.

PPP
∫
(Yk+1 − Yk)−

∫
F
(Yk+1 − Yk) =

∫
Ω\F Yk+1 −

∫
Ω\F Yk ≥ 0. QQQ

(c) Let H be the conegligible set domU =
⋂

i≤n domXi ∈ Σn. We ought to check at some point that

U is Σn-measurable; but this is clearly true, because all the relevant sets {ω : Xi(ω) ≤ a}, {ω : Xi(ω) ≥ b}
belong to Σn. For each ω ∈ H, apply (a) to the list X0(ω), . . . , Xn(ω) to see that

(b− a)U(ω) ≤ ∑n−1
k=0 χFk(ω)(Yk+1(ω)− Yk(ω)).

Because H is conegligible, it follows that

(b− a)E(U) ≤
n−1∑

k=0

∫

Fk

Yk+1 − Yk ≤
n−1∑

k=0

∫
Yk+1 − Yk

(using (b-iii))

= E(Yn − Y0) ≤ E((Xn −X0)
+)

because Yn − Y0 ≤ (Xn −X0)
+ everywhere on domXn ∩ domX0. This completes the proof.

275G We are now ready for the principal theorems of this section.

Doob’s Martingale Convergence Theorem Let 〈Xn〉n∈N be a martingale on a probability space (Ω,Σ, µ),
and suppose that supn∈N E(|Xn|) <∞. Then limn→∞Xn(ω) is defined in R for almost every ω in Ω.

proof (a) Set H =
⋂

n∈N
domXn, and for ω ∈ H set

Y (ω) = lim infn→∞Xn(ω), Z(ω) = lim supn→∞Xn(ω),

allowing ±∞ in both cases. But note that Y ≤ lim infn→∞ |Xn|, so by Fatou’s Lemma Y (ω) <∞ for almost
every ω; similarly Z(ω) > −∞ for almost every ω. It will therefore be enough if I can show that Y =a.e. Z,
for then Y (ω) = Z(ω) ∈ R for almost every ω, and 〈Xn(ω)〉n∈N will be convergent for almost every ω.

(b) ??? So suppose, if possible, that Y and Z are not equal almost everywhere. Of course both are

Σ̂-measurable, where (Ω, Σ̂, µ̂) is the completion of (Ω,Σ, µ), so we must have

µ̂{ω : ω ∈ H, Y (ω) < Z(ω)} > 0.

Accordingly there are rational numbers q, q′ such that q < q′ and µ̂G > 0, where

G = {ω : ω ∈ H, Y (ω) < q < q′ < Z(ω)}.
Now, for each ω ∈ H and n ∈ N, let Un(ω) be the number of up-crossings from q to q′ in the list X0(ω), . . . ,
Xn(ω). Then 275F tells us that

E(Un) ≤ 1

q′−q
E((Xn −X0)

+) ≤ 1

q′−q
E(|Xn|+ |X0|) ≤ 2M

q′−q
,

if we write M = supi∈N E(|Xi|). By B.Levi’s theorem, U(ω) = supn∈N Un(ω) < ∞ for almost every ω. On
the other hand, if ω ∈ G, then there are arbitrarily large j, k such that Xj(ω) < q and Xk(ω) > q′, so
U(ω) = ∞. This means that µ̂G must be 0, contrary to the choice of q and q′. XXX

(c) Thus we must in fact have Y =a.e. Z, and 〈Xn(ω)〉n∈N is convergent for almost every ω, as claimed.

275H Theorem Let (Ω,Σ, µ) be a probability space, and 〈Σn〉n∈N a non-decreasing sequence of σ-
subalgebras of Σ. Let 〈Xn〉n∈N be a martingale adapted to 〈Σn〉n∈N. Then the following are equiveridical:

(i) there is a random variable X, of finite expectation, such that Xn is a conditional expectation of X
on Σn for every n;

(ii) {Xn : n ∈ N} is uniformly integrable;
(iii) X∞(ω) = limn→∞Xn(ω) is defined in R for almost every ω, and E(|X∞|) = limn→∞ E(|Xn|) <∞.
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proof (i)⇒(ii) By 246D, the set of all conditional expectations of X is uniformly integrable, so {Xn : n ∈ N}
is surely uniformly integrable.

(ii)⇒(iii) If {Xn : n ∈ N} is uniformly integrable, we surely have supn∈N E(|Xn|) < ∞, so 275G tells
us that X∞ is defined almost everywhere. By 246Ja, X∞ is integrable and limn→∞ E(|Xn − X∞|) = 0.
Consequently E(|X∞|) = limn→∞ E(|Xn|) <∞.

(iii)⇒(i) Because E(|X∞|) = limn→∞ E(|Xn|), limn→∞ E(|Xn−X∞|) = 0 (245H(a-ii)). Now take n ∈ N

and E ∈ Σn. Then ∫
E
Xn = limm→∞

∫
E
Xm =

∫
E
X∞.

As E is arbitrary, Xn is a conditional expectation of X∞ on Σn.

275I Theorem Let (Ω,Σ, µ) be a probability space, and 〈Σn〉n∈N a non-decreasing sequence of σ-
subalgebras of Σ; write Σ∞ for the σ-algebra generated by

⋃
n∈N

Σn. Let X be any real-valued random
variable on Ω with finite expectation, and for each n ∈ N let Xn be a conditional expectation of X on
Σn. Then X∞(ω) = limn→∞Xn(ω) is defined almost everywhere; limn→∞ E(|X∞ −Xn|) = 0, and X∞ is a
conditional expectation of X on Σ∞.

proof By 275G-275H, we know that X∞ is defined almost everywhere, and, as remarked in the proof of
275H, limn→∞ E(|X∞ −Xn|) = 0. To see that X∞ is a conditional expectation of X on Σ∞, set

A = {E : E ∈ Σ∞,
∫
E
X∞ =

∫
E
X}, I =

⋃
n∈N

Σn.

Now I and A satisfy the conditions of the Monotone Class Theorem (136B). PPP (ααα) Of course Ω ∈ I and I
is closed under finite intersections, because 〈Σn〉n∈N is a non-decreasing sequence of σ-algebras; in fact I is
a subalgebra of PΩ, and is closed under finite unions and complements. (βββ) If E ∈ I, say E ∈ Σn; then∫

E
X∞ = limm→∞

∫
E
Xm =

∫
E
X,

as in (iii)⇒(i) of 275H, so E ∈ A. Thus I ⊆ A. (γγγ) If E, F ∈ A and E ⊆ F , then∫
F\E X∞ =

∫
F
X∞ −

∫
E
X∞ =

∫
F
X −

∫
E
X =

∫
F\E X,

so F \ E ∈ A. (δδδ) If 〈Ek〉n∈N is a non-decreasing sequence in A with union E, then∫
E
X∞ = limk→∞

∫
Ek
X∞ = limk→∞

∫
Ek
X =

∫
E
X,

so E ∈ A. Thus A is a Dynkin class. QQQ
Consequently, by 136B, A includes Σ∞; that is, X∞ is a conditional expectation of X on Σ∞.

Remark I have written ‘limn→∞ E(|Xn − X∞|) = 0’; but you may prefer to say ‘X•
∞ = limn→∞X•

n in
L1(µ)’, as in Chapter 24.

The importance of this theorem is such that you may be interested in a proof based on 275D rather than
275E-275G; see 275Xd.

*275J As a corollary of this theorem I give an important result, a kind of density theorem for product
measures.

Proposition Let 〈(Ωn,Σn, µn)〉n∈N be a sequence of probability spaces with product (Ω,Σ, µ). Let X be a
real-valued random variable on Ω with finite expectation. For each n ∈ N define Xn by setting

Xn(ωωω) =
∫
X(ω0, . . . , ωn, ξn+1, . . . )d(ξn+1, . . . )

wherever this is defined, where I write ‘
∫
. . . d(ξn+1, . . . )’ to mean integration with respect to the product

measure λ′n on
∏

i≥n+1 Ωi. Then X(ωωω) = limn→∞Xn(ωωω) for almost every ωωω = (ω0, ω1, . . . ) in Ω, and

limn→∞ E(|X −Xn|) = 0.

proof For each n, we can identify µ with the product of λn and λ′n, where λn is the product measure
on Ω0 × . . . × Ωn (254N). So 253H tells us that Xn is a conditional expectation of X on the σ-algebra
Λn = {E ×∏

i>n Ωi : E ∈ domλn}. Since (by 254N again) we can think of λn+1 as the product of λn and
µn+1, Λn ⊆ Λn+1 for each n. So 275I tells us that 〈Xn〉n∈N converges almost everywhere to a conditional
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expectation X∞ of X on the σ-algebra Λ∞ generated by
⋃

n∈N
Λn. Now Λ∞ ⊆ Σ and also

⊗̂
n∈N

Σn ⊆ Λ∞,
so every member of Σ is sandwiched between two members of Λ∞ of the same measure (254Ff), and X∞
must be equal to X almost everywhere. Moreover, 275I also tells us that

limn→∞ E(|X −Xn|) = limn→∞ E(|X∞ −Xn|) = 0,

as required.

275K Reverse martingales We have a result corresponding to 275I for decreasing sequences of σ-
algebras. While this is used less often than 275G-275I, it does have very important applications.

Theorem Let (Ω,Σ, µ) be a probability space, and 〈Σn〉n∈N a non-increasing sequence of σ-subalgebras
of Σ, with intersection Σ∞. Let X be any real-valued random variable with finite expectation, and for
each n ∈ N let Xn be a conditional expectation of X on Σn. Then X∞ = limn→∞Xn is defined almost
everywhere and is a conditional expectation of X on Σ∞.

proof (a) Set H =
⋂

n∈N
domXn, so that H is conegligible. For n ∈ N, a < b in R, and ω ∈ H, write

Uabn(ω) for the number of up-crossings from a to b in the list Xn(ω), Xn−1(ω), . . . , X0(ω) (275E). Then

E(Uabn) ≤ 1

b−a
E((X0 −Xn)

+)

(275F)

≤ 1

b−a
E(|X0|+ |Xn|) ≤ 2

b−a
E(|X0|) <∞.

So limn→∞ Uabn(ω) is finite for almost every ω. But this means that

{ω : lim infn→∞Xn(ω) < a, lim supn→∞Xn(ω) > b}
is negligible. As a and b are arbitrary, 〈Xn〉n∈N is convergent a.e., just as in 275G. Set X∞(ω) =
limn→∞Xn(ω) whenever this is defined in R.

(b) By 246D, {Xn : n ∈ N} is uniformly integrable, so E(|Xn −X∞|) → 0 as n→ ∞ (246Ja), and∫
E
X∞ = limn→∞

∫
E
Xn =

∫
E
X0

for every E ∈ Σ∞.

(c) Now there is a conegligible set G ∈ Σ∞ such that G ⊆ domX∞ and X∞↾G is Σ∞-measurable. PPP
For each n ∈ N, there is a conegligible set Gn ∈ Σn such that Gn ⊆ domXn and Xn↾Gn is Σn-measurable.
Set G′ =

⋃
n∈N

⋂
m≥nGm; then, for any r ∈ N, G′ =

⋃
n≥r

⋂
m≥nGm belongs to Σr, so G

′ ∈ Σ∞, while of

course G′ is conegligible. For n ∈ N, set X ′
n(ω) = Xn(ω) for ω ∈ Gn, 0 for ω ∈ Ω \ Gn; then for ω ∈ G′,

limn→∞X ′
n(ω) = limn→∞Xn(ω) if either is defined in R. Writing X ′

∞ = limn→∞X ′
n whenever this is

defined in R, 121F and 121H tell us that X ′
∞ is Σr-measurable and domX ′

∞ ∈ Σr for every r ∈ N, so that
G′′ = domX ′

∞ belongs to Σ∞ and X ′
∞ is Σ∞-measurable. We also know, from (a), that G′′ is conegligible.

So setting G = G′ ∩G′′ we have the result. QQQ
Thus X∞ is a conditional expectation of X on Σ∞.

275L Stopping times In a sense, the main work of this section is over; I have no room for any more
theorems of importance comparable to 275G-275I. However, it would be wrong to leave this chapter without
briefly describing one of the most fruitful ideas of the subject.

Definition Let (Ω,Σ, µ) be a probability space, with completion (Ω, Σ̂, µ̂), and 〈Σn〉n∈N a non-decreasing

sequence of σ-subalgebras of Σ̂. A stopping time adapted to 〈Σn〉n∈N (also called ‘optional time’,
‘Markov time’) is a function τ from Ω to N ∪ {∞} such that {ω : τ(ω) ≤ n} ∈ Σn for every n ∈ N.

Remark Of course the condition

{ω : τ(ω) ≤ n} ∈ Σn for every n ∈ N

can be replaced by the equivalent condition

{ω : τ(ω) = n} ∈ Σn for every n ∈ N.

I give priority to the former expression because it is more appropriate to other index sets (see 275Cc).

Measure Theory



275N Martingales 55

275M Examples (a) If 〈Xn〉n∈N is a martingale adapted to a sequence 〈Σn〉n∈N of σ-algebras, and Hn

is a Borel subset of Rn+1 for each n, then we have a stopping time τ adapted to 〈Σn〉n∈N defined by the
formula

τ(ω) = inf{n : ω ∈ ⋂
i≤n domXi, (X0(ω), . . . , Xn(ω)) ∈ Hn},

setting inf ∅ = ∞ as usual. (For by 121Ka the set En = {ω : (X0(ω), . . . , Xn(ω)) ∈ Hn} belongs to Σn for
each n, and {ω : τ(ω) ≤ n} =

⋃
i≤nEi.) In particular, for instance, the formulae

inf{n : Xn(ω) ≥ a}, inf{n : |Xn(ω)| > a}
define stopping times.

(b) Any constant function τ : Ω → N ∪ {∞} is a stopping time. If τ , τ ′ are two stopping times adapted
to the same sequence 〈Σn〉n∈N of σ-algebras, then τ ∧ τ ′ is a stopping time adapted to 〈Σn〉n∈N, setting
(τ ∧ τ ′)(ω) = min(τ(ω), τ ′(ω)) for ω ∈ Ω, because

{ω : (τ ∧ τ ′)(ω) ≤ n} = {ω : τ(ω) ≤ n} ∪ {ω : τ ′(ω) ≤ n} ∈ Σn

for every n ∈ N.

275N Lemma Let (Ω,Σ, µ) be a complete probability space, and 〈Σn〉n∈N a non-decreasing sequence of
σ-subalgebras of Σ. Suppose that τ and τ ′ are stopping times on Ω, and 〈Xn〉n∈N a martingale, all adapted
to 〈Σn〉n∈N.

(a) The family

Σ̃τ = {E : E ∈ Σ, E ∩ {ω : τ(ω) ≤ n} ∈ Σn for every n ∈ N}
is a σ-subalgebra of Σ.

(b) If τ(ω) ≤ τ ′(ω) for every ω, then Σ̃τ ⊆ Σ̃τ ′ .
(c) Now suppose that τ is finite almost everywhere. Set

X̃τ (ω) = Xτ(ω)(ω)

whenever τ(ω) <∞ and ω ∈ domXτ(ω). Then dom X̃τ ∈ Σ̃τ and X̃τ is Σ̃τ -measurable.
(d) If τ is essentially bounded, that is, there is some m ∈ N such that τ ≤ m almost everywhere, then

E(X̃τ ) exists and is equal to E(X0).

(e) If τ ≤ τ ′ almost everywhere, and τ ′ is essentially bounded, then X̃τ is a conditional expectation of

X̃τ ′ on Σ̃τ .

proof (a) This is elementary. Write Hn = {ω : τ(ω) ≤ n} for each n ∈ N. The empty set belongs to Σ̃τ

because it belongs to Σn for every n. If E ∈ Σ̃τ , then

(Ω \ E) ∩Hn = Hn \ (E ∩Hn) ∈ Σn

because Hn ∈ Σn; this is true for for every n, so X \ E ∈ Σ̃τ . If 〈Ek〉k∈N is any sequence in Σ̃τ then

(
⋃

k∈N
Ek) ∩Hn =

⋃
k∈N

Ek ∩Hn ∈ Σn

for every n, so
⋃

k∈N
Ek ∈ Σ̃τ .

(b) If E ∈ Σ̃τ then of course E ∈ Σ, and if n ∈ N then {ω : τ ′(ω) ≤ n} ⊆ {ω : τ(ω) ≤ n}, so that

E ∩ {ω : τ ′(ω) ≤ n} = E ∩ {ω : τ(ω) ≤ n} ∩ {ω : τ ′(ω) ≤ n}
belongs to Σn; as n is arbitrary, E ∈ Σ̃τ ′ .

(c) Set Hn = {ω : τ(ω) ≤ n} for each n ∈ N. For any a ∈ R,

Hn ∩ {ω : ω ∈ dom X̃τ , X̃τ (ω) ≤ a}
=

⋃

k≤n

{ω : τ(ω) = k, ω ∈ domXk, Xk(ω) ≤ a} ∈ Σn.

As n is arbitrary,
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Ga = {ω : ω ∈ dom X̃τ , X̃τ (ω) ≤ a} ∈ Σ̃τ .

As a is arbitrary, dom X̃τ =
⋃

m∈N
Gm ∈ Σ̃τ and X̃τ is Σ̃τ -measurable.

(d) Set Hk = {ω : τ(ω) = k} for k ≤ m. Then
⋃

k≤mHk is conegligible, so

E(X̃τ ) =
∑m

k=0

∫
Hk

Xk =
∑m

k=0

∫
Hk

Xm =
∫
Ω
Xm =

∫
Ω
X0.

(e) Suppose τ ′ ≤ n almost everywhere. Set Hk = {ω : τ(ω) = k}, H ′
k = {ω : τ ′(ω) = k} for each k; then

both 〈Hk〉k≤n and 〈H ′
k〉k≤n are partitions of conegligible subsets of X. Now suppose that E ∈ Σ̃τ . Then∫

E
X̃τ =

∑n
k=0

∫
E∩Hk

X̃τ =
∑n

k=0

∫
E∩Hk

Xk =
∑n

k=0

∫
E∩Hk

Xn =
∫
E
Xn

because E ∩Hk ∈ Σk for every k. By (b), E ∈ Σ̃τ ′ , so we also have
∫
E
X̃τ ′ =

∫
E
Xn. Thus

∫
E
X̃τ =

∫
E
X̃τ ′

for every E ∈ Σ̃τ , as claimed.

275O Proposition Let 〈Xn〉n∈N be a martingale and τ a stopping time, both adapted to the same
sequence 〈Σn〉n∈N of σ-algebras. For each n, set (τ ∧ n)(ω) = min(τ(ω), n) for ω ∈ Ω; then τ ∧ n is a

stopping time, and 〈X̃τ∧n〉n∈N is a martingale adapted to 〈Σ̃τ∧n〉n∈N, defining X̃τ∧n and Σ̃τ∧n as in 275N.

proof As remarked in 275Mb, each τ ∧ n is a stopping time. If m ≤ n, then Σ̃τ∧m ⊆ Σ̃τ∧n by 275Nb.
Each X̃τ∧m is Σ̃τ∧m-measurable, with domain belonging to Σ̃τ∧m, by 275Nc, and has finite expectation, by
275Nd; finally, if m ≤ n, then X̃τ∧m is a conditional expectation of X̃τ∧n on Σ̃τ∧m, by 275Ne.

275P Corollary Suppose that (Ω,Σ, µ) is a probability space and 〈Xn〉n∈N is a martingale on Ω such
that W = supn∈N |Xn+1−Xn| is finite almost everywhere and has finite expectation. Then for almost every
ω ∈ Ω, either limn→∞Xn(ω) exists in R or supn∈NXn(ω) = ∞ and infn∈NXn(ω) = −∞.

proof Let 〈Σn〉n∈N be a non-decreasing sequence of σ-algebras to which 〈Xn〉n∈N is adapted. Let H be the
conegligible set

⋂
n∈N

domXn ∩ {ω :W (ω) <∞}. For each m ∈ N, set

τm(ω) = inf{n : ω ∈ domXn, Xn(ω) > m}.
As in 275Ma, τm is a stopping time adapted to 〈Σn〉n∈N. Set

Ymn = X̃τm∧n,

defined as in 275O, so that 〈Ymn〉n∈N is a martingale. If ω ∈ H, then either τm(ω) > n and

Ymn(ω) = Xn(ω) ≤ m,

or 0 < τm(ω) ≤ n and

Ymn(ω) = Xτm(ω)(ω) ≤W (ω) +Xτm(ω)−1(ω) ≤W (ω) +m,

or τm(ω) = 0 and

Ymn(ω) = X0(ω).

Thus

Ymn(ω) ≤ |X0(ω)|+W (ω) +m

for every ω ∈ H, and

|Ymn(ω)| = 2max(0, Ymn(ω))− Ymn(ω) ≤ 2(|X0(ω)|+W (ω) +m)− Ymn(ω),

E(|Ymn|) ≤ 2E(|X0|) + 2E(W ) + 2m− E(Ymn) = 2E(|X0|) + 2E(W ) + 2m− E(X0)

by 275Nd. As this is true for every n ∈ N, supn∈N E(|Ymn|) < ∞, and limn→∞ Ymn is defined in R almost
everywhere, by Doob’s Martingale Convergence Theorem (275G). Let Fm be the conegligible set on which
〈Ymn〉n∈N converges. Set H∗ = H ∩⋂

m∈N
Fm, so that H∗ is conegligible.

Now consider

E = {ω : ω ∈ H∗, supn∈NXn(ω) <∞}.
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For any ω ∈ E, there must be anm ∈ N such that supn∈NXn(ω) ≤ m. Now this means that Ymn(ω) = Xn(ω)
for every n, and as ω ∈ Fm we have

limn→∞Xn(ω) = limn→∞ Ymn(ω) ∈ R.

This means that 〈Xn(ω)〉n∈N is convergent for almost every ω such that {Xn(ω) : n ∈ N} is bounded above.
Similarly, 〈Xn(ω)〉n∈N is convergent for almost every ω such that {Xn(ω) : n ∈ N} is bounded below,

which completes the proof.

275X Basic exercises >>>(a) Let 〈Xn〉n∈N be an independent sequence of random variables with zero
expectation and finite variance. Set sn = (

∑n
i=0 Var(Xi))

1/2, Yn = (X0 + . . .+Xn)
2 − s2n for each n. Show

that 〈Yn〉n∈N is a martingale.

>>>(b) Let 〈Xn〉n∈N be a martingale. Show that for any ǫ > 0, Pr(supn∈N |Xn|) ≥ ǫ) ≤ 1
ǫ supn∈N E(|Xn|).

(c) Pólya’s urn scheme Imagine a box containing red and white balls. At each move, a ball is drawn
at random from the box and replaced together with another of the same colour. (i) Writing Rn, Wn for
the numbers of red and white balls after the nth move and Xn = Rn/(Rn +Wn), show that 〈Xn〉n∈N is a
martingale. (ii) Starting from R0 = W0 = 1, find the distribution of (Rn,Wn) for each n. (iii) Show that
X = limn→∞Xn is defined almost everywhere, and find its distribution when R0 = W0 = 1. (See Feller

66 for a discussion of other starting values.)

>>>(d) Let (Ω,Σ, µ) be a probability space, and 〈Σn〉n∈N a non-decreasing sequence of σ-subalgebras of
Σ; for each n ∈ N let Pn : L1 → L1 be the conditional expectation operator corresponding to Σn, where
L1 = L1(µ) (242J). (i) Show that V = {u : u ∈ L1, limn→∞ ‖Pnu−u‖1 = 0} is a ‖ ‖1-closed linear subspace
of L1. (ii) Show that {E : E ∈ Σ, χE• ∈ V } is a Dynkin class including

⋃
n∈N

Σn, so includes the σ-algebra

Σ∞ generated by
⋃

n∈N
Σn. (iii) Show that if u ∈ L1 then v = supn∈N Pn|u| is defined in L1 and is of the

form W • where Pr(W ≥ ǫ) ≤ 1
ǫ ‖u‖1 for every ǫ > 0. (Hint : 275D.) (iv) Show that if X is a Σ∞-measurable

random variable with finite expectation, and for each n ∈ N Xn is a conditional expectation of X on Σn,
then X• ∈ V and X =a.e. limn→∞Xn. (Hint : apply (iii) to u = (X −Xm)• for large m.)

(e) Let (Ω,Σ, µ) be a probability space, 〈Σn〉n∈N a non-decreasing sequence of σ-subalgebras of Σ, and
Σ∞ the σ-algebra generated by

⋃
n∈N

Σn. For each n ∈ N ∪ {∞} let Pn : L1 → L1 be the conditional

expectation operator corresponding to Σn, where L1 = L1(µ). Show that limn→∞ ‖Pnu − P∞u‖p = 0
whenever p ∈ [1,∞[ and u ∈ Lp(µ). (Hint : 275Xd, 233J/242K, 246Xg.)

(f) Let 〈Xn〉n∈N be a martingale, and suppose that p ∈ ]1,∞[ is such that supn∈N ‖Xn‖p < ∞. Show
that X = limn→∞Xn is defined almost everywhere and that limn→∞ ‖Xn −X‖p = 0.

>>>(g) Let (Ω,Σ, µ) be [0, 1] with Lebesgue measure. For each n ∈ N let Σn be the finite subalgebra
of Σ generated by intervals of the type [0, 2−nr] for r ≤ 2−n. Use 275I to show that for any integrable
X : [0, 1] → R we must have X(t) = limn→∞ 2n

∫
In(t)

X for almost every t ∈ [0, 1[, where In(t) is the

interval of the form [2−nr, 2−n(r + 1)[ containing t. Compare this result with 223A and 261Yd.

(h) In 275K, show that limn→∞ ‖Xn −X∞‖p = 0 for any p ∈ [1,∞[ such that ‖X0‖p is finite. (Compare
275Xe.)

(i) Let (Ω,Σ, µ) be a probability space, with completion (Ω, Σ̂, µ̂), and 〈Σn〉n∈N a non-decreasing sequence

of σ-subalgebras of Σ̂. Show that if 〈τi〉i∈N is a sequence of stopping times adapted to 〈Σn〉n∈N, and we set
τ(ω) = supi∈N τi(ω) for ω ∈ Ω, then τ is a stopping time adapted to 〈Σn〉n∈N.

(j) Let (Ω,Σ, µ) be a probability space, with completion (Ω, Σ̂, µ̂), and 〈Σn〉n∈N a non-decreasing sequence

of σ-subalgebras of Σ̂. Let 〈Xn〉n∈N be a uniformly integrable martingale adapted to Σn, and set X∞ =

limn→∞Xn. Let τ be a stopping time adapted to 〈Σn〉n∈N, and set X̃τ (ω) = Xτ(ω)(ω) whenever ω ∈
domXτ(ω), allowing ∞ as a value of τ(ω). Show that X̃τ is a conditional expectation of X∞ on Σ̃τ , as
defined in 275N.
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(k) Let (Ω,Σ, µ) be a probability space, with completion (Ω, Σ̂, µ̂), and 〈Σn〉n∈N a non-decreasing sequence

of σ-subalgebras of Σ̂. Let 〈Xn〉n∈N be a martingale and τ a stopping time, both adapted to 〈Σn〉n∈N.

Suppose that supn∈N E(|Xn|) < ∞ and that τ is finite almost everywhere. Show that X̃τ , as defined in

275Nc, has finite expectation, but that E(X̃τ ) need not be equal to E(X0).

(l)(i) Show that if 〈Xn〉n∈N is a martingale such that supn∈N E(|Xn|) is finite and 〈Xn〉n∈N is convergent
in measure, then 〈Xn〉n∈N is convergent a.e. (ii) Find a martingale 〈Xn〉n∈N such that 〈X2n〉n∈N → 0 a.e. but
|X2n+1| ≥ 1 a.e. for every n ∈ N. (iii) Find a martingale which converges in measure but is not convergent
a.e.

275Y Further exercises (a) Let (Ω,Σ, µ) be a probability space, 〈Σn〉n∈N an independent sequence of
σ-subalgebras of Σ, and X a random variable on Ω with finite variance. Let Xn be a conditional expectation
of X on Σn for each n. Show that limn→∞Xn = E(X) almost everywhere. (Hint : consider

∑∞
n=0 Var(Xn).)

(b) Let (Ω,Σ, µ) be a complete probability space, 〈Σn〉n∈N a non-decreasing sequence of σ-subalgebras
of Σ all containing every negligible set, and 〈Xn〉n∈N a martingale adapted to 〈Σn〉n∈N. Let ν be another
probability measure with domain Σ which is absolutely continuous with respect to µ, with Radon-Nikodým
derivative Z. For each n ∈ N let Zn be a conditional expectation of Z on Σn (with respect to the measure
µ). (i) Show that Zn is a Radon-Nikodým derivative of ν↾Σn with respect to µ↾Σn, for each n ∈ N. (ii)
Defining Xn/Zn as in 121E, so that its domain is {ω : ω ∈ domXn ∩ domZn, Zn(ω) 6= 0}, show that
〈Xn/Zn〉n∈N is a martingale with respect to the measure ν.

(c) Combine the ideas of 275Cc with those of 275Cd-275Ce to describe a notion of ‘martingale indexed
by I’, where I is an arbitrary partially ordered set.

(d) Let 〈Xk〉k∈N be a martingale on a complete probability space (Ω,Σ, µ), and fix n ∈ N. Set X∗ =

max(|X0|, . . . , |Xn|). Let p ∈ ]1,∞[. Show that ‖X∗‖p ≤ p

p−1
‖Xn‖p. (Hint : set Ft = {ω : X∗(ω) ≥ t}.

Show that tµFt ≤
∫
Ft

|Xn|. Using Fubini’s theorem on Ω× [0,∞[ and on Ω× [0,∞[× [0,∞[, show that

E((X∗)p) = p
∫∞
0
tp−1µFtdt,

∫∞
0
tp−2

∫
Ft

|Xn|dt = 1

p−1
E(|Xn| × (X∗)p−1),

E(|Xn| × (X∗)p−1) ≤ ‖Xn‖p‖X∗‖p−1
p .

Compare 286A below.)

(e)(i) Show that if a, b ≥ 0 then a ln+ b ≤ a ln+ a +
b

e
, where ln+ t = 0 if t ≤ 1, ln t if t ≥ 1. (ii)

Let (Ω,Σ, µ) be a complete probability space and X, Y non-negative random variables on Ω such that
tµFt ≤

∫
Ft
X for every t ≥ 0, where Ft = {ω : Y (ω) ≥ t}. Show that

∫
F1
Y ≤

∫
F1
X× ln+ Y , and hence that

E(Y ) ≤ e

e−1
(1+E(X×ln+X)). (iii) Show that if 〈Xn〉n∈N is a martingale on Ω, n ∈ N andX∗ = supi≤n |Xi|,

then E(X∗) ≤ e

e−1
(1 + E(|Xn| × ln+ |Xn|)).

(f) Let (Ω,Σ, µ) be a probability space and 〈Σi〉i∈I a countable family of σ-subalgebras of Σ such that for
any i, j ∈ I either Σi ⊆ Σj or Σj ⊆ Σi. Let X be a real-valued random variable on Ω such that ‖X‖p <∞,
where 1 < p < ∞, and suppose that Xi is a conditional expectation of X on Σi for each i ∈ I. Show that

‖ supi∈I |Xi|‖p ≤ p

p−1
‖X‖p.

(g) Let (Ω,Σ, µ) be a probability space, with completion (Ω, Σ̂, µ̂), and let 〈Σn〉n∈N be a non-decreasing

sequence of σ-subalgebras of Σ̂. Let 〈Xn〉n∈N be a sequence of µ-integrable real-valued functions such that
domXn ∈ Σn and Xn is Σn-measurable for each n ∈ N. We say that 〈Xn〉n∈N is a submartingale adapted
to 〈Σn〉n∈N if

∫
E
Xn+1 ≥

∫
E
Xn for every n ∈ N and every E ∈ Σn. Prove versions of 275D, 275F, 275G,

275Xf for submartingales.
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(h) Let 〈Xn〉n∈N be a martingale, and φ : R → R a convex function. Show that 〈φ(Xn)〉n∈N is a
submartingale. (Hint : 233J.) Re-examine part (b-ii) of the proof of 275F in the light of this fact.

(i) Let 〈Xn〉n∈N be an independent sequence of non-negative random variables all with expectation 1.
Set Wn = X0 × . . .×Xn for every n. (i) Show that W = limn→∞Wn is defined a.e. (ii) Show that E(W ) is
either 0 or 1. (Hint : suppose E(W ) > 0. Set Zn = limm→∞Xn× . . .×Xm. Show that limn→∞ Zn = 1 when
0 < W <∞, therefore a.e., by the zero-one law, while E(Zn) ≤ 1, by Fatou’s lemma, so limn→∞ E(Zn) = 1,
while E(W ) = E(Wn)E(Zn+1) for every n.) (iii) Set γ =

∏∞
n=0 E(

√
Xn). Show that γ > 0 iff E(W ) = 1.

(Hint : Pr(Wn ≥ 1
4γ

2) ≥ 1
4γ

2 for every n, so if γ > 0 then W cannot be zero a.e.; while E(
√
W ) ≤ γ.)

(j) Let 〈(Ωn,Σn, µn)〉n∈N be a sequence of probability spaces with product (Ω,Σ, µ). Suppose that for
each n ∈ N we have a probability measure νn, with domain Σn, which is absolutely continuous with respect
to µn, with Radon-Nikodým derivative fn, and suppose that

∏∞
n=0

∫ √
fndµn > 0. Let ν be the product

of 〈νn〉n∈N. Show that ν is an indefinite-integral measure over µ, with Radon-Nikodým derivative f , where
f(ωωω) =

∏∞
n=0 fn(ωn) for µ-almost every ωωω = 〈ωn〉n∈N in Ω. (Hint : use 275Yi to show that

∫
fdµ = 1.)

(k) Let 〈pn〉n∈N be a sequence in [0, 1]. Let µ be the usual measure on {0, 1}N (254J) and ν the product
of 〈νn〉n∈N, where νn is the probability measure on {0, 1} defined by setting νn{1} = pn. Show that ν is an
indefinite-integral measure over µ iff

∑∞
n=0 |pn − 1

2 |2 <∞.

(l) Find a martingale 〈Xn〉n∈N such that the sequence νXn
of distributions (271C) is convergent for the

vague topology (274Ld), but 〈Xn〉n∈N is not convergent in measure.

(m) Let 〈Xn〉n∈N be an independent sequence of real-valued random variables such that
∑∞

n=0Xn is
defined in R almost everywhere. Suppose that there is an M ≥ 0 such that |Xn| ≤M a.e. for every n. Show
that

∑∞
n=0 E(Xn) is defined in R. (Hint : 274Yg, 275G.)

(n) Let (Ω,Σ, µ) be a probability space and 〈Xn〉n∈N an independent sequence of real-valued random
variables on Ω; set En = {ω : ω ∈ domXn, |Xn(ω)| > 1}, Yn = Xn × χ(Ω \ En) for each n, and Zn(ω) =
med(−1, Xn(ω), 1) for n ∈ N and ω ∈ domXn. Show that the following are equiveridical: (i)

∑∞
n=0Xn(ω) is

defined in R for almost every ω; (ii)
∑∞

n=0 µ̂En <∞,
∑∞

n=0 E(Yn) is defined in R, and
∑∞

n=0 Var(Yn) <∞,
where µ̂ is the completion of µ; (iii)

∑∞
n=0 µ̂En <∞,

∑∞
n=0 E(Zn) is defined in R, and

∑∞
n=0 Var(Zn) <∞.

(Hint : 273K, 275Ym.) (This is a version of the Three Series Theorem.)

(o) Let (Ω,Σ, µ) be a probability space, 〈Σn〉n∈N a non-decreasing sequence of σ-subalgebras of Σ and
〈Xn〉n∈N a sequence of random variables on Ω such that E(supn∈N |Xn|) is finite and X = limn→∞Xn is
defined almost everywhere. For each n, let Yn be a conditional expectation of Xn on Σn. Show that 〈Yn〉n∈N

converges almost everywhere to a conditional expectation of X on the σ-algebra generated by
⋃

n∈N
Σn.

(p) Show that 275Yo can fail if 〈Xn〉n∈N is merely uniformly integrable, rather than dominated by an
integrable function.

(q) Let (Ω,Σ, µ) be a complete probability space, and 〈Xn〉n∈N an independent sequence of random
variables on Ω, all with the same distribution, and of finite expectation. For each n, set Sn = 1

n+1 (X0 +

. . . + Xn); let Σn be the σ-algebra defined by Sn and Σ∗
n the σ-algebra generated by

⋃
m≥n Σm. Show

that Sn is a conditional expectation of X0 on Σ∗
n. (Hint : assume every Xi defined everywhere on Ω. Set

φ(ω) = 〈Xi(ω)〉i∈N. Show that φ : Ω → RN is inverse-measure-preserving for a suitable product measure on
RN, and that every set in Σ∗

n is of the form φ−1[H] where H ⊆ RN is a Borel set invariant under permutations
of coordinates in the set {0, . . . , n}, so that

∫
E
Xi =

∫
E
Xj whenever i ≤ j ≤ n and E ∈ Σ∗

n.) Hence show
that 〈Sn〉n∈N converges almost everywhere. (Compare 273I.)

(r) Formulate and prove versions of the results of this section for martingales consisting of functions
taking values in C or Rr rather than R.

D.H.Fremlin



60 Probability theory 275 Notes

275 Notes and comments I hope that the sketch above, though distressingly abbreviated, has suggested
some of the richness of the concepts involved, and will provide a foundation for further study. All the
theorems of this section have far-reaching implications, but the one which is simply indispensable in advanced
measure theory is 275I, ‘Lévy’s martingale convergence theorem’, which I will use in the proof of the Lifting
Theorem in Chapter 34 of the next volume.

As for stopping times, I mention them partly in an attempt to cast further light on what martingales are
for (see 276Ed below), and partly because the ideas of 275N-275O are so important in modern probability
theory that, just as a matter of general knowledge, you should be aware that there is something there. I
add 275P as one of the most accessible of the standard results which may be obtained by this method.

Version of 16.4.13

276 Martingale difference sequences

Hand in hand with the concept of ‘martingale’ is that of ‘martingale difference sequence’ (276A), a direct
generalization of the notion of ‘independent sequence’. In this section I collect results which can be naturally
expressed in terms of difference sequences, including yet another strong law of large numbers (276C). I end
the section with a proof of Komlós’s theorem (276H).

276A Martingale difference sequences (a) If 〈Xn〉n∈N is a martingale adapted to a sequence 〈Σn〉n∈N

of σ-algebras, then we have ∫
E
Xn+1 −Xn = 0

whenever E ∈ Σn. Let us say that if (Ω,Σ, µ) is a probability space, with completion (Ω, Σ̂, µ̂), and 〈Σn〉n∈N

is a non-decreasing sequence of σ-subalgebras of Σ̂, then a martingale difference sequence adapted to
〈Σn〉n∈N is a sequence 〈Xn〉n∈N of real-valued random variables on Ω, all with finite expectation, such that
(i) domXn ∈ Σn and Xn is Σn-measurable, for each n ∈ N (ii)

∫
E
Xn+1 = 0 whenever n ∈ N and E ∈ Σn.

(b) Evidently 〈Xn〉n∈N is a martingale difference sequence adapted to 〈Σn〉n∈N iff 〈∑n
i=0Xi〉n∈N is a

martingale adapted to 〈Σn〉n∈N.

(c) Just as in 275Cd, we can say that a sequence 〈Xn〉n∈N is in itself a martingale difference sequence

if 〈∑n
i=0Xi〉n∈N is a martingale, that is, if 〈Xn〉n∈N is a martingale difference sequence adapted to 〈Σ̃n〉n∈N,

where Σ̃n is the σ-algebra generated by
⋃

i≤n ΣXi
.

(d) If 〈Xn〉n∈N is a martingale difference sequence then 〈anXn〉n∈N is a martingale difference sequence
for any real an.

(e) If 〈Xn〉n∈N is a martingale difference sequence and X ′
n =a.e. Xn for every n, then 〈X ′

n〉n∈N is a
martingale difference sequence. (Compare 275Ce.)

(f) Of course the most important example of ‘martingale difference sequence’ is that of 275Bb: any
independent sequence of random variables with zero expectation is a martingale difference sequence. It
turns out that some of the theorems of §273 concerning such independent sequences may be generalized to
martingale difference sequences.

276B Proposition Let 〈Xn〉n∈N be a martingale difference sequence such that
∑∞

n=0 E(X
2
n) <∞. Then∑∞

n=0Xn is defined, and finite, almost everywhere.

proof (a) Let (Ω,Σ, µ) be the underlying probability space, (Ω, Σ̂, µ̂) its completion, and 〈Σn〉n∈N a non-

decreasing sequence of σ-subalgebras of Σ̂ such that 〈Xn〉n∈N is adapted to 〈Σn〉n∈N. Set Yn =
∑n

i=0Xi for
each n ∈ N. Then 〈Yn〉n∈N is a martingale adapted to 〈Σn〉n∈N.

c© 2000 D. H. Fremlin
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(b) E(Yn×Xn+1) = 0 for each n. PPP Yn is a sum of random variables with finite variance, so E(Y 2
n ) <∞,

by 244Ba; it follows that Yn ×Xn+1 has finite expectation, by 244Eb. Because the constant function 000 is a
conditional expectation of Xn+1 on Σn,

E(Yn ×Xn+1) = E(Yn × 000) = 0,

by 242L. QQQ

(c) It follows that E(Y 2
n ) =

∑n
i=0 E(X

2
i ) for every n. PPP Induce on n. For the inductive step, we have

E(Y 2
n+1) = E(Y 2

n + 2Yn ×Xn+1 +X2
n+1) = E(Y 2

n ) + E(X2
n+1)

because, by (b), E(Yn ×Xn+1) = 0. QQQ

(d) Of course

E(|Yn|) =
∫
|Yn| × χΩ ≤ ‖Yn‖2‖χΩ‖2 =

√
E(Y 2

n ),

so

supn∈N E(|Yn|) ≤ supn∈N

√
E(Y 2

n ) =
√∑∞

i=0 E(X
2
i ) <∞.

By 275G, limn→∞ Yn is defined and finite almost everywhere, that is,
∑∞

i=0Xi is defined and finite almost
everywhere.

276C The strong law of large numbers: fourth form Let 〈Xn〉n∈N be a martingale difference
sequence, and suppose that 〈bn〉n∈N is a non-decreasing sequence in ]0,∞[, diverging to ∞, such that
∑∞

n=0
1

b2n
Var(Xn) <∞. Then

limn→∞
1

bn

∑n
i=0Xi = 0

almost everywhere.

proof (Compare 273D.) As usual, write (Ω,Σ, µ) for the underlying probability space. Set

X̃n =
1

bn
Xn

for each n; then 〈X̃n〉n∈N also is a martingale difference sequence, and

∑∞
n=1 E(X̃

2
n) =

∑∞
n=1

1

b2n
Var(Xn) <∞.

By 276B, 〈X̃n(ω)〉n∈N is summable for almost every ω ∈ Ω. But by 273Cb,

limn→∞
1

bn

∑n
i=0Xi(ω) = limn→∞

1

bn

∑n
i=0 biX̃i(ω) = 0

for all such ω. So we have the result.

276D Corollary Let 〈Xn〉n∈N be a martingale such that bn = E(X2
n) is finite for each n.

(a) If supn∈N bn is infinite, then limn→∞
1
bn
Xn = 0 a.e.

(b) If supn≥1
1
nbn <∞, then limn→∞

1
nXn = 0 a.e.

proof Consider the martingale difference sequence 〈Yn〉n∈N = 〈Xn+1 −Xn〉n∈N. Then E(Yn ×Xn) = 0, so
E(Y 2

n ) + E(X2
n) = E(X2

n+1) for each n. In particular, 〈bn〉n∈N must be non-decreasing.

(a) If limn→∞ bn = ∞, take m such that bm > 0; then

∑∞
n=m

1

b2n+1

Var(Yn) =
∑∞

n=m
1

b2n+1

(bn+1 − bn) ≤
∫∞
bm

1

t2
dt <∞.

By 276C (modifying bi for i < m, if necessary),

limn→∞
1

bn
Xn = limn→∞

1

bn+1

(X0 +
∑n

i=0 Yi) = limn→∞
1

bn+1

∑n
i=0 Yi = 0
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almost everywhere.

(b) If γ = supn≥1
1
nbn <∞, then 1

(n+1)2 ≤ min(1, γ2/t2) for bn < t ≤ bn+1, so

∑∞
n=0

1

(n+1)2
(bn+1 − bn) ≤ γ + γ2

∫∞
γ

1

t2
dt <∞,

and, by the same argument as before, limn→∞
1
nXn = 0 a.e.

276E ‘Impossibility of systems’ (a) I return to the word ‘martingale’ and the idea of a gambling
system. Consider a gambler who takes a sequence of ‘fair’ bets, that is, bets which have payoff expectations
of zero, but who chooses which bets to take on the basis of past experience. The appropriate model for
such a sequence of random events is a martingale in the sense of 275A, taking Σn to be the algebra of all
events which are observable up to and including the outcome of the nth bet, and Xn to be the gambler’s
net gain at that time. (In this model it is natural to take Σ0 = {∅,Ω} and X0 = 0.) Certain paradoxes can
arise if we try to imagine this model with atomless Σn; to begin with it is perhaps easier to work with the
discrete case, in which each Σn is finite, or is the set of unions of some countable family of atomic events.
Now suppose that the bets involved are just two-way bets, with two equally likely outcomes, but that the
gambler chooses his stake each time. In this case we can think of the outcomes as corresponding to an
independent sequence 〈Wn〉n∈N of random variables, each taking the values ±1 with equal probability. The
gambler’s system must be of the form

Xn+1 = Xn + Zn+1 ×Wn+1,

where Zn+1 is his stake on the (n + 1)-st bet, and must be constant on each atom of the σ-algebra Σn

generated by W1, . . . ,Wn. The point is that because
∫
E
Wn+1 = 0 for each E ∈ Σn, E(Zn+1 ×Wn+1) = 0,

so E(Xn+1) = E(Xn).

(b) The general result, of which this is a special case, is the following. If 〈Wn〉n∈N is a martingale
difference sequence adapted to 〈Σn〉n∈N, and 〈Zn〉n≥1 is a sequence of random variables such that (i) Zn is
Σn−1-measurable (ii) Zn ×Wn has finite expectation for each n ≥ 1, then W0, Z1 ×W1, Z2 ×W2, . . . is a
martingale difference sequence adapted to 〈Σn〉n∈N; the proof that

∫
E
Zn+1 ×Wn+1 = 0 for every E ∈ Σn

is exactly the argument of (b) of the proof of 276B.

(c) I invited you to restrict your ideas to the discrete case for a moment; but if you feel that you
understand what it means to say that a ‘system’ or predictable sequence 〈Zn〉n≥1 must be adapted to
〈Σn〉n∈N, in the sense that every Zn is Σn−1-measurable, then any further difficulty lies in the measure
theory needed to show that the integrals

∫
E
Zn+1 ×Wn+1 are zero, which is what this book is about.

(d) Consider the gambling system mentioned in 275Cf. Here the idea is that Wn = ±1, as in (a),
and Zn+1 = 2na if Xn ≤ 0, 0 if Xn > 0; that is, the gambler doubles his stake each time until he
wins, and then quits. Of course he is almost sure to win eventually, so we have limn→∞Xn = a almost
everywhere, even though E(Xn) = 0 for every n. We can compute the distribution of Xn: for n ≥ 1
we have Pr(Xn = a) = 1 − 2−n, Pr(Xn = −(2n − 1)a) = 2−n. Thus E(|Xn|) = (2 − 2−n+1)a and the
almost-everywhere convergence of the Xn is an example of Doob’s Martingale Convergence Theorem.

In the language of stopping times (275N), Xn = Ỹτ∧n, where Yn =
∑n

k=0 2
kaWk and τ = min{n : Yn >

0}.

*276F I come now to Komlós’s theorem. The first step is a trifling refinement of 276C.

Lemma Let (Ω,Σ, µ) be a probability space, and 〈Σn〉n∈N a non-decreasing sequence of σ-subalgebras of Σ.
Suppose that 〈Xn〉n∈N is a sequence of random variables on Ω such that (i) Xn is Σn-measurable for each

n (ii)
∑∞

n=0
1

(n+1)2
E(X2

n) is finite (iii) limn→∞X ′
n = 0 a.e., where X ′

n is a conditional expectation of Xn on

Σn−1 for each n ≥ 1. Then limn→∞
1

n+1

∑n
k=0Xk = 0 a.e.

proof Making suitable adjustments on a negligible set if necessary, we may suppose that X ′
n is Σn−1-

measurable for n ≥ 1 and that everyXn andX ′
n is defined on the whole of Ω. SetX ′

0 = X0 and Yn = Xn−X ′
n
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for n ∈ N. Then 〈Yn〉n∈N is a martingale difference sequence adapted to 〈Σn〉n∈N. Also E(Y 2
n ) ≤ E(X2

n) for
every n. PPP If n ≥ 1, X ′

n is square-integrable (244M), and E(Yn × X ′
n) = 0, as in part (b) of the proof of

276B. Now

E(X2
n) = E(Yn +X ′

n)
2 = E(Y 2

n ) + 2E(Yn ×X ′
n) + E(X ′

n)
2 ≥ E(Y 2

n ). QQQ

This means that
∑∞

n=0
1

(n+1)2
E(Y 2

n ) must be finite. By 276C, limn→∞
1

n+1

∑n
i=0 Yi = 0 a.e. But by

273Ca we also have limn→∞
1

n+1

∑n
i=0X

′
i = 0 whenever limn→∞X ′

n = 0, which is almost everywhere. So

limn→∞
1

n+1

∑n
i=0Xi = 0 a.e.

*276G Lemma Let (Ω,Σ, µ) be a probability space, and 〈Xn〉n∈N a sequence of random variables on Ω
such that supn∈N E(|Xn|) is finite. For k ∈ N and x ∈ R set Fk(x) = x if |x| ≤ k, 0 otherwise. Let F be an
ultrafilter on N.

(a) For each k ∈ N there is a measurable function Yk : Ω → [−k, k] such that limn→F
∫
E
Fk(Xn) =

∫
E
Yk

for every E ∈ Σ.
(b) limn→F E((Fk(Xn)− Yk)

2) ≤ limn→F E(Fk(Xn)
2) for each k.

(c) Y = limk→∞ Yk is defined a.e. and limk→∞ E(|Y − Yk|) = 0.

proof (a) For each k, |Fk(Xn)| ≤a.e. kχΩ for every n, so that {Fk(Xn) : n ∈ N} is uniformly integrable, and
{Fk(Xn)

• : n ∈ N} is relatively weakly compact in L1 = L1(µ) (247C). Accordingly vk = limn→F Fk(Xn)
•

is defined in L1 for the weak topology (2A3Se); take Yk : Ω → R to be a measurable function such that
Y •
k = vk. For any E ∈ Σ, ∫

E
Yk =

∫
vk × (χE)• = limn→F

∫
E
Fk(Xn).

In particular,

|
∫
E
Yk| ≤ supn∈N |

∫
E
Fk(Xn)| ≤ kµE

for every E, so that {ω : Yk(ω) > k} and {ω : Yk(ω) < −k} are both negligible; changing Yk on a negligible
set if necessary, we may suppose that |Yk(ω)| ≤ k for every ω ∈ Ω.

(b) Because Yk is bounded, Y •
k ∈ L∞(µ), and

limn→F
∫
Fk(Xn)× Yk = limn→F

∫
Fk(Xn)

• × Y •
k =

∫
Y •
k × Y •

k =
∫
Y 2
k .

Accordingly

lim
n→F

∫
(Fk(Xn)− Yk)

2 = lim
n→F

∫
Fk(Xn)

2 − 2 lim
n→F

∫
Fk(Xn)× Yk +

∫
Y 2
k

= lim
n→F

∫
Fk(Xn)

2 −
∫
Y 2
k ≤ lim

n→F

∫
Fk(Xn)

2.

(c) Set W0 = Y0 = 0, Wk = Yk − Yk−1 for k ≥ 1. Then E(|Wk|) ≤ limn→F E(|Fk(Xn) − Fk−1(Xn)|) for
every k ≥ 1. PPP Set E = {ω :Wk(ω) ≥ 0}. Then

∫

E

Wk =

∫

E

Yk −
∫

E

Yk−1

= lim
n→F

∫

E

Fk(Xn)− lim
n→F

∫

E

Fk−1(Xn)

= lim
n→F

∫

E

Fk(Xn)− Fk−1(Xn) ≤ lim
n→F

∫

E

|Fk(Xn)− Fk−1(Xn)|.

Similarly,

|
∫
X\E Wk| ≤ limn→F

∫
X\E |Fk(Xn)− Fk−1(Xn)|.
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So

E(|Wk|) =
∫
E
Wk −

∫
X\E Wk ≤ limn→F

∫
|Fk(Xn)− Fk−1(Xn)|. QQQ

It follows that
∑∞

k=0 E(|Wk|) is finite. PPP For any m ≥ 1,

m∑

k=0

E(|Wk|) ≤
m∑

k=1

lim
n→F

E(|Fk(Xn)− Fk−1(Xn)|)

= lim
n→F

E(

m∑

k=1

|Fk(Xn)− Fk−1(Xn)|)

= lim
n→F

E(|Fm(Xn)|) ≤ sup
n∈N

E(|Xn|).

So
∑∞

k=0 E(|Wk|) ≤ supn∈N E(|Xn|) is finite. QQQ
By B.Levi’s theorem (123A), limm→∞

∑m
k=0 |Wk| is finite a.e., so that

Y = limm→∞ Ym =
∑∞

k=0Wk

is defined a.e.; and moreover

E(|Y − Yk|) ≤ limm→∞ E(
∑m

j=k+1 |Wj |) → 0

as k → ∞.

*276H Komlós’s theorem (Komlós 67) Let (Ω,Σ, µ) be any measure space, and 〈Xn〉n∈N a sequence of
integrable real-valued functions on Ω such that supn∈N

∫
|Xn| is finite. Then there are a subsequence 〈X ′

n〉n∈N

of 〈Xn〉n∈N and an integrable function Y such that Y =a.e. limn→∞
1

n+1

∑n
i=0X

′′
i whenever 〈X ′′

n〉n∈N is a

subsequence of 〈X ′
n〉n∈N.

proof Since neither the hypothesis nor the conclusion is affected by changing the Xn on a negligible set, we
may suppose throughout that every Xn is measurable and defined on the whole of Ω. In addition, to begin
with (down to the end of (e) below), let us suppose that µX = 1. As in 276G, set Fk(x) = x for |x| ≤ k, 0
for |x| > k.

(a) Let F be any non-principal ultrafilter on N (2A1O). For j ∈ N set pj = limn→F Pr(|Xn| > j). Then∑∞
j=0 pj is finite. PPP For any k ∈ N,

k∑

j=0

pj =
k∑

j=0

lim
n→F

Pr(|Xn| > j) = lim
n→F

k∑

j=0

Pr(|Xn| > j)

≤ lim
n→F

(1 +

∫
|Xn|) ≤ 1 + sup

n∈N

∫
|Xn|.

So
∑∞

j=0 pj ≤ 1 + supn∈N

∫
|Xn| is finite. QQQ

Setting

p′j = pj − pj+1 = limn→F Pr(j < |Xn| ≤ j + 1)

for each j, we have

∞∑

j=0

(j + 1)p′j = lim
m→∞

( m∑

j=0

(j + 1)pj −
m∑

j=0

(j + 1)pj+1

)

= lim
m→∞

m∑

j=0

pj − (m+ 1)pm+1 ≤
∞∑

j=0

pj <∞.

Next,
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limn→F
∫
Fk(Xn)

2 ≤ ∑k
j=0(j + 1)2p′j

for each k. PPP Setting Ejn = {ω : j < |Xn(ω)| ≤ j + 1} for j, n ∈ N, Fk(Xn)
2 ≤ ∑k

j=0(j + 1)2χEjn, so

limn→F
∫
Fk(Xn)

2 ≤ limn→F
∑k

j=0(j + 1)2µEjn =
∑k

j=0(j + 1)2p′j . QQQ

(b) Define 〈Yk〉k∈N and Y =a.e. limk→∞ Yk from 〈Xn〉n∈N and F as in Lemma 276G. Then

Jk = {n : n ∈ N,
∫
(Fk(Xn)− Yk)

2 ≤ 1 +
∑k

j=0(j + 1)2p′j}
belongs to F for every k ∈ N. PPP By (a) above and 276Gb,

limn→F
∫
(Fk(Xn)− Yk)

2 ≤ limn→F
∫
Fk(Xn)

2 ≤ ∑k
j=0(j + 1)2p′j . QQQ

Also, of course,

Kk = {n : n ∈ N, Pr(Fj(Xn) 6= Xn) ≤ pj + 2−j for every j ≤ k}
belongs to F for every k.

(c) For n, k ∈ N let Zkn be a simple function such that |Zkn| ≤ |Fk(Xn)−Yk| and
∫
|Fk(Xn)−Yk−Zkn| ≤

2−k. For m ∈ N let Σm be the algebra of subsets of Ω generated by sets of the form {ω : Zkn(ω) = α} for
k, n ≤ m and α ∈ R. Because each Zkn takes only finitely many values, Σm is finite (and is therefore a
σ-subalgebra of Σ); and of course Σm ⊆ Σm+1 for every m.

We need to look at conditional expectations on the Σm, and because Σm is always finite these have a
particularly straightforward expression. Let Am be the set of ‘atoms’, or minimal non-empty sets, in Σm;
that is, the set of equivalence classes in Ω under the relation ω ∼ ω′ if Zkn(ω) = Zkn(ω

′) for all k, n ≤ m.
For any integrable random variable X on Ω, define Em(X) by setting

Em(X)(ω) =
1

µA

∫

A

X if x ∈ A ∈ Am and µA > 0,

= 0 if x ∈ A ∈ Am and µA = 0.

Then Em(X) is a conditional expectation of X on Σm.
Now

lim
n→F

∫
|Em(Fk(Xn)− Yk)| = lim

n→F

∑

A∈Am

∫

A

|Em(Fk(Xn)− Yk)|

= lim
n→F

∑

A∈Am

|
∫

A

Em(Fk(Xn)− Yk)|

(because Em(Fk(Xn)− Yk) is constant on each A ∈ Am)

= lim
n→F

∑

A∈Am

|
∫

A

Fk(Xn)− Yk|

=
∑

A∈Am

lim
n→F

|
∫

A

Fk(Xn)− Yk| = 0

by the choice of Yk. So if we set

Im = {n : n ∈ N,
∫
|Em(Fk(Xn)− Yk)| ≤ 2−k for every k ≤ m},

then Im ∈ F for every m.

(d) Suppose that 〈r(n)〉n∈N is any strictly increasing sequence in N such that r(0) > 0, r(n) ∈ Jn ∩Kn

for every n and r(n) ∈ Ir(n−1) for n ≥ 1. Then
1

n+1

∑n
i=0Xr(i) → Y a.e. as n→ ∞. PPP Express Xr(n) as

(Xr(n) − Fn(Xr(n))) + (Fn(Xr(n))− Yn − Zn,r(n)) + Yn + Zn,r(n)

for each n. Taking these pieces in turn:
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(i)

∞∑

n=0

Pr(Xr(n) 6= Fn(Xr(n))) ≤
∞∑

n=0

pn + 2−n

(because r(n) ∈ Kn for every n)

<∞

by (a). But this means that Xr(n) − Fn(Xr(n)) → 0 a.e., since the sequence is eventually zero at almost

every point, and
1

n+1

∑n
i=0Xr(i) − Fi(Xr(i)) → 0 a.e. by 273Ca again.

(ii) By the choice of the Zn,r(n),
∑∞

n=0

∫
|Fn(Xr(n))− Yn − Zn,r(n)| ≤

∑∞
n=0 2

−n

is finite, so Fn(Xr(n))− Yn − Zn,r(n) → 0 a.e. and
1

n+1

∑n
i=0 Fi(Xr(i))− Yi − Zi,r(i) → 0 a.e.

(iii) By 276G, Yn → Y a.e. and
1

n+1

∑n
i=0 Yi → Y a.e.

(iv) We know that, for each n ≥ 1, r(n) ∈ Ir(n−1). So (because r(n− 1) ≥ n)
∫
|Er(n−1)(Fn(Xr(n))−

Yn)| ≤ 2−n. But as also∫ ∣∣Er(n−1)

(
Fn(Xr(n))− Yn − Zn,r(n)

)∣∣ ≤ ∫
|Fn(Xr(n))− Yn − Zn,r(n)| ≤ 2−n

by 244M and the choice of Zn,r(n),

∫
|Er(n−1)Zn,r(n)| =

∫ ∣∣Er(n−1)(Fn(Xr(n))− Yn)− Er(n−1)(Fn(Xr(n))− Yn − Zn,r(n))
∣∣

≤ 2−n+1

for every n. Accordingly Er(n−1)Zn,r(n) → 0 a.e.
On the other hand,

∞∑

n=0

1

(n+1)2

∫
Z2
n,r(n) ≤

∞∑

n=0

1

(n+1)2

∫
Fn(Xr(n) − Yn)

2

≤
∞∑

n=0

1

(n+1)2
(1 +

n∑

j=0

(j + 1)2p′j)

(because r(n) ∈ Jn)

≤
∞∑

n=0

1

(n+1)2
+

∞∑

j=0

(j + 1)2p′j

∞∑

n=j

1

(n+1)2

≤ π2

6
+ 2

∞∑

j=0

(j + 1)p′j

is finite. (I am using the estimate

∑∞
n=j

1

(n+1)2
≤ ∑∞

n=j
2

n+1
− 2

n+2
=

2

j+1
.)

By 276F, applied to 〈Σr(n)〉n∈N and 〈Zn,r(n)〉n∈N,
1

n+1

∑n
i=0 Zi,r(i) → 0 a.e.

(v) Adding these four components, we see that
1

n+1

∑n
i=0Xr(i) → 0, as claimed. QQQ
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(e) Now fix any strictly increasing sequence 〈s(n)〉n∈N in N such that s(0) > 0, s(n) ∈ ⋂
m≤n Jm∩Kn for

every n and s(n) ∈ Is(n−1) for n ≥ 1; such a sequence exists because Jm ∩Km ∩ Is(n−1) belongs to F , so is
infinite, for every n ≥ 1 and m ∈ N. Set X ′

n = Xs(n) for every n. If 〈X ′′
n〉n∈N is a subsequence of 〈X ′

n〉n∈N,
then it is of the form 〈Xs(r(n))〉n∈N for some strictly increasing sequence 〈r(n)〉n∈N. In this case

s(r(0)) ≥ s(0) > 0,

s(r(n)) ∈ Jr(n) ∩Kr(n) ⊆ Jn ∩Kn for every n,

s(r(n)) ∈ Is(r(n)−1) ⊆ Is(r(n−1)) for every n ≥ 1.

So (d) tells us that
1

n+1

∑n
i=0X

′′
i → Y a.e.

(f) Thus the theorem is proved in the case in which (Ω,Σ, µ) is a probability space. Now suppose that µ is
σ-finite and µΩ > 0. In this case there is a strictly positive measurable function f : Ω → R such that

∫
fdµ =

1 (215B(ix)). Let ν be the corresponding indefinite-integral measure (234J), so that ν is a probability measure

on Ω, and 〈1
f
×Xn〉n∈N is a sequence of ν-integrable functions such that supn∈N

∫ 1

f
×Xndν is finite (235K).

From (a)-(e) we see that there must be a ν-integrable function Y and a subsequence 〈X ′
n〉n∈N of 〈Xn〉n∈N

such that
1

n+1

∑n
i=0

1

f
×X ′′

i → Y ν-a.e. for every subsequence 〈X ′′
n〉n∈N of 〈X ′

n〉n∈N. But µ and ν have the

same negligible sets (234Lc), so
1

n+1

∑n
i=0X

′′
i → f × Y µ-a.e. for every subsequence 〈X ′′

n〉n∈N of 〈X ′
n〉n∈N.

(g) Since the result is trivial if µΩ = 0, the theorem is true whenever µ is σ-finite. For the general case,
set

Ω̃ =
⋃

n∈N
{ω : Xn(ω) 6= 0} =

⋃
m,n∈N

{ω : |Xn(ω)| ≥ 2−m},

so that the subspace measure µΩ̃ is σ-finite. Then there are a µΩ̃-integrable function Ỹ and a subsequence

〈X ′
n〉n∈N of 〈Xn〉n∈N such that

1

n+1

∑n
i=0X

′′
i ↾ Ω̃ → Ỹ µΩ̃-a.e. for every subsequence 〈X ′′

n〉n∈N of 〈X ′
n〉n∈N.

Setting Y (ω) = Ỹ (ω) if ω ∈ Ω̃, 0 for ω ∈ Ω\ Ω̃, we see that Y is µ-integrable and that
1

n+1

∑n
i=0X

′′
i → Y µ-

a.e. whenever 〈X ′′
n〉n∈N is a subsequence of 〈X ′

n〉n∈N. This completes the proof.

276X Basic exercises >>>(a) Let 〈Xn〉n∈N be a martingale adapted to a sequence 〈Σn〉n∈N of σ-algebras.
Show that

∫
E
X2

n ≤
∫
E
X2

n+1 whenever n ∈ N and E ∈ Σn (allowing ∞ as a value of an integral). (Hint :
see the proof of 276B.)

>>>(b) Let 〈Xn〉n∈N be a martingale. Show that for any ǫ > 0,

Pr(supn∈N |Xn| ≥ ǫ) ≤ 1

ǫ2
supn∈N E(X2

n).

(Hint : put 276Xa together with the argument for 275D.)

(c) When does 276Xb give a sharper result than 275Xb?

(d) Let 〈Xn〉n∈N be an independent identically distributed sequence of random variables with zero ex-
pectation and non-zero finite variance, and 〈tn〉n∈N a sequence in R. Show that (i) if

∑∞
n=0 t

2
n < ∞, then∑∞

n=0 tnXn is defined in R a.e. (ii) if
∑∞

n=0 t
2
n = ∞ then

∑∞
n=0 tnXn is undefined a.e. (Hint : 276B, 274Xj.)

(e) Let 〈Xn〉n∈N be a martingale difference sequence and set Yn = 1
n+1 (X0 + . . . +Xn) for each n ∈ N.

Show that if 〈Xn〉n∈N is uniformly integrable then limn→∞ ‖Yn‖1 = 0. (Hint : use the argument of 273Na,

with 276C in place of 273D, and setting X̃n = X ′
n−Zn, where Zn is an appropriate conditional expectation

of X ′
n.)

(f) Suppose that 〈Xn〉n∈N is a uniformly bounded martingale difference sequence and 〈an〉n∈N ∈ ℓ2. Show
that limn→∞

∏n
i=0(1 + aiXi) is defined and finite almost everywhere. (Hint : 〈anXn〉n∈N is summable and

square-summable a.e.)

D.H.Fremlin



68 Probability theory 276Xg

>>>(g) Strong law of large numbers: fifth form A sequence 〈Xn〉n∈N of random variables is ex-
changeable if (Xn0

, . . . , Xnk
) has the same joint distribution as (X0, . . . , Xk) whenever n0, . . . , nk are

distinct. Show that if 〈Xn〉n∈N is an exchangeable sequence of random variables with finite expectation,

then 〈 1

n+1

∑∞
i=0Xi〉n∈N converges a.e. (Hint : 276H.)

(h) In 276B, show that E((
∑∞

n=0Xn)
2) ≤ ∑∞

n=0 E(X
2
n).

276Y Further exercises (a) Let 〈Xn〉n∈N be a martingale difference sequence such that supn∈N ‖Xn‖p
is finite, where p ∈ ]1,∞[. Show that limn→∞ ‖ 1

n+1

∑n
i=0Xi‖p = 0. (Hint : 273Nb.)

(b) Let 〈Xn〉n∈N be a uniformly integrable martingale difference sequence and Y a bounded random
variable. Show that limn→∞ E(Xn × Y ) = 0. (Compare 272Ye.)

(c) Use 275Yh to prove 276Xa.

(d) Let 〈Xn〉n∈N be a sequence of random variables such that, for some δ > 0, supn∈N n
δE(|Xn|) is

finite. Set Sn = 1
n+1 (X0 + . . . + Xn) for each n. Show that limn→∞ Sn = 0 a.e. (Hint : set Zk =

2−k(|X0|+ . . .+ |X2k−1|). Show that
∑∞

k=0 E(Zk) <∞. Show that |Sn| ≤ 2Zk+1 if 2k < n ≤ 2k+1.)

(e) Strong law of large numbers: sixth form Let 〈Xn〉n∈N be a martingale difference sequence
such that, for some δ > 0, supn∈N E(|Xn|1+δ) is finite. Set Sn = 1

n+1 (X0 + . . . + Xn) for each n. Show

that limn→∞ Sn = 0 a.e. (Hint : take a non-decreasing sequence 〈Σn〉n∈N to which 〈Xn〉n∈N is adapted.
Set Yn = Xn when |Xn| ≤ n, 0 otherwise. Let Un be a conditional expectation of Yn on Σn−1 and set
Zn = Yn−Un. Use ideas from 273H, 276C and 276Yd above to show that 1

n+1

∑n
i=0 Vi → 0 a.e. for Vi = Zi,

Vi = Ui, Vi = Xi − Yi.)

(f) Show that there is a martingale 〈Xn〉n∈N which converges in measure but is not convergent a.e.
(Compare 273Ba.) (Hint : arrange that {ω : Xn+1(ω) 6= 0} = En ⊆ {ω : |Xn+1(ω) − Xn(ω)| ≥ 1}, where
〈En〉n∈N is an independent sequence of sets and µEn =

1

n+1
for each n.)

(g) Give an example of an identically distributed martingale difference sequence 〈Xn〉n∈N such that
〈 1
n+1 (X0 + . . . +Xn)〉n∈N does not converge to 0 almost everywhere. (Hint : start by devising a uniformly

bounded sequence 〈Un〉n∈N such that limn→∞ E(|Un|) = 0 but 〈 1
n+1 (U0 + . . . + Un)〉n∈N does not converge

to 0 almost everywhere. Now repeat your construction in such a context that the Un can be derived from
an identically distributed martingale difference sequence by the formulae of 276Ye.)

(h) Construct a proof of Komlós’s theorem which does not involve ultrafilters, or any other use of the full
axiom of choice, but proceeds throughout by selecting appropriate sub-subsequences. Remember to check
that you can prove any fact you use about weakly convergent sequences in L1 on the same rules.

276 Notes and comments I include two more versions of the strong law of large numbers (276C, 276Ye)
not because I have any applications in mind but because I think that if you know the strong law for ‖ ‖1+δ-
bounded independent sequences, and what a martingale difference sequence is, then there is something
missing if you do not know the strong law for ‖ ‖1+δ-bounded martingale difference sequences. And then,
of course, I have to add 276Yf and 276Yg (which seems to be difficult), lest you be tempted to think that
the strong law is ‘really’ about martingale difference sequences rather than about independent sequences.
(Compare 272Yd and 275Xl.)

Komlós’s theorem is rather outside the scope of this volume; it is quite hard work and surely much less
important, to most probabilists, than many results I have omitted. It does provide a quick proof of 276Xg.
However it is relevant to questions arising in some topics treated in Volumes 3 and 4, and the proof fits
naturally into this section.
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Version of 8.4.09

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

272S Distribution of a sum of independent random variables This result, referred to in the 2002
and 2004 editions of Volume 3, and the 2003 and 2006 editions of Volume 4, is now 272T.

272U Etemadi’s lemma This result, referred to in the 2003 and 2006 editions of Volume 4, is now
272V.

272Yd This exercise, referred to in the 2002 and 2004 editions of Volume 3, is now 272Ye.

273Xh This exercise, referred to in the 2006 edition of Volume 4, is now 273Xi.

276Xe This exercise, referred to in the 2003 and 2006 editions of Volume 4, is now 276Xg.

c© 2009 D. H. Fremlin
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Kirszbraun M.D. [1934] ‘Über die zusammenziehenden und Lipschitzian Transformationen’, Fund. Math.
22 (1934) 77-108. [262C.]
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de Genève, 1972. [Chap. 27 intro.]
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