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Chapter 25

Product Measures

I come now to another chapter on ‘pure’ measure theory, discussing a fundamental construction – or,
as you may prefer to consider it, two constructions, since the problems involved in forming the product
of two arbitrary measure spaces (§251) are rather different from those arising in the product of arbitrarily
many probability spaces (§254). This work is going to stretch our technique to the utmost, for while the
fundamental theorems to which we are moving are natural aims, the proofs are lengthy and there are many
pitfalls beside the true paths.

The central idea is that of ‘repeated integration’. You have probably already seen formulae of the type
‘
∫∫

f(x, y)dxdy’ used to calculate the integral of a function of two real variables over a region in the plane.
One of the basic techniques of advanced calculus is reversing the order of integration; for instance, we expect∫ 1

0
(
∫ 1

y
f(x, y)dx)dy to be equal to

∫ 1

0
(
∫ x

0
f(x, y)dy)dx. As I have developed the subject, we already have a

third calculation to compare with these two:
∫
D
f , where D = {(x, y) : 0 ≤ y ≤ x ≤ 1} and the integral

is taken with respect to Lebesgue measure on the plane. The first two sections of this chapter are devoted
to an analysis of the relationship between one- and two-dimensional Lebesgue measure which makes these
operations valid – some of the time; part of the work has to be devoted to a careful description of the exact
conditions which must be imposed on f and D if we are to be safe.

Repeated integration, in one form or another, appears everywhere in measure theory, and it is therefore
necessary sooner or later to develop the most general possible expression of the idea. The standard method
is through the theory of products of general measure spaces. Given measure spaces (X,Σ, µ) and (Y,T, ν),
the aim is to find a measure λ on X ×Y which will, at least, give the right measure µE · νF to a ‘rectangle’
E × F where E ∈ Σ and F ∈ T. It turns out that there are already difficulties in deciding what ‘the’
product measure is, and to do the job properly I find I need, even at this stage, to describe two related
but distinguishable constructions. These constructions and their elementary properties take up the whole
of §251. In §252 I turn to integration over the product, with Fubini’s and Tonelli’s theorems relating∫
fdλ with

∫∫
f(x, y)µ(dx)ν(dy). Because the construction of λ is symmetric between the two factors, this

automatically provides theorems relating
∫∫

f(x, y)µ(dx)ν(dy) with
∫∫

f(x, y)ν(dy)µ(dx). §253 looks at the
space L1(λ) and its relationship with L1(µ) and L1(ν).

For general measure spaces, there are obstacles in the way of forming an infinite product; to start with,
if 〈(Xn, µn)〉n∈N is a sequence of measure spaces, then a product measure λ on X =

∏
n∈NXn ought to set

λX =
∏∞

n=0 µnXn, and there is no guarantee that the product will converge, or behave well when it does.
But for probability spaces, when µnXn = 1 for every n, this problem at least evaporates. It is possible to
define the product of any family of probability spaces; this is the burden of §254.

I end the chapter with three sections which are a preparation for Chapters 27 and 28, but are also
important in their own right as an investigation of the way in which the group structure of Rr interacts with
Lebesgue and other measures. §255 deals with the ‘convolution’ f ∗ g of two functions, where (f ∗ g)(x) =∫
f(y)g(x− y)dy (the integration being with respect to Lebesgue measure). In §257 I show that some of the

same ideas, suitably transformed, can be used to describe a convolution ν1 ∗ ν2 of two measures on Rr; in
preparation for this I include a section on Radon measures on Rr (§256).
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251 Finite products

The first construction to set up is the product of a pair of measure spaces. It turns out that there are
already substantial technical difficulties in the way of finding a canonical universally applicable method. I
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2 Product measures §251 intro.

find myself therefore describing two related, but distinct, constructions, the ‘primitive’ and ‘c.l.d.’ product
measures (251C, 251F). After listing the fundamental properties of the c.l.d product measure (251I-251J), I
work through the identification of the product of Lebesgue measure with itself (251N) and a fairly thorough
discussion of subspaces (251O-251S).

251A Definition Let (X,Σ, µ) and (Y,T, ν) be two measure spaces. For A ⊆ X × Y set

θA = inf{∑∞
n=0 µEn · νFn : En ∈ Σ, Fn ∈ T ∀ n ∈ N, A ⊆ ⋃

n∈NEn × Fn}.

Remark In the products µEn · νFn, 0 · ∞ is to be taken as 0, as in §135.

251B Lemma In the context of 251A, θ is an outer measure on X × Y .

proof (a) Setting En = Fn = ∅ for every n ∈ N, we see that θ∅ = 0.

(b) If A ⊆ B ⊆ X×Y , then whenever B ⊆ ⋃
n∈NEn×Fn we shall have A ⊆ ⋃

n∈NEn×Fn; so θA ≤ θB.

(c) Let 〈An〉n∈N be a sequence of subsets of X × Y , with union A. For any ǫ > 0, we may choose,
for each n ∈ N, sequences 〈Enm〉m∈N in Σ and 〈Fnm〉m∈N in T such that An ⊆ ⋃

m∈NEnm × Fnm and∑∞
m=0 µEnm ·νFnm ≤ θAn+2−nǫ. Because N×N is countable, we have a bijection k 7→ (nk,mk) : N → N×N,

and now

A ⊆ ⋃
n,m∈NEnm × Fnm =

⋃
k∈NEnkmk

× Fnkmk
,

so that

θA ≤
∞∑

k=0

µEnkmk
· νFnkmk

=
∞∑

n=0

∞∑

m=0

µEnm · νFnm

≤
∞∑

n=0

θAn + 2−nǫ = 2ǫ+

∞∑

n=0

θAn.

As ǫ is arbitrary, θA ≤ ∑∞
n=0 θAn.

As 〈An〉n∈N is arbitrary, θ is an outer measure.

251C Definition Let (X,Σ, µ) and (Y,T, ν) be measure spaces. By the primitive product measure
on X × Y I shall mean the measure λ0 derived by Carathéodory’s method (113C) from the outer measure
θ defined in 251A.

Remark I ought to point out that there is no general agreement on what ‘the’ product measure on X × Y
should be. Indeed in 251F below I will introduce an alternative one, and in the notes to this section I will
mention a third.

251D Definition It is convenient to have a name for a natural construction for σ-algebras. If X and
Y are sets with σ-algebras Σ ⊆ PX and T ⊆ PY , I will write Σ⊗̂T for the σ-algebra of subsets of X × Y
generated by {E × F : E ∈ Σ, F ∈ T}.

251E Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces; let λ0 be the primitive product measure
on X × Y , and Λ its domain. Then Σ⊗̂T ⊆ Λ and λ0(E × F ) = µE · νF for all E ∈ Σ and F ∈ T.

proof (a) Suppose that E ∈ Σ and A ⊆ X × Y . For any ǫ > 0, there are sequences 〈En〉n∈N in Σ and
〈Fn〉n∈N in T such that A ⊆ ⋃

n∈NEn × Fn and
∑∞

n=0 µEn · νFn ≤ θA+ ǫ. Now

A ∩ (E × Y ) ⊆ ⋃
n∈N(En ∩ E)× Fn, A \ (E × Y ) ⊆ ⋃

n∈N(En \ E)× Fn,

so
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251G Finite products 3

θ(A ∩ (E × Y )) + θ(A \ (E × Y )) ≤
∞∑

n=0

µ(En ∩ E) · νFn +

∞∑

n=0

µ(En \ E) · νFn

=

∞∑

n=0

µEn · νFn ≤ θA+ ǫ.

As ǫ is arbitrary, θ(A∩ (E × Y )) + θ(A \ (E × Y )) ≤ θA. And this is enough to ensure that E × Y ∈ Λ (see
113D).

(b) Similarly, X × F ∈ Λ for every F ∈ T, so E × F = (E × Y ) ∩ (X × F ) ∈ Λ for every E ∈ Σ, F ∈ T.
Because Λ is a σ-algebra, it must include the smallest σ-algebra containing all the products E × F , that

is, Λ ⊇ Σ⊗̂T.

(c) Take E ∈ Σ, F ∈ T. We know that E × F ∈ Λ; setting E0 = E, F0 = F , En = Fn = ∅ for n ≥ 1 in
the definition of θ, we have

λ0(E × F ) = θ(E × F ) ≤ µE · νF .
We have come to the central idea of the construction. In fact θ(E × F ) = µE · νF . PPP Suppose that

E × F ⊆ ⋃
n∈NEn × Fn where En ∈ Σ and Fn ∈ T for every n. Set u =

∑∞
n=0 µEn · νFn. If u = ∞ or

µE = 0 or νF = 0 then of course µE · νF ≤ u. Otherwise, set

I = {n : n ∈ N, µEn = 0}, J = {n : n ∈ N, νFn = 0}, K = N \ (I ∪ J),

E′ = E \⋃n∈I En, F ′ = F \⋃n∈J Fn.

Then µE′ = µE and νF ′ = νF ; E′ × F ′ ⊆ ⋃
n∈K En × Fn; and for n ∈ K, µEn < ∞ and νFn < ∞, since

µEn · νFn ≤ u <∞ and neither µEn nor νFn is zero. Set

fn = νFnχEn : X → R

if n ∈ K, and fn = 0 : X → R if n ∈ I ∪ J . Then fn is a simple function and
∫
fn = νFnµEn for n ∈ K, 0

otherwise, so
∑∞

n=0

∫
fn(x)µ(dx) =

∑∞
n=0 µEn · νFn ≤ u.

By B.Levi’s theorem (123A), applied to 〈∑n
k=0 fk〉n∈N, g =

∑∞
n=0 fn is integrable and

∫
g dµ ≤ u. Write

E′′ for {x : x ∈ E′, g(x) < ∞}, so that µE′′ = µE′ = µE. Now take any x ∈ E′′ and set Kx = {n : n ∈
K, x ∈ En}. Because E′ × F ′ ⊆ ⋃

n∈K En × Fn, F
′ ⊆ ⋃

n∈Kx
Fn and

νF = νF ′ ≤ ∑
n∈Kx

νFn =
∑∞

n=0 fn(x) = g(x).

Thus g(x) ≥ νF for every x ∈ E′′. We are supposing that 0 < µE = µE′′ and 0 < νF , so we must have
νF <∞, µE′′ <∞. Now g ≥ νFχE′′, so

µE · νF = µE′′ · νF =
∫
νFχE′′ ≤

∫
g ≤ u =

∑∞
n=0 µEn · νFn.

As 〈En〉n∈N, 〈Fn〉n∈N are arbitrary, θ(E × F ) ≥ µE · νF and θ(E × F ) = µE · νF . QQQ
Thus

λ0(E × F ) = θ(E × F ) = µE · νF
for all E ∈ Σ, F ∈ T.

251F Definition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ0 the primitive product measure
defined in 251C. By the c.l.d. product measure on X × Y I shall mean the function λ : domλ0 → [0,∞]
defined by setting

λW = sup{λ0(W ∩ (E × F )) : E ∈ Σ, F ∈ T, µE <∞, νF <∞}
for W ∈ domλ0.

251G Remark I had better show at once that λ is a measure. PPP Of course its domain Λ = domλ0 is
a σ-algebra, and λ∅ = λ0∅ = 0. If 〈Wn〉n∈N is a disjoint sequence in Λ, then for any E ∈ Σ, F ∈ T of finite
measure
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4 Product measures 251G

λ0(
⋃

n∈NWn ∩ (E × F )) =
∑∞

n=0 λ0(Wn ∩ (E × F )) ≤ ∑∞
n=0 λWn,

so λ(
⋃

n∈NWn) ≤ ∑∞
n=0 λWn. On the other hand, if a <

∑∞
n=0 λWn, then we can find m ∈ N and

a0, . . . , am such that a ≤ ∑m
n=0 an and an < λWn for each n ≤ m; now there are E0, . . . , Em ∈ Σ and

F0, . . . , Fm ∈ T, all of finite measure, such that an ≤ λ0(Wn∩ (En×Fn)) for each n. Setting E =
⋃

n≤mEn

and F =
⋃

n≤m Fn, we have µE <∞ and νF <∞, so

λ(
⋃

n∈N

Wn) ≥ λ0(
⋃

n∈N

Wn ∩ (E × F )) =
∞∑

n=0

λ0(Wn ∩ (E × F ))

≥
m∑

n=0

λ0(Wn ∩ (En × Fn)) ≥
m∑

n=0

an ≥ a.

As a is arbitrary, λ(
⋃

n∈NWn) ≥
∑∞

n=0 λWn and λ(
⋃

n∈NWn) =
∑∞

n=0 λWn. As 〈Wn〉n∈N is arbitrary, λ is
a measure. QQQ

251H We need a simple property of the measure λ0.

Lemma Let (X,Σ, µ) and (Y,T, ν) be two measure spaces; let λ0 be the primitive product measure on
X × Y , and Λ its domain. If H ⊆ X × Y and H ∩ (E × F ) ∈ Λ whenever µE < ∞ and νF < ∞, then
H ∈ Λ.

proof Let θ be the outer measure described in 251A. Suppose that A ⊆ X×Y and θA <∞. Let ǫ > 0. Let
〈En〉n∈N, 〈Fn〉n∈N be sequences in Σ, T respectively such that A ⊆ ⋃

n∈NEn × Fn and
∑∞

n=0 µEn · νFn ≤
θA + ǫ. Now, for each n, the product of the measures µEn, νEn is finite, so either one is zero or both are
finite. If µEn = 0 or νFn = 0 then of course

µEn · νFn = 0 = θ((En × Fn) ∩H) + θ((En × Fn) \H).

If µEn <∞ and νFn <∞ then

µEn · νFn = λ0(En × Fn)

= λ0((En × Fn) ∩H) + λ0((En × Fn) \H)

= θ((En × Fn) ∩H) + θ((En × Fn) \H).

Accordingly, because θ is an outer measure,

θ(A ∩H) + θ(A \H) ≤
∞∑

n=0

θ((En × Fn) ∩H) +

∞∑

n=0

θ((En × Fn) \H)

=
∞∑

n=0

µEn · νFn ≤ θA+ ǫ.

As ǫ is arbitrary, θ(A ∩H) + θ(A \H) ≤ θA. As A is arbitrary, H ∈ Λ.

251I Now for the fundamental properties of the c.l.d. product measure.

Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces; let λ be the c.l.d. product measure on X ×Y , and
Λ its domain. Then

(a) Σ⊗̂T ⊆ Λ and λ(E × F ) = µE · νF whenever E ∈ Σ, F ∈ T and µE · νF <∞;
(b) for every W ∈ Λ there is a V ∈ Σ⊗̂T such that V ⊆W and λV = λW ;
(c) (X × Y,Λ, λ) is complete and locally determined, and in fact is the c.l.d. version of (X × Y,Λ, λ0) as

described in 213D-213E; in particular, λW = λ0W whenever λ0W <∞;
(d) ifW ∈ Λ and λW > 0 then there are E ∈ Σ, F ∈ T such that µE <∞, νF <∞ and λ(W∩(E×F )) >

0;
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251I Finite products 5

(e) if W ∈ Λ and λW < ∞, then for every ǫ > 0 there are E0, . . . , En ∈ Σ, F0, . . . , Fn ∈ T, all of finite
measure, such that λ(W△⋃

i≤n(Ei × Fi)) ≤ ǫ.

proof Take θ to be the outer measure of 251A and λ0 the primitive product measure of 251C. Set Σf =
{E : E ∈ Σ, µE <∞} and Tf = {F : F ∈ T, νF <∞}.

(a) By 251E, Σ⊗̂T ⊆ Λ. If E ∈ Σ and F ∈ T and µE · νF < ∞, either µE · νF = 0 and λ(E × F ) =
λ0(E × F ) = 0 or both µE and νF are finite and again λ(E × F ) = λ0(E × F ) = µE · νF .

(b)(i) Take any a < λW . Then there are E ∈ Σf , F ∈ Tf such that λ0(W ∩ (E × F )) > a (251F); now

θ((E × F ) \W ) = λ0((E × F ) \W )

= λ0(E × F )− λ0(W ∩ (E × F )) < λ0(E × F )− a.

Let 〈En〉n∈N, 〈Fn〉n∈N be sequences in Σ, T respectively such that (E × F ) \ W ⊆ ⋃
n∈NEn × Fn and∑∞

n=0 µEn · νFn ≤ λ0(E × F )− a. Consider

V = (E × F ) \⋃n∈NEn × Fn ∈ Σ⊗̂T;

then V ⊆W , and

λV = λ0V = λ0(E × F )− λ0((E × F ) \ V )

≥ λ0(E × F )− λ0(
⋃

n∈N

En × Fn)

(because (E × F ) \ V ⊆ ⋃
n∈NEn × Fn)

≥ λ0(E × F )−
∞∑

n=0

µEn · νFn ≥ a

(by the choice of the En, Fn).

(ii) Thus for every a < λW there is a V ∈ Σ⊗̂T such that V ⊆W and λV ≥ a. Now choose a sequence
〈an〉n∈N strictly increasing to λW , and for each an a corresponding Vn; then V =

⋃
n∈N Vn belongs to the

σ-algebra Σ⊗̂T, is included in W , and has measure at least supn∈N λVn and at most λW ; so λV = λW , as
required.

(c)(i) If H ⊆ X×Y is λ-negligible, there is aW ∈ Λ such that H ⊆W and λW = 0. If E ∈ Σ, F ∈ T are
of finite measure, λ0(W ∩ (E × F )) = 0; but λ0, being derived from the outer measure θ by Carathéodory’s
method, is complete (212A), so H ∩ (E×F ) ∈ Λ and λ0(H ∩ (E×F )) = 0. Because E and F are arbitrary,
H ∈ Λ, by 251H. As H is arbitrary, λ is complete.

(ii) If W ∈ Λ and λW = ∞, then there must be E ∈ Σ, F ∈ T such that µE < ∞, νF < ∞ and
λ0(W ∩ (E × F )) > 0; now

0 < λ(W ∩ (E × F )) ≤ µE · νF <∞.

Thus λ is semi-finite.

(iii) If H ⊆ X×Y and H ∩W ∈ Λ whenever λW <∞, then, in particular, H ∩ (E×F ) ∈ Λ whenever
µE <∞ and νF <∞; by 251H again, H ∈ Λ. Thus λ is locally determined.

(iv) If W ∈ Λ and λ0W < ∞, then we have sequences 〈En〉n∈N in Σ, 〈Fn〉n∈N in T such that
W ⊆ ⋃

n∈N(En × Fn) and
∑∞

n=0 µEn · νFn <∞. Set

I = {n : µEn = ∞}, J = {n : νFn = ∞}, K = N \ (I ∪ J);
then ν(

⋃
n∈I Fn) = µ(

⋃
n∈J En) = 0, so λ0(W \W ′) = 0, where

W ′ =W ∩⋃
n∈K(En × Fn) ⊇W \ ((⋃n∈J En × Y ) ∪ (X ×⋃

n∈I Fn)).

Now set E′
n =

⋃
i∈K,i≤nEi, F

′
n =

⋃
i∈K,i≤n Fi for each n. We have W ′ =

⋃
n∈NW

′ ∩ (E′
n × F ′

n), so

D.H.Fremlin



6 Product measures 251I

λW ≤ λ0W = λ0W
′ = limn→∞ λ0(W

′ ∩ (E′
n × F ′

n)) ≤ λW ′ ≤ λW ,

and λW = λ0W .

(v) Following the terminology of 213D, let us write

Λ̃ = {W :W ⊆ X × Y, W ∩ V ∈ Λ whenever V ∈ Λ and λ0V <∞},

λ̃W = sup{λ0(W ∩ V ) : V ∈ Λ, λ0V <∞}.
Because λ0(E × F ) <∞ whenever µE <∞ and νF <∞, Λ̃ ⊆ Λ and Λ̃ = Λ.

Now for any W ∈ Λ we have

λ̃W = sup{λ0(W ∩ V ) : V ∈ Λ, λ0V <∞}
≥ sup{λ0(W ∩ (E × F )) : E ∈ Σf , F ∈ Tf}
= λW

≥ sup{λ(W ∩ V ) : V ∈ Λ, λ0V <∞}
= sup{λ0(W ∩ V ) : V ∈ Λ, λ0V <∞},

using (iv) just above, so that λ = λ̃ is the c.l.d. version of λ0.

(d) IfW ∈ Λ and λW > 0, there are E ∈ Σf and F ∈ Tf such that λ(W∩(E×F )) = λ0(W∩(E×F )) > 0.

(e) There are E ∈ Σf , F ∈ Tf such that λ0(W ∩ (E × F )) ≥ λW − 1
3ǫ; set V1 =W ∩ (E × F ); then

λ(W \ V1) = λW − λV1 = λW − λ0V1 ≤ 1

3
ǫ.

There are sequences 〈E′
n〉n∈N in Σ, 〈F ′

n〉n∈N in T such that V1 ⊆ ⋃
n∈NE

′
n × F ′

n and
∑∞

n=0 µE
′
n · νF ′

n ≤
λ0V1 +

1
3ǫ. Replacing E′

n, F
′
n by E′

n ∩ E, F ′
n ∩ F if necessary, we may suppose that E′

n ∈ Σf and F ′
n ∈ Tf

for every n. Set V2 =
⋃

n∈NE
′
n × F ′

n; then

λ(V2 \ V1) ≤ λ0(V2 \ V1) ≤
∑∞

n=0 µE
′
n · νF ′

n − λ0V1 ≤ 1

3
ǫ.

Let m ∈ N be such that
∑∞

n=m+1 µE
′
n · νF ′

n ≤ 1
3ǫ, and set

V =
⋃m

n=0E
′
n × F ′

n.

Then

λ(V2 \ V ) ≤ ∑∞
n=m+1 µE

′
n · νF ′

n ≤ 1

3
ǫ.

Putting these together, we have W△V ⊆ (W \ V1) ∪ (V2 \ V1) ∪ (V2 \ V ), so

λ(W△V ) ≤ λ(W \ V1) + λ(V2 \ V1) + λ(V2 \ V ) ≤ 1

3
ǫ+

1

3
ǫ+

1

3
ǫ = ǫ.

And V is of the required form.

251J Proposition If (X,Σ, µ) and (Y,T, ν) are semi-finite measure spaces and λ is the c.l.d. product
measure on X × Y , then λ(E × F ) = µE · νF for all E ∈ Σ, F ∈ T.

proof Setting Σf = {E : E ∈ Σ, µE <∞}, Tf = {F : F ∈ T, νF <∞}, we have

λ(E × F ) = sup{λ0((E ∩ E0)× (F ∩ F0)) : E0 ∈ Σf , F0 ∈ Tf}
= sup{µ(E ∩ E0) · ν(F ∩ F0)) : E0 ∈ Σf , F0 ∈ Tf}
= sup{µ(E ∩ E0) : E0 ∈ Σf} · sup{ν(F ∩ F0) : F0 ∈ Tf} = µE · νF

(using 213A).
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*251L Finite products 7

251K σ-finite spaces Of course most of the measure spaces we shall apply these results to are σ-finite,
and in this case there are some useful simplifications.

Proposition Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces. Then the c.l.d. product measure on
X ×Y is equal to the primitive product measure, and is the completion of its restriction to Σ⊗̂T; moreover,
this common product measure is σ-finite.

proof Write λ0, λ for the primitive and c.l.d. product measures, as usual, and Λ for their domain. Let
〈En〉n∈N, 〈Fn〉n∈N be non-decreasing sequences of sets of finite measure covering X, Y respectively (see
211D).

(a) For each n ∈ N, λ(En × Fn) = µEn · νFn is finite, by 251Ia. Since X × Y =
⋃

n∈NEn × Fn, λ is
σ-finite.

(b) For any W ∈ Λ,

λ0W = limn→∞ λ0(W ∩ (En × Fn)) = limn→∞ λ(W ∩ (En × Fn)) = λW .

So λ = λ0.

(c) Write λB for the restriction of λ = λ0 to Σ⊗̂T, and λ̂B for its completion.

(i) Suppose that W ∈ dom λ̂B. Then there are W ′, W ′′ ∈ Σ⊗̂T such that W ′ ⊆ W ⊆ W ′′ and
λB(W ′′ \W ′) = 0 (212C). In this case, λ(W ′′ \W ′) = 0; as λ is complete, W ∈ Λ and

λW = λW ′ = λBW ′ = λ̂BW .

Thus λ extends λ̂B.

(ii) If W ∈ Λ, then there is a V ∈ Σ⊗̂T such that V ⊆ W and λ(W \ V ) = 0. PPP For each n ∈ N

there is a Vn ∈ Σ⊗̂T such that Vn ⊆ W ∩ (En × Fn) and λVn = λ(W ∩ (En × Fn)) (251Ib). But as
λ(En × Fn) = µEn · νFn is finite, this means that λ(W ∩ (En × Fn) \ Vn) = 0. So if we set V =

⋃
n∈N Vn,

we shall have V ∈ Σ⊗̂T, V ⊆W and

W \ V =
⋃

n∈NW ∩ (En × Fn) \ V ⊆ ⋃
n∈NW ∩ (En × Fn) \ Vn

is λ-negligible. QQQ
Similarly, there is a V ′ ∈ Σ⊗̂T such that V ′ ⊆ (X × Y ) \W and λ(((X × Y ) \W ) \ V ′) = 0. Setting

V ′′ = (X × Y ) \ V ′, V ′′ ∈ Σ⊗̂T, W ⊆ V ′′ and λ(V ′′ \W ) = 0. So

λB(V ′′ \ V ) = λ(V ′′ \ V ) = λ(V ′′ \W ) + λ(W \ V ) = 0,

and W is measured by λ̂B, with λ̂BW = λBV = λW . As W is arbitrary, λ̂B = λ.

*251L The following result fits in naturally here; I star it because it will be used seldom (there is a more
important version of the same idea in 254G) and the proof can be skipped until you come to need it.

Proposition Let (X1,Σ1, µ1), (X2,Σ2, µ2), (Y1,T1, ν1) and (Y2,T2, ν2) be σ-finite measure spaces; let λ1,
λ2 be the product measures on X1 × Y1, X2 × Y2 respectively. Suppose that f : X1 → X2 and g : Y1 → Y2
are inverse-measure-preserving functions, and that h(x, y) = (f(x), g(y)) for x ∈ X1, y ∈ Y1. Then h is
inverse-measure-preserving.

proof Write Λ1, Λ2 for the domains of λ1, λ2 respectively.

(a) Suppose that E ∈ Σ2 and F ∈ T2 have finite measure. Then λ1h
−1[W ∩ (E × F )] is defined and

equal to λ2(W ∩ (E × F )) for every W ∈ Λ2. PPP

λ1h
−1[E × F ] = λ1(f

−1[E]× g−1[F ]) = µ1f
−1[E] · ν1g−1[F ]

= µ2E · ν2F = λ2(E × F )

by 251E/251J. QQQ

(b) Take E0 ∈ Σ2 and F0 ∈ T2 of finite measure. Let λ̃1, λ̃2 be the subspace measures on f−1[E0]×g−1[F0]

and E0 × F0 respectively. Set h̃ = h↾f−1[E0] × g−1[F0], and write ι for the identity map from E0 × F0 to

X2 × Y2; let λ = λ̃1h̃
−1 and λ′ = λ̃2ι

−1 be the image measures on X2 × Y2. Then (a) tells us that

D.H.Fremlin



8 Product measures *251L

λ(E × F ) = λ1(h
−1[(E ∩ E0)× (F ∩ F0)])

= λ2((E ∩ E0)× (F ∩ F0)) = λ′(E × F )

whenever E ∈ Σ2 and F ∈ T2. By the Monotone Class Theorem (136C), λ and λ′ agree on Σ2⊗̂T2, that is,
λ1(h

−1[W ∩ (E0 × F0)]) = λ2(W ∩ (E0 × F0)) for every W ∈ Σ2⊗̂T2.
If W is any member of Λ2, there are W ′, W ′′ ∈ Σ2⊗̂T2 such that W ′ ⊆ W ⊆ W ′′ and λ2(W ′′ \W ′) = 0

(251K). Now we must have

h−1[W ′ ∩ (E0 × F0)] ⊆ h−1[W ∩ (E0 × F0)] ⊆ h−1[W ′′ ∩ (E0 × F0)],

λ1(h
−1[W ′′ ∩ (E0 × F0)] \ h−1[W ′ ∩ (E0 × F0)]) = λ2((W

′′ \W ′) ∩ (E0 × F0)) = 0;

because λ1 is complete, λ1h
−1[W ∩ (E0 × F0)] is defined and equal to

λ1h
−1[W ′ ∩ (E0 × F0)] = λ2(W

′ ∩ (E0 × F0)) = λ2(W ∩ (E0 × F0)).

(c) Now suppose that 〈En〉n∈N, 〈Fn〉n∈N are non-decreasing sequences of sets of finite measure with union
X2, Y2 respectively. If W ∈ Λ2,

λ1h
−1[W ] = supn∈N λ1h

−1[W ∩ (En × Fn)] = supn∈N λ2(W ∩ (En × Fn)) = λ2W .

So h is inverse-measure-preserving, as claimed.

251M It is time that I gave some examples. Of course the central example is Lebesgue measure. In
this case we have the only reasonable result. I pause to describe the leading example of the product Σ⊗̂T
introduced in 251D.

Proposition Let r, s ≥ 1 be integers. Then we have a natural bijection φ : Rr × Rs → Rr+s, defined by
setting

φ((ξ1, . . . , ξr), (η1, . . . , ηs)) = (ξ1, . . . , ξr, η1, . . . , ηs)

for ξ1, . . . , ξr, η1, . . . , ηs ∈ R. If we write Br, Bs and Br+s for the Borel σ-algebras of Rr, Rs and Rr+s

respectively, then φ identifies Br+s with Br⊗̂Bs.

proof (a) Write B for the σ-algebra {φ−1[W ] : W ∈ Br+s} copied onto Rr × Rs by the bijection φ; we
are seeking to prove that B = Br⊗̂Bs. We have maps π1 : Rr+s → Rr, π2 : Rr+s → Rs defined by
setting π1(φ(x, y)) = x, π2(φ(x, y)) = y. Each co-ordinate of π1 is continuous, therefore Borel measurable
(121Db), so π−1

1 [E] ∈ Br+s for every E ∈ Br, by 121K. Similarly, π−1
2 [F ] ∈ Br+s for every F ∈ Bs. So

φ[E ×F ] = π−1
1 [E]∩ π−1

1 [F ] belongs to Br+s, that is, E ×F ∈ B, whenever E ∈ Br and F ∈ Bs. Because B
is a σ-algebra, Br⊗̂Bs ⊆ B.

(b) Now examine sets of the form

{(x, y) : ξi ≤ α} = {x : ξi ≤ α} × Rs,

{(x, y) : ηj ≤ α} = Rr × {y : ηj ≤ α}
for α ∈ R, i ≤ r and j ≤ s, taking x = (ξ1, . . . , ξr) and y = (η1, . . . , ηs). All of these belong to Br⊗̂Bs. But
the σ-algebra they generate is just B, by 121J. So B ⊆ Br⊗̂Bs and B = Br⊗̂Bs.

251N Theorem Let r, s ≥ 1 be integers. Then the bijection φ : Rr × Rs → Rr+s described in 251M
identifies Lebesgue measure on Rr+s with the c.l.d. product λ of Lebesgue measure on Rr and Lebesgue
measure on Rs.

proof Write µr, µs, µr+s for the three versions of Lebesgue measure, µ∗
r , µ

∗
s and µ∗

r+s for the corresponding
outer measures, and θ for the outer measure on Rr × Rs derived from µr and µs by the formula of 251A.

(a) If I ⊆ Rr and J ⊆ Rs are half-open intervals, then φ[I × J ] ⊆ Rr+s is also a half-open interval, and

µr+s(φ[I × J ]) = µrI · µsJ ;

Measure Theory



251O Finite products 9

this is immediate from the definition of the Lebesgue measure of an interval. (I speak of ‘half-open’ intervals
here, that is, intervals of the form

∏
1≤j≤r [αj , βj [, because I used them in the definition of Lebesgue measure

in §115. If you prefer to work with open intervals or closed intervals it makes no difference.) Note also that
every half-open interval in Rr+s is expressible as φ[I × J ] for suitable I, J .

(b) For any A ⊆ Rr+s, θ(φ−1[A]) ≤ µ∗
r+s(A). PPP For any ǫ > 0, there is a sequence 〈Kn〉n∈N of half-open

intervals in Rr+s such that A ⊆ ⋃
n∈NKn and

∑∞
n=0 µr+s(Kn) ≤ µ∗

r+s(A)+ǫ. Express each Kn as φ[In×Jn],
where In and Jn are half-open intervals in Rr and Rs respectively; then φ−1[A] ⊆ ⋃

n∈N In × Jn, so that

θ(φ−1[A]) ≤ ∑∞
n=0 µrIn · µsJn =

∑∞
n=0 µr+s(Kn) ≤ µ∗

r+s(A) + ǫ.

As ǫ is arbitrary, we have the result. QQQ

(c) If E ⊆ Rr and F ⊆ Rs are measurable, then µ∗
r+s(φ[E × F ]) ≤ µrE · µsF .

PPP (i) Consider first the case µrE <∞, µsF <∞. In this case, given ǫ > 0, there are sequences 〈In〉n∈N,
〈Jn〉n∈N of half-open intervals such that E ⊆ ⋃

n∈N In, F ⊆ ⋃
n∈N Fn,

∑∞
n=0 µrIn ≤ µ∗

rE + ǫ = µrE + ǫ,

∑∞
n=0 µsJn ≤ µ∗

sF + ǫ = µsF + ǫ.

Accordingly E × F ⊆ ⋃
m,n∈N Im × Jn and φ[E × F ] ⊆ ⋃

m,n∈N φ[Im × Jn], so that

µ∗
r+s(φ[E × F ]) ≤

∞∑

m,n=0

µr+s(φ[Im × Jn]) =

∞∑

m,n=0

µrIm · µsJn

=

∞∑

m=0

µrIm ·
∞∑

n=0

µsJn ≤ (µrE + ǫ)(µsF + ǫ).

As ǫ is arbitrary, we have the result.

(ii) Next, if µrE = 0, there is a sequence 〈Fn〉n∈N of sets of finite measure covering Rs ⊇ F , so that

µ∗
r+s(φ[E × F ]) ≤ ∑∞

n=0 µ
∗
r+s(φ[E × Fn]) ≤

∑∞
n=0 µrE · µsFn = 0 = µrE · µsF .

Similarly, µ∗
r+s(φ[E×F ]) ≤ µrE ·µsF if µsF = 0. The only remaining case is that in which both of µrE, µsF

are strictly positive and one is infinite; but in this case µrE ·µsF = ∞, so surely µ∗
r+s(φ[E×F ]) ≤ µrE ·µsF .

QQQ

(d) If A ⊆ Rr+s, then µ∗
r+s(A) ≤ θ(φ−1[A]). PPP Given ǫ > 0, there are sequences 〈En〉n∈N, 〈Fn〉n∈N

of measurable sets in Rr, Rs respectively such that φ−1[A] ⊆ ⋃
n∈NEn × Fn and

∑∞
n=0 µrEn · µsFn ≤

θ(φ−1[A]) + ǫ. Now A ⊆ ⋃
n∈N φ[En × Fn], so

µ∗
r+s(A) ≤

∑∞
n=0 µ

∗
r+s(φ[En × Fn]) ≤

∑∞
n=0 µrEn · µsFn ≤ θ(φ−1[A]) + ǫ.

As ǫ is arbitrary, we have the result. QQQ

(e) Putting (c) and (d) together, we have θ(φ−1[A]) = µ∗
r+s(A) for every A ⊆ Rr+s. Thus θ on Rr × Rs

corresponds exactly to µ∗
r+s on Rr+s. So the associated measures λ0, µr+s must correspond in the same

way, writing λ0 for the primitive product measure. But 251K tells us that λ0 = λ, so we have the result.

251O In fact, a large proportion of the applications of the constructions here are to subspaces of
Euclidean space, rather than to the whole product Rr × Rs. It would not have been especially difficult
to write 251N out to deal with arbitrary subspaces, but I prefer to give a more general description of the
product of subspace measures, as I feel that it illuminates the method. I start with a straightforward result
on strictly localizable spaces.

Proposition Let (X,Σ, µ) and (Y,T, ν) be strictly localizable measure spaces. Then the c.l.d. product
measure on X × Y is strictly localizable; moreover, if 〈Xi〉i∈I and 〈Yj〉j∈J are decompositions of X and Y
respectively, 〈Xi × Yj〉(i,j)∈I×J is a decomposition of X × Y .

D.H.Fremlin



10 Product measures 251O

proof Let 〈Xi〉i∈I and 〈Yj〉j∈J be decompositions of X, Y respectively. Then 〈Xi × Yj〉(i,j)∈I×J is a
partition of X×Y into measurable sets of finite measure. If W ⊆ X×Y and λW > 0, there are sets E ∈ Σ,
F ∈ T such that µE < ∞, νF < ∞ and λ(W ∩ (E × F )) > 0. We know that µE =

∑
i∈I µ(E ∩Xi) and

µF =
∑

j∈J µ(F ∩ Yj), so there must be finite sets I0 ⊆ I, J0 ⊆ J such that

µE · νF − (
∑

i∈I0
µ(E ∩Xi))(

∑
j∈J0

ν(F ∩ Yj)) < λ(W ∩ (E × F )).

Setting E′ =
⋃

i∈I0
Xi and F

′ =
⋃

j∈J0
Yj we have

λ((E × F ) \ (E′ × F ′)) = λ(E × F )− λ((E ∩ E′)× (F ∩ F ′)) < λ(W ∩ (E × F )),

so that λ(W ∩ (E′ ×F ′)) > 0. There must therefore be some i ∈ I0, j ∈ J0 such that λ(W ∩ (Xi × Yj)) > 0.
This shows that {Xi × Yj : i ∈ I, j ∈ J} satisfies the criterion of 213O, so that λ, being complete and

locally determined, must be strictly localizable. Because 〈Xi × Yj〉(i,j)∈I×J covers X × Y , it is actually a
decomposition of X × Y (213Ob).

251P Lemma Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X×Y .
Let λ∗ be the corresponding outer measure (132B). Then

λ∗C = sup{θ(C ∩ (E × F )) : E ∈ Σ, F ∈ T, µE <∞, νF <∞}
for every C ⊆ X × Y , where θ is the outer measure of 251A.

proof Write Λ for the domain of λ, Σf for {E : E ∈ Σ, µE < ∞}, Tf for {F : F ∈ T, νF < ∞}; set
u = sup{θ(C ∩ (E × F )) : E ∈ Σf , F ∈ Tf}.

(a) If C ⊆W ∈ Λ, E ∈ Σf and F ∈ Tf , then

θ(C ∩ (E × F )) ≤ θ(W ∩ (E × F )) = λ0(W ∩ (E × F ))

(where λ0 is the primitive product measure)

≤ λW.

As E and F are arbitrary, u ≤ λW ; as W is arbitrary, u ≤ λ∗C.

(b) If u = ∞, then of course λ∗C = u. Otherwise, let 〈En〉n∈N, 〈Fn〉n∈N be sequences in Σf , Tf

respectively such that

u = supn∈N θ(C ∩ (En × Fn)).

Consider C ′ = C \ (⋃n∈NEn ×⋃
n∈N Fn). If E ∈ Σf and F ∈ Tf , then for every n ∈ N we have

u ≥ θ(C ∩ ((E ∪ En)× (F ∪ Fn)))

= θ(C ∩ ((E ∪ En)× (F ∪ Fn)) ∩ (En × Fn))

+ θ(C ∩ ((E ∪ En)× (F ∪ Fn)) \ (En × Fn))

(because En × Fn ∈ Λ, by 251E)

≥ θ(C ∩ (En × Fn)) + θ(C ′ ∩ (E × F )).

Taking the supremum of the right-hand expression as n varies, we have u ≥ u+ θ(C ′ ∩ (E × F )) so

λ(C ′ ∩ (E × F )) = θ(C ′ ∩ (E × F )) = 0.

As E and F are arbitrary, λC ′ = 0.
But this means that

λ∗C ≤ λ∗(C ∩ (
⋃

n∈N

En ×
⋃

n∈N

Fn)) + λ∗C ′

= lim
n→∞

λ∗(C ∩ (
⋃

i≤n

Ei ×
⋃

i≤n

Fi))

(using 132Ae)
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251Q Finite products 11

≤ u,

as required.

251Q Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and A ⊆ X, B ⊆ Y subsets; write
µA, νB for the subspace measures on A, B respectively. Let λ be the c.l.d. product measure on X × Y , and
λ# the subspace measure it induces on A×B. Let λ̃ be the c.l.d. product measure of µA and νB on A×B.
Then

(i) λ̃ extends λ#.
(ii) If

either (α) A ∈ Σ and B ∈ T

or (β) A and B can both be covered by sequences of sets of finite measure

or (γ) µ and ν are both strictly localizable,

then λ̃ = λ#.

proof Let θ be the outer measure on X × Y defined from µ and ν by the formula of 251A, and θ̃ the outer
measure on A× B similarly defined from µA and νB . Write Λ for the domain of λ, Λ̃ for the domain of λ̃,
and Λ# = {W ∩ (A×B) :W ∈ Λ} for the domain of λ#. Set Σf = {E : µE <∞}, Tf = {F : νF <∞}.

(a) The first point to observe is that θ̃C = θC for every C ⊆ A× B. PPP (i) If 〈En〉n∈N and 〈Fn〉n∈N are
sequences in Σ, T respectively such that C ⊆ ⋃

n∈NEn × Fn, then

C = C ∩ (A×B) ⊆ ⋃
n∈N(En ∩A)× (Fn ∩B),

so

θ̃C ≤
∞∑

n=0

µA(En ∩A) · νB(Fn ∩B)

=
∞∑

n=0

µ∗(En ∩A) · ν∗(Fn ∩B) ≤
∞∑

n=0

µEn · νFn.

As 〈En〉n∈N and 〈Fn〉n∈N are arbitrary, θ̃C ≤ θC. (ii) If 〈Ẽn〉n∈N, 〈F̃n〉n∈N are sequences in ΣA = domµA,

TB = dom νB respectively such that C ⊆ ⋃
n∈N Ẽn× F̃n, then for each n ∈ N we can choose En ∈ Σ, Fn ∈ T

such that

Ẽn ⊆ En, µEn = µ∗Ẽn = µAẼn,

F̃n ⊆ Fn, νFn = ν∗F̃n = νBF̃n,

and now

θC ≤ ∑∞
n=0 µEn · νFn =

∑∞
n=0 µAẼn · νBF̃n.

As 〈Ẽn〉n∈N, 〈F̃n〉n∈N are arbitrary, θC ≤ θ̃C. QQQ

(b) It follows that Λ# ⊆ Λ̃. PPP Suppose that V ∈ Λ# and that C ⊆ A×B. In this case there is a W ∈ Λ
such that V =W ∩ (A×B). So

θ̃(C ∩ V ) + θ̃(C \ V ) = θ(C ∩W ) + θ(C \W ) = θC = θ̃C.

As C is arbitrary, V ∈ Λ̃. QQQ
Accordingly, for V ∈ Λ#,

λ#V = λ∗V = sup{θ(V ∩ (E × F )) : E ∈ Σf , F ∈ Tf}
= sup{θ(V ∩ (Ẽ × F̃ )) : Ẽ ∈ ΣA, F̃ ∈ TB , µAẼ <∞, νBF̃ <∞}
= sup{θ̃(V ∩ (Ẽ × F̃ )) : Ẽ ∈ ΣA, F̃ ∈ TB , µAẼ <∞, νBF̃ <∞} = λ̃V,

using 251P twice.
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12 Product measures 251Q

This proves part (i) of the proposition.

(c) The next thing to check is that if V ∈ Λ̃ and V ⊆ E × F where E ∈ Σf and F ∈ Tf , then V ∈ Λ#.
PPP Let W ⊆ E × F be a measurable envelope of V with respect to λ (132Ee). Then

θ(W ∩ (A×B) \ V ) = θ̃(W ∩ (A×B) \ V ) = λ̃(W ∩ (A×B) \ V )

(because W ∩ (A×B) ∈ Λ# ⊆ Λ̃, V ∈ Λ̃)

= λ̃(W ∩ (A×B))− λ̃V = θ̃(W ∩ (A×B))− θ̃V

= θ(W ∩ (A×B))− θV = λ∗(W ∩ (A×B))− λ∗V

≤ λW − λ∗V = 0.

But this means that W ′ =W ∩ (A×B) \ V ∈ Λ and V = (A×B) ∩ (W \W ′) belongs to Λ#. QQQ

(d) Now fix any V ∈ Λ̃, and look at the conditions (α)-(γ) of part (ii) of the proposition.

(ααα) If A ∈ Σ and B ∈ T, and C ⊆ X × Y , then A×B ∈ Λ (251E), so

θ(C ∩ V ) + θ(C \ V ) = θ(C ∩ V ) + θ((C \ V ) ∩ (A×B)) + θ((C \ V ) \ (A×B))

= θ̃(C ∩ V ) + θ̃(C ∩ (A×B) \ V ) + θ(C \ (A×B))

= θ̃(C ∩ (A×B)) + θ(C \ (A×B))

= θ(C ∩ (A×B)) + θ(C \ (A×B)) = θC.

As C is arbitrary, V ∈ Λ, so V = V ∩ (A×B) belongs to Λ#.

(βββ) If A ⊆ ⋃
n∈NEn and B ⊆ ⋃

n∈N Fn where all the En, Fn are of finite measure, then V =
⋃

m,n∈N V ∩
(Em × Fn) ∈ Λ#, by (c).

(γγγ) If 〈Xi〉i∈I , 〈Yj〉j∈J are decompositions of X, Y respectively, then for each i ∈ I, j ∈ J we have
V ∩(Xi×Yj) ∈ Λ#, that is, there is aWij ∈ Λ such that V ∩(Xi×Yj) =Wij∩(A×B). Now 〈Xi×Yj〉(i,j)∈I×J

is a decomposition of X × Y for λ (251O), so that

W =
⋃

i∈I,j∈J Wij ∩ (Xi × Yj) ∈ Λ,

and V =W ∩ (A×B) ∈ Λ#.

(e) Thus any of the three conditions is sufficient to ensure that Λ̃ = Λ#, in which case (a) tells us that

λ̃ = λ#.

251R Corollary Let r, s ≥ 1 be integers, and φ : Rr ×Rs → Rr+s the natural bijection. If A ⊆ Rr and
B ⊆ Rs, then the restriction of φ to A× B identifies the product of Lebesgue measure on A and Lebesgue
measure on B with Lebesgue measure on φ[A×B] ⊆ Rr+s.

Remark Note that by ‘Lebesgue measure on A’ I mean the subspace measure µrA on A induced by r-
dimensional Lebesgue measure µr on Rr, whether or not A is itself a measurable set.

proof By 251Q, using either of the conditions (ii-β) or (ii-γ), the product measure λ̃ on A×B is just the
subspace measure λ# on A×B induced by the product measure λ on Rr ×Rs. But by 251N we know that
φ is an isomorphism between (Rr × Rs, λ) and (Rr+s, µr+s); so it must also identify λ̃ with the subspace
measure on φ[A×B].

251S Corollary Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure onX×Y .
If A ⊆ X and B ⊆ Y can be covered by sequences of sets of finite measure, then λ∗(A×B) = µ∗A · ν∗B.

proof In the language of 251Q,

λ∗(A×B) = λ#(A×B) = λ̃(A×B) = µAA · νBB
(by 251K and 251E)

= µ∗A · ν∗B.
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251T The next proposition gives an idea of how the technical definitions here fit together.

Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces. Write (X, Σ̂, µ̂) and (X, Σ̃, µ̃) for the completion

and c.l.d. version of (X,Σ, µ) (212C, 213E). Let λ, λ̂ and λ̃ be the three c.l.d. product measures on X × Y

obtained from the pairs (µ, ν), (µ̂, ν) and (µ̃, ν) of factor measures. Then λ = λ̂ = λ̃.

proof Write Λ, Λ̂ and Λ̃ for the domains of λ, λ̂, λ̃ respectively; and θ, θ̂, θ̃ for the outer measures on
X × Y obtained by the formula of 251A from the three pairs of factor measures.

(a) If E ∈ Σ and µE <∞, then θ, θ̂ and θ̃ agree on subsets of E × Y . PPP Take A ⊆ E × Y and ǫ > 0.

(i) There are sequences 〈En〉n∈N in Σ, 〈Fn〉n∈N in T such that A ⊆ ⋃
n∈NEn×Fn and

∑∞
n=0 µEn ·νFn ≤

θA+ ǫ. Now µ̃En ≤ µEn for every n (213Fb), so

θ̃A ≤ ∑∞
n=0 µ̃En · νFn ≤ ∑∞

n=0 µEn · νFn ≤ θA+ ǫ.

(ii) There are sequences 〈Ên〉n∈N in Σ̂, 〈F̂n〉n∈N in T such that A ⊆ ⋃
n∈N Ên×F̂n and

∑∞
n=0 µ̂Ên·νF̂n ≤

θ̂A+ ǫ. Now for each n there is an E′
n ∈ Σ such that Ên ⊆ E′

n and µE′
n = µ̂Ên, so that

θA ≤ ∑∞
n=0 µE

′
n · νF̂n =

∑∞
n=0 µ̂Ên · νF̂n ≤ θ̂A+ ǫ.

(iii) There are sequences 〈Ẽn〉n∈N in Σ̃, 〈F̃n〉n∈N in T such that A ⊆ ⋃
n∈N Ẽn × F̃n and

∑∞
n=0 µ̃Ẽn ·

νF̃n ≤ θ̃A+ ǫ. Now for each n, Ẽn ∩ E ∈ Σ̂, so

θ̂A ≤ ∑∞
n=0 µ̂(Ẽn ∩ E) · νF̃n ≤ ∑∞

n=0 µ̃Ẽn · νF̃n ≤ θ̃A+ ǫ.

(iv) Since A and ǫ are arbitrary, θ = θ̂ = θ̃ on P(E × Y ). QQQ

(b) Consequently, the outer measures λ∗, λ̂∗ and λ̃∗ are identical. PPP Use 251P. Take A ⊆ X×Y , E ∈ Σ,

Ê ∈ Σ̂, Ẽ ∈ Σ̃, F ∈ T such that µE, µ̂Ê, µ̃Ẽ and νF are all finite. Then

(i)

θ(A ∩ (E × F )) = θ̂(A ∩ (E × F )) ≤ λ̂∗A, θ(A ∩ (E × F )) = θ̃(A ∩ (E × F )) ≤ λ̃∗A

because µ̂E and µ̃E are both finite.

(ii) There is an E′ ∈ Σ such that Ê ⊆ E′ and µE′ <∞, so that

θ̂(A ∩ (Ê × F )) ≤ θ̂(A ∩ (E′ × F )) = θ(A ∩ (E′ × F )) ≤ λ∗A.

(iii) There is an E′′ ∈ Σ such that E′′ ⊆ Ẽ and µ̃(Ẽ \ E′′) = 0 (213Fc), so that θ̃((Ẽ \ E′′) × Y ) = 0
and µE′′ <∞; accordingly

θ̃(A ∩ (Ẽ × F )) = θ̃(A ∩ (E′′ × F )) = θ(A ∩ (E′′ × F )) ≤ λ∗A.

(iv) Taking the suprema over E, Ê, Ẽ and F , we get

λ∗A ≤ λ̂∗A, λ∗A ≤ λ̃∗A, λ̂∗A ≤ λ∗A, λ̃∗A ≤ λ∗A.

As A is arbitrary, λ∗ = λ̂∗ = λ̃∗. QQQ

(c) Now λ, λ̂ and λ̃ are all complete and locally determined, so by 213C are the measures defined by
Carathéodory’s method from their own outer measures, and are therefore identical.

251U It is ‘obvious’, and an easy consequence of theorems so far proved, that the set {(x, x) : x ∈ R}
is negligible for Lebesgue measure on R2. The corresponding result is true in the square of any atomless

measure space.

Proposition Let (X,Σ, µ) be an atomless measure space, and let λ be the c.l.d. measure on X ×X. Then
∆ = {(x, x) : x ∈ X} is λ-negligible.
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proof Let E, F ∈ Σ be sets of finite measure, and n ∈ N. Applying 215D repeatedly, we can find a disjoint

family 〈Fi〉i<n of measurable subsets of F such that µFi =
µF

n+1
for each i; setting Fn = F \ ⋃

i<n Fi, we

also have µFn =
µF

n+1
. Now

∆ ∩ (E × F ) ⊆ ⋃
i≤n(E ∩ Fi)× Fi,

so

λ∗(∆ ∩ (E × F )) ≤ ∑n
i=0 µ(E ∩ Fi) · µFi =

µF

n+1

∑n
i=0 µ(E ∩ Fi) ≤ 1

n+1
µE · µF .

As n is arbitrary, λ(∆ ∩ (E × F )) = 0; as E and F are arbitrary, λ∆ = 0.

*251W Products of more than two spaces The whole of this section can be repeated for arbitrary
finite products. The labour is substantial but no new ideas are required. By the time we need the general
construction in any formal way, it should come very naturally, and I do not think it is necessary to work
through the next page before proceeding, especially as products of probability spaces are dealt with in §254.
However, for completeness, and to help locate results when applications do appear, I list them here. They
do of course constitute a very instructive set of exercises. The most important fragments are repeated in
251Xe-251Xf.

Let 〈(Xi,Σi, µi)〉i∈I be a finite family of measure spaces, and set X =
∏

i∈I Xi. Write Σf
i = {E : E ∈

Σi, µiE <∞} for each i ∈ I.

(a) For A ⊆ X set

θA = inf{
∞∑

n=0

∏

i∈I

µiEni : Eni ∈ Σi ∀ i ∈ I, n ∈ N, A ⊆
⋃

n∈N

∏

i∈I

Eni}.

Then θ is an outer measure on X. Let λ0 be the measure on X derived by Carathéodory’s method from θ,
and Λ its domain.

(b) If 〈Xi〉i∈I is a finite family of sets and Σi is a σ-algebra of subsets of Xi for each i ∈ I, then
⊗̂

i∈IΣi

is the σ-algebra of subsets of X =
∏

i∈I Xi generated by {∏i∈I Ei : Ei ∈ Σi for every i ∈ I}. (For the
corresponding construction when I is infinite, see 254E.)

(c) λ0(
∏

i∈I Ei) is defined and equal to
∏

i∈I µiEi whenever Ei ∈ Σi for each i ∈ I.

(d) The c.l.d. product measure on X is the measure λ defined by setting

λW = sup{λ0(W ∩∏
i∈I Ei) : Ei ∈ Σf

i for each i ∈ I}
for W ∈ Λ. If I is empty, so that X = {∅}, then the appropriate convention is to set λX = 1.

(e) If H ⊆ X, then H ∈ Λ iff H ∩∏
i∈I Ei ∈ Λ whenever Ei ∈ Σf

i for each i ∈ I.

(f)(i)
⊗̂

i∈IΣi ⊆ Λ and λ(
∏

i∈I Ei) =
∏

i∈I µiEi whenever Ei ∈ Σf
i for each i.

(ii) For every W ∈ Λ there is a V ∈ ⊗̂
i∈IΣi such that V ⊆W and λV = λW .

(iii) λ is complete and locally determined, and is the c.l.d. version of λ0.

(iv) If W ∈ Λ and λW > 0 then there are Ei ∈ Σf
i , for i ∈ I, such that λ(W ∩∏

i∈I Ei) > 0.

(v) If W ∈ Λ and λW <∞, then for every ǫ > 0 there are n ∈ N and E0i, . . . , Eni ∈ Σf
i , for each i ∈ I,

such that λ(W△⋃
k≤n

∏
i∈I Eki) ≤ ǫ.

(g) If each µi is σ-finite, so is λ, and λ = λ0 is the completion of its restriction to
⊗̂

i∈IΣi.

(h) If 〈Ij〉j∈J is any partition of I, then λ can be identified with the c.l.d. product of 〈λj〉j∈J , where λj
is the c.l.d. product of 〈µi〉i∈Ij . (See the arguments in 251N and also in 254N below.)
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(i) If I = {1, . . . , n} and each µi is Lebesgue measure on R, then λ can be identified with Lebesgue
measure on Rn.

(j) If, for each i ∈ I, we have a decomposition 〈Xij〉j∈Ji
of Xi, then 〈∏i∈I Xi,f(i)〉f∈∏

i∈I Ji
is a decom-

position of X.

(k) For any C ⊆ X,

λ∗C = sup{θ(C ∩∏
i∈I Ei) : Ei ∈ Σf

i for every i ∈ I}.

(l) Suppose that Ai ⊆ Xi for each i ∈ I. Write λ# for the subspace measure on A =
∏

i∈I Ai, and λ̃ for

the c.l.d. product of the subspace measures on the Ai. Then λ̃ extends λ#, and if
either Ai ∈ Σi for every i
or every Ai can be covered by a sequence of sets of finite measure
or every µi is strictly localizable,

then λ̃ = λ#.

(m) If Ai ⊆ Xi can be covered by a sequence of sets of finite measure for each i ∈ I, then λ∗(
∏

i∈I Ai) =∏
i∈I µ

∗
iAi.

(n) Writing µ̂i, µ̃i for the completion and c.l.d. version of each µi, λ is the c.l.d. product of 〈µ̂i〉i∈I and
also of 〈µ̃i〉i∈I .

(o) If all the (Xi,Σi, µi) are the same atomless measure space (X,Σ, µ), then {x : x ∈ X, i 7→ x(i) is
injective} is λ-conegligible.

(p) Now suppose that we have another family 〈(Yi,Ti, νi)〉i∈I of measure spaces, with product (Y,Λ′, λ′),
and inverse-measure-preserving functions fi : Xi → Yi for each i; define f : X → Y by saying that
f(x)(i) = fi(x(i)) for x ∈ X and i ∈ I. If all the νi are σ-finite, then f is inverse-measure-preserving for λ
and λ′.

251X Basic exercises (a) Let X and Y be sets, A ⊆ PX and B ⊆ PY . Let Σ be the σ-algebra of
subsets of X generated by A and T the σ-algebra of subsets of Y generated by B. Show that Σ⊗̂T is the
σ-algebra of subsets of X × Y generated by {A×B : A ∈ A, B ∈ B}.

(b) Let (X,Σ, µ) and (Y,T, ν) be measure spaces; let λ0 be the primitive product measure on X × Y ,
and λ the c.l.d. product measure. Show that λ0W <∞ iff λW <∞ and W is included in a set of the form

(E × Y ) ∪ (X × F ) ∪⋃
n∈NEn × Fn

where µE = νF = 0 and µEn <∞, νFn <∞ for every n.

>>>(c) Show that if X and Y are any sets, with their respective counting measures, then the primitive and
c.l.d. product measures on X × Y are both counting measure on X × Y .

(d) Let (X,Σ, µ) and (Y,T, ν) be measure spaces; let λ0 be the primitive product measure on X × Y ,
and λ the c.l.d. product measure. Show that

λ0 is locally determined

⇐⇒ λ0 is semi-finite

⇐⇒ λ0 = λ

⇐⇒ λ0 and λ have the same negligible sets.

>>>(e) (See 251W.) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, where I is a non-empty finite set.
Set X =

∏
i∈I Xi. For A ⊆ X, set
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16 Product measures 251Xe

θA = inf{∑∞
n=0

∏
i∈I µiEni : Eni ∈ Σi ∀ n ∈ N, i ∈ I, A ⊆ ⋃

n∈N

∏
i∈I Eni}.

Show that θ is an outer measure on X. Let λ0 be the measure defined from θ by Carathéodory’s method,
and for W ∈ domλ0 set

λW = sup{λ0(W ∩∏
i∈I Ei) : Ei ∈ Σi, µiEi <∞ for every i ∈ I}.

Show that λ is a measure on X, and is the c.l.d. version of λ0.

>>>(f) (See 251W.) Let I be a non-empty finite set and 〈(Xi,Σi, µi)〉i∈I a family of measure spaces. For

non-empty K ⊆ I set X(K) =
∏

i∈K Xi and let λ
(K)
0 , λ(K) be the measures on X(K) constructed as in

251Xe. Show that if K is a non-empty proper subset of I, then the natural bijection between X(I) and

X(K) × X(I\K) identifies λ
(I)
0 with the primitive product measure of λ

(K)
0 and λ

(I\K)
0 , and λ(I) with the

c.l.d. product measure of λ(K) and λ(I\K).

>>>(g) Using 251Xe-251Xf above, or otherwise, show that if (X1,Σ1, µ1), (X2,Σ2, µ2), (X3,Σ3, µ3) are
measure spaces then the primitive and c.l.d. product measures λ0, λ of (X1×X2)×X3, constructed by first
taking the appropriate product measure on X1 ×X2 and then taking the product of this with the measure
of X3, are identified with the corresponding product measures on X1× (X2×X3) by the canonical bijection
between the sets (X1 ×X2)×X3 and X1 × (X2 ×X3).

(h)(i) What happens in 251Xe when I is a singleton? (ii) Devise an appropriate convention to make
251Xe-251Xf remain valid when one or more of the sets I, K, I \K there is empty.

>>>(i) Let (X,Σ, µ) be a complete locally determined measure space, and I any non-empty set; let ν be
counting measure on I. Show that the c.l.d. product measure on X×I is equal to (or at any rate identifiable
with) the direct sum measure of the family 〈(Xi,Σi, µi)〉i∈I , if we set (Xi,Σi, µi) = (X,Σ, µ) for every i.

>>>(j) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, with direct sum (X,Σ, µ) (214L). Let (Y,T, ν)
be any measure space, and give X×Y , Xi×Y their c.l.d. product measures. Show that the natural bijection
between X × Y and Z =

⋃
i∈I(Xi × Y ) × {i} is an isomorphism between the measure of X × Y and the

direct sum measure on Z.

>>>(k) Let (X,Σ, µ) be any measure space, and Y a singleton set {y}; let ν be the measure on Y such that
νY = 1. Show that the natural bijection between X × {y} and X identifies the primitive product measure
on X ×{y} with µ̌ as defined in 213Xa, and the c.l.d. product measure with the c.l.d. version of µ. Explain
how to put this together with 251Xg and 251Ic to prove 251T.

>>>(l) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X × Y . Show
that λ is the c.l.d. version of its restriction to Σ⊗̂T.

(m) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with primitive and c.l.d. product measures λ0, λ. Let
λ1 be any measure with domain Σ⊗̂T such that λ1(E × F ) = µE · νF whenever E ∈ Σ and F ∈ T. Show
that λW ≤ λ1W ≤ λ0W for every W ∈ Σ⊗̂T.

(n) Let (X,Σ, µ) and (Y,T, ν) be two measure spaces, and λ0 the primitive product measure on X × Y .
Show that the corresponding outer measure λ∗0 is just the outer measure θ of 251A.

(o) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and A ⊆ X, B ⊆ Y subsets; write µA, νB for the

subspace measures. Let λ0 be the primitive product measure on X × Y , and λ#0 the subspace measure it

induces on A×B. Let λ̃0 be the primitive product measure of µA and νB on A×B. Show that λ̃0 extends

λ#0 . Show that if either (α) A ∈ Σ and B ∈ T or (β) A and B can both be covered by sequences of sets of

finite measure or (γ) µ and ν are both strictly localizable, then λ̃0 = λ#0 .

(p) In 251Q, show that λ̃ and λ# will have the same null ideals, even if none of the conditions of 251Q(ii)
are satisfied.
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(q) Let (X,Σ, µ) and (Y,T, ν) be any measure spaces, and λ0 the primitive product measure on X × Y .
Show that λ∗0(A×B) = µ∗A · ν∗B for any A ⊆ X and B ⊆ Y .

(r) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and µ̂ the completion of µ. Show that µ, ν and µ̂, ν
have the same primitive product measures.

(s) Let (X,Σ, µ) be a semi-finite measure space. Show that µ is atomless iff the diagonal {(x, x) : x ∈ X}
is negligible for the c.l.d. product measure on X ×X.

>>>(t) Let (X,Σ, µ) be an atomless measure space, and (Y,T, ν) any measure space. Show that the c.l.d.
product measure on X × Y is atomless.

>>>(u) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X×Y . (i) Show
that if µ and ν are purely atomic, so is λ. (ii) Show that if µ and ν are point-supported, so is λ.

251Y Further exercises (a) LetX, Y be sets with σ-algebras of subsets Σ, T. Suppose that h : X×Y →
R is Σ⊗̂T-measurable and φ : X → Y is (Σ,T)-measurable (121Yc). Show that x 7→ h(x, φ(x)) : X → R is
Σ-measurable.

(b) Show that there are measure spaces (X1,Σ1, µ1) and (X2,Σ2, µ2), a probability space (Y,T, ν) and
an inverse-measure-preserving function f : X1 → X2 such that h : X1×Y → X2×Y is not inverse-measure-
preserving for the c.l.d. product measures on X1 × Y and X2 × Y , where h(x, y) = (f(x), y) for x ∈ X1 and
y ∈ Y .

(c) Let (X,Σ, µ) be a complete locally determined measure space with a subspace A whose measure is
not locally determined (see 216Xb). Set Y = {0}, νY = 1 and consider the c.l.d. product measures on

X × Y and A× Y ; write Λ, Λ̃ for their domains. Show that Λ̃ properly includes {W ∩ (A× Y ) :W ∈ Λ}.

(d) Let (X,Σ, µ) be any measure space, (Y,T, ν) an atomless measure space, and f : X → Y a (Σ,T)-
measurable function. Show that {(x, f(x)) : x ∈ X} is negligible for the c.l.d. product measure on X × Y .

251 Notes and comments There are real difficulties in deciding which construction to declare as ‘the’
product of two arbitrary measures. My phrase ‘primitive product measure’, and notation λ0, betray a bias;
my own preference is for the c.l.d. product λ, for two principal reasons. The first is that λ0 is likely to be
‘bad’, in particular, not semi-finite, even if µ and ν are ‘good’ (251Xd, 252Yk), while λ inherits some of the
most important properties of µ and ν (e.g., 251O); the second is that in the case of topological measure
spaces X and Y , there is often a canonical topological measure on X × Y , which is likely to be more closely
related to λ than to λ0. But for elucidation of this point I must ask you to wait until §417 in Volume 4.

It would be possible to remove the ‘primitive’ product measure entirely from the exposition, or at least
to relegate it to the exercises. This is indeed what I expect to do in the rest of this treatise, since (in my
view) all significant features of product measures on finitely many factors can be expressed in terms of the
c.l.d. product measure. For the first introduction to product measures, however, a direct approach to the
c.l.d. product measure (through the description of λ∗ in 251P, for instance) is an uncomfortably large bite,
and I have some sort of duty to present the most natural rival to the c.l.d. product measure prominently
enough for you to judge for yourself whether I am right to dismiss it. There certainly are results associated
with the primitive product measure (251Xn, 251Xq, 252Yc) which have an agreeable simplicity.

The clash is avoided altogether, of course, if we specialize immediately to σ-finite spaces, in which the
two constructions coincide (251K). But even this does not solve all problems. There is a popular alternative
measure often called ‘the’ product measure: the restriction λ0B of λ0 to the σ-algebra Σ⊗̂T. (See, for
instance, Halmos 50.) The advantage of this is that if a function f on X × Y is Σ⊗̂T-measurable, then
x 7→ f(x, y) is Σ-measurable for every y ∈ Y . (This is because

{W :W ⊆ X × Y, {x : (x, y) ∈W} ∈ Σ ∀ y ∈ Y }
is a σ-algebra of subsets of X × Y containing E × F whenever E ∈ Σ and F ∈ T, and therefore including
Σ⊗̂T.) The primary objection, to my mind, is that Lebesgue measure on R2 is no longer ‘the’ product of
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Lebesgue measure on R with itself. Generally, it is right to seek measures which measure as many sets as
possible, and I prefer to face up to the technical problems (which I acknowledge are off-putting) by seeking
appropriate definitions on the approach to major theorems, rather than rely on ad hoc fixes when the time
comes to apply them.

I omit further examples of product measures for the moment, because the investigation of particular
examples will be much easier with the aid of results from the next section. Of course the leading example,
and the one which should come always to mind in response to the words ‘product measure’, is Lebesgue
measure on R2, the case r = s = 1 of 251N and 251R. For an indication of what can happen when one of
the factors is not σ-finite, you could look ahead to 252K.

I hope that you will see that the definition of the outer measure θ in 251A corresponds to the standard
definition of Lebesgue outer measure, with ‘measurable rectangles’ E × F taking the place of intervals, and
the functional E × F 7→ µE · νF taking the place of ‘length’ or ‘volume’ of an interval; moreover, thinking
of E and F as intervals, there is an obvious relation between Lebesgue measure on R2 and the product
measure on R × R. Of course an ‘obvious relationship’ is not the same thing as a proper theorem with
exact hypotheses and conclusions, but Theorem 251N is clearly central. Long before that, however, there is
another parallel between the construction of 251A and that of Lebesgue measure. In both cases, the proof
that we have an outer measure comes directly from the defining formula (in 113Yd I gave as an exercise
a general result covering 251B), and consequently a very general construction can lead us to a measure.
But the measure would be of far less interest and value if it did not measure, and measure correctly, the
basic sets, in this case the measurable rectangles. Thus 251E corresponds to the theorem that intervals are
Lebesgue measurable, with the right measure (114Db, 114G). This is the real key to the construction, and
is one of the fundamental ideas of measure theory.

Yet another parallel is in 251Xn; the outer measure defining the primitive product measure λ0 is exactly
equal to the outer measure defined from λ0. I described the corresponding phenomenon for Lebesgue measure
in 132C.

Any construction which claims the title ‘canonical’ must satisfy a variety of natural requirements; for
instance, one expects the canonical bijection between X × Y and Y × X to be an isomorphism between
the corresponding product measure spaces. ‘Commutativity’ of the product in this sense is I think obvious
from the definitions in 251A-251C. It is obviously desirable – not, I think, obviously true – that the product
should be ‘associative’ in that the canonical bijection between (X × Y ) × Z and X × (Y × Z) should also
be an isomorphism between the corresponding products of product measures. This is in fact valid for both
the primitive and c.l.d. product measures (251Wh, 251Xe-251Xg).

Working through the classification of measure spaces presented in §211, we find that the primitive product
measure λ0 of arbitrary factor measures µ, ν is complete, while the c.l.d. product measure λ is always
complete and locally determined. λ0 may not be semi-finite, even if µ and ν are strictly localizable (252Yk);
but λ will be strictly localizable if µ and ν are (251O). Of course this is associated with the fact that the
c.l.d. product measure is distributive over direct sums (251Xj). If either µ or ν is atomless, so is λ (251Xt).
Both λ and λ0 are σ-finite if µ and ν are (251K). It is possible for both µ and ν to be localizable but λ not
(254U).

At least if you have worked through Chapter 21, you have now done enough ‘pure’ measure theory for this
kind of investigation, however straightforward, to raise a good many questions. Apart from direct sums, we
also have the constructions of ‘completion’, ‘subspace’, ‘outer measure’ and (in particular) ‘c.l.d. version’ to
integrate into the new ideas; I offer some results in 251T and 251Xk. Concerning subspaces, some possibly
surprising difficulties arise. The problem is that the product measure on the product of two subspaces can
have a larger domain than one might expect. I give a simple example in 251Yc and a more elaborate one in
254Yg. For strictly localizable spaces, there is no problem (251Q); but no other criterion drawn from the list
of properties considered in §251 seems adequate to remove the possibility of a disconcerting phenomenon.

Version of 6.12.07

252 Fubini’s theorem

Perhaps the most important feature of the concept of ‘product measure’ is the fact that we can use it to
discuss repeated integrals. In this section I give versions of Fubini’s theorem and Tonelli’s theorem (252B,
252G) with a variety of corollaries, the most useful ones being versions for σ-finite spaces (252C, 252H). As
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applications I describe the relationship between integration and measuring ordinate sets (252N) and calculate
the r-dimensional volume of a ball in Rr (252Q, 252Xi). I mention counter-examples showing the difficulties
which can arise with non-σ-finite measures and non-integrable functions (252K-252L, 252Xf-252Xg).

252A Repeated integrals Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and f a real-valued function
defined on a set dom f ⊆ X × Y . We can seek to form the repeated integral∫∫

f(x, y)ν(dy)µ(dx) =
∫ (∫

f(x, y)ν(dy)
)
µ(dx),

which should be interpreted as follows: set

D = {x : x ∈ X,
∫
f(x, y)ν(dy) is defined in [−∞,∞]},

g(x) =
∫
f(x, y)ν(dy) for x ∈ D,

and then write
∫∫

f(x, y)ν(dy)µ(dx) =
∫
g(x)µ(dx) if this is defined. Of course the subset of Y on which

y 7→ f(x, y) is defined may vary with x, but it must always be conegligible, as must D.
Similarly, exchanging the roles of X and Y , we can seek a repeated integral∫∫

f(x, y)µ(dx)ν(dy) =
∫ (∫

f(x, y)µ(dx)
)
ν(dy).

The point is that, under appropriate conditions on µ and ν, we can relate these repeated integrals to each
other by connecting them both with the integral of f itself with respect to the product measure on X × Y .

As will become apparent shortly, it is essential here to allow oneself to discuss the integral of a function
which is not everywhere defined. It is of less importance whether one allows integrands and integrals to
take infinite values, but for definiteness let me say that I shall be following the rules of 135F; that is,∫
f =

∫
f+ −

∫
f− provided that f is defined almost everywhere, takes values in [−∞,∞] and is virtually

measurable, and at most one of
∫
f+,

∫
f− is infinite.

252B Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with c.l.d. product (X × Y,Λ, λ) (251F).
Suppose that ν is σ-finite and that µ is either strictly localizable or complete and locally determined. Let f
be a [−∞,∞]-valued function such that

∫
fdλ is defined in [−∞,∞]. Then

∫∫
f(x, y)ν(dy)µ(dx) is defined

and is equal to
∫
fdλ.

proof The proof of this result involves substantial technical difficulties. If you have not seen these ideas
before, you should almost certainly not go straight to the full generality of the version announced above.
I will therefore start by writing out a proof in the case in which both µ and ν are totally finite; this is
already lengthy enough. I will present it in such a way that only the central section (part (b) below) needs
to be amended in the general case, and then, after completing the proof of the special case, I will give the
alternative version of (b) which is required for the full result.

(a) Write L for the family of [0,∞]-valued functions f such that
∫
fdλ and

∫∫
f(x, y)ν(dy)µ(dx) are

defined and equal. My aim is to show first that f ∈ L whenever f is non-negative and
∫
fdλ is defined, and

then to look at differences of functions in L. To prove that enough functions belong to L, my strategy will
be to start with ‘elementary’ functions and work outwards through progressively larger classes. It is most
efficient to begin by describing ways of building new members of L from old, as follows.

(i) f1 + f2 ∈ L for all f1, f2 ∈ L, and cf ∈ L for all f ∈ L, c ∈ [0,∞[; this is because∫
(f1 + f2)(x, y)ν(dy) =

∫
f1(x, y)ν(dy) +

∫
f2(x, y)ν(dy),

∫
(cf)(x, y)ν(dy) = c

∫
f(x, y)ν(dy)

whenever the right-hand sides are defined, which we are supposing to be the case for almost every x, so that

∫∫
(f1 + f2)(x, y)ν(dy)µ(dx) =

∫∫
f1(x, y)ν(dy)µ(dx) +

∫∫
f2(x, y)ν(dy)µ(dx)

=

∫
f1dλ+

∫
f2dλ =

∫
(f1 + f2)dλ,
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∫∫
(cf)(x, y)ν(dy)µ(dx) = c

∫
f(x, y)ν(dy)µ(dx) = c

∫
fdλ =

∫
(cf)dλ.

(ii) If 〈fn〉n∈N is a sequence in L such that fn(x, y) ≤ fn+1(x, y) whenever n ∈ N and (x, y) ∈
dom fn∩dom fn+1, then supn∈N fn ∈ L. PPP Set f = supn∈N fn; for x ∈ X, n ∈ N set gn(x) =

∫
fn(x, y)ν(dy)

when the integral is defined in [0,∞]. Since here I am allowing ∞ as a value of a function, it is natural to
regard f as defined on

⋂
n∈N dom fn. By B.Levi’s theorem,

∫
fdλ = supn∈N

∫
fndλ; write u for this common

value in [0,∞]. Next, because fn ≤ fn+1 wherever both are defined, gn ≤ gn+1 wherever both are defined,
for each n; we are supposing that fn ∈ L, so gn is defined µ-almost everywhere for each n, and

supn∈N

∫
gndµ = supn∈N

∫
fndλ = u.

By B.Levi’s theorem again,
∫
g dµ = u, where g = supn∈N gn. Now take any x ∈ ⋂

n∈N dom gn, and consider
the functions fxn on Y , setting fxn(y) = fn(x, y) whenever this is defined. Each fxn has an integral in
[0,∞], and fxn(y) ≤ fx,n+1(y) whenever both are defined, and

supn∈N

∫
fxndν = g(x);

so, using B.Levi’s theorem for a third time,
∫
(supn∈N fxn)dν is defined and equal to g(x), that is,∫
f(x, y)ν(dy) = g(x).

This is true for almost every x, so∫∫
f(x, y)ν(dy)µ(dx) =

∫
g dµ = u =

∫
fdλ.

Thus f ∈ L, as claimed. QQQ

(iii) The expression of the ideas in the next section of the proof will go more smoothly if I introduce
another term. Write W for {W :W ⊆ X × Y, χW ∈ L}. Then

(α) if W , W ′ ∈ W and W ∩W ′ = ∅, W ∪W ′ ∈ W
by (i), because χ(W ∪W ′) = χW + χW ′,

(β)
⋃

n∈NWn ∈ W whenever 〈Wn〉n∈N is a non-decreasing sequence in W
because 〈χWn〉n∈N ↑ χW , and we can use (ii).

It is also helpful to note that, for any W ⊆ X × Y and any x ∈ X,
∫
χW (x, y)ν(dy) = νW [{x}], at

least whenever W [{x}] = {y : (x, y) ∈ W} is measured by ν. Moreover, because λ is complete, a set
W ⊆ X × Y belongs to Λ iff χW is λ-virtually measurable iff

∫
χW dλ is defined in [0,∞], and in this case

λW =
∫
χW dλ.

(iv) Finally, we need to observe that, in appropriate circumstances, the difference of two members
of W will belong to W: if W , W ′ ∈ W and W ⊆ W ′ and λW ′ < ∞, then W ′ \ W ∈ W. PPP We
are supposing that g(x) =

∫
χW (x, y)ν(dy) and g′(x) =

∫
χW ′(x, y)ν(dy) are defined for almost every x,

and that
∫
g dµ = λW ,

∫
g′dµ = λW ′. Because λW ′ is finite, g′ must be finite almost everywhere, and

D = {x : x ∈ dom g∩dom g′, g′(x) <∞} is conegligible. Now, for any x ∈ D, both g(x) and g′(x) are finite,
so

y 7→ χ(W ′ \W )(x, y) = χW ′(x, y)− χW (x, y)

is the difference of two integrable functions, and

∫
χ(W ′ \W )(x, y)ν(dy) =

∫
χW ′(x, y)− χW (x, y)ν(dy)

=

∫
χW ′(x, y)ν(dy)−

∫
χW (x, y)ν(dy) = g′(x)− g(x).

Accordingly ∫∫
χ(W ′ \W )(x, y)ν(dy)µ(dx) =

∫
g′(x)− g(x)µ(dx) = λW ′ − λW = λ(W ′ \W ),

and W ′ \W belongs to W. QQQ
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(Of course the argument just above can be shortened by a few words if we allow ourselves to assume that
µ and ν are totally finite, since then g(x) and g′(x) will be finite whenever they are defined; but the key
idea, that the difference of integrable functions is integrable, is unchanged.)

(b) Now let us examine the class W, assuming that µ and ν are totally finite.

(i) E × F ∈ W for all E ∈ Σ, F ∈ T. PPP λ(E × F ) = µE · νF (251J), and∫
χ(E × F )(x, y)ν(dy) = νF χE(x)

for each x, so

∫∫
χ(E × F )(x, y)ν(dy)µ(dx) =

∫
(νF χE(x))µ(dx) = µE · νF

= λ(E × F ) =

∫
χ(E × F )dλ. QQQ

(ii) Let C be {E × F : E ∈ Σ, F ∈ T}. Then C is closed under finite intersections (because (E × F ) ∩
(E′ × F ′) = (E ∩E′)× (F ∩ F ′)) and is included in W. In particular, X × Y ∈ W. But this, together with
(a-iv) and (a-iii-β) above, means that W is a Dynkin class (definition: 136A), so includes the σ-algebra of
subsets of X × Y generated by C, by the Monotone Class Theorem (136B); that is, W ⊇ Σ⊗̂T (definition:
251D).

(iii) Next, W ∈ W whenever W ⊆ X × Y is λ-negligible. PPP By 251Ib, there is a V ∈ Σ⊗̂T such that
V ⊆ (X × Y ) \W and λV = λ((X × Y ) \W ). Because λ(X × Y ) = µX · νY is finite, V ′ = (X × Y ) \ V is
λ-negligible, and we have W ⊆ V ′ ∈ Σ⊗̂T. Consequently

0 = λV ′ =
∫∫

χV ′(x, y)ν(dy)µ(dx).

But this means that

D = {x :
∫
χV ′(x, y)ν(dy) is defined and equal to 0}

is conegligible. If x ∈ D, then we must have χV ′(x, y) = 0 for ν-almost every y, that is, V ′[{x}] is negligible;
in which case W [{x}] ⊆ V ′[{x}] also is negligible, and

∫
χW (x, y)ν(dy) = 0. And this is true for every

x ∈ D, so
∫
χW (x, y)ν(dy) is defined and equal to 0 for almost every x, and∫∫

χW (x, y)ν(dy)µ(dx) = 0 = λW ,

as required. QQQ

(iv) It follows that Λ ⊆ W. PPP If W ∈ Λ, then, by 251Ib again, there is a V ∈ Σ⊗̂T such that V ⊆W
and λV = λW , so that λ(W \ V ) = 0. Now V ∈ W by (ii) and W \ V ∈ W by (iii), so W ∈ W by (a-iii-α).
QQQ

(c) I return to the class L.

(i) If f ∈ L and g is a [0,∞]-valued function defined and equal to f λ-a.e., then g ∈ L. PPP Set

W = (X × Y ) \ {(x, y) : (x, y) ∈ dom f ∩ dom g, f(x, y) = g(x, y)},
so that λW = 0. (Remember that λ is complete.) By (b),

∫∫
χW (x, y)ν(dy)µ(dx) = 0, that is, W [{x}] is

ν-negligible for µ-almost every x. Let D be {x : x ∈ X, W [{x}] is ν-negligible}. Then D is µ-conegligible.
If x ∈ D, then

W [{x}] = Y \ {y : (x, y) ∈ dom f ∩ dom g, f(x, y) = g(x, y)}
is negligible, so that

∫
f(x, y)ν(dy) =

∫
g(x, y)ν(dy) if either is defined. Thus the functions

x 7→
∫
f(x, y)ν(dy), x 7→

∫
g(x, y)ν(dy)

are equal almost everywhere, and∫∫
g(x, y)ν(dy)µ(dx) =

∫∫
f(x, y)ν(dy)µ(dx) =

∫
fdλ =

∫
g dλ,

so that g ∈ L. QQQ
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(ii) Now let f be any non-negative function such that
∫
fdλ is defined in [0,∞]. Then f ∈ L. PPP For

k, n ∈ N set

Wnk = {(x, y) : (x, y) ∈ dom f, f(x, y) ≥ 2−nk}.
Because λ is complete and f is λ-virtually measurable and dom f is conegligible, every Wnk belongs to Λ,

so χWnk ∈ L, by (b). Set fn =
∑4n

k=1 2
−nχWnk, so that

fn(x, y) = 2−nk if k ≤ 4n and 2−nk ≤ f(x, y) < 2−n(k + 1),

= 2n if f(x, y) ≥ 2n,

= 0 if (x, y) ∈ (X × Y ) \ dom f.

By (a-i), fn ∈ L for every n ∈ N, while 〈fn〉n∈N is non-decreasing, so f ′ = supn∈N fn ∈ L, by (a-ii). But
f =a.e. f

′, so f ∈ L, by (i) just above. QQQ

(iii) Finally, let f be any [−∞,∞]-valued function such that
∫
fdλ is defined in [−∞,∞]. Then∫

f+dλ,
∫
f−dλ are both defined and at most one is infinite. By (ii), both f+ and f− belong to L. Set

g(x) =
∫
f+(x, y)ν(dy), h(x) =

∫
f−(x, y)ν(dy) whenever these are defined; then

∫
g dµ =

∫
f+dλ and∫

h dµ =
∫
f−dλ are both defined in [0,∞].

Suppose first that
∫
f−dλ is finite. Then

∫
h dµ is finite, so h must be finite µ-almost everywhere; set

D = {x : x ∈ dom g ∩ domh, h(x) <∞}.
For any x ∈ D,

∫
f+(x, y)ν(dy) and

∫
f−(x, y)ν(dy) are defined in [0,∞], and the latter is finite; so∫

f(x, y)ν(dy) =
∫
f+(x, y)ν(dy)−

∫
f−(x, y)ν(dy) = g(x)− h(x)

is defined in ]−∞,∞]. Because D is conegligible,

∫∫
f(x, y)ν(dy)µ(dx) =

∫
g(x)− h(x)µ(dx) =

∫
g dµ−

∫
h dµ

=

∫
f+dλ−

∫
f−dλ =

∫
fdλ,

as required.
Thus we have the result when

∫
f−dλ is finite. Similarly, or by applying the argument above to −f , we

see that
∫∫

f(x, y)ν(dy)µ(dx) =
∫
fdλ if

∫
f+dλ is finite.

Thus the theorem is proved, at least when µ and ν are totally finite.

(b*) The only point in the argument above where we needed to know anything special about the measures
µ and ν was in part (b), when showing that Λ ⊆ W. I now return to this point under the hypotheses of the
theorem as stated, that ν is σ-finite and µ is either strictly localizable or complete and locally determined.

(i) It will be helpful to note that the completion µ̂ of µ (212C) is identical with its c.l.d. version µ̃
(213E). PPP If µ is strictly localizable, then µ̂ = µ̃ by 213Ha. If µ is complete and locally determined, then
µ̂ = µ = µ̃ (212D, 213Hf). QQQ

(ii) Write Σf = {G : G ∈ Σ, µG < ∞}, Tf = {H : H ∈ T, νH < ∞}. For G ∈ Σf , H ∈ Tf let µG,
νH and λG×H be the subspace measures on G, H and G×H respectively; then λG×H is the c.l.d. product
measure of µG and νH (251Q(ii-α)). Now W ∩ (G×H) ∈ W for every W ∈ Λ. PPP W ∩ (G×H) belongs to
the domain of λG×H , so by (b) of this proof, applied to the totally finite measures µG and νH ,

λ(W ∩ (G×H)) = λG×H(W ∩ (G×H))

=

∫

G

∫

H

χ(W ∩ (G×H))(x, y)νH(dy)µG(dx)

=

∫

G

∫

Y

χ(W ∩ (G×H))(x, y)ν(dy)µG(dx)

(because χ(W ∩ (G×H))(x, y) = 0 if y ∈ Y \H, so we can use 131E)
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=

∫

X

∫

Y

χ(W ∩ (G×H))(x, y)ν(dy)µ(dx)

by 131E again, because
∫
Y
χ(W ∩ (G×H))(x, y)ν(dy) = 0 if x ∈ X \G. So W ∩ (G×H) ∈ W. QQQ

(iii) In fact, W ∈ W for every W ∈ Λ. PPP Remember that we are supposing that ν is σ-finite. Let

〈Yn〉n∈N be a non-decreasing sequence in Tf covering Y , and for each n ∈ N set Wn = W ∩ (X × Yn),
gn(x) =

∫
χWn(x, y)ν(dy) whenever this is defined. For any G ∈ Σf ,∫

G
gndµ =

∫∫
χ(W ∩ (G× Yn))(x, y)ν(dy)µ(dx)

is defined and equal to λ(W ∩ (G×Yn)), by (ii). But this means, first, that G \ dom gn is negligible, that is,
that µ̂(G \ dom gn) = 0. Since this is so whenever µG is finite, µ̃(X \ dom gn) = 0, and gn is defined µ̃-a.e.;
but µ̃ = µ̂, so gn is defined µ̂-a.e., that is, µ-a.e. (212Eb). Next, if we set Ena = {x : x ∈ dom gn, gn(x) ≥ a}
for a ∈ R, then Ena ∩G ∈ Σ̂ whenever G ∈ Σf , where Σ̂ is the domain of µ̂; by the definition in 213D, Ena

is measured by µ̃ = µ̂. As a is arbitrary, gn is µ-virtually measurable (212Fa).
We can therefore speak of

∫
gndµ. Now

∫∫
χWn(x, y)ν(dy)µ(dx) =

∫
gndµ = sup

G∈Σf

∫

G

gn

(213B, because µ is semi-finite)

= sup
G∈Σf

λ(W ∩ (G× Yn)) = λ(W ∩ (X × Yn))

by the definition in 251F. Thus W ∩ (X × Yn) ∈ W.
This is true for every n ∈ N. Because 〈Yn〉n∈N ↑ Y , W ∈ W, by (a-iii-β). QQQ

(iv) We can therefore return to part (c) of the argument above and conclude as before.

252C The theorem above is of course asymmetric, in that different hypotheses are imposed on the two
factor measures µ and ν. If we want a ‘symmetric’ theorem we have to suppose that they are both σ-finite,
as follows.

Corollary Let (X,Σ, µ) and (Y,T, ν) be two σ-finite measure spaces, and λ the c.l.d. product measure
on X × Y . If f is λ-integrable, then

∫∫
f(x, y)ν(dy)µ(dx) and

∫∫
f(x, y)µ(dx)ν(dy) are defined, finite and

equal.

proof Since µ and ν are surely strictly localizable (211Lc), we can apply 252B from either side to conclude
that ∫∫

f(x, y)ν(dy)µ(dx) =
∫
f dλ =

∫∫
f(x, y)µ(dx)ν(dy).

252D So many applications of Fubini’s theorem are to indicator functions that I take a few lines to spell
out the form which 252B takes in this case, as in parts (b)-(b*) of the proof there.

Corollary Let (X,Σ, µ) and (Y,T, ν) be measure spaces and λ the c.l.d. product measure onX×Y . Suppose
that ν is σ-finite and that µ is either strictly localizable or complete and locally determined.

(i) If W ∈ domλ, then
∫
ν∗W [{x}]µ(dx) is defined in [0,∞] and equal to λW .

(ii) If ν is complete, we can write
∫
νW [{x}]µ(dx) in place of

∫
ν∗W [{x}]µ(dx).

proof The point is just that
∫
χW (x, y)ν(dy) = ν̂W [{x}] whenever either is defined, where ν̂ is the

completion of ν (212F). Now 252B tells us that

λW =
∫∫

χW (x, y)ν(dy)µ(dx) =
∫
ν̂W [{x}]µ(dx).

We always have ν̂W [{x}] = ν∗W [{x}], by the definition of ν̂ (212C); and if ν is complete, then ν̂ = ν so
λW =

∫
νW [{x}]µ(dx).
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252E Corollary Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with c.l.d. product (X×Y,Λ, λ). Suppose
that ν is σ-finite and that µ has locally determined negligible sets (213I). Then if f is a Λ-measurable real-
valued function defined on a subset of X × Y , y 7→ f(x, y) is ν-virtually measurable for µ-almost every
x ∈ X.

proof Let f̃ be a Λ-measurable extension of f to a real-valued function defined everywhere in X×Y (121I),

and set f̃x(y) = f̃(x, y) for all x ∈ X, y ∈ Y ,

D = {x : x ∈ X, f̃x is ν-virtually measurable}.
If G ∈ Σ and µG < ∞, then G \D is negligible. PPP Let 〈Yn〉n∈N be a non-decreasing sequence of sets of

finite measure covering Y respectively, and set

f̃n(x, y) = f̃(x, y) if x ∈ G, y ∈ Yn and |f̃(x, y)| ≤ n,

= 0 for other x ∈ X × Y.

Then each f̃n is λ-integrable, being bounded and Λ-measurable and zero off G× Yn. Consequently, setting
f̃nx(y) = f̃n(x, y), ∫

(
∫
f̃nxdν)µ(dx) exists =

∫
f̃ndλ.

But this surely means that f̃nx is ν-integrable, therefore ν-virtually measurable, for almost every x ∈ X.
Set

Dn = {x : x ∈ X, f̃nx is ν-virtually measurable};
then every Dn is µ-conegligible, so

⋂
n∈NDn is conegligible. But for any x ∈ G∩⋂

n∈NDn, f̃x = limn→∞ f̃nx
is ν-virtually measurable. Thus G \D ⊆ X \⋂n∈NDn is negligible. QQQ

This is true whenever µG < ∞. As G is arbitrary and µ has locally determined negligible sets, D is
conegligible. But, for any x ∈ D, y 7→ f(x, y) is a restriction of f̃x and must be ν-virtually measurable.

252F As a further corollary we can get some useful information about the c.l.d. product measure for
arbitrary measure spaces.

Corollary Let (X,Σ, µ) and (Y,T, ν) be two measure spaces, λ the c.l.d. product measure on X × Y , and
Λ its domain. Let W ∈ Λ be such that the vertical section W [{x}] is ν-negligible for µ-almost every x ∈ X.
Then λW = 0.

proof Take E ∈ Σ, F ∈ T of finite measure. Let λE×F be the subspace measure on E × F . By 251Q(ii-α)
again, this is just the product of the subspace measures µE and νF . We know that W ∩ (E×F ) is measured
by λE×F . At the same time, the vertical section (W ∩ (E × F ))[{x}] = W [{x}] ∩ F is νF -negligible for
µE-almost every x ∈ E. Applying 252B to µE and νF and χ(W ∩ (E × F )),

λ(W ∩ (E × F )) = λE×F (W ∩ (E × F )) =
∫
E
νF (W [{x}] ∩ F )µE(dx) = 0.

But looking at the definition in 251F, we see that this means that λW = 0, as claimed.

252G Theorem 252B and its corollaries depend on the factor measures µ and ν belonging to restricted
classes. There is a partial result which applies to all c.l.d. product measures, as follows.

Tonelli’s theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and (X × Y,Λ, λ) their c.l.d. product.
Let f be a Λ-measurable [−∞,∞]-valued function defined on a member of Λ, and suppose that either∫∫

|f(x, y)|µ(dx)ν(dy) or
∫∫

|f(x, y)|ν(dy)µ(dx) exists in R. Then f is λ-integrable.

proof Because the construction of the product measure is symmetric in the two factors, it is enough to
consider the case in which

∫∫
|f(x, y)|ν(dy)µ(dx) is defined and finite, as the same ideas will surely deal

with the other case also.

(a) The first step is to check that f is defined and finite λ-a.e. PPP SetW = {(x, y) : (x, y) ∈ dom f, f(x, y)
is finite}. Then W ∈ Λ. The hypothesis∫∫

|f(x, y)|ν(dy)µ(dx) is defined and finite
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includes the assertion ∫
|f(x, y)|ν(dy) is defined and finite for µ-almost every x,

which implies that

for µ-almost every x, f(x, y) is defined and finite for ν-almost every y;

that is, that

for µ-almost every x, W [{x}] is ν-conegligible.
But by 252F this implies that (X × Y ) \W is λ-negligible, as required. QQQ

(b) Let h be any non-negative λ-simple function such that h ≤ |f | λ-a.e. Then
∫
h cannot be greater

than
∫∫

|f(x, y)|ν(dy)µ(dx). PPP Set

W = {(x, y) : (x, y) ∈ dom f, h(x, y) ≤ |f(x, y)|}, h′ = h× χW ;

then h′ is a simple function and h′ =a.e. h. Express h′ as
∑n

i=0 aiχWi where ai ≥ 0 and λWi < ∞
for each i. Let ǫ > 0. For each i ≤ n there are Ei ∈ Σ, Fi ∈ T such that µEi < ∞, νFi < ∞ and
λ(Wi ∩ (Ei × Fi)) ≥ λWi − ǫ. Set E =

⋃
i≤nEi and F =

⋃
i≤n Fi. Consider the subspace measures µE

and νF and their product λE×F on E × F ; then λE×F is the subspace measure on E × F defined from λ
(251Q(ii-α) once more). Accordingly, applying 252B to the product µE × νF ,∫

E×F
h′ dλ =

∫
E×F

h′ dλE×F =
∫
E

∫
F
h′(x, y)νF (dy)µE(dx).

For any x, we know that h′(x, y) ≤ |f(x, y)| whenever f(x, y) is defined. So we can be sure that∫
F
h′(x, y)νF (dy) =

∫
h′(x, y)χF (y)ν(dy) ≤

∫
|f(x, y)|ν(dy)

at least whenever
∫
F
h′(x, y)νF (dy) and

∫
|f(x, y)|ν(dy) are both defined, which is the case for almost every

x ∈ E. Consequently

∫

E×F

h′ dλ =

∫

E

∫

F

h′(x, y)νF (dy)µE(dx)

≤
∫

E

∫
|f(x, y)|ν(dy)µ(dx) ≤

∫∫
|f(x, y)|ν(dy)µ(dx).

On the other hand,

∫
h′ dλ−

∫

E×F

h′ dλ =

n∑

i=0

aiλ(Wi \ (E × F ))

≤
n∑

i=0

aiλ(Wi \ (Ei × Fi)) ≤ ǫ

n∑

i=0

ai.

So ∫
h dλ =

∫
h′dλ ≤

∫∫
|f(x, y)|ν(dy)µ(dx)+ǫ∑n

i=0 ai.

As ǫ is arbitrary,
∫
h dλ ≤

∫∫
|f(x, y)|ν(dy)µ(dx), as claimed. QQQ

(c) This is true whenever h is a λ-simple function less than or equal to |f | λ-a.e. But |f | is Λ-measurable
and λ is semi-finite (251Ic), so this is enough to ensure that |f | is λ-integrable (213B), which (because f is
supposed to be Λ-measurable) in turn implies that f is λ-integrable.

252H Corollary Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces, λ the c.l.d. product measure on
X × Y , and Λ its domain.

(a) Let f be a Λ-measurable [−∞,∞]-valued function defined on a member of Λ. Then if one of∫
X×Y

|f(x, y)|λ(d(x, y)),
∫
Y

∫
X
|f(x, y)|µ(dx)ν(dy),

∫
X

∫
Y
|f(x, y)|ν(dy)µ(dx)

exists in R, so do the other two, and in this case
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∫
X×Y

f(x, y)λ(d(x, y)) =
∫
Y

∫
X
f(x, y)µ(dx)ν(dy) =

∫
X

∫
Y
f(x, y)ν(dy)µ(dx).

(b) Let f be a Λ-measurable [0,∞]-valued function defined on a member of Λ. Then∫
X×Y

f(x, y)λ(d(x, y)) =
∫
Y

∫
X
f(x, y)µ(dx)ν(dy) =

∫
X

∫
Y
f(x, y)ν(dy)µ(dx)

in the sense that if one of the integrals is defined in [0,∞] so are the other two, and all three are then equal.

proof (a)(i) Suppose that
∫
|f |dλ is finite. Because both µ and ν are σ-finite, 252B tells us that∫∫

|f(x, y)|µ(dx)ν(dy),
∫∫

|f(x, y)|ν(dy)µ(dx)
both exist and are equal to

∫
|f |dλ, while∫∫

f(x, y)µ(dx)ν(dy),
∫∫

f(x, y)ν(dy)µ(dx)

both exist and are equal to
∫
fdλ.

(ii) Now suppose that
∫∫

|f(x, y)|ν(dy)µ(dx) exists in R. Then 252G tells us that |f | is λ-integrable,
so we can use (i) to complete the argument. Exchanging the coordinates, the same argument applies if∫∫

|f(x, y)|µ(dx)ν(dy) exists in R.

(b)(i) If
∫
fdλ is defined, the result is immediate from 252B.

(ii) Suppose that
∫∫

X
f(x, y)ν(dy)µ(dx) is defined. As in part (a) of the proof of 252G, but this time

setting W = dom f , we see that W ∈ Λ and that W [{x}] is ν-conegligible for µ-almost every x, so that W
is λ-conegligible. Since f is non-negative, Λ-measurable and defined almost everywhere,

∫
fdλ is defined in

[0,∞] and we are in case (i).

252I Corollary Let (X,Σ, µ) and (Y,T, ν) be measure spaces, λ the c.l.d. product measure on X × Y ,
and Λ its domain. Take W ∈ Λ. If either of the integrals∫

µ∗W−1[{y}]ν(dy),
∫
ν∗W [{x}]µ(dx)

exists and is finite, then λW <∞.

proof Apply 252G with f = χW , remembering that

µ∗W−1[{y}] =
∫
χW (x, y)µ(dx), ν∗W [{x}] =

∫
χW (x, y)ν(dy)

whenever the integrals are defined, as in the proof of 252D.

252J Remarks 252H is the basic form of Fubini’s theorem; it is not a coincidence that most authors
avoid non-σ-finite spaces in this context. The next two examples exhibit some of the difficulties which can
arise if we leave the familiar territory of more-or-less Borel measurable functions on σ-finite spaces. The
first is a classic.

252K Example Let (X,Σ, µ) be [0, 1] with Lebesgue measure, and let (Y,T, ν) be [0, 1] with counting
measure.

(a) Consider the set

W = {(t, t) : t ∈ [0, 1]} ⊆ X × Y .

We observe that W is expressible as

⋂
n∈N

⋃n
k=0[

k

n+1
,
k+1

n+1
]× [

k

n+1
,
k+1

n+1
] ∈ Σ⊗̂T.

If we look at the sections

W−1[{t}] =W [{t}] = {t}
for t ∈ [0, 1], we have ∫∫

χW (x, y)µ(dx)ν(dy) =
∫
µW−1[{y}]ν(dy) =

∫
0 ν(dy) = 0,
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252M Fubini’s theorem 27

∫∫
χW (x, y)ν(dy)µ(dx) =

∫
νW [{x}]µ(dx) =

∫
1µ(dx) = 1,

so the two repeated integrals differ. It is therefore not generally possible to reverse the order of repeated
integration, even for a non-negative measurable function in which both repeated integrals exist and are
finite.

(b) Because the set W of part (a) actually belongs to Σ⊗̂T, we know that it is measured by the c.l.d.
product measure λ, and 252F (applied with the coordinates reversed) tells us that λW = 0.

(c) It is in fact easy to give a full description of λ.

(i) The point is that a set W ⊆ [0, 1]× [0, 1] belongs to the domain Λ of λ iff every horizontal section
W−1[{y}] is Lebesgue measurable. PPP (α) If W ∈ Λ, then, for every b ∈ [0, 1], λ([0, 1] × {b}) is finite, so
W ∩ ([0, 1]× {b}) is a set of finite measure, and

λ(W ∩ ([0, 1]× {b})) =
∫
µ(W ∩ ([0, 1]× {b}))−1[{y}]ν(dy) = µW−1[{b}]

by 252D, because µ is σ-finite, ν is both strictly localizable and complete and locally determined, and

(W ∩ ([0, 1]× {b}))−1[{y}] =W−1[{b}] if y = b,

= ∅ otherwise.

As b is arbitrary, every horizontal section of W is measurable. (β) If every horizontal section of W is
measurable, let F ⊆ [0, 1] be any set of finite measure for ν; then F is finite, so

W ∩ ([0, 1]× F ) =
⋃

y∈F W
−1[{y}]× {y} ∈ Σ⊗̂T ⊆ Λ.

But it follows that W itself belongs to Λ, by 251H. QQQ

(ii) Now some of the same calculations show that for every W ∈ Λ,

λW =
∑

y∈[0,1] µW
−1[{y}].

PPP For any finite F ⊆ [0, 1],

λ(W ∩ ([0, 1]× F )) =

∫
µ(W ∩ ([0, 1]× F ))−1[{y}]ν(dy)

=

∫

F

µW−1[{y}]ν(dy) =
∑

y∈F

µW−1[{y}].

So

λW = supF⊆[0,1] is finite

∑
y∈F µW

−1[{y}] = ∑
y∈[0,1] µW

−1[{y}]. QQQ

252L Example For the second example, I turn to a problem that can arise if we neglect to check that
a function is measurable as a function of two variables.

Let (X,Σ, µ) = (Y,T, ν) be ω1, the first uncountable ordinal (2A1Fc), with the countable-cocountable
measure (211R). Set

W = {(ξ, η) : ξ ≤ η < ω1} ⊆ X × Y .

Then all the horizontal sections W−1[{η}] = {ξ : ξ ≤ η} are countable, so∫
µW−1[{η}]ν(dη) =

∫
0 ν(dη) = 0,

while all the vertical sections W [{ξ}] = {η : ξ ≤ η < ω1} are cocountable, so∫
νW [{ξ}]µ(dξ) =

∫
1µ(dξ) = 1.

Because the two repeated integrals are different, they cannot both be equal to the measure of W , and the
sole resolution is to say that W is not measured by the product measure.

252M Remark A third kind of difficulty in the formula
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∫∫
f(x, y)dxdy =

∫∫
f(x, y)dydx

can arise even on probability spaces with Σ⊗̂T-measurable real-valued functions defined everywhere if we
neglect to check that f is integrable with respect to the product measure. In 252H, we do need the hypothesis
that one of ∫

X×Y
|f(x, y)|λ(d(x, y)),

∫
Y

∫
X
|f(x, y)|µ(dx)ν(dy),

∫
X

∫
Y
|f(x, y)|ν(dy)µ(dx)

is finite. For examples to show this, see 252Xf and 252Xg.

252N Integration through ordinate sets I: Proposition Let (X,Σ, µ) be a complete locally deter-
mined measure space, and λ the c.l.d. product measure on X×R, where R is given Lebesgue measure; write
Λ for the domain of λ. For any [0,∞]-valued function f defined on a conegligible subset of X, write Ωf , Ω

′
f

for the ordinate sets

Ωf = {(x, a) : x ∈ dom f, 0 ≤ a ≤ f(x)} ⊆ X × R,

Ω′
f = {(x, a) : x ∈ dom f, 0 ≤ a < f(x)} ⊆ X × R.

Then

λΩf = λΩ′
f =

∫
fdµ

in the sense that if one of these is defined in [0,∞], so are the other two, and they are equal.

proof (a) If Ωf ∈ Λ, then ∫
f(x)µ(dx) =

∫
ν{y : (x, y) ∈ Ωf}µ(dx) = λΩf

by 252D, writing µ for Lebesgue measure, because f is defined almost everywhere. Similarly, if Ω′
f ∈ Λ,

∫
f(x)µ(dx) =

∫
ν{y : (x, y) ∈ Ω′

f}µ(dx) = λΩ′
f .

(b) If
∫
fdµ is defined, then f is µ-virtually measurable, therefore measurable (because µ is complete);

again because µ is complete, dom f ∈ Σ. So

Ω′
f =

⋃
q∈Q,q>0{x : x ∈ dom f, f(x) > q} × [0, q],

Ωf =
⋂

n≥1

⋃
q∈Q,q>0{x : x ∈ dom f, f(x) ≥ q − 1

n
} × [0, q]

belong to Λ, so that λΩf and λΩ′
f are defined. Now both are equal to

∫
fdµ, by (a).

252O Integration through ordinate sets II: Proposition Let (X,Σ, µ) be a measure space, and f
a non-negative µ-virtually measurable function defined on a conegligible subset of X. Then∫

fdµ =
∫∞
0
µ∗{x : x ∈ dom f, f(x) ≥ t}dt =

∫∞
0
µ∗{x : x ∈ dom f, f(x) > t}dt

in [0,∞], where the integrals
∫
. . . dt are taken with respect to Lebesgue measure.

proof Completing µ does not change the integral of f or the outer measure µ∗ (212Fb, 212Ea), so we
may suppose that µ is complete, in which case dom f and f will be measurable. For n, k ∈ N set Enk =

{x : x ∈ dom f, f(x) > 2−nk}, gn(x) = 2−n
∑4n

k=1 χEnk. Then 〈gn〉n∈N is a non-decreasing sequence of
measurable functions converging to f at every point of dom f , so

∫
fdµ = limn→∞

∫
gndµ and µ{x : f(x) >

t} = limn→∞ µ{x : gn(x) > t} for every t ≥ 0; consequently∫∞
0
µ{x : f(x) > t}dt = limn→∞

∫∞
0
µ{x : gn(x) > t}dt.

On the other hand, µ{x : gn(x) > t} = µEnk if 1 ≤ k ≤ 4n and 2−n(k − 1) ≤ t < 2−nk, 0 if t ≥ 2n, so that
∫∞
0
µ{x : gn(x) > t}dt = ∑4n

k=1 2
−nµEnk =

∫
gn dµ,

for every n ∈ N. So
∫∞
0
µ{x : f(x) > t}dt =

∫
fdµ.
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*252P Fubini’s theorem 29

Now µ{x : f(x) ≥ t} = µ{x : f(x) > t} for almost all t. PPP Set C = {t : µ{x : f(x) > t} < ∞},
h(t) = µ{x : f(x) > t} for t ∈ C. If C is not empty, h : C → [0,∞[ is monotonic, so is continuous almost
everywhere in C (222A). But at any point of C \ {inf C} at which h is continuous,

µ{x : f(x) ≥ t} = lims↑t µ{x : f(x) > s} = µ{x : f(x) > t}.
So we have the result, since µ{x : f(x) ≥ t} = µ{x : f(x) > t} = ∞ for any t ∈ [0,∞[ \ C. QQQ

Accordingly
∫∞
0
µ{x : f(x) ≥ t}dt is also equal to

∫
fdµ.

*252P If we work through the ideas of 252B for Σ⊗̂T-measurable functions, we get the following, which
is sometimes useful.

Proposition Let (X,Σ, µ) be a measure space, and (Y,T, ν) a σ-finite measure space. Then for any Σ⊗̂T-
measurable function f : X × Y → [0,∞], x 7→

∫
f(x, y)ν(dy) : X → [0,∞] is Σ-measurable. If µ is

semi-finite,
∫∫

f(x, y)ν(dy)µ(dx) =
∫
fdλ, where λ is the c.l.d. product measure on X × Y .

proof (a) Let 〈Yn〉n∈N be a non-decreasing sequence of subsets of Y of finite measure with union Y . Set

A = {W :W ⊆ X × Y, W [{x}] ∈ T for every x ∈ X,

x 7→ ν(Yn ∩W [{x}]) is Σ-measurable for every n ∈ N}.

Then A is a Dynkin class of subsets of X × Y including {E × F : E ∈ Σ, F ∈ T}, so includes Σ⊗̂T, by the
Monotone Class Theorem again (136B).

This means that if W ∈ Σ⊗̂T, then

µW [{x}] = supn∈N ν(Yn ∩W [{x}])
is defined for every x ∈ X and is a Σ-measurable function of x.

(b) Now, for n, k ∈ N, set

Wnk = {(x, y) : f(x, y) ≥ 2−nk}, gn =
∑4n

k=1 2
−nχWnk.

Then if we set

hn(x) =
∫
gn(x, y)ν(dy)=

∑4n

k=1 2
−nνWnk[{x}]

for n ∈ N and x ∈ X, hn : X → [0,∞] is Σ-measurable, and

limn→∞ hn(x) =
∫
(limn→∞ gn(x, y))ν(dy) =

∫
f(x, y)ν(dy)

for every x, because 〈gn(x, y)〉n∈N is a non-decreasing sequence with limit f(x, y) for all x ∈ X, y ∈ Y . So
x 7→

∫
f(x, y)ν(dy) is defined everywhere in X and is Σ-measurable.

(c) If E ⊆ X is measurable and has finite measure, then
∫
E

∫
f(x, y)ν(dy)µ(dx) =

∫
E×Y

fdλ, applying

252B to the product of the subspace measure µE and ν (and using 251Q to check that the product of µE

and ν is the subspace measure on E × Y ). Now if λW is defined and finite, there must be a non-decreasing
sequence 〈En〉n∈N of subsets of X of finite measure such that λW = supn∈N λ(W ∩ (En × Y )), so that
W \⋃n∈N(En × Y ) is negligible, and

∫

W

fdλ = lim
n→∞

∫

W∩(En×Y )

fdλ

(by B.Levi’s theorem applied to 〈f × χ(W ∩ (En × Y ))〉n∈N)

≤ lim
n→∞

∫

En×Y

fdλ = lim
n→∞

∫

En

∫
f(x, y)ν(dy)µ(dx)

≤
∫∫

f(x, y)ν(dy)µ(dx).

By 213B once more, ∫
fdλ = supλW<∞

∫
W
fdλ ≤

∫∫
f(x, y)ν(dy)µ(dx).
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But also, if µ is semi-finite,∫∫
f(x, y)ν(dy)µ(dx) = supµE<∞

∫
E

∫
f(x, y)ν(dy)µ(dx) ≤

∫
fdλ,

so
∫
fdλ =

∫∫
f(x, y)ν(dy)µ(dx), as claimed.

252Q The volume of a ball We now have all the essential machinery to perform a little calculation
which is, I suppose, desirable simply as general knowledge: the volume of the unit ball {x : ‖x‖ ≤ 1} =
{(ξ1, . . . , ξr) :

∑r
i=1 ξ

2
i ≤ 1} in Rr. In fact, from a theoretical point of view, I think we could very nearly

just call it βr and leave it at that; but since there is a general formula in terms of β2 = π and factorials, it
seems shameful not to present it. The calculation has nothing to do with Lebesgue integration, and I could
dismiss it as mere advanced calculus; but since only a minority of mathematicians are now taught calculus
to this level with reasonable rigour before being introduced to the Lebesgue integral, I do not doubt that
many readers, like myself, missed some of the subtleties involved. I therefore take the space to spell the
details out in the style used elsewhere in this volume, recognising that the machinery employed is a good
deal more elaborate than is really necessary for this result.

(a) The first basic fact we need is that, for any n ≥ 1,

In =

∫ π/2

−π/2

cosn t dt =
(2k)!

(2kk!)2
π if n = 2k is even,

= 2
(2kk!)2

(2k+1)!
if n = 2k + 1 is odd.

PPP For n = 0, of course,

I0 =
∫ π/2

−π/2
1 dt = π =

0!

(200!)2
π,

while for n = 1 we have

I1 = sin π
2 − sin(−π

2 ) = 2 = 2
(200!)2

1!
,

using the Fundamental Theorem of Calculus (225L) and the fact that sin′ = cos is bounded. For the
inductive step to n+ 1 ≥ 2, we can use integration by parts (225F):

In+1 =

∫ π/2

−π/2

cos t cosn t dt

= sin
π

2
cosn

π

2
− sin(−π

2
) cosn(−π

2
) +

∫ π/2

−π/2

sin t · n cosn−1 t · sin t dt

= n

∫ π/2

−π/2

(1− cos2 t) cosn−1 t dt = n(In−1 − In+1),

so that In+1 =
n

n+1
In−1. Now the given formulae follow by an easy induction. QQQ

(b) The next result is that, for any n ∈ N and any a ≥ 0,∫ a

−a
(a2 − s2)n/2ds = In+1a

n+1.

PPP Of course this is an integration by substitution; but the singularity of the integrand at s = ±a complicates
the issue slightly. I offer the following argument. If a = 0 the result is trivial; take a > 0. For −a ≤ b ≤ a,

set F (b) =
∫ b

−a
(a2 − s2)n/2ds. Because the integrand is continuous, F ′(b) exists and is equal to (a2 − b2)n/2

for −a < b < a (222H). Set G(t) = F (a sin t); then G is continuous and

G′(t) = aF ′(a sin t) cos t = an+1 cosn+1 t

for −π
2 < t < π

2 . Consequently
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252R Fubini’s theorem 31

∫ a

−a

(a2 − s2)n/2ds = F (a)− F (−a) = G(
π

2
)−G(−π

2
) =

∫ π/2

−π/2

G′(t)dt

(by 225L, as before)

= an+1In+1,

as required. QQQ

(c) Now at last we are ready for the balls Br = {x : x ∈ Rr, ‖x‖ ≤ 1}. Let µr be Lebesgue measure on
Rr, and set βr = I1I2 . . . Ir for r ≥ 1. I claim that, writing

Br(a) = {x : x ∈ Rr, ‖x‖ ≤ a},
we have µr(Br(a)) = βra

r for every a ≥ 0. PPP Induce on r. For r = 1 we have β1 = 2, B1(a) = [−a, a], so
the result is trivial. For the inductive step to r + 1, we have

µr+1Br+1(a) =

∫
µr{x : (x, t) ∈ Br+1(a)}dt

(putting 251N and 252D together, and using the fact that Br+1(a) is closed, therefore measurable)

=

∫ a

−a

µrBr(
√
a2 − t2)dt

(because (x, t) ∈ Br+1(a) iff |t| ≤ a and ‖x‖ ≤
√
a2 − t2)

=

∫ a

−a

βr(a
2 − t2)r/2dt

(by the inductive hypothesis)

= βra
r+1Ir+1

(by (b) above)

= βr+1a
r+1

(by the definition of βr+1). Thus the induction continues. QQQ

(d) In particular, the r-dimensional Lebesgue measure of the r-dimensional ball Br = Br(1) is just
βr = I1 . . . Ir. Now an easy induction on k shows that

βr =
1

k!
πk if r = 2k is even,

=
22k+1k!

(2k+1)!
πk if r = 2k + 1 is odd.

(e) Note that in part (c) of the proof we saw that {x : x ∈ Rr, ‖x‖ ≤ a} has measure βra
r for every

a ≥ 0.
The formulae here are consistent with the assignation β0 = 1; which corresponds to saying that R0 = {∅},

that µ0R
0 = 1 and that B0 = {∅}. Taking µ0R

0 to be 1 is itself consistent with the idea that, following
251N, the product measure µ0 × µr ought to match µ0+r on R0+r.

252R Complex-valued functions It is easy to apply the results of 252B-252I above to complex-valued
functions, by considering their real and imaginary parts. Specifically:

(a) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X × Y . Suppose
that ν is σ-finite and that µ is either strictly localizable or complete and locally determined. Let f be a
λ-integrable complex-valued function. Then

∫∫
f(x, y)ν(dy)µ(dx) is defined and equal to

∫
fdλ.

D.H.Fremlin



32 Product measures 252Rb

(b) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, λ the c.l.d. product measure on X × Y , and Λ its
domain. Let f be a Λ-measurable complex-valued function defined on a member of Λ, and suppose that
either

∫∫
|f(x, y)|µ(dx)ν(dy) or

∫∫
|f(x, y)|ν(dy)µ(dx) is defined and finite. Then f is λ-integrable.

(c) Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces, λ the c.l.d. product measure on X × Y , and Λ
its domain. Let f be a Λ-measurable complex-valued function defined on a member of Λ. Then if one of∫

X×Y
|f(x, y)|λ(d(x, y)),

∫
Y

∫
X
|f(x, y)|µ(dx)ν(dy),

∫
X

∫
Y
|f(x, y)|ν(dy)µ(dx)

exists in R, so do the other two, and in this case∫
X×Y

f(x, y)λ(d(x, y)) =
∫
Y

∫
X
f(x, y)µ(dx)ν(dy) =

∫
X

∫
Y
f(x, y)ν(dy)µ(dx).

252X Basic exercises (a) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product
measure on X × Y . Let f be a λ-integrable real-valued function such that

∫
E×F

f = 0 whenever E ∈ Σ,

F ∈ T, µE < ∞ and νF < ∞. Show that f = 0 λ-a.e. (Hint : use 251Ie to show that
∫
W
f = 0 whenever

λW <∞.)

(b) Let f , g : R → R be two non-decreasing functions, and µf , µg the associated Lebesgue-Stieltjes
measures (see 114Xa). Set

f(x+) = limt↓x f(t), f(x−) = limt↑x f(t)

for each x ∈ R, and define g(x+), g(x−) similarly. Show that whenever a ≤ b in R,

∫

[a,b]

f(x−)µg(dx) +

∫

[a,b]

g(x+)µf (dx) = g(b+)f(b+)− g(a−)f(a−)

=

∫

[a,b]

1

2
(f(x−) + f(x+))µg(dx) +

∫

[a,b]

1

2
((g(x−) + g(x+))µf (dx).

(Hint : find two expressions for (µf × µg){(x, y) : a ≤ x < y ≤ b}.)

>>>(c) Let (X,Σ, µ) and (Y,T, ν) be complete locally determined measure spaces, λ the c.l.d. product
measure on X × Y , and Λ its domain. Suppose that A ⊆ X and B ⊆ Y . Show that A × B ∈ Λ iff either
µA = 0 or νB = 0 or A ∈ Σ and B ∈ T. (Hint : if B is not negligible and A × B ∈ Λ, take H such that
νH < ∞ and B ∩ H is not negligible. Then W = A × (B ∩ H) is measured by µ × νH , where νH is the
subspace measure on H. Now apply 252D to µ, νH and W to see that A ∈ Σ.)

>>>(d) Let (X1,Σ1, µ1), (X2,Σ2, µ2), (X2,Σ3, µ3) be three σ-finite measure spaces, and f a real-valued
function defined almost everywhere on X1 × X2 × X3 and Λ-measurable, where Λ is the domain of the
product measure described in 251W or 251Xg. Show that if

∫∫∫
|f(x1, x2, x3)|dx1dx2dx3 is defined in R,

then
∫∫∫

f(x1, x2, x3)dx2dx3dx1 and
∫∫∫

f(x1, x2, x3)dx3dx1dx2 exist and are equal.

(e) Give an example of strictly localizable measure spaces (X,Σ, µ), (Y,T, ν) and a W ∈ Σ⊗̂T such that
x 7→ νW [{x}] is not Σ-measurable. (Hint : in 252Kb, try Y a proper subset of [0, 1].)

>>>(f) Set f(x, y) = sin(x− y) if 0 ≤ y ≤ x ≤ y+2π, 0 for other x, y ∈ R2. Show that
∫∫

f(x, y)dx dy = 0
and

∫∫
f(x, y)dy dx = 2π, taking all integrals with respect to Lebesgue measure.

>>>(g) Set f(x, y) =
x2−y2

(x2+y2)2
for x, y ∈ ]0, 1]. Show that

∫ 1

0

∫ 1

0
f(x, y)dydx =

π

4
,
∫ 1

0

∫ 1

0
f(x, y)dxdy = −π

4
.

>>>(h) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and f a Σ⊗̂T-measurable function defined on a
subset of X × Y . Show that y 7→ f(x, y) is T-measurable for every x ∈ X.

(i) Let r ≥ 1 be an integer, and write βr for the Lebesgue measure of the unit ball in Rr. Set gr(t) =
rβrt

r−1 for t ≥ 0, φ(x) = ‖x‖ for x ∈ Rr. (i) Writing µr for Lebesgue measure on Rr, show that µrφ
−1[E] =∫

E
rβrt

r−1µ1(dt) for every Lebesgue measurable set E ⊆ [0,∞[. (Hint : start with intervals E, noting from
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115Xe that µr{x : ‖x‖ ≤ a} = βra
r for a ≥ 0, and progress to open sets, negligible sets and general

measurable sets.) (ii) Using 235R, show that

∫
e−‖x‖2/2µr(dx) = rβr

∫ ∞

0

tr−1e−t2/2µ1(dt) = 2(r−2)/2rβrΓ(
r

2
)

= 2r/2βrΓ(1 +
r

2
) = (

√
2Γ(

1

2
))r

where Γ is the Γ-function (225Xh). (iii) Show that

2Γ( 12 )
2 = 2β2Γ(2) = 2β2

∫∞
0
te−t2/2dt = 2π,

and hence that βr =
πr/2

Γ(1+ r

2
)
and

∫∞
−∞ e−t2/2dt =

√
2π.

>>>(j) Let (X,Σ, µ) be a measure space, and f : X → [0,∞[ a function. Write B for the Borel σ-algebra of R.
Show that the following are equiveridical: (α) f is Σ-measurable; (β) {(x, a) : x ∈ X, 0 ≤ a ≤ f(x)} ∈ Σ⊗̂B;
(γ) {(x, a) : x ∈ X, 0 ≤ a < f(x)} ∈ Σ⊗̂B.

252Y Further exercises (a) Let (X,Σ, µ) be a measure space. Show that the following are equiveridical:
(i) the completion of µ is locally determined; (ii) the completion of µ coincides with the c.l.d. version of µ;
(iii) whenever (Y,T, ν) is a σ-finite measure space and λ the c.l.d. product measure on X × Y and f is a
function such that

∫
fdλ is defined in [−∞,∞], then

∫∫
f(x, y)ν(dy)µ(dx) is defined and equal to

∫
fdλ.

(b) Let (X,Σ, µ) be a measure space. Show that the following are equiveridical: (i) µ has locally
determined negligible sets; (ii) whenever (Y,T, ν) is a σ-finite measure space and λ the c.l.d. product
measure on X ×Y , then

∫∫
f(x, y)ν(dy)µ(dx) is defined and equal to

∫
fdλ for any λ-integrable function f .

(c) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ0 the primitive product measure on X×Y (251C).
Let f be any λ0-integrable real-valued function. Show that

∫∫
f(x, y)ν(dy)µ(dx) =

∫
fdλ0. (Hint : show

that there are sequences 〈Gn〉n∈N, 〈Hn〉n∈N of sets of finite measure such that f(x, y) is defined and equal
to 0 for every (x, y) ∈ (X × Y ) \⋃n∈NGn ×Hn.)

(d) Let (X,Σ, µ) and (Y,T, ν) be measure spaces; let λ0 be the primitive product measure on X × Y ,
and λ the c.l.d. product measure. Show that if f is a λ0-integrable real-valued function, it is λ-integrable,
and

∫
fdλ =

∫
fdλ0.

(e) Let (X,Σ, µ) be a complete locally determined measure space and a < b in R, endowed with Lebesgue
measure; let Λ be the domain of the c.l.d. product measure λ on X × [a, b]. Let f : X × ]a, b[ → R be a
Λ-measurable function such that t 7→ f(x, t) : [a, b] → R is continuous on [a, b] and differentiable on ]a, b[ for

every x ∈ X. (i) Show that the partial derivative
∂f

∂t
with respect to the second variable is Λ-measurable.

(ii) Now suppose that
∂f

∂t
is λ-integrable and that

∫
f(x, t0)µ(dx) is defined and finite for some t0 ∈ ]a, b[.

Show that F (t) =
∫
f(x, t)µ(dx) is defined in R for every t ∈ [a, b], that F is absolutely continuous, and that

F ′(t) =
∫ ∂f

∂t
(x, t)µ(dx) for almost every t ∈ ]a, b[. (Hint : F (c) = F (a) +

∫
X×[a,c]

∂f

∂t
dλ for every c ∈ [a, b].)

(f) Show that
Γ(a)Γ(b)

Γ(a+b)
=

∫ 1

0
ta−1(1− t)b−1dt for all a, b > 0. (Hint : show that

∫∞
0
ta−1

∫∞
t
e−x(x− t)b−1dxdt =

∫∞
0
e−x

∫ x

0
ta−1(x− t)b−1dtdx.)

(g) Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces and λ the c.l.d. product measure on X × Y .
Suppose that f ∈ L

0(λ) and that 1 < p < ∞. Show that (
∫
|
∫
f(x, y)dx|pdy)1/p ≤

∫
(
∫
|f(x, y)|pdy)1/pdx.

(Hint : set q = p
p−1 and consider the integral

∫
|f(x, y)g(y)|λ(d(x, y)) for g ∈ L

q(ν), using 244K.)
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(h) Let ν be Lebesgue measure on [0,∞[; suppose that f ∈ L
p(ν) where 1 < p < ∞. Set F (y) =

1

y

∫ y

0
f

for y > 0. Show that ‖F‖p ≤ p

p−1
‖f‖p. (Hint : F (y) =

∫ 1

0
f(xy)dx; use 252Yg with X = [0, 1], Y = [0,∞[.)

(i) Show that if p is any non-zero (real) polynomial in r variables, then {x : x ∈ Rr, p(x) = 0} is Lebesgue
negligible.

(j) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with c.l.d. product (X×Y,Λ, λ). Let f be a non-negative
Λ-measurable real-valued function defined on a λ-conegligible set, and suppose that

∫ (∫
f(x, y)µ(dx)

)
ν(dy)

is finite. Show that f is λ-integrable.

(k) Let (X,Σ, µ) be the unit interval [0, 1] with Lebesgue measure, and (Y,T, ν) the interval with counting
measure, as in 252K; let λ0 be the primitive product measure on [0, 1]2. (i) Setting ∆ = {(t, t) : t ∈ [0, 1]},
show that λ0∆ = ∞. (ii) Show that λ0 is not semi-finite. (iii) Show that if W ∈ domλ0, then λ0W =∑

y∈[0,1] µW
−1[{y}] if there are a countable set A ⊆ [0, 1] and a Lebesgue negligible set E ⊆ [0, 1] such that

W ⊆ ([0, 1]×A) ∪ (E × [0, 1]), ∞ otherwise.

(l) Let (X,Σ, µ) be a measure space, and λ0 the primitive product measure on X × R, where R is given
Lebesgue measure; write Λ for its domain. For any [0,∞]-valued function f defined on a conegligible subset
of X, write Ωf , Ω

′
f for the corresponding ordinate sets, as in 252N. Show that if any of λ0Ωf , λ0Ω

′
f ,

∫
fdµ

is defined and finite, so are the others, and all three are equal.

(m) Let (X,Σ, µ) be a complete locally determined measure space, and f a non-negative function defined
on a conegligible subset of X. Write Ωf , Ω

′
f for the corresponding ordinate sets, as in 252N. Let λ be the

c.l.d. product measure on X × R, where R is given Lebesgue measure. Show that
∫
f dµ = λ∗Ωf = λ∗Ω′

f .

(n) Let (X,Σ, µ) be a measure space and f : X → [0,∞[ a function. Show that
∫
fdµ =

∫∞
0
µ∗{x :

f(x) ≥ t}dt.

(o) Let (X,Σ, µ) be a complete measure space and writeM0,∞ for the set {f : f ∈ L
0(µ), µ{x : |f(x)| ≥ a}

is finite for some a ∈ [0,∞[}. (i) Show that for each f ∈ M
0,∞ there is a non-increasing f∗ : ]0,∞[ → R

such that µL{t : f∗(t) ≥ α} = µ{x : |f(x)| ≥ α} for every α > 0, writing µL for Lebesgue measure. (ii)

Show that
∫
E
|f |dµ ≤

∫ µE

0
f∗dµL for every E ∈ Σ (allowing ∞). (Hint : (f × χE)∗ ≤ f∗.) (iii) Show that

‖f∗‖p = ‖f‖p for every p ∈ [1,∞], f ∈ M
0,∞. (Hint : (|f |p)∗ = (f∗)p.) (iv) Show that if f , g ∈ M

0,∞

then
∫
|f × g|dµ ≤

∫
f∗ × g∗dµL. (Hint : look at simple functions first.) (v) Show that if µ is atomless

then
∫ a

0
f∗dµL = supE∈Σ,µE≤a

∫
E
|f | for every a ≥ 0. (Hint : 215D.) (vi) Show that A ⊆ L

1(µ) is uniformly

integrable iff {f∗ : f ∈ A} is uniformly integrable in L
1(µL). (f

∗ is called the decreasing rearrangement
of f .)

(p) Let (X,Σ, µ) be a complete locally determined measure space, and write ν for Lebesgue measure on
[0, 1]. Show that the c.l.d. product measure λ on X × [0, 1] is localizable iff µ is localizable. (Hints : (i) if
E ⊆ Σ, show that F ∈ Σ is an essential supremum for E in Σ iff F × [0, 1] is an essential supremum for
{E × [0, 1] : E ∈ E} in Λ = domλ. (ii) For W ∈ Λ, n ∈ N, k < 2n set

Wnk = {x : x ∈ X, ν∗{t : (x, t) ∈W, 2−nk ≤ t ≤ 2−n(k + 1)} ≥ 2−n−1}.
Show that if W ⊆ Λ and Fnk is an essential supremum for {Wnk :W ∈ W} in Σ for all n, k, then

⋃
n∈N

⋂
m≥n

⋃
k<2m Fmk × [2−mk, 2−m(k + 1)]

is an essential supremum for W in Λ.)

(q) Let (X,Σ, µ) be the space of Example 216D, and give Lebesgue measure to [0, 1]. Show that the c.l.d.
product measure on X × [0, 1] is complete, locally determined, atomless and not localizable.
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(r) Let (X,Σ, µ) be a complete locally determined measure space and (Y,T, ν) a semi-finite measure
space with νY > 0. Show that if the c.l.d. product measure on X×Y is strictly localizable, then µ is strictly
localizable. (Hint : take F ∈ T, 0 < νF < ∞. Let 〈Wi〉i∈I be a decomposition of X × Y . For i ∈ I, n ∈ N

set Ein = {x : ν∗{y : y ∈ F, (x, y) ∈Wi} ≥ 2−n}. Apply 213Yf to {Ein : i ∈ I, n ∈ N}.)

(s) Let (X,Σ, µ) be the space of Example 216E, and give Lebesgue measure to [0, 1]. Show that the c.l.d.
product measure on X × [0, 1] is complete, locally determined, atomless and localizable, but not strictly
localizable.

(t) Let (X,Σ, µ) be a measure space and f a µ-integrable complex-valued function. For α ∈ ]−π, π] set
Hα = {x : x ∈ dom f, Re(e−iαf(x)) > 0}. Show that

∫ π

−π
Re(e−iα

∫
Hα

f)dα = 2
∫
|f |, and hence that there

is some α such that |
∫
Hα

f | ≥ 1

π

∫
|f |. (Compare 246F.)

(u) Set f(t) = t − ln(t + 1) for t > −1. (i) Show that Γ(a + 1) = aa+1e−a
∫∞
−1
e−af(u)du for every

a > 0. (Hint : substitute u = t
a − 1 in 225Xh(iii).) (ii) Show that there is a δ > 0 such that f(t) ≥ 1

3 t
2 for

−1 ≤ t ≤ δ. (iii) Setting α = 1
2f(δ), show that (for a ≥ 1)
√
a
∫∞
δ
e−af(t)dt ≤ √

ae−aα
∫∞
0
e−f(t)/2dt→ 0

as a→ ∞. (iv) Set ga(t) = e−af(t/
√
a) if −√

a < t ≤ δ
√
a, 0 otherwise. Show that ga(t) ≤ e−t2/3 for all a, t

and that lima→∞ ga(t) = e−t2/2 for all t, so that

lim
a→∞

eaΓ(a+1)

aa+1
2

= lim
a→∞

√
a

∫ ∞

−1

e−af(t)dt = lim
a→∞

√
a

∫ δ

−1

e−af(t)dt

= lim
a→∞

∫ ∞

−∞
ga(t)dt =

∫ ∞

−∞
e−t2/2dt =

√
2π.

(v) Show that limn→∞
n!

e−nnn
√
n
=

√
2π. (This is Stirling’s formula.)

(v) Let (X,Σ, µ) be a complete locally determined measure space and f , g two real-valued, µ-virtually
measurable functions defined almost everywhere in X. (i) Let λ be the c.l.d. product of µ and Lebesgue
measure on R. Setting Ω∗

f = {(x, a) : x ∈ dom f , a ∈ R, a ≤ f(x)} and Ω∗
g = {(x, a) : x ∈ dom g, a ∈ R,

a ≤ g(x)}, show that λ(Ω∗
f \Ω∗

g) =
∫
(f−g)+dµ and λ(Ω∗△Ω∗

g) =
∫
|f−g|dµ. (ii) Suppose that µ is σ-finite.

Show that ∫
|f − g|dµ =

∫∞
−∞ µ({x : x ∈ dom f ∩ dom g, (f(x)− a)(g(x)− a) < 0}da.

(iii) Suppose that µ is σ-finite, that T is a σ-subalgebra of Σ, that E ∈ Σ and that g : X → [0, 1] is
T-measurable. Show that there is an F ∈ T such that µ(E△F ) ≤

∫
|χE − g|dµ.

252 Notes and comments For a volume and a half now I have asked you to accept the idea of integrating
partially-defined functions, insisting that sooner or later they would appear at the core of the subject. The
moment has now come. If we wish to apply Fubini’s and Tonelli’s theorems in the most fundamental of all
cases, with both factors equal to Lebesgue measure on the unit interval, it is surely natural to look at all
functions which are integrable on the square for two-dimensional Lebesgue measure. Now two-dimensional
Lebesgue measure is a complete measure, so, in particular, assigns zero measure to any set of the form
{(x, b) : x ∈ A} or {(a, y) : y ∈ A}, whether or not the set A is measured by one-dimensional measure.
Accordingly, if f is a function of two variables which is integrable for two-dimensional Lebesgue measure,
there is no reason why any particular section x 7→ f(x, b) or y 7→ f(a, y) should be measurable, let alone
integrable. Consequently, even if f itself is defined everywhere, the outer integral of

∫∫
f(x, y)dxdy is likely

to be applied to a function which is not defined for every y. Let me remark that the problem does not
concern ‘∞’; the awkward functions are those with sections so irregular that they cannot be assigned an
integral at all.
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I have seen many approaches to this particular nettle, generally less whole-hearted than the one I have
determined on for this treatise. Part of the difficulty is that Fubini’s theorem really is at the centre of
measure theory. Over large parts of the subject, it is possible to assert that a result is non-trivial if and only
if it depends on Fubini’s theorem. I am therefore unwilling to insert any local fix, saying that ‘in this chapter,
we shall integrate functions which are not defined everywhere’; before long, such a provision would have to
be interpolated into the preambles to half the best theorems, or an explanation offered of why it wasn’t
necessary in their particular contexts. I suppose that one of the commonest responses is (like Halmos 50)
to restrict attention to Σ⊗̂T-measurable functions, which eliminates measurability problems for the moment
(252Xh, 252P); but unhappily (or rather, to my mind, happily) there are crucial applications in which the
functions are not actually Σ⊗̂T-measurable, but belong to some wider class, and this restriction sooner
or later leads to undignified contortions as we are forced to adapt limited results to unforeseen contexts.
Besides, it leaves unsaid the really rather important information that if f is a measurable function of two
variables then (under appropriate conditions) almost all its sections are measurable (252E).

In 252B and its corollaries there is a clumsy restriction: we assume that one of the measures is σ-finite
and the other is either strictly localizable or complete and locally determined. The obvious question is,
whether we need these hypotheses. From 252K we see that the hypothesis ‘σ-finite’ on the second factor can
certainly not be abandoned, even when the first factor is a complete probability measure. The requirement
‘µ is either strictly localizable or complete and locally determined’ is in fact fractionally stronger than what
is needed, as well as disagreeably elaborate. The ‘right’ hypothesis is that the completion of µ should be
locally determined (see 252Ya). The point is that because the product of two measures is the same as
the product of their c.l.d. versions (251T), no theorem which leads from the product measure to the factor
measures can distinguish between a measure and its c.l.d. version; so that, in 252B, we must expect to need
µ and its c.l.d. version to give rise to the same integrals. The proof of 252B would be better focused if the
hypothesis was simplified to ‘ν is σ-finite and µ is complete and locally determined’. But this would just
transfer part of the argument into the proof of 252C.

We also have to work a little harder in 252B in order to cover functions and integrals taking the values
±∞. Fubini’s theorem is so central to measure theory that I believe it is worth taking a bit of extra trouble
to state the results in maximal generality. This is especially important because we frequently apply it in
multiply repeated integrals, as in 252Xd, in which we have even less control than usual over the intermediate
functions to be integrated.

I have expressed all the main results of this section in terms of the ‘c.l.d.’ product measure. In the case
of σ-finite spaces, of course, which is where the theory works best, we could just as well use the ‘primitive’
product measure. Indeed, Fubini’s theorem itself has a version in terms of the primitive product measure
which is rather more elegant than 252B as stated (252Yc), and covers the great majority of applications.
(Integrals with respect to the primitive and c.l.d. product measures are of course very closely related; see
252Yd.) But we do sometimes need to look at non-σ-finite spaces, and in these cases the asymmetric form
in 252B is close to the best we can do. Using the primitive product measure does not help at all with the
most substantial obstacle, the phenomenon in 252K (see 252Yk).

The pre-calculus concept of an integral as ‘the area under a curve’ is given expression in 252N: the integral
of a non-negative function is the measure of its ordinate set. This is unsatisfactory as a definition of the
integral, not just because of the requirement that the base space should be complete and locally determined
(which can be dealt with by using the primitive product measure, as in 252Yl), but because the construction
of the product measure involves integration (part (c) of the proof of 251E). The idea of 252N is to relate
the measure of an ordinate set to the integral of the measures of its vertical sections. Curiously, if instead
we integrate the measures of its horizontal sections, as in 252O, we get a more versatile result. (Indeed
this one does not involve the concept of ‘product measure’, and could have appeared at any point after
§123.) Note that the integral

∫∞
0
. . . dt here is applied to a monotonic function, so may be interpreted as

an improper Riemann integral. If you think you know enough about the Riemann integral to make this a
tempting alternative to the construction in §122, the tricky bit now becomes the proof that the integral is
additive.

A different line of argument is to use integration over sections to define a product measure. The difficulty
with this approach is that unless we take great care we may find ourselves with an asymmetric construction.
My own view is that such an asymmetry is acceptable only when there is no alternative. But in Chapter 43
of Volume 4 I will describe a couple of examples.
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Of the two examples I give here, 252K is supposed to show that when I call for σ-finite spaces they are
really necessary, while 252L is supposed to show that joint measurability is essential in Tonelli’s theorem
and its corollaries. The factor spaces in 252K, Lebesgue measure and counting measure, are chosen to show
that it is only the lack of σ-finiteness that can be the problem; they are otherwise as regular as one can
reasonably ask. In 252L I have used the countable-cocountable measure on ω1, which you may feel is fit
only for counter-examples; and the question does arise, whether the same phenomenon occurs with Lebesgue
measure. This leads into deep water, and I will return to it in Chapter 53 of Volume 5.

I ought perhaps to note explicitly that in Fubini’s theorem, we really do need to have a function which is
integrable for the product measure. I include 252Xf and 252Xg to remind you that even in the best-regulated
circumstances, the repeated integrals

∫∫
f dxdy,

∫∫
f dydx may fail to be equal if f is not integrable as a

function of two variables.

There are many ways to calculate the volume βr of an r-dimensional ball; the one I have used in 252Q
follows a line that would have been natural to me before I ever heard of measure theory. In 252Xi I suggest
another method. The idea of integration-by-substitution, used in part (b) of the argument for 252Q, is
there supported by an ad hoc argument; I will present a different, more generally applicable, approach in
Chapter 26. Elsewhere (252Xi, 252Yf, 252Yh, 252Yu) I find myself taking for granted substitutions of the
form t 7→ at, t 7→ a + t, t 7→ t2; for a systematic justification, see §263. Of course an enormous number of
other formulae of advanced calculus are also based on repeated integration of one kind or another, and I
give a sample handful of such results (252Xb, 252Ye-252Yh, 252Yu).

Version of 18.4.08

253 Tensor products

The theorems of the last section show that the integrable functions on a product of two measure spaces
can be effectively studied in terms of integration on each factor space separately. In this section I present a
very striking relationship between the L1 space of a product measure and the L1 spaces of its factors, which
actually determines the product L1 up to isomorphism as Banach lattice. I start with a brief note on bilinear
operators (253A) and a description of the canonical bilinear operator from L1(µ)×L1(ν) to L1(µ×ν) (253B-
253E). The main theorem of the section is 253F, showing that this canonical map is universal for continuous
bilinear operators from L1(µ)×L1(ν) to Banach spaces; it also determines the ordering of L1(µ×ν) (253G).
I end with a description of a fundamental type of conditional expectation operator (253H) and notes on
products of indefinite-integral measures (253I) and upper integrals of special kinds of function (253J, 253K).

253A Bilinear operators Before looking at any of the measure theory in this section, I introduce a
concept from the theory of linear spaces.

(a) Let U , V and W be linear spaces over R (or, indeed, any field). A map φ : U × V → W is bilinear
if it is linear in each variable separately, that is,

φ(u1 + u2, v) = φ(u1, v) + φ(u2, v),

φ(u, v1 + v2) = φ(u, v1) + φ(u, v2),

φ(αu, v) = αφ(u, v) = φ(u, αv)

for all u, u1, u2 ∈ U , v, v1, v2 ∈ V and scalars α. Observe that such a φ gives rise to, and in turn can be
defined by, a linear operator T : U → L(V ;W ), writing L(V ;W ) for the space of linear operators from V to
W , where

(Tu)(v) = φ(u, v)

for all u ∈ U , v ∈ V . Hence, or otherwise, we can see, for instance, that φ(0, v) = φ(u, 0) = 0 whenever
u ∈ U and v ∈ V .

IfW ′ is another linear space over the same field, and S :W →W ′ is a linear operator, then Sφ : U×V →
W ′ is bilinear.
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(b) Now suppose that U , V and W are normed spaces, and φ : U ×V →W a bilinear operator. Then we
say that φ is bounded if sup{‖φ(u, v)‖ : ‖u‖ ≤ 1, ‖v‖ ≤ 1} is finite, and in this case we call this supremum
the norm ‖φ‖ of φ. Note that ‖φ(u, v)‖ ≤ ‖φ‖‖u‖‖v‖ for all u ∈ U , v ∈ V (because

‖φ(u, v)‖ = αβ‖φ(α−1u, β−1v)‖ ≤ αβ‖φ‖
whenever α > ‖u‖, β > ‖v‖).

If W ′ is another normed space and S :W →W ′ is a bounded linear operator, then Sφ : U × V →W ′ is
a bounded bilinear operator, and ‖Sφ‖ ≤ ‖S‖‖φ‖.

253B Definition The most important bilinear operators of this section are based on the following idea.
Let f and g be real-valued functions. I will write f⊗g for the function (x, y) 7→ f(x)g(y) : dom f×dom g → R.

253C Proposition (a) Let X and Y be sets, and Σ, T σ-algebras of subsets of X, Y respectively. If f is
a Σ-measurable real-valued function defined on a subset of X, and g is a T-measurable real-valued function
defined on a subset of Y , then f ⊗ g, as defined in 253B, is Σ⊗̂T-measurable.

(b) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X×Y . If f ∈ L
0(µ)

and g ∈ L
0(ν), then f ⊗ g ∈ L

0(λ).

Remark Recall from 241A that L0(µ) is the space of µ-virtually measurable real-valued functions defined
on µ-conegligible subsets of X.

proof (a) The point is that f ⊗χY is Σ⊗̂T-measurable, because for any α ∈ R there is an E ∈ Σ such that

{x : f(x) ≥ α} = E ∩ dom f ,

so that

{(x, y) : (f ⊗ χY )(x, y) ≥ α} = (E ∩ dom f)× Y = (E × Y ) ∩ dom(f ⊗ χY ),

and of course E × Y ∈ Σ⊗̂T. Similarly, χX ⊗ g is Σ⊗̂T-measurable and f ⊗ g = (f ⊗ χY ) × (χX ⊗ g) is
Σ⊗̂T-measurable.

(b) Let E ∈ Σ, F ∈ T be conegligible subsets of X, Y respectively such that E ⊆ dom f , F ⊆ dom g,
f↾E is Σ-measurable and g↾F is T-measurable. Write Λ for the domain of λ. Then Σ⊗̂T ⊆ Λ (251Ia). Also
E × F is λ-conegligible, because

λ((X × Y ) \ (E × F )) ≤ λ((X \ E)× Y ) + λ(X × (Y \ F ))
= µ(X \ E) · νY + µX · ν(Y \ F ) = 0

(also from 251Ia). So dom(f ⊗ g) ⊇ E × F is conegligible. Also, by (a), (f ⊗ g)↾(E × F ) = (f↾E)⊗ (g↾F )
is Σ⊗̂T-measurable, therefore Λ-measurable, and f ⊗ g is virtually measurable. Thus f ⊗ g ∈ L

0(λ), as
claimed.

253D Now we can apply the ideas of 253B-253C to integrable functions.

Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and write λ for the c.l.d. product measure on
X × Y . If f ∈ L

1(µ) and g ∈ L
1(ν), then f ⊗ g ∈ L

1(λ) and
∫
f ⊗ g dλ =

∫
f dµ

∫
g dν.

Remark I follow §242 in writing L
1(µ) for the space of µ-integrable real-valued functions.

proof (a) Consider first the case f = χE, g = χF where E ∈ Σ, F ∈ T have finite measure; then
f ⊗ g = χ(E × F ) is λ-integrable with integral

λ(E × F ) = µE · νF =
∫
f dµ ·

∫
g dν,

by 251Ia.

(b) It follows at once that f ⊗ g is λ-simple, with
∫
f ⊗ g dλ =

∫
f dµ

∫
g dν, whenever f is a µ-simple

function and g is a ν-simple function.

(c) If f and g are non-negative integrable functions, there are non-decreasing sequences 〈fn〉n∈N, 〈gn〉n∈N

of non-negative simple functions converging almost everywhere to f , g respectively; now note that if E ⊆ X,
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F ⊆ Y are conegligible, E×F is conegligible inX×Y , as remarked in the proof of 253C, so the non-decreasing
sequence 〈fn × gn〉n∈N of λ-simple functions converges almost everywhere to f ⊗ g, and∫

f ⊗ g dλ = limn→∞
∫
fn ⊗ gndλ = limn→∞

∫
fndµ

∫
gndν =

∫
f dµ

∫
g dν

by B.Levi’s theorem.

(d) Finally, for general f and g, we can express them as the differences f+−f−, g+−g− of non-negative
integrable functions, and see that∫

f ⊗ g dλ =
∫
f+ ⊗ g+ − f+ ⊗ g− − f− ⊗ g+ + f− ⊗ g−dλ =

∫
f dµ

∫
g dν.

253E The canonical map L1 × L1 → L1 I continue the argument from 253D. Because E × F is
conegligible in X × Y whenever E and F are conegligible subsets of X and Y , f1 ⊗ g1 = f ⊗ g λ-a.e.
whenever f = f1 µ-a.e. and g = g1 ν-a.e. We may therefore define u ⊗ v ∈ L1(λ), for u ∈ L1(µ) and
v ∈ L1(ν), by saying that u⊗ v = (f ⊗ g)• whenever u = f• and v = g•.

Now if f , f1, f2 ∈ L
1(µ), g, g1, g2 ∈ L

1(ν) and a ∈ R,

(f1 + f2)⊗ g = (f1 ⊗ g) + (f2 ⊗ g),

f ⊗ (g1 + g2) = (f ⊗ g1) + (f ⊗ g2),

(af)⊗ g = a(f ⊗ g) = f ⊗ (ag).

It follows at once that the map (u, v) 7→ u⊗ v is bilinear.
Moreover, if f ∈ L

1(µ) and g ∈ L
1(ν), |f | ⊗ |g| = |f ⊗ g|, so

∫
|f ⊗ g|dλ =

∫
|f |dµ

∫
|g|dν. Accordingly

‖u⊗ v‖1 = ‖u‖1‖v‖1
for all u ∈ L1(µ), v ∈ L1(ν). In particular, the bilinear operator ⊗ is bounded, with norm 1 (except in the
trivial case in which one of L1(µ), L1(ν) is 0-dimensional).

253F We are now ready for the main theorem of this section.

Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and let λ be the c.l.d. product measure on X ×Y .
LetW be any Banach space and φ : L1(µ)×L1(ν) →W a bounded bilinear operator. Then there is a unique
bounded linear operator T : L1(λ) → W such that T (u⊗ v) = φ(u, v) for all u ∈ L1(µ) and v ∈ L1(ν), and
‖T‖ = ‖φ‖.
proof (a) The centre of the argument is the following fact: if E0, . . . , En are measurable sets of finite measure
in X, F0, . . . , Fn are measurable sets of finite measure in Y , a0, . . . , an ∈ R and

∑n
i=0 aiχ(Ei × Fi) = 0 λ-

a.e., then
∑n

i=0 aiφ(χE
•

i , χF
•

i ) = 0 in W . PPP We can find a disjoint family 〈Gj〉j≤m of measurable sets of
finite measure in X such that each Ei is expressible as a union of some subfamily of the Gj ; so that χEi

is expressible in the form
∑m

j=0 bijχGj (see 122Ca). Similarly, we can find a disjoint family 〈Hk〉k≤l of

measurable sets of finite measure in Y such that each χFi is expressible as
∑l

k=0 cikχHk. Now
∑m

j=0

∑l
k=0

(∑n
i=0 aibijcik

)
χ(Gj ×Hk) =

∑n
i=0 aiχ(Ei × Fi) = 0 λ-a.e.

Because the Gj × Hk are disjoint, and λ(Gj × Hk) = µGj · νHk for all j, k, it follows that for every
j ≤ m, k ≤ l we have either µGj = 0 or νHk = 0 or

∑n
i=0 aibijcik = 0. In any of these three cases,∑n

i=0 aibijcikφ(χG
•

j , χH
•

k) = 0 in W . But this means that

0 =
∑m

j=0

∑l
k=0

(∑n
i=0 aibijcik

)
φ(χG•

j , χH
•

k) =
∑n

i=0 aiφ(χE
•

i , χF
•

i ),

as claimed. QQQ

(b) It follows that if E0, . . . , En, E
′
0, . . . , E

′
m are measurable sets of finite measure in X, F0, . . . , Fn,

F ′
0, . . . , F

′
m are measurable sets of finite measure in Y , a0, . . . , an, a

′
0, . . . , a

′
m ∈ R and

∑n
i=0 aiχ(Ei ×Fi) =∑m

i=0 a
′
iχ(E

′
i × F ′

i ) λ-a.e., then∑n
i=0 aiφ(χE

•

i , χF
•

i ) =
∑m

i=0 a
′
iφ(χE

′
i
•

, χF ′
i
•

)

in W . Let M be the linear subspace of L1(λ) generated by
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{χ(E × F )• : E ∈ Σ, µE <∞, F ∈ T, νF <∞};
then we have a unique map T0 :M →W such that

T0(
∑n

i=0 aiχ(Ei × Fi)
•) =

∑n
i=0 aiφ(χE

•

i , χF
•

i )

whenever E0, . . . , En are measurable sets of finite measure in X, F0, . . . , Fn are measurable sets of finite
measure in Y and a0, . . . , an ∈ R. Of course T0 is linear.

(c) Some of the same calculations show that ‖T0u‖ ≤ ‖φ‖‖u‖1 for every u ∈ M . PPP If u ∈ M , then, by

the arguments of (a), we can express u as
∑m

j=0

∑l
k=0 ajkχ(Gj × Hk)

•, where 〈Gj〉j≤m and 〈Hk〉k≤l are
disjoint families of sets of finite measure. Now

‖T0u‖ = ‖
m∑

j=0

l∑

k=0

ajkφ(χG
•

j , χH
•

k)‖ ≤
m∑

j=0

l∑

k=0

|ajk|‖φ(χG•

j , χH
•

k)‖

≤
m∑

j=0

l∑

k=0

|ajk|‖φ‖‖χG•

j‖1‖χH•

k‖1 = ‖φ‖
m∑

j=0

l∑

k=0

|ajk|µGj · νHk

= ‖φ‖
m∑

j=0

l∑

k=0

|ajk|λ(Gj ×Hk) = ‖φ‖‖u‖1,

as claimed. QQQ

(d) The next point is to observe that M is dense in L1(λ) for ‖ ‖1. PPP Repeating the ideas above once
again, we observe that if E0, . . . , En are sets of finite measure in X and F0, . . . , Fn are sets of finite measure
in Y , then χ(

⋃
i≤nEi × Fi)

• ∈ M ; this is because, expressing each Ei as a union of Gj , where the Gj are
disjoint, we have

⋃
i≤nEi × Fi =

⋃
j≤mGj × F ′

j ,

where F ′
j =

⋃{Fi : Gj ⊆ Ei} for each j; now 〈Gj × F ′
j〉j≤m is disjoint, so

χ(
⋃

j≤mGj × Fj)
• =

∑m
j=0 χ(Gj × F ′

j)
• ∈M.

So 251Ie tells us that whenever λH <∞ and ǫ > 0 there is a G such that λ(H△G) ≤ ǫ and χG• ∈M ; now

‖χH• − χG•‖1 = λ(G△H) ≤ ǫ,

so χH• is approximated arbitrarily closely by members of M , and belongs to the closure M of M in L1(λ).
Because M is a linear subspace of L1(λ), so is M (2A4Cb); accordingly M contains the equivalence classes
of all λ-simple functions; but these are dense in L1(λ) (242Mb), so M = L1(λ), as claimed. QQQ

(e) Because W is a Banach space, it follows that there is a bounded linear operator T : L1(λ) → W
extending T0, with ‖T‖ = ‖T0‖ ≤ ‖φ‖ (2A4I). Now T (u ⊗ v) = φ(u, v) for all u ∈ L1(µ), v ∈ L1(ν). PPP If
u = χE• and v = χF •, where E, F are measurable sets of finite measure, then

T (u⊗ v) = T (χ(E × F )•) = T0(χ(E × F )•) = φ(χE•, χF •) = φ(u, v).

Because φ and ⊗ are bilinear and T is linear,

T (f• ⊗ g•) = φ(f•, g•)

whenever f and g are simple functions. Now whenever u ∈ L1(µ), v ∈ L1(ν) and ǫ > 0, there are simple
functions f , g such that ‖u− f•‖1 ≤ ǫ, ‖v − g•‖1 ≤ ǫ (242Mb again); so that

‖φ(u, v)− φ(f•, g•)‖ ≤ ‖φ(u− f•, v − g•)‖+ ‖φ(u, g• − v)‖+ ‖φ(f• − u, v)‖
≤ ‖φ‖(ǫ2 + ǫ‖u‖1 + ǫ‖v‖1).

Similarly

‖u⊗ v − f• ⊗ g•‖1 ≤ ǫ(ǫ+ ‖u‖1 + ‖v‖1),
so
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‖T (u⊗ v)− T (f• ⊗ g•)‖ ≤ ǫ‖T‖(ǫ+ ‖u‖1 + ‖v‖1);
because T (f• ⊗ g•) = φ(f•, g•),

‖T (u⊗ v)− φ(u, v)‖ ≤ ǫ(‖T‖+ ‖φ‖)(ǫ+ ‖u‖1 + ‖v‖1).
As ǫ is arbitrary, T (u⊗ v) = φ(u, v), as required. QQQ

(f) The argument of (e) ensured that ‖T‖ ≤ ‖φ‖. Because ‖u ⊗ v‖1 ≤ ‖u‖1‖v‖1 for all u ∈ L1(µ) and
v ∈ L1(ν), ‖φ(u, v)‖ ≤ ‖T‖‖u‖1‖v‖1 for all u, v, and ‖φ‖ ≤ ‖T‖; so ‖T‖ = ‖φ‖.

(g) Thus T has the required properties. To see that it is unique, we have only to observe that any
bounded linear operator S : L1(λ) → W such that S(u ⊗ v) = φ(u, v) for all u ∈ L1(µ), v ∈ L1(ν) must
agree with T on objects of the form χ(E×F )• where E and F are of finite measure, and therefore on every
member of M ; because M is dense and both S and T are continuous, they agree everywhere in L1(λ).

253G The order structure of L1 In 253F I have treated the L1 spaces exclusively as normed linear
spaces. In general, however, the order structure of an L1 space (see 242C) is as important as its norm. The
map ⊗ : L1(µ) × L1(ν) → L1(λ) respects the order structures of the three spaces in the following strong
sense.

Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X × Y .
Then

(a) u⊗ v ≥ 0 in L1(λ) whenever u ≥ 0 in L1(µ) and v ≥ 0 in L1(ν).
(b) The positive cone {w : w ≥ 0} of L1(λ) is precisely the closed convex hull C of {u⊗ v : u ≥ 0, v ≥ 0}

in L1(λ).
*(c) Let W be any Banach lattice, and T : L1(λ) → W a bounded linear operator. Then the following

are equiveridical:
(i) Tw ≥ 0 in W whenever w ≥ 0 in L1(λ);
(ii) T (u⊗ v) ≥ 0 in W whenever u ≥ 0 in L1(µ) and v ≥ 0 in L1(ν).

proof (a) If u, v ≥ 0 then they are expressible as f•, g• where f ∈ L
1(µ), g ∈ L

1(ν), f ≥ 0 and g ≥ 0.
Now f ⊗ g ≥ 0 so u⊗ v = (f ⊗ g)• ≥ 0.

(b)(i) Write L1(λ)+ for {w : w ∈ L1(λ), w ≥ 0}. Then L1(λ)+ is a closed convex set in L1(λ) (242De);
by (a), it contains u⊗ v whenever u ∈ L1(µ)+ and v ∈ L1(ν)+, so it must include C.

(ii)(α) Of course 0 = 0 ⊗ 0 ∈ C. (β) If u ∈ M , as defined in the proof of 253F, and u > 0, then u is
expressible as

∑
j≤m,k≤l ajkχ(Gj ×Hk)

•, where G0, . . . , Gm and H0, . . . , Hl are disjoint sequences of sets of

finite measure, as in (a) of the proof of 253F. Now ajk can be negative only if χ(Gj ×Hk)
• = 0, so replacing

every ajk by max(0, ajk) if necessary, we can suppose that ajk ≥ 0 for all j, k. Not all the ajk can be zero,
so a =

∑
j≤m,k≤l ajk > 0, and

u =
∑

j≤m,k≤l
ajk

a
· aχ(Gj ×Hk)

• =
∑

j≤m,k≤l
ajk

a
· (aχG•

j)⊗ χH•

k ∈ C.

(γ) If w ∈ L1(λ)+ and ǫ > 0, express w as h• where h ≥ 0 in L
1(λ). There is a simple function h1 ≥ 0 such

that h1 ≤a.e. h and
∫
h ≤

∫
h1+ ǫ. Express h1 as

∑n
i=0 aiχHi where λHi <∞ and ai ≥ 0 for each i, and for

each i ≤ n choose sets Gi0, . . . , Gimi
∈ Σ, Fi0, . . . , Fimi

∈ T, all of finite measure, such that Gi0, . . . , Gimi

are disjoint and λ(Hi△
⋃

j≤mi
Gij × Fij) ≤ ǫ/(n+ 1)(ai + 1), as in (d) of the proof of 253F. Set

w0 =
∑n

i=0 ai
∑mi

j=0 χ(Gij × Fij)
•.

Then w0 ∈ C because w0 ∈M and w0 ≥ 0. Also

‖w − w0‖1 ≤ ‖w − h•

1‖1 + ‖h•

1 − w0‖1

≤
∫

(h− h1)dλ+
n∑

i=0

ai

∫
|χHi −

mi∑

j=0

χ(Gij × Fij)|dλ

≤ ǫ+

n∑

i=0

aiλ(H△
⋃

j≤mi

Gij × Fij) ≤ 2ǫ.
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As ǫ is arbitrary and C is closed, w ∈ C. As w is arbitrary, L1(λ)+ ⊆ C and C = L1(λ)+.

(c) Part (a) tells us that (i)⇒(ii). For the reverse implication, we need a fragment from the theory of
Banach lattices: W+ = {w : w ∈W, w ≥ 0} is a closed set in W . PPP If w, w′ ∈W , then

w = (w − w′) + w′ ≤ |w − w′|+ w′ ≤ |w − w′|+ |w′|,

−w = (w′ − w)− w′ ≤ |w − w′| − w′ ≤ |w − w′|+ |w′|,

|w| ≤ |w − w′|+ |w′|, |w| − |w′| ≤ |w − w′|,
because |w| = w∨ (−w) and the order of W is translation-invariant (241Ec). Similarly, |w′| − |w| ≤ |w−w′|
and ||w| − |w′|| ≤ |w − w′|, so ‖|w| − |w′|‖ ≤ ‖w − w′‖, by the definition of Banach lattice (242G). Setting
φ(w) = |w| − w, we see that ‖φ(w)− φ(w′)‖ ≤ 2‖w − w′‖ for all w, w′ ∈W , so that φ is continuous.

Now, because the order is invariant under multiplication by positive scalars,

w ≥ 0 ⇐⇒ 2w ≥ 0 ⇐⇒ w ≥ −w ⇐⇒ w = |w| ⇐⇒ φ(w) = 0,

so W+ = {w : φ(w) = 0} is closed. QQQ
Now suppose that (ii) is true, and set C1 = {w : w ∈ L1(λ), Tw ≥ 0}. Then C1 contains u⊗ v whenever

u, v ≥ 0; but also it is convex, because T is linear, and closed, because T is continuous and C1 = T−1[W+].
By (b), C1 includes {w : w ∈ L1(λ), w ≥ 0}, as required by (i).

253H Conditional expectations The ideas of this section and the preceding one provide us with some
of the most important examples of conditional expectations.

Theorem Let (X,Σ, µ) and (Y,T, ν) be complete probability spaces, with c.l.d. product (X × Y,Λ, λ). Set
Λ1 = {E × Y : E ∈ Σ}. Then Λ1 is a σ-subalgebra of Λ. Given a λ-integrable real-valued function f , set

g(x, y) =
∫
f(x, z)ν(dz)

whenever x ∈ X, y ∈ Y and the integral is defined in R. Then g is a conditional expectation of f on Λ1.

proof We know that Λ1 ⊆ Λ, by 251Ia, and Λ1 is a σ-algebra of sets because Σ is. Fubini’s theorem (252B,
252C) tells us that f1(x) =

∫
f(x, z)ν(dz) is defined for almost every x, and therefore that g = f1 ⊗ χY is

defined almost everywhere in X×Y . f1 is µ-virtually measurable; because µ is complete, f1 is Σ-measurable,
so g is Λ1-measurable (since {(x, y) : g(x, y) ≤ α} = {x : f1(x) ≤ α} × Y for every α ∈ R). Finally, if
W ∈ Λ1, then W = E × Y for some E ∈ Σ, so

∫

W

g dλ =

∫
(f1 ⊗ χY )× (χE ⊗ χY )dλ =

∫
f1 × χE dµ

∫
χY dν

(by 253D)

=

∫∫
χE(x)f(x, y)ν(dy)µ(dx) =

∫
f × χ(E × Y )dλ

(by Fubini’s theorem)

=

∫

W

f dλ.

So g is a conditional expectation of f .

253I This is a convenient moment to set out a useful result on products of indefinite-integral measures.

Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and f ∈ L
0(µ), g ∈ L

0(ν) non-negative func-
tions. Let µ′, ν ′ be the corresponding indefinite-integral measures (see §234). Let λ be the c.l.d. product of
µ and ν, and λ′ the indefinite-integral measure defined from λ and f ⊗ g ∈ L

0(λ) (253Cb). Then λ′ is the
c.l.d. product of µ′ and ν ′.

proof Write θ for the c.l.d. product of µ′ and ν ′.
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(a) If we replace µ by its completion, we do not change µ′ (234Ke); at the same time, we do not change
λ, by 251T. The same applies to ν. So it will be enough to prove the result on the assumption that µ and
ν are complete; in which case f and g are measurable and have measurable domains.

Set F = {x : x ∈ dom f, f(x) > 0} and G = {y : y ∈ dom g, g(y) > 0}, so that F × G = {w : w ∈
dom(f ⊗ g), (f ⊗ g)(w) > 0}. Then F is µ′-conegligible and G is ν ′-conegligible, so F ×G is θ-conegligible
as well as λ′-conegligible. Because both θ and λ′ are complete (251Ic, 234I), it will be enough to show that
the subspace measures θF×G, λ

′
F×G on F × G are equal. But note that θF×G can be identified with the

product of µ′
F and ν′G, where µ

′
F and ν′G are the subspace measures on F , G respectively (251Q(ii-α)). At

the same time, µ′
F is the indefinite-integral measure defined from the subspace measure µF on F and the

function f↾F , ν′G is the indefinite-integral measure defined from the subspace measure νG on G and g↾G,
and λ′F×G is defined from the subspace measure λF×G and (f↾F ) ⊗ (g↾G). Finally, by 251Q again, λF×G

is the product of µF and νG.
What all this means is that it will be enough to deal with the case in which F = X and G = Y , that is,

f and g are everywhere defined and strictly positive; which is what I will suppose from now on.

(b) In this case domµ′ = Σ and dom ν ′ = T (234La). Similarly, domλ′ = Λ is just the domain of λ. Set

Fn = {x : x ∈ X, 2−n ≤ f(x) ≤ 2n}, Gn = {y : y ∈ Y, 2−n ≤ g(y) ≤ 2n}
for n ∈ N.

(c) Set

A = {W :W ∈ dom θ ∩ domλ′, θ(W ) = λ′(W )}.
If µ′E and ν ′H are defined and finite, then f × χE and g × χH are integrable, so

λ′(E ×H) =

∫
(f ⊗ g)× χ(E ×H)dλ =

∫
(f × χE)⊗ (g × χH)dλ

=

∫
f × χE dµ ·

∫
g × χH dν = θ(E ×H)

by 253D and 251Ia, that is, E ×H ∈ A. If we now look at AEH = {W : W ⊆ X × Y , W ∩ (E ×H) ∈ A},
then we see that

AEH contains E′ ×H ′ for every E′ ∈ Σ, H ′ ∈ T,

if 〈Wn〉n∈N is a non-decreasing sequence in AEH then
⋃

n∈NWn ∈ AEH ,

if W , W ′ ∈ AEH and W ⊆W ′ then W ′ \W ∈ AEH .

Thus AEH is a Dynkin class of subsets of X × Y , and by the Monotone Class Theorem (136B) includes the
σ-algebra generated by {E′ ×H ′ : E′ ∈ Σ, H ′ ∈ T}, which is Σ⊗̂T.

(d) Now suppose that W ∈ Λ. In this case W ∈ dom θ and θW ≤ λ′W . PPP Take n ∈ N, and E ∈ Σ,
H ∈ T such that µ′E and ν ′H are both finite. Set E′ = E∩Fn, H

′ = H∩Gn andW ′ =W ∩(E′×H ′). Then
W ′ ∈ Λ, while µE′ ≤ 2nµ′E and νH ′ ≤ 2nν ′H are finite. By 251Ib there is a V ∈ Σ⊗̂T such that V ⊆ W ′

and λV = λW ′. Similarly, there is a V ′ ∈ Σ⊗̂T such that V ′ ⊆ (E′×H ′)\W ′ and λV ′ = λ((E′×H ′)\W ′).
This means that λ((E′ ×H ′) \ (V ∪V ′)) = 0, so λ′((E′ ×H ′) \ (V ∪V ′)) = 0. But (E′ ×H ′) \ (V ∪V ′) ∈ A,
by (c), so θ((E′ ×H ′) \ (V ∪ V ′)) = 0 and W ′ ∈ dom θ, while

θW ′ = θV = λ′V ≤ λ′W .

Since E and H are arbitrary, W ∩ (Fn × Gn) ∈ dom θ (251H) and θ(W ∩ (Fn × Gn)) ≤ λ′W . Since
〈Fn〉n∈N, 〈Gn〉n∈N are non-decreasing sequences with unions X, Y respectively,

θW = supn∈N θ(W ∩ (Fn ×Gn)) ≤ λ′W . QQQ

(e) In the same way, λ′W is defined and less than or equal to θW for everyW ∈ dom θ. PPP The arguments
are very similar, but a refinement seems to be necessary at the last stage. Take n ∈ N, and E ∈ Σ, H ∈ T
such that µE and νH are both finite. Set E′ = E ∩ Fn, H

′ = H ∩ Gn and W ′ = W ∩ (E′ × H ′). Then
W ′ ∈ dom θ, while µ′E′ ≤ 2nµE and ν ′H ′ ≤ 2nνH are finite. This time, there are V , V ′ ∈ Σ⊗̂T such that
V ⊆W ′, V ′ ⊆ (E′ ×H ′) \W ′, θV = θW ′ and θV ′ = θ((E′ ×H ′) \W ′). Accordingly

λ′V + λ′V ′ = θV + θV ′ = θ(E′ ×H ′) = λ′(E′ ×H ′),
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so that λ′W ′ is defined and equal to θW ′.
What this means is thatW ∩(Fn×Gn)∩(E×H) ∈ A whenever µE and νH are finite. SoW ∩(Fn×Gn) ∈

Λ, by 251H; as n is arbitrary, W ∈ Λ and λ′W is defined.
??? Suppose, if possible, that λ′W > θW . Then there is some n ∈ N such that λ′(W ∩ (Fn ×Gn)) > θW .

Because λ is semi-finite, 213B tells us that there is some λ-simple function h such that h ≤ (f ⊗ g)×χ(W ∩
(Fn × Gn)) and

∫
h dλ > θW ; setting V = {(x, y) : h(x, y) > 0}, we see that V ⊆ W ∩ (Fn × Gn), λV is

defined and finite and λ′V > θW . Now there must be sets E ∈ Σ, H ∈ T such that µE and νF are both
finite and λ(V \ (E ×H)) < 4−n(λ′V − θW ). But in this case V ∈ Λ ⊆ dom θ (by (d)), so we can apply the
argument just above to V and conclude that V ∩ (E ×H) = V ∩ (Fn ×Gn) ∩ (E ×H) belongs to A. And
now

λ′V = λ′(V ∩ (E ×H)) + λ′(V \ (E ×H))

≤ θ(V ∩ (E ×H)) + 4nλ(V \ (E ×H)) < θV + λ′V − θW ≤ λ′V,

which is absurd. XXX
So λ′W is defined and not greater than θW . QQQ

(f) Putting this together with (d), we see that λ′ = θ, as claimed.

Remark If µ′ and ν ′ are totally finite, so that they are ‘truly continuous’ with respect to µ and ν in the
sense of 232Ab, then f and g are integrable, so f ⊗ g is λ-integrable, and θ = λ′ is truly continuous with
respect to λ.

The proof above can be simplified using fragments of the general theory of complete locally determined
spaces, which will be given in §412 in Volume 4.

*253J Upper integrals The idea of 253D can be repeated in terms of upper integrals, as follows.

Proposition Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces, with c.l.d. product measure λ. Then for
any functions f and g, defined on conegligible subsets of X and Y respectively, and taking values in [0,∞],

∫
f ⊗ g dλ =

∫
fdµ ·

∫
g dν.

Remark Here (f ⊗ g)(x, y) = f(x)g(y) for all x ∈ dom f and y ∈ dom g, taking 0 · ∞ = 0, as in §135.

proof (a) I show first that
∫
f ⊗ g ≤

∫
f
∫
g. PPP If

∫
f = 0, then f = 0 a.e., so f ⊗ g = 0 a.e. and the result

is immediate. The same argument applies if
∫
g = 0. If both

∫
f and

∫
g are non-zero, and either is infinite,

the result is trivial. So let us suppose that both are finite. In this case there are integrable f0, g0 such that

f ≤a.e. f0, g ≤a.e. g0,
∫
f =

∫
f0 and

∫
g =

∫
g0 (133Ja/135Ha). So f ⊗ g ≤a.e. f0 ⊗ g0, and

∫
f ⊗ g ≤

∫
f0 ⊗ g0 =

∫
f0
∫
g0 =

∫
f
∫
g,

by 253D. QQQ

(b) For the reverse inequality, we need consider only the case in which
∫
f ⊗ g is finite, so that there is a

λ-integrable function h such that f ⊗ g ≤a.e. h and
∫
f ⊗ g =

∫
h. Set

f0(x) =
∫
h(x, y)ν(dy)

whenever this is defined in R, which is almost everywhere, by Fubini’s theorem (252B-252C). Then f0(x) ≥
f(x)

∫
g dν for every x ∈ dom f0 ∩ dom f , which is a conegligible set in X; so

∫
f ⊗ g =

∫
h dλ =

∫
f0dµ ≥

∫
f
∫
g,

as required.

*253K A similar argument applies to upper integrals of sums, as follows.

Proposition Let (X,Σ, µ) and (Y,T, ν) be probability spaces, with c.l.d. product measure λ. Then for any
real-valued functions f , g defined on conegligible subsets of X, Y respectively,
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∫
f(x) + g(y)λ(d(x, y)) =

∫
f(x)µ(dx) +

∫
g(y)ν(dy),

at least when the right-hand side is defined in [−∞,∞].

proof Set h(x, y) = f(x) + g(y) for x ∈ dom f and y ∈ dom g, so that domh is λ-conegligible.

(a) As in 253J, I start by showing that
∫
h ≤

∫
f+

∫
g. PPP If either

∫
f or

∫
g is ∞, this is trivial. Otherwise,

take integrable functions f0, g0 such that f ≤a.e. f0 and g ≤a.e. g0. Set h0 = (f0 ⊗ χY ) + (χX ⊗ g0); then
h ≤ h0 λ-a.e., so ∫

h dλ ≤
∫
h0dλ =

∫
f0dµ+

∫
g0dν.

As f0, g0 are arbitrary,
∫
h ≤

∫
f +

∫
g. QQQ

(b) For the reverse inequality, suppose that h ≤ h0 for λ-almost every (x, y), where h0 is λ-integrable.

Set f0(x) =
∫
h0(x, y)ν(dy) whenever this is defined in R. Then f0(x) ≥ f(x) +

∫
g dν whenever x ∈

dom f ∩ dom f0, so ∫
h0 dλ =

∫
f0dµ ≥

∫
fdµ+

∫
g dν.

As h0 is arbitrary,
∫
h ≥

∫
f +

∫
g, as required.

253L Complex spaces As usual, the ideas of 253F and 253H apply essentially unchanged to complex L1

spaces. Writing L1
C(µ), etc., for the complex L1 spaces involved, we have the following results. Throughout,

let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X × Y .

(a) If f ∈ L
0
C(µ) and g ∈ L

0
C(ν) then f ⊗g, defined by the formula (f ⊗g)(x, y) = f(x)g(y) for x ∈ dom f

and y ∈ dom g, belongs to L
0
C(λ).

(b) If f ∈ L
1
C(µ) and g ∈ L

1
C(ν) then f ⊗ g ∈ L

1
C(λ) and

∫
f ⊗ g dλ =

∫
fdµ

∫
g dν.

(c)We have a bilinear operator (u, v) 7→ u⊗v : L1
C(µ)×L1

C(ν) → L1
C(λ) defined by writing f•⊗g• = (f⊗g)•

for all f ∈ L
1
C(µ), g ∈ L

1
C(ν).

(d) If W is any complex Banach space and φ : L1
C(µ) × L1

C(ν) → W is any bounded bilinear operator,
then there is a unique bounded linear operator T : L1

C(λ) → W such that T (u ⊗ v) = φ(u, v) for every
u ∈ L1

C(µ) and v ∈ L1
C(ν), and ‖T‖ = ‖φ‖.

(e) If µ and ν are complete probability measures, and Λ1 = {E × Y : E ∈ Σ}, then for any f ∈ L
1
C(λ)

we have a conditional expectation g of f on Λ1 given by setting g(x, y) =
∫
f(x, z)ν(dz) whenever this is

defined.

253X Basic exercises >>>(a) Let U , V and W be linear spaces. Show that the set of bilinear operators
from U × V to W has a natural linear structure agreeing with those of L(U ;L(V ;W )) and L(V ;L(U ;W )),
writing L(U ;W ) for the linear space of linear operators from U to W .

>>>(b) Let U , V and W be normed spaces. (i) Show that for a bilinear operator φ : U × V → W the
following are equiveridical: (α) φ is bounded in the sense of 253Ab; (β) φ is continuous; (γ) φ is continuous
at some point of U × V . (ii) Show that the space of bounded bilinear operators from U × V to W is a
linear subspace of the space of all bilinear operators from U × V to W , and that the functional ‖ ‖ defined
in 253Ab is a norm, agreeing with the norms of B(U ;B(V ;W )) and B(V ;B(U ;W )), writing B(U ;W ) for the
normed space of bounded linear operators from U to W .

(c) Let (X1,Σ1, µ1), . . . , (Xn,Σn, µn) be measure spaces, and λ the c.l.d. product measure on X1× . . .×
Xn, as described in 251W. Let W be a Banach space, and suppose that φ : L1(µ1)× . . . × L1(µn) → W is
multilinear (that is, linear in each variable separately) and bounded (that is, ‖φ‖ = sup{φ(u1, . . . , un) :
‖ui‖1 ≤ 1 ∀ i ≤ n} < ∞). Show that there is a unique bounded linear operator T : L1(λ) → W such that
T⊗ = φ, where ⊗ : L1(µ1)× . . .× L1(µn) → L1(λ) is a canonical multilinear operator (to be defined).
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(d) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X × Y . Show
that if A ⊆ L1(µ) and B ⊆ L1(ν) are both uniformly integrable, then {u ⊗ v : u ∈ A, v ∈ B} is uniformly
integrable in L1(λ).

>>>(e) Let (X,Σ, µ) and (Y,T, ν) be measure spaces and λ the c.l.d. product measure on X × Y . Show
that

(i) we have a bilinear operator (u, v) 7→ u⊗v : L0(µ)×L0(ν) → L0(λ) given by setting f•⊗g• = (f⊗g)•
for all f ∈ L

0(µ) and g ∈ L
0(ν);

(ii) if 1 ≤ p ≤ ∞ then u⊗ v ∈ Lp(λ) and ‖u⊗ v‖p = ‖u‖p‖v‖p for all u ∈ Lp(µ) and v ∈ Lp(ν);
(iii) if u, u′ ∈ L2(µ) and v, v′ ∈ L2(ν) then the inner product (u ⊗ v|u′ ⊗ v′), taken in L2(λ), is just

(u|u′)(v|v′);
(iv) the map (u, v) 7→ u ⊗ v : L0(µ) × L0(ν) → L0(λ) is continuous if L0(µ), L0(ν) and L0(λ) are all

given their topologies of convergence in measure.

(f) In 253Xe, assume that µ and ν are semi-finite. Show that if u0, . . . , un are linearly independent
members of L0(µ) and v0, . . . , vn ∈ L0(ν) are not all 0, then

∑n
i=0 ui ⊗ vi 6= 0 in L0(λ). (Hint : start by

finding sets E ∈ Σ, F ∈ T of finite measure such that u0 ×χE•, . . . , un ×χE• are linearly independent and
v0 × χF •, . . . , vn × χF • are not all 0.)

(g) In 253Xe, assume that µ and ν are semi-finite. If U , V are linear subspaces of L0(µ) and L0(ν)
respectively, write U ⊗ V for the linear subspace of L0(λ) generated by {u ⊗ v : u ∈ U, v ∈ V }. Show
that if W is any linear space and φ : U × V → W is a bilinear operator, there is a unique linear operator
T : U ⊗ V → W such that T (u ⊗ v) = φ(u, v) for all u ∈ U , v ∈ V . (Hint : start by showing that if
u0, . . . , un ∈ U and v0, . . . , vn ∈ V are such that

∑n
i=0 ui ⊗ vi = 0, then

∑n
i=0 φ(ui, vi) = 0 – do this by

expressing the ui as linear combinations of some linearly independent family and applying 253Xf.)

>>>(h) Let (X,Σ, µ) and (Y,T, ν) be complete probability spaces, with c.l.d. product measure λ. Suppose
that p ∈ [1,∞] and that f ∈ L

p(λ). Set g(x) =
∫
f(x, y)ν(dy) whenever this is defined. Show that g ∈ L

p(µ)
and that ‖g‖p ≤ ‖f‖p. (Hint : 253H, 244M.)

(i) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with c.l.d. product measure λ, and p ∈ [1,∞[. Show that
{w : w ∈ Lp(λ), w ≥ 0} is the closed convex hull in Lp(λ) of {u ⊗ v : u ∈ Lp(µ), v ∈ Lp(ν), u ≥ 0, v ≥ 0}
(see 253Xe(ii) above).

253Y Further exercises (a) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ0 the primitive product
measure on X × Y . Show that if f ∈ L

0(µ) and g ∈ L
0(ν), then f ⊗ g ∈ L

0(λ0).

(b) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ0 the primitive product measure on X×Y . Show
that if f ∈ L

1(µ) and g ∈ L
1(ν), then f ⊗ g ∈ L

1(λ0) and
∫
f ⊗ g dλ0 =

∫
f dµ

∫
g dν.

(c) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ0, λ the primitive and c.l.d. product measures on
X × Y . Show that the embedding L

1(λ0) ⊂→ L
1(λ) induces a Banach lattice isomorphism between L1(λ0)

and L1(λ).

(d) Let (X,Σ, µ), (Y,T, ν) be strictly localizable measure spaces, with c.l.d. product measure λ. Show
that L∞(λ) can be identified with L1(λ)∗. Show that under this identification {w : w ∈ L∞(λ), w ≥ 0} is
the weak*-closed convex hull of {u⊗ v : u ∈ L∞(µ), v ∈ L∞(ν), u ≥ 0, v ≥ 0}.

(e) Find a version of 253J valid when one of µ, ν is not σ-finite.

(f) Let (X,Σ, µ) be any measure space and V any Banach space. Write L
1
V = L

1
V (µ) for the set

of functions f such that (α) dom f is a conegligible subset of X (β) f takes values in V (γ) there is a
conegligible set D ⊆ dom f such that f [D] is separable and D ∩ f−1[G] ∈ Σ for every open set G ⊆ V (δ)
the integral

∫
‖f(x)‖µ(dx) is finite. (These are the Bochner integrable functions from X to V .) For f ,

g ∈ L
1
V write f ∼ g if f = g µ-a.e.; let L1

V be the set of equivalence classes in L
1
V under ∼. Show that

(i) f + g, cf ∈ L
1
V for all f , g ∈ L

1
V , c ∈ R;
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(ii) L1
V has a natural linear space structure, defined by writing f• + g• = (f + g)•, cf• = (cf)• for f ,

g ∈ L
1
V and c ∈ R;
(iii) L1

V has a norm ‖ ‖, defined by writing ‖f•‖ =
∫
‖f(x)‖µ(dx) for f ∈ L

1
V ;

(iv) L1
V is a Banach space under this norm;

(v) there is a natural map ⊗ : L1×V → L
1
V defined by writing (f⊗v)(x) = f(x)v when f ∈ L

1 = L
1
R(µ),

v ∈ V and x ∈ dom f ;
(vi) there is a canonical bilinear operator ⊗ : L1 × V → L1

V defined by writing f• ⊗ v = (f ⊗ v)• for
f ∈ L

1 and v ∈ V ;
(vii) whenever W is a Banach space and φ : L1 × V → W is a bounded bilinear operator, there is a

unique bounded linear operator T : L1
V → W such that T (u ⊗ v) = φ(u, v) for all u ∈ L1 and v ∈ V , and

‖T‖ = ‖φ‖. (When W = V and φ(u, v) = (
∫
u)v for u ∈ L1 and v ∈ V , Tf• is called the Bochner integral

of f .)

(g) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ0 the primitive product measure on X × Y . If
f is a λ0-integrable function, write fx(y) = f(x, y) whenever this is defined. Show that we have a map
x 7→ f•

x from a conegligible subset D0 of X to L1(ν). Show that this map is a Bochner integrable function,
as defined in 253Yf, and that its Bochner integral is

∫
fdλ0.

(h) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and suppose that φ is a function from X to a separable
subset of L1(ν) which is measurable in the sense that φ−1[G] ∈ Σ for every open G ⊆ L1(ν). Show that
there is a Λ-measurable function f from X × Y to R, where Λ is the domain of the c.l.d. product measure
on X × Y , such that φ(x) = f•

x for every x ∈ X, writing fx(y) = f(x, y) for x ∈ X, y ∈ Y .

(i) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X ×Y . Show that
253Yg provides a canonical identification between L1(λ) and L1

L1(ν)(µ).

(j) Let (X,Σ, µ) and (Y,T, ν) be complete locally determined measure spaces, with c.l.d. product measure
λ. (i) Suppose that K ∈ L

2(λ), f ∈ L
2(µ). Show that h(y) =

∫
K(x, y)f(x)dx is defined for almost all

y ∈ Y and that h ∈ L
2(ν). (Hint : to see that h is defined a.e., consider

∫
E×F

K(x, y)f(x)d(x, y) for µE,

νF <∞; to see that h ∈ L
2 consider

∫
h× g where g ∈ L

2(ν).) (ii) Show that the map f 7→ h corresponds
to a bounded linear operator TK : L2(µ) → L2(ν). (iii) Show that the map K 7→ TK corresponds to a
bounded linear operator, of norm at most 1, from L2(λ) to B(L2(µ);L2(ν)).

(k) Suppose that p, q ∈ [1,∞] and that 1
p + 1

q = 1, interpreting 1
∞ as 0 as usual. Let (X,Σ, µ), (Y,T, ν)

be complete locally determined measure spaces with c.l.d. product measure λ. Show that the ideas of 253Yj
can be used to define a bounded linear operator, of norm at most 1, from Lp(λ) to B(Lq(µ);Lp(ν)).

(l) In 253Xc, suppose that W is a Banach lattice. Show that the following are equiveridical: (i) Tu ≥ 0
whenever u ∈ L1(λ); (ii) φ(u1, . . . , un) ≥ 0 whenever ui ≥ 0 in L1(µi) for each i ≤ n.

253 Notes and comments Throughout the main arguments of this section, I have written the results
in terms of the c.l.d. product measure; of course the isomorphism noted in 253Yc means that they could
just as well have been expressed in terms of the primitive product measure. The more restricted notion of
integrability with respect to the primitive product measure is indeed the one appropriate for the ideas of
253Yg.

Theorem 253F is a ‘universal mapping theorem’; it asserts that every bounded bilinear operator on
L1(µ)×L1(ν) factors through ⊗ : L1(µ)×L1(ν) → L1(λ), at least if the range space is a Banach space. It is
easy to see that this property defines the pair (L1(λ),⊗) up to Banach space isomorphism, in the following
sense: if V is a Banach space, and ψ : L1(µ) × L1(ν) → V is a bounded bilinear operator such that for
every bounded bilinear operator φ from L1(µ) × L1(ν) to any Banach space W there is a unique bounded
linear operator T : V → W such that Tψ = φ and ‖T‖ = ‖φ‖, then there is an isometric Banach space
isomorphism S : L1(λ) → V such that S⊗ = ψ. There is of course a general theory of bilinear operators
between Banach spaces; in the language of this theory, L1(λ) is, or is isomorphic to, the ‘projective tensor
product’ of L1(µ) and L1(ν). For an introduction to this subject, see Defant & Floret 93, §I.3, or
Semadeni 71, §20. I should perhaps emphasise, for the sake of those who have not encountered tensor
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products before, that this theorem is special to L1 spaces. While some of the same ideas can be applied to
other function spaces (see 253Xe-253Xg), there is no other class to which 253F applies.

There is also a theory of tensor products of Banach lattices, for which I do not think we are quite ready
(it needs general ideas about ordered linear spaces for which I mean to wait until Chapter 35 in the next
volume). However 253G shows that the ordering, and therefore the Banach lattice structure, of L1(λ) is
determined by the ordering of L1(µ) and L1(ν) and the map ⊗ : L1(µ)× L1(ν) → L1(λ).

The conditional expectation operators described in 253H are of very great importance, largely because in
this special context we have a realization of the conditional expectation operator as a function P0 from L

1(λ)
to L

1(λ↾Λ1), not just as a function from L1(λ) to L1(λ↾Λ1), as in 242J. As described here, P0(f + f ′) need
not be equal, in the strict sense, to P0f + P0f

′; it can have a larger domain. In applications, however, one
might be willing to restrict attention to the linear space U of bounded Σ⊗̂T-measurable functions defined
everywhere on X × Y , so that P0 becomes an operator from U to itself (see 252P).

Version of 23.2.16

254 Infinite products

I come now to the second basic idea of this chapter: the description of a product measure on the product
of a (possibly large) family of probability spaces. The section begins with a construction on similar lines to
that of §251 (254A-254F) and its defining property in terms of inverse-measure-preserving functions (254G).
I discuss the usual measure on {0, 1}I (254J-254K), subspace measures (254L) and various properties of
subproducts (254M-254T), including a study of the associated conditional expectation operators (254R-
254T).

254A Definitions (a) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces. Set X =
∏

i∈I Xi, the
family of functions x with domain I such that x(i) ∈ Xi for every i ∈ I. In this context, I will say that a
measurable cylinder is a subset of X expressible in the form

C =
∏

i∈I Ci,

where Ci ∈ Σi for every i ∈ I and {i : Ci 6= Xi} is finite. Note that for a non-empty C ⊆ X this expression
is unique. PPP Suppose that C =

∏
i∈I Ci =

∏
i∈I C

′
i. For each i ∈ I set

Di = {x(i) : x ∈ C}.
Of course Di ⊆ Ci. Because C 6= ∅, we can fix on some z ∈ C. If i ∈ I and t ∈ Ci, consider x ∈ X defined
by setting

x(i) = t, x(j) = z(j) for j 6= i;

then x ∈ C so t = x(i) ∈ Di. Thus Di = Ci for i ∈ I. Similarly, Di = C ′
i. QQQ

(b) We can therefore define a functional θ0 : C → [0, 1], where C is the set of measurable cylinders, by
setting

θ0C =
∏

i∈I µiCi

whenever Ci ∈ Σi for every i ∈ I and {i : Ci 6= Xi} is finite, noting that only finitely many terms in the
product can differ from 1, so that it can safely be treated as a finite product. If C = ∅, one of the Ci must
be empty, so θ0C is surely 0, even though the expression of C as

∏
i∈I Ci is no longer unique.

(c) Now define θ : PX → [0, 1] by setting

θA = inf{∑∞
n=0 θ0Cn : Cn ∈ C for every n ∈ N, A ⊆ ⋃

n∈N Cn}.

254B Lemma The functional θ defined in 254Ac is always an outer measure on X.

proof Use exactly the same arguments as those in 251B above.

c© 2002 D. H. Fremlin
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254C Definition Let 〈(Xi,Σi, µi)〉i∈I be any indexed family of probability spaces, and X the Cartesian
product

∏
i∈I Xi. The product measure on X is the measure defined by Carathéodory’s method (113C)

from the outer measure θ defined in 254A.

254D Remarks (a) In 254Ab, I asserted that if C ∈ C and no Ci is empty, then nor is C =
∏

i∈I Ci.
This is the ‘Axiom of Choice’: the product of any family 〈Ci〉i∈I of non-empty sets is non-empty, that is,
there is a ‘choice function’ x with domain I picking out a distinguished member x(i) of each Ci. In this
volume I have not attempted to be scrupulous in indicating uses of the axiom of choice. In fact the use
here is not an absolutely vital one; I mean, the theory of infinite products, even uncountable products, of
probability spaces does not change character completely in the absence of the full axiom of choice (provided,
that is, that we allow ourselves to use the countable axiom of choice). The point is that all we really need,
in the present context, is that X =

∏
i∈I Xi should be non-empty; and in many contexts we can prove this,

for the particular cases of interest, without using the axiom of choice, by actually exhibiting a member of
X. The simplest case in which this is difficult is when the Xi are uncontrolled Borel subsets of [0, 1]; and
even then, if they are presented with coherent descriptions, we may, with appropriate labour, be able to
construct a member of X. But clearly such a process is liable to slow us down a good deal, and for the
moment I think there is no great virtue in taking so much trouble.

(b) I have given this section the title ‘infinite products’, but it is useful to be able to apply the ideas to
finite I; I should mention in particular the cases #(I) ≤ 2.

(i) If I = ∅, X consists of the unique function with domain I, the empty function. If we identify a
function with its graph, then X is actually {∅}; in any case, X is to be a singleton set, with λX = 1.

(ii) If I is a singleton {i}, then we can identify X with Xi; C becomes identified with Σi and θ0 with
µi, so that θ can be identified with µ∗

i and the ‘product measure’ becomes the measure on Xi defined from
µ∗
i , that is, the completion of µi (see 213Xa(iv)).

(iii) If I is a doubleton {i, j}, then we can identify X with Xi×Xj ; in this case the definitions of 254A
and 254C match exactly with those of 251A and 251C, so that λ here can be identified with the primitive
product measure as defined in 251C. Because µi and µj are both totally finite, this agrees with the c.l.d.
product measure of 251F.

(c) In Volume 4, when considering products of probability spaces endowed with certain kinds of topology,
I will introduce some alternative product measures. In such contexts I may speak of the product measure
here as the ‘ordinary’ product measure.

254E Definition Let 〈Xi〉i∈I be any family of sets, and X =
∏

i∈I Xi. If Σi is a σ-subalgebra of subsets

of Xi for each i ∈ I, I write
⊗̂

i∈IΣi for the σ-algebra of subsets of X generated by

{{x : x ∈ X, x(i) ∈ E} : i ∈ I, E ∈ Σi}.
(Compare 251D.)

254F Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, and let λ be the product measure
on X =

∏
i∈I Xi defined as in 254C; let Λ be its domain.

(a) λX = 1.
(b) If Ei ∈ Σi for every i ∈ I, and {i : Ei 6= Xi} is countable, then

∏
i∈I Ei ∈ Λ, and λ(

∏
i∈I Ei) =∏

i∈I µiEi. In particular, λC = θ0C for every measurable cylinder C, as defined in 254A, and if j ∈ I then
x 7→ x(j) : X → Xj is inverse-measure-preserving.

(c)
⊗̂

i∈IΣi ⊆ Λ.
(d) λ is complete.
(e) For every W ∈ Λ and ǫ > 0 there is a finite family C0, . . . , Cn of measurable cylinders such that

λ(W△⋃
k≤n Ck) ≤ ǫ.

(f) For every W ∈ Λ there are W1, W2 ∈ ⊗̂
i∈IΣi such that W1 ⊆W ⊆W2 and λ(W2 \W1) = 0.
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Remark Perhaps I should pause to interpret the product
∏

i∈I µiEi. Because all the µiEi belong to [0, 1],
this is simply infJ⊆I,J is finite

∏
i∈J µiEi, taking the empty product to be 1.

proof Throughout this proof, define C, θ0 and θ as in 254A. I will write out an argument which applies to
finite I as well as infinite I, but you may reasonably prefer to assume that I is infinite on first reading.

(a) Of course λX = θX, so I have to show that θX = 1. Because X, ∅ ∈ C and θ0X =
∏

i∈I µiXi = 1
and θ0∅ = 0,

θX ≤ θ0X + θ0∅+ . . . = 1.

I therefore have to show that θX ≥ 1. ??? Suppose, if possible, otherwise.

(i) There is a sequence 〈Cn〉n∈N in C, covering X, such that
∑∞

n=0 θ0Cn < 1. For each n ∈ N, express
Cn as {x : x(i) ∈ Eni ∀ i ∈ I}, where every Eni ∈ Σi and Jn = {i : Eni 6= Xi} is finite. No Jn can be empty,
because θ0Cn < 1 = θ0X; set J =

⋃
n∈N Jn. Then J is a countable non-empty subset of I. Set K = N if J

is infinite, {k : 0 ≤ k < #(J)} if J is finite; let k 7→ ik : K → J be a bijection.
For each k ∈ K, set Lk = {ij : j < k} ⊆ J , and set αnk =

∏
i∈I\Lk

µiEni for n ∈ N, k ∈ K. If J is finite,

then we can identify L#(J) with J , and set αn,#(J) = 1 for every n. We have αn0 = θ0Cn for each n, so∑∞
n=0 αn0 < 1. For n ∈ N, k ∈ K and t ∈ Xik set

fnk(t) = αn,k+1 if t ∈ En,ik ,

= 0 otherwise.

Then ∫
fnkdµik = αn,k+1µikEn,ik = αnk.

(ii) Choose tk ∈ Xik inductively, for k ∈ K, as follows. The inductive hypothesis will be that∑
n∈Mk

αnk < 1, where Mk = {n : n ∈ N, tj ∈ En,ij ∀ j < k}; of course M0 = N, so the induction
starts. Given that

1 >
∑

n∈Mk
αnk =

∑
n∈Mk

∫
fnkdµik =

∫
(
∑

n∈Mk
fnk)dµik

(by B.Levi’s theorem), there must be a tk ∈ Xik such that
∑

n∈Mk
fnk(tk) < 1. Now for such a choice of tk,

αn,k+1 = fnk(tk) for every n ∈ Mk+1, so that
∑

n∈Mk+1
αn,k+1 < 1, and the induction continues, unless J

is finite and k + 1 = #(J). In this last case we must just have M#(J) = ∅, because αn,#(J) = 1 for every n.

(iii) If J is infinite, we obtain a full sequence 〈tk〉k∈N; if J is finite, we obtain just a finite sequence
〈tk〉k<#(J). In either case, there is an x ∈ X such that x(ik) = tk for each k ∈ K. Now there must be some
m ∈ N such that x ∈ Cm. Because Jm = {i : Emi 6= Xi} is finite, there is a k ∈ N such that Jm ⊆ Lk

(allowing k = #(J) if J is finite). Now m ∈ Mk, so in fact we cannot have k = #(J), and αmk = 1, so∑
n∈Mk

αnk ≥ 1, contrary to the inductive hypothesis. XXX
This contradiction shows that θX = 1.

(b)(i) I take the particular case first. Suppose that j ∈ I and E ∈ Σj , and let C ∈ C; setW = {x : x ∈ X,
x(j) ∈ E}; then C ∩W and C \W both belong to C, and θ0C = θ0(C ∩W )+ θ0(C \W ). PPP If C =

∏
i∈I Ci,

where Ci ∈ Σi for each i, then C ∩W =
∏

i∈I C
′
i, where C

′
i = Ci if i 6= j, and C ′

j = Cj ∩ E; similarly,
C \W =

∏
i∈I C

′′
i , where C

′′
i = Ci if i 6= j, and C ′′

j = Cj \ E. So both belong to C, and
θ0(C ∩W ) + θ0(C \W ) = (µj(Cj ∩ E) + µj(Cj \ E))

∏
i6=j µCi =

∏
i∈I µCi = θ0C. QQQ

(ii) Now suppose that A ⊆ X is any set, and ǫ > 0. Then there is a sequence 〈Cn〉n∈N in C such that
A ⊆ ⋃

n∈N Cn and
∑∞

n=0 θ0Cn ≤ θA+ ǫ. In this case

A ∩W ⊆ ⋃
n∈N Cn ∩W , A \W ⊆ ⋃

n∈N Cn \W,
so

θ(A ∩W ) ≤ ∑∞
n=0 θ0(Cn ∩W ), θ(A \W ) ≤ ∑∞

n=0 θ0(Cn \W ),

and
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θ(A ∩W ) + θ(A \W ) ≤ ∑∞
n=0 θ0(Cn ∩W ) + θ0(Cn \W ) =

∑∞
n=0 θ0Cn ≤ θA+ ǫ.

As ǫ is arbitrary, θ(A ∩W ) + θ(A \W ) ≤ θA; as A is arbitrary, W ∈ Λ.

(iii) I show next that if J ⊆ I is finite and Ci ∈ Σi for each i ∈ J , and C = {x : x ∈ X, x(i) ∈ Ci ∀
i ∈ J}, then C ∈ Λ and λC =

∏
i∈J µiCi. PPP Induce on #(J). If #(J) = 0, that is, J = ∅, then C = X and

this is part (a). For the inductive step to #(J) = n+ 1, take any j ∈ J and set J ′ = J \ {j},
C ′ = {x : x ∈ X, x(i) ∈ Ci ∀ i ∈ J ′},

C ′′ = C ′ \ C = {x : x ∈ C ′, x(j) ∈ Xj \ Cj}.
Then C, C ′, C ′′ all belong to C, and θ0C

′ =
∏

i∈J ′ µiCi = α say, θ0C = αµjCj , θ0C
′′ = α(1 − µjCj).

Moreover, by the inductive hypothesis, C ′ ∈ Λ and α = λC ′ = θC ′. So C = C ′ ∩ {x : x(j) ∈ Cj} ∈ Λ by
(ii), and C ′′ = C ′ \ C ∈ Λ.

We surely have λC = θC ≤ θ0C, λC
′′ ≤ θ0C

′′; but also

α = λC ′ = λC + λC ′′ ≤ θ0C + θ0C
′′ = α,

so in fact

λC = θ0C = αµjCj =
∏

i∈J µCi,

and the induction proceeds. QQQ

(iv) Now let us return to the general case of a set W of the form
∏

i∈I Ei where Ei ∈ Σi for each i,
and K = {i : Ei 6= Xi} is countable. If K is finite then W = {x : x(i) ∈ Ei ∀ i ∈ K} so W ∈ Λ and

λW =
∏

i∈K µiEi =
∏

i∈I µiEi.

Otherwise, let 〈in〉n∈N be an enumeration of K. For each n ∈ N set Wn = {x : x ∈ X, x(ik) ∈ Eik ∀ k ≤ n};
then we know that Wn ∈ Λ and that λWn =

∏n
k=0 µikEik . But 〈Wn〉n∈N is a non-increasing sequence with

intersection W , so W ∈ Λ and

λW = limn→∞ λWn =
∏

i∈K µiEi =
∏

i∈I µiEi.

(c) is an immediate consequence of (b) and the definition of
⊗̂

i∈IΣi.

(d) Because λ is constructed by Carathéodory’s method it must be complete.

(e) Let 〈Cn〉n∈N be a sequence in C such that W ⊆ ⋃
n∈N Cn and

∑∞
n=0 θ0Cn ≤ θW + 1

2ǫ. Set V =⋃
n∈N Cn; by (b), V ∈ Λ. Let n ∈ N be such that

∑∞
i=n+1 θ0Ci ≤ 1

2ǫ, and consider W ′ =
⋃

k≤n Ck. Since

V \W ′ ⊆ ⋃
i>n Ci,

λ(W△W ′) ≤ λ(V \W ) + λ(V \W ′) = λV − λW + λ(V \W ′) = θV − θW + θ(V \W ′)

≤
∞∑

i=0

θ0Ci − θW +
∑

i=n+1

θ0Ci ≤ 1

2
ǫ+

1

2
ǫ = ǫ.

(f)(i) If W ∈ Λ and ǫ > 0 there is a V ∈ ⊗̂
i∈IΣi such that W ⊆ V and λV ≤ λW + ǫ. PPP Let 〈Cn〉n∈N

be a sequence in C such that W ⊆ ⋃
n∈N Cn and

∑∞
n=0 θ0Cn ≤ θW + ǫ. Then Cn ∈ ⊗̂

i∈IΣi for each n, so

V =
⋃

n∈N Cn ∈ ⊗̂
i∈IΣi. Now W ⊆ V , and

λV = θV ≤ ∑∞
n=0 θ0Cn ≤ θW + ǫ = λW + ǫ. QQQ

(ii) Now, given W ∈ Λ, let 〈Vn〉n∈N be a sequence of sets in
⊗̂

i∈IΣi such that W ⊆ Vn and λVn ≤
λW + 2−n for each n; then W2 =

⋂
n∈N Vn belongs to

⊗̂
i∈IΣi and W ⊆ W2 and λW2 = λW . Similarly,

there is a W ′
2 ∈ ⊗̂

i∈IΣi such that X \W ⊆ W ′
2 and λW ′

2 = λ(X \W ), so we may take W1 = X \W ′
2 to

complete the proof.

254G The following is a fundamental, indeed defining, property of product measures. (Compare 251L.)
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Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces with product (X,Λ, λ). Let (Y,T, ν) be a
complete probability space and φ : Y → X a function. Suppose that ν∗φ−1[C] ≤ λC for every measurable
cylinder C ⊆ X. Then φ is inverse-measure-preserving. In particular, φ is inverse-measure-preserving iff
φ−1[C] ∈ T and νφ−1[C] = λC for every measurable cylinder C ⊆ X.

Remark By ν∗ I mean the usual outer measure defined from ν as in §132.
proof (a) First note that, writing θ for the outer measure of 254A, ν∗φ−1[A] ≤ θA for every A ⊆ X. PPPGiven
ǫ > 0, there is a sequence 〈Cn〉n∈N of measurable cylinders such that A ⊆ ⋃

n∈N Cn and
∑∞

n=0 θ0Cn ≤ θA+ǫ,
where θ0 is the functional of 254A. But we know that θ0C = λC for every measurable cylinder C (254Fb),
so

ν∗φ−1[A] ≤ ν∗(
⋃

n∈N φ
−1[Cn]) ≤

∑∞
n=0 ν

∗φ−1[Cn] ≤
∑∞

n=0 λCn ≤ θA+ ǫ.

As ǫ is arbitrary, ν∗φ−1[A] ≤ θA. QQQ

(b) Now take any W ∈ Λ. Then there are F , F ′ ∈ T such that

φ−1[W ] ⊆ F , φ−1[X \W ] ⊆ F ′,

νF = ν∗φ−1[W ] ≤ θW = λW , νF ′ ≤ λ[X \W ].

We have

F ∪ F ′ ⊇ φ−1[W ] ∪ φ−1[X \W ] = Y ,

so

ν(F ∩ F ′) = νF + νF ′ − ν(F ∪ F ′) ≤ λW + λ(X \W )− 1 = 0.

Now

F \ φ−1[W ] ⊆ F ∩ φ−1[X \W ] ⊆ F ∩ F ′

is ν-negligible. Because ν is complete, F \ φ−1[W ] ∈ T and φ−1[W ] = F \ (F \ φ−1[W ]) belongs to T.
Moreover,

1 = νF + νF ′ ≤ λW + λ(X \W ) = 1,

so we must have νF = λW ; but this means that νφ−1[W ] = νW . As W is arbitrary, φ is inverse-measure-
preserving.

254H Corollary Let 〈(Xi,Σi, µi)〉i∈I and 〈(Yi,Ti, νi)〉i∈I be two families of probability spaces, with
products (X,Λ, λ) and (Y,Λ′, λ′). Suppose that for each i ∈ I we are given an inverse-measure-preserving
function φi : Xi → Yi. Set φ(x) = 〈φi(x(i))〉i∈I for x ∈ X. Then φ : X → Y is inverse-measure-preserving.

proof If C =
∏

i∈I Ci is a measurable cylinder in Y , then φ−1[C] =
∏

i∈I φ
−1
i [Ci] is a measurable cylinder

in X, and

λφ−1[C] =
∏

i∈I µiφ
−1
i [Ci] =

∏
i∈I νiCi = λ′C.

Since λ is a complete probability measure, 254G tells us that φ is inverse-measure-preserving.

254I Corresponding to 251T we have the following.

Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, λ the product measure on X =
∏

i∈I Xi,
and Λ its domain. Then λ is also the product of the completions µ̂i of the µi (212C).

proof Write λ̂ for the product of the µ̂i, and Λ̂ for its domain. (i) The identity map from Xi to itself
is inverse-measure-preserving if regarded as a map from (Xi, µ̂i) to (Xi, µi), so the identity map on X is

inverse-measure-preserving if regarded as a map from (X, λ̂) to (X,λ), by 254H; that is, Λ ⊆ Λ̂ and λ = λ̂↾Λ.

(ii) If C is a measurable cylinder for 〈µ̂i〉i∈I , that is, C =
∏

i∈I Ci where Ci ∈ Σ̂i for every i and {i : Ci 6= Xi}
is finite, then for each i ∈ I we can find a C ′

i ∈ Σi such that Ci ⊆ C ′
i and µiC

′
i = µ̂iCi; setting C

′ =
∏

i∈I C
′
i,

we get

λ∗C ≤ λC ′ =
∏

i∈I µiC
′
i =

∏
i∈I µ̂iCi = λ̂C.
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By 254G, λW must be defined and equal to λ̂W whenever W ∈ Λ̂. Putting this together with (i), we see

that λ = λ̂.

254J The product measure on {0, 1}I (a) Perhaps the most important of all examples of infinite
product measures is the case in which each factor Xi is just {0, 1} and each µi is the ‘fair-coin’ probability
measure, setting

µi{0} = µi{1} =
1

2
.

In this case, the product X = {0, 1}I has a family 〈Ei〉i∈I of measurable sets such that, writing λ for the
product measure on X,

λ(
⋂

i∈J Ei) = 2−#(J) if J ⊆ I is finite.

(Just take Ei = {x : x(i) = 1} for each i.) I will call this λ the usual measure on {0, 1}I . Observe that
if I is finite then λ{x} = 2−#(I) for each x ∈ X (using 254Fb). On the other hand, if I is infinite, then
λ{x} = 0 for every x ∈ X (because, again using 254Fb, λ∗{x} ≤ 2−n for every n).

(b) There is a natural bijection between {0, 1}I and PI, matching x ∈ {0, 1}I with {i : i ∈ I, x(i) = 1}.
So we get a standard measure λ̃ on PI, which I will call the usual measure on PI. Note that for any
finite b ⊆ I and any c ⊆ b we have

λ̃{a : a ∩ b = c} = λ{x : x(i) = 1 for i ∈ c, x(i) = 0 for i ∈ b \ c} = 2−#(b).

(c) Of course we can apply 254G to these measures; if (Y,T, ν) is a complete probability space, a function
φ : Y → {0, 1}I is inverse-measure-preserving iff

ν{y : y ∈ Y , φ(y)↾J = z} = 2−#(J)

whenever J ⊆ I is finite and z ∈ {0, 1}J ; this is because the measurable cylinders in {0, 1}I are precisely
the sets of the form {x : x↾J = z} where J ⊆ I is finite.

(d) Define addition on X by setting (x + y)(i) = x(i) +2 y(i) for every i ∈ I, x, y ∈ X, where 0 +2 0 =
1 +2 1 = 0, 0 +2 1 = 1 +2 0 = 1. If y ∈ X, the map x 7→ x+ y : X → X is inverse-measure-preserving. PPP If
J ⊆ I is finite and z ∈ {0, 1}J , set z′ = 〈z(j) +2 y(j)〉j∈J ; then

λ{x : (x+ y)↾J = z} = λ{x : x↾J = z′} = 2−#(J).

As J is arbitrary, (c) tells us that x 7→ x+ y is inverse-measure-preserving. QQQ Now since

(x+ y) + y = x+ (y + y) = x+ 0 = x

for every x, the map x 7→ x + y : X → X is bijective and equal to its inverse, so it is actually a measure
space automorphism of (X,λ).

*(e) Just because all the factors (Xi, µi) are the same, we have another class of automorphisms of (X,λ),
corresponding to permutations of I. If π : I → I is any permutation, then we have a corresponding function
x 7→ xπ : X → X. If J ⊆ I is finite and z ∈ {0, 1}J , set J ′ = π[J ] and z′ = zπ−1 ∈ {0, 1}J ′

; then

λ{x : (xπ)↾J = z} = λ{x : x↾J ′ = z′} = 2−#(J ′) = 2−#(J).

So x 7→ xπ is inverse-measure-preserving. This time, its inverse is x 7→ xπ−1, which is again inverse-measure-
preserving; so x 7→ xπ is a measure space automorphism.

254K In the case of countably infinite I, we have a very important relationship between the usual product
measure of {0, 1}I and Lebesgue measure on [0, 1].

Proposition Let λ be the usual measure on X = {0, 1}N, and let µ be Lebesgue measure on [0, 1]; write Λ
for the domain of λ and Σ for the domain of µ.

(i) For x ∈ X set φ(x) =
∑∞

i=0 2
−i−1x(i). Then

φ−1[E] ∈ Λ and λφ−1[E] = µE for every E ∈ Σ;
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φ[F ] ∈ Σ and µφ[F ] = λF for every F ∈ Λ.

(ii) There is a bijection φ̃ : X → [0, 1] which is equal to φ at all but countably many points, and any such
bijection is an isomorphism between (X,Λ, λ) and ([0, 1],Σ, µ).

proof (a) The first point to observe is that φ itself is nearly a bijection. Setting

H = {x : x ∈ X, ∃m ∈ N, x(i) = x(m) ∀ i ≥ m},

H ′ = {2−nk : n ∈ N, k ≤ 2n},
then H and H ′ are countable and φ↾X \H is a bijection between X \H and [0, 1] \H ′. (For t ∈ [0, 1] \H ′,
φ−1(t) is the binary expansion of t.) Because H and H ′ are countably infinite, there is a bijection between
them; combining this with φ↾X \H, we have a bijection between X and [0, 1] equal to φ except at countably

many points. For the rest of this proof, let φ̃ be any such bijection. Let M be the countable set {x : x ∈ X,

φ(x) 6= φ̃(x)}, and N the countable set φ[M ] ∪ φ̃[M ]; then φ[A]△φ̃[A] ⊆ N for every A ⊆ X.

(b) To see that λφ̃−1[E] exists and is equal to µE for every E ∈ Σ, I consider successively more complex
sets E.

(ααα) If E = {t} then λφ̃−1[E] = λ{φ̃−1(t)} exists and is zero.

(βββ) If E is of the form [2−nk, 2−n(k + 1)[, where n ∈ N and 0 ≤ k < 2n, then φ−1[E] differs by at most

two points from a set of the form {x : x(i) = z(i) ∀ i < n}, so φ̃−1[E] differs from this by a countable set,
and

λφ̃−1[E] = 2−n = µE.

(γγγ) If E is of the form [2−nk, 2−nl[, where n ∈ N and 0 ≤ k < l ≤ 2n, then

E =
⋃

k≤i<l [2
−ni, 2−n(i+ 1)[,

so

λφ̃−1[E] = 2−n(l − k) = µE.

(δδδ) If E is of the form [t, u[, where 0 ≤ t < u ≤ 1, then for each n ∈ N set kn = ⌊2nt⌋, the integer part
of 2nt, ln = ⌊2nu⌋ and En = [2−n(kn + 1), 2−nln[; then 〈En〉n∈N is a non-decreasing sequence and

⋃
n∈NEn

is ]t, u[. So (using (α))

λφ̃−1[E] = λφ̃−1[
⋃

n∈N

En] = lim
n→∞

λφ̃−1[En]

= lim
n→∞

µEn = µE.

(ǫǫǫ) If E ∈ Σ, then for any ǫ > 0 there is a sequence 〈In〉n∈N of half-open subintervals of [0, 1[ such that

E \ {1} ⊆ ⋃
n∈N In and

∑∞
n=0 µIn ≤ µE + ǫ; now φ̃−1[E] ⊆ {φ̃−1(1)} ∪⋃

n∈N φ
−1[In], so

λ∗φ̃−1[E] ≤ λ(
⋃

n∈N φ̃
−1[In]) ≤

∑∞
n=0 λφ̃

−1[In] =
∑∞

n=0 µIn ≤ µE + ǫ.

As ǫ is arbitrary, λ∗φ̃−1[E] ≤ µE, and there is a V ∈ Λ such that φ̃−1[E] ⊆ V and λV ≤ µE.

(ζζζ) Similarly, there is a V ′ ∈ Λ such that V ′ ⊇ φ̃−1[[0, 1]\E] and λV ′ ≤ µ([0, 1]\E). Now V ∪V ′ = X,
so

λ(V ∩ V ′) = λV + λV ′ − λ(V ∪ V ′) ≤ µE + (1− µE)− 1 = 0

and

φ̃−1[E] = (X \ V ′) ∪ (V ∩ V ′ ∩ φ̃−1[E])

belongs to Λ, with

λφ̃−1[E] ≤ λV ≤ µE;

at the same time,
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1− λφ̃−1[E] ≤ λV ′ ≤ 1− µE

so λφ̃−1[E] = µE.

(c) Now suppose that C ⊆ X is a measurable cylinder of the special form {x : x(0) = ǫ0, . . . , x(n) = ǫn}
for some ǫ0, . . . , ǫn ∈ {0, 1}. Then φ[C] = [t, t+2−n−1] where t =

∑n
i=0 2

−i−1ǫi, so that µφ[C] = λC. Since

φ̃[C]△φ[C] ⊆ N is countable, µφ̃[C] = λC.
If C ⊆ X is any measurable cylinder, then it is of the form {x : x↾J = z} for some finite J ⊆ N; taking n so

large that J ⊆ {0, . . . , n}, C is expressible as a disjoint union of 2n+1−#(J) sets of the form just considered,

being just those in which ǫi = z(i) for i ∈ J . Summing their measures, we again get µφ̃[C] = λC. Now

254G tells us that φ̃−1 : [0, 1] → X is inverse-measure-preserving, that is, φ̃[W ] is Lebesgue measurable,
with measure λW , for every W ∈ Λ.

Putting this together with (b), φ̃ must be an isomorphism between (X,Λ, λ) and ([0, 1],Σ, µ), as claimed
in (ii) of the proposition.

(d) As for (i), if E ∈ Σ then φ−1[E]△φ̃−1[E] ⊆ M is countable, so λφ−1[E] = λφ̃−1[E] = µE. While if

W ∈ Λ, φ[F ]△φ̃[W ] ⊆ N is countable, so µφ[W ] = µφ̃[W ] = λW .

254L Subspaces Just as in 251Q, we can consider the product of subspace measures. There is a
simplification in the form of the result because in the present context we are restricted to probability
measures.

Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, and (X,Λ, λ) their product.
(a) For each i ∈ I, let Ai ⊆ Xi be a set of full outer measure, and write µ̃i for the subspace measure on

Ai (214B). Let λ̃ be the product measure on A =
∏

i∈I Ai. Then λ̃ is the subspace measure on A induced
by λ.

(b) λ∗(
∏

i∈I Ai) =
∏

i∈I µ
∗
iAi whenever Ai ⊆ Xi for every i.

proof (a) Write λA for the subspace measure on A defined from λ, and ΛA for its domain; write Λ̃ for the

domain of λ̃.

(i) Let φ : A → X be the identity map. If C ⊆ X is a measurable cylinder, say C =
∏

i∈I Ci where

Ci ∈ Σi for each i, then φ
−1[C] =

∏
i∈I(Ci ∩Ai) is a measurable cylinder in A, and

λ̃φ−1[C] =
∏

i∈I µ̃i(Ci ∩Ai) ≤
∏

i∈I µiCi = µC.

By 254G, φ is inverse-measure-preserving, that is, λ̃(A ∩W ) = λW for every W ∈ Λ. But this means that

λ̃V is defined and equal to λAV = λ∗V for every V ∈ ΛA, since for any such V there is a W ∈ Λ such that
V = A ∩W and λW = λAV . In particular, λAA = 1.

(ii) Now regard φ as a function from the measure space (A,ΛA, λA) to (A, Λ̃, λ̃). If D is a measurable
cylinder in A, we can express it as

∏
i∈I Di where every Di belongs to the domain of µ̃i and Di = Ai for all

but finitely many i. Now for each i we can find Ci ∈ Σi such that Di = Ci ∩ Ai and µCi = µ̃iDi, and we
can suppose that Ci = Xi whenever Di = Ai. In this case C =

∏
i∈I Ci ∈ Λ and

λC =
∏

i∈I µiCi =
∏

i∈I µ̃iDi = λ̃D.

Accordingly

λAφ
−1[D] = λA(A ∩ C) ≤ λC = λ̃D.

By 254G again, φ is inverse-measure-preserving in this manifestation, that is, λAV is defined and equal to
λ̃V for every V ∈ Λ̃. Putting this together with (i), we have λA = λ̃, as claimed.

(b) For each i ∈ I, choose a set Ei ∈ Σi such that Ai ⊆ Ei and µiEi = µ∗
iAi; do this in such a way that

Ei = Xi whenever µ
∗
iAi = 1. Set Bi = Ai ∪ (Xi \ Ei), so that µ∗

iBi = 1 for each i (if F ∈ Σi and F ⊇ Bi

then F ∩ Ei ⊇ Ai, so

µiF = µi(F ∩ Ei) + µi(F \ Ei) = µiEi + µi(Xi \ Ei) = 1.)

By (a), we can identify the subspace measure λB on B =
∏

i∈I Bi with the product of the subspace measures
µ̃i on Bi. In particular, λ∗B = λBB = 1. Now Ai = Bi ∩ Ei so (writing A =

∏
i∈I Ai), A = B ∩∏

i∈I Ei.
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If
∏

i∈I µ
∗
iAi = 0, then for every ǫ > 0 there is a finite J ⊆ I such that

∏
i∈J µ

∗
iAi ≤ ǫ; consequently

(using 254Fb)

λ∗A ≤ λ{x : x(i) ∈ Ei for every i ∈ J} =
∏

i∈J µiEi ≤ ǫ.

As ǫ is arbitrary, λ∗A = 0. If
∏

i∈I µ
∗
iAi > 0, then for every n ∈ N the set {i : µ∗Ai ≤ 1 − 2−n} must be

finite, so

J = {i : µ∗Ai < 1} = {i : Ei 6= Xi}
is countable. By 254Fb again, applied to 〈Ei ∩Bi〉i∈I in the product

∏
i∈I Bi,

λ∗(
∏

i∈I

Ai) = λB(
∏

i∈I

Ai) = λB{x : x ∈ B, x(i) ∈ Ei ∩Bi for every i ∈ J}

=
∏

i∈J

µ̃i(Ei ∩Bi) =
∏

i∈I

µ∗
iAi,

as required.

254M I now turn to the basic results which make it possible to use these product measures effectively.
First, I offer a vocabulary for dealing with subproducts. Let 〈Xi〉i∈I be a family of sets, with product X.

(a) For J ⊆ I, write XJ for
∏

i∈J Xi. We have a canonical bijection x 7→ (x↾J, x↾I \J) : X → XI ×XI\J .
Associated with this we have the map x 7→ πJ(x) = x↾J : X → XJ . Now I will say that a set W ⊆ X is
determined by coordinates in J if there is a V ⊆ XJ such that W = π−1

J [V ]; that is, W corresponds to
V ×XI\J ⊆ XJ ×XI\J .

It is easy to see that

W is determined by coordinates in J

⇐⇒ x′ ∈W whenever x ∈W, x′ ∈ X and x′↾J = x↾J

⇐⇒ W = π−1
J [πJ [W ]].

It follows that if W is determined by coordinates in J , and J ⊆ K ⊆ I, W is also determined by coordinates
in K. The family WJ of subsets of X determined by coordinates in J is closed under complementation and
arbitrary unions and intersections. PPP If W ∈ WJ , then

X \W = X \ π−1
J [πJ [W ]] = π−1

J [XJ \ πJ [W ]] ∈ WJ .

If V ⊆ WJ , then
⋃V =

⋃
V ∈V π

−1
J [πJ [V ]] = π−1

J [
⋃

V ∈V πJ [V ]] ∈ WJ . QQQ

(b) It follows that

W =
⋃{WJ : J ⊆ I is countable},

the family of subsets of X determined by coordinates in some countable set, is a σ-algebra of subsets of X.
PPP (i) X and ∅ are determined by coordinates in ∅ (recall that X∅ is a singleton, and that X = π−1

∅ [X∅],

∅ = π−1
∅ [∅]). (ii) If W ∈ W, there is a countable J ⊆ I such that W ∈ WJ ; now

X \W = π−1
J [XJ \ πJ [W ]] ∈ WJ ⊆ W.

(iii) If 〈Wn〉n∈N is a sequence in W, then for each n ∈ N there is a countable Jn ⊆ I such that W ∈ WJn
.

Now J =
⋃

n∈N Jn is a countable subset of I, and every Wn belongs to WJ , so
⋃

n∈NWn ∈ WJ ⊆ W. QQQ

(c) If i ∈ I and E ⊆ Xi then {x : x ∈ X, x(i) ∈ E} is determined by the single coordinate i, so surely

belongs to W; accordingly W must include
⊗̂

i∈IPXi. A fortiori, if Σi is a σ-algebra of subsets of Xi for

each i, W ⊇ ⊗̂
i∈IΣi; that is, every member of

⊗̂
i∈IΣi is determined by coordinates in some countable set.
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254N Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces and 〈Kj〉j∈J a partition of I.
For each j ∈ J let λj be the product measure on Zj =

∏
i∈Kj

Xi, and write λ for the product measure on

X =
∏

i∈I Xi. Then the natural bijection

x 7→ φ(x) = 〈x↾Kj〉j∈J : X → ∏
j∈J Zj

identifies λ with the product of the family 〈λj〉j∈J .
In particular, if K ⊆ I is any set, then λ can be identified with the c.l.d. product of the product measures

on
∏

i∈K Xi and
∏

i∈I\K Xi.

proof (Compare 251N.) Write Z =
∏

j∈J Zj and λ̃ for the product measure on Z; let Λ, Λ̃ be the domains

of λ and λ̃.

(a) Let C ⊆ Z be a measurable cylinder. Then λ∗φ−1[C] ≤ λ̃C. PPP Express C as
∏

j∈J Cj where Cj ⊆ Zj

belongs to the domain Λj of λj for each j. Set L = {j : Cj 6= Zj}, so that L is finite. Let ǫ > 0. For each
j ∈ L let 〈Cjn〉n∈N be a sequence of measurable cylinders in Zj =

∏
i∈Kj

Xi such that Cj ⊆ ⋃
n∈N Cjn and∑∞

n=0 λjCjn ≤ λCj + ǫ. Express each Cjn as
∏

i∈Kj
Cjni where Cjni ∈ Σi for i ∈ Kj (and {i : Cjni 6= Xi}

is finite).
For f ∈ NL, set

Df = {x : x ∈ X, x(i) ∈ Cj,f(j),i whenever j ∈ L, i ∈ Kj}.
Because

⋃
j∈L{i : Cj,f(j),i 6= Xi} is finite, Df is a measurable cylinder in X, and

λDf =
∏

j∈L

∏
i∈Kj

µiCj,f(j),i =
∏

j∈L λjCj,f(j).

Also
⋃{Df : f ∈ NL} ⊇ φ−1[C]

because if φ(x) ∈ C then φ(x)(j) ∈ Cj for each j ∈ L, so there must be an f ∈ NL such that φ(x)(j) ∈ Cj,f(j)

for every j ∈ L. But (because NL is countable) this means that

λ∗φ−1[C] ≤
∑

f∈NL

λDf =
∑

f∈NL

∏

j∈L

λjCj,f(j)

=
∏

j∈L

∞∑

n=0

λjCjn ≤
∏

j∈L

(λjCj + ǫ).

As ǫ is arbitrary,

λ∗φ−1[C] ≤ ∏
j∈L λjCj = λ̃C. QQQ

By 254G, it follows that λφ−1[W ] is defined, and equal to λ̃W , whenever W ∈ Λ̃.

(b) Next, λ̃φ[D] = λD for every measurable cylinder D ⊆ X. PPP This is easy. Express D as
∏

i∈I Di

where Di ∈ Σi for every i ∈ I and {i : Di 6= Σi} is finite. Then φ[D] =
∏

j∈J D̃j , where D̃j =
∏

i∈Kj
Di is a

measurable cylinder for each j ∈ J . Because {j : D̃j 6= Zj} must also be finite (in fact, it cannot have more

members than the finite set {i : Di 6= Xi}),
∏

j∈J D̃j is itself a measurable cylinder in Z, and

λ̃φ[D] =
∏

j∈J λjD̃j =
∏

j∈J

∏
i∈Kj

µDi = λD. QQQ

Applying 254G to φ−1 : Z → X, it follows that λ̃φ[W ] is defined, and equal to λW , for every W ∈ Λ.
But together with (a) this means that for any W ⊆ X,

if W ∈ Λ then φ[W ] ∈ Λ̃ and λ̃φ[W ] = λW ,

if φ[W ] ∈ Λ̃ then W ∈ Λ and λW = λ̃φ[W ].

And of course this is just what is meant by saying that φ is an isomorphism between (X,Λ, λ) and (Z, Λ̃, λ̃).

254O Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces. For each J ⊆ I let λJ be the
product probability measure on XJ =

∏
i∈J Xi, and ΛJ its domain; write X = XI , λ = λI and Λ = ΛI . For

x ∈ X and J ⊆ I set πJ(x) = x↾J ∈ XJ .
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(a) For every J ⊆ I, λJ is the image measure λπ−1
J (234D); in particular, πJ : X → XJ is inverse-

measure-preserving for λ and λJ .
(b) If J ⊆ I and W ∈ Λ is determined by coordinates in J (254M), then λJπJ [W ] is defined and equal

to λW . Consequently there are W1, W2 belonging to the σ-algebra of subsets of X generated by

{{x : x(i) ∈ E} : i ∈ J , E ∈ Σi}
such that W1 ⊆W ⊆W2 and λ(W2 \W1) = 0.

(c) For every W ∈ Λ, we can find a countable set J and W1, W2 ∈ Λ, both determined by coordinates in
J , such that W1 ⊆W ⊆W2 and λ(W2 \W1) = 0.

(d) For every W ∈ Λ, there is a countable set J ⊆ I such that πJ [W ] ∈ ΛJ and λJπJ [W ] = λW ; so that
W ′ = π−1

J [πJ [W ]] belongs to Λ, and λ(W ′ \W ) = 0.

proof (a)(i) By 254N, we can identify λ with the product of λJ and λI\J on XJ ×XI\J . Now π−1
J [E] ⊆ X

corresponds to E ×XI\J ⊆ XJ ×XI\J , so

λ(π−1[E]) = λJE · λI\JXI\J = λJE,

by 251E or 251Ia, whenever E ∈ ΛJ . This shows that πJ is inverse-measure-preserving.

(ii) To see that λJ is actually the image measure, suppose that E ⊆ XJ is such that π−1
J [E] ∈ Λ.

Identifying π−1
J [E] with E ×XI\J , as before, we are supposing that E ×XI\J is measured by the product

measure on XJ ×XI\J . But this means that for λI\J -almost every z ∈ XI\J , Ez = {y : (y, z) ∈ E ×XI\J}
belongs to ΛJ (252D(ii), because λJ is complete). Since Ez = E for every z, E itself belongs to ΛJ , as
claimed.

(b) If W ∈ Λ is determined by coordinates in J , set H = πJ [W ]; then π−1
J [H] = W , so H ∈ ΛJ by (a)

just above. By 254Ff, there are H1, H2 ∈ ⊗̂
i∈JΣi such that H1 ⊆ H ⊆ H2 and λJ(H2 \H1) = 0.

Let TJ be the σ-algebra of subsets of X generated by sets of the form {x : x(i) ∈ E} where i ∈ J and
E ∈ ΣJ . Consider T

′
J = {G : G ⊆ XJ , π

−1
J [G] ∈ TJ}. This is a σ-algebra of subsets of XJ , and it contains

{y : y ∈ XJ , y(i) ∈ E} whenever i ∈ J , E ∈ ΣJ (because

π−1
J [{y : y ∈ XJ , y(i) ∈ E}] = {x : x ∈ X, x(i) ∈ E}

whenever i ∈ J , E ⊆ Xi). So T′
J must include

⊗̂
i∈JΣi. In particular, H1 and H2 both belong to T′

J , that

is, Wk = π−1
J [Hk] belongs to TJ for both k. Of course W1 ⊆W ⊆W2, because H1 ⊆ H ⊆ H2, and

λ(W2 \W1) = λJ(H2 \H1) = 0,

as required.

(c) Now take any W ∈ Λ. By 254Ff, there are W1 and W2 ∈ ⊗̂
i∈IΣi such that W1 ⊆ W ⊆ W2 and

λ(W2 \W1) = 0. By 254Mc, there are countable sets J1, J2 ⊆ I such that, for each k, Wk is determined by
coordinates in Jk. Setting J = J1 ∪ J2, J is a countable subset of I and both W1 and W2 are determined
by coordinates in J .

(d) Continuing the argument from (c), πJ [W1], πJ [W2] ∈ ΛJ , by (b), and λJ(πJ [W2] \ πJ [W1]) = 0.
Since πJ [W1] ⊆ πJ [W ] ⊆ πJ [W2], it follows that πJ [W ] ∈ ΛJ , with λJπJ [W ] = λJπJ [W2]; so that, setting
W ′ = π−1

J [πJ [W ]], W ′ ∈ Λ, and

λW ′ = λJπJ [W ] = λJπJ [W2] = λπ−1
J [πJ [W2]] = λW2 = λW .

254P Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, and for each J ⊆ I let λJ be
the product probability measure on XJ =

∏
i∈J Xi, and ΛJ its domain; write X = XI , Λ = ΛI and λ = λI .

For x ∈ X and J ⊆ I set πJ(x) = x↾J ∈ XJ .
(a) If J ⊆ I and g is a real-valued function defined on a subset of XJ , then g is ΛJ -measurable iff gπJ is

Λ-measurable.
(b) Whenever f is a Λ-measurable real-valued function defined on a λ-conegligible subset of X, we can

find a countable set J ⊆ I and a ΛJ -measurable function g defined on a λJ -conegligible subset of XJ such
that f extends gπJ .
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proof (a)(i) If g is ΛJ -measurable and a ∈ R, there is an H ∈ ΛJ such that {y : y ∈ dom g, g(y) ≥ a} =
H ∩ dom g. Now π−1

J [H] ∈ Λ, by 254Oa, and {x : x ∈ dom gπJ , gπJ(x) ≥ a} = π−1
J [H] ∩ dom gπJ . So gπJ

is Λ-measurable.

(ii) If gπJ is Λ-measurable and a ∈ R, then there is aW ∈ Λ such that {x : gπJ(x) ≥ a} =W∩dom gπJ .
As in the proof of 254Oa, we may identify λ with the product of λJ and λI\J , and 252D(ii) tells us that,
if we identify W with the corresponding subset of XJ × XI\J , there is at least one z ∈ XI\J such that
Wz = {y : y ∈ XJ , (y, z) ∈ W} belongs to ΛJ . But since (on this convention) gπJ(y, z) = g(y) for every
y ∈ XJ , we see that {y : y ∈ dom g, g(y) ≥ a} =Wz ∩ dom g. As a is arbitrary, g is ΛJ -measurable.

(b) For rational numbers q, set Wq = {x : x ∈ dom f , f(x) ≥ q}. By 254Oc we can find for each q a
countable set Jq ⊆ I and sets W ′

q, W
′′
q , both determined by coordinates in Jq, such that W ′

q ⊆ Wq ⊆ W ′′
q

and λ(W ′′
q \W ′

q) = 0. Set J =
⋃

q∈Q Jq, V = X \⋃q∈Q(W
′′
q \W ′

q); then J is a countable subset of I and V

is a conegligible subset of X; moreover, V is determined by coordinates in J because all the W ′
q, W

′′
q are.

For every q ∈ Q, Wq ∩V =W ′
q ∩V , because V ∩ (Wq \W ′

q) ⊆ V ∩ (W ′′
q \W ′

q) = ∅; so Wq ∩V is determined
by coordinates in J . Consequently V ∩ dom f =

⋃
q∈Q V ∩Wq also is determined by coordinates in J . Also

{x : x ∈ V ∩ dom f , f(x) ≥ a} =
⋂

q≤a V ∩Wq

is determined by coordinates in J . What this means is that if x, x′ ∈ V and πJx = πJx
′, then x ∈ dom f

iff x′ ∈ dom f and in this case f(x) = f(x′). Setting H = πJ [V ∩ dom f ], we have π−1
J [H] = V ∩ dom f a

conegligible subset of X, so (because λJ = λπ−1
J ) H is conegligible in XJ . Also, for y ∈ H, f(x) = f(x′)

whenever πJx = πJx
′ = y, so there is a function g : H → R defined by saying that gπJ(x) = f(x) whenever

x ∈ V ∩ dom f . Thus g is defined almost everywhere in XJ and f extends gπJ . Finally, for any a ∈ R,

π−1
J [{y : g(y) ≥ a}] = {x : x ∈ V ∩ dom f , f(x) ≥ a} ∈ Λ;

by 254Oa, {y : g(y) ≥ a} ∈ ΛJ ; as a is arbitrary, g is measurable.

254Q Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, and for each J ⊆ I let λJ
be the product probability measure on XJ =

∏
i∈J Xi; write X = XI , λ = λI . For x ∈ X, J ⊆ I set

πJ(x) = x↾J ∈ XJ .
(a) Let S be the linear subspace of RX spanned by {χC : C ⊆ X is a measurable cylinder}. Then for

every λ-integrable real-valued function f and every ǫ > 0 there is a g ∈ S such that
∫
|f − g|dλ ≤ ǫ.

(b) Whenever J ⊆ I and g is a real-valued function defined on a subset of XJ , then
∫
g dλJ =

∫
gπJdλ

if either integral is defined in [−∞,∞].
(c) Whenever f is a λ-integrable real-valued function, we can find a countable set J ⊆ X and a λJ -

integrable function g such that f extends gπJ .

proof (a)(i) Write S for the set of functions f satisfying the assertion, that is, such that for every ǫ > 0 there

is a g ∈ S such that
∫
|f − g| ≤ ǫ. Then f1 + f2 and cf1 ∈ S whenever f1, f2 ∈ S. PPP Given ǫ > 0 there are

g1, g2 ∈ S such that
∫
|f1− g1| ≤ ǫ

2+|c| ,
∫
|f2− g2| ≤ ǫ

2 ; now g1+ g2, cg1 ∈ S and
∫
|(f1+f2)− (g1+ g2)| ≤ ǫ,∫

|cf1 − cg1| ≤ ǫ. QQQ Also, of course, f ∈ S whenever f0 ∈ S and f =a.e. f0.

(ii) Write W for {W : W ⊆ X, χW ∈ S}, and C for the family of measurable cylinders in X. Then it
is plain from the definition in 254A that C ∩C ′ ∈ C for all C, C ′ ∈ C, and of course C ∈ W for every C ∈ C,
because χC ∈ S. Next, W \ V ∈ W whenever W , V ∈ W and V ⊆W , because then χ(W \ V ) = χW −χV .
Thirdly,

⋃
n∈NWn ∈ W for every non-decreasing sequence 〈Wn〉n∈N in W. PPP Set W =

⋃
n∈NWn. Given

ǫ > 0, there is an n ∈ N such that λ(W \Wn) ≤ ǫ
2 . Now there is a g ∈ S such that

∫
|χWn − g| ≤ ǫ

2 , so that∫
|χW − g| ≤ ǫ. QQQ Thus W is a Dynkin class of subsets of X.
By the Monotone Class Theorem (136B), W must include the σ-algebra of subsets of X generated by

C, which is
⊗̂

i∈IΣi. But this means that W contains every measurable subset of X, since by 254Ff any

measurable set differs by a negligible set from some member of
⊗̂

i∈IΣi.

(iii) Thus S contains the indicator function of any measurable subset of X. Because it is closed under
addition and scalar multiplication, it contains all simple functions. But this means that it must contain all
integrable functions. PPP If f is a real-valued function which is integrable over X, and ǫ > 0, there is a simple
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function h : X → R such that
∫
|f − h| ≤ ǫ

2 (242M), and now there is a g ∈ S such that
∫
|h − g| ≤ ǫ

2 , so

that
∫
|f − g| ≤ ǫ. QQQ

This proves part (a) of the proposition.

(b) Put 254Oa and 235J together.

(c) By 254Pb, there are a countable J ⊆ I and a real-valued function g defined on a conegligible subset
of XJ such that f extends gπJ . Now dom(gπJ) = π−1

J [dom g] is conegligible, so f =a.e. gπJ and gπJ is
λ-integrable. By (b), g is λJ -integrable.

254R Conditional expectations again Putting the ideas of 253H together with the work above, we
obtain some results which are important not only for their direct applications but for the light they throw
on the structures here.

Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces with product (X,Λ, λ). For J ⊆ I let ΛJ ⊆ Λ
be the σ-subalgebra of sets determined by coordinates in J (254Ma). Then we may regard L0(λ↾ΛJ) as
a subspace of L0(λ) (242Jh). Let PJ : L1(λ) → L1(λ↾ΛJ) ⊆ L1(λ) be the corresponding conditional
expectation operator (242Jd). Then

(a) for any J , K ⊆ I, PK∩J = PKPJ ;
(b) for any u ∈ L1(λ), there is a countable set J∗ ⊆ I such that PJu = u iff J ⊇ J∗;
(c) for any u ∈ L0(λ), there is a unique smallest set J∗ ⊆ I such that u ∈ L0(λ↾ΛJ∗), and this J∗ is

countable;
(d) for anyW ∈ Λ there is a unique smallest set J∗ ⊆ I such thatW△W ′ is negligible for someW ′ ∈ ΛJ∗ ,

and this J∗ is countable;
(e) for any Λ-measurable real-valued function f : X → R there is a unique smallest set J∗ ⊆ I such that

f is equal almost everywhere to a Λ∗
J -measurable function, and this J∗ is countable.

proof For J ⊆ I, write XJ =
∏

i∈J Xi, let λJ be the product measure on XJ , and set πJ(x) = x↾J for

x ∈ X. Write L0
J for L0(λ↾ΛJ), regarded as a subset of L0 = L0

I , and L
1
J for L1(λ↾ΛJ) = L1(λ) ∩ L0

J , as in
242Jb; thus L1

J is the set of values of the projection PJ .

(a)(i) Let C ⊆ X be a measurable cylinder, expressed as
∏

i∈I Ci where Ci ∈ Σi for every i and
L = {i : Ci 6= Xi} is finite. Set

C ′
i = Ci for i ∈ J , Xi for i ∈ I \ J , C ′ =

∏
i∈I C

′
i, α =

∏
i∈I\J µiCi.

Then αχC ′ is a conditional expectation of χC on ΛJ . PPP By 254N, we can identify λ with the product of λJ
and λI\J . This identifies ΛJ with {E ×XI\J : E ∈ domλJ}. By 253H we have a conditional expectation g
of χC defined by setting

g(y, z) =
∫
χC(y, t)λI\J (dt)

for y ∈ XJ , z ∈ XI\J . But C is identified with CJ × CI\J , where CJ =
∏

i∈J Ci, so that g(y, z) = 0 if
y /∈ CJ and otherwise is λI\JCI\J = α. Thus g = αχ(CJ ×XI\J). But the identification between XI ×XI\J
and X matches CJ ×XI\J with C ′, as described above. So g becomes identified with αχC ′ and αχC ′ is a
conditional expectation of χC. QQQ

(ii) Next, setting

C ′′
i = C ′

i for i ∈ K, Xi for i ∈ I \K, C ′′ =
∏

i∈I C
′′
i ,

β =
∏

i∈I\K µiC
′
i =

∏
i∈I\(J∪K) µiCi,

the same arguments show that βχC ′′ is a conditional expectation of χC ′ on ΛK . So we have

PKPJ(χC)
• = βα(χC ′′)•.

But if we look at βα, this is just
∏

i∈I\(K∩J) µiCi, while C
′′
i = Ci if i ∈ K ∩ J , Xi for other i. So βαχC

′′ is
a conditional expectation of χC on ΛK∩J , and

PKPJ(χC)
• = PK∩J(χC)

•.
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(iii) Thus we see that the operators PKPJ , PK∩J agree on elements of the form χC• where C is a
measurable cylinder. Because they are both linear, they agree on linear combinations of these, that is,
PKPJv = PK∩Jv whenever v = g• for some g in the space S of 254Q. But if u ∈ L1(λ) and ǫ > 0, there is
a λ-integrable function f such that f• = u and there is a g ∈ S such that

∫
|f − g| ≤ ǫ (254Qa), so that

‖u− v‖1 ≤ ǫ, where v = g•. Since PJ , PK and PK∩J are all linear operators of norm 1,

‖PKPJu− PK∩Ju‖1 ≤ 2‖u− v‖1 + ‖PKPJv − PK∩Jv‖1 ≤ 2ǫ.

As ǫ is arbitrary, PKPJu = PK∩Ju; as u is arbitrary, PKPJ = PK∩J .

(b) Take u ∈ L1(λ). Let J be the family of all subsets J of I such that PJu = u. By (a), J ∩K ∈ J for
all J , K ∈ J . Next, J contains a countable set J0. PPP Let f be a λ-integrable function such that f• = u.
By 254Qc, we can find a countable set J0 ⊆ I and a λJ0

-integrable function g such that f =a.e. gπJ0
. Now

gπJ0
is ΛJ0

-measurable and u = (gπJ0
)• belongs to L1

J0
, so J0 ∈ J . QQQ

Write J∗ =
⋂J , so that J∗ ⊆ J0 is countable. Then J∗ ∈ J . PPP Let ǫ > 0. As in the proof of (a) above,

there is a g ∈ S such that ‖u−v‖1 ≤ ǫ, where v = g•. But because g is a finite linear combination of indicator
functions of measurable cylinders, each determined by coordinates in some finite set, there is a finite K ⊆ I
such that g is ΛK-measurable, so that PKv = v. Because K is finite, there must be J1, . . . , Jn ∈ J such
that J∗ ∩ K =

⋂
1≤i≤n Ji ∩ K; but as J is closed under finite intersections, J = J1 ∩ . . . ∩ Jn ∈ J , and

J∗ ∩K = J ∩K.
Now we have

PJ∗v = PJ∗PKv = PJ∗∩Kv = PJ∩Kv = PJPKv = PJv,

using (a) twice. Because both PJ and PJ∗ have norm 1,

‖PJ∗u− u‖1 ≤ ‖PJ∗u− PJ∗v‖1 + ‖PJ∗v − PJv‖1 + ‖PJv − PJu‖1 + ‖PJu− u‖1
≤ ‖u− v‖1 + 0 + ‖u− v‖1 + 0 ≤ 2ǫ.

As ǫ is arbitrary, PJ∗u = u and J∗ ∈ J . QQQ
Now, for any J ⊆ I,

PJu = u =⇒ J ∈ J =⇒ J ⊇ J∗

=⇒ PJu = PJPJ∗u = PJ∩J∗u = PJ∗u = u.

Thus J∗ has the required properties.

(c) Set e = (χX)•, un = (−ne)∨(u∧ne) for each n ∈ N. Then, for any J ⊆ I, u ∈ L0
J iff un ∈ L0

J for every
n. PPP (α) If u ∈ L0

J , then u is expressible as f• for some ΛJ -measurable f ; now fn = (−nχX) ∨ (f ∧ nχX)
is ΛJ -measurable, so un = f•

n ∈ L0
J for every n. (β) If un ∈ L0

J for each n, then for each n we can find a
ΛJ -measurable function fn such that f•

n = un. But there is also a Λ-measurable function f such that u = f•,
and we must have fn =a.e. (−nχX)∨(f∧nχX) for each n, so that f =a.e. limn→∞ fn and u = (limn→∞ fn)

•.
Since limn→∞ fn is ΛJ -measurable and defined on a µ↾ΛJ -conegligible set, u ∈ L0

J . QQQ
As every un belongs to L1, we know that

un ∈ L0
J ⇐⇒ un ∈ L1

J ⇐⇒ PJun = un.

By (b), there is for each n a countable J∗
n such that PJun = un iff J ⊇ J∗

n. So we see that u ∈ L0
J iff J ⊇ J∗

n

for every n, that is, J ⊇ ⋃
n∈N J

∗
n. Thus J

∗ =
⋃

n∈N J
∗
n has the property claimed.

(d) Applying (c) to u = (χW )•, we have a (countable) unique smallest J∗ such that u ∈ L0
J∗ . But if

J ⊆ I, then there is a W ′ ∈ ΛJ such that W ′△W is negligible iff u ∈ L0
J . So this is the J∗ we are looking

for.

(e) Again apply (c), this time to f•.

254S Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, with product (X,Λ, λ).
(a) If A ⊆ X is determined by coordinates in I \ {j} for every j ∈ I, then its outer measure λ∗A must be

either 0 or 1.
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(b) If W ∈ Λ and λW > 0, then for every ǫ > 0 there are a W ′ ∈ Λ and a finite set J ⊆ I such that
λW ′ ≥ 1− ǫ and for every x ∈W ′ there is a y ∈W such that x↾I \ J = y↾I \ J .
proof For J ⊆ I write XJ for

∏
i∈J Xi and λJ for the product measure on XJ .

(a) Let W be a measurable envelope of A. By 254Rd, there is a smallest J ⊆ I for which there is a
W ′ ∈ Λ, determined by coordinates in J , with λ(W△W ′) = 0. Now J = ∅. PPP Take any j ∈ I. Then A is
determined by coordinates in I \ {j}, that is, can be regarded as Xj × A′ for some A′ ⊆ XI\{j}. We can
also think of λ as the product of λ{j} and λI\{j} (254N). Let ΛI\{j} be the domain of λI\{j}. By 251S,

λ∗A = λ∗{j}Xj · λ∗I\{j}A′ = λ∗I\{j}A
′.

Let V ∈ ΛI\{j} be measurable envelope of A′. Then W ′ = Xj × V belongs to Λ, includes A and has
measure λ∗A, so λ(W ∩W ′) = λW = λW ′ and W△W ′ is negligible. At the same time, W ′ is determined
by coordinates in I \ {j}. This means that J must be included in I \ {j}. As j is arbitrary, J = ∅. QQQ

But the only subsets of X which are determined by coordinates in ∅ are X and ∅. Since W differs from
one of these by a negligible set, λ∗A = λW ∈ {0, 1}, as claimed.

(b) Set η = 1
2 min(ǫ, 1)λW . By 254Fe, there is a measurable set V , determined by coordinates in a finite

subset J of I, such that λ(W△V ) ≤ η. Note that

λV ≥ λW − η ≥ 1

2
λW > 0,

so

λ(W△V ) ≤ 1

2
ǫλW ≤ ǫλV .

We may identify λ with the c.l.d. product of λJ and λI\J (254N). Let W̃ , Ṽ ⊆ XI × XI\J be the sets

corresponding to W , V ⊆ X. Then Ṽ can be expressed as U ×XI\J where λJU = λV > 0. Set U ′ = {z :

z ∈ XI\J , λJW̃
−1[{z}] = 0}. Then U ′ is measured by λI\J (252D(ii) again, because both λJ and λI\J are

complete), and

λJU · λI\JU ′ ≤
∫
λJ(W̃

−1[{z}]△U)λI\J (dz)

(because if z ∈ U ′ then λJ(W̃−1[{z}]△U) = λJU)

=

∫
λJ(W̃△Ṽ )−1[{z}]λI\J (dz)

= (λJ × λI\J)(W̃△Ṽ )

(252D once more)

= λ(W△V ) ≤ ǫλV = ǫλJU.

This means that λI\JU
′ ≤ ǫ. Set W ′ = {x : x ∈ X, x↾I \ J /∈ U ′}; then λW ′ ≥ 1 − ǫ. If x ∈ W ′, then

z = x↾I \ J /∈ U ′, so W̃−1[{z}] is not empty, that is, there is a y ∈W such that y↾I \ J = z. So this W ′ has
the required properties.

254T Remarks It is important to understand that the results above apply to L0 and L1 and measurable-
sets-up-to-a-negligible-set, not to sets and functions themselves. One idea does apply to sets and functions,
whether measurable or not.

(a) Let 〈Xi〉i∈I be a family of sets with Cartesian product X. For each J ⊆ I let WJ be the set of
subsets of X determined by coordinates in J . Then WJ ∩ WK = WJ∩K for all J , K ⊆ I. PPP Of course
WJ ∩ WK ⊇ WJ∩K , because WJ ⊇ WJ ′ whenever J ′ ⊆ J . On the other hand, suppose W ∈ WJ ∩ WK ,
x ∈W , y ∈ X and x↾J∩K = y↾J∩K. Set z(i) = x(i) for i ∈ J , y(i) for i ∈ I\J . Then z↾J = x↾J so z ∈W .
Also y↾K = z↾K so y ∈ W . As x, y are arbitrary, W ∈ WJ∩K ; as W is arbitrary, WJ ∩WK ⊆ WJ∩K . QQQ
Accordingly, for any W ⊆ X, F = {J : W ∈ WJ} is a filter on I (unless W = X or W = ∅, in which case
F = PX). But F does not necessarily have a least element, as the following example shows.
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(b) Set X = {0, 1}N,
W = {x : x ∈ X, limi→∞ x(i) = 0}.

Then for every n ∈ N W is determined by coordinates in Jn = {i : i ≥ n}. But W is not determined by
coordinates in

⋂
n∈N Jn = ∅. Note that

W =
⋃

n∈N

⋂
i≥n{x : x(i) = 0}

is measured by the usual measure on X. But it is also negligible (since it is countable); in 254Rd we have
J∗ = ∅, W ′ = ∅.

*254U I am now in a position to describe a counter-example answering a natural question arising out
of §251.
Example There are a localizable measure space (X,Σ, µ) and a probability space (Y,T, ν) such that the
c.l.d. product measure λ on X × Y is not localizable.

proof (a) Take (X,Σ, µ) to be the space of 216E, so that X = {0, 1}I , where I = PC for some set C with
cardinal greater than c. For each γ ∈ C write Eγ for {x : x ∈ X, x({γ}) = 1} (that is, G{γ} in the notation
of 216Ec); then Eγ ∈ Σ and µEγ = 1; also every measurable set of non-zero measure meets some Eγ in a
set of non-zero measure, while Eγ ∩ Eδ is negligible for all distinct γ, δ (see 216Ee).

Let (Y,T, ν) be {0, 1}C with the usual measure (254J). For γ ∈ C, let Fγ be {y : y ∈ Y , y(γ) = 1}, so
that νFγ = 1

2 . Let λ be the c.l.d. product measure on X × Y , and Λ its domain.

(b) Consider the family W = {Eγ × Fγ : γ ∈ C} ⊆ Λ. ??? Suppose, if possible, that V were an essential
supremum of W in Λ in the sense of 211G. For γ ∈ C write Hγ = {x : V [{x}]△Fγ is negligible}. Because
Fγ△Fδ is non-negligible, Hγ ∩Hδ = ∅ for all γ 6= δ.

Now Eγ \ Hγ is µ-negligible for every γ ∈ C. PPP λ((Eγ × Fγ) \ V ) = 0, so Fγ \ V [{x}] is negligible for
almost every x ∈ Eγ , by 252D. On the other hand, if we set F ′

γ = Y \ Fγ , Wγ = (X × Y ) \ (Eγ × F ′
γ), then

we see that

(Eγ × F ′
γ) ∩ (Eγ × Fγ) = ∅, Eγ × Fγ ⊆Wγ ,

λ((Eδ × Fδ) \Wγ) = λ((Eγ × F ′
γ) ∩ (Eδ × Fδ)) ≤ µ(Eγ ∩ Eδ) = 0

for every δ 6= γ, so Wγ is an essential upper bound for W and V ∩ (Eγ ×F ′
γ) = V \Wγ must be λ-negligible.

Accordingly V [{x}] \ Fγ = V [{x}] ∩ F ′
γ is ν-negligible for µ-almost every x ∈ Eγ . But this means that

V [{x}]△Fγ is ν-negligible for µ-almost every x ∈ Eγ , that is, ν(Eγ \Hγ) = 0. QQQ
Now consider the family 〈Eγ ∩Hγ〉γ∈C . This is a disjoint family of sets of finite measure in X. If E ∈ Σ

has non-zero measure, there is a γ ∈ C such that µ(Eγ ∩Hγ ∩ E) = ν(Eγ ∩ E) > 0. But this means that
E = {Eγ ∩Hγ : γ ∈ C} satisfies the conditions of 213Oa, and µ must be strictly localizable; which it isn’t.
XXX

(c) Thus we have found a family W ⊆ Λ with no essential supremum in Λ, and λ is not localizable.

Remark If (X,Σ, µ) and (Y,T, ν) are any localizable measure spaces with a non-localizable c.l.d. product
measure, then their c.l.d. versions are still localizable (213Hb) and still have a non-localizable product
(251T), which cannot be strictly localizable; so that at least one of the factors is not strictly localizable
(251O). Thus any example of the type here must involve a complete locally determined localizable space
which is not strictly localizable, as in 216E.

*254V Corresponding to 251U and 251Wo, we have the following result on countable powers of atomless
probability spaces.

Proposition Let (X,Σ, µ) be an atomless probability space and I a countable set. Let λ be the product
probability measure on XI . Then {x : x ∈ XI , x is injective} is λ-conegligible.

proof For any pair {i, j} of distinct elements of X, the set {z : z ∈ X{i,j}, z(i) = z(j)} is negligible for
the product measure on X{i,j}, by 251U. By 254Oa, {x : x ∈ X, x(i) = x(j)} is λ-negligible. Because I
is countable, there are only countably many such pairs {i, j}, so {x : x ∈ X, x(i) = x(j) for some distinct
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i, j ∈ I} is negligible, and its complement is conegligible; but this complement is just the set of injective
functions from I to X.

254X Basic exercises (a) Let 〈(Xi,Σi, µi)〉i∈I be any family of probability spaces, with product
(X,Λ, µ). Write E for the family of subsets of X expressible as the union of a finite disjoint family of
measurable cylinders. (i) Show that if C ⊆ X is a measurable cylinder then X \ C ∈ E . (ii) Show that
W ∩ V ∈ E for all W , V ∈ E . (iii) Show that X \ W ∈ E for every W ∈ E . (iv) Show that E is an
algebra of subsets of X. (v) Show that for any W ∈ Λ, ǫ > 0 there is a V ∈ E such that λ(W△V ) ≤ ǫ2.
(vi) Show that for any W ∈ Λ and ǫ > 0 there are disjoint measurable cylinders C0, . . . , Cn such that
λ(W ∩ Cj) ≥ (1 − ǫ)λCj for every j and λ(W \ ⋃

j≤n Cj) ≤ ǫ. (Hint : select the Cj from the measurable

cylinders composing a set V as in (v).) (vii) Show that if f , g are λ-integrable functions and
∫
C
f ≤

∫
C
g

for every measurable cylinder C ⊆ X, then f ≤a.e. g. (Hint : show that
∫
W
f ≤

∫
W
f for every W ∈ Λ.)

>>>(b) Let 〈(Xi,Σi, µi) be a family of probability spaces, with product (X,Λ, λ). Show that the outer
measure λ∗ defined by λ is exactly the outer measure θ described in 254A, that is, that θ is a regular outer
measure.

(c) Let 〈(Xi,Σi, µi) be a family of probability spaces, with product (X,Λ, λ). Write λ0 for the restriction

of λ to
⊗̂

i∈IΣi, and C for the family of measurable cylinders in X. Suppose that (Y,T, ν) is a probability
space and φ : Y → X a function. (i) Show that φ is inverse-measure-preserving when regarded as a function

from (Y,T, ν) to (X,
⊗̂

i∈IΣi, λ0) iff φ−1[C] belongs to T and νφ−1[C] = λ0C for every C ∈ C. (ii) Show
that λ0 is the only measure on X with this property. (Hint : 136C.)

>>>(d) Let I be a set and (Y,T, ν) a complete probability space. Show that a function φ : Y → {0, 1}I is
inverse-measure-preserving for ν and the usual measure on {0, 1}I iff ν{y : φ(y)(i) = 1 for every i ∈ J} =
2−#(J) for every finite J ⊆ I.

>>>(e) Let I be any set and λ the usual measure on X = {0, 1}I . Define addition on X as in 254Jd. Show
that the map (x, y) 7→ x + y : X × X → X is inverse-measure-preserving, if X × X is given its product
measure.

>>>(f) Let I be any set and λ the usual measure on PI. (i) Show that the map a 7→ a△b : PI → PI is
inverse-measure-preserving for any b ⊆ I; in particular, a 7→ I \ a is inverse-measure-preserving. (ii) Show
that the map (a, b) 7→ a△b : PI × PI → PI is inverse-measure-preserving.

>>>(g) Show that for any q ∈ [0, 1] and any set I there is a measure λ on PI such that λ{a : J ⊆ a} = q#(J)

for every finite J ⊆ I.

>>>(h) Let (Y,T, ν) be a complete probability space, and write µ for Lebesgue measure on [0, 1]. Suppose
that φ : Y → [0, 1] is a function such that νφ−1[I] exists and is equal to µI for every interval I of the form
[2−nk, 2−n(k + 1)], where n ∈ N and 0 ≤ k < 2n. Show that φ is inverse-measure-preserving for ν and µ.

(i) Show that if φ̃ : {0, 1}N → [0, 1] is any bijection constructed by the method of 254K, then {φ̃−1[E] :
E ⊆ [0, 1] is a Borel set} is just the σ-algebra of subsets of {0, 1}N generated by the sets {x : x(i) = 1} for
i ∈ N.

(j) Let 〈Xi〉i∈I be a family of sets, and for each i ∈ I let Σi be a σ-algebra of subsets of Xi. Show

that for every E ∈ ⊗̂
i∈IΣi there is a countable set J ⊆ I such that E is expressible as π−1

J [F ] for some

F ∈ ⊗̂
i∈JXj , writing πJ (x) = x↾J ∈ ∏

i∈J Xi for x ∈ ∏
i∈I Xi.

(k)(i) Let ν be the usual measure on X = {0, 1}N. Show that for any k ≥ 1, (X, ν) is isomorphic to
(Xk, νk), where νk is the measure on Xk which is the product measure obtained by giving each factor X the
measure ν. (ii) Writing µ[0,1] for Lebesgue measure on [0, 1], etc., show that for any k ≥ 1, ([0, 1]k, µ[0,1]k)
is isomorphic to ([0, 1], µ[0,1]).
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(l)(i) Writing µ[0,1] for Lebesgue measure on [0, 1], etc., show that ([0, 1], µ[0,1]) is isomorphic to ([0, 1[ , µ[0,1[).

(ii) Show that for any k ≥ 1, ([0, 1[
k
, µ[0,1[k) is isomorphic to ([0, 1[ , µ[0,1[). (iii) Show that for any k ≥ 1,

(R, µR) is isomorphic to (Rk, µRk).

(m) Let µ be Lebesgue measure on [0, 1] and λ the product measure on [0, 1]N. Show that ([0, 1], µ) and
([0, 1]N, λ) are isomorphic.

(n) Let 〈(Xi,Σi, µi)〉i∈I be a family of complete probability spaces and λ the product measure on
∏

i∈I Xi,
with domain Λ. Suppose that Ai ⊆ Xi for each i ∈ I. Show that

∏
i∈I Ai ∈ Λ iff either (i)

∏
i∈I µ

∗
iAi = 0

or (ii) Ai ∈ Σi for every i and {i : Ai 6= Xi} is countable. (Hint : assemble ideas from 252Xc, 254F, 254L
and 254N.)

(o) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces with product (X,Λ, λ). (i) Show that, for any
A ⊆ X,

λ∗A = min{λ∗JπJ [A] : J ⊆ I is countable},
where for J ⊆ I I write λJ for the product probability measure on XJ =

∏
i∈J Xi and πJ : X → XJ for the

canonical map. (ii) Show that if J , K ⊆ I are disjoint and A, B ⊆ X are determined by coordinates in J ,
K respectively, then λ∗(A ∩B) = λ∗A · λ∗B.

(p) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces with product (X,Λ, λ). Let S be the linear
span of the set of indicator functions of measurable cylinders in X, as in 254Q. Show that {f• : f ∈ S} is
dense in Lp(µ) for every p ∈ [1,∞[.

(q) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, and (X,Λ, λ) their product; for J ⊆ I let ΛJ

be the σ-algebra of members of Λ determined by coordinates in J and PJ : L1 = L1(λ) → L1
J = L1(λ↾ΛJ)

the corresponding conditional expectation. (i) Show that if u ∈ L1
J and v ∈ L1

I\J then u × v ∈ L1

and
∫
u × v =

∫
u ·

∫
v. (Hint : 253D.) (ii) Show that if J ⊆ PI is non-empty, with J∗ =

⋂J , then
L1
J∗ =

⋂
J∈J L

1
J .

(r)(i) Let I be any set and λ the usual measure on PI. Let A ⊆ PI be such that a△b ∈ A whenever a ∈ A
and b ⊆ I is finite. Show that λ∗A must be either 0 or 1. (ii) Let λ be the usual measure on {0, 1}N, and Λ
its domain. Let f : {0, 1}N → R be a function such that, for x, y ∈ {0, 1}N, f(x) = f(y) ⇐⇒ {n : n ∈ N,
x(n) 6= y(n)} is finite. Show that f is not Λ-measurable. (Hint : for any q ∈ Q, λ∗{x : f(x) ≤ q} is either 0
or 1.)

(s) Let 〈Xi〉i∈I be any family of sets and A ⊆ B ⊆ ∏
i∈I Xi. Suppose that A is determined by coordinates

in J ⊆ I and that B is determined by coordinates in K. Show that there is a set C such that A ⊆ C ⊆ B
and C is determined by coordinates in J ∩K.

254Y Further exercises (a) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, and for J ⊆ I let
λJ be the product measure on XJ =

∏
i∈J Xi; write X = XI , λ = λI and πJ(x) = x↾J for x ∈ X and

J ⊆ I.
(i) Show that for K ⊆ J ⊆ I we have a natural linear, order-preserving and norm-preserving map

TJK : L1(λK) → L1(λJ) defined by writing TJK(f•) = (fπKJ )
• for every λK-integrable function f , where

πKJ(y) = y↾K for y ∈ XJ .
(ii) Write K for the set of finite subsets of I. Show that if W is any Banach space and 〈TK〉K∈K is a

family such that (α) TK is a bounded linear operator from L1(λK) to W for every K ∈ K (β) TK = TJTJK
whenever K ⊆ J ∈ K (γ) supK∈K ‖TK‖ <∞, then there is a unique bounded linear operator T : L1(λ) →W
such that TK = TTIK for every K ∈ K.

(iii) Write J for the set of countable subsets of I. Show that L1(λ) =
⋃

J∈J TIJ [L
1(λJ )].

(b) Let 〈(Xi,Σi, µi)〉i∈I be any family of measure spaces. Set X =
∏

i∈I Xi and let F be a filter on the
set [I]<ω of finite subsets of I such that {J : i ∈ J ∈ [I]<ω} ∈ F for every i ∈ I. Show that there is a
complete locally determined measure λ on X such that λ(

∏
i∈I Ei) is defined and equal to limJ→F

∏
i∈J µiEi

whenever Ei ∈ Σi for every i ∈ I and limJ→F
∏

i∈J µiEi is defined in [0,∞[. (Hint : Baker 04.)
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(c) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, and λ a complete measure on X =
∏

i∈I Xi.
Suppose that for every complete probability space (Y,T, ν) and function φ : Y → X, φ is inverse-measure-
preserving for ν and λ iff νφ−1[C] is defined and equal to θ0C for every measurable cylinder C ⊆ X, writing
θ0 for the functional of 254A. Show that λ is the product measure on X.

(d) Let I be a set, and λ the usual measure on {0, 1}I . Show that L1(λ) is separable, in its norm topology,
iff I is countable.

(e) Let f : [0, 1] → [0, 1]2 be a function which is inverse-measure-preserving for Lebesgue planar measure
on [0, 1]2 and Lebesgue linear measure on [0, 1], as in 134Yl; let f1, f2 be the coordinates of f . Define
g : [0, 1] → [0, 1]N by setting g(t) = 〈f1fn2 (t)〉n∈N for 0 ≤ t ≤ 1. Show that g is inverse-measure-preserving.
(Hint : show that gn : [0, 1] → [0, 1]n+1 is inverse-measure-preserving for every n ≥ 1, where gn(t) =
(f1(t), f1f2(t), . . . , f1f

n−1
2 (t), fn2 (t)) for t ∈ [0, 1].)

(f) Let I be a set, and λ the usual measure on PI. Show that if F is a non-principal ultrafilter on I then
λ∗F = 1. (Hint : 254Xr, 254Xf.)

(g) Let (X,Σ, µ), (Y,T, ν) and λ be as in 254U. Set A = {xγ : γ ∈ C} as defined in 216E. Let µA be the

subspace measure on A, and λ̃ the c.l.d. product measure of µA and ν on A × Y . Show that λ̃ is a proper
extension of the subspace measure λA×Y . (Hint : consider W̃ = {(xγ , y) : γ ∈ C, y ∈ Fγ}, in the notation
of 254U.)

(h) Let (X,Σ, µ) be an atomless probability space, I a set with cardinal at most #(X), and A the set of
injective functions from I to X. Show that A has full outer measure for the product measure on XI .

254 Notes and comments While there are many reasons for studying infinite products of probability
spaces, one stands pre-eminent, from the point of view of abstract measure theory: they provide constructions
of essentially new kinds of measure space. I cannot describe the nature of this ‘newness’ effectively without
venturing into the territory of Volume 3. But the function spaces of Chapter 24 do give at least a form of
words we can use: these are the first probability spaces (X,Λ, λ) we have seen for which L1(λ) need not be
separable for its norm topology (254Yd).

The formulae of 254A, like those of 251A, lead very naturally to measures; the point at which they become
more than a curiosity is when we find that the product measure λ is a probability measure (254Fa), which
must be regarded as the crucial argument of this section, just as 251E is the essential basis of §251. It
is I think remarkable that it makes no difference to the result here whether I is finite, countably infinite
or uncountable. If you write out the proof for the case I = N, it will seem natural to expand the sets
Jn until they are initial segments of I itself, thereby avoiding altogether the auxiliary set K; but this is a
misleading simplification, because it hides an essential feature of the argument, which is that any sequence
in C involves only countably many coordinates, so that as long as we are dealing with only one such sequence
the uncountability of the whole set I is irrelevant. This general principle naturally permeates the whole of
the section; in 254O I have tried to spell out the way in which many of the questions we are interested in
can be expressed in terms of countable subproducts of the factor spaces Xi. See also the exercises 254Xj,
254Xn and 254Ya(iii).

There is a slightly paradoxical side to this principle: even the best-behaved subsets Ei of Xi may fail

to have measurable products
∏

i∈I Ei if Ei 6= Xi for uncountably many i. For instance, ]0, 1[
I
is not a

measurable subset of [0, 1]I if I is uncountable (254Xn). It has full outer measure and its own product
measure is just the subspace measure (254L), but any measurable subset must have measure zero. The

point is that the empty set is the only member of
⊗̂

i∈IΣi, where Σi is the algebra of Lebesgue measurable

subsets of [0, 1] for each i, which is included in ]0, 1[
I
(see 254Xj).

As in §251, I use a construction which automatically produces a complete measure on the product space.
I am sure that this is the best choice for ‘the’ product measure. But there are occasions when its restriction
to the σ-algebra generated by the measurable cylinders is worth looking at; see 254Xc.

Lemma 254G is a result of a type which will be commoner in Volume 3 than in the present volume.
It describes the product measure in terms not of what it is but of what it does; specifically, in terms
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of a property of the associated family of inverse-measure-preserving functions. It is therefore a ‘universal
mapping theorem’. (Compare 253F.) Because this description is sufficient to determine the product measure
completely (254Yc), it is not surprising that I use it repeatedly.

The ‘usual measure’ on {0, 1}I (254J) is sometimes called ‘coin-tossing measure’ because it can be used
to model the concept of tossing a coin arbitrarily many times indexed by the set I, taking an x ∈ {0, 1}I
to represent the outcome in which the coin is ‘heads’ for just those i ∈ I for which x(i) = 1. The sets, or
‘events’, in the class C are those which can be specified by declaring the outcomes of finitely many tosses,
and the probability of any particular sequence of n results is 1/2n, regardless of which tosses we look at or in
which order. In Chapter 27 I will return to the use of product measures to represent probabilities involving
independent events.

In 254K I come to the first case in this treatise of a non-trivial isomorphism between two measure spaces. If
you have been brought up on a conventional diet of modern abstract pure mathematics based on algebra and
topology, you may already have been struck by the absence of emphasis on any concept of ‘homomorphism’
or ‘isomorphism’. Here indeed I start to speak of ‘isomorphisms’ between measure spaces without even
troubling to define them; I hope it really is obvious that an isomorphism between measure spaces (X,Σ, µ)
and (Y,T, ν) is a bijection φ : X → Y such that T = {F : F ⊆ Y , φ−1[F ] ∈ Σ} and νF = µφ−1[F ] for every
F ∈ T, so that Σ is necessarily {E : E ⊆ X, φ[E] ∈ T} and µE = νφ[E] for every E ∈ Σ. Put like this,
you may, if you worked through the exercises of Volume 1, be reminded of some constructions of σ-algebras
in 111Xc-111Xd and of the ‘image measures’ in 234C-234D. The result in 254K (see also 134Yo) naturally
leads to two distinct notions of ‘homomorphism’ between two measure spaces (X,Σ, µ) and (Y,T, ν):

(i) a function φ : X → Y such that φ−1[F ] ∈ Σ and µφ−1[F ] = νF for every F ∈ T,

(ii) a function φ : X → Y such that φ[E] ∈ T and νφ[E] = µE for every E ∈ Σ.

On either definition, we find that a bijection φ : X → Y is an isomorphism iff φ and φ−1 are both
homomorphisms. (Also, of course, the composition of homomorphisms will be a homomorphism.) My
own view is that (i) is the more important, and in this treatise I study such functions at length, calling
them ‘inverse-measure-preserving’. But both have their uses. The function φ of 254K not only satisfies
both definitions, but is also ‘nearly’ an isomorphism in several different ways, of which possibly the most
important is that there are conegligible sets X ′ ⊆ {0, 1}N, Y ′ ⊆ [0, 1] such that φ↾X ′ is an isomorphism
between X ′ and Y ′ when both are given their subspace measures.

Having once established the isomorphism between [0, 1] and {0, 1}N, we are led immediately to many
more; see 254Xk-254Xm. In fact Lebesgue measure on [0, 1] is isomorphic to a large proportion of the
probability spaces arising in applications. In Volumes 3 and 4 I will discuss these isomorphisms at length.

The general notion of ‘subproduct’ is associated with some of the deepest and most characteristic results
in the theory of product measures. Because we are looking at products of arbitrary families of probability
spaces, the definition must ignore any possible structure in the index set I of 254A-254C. But many appli-
cations, naturally enough, deal with index sets with favoured subsets or partitions, and the first essential
step is the ‘associative law’ (254N; compare 251Xe-251Xf and 251Wh). This is, for instance, the tool by
which we can apply Fubini’s theorem within infinite products. The natural projection maps from

∏
i∈I Xi

to
∏

i∈J Xi, where J ⊆ I, are related in a way which has already been used as the basis of theorems in
§235; the product measure on

∏
i∈J Xi is precisely the image of the product measure on

∏
i∈I Xi (254Oa).

In 254O-254Q I explore the consequences of this fact and the fact already noted that all measurable sets in
the product are ‘essentially’ determined by coordinates in some countable set.

In 254R I go more deeply into this notion of a set W ⊆ ∏
i∈I Xi ‘determined by coordinates in’ a set

J ⊆ I. In its primitive form this is a purely set-theoretic notion (254M, 254Ta). I think that even a three-
element set I can give us surprises; I invite you to try to visualize subsets of [0, 1]3 which are determined
by pairs of coordinates. But the interactions of this with measure-theoretic ideas, and in particular with a
willingness to add or discard negligible sets, lead to much more, and in particular to the unique minimal sets
of coordinates associated with measurable sets and functions (254R). Of course these results can be elegantly
and effectively described in terms of L1 and L0 spaces, in which negligible sets are swept out of sight as the
spaces are constructed. The basis of all this is the fact that the conditional expectation operators associated
with subproducts multiply together in the simplest possible way (254Ra); but some further idea is needed
to show that if J is a non-empty family of subsets of I, then L0⋂J =

⋂
J∈J L

0
J (see part (b) of the proof of

254R, and 254Xq(iii)).

D.H.Fremlin



68 Product measures 254 Notes

254Sa is a version of the ‘zero-one law’ (272O below). 254Sb is a strong version of the principle that
measurable sets in a product must be approximable by sets determined by a finite set of coordinates (254Fe,
254Qa, 254Xa). Evidently it is not a coincidence that the set W of 254Tb is negligible. In §272 I will revisit
many of the ideas of 254R-254S and 254Xq, in particular, in the more general context of ‘independent
σ-algebras’.

Finally, 254U and 254Yg hardly belong to this section at all; they are unfinished business from §251.
They are here because the construction of 254A-254C is the simplest way to produce an adequately complex
probability space (Y,T, ν).

Version of 3.7.08

255 Convolutions of functions

I devote a section to a construction which is of great importance – and will in particular be very useful
in Chapters 27 and 28 – and may also be regarded as a series of exercises on the work so far.

I find it difficult to know how much repetition to indulge in in this section, because the natural unified
expression of the ideas is in the theory of topological groups, and I do not think we are yet ready for the
general theory (I will come to it in Chapter 44 in Volume 4). The groups we need for this volume are

R;
Rr, for r ≥ 2;
S1 = {z : z ∈ C, |z| = 1}, the ‘circle group’;
Z, the group of integers.

All the ideas already appear in the theory of convolutions on R, and I will therefore present this material
in relatively detailed form, before sketching the forms appropriate to the groups Rr and S1 (or ]−π, π]); Z
can I think be safely left to the exercises.

255A This being a book on measure theory, it is perhaps appropriate for me to emphasize, as the basis
of the theory of convolutions, certain measure space isomorphisms.

Theorem Let µ be Lebesgue measure on R and µ2 Lebesgue measure on R2; write Σ, Σ2 for their domains.
(a) For any a ∈ R, the map x 7→ a+ x : R → R is a measure space automorphism of (R,Σ, µ).
(b) The map x 7→ −x : R → R is a measure space automorphism of (R,Σ, µ).
(c) For any a ∈ R, the map x 7→ a− x : R → R is a measure space automorphism of (R,Σ, µ).
(d) The map (x, y) 7→ (x+ y, y) : R2 → R2 is a measure space automorphism of (R2,Σ2, µ2).
(e) The map (x, y) 7→ (x− y, y) : R2 → R2 is a measure space automorphism of (R2,Σ2, µ2).

Remark I ought to remark that (b), (d) and (e) may be regarded as simple special cases of Theorem 263A
in the next chapter. I nevertheless feel that it is worth writing out separate proofs here, partly because the
general case of linear operators dealt with in 263A requires some extra machinery not needed here, but more
because the result here has nothing to do with the linear structure of R and R2; it is exclusively dependent
on the group structure of R, together with the links between its topology and measure, and the arguments
I give now are adaptable to the proper generalizations to abelian topological groups.

proof (a) This is just the translation-invariance of Lebesgue measure, dealt with in §134. There I showed
that if E ∈ Σ then E + a ∈ Σ and µ(E + a) = µE (134Ab); that is, writing φ(x) = x + a, µ(φ[E]) exists
and is equal to µE for every E ∈ Σ. But of course we also have

µ(φ−1[E]) = µ(E + (−a)) = µE

for every E ∈ Σ, so φ is an automorphism.

(b) The point is that µ∗(A) = µ∗(−A) for every A ⊆ R. PPP (I follow the definitions of Volume 1.)
If ǫ > 0, there is a sequence 〈In〉n∈N of half-open intervals covering A with

∑∞
n=0 µIn ≤ µ∗A + ǫ. Now

−A ⊆ ⋃
n∈N(−In). But if In = [an, bn[ then −In = ]−bn, an], so

µ∗(−A) ≤ ∑∞
n=0 µ(−In) =

∑∞
n=0 max(0,−an − (−bn)) =

∑∞
n=0 µIn ≤ µ∗A+ ǫ.

c© 2000 D. H. Fremlin

Measure Theory



255C Convolutions of functions 69

As ǫ is arbitrary, µ∗(−A) ≤ µ∗A. Also of course µ∗A ≤ µ∗(−(−A)) = µ∗A, so µ∗(−A) = µ∗A. QQQ
This means that, setting φ(x) = −x this time, φ is an automorphism of the structure (R, µ∗). But since

µ is defined from µ∗ by the abstract procedure of Carathéodory’s method, φ must also be an automorphism
of the structure (R,Σ, µ).

(c) Put (a) and (b) together; x 7→ a−x is the composition of the automorphisms x 7→ −x and x 7→ a+x,
and the composition of automorphisms is surely an automorphism.

(d)(i) Write T for the set {E : E ∈ Σ2, φ[E] ∈ Σ2}, where this time φ(x, y) = (x+ y, y) for x, y ∈ R, so
that φ : R2 → R2 is a permutation. Then T is a σ-algebra, being the intersection of the σ-algebras Σ2 and
{E : φ[E] ∈ Σ2} = {φ−1[F ] : F ∈ Σ2}. Moreover, µ2E = µ2(φ[E]) for every E ∈ T. PPP By 252D, we have

µ2E =
∫
µ{x : (x, y) ∈ E}µ(dy).

But applying the same result to φ[E] we have

µ2φ[E] =

∫
µ{x : (x, y) ∈ φ[E]}µ(dy) =

∫
µ{x : (x− y, y) ∈ E}µ(dy)

=

∫
µ(E−1[{y}] + y)µ(dy) =

∫
µE−1[{y}]µ(dy)

(because Lebesgue measure is translation-invariant)

= µ2E. QQQ

(ii) Now φ and φ−1 are clearly continuous, so that φ[G] is open, and therefore measurable, for every
open G; consequently all open sets must belong to T. Because T is a σ-algebra, it contains all Borel
sets. Now let E be any measurable set. Then there are Borel sets H1, H2 such that H1 ⊆ E ⊆ H2 and
µ2(H2 \H1) = 0 (134Fb). We have φ[H1] ⊆ φ[E] ⊆ φ[H2] and

µ(φ[H2] \ φ[H1]) = µφ[H2 \H1] = µ(H2 \H1) = 0.

Thus φ[E]\φ[H1] must be negligible, therefore measurable, and φ[E] = φ[H1]∪ (φ[E]\φ[H1]) is measurable.
This shows that φ[E] is measurable whenever E is.

(iii) Repeating the same arguments with −y in the place of y, we see that φ−1[E] is measurable, and
µ2φ

−1[E] = µ2E, for every E ∈ Σ2. So φ is an automorphism of the structure (R2,Σ2, µ2).

(e) Of course this is an immediate corollary either of the proof of (d) or of (d) itself as stated, since
(x, y) 7→ (x− y, y) is just the inverse of (x, y) 7→ (x+ y, y).

255B Corollary (a) If a ∈ R, then for any complex-valued function f defined on a subset of R∫
f(x)dx =

∫
f(a+ x)dx =

∫
f(−x)dx =

∫
f(a− x)dx

in the sense that if one of the integrals exists so do the others, and they are then all equal.
(b) If f is a complex-valued function defined on a subset of R2, then∫

f(x+ y, y)d(x, y) =
∫
f(x− y, y)d(x, y) =

∫
f(x, y)d(x, y)

in the sense that if one of the integrals exists and is finite so does the other, and they are then equal.

255C Remarks (a) I am not sure whether it ought to be ‘obvious’ that if (X,Σ, µ), (Y,T, ν) are measure
spaces and φ : X → Y is an isomorphism, then for any function f defined on a subset of Y∫

f(φ(x))µ(dx) =
∫
f(y)ν(dy)

in the sense that if one is defined so is the other, and they are then equal. If it is obvious then the obviousness
must be contingent on the nature of the definition of integration: integrability with respect to the measure µ
is something which depends on the structure (X,Σ, µ) and on no other properties of X. If it is not obvious
then it is an easy deduction from Theorem 235A above, applied in turn to φ and φ−1 and to the real and
imaginary parts of f . In any case the isomorphisms of 255A are just those needed to prove 255B.
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(b) Note that in 255Bb I write
∫
f(x, y)d(x, y) to emphasize that I am considering the integral of f with

respect to two-dimensional Lebesgue measure. The fact that∫ (∫
f(x, y)dx

)
dy =

∫ (∫
f(x+ y, y)dx

)
dy =

∫ (∫
f(x− y, y)dx

)
dy

is actually easier, being an immediate consequence of the equality
∫
f(a+x)dx =

∫
f(x)dx. But applications

of this result often depend essentially on the fact that the functions (x, y) 7→ f(x+y, y), (x, y) 7→ f(x−y, y)
are measurable as functions of two variables.

(c) I have moved directly to complex-valued functions because these are necessary for the applications
in Chapter 28. If however they give you any discomfort, either technically or aesthetically, all the measure-
theoretic ideas of this section are already to be found in the real case, and you may wish at first to read it
as if only real numbers were involved.

255D A further corollary of 255A will be useful.

Corollary Let f be a complex-valued function defined on a subset of R.
(a) If f is measurable, then the functions (x, y) 7→ f(x+ y), (x, y) 7→ f(x− y) are measurable.
(b) If f is defined almost everywhere in R, then the functions (x, y) 7→ f(x + y), (x, y) 7→ f(x − y) are

defined almost everywhere in R2.

proof Writing g1(x, y) = f(x+ y), g2(x, y) = f(x− y) whenever these are defined, we have

g1(x, y) = (f ⊗ χR)(φ(x, y)), g2(x, y) = (f ⊗ χR)(φ−1(x, y)),

writing φ(x, y) = (x+ y, y) as in 255B(d-e), and (f ⊗ χR)(x, y) = f(x), following the notation of 253B. By
253C, f ⊗ χR is measurable if f is, and defined almost everywhere if f is. Because φ is a measure space
automorphism, (f ⊗χR)φ = g1 and (f ⊗χR)φ−1 = g2 are measurable, or defined almost everywhere, if f is.

255E The basic formula Let f and g be measurable complex-valued functions defined almost every-
where in R. Write f ∗ g for the function defined by the formula

(f ∗ g)(x) =
∫
f(x− y)g(y)dy

whenever the integral exists (with respect to Lebesgue measure, naturally) as a complex number. Then f ∗g
is the convolution of the functions f and g.

Observe that dom(|f | ∗ |g|) = dom(f ∗ g), and that |f ∗ g| ≤ |f | ∗ |g| everywhere on their common domain,
for all f and g.

Remark Note that I am here prepared to contemplate the convolution of f and g for arbitrary members of
L

0
C, the space of almost-everywhere-defined measurable complex-valued functions, even though the domain

of f ∗ g may be empty.

255F Elementary properties (a) Because integration is linear, we surely have

((f1 + f2) ∗ g)(x) = (f1 ∗ g)(x) + (f2 ∗ g)(x),

(f ∗ (g1 + g2))(x) = (f ∗ g1)(x) + (f ∗ g2)(x),

(cf ∗ g)(x) = (f ∗ cg)(x) = c(f ∗ g)(x)
whenever the right-hand sides of the formulae are defined.

(b) If f and g are measurable complex-valued functions defined almost everywhere in R, then f ∗g = g∗f ,
in the strict sense that they have the same domain and the same value at each point of that common domain.

PPP Take x ∈ R and apply 255Ba to see that

(f ∗ g)(x) =
∫
f(x− y)g(y)dy =

∫
f(x− (x− y))g(x− y)dy

=

∫
f(y)g(x− y)dy = (g ∗ f)(x)

if either is defined. QQQ
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(c) If f1, f2, g1, g2 are measurable complex-valued functions defined almost everywhere in R, f1 =a.e. f2
and g1 =a.e. g2, then f1 ∗ g1 = f2 ∗ g2. PPP For every x ∈ R we shall have f1(x − y) = f2(x − y) for
almost every y ∈ R, by 255Ac. Consequently f1(x − y)g1(y) = f2(x − y)g2(y) for almost every y, and
(f1 ∗ g1)(x) = (f2 ∗ g2)(x) in the sense that if one of these is defined so is the other, and they are then equal.
QQQ

It follows that if u, v ∈ L0
C, then we have a function θ(u, v) which is equal to f ∗g whenever f , g ∈ L

0
C are

such that f• = u and g• = u. Observe that θ(u, v) = θ(v, u), and that θ(u1+u2, v) extends θ(u1, v)+θ(u2, v),
θ(cu, v) extends cθ(u, v) for all u, u1, u2, v ∈ L0

C and c ∈ C.

255G I have grouped 255Fa-255Fc together because they depend only on ideas up to and including
255Ac and 255Ba. Using the second halves of 255A and 255B we get much deeper. I begin with what seems
to be the fundamental result.

Theorem Let f , g and h be measurable complex-valued functions defined almost everywhere in R.
(a) Suppose that

∫
h(x+ y)f(x)g(y)d(x, y) exists in C. Then

∫
h(x)(f ∗ g)(x)dx =

∫
h(x+ y)f(x)g(y)d(x, y)

=

∫∫
h(x+ y)f(x)g(y)dxdy =

∫∫
h(x+ y)f(x)g(y)dydx

provided that in the expression h(x)(f ∗ g)(x) we interpret the product as 0 if h(x) = 0 and (f ∗ g)(x) is
undefined.

(b) If, on a similar interpretation of |h(x)|(|f | ∗ |g|)(x), the integral
∫
|h(x)|(|f | ∗ |g|)(x)dx is finite, then∫

h(x+ y)f(x)g(y)d(x, y) exists in C.

proof Consider the functions

k1(x, y) = h(x)f(x− y)g(y), k2(x, y) = h(x+ y)f(x)g(y)

wherever these are defined. 255D tells us that k1 and k2 are measurable and defined almost everywhere.
Now setting φ(x, y) = (x+ y, y), we have k2 = k1φ, so that∫

k1(x, y)d(x, y) =
∫
k2(x, y)d(x, y)

if either exists, by 255Bb.
If ∫

h(x+ y)f(x)g(y)d(x, y) =
∫
k2

exists, then by Fubini’s theorem we have∫
k2 =

∫
k1(x, y)d(x, y) =

∫
(
∫
h(x)f(x− y)g(y)dy)dx

so
∫
h(x)f(x − y)g(y)dy exists almost everywhere, that is, (f ∗ g)(x) exists for almost every x such that

h(x) 6= 0; on the interpretation I am using here, h(x)(f ∗ g)(x) exists almost everywhere, and

∫
h(x)(f ∗ g)(x)dx =

∫ (∫
h(x)f(x− y)g(y)dy

)
dx =

∫
k1

=

∫
k2 =

∫
h(x+ y)f(x)g(y)d(x, y)

=

∫∫
h(x+ y)f(x)g(y)dxdy =

∫∫
h(x+ y)f(x)g(y)dydx

by Fubini’s theorem again.
If (on the same interpretation) |h| × (|f | ∗ |g|) is integrable,

|k1(x, y)| = |h(x)||f(x− y)||g(y)|
is measurable, and ∫∫

|h(x)||f(x− y)||g(y)|dydx =
∫
|h(x)|(|f | ∗ |g|)(x)dx

is finite, so by Tonelli’s theorem (252G, 252H) k1 and k2 are integrable.
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255H Certain standard results are now easy.

Corollary If f , g are complex-valued functions which are integrable over R, then f ∗ g is integrable, with∫
f ∗ g =

∫
f
∫
g,

∫
|f ∗ g| ≤

∫
|f |
∫
|g|.

proof In 255G, set h(x) = 1 for every x ∈ R; then∫
h(x+ y)f(x)g(y)d(x, y) =

∫
f(x)g(y)d(x, y) =

∫
f
∫
g

by 253D, so ∫
f ∗ g =

∫
h(x)(f ∗ g)(x)dx =

∫
h(x+ y)f(x)g(y)d(x, y) =

∫
f
∫
g,

as claimed. Now ∫
|f ∗ g| ≤

∫
|f | ∗ |g| =

∫
|f |
∫
|g|.

255I Corollary For any measurable complex-valued functions f , g defined almost everywhere in R, f ∗g
is measurable and has measurable domain.

proof Set fn(x) = f(x) if x ∈ dom f , |x| ≤ n and |f(x)| ≤ n, and 0 elsewhere in R; define gn similarly
from g. Then fn and gn are integrable, |fn| ≤ |f | and |gn| ≤ |g| almost everywhere, f =a.e. limn→∞ fn and
g =a.e. limn→∞ gn. Consequently, by Lebesgue’s Dominated Convergence Theorem,

(f ∗ g)(x) =
∫
f(x− y)g(y)dy =

∫
lim

n→∞
fn(x− y)gn(y)dy

= lim
n→∞

∫
fn(x− y)gn(y)dy = lim

n→∞
(fn ∗ gn)(x)

for every x ∈ dom f ∗ g. But fn ∗ gn is integrable, therefore measurable, for every n, so that f ∗ g must be
measurable.

As for the domain of f ∗ g,

x ∈ dom(f ∗ g) ⇐⇒
∫
f(x− y)g(y)dy is defined in C

⇐⇒
∫

|f(x− y)||g(y)|dy is defined in R

⇐⇒
∫

|fn(x− y)||gn(y)|dy is defined in R for every n

and sup
n∈N

∫
|fn(x− y)||gn(y)|dy <∞.

Because every |fn| ∗ |gn| is integrable, therefore measurable and with measurable domain,

dom(f ∗ g) = {x : x ∈ ⋂
n∈N dom(|fn| ∗ |gn|), supn∈N(|fn| ∗ |gn|)(x) <∞}

is measurable.

255J Theorem Let f , g and h be complex-valued measurable functions, defined almost everywhere in
R, such that f ∗ g and g ∗ h are defined a.e. Suppose that x ∈ R is such that one of (|f | ∗ (|g| ∗ |h|))(x),
((|f | ∗ |g|) ∗ |h|)(x) is defined in R. Then f ∗ (g ∗ h) and (f ∗ g) ∗ h are defined and equal at x.

proof Set k(y) = f(x − y) when this is defined, so that k is measurable and defined almost everywhere
(255D).

(a) If (|f | ∗ (|g| ∗ |h|))(x) is defined, this is
∫
|k(y)|(|g| ∗ |h|)(y)dy, so by 255G we have∫

k(y)(g ∗ h)(y)dy =
∫
k(y + z)g(y)h(z)d(y, z),

that is,
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(f ∗ (g ∗ h))(x) =
∫
f(x− y)(g ∗ h)(y)dy =

∫
k(y)(g ∗ h)(y)dy

=

∫
k(y + z)g(y)h(z)d(y, z) =

∫∫
k(y + z)g(y)h(z)dydz

=

∫∫
f(x− y − z)g(y)h(z)dydz =

∫
(f ∗ g)(x− z)h(z)dz

= ((f ∗ g) ∗ h)(x).

(b) If ((|f | ∗ |g|) ∗ |h|)(x) is defined, this is
∫
(|f | ∗ |g|)(x− z)|h(z)|dz =

∫∫
|f(x− z − y)||g(y)||h(z)|dydz

=

∫∫
|k(y + z)||g(y)||h(z)|dydz.

By 255D again, (y, z) 7→ k(y + z) is measurable, so we can apply Tonelli’s theorem to see that
∫
k(y +

z)g(y)h(z)d(y, z) is defined, and is equal to
∫
k(y)(g ∗ h)(y)dy = (f ∗ (g ∗ h))(x) by 255Ga. On the other

side, by the last two lines of the proof of (a),
∫
k(y + z)g(y)h(z)d(y, z) is also equal to ((f ∗ g) ∗ h)(x).

255K I do not think we shall need an exhaustive discussion of the question of just when (f ∗ g)(x) is
defined; this seems to be complicated. However there is a fundamental case in which we can be sure that
(f ∗ g)(x) is defined everywhere.

Proposition Suppose that f , g are measurable complex-valued functions defined almost everywhere in R,
and that f ∈ L

p
C, g ∈ L

q
C where p, q ∈ [1,∞] and 1

p + 1
q = 1 (writing 1

∞ = 0 as usual). Then f ∗ g is defined

everywhere in R, is uniformly continuous, and

sup
x∈R

|(f ∗ g)(x)| ≤ ‖f‖p‖g‖q if 1 < p <∞, 1 < q <∞,

≤ ‖f‖1 ess sup |g| if p = 1, q = ∞,

≤ ess sup |f | · ‖g‖1 if p = ∞, q = 1.

proof (a) (For an introduction to L
p spaces, see §244.) For any x ∈ R, the function fx, defined by setting

fx(y) = f(x − y) whenever x − y ∈ dom f , must also belong to L
p, because fx = fφ for an automorphism

φ of the measure space. Consequently (f ∗ g)(x) =
∫
fx × g is defined, and of modulus at most ‖f‖p‖g‖q or

‖f‖1 ess sup |g| or ess sup |f | · ‖g‖1, by 244Eb/244Pb and 243Fa/243K.

(b) To see that f ∗ g is uniformly continuous, argue as follows. Suppose first that p <∞. Let ǫ > 0. Let
η > 0 be such that (2 + 21/p)‖g‖qη ≤ ǫ. Then there is a bounded continuous function h : R → C such that
{x : h(x) 6= 0} is bounded and ‖f − h‖p ≤ η (244Hb/244Pb); let M ≥ 1 be such that h(x) = 0 whenever

|x| ≥ M − 1. Next, h is uniformly continuous, so there is a δ ∈ ]0, 1] such that |h(x) − h(x′)| ≤ M−1/pη
whenever |x− x′| ≤ δ.

Suppose that |x− x′| ≤ δ. Defining hx(y) = h(x− y), as before, we have

∫
|hx − hx′ |p =

∫
|h(x− y)− h(x′ − y)|pdy =

∫
|h(t)− h(x′ − x+ t)|pdt

(substituting t = x− y)

=

∫ M

−M

|h(t)− h(x′ − x+ t)|pdt

(because h(t) = h(x′ − x+ t) = 0 if |t| ≥M)

≤ 2M(M−1/pη)p

(because |h(t)− h(x′ − x+ t)| ≤M−1/pη for every t)
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= 2ηp.

So ‖hx − hx′‖p ≤ 21/pη. On the other hand,∫
|hx − fx|p =

∫
|h(x− y)− f(x− y)|pdy =

∫
|h(y)− f(y)|pdy,

so ‖hx − fx‖p = ‖h− f‖p ≤ η, and similarly ‖hx′ − fx′‖p ≤ η. So

‖fx − fx′‖p ≤ ‖fx − hx‖p + |hx − hx′‖p + ‖hx′ − fx′‖p ≤ (2 + 21/p)η.

This means that

|(f ∗ g)(x)− (f ∗ g)(x′)| = |
∫
fx × g −

∫
fx′ × g| = |

∫
(fx − fx′)× g|

≤ ‖fx − fx′ |p‖g‖q ≤ (2 + 21/p)‖g‖qη ≤ ǫ.

As ǫ is arbitrary, f ∗ g is uniformly continuous.
The argument here supposes that p is finite. But if p = ∞ then q = 1 is finite, so we can apply the

method with g in place of f to show that g ∗ f is uniformly continuous, and f ∗ g = g ∗ f by 255Fb.

255L The r-dimensional case I have written 255A-255K out as theorems about Lebesgue measure on
R. However they all apply equally well to Lebesgue measure on Rr for any r ≥ 1, and the modifications
required are so small that I think I need do no more than ask you to read through the arguments again,
turning every R into an Rr, and every R2 into an (Rr)2. In 255A and elsewhere, the measure µ2 should
be read either as Lebesgue measure on R2r or as the product measure on (Rr)2; by 251N the two may be
identified. There is a trivial modification required in part (b) of the proof; if In = [an, bn[ then

µIn = µ(−In) =
∏r

i=1 max(0, βni − αni),

writing an = (αn1, . . . , αnr). In the proof of 255I, the functions fn should be defined by saying that
fn(x) = f(x) if |f(x)| ≤ n and ‖x‖ ≤ n, 0 otherwise.

In quoting these results, therefore, I shall be uninhibited in referring to the paragraphs 255A-255K as if
they were actually written out for general r ≥ 1.

255M The case of ]−π, π] The same ideas also apply to the circle group S1 and to the interval ]−π, π],
but here perhaps rather more explanation is in order.

(a) The first thing to establish is the appropriate group operation. If we think of S1 as the set {z : z ∈
C, |z| = 1}, then the group operation is complex multiplication, and in the formulae above x + y must be
rendered as xy, while x− y must be rendered as xy−1. On the interval ]−π, π], the group operation is +2π,
where for x, y ∈ ]−π, π] I write x +2π y for whichever of x + y, x + y + 2π, x + y − 2π belongs to ]−π, π].
To see that this is indeed a group operation, one method is to note that it corresponds to multiplication
on S1 if we use the canonical bijection x 7→ eix : ]−π, π] → S1; another, to note that it corresponds to the
operation on the quotient group R/2πZ. Thus in this interpretation of the ideas of 255A-255K, we shall
wish to replace x+ y by x+2π y, −x by −2πx, and x− y by x−2π y, where

−2πx = −x if x ∈ ]−π, π[, −2ππ = π,

and x−2π y is whichever of x− y, x− y + 2π, x− y − 2π belongs to ]−π, π].

(b) As for the measure, the measure to use on ]−π, π] is just Lebesgue measure. Note that because ]−π, π]
is Lebesgue measurable, there will be no confusion concerning the meaning of ‘measurable subset’, as the
relatively measurable subsets of ]−π, π] are actually measured by Lebesgue measure on R. Also we can
identify the product measure on ]−π, π]× ]−π, π] with the subspace measure induced by Lebesgue measure
on R2 (251R).

On S1, we need the corresponding measure induced by the canonical bijection between S1 and ]−π, π],
which indeed is often called ‘Lebesgue measure on S1’. (We shall see in 265E that it is also equal to Hausdorff
one-dimensional measure on S1.) We are very close to the level at which it would become reasonable to
move to S1 and this measure (or its normalized version, in which it is reduced by a factor of 2π, so as to
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make S1 a probability space). However, the elementary theory of Fourier series, which will be the principal
application of this work in the present volume, is generally done on intervals in R, so that formulae based
on ]−π, π] are closer to the standard expressions. Henceforth, therefore, I will express the work in terms of
]−π, π].

(c) The result corresponding to 255A now takes a slightly different form, so I spell it out.

255N Theorem Let µ be Lebesgue measure on ]−π, π] and µ2 Lebesgue measure on ]−π, π] × ]−π, π];
write Σ, Σ2 for their domains.

(a) For any a ∈ ]−π, π], the map x 7→ a +2π x : ]−π, π] → ]−π, π] is a measure space automorphism of
(]−π, π] ,Σ, µ).

(b) The map x 7→ −2πx : ]−π, π] → ]−π, π] is a measure space automorphism of (]−π, π] ,Σ, µ).
(c) For any a ∈ ]−π, π], the map x 7→ a −2π x : ]−π, π] → ]−π, π] is a measure space automorphism of

(]−π, π] ,Σ, µ).
(d) The map (x, y) 7→ (x +2π y, y) : ]−π, π]2 → ]−π, π]2 is a measure space automorphism of (]−π, π]2 ,

Σ2, µ2).

(e) The map (x, y) 7→ (x −2π y, y) : ]−π, π]2 → ]−π, π]2 is a measure space automorphism of (]−π, π]2 ,
Σ2, µ2).

proof (a) Set φ(x) = a+2π x. Then for any E ⊆ ]−π, π],
φ[E] = ((E + a) ∩ ]−π, π]) ∪ (((E + a) ∩ ]π, 3π])− 2π) ∪ (((E + a) ∩ ]−3π,−π]) + 2π),

and these three sets are disjoint, so that

µφ[E] = µ((E + a) ∩ ]−π, π]) + µ(((E + a) ∩ ]π, 3π])− 2π)

+ µ(((E + a) ∩ ]−3π,−π]) + 2π)

= µL((E + a) ∩ ]−π, π]) + µL(((E + a) ∩ ]π, 3π])− 2π)

+ µL(((E + a) ∩ ]−3π,−π]) + 2π)

(writing µL for Lebesgue measure on R)

= µL((E + a) ∩ ]−π, π]) + µL((E + a) ∩ ]π, 3π]) + µL((E + a) ∩ ]−3π,−π])
= µL(E + a) = µLE = µE.

Similarly, µφ−1[E] is defined and equal to µE for every E ∈ Σ, so that φ is an automorphism of (]−π, π] ,
Σ, µ).

(b) Of course this is quicker. Setting φ(x) = −2πx for x ∈ ]−π, π], we have

µ(φ[E]) = µ(φ[E] ∩ ]−π, π[) = µ(−(E ∩ ]−π, π[)
= µL(−(E ∩ ]−π, π[)) = µL(E ∩ ]−π, π[)
= µ(E ∩ ]−π, π[) = µE

for every E ∈ Σ.

(c) This is just a matter of putting (a) and (b) together, as in 255A.

(d) We can argue as in (a), but with a little more elaboration. If E ∈ Σ2, and φ(x, y) = (x+2π y, y) for

x, y ∈ ]−π, π], set ψ(x, y) = (x+ y, y) for x, y ∈ R, and write c = (2π, 0) ∈ R2, H = ]−π, π]2, H ′ = H + c,
H ′′ = H − c. Then for any E ∈ Σ2,

φ[E] = (ψ[E] ∩H) ∪ ((ψ[E] ∩H ′)− c) ∪ ((ψ[E] ∩H ′′) + c),

so

µ2φ[E] = µ2(ψ[E] ∩H) + µ2((ψ[E] ∩H ′)− c) + µ2((ψ[E] ∩H ′′) + c)

= µL(ψ[E] ∩H) + µL((ψ[E] ∩H ′)− c) + µL((ψ[E] ∩H ′′) + c)

(this time writing µL for Lebesgue measure on R2)

D.H.Fremlin



76 Product measures 255N

= µL(ψ[E] ∩H) + µL(ψ[E] ∩H ′) + µL(ψ[E] ∩H ′′)

= µLψ[E] = µLE = µ2E.

In the same way, µ2(φ
−1[E]) = µ2E for every E ∈ Σ2, so φ is an automorphism of (]−π, π]2 ,Σ2, µ2), as

required.

(e) Finally, (e) is just a restatement of (d), as before.

255O Convolutions on ]−π, π] With the fundamental result established, the same arguments as in
255B-255K now yield the following. Write µ for Lebesgue measure on ]−π, π].

(a) Let f and g be measurable complex-valued functions defined almost everywhere in ]−π, π]. Write
f ∗ g for the function defined by the formula

(f ∗ g)(x) =
∫ π

−π
f(x−2π y)g(y)dy

whenever x ∈ ]−π, π] and the integral exists as a complex number. Then f ∗ g is the convolution of the
functions f and g.

(b) If f and g are measurable complex-valued functions defined almost everywhere in ]−π, π], then
f ∗ g = g ∗ f .

(c) Let f , g and h be measurable complex-valued functions defined almost everywhere in ]−π, π]. Then
(i) ∫ π

−π
h(x)(f ∗ g)(x)dx =

∫
]−π,π]2

h(x+2π y)f(x)g(y)d(x, y)

whenever the right-hand side exists and is finite, provided that in the expression h(x)(f ∗ g)(x) we interpret
the product as 0 if h(x) = 0 and (f ∗ g)(x) is undefined.

(ii) If, on the same interpretation of |h(x)|(|f | ∗ |g|)(x), the integral
∫ π

−π
|h(x)|(|f | ∗ |g|)(x)dx is finite,

then
∫
]−π,π]2

h(x+2π y)f(x)g(y)d(x, y) exists in C, so again we shall have
∫ π

−π
h(x)(f ∗ g)(x)dx =

∫
]−π,π]2

h(x+2π y)f(x)g(y)d(x, y).

(d) If f , g are complex-valued functions which are integrable over ]−π, π], then f ∗ g is integrable, with∫ π

−π
f ∗ g =

∫ π

−π
f
∫ π

−π
g,

∫ π

−π
|f ∗ g| ≤

∫ π

−π
|f |
∫ π

−π
|g|.

(e) Let f , g, h be complex-valued measurable functions defined almost everywhere in ]−π, π], such
that f ∗ g and g ∗ h are also defined almost everywhere. Suppose that x ∈ ]−π, π] is such that one of
(|f | ∗ (|g| ∗ |h|))(x), ((|f | ∗ |g|) ∗ |h|)(x) is defined in R. Then f ∗ (g ∗ h) and (f ∗ g) ∗ h are defined and equal
at x.

(f) Suppose that f ∈ L
p
C(µ), g ∈ L

q
C(µ) where p, q ∈ [1,∞] and 1

p + 1
q = 1. Then f ∗ g is defined

everywhere in ]−π, π], and supx∈]−π,π] |(f ∗ g)(x)| ≤ ‖f‖p‖g‖q, interpreting ‖ ‖∞ as ess sup | |, as in 255K.

255X Basic exercises >>>(a) Let f , g be complex-valued functions defined almost everywhere in R.
Show that for any x ∈ R, (f ∗ g)(x) =

∫
f(x+ y)g(−y)dy if either is defined.

>>>(b) Let f and g be complex-valued functions defined almost everywhere in R. (i) Show that if f and g
are even functions, so is f ∗ g. (ii) Show that if f is even and g is odd then f ∗ g is odd. (iii) Show that if f
and g are odd then f ∗ g is even.

(c) Suppose that f , g are real-valued measurable functions defined almost everywhere in Rr and such
that f > 0 a.e., g ≥ 0 a.e. and {x : g(x) > 0} is not negligible. Show that f ∗g > 0 everywhere in dom(f ∗g).
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>>>(d) Suppose that f : R → C is a bounded differentiable function and that f ′ is bounded. Show that
for any integrable complex-valued function g on R, f ∗ g is differentiable and (f ∗ g)′ = f ′ ∗ g everywhere.
(Hint : 123D.)

(e) A complex-valued function g defined almost everywhere in R is locally integrable if
∫ b

a
g is defined

in C whenever a < b in R. Suppose that g is such a function and that f : R → C is a differentiable function,
with continuous derivative, such that {x : f(x) 6= 0} is bounded. Show that (f ∗ g)′ = f ′ ∗ g everywhere.

>>>(f) Set φδ(x) = exp(− 1
δ2−x2 ) if |x| < δ, 0 if |x| ≥ δ, as in 242Xi. Set αδ =

∫
φδ, ψδ = α−1

δ φδ. Let

f be a locally integrable complex-valued function on R. (i) Show that f ∗ ψδ is a smooth function defined
everywhere on R for every δ > 0. (ii) Show that limδ↓0(f ∗ ψδ)(x) = f(x) for almost every x ∈ R. (Hint :
223Yg.) (iii) Show that if f is integrable then limδ↓0

∫
|f−f ∗ψδ| = 0. (Hint : use (ii) and 245H(a-ii) or look

first at the case f = χ[a, b] and use 242O, noting that
∫
|f ∗ ψδ| ≤

∫
|f |.) (iv) Show that if f is uniformly

continuous and defined everywhere in R then limδ↓0 supx∈R |f(x)− (f ∗ ψδ)(x)| = 0.

>>>(g) For α > 0, set gα(t) =
1

Γ(α)
tα−1 for t > 0, 0 for t ≤ 0. Show that gα ∗ gβ = gα+β for all α, β > 0.

(Hint : 252Yf.)

>>>(h) Let µ be Lebesgue measure on R. For u, v, w ∈ L0
C = L0

C(µ), say that u ∗ v = w if f ∗ g is
defined almost everywhere and (f ∗ g)• = w whenever f , g ∈ L

0
C(µ), f

• = u and g• = w. (i) Show that
(u1 + u2) ∗ v = u1 ∗ v + u2 ∗ v whenever u1, u2, v ∈ L0

C and u1 ∗ v and u2 ∗ v are defined in this sense. (ii)
Show that u ∗ v = v ∗ u whenever u, v ∈ L0(C) and either u ∗ v or v ∗ u is defined. (iii) Show that if u,
v, w ∈ L0

C, u ∗ v and v ∗ w are defined, and either |u| ∗ (|v| ∗ |w|) or (|u| ∗ |v|) ∗ |w| is defined, then then
u ∗ (v ∗ w) = (u ∗ v) ∗ w are defined and equal.

>>>(i) Let µ be Lebesgue measure on R. (i) Show that u ∗ v, as defined in 255Xh, belongs to L1
C(µ)

whenever u, v ∈ L1
C(µ). (ii) Show that L1

C is a commutative Banach algebra under ∗ (definition: 2A4J).

(j)(i) Show that if h is an integrable function on R2, then (Th)(x) =
∫
h(x−y, y)dy exists for almost every

x ∈ R, and that
∫
(Th)(x)dx =

∫
h(x, y)d(x, y). (ii) Write µ2 for Lebesgue measure on R2, µ for Lebesgue

measure on R. Show that there is a linear operator T̃ : L1(µ2) → L1(µ) defined by setting T̃ (h•) = (Th)•

for every integrable function h on R2. (iii) Show that in the language of 253E and 255Xh, T̃ (u⊗ v) = u ∗ v
for all u, v ∈ L1(µ).

>>>(k) For aaa, bbb ∈ CZ set (aaa ∗ bbb)(n) = ∑
i∈Z aaa(n− i)bbb(i) whenever

∑
i∈Z |aaa(n− i)bbb(i)| <∞. Show that

(i) aaa ∗ bbb = bbb ∗ aaa;
(ii)

∑
i∈Z ccc(i)(aaa ∗ bbb)(i) =

∑
i,j∈Z ccc(i+ j)aaa(i)bbb(j) if

∑
i,j∈Z |ccc(i+ j)aaa(i)bbb(j)| <∞;

(iii) if aaa, bbb ∈ ℓ1(Z) then aaa ∗ bbb ∈ ℓ1(Z) and ‖aaa ∗ bbb‖1 ≤ ‖aaa‖1‖bbb‖1;
(iv) If aaa, bbb ∈ ℓ2(Z) then aaa ∗ bbb ∈ ℓ∞(Z) and ‖aaa ∗ bbb‖∞ ≤ ‖aaa‖2‖bbb‖2;
(v) if aaa, bbb, ccc ∈ CZ and (|aaa| ∗ (|bbb| ∗ |ccc|))(n) is well-defined, then (aaa ∗ (bbb ∗ ccc))(n) = ((aaa ∗ bbb) ∗ ccc)(n).

255Y Further exercises (a) Let f be a complex-valued function which is integrable over R. (i) Let x be
any point of the Lebesgue set of f . Show that for any ǫ > 0 there is a δ > 0 such that |f(x)− (f ∗ g)(x)| ≤ ǫ
whenever g : R → [0,∞[ is a function which is non-decreasing on ]−∞, 0], non-decreasing on [0,∞[, and has∫
g = 1 and

∫ δ

−δ
g ≥ 1− δ. (ii) Show that for any ǫ > 0 there is a δ > 0 such that ‖f − f ∗ g‖1 ≤ ǫ whenever

g : R → [0,∞[ is a function which is non-decreasing on ]−∞, 0], non-decreasing on [0,∞[, and has
∫
g = 1

and
∫ δ

−δ
g ≥ 1− δ.

(b) Let f be a complex-valued function which is integrable over R. Show that, for almost every x ∈ R,

lima→∞
a

π

∫∞
−∞

f(y)

1+a2(x−y)2
dy, lima→∞

1

a

∫∞
x
f(y)e−a(y−x)dy,

limσ↓0
1

σ
√
2π

∫∞
−∞ f(y)e−(y−x)2/2σ2

dy

all exist and are equal to f(x). (Hint : 263G.)
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(c) Set f(x) = 1 for all x ∈ R, g(x) =
x

|x| for 0 < |x| ≤ 1 and 0 otherwise, h(x) = tanhx for all x ∈ R.

Show that f ∗ (g ∗ h) and (f ∗ g) ∗ h are both defined (and constant) everywhere, and are different.

(d) Discuss what can happen if, in the context of 255J, we know that (|f | ∗ (|g| ∗ |h|))(x) is defined, but
have no information on the domain of f ∗ g.

(e) Suppose that p ∈ [1,∞[ and that f ∈ L
p
C(µ), where µ is Lebesgue measure on Rr. For a ∈ Rr set

(Saf)(x) = f(a+ x) whenever a+ x ∈ dom f . Show that Saf ∈ L
p
C(µ), and that for every ǫ > 0 there is a

δ > 0 such that ‖Saf − f‖p ≤ ǫ whenever |a| ≤ δ.

(f) Suppose that p, q ∈ ]1,∞[ and 1
p + 1

q = 1. Take f ∈ L
p
C(µ) and g ∈ L

q
C(µ), where µ is Lebesgue

measure on Rr. Show that lim‖x‖→∞(f ∗ g)(x) = 0. (Hint : use 244Hb.)

(g) Repeat 255Ye and 255K, this time taking µ to be Lebesgue measure on ]−π, π], and setting (Saf)(x) =
f(a+2π x) for a ∈ ]−π, π]; show that in the new version of 255K, (f ∗ g)(π) = limx↓−π(f ∗ g)(x).

(h) Let µ be Lebesgue measure on R. For a ∈ R, f ∈ L
0 = L

0(µ) set (Saf)(x) = f(a + x) whenever
a+ x ∈ dom f .

(i) Show that Saf ∈ L
0 for every f ∈ L

0.

(ii) Show that we have a map S̃a : L0 → L0 defined by setting S̃a(f
•) = (Saf)

• for every f ∈ L
0.

(iii) Show that S̃a is a Riesz space isomorphism and is a homeomorphism for the topology of convergence

in measure; moreover, that S̃a(u× v) = S̃au× S̃av for all u, v ∈ L0.

(iv) Show that S̃a+b = S̃aS̃b for all a, b ∈ R.

(v) Show that lima→0 S̃au = u for the topology of convergence in measure, for every u ∈ L0.

(vi) Show that if 1 ≤ p ≤ ∞ then S̃a↾L
p is an isometric isomorphism of the Banach lattice Lp.

(vii) Show that if p ∈ [1,∞[ then lima→0 ‖S̃au− u‖p = 0 for every u ∈ Lp.

(viii) Show that if A ⊆ L1 is uniformly integrable andM ≥ 0, then {S̃au : u ∈ A, |a| ≤M} is uniformly
integrable.

(ix) Suppose that u, v ∈ L0 are such that u ∗ v is defined in L0 in the sense of 255Xh. Show that

S̃a(u ∗ v) = (S̃au) ∗ v = u ∗ (S̃av) for every a ∈ R.

(i) Prove 255Nd from 255Na by the method used to prove 255Ad from 255Aa, rather than by quoting
255Ad.

(j) Let µ be Lebesgue measure on R, and φ : R → R a convex function; let φ̄ : L0 → L0 = L0(µ) be the
associated operator (see 241I). Show that if u ∈ L1 = L1(µ), v ∈ L0 are such that u ≥ 0,

∫
u = 1 and u ∗ v,

u ∗ φ̄(v) are both defined in the sense of 255Xh, then φ̄(u ∗ v) ≤ u ∗ φ̄(v). (Hint : 233I.)

(k) Let µ be Lebesgue measure on R, and p ∈ [1,∞]. Let f ∈ L
1
C(µ), g ∈ L

p
C(µ). Show that f ∗g ∈ L

p
C(µ)

and that ‖f ∗ g‖p ≤ ‖f‖1‖g‖p. (Hint : argue from 255Yj, as in 244M.)

(l) Suppose that p, q, r ∈ ]1,∞[ and that 1
p +

1
q = 1+ 1

r . Let µ be Lebesgue measure on R. (i) Show that
∫
f × g ≤ ‖f‖1−p/r

p ‖g‖1−q/r
q (

∫
fp × gq)1/r

whenever f , g ≥ 0 and f ∈ L
p(µ), g ∈ L

q(µ). (Hint : set p′ = p/(p − 1), etc.; f1 = fp/q
′

, g1 = gq/p
′

,
h = (fp×gq)1/r. Use 244Xc to see that ‖f1×g1‖r′ ≤ ‖f1‖q′‖g1‖p′ , so that

∫
f1×g1×h ≤ ‖f1‖q′‖g1‖p′‖h‖r.)

(ii) Show that f ∗ g is defined a.e. and that ‖f ∗ g‖r ≤ ‖f‖p‖g‖q for all f ∈ L
p(µ), g ∈ L

q(µ). (Hint :
take f , g ≥ 0. Use (i) to see that (f ∗ g)(x)r ≤ ‖f‖r−p

p ‖g‖r−q
q

∫
f(y)pg(x − y)qdy, so that ‖f ∗ g‖rr ≤

‖f‖r−p
p ‖g‖r−q

q

∫
f(y)p‖g‖qqdy.) (This is Young’s inequality.)

(m) Repeat the results of this section for the group (S1)r, where r ≥ 2, given its product measure.

(n) Let G be a group and µ a σ-finite measure on G such that (α) for every a ∈ G, the map x 7→ ax is an
automorphism of (G,µ) (β) the map (x, y) 7→ (x, xy) is an automorphism of (G2, µ2), where µ2 is the c.l.d.
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product measure on G×G. For f , g ∈ L
0
C(µ) write (f ∗ g)(x) =

∫
f(y)g(y−1x)dy whenever this is defined.

Show that
(i) if f , g, h ∈ L

0
C(µ) and

∫
h(xy)f(x)g(y)d(x, y) is defined in C, then

∫
h(x)(f ∗ g)(x)dx exists and is

equal to
∫
h(xy)f(x)g(y)d(x, y), provided that in the expression h(x)(f ∗ g)(x) we interpret the product as

0 if h(x) = 0 and (f ∗ g)(x) is undefined;
(ii) if f , g ∈ L

1
C(µ) then f ∗ g ∈ L

1
C(µ) and

∫
f ∗ g =

∫
f
∫
g, ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1;

(iii) if f , g, h ∈ L
1
C(µ) then f ∗ (g ∗ h) = (f ∗ g) ∗ h.

(See Halmos 50, §59.)
(o) Repeat 255Yn for counting measure on any group G.

255 Notes and comments I have tried to set this section out in such a way that it will be clear that the
basis of all the work here is 255A, and the crucial application is 255G. I hope that if and when you come
to look at general topological groups (for instance, in Chapter 44), you will find it easy to trace through
the ideas in any abelian topological group for which you can prove a version of 255A. For non-abelian
groups, of course, rather more care is necessary, especially as in some important examples we no longer
have µ{x−1 : x ∈ E} = µE for every E; see 255Yn-255Yo for a little of what can be done without using
topological ideas.

The critical point in 255A is the move from the one-dimensional results in 255Aa-255Ac, which are just the
translation- and reflection-invariance of Lebesgue measure, to the two-dimensional results in 255Ac-255Ad.
And the living centre of the argument, as I present it, is the fact that the shear transformation φ is an
automorphism of the structure (R2,Σ2). The actual calculation of µ2φ[E], assuming that it is measurable,
is an easy application of Fubini’s and Tonelli’s theorems and the translation-invariance of µ. It is for this
step that we absolutely need the topological properties of Lebesgue measure. I should perhaps remind you
that the fact that φ is a homeomorphism is not sufficient; in 134I I described a homeomorphism of the unit
interval which does not preserve measurability, and it is easy to adapt this to produce a homeomorphism
ψ : R2 → R2 such that ψ[E] is not always measurable for measurable E. The argument of 255A is dependent
on the special relationships between all three of the measure, topology and group structure of R.

I have already indulged in a few remarks on what ought, or ought not, to be ‘obvious’ (255C). But perhaps
I can add that such results as 255B and the later claim, in the proof of 255K, that a reflected version of
a function in L

p is also in L
p, can only be trivial consequences of results like 255A if every step in the

construction of the integral is done in the abstract context of general measure spaces. Even though we are
here working exclusively with the Lebesgue integral, the argument will become untrustworthy if we have
at any stage in the definition of the integral even mentioned that we are thinking of Lebesgue measure. I
advance this as a solid reason for defining ‘integration’ on abstract measure spaces from the beginning, as
I did in Volume 1. Indeed, I suggest that generally in pure mathematics there are good reasons for casting
arguments into the forms appropriate to the arguments themselves.

I am writing this book for readers who are interested in proofs, and as elsewhere I have written the proofs
of this section out in detail. But most of us find it useful to go through some material in ‘advanced calculus’
mode, by which I mean starting with a formula such as

(f ∗ g)(x) =
∫
f(x− y)g(y)dy,

and then working out consequences by formal manipulations, for instance∫
h(x)(f ∗ g)(x)dx =

∫∫
h(x)f(x− y)g(y)dydx =

∫∫
h(x+ y)f(x)g(y)dydx,

without troubling about the precise applicability of the formulae to begin with. In some ways this formula-
driven approach can be more truthful to the structure of the subject than the careful analysis I habitually
present. The exact hypotheses necessary to make the theorems strictly true are surely secondary, in such
contexts as this section, to the pattern formed by the ensemble of the theorems, which can be adequately
and elegantly expressed in straightforward formulae. Of course I do still insist that we cannot properly
appreciate the structure, nor safely use it, without mastering the ideas of the proofs – and as I have said
elsewhere, I believe that mastery of ideas necessarily includes mastery of the formal details, at least in the
sense of being able to reconstruct them fairly fluently on demand.

Throughout the main exposition of this section, I have worked with functions rather than equivalence
classes of functions. But all the results here have interpretations of great importance for the theory of the
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‘function spaces’ of Chapter 24. In 255Xh and the succeeding exercises, I have pointed to a definition of
convolution as an operator from a subset of L0 × L0 to L0. It is an interesting point that if u, v ∈ L0 then
u∗v can be interpreted as a function, not as a member of L0 (255Fc). Thus 255H can be regarded as saying
that u ∗ v ∈ L

1 for u, v ∈ L1. We cannot quite say that convolution is a bilinear operator from L1 × L1 to
L

1, because L1, as I define it, is not strictly speaking a linear space. If we want a bilinear operator, then we
have to regard convolution as a function from L1×L1 to L1. But when we look at convolution as a function
on L2 ×L2, for instance, then our functions u ∗ v are defined everywhere (255K), and indeed are continuous
functions vanishing at ∞ (255Ye-255Yf). So in this case it seems more appropriate to regard convolution
as a bilinear operator from L2 × L2 to some space of continuous functions, and not as an operator from
L2 × L2 to L∞. For an example of an interesting convolution which is not naturally representable in terms
of an operator on Lp spaces, see 255Xg.

Because convolution acts as a continuous bilinear operator from L1(µ) × L1(µ) to L1(µ), where µ is
Lebesgue measure on R, Theorem 253F tells us that it must correspond to a linear operator from L1(µ2) to

L1(µ), where µ2 is Lebesgue measure on R2. This is the operator T̃ of 255Xj.
So far in these notes I have written as though we were concerned only with Lebesgue measure on R.

However many applications of the ideas involve Rr or ]−π, π] or S1. The move to Rr should be elementary.
The move to S1 does require a re-formulation of the basic result 255A/255N. It should also be clear that
there will be no new difficulties in moving to ]−π, π]r or (S1)r. Moreover, we can also go through the
whole theory for the groups Z and Zr, where the appropriate measure is now counting measure, so that L0

C

becomes identified with CZ or CZr

(255Xk, 255Yo).

Version of 6.8.15

256 Radon measures on Rr

In the next section, and again in Chapters 27 and 28, we need to consider the principal class of measures
on Euclidean spaces. For a proper discussion of this class, and the interrelationships between the measures
and the topologies involved, we must wait until Volume 4. For the moment, therefore, I present definitions
adapted to the case in hand, warning you that the correct generalizations are not quite obvious. I give the
definition (256A) and a characterization (256C) of Radon measures on Euclidean spaces, and theorems on
the construction of Radon measures as indefinite integrals (256E, 256J), as image measures (256G) and as
product measures (256K). In passing I give a version of Lusin’s theorem concerning measurable functions
on Radon measure spaces (256F).

Throughout this section, r and s will be integers greater than or equal to 1.

256A Definitions Let ν be a measure on Rr and Σ its domain.

(a) ν is a topological measure if every open set belongs to Σ. Note that in this case every Borel set,
and in particular every closed set, belongs to Σ.

(b) ν is locally finite if every bounded set has finite outer measure.

(c) If ν is a topological measure, it is inner regular with respect to the compact sets if

νE = sup{νK : K ⊆ E is compact}
for every E ∈ Σ. (Because ν is a topological measure, and compact sets are closed (2A2Ec), νK is defined
for every compact set K.)

(d) ν is a Radon measure if it is a complete locally finite topological measure which is inner regular
with respect to the compact sets.

256B It will be convenient to be able to call on the following elementary facts.

Lemma Let ν be a Radon measure on Rr, and Σ its domain.
(a) ν is σ-finite.
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(b) For any E ∈ Σ and any ǫ > 0 there are a closed set F ⊆ E and an open set G ⊇ E such that
ν(G \ F ) ≤ ǫ.

(c) For every E ∈ Σ there is a set H ⊆ E, expressible as the union of a sequence of compact sets, such
that ν(E \H) = 0.

(d) Every continuous real-valued function on Rr is Σ-measurable.
(e) If h : Rr → R is continuous and has bounded support, then h is ν-integrable.

proof (a) For each n ∈ N, B(0, n) = {x : ‖x‖ ≤ n} is a closed bounded set, therefore Borel. So if ν is a
Radon measure on Rr, 〈B(0, n)〉n∈N is a sequence of sets of finite measurea covering Rr.

(b) Set En = {x : x ∈ E, n ≤ ‖x‖ < n + 1} for each n. Then νEn < ∞, so there is a compact set
Kn ⊆ En such that νKn ≥ νEn − 2−n−2ǫ. Set F =

⋃
n∈NKn; then

ν(E \ F ) = ∑∞
n=0 ν(En \Kn) ≤ 1

2
ǫ.

Also F ⊆ E and F is closed because

F ∩B(0, n) =
⋃

i≤nKi ∩B(0, n)

is closed for each n.
In the same way, there is a closed set F ′ ⊆ Rr \E such that ν((Rr \E) \ F ′) ≤ 1

2ǫ. Setting G = Rr \ F ′,
we see that G is open, that G ⊇ E and that ν(G \ E) ≤ 1

2ǫ, so that ν(G \ F ) ≤ ǫ, as required.

(c) By (b), we can choose for each n ∈ N a closed set Fn ⊆ E such that ν(E \ Fn) ≤ 2−n. Set
H =

⋃
n∈N Fn; then H ⊆ E and ν(E \H) = 0, and also H =

⋃
m,n∈NB(0,m) ∩ Fn is a countable union of

compact sets.

(d) If h : Rr → R is continuous, all the sets {x : h(x) > a} are open, so belong to Σ.

(e) By (d), h is measurable. Now we are supposing that there is some n ∈ N such that h(x) = 0
whenever x /∈ B(0, n). Since B(0, n) is compact (2A2F), h is bounded on B(0, n) (2A2G), and we have
|h| ≤ γχB(0, n) for some γ; since νB(0, n) is finite, h is ν-integrable.

256C Theorem A measure ν on Rr is a Radon measure iff it is the completion of a locally finite measure
defined on the σ-algebra B of Borel subsets of Rr.

proof (a) Suppose first that ν is a Radon measure. Write Σ for its domain.

(i) Set ν0 = ν↾B. Then ν0 is a measure with domain B, and it is locally finite because ν0B(0, n) =
νB(0, n) is finite for every n. Let ν̂0 be the completion of ν0 (212C).

(ii) If ν̂0 measures E, there are E1, E2 ∈ B such that E1 ⊆ E ⊆ E2 and ν0(E2 \ E1) = 0. Now
E \ E1 ⊆ E2 \ E1 must be ν-negligible; as ν is complete, E ∈ Σ and

νE = νE1 = ν0E1 = ν̂0E.

(iii) If E ∈ Σ, then by 256Bc there is a Borel set H ⊆ E such that ν(E \H) = 0. Equally, there is a
Borel set H ′ ⊆ Rr \ E such that ν((Rr \ E) \H ′) = 0, so that we have H ⊆ E ⊆ Rr \H ′ and

ν0((R
r \H ′) \H) = ν((Rr \H ′) \H) = 0.

So ν̂0E is defined and equal to ν0E1 = νE.
This shows that ν = ν̂0 is the completion of the locally finite Borel measure ν↾B. And this is true for any

Radon measure ν on Rr.

(b) For the rest of the proof, I suppose that ν0 is a locally finite measure with domain B and ν is its
completion. Write Σ for the domain of ν. We say that a subset of Rr is a Kσ set if it is expressible as the
union of a sequence of compact sets. Note that every Kσ set is a Borel set, so belongs to Σ. Set

A = {E : E ∈ Σ, there is a Kσ set H ⊆ E such that ν(E \H) = 0},

Σ = {E : E ∈ A, Rr \ E ∈ A}.
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(c)(i) Every open set is itself a Kσ set, so belongs to A. PPP Let G ⊆ Rr be open. If G = ∅ then G is
compact and the result is trivial. Otherwise, let I be the set of closed intervals of the form [q, q′], where q,
q′ ∈ Qr, which are included in G. Then all the members of I are closed and bounded, therefore compact.
If x ∈ G, there is a δ > 0 such that B(x, δ) = {y : ‖y − x‖ ≤ δ} ⊆ G; now there is an I ∈ I such that
x ∈ I ⊆ B(x, δ). Thus G =

⋃ I. But I is countable, so G is Kσ. QQQ

(ii) Every closed subset of R is Kσ, so belongs to A. PPP If F ⊆ R is closed, then F =
⋃

n∈N F ∩B(0, n);
but every F ∩B(0, n) is closed and bounded, therefore compact. QQQ

(iii) If 〈En〉n∈N is any sequence in A, then E =
⋃

n∈NEn belongs to A. PPP For each n ∈ N we have a
countable family Kn of compact subsets of En such that ν(En \

⋃Kn) = 0; now K =
⋃

n∈N Kn is a countable
family of compact subsets of E, and E \⋃K ⊆ ⋃

n∈N(En \⋃Kn) is ν-negligible. QQQ

(iv) If 〈En〉n∈N is any sequence in A, then F =
⋂

n∈NEn ∈ A. PPP For each n ∈ N, let 〈Kni〉i∈N be a
sequence of compact subsets of En such that ν(En \⋃i∈NKni) = 0. Set K ′

nj =
⋃

i≤j Kni for each j, so that

ν(En ∩H) = limj→∞ ν(K ′
nj ∩H)

for every H ∈ Σ. Now, for each m, n ∈ N, choose j(m,n) such that

ν(En ∩B(0,m) ∩K ′
n,j(m,n)) ≥ ν(En ∩B(0,m))− 2−(m+n).

Set Km =
⋂

n∈NK
′
n,j(m,n); then Km is closed (being an intersection of closed sets) and bounded (being a

subset of K ′
0,j(m,0)), therefore compact. Also Km ⊆ F , because K ′

n,j(m,n) ⊆ En for each n, and

ν(F ∩B(0,m) \Km) ≤ ∑∞
n=0 ν(En ∩B(0,m) \K ′

n,j(m,n)) ≤
∑∞

n=0 2
−(m+n) = 2−m+1.

Consequently H =
⋃

m∈NKm is a Kσ subset of F and

ν(F ∩B(0,m) \H) ≤ infk≥m ν(F ∩B(0, k) \Hk) = 0

for every m, so ν(F \H) = 0 and F ∈ A. QQQ

(d) Σ is a σ-algebra of subsets of R. PPP (i) ∅ and its complement are open, so belong to A and therefore
to Σ. (ii) If E ∈ Σ then both Rr \ E and Rr \ (Rr \ E) = E belong to A, so Rr \ E ∈ Σ. (iii) Let 〈En〉n∈N

be a sequence in Σ with union E. By (a-iii) and (a-iv),

E ∈ A, Rr \ E =
⋂

n∈N(R
r \ En) ∈ A,

so E ∈ Σ. QQQ

(e) By (c-i) and (c-ii), every open set belongs to Σ; consequently every Borel set belongs to Σ and
therefore to A. Now if E is any member of Σ, there is a Borel set E1 ⊆ E such that ν(E \ E1) = 0 and a
Kσ set H ⊆ E1 such that ν(E1 \H) = 0. Express H as

⋃
n∈NKn where every Kn is compact; then

νE = νH = limn→∞ ν(
⋃

i≤nKi) ≤ supK⊆E is compact νK ≤ νE

because
⋃

i∈nKi is a compact subset of E for every n.

(f) Thus ν is inner regular with respect to the compact sets. But of course it is complete (being the
completion of ν0) and a locally finite topological measure (because ν0 is); so it is a Radon measure. This
completes the proof.

256D Proposition If ν and ν ′ are two Radon measures on Rr, the following are equiveridical:
(i) ν = ν ′;
(ii) νK = ν ′K for every compact set K ⊆ Rr;
(iii) νG = ν ′G for every open set G ⊆ Rr;
(iv)

∫
h dν =

∫
h dν ′ for every continuous function h : Rr → R with bounded support.

proof (a)(i)⇒(iv) is trivial.

(b)(iv)⇒(iii) If (iv) is true, and G ⊆ Rr is an open set, then for each n ∈ N set

hn(x) = min(1, 2n infy∈Rr\(G∩B(0,n)) ‖y − x‖)
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for x ∈ Rr. Then hn is continuous (in fact |hn(x)−hn(x′)| ≤ 2n‖x−x′‖ for all x, x′ ∈ Rr) and zero outside
B(0, n), so

∫
hndν =

∫
hndν

′. Next, 〈hn(x)〉n∈N is a non-decreasing sequence converging to χG(x) for every
x ∈ Rr. So

νG = limn→∞
∫
hndν = limn→∞

∫
hndν

′ = ν ′G,

by 135Ga. As G is arbitrary, (iii) is true.

(c)(iii)⇒(ii) If (iii) is true, and K ⊆ Rr is compact, let n be so large that ‖x‖ < n for every x ∈ K. Set
G = {x : ‖x‖ < n}, H = G \K. Then G and H are open and G is bounded, so νG = ν ′G is finite, and

νK = νG− νH = ν ′G− ν ′H = ν ′K.

As K is arbitrary, (ii) is true.

(d)(ii)⇒(i) If ν, ν ′ agree on the compact sets, then

νE = supK⊆E is compact νK = supK⊆E is compact ν
′K = ν ′E

for every Borel set E. So ν↾B = ν ′↾B, where B is the algebra of Borel sets. But since ν and ν ′ are both the
completions of their restrictions to B, they are identical.

256E It is I suppose time I gave some examples of Radon measures. However it will save a few lines if
I first establish some basic constructions. You may wish to glance ahead to 256H at this point.

Theorem Let ν be a Radon measure on Rr, with domain Σ, and f a non-negative Σ-measurable function
defined on a ν-conegligible subset of Rr. Suppose that f is locally integrable in the sense that

∫
E
fdν <∞

for every bounded set E. Then the indefinite-integral measure ν ′ on Rr defined by saying that

ν ′E =
∫
E
fdν whenever E ∩ {x : x ∈ dom f, f(x) > 0} ∈ Σ

is a Radon measure on Rr.

proof For the construction of ν ′, see 234I-234L. Indefinite-integral measures, as I define them, are always
complete (234I). ν ′ is locally finite because f is locally integrable. ν ′ is a topological measure because every
open set belongs to Σ and therefore to the domain Σ′ of ν ′. To see that ν ′ is inner regular with respect to
the compact sets, take any set E ∈ Σ′, and set E′ = {x : x ∈ E ∩ dom f, f(x) > 0}. Then E′ ∈ Σ, so there
is a set H ⊆ E′, expressible as the union of a sequence of compact sets, such that ν(E′ \H) = 0. In this
case

ν ′(E \H) =
∫
E\H fdν = 0.

Let 〈Kn〉n∈N be a sequence of compact sets with union H; then

ν ′E = ν ′H = limn→∞ ν ′(
⋃

i≤nKi) ≤ supK⊆E is compact ν
′K ≤ ν ′E.

As E is arbitrary, ν ′ is inner regular with respect to the compact sets.

256F Theorem Let ν be a Radon measure on Rr, and Σ its domain. Let f : D → R be a Σ-measurable
function, where D ⊆ Rr. Then for every ǫ > 0 there is a closed set F ⊆ Rr such that ν(Rr \ F ) ≤ ǫ and
f↾F is continuous.

proof By 121I, there is a Σ-measurable function h : Rr → R extending f . Enumerate Q as 〈qn〉n∈N. For
each n ∈ N set En = {x : h(x) ≤ qn}, E′

n = {x : h(x) > qn} and use 256Bb to choose closed sets Fn ⊆ En,
F ′
n ⊆ E′

n such that ν(En \ Fn) ≤ 2−n−2ǫ and ν(E′
n \ F ′

n) ≤ 2−n−2ǫ. Set F =
⋂

n∈N(Fn ∪ F ′
n); then F is

closed and

ν(Rr \ F ) ≤ ∑∞
n=0 ν(R

r \ (Fn ∪ F ′
n)) ≤

∑∞
n=0 ν(En \ Fn) + ν(E′

n \ F ′
n) ≤ ǫ.

I claim that h↾F is continuous. PPP Suppose that x ∈ F and δ > 0. Then there are m, n ∈ N such that

h(x)− δ ≤ qm < h(x) ≤ qn ≤ h(x) + δ.

This means that x ∈ E′
m ∩ En; consequently x /∈ Fm ∪ F ′

n. Because Fm ∪ F ′
n is closed, there is an η > 0

such that y /∈ Fm ∪ F ′
n whenever ‖y − x‖ ≤ η. Now suppose that y ∈ F and ‖y − x‖ ≤ η. Then
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y ∈ (Fm ∪F ′
m)∩ (Fn ∪F ′

n) and y /∈ Fm ∪F ′
n, so y ∈ F ′

m ∩Fn ⊆ E′
m ∩En and qm < h(y) ≤ qn. Consequently

|h(y) − h(x)| ≤ δ. As x and δ are arbitrary, h↾F is continuous. QQQ It follows that f↾F = (h↾F )↾D is
continuous, as required.

256G Theorem Let ν be a Radon measure on Rr, with domain Σ, and suppose that φ : Rr → Rs is
measurable in the sense that all its coordinates are Σ-measurable. If the image measure ν ′ = νφ−1 (234D)
is locally finite, it is a Radon measure.

proof Write Σ′ for the domain of ν ′. If φ = (φ1, . . . , φs), then

φ−1[{y : ηj ≤ α}] = {x : φj(x) ≤ α} ∈ Σ,

so {y : ηj ≤ α} ∈ Σ′ for every j ≤ s, α ∈ R, where I write y = (η1, . . . , ηs) for y ∈ Rs. Consequently every
Borel subset of Rs belongs to Σ′ (121J), and ν ′ is a topological measure. It is complete by 234Eb.

The point is of course that ν ′ is inner regular with respect to the compact sets. PPP Suppose that F ∈ Σ′

and that γ < ν ′F . For each j ≤ s, there is a closed set Hj ⊆ Rr such that φj↾Hj is continuous and
ν(Rr \Hj) <

1
s (ν

′F − γ), by 256F. Set H =
⋂

j≤sHj ; then H is closed and φ↾H is continuous and

ν(Rr \H) < ν ′F − γ = νφ−1[F ]− γ,

so that ν(φ−1[F ] ∩H) > γ. Let K ⊆ φ−1[F ] ∩H be a compact set such that νK ≥ γ, and set L = φ[K].
Because K ⊆ H and φ↾H is continuous, L is compact (2A2Eb). Of course L ⊆ F , and

ν ′L = νφ−1[L] ≥ νK ≥ γ.

As F and γ are arbitrary, ν ′ is inner regular with respect to the compact sets. QQQ
Since ν ′ is locally finite by the hypothesis of the theorem, it is a Radon measure.

256H Examples I come at last to the promised examples.

(a) Lebesgue measure on Rr is a Radon measure. (It is a topological measure by 115G, and inner regular
with respect to the compact sets by 134Fb.)

(b) A point-supported measure on Rr is a Radon measure iff it is locally finite. PPP Let µ be a point-
supported measure on Rr. If it is a Radon measure, then of course it is locally finite. If it is locally finite,
then surely it is a complete topological measure, since it measures every subset of Rr. Let h : Rr → [0,∞]
be such that µE =

∑
x∈E h(x) for every E ⊆ Rr. Take any E ⊆ Rr. Then

µE =
∑

x∈E

h(x) = sup
I⊆E is finite

∑

x∈I

h(x)

= sup
I⊆E is finite

µI ≤ sup
K⊆E is compact

µK ≤ µE

so µE = supK⊆E is compact µK; thus µ is inner regular with respect to the compact sets and is a Radon
measure. QQQ

(c) Now we come to a new idea. Recall that the Cantor set C (134G) is a closed Lebesgue negligible
subset of [0, 1], and that the Cantor function (134H) is a non-decreasing continuous function f : [0, 1] → [0, 1]
such that f(0) = 0, f(1) = 1 and f is constant on each of the intervals composing [0, 1] \ C. It follows that
if we set g(x) = 1

2 (x+ f(x)) for x ∈ [0, 1], then g : [0, 1] → [0, 1] is a continuous permutation such that the

Lebesgue measure of g[C] is 1
2 (134I); consequently g−1 : [0, 1] → [0, 1] is continuous. Now extend g to a

permutation h : R → R by setting h(x) = x for x ∈ R \ [0, 1]. Then h and h−1 are continuous. Note that
h[C] = g[C] has Lebesgue measure 1

2 .
Let ν1 be the indefinite-integral measure defined from Lebesgue measure µ on R and the function 2χ(h[C]);

that is, ν1E = 2µ(E∩h[C]) whenever this is defined. By 256E, ν1 is a Radon measure, and ν1h[C] = ν1R = 1.
Let ν be the measure ν1(h

−1)−1, that is, νE = ν1h[E] for just those E ⊆ R such that h[E] ∈ dom ν1. Then
ν is a Radon probability measure on R, by 256G, and νC = 1, ν(R \ C) = µC = 0.

256I Remarks (a) The measure ν of 256Hc, sometimes called Cantor measure, is a classic example,
and as such has many constructions, some rather more natural than the one I use here (see 256Xk, and also
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264Ym below). But I choose the method above because it yields directly, without further investigation or
any appeal to more advanced general theory, the fact that ν is a Radon measure.

(b) The examples above are chosen to represent the extremes under the ‘Lebesgue decomposition’ de-
scribed in 232I. If ν is a (totally finite) Radon measure on Rr, we can use 232Ib to express its restriction
ν↾B to the Borel σ-algebra as νp + νac + νcs, where νp is the ‘point-mass’ or ‘atomic’ part of ν↾B, νac is the
‘absolutely continuous’ part (with respect to Lebesgue measure), and νcs is the ‘atomless singular part’. In
the example of 256Hb, we have ν↾B = νp; in 256E, if we start from Lebesgue measure, we have ν↾B = νac;
and in 256Hc we have ν↾B = νcs.

256J Absolutely continuous Radon measures It is worth pausing a moment over the indefinite-
integral measures described in 256E.

Proposition Let ν be a Radon measure on Rr, and write µ for Lebesgue measure on Rr. Then the following
are equiveridical:

(i) ν is an indefinite-integral measure over µ;
(ii) νE = 0 whenever E is a Borel subset of Rr and µE = 0.

In this case, if g ∈ L
0(µ) and

∫
E
g dµ = νE for every Borel set E ⊆ Rr, then g is a Radon-Nikodým

derivative of ν with respect to µ in the sense of 232Hf.

proof (a)(i)⇒(ii) If f is a Radon-Nikodým derivative of ν with respect to µ, then of course

νE =
∫
E
fdµ = 0

whenever µE = 0.

(ii)⇒(i) If νE = 0 for every µ-negligible Borel set E, then νE is defined and equal to 0 for every
µ-negligible set E, because ν is complete and any µ-negligible set is included in a µ-negligible Borel set.
Consequently dom ν includes the domain Σ of µ, since every Lebesgue measurable set is expressible as the
union of a Borel set and a negligible set.

For each n ∈ N set En = {x : n ≤ ‖x‖ < n+ 1}, so that 〈En〉n∈N is a partition of Rr into bounded Borel
sets. Set νnE = ν(E ∩ En) for every Lebesgue measurable set E and every n ∈ N. Now νn is absolutely
continuous with respect to µ (232Ba), so by the Radon-Nikodým theorem (in the form 232F) there is a
µ-integrable function fn such that

∫
E
fndµ = νnE for every Lebesgue measurable set E. Because νnE ≥ 0

for every E ∈ Σ, fn ≥ 0 a.e.; because νn(R
r \ En) = 0, fn = 0 a.e. on Rr \ En. Now if we set

f = max(0,
∑∞

n=0 fn),

f will be defined µ-a.e. and we shall have∫
E
fdµ =

∑∞
n=0

∫
E
fndµ =

∑∞
n=0 ν(E ∩ En) = νE

for every Borel set E, so that the indefinite-integral measure ν ′ defined by f and µ agrees with ν on the
Borel sets. Since this ensures that ν ′ is locally finite, ν ′ is a Radon measure, by 256E, and is equal to ν, by
256D. Accordingly ν is an indefinite-integral measure over µ.

(b) As in (a-ii) above, g must be locally integrable and the indefinite-integral measure defined by g agrees
with ν on the Borel sets, so is identical with ν.

256K Products The class of Radon measures on Euclidean spaces is stable under a wide variety of
operations, as we have already seen; in particular, we have the following.

Theorem Let ν1, ν2 be Radon measures on Rr and Rs respectively. Let λ be their c.l.d. product measure
on Rr × Rs. Then λ is a Radon measure.

Remark When I say that λ is ‘Radon’ according to the definition in 256A, I am of course identifying Rr×Rs

with Rr+s, as in 251M-251N.

proof I hope the following notation will seem natural. Write Σ1, Σ2 for the domains of ν1, ν2; Br, Bs for
the Borel σ-algebras of Rr, Rs; Λ for the domain of λ; and B for the Borel σ-algebra of Rr+s.
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Because each νi is the completion of its restriction to the Borel sets (256C), λ is the product of ν1↾Br

and ν2↾Bs (251T). Because ν1↾Br and ν2↾Bs are σ-finite (256Ba, 212Ga), λ must be the completion of its
restriction to Br⊗̂Bs, which by 251M is identified with B. Setting Qn = {(x, y) : ‖x‖ ≤ n, ‖y‖ ≤ n} we have

λQn = ν1{x : ‖x‖ ≤ n} · ν2{y : ‖y‖ ≤ n} <∞
for every n, while every bounded subset of Rr+s is included in some Qn. So λ↾B is locally finite, and its
completion λ is a Radon measure, by 256C.

256L Remark We see from 253I that if ν1 and ν2 are Radon measures on Rr and Rs respectively, and
both are indefinite-integral measures over Lebesgue measure, then their product measure on Rr+s is also an
indefinite-integral measure over Lebesgue measure.

*256M For the sake of applications in §286 below, I include another result, which is in fact one of the
fundamental properties of Radon measures, as will appear in §414.
Proposition Let ν be a Radon measure on Rr, and D any subset of Rr. Let Φ be a non-empty upwards-
directed family of non-negative continuous functions from D to R. For x ∈ D set g(x) = supf∈Φ f(x) in
[0,∞]. Then

(a) g : D → [0,∞] is lower semi-continuous, therefore Borel measurable;
(b)

∫
D
g dν = supf∈Φ

∫
D
fdν.

proof (a) For any u ∈ [−∞,∞],

{x : x ∈ D, g(x) > u} =
⋃

f∈Φ{x : x ∈ D, f(x) > u}
is an open set for the subspace topology on D (2A3C), so is the intersection of D with a Borel subset of Rr.
This is enough to show that g is Borel measurable (121B-121C).

(b) Accordingly
∫
D
g dν will be defined in [0,∞], and of course

∫
D
g dν ≥ supf∈Φ

∫
D
fdν.

For the reverse inequality, observe that there is a countable set Ψ ⊆ Φ such that g(x) = supf∈Ψ f(x) for
every x ∈ D. PPP For a ∈ Q, q, q′ ∈ Qr set

Φaqq′ = {f : f ∈ Φ, f(y) > a whenever y ∈ D ∩ [q, q′]},
interpreting [q, q′] as in 115G. Choose faqq′ ∈ Φaqq′ if Φaqq′ is not empty, and arbitrarily in Φ otherwise;
and set Ψ = {faqq′ : a ∈ Q, q, q′ ∈ Qr}, so that Ψ is a countable subset of Φ. If x ∈ D and b < g(x), there

is an a ∈ Q such that b ≤ a < g(x); there is an f̂ ∈ Φ such that f̂(x) > a; because f̂ is continuous, there

are q, q′ ∈ Qr such that q ≤ x ≤ q′ and f̂(y) ≥ a whenever y ∈ D ∩ [q, q′]; so that f̂ ∈ Φaqq′ , Φaqq′ 6= ∅,
faqq′ ∈ Φaqq′ and supf∈Ψ f(x) ≥ faqq′(x) ≥ b. As b is arbitrary, g(x) = supf∈Ψ f(x). QQQ

Let 〈fn〉n∈N be a sequence running over Ψ. Because Φ is upwards-directed, we can choose 〈f ′n〉n∈N in Φ
inductively in such a way that f ′n+1 ≥ max(f ′n, fn) for every n ∈ N. So 〈f ′n〉n∈N is a non-decreasing sequence
in Φ and supn∈N f

′
n(x) ≥ supf∈Ψ f(x) = g(x) for every x ∈ D. By B.Levi’s theorem,

∫
D
g dν ≤ supn∈N

∫
D
f ′ndν ≤ supf∈Φ

∫
D
fdν,

and we have the required inequality.

256X Basic exercises >>>(a) Let ν be a measure on Rr. (i) Show that it is locally finite, in the sense of
256Ab, iff for every x ∈ Rr there is a δ > 0 such that ν∗B(x, δ) <∞. (Hint : the sets B(0, n) are compact.)
(ii) Show that in this case ν is σ-finite.

>>>(b) Let ν be a Radon measure on Rr and G a non-empty upwards-directed family of open sets in Rr.
(i) Show that ν(

⋃G) = supG∈G νG. (Hint : observe that if K ⊆ ⋃G is compact, then K ⊆ G for some
G ∈ G.) (ii) Show that ν(E ∩⋃G) = supG∈G ν(E ∩G) for every set E which is measured by ν.

>>>(c) Let ν be a Radon measure on Rr and F a non-empty downwards-directed family of closed sets in
Rr such that infF∈F νF <∞. (i) Show that ν(

⋂F) = infF∈F νF . (Hint : apply 256Xb(ii) to G = {Rr \F :
F ∈ F}.) (ii) Show that ν(E ∩⋂F) = infF∈F ν(E ∩ F ) for every E in the domain of ν.
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>>>(d) Show that a Radon measure ν on Rr is atomless iff ν{x} = 0 for every x ∈ Rr. (Hint : apply 256Xc
with F = {F : F ⊆ E is closed, not negligible}.)

(e) Let ν1, ν2 be Radon measures on Rr, and α1, α2 ∈ ]0,∞[. Set Σ = dom ν1 ∩ dom ν2, and for E ∈ Σ
set νE = α1ν1E + α2ν2E. Show that ν is a Radon measure on Rr. Show that ν is an indefinite-integral
measure over Lebesgue measure iff ν1, ν2 are, and that in this case a linear combination of of Radon-Nikodým
derivatives of ν1 and ν2 is a Radon-Nikodým derivative of ν.

>>>(f) Let ν be a Radon measure on Rr. (i) Show that there is a unique closed set F ⊆ Rr such that, for
open sets G ⊆ Rr, νG > 0 iff G ∩ F 6= ∅. (F is called the support of ν.) (ii) Generally, a set A ⊆ Rr is
called self-supporting if ν∗(A ∩G) > 0 whenever G ⊆ Rr is an open set meeting A. Show that for every
closed set F ⊆ Rr there is a unique self-supporting closed set F ′ ⊆ F such that ν(F \ F ′) = 0.

>>>(g) Show that a measure ν on R is a Radon measure iff it is a Lebesgue-Stieltjes measure as described
in 114Xa. Show that in this case ν is an indefinite-integral measure over Lebesgue measure iff the function
x 7→ ν[a, x] : [a, b] → R is absolutely continuous whenever a ≤ b in R.

(h) Let ν be a Radon measure on Rr. Let Ck be the space of continuous real-valued functions on Rr with
bounded supports. Show that for every ν-integrable function f and every ǫ > 0 there is a g ∈ Ck such that∫
|f − g|dν ≤ ǫ. (Hint : use arguments from 242O, but in (a-i) of the proof there start with closed intervals

I.)

(i) Let ν be a Radon measure on Rr, and ν∗ the corresponding outer measure. Show that νA = inf{νG :
G ⊇ A is open} for every set A ⊆ Rr.

(j) Let ν, ν ′ be two Radon measures on Rr, and suppose that νI = ν ′I for every half-open interval
I ⊆ Rr (definition: 115Ab). Show that ν = ν ′.

(k) Let ν be Cantor measure (256Hc). (i) Show that if Cn is the nth set used in the construction of
the Cantor set, so that Cn consists of 2n intervals of length 3−n, then νI = 2−n for each of the intervals
I composing Cn. (ii) Let λ be the usual measure on {0, 1}N (254J). Define φ : {0, 1}N → R by setting
φ(x) = 2

3

∑∞
n=0 3

−nx(n) for each x ∈ {0, 1}N. Show that φ is a bijection between {0, 1}N and C. (iii) Show

that if B is the Borel σ-algebra of R, then {φ−1[E] : E ∈ B} is precisely the σ-algebra of subsets of {0, 1}N
generated by the sets {x : x(n) = i} for n ∈ N, i ∈ {0, 1}. (iv) Show that φ is an isomorphism between
({0, 1}N, λ) and (C, νC), where νC is the subspace measure on C induced by ν.

(l) Let ν and ν ′ be two Radon measures on Rr. Show that ν ′ is an indefinite-integral measure over ν iff
ν ′E = 0 whenever νE = 0, and in this case a function f is a Radon-Nikodým derivative of ν ′ with respect
to ν iff

∫
E
fdν = ν ′E for every Borel set E.

256Y Further exercises (a) Let ν be a Radon measure on Rr, and X any subset of Rr; let νX be
the subspace measure on X and ΣX its domain, and give X its subspace topology. Show that νX has
the following properties: (i) νX is complete and locally determined; (ii) every open subset of X belongs to
ΣX ; (iii) νXE = sup{νXF : F ⊆ E is closed in X} for every E ∈ ΣX ; (iv) whenever G is a non-empty
upwards-directed family of open subsets of X, νX(

⋃G) = supG∈G νXG; (v) every point of X belongs to an
open set of finite measure.

(b) Let ν be a Radon measure on Rr, with domain Σ, and f : Rr → R a function. Show that the
following are equiveridical: (i) f is Σ-measurable; (ii) for every non-negligible set E ∈ Σ there is a non-
negligible F ∈ Σ such that F ⊆ E and f↾F is continuous; (iii) for every set E ∈ Σ, νE = supK∈Kf ,K⊆E νK,

where Kf = {K : K ⊆ Rr is compact, f↾K is continuous}. (Hint : for (ii)⇒(i), apply 215B(iv) to Kf .)

(c) Take ν, X, νX and ΣX as in 256Ya. Suppose that f : X → R is a function. Show that f is ΣX -
measurable iff for every non-negligible measurable set E ⊆ X there is a non-negligible measurable F ⊆ E
such that f↾F is continuous.
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(d)(i) Let λ be the usual measure on {0, 1}N. Define ψ : {0, 1}N → {0, 1}N by setting ψ(x)(i) = x(i+ 1)
for x ∈ {0, 1}N and j ∈ N. Show that ψ is inverse-measure-preserving. (ii) Define θ : R → R by setting
θ(t) = <3t> = 3t−⌊3t⌋ for t ∈ R. Show that θ is inverse-measure-preserving for Cantor measure as defined
in 256Hc.

(e) Let 〈νn〉n∈N be a sequence of Radon measures on Rr. Show that there is a Radon measure ν on
Rr such that every νn is an indefinite-integral measure over ν. (Hint : find a sequence 〈αn〉n∈N of strictly
positive numbers such that

∑∞
n=0 αnνnB(0, k) < ∞ for every k, and set ν =

∑∞
n=0 αnνn, using the idea of

256Xe.)

(f) A set G ⊆ RN is open if for every x ∈ G there are n ∈ N, δ > 0 such that

{y : y ∈ RN, |y(i)− x(i)| < δ for every i ≤ n} ⊆ G.

The Borel σ-algebra of RN is the σ-algebra B of subsets of RN generated, in the sense of 111Gb, by the
family T of open sets. (i) Show that T is a topology (2A3A). (ii) Show that a filter F on RN converges to
x ∈ RN iff πi[[F ]] → x(i) for every i ∈ N, where πi(y) = y(i) for i ∈ N, y ∈ RN. (iii) Show that B is the
σ-algebra generated by sets of the form {x : x ∈ RN, x(i) ≤ a}, where i runs over N and a runs over R. (iv)
Show that if αi ≥ 0 for every i ∈ N, then {x : |x(i)| ≤ αi ∀ i ∈ N} is compact. (v) Show that any open set in
RN is the union of a sequence of closed sets. (Hint : look at sets of the form {x : qi ≤ x(i) ≤ q′i ∀ i ≤ n}, where
qi, q

′
i ∈ Q for i ≤ n.) (vi) Show that if ν0 is any probability measure with domain B, then its completion

ν is inner regular with respect to the compact sets, and therefore may be called a ‘Radon measure on RN’.
(Hint : show that there are compact sets of measure arbitrarily close to 1, and therefore that every open set,
and every closed set, includes a Kσ set of the same measure.)

256 Notes and comments Radon measures on Euclidean spaces are very special, and the results of this
section do not give clear pointers to the direction the theory takes when applied to other kinds of topological
space. With the material here you could make a stab at developing a theory of Radon measures on complete
separable metric spaces, provided you use 256Xa as the basis for your definition of ‘locally finite’. These
are the spaces for which a version of 256C is true. (See 256Yf.) But for generalizations to other types of
topological space, and for the more interesting parts of the theory on Rr, I must ask you to wait for Volume
4. My purpose in introducing Radon measures here is strictly limited; I wish only to give a basis for §257
and §271 sufficiently solid not to need later revision. In fact I think that all we really need are the Radon
probability measures.

The chief technical difficulty in the definition of ‘Radon measure’ here lies in the insistence on complete-
ness. It may well be that for everything studied in this volume, it would be simpler to look at locally finite
measures with domain the algebra of Borel sets. This would involve us in a number of circumlocutions
when dealing with Lebesgue measure itself and its derivates, since Lebesgue measure is defined on a larger
σ-algebra; but the serious objection arises in the more advanced theory, when non-Borel sets of various
kinds become central. Since my aim in this book is to provide secure foundations for the study of all aspects
of measure theory, I ask you to take a little extra trouble now in order to avoid the possibility of having
to re-work all your ideas later. The extra trouble arises, for instance, in 256D, 256Xe and 256Xj; since
different Radon measures are defined on different σ-algebras, we have to check that two Radon measures
which agree on the compact sets, or on the open sets, have the same domains. On the credit side, some of
the power of 256G arises from the fact that the Radon image measure νφ−1 is defined on the whole σ-algebra
{F : φ−1[F ] ∈ dom(ν)}, not just on the Borel sets.

The further technical point that Radon measures are expected to be locally finite gives less difficulty;
its effect is that from most points of view there is little difference between a general Radon measure and
a totally finite Radon measure. The extra condition which obviously has to be put into the hypotheses of
such results as 256E and 256G is no burden on either intuition or memory.

In effect, we have two definitions of Radon measures on Euclidean spaces: they are the inner regular
locally finite topological measures, and they are also the completions of the locally finite Borel measures.
The equivalence of these definitions is Theorem 256C. The latter definition is the better adapted to 256K,
and the former to 256G. The ‘inner regularity’ of the basic definition refers to compact sets; we also have
forms of inner regularity with respect to closed sets (256Bb) and Kσ sets (256Bc), and a complementary
notion of ‘outer regularity’ with respect to open sets (256Xi).
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257 Convolutions of measures

The ideas of this chapter can be brought together in a satisfying way in the theory of convolutions of
Radon measures, which will be useful in §272 and again in §285. I give just the definition (257A) and the
central property (257B) of the convolution of totally finite Radon measures, with a few corollaries and a
note on the relation between convolution of functions and convolution of measures (257F).

257A Definition Let r ≥ 1 be an integer and ν1, ν2 two totally finite Radon measures on Rr. Let
λ be the product measure on Rr × Rr; then λ also is a (totally finite) Radon measure, by 256K. Define
φ : Rr × Rr → Rr by setting φ(x, y) = x + y; then φ is continuous, therefore measurable in the sense of
256G. The convolution of ν1 and ν2, ν1 ∗ν2, is the image measure λφ−1; by 256G, this is a Radon measure.

Note that if ν1 and ν2 are Radon probability measures, then λ and ν1 ∗ ν2 are also probability measures.

257B Theorem Let r ≥ 1 be an integer, and ν1 and ν2 two totally finite Radon measures on Rr; let
ν = ν1 ∗ ν2 be their convolution, and λ their product on Rr × Rr. Then for any real-valued function h
defined on a subset of Rr, ∫

h(x+ y)λ(d(x, y)) exists =
∫
h(x)ν(dx)

if either integral is defined in [−∞,∞].

proof Apply 235J with J(x, y) = 1, φ(x, y) = x+ y for all x, y ∈ Rr.

257C Corollary Let r ≥ 1 be an integer, and ν1, ν2 two totally finite Radon measures on Rr; let
ν = ν1 ∗ ν2 be their convolution, and λ their product on Rr × Rr; write Λ for the domain of λ. Let h be a
Λ-measurable function defined λ-almost everywhere in Rr. Suppose that any one of the integrals∫∫

|h(x+ y)|ν1(dx)ν2(dy),
∫∫

|h(x+ y)|ν2(dy)ν1(dx),
∫
h(x+ y)λ(d(x, y))

exists and is finite. Then h is ν-integrable and∫
h(x)ν(dx) =

∫∫
h(x+ y)ν1(dx)ν2(dy) =

∫∫
h(x+ y)ν2(dy)ν1(dx).

proof Put 257B together with Fubini’s and Tonelli’s theorems (252H).

257D Corollary If ν1 and ν2 are totally finite Radon measures on Rr, then ν1 ∗ ν2 = ν2 ∗ ν1.
proof For any Borel set E ⊆ Rr, apply 257C to h = χE to see that

(ν1 ∗ ν2)(E) =

∫∫
χE(x+ y)ν1(dx)ν2(dy) =

∫∫
χE(x+ y)ν2(dy)ν1(dx)

=

∫∫
χE(y + x)ν2(dy)ν1(dx) = (ν2 ∗ ν1)(E).

Thus ν1 ∗ ν2 and ν2 ∗ ν1 agree on the Borel sets of Rr; because they are both Radon measures, they must
be identical (256D).

257E Corollary If ν1, ν2 and ν3 are totally finite Radon measures on Rr, then (ν1∗ν2)∗ν3 = ν1∗(ν2∗ν3).
proof For any Borel set E ⊆ Rr, apply 257B to h = χE to see that

((ν1 ∗ ν2) ∗ ν3)(E) =

∫∫
χE(x+ z)(ν1 ∗ ν2)(dx)ν3(dz)

=

∫∫∫
χE(x+ y + z)ν1(dx)ν2(dy)ν3(dz)

(because x 7→ χE(x+ z) is Borel measurable for every z)

c© 1995 D. H. Fremlin
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=

∫∫
χE(x+ y)ν1(dx)(ν2 ∗ ν3)(dy)

(because (x, y) 7→ χE(x+ y) is Borel measurable, so y 7→
∫
χE(x+ y)ν1(dx) is (ν2 ∗ ν3)-integrable)

= (ν1 ∗ (ν2 ∗ ν3))(E).

Thus (ν1 ∗ ν2) ∗ ν3 and ν1 ∗ (ν2 ∗ ν3) agree on the Borel sets of Rr; because they are both Radon measures,
they must be identical.

257F Theorem Suppose that ν1 and ν2 are totally finite Radon measures on Rr which are indefinite-
integral measures over Lebesgue measure µ. Then ν1 ∗ ν2 also is an indefinite-integral measure over µ; if f1
and f2 are Radon-Nikodým derivatives of ν1, ν2 respectively, then f1 ∗ f2 is a Radon-Nikodým derivative of
ν1 ∗ ν2.
proof By 255H/255L, f1 ∗ f2 is integrable with respect to µ, with

∫
f1 ∗ f2dµ = 1, and of course f1 ∗ f2 is

non-negative. If E ⊆ Rr is a Borel set,

∫

E

f1 ∗ f2dµ =

∫∫
χE(x+ y)f1(x)f2(y)µ(dx)µ(dy)

(255G)

=

∫∫
χE(x+ y)f2(y)ν1(dx)µ(dy)

(because x 7→ χE(x+ y) is Borel measurable)

=

∫∫
χE(x+ y)ν1(dx)ν2(dy)

(because (x, y) 7→ χE(x+ y) is Borel measurable, so y 7→
∫
χE(x+ y)ν1(dx) is ν2-integrable)

= (ν1 ∗ ν2)(E).

So f1 ∗ f2 is a Radon-Nikodým derivative of ν with respect to µ, by 256J.

257X Basic exercises >>>(a) Let r ≥ 1 be an integer. Let δ0 be the Dirac measure on Rr concentrated
at 0. Show that δ0 is a Radon probability measure on Rr and that δ0 ∗ ν = ν for every totally finite Radon
measure on Rr.

(b) Let µ and ν be totally finite Radon measures on Rr, and E any set measured by their convolution
µ ∗ ν. Show that

∫
µ(E − y)ν(dy) is defined in [0,∞] and equal to (µ ∗ ν)(E).

(c) Let ν1, . . . , νn be totally finite Radon measures on Rr, and let ν be the convolution ν1 ∗ . . .∗νn (using
257E to see that such a bracketless expression is legitimate). Show that∫

h(x)ν(dx) =
∫
. . .

∫
h(x1 + . . .+ xn)ν1(dx1) . . . νn(dxn)

for every ν-integrable function h.

(d) Let ν1 and ν2 be totally finite Radon measures on Rr, with supports F1, F2 (256Xf). Show that the

support of ν1 ∗ ν2 is {x+ y : x ∈ F1, y ∈ F2}.

>>>(e) Let ν1 and ν2 be totally finite Radon measures on Rr, and suppose that ν1 has a Radon-Nikodým
derivative f with respect to Lebesgue measure µ. Show that ν1 ∗ ν2 has a Radon-Nikodým derivative g,
where g(x) =

∫
f(x− y)ν2(dy) for µ-almost every x ∈ Rr.

(f) Suppose that ν1, ν2, ν
′
1 and ν′2 are totally finite Radon measures on Rr, and that ν′1, ν

′
2 are absolutely

continuous with respect to ν1, ν2 respectively. Show that ν′1 ∗ ν′2 is absolutely continuous with respect to
ν1 ∗ ν2.
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257Y Further exercises (a) LetM be the space of countably additive functionals defined on the algebra
B of Borel subsets of R, with its norm ‖ν‖ = |ν|(R) (see 231Yh). (i) Show that we have a unique bilinear
operator ∗ :M ×M →M such that (µ1↾B) ∗ (µ2↾B) = (µ1 ∗ µ2)↾B for all totally finite Radon measures µ1,
µ2 on R. (ii) Show that ∗ is commutative and associative. (iii) Show that ‖ν1 ∗ ν2‖ ≤ ‖ν1‖‖ν2‖ for all ν1,
ν2 ∈ M , so that M is a Banach algebra under this multiplication. (iv) Show that M has a multiplicative
identity. (v) Show that L1(µ) can be regarded as a closed subalgebra of M , where µ is Lebesgue measure
on Rr (cf. 255Xi).

(b) Let us say that a Radon measure on ]−π, π] is a complete measure ν on ]−π, π] such that (i) every
Borel subset of ]−π, π] belongs to the domain Σ of µ (ii) for every E ∈ Σ there are Borel sets E1, E2 such
that E1 ⊆ E ⊆ E2 and ν(E2 \ E1) = 0 (iii) every compact subset of ]−π, π] has finite measure. Show that
for any two totally finite Radon measures ν1, ν2 on ]−π, π] there is a unique totally finite Radon measure ν
on ]−π, π] such that ∫

h(x)ν(dx) =
∫
h(x+2π y)ν1(dx)ν2(dy)

for every ν-integrable function h, where +2π is defined as in 255Ma.

257 Notes and comments Of course convolution of functions and convolution of measures are very closely
connected; the obvious link being 257F, but the correspondence between 255G and 257B is also very marked.
In effect, they give us the same notion of convolution u ∗ v when u, v are positive members of L1 and u ∗ v
is interpreted in L1 rather than as a function (257Ya). But we should have to go rather deeper than the
arguments here to find ideas in the theory of convolution of measures to correspond to such results as 255K.
I will return to questions of this type in §444 in Volume 4.

All the theorems of this section can be extended to general abelian locally compact Hausdorff topological
groups; but for such generality we need much more advanced ideas (see §444), and for the moment I leave
only the suggestion in 257Yb that you should try to adapt the ideas here to ]−π, π] or S1.

Version of 10.11.06

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

251N Paragraph numbers in the second half of §251, referred to in editions of Volumes 3 and 4 up to
and including 2006, and in Bogachev 07, have been changed, so that 251M-251S are now 251N-251T.

252Yf Exercise This exercise, referred to in the first edition of Volume 1, has been moved to 252Ym.

254Yh Exercise This exercise, referred to in the 2013 edition of Volume 4, has been moved to 254Ye.
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