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Chapter 25
Product Measures

I come now to another chapter on ‘pure’ measure theory, discussing a fundamental construction — or,
as you may prefer to consider it, two constructions, since the problems involved in forming the product
of two arbitrary measure spaces (§251) are rather different from those arising in the product of arbitrarily
many probability spaces (§254). This work is going to stretch our technique to the utmost, for while the
fundamental theorems to which we are moving are natural aims, the proofs are lengthy and there are many
pitfalls beside the true paths.

The central idea is that of ‘repeated integration’. You have probably already seen formulae of the type
“[] f(z,y)dzdy’ used to calculate the integral of a function of two real variables over a region in the plane.
One of the basic techniques of advanced calculus is reversing the order of integration; for instance, we expect
fol(fyl f(x,y)dz)dy to be equal to fol (fy f(z,y)dy)dz. As 1 have developed the subject, we already have a

third calculation to compare with these two: [, f, where D = {(z,y) : 0 < y < = < 1} and the integral
is taken with respect to Lebesgue measure on the plane. The first two sections of this chapter are devoted
to an analysis of the relationship between one- and two-dimensional Lebesgue measure which makes these
operations valid — some of the time; part of the work has to be devoted to a careful description of the exact
conditions which must be imposed on f and D if we are to be safe.

Repeated integration, in one form or another, appears everywhere in measure theory, and it is therefore
necessary sooner or later to develop the most general possible expression of the idea. The standard method
is through the theory of products of general measure spaces. Given measure spaces (X, %, u) and (Y, T,v),
the aim is to find a measure A on X x Y which will, at least, give the right measure pF - vF' to a ‘rectangle’
E x F where E € ¥ and F € T. It turns out that there are already difficulties in deciding what ‘the’
product measure is, and to do the job properly I find I need, even at this stage, to describe two related
but distinguishable constructions. These constructions and their elementary properties take up the whole
of §251. In §252 I turn to integration over the product, with Fubini’s and Tonelli’s theorems relating
[ fax with [[ f(z,y)u(dx)v(dy). Because the construction of A is symmetric between the two factors, this
automatically provides theorems relating [ f(xz, y)u(dz)v(dy) with [[ f(z,y)v(dy)pu(dz). §253 looks at the
space L'()\) and its relationship with L!(x) and L!(v).

For general measure spaces, there are obstacles in the way of forming an infinite product; to start with,
if ((Xn, tn))nen is a sequence of measure spaces, then a product measure A on X = [[, .y X, ought to set
AX = [12 o #nXy, and there is no guarantee that the product will converge, or behave well when it does.
But for probability spaces, when pu,, X,, = 1 for every n, this problem at least evaporates. It is possible to
define the product of any family of probability spaces; this is the burden of §254.

I end the chapter with three sections which are a preparation for Chapters 27 and 28, but are also
important in their own right as an investigation of the way in which the group structure of R" interacts with
Lebesgue and other measures. §255 deals with the ‘convolution’ f * g of two functions, where (f * g)(x) =
J f(y)g(x —y)dy (the integration being with respect to Lebesgue measure). In §257 I show that some of the
same ideas, suitably transformed, can be used to describe a convolution v; * 15 of two measures on R”; in
preparation for this I include a section on Radon measures on R" (§256).

Version of 10.11.06
251 Finite products

The first construction to set up is the product of a pair of measure spaces. It turns out that there are
already substantial technical difficulties in the way of finding a canonical universally applicable method. I
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2 Product measures 8251 intro.

find myself therefore describing two related, but distinct, constructions, the ‘primitive’ and ‘c.l.d.” product
measures (251C, 251F). After listing the fundamental properties of the c.l.d product measure (2511-251J), I
work through the identification of the product of Lebesgue measure with itself (251N) and a fairly thorough
discussion of subspaces (2510-251S).

251 A Definition Let (X, %, u) and (Y, T, v) be two measure spaces. For A C X x Y set

0A =inf{} " uE, -vF, :E, €%, F, e TV neN AC,cnEn x Fo}.

Remark In the products uF, - vF,, 0- oo is to be taken as 0, as in §135.

251B Lemma In the context of 251A, 0 is an outer measure on X x Y.
proof (a) Setting E,, = F,, = () for every n € N, we see that 60 = 0.
(b) If AC B C X xY, then whenever B C | J,, oy B x Fy, we shall have A C |, oy En X Fp; s0 0A < 0B.

(c) Let (A,)nen be a sequence of subsets of X x Y, with union A. For any ¢ > 0, we may choose,
for each n € N, sequences (Enm)men in X and (Fpum)men in T such that A, C {U,,cny Enm X Frum and
Zfi:o wE i vFym < 0A,+27"¢. Because NxN is countable, we have a bijection k& — (ng, my) : N — NxN|
and now

A - Un,mEN Enm X an = UkEN Enkmk X Fnkmk;

so that
9] 0o 00
k=0 n=0m=0

< i@An + 27" =2+ i@An.
n=0 n=0

As e is arbitrary, 04 < Y 0A,.
As (A, )nen is arbitrary, 6 is an outer measure.

251C Definition Let (X,%, u) and (Y, T,v) be measure spaces. By the primitive product measure
on X x Y I shall mean the measure Ao derived by Carathéodory’s method (113C) from the outer measure
6 defined in 251A.

Remark I ought to point out that there is no general agreement on what ‘the’ product measure on X x Y
should be. Indeed in 251F below I will introduce an alternative one, and in the notes to this section I will
mention a third.

251D Definition It is convenient to have a name for a natural construction for o-algebras. If X and
Y are sets with o-algebras ¥ C PX and T C PY, I will write X®T for the o-algebra of subsets of X x Y
generated by {E X F: E€ X, F € T}.

251E Proposition Let (X, 3, u) and (Y, T, ) be measure spaces; let Ag be the primitive product measure
on X x Y, and A its domain. Then &T C A and M\g(E x F) = uE -vF for all E€ ¥ and F € T.

proof (a) Suppose that £ € ¥ and A C X x Y. For any ¢ > 0, there are sequences (E,)nen in X and
(Fp)nen in T such that A C ey Bn X F and -7 pE, - vE, < A+ e Now

AN(EXY) CUyen(EnNE) x Fy, A\ (ExY) C U, cn(En \ E) x Fy,

SO
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251G Finite products 3

9(A0(E><Y))+9(A\(E><Y))giu(EnﬂE)-an+iu(En\E)~an

n=0 n=0

= Z,uEn-yFn <HA+e.
n=0
As € is arbitrary, (AN (E xY)) +0(A\ (E xY)) < 0A. And this is enough to ensure that E xY € A (see
113D).

(b) Similarly, X x F € A forevery FET,so ExXF=(ExY)N(X x F) e Aforevery E€ X, FeT.
Because A is a g-algebra, it must include the smallest o-algebra containing all the products E x F, that
is, A D X®T.

(c) Take E € X, F € T. We know that E x F' € A; setting By = E, Fy =F, E, =F,=0forn >11in
the definition of 6, we have

Xo(E x F)=0(E x F) < pE - vF.

We have come to the central idea of the construction. In fact (F x F') = pE - vF. T Suppose that
E X F C U,enyEn x F,, where E, € ¥ and F,, € T for every n. Set uw = > " uE, - vF,. If u = 0o or
uwE =0 or vF = 0 then of course uF - vF < u. Otherwise, set

I={n:neN,uk, =0}, J={n:neNvF, =0}, K=N\{UJ),

E'=E\U,c; En, F' =F\U,c;Fn.

Then pE' = pE and vF' = vF; E' X F' C |, cx En X Fy; and for n € K, pE, < co and vF, < oo, since
uwE, - vF, <u < oo and neither uF, nor vF, is zero. Set

fon=vFE,xE,: X - R

ifne K,and f, =0: X - Rif n € TUJ. Then f, is a simple function and [ f,, = vE,uE, forn € K, 0
otherwise, so

ZZO:O ffn(.%‘)u(d.’l}) = ZZO:O pEn - vE, < u.

By B.Levi’s theorem (123A), applied to (};_, fi)nen, § = Y peo [n is integrable and [ gdu < u. Write
E" for {z : 2z € F', g(x) < oo}, so that pE” = pE’ = pE. Now take any x € E” and set K, = {n:n €
K,z € E,}. Because B x F' C |, cjc En X Fn, F' C UnGKm F,, and

vEF =vEF' < ZnGKI vE, = ZZC:O fn(‘r) = g(l‘)

Thus g(z) > vF for every € E”. We are supposing that 0 < uF = pE” and 0 < vF, so we must have
vF < oo, pE" < 0. Now g > vFxE", so

,uE-Z/F:,uE"-VF:fVFxE”nggu:ZZO:OuEn-an.

As (Ep)nen, (Fn)nen are arbitrary, 0(E x F') > pE -vF and 0(E x F) = uE -vF. Q
Thus

ME X F)=0(ExF)=uE-vF
forall Fe X, FeT.
251F Definition Let (X, ¥, 1) and (Y, T, v) be measure spaces, and Ag the primitive product measure

defined in 251C. By the c.l.d. product measure on X x Y I shall mean the function A : dom Ay — [0, 0]
defined by setting

AW =sup{M(WN(EXF)):Ee€X FeT, pF < oo, vF < oo}
for W € dom Ag.
251G Remark I had better show at once that A is a measure. I* Of course its domain A = dom \q is

a o-algebra, and A) = Ao = 0. If (W},)en is a disjoint sequence in A, then for any F € &, F € T of finite
measure
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4 Product measures 251G

Ao (Unew W N (E X F)) = 35070 A(Wa N (E X F)) <3070 AW,

50 MUpen Wn) < YopZgAW,. On the other hand, if a < Y7 (AW, then we can find m € N and
ag, ... ,ay, such that a < ZZ;O an, and a, < AW, for each n < m; now there are Fy,...,FE,, € X and
Fy, ..., Fy, € T, all of finite measure, such that a,, < \g(W,, N (E,, x F,)) for each n. Setting F = Ungm E,

and F =/ F,,, we have uF < oo and vF < 00, so

n<m

A W) = X Wnﬂ(ExF)):i)\o(Wnﬂ(ExF))

neN neN n=0
> XMWnN(Enx F)) > an>a
n=0 n=0

As a is arbitrary, A(U,ey Wn) = 2 pe o AWy and MU,y Wa) = D>oneo AWWn. As (Wy)nen is arbitrary, X is
a measure. Q

251H We need a simple property of the measure ).

Lemma Let (X,3, ) and (Y, T,v) be two measure spaces; let Ao be the primitive product measure on
X xY, and A its domain. If H C X xY and HN (E x F) € A whenever pF < oo and vF < oo, then
HeA.

proof Let 6 be the outer measure described in 251A. Suppose that A C X XY and A < co. Let € > 0. Let
(En)nen, (Fn)nen be sequences in 3, T respectively such that A C |J, oy En % F, and Yoo gy - vF, <
0 A + €. Now, for each n, the product of the measures uF,, vE, is finite, so either one is zero or both are
finite. If uF,, = 0 or vF,, = 0 then of course

uk, -vF, =0=0((E, x F,)NH)+0(E, x F,,)\ H).
If uE, < oo and vF,, < oo then

wE, - vF, = X\(En X Fp)
=X((E, x F,)NH)+ XN(E, x F,) \ H)
=0((E, x F,)NH)+0(E, x F,)\ H).

Accordingly, because 6 is an outer measure,

O(ANH)+0(A\H) < iﬁ((En x F,)NH) +§:9((En X F,)\ H)

oo
:ZuEn~yFn§9A—|—e.

n=0

As e is arbitrary, (AN H) + 0(A\ H) < 0A. As A is arbitrary, H € A.

2511 Now for the fundamental properties of the c.l.d. product measure.

Theorem Let (X, ¥, 1) and (Y, T, v) be measure spaces; let A be the c.l.d. product measure on X x Y, and
A its domain. Then
(a) B®T C A and \(E x F) = puE - vF whenever E € X, F € T and pFE - vF < oc;
(b) for every W € A there is a V € ¥®T such that V C W and A\V = AW;
(¢) (X x Y, A, \) is complete and locally determined, and in fact is the c.l.d. version of (X x Y, A, Ag) as
described in 213D-213E; in particular, A\W = A\gW whenever \gW < oc;

(d) if W € A and AW > 0 then there are E € ¥, F' € T such that uE < oo, vF < co and A(WN(EXF)) >
0;
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2511 Finite products 5

(e) if W € A and AW < oo, then for every € > 0 there are Ey,... ,E, € X, Fy,... ,F, € T, all of finite
measure, such that A(WA U<, (E; x Fy)) < e

proof Take 6 to be the outer measure of 251A and )¢ the primitive product measure of 251C. Set ©f =
{E:EeX pE <oo}and T/ = {F: F € T, vF < oo}.

(a) By 251E, ST C A. If E€ ¥ and F € T and pFE - vF < oo, either uF - vF = 0 and \(E x F) =
Mo(E x F) =0 or both uE and vF are finite and again A\(E x F) = \(E X F) = pE - vF.

(b) (i) Take any a < AW. Then there are E € X/, F € T such that \o(W N (E x F)) > a (251F); now

O((E x F)\W) = X((E x F)\ W)
:Ao(EXF)f)\o(Wﬂ(EXF)) <)\0(EXF)*CL.
Let (En)nen, (Fn)nen be sequences in ¥, T respectively such that (E x F)\ W C |J, oy En x Fy, and
Yoot o wEn - vE, < Xo(E x F) — a. Consider
V =(E x F)\Upey En x F, € SQT;
then V C W, and

AV =XV = Xo(E x F) = X((E x F)\ V)

> M(E x F) = Xo(|J En x Fn)
neN
(because (£ x F)\'V C U, cn En x Fp)

> MN(Ex F)=> pE,-vF, >a

n=0

(by the choice of the E,, F},).

(ii) Thus for every a < AW thereisa V € Y&T such that V C W and AV > a. Now choose a sequence
(an)nen strictly increasing to AW, and for each a,, a corresponding V;,; then V = UneN V,, belongs to the
o-algebra YT, is included in W, and has measure at least sup, ey AV, and at most AW; so AV = AW, as
required.

(c)(i) If H C X xY is A-negligible, there isa W € A such that H C W and \W =0. If E€ X, F € T are
of finite measure, A\g(W N (E X F)) = 0; but Ay, being derived from the outer measure 6 by Carathéodory’s
method, is complete (212A), so HN(E x F) € A and \o(HN(E x F)) = 0. Because E and F are arbitrary,
H € A, by 251H. As H is arbitrary, A is complete.

(i) If W € A and AW = oo, then there must be E € ¥, F' € T such that pF < oo, vF < oo and
M(WN(E x F)) > 0; now

0<AX\WnN(EXF))<uE-vF < 0.
Thus A is semi-finite.
(iii) If H C X xY and HNW € A whenever AW < oo, then, in particular, H N (E x F') € A whenever
uE < oo and vF < oo; by 251H again, H € A. Thus A is locally determined.

(iv) f W € A and AW < oo, then we have sequences (E,)nen in X, (Fy)nen in T such that
W C U, en(En x Fy) and Y7 pEy, - vF, < co. Set
I={n:pE, =0}, J={n:vF,=c}, K=N\{UJ);
then v(U,c; Fn) = U,y En) =0, s0 Xg(W \ W) = 0, where
W =W N U,er(En X Fo) DWN\ (Upes En xY)U (X x U,er Fn))-

Now set B}, = U;ck.i<n Bis 1, = Uiekicn Fi for each n. We have W' =, .y W' N (B}, x F}), so

D.H.FREMLIN



6 Product measures 2511

AW < AW = AW’ = limy,_yo0 Ao(W/ N (B, x F1)) < AW < AW,
and \W = \gW.
(v) Following the terminology of 213D, let us write
A={W:WCXxY,WNV €A whenever V € A and AV < oo},

AW =sup{X(WNV):V eA, AV < oo}

Because A\o(E x F) < oo whenever uFE < oo and vF < oo, A C A and A = A.
Now for any W € A we have

AW = sup{XA(WNV):V e A, AV < oo}
> sup{ (W N (Ex F):Eexf FeT/}
=AW
>sup{A(WNV):VeA ANV <o}
=sup{Ao(WNV):VeA NV <o},

using (iv) just above, so that A = A is the c.l.d. version of \o.

(d) IfW € A and AW > 0, there are E € ¥/ and F € T such that \(WN(ExF)) = \o(WN(ExF)) > 0.
(€) There are E € 7, F € TY such that \g(W N (E x F)) > AW — 2e; set Vi = WN (E x F); then

AW\ Vi) = AW = AVy = AW = AoV < ge.

There are sequences (E)nen in X, (F))nen in T such that Vi C U, ey Ep, X F), and Y207 pE), - vF), <
AoV + %e. Replacing E/, F! by E/, N E, F!. N F if necessary, we may suppose that E € ¥/ and F/ ¢ T/
for every n. Set Vo = J,,en By, X F},; then

AVa\ V1) < Xo(Va \ Vi) < S50 wE, - v, — AVa < 3e.
Let m € N be such that >0 | pE), - vF) < %¢, and set
V=U"E,xF),.
Then

A(V2\ V) < Zzo:m+1 pkEy - vEy, < ce.

1
3
Putting these together, we have WAV C (W A\ V) U (Vo \ V1)U (Vo \ V), so
AWAV) S AW AV + A3\ V1) + A(Va\ V) S zetiete=e
And V is of the required form.
251J Proposition If (X,%, u) and (Y, T,v) are semi-finite measure spaces and A is the c.l.d. product
measure on X XY, then A(E x F) =pE -vF forall E€ X, F € T.
proof Setting 2/ ={E:Ee X, uE < oo}, Tf = {F: F € T, vF < oo}, we have
ME x F) =sup{\((ENEy) x (FNFy)) : By € ¥f, Fy e T/}
=sup{u(E N Ey)-v(FNFy)): Ey e ¥, Fy e T/}
=sup{u(ENEy) : By € %/} -sup{v(F N Fy) : Fy € T'} = uE - vF

(using 213A).
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*251L Finite products 7

251K o-finite spaces Of course most of the measure spaces we shall apply these results to are o-finite,
and in this case there are some useful simplifications.

Proposition Let (X,%, 1) and (Y, T,v) be o-finite measure spaces. Then the c.l.d. product measure on
X xY is equal to the primitive product measure, and is the completion of its restriction to ¥ ®T; moreover,
this common product measure is o-finite.

proof Write \g, A\ for the primitive and c.l.d. product measures, as usual, and A for their domain. Let
(EnYnen, (Fn)nen be non-decreasing sequences of sets of finite measure covering X, Y respectively (see
211D).

(a) For each n € N, A(E,, X F},) = uE, - vF, is finite, by 251Ia. Since X xY = |J
o-finite.

(b) For any W € A,
AW = littiy s s0 Ao(W N (B X Fp)) = limp_yo0 AW N (En X Fy)) = AW.

ven Bn X Fuy X is

So A\ = )\0.
(c) Write Ag for the restriction of A = Ag to Y&T, and 5\3 for its completion.

(i) Suppose that W € dom Ag. Then there are W', W"” € S®T such that W C W C W” and
Ap(W"\ W’) =0 (212C). In this case, A(W" \ W') = 0; as A is complete, W € A and

AW = AW = \gW’' = \gW.
Thus A extends \g.

(ii) If W € A, then there is a V € &T such that V C W and A(W \ V) = 0. P For each n € N
there is a V,, € ¥®&T such that V,, € W N (B, x F,) and \V,, = \(W N (E,, x F,)) (251Ib). But as
ANE, x F,) = pE, - vF, is finite, this means that A\(W N (E, x F;,) \ V) = 0. So if we set V' = {J,,cn Vi,
we shall have V € ¥®T, V C W and

WAV =U,en W N (B X F))\V C U,en W N (En X F) \ Vi

is A-negligible. Q
Similarly, there is a V’ € L®T such that V' C (X x Y)\ W and A(((X x Y)\ W)\ V') = 0. Setting
VI =(XxY)\ V', V"€ 2T, W C V" and \(V"\ W) =0. So

AB(VIAV) = A(V'\V)=AXV"\ W)+ AW \V) =0,
and W is measured by 5\5, with A\gW = A\gV = AW. As W is arbitrary, ;\B =\
*251L The following result fits in naturally here; I star it because it will be used seldom (there is a more
important version of the same idea in 254G) and the proof can be skipped until you come to need it.

Proposition Let (X1, %1, 1), (Xo, Yo, u2), (Y1, T1,v1) and (Ys, To, 1) be o-finite measure spaces; let Aq,
A2 be the product measures on X; X Y7, X5 X Y5 respectively. Suppose that f: X; - Xoandg: Y, — Y5
are inverse-measure-preserving functions, and that h(z,y) = (f(z),g(y)) for x € X1, y € Y;. Then h is
inverse-measure-preserving.

proof Write Ay, Ay for the domains of Aj, Ay respectively.
(a) Suppose that E € ¥y and F € Ty have finite measure. Then A\;h~[W N (E x F)] is defined and
equal to Ao(W N (E x F)) for every W € Ay. P
MBTHE x Fl = M(f7HE] x g7 [F]) = p f7HE] - g™ [F]
= o - 1uF =X (E X F)
by 251E/251J. Q

(b) Take Ey € ¥y and Fy € Ty of finite measure. Let A1, Ay be the subspace measures on f~[Eq]x g~ [Fy)
and Ey x Fy respectively. Set h = h|f ~1Eg] x g7 '[Fp], and write ¢ for the identity map from Ey x Fy to
Xo x Ya; let A=A h~! and X = Ayt~ ! be the image measures on X5 x Y5. Then (a) tells us that
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8 Product measures *251L

ME x F)=M(h[(ENEy) x (FN F))
= )\2((E N E()) X (F N .F())) = )\/(E X F)
whenever F € X5 and F' € Ty. By the Monotone Class Theorem (136C), A and )\ agree on Yo®@Ts, that is,
M (A=W N (Ey x Fy)]) = Ao(W N (Ey x Fy)) for every W € $o@Ts.

If W is any member of Ay, there are W/, W € ¥5&T5 such that W’ C W C W” and (WA W) =0
(251K). Now we must have

hil[W/ N (EO X Fo)} - hil[W n (EO X Fo)] - hil[W/, N (EO X Fo)],

M (A7EHW" 0 (Ey x F)]\ A7 W' N (Ey x Fy)]) = Ao (W”"\ W) N (Ey x Fy)) = 0;
because A; is complete, \ih =W N (Ey x Fy)] is defined and equal to
MATHW! N (B x Fo)] = M (W' N (Ey X Fy)) = Xo(W N (Ey x Fy)).
(c) Now suppose that (E,)nen, (Fn)nen are non-decreasing sequences of sets of finite measure with union
X5, Y5 respectively. If W € A,
MAhTHW] = sup,ey Mh™HW N (B, x F,)] = sup,en A2(W N (B, X Fy)) = AW

So h is inverse-measure-preserving, as claimed.

251M It is time that I gave some examples. Of course the central example is Lebesgue measure. In
this case we have the only reasonable result. I pause to describe the leading example of the product X®T
introduced in 251D.

Proposition Let r, s > 1 be integers. Then we have a natural bijection ¢ : R” x R® — R""¢ defined by
setting

¢((51a 757‘)7(7717'“ ,ns)) = (flwu agrvnh"' 7775)
for &,...,&,m1,...,ms € R. If we write B,., Bs and B, , for the Borel o-algebras of R”, R® and R"**
respectively, then ¢ identifies B, with B,®B;.

proof (a) Write B for the o-algebra {¢p~1[W] : W € B,.,} copied onto R" x R® by the bijection ¢; we
are seeking to prove that B = B,®B,. We have maps m : R"™* — R”, m : R™"* — R* defined by
setting 71 (p(x,y)) = x, ma(d(z,y)) = y. Each co-ordinate of 71 is continuous, therefore Borel measurable
(121Db), so ;' [E] € By, for every E € B,, by 121K. Similarly, 7, '[F] € B, for every F € Bs. So
G[E x F] = ny '[E] N wy ' [F] belongs to By, that is, E x F € B, whenever E € B, and F € B,. Because B
is a o-algebra, B,&B, C B.

(b) Now examine sets of the form
{(z,y) : & <af={r:& < a} xR?,

{(z,y) :m; <a}=R"x{y:n; <a}

fora € R, i <7 and j < s, taking = (&1,...,&) and y = (1,... , 7). All of these belong to B,&B,. But
the o-algebra they generate is just B, by 121J. So B C B,&B, and B = B, ®B;.

251N Theorem Let r, s > 1 be integers. Then the bijection ¢ : R x R® — R"* described in 251M
identifies Lebesgue measure on R"™* with the c.l.d. product A of Lebesgue measure on R” and Lebesgue
measure on R?.

proof Write i, fis, pir4s for the three versions of Lebesgue measure, p;, p} and puy, , for the corresponding
outer measures, and 6 for the outer measure on R" x R® derived from p, and ps by the formula of 251A.

(a) If I CR" and J C R® are half-open intervals, then ¢[I x J] C R"** is also a half-open interval, and
firs (P X J]) = pr] - s

MEASURE THEORY
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this is immediate from the definition of the Lebesgue measure of an interval. (I speak of ‘half-open’ intervals
here, that is, intervals of the form [], ;. [o;, B;[, because I used them in the definition of Lebesgue measure
in §115. If you prefer to work with open intervals or closed intervals it makes no difference.) Note also that
every half-open interval in R”"# is expressible as ¢[I x J] for suitable I, J.

(b) For any A C R"*5, 0(¢p~[A]) < piy(A). P For any € > 0, there is a sequence (K, )yen of half-open
intervals in R such that A C J,,cp Kn and 307 iy s (Ky) < iy ((A)+e. Express each Ky, as ¢[I, X Jy],
where I,, and J,, are half-open intervals in R” and R*® respectively; then ¢—1[A] C Unen In X Jn, so that

0(61[A]) < Y02 g e - s = 000 prps (Kn) < pity o (A) + €.
As € is arbitrary, we have the result. Q

(c) If ECR" and F C R® are measurable, then i, (¢[E X F]) < i, E - pgF.

P (i) Consider first the case . F < 00, usF < 0o. In this case, given € > 0, there are sequences (I, )nen,
(Jn)nen of half-open intervals such that E' C |,y Ins F' € Upen Frs

ZZO:() el < prE+e=pE+e

Yoo Msdn S pEF + €= pgF + e

Accordingly E x F C |, L x Jy and ¢[E x F] C U, neny ®[Lm X Jn], so that

,neN

Ni+s(¢[E X F]) < Z /~LT+S(¢[Im X JnD = Z J12 S T

m,n=0 m,n=0
0 0
= Z ,U/T‘I’UL . Z Man < (MTE + 6)(N5F + 6)-
m=0 n=0

As ¢ is arbitrary, we have the result.

ii) Next, if pu,.E = 0, there is a sequence (F},),en of sets of finite measure covering R® O F, so that
’ M ) q € g )

M:+s(¢[E X F]) < ZZO:O N:Jrs((b[E X Fn]) < tho:o prE - ps by =0=p B - psF.

Similarly, p, (¢[E X F]) < ppE-psF if peF = 0. The only remaining case is that in which both of i, E, psF
are strictly positive and one is infinite; but in this case p1, E- us F' = 00, so surely pf, (S[E x F]) < p E- pusF.

Q

(d) If A C R, then pf, (A) < 0(¢7[A]). P Given € > 0, there are sequences (E,)nen, (Fn)nen
of measurable sets in R”, R® respectively such that ¢~'[A] C Unen En x F,, and S ot By pusF, <
0(¢p~1[A]) +e. Now A C Unen ¢[En x Fy], so

Py s(A) < 30000 174 o (@En X F]) < 37070 e B - psFn < 0(671[A]) + €.

As € is arbitrary, we have the result. Q

(e) Putting (c) and (d) together, we have (¢~ [A]) = pi, (A) for every A C R"**. Thus § on R" x R®
corresponds exactly to pf,, on R"™*. So the associated measures Ao, 45 must correspond in the same
way, writing Ao for the primitive product measure. But 251K tells us that Ay = A, so we have the result.

2510 In fact, a large proportion of the applications of the constructions here are to subspaces of
FEuclidean space, rather than to the whole product R” x R®. It would not have been especially difficult
to write 251N out to deal with arbitrary subspaces, but I prefer to give a more general description of the
product of subspace measures, as I feel that it illuminates the method. I start with a straightforward result
on strictly localizable spaces.

Proposition Let (X,3, ) and (Y, T,v) be strictly localizable measure spaces. Then the c.l.d. product
measure on X x Y is strictly localizable; moreover, if (X;);cr and (Y}),cs are decompositions of X and Y
respectively, (X; x Y})( j)erx is a decomposition of X x Y.

D.H.FREMLIN
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proof Let (X;)icr and (Y})jes be decompositions of X, Y respectively. Then (X; x Yj)(; jyerxs is a
partition of X x Y into measurable sets of finite measure. If W C X x Y and AW > 0, there are sets £ € X,
F € T such that uF < oo, vF < oo and A(W N (E x F')) > 0. We know that uFE = ., u(E N X;) and
pEF =3, w(F NYj), so there must be finite sets Io C I, Jo C J such that

pE - vE — (3 (BN X)) (3 e, vVIFENY;)) < AW N (E X F)).
Setting E' = U, , Xi and F' = {J;;, Y; we have
AMEXP\N(E'XF)=AMEXF)=AMENE)Xx (FNF")) <AXWn(ExF)),

so that A(W N (E’ x F')) > 0. There must therefore be some i € Iy, j € Jy such that A(W N (X; x Yj)) > 0.

This shows that {X; x Y, : 4 € I, j € J} satisfies the criterion of 2130, so that A, being complete and
locally determined, must be strictly localizable. Because (X; X Y})(; j)erxs covers X x Y, it is actually a
decomposition of X x Y (2130b).

icly

251P Lemma Let (X, X, ) and (Y, T, v) be measure spaces, and A the c¢.l.d. product measure on X x Y.
Let A* be the corresponding outer measure (132B). Then

MC=sup{0(CN(ExF)):Ee€X FeT, uEF < o0, vF < 00}
for every C' C X x Y, where 6 is the outer measure of 251A.

proof Write A for the domain of A\, ¥/ for {E : E € &, uE < oo}, T! for {F : F € T, vF < oo}; set
u=sup{d(CN(ExF)):Eex/ FeT/}.

a)IfCCWeA, EecXf and F € T/, then
(a) ;

OCN(EXF)<OWnN(EXxF)=X(WnN(EXF))
(where )¢ is the primitive product measure)
< AWL
As F and F are arbitrary, u < A\W; as W is arbitrary, u < A*C.

(b) If u = oo, then of course A*C' = u. Otherwise, let (E,)nen, (Fn)nen be sequences in ¥/, T/
respectively such that

U = sup, ey 0(C N (B, x F)).
Consider C" = C'\ (Upen Bn X Upen Fn). HE € X/ and F € T/, then for every n € N we have

Y

w>0(CN((EUE,) % (FUF,)))
H(CN((EUE,) x (FUFE))N(En x Fy))

F0(CN(EUE,) x (FUF,))\ (En X Fy))

(because E,, x F,, € A, by 251E)
>0(CN(E, x F,))+0(C'"N(E x F)).
Taking the supremum of the right-hand expression as n varies, we have u > u+ 6(C’' N (E x F)) so
MC'N(EXF))=0(C"Nn(ExF))=0.

As F and F are arbitrary, A\C’ = 0.
But this means that

XC <X (Cn (| Ewx | Fa)+ A
neN neN
= lim xen(JEe x| m)
i<n i<n

(using 132Ae)
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as required.

251Q Proposition Let (X, %, u) and (Y, T,v) be measure spaces, and A C X, B C Y subsets; write
1A, vp for the subspace measures on A, B respectively. Let A be the c.l.d. product measure on X x Y, and
\# the subspace measure it induces on A x B. Let X be the c.l.d. product measure of u4 and vg on A X B.
Then
(i) A extends A\#.
(ii) If
either (a¢) A€ ¥ and Be T
or (8) A and B can both be covered by sequences of sets of finite measure
or () p and v are both strictly localizable,
then A = \#.

proof Let 6 be the outer measure on X x Y defined from p and v by the formula of 251A, and 6 the outer
measure on A x B similarly defined from p4 and vg. Write A for the domain of A, A for the domain of A,
and A# = {W N (A x B): W € A} for the domain of \#. Set ©/ = {E: uE < oo}, T/ = {F : vF < oc}.

(a) The first point to observe is that 6C = 0C for every C C Ax B. P (i) If (En)neny and (Fy)nen are
sequences in ¥, T respectively such that C' C |J,,cyy En X F, then

C=Cn(AxB)CU,cu(EnNA) x (F,NB),

SO
0C <> pa(E,NA) vp(F,NB)
n=0

=> W (E.NA)- v (FyNB) <> By, - vF,.
n=0

n=0

As (Ep)nen and (Fy)nen are arbitrary, 0C < 6C. (ii) If (E’n>neN, (Fn>neN are sequences in Y4 = dom p 4,
Tp = domvp respectively such that C' C | J,, oy En X Fn, then for each n € N we can choose E,, € ¥, F;,, € T
such that

and now
0C < Y0 g HEn - VFy =307 g pa B - vpFy.
As <En>neN7 <Fn>neN are arbitrary, 0C < 6C. Q

(b) Tt follows that A# C A. P Suppose that V € A# and that C C A x B. In this case there is a W € A
such that V =W nN (A x B). So

HCNV)+0(C\V)=0CNW)+6(C\W)=06C=6C.

As C'is arbitrary, V € A Q
Accordingly, for V € A#,

MV =XV =sup{d(VN(Ex F)): Eecx FeT/}
=sup{d(VN(E X F)):Ee€Xy, FeTp, uaFE < co, vgF < 00}
:sup{é(Vﬂ(ExF)):EEEA, FETB, ,LLAE<OO, I/BF<OO}=/~\V,

using 251P twice.
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This proves part (i) of the proposition.

(c) The next thing to check is that if V € A and V C E x F where E € ©/ and F € T/, then V € A#.
P Let W C E X F be a measurable envelope of V with respect to A (132Ee). Then

OWN(AxB)\V)=0WN(AxB)\V)=AXWn(AxB)\V)

(because W N (A x B) € A# CA, V e )
=AXWN(AxB))=AV =0(Wn(AxB)) -0V
=0(WN(AxB)—60V=XNWnN(AxB))-\V
< AW =XV =0.

But this means that W/ =W N (Ax B)\V € A and V = (A x B)Nn (W \ W) belongs to A*. Q

(d) Now fix any V € A, and look at the conditions ()-(v) of part (i) of the proposition.
(a)fTAeXand BeT,and C C X xY, then A x B € A (251E), so

CNV)+0(C\V)=0CNV)+0(C\V)N(AxB))+0(C\V)\(Ax B))
6(CNV)+6(CN(AxB)\V)+6(C\ (AxB))
8(CN(Ax B))+6(C\ (Ax B))
0(CN(AxB))+0(C\ (Ax B))=06C.
As C is arbitrary, V € A, so V =V N (A x B) belongs to A*.

(B)IfAC U, ey Enand B C U,y I where all the E,, F, are of finite measure, then V = J,, ,cn VN
(B, x F,) € A*, by (c).

(v) If (X;)ier, (Yj)jes are decompositions of X, Y respectively, then for each ¢ € I, j € J we have
VN(X;xY;) € A%, that is, there is a W;; € A such that VN (X; xY;) = W;;N(AxB). Now (X; XY}) (i j)erxs
is a decomposition of X x Y for A (2510), so that

W =Uier jes Wis N (X xYj) € A,

and V =W N (A x B) € A#,

(e) Thus any of the three conditions is sufficient to ensure that A = A#, in which case (a) tells us that
A=\

251R Corollary Let r, s > 1 be integers, and ¢ : R” x R® — R"* the natural bijection. If A C R" and
B C R?, then the restriction of ¢ to A x B identifies the product of Lebesgue measure on A and Lebesgue
measure on B with Lebesgue measure on ¢[A x B] C R"T5,

Remark Note that by ‘Lebesgue measure on A’ I mean the subspace measure .4 on A induced by r-
dimensional Lebesgue measure p,- on R", whether or not A is itself a measurable set.

proof By 251Q, using either of the conditions (ii-3) or (ii-y), the product measure X on A x B is just the
subspace measure A\# on A x B induced by the product measure A\ on R” x R*. But by 251N we know that
¢ is an isomorphism between (R” x R®, \) and (R"**, p1,4); so it must also identify A with the subspace
measure on ¢[A x B].

2518 Corollary Let (X, X, 1) and (Y, T, v) be measure spaces, and A the c.l.d. product measure on X xY.
If AC X and B CY can be covered by sequences of sets of finite measure, then A*(A x B) = u*A - v*B.

proof In the language of 251Q),
N(Ax B) =M (Ax B)=AAx B) = usA-vgB
(by 251K and 251E)
=u*A-v*B.
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251T The next proposition gives an idea of how the technical definitions here fit together.

Proposition Let (X, X, 1) and (Y, T, v) be measure spaces. Write (X, 3, ) and (X, 2, i) for the completion
and c.L.d. version of (X, ¥, 1) (212C, 213E). Let A, X and X be the three c.l.d. product measures on X x Y
obtained from the pairs (u,v), (1, v) and (ji, ) of factor measures. Then A = A = X.

proof Write A, A and A for the domains of A, 5\, A respectively; and 6, é, 6 for the outer measures on
X x Y obtained by the formula of 251A from the three pairs of factor measures.

(a) If E € ¥ and puE < oo, then 6,  and 6 agree on subsets of E x Y. B Take AC E x Y and € > 0.

(i) There are sequences (E,,)nen in X, (Fp,)nen in T such that A C |, oy En x Fy, and S o By -vE, <
A+ e. Now iE, < pFE, for every n (213Fb), so
A<Z ~oREn VvE, <Y 00 JuE, - vE, <0A+e.
(ii) There are sequences (Ep)nen in 2, (F,)nen in T such that A C Unen E,xF, and 3> e pE,-vE, <

0A + e. Now for each n there is an E/, € ¥ such that £, C E/, and pE! = jE,, so that
A <D Bl - vk, = En:oﬂEn'VFn <0A+e.

(iii) There are sequences <E‘n>n€N inY, ( ~n>n€N in T such that A C |, oy E, x F,, and fozo [LEn .
vF, <0A+e. Now for each n, F, ﬂEEE SO

0A<Z " 0B, NE)-vF, <32 AE,  vE, <OA +e

(iv) Since A and e are arbitrary, # =0 =0 on P(E xY). Q

(b) Consequently, the outer measures A, A* and \* are identical. P Use 251P. Take AC X xY, E € %,
Ee3, EeX, FeTsuch that nE, ,uE fiE and vF are all finite. Then

(i)
OAN(Ex F)=0(AN(Ex F) < XA, 0AN(EXF)=0(AN(ExF)) <A
because 4 F and i E are both finite.
(ii) There is an E’ € X such that £ C E' and uE’ < oo, so that
O(AN(E x F)) <O(AN(E' x F)) =0(AN (E' x F)) < A*A.

(iii) There is an E” € ¥ such that E” C E and a(E \ E”) = 0 (213Fc), so that §((E\ E”) xY) =0
and pE" < oo; accordingly

OAN(E X F)=0(AN(E" x F)) =0(AN(E" x F)) < \*A

(iv) Taking the suprema over E, E, E and F, we get
MA<SIMA, MNMA<SIA, MNMA<NA, MNA<NA.
As A is arbitrary, \* = M= A% Q

(c) Now A, X and \ are all complete and locally determined, so by 213C are the measures defined by
Carathéodory’s method from their own outer measures, and are therefore identical.

251U It is ‘obvious’, and an easy consequence of theorems so far proved, that the set {(x,z) : x € R}
is negligible for Lebesgue measure on R?. The corresponding result is true in the square of any atomless
measure space.

Proposition Let (X, ¥, u) be an atomless measure space, and let A be the c.l.d. measure on X x X. Then
A = {(z,z) : x € X} is A\-negligible.
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proof Let E, ' € ¥ be sets of finite measure, and n € N. Applying 215D repeatedly, we can find a disjoint

family (F;);<, of measurable subsets of F' such that pF; = for each i; setting F,, = F\ we

<n “

also have pF, = HE Now
n+1

AQ(EXF) gUlSn(EﬂFl) XFi7
SO

* n F 1
N(AN(E X F) <3 gW(ENE) - pF; = “HZZ o MENE) < jﬂE'NF'

As n is arbitrary, A(AN (E x F)) =0; as F and F are arbitrary, AA = 0.

*251W Products of more than two spaces The whole of this section can be repeated for arbitrary
finite products. The labour is substantial but no new ideas are required. By the time we need the general
construction in any formal way, it should come very naturally, and I do not think it is necessary to work
through the next page before proceeding, especially as products of probability spaces are dealt with in §254.
However, for completeness, and to help locate results when applications do appear, I list them here. They
do of course constitute a very instructive set of exercises. The most important fragments are repeated in
251Xe-251Xf.

Let ((X;, X, i4i))ier be a finite family of measure spaces, and set X = []
i, i E < 0o} for each i € I.

s Xio Write ) = {E: E €

(a) For A C X set

eAzinf{iHmEm:Em e, Viel,neN, AC U HEM-}.

n=04icl neNiel

Then 6 is an outer measure on X. Let Ay be the measure on X derived by Carathéodory’s method from 6,
and A its domain.

(b) If (X;);er is a finite family of sets and ¥; is a o-algebra of subsets of X; for each i € I, then ®
is the o-algebra of subsets of X = [],.; X; generated by {]]
corresponding construction when I is infinite, see 254E.)

161

ser Bi o By € X for everyzel} (For the

(¢) Mo(II;c; Es) is defined and equal to [];.; piEs whenever E; € ¥; for each i € I.

(d) The c.l.d. product measure on X is the measure \ defined by setting
AW = sup{Ao(W N[1,.; E:) : E; € &/ for each i € I}
for W € A. If T is empty, so that X = {(}, then the appropriate convention is to set AX = 1.

i€l

(e) If HC X, then H € A iff HN ][, ; E; € A whenever E; € %/ for each i € I.

iel
)@ ®1612 C Aand N[ [;¢; Bi) = [I;c; #i s whenever E; € Ezf for each i.
(ii) For every W € A thereis a V € &), ;% such that V C W and AV = AW,
(iii) A is complete and locally determined, and is the c.l.d. version of Ag.
(iv) If W € A and AW > 0 then there are E; € Zf, for i € I, such that A(W N [[,.; E:) > 0.
(v) HW € A and A\WW < oo, then for every € > 0 there are n € N and Ey;, ..., Ey; € E{, for each i € I,
such that A(WA U<, [Lie; Bri) < e

—

(g) If each p; is o-finite, so is A, and A = A¢ is the completion of its restriction to @), ;%;.

iel

(h) If (I;)jes is any partition of I, then A can be identified with the c.l.d. product of (\;);c s, where A,
is the c.l.d. product of (u;)ier;. (See the arguments in 251N and also in 254N below.)
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(i) If I = {1,... ,n} and each p; is Lebesgue measure on R, then A\ can be identified with Lebesgue
measure on R™.

(3) If, for each i € I, we have a decomposition (Xi;)jes, of Xi, then (J[;c; Xi r(i)) rey,., 2 18 @ decom-
position of X.

(k) For any C C X,
ANC = sup{0(C NT1ic; Ei) - Ei € B for every i € I}.

(1) Suppose that A; C X; for each i € I. Write A for the subspace measure on A = []._; 4;, and \ for
the c.l.d. product of the subspace measures on the A;. Then X extends A\#, and if

either A; € ¥; for every i

or every A; can be covered by a sequence of sets of finite measure

or every p; is strictly localizable,

then A = \#.

iel

(m) If A; € X; can be covered by a sequence of sets of finite measure for each i € I, then A\*([],; 4i) =
[Licr 1 Ai

(n) Writing fi;, f1; for the completion and c.l.d. version of each p;, A is the c.l.d. product of {fi;);er and
also of (fi;)ier.

(o) If all the (X;,X;, u;) are the same atomless measure space (X, 3, u), then {z : z € X, i — (i) is
injective} is A-conegligible.

(p) Now suppose that we have another family ((Y;, T;, v;)):cr of measure spaces, with product (Y, A’ \),
and inverse-measure-preserving functions f; : X; — Y; for each ; define f : X — Y by saying that
f(z)(@) = fi(x(4)) for z € X and ¢ € I. If all the v; are o-finite, then f is inverse-measure-preserving for A
and \.

251X Basic exercises (a) Let X and Y be sets, 4 C PX and B C PY. Let X be the o-algebra of
subsets of X generated by A and T the o-algebra of subsets of Y generated by B. Show that Y®T is the
o-algebra of subsets of X x Y generated by {A x B: A€ A, B € B}.

(b) Let (X,%, ) and (Y, T,v) be measure spaces; let A9 be the primitive product measure on X x Y,
and A the c.l.d. product measure. Show that A\gW < oo iff AW < oo and W is included in a set of the form
(ExY)U(X x F)UU,en Bn x Fy

where uF = vF =0 and pkE, < oo, vF,, < oo for every n.

>(c) Show that if X and Y are any sets, with their respective counting measures, then the primitive and
c.l.d. product measures on X x Y are both counting measure on X x Y.

(d) Let (X,%,u) and (Y, T,v) be measure spaces; let A\g be the primitive product measure on X x Y,
and A the c.l.d. product measure. Show that
Ao is locally determined
<= )¢ is semi-finite
<— M=
<= g and A have the same negligible sets.

>(e) (See 251W.) Let ((X;, %;, 1t;))icr be a family of measure spaces, where I is a non-empty finite set.
Set X = [],c; Xs. For A C X, set
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0A = inf{ZZozo Hie] ,ulEm B, e€X; Vne N, i€ I, AC UnEN HiEI Enz}

Show that € is an outer measure on X. Let Ag be the measure defined from 6 by Carathéodory’s method,
and for W € dom )y set

AW = sup{ (W N]],c; B) : E; € 54, pil; < oo for every i € I}.

Show that A is a measure on X, and is the c.l.d. version of Ag.

>(f) (See 251W.) Let I be a non-empty finite set and ((X;, 3, 4i))ier a family of measure spaces. For
non-empty K C I set X(K) = [Lick Xi and let )\E)K), M) be the measures on X 5) constructed as in
251Xe. Show that if K is a non-empty proper subset of I, then the natural bijection between X/) and
X&) x XU\E) identifies A with the primitive product measure of A and A and A with the
c¢.l.d. product measure of A5 and \U\K),

>(g) Using 251Xe-251Xf above, or otherwise, show that if (X7,X1, u1), (Xa, Yo, u2), (X3, X3, u3) are
measure spaces then the primitive and c.l.d. product measures A\, A of (X7 x X2) x X3, constructed by first
taking the appropriate product measure on X; X X and then taking the product of this with the measure
of X3, are identified with the corresponding product measures on X; x (X2 X X3) by the canonical bijection
between the sets (X7 x X3) x X3 and X; x (X3 x X3).

(h)(i) What happens in 251Xe when [ is a singleton? (ii) Devise an appropriate convention to make
251Xe-251Xf remain valid when one or more of the sets I, K, I\ K there is empty.

>(i) Let (X,X, 1) be a complete locally determined measure space, and I any non-empty set; let v be
counting measure on I. Show that the c.l.d. product measure on X x I is equal to (or at any rate identifiable
with) the direct sum measure of the family ((X;, X;, p;))ier, if we set (X;, 54, 1) = (X, 2, p) for every i.

>(j) Let ((X;, X, 4i))ier be a family of measure spaces, with direct sum (X, X, u) (214L). Let (Y, T, v)
be any measure space, and give X XY, X; xY their c.l.d. product measures. Show that the natural bijection
between X x Y and Z = J,;(X; x Y) x {i} is an isomorphism between the measure of X x Y and the
direct sum measure on Z.

>(k) Let (X, X, ) be any measure space, and Y a singleton set {y}; let v be the measure on Y such that
vY = 1. Show that the natural bijection between X x {y} and X identifies the primitive product measure
on X x {y} with i as defined in 213Xa, and the c.l.d. product measure with the c.l.d. version of y. Explain
how to put this together with 251Xg and 251Ic to prove 251T.

>(1) Let (X,X%, ) and (Y, T,v) be measure spaces, and A the c.l.d. product measure on X x Y. Show
that A is the c.l.d. version of its restriction to Y®T.

(m) Let (X, 3, 1) and (Y, T, v) be measure spaces, with primitive and c.l.d. product measures Ag, . Let
A1 be any measure with domain X®T such that A\{(E X F) = uE - vF whenever E € ¥ and F € T. Show
that AW < MW < AW for every W € L&T.

(n) Let (X,%, u) and (Y, T,v) be two measure spaces, and \g the primitive product measure on X x Y.
Show that the corresponding outer measure A is just the outer measure 6 of 251A.

(o) Let (X,X,u) and (Y, T,v) be measure spaces, and A C X, B C Y subsets; write ua, vp for the
subspace measures. Let A\g be the primitive product measure on X x Y, and )\0# the subspace measure it
induces on A x B. Let A be the primitive product measure of 14 and vg on A x B. Show that Xo extends
)\#. Show that if either (o) A€ ¥ and B € T or (8) A and B can both be covered by sequences of sets of
finite measure or (y) pu and v are both strictly localizable, then Ao = /\# .

(p) In 251Q, show that A and A# will have the same null ideals, even if none of the conditions of 251Q(ii)
are satisfied.
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(q) Let (X,X, u) and (Y, T,v) be any measure spaces, and A\ the primitive product measure on X x Y.
Show that A§(Ax B) =pu*A-v*B forany AC X and BCY.

(r) Let (X,%,u) and (Y, T,v) be measure spaces, and [ the completion of y. Show that p, v and i, v
have the same primitive product measures.

(s) Let (X, X, 1) be a semi-finite measure space. Show that p is atomless iff the diagonal {(z,z) : z € X'}
is negligible for the c.l.d. product measure on X x X.

>(t) Let (X, X, 1) be an atomless measure space, and (Y, T, v) any measure space. Show that the c.l.d.
product measure on X x Y is atomless.

>(u) Let (X, %, 1) and (Y, T, v) be measure spaces, and A the c.l.d. product measure on X x Y. (i) Show
that if p and v are purely atomic, so is A. (ii) Show that if u and v are point-supported, so is A.

251Y Further exercises (a) Let X, Y be sets with o-algebras of subsets 3, T. Suppose that h : X XY —
R is ¥®T-measurable and ¢ : X — Y is (X, T)-measurable (121Yc¢). Show that x — h(z, ¢(x)) : X — R is
Y-measurable.

(b) Show that there are measure spaces (X1,%1, 1) and (Xa, X, p2), a probability space (Y, T, v) and
an inverse-measure-preserving function f : X; — Xs such that A : X3 XY — X5 XY is not inverse-measure-
preserving for the c.l.d. product measures on X; x Y and X5 x Y, where h(z,y) = (f(x),y) for x € X; and
yey.

(c) Let (X, %, u) be a complete locally determined measure space with a subspace A whose measure is
not locally determined (see glGXb). Set Y = {0}, vY = 1 and consider the c.l.d. product measures on
X xY and A xY; write A, A for their domains. Show that A properly includes {W N (A XxY): W € A}.

(d) Let (X,3, u) be any measure space, (Y, T,v) an atomless measure space, and f : X = Y a (X, T)-
measurable function. Show that {(z, f(z)) : € X} is negligible for the c.l.d. product measure on X x Y.

251 Notes and comments There are real difficulties in deciding which construction to declare as ‘the’
product of two arbitrary measures. My phrase ‘primitive product measure’, and notation \g, betray a bias;
my own preference is for the c.l.d. product A, for two principal reasons. The first is that A\ is likely to be
‘bad’, in particular, not semi-finite, even if u and v are ‘good’ (251Xd, 252Yk), while A inherits some of the
most important properties of p and v (e.g., 2510); the second is that in the case of topological measure
spaces X and Y, there is often a canonical topological measure on X x Y, which is likely to be more closely
related to A than to A\g. But for elucidation of this point I must ask you to wait until §417 in Volume 4.

It would be possible to remove the ‘primitive’ product measure entirely from the exposition, or at least
to relegate it to the exercises. This is indeed what I expect to do in the rest of this treatise, since (in my
view) all significant features of product measures on finitely many factors can be expressed in terms of the
c.l.d. product measure. For the first introduction to product measures, however, a direct approach to the
c.l.d. product measure (through the description of A* in 251P, for instance) is an uncomfortably large bite,
and I have some sort of duty to present the most natural rival to the c.l.d. product measure prominently
enough for you to judge for yourself whether I am right to dismiss it. There certainly are results associated
with the primitive product measure (251Xn, 251Xq, 252Y¢) which have an agreeable simplicity.

The clash is avoided altogether, of course, if we specialize immediately to o-finite spaces, in which the
two constructions coincide (251K). But even this does not solve all problems. There is a popular alternative
measure often called ‘the’ product measure: the restriction Agg of Ay to the o-algebra YRT. (See, for
instance, HALMOS 50.) The advantage of this is that if a function f on X x Y is Y®T-measurable, then
x> f(z,y) is X-measurable for every y € Y. (This is because

W WCXxY, {z:(x,y) eW}eX VyeY}

is a o-algebra of subsets of X X Y containing ' X F' whenever E € ¥ and F € T, and therefore including
Y®T.) The primary objection, to my mind, is that Lebesgue measure on R? is no longer ‘the’ product of

D.H.FREMLIN



18 Product measures 251 Notes

Lebesgue measure on R with itself. Generally, it is right to seek measures which measure as many sets as
possible, and I prefer to face up to the technical problems (which I acknowledge are off-putting) by seeking
appropriate definitions on the approach to major theorems, rather than rely on ad hoc fixes when the time
comes to apply them.

I omit further examples of product measures for the moment, because the investigation of particular
examples will be much easier with the aid of results from the next section. Of course the leading example,
and the one which should come always to mind in response to the words ‘product measure’, is Lebesgue
measure on R2, the case r = s = 1 of 251N and 251R. For an indication of what can happen when one of
the factors is not o-finite, you could look ahead to 252K.

I hope that you will see that the definition of the outer measure 6 in 251A corresponds to the standard
definition of Lebesgue outer measure, with ‘measurable rectangles’ F x F taking the place of intervals, and
the functional £ x F' — uFE - vF taking the place of ‘length’ or ‘volume’ of an interval; moreover, thinking
of E and F as intervals, there is an obvious relation between Lebesgue measure on R? and the product
measure on R x R. Of course an ‘obvious relationship’ is not the same thing as a proper theorem with
exact hypotheses and conclusions, but Theorem 251N is clearly central. Long before that, however, there is
another parallel between the construction of 251A and that of Lebesgue measure. In both cases, the proof
that we have an outer measure comes directly from the defining formula (in 113Yd I gave as an exercise
a general result covering 251B), and consequently a very general construction can lead us to a measure.
But the measure would be of far less interest and value if it did not measure, and measure correctly, the
basic sets, in this case the measurable rectangles. Thus 251E corresponds to the theorem that intervals are
Lebesgue measurable, with the right measure (114Db, 114G). This is the real key to the construction, and
is one of the fundamental ideas of measure theory.

Yet another parallel is in 251Xn; the outer measure defining the primitive product measure \g is exactly
equal to the outer measure defined from Ag. I described the corresponding phenomenon for Lebesgue measure
in 132C.

Any construction which claims the title ‘canonical’ must satisfy a variety of natural requirements; for
instance, one expects the canonical bijection between X x Y and Y x X to be an isomorphism between
the corresponding product measure spaces. ‘Commutativity’ of the product in this sense is I think obvious
from the definitions in 251A-251C. It is obviously desirable — not, I think, obviously true — that the product
should be ‘associative’ in that the canonical bijection between (X x Y) x Z and X x (Y x Z) should also
be an isomorphism between the corresponding products of product measures. This is in fact valid for both
the primitive and c.l.d. product measures (251Wh, 251Xe-251Xg).

Working through the classification of measure spaces presented in §211, we find that the primitive product
measure Ag of arbitrary factor measures u, v is complete, while the c.l.d. product measure A is always
complete and locally determined. Ao may not be semi-finite, even if u and v are strictly localizable (252Yk);
but A will be strictly localizable if p and v are (2510). Of course this is associated with the fact that the
c.l.d. product measure is distributive over direct sums (251Xj). If either p or v is atomless, so is A (251Xt).
Both A and \g are o-finite if  and v are (251K). It is possible for both p and v to be localizable but A not
(2540).

At least if you have worked through Chapter 21, you have now done enough ‘pure’ measure theory for this
kind of investigation, however straightforward, to raise a good many questions. Apart from direct sums, we
also have the constructions of ‘completion’, ‘subspace’, ‘outer measure’ and (in particular) ‘c.l.d. version’ to
integrate into the new ideas; I offer some results in 251T and 251Xk. Concerning subspaces, some possibly
surprising difficulties arise. The problem is that the product measure on the product of two subspaces can
have a larger domain than one might expect. I give a simple example in 251Yc and a more elaborate one in
254Yg. For strictly localizable spaces, there is no problem (251Q); but no other criterion drawn from the list
of properties considered in §251 seems adequate to remove the possibility of a disconcerting phenomenon.

Version of 6.12.07
252 Fubini’s theorem

Perhaps the most important feature of the concept of ‘product measure’ is the fact that we can use it to
discuss repeated integrals. In this section I give versions of Fubini’s theorem and Tonelli’s theorem (252B,
252G) with a variety of corollaries, the most useful ones being versions for o-finite spaces (252C, 252H). As
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252B Fubini’s theorem 19

applications I describe the relationship between integration and measuring ordinate sets (252N) and calculate
the r-dimensional volume of a ball in R" (252Q, 252Xi). I mention counter-examples showing the difficulties
which can arise with non-o-finite measures and non-integrable functions (252K-252L, 252X{-252Xg).

252A Repeated integrals Let (X, %, p) and (Y, T, v) be measure spaces, and f a real-valued function
defined on a set dom f C X x Y. We can seek to form the repeated integral

I f@,pvdy)pde) = [ ([ £, y)v(dy))pld),

which should be interpreted as follows: set

D={z:zeX, ff(x,y)l/(dy) is defined in [—o0, o]},

ffxy (dy) for z € D,

and then write [[ f(z,y)v(dy fg ) if this is defined. Of course the subset of ¥ on which
y — f(z,y) is defined may Vary Wlth x, but 1t must always be conegligible, as must D.
Similarly, exchanging the roles of X and Y, we can seek a repeated integral

[] f y)pde)v(dy) = [ ([ fz,y)ud))v(dy).

The point is that, under appropriate conditions on p and v, we can relate these repeated integrals to each
other by connecting them both with the integral of f itself with respect to the product measure on X x Y.

As will become apparent shortly, it is essential here to allow oneself to discuss the integral of a function
which is not everywhere defined. It is of less importance whether one allows integrands and integrals to
take infinite values, but for definiteness let me say that I shall be following the rules of 135F; that is,
Jf=[f"—[f provided that f is defined almost everywhere, takes values in [—o0, o] and is virtually
measurable, and at most one of [ f*, [ f~ is infinite.

252B Theorem Let (X, Y%, 1) and (Y, T, v) be measure spaces, with c.l.d. product (X x Y, A, \) (251F).
Suppose that v is o-finite and that p is either strictly localizable or complete and locally determined. Let f
be a [—o0, 0o]-valued function such that [ fd\ is defined in [—oco,00]. Then [[ f(z,y)v(dy)u(dz) is defined
and is equal to [ fdA.

proof The proof of this result involves substantial technical difficulties. If you have not seen these ideas
before, you should almost certainly not go straight to the full generality of the version announced above.
I will therefore start by writing out a proof in the case in which both p and v are totally finite; this is
already lengthy enough. I will present it in such a way that only the central section (part (b) below) needs
to be amended in the general case, and then, after completing the proof of the special case, I will give the
alternative version of (b) which is required for the full result.

(a) Write £ for the family of [0, cc]-valued functions f such that [ fd\ and [[ f(z,y)v(dy)u(dz) are
defined and equal. My aim is to show first that f € £ whenever f is non-negative and [ fd\ is defined, and
then to look at differences of functions in £. To prove that enough functions belong to £, my strategy will
be to start with ‘elementary’ functions and work outwards through progressively larger classes. It is most
efficient to begin by describing ways of building new members of £ from old, as follows.

(i) i+ foeLitorall f1, fo € L,and cf € £ for all f € £, ¢ € [0, 00[; this is because
S+ )@ yvdy) = [ flz,y)vdy) + [ f2(z,y)v(dy),

[ (e @, yv(dy) = c[ fz,y)v(dy)

whenever the right-hand sides are defined, which we are supposing to be the case for almost every x, so that
J[ 6+ @mtanntan) = [[ oo + [[ e ppidpun)

:/fld/\+/f2d/\=/(f1+f2)d)\
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[ e pvannn = [ tapmtautis) =c [ 13- [enar

(ii) If (fn)nen is a sequence in £ such that f,(z,y) < fny1(z,y) whenever n € N and (z,y) €
dom f,,Ndom f,,41, then sup,,cy fn € £. P Set f = sup,,cy fn; for x € X, n € Nset g,,(z) = [ fu(z,y)v(dy)
when the integral is defined in [0, c0]. Since here I am allowing oo as a value of a function, it is natural to
regard f as defined on (), .y dom f,,. By B.Levi’s theorem, [ fdX\ = sup,,cy [ fndA; write u for this common
value in [0, 00]. Next, because f,, < f,41 wherever both are defined, g, < gn+1 wherever both are defined,
for each n; we are supposing that f,, € £, so g, is defined p-almost everywhere for each n, and

SUpP, N fgnd,u = SUp,,eN ffnd)\ =u.

By B.Levi’s theorem again, f g dp = u, where g = sup,,cy gn- Now take any = € (), .y dom g,,, and consider
the functions f,, on Y, setting f.n(y) = fn(x,y) whenever this is defined. Each f,, has an integral in
[0,00], and fun(y) < font1(y) whenever both are defined, and

Suanfoa:ndV :g(l'),
so, using B.Levi’s theorem for a third time, [(sup,cy fan)dv is defined and equal to g(x), that is,

[ f(@,y)v(dy) = g().

This is true for almost every z, so

[J f@ y)v(dy)ulde) = [gdp=u= [ fdX.
Thus f € £, as claimed. Q

(iii) The expression of the ideas in the next section of the proof will go more smoothly if I introduce
another term. Write W for {W : W C X x Y, xW € £}. Then
() if W, W eWand WNW' =0, WUW'eW
by (i), because x(W U W') = xW + xW’,
(B) Unen Wn € W whenever (W,,),en is a non-decreasing sequence in W
because (XWp)nen T XxW, and we can use (ii).

It is also helpful to note that, for any W C X x Y and any = € X, [xW(z,y)v(dy) = vW[{z}], at
least whenever W[{z}] = {y : (z,y) € W} is measured by v. Moreover, because A is complete, a set
W C X XY belongs to A iff xW is A-virtually measurable iff [ xW dX is defined in [0, cc], and in this case
AW = [ xW dA.

(iv) Finally, we need to observe that, in appropriate circumstances, the difference of two members
of W will belong to W: if W, W' € W and W C W’ and \W' < oo, then W\ W € W. P We
are supposing that g(z) = [ xW(z,y)v(dy) and ¢'(z) = [ xW'(z,y)v(dy) are defined for almost every z,
and that [gdu = AW, [¢'dy = AW'. Because AW’ is finite, ¢ must be finite almost everywhere, and
D ={z:z €domgndomyg’, ¢'(z) < oo} is conegligible. Now, for any = € D, both g(z) and ¢'(z) are finite,
SO

y = x(WAW) (2, y) = xW (2, y) — xW(z,y)

is the difference of two integrable functions, and

/ W\ W), y)v(dy) = / W (,9) — X W () (dy)

- / AW (2, ) (dy) — / W (&, )udy) = ¢/ (z) — g(z).

Accordingly
S xWAW) (@, y)v(dy)p(de) = [ ¢'(x) = g(x)u(dz) = AW = AW = AW\ W),
and W'\ W belongs to W. Q
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(Of course the argument just above can be shortened by a few words if we allow ourselves to assume that
u and v are totally finite, since then g(z) and ¢'(x) will be finite whenever they are defined; but the key
idea, that the difference of integrable functions is integrable, is unchanged.)

(b) Now let us examine the class W, assuming that p and v are totally finite.
() ExFeWforal EeX FeT. PANExF)=uE-vF (251]), and
JX(E x F)(x,y)v(dy) = vF xE(x)

for each z, so

[ <t x Py mtanntin) = [F xB@udn) = ne-vF

=MExF) = /X(E x F)d\. Q

(ii) Let C be {E x F : E € X, F € T}. Then C is closed under finite intersections (because (E x F) N
(E'x F")=(ENE')x (FNF")) and is included in W. In particular, X x Y € WW. But this, together with
(a-iv) and (a-iii-5) above, means that W is a Dynkin class (definition: 136A), so includes the o-algebra of
subsets of X x Y generated by C, by the Monotone Class Theorem (136B); that is, W D L®T (definition:
251D).

(iii) Next, W € W whenever W C X x Y is A-negligible. P By 251Ib, there is a V' € ¥&T such that
V(X xY)\Wand AV = A((X xY)\ W). Because A(X xY) = puX -vY is finite, V' = (X x Y)\ V is
A-negligible, and we have W C V' € ¥®T. Consequently

0= AV’ = [ V" (w, y)widy)u(da).
But this means that
D={z: f xV'(x,y)v(dy) is defined and equal to 0}

is conegligible. If 2z € D, then we must have xV’/(z,y) = 0 for v-almost every y, that is, V'[{z}] is negligible;
in which case W[{z}] C V'[{z}] also is negligible, and [ xW(z,y)r(dy) = 0. And this is true for every
z € D, so [ xW(z,y)v(dy) is defined and equal to 0 for almost every z, and

S xW (@, y)v(dy)p(de) = 0 = AW,
as required. Q

(iv) It follows that A C W. P If W € A, then, by 251Ib again, there is a V € ©&T such that V C W
and AV = AW, so that AW \ V) =0. Now V € W by (ii) and W\ V € W by (iii), so W € W by (a-iii-a).
Q

(c) I return to the class L.
(i) If f € £ and g is a [0, co]-valued function defined and equal to f A-a.e., then g € £. PP Set

W= (X xY)\{(z,y) : (z,y) € dom f Ndomyg, f(z,y) = g(z,y)},

so that AW = 0. (Remember that A is complete.) By (b), [[ xW (z,y)v(dy)u(dz) = 0, that is, W[{z}] is
v-negligible for u-almost every x. Let D be {x : x € X, W[{x}] is v-negligible}. Then D is u-conegligible.
If x € D, then

Wz} =Y \{y: (x,y) € dom f Ndomg, f(z,y) = g(x,y)}
is negligible, so that [ f(z,y)v(dy) = [ g(x,y)v(dy) if either is defined. Thus the functions
z [ flayw(dy), z— [g(z,y)v(dy)
are equal almost everywhere, and

[ 9@z, y)v(dy)u(da) = [[ fx,y)v(dy)u(de) = [ fdA = [ gdX,
so that g € £. Q
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(ii) Now let f be any non-negative function such that [ fdX is defined in [0, 00]. Then f € £. P For
k, n € N set

Wik ={(z,y) : (z,y) € dom f, f(x,y) > 27"k}.
Because ) is complete and f is A-virtually measurable and dom f is conegligible, every W, belongs to A,
50 XWni € £, by (b). Set fr =3 4_; 27" xWhi, so that
folz,y) =2""k it k <4" and 27"k < f(z,y) <27 "(k + 1),

= 2" f(z,y) = 2",

=0if (z,y) € (X xY)\ dom f.
By (a-i), fn € £ for every n € N, while (f,)nen is non-decreasing, so f' = sup,,cy fn € £, by (a-ii). But
f =ae ['ys0 f €L, by (i) just above. Q

(iii) Finally, let f be any [—oo,co]-valued function such that [ fdX is defined in [—o00,00]. Then
J frdx, [ f~dX are both defined and at most one is infinite. By (ii), both f* and f~ belong to £. Set
g(z) = [ [T (z,y)v(dy), h(z) = [ f(x,y)v(dy) whenever these are defined; then [gdu = [ fTdX and
J hdp = [ f~dX are both defined in [0, cc].
Suppose first that [ f~dA is finite. Then [ hdp is finite, so h must be finite p-almost everywhere; set

D ={x:xz € domgndomh, h(z) < oo}.
For any z € D, [ f*(z,y)v(dy) and [ f~(z,y)r(dy) are defined in [0, 00|, and the latter is finite; so
[ fayvdy) = [ fH (@ y)v(dy) — [ (z,y)v(dy) = g(x) — h(z)

is defined in |—o0, 00]. Because D is conegligible,

J[ s wvanutan = [ @) - nanio) = [gau- [ han

:/erd/\—/f*d/\:/fd)\,
as required.

Thus we have the result when [ f~d\ is finite. Similarly, or by applying the argument above to —f, we
see that [[ f(z,y)v(dy)p(de) = [ fdXif [ fTd) is finite.
Thus the theorem is proved, at least when p and v are totally finite.

(b*) The only point in the argument above where we needed to know anything special about the measures
u and v was in part (b), when showing that A C W. I now return to this point under the hypotheses of the
theorem as stated, that v is o-finite and p is either strictly localizable or complete and locally determined.

(i) Tt will be helpful to note that the completion fi of p (212C) is identical with its c.l.d. version f
. w18 strictly localizable, then i = p by a. If p 1s complete and locally determined, then
213E). P If p i ictly localizable, then 4 = i by 213Ha. If p i 1 d locally d ined, th
= =i (212D, 213Hf). Q

(ii) Write &f = {G: G € B, uG < 0}, T/ = {H: H € T, vH < xo}. For G € &/, H € T7 let pg,
vy and Agx g be the subspace measures on G, H and G x H respectively; then A\gx g is the c.l.d. product
measure of pg and vy (251Q(ii-a)). Now W N (G x H) € W for every W € A. PP W N (G x H) belongs to
the domain of Agx g, so by (b) of this proof, applied to the totally finite measures ug and vy,

AWN(Gx H))=Aagxa(WnN (G x H))
- /G /H X(W (G x H)) ()i (dy) g (da)

= [ [ w0 (@ x i) ppwtdpuc(an)
(because x(W N (G x H))(z,y) =0if y € Y \ H, so we can use 131E)
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= [ [ 2w (6 x M) pvtdputn)
X JY

by 131E again, because [, x(W N (G x H))(z,y)v(dy) =0if z € X \G. SoWN(Gx H)eW. Q

(iii) In fact, W € W for every W € A. PP Remember that we are supposing that v is o-finite. Let
(Yn)nen be a non-decreasing sequence in T/ covering Y, and for each n € N set W,, = WnN (X xY,),
gn(z) = [ XxW,(z,y)v(dy) whenever this is defined. For any G € £/,

Jo gmdu = [ x(W (G x Ya)) (@, y)v(dy)u(d)

is defined and equal to A(W N (G x Y;,)), by (ii). But this means, first, that G \ dom g,, is negligible, that is,
that (G \ dom g,) = 0. Since this is so whenever uG is finite, (X \ domg,) = 0, and g, is defined ji-a.e.;
but @ = fi, so g, is defined fi-a.e., that is, u-a.e. (212Eb). Next, if we set E,, = {z : ¢ € dom g, gn(x) > a}
for a € R, then E,, NG € 3 whenever G € >/ where 3 is the domain of [; by the definition in 213D, E,,
is measured by fi = fi. As a is arbitrary, g, is p-virtually measurable (212Fa).

We can therefore speak of [ g,,du. Now

/ / XWa(z, y)v(dy)u(de) = / Indp = Sup, /G 9n

(213B, because p is semi-finite)
= sup A(WN(GxY,))=AWn(X xY,))
Gexf

by the definition in 251F. Thus W N (X x Y,) € W.
This is true for every n € N. Because (Y,)nen 1Y, W € W, by (a-iii-g). Q

(iv) We can therefore return to part (c) of the argument above and conclude as before.

252C The theorem above is of course asymmetric, in that different hypotheses are imposed on the two
factor measures p and v. If we want a ‘symmetric’ theorem we have to suppose that they are both o-finite,
as follows.

Corollary Let (X,%, u) and (Y, T,v) be two o-finite measure spaces, and A the c.l.d. product measure
on X x Y. If f is M-integrable, then [[ f(z,y)v(dy)u(dz) and [[ f(z,y)pu(dz)v(dy) are defined, finite and
equal.

proof Since p and v are surely strictly localizable (211Lc), we can apply 252B from either side to conclude
that

[J fa@yywdy)pde) = [ fdr= [[ fa,y)u(dz)v(dy).

252D So many applications of Fubini’s theorem are to indicator functions that I take a few lines to spell
out the form which 252B takes in this case, as in parts (b)-(b*) of the proof there.

Corollary Let (X, %, u) and (Y, T, v) be measure spaces and A the c.l.d. product measure on X xY. Suppose
that v is o-finite and that p is either strictly localizable or complete and locally determined.

(i) If W € dom \, then [v*W[{z}]u(dz) is defined in [0, co] and equal to \W.

(ii) If v is complete, we can write [ vW[{z}]u(dz) in place of [v*W[{z}]u(dz).

proof The point is just that [ xW(z,y)v(dy) = 0W[{x}] whenever either is defined, where ¥ is the
completion of v (212F). Now 252B tells us that

AW = [[ Wz, y)(dy)u(de) = [ oW [{x}]u(da).

We always have 0W[{z}] = v*W[{z}], by the definition of © (212C); and if v is complete, then & = v so
AW = J oW [{a}|u(de).
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252E Corollary Let (X, X, 1) and (Y, T, v) be measure spaces, with c.l.d. product (X xY, A, X). Suppose
that v is o-finite and that p has locally determined negligible sets (213I). Then if f is a A-measurable real-
valued function defined on a subset of X x Y, y — f(z,y) is v-virtually measurable for p-almost every
reX.

proof Let f be a A-measurable extension of f to a real-valued function defined everywhere in X x Y (121I),
and set f,(y) = f(z,y) forallz € X,y €Y,
D={z:z€eX, fz is v-virtually measurable}.

If G € ¥ and puG < oo, then G\ D is negligible. P Let (Y,,),en be a non-decreasing sequence of sets of
finite measure covering Y respectively, and set

fn(m,y) = f(:c,y) ifreG,yeY, and |f(:r,y)| <mn,
=0 for other x € X x Y.

Then each fn is A-integrable, being bounded and A-measurable and zero off G x Y,,. Consequently, setting
fna(y) = fulz,y),

f ffnrdl/ (dr) exists *ffnd/\

But this surely means that fm is v-integrable, therefore v-virtually measurable, for almost every z € X.
Set

D,={z:zeX, fra is v-virtually measurable};

then every D, is u-conegligible, so ﬂneN » 1s conegligible. But for any z € G ﬂﬂneN s fL = lim, 0o fm.
is v-virtually measurable. Thus G\ D C X \ [,y D» is negligible. Q

This is true whenever uG < oo. As G is arbitrary and p has locally determined negligible sets, D is
conegligible. But, for any = € D, y — f(x,y) is a restriction of fm and must be v-virtually measurable.

252F As a further corollary we can get some useful information about the c.l.d. product measure for
arbitrary measure spaces.

Corollary Let (X, %, 1) and (Y, T, v) be two measure spaces, A the c.l.d. product measure on X x Y, and
A its domain. Let W € A be such that the vertical section W[{z}] is v-negligible for u-almost every x € X.
Then AW = 0.

proof Take E € ¥, F € T of finite measure. Let Agxr be the subspace measure on E x F. By 251Q(ii-«)
again, this is just the product of the subspace measures pg and vp. We know that W N (E x F') is measured
by Agxr. At the same time, the vertical section (W N (E x F))[{z}] = W[{x}] N F is vp-negligible for
pp-almost every x € E. Applying 252B to ug and vp and x(W N (E x F)),

AW N (E X F)) = Apxr(WN (E x F)) = [Lve(W{z}] N F)pp(dr) = 0.
But looking at the definition in 251F, we see that this means that AW = 0, as claimed.

252G Theorem 252B and its corollaries depend on the factor measures p and v belonging to restricted
classes. There is a partial result which applies to all c.l.d. product measures, as follows.

Tonelli’s theorem Let (X,3, 1) and (Y, T,v) be measure spaces, and (X x Y, A, \) their c.l.d. product.
Let f be a A-measurable [—oo,o0]-valued function defined on a member of A, and suppose that either
S 1f(z,y)|p(dz)v(dy) or [[|f(z,y)|v(dy)u(de) exists in R. Then f is A-integrable.

proof Because the construction of the product measure is symmetric in the two factors, it is enough to
consider the case in which [[|f(z,y)|v(dy)u(dx) is defined and finite, as the same ideas will surely deal
with the other case also.

(a) The first step is to check that f is defined and finite A-a.e. B Set W = {(z,y) : (z,y) € dom f, f(z,y)
is finite}. Then W € A. The hypothesis

ff |f(z,y)|v(dy)u(dz) is defined and finite
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includes the assertion
f |f(z,y)|v(dy) is defined and finite for p-almost every z,
which implies that
for p-almost every x, f(x,y) is defined and finite for v-almost every y;
that is, that
for p-almost every x, W[{z}] is v-conegligible.
But by 252F this implies that (X x Y) \ W is A-negligible, as required. Q

(b) Let h be any non-negative A-simple function such that h < |f| A\-a.e. Then [ h cannot be greater
than [[|f(z,y)|v(dy)pu(dz). B Set
W =A{(z,y) : (z,y) € dom f, h(z,y) < [f(z, )|}, h'=hxxW;

then A’ is a simple function and h’ =,. h. Express h’' as Z 0 aiXxW; where a; > 0 and AW; < oo
for each i. Let ¢ > 0. For each i < n there are F; € X, F; € T such that uF; < oo, vF; < oo and
AW N (E; x Fy)) > AW; —e. Set E = J,<,, Ei and F = |J,,, Fi. Consider the subspace measures jp
and v and their product Agxr on E x F; then Agyr is the subspace measure on E x F defined from A
(251Q(ii-«) once more). Accordingly, applying 252B to the product ug X vp,

JoupW = [ W dexr = [, [0 (@, 9)ve(dy)ps(d).
For any z, we know that h'(z,y) < |f(z,y)| whenever f(z,y) is defined. So we can be sure that
[ B (@ y)ve(dy) = [ B (z,9)xF(y)v(dy) < [ |f(z,y)v(dy)

at least whenever fF (z,y)vr(dy) and [|f(z,y)|v(dy) are both defined, which is the case for almost every
x € E. Consequently

/EXFh'dA: / / W (@, y)vr (dy)pe(do)
//lfa:y (dy) pu(dax) _/ () () ().

On the other hand,

/hd)\ EXthA Zal (Wi \ (E x F))

=0
=0 =0

So
Shax= [ax < ([ |Feon) i (dy)u(dn) eSSy ar
As € is arbitrary, [hdX < [[|f(z,y)lv(dy)p(dz), as claimed. Q

(c) This is true whenever h is a A-simple function less than or equal to |f| A-a.e. But |f| is A-measurable
and A is semi-finite (251Ic), so this is enough to ensure that |f| is A-integrable (213B), which (because f is
supposed to be A-measurable) in turn implies that f is A-integrable.

252H Corollary Let (X, %, ) and (Y, T, v) be o-finite measure spaces, A the c.l.d. product measure on
X xY, and A its domain.
(a) Let f be a A-measurable [—oo, oo]-valued function defined on a member of A. Then if one of

Sy F@ @, y). [, [ 1f@yludvdy), [, [, 1f(zy)lr(dy)ud)

exists in R, so do the other two, and in this case
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fXxY z y fY fX x y fX fy T y (dl’)

(b) Let f be a A-measurable [0 oo]—valued function defined on a member of A. Then

fX><Y z y fY fX z y fx fy x y (dx)

in the sense that if one of the integrals is defined in [0, oo] so are the other two, and all three are then equal.

proof (a)(i) Suppose that [ |f|d\ is finite. Because both p and v are o-finite, 252B tells us that

[[ 1 f (@ p)lp(dz)v(dy),  [[1f(x,y)v(dy)p(d)

both exist and are equal to [ |f|d\, while

IJ f(@,y)ulde)v(dy),  [[ fzy)v(dy)p(dr)
both exist and are equal to [ fdA.

(ii) Now suppose that [[|f(z,y)|v(dy)u(dz) exists in R. Then 252G tells us that |f| is A-integrable,
so we can use (i) to complete the argument. Exchanging the coordinates, the same argument applies if

J[ 1 f(z,y)|p(dz)v(dy) exists in R.
(b)(i) If [ fdX is defined, the result is immediate from 252B.

(ii) Suppose that [[y f(x,y)v(dy)u(dz) is defined. As in part (a) of the proof of 252G, but this time
setting W = dom f, we see that W € A and that W [{z}] is v-conegligible for p-almost every z, so that W
is A-conegligible. Since f is non-negative, A-measurable and defined almost everywhere, [ fd\ is defined in
[0, 00] and we are in case (i).

2521 Corollary Let (X,X%, 1) and (Y, T,v) be measure spaces, A the c.l.d. product measure on X x Y,
and A its domain. Take W € A. If either of the integrals

J W yv(dy), [ v Wi{z}u(de)
exists and is finite, then AW < oco.
proof Apply 252G with f = xW, remembering that
My = [xW (@, y)ulde), v Wz = [ XW(z,y)v(dy)

whenever the integrals are defined, as in the proof of 252D.

252J Remarks 252H is the basic form of Fubini’s theorem; it is not a coincidence that most authors
avoid non-o-finite spaces in this context. The next two examples exhibit some of the difficulties which can
arise if we leave the familiar territory of more-or-less Borel measurable functions on o-finite spaces. The
first is a classic.

252K Example Let (X, 3, 1) be [0, 1] with Lebesgue measure, and let (Y, T, v) be [0, 1] with counting
measure.
(a) Consider the set
W ={(t,t):t€[0,1]} CX xY.

We observe that W is expressible as

n k k+1 k k+1 —~
mnEN Uk:O[TH7T+1] X [T-H’r-f—l] S E@T

If we look at the sections

=Wt = {#}

for t € [0, 1], we have

[ xW (@, y)u(da)v(dy) = [ uW " {y}v(dy) = [0v(dy) =0,
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I W (@, yv(dy)u(da) = [vWatulde) = [ 1p(da) = 1,
so the two repeated integrals differ. It is therefore not generally p0531ble to reverse the order of repeated

integration, even for a non-negative measurable function in which both repeated integrals exist and are
finite.

(b) Because the set W of part (a) actually belongs to ¥®T, we know that it is measured by the c.l.d.
product measure A, and 252F (applied with the coordinates reversed) tells us that AW = 0.

(c) It is in fact easy to give a full description of A.

(i) The point is that a set W C [0, 1] x [0, 1] belongs to the domain A of A iff every horizontal section
W=1{y}] is Lebesgue measurable. P () If W € A, then, for every b € [0,1], A([0,1] x {b}) is finite, so
W N ([0,1] x {b}) is a set of finite measure, and

AW N ([0,1] x {8})) = [ (W N ([0, 1] x {b}) " {y}w(dy) = pW ' [{b}]
by 252D, because u is o-finite, v is both strictly localizable and complete and locally determined, and
(W0, 1] x (o) {y} = W H{b} if y = b,
= () otherwise.

As b is arbitrary, every horizontal section of W is measurable. (8) If every horizontal section of W is
measurable, let F' C [0, 1] be any set of finite measure for v; then F is finite, so

WO ([0, x F) =Uy,ep W {y}] x {y} € 38T C A
But it follows that W itself belongs to A, by 251H. Q
(ii) Now some of the same calculations show that for every W € A,
AW =5, o 1 ).
P For any finite F' C [0, 1],

() =D uW T {yl.

yeF

AW 0 (0,1] % F)) = / POV 01(0.1) x F) g} dy)

So
AW = SUPFC(0,1] is finite ZyGF pW= [{y}] Zye 0,1] pW= [{y}] Q

252L Example For the second example, I turn to a problem that can arise if we neglect to check that
a function is measurable as a function of two variables.
Let (X,X%,u) = (Y, T,v) be wy, the first uncountable ordinal (2A1Fc), with the countable-cocountable
measure (211R). Set
W={(En):£<n<w}CXxY.

Then all the horizontal sections W~=1[{n}] = {¢ : f < 77} are countable, so

S #W = i} v(dn) = [ Ov(dn) =0,
while all the vertical sections W[{{}] ={n: £ <n< wl} are cocountable, so
JvWHENmdE) = [ 1p(dé) = 1.

Because the two repeated integrals are different, they cannot both be equal to the measure of W, and the
sole resolution is to say that W is not measured by the product measure.

252M Remark A third kind of difficulty in the formula
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[ f(@,y)dzdy = [[ f(x,y)dyds

can arise even on probability spaces with ©®T-measurable real-valued functions defined everywhere if we
neglect to check that f is integrable with respect to the product measure. In 252H, we do need the hypothesis
that one of

[y @Ay, [, [ 1 F@ludvidy), [, [, 1F@y)(dy)ud)
is finite. For examples to show this, see 252Xf and 252Xg.

252N Integration through ordinate sets I: Proposition Let (X, X, i) be a complete locally deter-
mined measure space, and A the c.l.d. product measure on X x R, where R is given Lebesgue measure; write
A for the domain of X. For any [0, oo]-valued function f defined on a conegligible subset of X, write Q, Q}
for the ordinate sets

Qf ={(z,a):zedomf, 0<a< f(z)} C X xR,

Qf ={(z,a):x€dom f,0<a< f(z)} CX xR
Then

A =AY, = [ fdu

in the sense that if one of these is defined in [0, 0], so are the other two, and they are equal.
proof (a) If Qf € A, then

[ F@uldz) = [viy: (@,y) € Q }uldr) = A2y
by 252D, writing u for Lebesgue measure, because f is defined almost everywhere. Similarly, if Q'f € A,

[ F@)u(dz) = [v{y: (z,y) € Q) hu(de) = A\,

(b) If [ fdu is defined, then f is p-virtually measurable, therefore measurable (because p is complete);
again because p is complete, dom f € 3. So

Q= Ugequsolz 1 @ € dom f, f(x) > g} x [0, 4],

Qs = Nzt Ugeggmofe s o € dom [, f(z) > g2} x 0,4

belong to A, so that AQ2y and )\Q’f are defined. Now both are equal to [ fdu, by (a).

2520 Integration through ordinate sets II: Proposition Let (X, 3, 1) be a measure space, and f
a non-negative p-virtually measurable function defined on a conegligible subset of X. Then

ffd,u = fooo pw{z:x edomf, f(xr) >t}dt = fooo pw{z:xz € domf, f(x) > t}dt
in [0, 0], where the integrals f ...dt are taken with respect to Lebesgue measure.

proof Completing p does not change the integral of f or the outer measure p* (212Fb, 212Ea), so we
may suppose that p is complete, in which case dom f and f will be measurable. For n, k € N set E,; =
{z : 2z € dom f, f(x) > 27"k}, gn(x) = 27" Zizl XEnk. Then (g,)nen is a non-decreasing sequence of
measurable functions converging to f at every point of dom f, so [ fdu = lim, o [ gndp and p{z : f(z) >
t} = lim, o0 p{z : gn(x) > t} for every t > 0; consequently

[0 ndr s f@) > thdt = limp o [ pfa: gn(@) > thdt.
On the other hand, pu{z : g () >t} = pEn f 1 <k <4™and 27"(k— 1) <t < 27"k, 0 if ¢ > 2™, so that
S e s ga(e) > thdt = 352, 27" uEwk = [ ga dps,
for every n € N. So [ p{x : f(x) > t}dt = [ fdp.
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Now p{z : f(x) > t} = p{z : f(x) > t} for almost all t. B Set C' = {t : p{z : f(x) > t} < oo},
h(t) = p{z : f(z) >t} for t € C. If C is not empty, h : C — [0, 00| is monotonic, so is continuous almost
everywhere in C' (222A). But at any point of C'\ {inf C'} at which h is continuous,

plz o f(x) >t} =limgy p{x @ f(z) > s} = p{x: f(x) >t}
So we have the result, since p{z : f(x) >t} = u{z: f(x) >t} = oo for any t € [0,00[\ C. Q
Accordingly [° p{x : f(z) > t}dt is also equal to [ fdpu.

*252P If we work through the ideas of 252B for ©®@T-measurable functions, we get the following, which
is sometimes useful.

Proposition Let (X, X, 1) be a measure space, and (Y, T,v) a o-finite measure space. Then for any LRT-
measurable function f : X XY — [0,00], z — [ f(z,y)v(dy) : X — [0,00] is Y-measurable. If p is
semi-finite, [[ f(z,y)v(dy)u(dx) = [ fdA, where X is the c.l.d. product measure on X x Y.

proof (a) Let (Y, )nen be a non-decreasing sequence of subsets of Y of finite measure with union Y. Set

A={W W CX xY, W[{z}] € T for every z € X,
x — v(Y, N W[{z}]) is X-measurable for every n € N}.
Then A is a Dynkin class of subsets of X X Y including {E' x F': E € ¥, F' € T}, so includes YT, by the

Monotone Class Theorem again (136B).
This means that if W € YQT, then

pW iz} = sup,en v(Yn 0 W[{z}])
is defined for every = € X and is a 3-measurable function of x.

(b) Now, for n, k € N, set
Wt = {(z,9) : f(2,9) 227"k}, g = 34y 27 "X W
Then if we set
ha(@) = [ gulz,y)v(dy)= S5, 27" vWol{z}]
forn e Nand z € X, h,, : X — [0, 00] is X-measurable, and
limy, o0 hn(7) = f(hmn—wc gn (2, y))v(dy) = f f(@,y)v(dy)

for every x, because (g, (x,y))nen is a non-decreasing sequence with limit f(x,y) for allz € X, y € Y. So
z v+ [ f(z,y)v(dy) is defined everywhere in X and is Y-measurable.

(c) If E C X is measurable and has finite measure, then [, [ f(z,y)v(dy)u(dz) = [, fdX, applying
252B to the product of the subspace measure pgp and v (and using 251Q to check that the product of ug
and v is the subspace measure on E x Y). Now if AW is defined and finite, there must be a non-decreasing
sequence (E,)nen of subsets of X of finite measure such that AW = sup,cy A(W N (E, x Y)), so that
WA\ U,en(En xY) is negligible, and

/W fd\ = lim FdA

n=0 JWA(E, xY)
(by B.Levi’s theorem applied to (f x x(W N (E, X Y)))nen

)
< lim fdx = lim /E /f(x,y)y(dy)u(da:)

N0 B, xY oo
< //f(w,y)V(dy)u(dw)-

By 213B once more,
[ fdx = supyw oo [ FN < [ Fla,y)v(dy)p(d).
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But also, if p is semi-finite,
[J @, y)v(dy)u(de) = sup,pen [, [ fl@y)v(dy)p(de) < [ fdr,
so [ fd\= [[ f(z,y)v(dy)p(dz), as claimed.

252Q The volume of a ball We now have all the essential machinery to perform a little calculation
which is, I suppose, desirable simply as general knowledge: the volume of the unit ball {z : ||z| < 1} =
{(&,...,&) >, & < 1} in R". In fact, from a theoretical point of view, I think we could very nearly
just call it 8, and leave it at that; but since there is a general formula in terms of 83 = 7 and factorials, it
seems shameful not to present it. The calculation has nothing to do with Lebesgue integration, and I could
dismiss it as mere advanced calculus; but since only a minority of mathematicians are now taught calculus
to this level with reasonable rigour before being introduced to the Lebesgue integral, I do not doubt that
many readers, like myself, missed some of the subtleties involved. I therefore take the space to spell the
details out in the style used elsewhere in this volume, recognising that the machinery employed is a good
deal more elaborate than is really necessary for this result.

(a) The first basic fact we need is that, for any n > 1,

/2
I, = / cos" tdt = (éig;w if n = 2k is even,
—m/2 :

=228 ifn = 2k + 1is odd.

P For n = 0, of course,

/2 o
Iy = fﬂr/2 ldt=n= —(200!)27T,
while for n = 1 we have
(2°01)°
17

I =sin§ —sin(—3) =2 =2

using the Fundamental Theorem of Calculus (225L) and the fact that sin’ = cos is bounded. For the
inductive step to n + 1 > 2, we can use integration by parts (225F):

/2
It = / costcos" tdt
—m/2

/2
= sin = cos™ = — sin(—=) cos™(—=) + sint-ncos" 't sintdt
2 2 2 2 )2

/2
= n/ (1 —cos®t)cos™ P tdt =n(I,_1 — Iny1),
—7/2

so that I,,41 = I,_1. Now the given formulae follow by an easy induction. Q

_n
n+1
(b) The next result is that, for any n € N and any a > 0,

f:la(a2 — s2)"2ds = I, 10"t

PP Of course this is an integration by substitution; but the singularity of the integrand at s = +a complicates
the issue slightly. I offer the following argument. If a = 0 the result is trivial; take a > 0. For —a < b < a,

set F(b) = f_ba(a2 — 52)"/2ds. Because the integrand is continuous, F”(b) exists and is equal to (a? — b%)"/2
for —a < b < a (222H). Set G(t) = F(asint); then G is continuous and

G'(t) = aF'(asint)cost = a™ ! cos" 1 ¢

for =3 <t < 3. Consequently
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(by 225L, as before)

as required. Q
(c) Now at last we are ready for the balls B, = {z : 2 € R", ||z|| < 1}. Let u, be Lebesgue measure on
R", and set 8. = 115 ... I, for r > 1. I claim that, writing
B.(a) ={z:z eR", |jz| < a},

we have p1,.(By(a)) = Bra” for every a > 0. P Induce on r. For r = 1 we have 51 = 2, Bi(a) = [—a,al, so
the result is trivial. For the inductive step to r + 1, we have

irs1 By (a) = / pol : (5,1) € Byya(a)}t

(putting 251N and 252D together, and using the fact that B,11(a) is closed, therefore measurable)

= /a pr By (Va2 — 12)dt

(because (x,t) € Byy1(a) iff [t] < a and |z]] < Va? —t2)
a
= [ B(a®—13)2dt
(by the inductive hypothesis)
= 6rar+1Ir+1
(by (b) above)

— ﬂr+1ar+1

(by the definition of §,41). Thus the induction continues. Q

(d) In particular, the r-dimensional Lebesgue measure of the r-dimensional ball B, = B,.(1) is just
B, =11 ...1I.. Now an easy induction on k shows that

1 . .
B = Ewk if r = 2k is even,

2k+1
= G i =2k + Lis odd.

(e) Note that in part (c) of the proof we saw that {z : x € R", ||z|| < a} has measure S,a" for every
a > 0.

The formulae here are consistent with the assignation 3y = 1; which corresponds to saying that R® = {0},
that oR® = 1 and that By = {0}. Taking poR° to be 1 is itself consistent with the idea that, following
251N, the product measure g x g, ought to match gy, on RO,

252R Complex-valued functions It is easy to apply the results of 252B-2521 above to complex-valued
functions, by considering their real and imaginary parts. Specifically:

(a) Let (X, %, 1) and (Y, T,v) be measure spaces, and A the c.l.d. product measure on X x Y. Suppose
that v is o-finite and that p is either strictly localizable or complete and locally determined. Let f be a
A-integrable complex-valued function. Then [[ f(z,y)v(dy)u(dz) is defined and equal to [ fdA.
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(b) Let (X,%,u) and (Y, T,v) be measure spaces, A the c.l.d. product measure on X x Y, and A its
domain. Let f be a A-measurable complex—valued function defined on a member of A, and suppose that
either [[|f(z,y)|u(dx)v(dy) or [[|f(z,y)|v(dy)pu(dz) is defined and finite. Then f is A-integrable.

(c) Let (X, %, ) and (Y, T, v) be o-finite measure spaces, A the c.l.d. product measure on X x Y, and A
its domain. Let f be a A-measurable complex-valued function defined on a member of A. Then if one of

Sy F@o)INd(@, ), [, [ 1@ y)ladevdy), [, [, 1@ y)v(dy)u(d)

exists in R, so do the other two, and in this case

Sy P9 = [, [ F@ynl = [ [, Fzy)v(dy)u(d).

252X Basic exercises (a) Let (X, X, u) and (Y, T,v) be measure spaces, and A the c.l.d. product
measure on X X Y. Let f be a Aintegrable real-valued function such that f gxpJ = 0 whenever ' € ¥,
FeT, uEF < o0 and vF < co. Show that f =0 A-a.e. (Hint: use 2511e to show that fW f = 0 whenever
AW < 00.)

(b) Let f, g : R — R be two non-decreasing functions, and gy, pg the associated Lebesgue-Stieltjes
measures (see 114Xa). Set

flat) =lime, f(E), f(z7) = limgy f(1)

for each x € R, and define g(z™), g(z~) similarly. Show that whenever a < b in R,

Fa (e + [ gl Ing(do) = g07)F ) = a7 fa)

[a,b] [a,b]

1

= [, ST )+ [ () ol ),

[a,b]

(Hint: find two expressions for (uy x pg){(z,y) :a <z <y < b}.)

>(c) Let (X,%, ) and (Y, T,v) be complete locally determined measure spaces, A the c.l.d. product
measure on X X Y, and A its domain. Suppose that A C X and B C Y. Show that A x B € A iff either
wA=0orvB=0o0r A€ ¥ and B € T. (Hint: if B is not negligible and A x B € A, take H such that
vH < oo and BN H is not negligible. Then W = A x (B N H) is measured by u X vy, where vy is the
subspace measure on H. Now apply 252D to p, vy and W to see that A € X.)

>(d) Let (X1,%1, 1), (X2,39, u2), (X2,X3,u3) be three o-finite measure spaces, and f a real-valued
function defined almost everywhere on X; x Xo X X3 and A-measurable, where A is the domain of the
product measure described in 251W or 251Xg. Show that if [[[|f(z1,22,x3)|dx1dzodrs is defined in R,
then [[[ f(x1,22,x3)dzodzsdry and [[[ f(z1, 2o, x3)drsdrdry exist and are equal.

(e) Give an example of strictly localizable measure spaces (X, 3, i), (Y, T,v) and a W € ¥®T such that
x — vW[{z}] is not ¥-measurable. (Hint: in 252Kb, try Y a proper subset of [0, 1].)

>(f) Set f(z,y) =sin(z—y) if 0 <y < x <y+ 2, 0 for other z, y € R?. Show that [[ f(z,y)dzdy =0
and [[ f(z,y)dydz = 27, taking all integrals with respect to Lebesgue measure.

>(g) Set f(z,y) = for z, y €]0,1]. Show that fo fo x,y)dydr = ~ fo fo x,y)drdy = —=

2
(z +y)
>(h) Let (X,%,u) and (Y, T,v) be measure spaces, and f a L®T-measurable function defined on a
subset of X x Y. Show that y — f(x,y) is T-measurable for every z € X.

(i) Let » > 1 be an integer, and write (3, for the Lebesgue measure of the unit ball in R". Set g,.(t) =
rB,t" 1 for t >0, ¢(z) = ||z|| for x € R". (i) Writing u, for Lebesgue measure on R", show that u,.¢ ' [E] =
S mBrt" " pa (dt) for every Lebesgue measurable set E C [0, 00[. (Hint: start with intervals E, noting from
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115Xe that p.{z : ||z|| < a} = Bra" for a > 0, and progress to open sets, negligible sets and general
measurable sets.) (ii) Using 235R, show that

/67”‘70”2/2;%((1@ g, /000 trfle*tz/Q/“(dt) _ 2(r72)/27ﬂ6rr\(g)
=228 T(1+1) = (\/if(%))T

where T is the I'-function (225Xh). (iii) Show that
2 (3)? = 2B,T(2) = 2B, [ te™t"/2dt = 2,

and [ e~ /2dt = \/27.

and hence that 3, =

—e
r'(1+3)

>(j) Let (X, X, i) be a measure space, and f : X — [0, oo[ a function. Write B for the Borel o-algebra of R.
Show that the following are equiveridical: (a) f is ¥-measurable; (8) {(z,a):z € X,0<a < f(z)} € ZRB;
() {(z,a) :x € X,0<a< flz)} € LRB.

252Y Further exercises (a) Let (X, 3, 1) be a measure space. Show that the following are equiveridical:
(i) the completion of y is locally determined; (ii) the completion of p coincides with the c.l.d. version of y;
(iii) whenever (Y, T,v) is a o-finite measure space and A the c.l.d. product measure on X x Y and f is a
function such that [ fd\ is defined in [—o0, oc], then [[ f(z,y)v(dy)p(dz) is defined and equal to [ fdA.

(b) Let (X,X,u) be a measure space. Show that the following are equiveridical: (i) p has locally
determined negligible sets; (ii) whenever (Y, T,v) is a o-finite measure space and A the c.l.d. product
measure on X x Y, then [[ f(z,y)v(dy)u(dz) is defined and equal to [ fdA for any A-integrable function f.

(c) Let (X, %, ) and (Y, T, v) be measure spaces, and Ag the primitive product measure on X xY (251C).
Let f be any Ao-integrable real-valued function. Show that [[ f(z,y)v(dy)u(dz) = [ fdXo. (Hint: show
that there are sequences (G )nen, (Hp)nen Of sets of finite measure such that f(x,y) is defined and equal
to 0 for every (z,y) € (X X Y)\ U,en Gn X Hp.)

(d) Let (X,%,u) and (Y, T,v) be measure spaces; let Ay be the primitive product measure on X x Y,
and A the c.l.d. product measure. Show that if f is a Ag-integrable real-valued function, it is A-integrable,

and [ fd\ = [ fdo.

(e) Let (X, X, ) be a complete locally determined measure space and a < b in R, endowed with Lebesgue
measure; let A be the domain of the c.l.d. product measure A on X x [a,b]. Let f: X X Ja,b[ = R be a
A-measurable function such that ¢t — f(z,t) : [a,b] — R is continuous on [a, b] and differentiable on ]a, b[ for

every © € X. (i) Show that the partial derivative g—{ with respect to the second variable is A-measurable.

(ii) Now suppose that ﬁ is A-integrable and that [ f(z,to)u(dz) is defined and finite for some ty € ]a, b[.

Show that F(t) = [ f(=, t (dz) is defined in R for every ¢ € [a, ], that F is absolutely continuous, and that
F'(t) = f of (x t)u(dx) for almost every t € |a,b[. (Hint: F(c) = F(a) + fXX[a q 8—{(1)\ for every ¢ € [a,b].)

(f) Show that % = fol t2= (1 — ¢)~1dt for all @, b > 0. (Hint: show that

St [T e (= ) dwdt = [ e [ 07 (2 — )P Vdtdar.)

(g) Let (X, %, u) and (Y, T, v) be o-finite measure spaces and A the c.l.d. product measure on X x Y.
Suppose that f € £9()\) and that 1 < p < co. Show that ([ | [ f(x,y)dz[Pdy)*/? < [([|f(z,y)[Pdy)'/Pdz.
(Hint: set ¢ = 555 and consider the integral J1f(z,y)g(y)|A(d(z,y)) for g € LI(v), using 244K.)
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(h) Let v be Lebesgue measure on [0, oo[; suppose that f € LP(v) where 1 < p < oo. Set F(y) = i I

for y > 0. Show that ||F||, < ﬁﬂfﬂp. (Hint: F(y) = fol f(zy)dz; use 252Yg with X =[0,1], Y = [0, 00[.)

(i) Show that if p is any non-zero (real) polynomial in r variables, then {z : z € R", p(z) = 0} is Lebesgue
negligible.

(J) Let (X, %, p) and (Y, T, v) be measure spaces, with c.l.d. product (X XY, A, \). Let f be a non-negative
A-measurable real-valued function defined on a A-conegligible set, and suppose that

J([f(@,y)pu(dz))v(dy)

is finite. Show that f is A-integrable.

(k) Let (X, X, 1) be the unit interval [0, 1] with Lebesgue measure, and (Y, T, v) the interval with counting
measure, as in 252K; let \¢ be the primitive product measure on [0,1]2. (i) Setting A = {(¢,¢) : t € [0,1]},
show that AgA = oco. (ii) Show that Ao is not semi-finite. (iii) Show that if W € dom A, then AW =
2 ye,1] uW =L[{y}] if there are a countable set A C [0,1] and a Lebesgue negligible set E' C [0, 1] such that
W C ([0,1] x A) U (E x [0,1]), co otherwise.

(1) Let (X, X, 1) be a measure space, and )¢ the primitive product measure on X x R, where R is given
Lebesgue measure; write A for its domain. For any [0, co]-valued function f defined on a conegligible subset
of X, write Qy, Q} for the corresponding ordinate sets, as in 252N. Show that if any of \o{2y, )\oﬂ’f, f fdu
is defined and finite, so are the others, and all three are equal.

(m) Let (X, X, 1) be a complete locally determined measure space, and f a non-negative function defined
on a conegligible subset of X. Write ¢, Q} for the corresponding ordinate sets, as in 252N. Let A be the

c.l.d. product measure on X x R, where R is given Lebesgue measure. Show that Tf dp = Ny = )\*Q}.

(n) Let (X,X, ) be a measure space and f : X — [0,00[ a function. Show that deu = [ n{w
f(z) > t}dt.

(o) Let (X, 3, i) be a complete measure space and write M®> for the set {f : f € £°%(u), p{x : |f(z)| > a}
is finite for some a € [0,00[}. (i) Show that for each f € M%° there is a non-increasing f* : ]0,00[ — R
such that pr{t : f*(t) > a} = p{z : |f(zx)] > a} for every a > 0, writing puy, for Lebesgue measure. (ii)
Show that [ |fldu < fOME [*duy, for every E € ¥ (allowing oo). (Hint: (f x xE)* < f*.) (iii) Show that
If*l, = I fll, for every p € [1,00], f € M®>. (Hint: (|f|P)* = (f*)P.) (iv) Show that if f, g € M
then [|f x gldu < [ f* x g*dpr. (Hint: look at simple functions first.) (v) Show that if x is atomless
then [ f*dur = supges, yp<a [5 |f] for every a > 0. (Hint: 215D.) (vi) Show that A C £'(y) is uniformly
integrable iff {f* : f € A} is uniformly integrable in £!(uz). (f* is called the decreasing rearrangement

of f.)

(p) Let (X, X, 1) be a complete locally determined measure space, and write v for Lebesgue measure on
[0,1]. Show that the c.l.d. product measure A on X x [0, 1] is localizable iff y is localizable. (Hints: (i) if
€ C %, show that F' € ¥ is an essential supremum for £ in ¥ iff F' x [0, 1] is an essential supremum for
{Ex[0,1]: E€&}in A=domA. (ii) For W € A, n € N, k < 2" set

Wor={z:ze X, v {t: (x,t) e W, 27"k <t <27 "(k+1)} >27 "1}
Show that if W C A and Fy, is an essential supremum for {W, : W € W} in X for all n, k, then
Unen Mimsn Ur<om Fng % 277k, 277 (k + 1)]

is an essential supremum for W in A.)

(q) Let (X, 3, u) be the space of Example 216D, and give Lebesgue measure to [0, 1]. Show that the c.l.d.
product measure on X x [0, 1] is complete, locally determined, atomless and not localizable.
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(r) Let (X,%, ) be a complete locally determined measure space and (Y, T,v) a semi-finite measure
space with Y > 0. Show that if the c.l.d. product measure on X x Y is strictly localizable, then p is strictly
localizable. (Hint: take F' € T, 0 < vF < oo. Let (W;);er be a decomposition of X x Y. Forie I, n € N
set By, ={z:v*{y:yeF, (z,y) € W;} >27"}. Apply 213Yf to {E;, :i € I, n € N}.)

(s) Let (X, X, ) be the space of Example 216E, and give Lebesgue measure to [0, 1]. Show that the c.l.d.
product measure on X X [0,1] is complete, locally determined, atomless and localizable, but not strictly
localizable.

(t) Let (X, X, 1) be a measure space and f a p-integrable complex-valued function. For o € |-, 7| set
Hy = {z:z € dom f, Re(e”**f(x)) > 0}. Show that [* Re(e™™ [, f)da =2 [|f|, and hence that there

. 1
is some a such that | [;; f| > - J1f]. (Compare 246F.)

(u) Set f(t) =t —In(t+1) for t > —1. (i) Show that I'(a + 1) = a*Tle @ [ e~/ dy for every
a > 0. (Hint: substitute u = £ — 1 in 225Xh(iii).) (i) Show that there is a § > 0 such that f(t) > 1¢* for
—1 <t < 4. (iii) Setting v = 3 f(6), show that (for a > 1)

\/Ef(soo e~ It < \/56’““‘[000 e~ fW2qt — 0
as a — 0o. (iv) Set gqo(t) = e~/ (/Va) if —\/a < t < §\/a, 0 otherwise. Show that g,(t) < e~*"/3 for all a, t
and that limg_ 00 ga(t) = =" /2 for all ¢, so that

oo b
e \/5/ e~ ®dt = lim \/&/ e~ Mt
—1 a— o0 -1

a— 00 aa+% a— 00
= lim ga(t)dt = / e~ 124t = \/or.
a—r 00 — 0o — 0o
(v) Show that lim,, ﬁ = +/27. (This is Stirling’s formula.)

(v) Let (X, %, 1) be a complete locally determined measure space and f, g two real-valued, p-virtually
measurable functions defined almost everywhere in X. (i) Let A be the c.l.d. product of p and Lebesgue
measure on R. Setting O} = {(z,a) : z € dom f, a € R, a < f(z)} and Q = {(z,a) : v € domg, a € R,
a < g(z)}, show that A(Q7\Q7) = J(f—g)tdp and N(Q*AQY) = [ |f —g|du. (ii) Suppose that y is o-finite.
Show that

f |f — gldu = f_oooc uw({x:z € dom fNdomyg, (f(z) —a)(g(xz) —a) < 0}da.

(iii) Suppose that p is o-finite, that T is a o-subalgebra of ¥, that F € ¥ and that g : X — [0,1] is
T-measurable. Show that there is an F' € T such that up(EAF) < [ |xE — g|du.

252 Notes and comments For a volume and a half now I have asked you to accept the idea of integrating
partially-defined functions, insisting that sooner or later they would appear at the core of the subject. The
moment has now come. If we wish to apply Fubini’s and Tonelli’s theorems in the most fundamental of all
cases, with both factors equal to Lebesgue measure on the unit interval, it is surely natural to look at all
functions which are integrable on the square for two-dimensional Lebesgue measure. Now two-dimensional
Lebesgue measure is a complete measure, so, in particular, assigns zero measure to any set of the form
{(z,b) : x € A} or {(a,y) : y € A}, whether or not the set A is measured by one-dimensional measure.
Accordingly, if f is a function of two variables which is integrable for two-dimensional Lebesgue measure,
there is no reason why any particular section x — f(z,b) or y — f(a,y) should be measurable, let alone
integrable. Consequently, even if f itself is defined everywhere, the outer integral of f f f(x,y)dzdy is likely
to be applied to a function which is not defined for every y. Let me remark that the problem does not
concern ‘oc0’; the awkward functions are those with sections so irregular that they cannot be assigned an
integral at all.
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I have seen many approaches to this particular nettle, generally less whole-hearted than the one I have
determined on for this treatise. Part of the difficulty is that Fubini’s theorem really is at the centre of
measure theory. Over large parts of the subject, it is possible to assert that a result is non-trivial if and only
if it depends on Fubini’s theorem. I am therefore unwilling to insert any local fix, saying that ‘in this chapter,
we shall integrate functions which are not defined everywhere’; before long, such a provision would have to
be interpolated into the preambles to half the best theorems, or an explanation offered of why it wasn’t
necessary in their particular contexts. I suppose that one of the commonest responses is (like HALMOS 50)
to restrict attention to Y@ T-measurable functions, which eliminates measurability problems for the moment
(252Xh, 252P); but unhappily (or rather, to my mind, happily) there are crucial applications in which the
functions are not actually ¥&T-measurable, but belong to some wider class, and this restriction sooner
or later leads to undignified contortions as we are forced to adapt limited results to unforeseen contexts.
Besides, it leaves unsaid the really rather important information that if f is a measurable function of two
variables then (under appropriate conditions) almost all its sections are measurable (252E).

In 252B and its corollaries there is a clumsy restriction: we assume that one of the measures is o-finite
and the other is either strictly localizable or complete and locally determined. The obvious question is,
whether we need these hypotheses. From 252K we see that the hypothesis ‘o-finite’ on the second factor can
certainly not be abandoned, even when the first factor is a complete probability measure. The requirement
‘u is either strictly localizable or complete and locally determined’ is in fact fractionally stronger than what
is needed, as well as disagreeably elaborate. The ‘right’ hypothesis is that the completion of p should be
locally determined (see 252Ya). The point is that because the product of two measures is the same as
the product of their c.l.d. versions (2517T), no theorem which leads from the product measure to the factor
measures can distinguish between a measure and its c.l.d. version; so that, in 252B, we must expect to need
w1 and its c.l.d. version to give rise to the same integrals. The proof of 252B would be better focused if the
hypothesis was simplified to ‘v is o-finite and p is complete and locally determined’. But this would just
transfer part of the argument into the proof of 252C.

We also have to work a little harder in 252B in order to cover functions and integrals taking the values
+o00. Fubini’s theorem is so central to measure theory that I believe it is worth taking a bit of extra trouble
to state the results in maximal generality. This is especially important because we frequently apply it in
multiply repeated integrals, as in 252Xd, in which we have even less control than usual over the intermediate
functions to be integrated.

I have expressed all the main results of this section in terms of the ‘c.l.d.” product measure. In the case
of o-finite spaces, of course, which is where the theory works best, we could just as well use the ‘primitive’
product measure. Indeed, Fubini’s theorem itself has a version in terms of the primitive product measure
which is rather more elegant than 252B as stated (252Y¢), and covers the great majority of applications.
(Integrals with respect to the primitive and c.l.d. product measures are of course very closely related; see
252Yd.) But we do sometimes need to look at non-o-finite spaces, and in these cases the asymmetric form
in 252B is close to the best we can do. Using the primitive product measure does not help at all with the
most substantial obstacle, the phenomenon in 252K (see 252Yk).

The pre-calculus concept of an integral as ‘the area under a curve’ is given expression in 252N: the integral
of a non-negative function is the measure of its ordinate set. This is unsatisfactory as a definition of the
integral, not just because of the requirement that the base space should be complete and locally determined
(which can be dealt with by using the primitive product measure, as in 252Y1), but because the construction
of the product measure involves integration (part (c) of the proof of 251E). The idea of 252N is to relate
the measure of an ordinate set to the integral of the measures of its vertical sections. Curiously, if instead
we integrate the measures of its horizontal sections, as in 2520, we get a more versatile result. (Indeed
this one does not involve the concept of ‘product measure’, and could have appeared at any point after
§123.) Note that the integral fooo ...dt here is applied to a monotonic function, so may be interpreted as
an improper Riemann integral. If you think you know enough about the Riemann integral to make this a
tempting alternative to the construction in §122, the tricky bit now becomes the proof that the integral is
additive.

A different line of argument is to use integration over sections to define a product measure. The difficulty
with this approach is that unless we take great care we may find ourselves with an asymmetric construction.
My own view is that such an asymmetry is acceptable only when there is no alternative. But in Chapter 43
of Volume 4 I will describe a couple of examples.
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Of the two examples I give here, 252K is supposed to show that when I call for o-finite spaces they are
really necessary, while 252L is supposed to show that joint measurability is essential in Tonelli’s theorem
and its corollaries. The factor spaces in 252K, Lebesgue measure and counting measure, are chosen to show
that it is only the lack of o-finiteness that can be the problem; they are otherwise as regular as one can
reasonably ask. In 252L I have used the countable-cocountable measure on wy, which you may feel is fit
only for counter-examples; and the question does arise, whether the same phenomenon occurs with Lebesgue
measure. This leads into deep water, and I will return to it in Chapter 53 of Volume 5.

I ought perhaps to note explicitly that in Fubini’s theorem, we really do need to have a function which is
integrable for the product measure. I include 252Xf and 252Xg to remind you that even in the best-regulated
circumstances, the repeated integrals [[ fdady, [[ fdydz may fail to be equal if f is not integrable as a
function of two variables.

There are many ways to calculate the volume g, of an r-dimensional ball; the one I have used in 252Q
follows a line that would have been natural to me before I ever heard of measure theory. In 252Xi I suggest
another method. The idea of integration-by-substitution, used in part (b) of the argument for 252Q), is
there supported by an ad hoc argument; I will present a different, more generally applicable, approach in
Chapter 26. Elsewhere (252Xi, 252Yf, 252Yh, 252Yu) I find myself taking for granted substitutions of the
form t + at, t > a +t, t > t2; for a systematic justification, see §263. Of course an enormous number of
other formulae of advanced calculus are also based on repeated integration of one kind or another, and I
give a sample handful of such results (252Xb, 252Ye-252Yh, 252Yu).

Version of 18.4.08

253 Tensor products

The theorems of the last section show that the integrable functions on a product of two measure spaces
can be effectively studied in terms of integration on each factor space separately. In this section I present a
very striking relationship between the L' space of a product measure and the L! spaces of its factors, which
actually determines the product L' up to isomorphism as Banach lattice. I start with a brief note on bilinear
operators (253A) and a description of the canonical bilinear operator from L' (u) x L*(v) to L' (ux v) (253B-
253E). The main theorem of the section is 253F, showing that this canonical map is universal for continuous
bilinear operators from L*(u) x L*(v) to Banach spaces; it also determines the ordering of L*(u x v) (253G).
I end with a description of a fundamental type of conditional expectation operator (253H) and notes on
products of indefinite-integral measures (2531) and upper integrals of special kinds of function (253J, 253K).

253A Bilinear operators Before looking at any of the measure theory in this section, I introduce a
concept from the theory of linear spaces.

(a) Let U, V and W be linear spaces over R (or, indeed, any field). A map ¢ : U x V. — W is bilinear
if it is linear in each variable separately, that is,

P(u1 + uz,v) = ¢(u1,v) + ¢(uz,v),
b, vy + v2) = p(u, v1) + P(u, va),

plau,v) = ad(u,v) = ¢(u, aw)

for all u, uy, us € U, v, v1, v2 € V and scalars a. Observe that such a ¢ gives rise to, and in turn can be
defined by, a linear operator T : U — L(V; W), writing L(V; W) for the space of linear operators from V to
W, where

(Tu)(v) = ¢(u,v)

for all w € U, v € V. Hence, or otherwise, we can see, for instance, that ¢(0,v) = ¢(u,0) = 0 whenever
ueUandveV.

If W' is another linear space over the same field, and S : W — W is a linear operator, then S¢: U xV —
W' is bilinear.
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(b) Now suppose that U, V and W are normed spaces, and ¢ : U x V' — W a bilinear operator. Then we
say that ¢ is bounded if sup{||¢(u,v)|| : ||u]] <1, ||v]] < 1} is finite, and in this case we call this supremum
the norm ||¢|| of ¢. Note that ||¢(u,v)|| < ||@|l||ulll|v] for all w € U, v € V' (because

lp(u, v)[| = eBllg(a™ u, B~10)[| < B¢

whenever a > ||ul|, 8 > ||v]]).
If W’ is another normed space and S : W — W’ is a bounded linear operator, then S¢: U x V — W' is
a bounded bilinear operator, and ||S¢| < ||S]|||#]]-

253B Definition The most important bilinear operators of this section are based on the following idea.
Let f and g be real-valued functions. I will write f®g for the function (z,y) — f(x)g(y) : dom fxdom g — R.

253C Proposition (a) Let X and Y be sets, and X, T o-algebras of subsets of X, Y respectively. If f is
a Y-measurable real-valued function defined on a subset of X, and g is a T-measurable real-valued function
defined on a subset of Y, then f ® g, as defined in 253B, is ¥®T-measurable.

(b) Let (X, X, u) and (Y, T, v) be measure spaces, and A the c.l.d. product measure on X xY. If f € £L%(p)
and g € £L°(v), then f® g € LO(N).

Remark Recall from 241A that £°(u) is the space of p-virtually measurable real-valued functions defined
on p-conegligible subsets of X.

proof (a) The point is that f® xY is Y ®T-measurable, because for any o € R there is an E € X such that
{z: f(z) > a}=FEnNndomf,
so that
{(z,y): (f @xY)(z,y) = a} = (ENdom f) x Y = (E x V) Ndom(f @ xY),

and of course E x Y € ¥®T. Similarly, xX ® g is Y@ T-measurable and f ® g = (f @ xY) x (xX @ g) is
Y®T-measurable.

(b) Let E € X, F € T be conegligible subsets of X, Y respectively such that £ C dom f, F C dompg,
f1E is Y-measurable and ¢| F is T-measurable. Write A for the domain of A\. Then ®T C A (2511a). Also
E x F is A-conegligible, because

MEXXY)\N(ExXFE)SAM(X\E)xY)+ XX x (Y\F))
=uw(X\E) vY+puX -v(Y\F)=0

(also from 251Ta). So dom(f ® g) 2 E x F is conegligible. Also, by (a), (f®g)[(E x F) = (fIE) ® (g F)
is Y®T-measurable, therefore A-measurable, and f ® g is virtually measurable. Thus f ® g € £°()\), as
claimed.

253D Now we can apply the ideas of 253B-253C to integrable functions.

Proposition Let (X,Y%, 1) and (Y, T,v) be measure spaces, and write A for the c.l.d. product measure on
X xY.If fe Ll (p) and g € L1 (v), then f®ge LY(N) and [ f®@gdA= [ fdu [ gdv.

Remark 1 follow §242 in writing £!(u1) for the space of u-integrable real-valued functions.

proof (a) Consider first the case f = xE, g = xF where E € X, F € T have finite measure; then
f®g=x(F x F) is Mintegrable with integral

A(ExF):uE~uF:ffdu-fgd1/,
by 2511a.

(b) It follows at once that f ® g is A-simple, with [ f ® gd\ = [ fdu [ gdv, whenever f is a p-simple
function and g is a v-simple function.

(c) If f and g are non-negative integrable functions, there are non-decreasing sequences (fp,)nen, (gn)nen
of non-negative simple functions converging almost everywhere to f, g respectively; now note that if £ C X,
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F C Y are conegligible, E x F' is conegligible in X XY, as remarked in the proof of 253C, so the non-decreasing
sequence (fy, X gn)nen of A-simple functions converges almost everywhere to f ® g, and

Jf@gdh=limu o [ fo®gnd\ =limpsoo [ fodu [ gudv = [ fdu[ gdv
by B.Levi’s theorem.

(d) Finally, for general f and g, we can express them as the differences f* — f~, g* — g~ of non-negative
integrable functions, and see that

[fogdr=[ffeg —ftog —f~ gt +f ®gd = [ fduf gdv.

253E The canonical map L! x L' — L! I continue the argument from 253D. Because E x F is
conegligible in X x Y whenever E and F' are conegligible subsets of X and Y, fi ® g1 = f ® g Aa.e.
whenever f = f p-a.e. and g = g; v-a.e. We may therefore define u ® v € L*(\), for v € L'(u) and
v € L*(v), by saying that u ® v = (f ® g)* whenever u = f* and v = g°.

Now if f, fi, fa € £*(u), g, 91, g2 € L' (v) and a € R,

(it f)eg=(fi®g)+(f2®g),
@@ +g)=U2aa)+(f®g),

(af)®g=a(f®g) = f® (ag).
It follows at once that the map (u,v) — u ® v is bilinear.
Moreover, if f € L(p) and g € L*(v), |[f| @ |g| = |f @ 4], so [|f ® gld\ = [|f|du [ |g|dv. Accordingly
@l = lulls ol

for all u € L' (i), v € L' (v). In particular, the bilinear operator ® is bounded, with norm 1 (except in the
trivial case in which one of L(yx), L'(v) is 0-dimensional).

253F We are now ready for the main theorem of this section.

Theorem Let (X, %, ) and (Y, T, v) be measure spaces, and let A be the c.l.d. product measure on X x Y.
Let W be any Banach space and ¢ : L*(u) x L' (v) — W a bounded bilinear operator. Then there is a unique
bounded linear operator T : L'(\) — W such that T'(u ® v) = ¢(u,v) for all u € L' (u) and v € L!(v), and

(= Nl

proof (a) The centre of the argument is the following fact: if Ey, ... , E, are measurable sets of finite measure
in X, Fy,...,F, are measurable sets of finite measure in Y, ag,... ,a, € R and Y .- ja;x(E; x F;) =0 A
a.e., then Y1 (a;¢0(xEf, xF?) = 0in W. P We can find a disjoint family (G;);j<m of measurable sets of
finite measure in X such that each E; is expressible as a union of some subfamily of the G;; so that xF;
is expressible in the form Z;.n:o bijxG; (see 122Ca). Similarly, we can find a disjoint family (Hy)r<; of

measurable sets of finite measure in Y such that each yF; is expressible as ZL:O cikxHy. Now

Z;n:o 22:0 (ZZL:O aibijcik)x(Gj X Hk) = Z?:O a,»x(Ei X Fz) =0 M-a.e.
Because the G; x Hj, are disjoint, and A(G; x Hy) = puG; - vHy for all j, k, it follows that for every
j < m, k <1 we have either uG; = 0 or vH;, = 0 or Z?:o aibjc;;, = 0. In any of these three cases,
Yoo aibijeikd(xGS, xHy) = 0 in W. But this means that
m l n . . n . .
0= Zj:o > k=0 (Zi:o aibijcik)¢(XGja XHp) =30 0 aid(XE, X FY),
as claimed. Q

(b) It follows that if Ey,...,E,, E{,...,E] are measurable sets of finite measure in X, Fy,..., F,,
F§,...,F), are measurable sets of finite measure in Y, ag, ... ,an,a(, ... ,a, € Rand Y. ja;x(E; x F;) =
Yt oaix(EL x F]) A-a.e., then

Ym0 aid(XES X)) = 321k aip(XE;T, X F)
in W. Let M be the linear subspace of L!(\) generated by
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{X(ExF):Ee€X pb<oo, FeT, vF < oo}
then we have a unique map Ty : M — W such that
To(Xi—o aix(Ei x F3)*) = 331 aip(X B}, X FY)
whenever Ey,... ,FE, are measurable sets of finite measure in X, Fy,... ,F, are measurable sets of finite
measure in Y and ag,... ,a, € R. Of course Ty is linear.
(c) Some of the same calculations show that ||Tou|| < ||¢||||u|1 for every w € M. B If uw € M, then, by

the arguments of (a), we can express u as ) 7" 22:0 a;rx(G; x Hy)*, where (G;)j<m and (Hy)r<; are
disjoint families of sets of finite measure. Now

m l m l
[ Toull = 1) ajmoxG xHDI <> lagllo(xGs. xH) |
j=0 k=0 j=0 k=0

m 1

m 1
<> lagllolIXGs I IxHR Nl = 161> > lajuluG; - vHy

=0 k=0 =0 k=0
m 1
= Il >~ > lagklMG; x Hy) = [[¢]l]|ul,
j=0 k=0

as claimed. Q

(d) The next point is to observe that M is dense in L'()\) for || ||;. I Repeating the ideas above once
again, we observe that if Ey, ... , F, are sets of finite measure in X and Fy,... , F, are sets of finite measure
in Y, then x(UU,<, E:i x F;)* € M; this is because, expressing each E; as a union of G;, where the G; are
disjoint, we have

Uign E; x F; = Ujgm Gj x ij,
where F} = J{F; : G; C E;} for each j; now (G; x F});j<, is disjoint, so
X(Ujem Gj x Fj)* = Z;ﬁ:o x(Gj x Fj)* € M.
So 2511e tells us that whenever AH < oo and € > 0 there is a G such that A(HAG) < ¢ and xG* € M; now
IXH* = xG*llh = MGAH) <,

so xH* is approximated arbitrarily closely by members of M, and belongs to the closure M of M in L*(\).
Because M is a linear subspace of L*(\), so is M (2A4Cb); accordin;gly M contains the equivalence classes
of all A-simple functions; but these are dense in L*(\) (242Mb), so M = L*()\), as claimed. Q

(e) Because W is a Banach space, it follows that there is a bounded linear operator T : L'(\) — W
extending Tp, with ||T|| = ||To]| < [|¢]l (2A41). Now T'(u ® v) = ¢(u,v) for all u € L' (n), v € L' (v). P If
u = xE* and v = xF*, where F, F are measurable sets of finite measure, then

T(u®v) =T(x(Ex F)*) =To(x(E x F)*) = ¢(xE*, xF**) = ¢(u,v).
Because ¢ and ® are bilinear and T is linear,
T(f*®g*)=9o(f9°)
whenever f and g are simple functions. Now whenever v € L'(u), v € L'(v) and € > 0, there are simple
functions f, g such that ||lu — f*||1 <, ||[v — g°|]1 <€ (242Mb again); so that

[o(u,v) = (f*, 9°) < llop(u— 2,0 = g*)|| + ¢(u, g* — V)| + |(f* — u, V)|
< [loll(e® + ellully + efvll)-
Similarly
lu@v—f*@gh < ele+[lufly +[|v]l),

SO
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1T (u®@v) = T(f* @g°)ll < ellT|l(e + [Jully + [lv]1);
because T(f* ® g*) = o(f*,9°),
1T (u @) = ¢(u, v)[| < (T + @l (e + lully + [[o]l1)-
As e is arbitrary, T(u ® v) = ¢(u,v), as required. Q

(f) The argument of (e) ensured that ||T|| < ||¢||. Because |[u ® v||; < |Jul]1||v]jx for all u € L'(u) and
v e L'(v), [g(u, o)l < I Tl[luflx]lvlly for all u, v, and [|¢]] < |IT|; so [T = [|¢]I

(g) Thus T has the required properties. To see that it is unique, we have only to observe that any
bounded linear operator S : L'(\) — W such that S(u ® v) = ¢(u,v) for all u € L*(u), v € L' (v) must
agree with T on objects of the form y(F X F)* where F and F are of finite measure, and therefore on every
member of M; because M is dense and both S and T are continuous, they agree everywhere in L*()).

253G The order structure of L' In 253F I have treated the L' spaces exclusively as normed linear
spaces. In general, however, the order structure of an L! space (see 242C) is as important as its norm. The
map ® : L'(u) x L'(v) — L'()\) respects the order structures of the three spaces in the following strong
sense.

Proposition Let (X, 1) and (Y, T,v) be measure spaces, and A the c.l.d. product measure on X x Y.
Then

(a) u®wv > 0in L'(\) whenever v > 0 in L*(u) and v > 0 in L(v).

(b) The positive cone {w : w > 0} of L!()) is precisely the closed convex hull C of {u®wv:u >0, v > 0}
in L1(\).

*(c) Let W be any Banach lattice, and T': L'(\) — W a bounded linear operator. Then the following
are equiveridical:

(i) Tw > 0 in W whenever w > 0 in L*(\);

(ii) T(u®v) > 0 in W whenever u > 0 in L'(x) and v > 0 in L' (v).
proof (a) If u, v > 0 then they are expressible as f*, g* where f € £'(u), g € LY(v), f > 0 and g > 0.
Now f@g>0sou®v=(f®g)* >0.

(b) (i) Write L*(A\)T for {w : w € L*(\), w > 0}. Then L*(\)* is a closed convex set in L'()\) (242De);
by (a), it contains u ® v whenever u € L'(u)* and v € L' (v)™T, so it must include C.

(ii) (o) Of course 0 =0® 0 € C. (B) If w € M, as defined in the proof of 253F, and u > 0, then u is
expressible as ngm,kgl a;xx(G; x Hy)®, where Gy, ... ,G,, and Hy, ... , H; are disjoint sequences of sets of
finite measure, as in (a) of the proof of 253F. Now a;;, can be negative only if x(G; x Hy)* = 0, so replacing
every a;i by max(0, a;x) if necessary, we can suppose that a;, > 0 for all j, k. Not all the a;, can be zero,
80 @ =73, k< @k >0, and

u = ngm,kgl CLZT'“ ~ax(G; x Hy)* = Z‘jgm,kgl aiTk (axG3) @ xH} € C.

(7) If w € LY(\)* and € > 0, express w as h* where h > 0 in £!()\). There is a simple function h; > 0 such
that hy <, h and fh < f h1+e€. Express hy as Z?:o a;xH; where AH; < oo and a; > 0 for each ¢, and for
each i < n choose sets Gig, ... ,Gim,; € 2, Fio,... , Fim, €T, all of finite measure, such that Gy, ... ,Gim,
are disjoint and \(H;A Gij x Fij) <e€/(n+1)(a; + 1), as in (d) of the proof of 253F. Set

wo =Y aiE}'Zo X(Gij x Fyj)*.
Then wg € C because wg € M and wg > 0. Also

Jj<m;

lw —wolly < [lw—hill1 + [[A] — wollx

< /(h— hl)d)\-f—zai/lXHi =Y X(Gij x Fyy)ldA
1=0

=0

<e+ Zai)\(HA U Gi; x Fij) < 2e.
i=0

j<m;
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As € is arbitrary and C is closed, w € C. As w is arbitrary, L'(\)* C C and C = L*(\)*.

(c) Part (a) tells us that (i)=-(ii). For the reverse implication, we need a fragment from the theory of
Banach lattices: W+ = {w:w € W, w > 0} is a closed set in W. P If w, w’ € W, then

w=(w—-—w)+w <|w—-uw|+uw <|w—w+w,
—w=(w —w)—w <|lw—u|-w <|w—w+ ],

ol < o —w| + '], ] - w] < [w—w],

because |w| = wV (—w) and the order of W is translation-invariant (241Ec). Similarly, |w’'| — |w| < |w — w/|
and ||w| — |w'|]| < |w —w'], so |[|w| — [w'||| < ||lw — w'||, by the definition of Banach lattice (242G). Setting
o(w) = |w| — w, we see that ||¢p(w) — p(w')]| < 2|jw — w'|| for all w, w’ € W, so that ¢ is continuous.
Now, because the order is invariant under multiplication by positive scalars,
w>0 <<= 2w>0 <= w>-—w <= w=|w <= ¢(w)=0,

so Wt ={w: ¢(w) = 0} is closed. Q

Now suppose that (ii) is true, and set C; = {w : w € L*()\), Tw > 0}. Then C; contains u ® v whenever
u, v > 0; but also it is convex, because T is linear, and closed, because T is continuous and C; = T~ [W].
By (b), C; includes {w : w € L*(\), w > 0}, as required by (i).

253H Conditional expectations The ideas of this section and the preceding one provide us with some

of the most important examples of conditional expectations.

Theorem Let (X, X, ) and (Y, T, v) be complete probability spaces, with c.l.d. product (X x Y, A, \). Set
A ={ExY :E€X} Then A is a o-subalgebra of A. Given a A-integrable real-valued function f, set

z,y) = [ fz,2)v(dz
whenever x € X, y € Y and the integral is defined in R. Then g is a conditional expectation of f on Aj.

proof We know that Al C A, by 251Ia and A; is a o-algebra of sets because ¥ is. Fubini’s theorem (252B,
252C) tells us that f;(z ff x, z)v(dz) is defined for almost every z, and therefore that g = f; ® xY is
defined almost everywhere in X xY. f;is p-virtually measurable; because p is complete, f1 is ¥-measurable,
so g is Aj-measurable (since {(z,y) : g(z,y) < a} = {z : fi(z) < a} x Y for every @ € R). Finally, if
W € Ay, then W = E x Y for some FE € ¥, so

/ng)\ = /(fl @ xY) x (xE® xY)d\ = /f1 X XEd,u/XYdV
(by 253D)

//XE (z,y)v(dy)p(dx) /fxxExY)d/\

= /Wfd/\.

So g is a conditional expectation of f.

(by Fubini’s theorem)

2531 This is a convenient moment to set out a useful result on products of indefinite-integral measures.

Proposition Let (X, ¥, u) and (Y, T,v) be measure spaces, and f € £%(u), g € £%(v) non-negative func-
tions. Let u, v’ be the corresponding indefinite-integral measures (see §234). Let A be the c.l.d. product of
p and v, and X' the indefinite-integral measure defined from X and f ® g € £%(\) (253Cb). Then ) is the
c.l.d. product of y/ and v'.

proof Write 6 for the c.l.d. product of /' and v'.
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(a) If we replace p by its completion, we do not change 1’ (234Ke); at the same time, we do not change
A, by 251T. The same applies to v. So it will be enough to prove the result on the assumption that p and
v are complete; in which case f and g are measurable and have measurable domains.

Set F ={z:2 € domf, f(x) >0} and G = {y : y € domg, g(y) > 0}, so that F x G = {w : w €
dom(f ® g), (f ® g)(w) > 0}. Then F is y'-conegligible and G is v’-conegligible, so F' x G is #-conegligible
as well as \'-conegligible. Because both 6 and A’ are complete (251Ic, 234I), it will be enough to show that
the subspace measures OpxG, Np o on F x G are equal. But note that p¢ can be identified with the
product of p and v¢,, where pf and v(, are the subspace measures on F, G respectively (251Q(ii-c)). At
the same time, p’ is the indefinite-integral measure defined from the subspace measure up on F and the
function f|F, vy, is the indefinite-integral measure defined from the subspace measure v on G and g|G,
and Mg, o is defined from the subspace measure Apxg and (f[F) ® (¢[G). Finally, by 251Q again, Apxc
is the product of up and vg.

What all this means is that it will be enough to deal with the case in which F = X and G =Y, that is,
f and g are everywhere defined and strictly positive; which is what I will suppose from now on.

(b) In this case dom ' =3 and domv’ = T (234La). Similarly, dom X' = A is just the domain of A. Set
Fo={z:zeX, 27" < f(x) <27}, Gun={y:yeY, 27" <g(y) <2}
for n € N.
(c) Set
A={W:W € domb NndomX\, (W) =X (W)}.
If //E and v'H are defined and finite, then f x xYF and g x xH are integrable, so

X(ExH)z/(f@g)xx(ExH)d)\:/(f><XE)®(gxxH)d/\

:/fxxEduo/gxdeyzﬂ(ExH)

by 253D and 2511a, that is, E x H € A. If we now look at Agy ={W : W C X xY, WN(E x H) € A},
then we see that

Agpy contains E' x H' for every E' € ¥, H' € T,

if (Wy)nen is a non-decreasing sequence in Agg then | J, .y Wn € Apn,

if W, W' € Agy and W C W’ then W'\ W € Agy.
Thus Agg is a Dynkin class of subsets of X x Y, and by the Monotone Class Theorem (136B) includes the
o-algebra generated by {E' x H' : E' € ¥, H' € T}, which is S&T.

(d) Now suppose that W € A. In this case W € dom# and 6W < NW. P Take n € N, and F € %,
H € T such that ¢/ E and v'H are both finite. Set £/ = ENF,,, H = HNG,, and W/ = WN(E’'x H'). Then
W' € A, while pE' < 2"i/E and vH' < 2"v'H are finite. By 251Ib there is a V € ¥®T such that V C W’
and AV = AW’. Similarly, there is a V/ € S&T such that V! C (E' x H')\ W’ and AV’ = \((E' x H')\W").
This means that A((E’ x H)\ (VUV")) =0,s0o N(E' x H)\(VUV")) =0. But (E' x H)\ (VUV') € A,
by (c), so O((E' x H')\ (VUV')) =0 and W’ € dom 6, while

OW' =0V = NV < NW.

Since E and H are arbitrary, W N (F,, X G,,) € dom#@ (251H) and 6(W N (F,, x Gy,)) < X'W. Since
(Fp)nen, (Gn)nen are non-decreasing sequences with unions X, Y respectively,

OW = sup,, (W N (F, x Gy)) < NW. Q

(e) In the same way, N'W is defined and less than or equal to W for every W € dom 6. P The arguments
are very similar, but a refinement seems to be necessary at the last stage. Take n € Nyand E € X, H € T
such that uE and vH are both finite. Set ' = ENF,, H = HNG, and W = W N (E’' x H'). Then
W' € dom 6, while /' E' < 2"uF and v'H' < 2"vH are finite. This time, there are V, V' € ®T such that
VW, V' C(E'x H)\W', 0V =0W' and 0V’ = 0((E’ x H') \ W’). Accordingly

NV + NV =6V + 0V’ = (E' x H') = N (E' x H'),
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so that MW’ is defined and equal to 6W'.

What this means is that WN(F,, x G,)N(E x H) € A whenever uFE and vH are finite. So WN(F,, xG,,) €
A, by 251H; as n is arbitrary, W € A and MW is defined.

? Suppose, if possible, that AW > 6W. Then there is some n € N such that X' (W N (F,, x G,,)) > 0W.
Because A is semi-finite, 213B tells us that there is some A-simple function h such that h < (f ® g) x x(WnN
(F, x Gy)) and [ hdA > OW; setting V = {(z,y) : h(z,y) > 0}, we see that V. C W N (F, x G,), AV is
defined and finite and X'V > 6W. Now there must be sets F € X, H € T such that uE and vF are both
finite and A(V \ (E x H)) < 4 ™(N'V —6W). But in this case V € A C dom 6 (by (d)), so we can apply the
argument just above to V' and conclude that VN (E x H) =V N (F, x G,) N (E x H) belongs to A. And
now

NV = N(VN(Ex H))+N(V\ (E x H))
<OV (Ex H)+4"AXV\ (E x H)) <0V + NV — oW < \'V,

which is absurd. X
So MW is defined and not greater than 6. Q

(f) Putting this together with (d), we see that \' = 6, as claimed.

Remark If ¢/ and v/ are totally finite, so that they are ‘truly continuous’ with respect to p and v in the
sense of 232Ab, then f and g are integrable, so f ® g is A-integrable, and # = )\’ is truly continuous with
respect to A.

The proof above can be simplified using fragments of the general theory of complete locally determined
spaces, which will be given in §412 in Volume 4.

*253J Upper integrals The idea of 253D can be repeated in terms of upper integrals, as follows.

Proposition Let (X, %, 1) and (Y, T, v) be o-finite measure spaces, with c.l.d. product measure A. Then for
any functions f and g, defined on conegligible subsets of X and Y respectively, and taking values in [0, oo},

[fogdy= [fdu- [gdv.
Remark Here (f ® g)(z,y) = f(z)g(y) for all z € dom f and y € dom g, taking 0 - oo = 0, as in §135.

proof (a) I show first that Tf ®g < Tffg PIf Tf =0, then f =0 a.e., so f ® g =0 a.e. and the result

is immediate. The same argument applies if Tg = 0. If both T [ and [g are non-zero, and either is infinite,
the result is trivial. So let us suppose that both are finite. In this case there are integrable fy, go such that

f <ae for 9 <ae 90, [f=[foand [g= [go (133]a/135Ha). So f ® g <ae fo® go, and
Tf®g§ff0®90=ffof9027f79a
by 253D. Q

(b) For the reverse inequality, we need consider only the case in which 7 f ® g is finite, so that there is a
A-integrable function h such that f ® ¢ <,e h and [f®g= [h. Set

fo(x) = [ h(z,y)v(dy)
whenever this is defined in R, which is almost everywhere, by Fubini’s theorem (252B-252C). Then fo(x) >
f(z)[gdv for every z € dom fy N dom f, which is a conegligible set in X; so

[feg=[hdr\= [ fodu> [f[g,

as required.

*253K A similar argument applies to upper integrals of sums, as follows.

Proposition Let (X, X, ) and (Y, T, v) be probability spaces, with c.l.d. product measure A. Then for any
real-valued functions f, g defined on conegligible subsets of X, Y respectively,
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[ f(@)+g(y) Md = [f@)uldz) + [g(y)v(dy).
at least when the right-hand side is defined in [foo, oal.

proof Set h(z,y) = f(x) + g(y) for z € dom f and y € dom g, so that dom h is A-conegligible.

(a) Asin 253J, I start by showing that Th < Tf —|—Tg. P If either Tf or Tg is 00, this is trivial. Otherwise,
take integrable functions fy, go such that f <,. fo and g <. go. Set hg = (fo @ xY) + (xX ® go); then
h < hg A-a.e., so

Thdx < [ hodr = [ fodu+ [ godv.

As fo, go are arbitrary, [h < [f+ [¢9. Q

(b) For the reverse inequality, suppose that h < hg for A-almost every (z,y), where hg is A-integrable.

Y
Set fo(xz) = [ ho(x,y)r(dy) whenever this is defined in R. Then fo(z) > f(z) + fg dv whenever © €
dom f N dom fo, so

[hodX\= [ fodu> [ fdu+ [gdv.
As hg is arbitrary, Th > T f+ 797 as required.

253L Complex spaces As usual, the ideas of 253F and 253H apply essentially unchanged to complex L'
spaces. Writing L}C(,u), etc., for the complex L' spaces involved, we have the following results. Throughout,
let (X,3%, ) and (Y, T,v) be measure spaces, and A the c.l.d. product measure on X x Y.

(a) If f € £L2(u) and g € LL(v) then f® g, defined by the formula (f ® g)(z,y) = f(z)g(y) for z € dom f
and y € dom g, belongs to L(\).

(b) If f € L{(p) and g € LE(v) then f@ g € LE(N) and [ f®@ gdA = [ fdu [ gdv.

(c) We have a bilinear operator (u,v) — u®uv : L(u)x L& (v) — LE(N) defined by writing f*®g* = (f®g)*
for all f € LL(pn), g € LE(v).

(d) If W is any complex Banach space and ¢ : L (u) x L(v) — W is any bounded bilinear operator,
then there is a unique bounded linear operator 7' : L{(A) — W such that T'(u ® v) = ¢(u,v) for every
uw € L{(p) and v € LE(v), and ||T|| = [|¢].

(e) If 4 and v are complete probability measures, and A = {E xY:FEeXx} then for any f € LL(N)

we have a conditional expectation g of f on Ay given by setting g(z,y) = [ f(x, 2)v(dz) whenever this is
defined.

253X Basic exercises >(a) Let U, V and W be linear spaces. Show that the set of bilinear operators
from U x V to W has a natural linear structure agreeing with those of L(U;L(V;W)) and L(V;L(U; W)),
writing L(U; W) for the linear space of linear operators from U to W.

>(b) Let U, V and W be normed spaces. (i) Show that for a bilinear operator ¢ : U x V. — W the
following are equiveridical: (&) ¢ is bounded in the sense of 253Ab; () ¢ is continuous; () ¢ is continuous
at some point of U x V. (ii) Show that the space of bounded bilinear operators from U x V to W is a
linear subspace of the space of all bilinear operators from U x V to W, and that the functional || || defined
in 253AD is a norm, agreeing with the norms of B(U; B(V; W)) and B(V; B(U; W)), writing B(U; W) for the
normed space of bounded linear operators from U to W.

(c) Let (X1,%1, 1), ,(Xn, Xpn, tn) be measure spaces, and A the c.l.d. product measure on X x ... x
X, as described in 251W. Let W be a Banach space, and suppose that ¢ : L'(u1) x ... x L' () — W is
multilinear (that is, linear in each variable separately) and bounded (that is, ||¢| = sup{¢(u1,... ,un) :

lluilli <1V i< n} < o). Show that there is a unique bounded linear operator 7' : L'(\) — W such that
T® = ¢, where ® : L' (1) x ... x L'(i1,) — L*(\) is a canonical multilinear operator (to be defined).
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(d) Let (X,%,p) and (Y, T,v) be measure spaces, and A the c.l.d. product measure on X x Y. Show
that if A C L'(u) and B C L(v) are both uniformly integrable, then {u® v : u € A, v € B} is uniformly
integrable in L1()).

>(e) Let (X,3, ) and (Y, T,v) be measure spaces and A the c.l.d. product measure on X x Y. Show

that

(i) we have a bilinear operator (u,v) — u®uv : L%(u) x L°(v) — LY(\) given by setting f*®g¢* = (f®g)*
for all f € £%u) and g € LO(v);

(if) if 1 <p < oo then u @ v € LP(A) and |lu @ v||, = |lulp||v], for all w € LP(n) and v € LP(v);

(iii) if u, v’ € L?(u) and v, v' € L?(v) then the inner product (u ® v|u’ @ v'), taken in L?()), is just
(ulu) (w]o");

(iv) the map (u,v) — u®@v : LO(u) x LO(v) — L°()\) is continuous if L%(u), L°(v) and L°(\) are all
given their topologies of convergence in measure.

(f) In 253Xe, assume that pu and v are semi-finite. Show that if wg,...,u, are linearly independent
members of L%(y) and v, ... ,v, € L°(v) are not all 0, then Y1 ju; ® v; # 0 in LO(X). (Hint: start by
finding sets F € ¥, F' € T of finite measure such that ug X YE*,... ,u, X YE* are linearly independent and
vo X xF*,... v, x xF* are not all 0.)

(g) In 253Xe, assume that pu and v are semi-finite. If U, V are linear subspaces of L°(u) and L°(v)
respectively, write U ® V for the linear subspace of L°()\) generated by {u ® v : u € U,v € V}. Show
that if W is any linear space and ¢ : U x V' — W is a bilinear operator, there is a unique linear operator
T:U®V — W such that T(u ® v) = ¢(u,v) for all w € U, v € V. (Hint: start by showing that if
ug, ... ,u, € U and vy,...,v, € V are such that > . ju; ® v; = 0, then > ¢(u;,v;) = 0 — do this by
expressing the u; as linear combinations of some linearly independent family and applying 253Xf.)

>(h) Let (X,%, 1) and (Y, T,v) be complete probability spaces, with c.l.d. product measure A. Suppose
that p € [1,00] and that f € LP(X). Set g(z) = [ f(z,y)v(dy) whenever this is defined. Show that g € LP ()
and that ||g|l, < ||fllp- (Hint: 253H, 244M.)

(1) Let (X, X, 1) and (Y, T, v) be measure spaces, with c.l.d. product measure A\, and p € [1, co[. Show that
{w:w € LP(X), w > 0} is the closed convex hull in LP(A) of {u®v : u € LP(u), v € LP(v), u > 0, v > 0}
(see 253Xe(ii) above).

253Y Further exercises (a) Let (X, X, 1) and (Y, T, v) be measure spaces, and A the primitive product
measure on X x Y. Show that if f € £%(u) and g € LO(v), then f ® g € LO()\o).

(b) Let (X, X, 1) and (Y, T, v) be measure spaces, and Ag the primitive product measure on X x Y. Show
that if f € £L'(u) and g € £L1(v), then f®@ g€ L1 (\o) and [ f®gdho = [ fdp [ gdv.

(c) Let (X, X, u) and (Y, T, v) be measure spaces, and g, A the primitive and c.l.d. product measures on
X x Y. Show that the embedding £*(Xg) S £'()) induces a Banach lattice isomorphism between L'(X¢)
and L(\).

(d) Let (X,%, ), (Y, T,v) be strictly localizable measure spaces, with c.l.d. product measure A. Show
that L°(\) can be identified with L!()\)*. Show that under this identification {w : w € L*®(\), w > 0} is
the weak*-closed convex hull of {u ® v : u € L>®(u), v € L*(v), u > 0, v > 0}.

(e) Find a version of 253J valid when one of yu, v is not o-finite.

(f) Let (X,%, ) be any measure space and V any Banach space. Write £1, = L£i.(u) for the set
of functions f such that () dom f is a conegligible subset of X (8) f takes values in V () there is a
conegligible set D C dom f such that f[D] is separable and D N f~1[G] € ¥ for every open set G C V ()
the integral [ ||f(x)|/u(dz) is finite. (These are the Bochner integrable functions from X to V.) For f,
g € Ly, write f ~ g if f =g p-a.e.; let L{, be the set of equivalence classes in £{, under ~. Show that

(i) f+g,cf €L forall f, g€ L, ceR;
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(ii) L}, has a natural linear space structure, defined by writing f* + ¢g* = (f + 9)*, ¢f* = (cf)* for f,
g€ L%/ and c € R;

(iii) L{, has a norm || ||, defined by writing || f*|| = [ || f(2)||u(dz) for f € Li,;

(iv) L}, is a Banach space under this norm;

(v) there is a natural map ® : L' xV — L}, defined by writing (f®v)(z) = f(z)v when f € L' = Li(u),
v €V and z € dom f;

(vi) there is a canonical bilinear operator ® : L' x V' — L1, defined by writing f* ® v = (f ® v)* for
feLltandveV;

(vii) whenever W is a Banach space and ¢ : L' x V' — W is a bounded bilinear operator, there is a
unique bounded linear operator 7" : L{, — W such that T'(u ® v) = ¢(u,v) for all u € L' and v € V, and
IT| = |l¢ll. (When W =V and ¢(u,v) = ([ u)v for u € L' and v € V, T'f* is called the Bochner integral
of f.)

(g) Let (X,X, ) and (Y, T,v) be measure spaces, and Ay the primitive product measure on X x Y. If
f is a Ag-integrable function, write f,(y) = f(x,y) whenever this is defined. Show that we have a map
x — f2 from a conegligible subset Dy of X to L!(v). Show that this map is a Bochner integrable function,
as defined in 253YTf, and that its Bochner integral is | fdXo.

(h) Let (X,%, ) and (Y, T, v) be measure spaces, and suppose that ¢ is a function from X to a separable
subset of L!(v) which is measurable in the sense that ¢~![G] € ¥ for every open G C L!(v). Show that
there is a A-measurable function f from X X Y to R, where A is the domain of the c.l.d. product measure
on X x Y, such that ¢(x) = f2 for every x € X, writing f,(y) = f(z,y) forz € X,y €Y.

(i) Let (X, %, ) and (Y, T, v) be measure spaces, and A the c.l.d. product measure on X x Y. Show that
253Yg provides a canonical identification between L!()\) and Lil(y) (1).

(J) Let (X, 3, u) and (Y, T, v) be complete locally determined measure spaces, with c.l.d. product measure
A. (i) Suppose that K € £2(\), f € £2(u). Show that h(y) = [ K(z,y)f(z)dx is defined for almost all
y € Y and that h € £L2(v). (Hint: to see that h is defined a.e., consider [}, . K(z,y)f(x)d(z,y) for pE,
vF < oo; to see that h € £ consider [ h x g where g € £?(v).) (ii) Show that the map f — h corresponds
to a bounded linear operator Ty : L?*(u) — L%(v). (iii) Show that the map K + Tk corresponds to a
bounded linear operator, of norm at most 1, from L2(\) to B(L?(u); L?(v)).

(k) Suppose that p, ¢ € [1,00] and that % + % = 1, interpreting é as 0 as usual. Let (X,%, u), (Y, T,v)
be complete locally determined measure spaces with c.l.d. product measure A. Show that the ideas of 253Y]
can be used to define a bounded linear operator, of norm at most 1, from LP()\) to B(L%(u); LP(v)).

(1) In 253Xc, suppose that W is a Banach lattice. Show that the following are equiveridical: (i) Tu > 0
whenever u € L*(\); (ii) ¢(u1,. .. ,u,) > 0 whenever u; > 0 in L' (y;) for each i < n.

253 Notes and comments Throughout the main arguments of this section, I have written the results
in terms of the c.l.d. product measure; of course the isomorphism noted in 253Yc means that they could
just as well have been expressed in terms of the primitive product measure. The more restricted notion of
integrability with respect to the primitive product measure is indeed the one appropriate for the ideas of
253Yg.

Theorem 253F is a ‘universal mapping theorem’; it asserts that every bounded bilinear operator on
L' (u) x L' (v) factors through ® : L'(u) x L*(v) — L*()\), at least if the range space is a Banach space. It is
easy to see that this property defines the pair (L'()\),®) up to Banach space isomorphism, in the following
sense: if V is a Banach space, and 9 : L'(u) x L'(v) — V is a bounded bilinear operator such that for
every bounded bilinear operator ¢ from L'(u) x L'(v) to any Banach space W there is a unique bounded
linear operator T : V' — W such that Tv¥ = ¢ and ||T|| = ||¢||, then there is an isometric Banach space
isomorphism S : L'(\) — V such that S® = . There is of course a general theory of bilinear operators
between Banach spaces; in the language of this theory, L'()) is, or is isomorphic to, the ‘projective tensor
product’ of L'(x) and L'(v). For an introduction to this subject, see DEFANT & FLORET 93, §L.3, or
SEMADENI 71, §20. I should perhaps emphasise, for the sake of those who have not encountered tensor
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products before, that this theorem is special to L! spaces. While some of the same ideas can be applied to
other function spaces (see 253Xe-253Xg), there is no other class to which 253F applies.

There is also a theory of tensor products of Banach lattices, for which I do not think we are quite ready
(it needs general ideas about ordered linear spaces for which I mean to wait until Chapter 35 in the next
volume). However 253G shows that the ordering, and therefore the Banach lattice structure, of L()\) is
determined by the ordering of L' (u) and L'(v) and the map ® : L' (u) x L'(v) — L*(\).

The conditional expectation operators described in 253H are of very great importance, largely because in
this special context we have a realization of the conditional expectation operator as a function Py from £1(\)
to L1(ATA1), not just as a function from L'()\) to L*(A[A;), as in 242J. As described here, Py(f + f') need
not be equal, in the strict sense, to Pyf + Pyf’; it can have a larger domain. In applications, however, one
might be willing to restrict attention to the linear space U of bounded ¥&T-measurable functions defined
everywhere on X x Y, so that Py becomes an operator from U to itself (see 252P).

Version of 23.2.16
254 Infinite products

I come now to the second basic idea of this chapter: the description of a product measure on the product
of a (possibly large) family of probability spaces. The section begins with a construction on similar lines to
that of §251 (254A-254F) and its defining property in terms of inverse-measure-preserving functions (254G).
I discuss the usual measure on {0,1}! (254J-254K), subspace measures (254L) and various properties of
subproducts (254M-254T), including a study of the associated conditional expectation operators (254R-
254T).

254A Definitions (a) Let ((X;, s, 1:))icr be a family of probability spaces. Set X = [],.; X, the
family of functions = with domain I such that z(i) € X; for every i € I. In this context, I will say that a
measurable cylinder is a subset of X expressible in the form

C= Hie I Ci,
where C; € ¥; for every i € I and {i : C; # X;} is finite. Note that for a non-empty C' C X this expression
is unique. P Suppose that C = [],.; C; = [[,c; C;. For each i € I set

D, ={z(i):z € C}.

Of course D; C C;. Because C # (), we can fix on some z € C. If i € I and t € C;, consider z € X defined
by setting

w(i) =t,  w(j) = 2(j) for j # i;
then z € C so t = x(i) € D;. Thus D; = C; for i € I. Similarly, D; = C}. Q

(b) We can therefore define a functional 6y : C — [0, 1], where C is the set of measurable cylinders, by
setting

00C = [l 1iCs

whenever C; € ¥; for every ¢ € I and {i : C; # X;} is finite, noting that only finitely many terms in the
product can differ from 1, so that it can safely be treated as a finite product. If C' = (), one of the C; must

be empty, so 6pC is surely 0, even though the expression of C' as [[;.; C; is no longer unique.

(c) Now define 6 : PX — [0, 1] by setting
0A =inf{>" ,00Cy : Cy € C for every n € N, A C ;e Cn }-

254B Lemma The functional 6 defined in 254 Ac is always an outer measure on X.

proof Use exactly the same arguments as those in 251B above.
(©) 2002 D. H. Fremlin

MEASURE THEORY



254F Infinite products 49

254C Definition Let ((X;, ¥;, 1t;))ier be any indexed family of probability spaces, and X the Cartesian
product [],.; X;. The product measure on X is the measure defined by Carathéodory’s method (113C)
from the outer measure 6 defined in 254A.

254D Remarks (a) In 254Ab, I asserted that if C' € C and no C; is empty, then nor is C' = [[,.; Ci.
This is the ‘Axiom of Choice’: the product of any family (C;);c; of non-empty sets is non-empty, that is,
there is a ‘choice function’ z with domain I picking out a distinguished member z(i) of each C;. In this
volume I have not attempted to be scrupulous in indicating uses of the axiom of choice. In fact the use
here is not an absolutely vital one; I mean, the theory of infinite products, even uncountable products, of
probability spaces does not change character completely in the absence of the full axiom of choice (provided,
that is, that we allow ourselves to use the countable axiom of choice). The point is that all we really need,
in the present context, is that X = J],.; X; should be non-empty; and in many contexts we can prove this,
for the particular cases of interest, without using the axiom of choice, by actually exhibiting a member of
X. The simplest case in which this is difficult is when the X; are uncontrolled Borel subsets of [0, 1]; and
even then, if they are presented with coherent descriptions, we may, with appropriate labour, be able to
construct a member of X. But clearly such a process is liable to slow us down a good deal, and for the
moment I think there is no great virtue in taking so much trouble.

(b) T have given this section the title ‘infinite products’, but it is useful to be able to apply the ideas to
finite I; I should mention in particular the cases #(I) < 2.

(i) If I = 0, X consists of the unique function with domain I, the empty function. If we identify a
function with its graph, then X is actually {0}; in any case, X is to be a singleton set, with AX = 1.

(ii) If I is a singleton {i}, then we can identify X with X;; C becomes identified with ¥; and 6, with
i, so that 6 can be identified with p and the ‘product measure’ becomes the measure on X; defined from
wr, that is, the completion of p; (see 213Xa(iv)).

(iii) If I is a doubleton {3, j}, then we can identify X with X; x X; in this case the definitions of 254A
and 254C match exactly with those of 251A and 251C, so that A here can be identified with the primitive
product measure as defined in 251C. Because p; and p; are both totally finite, this agrees with the c.l.d.
product measure of 251F.

(¢) In Volume 4, when considering products of probability spaces endowed with certain kinds of topology,
I will introduce some alternative product measures. In such contexts I may speak of the product measure
here as the ‘ordinary’ product measure.

254E Definition Let (X;);c; be any family of sets, and X =[]

—

of X, for each i € I, I write &

ser Xi- If ¥j is a o-subalgebra of subsets

Y, for the o-algebra of subsets of X generated by
{{z:z e X, z(i) e E}:iel, Ee€X%;}.

iel
(Compare 251D.)

254F Theorem Let (X, ¥;, 4;))icr be a family of probability spaces, and let A be the product measure
on X = [],c; X; defined as in 254C; let A be its domain.

(a) A\ X =1.

(b) If E; € %; for every i € I, and {i : E; # X;} is countable, then [[,.; E; € A, and X(][;c; Bi) =
[Lic; piEi. In particular, \C' = 6oC for every measurable cylinder C, as defined in 254A, and if j € I then
z+— z(j) : X = X is inverse-measure-preserving.

(€) @jer>i € A

(d) X is complete.

(e) For every W € A and € > 0 there is a finite family Cp,... ,C, of measurable cylinders such that
AWAUg<, Ck) < e

(f) For every W € A there are Wy, W € @ %; such that Wy C W C Wy and A(W2 \ Wy) = 0.

iel

D.H.FREMLIN



50 Product measures 254F

Remark Perhaps I should pause to interpret the product [[;.; i E;. Because all the p; E; belong to [0, 1],
this is simply inf ;c7 7 is finite HieJ w; B, taking the empty product to be 1.

proof Throughout this proof, define C, 6y and 0 as in 254A. T will write out an argument which applies to
finite I as well as infinite I, but you may reasonably prefer to assume that [ is infinite on first reading.

(a) Of course AX = X, so I have to show that X = 1. Because X, ) € C and 0o X = [[;c; i Xs = 1
and 6y = 0,

0X < 0X +600+...=1.
I therefore have to show that 6X > 1. 7 Suppose, if possible, otherwise.

(i) There is a sequence (Cy,)nen in C, covering X, such that Y02  6yC,, < 1. For each n € N, express
Cpas{x:x(i) € E,; Vi€ I}, where every E,; € ¥; and J,, = {i : E,; # X;} is finite. No J,, can be empty,
because 0yCp, < 1 = 09X; set J = J,,c Jn- Then J is a countable non-empty subset of I. Set K = N if J
is infinite, {k : 0 < k < #(J)} if J is finite; let k — iy, : K — J be a bijection.

For each k € K, set L = {i; : j <k} C J, and set ap = HieI\Lk wiE,; forn e N, ke K. If J is finite,
then we can identify Ly with J, and set «,, 45y = 1 for every n. We have ang = 6pC), for each n, so
Yo gm0 <1l.ForneN, ke K andt € X;, set

= 0 otherwise.
Then
ffnkdﬂzk = an,kJrl//fikEn,ik = Qpk-

(ii) Choose ¢, € X;, inductively, for k¥ € K, as follows. The inductive hypothesis will be that
ZneMk anr < 1, where My = {n : n € N, t; € E,;, ¥V j < k}; of course My = N, so the induction
starts. Given that

1> ZneMk Qnk = ZneMk ffnkdluik = f(ZneMk, Fok)d i,

(by B.Levi’s theorem), there must be a t;, € X;, such that ZneMk frk(tr) < 1. Now for such a choice of t,
O k41 = frk(ty) for every n € Mjyq, so that ZneMHl o k+1 < 1, and the induction continues, unless J
is finite and k4 1 = #(J). In this last case we must just have M) = 0, because o, 4(;) = 1 for every n.

(iii) If J is infinite, we obtain a full sequence (tx)ren; if J is finite, we obtain just a finite sequence
(tk)k<s(s)- In either case, there is an & € X such that x(i) = ;, for each k € K. Now there must be some
m € N such that z € Cy,,. Because J,, = {i : E,; # X} is finite, there is a k € N such that J,, C Ly
(allowing k = #(J) if J is finite). Now m € My, so in fact we cannot have k = #(J), and ay,r = 1, so
> nenr, @nk > 1, contrary to the inductive hypothesis. X

This contradiction shows that 6.X = 1.

(b)(3) I take the particular case first. Suppose that j € T and E € ¥;, andlet C € C;set W ={z: 2z € X,
z(j) € E}; then CNW and C'\ W both belong to C, and oC = 0o(C "W ) +0o(C\W). P If C =[],.; C;,
where C; € ¥; for each 4, then CNW = [[;.; C}, where C] = C; if i # j, and C} = C; N E; similarly,
C\W =1];c; C/', where C}' = C; if i # j, and C} = C; \ E. So both belong to C, and

0o(C W)+ 00(C\W) = (11;(C; N E) + p;(C5 \ E)] Ly Ci = s nCi = 6C. Q

(ii) Now suppose that A C X is any set, and € > 0. Then there is a sequence (C},)nen in C such that

AC U, enCnoand Y7 1 00Cp, < 0A+ €. In this case
ANW CU,enCn NW, A\NW CU,enCn \ W,
s0
UANW) < S 06(Can V), 0(A\W) < 355 0(Ca \ V),
and
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GANW) +0(A\W) <30 06(C NW) + 60(Cr, \ W) =30 00C,, <A +e.
As € is arbitrary, 0(ANW) + 0(A\ W) < 0A; as A is arbitrary, W € A.

(iii) I show next that if J C [ is finite and C; € ¥; for each i € J,and C ={zx: 2 € X, z(i) € C; V
i€ J}, then C € A and A\C =[], ; 1;C;. P Induce on #(J). If #(J) = 0, that is, J = ), then C' = X and
this is part (a). For the inductive step to #(J) = n + 1, take any j € J and set J' = J \ {j},

C'={z:zeX, z(i)eC;VieJ},

C"=C'\C={z:zeC, z(j) € X;\ C,}.
Then C, C’, C" all belong to C, and 6oC" = [[,c; 1:iCi = a say, 60C = ap;Cj, 0,C" = a(l — p;Cy).
Moreover, by the inductive hypothesis, C’ € A and a = A\C" = 0C". So C = C'n{z : z(j) € C;} € A by
(ii), and C" = C"\ C € A.
We surely have A\C' = 0C < 6,C, A\C" < 0C"; but also
a=X0"=XC+\C" <0,C + 00" =
so in fact
AC = 900 = Oé/,LjCj = HieJ uCi,
and the induction proceeds. Q

(iv) Now let us return to the general case of a set W of the form [],.; £; where E; € X; for each 4,
and K = {i: E; # X} is countable. If K is finite then W = {x : x(i) € E; Vi € K} so W € A and

AW = HieK piki = Hie[ ik
Otherwise, let (in)nen be an enumeration of K. For each n € Nset W), = {z: 2z € X, z(i) € E;, Vk < n};

then we know that W,, € A and that \W,, = HZ:O i B . But (W) nen is a non-increasing sequence with
intersection W, so W € A and

AW = limy, 00 AW, = HieK il = Hie[ i By

(c) is an immediate consequence of (b) and the definition of ®Z€ I
(d) Because A is constructed by Carathéodory’s method it must be complete.
e) Let Cn nen be a sequence in C such that W C Ch and o0 00Cn < OW + le. Set V =
neN 2
Ch: b ,V €A. Let n € N be such that > - 0,C; < e and con51der W' = C}. Since
UneN » DY k<n

1=n+1
V\W/CUz>n
AWAW') S MV A\W) + AV \ W) = AV = AW + A(V \ W) = 0V — W + 6(V \ W)
<D 0Ci— W+ > 0Ci < et ie=c
=0 i=n—+1

(£)(i) If W € A and e > 0 thereisa V € @iel& such that W C V and AV < AW +e. P Let (Cp)nen
be a sequence in/C\ such that W C |J,,c Cn and ZZO:O 0oCr, < OW +e. Then C,, € Q),;;%; for each n, so
V=U,enCn € Q;crXi- Now W C V, and

AV =0V <3 160C, <OW +e=AW+e Q

(ii) Now, given W € A, let (V,,)nen be a sequence of sets in @ie,zi such that W C V,, and \V,, <
AW 427" for each n; then Wy = (), oy Vi belongs to @, ;X and W C Wy and AWy = AW. Similarly,

there is a W € ®i612i such that X \ W C W3 and AWJ = A(X \ W), so we may take W1 = X \ W} to
complete the proof.

254G The following is a fundamental, indeed defining, property of product measures. (Compare 251L.)
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Theorem Let ((X;,%;, u;))icr be a family of probability spaces with product (X, A, \). Let (Y, T,v) be a
complete probability space and ¢ : Y — X a function. Suppose that v*¢~1[C] < AC for every measurable
cylinder C' C X. Then ¢ is inverse-measure-preserving. In particular, ¢ is inverse-measure-preserving iff
»71[C] € T and v¢~1[C] = AC for every measurable cylinder C' C X.

Remark By v* I mean the usual outer measure defined from v as in §132.

proof (a) First note that, writing @ for the outer measure of 254A, v*¢~1[A] < A for every A C X. P Given
€ > 0, there is a sequence (Cy,)nen of measurable cylinders such that A C | J,, .y Cr and Yol 0 00Cr < OA+e,
where 6y is the functional of 254A. But we know that 8,C = AC for every measurable cylinder C' (254Fb),
SO

VAL < (Uen & 1C0]) < X000 v 6 [Co] € Y52 0 AC, < A+ c.
As € is arbitrary, v*¢[A] < 0A. Q
(b) Now take any W € A. Then there are F', F’ € T such that
pTIWICF, ¢TI X\W]CF,

VF = "¢ W] < OW = AW,  vF < A[X\ W)

We have
FUF D¢ ' WU ' [X\W]=Y,
SO
VIFNF)=vF+vF —v(FUF) < AW+ AX\W)-1=0.
Now

F\¢ Y W] CFn¢ U X\W]CFNEF
is v-negligible. Because v is complete, F'\ ¢~} [W] € T and ¢~ [W] = F \ (F \ ¢~ ![W]) belongs to T.
Moreover,
1=vF4+vF < AW+ ANX\W) =1,

so we must have vF = AW; but this means that v¢~[W] = vW. As W is arbitrary, ¢ is inverse-measure-
preserving.

254H Corollary Let ((X;,3;, ui))ier and ((Y;, T, v;))icr be two families of probability spaces, with
products (X, A, A) and (Y, A’,\'). Suppose that for each i € I we are given an inverse-measure-preserving
function ¢; : X; — Y;. Set ¢(x) = (¢;(x(7)))iecs for x € X. Then ¢ : X — Y is inverse-measure-preserving.

proof If C =1]
in X, and

;e Ci is a measurable cylinder in Y, then ¢~ ![C] = [],c; &; 1[C;] is a measurable cylinder
A7HC) = [Ties with; H[Ci) = [y viCi = NC.

Since A is a complete probability measure, 254G tells us that ¢ is inverse-measure-preserving,.

2541 Corresponding to 251T we have the following.

Proposition Let ((X;, X;, 11;))ier be a family of probability spaces, A the product measure on X = []..; X;,

and A its domain. Then A is also the product of the completions fi; of the u; (212C).

iel

proof Write \ for the product of the [;, and A for its domain. (i) The identity map from X; to itself
is inverse-measure-preserving if regarded as a map from (X, fi;) to (X;, i), so the identity map on X is
inverse-measure-preserving if regarded as a map from (X, 5\) to (X, \), by 254H; that is, A C Aand A = AJA.
(i) If C is a measurable cylinder for (fi;);er, that is, C = [[,.; C; where C; € 3, for every ¢ and {i : C; # X, }
is finite, then for each ¢ € I we can find a C] € ¥; such that C; C C] and p;C; = 1;C;; setting C" = [, Cf,
we get

A C <A = [lies wiC = i, iCi = AC.
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By 254G, AW must be defined and equal to AW whenever W € A. Putting this together with (i), we see
that A = A.

254J The product measure on {0,1}/ (a) Perhaps the most important of all examples of infinite

product measures is the case in which each factor X; is just {0,1} and each p; is the ‘fair-coin’ probability
measure, setting

1

pef0} = if1} = .

In this case, the product X = {0,1}! has a family (F;);c; of measurable sets such that, writing A for the
product measure on X,

)‘(ﬂiej E;) = 2-#() if J C T is finite.

(Just take E; = {z : z(i) = 1} for each i.) I will call this A the usual measure on {0,1}!. Observe that
if I is finite then Mz} = 27#() for each x € X (using 254Fb). On the other hand, if I is infinite, then
Mz} =0 for every € X (because, again using 254Fb, A*{z} < 27" for every n).

(b) There is a natural bijection between {0, 1} and PI, matching = € {0,1}! with {i:i € I, 2(i) = 1}.
So we get a standard measure A on PI, which I will call the usual measure on PI. Note that for any
finite b C I and any ¢ C b we have

Ma:anb=c} =Mz :z(i)=1foricec z(i)=0foriecb\c}=2#0),

(c) Of course we can apply 254G to these measures; if (Y, T, v) is a complete probability space, a function
¢:Y — {0,1} is inverse-measure-preserving iff

whenever J C [ is finite and z € {0,1}”; this is because the measurable cylinders in {0,1}! are precisely
the sets of the form {z : z[J = z} where J C I is finite.

(d) Define addition on X by setting (x + y) (i) = (i) +2 y(¢) for every i € I, x, y € X, where 0+ 0 =
1421=0,0421=1450=1. Ify € X, the map x — x + y : X — X is inverse-measure-preserving. I If
J C I is finite and z € {0,1}7, set 2’ = (2(j) +2 y(j))je; then

Mz:(z+y)J=z2}=Ma:a|J =2} =2"#),
As J is arbitrary, (c) tells us that x — = + y is inverse-measure-preserving. @ Now since
(@+y)+y=a+@y+ty =2+0=2x
for every z, the map z — x 4+ y : X — X is bijective and equal to its inverse, so it is actually a measure

space automorphism of (X, ).

*(e) Just because all the factors (X;, p;) are the same, we have another class of automorphisms of (X, \),
corresponding to permutations of I. If 7 : I — I is any permutation, then we have a corresponding function
x— xm: X — X. If J C I is finite and z € {0,1}7, set J' = 7[J] and 2’ = zr~! € {0,1}”'; then

Ma: (zn)|J =z} = Mz 2] J =2/} = 27#U) = 9= #(),

So x ~ z7 is inverse-measure-preserving. This time, its inverse is x — z7~!, which is again inverse-measure-
preserving; so x — xm is a measure space automorphism.

254K In the case of countably infinite I, we have a very important relationship between the usual product
measure of {0,1}! and Lebesgue measure on [0, 1].

Proposition Let A be the usual measure on X = {0, 1}, and let u be Lebesgue measure on [0, 1]; write A
for the domain of A and ¥ for the domain of pu.
(i) For z € X set ¢p(x) =Y 5oq 27" 2(i). Then
¢7L[E] € A and \¢~![E] = uFE for every E € 3;
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¢[F] € ¥ and pg[F| = AF for every I € A.
(i) There is a bijection ¢ : X — [0, 1] which is equal to ¢ at all but countably many points, and any such
bijection is an isomorphism between (X, A, \) and ([0, 1], %, u).

proof (a) The first point to observe is that ¢ itself is nearly a bijection. Setting
H={z:2e€X,ImeN, z(i) =x(m)Vi>m},

H' ={2"k:neN, k<2°},

then H and H' are countable and ¢ X \ H is a bijection between X \ H and [0,1]\ H'. (For ¢t € [0,1]\ H',
¢~ 1(t) is the binary expansion of t.) Because H and H' are countably infinite, there is a bijection between
them; combining this with ¢[ X \ H, we have a bijection between X and [0, 1] equal to ¢ except at countably
many points. For the rest of this proof, let 6 be any such bijection. Let M be the countable set {z : z € X,
#(z) # ¢(x)}, and N the countable set ¢[M] U ¢[M]; then ¢[A]AP[A] C N for every A C X.

(b) To see that A1 [E] exists and is equal to puF for every E € 3, I consider successively more complex
sets E.

(@) If E = {t} then A\¢~'[E] = M ¢ 1(t)} exists and is zero.

(B) If E is of the form [27"k,27"(k + 1)[, where n € N and 0 < k < 2", then ¢~ 1[F] differs by at most
two points from a set of the form {z : z(i) = 2(i) Vi < n}, so ¢~ 1[E] differs from this by a countable set,
and

Ap~LE] =27" = uE.

() If E is of the form [27"k,27 ™[, where n € Nand 0 < k <! < 2", then
E=Up<iq 27,27+ 1),
S0
AHE] =27"(— k) = pE.
(8) If E is of the form [t,u[, where 0 <t < u < 1, then for each n € N set k,, = |2"¢], the integer part

of 2"t, I, = [2"u] and E,, = [27"(kn + 1),27",[; then (E,)nen is a non-decreasing sequence and | J,,c En
is Jt,u[. So (using («))

Ao HE] = Ao [ Enl = lim AGT[E,]

n—oo
neN

= lim pk, = puk.
n— oo

(€) If E € X, then for any € > 0 there is a sequence (In)nen of half-open subintervals of [0, 1] such that
B\ {1} € Upext T and S0 il < B + 6 now 6-2[E] € {6-2(1)} UUyen & [Tn), 50

NG E] € MUpen 67 ) < S0lg A 1] = 0o pln < pE + €.
As € is arbitrary, \*¢~![E] < uE, and there is a V € A such that ¢~'[E] C V and AV < uE.

(¢) Similarly, there is a V’ € A such that V/ 2 ¢~ ([0, 1]\ E] and AV’ < u([0,1]\ E). Now VUV’ = X,
o
AV AV = AV AV AV UV < pE+(1—pE) —1=0
and
o7 E] = (X\V)u(VnV'Ng'[E])
belongs to A, with

AG~UE] < AV < pE;

at the same time,
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1- X YE] <AV <1—puE
so Ao~ [E] = pE.

(c) Now suppose that C C X is a measurable cylinder of the special form {z : 2(0) = €g, ... ,z(n) = €,}
for some €, ... , €, € {0,1}. Then ¢[C] = [t,t +27""!] where t = Y"1 /27" ¢;, so that u¢[C] = AC. Since
P[C)A¢[C] C N is countable, up[C] = AC.

If C C X is any measurable cylinder, then it is of the form {x : [ J = z} for some finite J C N; taking n so
large that J C {0,... ,n}, C is expressible as a disjoint union of on+1-#(J) gets of the form just considered,
being just those in which ¢; = z(i) for i € J. Summing their measures, we again get u¢[C] = AC. Now
254G tells us that ¢~! : [0,1] — X is inverse-measure-preserving, that is, ¢[W] is Lebesgue measurable,
with measure AW, for every W € A.

Putting this together with (b), ¢ must be an isomorphism between (X, A, N) and ([0, 1], %, p), as claimed
in (ii) of the proposition.

(d) As for (i), if E € ¥ then ¢~ ![E]A¢~'[E] C M is countable, so \¢p~![E] = \¢~'[E] = pE. While if
W e A, g[F]A@[W] C N is countable, so ud[W] = udp[W] = AW.

254L Subspaces Just as in 251Q, we can consider the product of subspace measures. There is a
simplification in the form of the result because in the present context we are restricted to probability
measures.

Theorem Let ((X;,%;, 1;)):csr be a family of probability spaces, and (X, A, \) their product.

(a) For each ¢ € I, let A; C X; be a set of full outer measure, and write fi; for the subspace measure on
A; (214B). Let A be the product measure on A = [
by A.

(b) M(ILies Ai) = [Lies 15 Ai whenever A; C X; for every i.

ier Ai- Then \ is the subspace measure on A induced

proof (a) YVrite A4 for the subspace measure on A defined from ), and A4 for its domain; write A for the
domain of \.

(i) Let ¢ : A — X be the identity map. If C C X is a measurable cylinder, say C = []
C; € ; for each 4, then ¢~ ![C] = [],c;(C; N 4;) is a measurable cylinder in A, and
Ao HC] = TLies fi(Cs N A) < [Lies wiCi = pC.

By 254G, ¢ is inverse-measure-preserving, that is, S\(A NW) = AW for every W € A. But this means that
AV is defined and equal to A4V = A*V for every V € A 4, since for any such V' there is a W € A such that
V=ANW and AW = A4 V. In particular, Ay A = 1.

.1 Ci where

(ii) Now regard ¢ as a function from the measure space (A, Ax,Aa) to (4, A, X). If D is a measurable
cylinder in A, we can express it as [[,.; D; where every D; belongs to the domain of fi; and D; = A; for all
but finitely many i. Now for each i we can find C; € ¥; such that D; = C; N 4; and puC; = i;D;, and we
can suppose that C; = X; whenever D; = A;. In this case C = Hiel C; € A and
Accordingly

Mo D] = A (ANC) < AC = AD.

By 254G again, ¢ is inverse-measure-preserving in this manifestation, that is, A4V is defined and equal to
AV for every V' € A. Putting this together with (i), we have A4 = A, as claimed.

(b) For each i € I, choose a set E; € ¥; such that A; C E; and u; E; = pfA;; do this in such a way that
E; = X; whenever ufA; = 1. Set B; = A, U (X, \ E;), so that u}B; =1 for each i (if F € ¥, and F D B;
then FNE; D A;, so

il = pi(F 0 E;) + pi(F\ Bi) = wiB + pi(Xi \ Ey) = 1.)

By (a), we can identify the subspace measure Ap on B = [[,.; B; with the product of the subspace measures
ft; on B;. In particular, \*B = ApB = 1. Now A; = B; N E; so (writing A = [[;c; 4i), A= BN [];c; Ei
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If [[;c; pi Ai = 0, then for every e > 0 there is a finite J C I such that [, ; uj 4;i < € consequently
(using 254FD)

NA< Mz :a(i) € B forevery i € J} = [, miEi < e

As e is arbitrary, \*A = 0. If [[,.; ui A; > 0, then for every n € N the set {i : p*A; <1 —27"} must be
finite, so
is countable. By 254Fb again, applied to (E; N B;);er in the product []

icl B,

)\*(HAi) = /\B(HAi) =Ag{z:x € B, z(i) € E;N B; for every i € J}
iel el
= Hﬂi(Ei N B;) = HM?Ai,
icJ el

as required.

254M I now turn to the basic results which make it possible to use these product measures effectively.
First, I offer a vocabulary for dealing with subproducts. Let (X;);cr be a family of sets, with product X.

(a) For J C I, write X for [[,.; Xi. We have a canonical bijection z +— (z[J,z[I\J) : X — X x Xp ;.
Associated with this we have the map x — 7;(z) = z[J : X — X ;. Now I will say that a set W C X is
determined by coordinates in J if there is a V' C X; such that W = ﬂ}l[V]; that is, W corresponds to
VXX]\J C Xy XX]\J.

It is easy to see that

W is determined by coordinates in J
<= 1/ € W whenever x € W, 2’ € X and 2’| J = z|J
= W=nx;"[r;[W].
It follows that if W is determined by coordinates in J, and J C K C I, W is also determined by coordinates

in K. The family W; of subsets of X determined by coordinates in J is closed under complementation and
arbitrary unions and intersections. I If W € W;, then

X\W =X\ 77t mg W] = 77 X5 \ 7 [W]) € Wy
If V C Wy, then
UV =Uvev s mlVl = Upey VI € Wi Q

(b) It follows that
W =U{W;y: J C I is countable},

the family of subsets of X determined by coordinates in some countable set, is a o-algebra of subsets of X.
P (i) X and § are determined by coordinates in () (recall that Xy is a singleton, and that X = 7 X0l

0= 770_1[(0]). (ii) If W € W, there is a countable J C I such that W € W;; now
X\W =na X\ ms W] € Wy CW.

(iil) If (Wp)nen is a sequence in W, then for each n € N there is a countable .J,, C I such that W € W; .
Now J =J Jn, is a countable subset of I, and every W,, belongs to W;, so

Upen Wn €W, CW. Q

neN

(c)Ifieland F C X, then {z:z € X, (i) € E} is determined by the single coordinate i, so surely
belongs to W; accordingly W must include @), ;PX;. A fortiori, if ¥; is a o-algebra of subsets of X; for

eachi, WD 3; is determined by coordinates in some countable set.

iel

;er2i; that is, every member of &), ;
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254N Theorem Let ((X;,%;, 1t;))icr be a family of probability spaces and (K);cs a partition of I.
For each j € J let A\; be the product measure on Z; = HieKj X;, and write A\ for the product measure on

X =[];e; Xi- Then the natural bijection
z = o) = (@l Kj)jes: X = [ljes %

identifies A with the product of the family (\;), e .
In particular, if K C I is any set, then A can be identified with the c.l.d. product of the product measures

on HiEK X,’ and HieI\K X,’.
proof (C~ompare 251N.) Write Z = HjeJ Z; and  for the product measure on Z; let A, A be the domains
of A and .

(a) Let C' C Z be a measurable cylinder. Then A*¢~1[C] < AC. P Express C as [I;c; Cj where C; C Z;
belongs to the domain A; of A; for each j. Set L = {j : C; # Z;}, so that L is finite. Let ¢ > 0. For each
j € Llet (Cjn)nen be a sequence of measurable cylinders in Z; = HieKj X; such that Cj C |, ey Cjn and
ZZO:O A;jCin < ACj + €. Express each Cj,, as HieKj Cjni where Cj,; € X; for i € K; (and {i : Cjni # Xi}
is finite).

For f € N¥, set

Dy ={x:x¢c X, x(i) € Cj f(j),, whenever j € L, i € K;}.
Because ;¢ {i: Cj f(j)i # Xi} is finite, Dy is a measurable cylinder in X, and
ADj = HjeL HiEKj 1iCip 5y = HjEL AiCri)-
Also
U{Dy : f eNF} 2 671(C]

because if ¢(z) € C then ¢(z)(j) € C; for each j € L, so there must be an f € N* such that ¢(z)(j) € Cj ¢
for every j € L. But (because N” is countable) this means that

N e < Y aDr =Y [ XG0
f

eNL feNL jeL
= H Z )\J‘Cjn < H()\jCJ + 6).
JEL n=0 jeL

As € is arbitrary,
NoHC < L, MCi = AC. Q
By 254G, it follows that A¢~'[W] is defined, and equal to AW, whenever W € A.
(b) Next, A¢[D] = AD for every measurable cylinder D C X. ¥ This is easy. Express D as [Lic: Di
where D; € 3; for every i € I and {i : D; # %} is finite. Then ¢[D] = [[;c; D;, where D; = [[;c, Diis a

measurable cylinder for each j € J. Because {j : Dj # Z;} must also be finite (in fact, it cannot have more
members than the finite set {i : D; # X;}), [[;¢; Dj is itself a measurable cylinder in Z, and

A¢[D] = HjeJ AjDj = HjeJ HieKj uD; =AD. Q
Applying 254G to ¢~! : Z — X, it follows that S\QS[W] is defined, and equal to AW, for every W € A.
But together with (a) this means that for any W C X,
if W e A then ¢[W] € A and Ap[W] = AW,
if p[W] € A then W € A and AW = \¢[W].
And of course this is just what is meant by saying that ¢ is an isomorphism between (X, A, \) and (Z, A, 5\)

2540 Proposition Let ((X;,X;, 1;))ier be a family of probability spaces. For each J C I let A be the
product probability measure on X; =[], ; X;, and A its domain; write X = Xy, A = Ay and A = A;. For
xe€Xand JCIset my(x)=2]J € X;.

icJ

D.H.FREMLIN



58 Product measures 2540

(a) For every J C I, \; is the image measure )\7751 (234D); in particular, 7; : X — X is inverse-
measure-preserving for A and \j.

(b) If J C I and W € A is determined by coordinates in J (254M), then A ;7 ;[W] is defined and equal
to A\WW. Consequently there are Wy, W, belonging to the o-algebra of subsets of X generated by

{{z:z(i) e E}:ie J, E€ %}
such that W; CW C Wy and A(Wy \ W7) = 0.
(c) For every W € A, we can find a countable set J and Wy, Wy € A, both determined by coordinates in
J, such that Wy, C W C Wy and A(W3 \ W) = 0.
(d) For every W € A, there is a countable set J C I such that m;[W] € Ay and Ajm;[W] = AW; so that
W' =75 [r;[W]] belongs to A, and A(W’ \ W) = 0.

proof (a)(i) By 254N, we can identify A with the product of A; and Ap\; on X x Xy ;. Now ﬂ;l[E] cX
corresponds to E' x Xp 5 C Xj X Xp\ 5, s0

Ar HE]) = N E-ApaXng = M\ E,
by 251E or 2511a, whenever E € A ;. This shows that 7 is inverse-measure-preserving.

(if) To see that \; is actually the image measure, suppose that F C X is such that 7;'[E] € A.
Identifying wjl[E} with E' X Xp\ j, as before, we are supposing that £/ X Xp\ ; is measured by the product
measure on X ; x Xp\ ;. But this means that for Ap j-almost every z € Xp\ 5, E. ={y: (y,2) € E x Xp\ s}
belongs to Ay (252D(ii), because A; is complete). Since E, = E for every z, E itself belongs to A, as
claimed.

(b) If W € A is determined by coordinates in J, set H = 7;[W]; then 7;'[H] = W, so H € A; by (a)
just above. By 254Ff, there are Hy, Hy € ®ieri such that Hy C H C Hy and Aj(Hs \ Hy) = 0.

Let T be the o-algebra of subsets of X generated by sets of the form {z : z(i) € E} where i € J and
E €%, Consider T, = {G: G C X, 7;'[G] € T;}. This is a o-algebra of subsets of X, and it contains
{y:y € Xy, y(i) € E} whenever i € J, E € ¥; (because

'\ {y:ye Xy yli) € E}Y) ={z:2€ X, 2(i) € B}

whenever i € J, E C X;). So T/, must include @iGJZi. In particular, H; and H both belong to T';, that
is, Wy = W}l[Hk] belongs to T; for both k. Of course W7 C W C W, because Hy C H C H,, and

AW\ W1) = A;(Hz \ Hy) =0,
as required.

(c) Now take any W € A. By 254Ff, there are W) and Wy € &), %; such that W, C W C W, and
A(Wa \ W7) = 0. By 254Mc, there are countable sets Jy, Jo C I such that, for each k, W}, is determined by
coordinates in Ji. Setting J = Jy U Jo, J is a countable subset of I and both W7 and W5 are determined
by coordinates in J.

(d) Continuing the argument from (c), wj[W1], m7;[Wa] € Ay, by (b), and A\j(m;[W2] \ 7s[W1]) = 0.
Since 7 [W1] C 7 [W] C 7 [Wa], it follows that 7 ;[W] € Ay, with Ayms[W] = A 7y [Wa]; so that, setting
W' =77 7, [W]], W € A, and

)\W’ = )\Jﬂ'J[W] = )\Jﬂ'J[WQ] = )\W}l[ﬂ'][Wg” = )\WQ = \W.

254P Proposition Let ((X;, X;, i;))ier be a family of probability spaces, and for each J C I let A; be
the product probability measure on X; = [[;c; Xi, and A its domain; write X = X7, A = Ar and A = A;.
For x € X and J C I set my(z) =z[J € X .

(a) If J C T and g is a real-valued function defined on a subset of X ;, then g is A j-measurable iff g7 is
A-measurable.

(b) Whenever f is a A-measurable real-valued function defined on a A-conegligible subset of X, we can
find a countable set J C I and a A j-measurable function g defined on a \j-conegligible subset of X; such
that f extends gm.
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proof (a)(i) If g is Aj-measurable and a € R, there is an H € A; such that {y : y € domg, g(y) > a} =
HnNdomg. Now 7} '[H] € A, by 2540a, and {z : x € domgn, gm;(z) > a} = n; ' [H]Ndomgr;. So grs
is A-measurable.

(ii) If g7y is A-measurable and a € R, then there is a W € A such that {z : gm;(z) > a} = WNdom g .
As in the proof of 2540a, we may identify A\ with the product of A; and A s, and 252D(ii) tells us that,
if we identify W with the corresponding subset of X; x Xp\ s, there is at least one z € X\ ; such that
W, ={y:y € Xy, (y,2) € W} belongs to A;. But since (on this convention) gm;(y, z) = g(y) for every
y € X, we see that {y : y € domg, ¢g(y) > a} = W, Ndomg. As a is arbitrary, g is A j-measurable.

(b) For rational numbers ¢, set W, = {z : # € dom f, f(z) > q}. By 2540c we can find for each ¢ a
countable set J, C I and sets W, W/, both determined by coordinates in J,, such that W, C W, C W/
and AW\ W) =0. Set J =, cqJg: V =X\ U, oWy \ W,); then J is a countable subset of I and V'
is a conegligible subset of X; moreover, V is determined by coordinates in J because all the Wé, Wé’ are.

For every ¢ € Q, W, NV = W,;NV, because VN (W, \W,) C V(WS \W;) = 0; so W,NV is determined
by coordinates in J. Consequently V Ndom f = | qeqV N Wy also is determined by coordinates in J. Also

{z:zeVndomf, f(z) >a} =,<, VW,

is determined by coordinates in J. What this means is that if x, 2’ € V and 7z = 72/, then = € dom f
iff 2/ € dom f and in this case f(z) = f(2'). Setting H = 7;[V N dom f], we have 7;'[H] = V Ndom f a
conegligible subset of X, so (because A; = Aw}l) H is conegligible in X ;. Also, for y € H, f(x) = f(a')
whenever m;x = w2’ =y, so there is a function g : H — R defined by saying that g7 ;(z) = f(z) whenever
x € VNdom f. Thus g is defined almost everywhere in X; and f extends gm;. Finally, for any a € R,

7' Hy:9(y) > a}] ={z:z € VNdomf, f(x) > a} € A;
by 2540a, {y : g(y) > a} € Ay; as a is arbitrary, g is measurable.

254Q Proposition Let ((X;,%;, u;))ier be a family of probability spaces, and for each J C I let Ay
be the product probability measure on X; = [[,.,; X;; write X = X7, A = Ar. Forz € X, J C T set
wy(z) =xlJ € X,.

(a) Let 8 be the linear subspace of RX spanned by {xC : C C X is a measurable cylinder}. Then for
every A-integrable real-valued function f and every e > 0 there is a g € 8 such that [ |f — gld\ <e.

(b) Whenever J C I and g is a real-valued function defined on a subset of X, then [gdA; = [ gmsdA
if either integral is defined in [—o0, o¢].

(c) Whenever f is a A-integrable real-valued function, we can find a countable set J C X and a Aj-
integrable function g such that f extends gm;.

icJ

proof (a)(i) Write 8§ for the set of functions f satisfying the assertion, that is, such that for every ¢ > 0 there
is a g € 8 such that [|f —g| <e. Then fi + fo and cf; € 8 whenever fi, fo € S. P Given € > 0 there are
g1, g2 € 8 such that [ |f1 —g1] < ﬁ\d’ J1f2—g2] < §:now g1+ g2, cg1 € Sand [|(fi+ f2) — (91 +92)] < e,
[ lefi —eqr] < e. Q Also, of course, f € 8 whenever fy € 8 and f =,.. fo.

(ii) Write W for {W : W C X, xW € 8}, and C for the family of measurable cylinders in X. Then it
is plain from the definition in 254A that CNC’ € C for all C, C’ € C, and of course C € W for every C € C,
because xC € 8. Next, W\ V € W whenever W, V € W and V C W, because then x(W \ V) = xW —xV.
Thirdly, U,y Wn € W for every non-decreasing sequence (W, )nen in W. B Set W = (J, .y Wan. Given
€ > 0, there is an n € N such that A(W \ W,,) < §. Now there is a g € 8 such that [ [xW, —g| < §, so that
f [XW — g| <e. Q Thus W is a Dynkin class of subsets of X.
By the Monotone Class Theorem (136B), W must include the o-algebra of subsets of X generated by
C, which is @iel

measurable set differs by a negligible set from some member of ®z’e 125

3;. But this means that W contains every measurable subset of X, since by 254Ff any

(iii) Thus 8 contains the indicator function of any measurable subset of X. Because it is closed under
addition and scalar multiplication, it contains all simple functions. But this means that it must contain all
integrable functions. I If f is a real-valued function which is integrable over X, and € > 0, there is a simple
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function h : X — R such that [ |f —h| < § (242M), and now there is a g € 8 such that [ |h —g| < §, so

2
that [[f—g| <e Q
This proves part (a) of the proposition.

(b) Put 2540a and 235J together.

(c) By 254Pb, there are a countable J C I and a real-valued function g defined on a conegligible subset
of X; such that f extends gm;. Now dom(gm;) = 7, '[domg] is conegligible, so f =a0 gm; and gms is
A-integrable. By (b), g is A -integrable.

254R Conditional expectations again Putting the ideas of 253H together with the work above, we
obtain some results which are important not only for their direct applications but for the light they throw
on the structures here.

Theorem Let ((X;, X;, tt;))icr be a family of probability spaces with product (X, A, X). For J C I'let Ay C A
be the o-subalgebra of sets determined by coordinates in J (254Ma). Then we may regard L°(A[A ;) as
a subspace of LY()\) (242Jh). Let P; : L'(\) — L'(A\[A;) € L'()\) be the corresponding conditional
expectation operator (242Jd). Then

(a) for any J, K C I, Pxkny = Pk Py;

(b) for any u € L'()), there is a countable set J* C I such that Pyu = u iff J 2 J*;

(c) for any u € L°()), there is a unique smallest set J* C I such that u € LO(A[A+), and this J* is
countable;

(d) for any W € A there is a unique smallest set J* C I such that WAW” is negligible for some W' € A j«,
and this J* is countable;

(e) for any A-measurable real-valued function f : X — R there is a unique smallest set J* C I such that
f is equal almost everywhere to a A%-measurable function, and this J* is countable.

proof For J C I, write X; = [[,c; Xi, let A\; be the product measure on X, and set 7;(z) = z[J for
z € X. Write LY for L°(AJA ), regarded as a subset of LY = LY, and LY for L*(A\[A;) = L*(A\) N LY, as in
242Jb; thus LY is the set of values of the projection P;.

(a)(i) Let C C X be a measurable cylinder, expressed as []
L ={i:C; # X;} is finite. Set

Ci=CiforieJ, XiforieI\J, C =][li;Ci, oa=]ILen,smCi

ic1 Ci where C; € 3; for every ¢ and

Then axC’ is a conditional expectation of xC on A ;. B By 254N, we can identify A with the product of A
and Ap ;. This identifies Ay with {£ x Xp;: E € dom A;}. By 253H we have a conditional expectation g
of xC' defined by setting

9(y,2) = [ XC(y, )Ap s (dt)

for y € X, 2z € Xpy. But C is identified with C; x Cp\ 5, where C; = [[,.; Ci, so that g(y,z) = 0 if
y ¢ Cy and otherwise is Ap ;Cp\ ; = a. Thus g = ax(Cy x Xp\ 7). But the identification between X7 x X\ s
and X matches Cy x X\ ; with C’, as described above. So g becomes identified with axC’ and axC’ is a
conditional expectation of xC. Q

(ii) Next, setting
Ci!=Ciforic K, X;foric I\K, C"=][[,;C/,

p= HieI\K 1 Ci = Hie]\(JUK) 1iCi,
the same arguments show that SxyC” is a conditional expectation of xC’ on Ag. So we have
P P;(xC)* = Ba(xC")*.

But if we look at Ba, this is just Hiel\(Km) w;Ci, while C/ = C; if i € KN J, X; for other i. So faxC” is
a conditional expectation of xC' on Agny, and

Pg P;(xC)* = Prns(xC)*.
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(iii) Thus we see that the operators Px Py, Pxny agree on elements of the form yC* where C is a
measurable cylinder. Because they are both linear, they agree on linear combinations of these, that is,
Pr Pjv = Pgnyv whenever v = g* for some g in the space 8 of 254Q. But if u € L'(\) and € > 0, there is
a A-integrable function f such that f* = u and there is a g € 8 such that [|f — g| < € (254Qa), so that
||lu —v|1 <€, where v = g*. Since Py, Px and Pk are all linear operators of norm 1,

| Px Pyu — Pxngully < 2|lu —v|l1 + ||[Px Psv — Prrgvli < 2e.
As € is arbitrary, Px Pyju = Pgnyu; as u is arbitrary, Px Py = Pgny.

(b) Take u € L'(\). Let J be the family of all subsets J of I such that Pyju =wu. By (a), JN K € J for
all J, K € J. Next, J contains a countable set Jy. I Let f be a A-integrable function such that f* = w.
By 254Qc, we can find a countable set Jy C I and a A j,-integrable function ¢ such that f =, gmj,. Now
gmy, is Aj,-measurable and u = (g7, )® belongs to L},O, soJpeJ. Q

Write J* = (] J, so that J* C Jy is countable. Then J* € 7. P Let € > 0. As in the proof of (a) above,
there is a g € 8 such that |[u—v|; <, where v = g*. But because g is a finite linear combination of indicator
functions of measurable cylinders, each determined by coordinates in some finite set, there is a finite K C [
such that g is Ag-measurable, so that Pxv = v. Because K is finite, there must be Jy,...,J, € J such
that J* N K = ﬂ1<i<n J; N K; but as J is closed under finite intersections, J = JyN...NJ, € J, and
JFNK=JNnK.

Now we have

PJ*U:PJ*PKU:PJ*QKU:PJQKU:PJPKU:PJ'U7

using (a) twice. Because both P; and Py« have norm 1,

[Pru—ully < ||Preu— Pro|ls + [|Prv — Pyolls + [|Pyv — Prully + | Pru — ully
<|lw—vli +0+ |lu—v|1 +0 < 2e.

As € is arbitrary, Pyj«»u =u and J* € J. Q
Now, for any J C I,

Pru=u=—JecJ=—JDJ*
= Pyu= PjPj-u= Pjnj-u= Pju=u.

Thus J* has the required properties.

(c) Set e = (xX)*, up, = (—ne)V(uAne) for each n € N. Then, for any J C I, u € LY iff u,, € LY for every
n. P («) If u € LY, then u is expressible as f* for some A j-measurable f; now f,, = (—nxX) V (f AnxX)
is Aj-measurable, so u, = fn € LY for every n. (8) If u, € LY for each n, then for each n we can find a
A j-measurable function f, such that f2 = u,. But there is also a A-measurable function f such that u = f*,
and we must have f,, =, (—nxX)V(f AnxX) for each n, so that f =, lim, e fr and u = (lim, o0 fr)*.
Since lim,,_,~ fn is A j-measurable and defined on a u[A j-conegligible set, u € Lg. Q

As every u,, belongs to L', we know that

up € LY = u, € LY <= Pju, = u,.

By (b), there is for each n a countable J* such that Pyu,, = u, iff J O J*. So we see that u € LY iff J D J*
for every n, that is, J 2 |,y /- Thus J* = U, oy /5 has the property claimed.

(d) Applying (c) to u = (xW)*, we have a (countable) unique smallest J* such that u € LY%.. But if
J C I, then there is a W’ € A; such that W/AW is negligible iff u € LY. So this is the J* we are looking
for.

(e) Again apply (c), this time to f°.

254S Proposition Let ((X;,3;, ui))ier be a family of probability spaces, with product (X, A, \).
(a) If A C X is determined by coordinates in I\ {j} for every j € I, then its outer measure A\* A must be
either 0 or 1.
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(b) If W € A and AW > 0, then for every € > 0 there are a W' € A and a finite set J C I such that
AW’ > 1 — e and for every x € W’ there is a y € W such that [T\ J =y|I\ J.

proof For J C I write X for [,

(a) Let W be a measurable envelope of A. By 254Rd, there is a smallest J C I for which there is a
W’ € A, determined by coordinates in J, with A(WAW’) = 0. Now J = (). P Take any j € I. Then A is
determined by coordinates in I\ {j}, that is, can be regarded as X; x A’ for some A" C Xp\ ;3. We can
also think of A as the product of Ay;3 and Ap ;3 (254N). Let Ap ;3 be the domain of Ap\ ;3. By 2518,

WA= X M4 = K A
Let V' € Apyj;y be measurable envelope of A’. Then W' = X; x V belongs to A, includes A and has
measure A*A, so A\(W N W) = AW = AW’ and WAW’ is negligible. At the same time, W’ is determined
by coordinates in I\ {j}. This means that J must be included in I\ {j}. As j is arbitrary, J = 0. Q

But the only subsets of X which are determined by coordinates in @ are X and (). Since W differs from
one of these by a negligible set, \*A = AW € {0,1}, as claimed.

X; and \; for the product measure on X .

(b) Set n = %min(e, 1)AW. By 254Fe, there is a measurable set V', determined by coordinates in a finite
subset J of I, such that A(WAV) < 7. Note that

AV > AW =5 > AW >0,
SO

AWAV) < ZAW < eAV.

We may identify A with the c.l.d. product of A; and Ap; (254N). Let W,V C X; x Xp\s be the sets
corresponding to W, V C X. Then V can be expressed as U x Xpg where A ;U = AV > 0. Set U' = {z:
z € Xpn, AsW=1{z}] = 0}. Then U’ is measured by A (252D(ii) again, because both Ay and Ap\ ; are
complete), and

AU -Ap U < /AJ(WA[{ZHAU))\I\J(CZZ)
(because if z € U’ then Ay (W~ [{z}]AU) = A;U)
= [ M AT) A (a2)

= (A x Ang)(WAV)
(252D once more)
= AMWAV) < eAV = eAsU.

This means that A\p\ ;U <e. Set W ={z:2 € X, z[I\J ¢ U'}; then \W' > 1—e. If 2 € W, then
z=zx[I\J ¢ U’ so W [{z}] is not empty, that is, there is a y € W such that y|I\ J = z. So this W’ has
the required properties.

254T Remarks It is important to understand that the results above apply to L° and L' and measurable-
sets-up-to-a-negligible-set, not to sets and functions themselves. One idea does apply to sets and functions,
whether measurable or not.

(a) Let (X;);cr be a family of sets with Cartesian product X. For each J C I let W; be the set of
subsets of X determined by coordinates in J. Then W; N Wk = Wjnk for all J, K C I. P Of course
Wi N Wk 2 Wink, because W; O Wy whenever J' C J. On the other hand, suppose W € W; N Wk,
zeW,ye Xandz[JNK =y|JNK. Set z(i) = z(i) fori € J, y(i) fori € I\J. Then z|J =x[Jsoz € W.
Also yIK = z]K so y € W. As x, y are arbitrary, W € Wjynk; as W is arbitrary, Wy N Wg C Wink. Q
Accordingly, for any W C X, F = {J : W € Wy} is a filter on I (unless W = X or W = (), in which case
F =PX). But F does not necessarily have a least element, as the following example shows.
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(b) Set X = {0, 1},
W={z:ze€ X, lim_, (i) =0}.

Then for every n € N W is determined by coordinates in J, = {i : ¢ > n}. But W is not determined by
coordinates in (), oy Jn = . Note that

is measured by the usual measure on X. But it is also negligible (since it is countable); in 254Rd we have
J=0, W =0.

*254U 1 am now in a position to describe a counter-example answering a natural question arising out
of §251.

Example There are a localizable measure space (X, X, 1) and a probability space (Y, T,r) such that the
c.l.d. product measure A on X x Y is not localizable.

proof (a) Take (X, ¥, 1) to be the space of 216E, so that X = {0,1}, where I = PC for some set C' with
cardinal greater than ¢. For each v € C write E, for {z:z € X, x({v}) = 1} (that is, G,y in the notation
of 216Ec); then E, € ¥ and pE, = 1; also every measurable set of non-zero measure meets some E, in a
set of non-zero measure, while £, N E5 is negligible for all distinct -y, § (see 216Ee).

Let (Y, T,v) be {0,1}¢ with the usual measure (254J). For v € C, let F,, be {y : y € Y, y(y) = 1}, so
that vF, = % Let X be the c.l.d. product measure on X x Y, and A its domain.

(b) Consider the family W = {E, x F, : v € C} C A. 7 Suppose, if possible, that V' were an essential
supremum of W in A in the sense of 211G. For v € C write H, = {z : V[{z}|AF, is negligible}. Because
F,AFjy is non-negligible, H, N Hs = ) for all v # 4.

Now E, \ H, is p-negligible for every v € C. P A((E, x F,)\V) =0, so F,, \ V[{z}] is negligible for
almost every = € E,, by 252D. On the other hand, if we set F) =Y \ F,, W, = (X x Y \ (£, x F), then
we see that

(Byx F))N(Ey x F,) =0, E,xF, CW,,

(Es x F5) \W,) = (B, x F{) 1\ (Es x Fs)) < u(E, 0 E) = 0

for every 6 # v, so W, is an essential upper bound for W and V N (E, x F'Iy) = V' \ W, must be A-negligible.
Accordingly V[{z}] \ F, = V[{z}] N F is v-negligible for p-almost every x € E,. But this means that
VI{z}|AF, is v-negligible for p-almost every « € E,, that is, v(E, \ H,) =0. Q

Now consider the family (£, N H,)yec. This is a disjoint family of sets of finite measure in X. If E € X
has non-zero measure, there is a v € C such that u(E, N H, N E) = v(E, N E) > 0. But this means that
& ={E,NH,:v e C} satisfies the conditions of 2130a, and p must be strictly localizable; which it isn’t.
X

(c) Thus we have found a family YW C A with no essential supremum in A, and A is not localizable.

Remark If (X, %, ) and (Y, T,v) are any localizable measure spaces with a non-localizable c.l.d. product
measure, then their c.l.d. versions are still localizable (213Hb) and still have a non-localizable product
(251T), which cannot be strictly localizable; so that at least one of the factors is not strictly localizable
(2510). Thus any example of the type here must involve a complete locally determined localizable space
which is not strictly localizable, as in 216E.

*254V Corresponding to 251U and 251Wo, we have the following result on countable powers of atomless
probability spaces.

Proposition Let (X, X, 1) be an atomless probability space and I a countable set. Let A be the product
probability measure on X’. Then {z : x € X!, z is injective} is A-conegligible.

proof For any pair {i,j} of distinct elements of X, the set {z : z € X%} 2(i) = 2(j)} is negligible for
the product measure on X147} by 251U. By 2540a, {z : € X, x(i) = x(j)} is A-negligible. Because I
is countable, there are only countably many such pairs {7,j}, so {z : € X, x(i) = 2(j) for some distinct
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i, j € I} is negligible, and its complement is conegligible; but this complement is just the set of injective
functions from I to X.

254X Basic exercises (a) Let ((X;,%;, 1i))icr be any family of probability spaces, with product
(X, A, ). Write € for the family of subsets of X expressible as the union of a finite disjoint family of
measurable cylinders. (i) Show that if C' C X is a measurable cylinder then X \ C € £. (ii) Show that
WnVe&forall W,V € £ (iii) Show that X \ W € & for every W € €. (iv) Show that & is an
algebra of subsets of X. (v) Show that for any W € A, € > 0 there is a V € & such that A(WAV) < €2
(vi) Show that for any W € A and € > 0 there are disjoint measurable cylinders Cy,...,C, such that
AW NCj) = (1 —€e)AC; for every j and A(W \ U<, Cj) < e. (Hint: select the C; from the measurable
cylinders composing a set V' as in (v).) (vii) Show that if f, g are A-integrable functions and fc f< fC g
for every measurable cylinder C C X, then f <,. g. (Hint: show that fW f< fW f for every W € A.)

>(b) Let ((X;, %, ;) be a family of probability spaces, with product (X, A, A). Show that the outer
measure A\* defined by ) is exactly the outer measure 6 described in 254A, that is, that 0 is a regular outer
measure.

(c) Let {((X;, X, p;) be a family of probability spaces, with product (X, A, \). Write A\g for the restriction
of X to @ia&, and C for the family of measurable cylinders in X. Suppose that (Y, T, v) is a probability
space and ¢ : Y — X a function. (i) Show that ¢ is inverse-measure-preserving when regarded as a function
from (Y, T,v) to (X, @iel&,)\o) iff ~1[C] belongs to T and v¢~1[C] = A\oC for every C € C. (ii) Show
that Ao is the only measure on X with this property. (Hint: 136C.)

>(d) Let I be a set and (Y, T, v) a complete probability space. Show that a function ¢ : Y — {0,1}! is
inverse-measure-preserving for v and the usual measure on {0, 1} iff v{y : ¢(y)(i) = 1 for every i € J} =
2-#(J) for every finite J C I.

>(e) Let I be any set and A the usual measure on X = {0,1}!. Define addition on X as in 254Jd. Show
that the map (z,y) — z+y : X x X — X is inverse-measure-preserving, if X x X is given its product
measure.

>(f) Let I be any set and A the usual measure on PI. (i) Show that the map a — a/Ab: PI — PI is
inverse-measure-preserving for any b C I; in particular, a — I \ a is inverse-measure-preserving. (ii) Show
that the map (a,b) — alb: PI x PI — PI is inverse-measure-preserving.

>(g) Show that for any ¢ € [0, 1] and any set I there is a measure A on PI such that AMa : J C a} = ¢#(/)
for every finite J C I.

>(h) Let (Y, T, v) be a complete probability space, and write p for Lebesgue measure on [0, 1]. Suppose
that ¢ : Y — [0,1] is a function such that v¢~1[I] exists and is equal to ul for every interval I of the form
[27"k,27"(k + 1)], where n € N and 0 < k < 2™. Show that ¢ is inverse-measure-preserving for v and p.

(i) Show that if ¢ : {0,1}N — [0,1] is any bijection constructed by the method of 254K, then {¢~'[E] :
E C[0,1] is a Borel set} is just the o-algebra of subsets of {0, 1} generated by the sets {x : z(i) = 1} for
1€ N.

(j) Let (X;);er be a family of sets, and for each ¢ € I let X; be a o-algebra of subsets of X;. Show
that for every E € @,;
F e Q,c;X;, writing my(x) = 2[J € [[,c; Xi for x € [[,¢; Xi.

>; there is a countable set J C I such that E is expressible as ﬂ;l[F | for some

(k)(i) Let v be the usual measure on X = {0,1}. Show that for any k > 1, (X,v) is isomorphic to
(X* vy,), where v, is the measure on X* which is the product measure obtained by giving each factor X the
measure v. (i) Writing jo 1) for Lebesgue measure on [0, 1], etc., show that for any k& > 1, ([0, 1]k,/.l/[0’1]k)
is isomorphic to ([0, 1], uj0,1)-
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(1) (i) Writing po,1) for Lebesgue measure on [0, 1], etc., show that ([0, 1], pj,1)) is isomorphic to ([0, 1[, yzjo,1[)-
(i) Show that for any k > 1, ([0, 1[* s Bpo,1p+) is isomorphic to ([0, 1[, po,1). (iii) Show that for any k > 1,
(R, pg) is isomorphic to (R¥, pgx).

(m) Let p be Lebesgue measure on [0,1] and A the product measure on [0, 1]N. Show that ([0, 1], ) and
([0,1]N, \) are isomorphic.

(n) Let (X4, X4, 114))ier be a family of complete probability spaces and A the product measure on [ [, ; X,
with domain A. Suppose that A; C X; for each i € I. Show that [],.; A; € A iff either (i) [[,c; ujAi =0
or (ii) A; € X; for every i and {i : A; # X} is countable. (Hint: assemble ideas from 252Xc, 254F, 254L
and 254N.)

(o) Let ((X;, X4, pi))ier be a family of probability spaces with product (X, A, A). (i) Show that, for any
ACX,

A*A = min{\y7;[A] : J C I is countable},

where for J C I T write A for the product probability measure on X; = [[,.; X; and 7y : X — X7 for the
canonical map. (i) Show that if J, K C I are disjoint and A, B C X are determined by coordinates in J,
K respectively, then \*(AN B) = \*A - \*B.

(p) Let ((X;,X%, p:))ier be a family of probability spaces with product (X, A, A). Let 8 be the linear
span of the set of indicator functions of measurable cylinders in X, as in 254Q. Show that {f* : f € 8} is
dense in LP(u) for every p € [1,00].

(a) Let ((X;,%;, 1i))ier be a family of probability spaces, and (X, A, A) their product; for J C I let A
be the o-algebra of members of A determined by coordinates in J and Py : L' = L*(\) — LY = L*(AJA)
the corresponding conditional expectation. (i) Show that if u € Lb and v € L}\J then u x v € L'

and [uxv = [u- [v. (Hint: 253D.) (ii) Show that if 7 C PI is non-empty, with J* = (17, then
L},* = nJGJ L.1]~

(r)(i) Let I be any set and A the usual measure on PI. Let A C PI be such that a/Ab € A whenever a € A
and b C T is finite. Show that A* A must be either 0 or 1. (ii) Let A be the usual measure on {0, 1}, and A
its domain. Let f : {0,1}Y — R be a function such that, for z, y € {0,1}Y, f(z) = f(y) <= {n:n €N,
z(n) # y(n)} is finite. Show that f is not A-measurable. (Hint: for any ¢ € Q, A*{z : f(x) < ¢} is either 0
or 1.)

(s) Let (X;)icr be any family of sets and A € B C [[,.; X;. Suppose that A is determined by coordinates
in J C I and that B is determined by coordinates in K. Show that there is a set C' such that A C C C B
and C' is determined by coordinates in J N K.

254Y Further exercises (a) Let ((X;,%;, u;))ier be a family of probability spaces, and for J C I let
Ay be the product measure on X; = [[..; X;; write X = X7, A = Ay and 75(z) = 2] J for z € X and
JCI.

(i) Show that for K C J C I we have a natural linear, order-preserving and norm-preserving map
Trk : LY(A\k) — LY()\;) defined by writing Tyx (f*) = (fmxs)* for every Ag-integrable function f, where
mr(y) =ylK fory € X.

(ii) Write K for the set of finite subsets of I. Show that if W is any Banach space and (Tk)kex is a
family such that (o) Tk is a bounded linear operator from L'(\f) to W for every K € K (8) Tk = T5T K
whenever K C J € K (7) supgei || Tk || < 0o, then there is a unique bounded linear operator T': L*(\) — W
such that T =TTk for every K € K.

(iii) Write J for the set of countable subsets of I. Show that L'(A) = U ¢ 7 Trs[L"(As)].

icJ

(b) Let ((Xy, X, pi))ier be any family of measure spaces. Set X = [],.; X; and let F be a filter on the
set [I]<“ of finite subsets of I such that {J : i € J € [I|<¥} € F for every ¢ € I. Show that there is a
complete locally determined measure A on X such that A(]], el E;) is defined and equal to lim ;7 [ [, ey il
whenever F; € ¥; for every i € I and limy, 7 [[,c; #iE; is defined in [0, oo[. (Hint: BAKER 04.)
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(c) Let ((Xi, 3y, 1:))icr be a family of probability spaces, and A a complete measure on X = [[;; X;.
Suppose that for every complete probability space (Y, T,v) and function ¢ : Y — X, ¢ is inverse-measure-
preserving for v and ) iff v¢~1[C] is defined and equal to 6,C for every measurable cylinder C' C X, writing
0o for the functional of 254A. Show that A is the product measure on X.

(d) Let I be a set, and \ the usual measure on {0, 1}£. Show that L!()) is separable, in its norm topology,
iff I is countable.

(e) Let f:[0,1] — [0,1]? be a function which is inverse-measure-preserving for Lebesgue planar measure
on [0,1]* and Lebesgue linear measure on [0,1], as in 134Y]; let fi, f> be the coordinates of f. Define
g :[0,1] — [0, 1] by setting g(t) = (f1f3(t))nen for 0 < ¢ < 1. Show that g is inverse-measure-preserving.
(Hint: show that g, : [0,1] — [0,1]**! is inverse-measure-preserving for every n > 1, where g,(t) =

(f1(@), fifa(O), o fLf37H(R), £3(2)) for ¢ € [0,1].)

(f) Let I be a set, and A the usual measure on PI. Show that if F is a non-principal ultrafilter on I then
NF = 1. (Hint: 254Xr, 254Xf.)

(g) Let (X, %, ), (Y, T,v) and A be as in 254U. Set A = {z, : v € C'} as defined in 216E. Let p4 be the
subspace measure on A, and A the c.l.d. product measure of p4 and v on A x Y. Show that X is a proper

extension of the subspace measure Aaxy. (Hint: consider W = {(zy,y) : v € C, y € F,}, in the notation
of 254U.)

(h) Let (X, X, 1) be an atomless probability space, I a set with cardinal at most #(X), and A the set of
injective functions from I to X. Show that A has full outer measure for the product measure on X’.

254 Notes and comments While there are many reasons for studying infinite products of probability
spaces, one stands pre-eminent, from the point of view of abstract measure theory: they provide constructions
of essentially new kinds of measure space. I cannot describe the nature of this ‘newness’ effectively without
venturing into the territory of Volume 3. But the function spaces of Chapter 24 do give at least a form of
words we can use: these are the first probability spaces (X, A, \) we have seen for which L'()\) need not be
separable for its norm topology (254Yd).

The formulae of 254 A, like those of 251A, lead very naturally to measures; the point at which they become
more than a curiosity is when we find that the product measure X is a probability measure (254Fa), which
must be regarded as the crucial argument of this section, just as 251E is the essential basis of §251. It
is I think remarkable that it makes no difference to the result here whether I is finite, countably infinite
or uncountable. If you write out the proof for the case I = N, it will seem natural to expand the sets
J,, until they are initial segments of I itself, thereby avoiding altogether the auxiliary set K; but this is a
misleading simplification, because it hides an essential feature of the argument, which is that any sequence
in C involves only countably many coordinates, so that as long as we are dealing with only one such sequence
the uncountability of the whole set I is irrelevant. This general principle naturally permeates the whole of
the section; in 2540 I have tried to spell out the way in which many of the questions we are interested in
can be expressed in terms of countable subproducts of the factor spaces X;. See also the exercises 254Xj,
254Xn and 254 Ya(iii).

There is a slightly paradoxical side to this principle: even the best-behaved subsets E; of X; may fail
to have measurable products [[,.; E; if E; # X; for uncountably many i. For instance, 0, 1[I is not a
measurable subset of [0,1]7 if I is uncountable (254Xn). It has full outer measure and its own product
measure is just the subspace measure (254L), but any measurable subset must have measure zero. The
point is that the empty set is the only member of @), ;%;, where X; is the algebra of Lebesgue measurable
subsets of [0, 1] for each 4, which is included in ]0,1[" (see 254Xj).

As in §251, T use a construction which automatically produces a complete measure on the product space.
I am sure that this is the best choice for ‘the’ product measure. But there are occasions when its restriction
to the o-algebra generated by the measurable cylinders is worth looking at; see 254Xc.

Lemma 254G is a result of a type which will be commoner in Volume 3 than in the present volume.
It describes the product measure in terms not of what it 4s but of what it does; specifically, in terms
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of a property of the associated family of inverse-measure-preserving functions. It is therefore a ‘universal
mapping theorem’. (Compare 253F.) Because this description is sufficient to determine the product measure
completely (254Y¢), it is not surprising that I use it repeatedly.

The ‘usual measure’ on {0,1} (254J) is sometimes called ‘coin-tossing measure’ because it can be used
to model the concept of tossing a coin arbitrarily many times indexed by the set I, taking an z € {0, 1}
to represent the outcome in which the coin is ‘heads’ for just those ¢ € I for which x(i¢) = 1. The sets, or
‘events’, in the class C are those which can be specified by declaring the outcomes of finitely many tosses,
and the probability of any particular sequence of n results is 1/2", regardless of which tosses we look at or in
which order. In Chapter 27 I will return to the use of product measures to represent probabilities involving
independent events.

In 254K I come to the first case in this treatise of a non-trivial isomorphism between two measure spaces. If
you have been brought up on a conventional diet of modern abstract pure mathematics based on algebra and
topology, you may already have been struck by the absence of emphasis on any concept of ‘homomorphism’
or ‘isomorphism’. Here indeed I start to speak of ‘isomorphisms’ between measure spaces without even
troubling to define them; I hope it really is obvious that an isomorphism between measure spaces (X, 3, i)
and (Y, T, v) is a bijection ¢ : X — Y such that T={F: F CY, ¢~ [F] € ¥} and vF = pu¢~![F] for every
F € T, so that ¥ is necessarily {E : E C X, ¢[E] € T} and pE = v¢[E] for every E € ¥. Put like this,
you may, if you worked through the exercises of Volume 1, be reminded of some constructions of o-algebras
in 111Xc-111Xd and of the ‘image measures’ in 234C-234D. The result in 254K (see also 134Yo) naturally
leads to two distinct notions of ‘homomorphism’ between two measure spaces (X, %, u) and (Y, T, v):

(i) a function ¢ : X — Y such that ¢~ ![F] € ¥ and u¢~1[F] = vF for every F € T,

(ii) a function ¢ : X — Y such that ¢[E] € T and v¢[E] = uE for every E € X.

On either definition, we find that a bijection ¢ : X — Y is an isomorphism iff ¢ and ¢! are both
homomorphisms. (Also, of course, the composition of homomorphisms will be a homomorphism.) My
own view is that (i) is the more important, and in this treatise I study such functions at length, calling
them ‘inverse-measure-preserving’. But both have their uses. The function ¢ of 254K not only satisfies
both definitions, but is also ‘nearly’ an isomorphism in several different ways, of which possibly the most
important is that there are conegligible sets X’ C {0,1}N, Y’ C [0,1] such that ¢[ X’ is an isomorphism
between X’ and Y’ when both are given their subspace measures.

Having once established the isomorphism between [0,1] and {0,1}N, we are led immediately to many
more; see 254Xk-254Xm. In fact Lebesgue measure on [0, 1] is isomorphic to a large proportion of the
probability spaces arising in applications. In Volumes 3 and 4 I will discuss these isomorphisms at length.

The general notion of ‘subproduct’ is associated with some of the deepest and most characteristic results
in the theory of product measures. Because we are looking at products of arbitrary families of probability
spaces, the definition must ignore any possible structure in the index set I of 254A-254C. But many appli-
cations, naturally enough, deal with index sets with favoured subsets or partitions, and the first essential
step is the ‘associative law’ (254N; compare 251Xe-251Xf and 251Wh). This is, for instance, the tool by
which we can apply Fubini’s theorem within infinite products. The natural projection maps from [[;.; X;
to [[;c; Xi, where J C I, are related in a way which has already been used as the basis of theorems in
§235; the product measure on [],. ; X; is precisely the image of the product measure on [],.; X; (2540a).
In 2540-254Q T explore the consequences of this fact and the fact already noted that all measurable sets in
the product are ‘essentially’ determined by coordinates in some countable set.

In 254R T go more deeply into this notion of a set W C [[,.; X; ‘determined by coordinates in” a set
J C I. In its primitive form this is a purely set-theoretic notion (254M, 254Ta). I think that even a three-
element set I can give us surprises; I invite you to try to visualize subsets of [0, 1]> which are determined
by pairs of coordinates. But the interactions of this with measure-theoretic ideas, and in particular with a
willingness to add or discard negligible sets, lead to much more, and in particular to the unique minimal sets
of coordinates associated with measurable sets and functions (254R). Of course these results can be elegantly
and effectively described in terms of L' and L spaces, in which negligible sets are swept out of sight as the
spaces are constructed. The basis of all this is the fact that the conditional expectation operators associated
with subproducts multiply together in the simplest possible way (254Ra); but some further idea is needed
to show that if 7 is a non-empty family of subsets of I, then L%] =Nyes LY (see part (b) of the proof of
254R, and 254Xq(iii)).
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254Sa is a version of the ‘zero-one law’ (2720 below). 254Sb is a strong version of the principle that
measurable sets in a product must be approximable by sets determined by a finite set of coordinates (254Fe,
254Qa, 254Xa). Evidently it is not a coincidence that the set W of 254TDb is negligible. In §272 I will revisit
many of the ideas of 254R-254S and 254Xq, in particular, in the more general context of ‘independent
o-algebras’.

Finally, 254U and 254Yg hardly belong to this section at all; they are unfinished business from §251.
They are here because the construction of 254A-254C is the simplest way to produce an adequately complex
probability space (Y, T,v).

Version of 3.7.08

255 Convolutions of functions

I devote a section to a construction which is of great importance — and will in particular be very useful
in Chapters 27 and 28 — and may also be regarded as a series of exercises on the work so far.

I find it difficult to know how much repetition to indulge in in this section, because the natural unified
expression of the ideas is in the theory of topological groups, and I do not think we are yet ready for the
general theory (I will come to it in Chapter 44 in Volume 4). The groups we need for this volume are

R;

R", for r > 2;

St ={z:2€C, |z| =1}, the ‘circle group’;

Z, the group of integers.
All the ideas already appear in the theory of convolutions on R, and I will therefore present this material
in relatively detailed form, before sketching the forms appropriate to the groups R” and S! (or |-, 7]); Z
can I think be safely left to the exercises.

255A This being a book on measure theory, it is perhaps appropriate for me to emphasize, as the basis
of the theory of convolutions, certain measure space isomorphisms.

Theorem Let p be Lebesgue measure on R and po Lebesgue measure on R?; write X, ¥y for their domains.
(a) For any a € R, the map z — a + x : R — R is a measure space automorphism of (R, X, u).
(b) The map z — —z : R — R is a measure space automorphism of (R, X, u).
(c) For any a € R, the map « — a — z : R — R is a measure space automorphism of (R, X, p).
(d) The map (z,y) — (z +y,y) : R? — R? is a measure space automorphism of (R?, o, p2).
(e) The map (z,y) — (x — y,y) : R? — R? is a measure space automorphism of (R?, X, o).

Remark I ought to remark that (b), (d) and (e) may be regarded as simple special cases of Theorem 263A
in the next chapter. I nevertheless feel that it is worth writing out separate proofs here, partly because the
general case of linear operators dealt with in 263A requires some extra machinery not needed here, but more
because the result here has nothing to do with the linear structure of R and R?; it is exclusively dependent
on the group structure of R, together with the links between its topology and measure, and the arguments
I give now are adaptable to the proper generalizations to abelian topological groups.

proof (a) This is just the translation-invariance of Lebesgue measure, dealt with in §134. There I showed
that if E € ¥ then E+a € ¥ and u(E + a) = pE (134Ab); that is, writing ¢(x) = = + a, u(¢[E]) exists
and is equal to uF for every E € X. But of course we also have

1@ HE]) = WE + (—a)) = pE
for every E € X, so ¢ is an automorphism.

(b) The point is that p*(A) = pu*(—A) for every A C R. P (I follow the definitions of Volume 1.)
If € > 0, there is a sequence (I,)nen of half-open intervals covering A with > ° ul, < p*A +e. Now
—A CU,en(=1n). But if I,, = [an, by[ then —1I,, = |=by, ay], so

pr(—A) < 350 g n(—In) = 30 o max(0, —ay — (=by)) = 30 g uly < prA+ e
(©) 2000 D. H. Fremlin
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As € is arbitrary, p*(—A) < p*A. Also of course p*A < p*(—(—A)) = pu*A, so u*(—A) = u*A. Q

This means that, setting ¢(x) = —x this time, ¢ is an automorphism of the structure (R, u*). But since
w is defined from p* by the abstract procedure of Carathéodory’s method, ¢ must also be an automorphism
of the structure (R, X, ).

(c) Put (a) and (b) together; z — a —x is the composition of the automorphisms x — —z and © — a+z,
and the composition of automorphisms is surely an automorphism.

(d) (i) Write T for the set {E : E € ¥o, ¢[E] € X3}, where this time ¢(z,y) = (x +y,y) for z, y € R, so
that ¢ : R? — R? is a permutation. Then T is a o-algebra, being the intersection of the o-algebras ¥, and
{E: ¢[E] € X3} = {97 ![F] : F € Xa}. Moreover, puoE = pua(¢[E]) for every E € T. P By 252D, we have

pE = [ p{x: (v,y) € E}u(dy).

But applying the same result to ¢[E] we have

p2d[E] = /u{fc s (z,y) € BB u(dy) = /u{w (z —y,y) € E}pu(dy)
= [ (B N + wntay) = [ wE {whutay)

(because Lebesgue measure is translation-invariant)
=mE. Q

(ii) Now ¢ and ¢~! are clearly continuous, so that ¢[G] is open, and therefore measurable, for every
open (; consequently all open sets must belong to T. Because T is a o-algebra, it contains all Borel
sets. Now let I be any measurable set. Then there are Borel sets Hy, Hy such that H; C F C Hy and
pa(Hz \ Hy) =0 (134Fb). We have ¢[H;] C ¢[E] C ¢[Hz] and

(@[Ho] \ ¢[H1]) = po[Hy \ Hi] = p(Hz \ Hy) = 0.
Thus ¢[E]\ ¢[H1] must be negligible, therefore measurable, and ¢[E] = ¢[H1]U ($[E]\ ¢[H1]) is measurable.
This shows that ¢[E] is measurable whenever F is.

(iii) Repeating the same arguments with —y in the place of y, we see that ¢~![E] is measurable, and
U2t E] = poE, for every E € ¥y, So ¢ is an automorphism of the structure (R?, 2o, uz).

(e) Of course this is an immediate corollary either of the proof of (d) or of (d) itself as stated, since
(z,y) — (z — y,y) is just the inverse of (z,y) — (= + y,y).

255B Corollary (a) If a € R, then for any complex-valued function f defined on a subset of R
ff( d:z:—ffa—i—a:dﬂc—ff das—ffa—:v)dx

in the sense that if one of the integrals exists so do the others, and they are then all equal.
(b) If f is a complex-valued function defined on a subset of R?, then

[ fa+yyday) = [ flz—yy)day) = [ flz,y)dz,y)

in the sense that if one of the 1ntegrals exists and is finite so does the other, and they are then equal.

255C Remarks (a) I am not sure whether it ought to be ‘obvious’ that if (X, 3, u), (Y, T, v) are measure
spaces and ¢ : X — Y is an isomorphism, then for any function f defined on a subset of Y

[ F(e(@)nuldz) = [ fy)v(dy)

in the sense that if one is defined so is the other, and they are then equal. If it is obvious then the obviousness
must be contingent on the nature of the definition of integration: integrability with respect to the measure p
is something which depends on the structure (X, 3, 1) and on no other properties of X. If it is not obvious
then it is an easy deduction from Theorem 235A above, applied in turn to ¢ and ¢! and to the real and
imaginary parts of f. In any case the isomorphisms of 255A are just those needed to prove 255B.
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(b) Note that in 255Bb I write [ f(z,y)d(z,y) to emphasize that I am considering the integral of f with
respect to two-dimensional Lebesgue measure. The fact that

([ f@pdz)dy = [ ([ fz+v,p)dz)dy = [ ([ f(z—y,y)dz)dy

is actually easier, being an immediate consequence of the equality [ f(a+z)dx = [ f(z)dx. But applications
of this result often depend essentially on the fact that the functions (z,y) — f(x+y,y), (z,v) — f(z—y,y)
are measurable as functions of two variables.

(c) T have moved directly to complex-valued functions because these are necessary for the applications
in Chapter 28. If however they give you any discomfort, either technically or aesthetically, all the measure-
theoretic ideas of this section are already to be found in the real case, and you may wish at first to read it
as if only real numbers were involved.

255D A further corollary of 255A will be useful.

Corollary Let f be a complex-valued function defined on a subset of R.

(a) If f is measurable, then the functions (z,y) — f(z +y), (z,y) — f(x — y) are measurable.

(b) If f is defined almost everywhere in R, then the functions (z,y) — f(z +vy), (z,y) — f(x —y) are
defined almost everywhere in R2.

proof Writing ¢1(z,y) = f(z +v), g2(z,y) = f(x — y) whenever these are defined, we have

a(@,y) = (f @ xR)(d(z,9)), g2(z,y) = (f @ xR) (¢ (z,9)),

writing ¢(z,y) = (x + y,y) as in 255B(d-e), and (f ® xR)(z,y) = f(z), following the notation of 253B. By
253C, f ® xR is measurable if f is, and defined almost everywhere if f is. Because ¢ is a measure space
automorphism, (f @ YR)¢ = g1 and (f ® YR)¢~! = g5 are measurable, or defined almost everywhere, if f is.

255E The basic formula Let f and g be measurable complex-valued functions defined almost every-
where in R. Write f x g for the function defined by the formula

(f*xg)(x)= [ flz—y)g

whenever the integral exists (with respect to Lebesgue measure, naturally) as a complex number. Then fx*g
is the convolution of the functions f and g.

Observe that dom(|f|*|g|]) = dom(f *g), and that |f *g| < |f]*|g| everywhere on their common domain,
for all f and g.

Remark Note that I am here prepared to contemplate the convolution of f and ¢ for arbitrary members of
L?C, the space of almost-everywhere-defined measurable complex-valued functions, even though the domain
of f x g may be empty.

255F Elementary properties (a) Because integration is linear, we surely have

(1 + f2) x9) (@) = (f1 x 9)(2) + (f2 % 9) (),
(f # (91 + g2))(x) = (f * g1)(x) + (f * g2) (@),
(cf *xg)(x) = (f * cg)(x) = c(f * g)(x)

whenever the right-hand sides of the formulae are defined.

(b) If f and g are measurable complex-valued functions defined almost everywhere in R, then fxg = gx f,
in the strict sense that they have the same domain and the same value at each point of that common domain.
P Take z € R and apply 255Ba to see that

(f xg)(= /fx— y)dy=/f(x—(x—y))g(x—y)dy

~ [ 1wt~y = (g 1)(a)
if either is defined. Q
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(c) If f1, f2, g1, g2 are measurable complex-valued functions defined almost everywhere in R, f; =, fo
and g1 =ae. g2, then f; x g1 = fo*xgo. P For every z € R we shall have fi(z —y) = fo(z — y) for
almost every y € R, by 255Ac. Consequently fi(z — y)g1(y) = f2(x — y)g2(y) for almost every y, and
(fi#g1)(z) = (f2*g2)(x) in the sense that if one of these is defined so is the other, and they are then equal.

Q

It follows that if u, v € L%, then we have a function 8(u,v) which is equal to f g whenever f, g € L?C are
such that f* = v and g°* = u. Observe that 0(u,v) = (v, u), and that 0(u; +uz,v) extends §(u1,v)+0(uz,v),
6(cu,v) extends cf(u,v) for all u, u, uz, v € LE and ¢ € C.

255G I have grouped 255Fa-255Fc together because they depend only on ideas up to and including
255Ac and 255Ba. Using the second halves of 255A and 255B we get much deeper. I begin with what seems
to be the fundamental result.

Theorem Let f, g and h be measurable complex-valued functions defined almost everywhere in R.
(a) Suppose that [ h(z +y)f(z)g(y)d(z,y) exists in C. Then

/ W) (f * g)()de = / Wz + ) f(@)g(w)d(z. )

// z+y)f(2)g(y)dzdy = // h(z +y) f(z)g(y)dydz

provided that in the expression h(x g)(z) we interpret the product as 0 if A(z) = 0 and (f * g)(x) is
undefined.
(b) If, on a similar interpretation of [h(x)|(|f] * |g])(x), the integral [ [A(x)[(|] *|g])(x)da is finite, then

J h(z+y)f(z)g(y)d(z,y) exists in C.

proof Consider the functions

ki(z,y) = h(x)f(x —y)g(y), ka(z,y) = h(z +y)f(z)g(y)

wherever these are defined. 255D tells us that k; and ks are measurable and defined almost everywhere.
Now setting ¢(z,y) = (z + y,y), we have ky = quS, so that

fk:lxyd fkgzz:yd(z,y)

if either exists, by 255Bb.
It

[ (@ +y) f@)g)d,y) = [ ko

exists, then by Fubini’s theorem we have

fk2 fk:lxy (x,y) ffh )g(y)dy)dx

so [h(z)f(z — y)g(y)dy exists almost everywhere, that is, (f * g)(x) exists for almost every x such that
h(zx) # 0; on the interpretation I am using here, h(x)(f * g)(z) exists almost everywhere, and

[ 1@ s pade = [ ([ 1)@~ atw)ay)iz = [

_ / ey = / h(z + ) f(2)g(y)d(z, )

- / Wz + ) f(@)g(y)dedy = / Wz + ) (2)g(y)dyda

by Fubini’s theorem again.
If (on the same interpretation) |h| x (| f] * |g|) is integrable,

(k1 (2, 9)| = W) f(z = v)llg(y)]

is measurable, and

JJ 1n@)11f (@ = yllg(y)ldyde = [ |h(@)[(1f] * |g])(2)dz

is finite, so by Tonelli’s theorem (252G, 252H) k; and ko are integrable.
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255H Certain standard results are now easy.

Corollary If f, g are complex-valued functions which are integrable over R, then f * g is integrable, with
Jrxa=[f[g [If=gl<[IfIf gl
proof In 255G, set h(z) =1 for every x € R; then
[ h(x+y) f@)gy)d,y) = [ f@)g)dzy)= [ f[g
by 253D, so
[fxg=[h@)(f=g)(@)de= [h(z+y)f(x)g(y)dz,y) = [f]g,

as claimed. Now

J1fxgl< [If1xlgl= [1£1] Il

2551 Corollary For any measurable complex-valued functions f, g defined almost everywhere in R, fxg
is measurable and has measurable domain.

proof Set f,(z) = f(z) if x € dom f, |z| < n and |f(z)] < n, and 0 elsewhere in R; define g,, similarly
from g. Then f, and g, are integrable, |f,| < |f| and |g,| < |g| almost everywhere, f =, . lim,_,c fn and
g =a.e lim,_, o g,. Consequently, by Lebesgue’s Dominated Convergence Theorem,

(f *9)( / fl@—y)g(y)dy = / Jim fo(2 = y)gn(y)dy
= lim [ fo(z —y)gn(y)dy = lm (fn * g.)(2)

for every x € dom f % g. But f, * g, is integrable, therefore measurable, for every n, so that f % g must be
measurable.
As for the domain of f * g,

x € dom(f xg) — /f(z —y)g(y)dy is defined in C
= / |f(z —y)|lg(y)|dy is defined in R

= / |fn(z — y)|lgn(y)|dy is defined in R for every n

and Sup/lfn 2~ 9)llgn(y)ldy < .

Because every |f,| * |gn| is integrable, therefore measurable and with measurable domain,

dom(f * g) = {z : 2 € ey dom(|fu] % [gnl), suppen(lfnl * Ign])(x) < oo}

is measurable.

255J Theorem Let f, g and h be complex-valued measurable functions, defined almost everywhere in
R, such that f % g and g * h are defined a.e. Suppose that z € R is such that one of (|f] * (|g| * |h]))(x),
((|f] * lg]) = |h|)(z) is defined in R. Then f * (g *h) and (f % g) * h are defined and equal at .

proof Set k(y) = f(z — y) when this is defined, so that k is measurable and defined almost everywhere
(255D).

(a) If (|f] = (lg| * |h]))(x) is defined, this is [ |k(y)|(lg] * |h|)(y)dy, so by 255G we have

J k@) (g*h)(w)dy = [ k(y+ 2)g(y)h(z)d(y, ),
that is,
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(f * (g % ) /f:v— (g W)y )dy—/k(y)(g*h)(y)dy

/k:y—i—z // (y + 2)g9(y)h(z)dydz

//fx— —2) (m@mwz=/q*@@—zm@mz
g) x h)(z).

(b) T¢ (|1 * [g]) * [B]) (z) is defined, this is
/ (1] *lg) (@ — )|h(z)|dz = / (@ — = — p)llg(v)I|h(=)|dyd=
- / Ik(y + 2)llg @)1 (2)|dydz.

By 255D again, (y,z) — k(y + 2) is rneasumble7 so we can apply Tonelli’s theorem to see that [ k(y +
2)g(y)h(2)d(y, z) is defined, and is equal to [k(y)(g * h)(y)dy = (f * (g * h))(x) by 255Ga. On the other
side, by the last two lines of the proof of (a), [ k(y + 2)g(y)h(2)d(y, z) is also equal to ((f * g) * h)(z).

255K I do not think we shall need an exhaustive discussion of the question of just when (f * g)(x) is
defined; this seems to be complicated. However there is a fundamental case in which we can be sure that
(f * g)(z) is defined everywhere.

Proposition Suppose that f, g are measurable complex-valued functions defined almost everywhere in R,
and that f € L%, g € LI where p, ¢ € [1, 00] and % + % =1 (writing é = 0 as usual). Then f g is defined
everywhere in R, is uniformly continuous, and

Sugl(f*g)(x)l < Ifllpllgllg if 1 <p < o0, 1< g < o0,
e

< |Iflliess sup|g| if p=1, ¢ = o0
<esssup|f|- gl if p=o00,¢g=1.

proof (a) (For an introduction to £ spaces, see §244.) For any x € R, the function f,, defined by setting
fo(y) = f(z — y) whenever x — y € dom f, must also belong to L£P, because f, = f¢ for an automorphism
¢ of the measure space. Consequently (f % g)(z) = [ fz x g is deﬁned and of modulus at most || f||,]/gllq or
[ f1]1 ess sup |g| or ess sup |f| - ||gll1, by 244Eb/244Pb and 243Fa/243K

(b) To see that f x g is uniformly continuous, argue as follows. Suppose first that p < co. Let € > 0. Let
n > 0 be such that (2 + 2'/?)||g|l,n < e. Then there is a bounded continuous function i : R — C such that
{z : h(z) # 0} is bounded and ||f — k||, < n (244Hb/244Pb); let M > 1 be such that h(z) = 0 whenever
|z| > M — 1. Next, h is uniformly continuous, so there is a § € ]0,1] such that |h(z) — h(z')| < M~y
whenever |z — z/| < 4.

Suppose that | — 2’| < J. Defining h,(y) = h(x — y), as before, we have

/|h fhm/|p*/\hxf :ny|pdy*/|h h(x' —x +t)Pdt

(substituting t = x —
M
:/)|Mﬂ—Mf—m+ﬂPﬁ
-M

(because h(t) = h(ax' —xz+1t) =0if |t| > M)
< QM(M—l/pn)p
(because |h(t) — h(x' —x +t)] < M~/Py for every t)
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= 2P,

So ||hz — har|l, < 21/Pn. On the other hand,

[ 1he = fol? = [0z —y) = f(z —y)lPdy = [ |h(y) — f(y)[Pdy,
80 [[he — fallp = [Ih — fll, < n, and similarly ||h. — forll, < 7. So
fo - fx’Hp <|fe— thp + ‘hz - hm’”p + || — fz/”p <2+ 21/p)77-

This means that

I(f*g)(x)—(f*g)(w’)lzI/fxxg—/fx/xg\zl/(fx—fx/)xgl

<o = forlpllglly < (2+27)lgllgn < e.

As € is arbitrary, f * ¢ is uniformly continuous.
The argument here supposes that p is finite. But if p = co then ¢ = 1 is finite, so we can apply the
method with g in place of f to show that g * f is uniformly continuous, and f x g = g * f by 255Fb.

255L The r-dimensional case I have written 255A-255K out as theorems about Lebesgue measure on
R. However they all apply equally well to Lebesgue measure on R” for any r» > 1, and the modifications
required are so small that I think I need do no more than ask you to read through the arguments again,
turning every R into an R”, and every R? into an (R")2. In 255A and elsewhere, the measure po should
be read either as Lebesgue measure on R?" or as the product measure on (R")?; by 251N the two may be
identified. There is a trivial modification required in part (b) of the proof; if I,, = [ay, b, [ then

puly = p(—1,) = H::1 max(0, Bni — ans),
writing an, = (@n1,...,Qnr). In the proof of 2551, the functions f,, should be defined by saying that
fu(x) = f(z) if | f(2)] <n and ||z|| < n, 0 otherwise.
In quoting these results, therefore, I shall be uninhibited in referring to the paragraphs 255A-255K as if
they were actually written out for general r > 1.

255M The case of |—7, 7] The same ideas also apply to the circle group S! and to the interval |-, 7],
but here perhaps rather more explanation is in order.

(a) The first thing to establish is the appropriate group operation. If we think of S* as the set {z : 2 €
C, |z| = 1}, then the group operation is complex multiplication, and in the formulae above 4+ y must be
rendered as xy, while z — y must be rendered as zy~'. On the interval |—m, 7], the group operation is +a,
where for z, y € |—m, 7] I write © +2, y for whichever of  + y, © + y + 27, = + y — 27 belongs to |—m, 7).
To see that this is indeed a group operation, one method is to note that it corresponds to multiplication
on S! if we use the canonical bijection z + €'* : |-, ] — S'; another, to note that it corresponds to the
operation on the quotient group R/27Z. Thus in this interpretation of the ideas of 255A-255K, we shall
wish to replace x + y by  +2, y, —x by —srx, and x — y by © —o, y, where

—opx =—x ifx €|-m,w[, —opm=mr,

and x —o, y is whichever of x — y, * — y + 27,  — y — 27 belongs to |-, 7].

(b) As for the measure, the measure to use on |—, 7] is just Lebesgue measure. Note that because |-, 7]
is Lebesgue measurable, there will be no confusion concerning the meaning of ‘measurable subset’, as the
relatively measurable subsets of |—m, 7] are actually measured by Lebesgue measure on R. Also we can
identify the product measure on |—7, 7] X |-, 7] with the subspace measure induced by Lebesgue measure
on R? (251R).

On S', we need the corresponding measure induced by the canonical bijection between S! and |-, 7],
which indeed is often called ‘Lebesgue measure on S'’. (We shall see in 265E that it is also equal to Hausdorff
one-dimensional measure on S1.) We are very close to the level at which it would become reasonable to
move to S' and this measure (or its normalized version, in which it is reduced by a factor of 27, so as to
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make S' a probability space). However, the elementary theory of Fourier series, which will be the principal
application of this work in the present volume, is generally done on intervals in R, so that formulae based
on |—m, 7| are closer to the standard expressions. Henceforth, therefore, I will express the work in terms of
|—m, 7.

(¢) The result corresponding to 255A now takes a slightly different form, so I spell it out.

255N Theorem Let p be Lebesgue measure on |—m, 7| and ps Lebesgue measure on |—7, 7| X |—, 7);
write X, X5 for their domains.

(a) For any a € |—m, 7|, the map © — a +or © : |—m, 7] = |—7, 7| is a measure space automorphism of
(]—7'(', ﬂ-] ) Ev ,LL)

(b) The map x +— —opx : |—m, 7] — |—m, 7] is a measure space automorphism of (|—m, 7], %, u).

(c) For any a € |—m, 7], the map x — a —or x : |—7, 7] — |—m, 7] is a measure space automorphism of
(]_7(-7 ﬂ—] ) Ea M)

(d) The map (z,y) — ( +2r y,y) : |—m, 71> — ]—7,7]? is a measure space automorphism of (|-, 7]?,
Eo, pi2).

() The map (z,y) — (x —or y,y) : |-m,7)° = ]—m, @)% is a measure space automorphism of (]—m, 7%,
Eo, pi2).

proof (a) Set ¢(z) = a +2, 2. Then for any E C |-, 7],
¢[E] = (B +a) 0 ]=m,7]) U (((E +a) N]m,3n]) — 2m) U (((E + a) 0] =37, —7]) + 27),

and these three sets are disjoint, so that

polB] = p((E + a) N =, 7]) + p(((E + a) N]m, 37]) — 27)
+ pu(((E +a)N]—3m, —7]) + 27)
= pL((E+a)N]=m,m) + pr(((E + a) 0], 37]) — 27)
+ pn(((E + a) N =37, —x]) 4 27)
(writing py, for Lebesgue measure on R)
=pr((E+a)N]—m, 7)) + pu((E + a) N|m,37]) + p((E 4+ a) N]—3m, —7])
=pr(E+a)=pLE = pE.
Similarly, u¢=1[E] is defined and equal to puE for every E € ¥, so that ¢ is an automorphism of (|-, 7],
2.

(b) Of course this is quicker. Setting ¢(z) = —arz for x € |—m, 7], we have

w(@[E]) = p(olE] N ]=m,7[) = p(—(E N ]—m, )
= pr(=(EN]=m,x)) = pr(EN]-m, )
=wEN]=m7[) = uE

for every F € 3.
(c) This is just a matter of putting (a) and (b) together, as in 255A.

(d) We can argue as in (a), but with a little more elaboration. If E € ¥y, and ¢(x,y) = (x +2- y,y) for
x,y € -7, 7, set Y(z,y) = (z +y,y) for z, y € R, and write ¢ = (27,0) € R?, H = ]—7r,7r]2, H =H +c,
H"” = H — c. Then for any F € 3,

¢[E] = (WIEINH) U ((L[E]NH') =) U((P[E]NH") + ),

SO

128 E] = p2(V[E] N H) + p2((G[E] NV H') — ¢) + p2((Y[E] N H”) + ¢)
= p(E]NH) + pr((W[E]NH) = o) + pr(($E]NH") 4 ¢)
(this time writing u, for Lebesgue measure on R?)
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= p(WE]NH) + pr(Y[E]NH') + pr([E] N H”)
= pLY[E]l = pLE = poE.

In the same way, pa(¢1[E]) = psE for every E € X, so ¢ is an automorphism of (J—m,7]?, £a, u2), as
required.

(e) Finally, (e) is just a restatement of (d), as before.

2550 Convolutions on |-, 7] With the fundamental result established, the same arguments as in
255B-255K now yield the following. Write p for Lebesgue measure on |—, 7.

(a) Let f and g be measurable complex-valued functions defined almost everywhere in |—m, 7). Write
f = g for the function defined by the formula

(Fx9)(@) = [Tz —2m v)aly)dy

whenever x € |—m, 7] and the integral exists as a complex number. Then f * g is the convolution of the
functions f and g.

(b) If f and g are measurable complex-valued functions defined almost everywhere in |—m, 7], then
frg=gxf.

(c) Let f, g and h be measurable complex-valued functions defined almost everywhere in |—m, 7]. Then
(i)
J7 n@)(f x g)(@yde = [ (@ +ar y)F@)g(y)d(, y)

whenever the right-hand side exists and is finite, provided that in the expression h(z)(f * g)(z) we interpret
the product as 0 if h(z) = 0 and (f * g)(z) is undefined.

(i) If, on the same interpretation of |h(z)|(|f| = |g])(x), the integral [* _|h(z)|(|f] = |g])(x)dz is finite,
then jj_ﬂ_m_]z h(z 427 y) f(2)g(y)d(z,y) exists in C, so again we shall have

SO h@) (g @)de = [ h(@ any)f(@)g(y)d(x,y).

(d) If f, g are complex-valued functions which are integrable over |—m, 7], then f * g is integrable, with

Jorxa=[" 1" g [T 1fxa < [7_1F1)7 lgl.

(e) Let f, g, h be complex-valued measurable functions defined almost everywhere in |—m, ], such
that f * g and g * h are also defined almost everywhere. Suppose that x € |—m, 7] is such that one of
(If]* (gl =|RD) (), ((|f] *|g]) * |h])(x) is defined in R. Then f* (g h) and (f * g) * h are defined and equal
at x.

(f) Suppose that f € LE(n), g € L&(p) where p, ¢ € [1,00] and %—i—% = 1. Then f * g is defined
everywhere in |-, 7], and sup,ej_r A [(f * 9) (@) < [[fllpllgllq, interpreting || || as ess sup| |, as in 255K.

255X Basic exercises >(a) Let f, g be complex-valued functions defined almost everywhere in R.
Show that for any = € R, (f * g)(z) = [ f(z + y)g(—y)dy if either is defined.

>(b) Let f and g be complex-valued functions defined almost everywhere in R. (i) Show that if f and ¢
are even functions, so is f x g. (ii) Show that if f is even and g is odd then f * g is odd. (iii) Show that if f

and g are odd then f * g is even.

(c) Suppose that f, g are real-valued measurable functions defined almost everywhere in R” and such
that f > 0 a.e., g > 0 a.e. and {z : g(z) > 0} is not negligible. Show that f g > 0 everywhere in dom(f *g).
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>(d) Suppose that f : R — C is a bounded differentiable function and that f’ is bounded. Show that
for any integrable complex-valued function g on R, f x g is differentiable and (f * g)’ = f’ x g everywhere.
(Hint: 123D.)

(e) A complex-valued function g defined almost everywhere in R is locally integrable if f; g is defined
in C whenever a < b in R. Suppose that g is such a function and that f : R — C is a differentiable function,
with continuous derivative, such that {z : f(x) # 0} is bounded. Show that (f * g)’ = f’ x g everywhere.

>(f) Set ¢s(2) = exp(—52=) if |z < 8, 0 if [z] > 4, as in 242Xi. Set as = [ ¢s, s = a; ¢s5. Let
f be a locally integrable complex-valued function on R. (i) Show that f %5 is a smooth function defined
everywhere on R for every ¢ > 0. (ii) Show that limso(f * ¢s)(x) = f(z) for almost every z € R. (Hint:
223Yg.) (iii) Show that if f is integrable then lims o [ |f — f*1s| = 0. (Hint: use (ii) and 245H(a-ii) orlook
first at the case f = x[a,b] and use 2420, noting that [ |f x 5| < [|f|.) (iv) Show that if f is uniformly
continuous and defined everywhere in R then limg o sup,cp |f(2) — (f * ¥5)(z)| = 0.

et for ¢ > 0, 0 for ¢t < 0. Show that g, * gg = ga+p for all o, 8 > 0.

>(g) For a > 0, set g, (t) = o)

(Hint: 252Yf.)

>(h) Let u be Lebesgue measure on R. For u, v, w € LY = L(u), say that uxv = w if f g is
defined almost everywhere and (f * g)* = w whenever f, g € £L&(u), f* = u and ¢g* = w. (i) Show that
(u1 4 u2) * v = uq * v + ug * v whenever uy, us, v € L2 and uy * v and us * v are defined in this sense. (ii)
Show that u * v = v * u whenever u, v € L°(C) and either u * v or v * u is defined. (iii) Show that if u,
v, w € L, u*v and v x w are defined, and either |u| x (Jv] * [w]) or (Ju| * |v]) * |w| is defined, then then
w* (v*w) = (ux*v)*w are defined and equal.

>(i) Let u be Lebesgue measure on R. (i) Show that u x v, as defined in 255Xh, belongs to L{(u)
whenever u, v € LL (). (ii) Show that L{ is a commutative Banach algebra under * (definition: 2A4J).

(j) (i) Show that if A is an integrable function on R?, then (Th)(x) = [ h(x—y, y)dy exists for almost every
z € R, and that [(Th)(z)dz = [ h(z,y)d(z,y). (i) erte o for Lebesgue measure on R2, y for Lebesgue
measure on R. Show that there is a linear operator T : L'(ug) — L'(u) defined by setting T(h*) = (Th)*
for every integrable function i on R2. (iii) Show that in the language of 253E and 255Xh, T(u ® v) = u * v
for all u, v € L'(u).

>(k) For a, b € CZ set (a*b)(n) =Y
(i) axb=">bxa;
(i) Sier ()@ * b)) = Xy seneli+ (b)) it Xy cz leli +1)alib()] < oo
(iii) if @, b € £*(Z) then a xb € (1 (Z) and |la = b||1 < ||la||1(|b]1;
(iv) If @, b € (*(Z) then @ * b € £>°(Z) and ||a * b||oc < ||la||2]|b]|2;
(v) if @, b, ¢ € CZ and (|a| * (|b] * |c|))(n) is well-defined, then (a * (b*c))(n) = ((a *b) *c)(n).

ez @(n —i)b(i) whenever )., |a(n —i)b(i)| < co. Show that

255Y Further exercises (a) Let f be a complex-valued function which is integrable over R. (i) Let = be
any point of the Lebesgue set of f. Show that for any € > 0 there is a 6 > 0 such that |f(x) — (f*g)(z)| <€
whenever g : R — [0, 00 is a function which is non-decreasing on |—oo, 0], non-decreasing on [0, co[, and has

Jg=1and ffég > 1—4. (ii) Show that for any € > 0 there is a § > 0 such that || f — f * g||1 < € whenever
g : R — [0,00[ is a function which is non-decreasing on |—o0, 0], non-decreasing on [0, co[, and has [¢g =1
and fisg >1-—6.

(b) Let f be a complex-valued function which is integrable over R. Show that, for almost every x € R,

f : 1 poo —a(y—=z
limg o0 = f mﬁdz}, lim, oo afm f(y)e < )dy,

. 1 e} C(y—2)2 /202
hmgio Wffoo f(y)e (y ) /2 dy
all exist and are equal to f(z). (Hint: 263G.)

D.H.FREMLIN



78 Product measures 255Yc

(c) Set f(x) =1foral z € R, g(z) = ﬁ for 0 < |z| <1 and 0 otherwise, h(x) = tanhz for all z € R.

Show that f % (g« h) and (f * g) * h are both defined (and constant) everywhere, and are different.

(d) Discuss what can happen if, in the context of 255J, we know that (|f| * (|g| % |h|))(z) is defined, but
have no information on the domain of f x* g.

(e) Suppose that p € [1,00[ and that f € LZ(u), where p1 is Lebesgue measure on R”. For a € R” set
(Saf)(xz) = f(a+ x) whenever a + € dom f. Show that S, f € LZ(p), and that for every e > 0 there is a
d > 0 such that ||S,f — f|l, < € whenever |a| < 4.

(f) Suppose that p, ¢ € |1, 00[ and % + % = 1. Take f € LB(p) and g € L& (p), where 11 is Lebesgue
measure on R”. Show that lim ;o (f * g)(z) = 0. (Hint: use 244Hb.)

(g) Repeat 255Ye and 255K, this time taking p to be Lebesgue measure on |—m, 7], and setting (S, f)(z) =
f(a+2r z) for a € ]—m, 7]; show that in the new version of 255K, (f * g)(7) = lim, |- (f * g)(x).

(h) Let p be Lebesgue measure on R. For a € R, f € £% = £%(u) set (S.f)(x) = f(a + x) whenever

a+ 2 € dom f.

(i) Show that S, f € L° for every f € £°.

(ii) Show that we have a map S, : L — L° defined by setting S, (f*) = (Sof)* for every f € £O.

(iii) Show that S, is a Riesz space isomorphism and is a homeomorphism for the topology of convergence
in measure; moreover, that S'a(u X v) = S,u x Syv for all u, v € LO.

(iv) Show that 5’a+b =S,S, for all a, b € R.

(v) Show that lim,_,q S,u = u for the topology of convergence in measure, for every u € LP.

(vi) Show that if 1 < p < oo then Sa [ LP is an isometric isomorphism of the Banach lattice LP.

(vii) Show that if p € [1, 00 then limy o ||S,u — ull, = 0 for every u € LP.

(viii) Show that if A C L' is uniformly integrable and M > 0, then {Squ : u € A, |a| < M} is uniformly
integrable.

(ix) Suppose that u, v € L° are such that u * v is defined in L° in the sense of 255Xh. Show that
Sa(u*v) = (S,u) * v =u* (S,v) for every a € R.

(i) Prove 255Nd from 255Na by the method used to prove 255Ad from 255Aa, rather than by quoting
255Ad.

(j) Let pu be Lebesgue measure on R, and ¢ : R — R a convex function; let ¢ : L® — L% = L%(u) be the
associated operator (see 241T). Show that if u € L' = L'(u), v € L are such that v > 0, [u =1 and u * v,
u* ¢(v) are both defined in the sense of 255Xh, then ¢(u * v) < u* ¢(v). (Hint: 233L.)

(k) Let p be Lebesgue measure on R, and p € [1,00]. Let f € LL(un), g € LP (). Show that fxg € LE(p)
and that ||f =g, < |fll1llgllp- (Hint: argue from 255Yj, as in 244M.)

(1) Suppose that p, g, r € |1, 00[ and that %Jr% =1+ % Let p be Lebesgue measure on R. (i) Show that

[Fxg <l " glla™ " ([ 17 x g7/

whenever f, g > 0 and f € LP(u), g € L9(n). (Hint: set p' = p/(p — 1), ete.; f1 = [Pl g = ga/?,
h = (fPxg")"/". Use 244Xc to see that || f1 x g1l < || fillg' l91]l,r, s0 that [ f1x g1 xh < || fillglgallp | 2lr-)
(ii) Show that f * g is defined a.e. and that ||f * g|l. < || fllpllgllq for all f € LP(un), g € L9(pn). (Hint:
take f, g > 0. Use (i) to see that (f * g)(x)" < |fIl;Pllgl;= [ f(y)Pg(x — y)idy, so that [|f * g <

1A, llgllg™ [ f(y)Pllgllidy.) (This is Young’s inequality.)
(m) Repeat the results of this section for the group (S*)", where 7 > 2, given its product measure.

(n) Let G be a group and p a o-finite measure on G such that («) for every a € G, the map = — ax is an
automorphism of (G, u) (8) the map (x,y) — (z,2y) is an automorphism of (G2, us), where puz is the c.l.d.
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product measure on G x G. For f, g € LL(u) write (f * g)(z) = [ f(y)g(y~'x)dy whenever this is defined.
Show that

(i) if f, g, h € £L2(n) and [ h(zy)f(x)g(y)d(z,y) is defined in C, then [ h(x)(f * g)(x)dz exists and is
equal to [ h(zy)f(x)g(y)d(x,y), provided that in the expression h(z)(f * g)(x) we interpret the product as
0 if h(z) = 0 and (f * g)(z) is undefined;

() 1,9 € £L0) then [ € L2060 and [ +9= [ [ 9.1 wall < W1l

(iii) if f, g, h € LL(p )thenf*(g*h) (f xg)=*
(See HaLMOS 50, §59.)

(0) Repeat 255Yn for counting measure on any group G.

255 Notes and comments I have tried to set this section out in such a way that it will be clear that the
basis of all the work here is 255A, and the crucial application is 255G. I hope that if and when you come
to look at general topological groups (for instance, in Chapter 44), you will find it easy to trace through
the ideas in any abelian topological group for which you can prove a version of 255A. For non-abelian
groups, of course, rather more care is necessary, especially as in some important examples we no longer
have u{z~! : 2 € E} = pE for every E; see 255Yn-255Yo for a little of what can be done without using
topological ideas.

The critical point in 255A is the move from the one-dimensional results in 255Aa-255Ac, which are just the
translation- and reflection-invariance of Lebesgue measure, to the two-dimensional results in 255Ac-255Ad.
And the living centre of the argument, as I present it, is the fact that the shear transformation ¢ is an
automorphism of the structure (R?,%5). The actual calculation of pa@[E], assuming that it is measurable,
is an easy application of Fubini’s and Tonelli’s theorems and the translation-invariance of p. It is for this
step that we absolutely need the topological properties of Lebesgue measure. I should perhaps remind you
that the fact that ¢ is a homeomorphism is not sufficient; in 1341 I described a homeomorphism of the unit
interval which does not preserve measurability, and it is easy to adapt this to produce a homeomorphism
¥ : R? — R? such that 9[E] is not always measurable for measurable E. The argument of 255A is dependent
on the special relationships between all three of the measure, topology and group structure of R.

I have already indulged in a few remarks on what ought, or ought not, to be ‘obvious’ (255C). But perhaps
I can add that such results as 255B and the later claim, in the proof of 255K, that a reflected version of
a function in L? is also in LP, can only be trivial consequences of results like 255A if every step in the
construction of the integral is done in the abstract context of general measure spaces. Even though we are
here working exclusively with the Lebesgue integral, the argument will become untrustworthy if we have
at any stage in the definition of the integral even mentioned that we are thinking of Lebesgue measure. I
advance this as a solid reason for defining ‘integration’ on abstract measure spaces from the beginning, as
I did in Volume 1. Indeed, I suggest that generally in pure mathematics there are good reasons for casting
arguments into the forms appropriate to the arguments themselves.

I am writing this book for readers who are interested in proofs, and as elsewhere I have written the proofs
of this section out in detail. But most of us find it useful to go through some material in ‘advanced calculus’
mode, by which I mean starting with a formula such as

f f xr — dy7
and then working out consequences by formal mampulatlons for instance
J h(@)(f * g)(@)dz = [[ h(x) )g(y)dyde = [[ h(z +y)f(@)g(y)dydz,

without troubling about the precise apphcablhty of the formulae to begin with. In some ways this formula-
driven approach can be more truthful to the structure of the subject than the careful analysis I habitually
present. The exact hypotheses necessary to make the theorems strictly true are surely secondary, in such
contexts as this section, to the pattern formed by the ensemble of the theorems, which can be adequately
and elegantly expressed in straightforward formulae. Of course I do still insist that we cannot properly
appreciate the structure, nor safely use it, without mastering the ideas of the proofs — and as I have said
elsewhere, I believe that mastery of ideas necessarily includes mastery of the formal details, at least in the
sense of being able to reconstruct them fairly fluently on demand.

Throughout the main exposition of this section, I have worked with functions rather than equivalence
classes of functions. But all the results here have interpretations of great importance for the theory of the
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‘function spaces’ of Chapter 24. In 255Xh and the succeeding exercises, I have pointed to a definition of
convolution as an operator from a subset of L° x L? to L°. Tt is an interesting point that if u, v € L° then
u*v can be interpreted as a function, not as a member of L% (255Fc). Thus 255H can be regarded as saying
that u* v € L' for u, v € L'. We cannot quite say that convolution is a bilinear operator from L' x L' to
L1, because L1, as I define it, is not strictly speaking a linear space. If we want a bilinear operator, then we
have to regard convolution as a function from L' x L' to L'. But when we look at convolution as a function
on L? x L?, for instance, then our functions u * v are defined everywhere (255K), and indeed are continuous
functions vanishing at oo (255Ye-255Yf). So in this case it seems more appropriate to regard convolution
as a bilinear operator from L? x L? to some space of continuous functions, and not as an operator from
L? x L? to L. For an example of an interesting convolution which is not naturally representable in terms
of an operator on LP spaces, see 255Xg.

Because convolution acts as a continuous bilinear operator from L!(u) x L'(u) to L'(u), where pu is
Lebesgue measure on R, Theorem 253F tells us that it must correspond to a linear operator from L!(uz) to
L'(y), where juy is Lebesgue measure on R2. This is the operator T of 255Xj.

So far in these notes I have written as though we were concerned only with Lebesgue measure on R.
However many applications of the ideas involve R” or |—m, 7] or S'. The move to R” should be elementary.
The move to S! does require a re-formulation of the basic result 255A /255N. It should also be clear that
there will be no new difficulties in moving to |—m,7]" or (S')". Moreover, we can also go through the
whole theory for the groups Z and Z", where the appropriate measure is now counting measure, so that L2
becomes identified with CZ or C%" (255Xk, 255Y0).

Version of 6.8.15

256 Radon measures on R”

In the next section, and again in Chapters 27 and 28, we need to consider the principal class of measures
on Fuclidean spaces. For a proper discussion of this class, and the interrelationships between the measures
and the topologies involved, we must wait until Volume 4. For the moment, therefore, I present definitions
adapted to the case in hand, warning you that the correct generalizations are not quite obvious. I give the
definition (256A) and a characterization (256C) of Radon measures on Euclidean spaces, and theorems on
the construction of Radon measures as indefinite integrals (256E, 256J), as image measures (256G) and as
product measures (256K). In passing I give a version of Lusin’s theorem concerning measurable functions
on Radon measure spaces (256F).

Throughout this section, r and s will be integers greater than or equal to 1.

256A Definitions Let v be a measure on R” and ¥ its domain.

(a) v is a topological measure if every open set belongs to ¥. Note that in this case every Borel set,
and in particular every closed set, belongs to X.

(b) v is locally finite if every bounded set has finite outer measure.

(c) If v is a topological measure, it is inner regular with respect to the compact sets if
vE =sup{vK : K C E is compact}

for every E € X. (Because v is a topological measure, and compact sets are closed (2A2Ec), vK is defined
for every compact set K.)

(d) v is a Radon measure if it is a complete locally finite topological measure which is inner regular
with respect to the compact sets.

256B It will be convenient to be able to call on the following elementary facts.

Lemma Let v be a Radon measure on R", and ¥ its domain.
(a) v is o-finite.
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(b) For any E € ¥ and any ¢ > 0 there are a closed set ¥ C E and an open set G 2 E such that
v(G\F) <e.

(¢c) For every E € ¥ there is a set H C E, expressible as the union of a sequence of compact sets, such
that v(E\ H) = 0.

(d) Every continuous real-valued function on R” is ¥-measurable.

(e) If h : R"™ — R is continuous and has bounded support, then h is v-integrable.

proof (a) For each n € N, B(0,n) = {z : ||z]| < n} is a closed bounded set, therefore Borel. So if v is a
Radon measure on R", (B(0,n))nen is a sequence of sets of finite measurea covering R”.

(b) Set B, ={z : 2 € E,n < ||z|| < n+ 1} for each n. Then vE, < oo, so there is a compact set

K, C E, such that vK,, > vE,, —2 " 2. Set F = Unen Kn; then

V(E\F) = 02 o v(Ba\ Ku) < 5e.

Also F' C F and F is closed because
FnBo,n) =, KiNB(0,n)
is closed for each n.
In the same way, there is a closed set £/ C R"™\ E such that v((R"\ E) \ F') < Ze. Setting G =R"\ F,
we see that G is open, that G D F and that v(G \ E) < e, so that v(G \ F) < ¢, as required.
(c) By (b), we can choose for each n € N a closed set F,, C E such that v(E\ F,) < 27". Set

H = J,en Fn; then H C E and v(E'\ H) =0, and also H = B(0,m)N F, is a countable union of
compact sets.

m,neN

(d) If h: R™ — R is continuous, all the sets {x : h(x) > a} are open, so belong to X.

(e) By (d), h is measurable. Now we are supposing that there is some n € N such that h(z) = 0
whenever z ¢ B(0,n). Since B(0,n) is compact (2A2F), h is bounded on B(0,n) (2A2G), and we have
|h| < vxB(0,n) for some ~; since vB(0,n) is finite, h is v-integrable.

256C Theorem A measure v on R” is a Radon measure iff it is the completion of a locally finite measure
defined on the o-algebra B of Borel subsets of R".

proof (a) Suppose first that v is a Radon measure. Write X for its domain.

(i) Set vg = v[B. Then vy is a measure with domain B, and it is locally finite because 1,B(0,n) =
vB(0,n) is finite for every n. Let &y be the completion of vy (212C).

(ii) If #p measures E, there are Ey, Fy € B such that By C E C Es and vy(E2 \ E1) = 0. Now
E\ E; C E>\ F; must be v-negligible; as v is complete, E € ¥ and

vE = VE1 = VOE1 = lA/0E
(iii) If £ € ¥, then by 256Bc there is a Borel set H C F such that v(E \ H) = 0. Equally, there is a
Borel set H' C R" \ E such that v((R" \ E) \ H') = 0, so that we have H C E CR" \ H' and
w((R™\ H)\ H) = v((R"\ H') \ H) = 0.

So iy F is defined and equal to vgE; = vE.
This shows that v = g is the completion of the locally finite Borel measure v[B. And this is true for any
Radon measure v on R”.

(b) For the rest of the proof, I suppose that vy is a locally finite measure with domain B and v is its
completion. Write X for the domain of v. We say that a subset of R" is a K, set if it is expressible as the
union of a sequence of compact sets. Note that every K, set is a Borel set, so belongs to 3. Set

A={E:FEcX, there is a K, set H C E such that v(E \ H) = 0},

Y={E:Ec AR\ FEc A}
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(c)(i) Every open set is itself a K, set, so belongs to A. PP Let G C R" be open. If G = () then G is
compact and the result is trivial. Otherwise, let Z be the set of closed intervals of the form [g, ¢'], where ¢,
q' € Q", which are included in G. Then all the members of Z are closed and bounded, therefore compact.
If z € G, there is a § > 0 such that B(z,0) = {y : ||ly — z[| < 6} € G; now there is an I € 7 such that
xz €1 C B(z,d). Thus G =|JZ. But T is countable, so G is K,. Q

(ii) Every closed subset of R is K, so belongs to A. B If ' C R is closed, then F = J
but every F N B(0,n) is closed and bounded, therefore compact. Q

neny FNB(0,n);

(iii) If (Ep)nen is any sequence in A, then E = J, oy E\ belongs to A. P For each n € N we have a
countable family /C,, of compact subsets of E,, such that v(E, \|JK,) = 0; now X = KC,, is a countable
family of compact subsets of E, and E'\ |JK C |J,cn(En \ UKy) is v-negligible. Q

neN

(iv) If (Ep)nen is any sequence in A, then ' = .y E, € A. P For each n € N, let (Ky;)ien be a
sequence of compact subsets of E, such that v(Ey, \ U, ey Kni) = 0. Set K}, ; = ;< Kni for each j, so that

v(E, NH) =lim;_, o u(K;Lj N H)
for every H € X. Now, for each m, n € N, choose j(m,n) such that
V(Ent(O,m)ﬂK/ ) > V(Ent(O,m)) _2—(m+n).

n,j(m,n)
Set Ko = (pen K, J(myn)} then Ko, is closed (being an intersection of closed sets) and bounded (being a
subset of K,

0,5(m O)), therefore compact. Also K, C F, because K’

ni(mom) C E, for each n, and
V(FNB(0,m)\ Kn) < Y07, v(En N BO,m)\ K], (. ) < 30227 ) = 27ml,

Consequently H = UmeN K,, is a K, subset of F' and
v(FNBO,m)\ H) <infgs,, V(FNB(0,k)\ Hy) =0
for every m,so v(F\ H)=0and FF € A. Q

(d) X is a o-algebra of subsets of R. P (i) ) and its complement are open, so belong to A and therefore
to X. (ii) If F € ¥ then both R™\ E and R" \ (R" \ E) = E belong to A, so R"\ E € 3. (iii) Let (E,)nen
be a sequence in ¥ with union E. By (a-iii) and (a-iv),

EcA R\E=,nR"\E,) €A,

neN
so FeX Q

(e) By (c-i) and (c-ii), every open set belongs to X; consequently every Borel set belongs to ¥ and
therefore to A. Now if E is any member of X, there is a Borel set F; C E such that v(E \ E1) = 0 and a

K, set H C Ey such that v(E; \ H) = 0. Express H as | J,,cy Ky where every K, is compact; then

vE =vH =lim, 00 V(U;<,, Ki) < SUPKCE is compact VK < VE

because | J.., K; is a compact subset of E for every n.

1EN
(f) Thus v is inner regular with respect to the compact sets. But of course it is complete (being the

completion of ) and a locally finite topological measure (because vy is); so it is a Radon measure. This
completes the proof.

256D Proposition If v and v’ are two Radon measures on R”, the following are equiveridical:
(i) v=1r'

(ii) vK = V'K for every compact set K C R";

(iii) vG = V'G for every open set G C R";

(iv) [hdv = [ hdv' for every continuous function i : R” — R with bounded support.

proof (a)(i)=-(iv) is trivial.
(b)(iv)=-(iii) If (iv) is true, and G C R" is an open set, then for each n € N set

hy(z) = min(1, 2" infyerr\ (GnB(on)) Iy — =)
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for x € R". Then h,, is continuous (in fact |k, (z) — h,(2')] < 27|z — 2/|| for all z, 2’ € R") and zero outside
B(0,n), so [ hydv = [ h,dv'. Next, (h,(2))nen is a non-decreasing sequence converging to xG(z) for every
xz €R". So

VG =limy o0 [ hpdv = limy o [ hndv' = V'G,
by 135Ga. As G is arbitrary, (iii) is true.

(c)(iii)=(ii) If (iii) is true, and K C R" is compact, let n be so large that ||z|| < n for every z € K. Set
G=A{z:|z| <n}, H=G\ K. Then G and H are open and G is bounded, so vG = v'G is finite, and

vK =vG—-vH=v'G-v'H=VK.
As K is arbitrary, (ii) is true.
(d)(ii)=(i) If v, v’ agree on the compact sets, then

— — I _ !
vE = SungE is compact vK = SungE is compact VK =v'E

for every Borel set E. So v[B = v'[B, where B is the algebra of Borel sets. But since v and v’ are both the
completions of their restrictions to B, they are identical.

256E It is I suppose time I gave some examples of Radon measures. However it will save a few lines if
I first establish some basic constructions. You may wish to glance ahead to 256H at this point.

Theorem Let v be a Radon measure on R”, with domain ¥, and f a non-negative ¥-measurable function
defined on a v-conegligible subset of R”. Suppose that f is locally integrable in the sense that [ pfdv < oo
for every bounded set E. Then the indefinite-integral measure v’ on R" defined by saying that

V'E = fE fdv whenever EN{z:z € dom f, f(z) >0} € &
is a Radon measure on R".

proof For the construction of v/, see 2341-234L. Indefinite-integral measures, as I define them, are always
complete (2341). v’ is locally finite because f is locally integrable. v’ is a topological measure because every
open set belongs to ¥ and therefore to the domain X’ of v/. To see that v/ is inner regular with respect to
the compact sets, take any set F € ¥/, and set E' = {x : x € ENdom f, f(x) > 0}. Then E’ € ¥, so there
is a set H C E’, expressible as the union of a sequence of compact sets, such that v(E’\ H) = 0. In this
case

V(E\ H) = fE\Hfdu =0.
Let (K,,)nen be a sequence of compact sets with union H; then
V'E =v'H = lim, 00 v'(U;j<,, Ki) <SUPKCE is compact V' K S V'E.

As F is arbitrary, v’ is inner regular with respect to the compact sets.

256F Theorem Let v be a Radon measure on R", and ¥ its domain. Let f : D — R be a X-measurable
function, where D C R". Then for every € > 0 there is a closed set F' C R” such that v(R" \ F) < e and
fIF is continuous.

proof By 1211, there is a Y-measurable function h : R” — R extending f. Enumerate Q as (g )nen. For
each n € Nset B, = {x: h(z) < ¢}, E}, = {z : h(z) > ¢»} and use 256Bb to choose closed sets F,, C E,,
F! C E! such that v(E, \ F,) < 27" 2%c and v(E/, \ F!) < 27" 2%¢. Set F = Mpen(Fn U F)); then F is
closed and

vRT\F) <3020 v(RT\ (Fo UFY)) < 3002 g v(En \ Fn) +v(E, \ ) < e
I claim that h[F' is continuous. I* Suppose that € F' and é > 0. Then there are m, n € N such that
h(z) =6 < gm < h(z) < g, < h(z)+ 9.
This means that @ € E/, N E,,; consequently = ¢ F,, U F,. Because F,, U F), is closed, there is an n > 0
such that y ¢ F,, U F! whenever ||y — z|| < 7. Now suppose that y € F and ||y — z| < 1. Then
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ye(FL,UE )N(F,UF))andy ¢ F,,UF) soy € F, NF, CE/ NE, and ¢, < h(y) < ¢g,. Consequently
|h(y) — h(z)] < 6. As x and 0 are arbitrary, h[F is continuous. Q It follows that f[F = (h[F)[D is

continuous, as required.

256G Theorem Let v be a Radon measure on R”, with domain ¥, and suppose that ¢ : R™ — R? is
measurable in the sense that all its coordinates are X-measurable. If the image measure v/ = v¢~! (234D)
is locally finite, it is a Radon measure.

proof Write ¥’ for the domain of v'. If ¢ = (¢1, ..., ps), then
o {ym <al] ={z:¢;(z) <a} €X,
so {y:n; < a} € ¥ for every j < s, a € R, where I write y = (n1,...,7s) for y € R®. Consequently every
Borel subset of R* belongs to X' (121J), and v’ is a topological measure. It is complete by 234Eb.
The point is of course that v’ is inner regular with respect to the compact sets. P Suppose that F € ¥’
and that v < v'F. For each j < s, there is a closed set H; C R” such that ¢;[H; is continuous and
v(R"\ Hj) < 1(v'F — ), by 256F. Set H = ;< Hj; then H is closed and ¢[H is continuous and

YR\ H) < o' F — 5 = vg 1 [F] -,
so that v(¢~*[F]N H) > v. Let K C ¢~*[F]N H be a compact set such that vK > v, and set L = ¢[K].
Because K C H and ¢[ H is continuous, L is compact (2A2Eb). Of course L C F, and
V'L =vo L] > vK > 7.

As F and « are arbitrary, v’ is inner regular with respect to the compact sets. Q
Since v’ is locally finite by the hypothesis of the theorem, it is a Radon measure.

256H Examples I come at last to the promised examples.

(a) Lebesgue measure on R” is a Radon measure. (It is a topological measure by 115G, and inner regular
with respect to the compact sets by 134Fb.)

(b) A point-supported measure on R” is a Radon measure iff it is locally finite. I Let p be a point-
supported measure on R”. If it is a Radon measure, then of course it is locally finite. If it is locally finite,
then surely it is a complete topological measure, since it measures every subset of R”. Let h : R” — [0, o0]
be such that puFE =3 _ph(x) for every £ C R". Take any £ C R". Then

uE = Z h(z) =  sup Zh(x)

ICE is finite
= T

reE el
= sup ul< sup pK < pE
ICE is finite KCEF is compact

s0 pE = Supgcp is compact #A; thus p is inner regular with respect to the compact sets and is a Radon
measure. Q

(c) Now we come to a new idea. Recall that the Cantor set C' (134G) is a closed Lebesgue negligible
subset of [0, 1], and that the Cantor function (134H) is a non-decreasing continuous function f : [0,1] — [0, 1]
such that f(0) =0, f(1) =1 and f is constant on each of the intervals composing [0,1] \ C. It follows that
if we set g(z) = 3(z + f(z)) for z € [0,1], then g : [0,1] — [0,1] is a continuous permutation such that the
Lebesgue measure of g[C] is + (134I); consequently g~! : [0,1] — [0,1] is continuous. Now extend g to a
permutation h : R — R by setting h(z) = x for z € R\ [0,1]. Then h and h~! are continuous. Note that
h[C] = ¢[C] has Lebesgue measure .

Let v1 be the indefinite-integral measure defined from Lebesgue measure p on R and the function 2y (h[C]);
that is, 11 E = 2u(ENA[C]) whenever this is defined. By 256E, v is a Radon measure, and 11 h[C] = 1R = 1.
Let v be the measure v;(h~1)~1, that is, vE = v;h[E] for just those E C R such that h[E] € domv;. Then
v is a Radon probability measure on R, by 256G, and vC =1, v(R\ C) = uC = 0.

2561 Remarks (a) The measure v of 256Hc, sometimes called Cantor measure, is a classic example,
and as such has many constructions, some rather more natural than the one I use here (see 256Xk, and also
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264Ym below). But I choose the method above because it yields directly, without further investigation or
any appeal to more advanced general theory, the fact that v is a Radon measure.

(b) The examples above are chosen to represent the extremes under the ‘Lebesgue decomposition’ de-
scribed in 232I. If v is a (totally finite) Radon measure on R", we can use 232Ib to express its restriction
v|[B to the Borel o-algebra as v), + Vg + Ves, where v, is the ‘point-mass’ or ‘atomic’ part of v[B, v, is the
‘absolutely continuous’ part (with respect to Lebesgue measure), and v, is the ‘atomless singular part’. In
the example of 256Hb, we have v[B = v,; in 256E, if we start from Lebesgue measure, we have v[B = vg,;
and in 256Hc we have v[B = v ;.

256J Absolutely continuous Radon measures It is worth pausing a moment over the indefinite-
integral measures described in 256E.

Proposition Let v be a Radon measure on R”, and write u for Lebesgue measure on R”. Then the following
are equiveridical:

(i) v is an indefinite-integral measure over p;

(ii) vE = 0 whenever E is a Borel subset of R" and uF = 0.
In this case, if g € £%(u) and ngdp = vE for every Borel set £ C R", then ¢ is a Radon-Nikodym
derivative of v with respect to p in the sense of 232Hf.

proof (a)(i)=-(ii) If f is a Radon-Nikodym derivative of v with respect to p, then of course

vE = [, fdu=0
whenever pF = 0.

(ii)=(i) If vE = 0 for every p-negligible Borel set E, then vE is defined and equal to 0 for every
p-negligible set E, because v is complete and any p-negligible set is included in a p-negligible Borel set.
Consequently dom v includes the domain ¥ of u, since every Lebesgue measurable set is expressible as the
union of a Borel set and a negligible set.

For each n € N set E,, = {z : n < ||z|| < n+ 1}, so that (E,)nen is a partition of R” into bounded Borel
sets. Set v, E = v(E N E,) for every Lebesgue measurable set E and every n € N. Now v, is absolutely
continuous with respect to p (232Ba), so by the Radon-Nikodym theorem (in the form 232F) there is a
p-integrable function f,, such that f g [ndp = vp E for every Lebesgue measurable set E. Because v, E > 0
for every E € 3, f,, > 0 a.e.; because v,,(R" \ E,,) =0, f, =0 a.e. on R" \ E,,. Now if we set

f= max(O, ZZO:O fn)a
f will be defined p-a.e. and we shall have
S fdn =202 [, fadpn =0 v(ENE,) = vE

for every Borel set F, so that the indefinite-integral measure v’ defined by f and p agrees with v on the
Borel sets. Since this ensures that v’ is locally finite, v’ is a Radon measure, by 256E, and is equal to v, by
256D. Accordingly v is an indefinite-integral measure over p.

(b) As in (a-ii) above, g must be locally integrable and the indefinite-integral measure defined by g agrees
with v on the Borel sets, so is identical with v.

256K Products The class of Radon measures on Euclidean spaces is stable under a wide variety of
operations, as we have already seen; in particular, we have the following.

Theorem Let v1, vo be Radon measures on R” and R? respectively. Let A be their c.l.d. product measure
on R” x R®. Then A is a Radon measure.

Remark When I say that A is ‘Radon’ according to the definition in 256A, T am of course identifying R” x R®
with R as in 251M-251N.

proof I hope the following notation will seem natural. Write 31, X5 for the domains of vy, vo; B,., By for
the Borel o-algebras of R”, R*; A for the domain of \; and B for the Borel o-algebra of R"+5.
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Because each v; is the completion of its restriction to the Borel sets (256C), X is the product of v [B,
and vo[Bs (251T). Because v4 [B, and vo[B; are o-finite (256Ba, 212Ga), A must be the completion of its
restriction to B,&B,, which by 251M is identified with B. Setting Q, = {(x,y) : [|z| < n, ||y|| < n} we have

AQn = vi{z :[lz] <n}-wvofy -yl <n} <oo

for every m, while every bounded subset of R"™*¢ is included in some @,. So A[B is locally finite, and its
completion A is a Radon measure, by 256C.

256L Remark We see from 2531 that if v; and v, are Radon measures on R” and R? respectively, and
both are indefinite-integral measures over Lebesgue measure, then their product measure on R”"# is also an
indefinite-integral measure over Lebesgue measure.

*256M For the sake of applications in §286 below, I include another result, which is in fact one of the
fundamental properties of Radon measures, as will appear in §414.

Proposition Let v be a Radon measure on R”, and D any subset of R". Let ® be a non-empty upwards-
directed family of non-negative continuous functions from D to R. For x € D set g(z) = supcq f(x) in
[0,00]. Then

(a) g : D — [0, 00] is lower semi-continuous, therefore Borel measurable;

(b) [pgdv =supseq [, fdv.

proof (a) For any u € [—o00, o0],

{z:2 €D, g(z) >ut =Ujepl{z 2 €D, f(z) > u}

is an open set for the subspace topology on D (2A3C), so is the intersection of D with a Borel subset of R".
This is enough to show that g is Borel measurable (121B-121C).

(b) Accordingly [}, gdv will be defined in [0, 00], and of course [}, gdv > supeq [5, fdv.
For the reverse inequality, observe that there is a countable set W C & such that g(x) = sup ey f(x) for
everyxr € D. PForaeQ,q, ¢ € Q" set

Qogy ={f:f €, f(y) >a whenever y € DN g, ¢},

interpreting [g,¢’] as in 115G. Choose foqq € Pagq if Pugq is not empty, and arbitrarily in ® otherwise;
and set ¥ = {foqq 1 a € Q, ¢, ¢ € Q"}, so that ¥ is a countable subset of . If x € D and b < g(z), there
is an a € Q such that b < a < g(x); there is an f € ® such that f(z) > a; because f is continuous, there
are ¢, ¢ € Q" such that ¢ < z < ¢’ and f(y) > a whenever y € D N [q,q']; so that fe Pogqs Pagy # 0,
Jaqq' € Pagy and supey f(2) > fagy (¥) > b. As b is arbitrary, g(x) = sup;cy f(7). Q

Let (fn)nen be a sequence running over . Because ® is upwards-directed, we can choose (f)nen in @
inductively in such a way that f;, ., > max(f;, f,) for every n € N. So (f; )nen is a non-decreasing sequence
in ® and sup, ¢y f,,(z) > sup;cy f(z) = g(w) for every € D. By B.Levi’s theorem,

ngdV < Sup,en fD frdv < supjeq fD fdv,

and we have the required inequality.

256X Basic exercises >(a) Let v be a measure on R”. (i) Show that it is locally finite, in the sense of
256ADb, iff for every x € R” there is a § > 0 such that v*B(z,d) < co. (Hint: the sets B(0,n) are compact.)
(ii) Show that in this case v is o-finite.

>(b) Let v be a Radon measure on R” and G a non-empty upwards-directed family of open sets in R".
(i) Show that v(|JG) = supgeg v¥G. (Hint: observe that if K C (JG is compact, then K C G for some
G € §.) (ii) Show that »(ENJG) = supgeg ¥(£ N G) for every set E which is measured by v.

>(c) Let v be a Radon measure on R” and F a non-empty downwards-directed family of closed sets in
R” such that infpe r vF < 00. (i) Show that v((F) = infper vF. (Hint: apply 256Xb(ii) to G = {R" \ F :
F € F}.) (ii) Show that »(EN(F) = infperv(ENF) for every F in the domain of v.
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>(d) Show that a Radon measure v on R" is atomless iff v{z} = 0 for every € R". (Hint: apply 256Xc
with F = {F : F C E is closed, not negligible}.)

(e) Let v, vo be Radon measures on R, and a1, as € ]0,00[. Set ¥ = domwv; Ndomws, and for £ € ¥
set VE = a1 E 4+ aseE. Show that v is a Radon measure on R”. Show that v is an indefinite-integral
measure over Lebesgue measure iff v1, v are, and that in this case a linear combination of of Radon-Nikodym
derivatives of v1 and vs is a Radon-Nikodym derivative of v.

>(f) Let v be a Radon measure on R”. (i) Show that there is a unique closed set F' C R” such that, for
open sets G CR", vG > 0iff GNF # (). (F is called the support of v.) (ii) Generally, a set A C R" is
called self-supporting if v*(A N G) > 0 whenever G C R" is an open set meeting A. Show that for every
closed set F' C R" there is a unique self-supporting closed set F’ C F such that v(F \ F') = 0.

>(g) Show that a measure v on R is a Radon measure iff it is a Lebesgue-Stieltjes measure as described
in 114Xa. Show that in this case v is an indefinite-integral measure over Lebesgue measure iff the function
x + v]a,z] : [a,b] — R is absolutely continuous whenever a < b in R.

(h) Let v be a Radon measure on R". Let C}, be the space of continuous real-valued functions on R” with
bounded supports. Show that for every v-integrable function f and every e > 0 there is a g € C such that
J1f = gldv < e. (Hint: use arguments from 2420, but in (a-i) of the proof there start with closed intervals
1)

(i) Let v be a Radon measure on R”, and v* the corresponding outer measure. Show that vA = inf{vG :
G 2 A is open} for every set A C R".

(j) Let v, v/ be two Radon measures on R", and suppose that vI = v'I for every half-open interval
I C R" (definition: 115Ab). Show that v = v/’.

(k) Let v be Cantor measure (256Hc). (i) Show that if C,, is the nth set used in the construction of
the Cantor set, so that C,, consists of 2" intervals of length 37", then v1 = 27" for each of the intervals
I composing C,,. (ii) Let A be the usual measure on {0, 1} (254J). Define ¢ : {0,1} — R by setting
¢(x) =237 13 "x(n) for each = € {0,1}". Show that ¢ is a bijection between {0,1}" and C. (iii) Show
that if B is the Borel o-algebra of R, then {¢~![E]: E € B} is precisely the o-algebra of subsets of {0, 1}
generated by the sets {z : z(n) = i} for n € N, i € {0,1}. (iv) Show that ¢ is an isomorphism between
({0, 13N, )\) and (C, v¢), where v is the subspace measure on C induced by v.

(1) Let v and v’ be two Radon measures on R”. Show that v’ is an indefinite-integral measure over v iff
v'E = 0 whenever vE = 0, and in this case a function f is a Radon-Nikodym derivative of v’ with respect
to v iff fE fdv = V'E for every Borel set E.

256Y Further exercises (a) Let v be a Radon measure on R”, and X any subset of R"; let vx be
the subspace measure on X and Y x its domain, and give X its subspace topology. Show that vx has
the following properties: (i) vx is complete and locally determined; (ii) every open subset of X belongs to
Yx; (i) vxE = sup{vxF : F C FE is closed in X} for every F € ¥x; (iv) whenever G is a non-empty
upwards-directed family of open subsets of X, vx (|lJG) = supgeg vxG; (v) every point of X belongs to an
open set of finite measure.

(b) Let v be a Radon measure on R”, with domain ¥, and f : R — R a function. Show that the
following are equiveridical: (i) f is ¥-measurable; (ii) for every non-negligible set E € ¥ there is a non-
negligible ' € ¥ such that F' C F and f[F is continuous; (iii) for every set E € &, vE = SUpgex, kce VK,
where Ky = {K : K CR" is compact, f[K is continuous}. (Hint: for (ii)=-(i), apply 215B(iv) to K;.)

(c) Take v, X, vx and ¥x as in 256Ya. Suppose that f : X — R is a function. Show that f is X x-
measurable iff for every non-negligible measurable set E C X there is a non-negligible measurable FF C F

such that f[F is continuous.
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(d)(i) Let A be the usual measure on {0, 1}. Define v : {0, 1} — {0,1}" by setting ¢ (z)(i) = z(i + 1)
for x € {0,1} and j € N. Show that ¢ is inverse-measure-preserving. (ii) Define § : R — R by setting
0(t) = <3t> = 3t — | 3t] for t € R. Show that 6 is inverse-measure-preserving for Cantor measure as defined
in 256Hc.

(e) Let (vn)nen be a sequence of Radon measures on R”. Show that there is a Radon measure v on
R" such that every v, is an indefinite-integral measure over v. (Hint: find a sequence (o, )nen of strictly
positive numbers such that Y~ ; a1, B(0,k) < oo for every k, and set v = Y 7 a1y, using the idea of
256Xe.)

(f) A set G C RY is open if for every o € G there are n € N, § > 0 such that
{y:y e RN, |Jy(i) — z(i)| < 0 for every i <n} C G.

The Borel o-algebra of RY is the o-algebra B of subsets of RN generated, in the sense of 111Gb, by the
family T of open sets. (i) Show that T is a topology (2A3A). (ii) Show that a filter 7 on RY converges to
x € RN iff m[[F]] — x(i) for every i € N, where 7;(y) = y(i) for i € N, y € RN, (iii) Show that B is the
o-algebra generated by sets of the form {z : z € R, z(i) < a}, where i runs over N and a runs over R. (iv)
Show that if a; > 0 for every ¢ € N, then {z : ()] < a; Vi € N} is compact. (v) Show that any open set in
RY is the union of a sequence of closed sets. (Hint: look at sets of the form {z : ¢; < x(i) < ¢/ Vi < n}, where
gi, g, € Q for i < n.) (vi) Show that if vy is any probability measure with domain B, then its completion
v is inner regular with respect to the compact sets, and therefore may be called a ‘Radon measure on RN,
(Hint: show that there are compact sets of measure arbitrarily close to 1, and therefore that every open set,
and every closed set, includes a K, set of the same measure.)

256 Notes and comments Radon measures on Euclidean spaces are very special, and the results of this
section do not give clear pointers to the direction the theory takes when applied to other kinds of topological
space. With the material here you could make a stab at developing a theory of Radon measures on complete
separable metric spaces, provided you use 256Xa as the basis for your definition of ‘locally finite’. These
are the spaces for which a version of 256C is true. (See 256Yf.) But for generalizations to other types of
topological space, and for the more interesting parts of the theory on R”, I must ask you to wait for Volume
4. My purpose in introducing Radon measures here is strictly limited; I wish only to give a basis for §257
and §271 sufficiently solid not to need later revision. In fact I think that all we really need are the Radon
probability measures.

The chief technical difficulty in the definition of ‘Radon measure’ here lies in the insistence on complete-
ness. It may well be that for everything studied in this volume, it would be simpler to look at locally finite
measures with domain the algebra of Borel sets. This would involve us in a number of circumlocutions
when dealing with Lebesgue measure itself and its derivates, since Lebesgue measure is defined on a larger
o-algebra; but the serious objection arises in the more advanced theory, when non-Borel sets of various
kinds become central. Since my aim in this book is to provide secure foundations for the study of all aspects
of measure theory, I ask you to take a little extra trouble now in order to avoid the possibility of having
to re-work all your ideas later. The extra trouble arises, for instance, in 256D, 256Xe and 256Xj; since
different Radon measures are defined on different o-algebras, we have to check that two Radon measures
which agree on the compact sets, or on the open sets, have the same domains. On the credit side, some of
the power of 256G arises from the fact that the Radon image measure v¢ ! is defined on the whole o-algebra
{F : ¢71[F] € dom(v)}, not just on the Borel sets.

The further technical point that Radon measures are expected to be locally finite gives less difficulty;
its effect is that from most points of view there is little difference between a general Radon measure and
a totally finite Radon measure. The extra condition which obviously has to be put into the hypotheses of
such results as 256E and 256G is no burden on either intuition or memory.

In effect, we have two definitions of Radon measures on Euclidean spaces: they are the inner regular
locally finite topological measures, and they are also the completions of the locally finite Borel measures.
The equivalence of these definitions is Theorem 256C. The latter definition is the better adapted to 256K,
and the former to 256G. The ‘inner regularity’ of the basic definition refers to compact sets; we also have
forms of inner regularity with respect to closed sets (256Bb) and K, sets (256Bc), and a complementary
notion of ‘outer regularity’ with respect to open sets (256Xi).
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Version of 14.8.13

257 Convolutions of measures

The ideas of this chapter can be brought together in a satisfying way in the theory of convolutions of
Radon measures, which will be useful in §272 and again in §285. I give just the definition (257A) and the
central property (257B) of the convolution of totally finite Radon measures, with a few corollaries and a
note on the relation between convolution of functions and convolution of measures (257F).

257A Definition Let » > 1 be an integer and v, v two totally finite Radon measures on R”. Let
A be the product measure on R” x R"; then A also is a (totally finite) Radon measure, by 256K. Define
¢ : R" x R" — R" by setting ¢(z,y) = = + y; then ¢ is continuous, therefore measurable in the sense of
256G. The convolution of v and vy, v; * s, is the image measure A\¢—!; by 256G, this is a Radon measure.
Note that if v; and 5 are Radon probability measures, then \ and 14 * v are also probability measures.

257B Theorem Let » > 1 be an integer, and v; and vy two totally finite Radon measures on R"; let
v = vy * 19 be their convolution, and A their product on R" x R”. Then for any real-valued function h
defined on a subset of R",

fh(a: + y)A(d(z,y)) exists = fh(ac)u(da:)
if either integral is defined in [—o0, o¢].

proof Apply 235] with J(z,y) =1, ¢(z,y) =z +y for all z, y € R".

257C Corollary Let » > 1 be an integer, and v;, v» two totally finite Radon measures on R"; let
v = vy * V5 be their convolution, and A their product on R” x R"; write A for the domain of A. Let h be a
A-measurable function defined A-almost everywhere in R”. Suppose that any one of the integrals

JJ 10 + )l (dz)va(dy),  [[ |1z + y)lva(dy)vi(de), [ A +y)Ad(z,y))

exists and is finite. Then h is v-integrable and
f h(z)v(dx) = ff h(z + y)v1(dx)va(dy) = ff h(z + y)va(dy)vy (dx).

proof Put 257B together with Fubini’s and Tonelli’s theorems (252H).

257D Corollary If 11 and v, are totally finite Radon measures on R”, then vy * vo = vg * 1.

proof For any Borel set E C R", apply 257C to h = xE to see that
(1 x1a)(E) = // XE(z + y)vi (dz)ve(dy) = // XE(z + y)va(dy)v (dzx)
— [[xBl+ opaldym(an) = w2 ) ()

Thus v1 * v5 and v x 11 agree on the Borel sets of R”; because they are both Radon measures, they must
be identical (256D).

257E Corollary If 11, v5 and v3 are totally finite Radon measures on R”, then (v1 o) *v3 = vy * (Vo *v3).

proof For any Borel set £ C R", apply 257B to h = xF to see that

(vn * va) % v3)(E) = // VE(@ + 2)(vn # o) (dz)vs(d2)
_ / / / NE(z 4y + 2)n (dz)v(dy)vs (d2)

(because x — yE(x 4 z) is Borel measurable for every z)

(© 1995 D. H. Fremlin
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= // XE(x + y)vi (dr)(ve * v3)(dy)
(because (z,y) — xE(z + y) is Borel measurable, so y — [ xE(x + y)v1(dz) is (v5 * v3)-integrable)
= (vy * (12 x 13))(E).

Thus (11 * v2) * v3 and vy * (12 * v3) agree on the Borel sets of R”; because they are both Radon measures,
they must be identical.

257F Theorem Suppose that v; and vy are totally finite Radon measures on R” which are indefinite-
integral measures over Lebesgue measure p. Then v; % 15 also is an indefinite-integral measure over p; if fi
and f are Radon-Nikodym derivatives of v, vo respectively, then f; * fs is a Radon-Nikodym derivative of
V1 * Vo,

proof By 255H/255L, fi * f2 is integrable with respect to p, with ff1 x fodp = 1, and of course f1 * fo is
non-negative. If £ C R" is a Borel set,

/ fr# fadp = / / XE(z +y) f1(x) fa(y) p(da) p(dy)
E
(255Q)
— [[xBG + r@m @y
(because x — yE(x + y) is Borel measurable)
— [[xBta+ pmi sy
(because (z,y) — xE(z + y) is Borel measurable, so y — [ xE(x + y)v1(dz) is vo-integrable)

= (11 *x12)(E).

So f1 * fo is a Radon-Nikodym derivative of v with respect to u, by 256J.

257X Basic exercises >(a) Let r > 1 be an integer. Let dy be the Dirac measure on R” concentrated
at 0. Show that Jp is a Radon probability measure on R" and that Jg * v = v for every totally finite Radon
measure on R".

(b) Let p and v be totally finite Radon measures on R”, and E any set measured by their convolution
p*v. Show that [ u(E — y)v(dy) is defined in [0, c0] and equal to (u * v)(E).

(c) Let vy, ... , vy, be totally finite Radon measures on R”, and let v be the convolution vy *. . .* v, (using
257E to see that such a bracketless expression is legitimate). Show that

f h(z)v(dz) = f . f h(z1 4+ ...+ zp)vi(dey) .. vp(day,)

for every v-integrable function h.

(d) Let v; and v, be totally finite Radon measures on R”, with supports Fy, Fy (256Xf). Show that the
support of vy xve is {x +y:x € Fy, y € Fr}.

>(e) Let 11 and v, be totally finite Radon measures on R”, and suppose that ;4 has a Radon-Nikodym
derivative f with respect to Lebesgue measure p. Show that v; * vy has a Radon-Nikodym derivative g,
where g(z) = [ f(z — y)va(dy) for p-almost every x € R”.

(f) Suppose that 11, vo, v] and v/ are totally finite Radon measures on R”, and that v, v/ are absolutely
continuous with respect to v, vy respectively. Show that v{ * v/ is absolutely continuous with respect to

V1 * Va.
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257Y Further exercises (a) Let M be the space of countably additive functionals defined on the algebra
B of Borel subsets of R, with its norm ||v|| = |[v|(R) (see 231Yh). (i) Show that we have a unique bilinear
operator * : M x M — M such that (u1]B) * (u2[B) = (u1 * u2) | B for all totally finite Radon measures 1,
p2 on R. (ii) Show that * is commutative and associative. (iii) Show that ||v1 * va|| < [jp1]|||ve|| for all vy,
vy € M, so that M is a Banach algebra under this multiplication. (iv) Show that M has a multiplicative
identity. (v) Show that L!(u) can be regarded as a closed subalgebra of M, where p is Lebesgue measure
on R” (cf. 255Xi).

(b) Let us say that a Radon measure on |—7, 7] is a complete measure v on |—, 7] such that (i) every
Borel subset of |-, 7] belongs to the domain ¥ of p (ii) for every E € X there are Borel sets Ey, Fy such
that By C E C Ey and v(E» \ E1) = 0 (iii) every compact subset of |—m, 7] has finite measure. Show that
for any two totally finite Radon measures vy, v on |—7, 7 there is a unique totally finite Radon measure v
on |—m, 7] such that

fh(m)u(dx) = fh(x +or y)v1(dz)va(dy)

for every v-integrable function h, where 4, is defined as in 255Ma.

257 Notes and comments Of course convolution of functions and convolution of measures are very closely
connected; the obvious link being 257F, but the correspondence between 255G and 257B is also very marked.
In effect, they give us the same notion of convolution u * v when u, v are positive members of L* and u * v
is interpreted in L' rather than as a function (257Ya). But we should have to go rather deeper than the
arguments here to find ideas in the theory of convolution of measures to correspond to such results as 255K.
I will return to questions of this type in §444 in Volume 4.

All the theorems of this section can be extended to general abelian locally compact Hausdorff topological
groups; but for such generality we need much more advanced ideas (see §444), and for the moment I leave
only the suggestion in 257Yb that you should try to adapt the ideas here to |-, 7] or S*.

Version of 10.11.06

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

251N Paragraph numbers in the second half of §251, referred to in editions of Volumes 3 and 4 up to
and including 2006, and in BOGACHEV 07, have been changed, so that 251M-251S are now 251N-251T.

252Yf Exercise This exercise, referred to in the first edition of Volume 1, has been moved to 252Ym.

254Yh Exercise This exercise, referred to in the 2013 edition of Volume 4, has been moved to 254 Ye.
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