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Chapter 23

The Radon-Nikodým Theorem

In Chapter 22, I discussed the indefinite integrals of integrable functions on R, and gave what I hope you
feel are satisfying descriptions both of the functions which are indefinite integrals (the absolutely continuous
functions) and of how to find which functions they are indefinite integrals of (you differentiate them).
For general measure spaces, we have no structure present which can give such simple formulations; but
nevertheless the same questions can be asked and, up to a point, answered.

The first section of this chapter introduces the basic machinery needed, the concept of ‘countably additive’
functional and its decomposition into positive and negative parts. The main theorem takes up the second
section: indefinite integrals are the ‘truly continuous’ additive functionals; on σ-finite spaces, these are
the ‘absolutely continuous’ countably additive functionals. In §233 I discuss the most important single
application of the theorem, its use in providing a concept of ‘conditional expectation’. This is one of the
central concepts of probability theory – as you very likely know; but the form here is a dramatic generalization
of the elementary concept of the conditional probability of one event given another, and needs the whole
strength of the general theory of measure and integration as developed in Volume 1 and this chapter. I
include some notes on convex functions, up to and including versions of Jensen’s inequality (233I-233J).

While we are in the area of ‘pure’ measure theory, I take the opportunity to discuss some further topics.
I begin with some essentially elementary constructions, image measures, sums of measures and indefinite-
integral measures; I think the details need a little attention, and I work through them in §234. Rather deeper
ideas are needed to deal with ‘measurable transformations’. In §235 I set out the techniques necessary to
provide an abstract basis for a general method of integration-by-substitution, with a detailed account of
sufficient conditions for a formula of the type

∫

g(y)dy =
∫

g(φ(x))J(x)dx

to be valid.

Version of 25.8.15

231 Countably additive functionals

I begin with an abstract description of the objects which will, in appropriate circumstances, correspond
to the indefinite integrals of general integrable functions. In this section I give those parts of the theory
which do not involve a measure, but only a set with a distinguished σ-algebra of subsets. The basic concepts
are those of ‘finitely additive’ and ‘countably additive’ functional, and there is one substantial theorem, the
‘Hahn decomposition’ (231E).

231A Definition Let X be a set and Σ an algebra of subsets of X (136E). A functional ν : Σ → R is
finitely additive, or just additive, if ν(E ∪ F ) = νE + νF whenever E, F ∈ Σ and E ∩ F = ∅.

231B Elementary facts Let X be a set, Σ an algebra of subsets of X, and ν : Σ → R a finitely additive
functional.

(a) ν∅ = 0. (For ν∅ = ν(∅ ∪ ∅) = ν∅+ ν∅.)

(b) If E0, . . . , En are disjoint members of Σ then ν(
⋃

i≤nEi) =
∑n

i=0 νEi.
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2 The Radon-Nikodým theorem 231Bc

(c) If E, F ∈ Σ and E ⊆ F then νF = νE + ν(F \ E). More generally, for any E, F ∈ Σ,

νF = ν(F ∩ E) + ν(F \ E),

νE + νF = νE + ν(F \ E) + ν(F ∩ E) = ν(E ∪ F ) + ν(E ∩ F ),

νE − νF = ν(E \ F ) + ν(E ∩ F )− ν(E ∩ F )− ν(F \ E) = ν(E \ F )− ν(F \ E).

231C Definition Let X be a set and Σ an algebra of subsets of X. A function ν : Σ → R is countably
additive or σ-additive if

∑∞
n=0 νEn exists in R and is equal to ν(

⋃

n∈NEn) for every disjoint sequence
〈En〉n∈N in Σ such that

⋃

n∈NEn ∈ Σ.

Remark Note that when I use the phrase ‘countably additive functional’ I mean to exclude the possibility
of ∞ as a value of the functional. Thus a measure is a countably additive functional iff it is totally finite
(211C).

You will sometimes see the phrase ‘signed measure’ used to mean what I call a countably additive
functional.

231D Elementary facts Let X be a set, Σ a σ-algebra of subsets of X and ν : Σ → R a countably
additive functional.

(a) ν is finitely additive. PPP (i) Setting En = ∅ for every n ∈ N,
∑∞

n=0 ν∅ must be defined in R so ν∅
must be 0. (ii) Now if E, F ∈ Σ and E ∩ F = ∅ we can set E0 = E, E1 = F , En = ∅ for n ≥ 2 and get

ν(E ∪ F ) = ν(
⋃

n∈NEn) =
∑∞

n=0 νEn = νE + νF . QQQ

(b) If 〈En〉n∈N is a non-decreasing sequence in Σ, with union E ∈ Σ, then

νE = νE0 +
∑∞

n=0 ν(En+1 \ En) = limn→∞ νEn.

(c) If 〈En〉n∈N is a non-increasing sequence in Σ with intersection E ∈ Σ, then

νE = νE0 − limn→∞ ν(E0 \ En) = limn→∞ νEn.

(d) If ν ′ : Σ → R is another countably additive functional, and c ∈ R, then ν+ν ′ : Σ → R and cν : Σ → R

are countably additive.

(e) If H ∈ Σ, then νH : Σ → R is countably additive, where νHE = ν(E ∩ H) for every E ∈ Σ. PPP If
〈En〉n∈N is a disjoint sequence in Σ with union E ∈ Σ then 〈En ∩H〉n∈N is disjoint, with union E ∩H, so

νHE = ν(H ∩ E) = ν(
⋃

n∈N(H ∩ En)) =
∑∞

n=0 ν(H ∩ En) =
∑∞

n=0 νHEn. QQQ

Remark For the time being, we shall be using the notion of ‘countably additive functional’ only on σ-
algebras Σ, in which case we can take it for granted that the unions and intersections above belong to
Σ.

231E All the ideas above amount to minor modifications of ideas already needed at the very beginning
of the theory of measure spaces. We come now to something more substantial.

Theorem Let X be a set, Σ a σ-algebra of subsets of X, and ν : Σ → R a countably additive functional.
Then

(a) ν is bounded;
(b) there is a set H ∈ Σ such that

νF ≥ 0 whenever F ∈ Σ and F ⊆ H,

νF ≤ 0 whenever F ∈ Σ and F ∩H = ∅.

Measure Theory



231F Countably additive functionals 3

proof (a) ??? Suppose, if possible, otherwise. For E ∈ Σ, set M(E) = sup{|νF | : F ∈ Σ, F ⊆ E}; then
M(X) = ∞. Moreover, whenever E1, E2, F ∈ Σ and F ⊆ E1 ∪ E2, then

|νF | = |ν(F ∩ E1) + ν(F \ E1)| ≤ |ν(F ∩ E1)|+ |ν(F \ E1)| ≤M(E1) +M(E2),

so M(E1 ∪ E2) ≤ M(E1) +M(E2). Choose a sequence 〈En〉n∈N in Σ as follows. E0 = X. Given that
M(En) = ∞, where n ∈ N, then surely there is an Fn ⊆ En such that |νFn| ≥ 1 + |νEn|, in which case
|ν(En \ Fn)| ≥ 1. Now at least one of M(Fn), M(En \ Fn) is infinite; if M(Fn) = ∞, set En+1 = Fn;
otherwise, set En+1 = En \Fn; in either case, note that |ν(En \En+1)| ≥ 1 and M(En+1) = ∞, so that the
induction will continue.

On completing this induction, set Gn = En \En+1 for n ∈ N. Then 〈Gn〉n∈N is a disjoint sequence in Σ,
so

∑∞
n=0 νGn is defined in R and limn→∞ νGn = 0; but |νGn| ≥ 1 for every n. XXX

(b)(i) By (a), γ = sup{νE : E ∈ Σ} < ∞. Choose a sequence 〈En〉n∈N in Σ such that νEn ≥ γ − 2−n

for every n ∈ N. For m ≤ n ∈ N, set Fmn =
⋂

m≤i≤nEi. Then νFmn ≥ γ − 2 · 2−m + 2−n for every
n ≥ m. PPP Induce on n. For n = m, this is due to the choice of Em = Fmm. For the inductive step, we have
Fm,n+1 = Fmn ∩ En+1, while surely γ ≥ ν(En+1 ∪ Fmn), so

γ + νFm,n+1 ≥ ν(En+1 ∪ Fmn) + ν(En+1 ∩ Fmn)

= νEn+1 + νFmn

(231Bc)

≥ γ − 2−n−1 + γ − 2 · 2−m + 2−n

(by the choice of En+1 and the inductive hypothesis)

= 2γ − 2 · 2−m + 2−n−1.

Subtracting γ from both sides, νFm,n+1 ≥ γ − 2 · 2−m + 2−n−1 and the induction proceeds. QQQ

(ii) For m ∈ N, set

Fm =
⋂

n≥m Fmn =
⋂

n≥mEn.

Then

νFm = limn→∞ νFmn ≥ γ − 2 · 2−m,

by 231Dc. Next, 〈Fm〉m∈N is non-decreasing, so setting H =
⋃

m∈N Fm we have

νH = limm→∞ νFm ≥ γ;

since νH is surely less than or equal to γ, νH = γ.

(iii) If F ∈ Σ and F ⊆ H, then

νH − νF = ν(H \ F ) ≤ γ = νH,

so νF ≥ 0. If F ∈ Σ and F ∩H = ∅ then

νH + νF = ν(H ∪ F ) ≤ γ = νH

so νF ≤ 0. This completes the proof.

231F Corollary Let X be a set, Σ a σ-algebra of subsets of X, and ν : Σ → R a countably additive
functional. Then ν can be expressed as the difference of two totally finite measures with domain Σ.

proof Take H ∈ Σ as described in 231Eb. Set ν1E = ν(E ∩H), ν2E = −ν(E \H) for E ∈ Σ. Then, as in
231Dd-e, both ν1 and ν2 are countably additive functionals on Σ, and of course ν = ν1 − ν2. But also, by
the choice of H, both ν1 and ν2 are non-negative, so are totally finite measures.

Remark This is called the ‘Jordan decomposition’ of ν. The expression of 231Eb is a ‘Hahn decom-
position’.

D.H.Fremlin



4 The Radon-Nikodým theorem 231X

231X Basic exercises (a) Let Σ be the family of subsets A of N such that one of A, N \ A is finite.
Show that Σ is an algebra of subsets of N. (This is the finite-cofinite algebra of subsets of N; compare
211Ra.)

(b) Let X be a set, Σ an algebra of subsets of X and ν : Σ → R a finitely additive functional. Show that
ν(E ∪ F ∪ G) + ν(E ∩ F ) + ν(E ∩ G) + ν(F ∩ G) = νE + νF + νG + ν(E ∩ F ∩ G) for all E, F , G ∈ Σ.
Generalize this result to longer sequences of sets.

>>>(c) Let Σ be the finite-cofinite algebra of subsets of N, as in 231Xa. Define ν : Σ → Z by setting

νE = limn→∞

(

#({i : i ≤ n, 2i ∈ E})−#({i : i ≤ n, 2i+ 1 ∈ E})
)

for every E ∈ Σ. Show that ν is well-defined and finitely additive and unbounded.

(d) Let X be a set and Σ an algebra of subsets of X. (i) Show that if ν : Σ → R and ν ′ : Σ → R are
finitely additive, so are ν + ν ′ and cν for any c ∈ R. (ii) Show that if ν : Σ → R is finitely additive and
H ∈ Σ, then νH is finitely additive, where νH(E) = ν(H ∩ E) for every E ∈ Σ.

(e) Let X be a set, Σ an algebra of subsets of X and ν : Σ → R a finitely additive functional. Let S be
the linear space of those real-valued functions on X expressible in the form

∑n
i=0 aiχEi where Ei ∈ Σ for

each i. (i) Show that we have a linear functional
∫

: S → R given by writing
∫

∑n
i=0 aiχEi =

∑n
i=0 aiνEi

whenever a0, . . . , an ∈ R and E0, . . . , En ∈ Σ. (ii) Show that if νE ≥ 0 for every E ∈ Σ then
∫

f ≥ 0
whenever f ∈ S and f(x) ≥ 0 for every x ∈ X. (iii) Show that if ν is bounded and X 6= ∅ then

sup{|
∫

f | : f ∈ S, ‖f‖∞ ≤ 1} = supE,F∈Σ |νE − νF |,

writing ‖f‖∞ = supx∈X |f(x)|.

>>>(f) Let X be a set, Σ a σ-algebra of subsets of X and ν : Σ → R a finitely additive functional. Show
that the following are equiveridical:

(i) ν is countably additive;
(ii) limn→∞ νEn = 0 whenever 〈En〉n∈N is a non-increasing sequence in Σ and

⋂

n∈NEn = ∅;
(iii) limn→∞ νEn = 0 whenever 〈En〉n∈N is a sequence in Σ and

⋂

n∈N

⋃

m≥nEm = ∅;

(iv) limn→∞ νEn = νE whenever 〈En〉n∈N is a sequence in Σ and

E =
⋂

n∈N

⋃

m≥nEm =
⋃

n∈N

⋂

m≥nEm.

(Hint: for (i)⇒(iv), consider non-negative ν first.)

(g) Let X be a set and Σ a σ-algebra of subsets of X, and let ν : Σ → [−∞,∞[ be a function which is
countably additive in the sense that ν∅ = 0 and whenever 〈En〉n∈N is a disjoint sequence in Σ,

∑∞
n=0 νEn =

limn→∞

∑n
i=0 νEi is defined in [−∞,∞[ and is equal to ν(

⋃

n∈NEn). Show that ν is bounded above and
attains its upper bound (that is, there is an H ∈ Σ such that νH = supF∈Σ νF ). Hence, or otherwise, show
that ν is expressible as the difference of a totally finite measure and a measure, both with domain Σ.

231Y Further exercises (a) Let X be a set, Σ an algebra of subsets of X, and ν : Σ → R a bounded
finitely additive functional. Set

ν+E = sup{νF : F ∈ Σ, F ⊆ E},

ν−E = − inf{νF : F ∈ Σ, F ⊆ E},

|ν|E = sup{νF1 − νF2 : F1, F2 ∈ Σ, F1, F2 ⊆ E}.

Show that ν+, ν− and |ν| are all bounded finitely additive functionals on Σ and that ν = ν+ − ν−,
|ν| = ν+ + ν−. Show that if ν is countably additive so are ν+, ν− and |ν|. (|ν| is sometimes called the
variation of ν.)

Measure Theory



231Yg Countably additive functionals 5

(b) Let X be a set and Σ an algebra of subsets of X. Let ν1, ν2 be two bounded finitely additive
functionals defined on Σ. Set

(ν1 ∨ ν2)(E) = sup{ν1F + ν2(E \ F ) : F ∈ Σ, F ⊆ E},

(ν1 ∧ ν2)(E) = inf{ν1F + ν2(E \ F ) : F ∈ Σ, F ⊆ E}.

Show that ν1 ∨ ν2 and ν1 ∧ ν2 are finitely additive functionals, and that ν1 + ν2 = ν1 ∨ ν2 + ν1 ∧ ν2. Show
that, in the language of 231Ya,

ν+ = ν ∨ 0, ν− = (−ν) ∨ 0 = −(ν ∧ 0), |ν| = ν ∨ (−ν) = ν+ ∨ ν− = ν+ + ν−,

ν1 ∨ ν2 = ν1 + (ν2 − ν1)
+, ν1 ∧ ν2 = ν1 − (ν1 − ν2)

+,

so that ν1 ∨ ν2 and ν1 ∧ ν2 are countably additive if ν1 and ν2 are.

(c) Let X be a set and Σ an algebra of subsets of X. Let M be the set of all bounded finitely additive
functionals from Σ to R. Show that M is a linear space under the natural definitions of addition and scalar
multiplication. Show that M has a partial order ≤ defined by saying that

ν ≤ ν ′ iff νE ≤ ν ′E for every E ∈ Σ,

and that for this partial order ν1 ∨ ν2, ν1 ∧ ν2, as defined in 231Yb, are sup{ν1, ν2}, inf{ν1, ν2}.

(d) Let X be a set and Σ an algebra of subsets of X. Let ν0, . . . , νn be bounded finitely additive
functionals on Σ and set

ν̌E = sup{
∑n

i=0 νiFi : F0, . . . , Fn ∈ Σ,
⋃

i≤n Fi = E, Fi ∩ Fj = ∅ for i 6= j},

ν̂E = inf{
∑n

i=0 νiFi : F0, . . . , Fn ∈ Σ,
⋃

i≤n Fi = E, Fi ∩ Fj = ∅ for i 6= j}

for E ∈ Σ. Show that ν̌ and ν̂ are finitely additive and are, respectively, sup{ν0, . . . , νn} and inf{ν0, . . . , νn}
in the partially ordered set of finitely additive functionals on Σ.

(e) Let X be a set and Σ a σ-algebra of subsets of X; let M be the partially ordered set of all bounded
finitely additive functionals from Σ to R. (i) Show that if A ⊆ M is non-empty and bounded above in M ,
then A has a supremum ν̌ in M , given by the formula

ν̌E = sup{
n
∑

i=0

νiFi : ν0, . . . , νn ∈ A, F0, . . . , Fn ∈ Σ,
⋃

i≤n

Fi = E,

Fi ∩ Fj = ∅ for i 6= j}.

(ii) Show that if A ⊆ M is non-empty and bounded below in M then it has an infimum ν̂ ∈ M , given by
the formula

ν̂E = inf{
n
∑

i=0

νiFi : ν0, . . . , νn ∈ A, F0, . . . , Fn ∈ Σ,
⋃

i≤n

Fi = E,

Fi ∩ Fj = ∅ for i 6= j}.

(f) Let X be a set, Σ an algebra of subsets of X, and ν : Σ → R a non-negative finitely additive functional.
For E ∈ Σ set

νca(E) = inf{supn∈N νFn : 〈Fn〉n∈N is a non-decreasing sequence in Σ with union E}.

Show that νca is a countably additive functional on Σ and that if ν ′ is any countably additive functional
with ν ′ ≤ ν then ν ′ ≤ νca. Show that νca ∧ (ν − νca) = 0.

(g) Let X be a set, Σ an algebra of subsets of X, and ν : Σ → R a bounded finitely additive functional.
Show that ν is uniquely expressible as νca + νpfa, where νca is countably additive, νpfa is finitely additive
and if 0 ≤ ν ′ ≤ |νpfa| and ν

′ is countably additive then ν ′ = 0.

D.H.Fremlin



6 The Radon-Nikodým theorem 231Yh

(h) Let X be a set and Σ an algebra of subsets of X. Let M be the linear space of bounded finitely
additive functionals on Σ, and for ν ∈ M set ‖ν‖ = |ν|(X), defining |ν| as in 231Ya. (‖ν‖ is the total
variation of ν.) Show that ‖ ‖ is a norm on M under which M is a Banach space. Show that the space of
bounded countably additive functionals on Σ is a closed linear subspace of M .

(i) Repeat as many as possible of the results of this section for complex-valued functionals.

231 Notes and comments The real purpose of this section has been to describe the Hahn decomposition of
a countably additive functional (231E). The leisurely exposition in 231A-231D is intended as a review of the
most elementary properties of measures, in the slightly more general context of ‘signed measures’, with those
properties corresponding to ‘additivity’ alone separated from those which depend on ‘countable additivity’.
In 231Xf I set out necessary and sufficient conditions for a finitely additive functional on a σ-algebra to
be countably additive, designed to suggest that a finitely additive functional is countably additive iff it is
‘sequentially order-continuous’ in some sense. The fact that a countably additive functional can be expressed
as the difference of non-negative countably additive functionals (231F) has an important counterpart in the
theory of finitely additive functionals: a finitely additive functional can be expressed as the difference of
non-negative finitely additive functionals if (and only if) it is bounded (231Ya). But I do not think that
this, or the further properties of bounded finitely additive functionals described in 231Xe and 231Y, will be
important to us before Volume 3.

Version of 19.5.17

232 The Radon-Nikodým theorem

I come now to the chief theorem of this chapter, one of the central results of measure theory, relating
countably additive functionals to indefinite integrals. The objective is to give a complete description of the
functionals which can arise as indefinite integrals of integrable functions (232E). These can be characterized
as the ‘truly continuous’ additive functionals (232Ab). A more commonly used concept, and one adequate in
many cases, is that of ‘absolutely continuous’ additive functional (232Aa); I spend the first few paragraphs
(232B-232D) on elementary facts about truly continuous and absolutely continuous functionals. I end the
section with a discussion of decompositions of general countably additive functionals (232I).

232A Absolutely continuous functionals Let (X,Σ, µ) be a measure space and ν : Σ → R a finitely
additive functional.

(a) ν is absolutely continuous with respect to µ (sometimes written ‘ν ≪ µ’) if for every ǫ > 0 there
is a δ > 0 such that |νE| ≤ ǫ whenever E ∈ Σ and µE ≤ δ.

(b) ν is truly continuous with respect to µ if for every ǫ > 0 there are E ∈ Σ and δ > 0 such that
µE <∞ and |νF | ≤ ǫ whenever F ∈ Σ and µ(E ∩ F ) ≤ δ.

(c) For reference, I add another definition here. If ν is countably additive, it is singular with respect to
µ if there is a set F ∈ Σ such that µF = 0 and νE = 0 whenever E ∈ Σ and E ⊆ X \ F .

232B Proposition Let (X,Σ, µ) be a measure space and ν : Σ → R a finitely additive functional.
(a) If ν is countably additive, it is absolutely continuous with respect to µ iff νE = 0 whenever µE = 0.
(b) ν is truly continuous with respect to µ iff (α) it is countably additive (β) it is absolutely continuous

with respect to µ (γ) whenever E ∈ Σ and νE 6= 0 there is an F ∈ Σ such that µF <∞ and ν(E ∩ F ) 6= 0.
(c) If (X,Σ, µ) is σ-finite, then ν is truly continuous with respect to µ iff it is countably additive and

absolutely continuous with respect to µ.
(d) If (X,Σ, µ) is totally finite, then ν is truly continuous with respect to µ iff it is absolutely continuous

with respect to µ.

proof (a)(i) If ν is absolutely continuous with respect to µ and µE = 0, then µE ≤ δ for every δ > 0, so
|νE| ≤ ǫ for every ǫ > 0 and νE = 0.

Measure Theory



232B The Radon-Nikodým theorem 7

(ii) ??? Suppose, if possible, that νE = 0 whenever µE = 0, but ν is not absolutely continuous. Then
there is an ǫ > 0 such that for every δ > 0 there is an E ∈ Σ such that µE ≤ δ but |νE| ≥ ǫ. For each
n ∈ N we may choose an Fn ∈ Σ such that µFn ≤ 2−n and |νFn| ≥ ǫ. Consider F =

⋂

n∈N

⋃

k≥n Fk. Then
we have

µF ≤ infn∈N µ(
⋃

k≥n Fk) ≤ infn∈N

∑∞
k=n 2

−k = 0,

so µF = 0.

Now recall that by 231Eb there is an H ∈ Σ such that νG ≥ 0 when G ∈ Σ and G ⊆ H, while νG ≤ 0
when G ∈ Σ and G ∩H = ∅. As in 231F, set ν1G = ν(G ∩H), ν2G = −ν(G \H) for G ∈ Σ, so that ν1 and
ν2 are totally finite measures, and ν1F = ν2F = 0 because µ(F ∩H) = µ(F \H) = 0. Consequently

0 = νiF = limn→∞ νi(
⋃

m≥n Fm) ≥ lim supn→∞ νiFn ≥ 0

for both i, and

0 = limn→∞(ν1Fn + ν2Fn) ≥ lim infn→∞ |νFn| ≥ ǫ > 0,

which is absurd. XXX

(b)(i) Suppose that ν is truly continuous with respect to µ. It is obvious from the definitions that ν
is absolutely continuous with respect to µ. If νE 6= 0, there must be an F of finite measure such that
|νG| < |νE| whenever G ∩ F = ∅, so that |ν(E \ F )| < |νE| and ν(E ∩ F ) 6= 0. This deals with the
conditions (β) and (γ).

To check that ν is countably additive, let 〈En〉n∈N be a disjoint sequence in Σ, with union E, and ǫ > 0.
Let δ > 0 and F ∈ Σ be such µF <∞ and |νG| ≤ ǫ whenever G ∈ Σ and µ(F ∩G) ≤ δ. Then

∑∞
n=0 µ(En ∩ F ) ≤ µF <∞,

so there is an n ∈ N such that
∑∞

i=n µ(Ei ∩F ) ≤ δ. Take any m ≥ n and consider E∗
m =

⋃

i≤mEi. We have

|νE −
∑m

i=0 νEi| = |νE − νE∗
m| = |ν(E \ E∗

m)| ≤ ǫ,

because

µ(F ∩ E \ E∗
m) =

∑∞
i=m+1 µ(F ∩ Ei) ≤ δ.

As ǫ is arbitrary,

νE =
∑∞

i=0 νEi;

as 〈En〉n∈N is arbitrary, ν is countably additive.

(ii) Now suppose that ν satisfies the three conditions. By 231F, ν can be expressed as the difference
of two non-negative countably additive functionals ν1, ν2; set ν

′ = ν1 + ν2, so that ν ′ is a non-negative
countably additive functional and |νF | ≤ ν ′F for every F ∈ Σ. Set

γ = sup{ν ′F : F ∈ Σ, µF <∞} ≤ ν ′X <∞,

and choose a sequence 〈Fn〉n∈N of sets of finite measure such that limn→∞ ν ′Fn = γ; set F ∗ =
⋃

n∈N Fn. If
G ∈ Σ and G∩F ∗ = ∅ then νG = 0. PPP??? Otherwise, by condition (γ), there is an F ∈ Σ such that µF <∞
and ν(G ∩ F ) 6= 0. It follows that

ν ′(F \ F ∗) ≥ ν ′(F ∩G) ≥ |ν(F ∩G)| > 0,

and there must be an n ∈ N such that

γ < ν ′Fn + ν ′(F \ F ∗) = ν ′(Fn ∪ (F \ F ∗)) ≤ ν ′(F ∪ Fn) ≤ γ

because µ(F ∪ Fn) <∞; but this is impossible. XXXQQQ

Setting F ∗
n =

⋃

k≤n Fk for each n, we have limn→∞ ν ′(F ∗ \F ∗
n) = 0. Take any ǫ > 0, and (using condition

(β)) let δ > 0 be such that |νE| ≤ 1
2ǫ whenever µE ≤ δ. Let n be such that ν ′(F ∗ \F ∗

n) ≤
1
2ǫ. Now if F ∈ Σ

and µ(F ∩ F ∗
n) ≤ δ then

D.H.Fremlin



8 The Radon-Nikodým theorem 232B

|νF | ≤ |ν(F ∩ F ∗
n)|+ |ν(F ∩ F ∗ \ F ∗

n)|+ |ν(F \ F ∗)|

≤
1

2
ǫ+ ν ′(F ∩ F ∗ \ F ∗

n) + 0

≤
1

2
ǫ+ ν ′(F ∗ \ F ∗

n) ≤
1

2
ǫ+

1

2
ǫ = ǫ.

And µF ∗
n <∞. As ǫ is arbitrary, ν is truly continuous.

(c) Now suppose that (X,Σ, µ) is σ-finite and that ν is countably additive and absolutely continuous
with respect to µ. Let 〈Xn〉n∈N be a non-decreasing sequence of sets of finite measure covering X (211D).
If νE 6= 0, then limn→∞ ν(E ∩Xn) 6= 0, so ν(E ∩Xn) 6= 0 for some n. This shows that ν satisfies condition
(γ) of (b), so is truly continuous.

Of course the converse of this fact is already covered by (b).

(d) Finally, suppose that µX < ∞ and that ν is absolutely continuous with respect to µ. Then it must
be truly continuous, because we can take F = X in the definition 232Ab.

232C Lemma Let (X,Σ, µ) be a measure space and ν, ν ′ two countably additive functionals on Σ which
are truly continuous with respect to µ. Take c ∈ R and H ∈ Σ, and set νHE = ν(E ∩ H) for E ∈ Σ, as
in 231De. Then ν + ν ′, cν and νH are all truly continuous with respect to µ, and ν is expressible as the
difference of non-negative countably additive functionals which are truly continuous with respect to µ.

proof Let ǫ > 0. Set η = ǫ/(2 + ǫ+ |c|) > 0. Then there are δ, δ′ > 0 and E, E′ ∈ Σ such that µE < ∞,
µE′ <∞ and |νF | ≤ η whenever µ(F ∩E) ≤ δ, |ν ′F | ≤ η whenever µ(F ∩E) ≤ δ′. Set δ∗ = min(δ, δ′) > 0,
E∗ = E ∪ E′ ∈ Σ; then

µE∗ ≤ µE + µE′ <∞.

Suppose that F ∈ Σ and µ(F ∩ E∗) ≤ δ∗; then

µ(F ∩H ∩ E) ≤ µ(F ∩ E) ≤ δ∗ ≤ δ, µ(F ∩ E′) ≤ δ∗ ≤ δ′

so

|(ν + ν ′)F | ≤ |νF |+ |ν ′F | ≤ η + η ≤ ǫ,

|(cν)F | = |c||νF | ≤ |c|η ≤ ǫ,

|νHF | = |ν(F ∩H)| ≤ η ≤ ǫ.

As ǫ is arbitrary, ν + ν ′, cν and νH are all truly continuous.
Now, taking H from 231Eb, we see that ν1 = νH and ν2 = −νX\H are truly continuous and non-negative,

and ν = ν1 − ν2 is the difference of truly continuous measures.

232D Proposition Let (X,Σ, µ) be a measure space, and f a µ-integrable real-valued function. For
E ∈ Σ set νE =

∫

E
f . Then ν : Σ → R is a countably additive functional and is truly continuous with

respect to µ, therefore absolutely continuous with respect to µ.

proof Recall that
∫

E
f =

∫

f × χE is defined for every E ∈ Σ (131Fa). So ν : Σ → R is well-defined. If E,
F ∈ Σ are disjoint then

ν(E ∪ F ) =

∫

f × χ(E ∪ F ) =

∫

(f × χE) + (f × χF )

=

∫

f × χE +

∫

f × χF = νE + νF,

so ν is finitely additive.
Now 225A, without using the phrase ‘truly continuous’, proved exactly that ν is truly continuous with

respect to µ. It follows from 232Bb that ν is countably additive and absolutely continuous.

Remark The functional E 7→
∫

E
f is called the indefinite integral of f .

Measure Theory



232E The Radon-Nikodým theorem 9

232E We are now at last ready for the theorem.

The Radon-Nikodým theorem Let (X,Σ, µ) be a measure space and ν : Σ → R a function. Then the
following are equiveridical:

(i) there is a µ-integrable function f such that νE =
∫

E
f for every E ∈ Σ;

(ii) ν is finitely additive and truly continuous with respect to µ.

proof (a) If f is a µ-integrable real-valued function and νE =
∫

E
f for every E ∈ Σ, then 232D tells us

that ν is finitely additive and truly continuous.

(b) In the other direction, suppose that ν is finitely additive and truly continuous; note that (by 232B(a-
b)) νE = 0 whenever µE = 0. To begin with, suppose that ν is non-negative and not zero.

In this case, there is a non-negative simple function f such that
∫

f > 0 and
∫

E
f ≤ νE for every E ∈ Σ.

PPP Let H ∈ Σ be such that νH > 0; set ǫ = 1
3νH > 0. Let E ∈ Σ, δ > 0 be such that µE <∞ and νF ≤ ǫ

whenever F ∈ Σ and µ(F ∩ E) ≤ δ; then ν(H \ E) ≤ ǫ so νE ≥ ν(H ∩ E) ≥ 2ǫ and µE ≥ µ(H ∩ E) > 0.
Set µEF = µ(F ∩ E) for every F ∈ Σ; then µE is a countably additive functional on Σ. Set ν ′ = ν − αµE ,
where α = ǫ/µE; then ν ′ is a countably additive functional and ν ′E > 0. By 231Eb, as usual, there is a set
G ∈ Σ such that ν ′F ≥ 0 if F ∈ Σ and F ⊆ G, but ν ′F ≤ 0 if F ∈ Σ and F ∩G = ∅. As ν ′(E \G) ≤ 0,

0 < ν ′E ≤ ν ′(E ∩G) ≤ ν(E ∩G)

and µ(E ∩G) > 0. Set f = αχ(E ∩G); then f is a non-negative simple function and
∫

f = αµ(E ∩G) > 0.

If F ∈ Σ then ν ′(F ∩G) ≥ 0, that is,

ν(F ∩G) ≥ αµE(F ∩G) = αµ(F ∩ E ∩G) =
∫

F
f .

So

νF ≥ ν(F ∩G) ≥
∫

F
f ,

as required. QQQ

(c) Still supposing that ν is a non-negative, truly continuous additive functional, let Φ be the set of
non-negative simple functions f : X → R such that

∫

E
f ≤ νE for every E ∈ Σ; then the constant function

0 belongs to Φ, so Φ is not empty.

If f , g ∈ Φ then f ∨ g ∈ Φ, where (f ∨ g)(x) = max(f(x), g(x)) for x ∈ X. PPP Set H = {x : (f − g)(x) ≥
0} ∈ Σ; then f ∨ g = (f × χH) + (g × χ(X \H)) is a non-negative simple function, and for any E ∈ Σ,

∫

E
f ∨ g =

∫

E∩H
f +

∫

E\H
g ≤ ν(E ∩H) + ν(E \H) = νE. QQQ

Set

γ = sup{
∫

f : f ∈ Φ} ≤ νX <∞.

Choose a sequence 〈fn〉n∈N in Φ such that limn→∞

∫

fn = γ. For each n, set gn = f0 ∨ f1 ∨ . . . ∨ fn; then
gn ∈ Φ and

∫

fn ≤
∫

gn ≤ γ for each n, so limn→∞

∫

gn = γ. By B.Levi’s theorem, f = limn→∞ gn is
integrable and

∫

f = γ. Note that if E ∈ Σ then
∫

E
f = limn→∞

∫

E
fn ≤ νE.

??? Suppose, if possible, that there is an H ∈ Σ such that
∫

H
f 6= νH. Set

ν1F = νF −
∫

F
f ≥ 0

for every F ∈ Σ; then by (a) of this proof and 232C, ν1 is a truly continuous finitely additive functional,
and we are supposing that ν1 6= 0. By (b) of this proof, there is a non-negative simple function g such
that

∫

F
g ≤ ν1F for every F ∈ Σ and

∫

g > 0. Take n ∈ N such that
∫

fn +
∫

g > γ. Then fn + g is a
non-negative simple function and

∫

F
(fn + g) =

∫

F
fn +

∫

F
g ≤

∫

F
f +

∫

F
g = νF − ν1F +

∫

F
g ≤ νF

for any F ∈ Σ, so fn + g ∈ Φ, and

γ <
∫

fn +
∫

g =
∫

fn + g ≤ γ,

D.H.Fremlin



10 The Radon-Nikodým theorem 232E

which is absurd. XXX Thus we have
∫

H
f = νH for every H ∈ Σ.

(d) This proves the theorem for non-negative ν. For general ν, we need only observe that ν is expressible
as ν1 − ν2, where ν1 and ν2 are non-negative truly continuous countably additive functionals, by 232C; so
that there are integrable functions f1, f2 such that νiF =

∫

F
fi for both i and every F ∈ Σ. Of course

f = f1 − f2 is integrable and νF =
∫

F
f for every F ∈ Σ. This completes the proof.

232F Corollary Let (X,Σ, µ) be a σ-finite measure space and ν : Σ → R a function. Then there is
a µ-integrable function f such that νE =

∫

E
f for every E ∈ Σ iff ν is countably additive and absolutely

continuous with respect to µ.

proof Put 232Bc and 232E together.

232G Corollary Let (X,Σ, µ) be a totally finite measure space and ν : Σ → R a function. Then there is
a µ-integrable function f on X such that νE =

∫

E
f for every E ∈ Σ iff ν is finitely additive and absolutely

continuous with respect to µ.

proof Put 232Bd and 232E together.

232H Remarks (a) Most authors are satisfied with 232F as the ‘Radon-Nikodým theorem’. In my view
the problem of identifying indefinite integrals is of sufficient importance to justify an analysis which applies
to all measure spaces, even if it requires a new concept (the notion of ‘truly continuous’ functional).

(b) I ought to offer an example of an absolutely continuous functional which is not truly continuous. A
simple one is the following. Let X be any uncountable set. Let Σ be the countable-cocountable σ-algebra
of subsets of X and ν the countable-cocountable measure on X (211R). Let µ be the restriction to Σ of
counting measure on X. If µE = 0 then E = ∅ and νE = 0, so ν is absolutely continuous. But for any E
of finite measure we have ν(X \ E) = 1, so ν is not truly continuous. See also 232Xf(i).

*(c) The space (X,Σ, µ) of this example is, in terms of the classification developed in Chapter 21,
somewhat irregular; for instance, it is neither locally determined nor localizable, and therefore not strictly
localizable, though it is complete and semi-finite. Can this phenomenon occur in a strictly localizable
measure space? We are led here into a fascinating question. Suppose, in (b), I used the same idea, but with
Σ = PX. No difficulty arises in constructing µ; but can there now be a ν with the required properties,
that is, a non-zero countably additive functional from PX to R which is zero on all finite sets? This is the
‘Banach-Ulam problem’, on which I have written extensively elsewhere (Fremlin 93), and to which I will
return in Chapter 54 in Volume 5. The present question is touched on again in 363S in Volume 3.

(d) Following the Radon-Nikodým theorem, the question immediately arises: for a given ν, how much
possible variation is there in the corresponding f? The answer is straightforward enough: two integrable
functions f and g give rise to the same indefinite integral iff they are equal almost everywhere (131Hb).

(e) I have stated the Radon-Nikodým theorem in terms of arbitrary integrable functions, meaning to
interpret ‘integrability’ in a wide sense, according to the conventions of Volume 1. However, given a truly
continuous additive functional ν, we can ask whether there is in any sense a canonical integrable function
representing it. The answer is no. But we certainly do not need to take arbitrary integrable functions of the
type considered in Chapter 12. If f is any integrable function, there is a conegligible set E such that f↾E
is measurable, and now we can find a conegligible measurable set G ⊆ E ∩ dom f ; if we set g(x) = f(x) for
x ∈ G, 0 for x ∈ X \G, then f =a.e. g, so g has the same indefinite integral as f (as noted in (d) just above),
while g is measurable and has domain X. Thus we can make a trivial, but sometimes convenient, refinement
to the theorem: if (X,Σ, µ) is a measure space, and ν : Σ → R is finitely additive and truly continuous with
respect to µ, then there is a Σ-measurable µ-integrable function g : X → R such that

∫

E
g = νE for every

E ∈ Σ.

(f) It is convenient to introduce now a general definition. If (X,Σ, µ) is a measure space and ν is a
[−∞,∞]-valued functional defined on a family of subsets of X, I will say that a [−∞,∞]-valued function

Measure Theory



232I The Radon-Nikodým theorem 11

f defined on a subset of X is a Radon-Nikodým derivative of ν with respect to µ if
∫

E
fdµ is defined

(in the sense of 214D) and equal to νE for every E ∈ dom ν. Thus the integrable functions called f in
232E-232G are all ‘Radon-Nikodým derivatives’; later on we shall have less well-regulated examples.

When ν is a measure and f is non-negative, f may be called a density function.

(g) Throughout the work above I have taken it that ν is defined on the whole domain Σ of µ. In some
of the most important applications, however, ν is defined only on some smaller σ-algebra T. In this case we
commonly seek to apply the same results with µ↾T in place of µ.

232I The Lebesgue decomposition of a countably additive functional: Proposition (a) Let
(X,Σ, µ) be a measure space and ν : Σ → R a countably additive functional. Then ν has unique expressions
as

ν = νs + νac = νs + νtc + νe,

where νs is singular with respect to µ, νac is absolutely continuous with respect to µ, νtc is truly continuous
with respect to µ, and νe is absolutely continuous with respect to µ and zero on every set of finite measure.

(b) If X = Rr, Σ is the algebra of Borel sets in Rr and µ is the restriction of Lebesgue measure to Σ,
then ν is uniquely expressible as νp + νcs + νac where νac is absolutely continuous with respect to µ, νcs is
singular with respect to µ and zero on singletons, and νpE =

∑

x∈E νp{x} for every E ∈ Σ.

proof (a)(i) Suppose first that ν is non-negative. In this case, set

νsE = sup{ν(E ∩ F ) : F ∈ Σ, µF = 0},

νtE = sup{ν(E ∩ F ) : F ∈ Σ, µF <∞}.

Then both νs and νt are countably additive. PPP Surely νs∅ = νt∅ = 0. Let 〈En〉n∈N be a disjoint sequence
in Σ with union E. (ααα) If F ∈ Σ and µF = 0, then

ν(E ∩ F ) =
∑∞

n=0 ν(En ∩ F ) ≤
∑∞

n=0 νs(En);

as F is arbitrary,

νsE ≤
∑∞

n=0 νsEn.

(βββ) If F ∈ Σ and µF <∞, then

ν(E ∩ F ) =
∑∞

n=0 ν(En ∩ F ) ≤
∑∞

n=0 νt(En);

as F is arbitrary,

νtE ≤
∑∞

n=0 νtEn.

(γγγ) If ǫ > 0, then (because
∑∞

n=0 νEn = νE < ∞) there is an n ∈ N such that
∑∞

k=n+1 νEk ≤ ǫ. Now,
for each k ≤ n, there is an Fk ∈ Σ such that µFk = 0 and ν(Ek ∩ Fk) ≥ νsEk − ǫ

n+1 . In this case,

F =
⋃

k≤n Fk ∈ Σ, µF = 0 and

νsE ≥ ν(E ∩ F ) ≥
∑n

k=0 ν(Ek ∩ Fk) ≥
∑n

k=0 νsEk − ǫ ≥
∑∞

k=0 νsEk − 2ǫ,

because
∑∞

k=n+1 νsEk ≤
∑∞

k=n+1 νEk ≤ ǫ.

As ǫ is arbitrary,

νsE ≥
∑∞

k=0 νsEk.

(δδδ) Similarly, for each k ≤ n, there is an F ′
k ∈ Σ such that µF ′

k <∞ and ν(Ek ∩ F
′
k) ≥ νtEk −

ǫ
n+1 . In this

case, F ′ =
⋃

k≤n F
′
k ∈ Σ, µF ′ <∞ and

νtE ≥ ν(E ∩ F ′) ≥
∑n

k=0 ν(Ek ∩ F ′
k) ≥

∑n
k=0 νtEk − ǫ ≥

∑∞
k=0 νtEk − 2ǫ,

because
∑∞

k=n+1 νtEk ≤
∑∞

k=n+1 νEk ≤ ǫ.
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As ǫ is arbitrary,

νtE ≥
∑∞

k=0 νtEk.

(ǫǫǫ) Putting these together, νsE =
∑∞

n=0 νsEn and νtE =
∑∞

n=0 νtEn. As 〈En〉n∈N is arbitrary, νs and νt
are countably additive. QQQ

(ii) Still supposing that ν is non-negative, if we choose a sequence 〈Fn〉n∈N in Σ such that µFn = 0
for each n and limn→∞ νFn = νsX, then F ∗ =

⋃

n∈N Fn has µF ∗ = 0 and νsF
∗ = νF ∗ = νsX; so that

νs(X \ F ∗) = 0, and νs is singular with respect to µ in the sense of 232Ac.
Note that νsF = νF whenever µF = 0. So if we write νac = ν − νs, then νac is a countably additive

functional and νacF = 0 whenever µF = 0; that is, νac is absolutely continuous with respect to µ.
If we write νtc = νt − νs, then νtc is a non-negative countably additive functional; νtcF = 0 whenever

µF = 0, and if νtcE > 0 there is a set F with µF <∞ and νtc(E ∩ F ) > 0. So νtc is truly continuous with
respect to µ, by 232Bb. Set νe = ν − νt = νac − νtc.

Thus for any non-negative countably additive functional ν, we have expressions

ν = νs + νac, νac = νtc + νe

where νs, νac, νtc and νe are all non-negative countably additive functionals, νs is singular with respect to
µ, νac and νe are absolutely continuous with respect to µ, νtc is truly continuous with respect to µ, and
νeF = 0 whenever µF <∞.

(iii) For general countably additive functionals ν : Σ → R, we can express ν as ν ′−ν ′′, where ν ′ and ν ′′

are non-negative countably additive functionals. If we define ν ′s, ν
′′
s , . . . , ν

′′
e as in (i)-(ii), we get countably

additive functionals

νs = ν′s − ν′′s , νac = ν′ac − ν′′ac, νtc = ν′tc − ν′′tc, νe = ν′e − ν′′e

such that νs is singular with respect to µ (if F ′, F ′′ are such that

µF = µF ′ = ν′s(X \ F ) = ν′′s (X \ F ) = 0,

then µ(F ′ ∪ F ′′) = 0 and νsE = 0 whenever E ⊆ X \ (F ′ ∪ F ′′)), νac is absolutely continuous with respect
to µ, νtc is truly continuous with respect to µ, and νeF = 0 whenever µF <∞, while

ν = νs + νac = νs + νtc + νe.

(iv) Moreover, these decompositions are unique. PPP(ααα) If, for instance, ν = ν̃s + ν̃ac, where ν̃s is

singular and ν̃ac is absolutely continuous with respect to µ, let F , F̃ be such that µF = µF̃ = 0 and
ν̃sE = 0 whenever E ∩ F̃ = ∅, νsE = 0 whenever E ∩ F = ∅. Set F ∗ = F ∪ F̃ . If E ∈ Σ, νac(E ∩ F ∗) = 0
because µF ∗ = 0 while νs(E \ F ∗) = 0 because E \ F ∗ is disjoint from F , so

νsE = νs(E ∩ F ∗) + νs(E \ F ∗) = ν(E ∩ F ∗)− νac(E ∩ F ∗) + 0 = ν(E ∩ F ∗).

Similarly, ν̃sE = ν(E ∩ F ∗) and ν̃sE = νsE; as E is arbitrary, ν̃s = νs and ν̃ac = νac.

(βββ) Similarly, if νac = ν̃tc+ ν̃e where ν̃tc is truly continuous with respect to µ and ν̃eF = 0 whenever

µF <∞, then there are sequences 〈Fn〉n∈N, 〈F̃n〉n∈N of sets of finite measure such that νtcF = 0 whenever

F ∩
⋃

n∈N Fn = ∅ and ν̃tcF = 0 whenever F ∩
⋃

n∈N F̃n = ∅. Write F ∗ =
⋃

n∈N(Fn∪F̃n); then ν̃eE = νeE = 0
whenever E ⊆ F ∗ and ν̃tcE = νtcE = 0 whenever E ∩ F ∗ = ∅, so νtcE = νac(E ∩ F ∗) = ν̃tcE for every
E ∈ Σ, νtc = ν̃tc and νe = ν̃e. QQQ

(b) In this case, µ is σ-finite (cf. 211P), so every absolutely continuous countably additive functional
is truly continuous (232Bc), and we shall always have νe = 0, νac = νtc. But in the other direction we
know that singleton sets, and therefore countable sets, are all measurable. We therefore have a further
decomposition νs = νp + νcs, where there is a countable set K ⊆ Rr with νpE = 0 whenever E ∈ Σ and
E ∩K = ∅, and νcs is singular with respect to µ and zero on countable sets. PPP (i) If ν ≥ 0, set

νpE = sup{ν(E ∩K) : K ⊆ Rr is countable};

just as with νs, dealt with in (a) above, νp is countably additive and there is a countable K ⊆ Rr such
that νpE = ν(E ∩K) for every E ∈ Σ. (ii) For general ν, we can express ν as ν ′ − ν ′′ where ν ′ and ν ′′ are
non-negative, and write νp = ν′p− ν

′′
p . (iii) νp is characterized by saying that there is a countable set K such

Measure Theory
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that νpE = ν(E ∩K) for every E ∈ Σ and ν{x} = 0 for every x ∈ Rr \K. (iv) So if we set νcs = νs − νp,
νcs will be singular with respect to µ and zero on countable sets. QQQ

Now, for any E ∈ Σ,

νpE = ν(E ∩K) =
∑

x∈K∩E ν{x} =
∑

x∈E ν{x}.

Remark The expression ν = νp + νcs + νac of (b) is the Lebesgue decomposition of ν.

232X Basic exercises (a) Let (X,Σ, µ) be a measure space and ν : Σ → R a countably additive
functional which is absolutely continuous with respect to µ. Show that the following are equiveridical: (i)
ν is truly continuous with respect to µ; (ii) there is a sequence 〈En〉n∈N in Σ such that µEn <∞ for every
n ∈ N and νF = 0 whenever F ∈ Σ and F ∩

⋃

n∈NEn = ∅.

>>>(b) Let g : R → R be a bounded non-decreasing function and µg the associated Lebesgue-Stieltjes
measure (114Xa). Show that µg is absolutely continuous (equivalently, truly continuous) with respect to
Lebesgue measure iff the restriction of g to any closed bounded interval is absolutely continuous in the sense
of 225B.

(c) Let (X,Σ, µ) be a measure space, and ν and λ additive functionals on Σ of which ν is positive and
countably additive, so that (X,Σ, ν) also is a measure space. (i) Show that if ν is absolutely continuous
with respect to µ and λ is absolutely continuous with respect to ν, then λ is absolutely continuous with
respect to µ. (ii) Show that if ν is truly continuous with respect to µ and λ is absolutely continuous with
respect to ν then λ is truly continuous with respect to µ.

>>>(d) Let X be a non-empty set and Σ a σ-algebra of subsets of X. Show that for any sequence 〈νn〉n∈N

of countably additive functionals on Σ there is a probability measure µ on X, with domain Σ, such that
every νn is absolutely continuous with respect to µ. (Hint : start with the case νn ≥ 0.)

(e) Let (X,Σ, µ) be a measure space and (X, Σ̂, µ̂) its completion (212C). Let ν : Σ → R be an additive
functional such that νE = 0 whenever µE = 0. Show that ν has a unique extension to an additive functional
ν̂ : Σ̂ → R such that ν̂E = 0 whenever µ̂E = 0.

(f) Let F be an ultrafilter on N including the filter {N\I : I ⊆ N is finite} (2A1O). Define ν : PN → {0, 1}
by setting νE = 1 if E ∈ F , 0 for E ∈ PN\F . (i) Let µ1 be counting measure on PN. Show that ν is additive
and absolutely continuous with respect to µ1, but is not truly continuous. (ii) Define µ2 : PN → [0, 1] by
setting µ2E =

∑

n∈E 2−n−1. Show that ν is zero on µ2-negligible sets, but is not absolutely continuous with
respect to µ2.

(g) Let X be a set and Σ a σ-algebra of subsets of X; let ν : Σ → R be a countably additive functional.
Let I be an ideal of Σ, that is, a subset of Σ such that (α) ∅ ∈ I (β) E ∪ F ∈ I for all E, F ∈ I (γ) if
E ∈ Σ, F ∈ I and E ⊆ F then E ∈ I. Show that ν has a unique decomposition as ν = νI + ν ′I , where
νI and ν ′I are countably additive functionals, ν ′IE = 0 for every E ∈ I, and whenever E ∈ Σ and νIE 6= 0
there is an F ∈ I such that νI(E ∩ F ) 6= 0.

(h) Rewrite this section in terms of complex-valued additive functionals.

232Y Further exercises (a) Let (X,Σ, µ) be a measure space and ν : Σ → R a finitely additive
functional. If E, F , H ∈ Σ and µH <∞ set ρH(E,F ) = µ(H∩(E△F )). (i) Show that ρH is a pseudometric
on Σ (2A3Fa). (ii) Let T be the topology on Σ generated by {ρH : H ∈ Σ, µH < ∞} (2A3Fc). Show that
ν is continuous for T iff it is truly continuous in the sense of 232Ab. (T is the topology of convergence in
measure on Σ.)

(b) Let (X,Σ, µ) be a measure space and (X, Σ̃, µ̃) its c.l.d. version (213E). Let ν : Σ → R be an additive
functional which is truly continuous with respect to µ. Show that ν has a unique extension to a functional
ν̃ : Σ̃ → R which is truly continuous with respect to µ̃.
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14 The Radon-Nikodým theorem 232Yc

(c) (H.König) Let X be a set and µ, ν two measures on X with the same domain Σ. For α ≥ 0, E ∈ Σ
set (αµ∧ν)(E) = inf{αµ(E ∩F )+ν(E \F ) : F ∈ Σ} (cf. 112Ya). Show that the following are equiveridical:
(i) νE = 0 whenever µE = 0; (ii) supα≥0(αµ ∧ ν)(E) = νE for every E ∈ Σ.

(d) Let (X,Σ, µ) be a measure space and f a µ-integrable real-valued function. Show that the indefinite
integral of f is the unique additive functional ν : Σ → R such that whenever E ∈ Σ and f(x) ∈ [a, b] for
almost every x ∈ E, then aµE ≤ νE ≤ bµE.

(e) Let (X,Σ, µ) be a measure space and f a non-negative real-valued function which is integrable over
X; let ν be its indefinite integral. Show that for any function g : X → R,

∫

g dν =
∫

f × g dµ in the sense
that if one of these is defined in [−∞,∞] so is the other, and they are then equal. (Hint : start with simple
functions g.)

(f) Let (X,Σ, µ) be a measure space, f an integrable function, and ν : Σ → R the indefinite integral of
f . Show that |ν|, as defined in 231Ya, is the indefinite integral of |f |.

(g) Let X be a set, Σ a σ-algebra of subsets of X, and ν : Σ → R a countably additive functional. Show
that ν has a Radon-Nikodým derivative with respect to |ν| as defined in 231Ya, and that any such derivative
has modulus equal to 1 |ν|-a.e.

(h) For a non-decreasing function F : [a, b] → R, where a < b, let νF be the corresponding Lebesgue-
Stieltjes measure. Show that if we define (νF )ac, etc., with regard to Lebesgue measure on [a, b], as in 232I,
then

(νF )p = νFp
, (νF )ac = νFac

, (νF )cs = νFcs
,

where Fp, Fcs and Fac are defined as in 226C.

(i) Extend the idea of (h) to general functions F of bounded variation.

(j) Extend the ideas of (h) and (i) to open, half-open and unbounded intervals (cf. 226Yb).

(k) Say that two bounded additive functionals ν1, ν2 on an algebra Σ of sets are mutually singular if
for any ǫ > 0 there is an H ∈ Σ such that

sup{|ν1F | : F ∈ Σ, F ⊆ H} ≤ ǫ,

sup{|ν2F | : F ∈ Σ, F ∩H = ∅} ≤ ǫ.

(i) Show that ν1 and ν2 are mutually singular iff, in the language of 231Ya-231Yb, |ν1| ∧ |ν2| = 0.
(ii) Show that if Σ is a σ-algebra and ν1 and ν2 are countably additive, then they are mutually singular

iff there is an H ∈ Σ such that ν1F = 0 whenever F ∈ Σ and F ⊆ H, while ν2F = 0 whenever F ∈ Σ and
F ∩H = ∅.

(iii) Show that if νs, νtc and νe are defined from ν and µ as in 232I, then each pair of the three are
mutually singular.

232 Notes and comments The Radon-Nikodým theorem must be on any list of the half-dozen most
important theorems of measure theory, and not only the theorem itself, but the techniques necessary to
prove it, are at the heart of the subject. In my book Fremlin 74 I discussed a variety of more or less
abstract versions of the theorem and of the method, to some of which I will return in §§327 and 365 of the
next volume.

As I have presented it here, the essence of the proof is split between 231E and 232E. I think we can
distinguish the following elements. Let ν be a countably additive functional.

(i) ν is bounded (231Ea).

(ii) ν is expressible as the difference of non-negative functionals (231F).

(I gave this as a corollary of 231Eb, but it can also be proved by simpler methods, as in 231Ya.)

(iii) If ν > 0, there is an integrable f such that 0 < νf ≤ ν,
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writing νf for the indefinite integral of f . (This is the point at which we really do need the Hahn decompo-
sition 231Eb.)

(iv) The set Ψ = {f : νf ≤ ν} is closed under countable suprema, so there is an f ∈ Ψ
maximising

∫

f .

(In part (b) of the proof of 232E, I spoke of simple functions; but this was solely to simplify the technical
details, and the same argument works if we apply it to Ψ instead of Φ. Note the use here of B.Levi’s
theorem.)

(v) Take f from (iv) and use (iii) to show that ν − νf = 0.

Each of the steps (i)-(iv) requires a non-trivial idea, and the importance of the theorem lies not only in its
remarkable direct consequences in the rest of this chapter and elsewhere, but in the versatility and power
of these ideas.

I introduce the idea of ‘truly continuous’ functional in order to give a reasonably straightforward account
of the status of the Radon-Nikodým theorem in non-σ-finite measure spaces. Of course the whole point is
that a truly continuous functional, like an indefinite integral, must be concentrated on a σ-finite part of
the space (232Xa), so that 232E, as stated, can be deduced easily from the standard form 232F. I dare to
use the word ‘truly’ in this context because this kind of continuity does indeed correspond to a topological
notion (232Ya).

There is a possible trap in the definition I give of ‘absolutely continuous’ functional. Many authors use
the condition of 232Ba as a definition, saying that ν is absolutely continuous with respect to µ if νE = 0
whenever µE = 0. For countably additive functionals this coincides with the ǫ-δ formulation in 232Aa; but
for other additive functionals this need not be so (232Xf(ii)). Mostly the distinction is insignificant, but I
note that in 232Bd it is critical, since ν there is not assumed to be countably additive.

In 232I I describe one of the many ways of decomposing a countably additive functional into mutually
singular parts with special properties. In 231Yf-231Yg I have already suggested a method of decomposing
an additive functional into the sum of a countably additive part and a ‘purely finitely additive’ part. All
these results have natural expressions in terms of the ordered linear space of bounded additive functionals
on an algebra (231Yc).

Version of 16.6.02

233 Conditional expectations

I devote a section to a first look at one of the principal applications of the Radon-Nikodým theorem. It
is one of the most vital ideas of measure theory, and will appear repeatedly in one form or another. Here I
give the definition and most basic properties of conditional expectations as they arise in abstract probability
theory, with notes on convex functions and a version of Jensen’s inequality (233I-233J).

233A σ-subalgebras Let X be a set and Σ a σ-algebra of subsets of X. A σ-subalgebra of Σ is a
σ-algebra T of subsets of X such that T ⊆ Σ. If (X,Σ, µ) is a measure space and T is a σ-subalgebra of Σ,
then (X,T, µ↾T) is again a measure space; this is immediate from the definition (112A). Now we have the
following straightforward lemma. It is a special case of 235G below, but I give a separate proof in case you
do not wish as yet to embark on the general investigation pursued in §235.

233B Lemma Let (X,Σ, µ) be a measure space and T a σ-subalgebra of Σ. A real-valued function f
defined on a subset of X is µ↾T-integrable iff (i) it is µ-integrable (ii) dom f is µ↾T-conegligible (iii) f is
µ↾T-virtually measurable; and in this case

∫

fd(µ↾T) =
∫

fdµ.

proof (a) Note first that if f is a µ↾T-simple function, that is, is expressible as
∑n

i=0 aiχEi where ai ∈ R,
Ei ∈ T and (µ↾T)Ei <∞ for each i, then f is µ-simple and

∫

fdµ =
∑n

i=0 aiµEi =
∫

fd(µ↾T).

(b) Let Uµ be the set of non-negative µ-integrable functions and Uµ↾T the set of non-negative µ↾T-
integrable functions.

Suppose f ∈ Uµ↾T. Then there is a non-decreasing sequence 〈fn〉n∈N of µ↾T-simple functions such that
f(x) = limn→∞ fn µ↾T-a.e. and
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16 The Radon-Nikodým theorem 233B

∫

fd(µ↾T) = limn→∞

∫

fnd(µ↾T).

But now every fn is also µ-simple, and
∫

fndµ =
∫

fnd(µ↾T) for every n, and f = limn→∞ fn µ-a.e. So
f ∈ Uµ and

∫

fdµ =
∫

fd(µ↾T).

(c) Now suppose that f is µ↾T-integrable. Then it is the difference of two members of Uµ↾T, so is µ-
integrable, and

∫

fdµ =
∫

fd(µ↾T). Also conditions (ii) and (iii) are satisfied, according to the conventions
established in Volume 1 (122Nc, 122P-122Q).

(d) Suppose that f satisfies conditions (i)-(iii). Then |f | ∈ Uµ, and there is a conegligible set E ⊆ dom f
such that E ∈ T and f↾E is T-measurable. Accordingly |f |↾E is T-measurable. Now, if ǫ > 0, then

(µ↾T){x : x ∈ E, |f |(x) ≥ ǫ} = µ{x : x ∈ E, |f |(x) ≥ ǫ} ≤ 1
ǫ

∫

|f |dµ <∞;

moreover,

sup{

∫

g d(µ↾T) : g is a µ↾T-simple function, g ≤ |f |µ↾T-a.e.}

= sup{

∫

g dµ : g is a µ↾T-simple function, g ≤ |f |µ↾T-a.e.}

≤ sup{

∫

g dµ : g is a µ-simple function, g ≤ |f |µ-a.e.}

≤

∫

|f |dµ <∞.

By the criterion of 122Ja, |f | ∈ Uµ↾T. Consequently f , being µ↾T-virtually T-measurable, is µ↾T-integrable,
by 122P. This completes the proof.

233C Remarks (a) My argument just above is detailed to the point of pedantry. I think, however,
that while I can be accused of wasting paper by writing everything down, every element of the argument is
necessary to the result. To be sure, some of the details are needed only because I use such a wide notion of
‘integrable function’; if you restrict the notion of ‘integrability’ to measurable functions defined on the whole
measure space, there are simplifications at this stage, to be paid for later when you discover that many of
the principal applications are to functions defined by formulae which do not apply on the whole underlying
space.

The essential point which does have to be grasped is that while a µ↾T-negligible set is always µ-negligible,
a µ-negligible set need not be µ↾T-negligible.

(b) As the simplest possible example of the problems which can arise, I offer the following. Let (X,Σ, µ)
be [0, 1]2 with Lebesgue measure. Let T be the set of those members of Σ expressible as F × [0, 1] for some
F ⊆ [0, 1]; it is easy to see that T is a σ-subalgebra of Σ. Consider f , g : X → [0, 1] defined by saying that

f(t, u) = 1 if u > 0, 0 otherwise,

g(t, u) = 1 if t > 0, 0 otherwise.

Then both f and g are µ-integrable, being constant µ-a.e. But only g is µ↾T-integrable, because any non-
negligible E ∈ T includes a complete vertical section {t} × [0, 1], so that f takes both values 0 and 1 on E.
If we set

h(t, u) = 1 if u > 0, undefined otherwise,

then again (on the conventions I use) h is µ-integrable but not µ↾T-integrable, as there is no conegligible
member of T included in the domain of h.

(c) If f is defined everywhere in X, and µ↾T is complete, then of course f is µ↾T-integrable iff it is
µ-integrable and T-measurable. But note that in the example just above, which is one of the archetypes for
this topic, µ↾T is not complete, as singleton sets are negligible but not measurable.
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233D Conditional expectations Let (X,Σ, µ) be a probability space, that is, a measure space with
µX = 1. (Nearly all the ideas here work perfectly well for any totally finite measure space, but there seems
nothing to be gained from the extension, and the traditional phrase ‘conditional expectation’ demands a
probability space.) Let T ⊆ Σ be a σ-subalgebra.

(a) For any µ-integrable real-valued function f defined on a conegligible subset of X, we have a corre-
sponding indefinite integral νf : Σ → R given by the formula νfE =

∫

E
f for every E ∈ Σ. We know that

νf is countably additive and truly continuous with respect to µ, which in the present context is the same
as saying that it is absolutely continuous (232Bc-232Bd). Now consider the restrictions µ↾T, νf ↾T of µ
and νf to the σ-algebra T. It follows directly from the definitions of ‘countably additive’ and ‘absolutely
continuous’ that νf ↾T is countably additive and absolutely continuous with respect to µ↾T, therefore truly
continuous with respect to µ↾T. Consequently, the Radon-Nikodým theorem (232E) tells us that there is a
µ↾T-integrable function g such that (νf ↾T)F =

∫

F
g d(µ↾T) for every F ∈ T.

(b) Let us define a conditional expectation of f on T to be such a function; that is, a µ↾T-integrable
function g such that

∫

F
g d(µ↾T) =

∫

F
fdµ for every F ∈ T. Looking back at 233B, we see that for such a

g we have
∫

F
g d(µ↾T) =

∫

g × χF d(µ↾T) =
∫

g × χF dµ =
∫

F
g dµ

for every F ∈ T; also, that g is almost everywhere equal to a T-measurable function defined everywhere in
X which is also a conditional expectation of f on T (232He).

(c) I set the word ‘a’ of the phrase ‘a conditional expectation’ in bold type to emphasize that there is
nothing unique about the function g. In 242J I will return to this point, and describe an object which could
properly be called ‘the’ conditional expectation of f on T. g is ‘essentially unique’ only in the sense that if
g1, g2 are both conditional expectations of f on T then g1 = g2 µ↾T-a.e. (131Hb). This does of course mean
that a very large number of its properties – for instance, the distribution function G(a) = µ̂{x : g(x) ≤ a},
where µ̂ is the completion of µ (212C) – are independent of which g we take.

(d) A word of explanation of the phrase ‘conditional expectation’ is in order. This derives from the
standard identification of probability with measure, due to Kolmogorov, which I will discuss more fully
in Chapter 27. A real-valued random variable may be regarded as a measurable, or virtually measurable,
function f on a probability space (X,Σ, µ); its ‘expectation’ becomes identified with

∫

fdµ, supposing that

this exists. If F ∈ Σ and µF > 0 then the ‘conditional expectation of f given F ’ is 1
µF

∫

F
f . If F0, . . . , Fn

is a partition of X into measurable sets of non-zero measure, then the function g given by

g(x) =
1

µFi

∫

Fi

f if x ∈ Fi

is a kind of anticipated conditional expectation; if we are one day told that x ∈ Fi, then g(x) will be
our subsequent estimate of the expectation of f . In the terms of the definition above, g is a conditional
expectation of f on the finite algebra T generated by {F0, . . . , Fn}. An appropriate intuition for general
σ-algebras T is that they consist of the events which we shall be able to observe at some stated future time
t0, while the whole algebra Σ consists of all events, including those not observable until times later than t0,
if ever.

233E I list some of the elementary facts concerning conditional expectations.

Proposition Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let 〈fn〉n∈N be a sequence of
µ-integrable real-valued functions, and for each n let gn be a conditional expectation of fn on T. Then

(a) g1 + g2 is a conditional expectation of f1 + f2 on T;
(b) for any c ∈ R, cg0 is a conditional expectation of cf0 on T;
(c) if f1 ≤a.e. f2 then g1 ≤a.e. g2;
(d) if 〈fn〉n∈N is non-decreasing a.e. and f = limn→∞ fn is µ-integrable, then limn→∞ gn is a conditional

expectation of f on T;
(e) if f = limn→∞ fn is defined a.e. and there is a µ-integrable function h such that |fn| ≤a.e. h for every

n, then limn→∞ gn is a conditional expectation of f on T;
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18 The Radon-Nikodým theorem 233E

(f) if F ∈ T then g0 × χF is a conditional expectation of f0 × χF on T;
(g) if h is a bounded, µ↾T-virtually measurable real-valued function defined µ↾T-almost everywhere in

X, then g0 × h is a conditional expectation of f0 × h on T;
(h) if Υ is a σ-subalgebra of T, then a function h0 is a conditional expectation of f0 on Υ iff it is a

conditional expectation of g0 on Υ.

proof (a)-(b) We have only to observe that
∫

F
g1 + g2d(µ↾T) =

∫

F
g1d(µ↾T) +

∫

F
g2d(µ↾T) =

∫

F
f1dµ+

∫

F
f2dµ =

∫

F
f1 + f2dµ,

∫

F
cg0d(µ↾T) = c

∫

F
g0d(µ↾T) = c

∫

F
f0dµ =

∫

F
cf0dµ

for every F ∈ T.

(c) If F ∈ T then
∫

F
g1d(µ↾T) =

∫

F
f1dµ ≤

∫

F
f2dµ =

∫

F
g2d(µ↾T)

for every F ∈ T; consequently g1 ≤ g2 µ↾T-a.e. (131Ha).

(d) By (c), 〈gn〉n∈N is non-decreasing µ↾T-a.e.; moreover,

supn∈N

∫

gnd(µ↾T) = supn∈N

∫

fndµ =
∫

fdµ <∞.

By B.Levi’s theorem, g = limn→∞ gn is defined µ↾T-almost everywhere, and
∫

F
g d(µ↾T) = limn→∞

∫

F
gnd(µ↾T) = limn→∞

∫

F
fndµ =

∫

F
fdµ

for every F ∈ T, so g is a conditional expectation of f on T.

(e) Set f ′n = infm≥n fm, f ′′n = supm≥n fm for each n ∈ N. Then we have

−h ≤a.e. f
′
n ≤ fn ≤ f ′′n ≤a.e. h,

and 〈f ′n〉n∈N, 〈f
′′
n 〉n∈N are almost-everywhere-monotonic sequences of functions both converging almost ev-

erywhere to f . For each n, let g′n, g
′′
n be conditional expectations of f ′n, f

′′
n on T. By (iii) and (iv), 〈g′n〉n∈N

and 〈g′′n〉n∈N are almost-everywhere-monotonic sequences converging almost everywhere to conditional ex-
pectations g′, g′′ of f . Of course g′ = g′′ µ↾T-a.e. (233Dc). Also, for each n, g′n ≤a.e. gn ≤a.e. g

′′
n, so 〈gn〉n∈N

converges to g′ µ↾T-a.e., and g = limn→∞ gn is defined almost everywhere and is a conditional expectation
of f on T.

(f) For any H ∈ T,
∫

H
g0 × χF d(µ↾T) =

∫

H∩F
g0d(µ↾T) =

∫

H∩F
f0dµ =

∫

H
f0 × χF dµ.

(g)(i) If h is actually (µ↾T)-simple, say h =
∑n

i=0 aiχFi where Fi ∈ T for each i, then
∫

F
g0 × h d(µ↾T) =

∑n
i=0 ai

∫

F
g0 × χFid(µ↾T) =

∑n
i=0 ai

∫

F
f × χFi dµ =

∫

F
f × h dµ

for every F ∈ T. (ii) For the general case, if h is µ↾T-virtually measurable and |h(x)| ≤ M µ↾T-almost
everywhere, then there is a sequence 〈hn〉n∈N of µ↾T-simple functions converging to h almost everywhere,
and with |hn(x)| ≤M for every x, n. Now f0 × hn → f0 × h a.e. and |f0 × hn| ≤a.e. M |f0| for each n, while
g0 × hn is a conditional expectation of f0 × hn for every n, so by (e) we see that limn→∞ g0 × hn will be a
conditional expectation of f0 × h; but this is equal almost everywhere to g0 × h.

(h) We need note only that
∫

H
g0d(µ↾T) =

∫

H
f0dµ for every H ∈ Υ, so

∫

H

h0d(µ↾Υ) =

∫

H

g0d(µ↾T) for every H ∈ Υ

⇐⇒

∫

H

h0d(µ↾Υ) =

∫

H

f0dµ for every H ∈ Υ.

233F Remarks Of course the results above are individually nearly trivial (though I think (e) and
(g) might give you pause for thought if they were offered without previous preparation of the ground).
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Cumulatively they amount to some quite strong properties. In §242 I will restate them in language which
is syntactically more direct, but relies on a deeper level of abstraction.

As an illustration of the power of conditional expectations to surprise us, I offer the next proposition,
which depends on the concept of ‘convex’ function.

233G Convex functions Recall that a real-valued function φ defined on an interval I ⊆ R is convex if

φ(tb+ (1− t)c) ≤ tφ(b) + (1− t)φ(c)

whenever b, c ∈ I and t ∈ [0, 1].

Examples The formulae |x|, x2, e±x ± x define convex functions on R; on ]−1, 1[ we have 1/(1 − x2); on
]0,∞[ we have 1/x and x lnx; on [0, 1] we have the function which is zero on ]0, 1[ and 1 on {0, 1}.

233H The general theory of convex functions is both extensive and important; I list a few of their more
salient properties in 233Xe. For the moment the following lemma covers what we need.

Lemma Let I ⊆ R be a non-empty open interval (bounded or unbounded) and φ : I → R a convex function.
(a) For every a ∈ I there is a b ∈ R such that φ(x) ≥ φ(a) + b(x− a) for every x ∈ I.
(b) If we take, for each q ∈ I ∩Q, a bq ∈ R such that φ(x) ≥ φ(q) + bq(x− q) for every x ∈ I, then

φ(x) = supq∈I∩Q φ(q) + bq(x− q)

for every x ∈ I.
(c) φ is Borel measurable.

proof (a) If c, c′ ∈ I and c < a < c′, then a is expressible as dc + (1 − d)c′ for some d ∈ ]0, 1[, so that
φ(a) ≤ dφ(c) + (1− d)φ(c′) and

φ(a)−φ(c)

a−c
≤

dφ(c)+(1−d)φ(c′)−φ(c)

dc+(1−d)c′−c
=

(1−d)(φ(c′)−φ(c))

(1−d)(c′−c)

=
d(φ(c′)−φ(c))

d(c′−c)
=

φ(c′)−dφ(c)−(1−d)φ(c′)

c′−dc−(1−d)c′
≤

φ(c′)−φ(a)

c′−a
.

This means that

b = supc<a,c∈I
φ(a)−φ(c)

a−c

is finite, and b ≤
φ(c′)−φ(a)

c′−a
whenever a < c′ ∈ I; accordingly φ(x) ≥ φ(a) + b(x− a) for every x ∈ I.

(b) By the choice of the bq, φ(x) ≥ supq∈Q φq(x). On the other hand, given x ∈ I, fix y ∈ I such that
x < y and let b ∈ R be such that φ(z) ≥ φ(x) + b(z − x) for every z ∈ I. If q ∈ Q and x < q < y, we have

φ(y) ≥ φ(q) + bq(y − q), so that bq ≤ φ(y)−φ(q)
y−q

and

φ(q) + bq(x− q) = φ(q)− bq(q − x) ≥ φ(q)−
φ(y)−φ(q)

y−q
(q − x)

=
y−x

y−q
φ(q)−

q−x

y−q
φ(y) ≥

y−x

y−q
(φ(x) + b(q − x))−

q−x

y−q
φ(y).

Now

φ(x) = lim
q↓x

y−x

y−q
(φ(x) + b(q − x))−

q−x

y−q
φ(y)

≤ sup
q∈Q∩]x,y[

y−x

y−q
(φ(x) + b(q − x))−

q−x

y−q
φ(y)

≤ sup
q∈Q∩]x,y[

φ(q) + bq(x− q) ≤ sup
q∈Q∩I

φ(q) + bq(x− q).

(c) Writing φq(x) = φ(q) + bq(x − q) for every q ∈ Q ∩ I, every φq is a Borel measurable function,
and φ = supq∈I∩Q φq is the supremum of a countable family of Borel measurable functions, so is Borel
measurable.
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233I Jensen’s inequality Let (X,Σ, µ) be a measure space and φ : R → R a convex function.
(a) Suppose that f and g are real-valued µ-virtually measurable functions defined almost everywhere in

X and that g ≥ 0 almost everywhere,
∫

g = 1 and g × f is integrable. Then φ(
∫

g × f) ≤
∫

g × φf , where
we may need to interpret the right-hand integral as ∞.

(b) In particular, if µX = 1 and f is a real-valued function which is integrable over X, then φ(
∫

f) ≤
∫

φf .

proof (a) For each q ∈ Q take bq such that φ(t) ≥ φq(t) = φ(q)+ bq(t− q) for every t ∈ R (233Ha). Because
φ is Borel measurable (233Hc), φf is µ-virtually measurable (121H), so g×φf also is; since g×φf is defined
almost everywhere and almost everywhere greater than or equal to the integrable function g×φ0f ,

∫

g×φf
is defined in ]−∞,∞]. Now

φq
(

∫

g × f
)

= φ(q) + bq

∫

g × f − bqq

=

∫

g × (bqf + (φ(q)− bqq)χX) =

∫

g × φqf ≤

∫

g × φf,

because
∫

g = 1 and g ≥ 0 a.e. By 233Hb,

φ(
∫

g × f) = supq∈Q φq(
∫

g × f) ≤
∫

g × φf .

(b) Take g to be the constant function with value 1.

233J Even the special case 233Ib of Jensen’s inequality is already very useful. It can be extended as
follows.

Theorem Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let φ : R → R be a convex
function and f a µ-integrable real-valued function defined almost everywhere in X such that the composition
φf is also integrable. If g and h are conditional expectations on T of f , φf respectively, then φg ≤a.e. h.
Consequently

∫

φg ≤
∫

φf .

proof We use the same ideas as in 233I. For each q ∈ Q take a bq ∈ R such that φ(t) ≥ φq(t) = φ(q)+bq(t−q)
for every t ∈ R, so that φ(t) = supq∈Q φq(t) for every t ∈ R. Now setting

ψq(x) = φ(q) + bq(g(x)− q)

for x ∈ dom g, we see that ψq = φqg is a conditional expectation of φqf , and as φqf ≤a.e. φf we must have
ψq ≤a.e. h. But also φg = supq∈Q ψq wherever g is defined, so φg ≤a.e. h, as claimed.

It follows at once that
∫

φg ≤
∫

h =
∫

φf .

233K I give the following proposition, an elaboration of 233Eg, in a very general form, as its applications
can turn up anywhere.

Proposition Let (X,Σ, µ) be a probability space, and T a σ-subalgebra of Σ. Suppose that f is a µ-
integrable function and h is a (µ↾T)-virtually measurable real-valued function defined (µ↾T)-almost every-
where in X. Let g, g0 be conditional expectations of f and |f | on T. Then f × h is integrable iff g0 × h is
integrable, and in this case g × h is a conditional expectation of f × h on T.

proof (a) Suppose that h is a µ↾T-simple function. Then surely f × h and g0 × h are integrable, and g× h
is a conditional expectation of f × h as in 233Eg.

(b) Now suppose that f , h ≥ 0. Then g = g0 ≥ 0 a.e. (233Ec). Let h̃ be a non-negative T-measurable

function defined everywhere in X such that h =a.e. h̃. For each n ∈ N set

hn(x) = 2−nk if 0 ≤ k < 4n and 2−nk ≤ h̃(x) < 2−n(k + 1),

= 2n if h̃(x) ≥ 2−n.

Then hn is a (µ↾T)-simple function, so g×hn is a conditional expectation of f ×hn. Both 〈f ×hn〉n∈N and
〈g × hn〉n∈N are almost everywhere non-decreasing sequences of integrable functions, with limits f × h and
g × h respectively. By B.Levi’s theorem,
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f × h is integrable ⇐⇒ f × h̃ is integrable

⇐⇒ sup
n∈N

∫

f × hn <∞ ⇐⇒ sup
n∈N

∫

g × hn <∞

(because
∫

g × hn =
∫

f × hn for each n)

⇐⇒ g × h is integrable ⇐⇒ g0 × h is integrable.

Moreover, in this case

∫

E

f × h =

∫

E

f × h̃ = lim
n→∞

∫

E

f × hn

= lim
n→∞

∫

E

g × hn =

∫

E

g × h̃ =

∫

E

g × h

for every E ∈ T, while g × h is (µ↾T)-virtually measurable, so g × h is a conditional expectation of f × h.

(c) Finally, consider the general case of integrable f and virtually measurable h. Set f+ = f ∨ 0,
f− = (−f) ∨ 0, so that f = f+ − f− and 0 ≤ f+, f− ≤ |f |; similarly, set h+ = h ∨ 0, h− = (−h) ∨ 0. Let
g1, g2 be conditional expectations of f+, f− on T. Because 0 ≤ f+, f− ≤ |f |, 0 ≤ g1, g2 ≤a.e. g0, while
g =a.e. g1 − g2.

We see that

f × h is integrable ⇐⇒ |f | × |h| = |f × h| is integrable

⇐⇒ g0 × |h| is integrable

⇐⇒ g0 × h is integrable.

And in this case all four of f+ × h+, . . . , f− × h− are integrable, so

(g1 − g2)× h = g1 × h+ − g2 × h+ − g1 × h− + g2 × h−

is a conditional expectation of

f+ × h+ − f− × h+ − f+ × h− + f− × h− = f × h.

Since g × h =a.e. (g1 − g2)× h, this also is a conditional expectation of f × h, and we’re done.

233X Basic exercises (a) Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let 〈fn〉n∈N

be a sequence of non-negative µ-integrable functions and suppose that gn is a conditional expectation of fn
on T for each n. Suppose that f = lim infn→∞ fn is integrable and has a conditional expectation g. Show
that g ≤a.e. lim infn→∞ gn.

(b) Let I ⊆ R be an interval, and φ : I → R a function. Show that φ is convex iff {x : x ∈ I, φ(x)+bx ≤ c}
is an interval for every b, c ∈ R.

>>>(c) Let I ⊆ R be an open interval and φ : I → R a function. (i) Show that if φ is differentiable then
it is convex iff φ′ is non-decreasing. (ii) Show that if φ is absolutely continuous on every bounded closed
subinterval of I then φ is convex iff φ′ is non-decreasing on its domain.

(d) For any r ≥ 1, a subset C of Rr is convex if tx + (1 − t)y ∈ C for all x, y ∈ C and t ∈ [0, 1]. If
C ⊆ Rr is convex, then a function φ : C → R is convex if φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y) for all x,
y ∈ C and t ∈ [0, 1].

Let C ⊆ Rr be a convex set and φ : C → R a function. Show that the following are equiveridical:
(i) the function φ is convex; (ii) the set {(x, t) : x ∈ C, t ∈ R, t ≥ φ(x)} is convex in Rr+1; (iii) the set
{x : x ∈ C, φ(x) + b .x ≤ c} is convex in Rr for every b ∈ Rr and c ∈ R, writing b .x =

∑r
i=1 βiξi if

b = (β1, . . . , βr) and x = (ξ1, . . . , ξr).
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22 The Radon-Nikodým theorem 233Xe

(e) Let I ⊆ R be an interval and φ : I → R a convex function.
(i) Show that if a, d ∈ I and a < b ≤ c < d then

φ(b)−φ(a)

b−a
≤

φ(d)−φ(c)

d−c
.

(ii) Show that φ is continuous at every interior point of I.
(iii) Show that either φ is monotonic on I or there is a c ∈ I such that φ(c) = minx∈I φ(x) and φ is

non-increasing on I ∩ ]−∞, c], monotonic non-decreasing on I ∩ [c,∞[.
(iv) Show that φ is differentiable at all but countably many points of I, and that its derivative is

non-decreasing in the sense that φ′(x) ≤ φ′(y) whenever x, y ∈ domφ′ and x ≤ y.
(v) Show that if I is closed and bounded and φ is continuous then φ is absolutely continuous.
(vi) Show that if I is closed and bounded and ψ : I → R is absolutely continuous with a non-decreasing

derivative then ψ is convex.

(f) Show that if I ⊆ R is an interval and φ, ψ : I → R are convex functions so is aφ+ bψ for any a, b ≥ 0.

(g) In the context of 233K, give an example in which g×h is integrable but f ×h is not. (Hint : take X,
µ, T as in 233Cb, and arrange for g to be 0.)

(h) Let I ⊆ R be an interval and Φ a non-empty family of convex real-valued functions on I such that
ψ(x) = supφ∈Φ φ(x) is finite for every x ∈ I. Show that ψ is convex.

233Y Further exercises (a) If I ⊆ R is an interval, a function φ : I → R is mid-convex if φ(x+y
2 ) ≤

1
2 (φ(x) + φ(y)) for all x, y ∈ I. Show that a mid-convex function which is bounded on any non-trivial
subinterval of I is convex.

(b) Generalize 233Xd to arbitrary normed spaces in place of Rr.

(c) Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let φ be a convex real-valued function
with domain an interval I ⊆ R, and f an integrable real-valued function on X such that f(x) ∈ I for almost
every x ∈ X and φf is integrable. Let g, h be conditional expectations on T of f , φf respectively. Show
that g(x) ∈ I for almost every x and that φg ≤a.e. h.

(d)(i) Show that if I ⊆ R is a bounded interval, E ⊆ I is Lebesgue measurable, and µE > 2
3µI where µ

is Lebesgue measure, then for every x ∈ I there are y, z ∈ E such that z = x+y
2 . (Hint : by 134Ya/263A,

µ(x + E) + µ(2E) > µ(2I).) (ii) Show that if f : [0, 1] → R is a mid-convex Lebesgue measurable function
(definition: 233Ya), a > 0, and E = {x : x ∈ [0, 1], a ≤ f(x) < 2a} is not negligible, then there is a non-
trivial interval I ⊆ [0, 1] such that f(x) > 0 for every x ∈ I. (Hint : 223B.) (iii) Suppose that f : [0, 1] → R

is a mid-convex function such that f ≤ 0 almost everywhere in [0, 1]. Show that f ≤ 0 everywhere in ]0, 1[.
(Hint : for every x ∈ ]0, 1[, max(f(x− t), f(x+ t)) ≤ 0 for almost every t ∈ [0,min(x, 1− x)].) (iv) Suppose
that f : [0, 1] → R is a mid-convex Lebesgue measurable function such that f(0) = f(1) = 0. Show that
f(x) ≤ 0 for every x ∈ [0, 1]. (Hint : show that {x : f(x) ≤ 0} is dense in [0, 1], use (ii) to show that it is
conegligible in [0, 1] and apply (iii).) (v) Show that if I ⊆ R is an interval and f : I → R is a mid-convex
Lebesgue measurable function then it is convex.

(e) Let (X,Σ, µ) be a probability space, T a σ-subalgebra of subsets of X, and f : X → [0,∞] a Σ-
measurable function. Show that (i) there is a T-measurable g : X → [0,∞] such that

∫

F
g =

∫

F
f for every

F ∈ T (ii) any two such functions are equal a.e.

(f) Suppose that r ≥ 1 and C ⊆ Rr \ {0} is a convex set. Show that there is a non-zero b ∈ Rr such
that b .z ≥ 0 for every z ∈ C. (Hint : if r = 2, identify R2 with C; reduce to the case in which C contains
no points which are real and negative; set θ = sup{arg z : z ∈ C} and b = −ieiθ. Now induce on r.)

(g) Suppose that r ≥ 1, C ⊆ Rr is a convex set and φ : C → R is a convex function. Show that there
is a function h : Rr → [−∞,∞[ such that φ(z) = sup{h(y) + z .y : y ∈ Rr} for every z ∈ C. (Hint : try
h(y) = inf{φ(z)− z .y : z ∈ C}, and apply 233Yf to a translate of {(z, t) : φ(z) ≤ t}.)
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(h) Let (X,Σ, µ) be a probability space, r ≥ 1 an integer and C ⊆ Rr a convex set. Let f1, . . . , fr
be µ-integrable real-valued functions and suppose that {x : x ∈

⋂

j≤r dom fj , (f1(x), . . . , fr(x)) ∈ C} is a

conegligible subset of X. Show that (
∫

f1, . . . ,
∫

fr) ∈ C. (Hint : induce on r.)

(i) Let (X,Σ, µ) be a probability space, r ≥ 1 an integer, C ⊆ Rr a convex set and φ : C → Rr a convex
function. Let f1, . . . , fr be µ-integrable real-valued functions and suppose that {x : x ∈

⋂

j≤r dom fj ,

(f1(x), . . . , fr(x)) ∈ C} is a conegligible subset of X. Show that φ(
∫

f1, . . . ,
∫

fr) ≤
∫

φ(f1, . . . , fr).

(j) Let (X,Σ, µ) be a measure space with µX > 0, r ≥ 1 an integer, C ⊆ Rr a convex set such that tz ∈ C
whenever z ∈ C and t > 0, and φ : C → R a convex function. Let f1, . . . , fr be µ-integrable real-valued
functions and suppose that {x : x ∈

⋂

j≤r dom fj , (f1(x), . . . , fr(x)) ∈ C} is a conegligible subset of X.

Show that (
∫

f1, . . . ,
∫

fr) ∈ C and that φ(
∫

f1, . . . ,
∫

fr) ≤
∫

φ(f1, . . . , fr). (Hint : putting 215B(viii) and
235K below together, show that there are a probability measure ν on X and a function h : X → [0,∞[ such
that

∫

fjdµ =
∫

fj × h dν for every j.)

233 Notes and comments The concept of ‘conditional expectation’ is fundamental in probability theory,
and will reappear in Chapter 27 in its natural context. I hope that even as an exercise in technique, however,
it will strike you as worth taking note of.

I introduced 233E as a ‘list of elementary facts’, and they are indeed straightforward. But below the
surface there are some remarkable ideas waiting for expression. If you take T to be the trivial algebra
{∅, X}, so that the (unique) conditional expectation of an integrable function f is the constant function
(
∫

f)χX, then 233Ed and 233Ee become versions of B.Levi’s theorem and Lebesgue’s Dominated Conver-
gence Theorem. (Fatou’s Lemma is in 233Xa.) Even 233Eg can be thought of as a generalization of the
result that

∫

cf = c
∫

f , where the constant c has been replaced by a bounded T-measurable function. A
recurrent theme in the later parts of this treatise will be the search for ‘conditioned’ versions of theorems.
The proof of 233Ee is a typical example of an argument which has been translated from a proof of the
original ‘unconditioned’ result.

I suggested that 233I-233J are surprising, and I think that most of us find them so, even applied to the
list of convex functions given in 233G. But I should remark that in a way 233J has very little to do with
conditional expectations. The only properties of conditional expectations used in the proof are (i) that if
g is a conditional expectation of f , then aχX + bg is a conditional expectation of aχX + bf for all real a,
b (ii) if g1, g2 are conditional expectations of f1, f2 and f1 ≤a.e. f2, then g1 ≤a.e. g2. See 244Xm below.
Jensen’s inequality has an interesting extension to the multidimensional case, explored in 233Yf-233Yj. If
you have encountered ‘geometric’ forms of the Hahn-Banach theorem (see 3A5C in Volume 3) you will find
233Yf and 233Yg very natural, and you may notice that the finite-dimensional case is slightly different from
the infinite-dimensional case you have probably been taught. I think that in fact the most delicate step is
in 233Yh.

Note that 233Ib can be regarded as the special case of 233J in which T = {∅, X}. In fact 233Ia can be
derived from 233Ib applied to the measure ν where νE =

∫

E
g for every E ∈ Σ.

Like 233B, 233K seems to have rather a lot of technical detail in the argument. The point of this result
is that we can deduce the integrability of f × h from that of g0 × h (but not from the integrability of g× h;
see 233Xg). Otherwise it should be routine.

Version of 11.4.09

234 Operations on measures

I take a few pages to describe some standard constructions. The ideas are straightforward, but a number
of details need to be worked out if they are to be securely integrated into the general framework I employ.
The first step is to formally introduce inverse-measure-preserving functions (234A-234B), the most important
class of transformations between measure spaces. For construction of new measures, we have the notions
of image measure (234C-234E), sum of measures (234G-234H) and indefinite-integral measure (234I-234O).
Finally I mention a way of ordering the measures on a given set (234P-234Q).

c© 2008 D. H. Fremlin
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24 The Radon-Nikodým theorem 234A

234A Inverse-measure-preserving functions It is high time that I introduced the nearest thing in
measure theory to a ‘morphism’. If (X,Σ, µ) and (Y,T, ν) are measure spaces, a function φ : X → Y is
inverse-measure-preserving if φ−1[F ] ∈ Σ and µ(φ−1[F ]) = νF for every F ∈ T.

234B Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : X → Y an inverse-measure-
preserving function.

(a) If µ̂, ν̂ are the completions of µ, ν respectively, φ is also inverse-measure-preserving for µ̂ and ν̂.
(b) µ is a probability measure iff ν is a probability measure.
(c) µ is totally finite iff ν is totally finite.
(d)(i) If ν is σ-finite, then µ is σ-finite.

(ii) If ν is semi-finite and µ is σ-finite, then ν is σ-finite.
(e)(i) If ν is σ-finite and atomless, then µ is atomless.
(ii) If ν is semi-finite and µ is purely atomic, then ν is purely atomic.

(f)(i) µ∗φ−1[B] ≤ ν∗B for every B ⊆ Y .
(ii) µ∗A ≤ ν∗φ[A] for every A ⊆ X.

(g) If (Z,Λ, λ) is another measure space, and ψ : Y → Z is inverse-measure-preserving, then ψφ : X → Z
is inverse-measure-preserving.

proof (a) If ν̂ measures F , there are F ′, F ′′ ∈ T such that F ′ ⊆ F ⊆ F ′′ and ν(F ′′ \ F ′) = 0. Now

φ−1[F ′] ⊆ φ−1[F ] ⊆ φ−1[F ′′], µ(φ−1[F ′′] \ φ−1[F ′]) = ν(F ′′ \ F ′) = 0,

so µ̂ measures φ−1[F ] and

µ̂(φ−1[F ]) = µφ−1[F ′] = νF ′ = ν̂F .

As F is arbitrary, φ is inverse-measure-preserving for µ̂ and ν̂.

(b)-(c) are surely obvious.

(d)(i) If 〈Fn〉n∈N is a cover of Y by sets of finite measure for ν, then 〈φ−1[Fn]〉n∈N is a cover of X by
sets of finite measure for µ.

(ii) Let F ⊆ T be a disjoint family of non-ν-negligible sets. Then 〈φ−1[F ]〉F∈F is a disjoint family of
non-µ-negligible sets. By 215B(iii), F is countable. By 215B(iii) in the opposite direction, ν is σ-finite.

(e)(i) Suppose that E ∈ Σ and µE > 0. Let 〈Fn〉n∈N be a cover of Y by sets of finite measure for ν.
Because ν is atomless, we can find, for each n, a finite partition 〈Fni〉i∈In of Fn such that νFni < µE for
every i ∈ In (use 215D repeatedly). Now X =

⋃

n∈N,i∈In
φ−1[Fni], so there are n ∈ N and i ∈ In with

0 < µ(E ∩ φ−1[Fni) ≤ µφ−1[Fni] = νFni < µE,

and E is not a µ-atom. As E is arbitrary, µ is atomless.

(ii) Suppose that F ∈ T and νF > 0. Because ν is semi-finite, there is an F1 ⊆ F such that
0 < νF1 <∞. Now µφ−1[F1] > 0; because µ is purely atomic, there is a µ-atom E ⊆ φ−1[F1].

Let G be the set of those G ∈ T such that G ⊆ F1 and µ(E∩φ−1[G]) = 0. Then the union of any sequence
in G belongs to G, so by 215Ac there is an H ∈ G such that ν(G \H) = 0 whenever G ∈ G. Consider F1 \H.
We have

ν(F1 \H) = µ(φ−1[F1] \ φ
−1[H]) ≥ µ(E \ φ−1[H]) = µE > 0.

If G ∈ T and G ⊆ F1 \H, then one of E ∩φ−1[G], E \φ−1[G] is µ-negligible. In the former case, G ∈ G and
G = G \H is ν-negligible. In the latter case, F1 \G ∈ G and (F1 \H) \G is ν-negligible. As G is arbitrary,
F1 \H is a ν-atom included in F ; as F is arbitrary, ν is purely atomic.

(f)(i) Let F ∈ T be such that B ⊆ F and ν∗B = νF (132Aa); then φ−1[B] ⊆ φ−1[F ] so

µ∗φ−1[B] ≤ µφ−1[F ] = νF = ν∗B.

(ii) µ∗A ≤ µ∗(φ−1[φ[A]]) ≤ ν∗φ[A] by (i).

(g) For any W ∈ Λ,

µ(ψφ)−1[W ] = µφ−1[ψ−1[W ]] = νψ−1[W ] = λW .

Measure Theory



*234F Operations on measures 25

234C Image measures The following construction is one of the commonest ways in which new measure
spaces appear.

Proposition Let (X,Σ, µ) be a measure space, Y any set, and φ : X → Y a function. Set

T = {F : F ⊆ Y, φ−1[F ] ∈ Σ}, νF = µ(φ−1[F ]) for every F ∈ T.

Then (Y,T, ν) is a measure space.

proof (a) ∅ = φ−1[∅] ∈ Σ so ∅ ∈ T.

(b) If F ∈ T, then φ−1[F ] ∈ Σ, so X \ φ−1[F ] ∈ Σ; but X \ φ−1[F ] = φ−1[Y \ F ], so Y \ F ∈ T.

(c) If 〈Fn〉n∈N is a sequence in T, then φ−1[Fn] ∈ Σ for every n, so
⋃

n∈N φ
−1[Fn] ∈ Σ; but φ−1[

⋃

n∈N Fn] =
⋃

n∈N φ
−1[Fn], so

⋃

n∈N Fn ∈ T.
Thus T is a σ-algebra.

(d) ν∅ = µφ−1[∅] = µ∅ = 0.

(e) If 〈Fn〉n∈N is a disjoint sequence in T, then 〈φ−1[Fn]〉n∈N is a disjoint sequence in Σ, so

ν(
⋃

n∈N Fn) = µφ−1[
⋃

n∈N Fn] = µ(
⋃

n∈N φ
−1[Fn]) =

∑∞
n=0 µφ

−1[Fn] =
∑∞

n=0 νFn.

So ν is a measure.

234D Definition In the context of 234C, ν is called the image measure or push-forward measure;
I will denote it µφ−1.

Remark I ought perhaps to say that this construction does not always produce exactly the ‘right’ measure
on Y ; there are circumstances in which some modification of the measure µφ−1 described here is more useful.
But I will note these explicitly when they occur; when I use the unadorned phrase ‘image measure’ I shall
mean the measure constructed above.

234E Proposition Let (X,Σ, µ) be a measure space, Y a set and φ : X → Y a function; let µφ−1 be
the image measure on Y .

(a) φ is inverse-measure-preserving for µ and µφ−1.
(b) If µ is complete, so is µφ−1.
(c) If Z is another set, and ψ : Y → Z a function, then the image measures µ(ψφ)−1 and (µφ−1)ψ−1 on

Z are the same.

proof (a) Immediate from the definitions.

(b) Write ν for µφ−1 and T for its domain. If ν∗B = 0, then µ∗φ−1[B] = 0, by 234B(f-i); as µ is complete,
φ−1[B] ∈ Σ, so B ∈ T. As B is arbitrary, ν is complete.

(c) For G ⊆ Z and u ∈ [0,∞],

(µ(ψφ)−1)(G) is defined and equal to u

⇐⇒ µ((ψφ)−1[G]) is defined and equal to u

⇐⇒ µ(φ−1[ψ−1[G]]) is defined and equal to u

⇐⇒ (µφ−1)(ψ−1[G])) is defined and equal to u

⇐⇒ ((µφ−1)ψ−1)(G) is defined and equal to u.

*234F In the opposite direction, the following construction of a pull-back measure is sometimes useful.

Proposition Let X be a set, (Y,T, ν) a measure space, and φ : X → Y a function such that φ[X] has full
outer measure in Y . Then there is a measure µ on X, with domain Σ = {φ−1[F ] : F ∈ T}, such that φ is
inverse-measure-preserving for µ and ν.

proof The check that Σ is a σ-algebra of subsets of X is straightforward; all we need to know is that
φ−1[∅] = ∅, X \ φ−1[F ] = φ−1[Y \ F ] for every F ⊆ Y , and that φ−1[

⋃

n∈N Fn] =
⋃

n∈N φ
−1[Fn] for every
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sequence 〈Fn〉n∈N of subsets of Y . The key fact is that if F1, F2 ∈ T and φ−1[F1] = φ−1[F2], then φ[X] does
not meet F1△F2; because φ[X] has full outer measure, F1△F2 is ν-negligible and νF1 = νF2. Accordingly
the formula µφ−1[F ] = νF does define a function µ : Σ → [0,∞]. Now

µ∅ = µφ−1[∅] = ν∅ = 0.

Next, if 〈En〉n∈N is a disjoint sequence in Σ, choose Fn ∈ T such that En = φ−1[Fn] for each n ∈ N. The
sequence 〈Fn〉n∈N need not be disjoint, but if we set F ′

n = Fn \
⋃

i<n Fi for each n ∈ N, then 〈F ′
n〉n∈N is

disjoint and

En = En \
⋃

i<nEi = φ−1[F ′
n]

for each n; so

µ(
⋃

n∈NEn) = ν(
⋃

n∈N F
′
n) =

∑∞
n=0 νF

′
n =

∑∞
n=0 µEn.

As 〈En〉n∈N is arbitrary, µ is a measure on X, as required.

234G Sums of measures I come now to a quite different way of building measures. The idea is an
obvious one, but the technical details, in the general case I wish to examine, need watching.

Proposition Let X be a set, and 〈µi〉i∈I a family of measures on X. For each i ∈ I, let Σi be the domain
of µi. Set Σ = PX ∩

⋂

i∈I Σi and define µ : Σ → [0,∞] by setting µE =
∑

i∈I µiE for every E ∈ Σ. Then
µ is a measure on X.

proof Σ is a σ-algebra of subsets of X because every Σi is. (Apply 111Ga with S = {Σi : i ∈ I} ∪ {PX}.)
Of course µ takes values in [0,∞] (226A). µ∅ = 0 because µi∅ = 0 for every i. If 〈En〉n∈N is a disjoint
sequence in Σ with union E, then

µE =
∑

i∈I

µiE =
∑

i∈I

∞
∑

n=0

µiEn =

∞
∑

n=0

∑

i∈I

µiEn

(226Af)

=

∞
∑

n=0

µEn.

So µ is a measure.

Remark In this context, I will call µ the sum of the family 〈µi〉i∈I .

234H Proposition Let X be a set and 〈µi〉i∈I a family of complete measures on X with sum µ.
(a) µ is complete.
(b)(i) A subset of X is µ-negligible iff it is µi-negligible for every i ∈ I.
(ii) A subset of X is µ-conegligible iff it is µi-conegligible for every i ∈ I.

(c) Let f be a function from a subset of X to [−∞,∞]. Then
∫

fdµ is defined in [−∞,∞] iff
∫

fdµi

is defined in [−∞,∞] for every i and one of
∑

i∈I f
+dµi,

∑

i∈I f
−dµi is finite, and in this case

∫

fdµ =
∑

i∈I

∫

fdµi.

proof Write Σi = domµi for i ∈ I, Σ = PX ∩
⋂

i∈I Σi = domµ.

(a) If E ⊆ F ∈ Σ and µF = 0, then µiF = 0 for every i ∈ I; because µi is complete, Ei ∈ Σi for every
i ∈ I, and E ∈ Σ.

(b) This now follows at once, since a set A ⊆ X is µ-negligible iff µA = 0.

(c)(i) Note first that (b-ii) tells us that, under either hypothesis, dom f is conegligible both for µ and
for every µi, so that if we extend f to X by giving it the value 0 on X \ dom f then neither

∫

fdµ nor
∑

i∈I

∫

fdµi is affected. So let us assume from now on that f is defined everywhere on X. Now it is plain
that either hypothesis ensures that f is Σ-measurable, that is, is Σi-measurable for every i ∈ I.
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(ii) Suppose that f is non-negative. For n ∈ N set fn(x) =
∑4n

k=1 2
−nχ{x : f(x) ≥ 2−nk}, so that

〈fn〉n∈N is a non-decreasing sequence with supremum f . We have

∫

fndµ =
4n
∑

k=1

2−nµ{x : f(x) ≥ 2−nk} =
4n
∑

k=1

∑

i∈I

2−nµi{x : f(x) ≥ 2−nk}

=
∑

i∈I

4n
∑

k=1

2−nµi{x : f(x) ≥ 2−nk} =
∑

i∈I

∫

fndµi

for every n, so

∫

fdµ = sup
n∈N

∫

fndµ = sup
n∈N

sup
J⊆I is finite

∑

i∈J

∫

fndµi = sup
J⊆I is finite

sup
n∈N

∑

i∈J

∫

fndµi

= sup
J⊆I is finite

lim
n→∞

∑

i∈J

∫

fndµi = sup
J⊆I is finite

∑

i∈J

lim
n→∞

∫

fndµi =
∑

i∈I

∫

fdµi.

(iii) Generally,

∫

fdµ is defined in [∞,∞]

⇐⇒

∫

f+dµ and

∫

f−dµ are defined and at most one is infinite

⇐⇒
∑

i∈I

∫

f+dµi and
∑

i∈I

∫

f−dµi are defined and at most one is infinite

⇐⇒

∫

fdµi is defined for every i and at most one of
∑

i∈I

∫

f+dµi,

∑

i∈I

∫

f−dµi is infinite,

and in this case
∫

fdµ =
∫

f+dµ−
∫

f−dµ =
∑

i∈I

∫

f+dµi −
∑

i∈I

∫

f−dµi =
∑

i∈I

∫

fdµi.

234I Indefinite-integral measures Extending an idea already used in 232D, we are led to the following
construction; once again, we need to take care over the formal details if we want to get full value from it.

Theorem Let (X,Σ, µ) be a measure space, and f a non-negative µ-virtually measurable real-valued func-
tion defined on a conegligible subset of X. Write νF =

∫

f × χF dµ whenever F ⊆ X is such that the
integral is defined in [0,∞] according to the conventions of 133A. Then ν is a complete measure on X, and
its domain includes Σ.

proof (a) Write T for the domain of ν, that is, the family of sets F ⊆ X such that
∫

f × χF dµ is defined
in [0,∞], that is, f × χF is µ-virtually measurable (133A). Then T is a σ-algebra of subsets of X. PPP For
each F ∈ T let HF ⊆ X be a µ-conegligible set such that f × χF ↾HF is Σ-measurable. Because f itself is
µ-virtually measurable, X ∈ T. If F ∈ T, then

f × χ(X \ F )↾(HX ∩HF ) = f↾(HX ∩HF )− (f × χF )↾(HX ∩HF )

is Σ-measurable, while HX ∩ HF is µ-conegligible, so X \ F ∈ T. If 〈Fn〉n∈N is a sequence in T with
union F , set H =

⋂

n∈NHFn
; then H is conegligible, f × χFn↾H is Σ-measurable for every n ∈ N, and

f × χF = supn∈N f × χFn, so f × χF ↾H is Σ-measurable, and F ∈ T. Thus T is a σ-algebra. If F ∈ Σ,
then f × χF ↾HX is Σ-measurable, so F ∈ T. QQQ

(b) Next, ν is a measure. PPP Of course νF ∈ [0,∞] for every F ∈ T. f × χ∅ = 0 wherever it is defined,
so ν∅ = 0. If 〈Fn〉n∈N is a disjoint sequence in T with union F , then f ×χF =

∑∞
n=0 f ×χFn. If νFm = ∞

for some m, then we surely have νF = ∞ =
∑∞

n=0 νFn. If νFm <∞ for each m but
∑∞

n=0 νFn = ∞, then
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∫

f × χ(
⋃

n≤m Fn) =
∑m

n=0

∫

f × χFn → ∞

as m→ ∞, so again νF = ∞ =
∑∞

n=0 νFn. If
∑∞

n=0 νFn <∞ then by B.Levi’s theorem

νF =
∫

∑∞
n=0 f × χFn =

∑∞
n=0

∫

f × χFn =
∑∞

n=0 νFn. QQQ

(c) Finally, ν is complete. PPP If A ⊆ F ∈ T and νF = 0, then f × χF = 0 a.e., so f × χA = 0 a.e. and
νA is defined and equal to zero. QQQ

234J Definition Let (X,Σ, µ) be a measure space, and ν another measure on X with domain T. I will
call ν an indefinite-integral measure over µ, or sometimes a completed indefinite-integral measure,
if it can be obtained by the method of 234I from some non-negative virtually measurable function f defined
almost everywhere on X. In this case, f is a Radon-Nikodým derivative of ν with respect to µ in the sense
of 232Hf. As in 232Hf, the phrase density function is also used in this context.

234K Remarks Let (X,Σ, µ) be a measure space, and f a µ-virtually measurable non-negative real-
valued function defined almost everywhere on X; let ν be the associated indefinite-integral measure.

(a) There is a Σ-measurable function g : X → [0,∞[ such that f = g µ-a.e. PPP Let H ⊆ dom f be a
measurable conegligible set such that f↾H is measurable, and set g(x) = f(x) for x ∈ H, g(x) = 0 for
x ∈ X \ H. QQQ In this case,

∫

f × χE dµ =
∫

g × χE dµ if either is defined. So g is a Radon-Nikodým
derivative of ν, and ν has a Radon-Nikodým derivative which is Σ-measurable and defined everywhere.

(b) If E is µ-negligible, then f × χE = 0 µ-a.e., so νE = 0. Many authors are prepared to say ‘ν
is absolutely continuous with respect to µ’ in this context. But if ν is not totally finite, it need not be
absolutely continuous in the ǫ-δ sense of 232Aa (234Xh), and further difficulties can arise if µ or ν is not
σ-finite (see 234Yk, 234Ym).

(c) I have defined ‘indefinite-integral measure’ in such a way as to produce a complete measure. In
my view this is what makes best sense in most applications. There are occasions on which it seems more
appropriate to use the measure ν0 : Σ → [0,∞] defined by setting ν0E =

∫

E
fdµ =

∫

f × χE dµ for E ∈ Σ.
I suppose I would call this the uncompleted indefinite-integral measure over µ defined by f . (ν is
always the completion of ν0; see 234Lb.)

(d) Note the way in which I formulated the definition of ν: ‘νE =
∫

f ×χE dµ if the integral is defined’,
rather than ‘νE =

∫

E
fdµ’. The point is that the longer formula gives a rule for deciding what the domain

of ν must be. Of course it is the case that νE =
∫

E
fdµ for every E ∈ dom ν (apply 214F to f × χE).

(e) Because µ and its completion define the same virtually measurable functions, the same null ideals
and the same integrals (212Eb, 212F), they define the same indefinite-integral measures.

234L The domain of an indefinite-integral measure It is sometimes useful to have an explicit
description of the domain of a measure constructed in this way.

Proposition Let (X,Σ, µ) be a measure space, f a non-negative µ-virtually measurable function defined
almost everywhere in X, and ν the associated indefinite-integral measure. Set G = {x : x ∈ dom f ,

f(x) > 0}, and let Σ̂ be the domain of the completion µ̂ of µ.

(a) The domain T of ν is {E : E ⊆ X, E ∩G ∈ Σ̂}; in particular, T ⊇ Σ̂ ⊇ Σ.
(b) ν is the completion of its restriction to Σ.
(c) A set A ⊆ X is ν-negligible iff A ∩G is µ-negligible.
(d) In particular, if µ itself is complete, then T = {E : E ⊆ X, E ∩G ∈ Σ} and νA = 0 iff µ(A∩G) = 0.

proof (a)(i) If E ∈ T, then f × χE is virtually measurable, so there is a conegligible measurable set
H ⊆ dom f such that f × χE↾H is measurable. Now E ∩ G ∩ H = {x : x ∈ H, (f × χE)(x) > 0} must

belong to Σ, while E ∩G \H is negligible, so belongs to Σ̂, and E ∩G ∈ Σ̂.
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(ii) If E ∩ G ∈ Σ̂, let F1, F2 ∈ Σ be such that F1 ⊆ E ∩ G ⊆ F2 and F2 \ F1 is negligible. Let
H ⊆ dom f be a conegligible set such that f↾H is measurable. Then H ′ = H \ (F2 \ F1) is conegligible and
f × χE↾H ′ = f × χF1↾H

′ is measurable, so f × χE is virtually measurable and E ∈ T.

(b) Thus the given formula does indeed describe T. If E ∈ T, let F1, F2 ∈ Σ be such that F1 ⊆ E∩G ⊆ F2

and µ(F2 \ F1) = 0. Because G itself also belongs to Σ̂, there are G1, G2 ∈ Σ such that G1 ⊆ G ⊆ G2 and
µ(G2\G1) = 0. Set F ′

2 = F2∪(X\G1). Then F
′
2 ∈ Σ and F1 ⊆ E ⊆ F ′

2. But (F
′
2\F1)∩G ⊆ (G2\G1)∪(F2\F1)

is µ-negligible, so ν(F ′
2 \ F1) = 0.

This shows that if ν ′ is the completion of ν↾Σ and T′ is its domain, then T ⊆ T′. But as ν is complete,
it surely extends ν ′, so ν = ν ′, as claimed.

(c) Now take any A ⊆ X. Because ν is complete,

A is ν-negligible ⇐⇒ νA = 0

⇐⇒

∫

f × χAdµ = 0

⇐⇒ f × χA = 0 µ-a.e.

⇐⇒ A ∩G is µ-negligible.

(d) This is just a restatement of (a) and (c) when µ = µ̂.

234M Corollary If (X,Σ, µ) is a complete measure space and G ∈ Σ, then the indefinite-integral measure
over µ defined by χG is just the measure µ G defined by setting

(µ G)(F ) = µ(F ∩G) whenever F ⊆ X and F ∩G ∈ Σ.

proof 234Ld.

*234N The next two results will not be relied on in this volume, but I include them for future reference,
and to give an idea of the scope of these ideas.

Proposition Let (X,Σ, µ) be a measure space, and ν an indefinite-integral measure over µ.
(a) If µ is semi-finite, so is ν.
(b) If µ is complete and locally determined, so is ν.
(c) If µ is localizable, so is ν.
(d) If µ is strictly localizable, so is ν.
(e) If µ is σ-finite, so is ν.
(f) If µ is atomless, so is ν.

proof By 234Ka, we may express ν as the indefinite integral of a Σ-measurable function f : X → [0,∞[.

Let T be the domain of ν, and Σ̂ the domain of the completion µ̂ of µ; set G = {x : x ∈ X, f(x) > 0} ∈ Σ.

(a) Suppose that E ∈ T and that νE = ∞. Then E ∩ G cannot be µ-negligible. Because µ is semi-
finite, there is a non-negligible F ∈ Σ such that F ⊆ E ∩ G and µF < ∞. Now F =

⋃

n∈N{x : x ∈ F ,
2−n ≤ f(x) ≤ n}, so there is an n ∈ N such that F ′ = {x : x ∈ F , 2−n ≤ f(x) ≤ n} is non-negligible.
Because f is measurable, F ′ ∈ Σ ⊆ T and 2−nµF ′ ≤ νF ′ ≤ nµF ′. Thus we have found an F ′ ⊆ E such
that 0 < νF ′ <∞. As E is arbitrary, ν is semi-finite.

(b) We already know that ν is complete (234Lb) and semi-finite. Now suppose that E ⊆ X is such that
E ∩ F ∈ T, that is, E ∩ F ∩G ∈ Σ (234Ld), whenever F ∈ T and νF <∞. Then E ∩G ∩ F ∈ Σ whenever
F ∈ Σ and µF < ∞. PPP Set Fn = {x : x ∈ F ∩ G, f(x) ≤ n}. Then νFn ≤ nµF < ∞, so E ∩ G ∩ Fn ∈ Σ
for every n. But this means that E ∩G ∩ F =

⋃

n∈NE ∩G ∩ Fn ∈ Σ. QQQ Because µ is locally determined,
E ∩G ∈ Σ and E ∈ T. As E is arbitrary, ν is locally determined.

(c) Let F ⊆ T be any set. Set E = {F ∩G : F ∈ F}, so that E ⊆ Σ̂. By 212Ga, µ̂ is localizable, so E has

an essential supremum H ∈ Σ̂. But now, for any H ′ ∈ T, H ′ ∪ (X \G) = (H ′ ∩G) ∪ (X \G) belongs to Σ̂,
so
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ν(F \H ′) = 0 for every F ∈ F

⇐⇒ µ̂(F ∩G \H ′) = 0 for every F ∈ F

⇐⇒ µ̂(E \H ′) = 0 for every E ∈ E

⇐⇒ µ̂(E \ (H ′ ∪ (X \G))) = 0 for every E ∈ E

⇐⇒ µ̂(H \ ((H ′ ∪ (X \G))) = 0

⇐⇒ µ̂(H ∩G \H ′) = 0

⇐⇒ ν(H \H ′) = 0.

Thus H is also an essential supremum of F in T. As F is arbitrary, ν is localizable.

(d) Let 〈Xi〉i∈I be a decomposition of X for µ; then it is also a decomposition for µ̂ (212Gb). Set
F0 = X \G, Fn = {x : x ∈ G, n− 1 < f(x) ≤ n} for n ≥ 1. Then 〈Xi ∩ Fn〉i∈I,n∈N is a decomposition for
ν. PPP (i) 〈Xi〉i∈I and 〈Fn〉n∈N are partitions of X into members of Σ ⊆ T, so 〈Xi ∩ Fn〉i∈I,n∈N also is. (ii)
ν(Xi ∩ F0) = 0, ν(Xi ∩ Fn) ≤ nµXi < ∞ for i ∈ I, n ≥ 1. (iii) If E ⊆ X and E ∩Xi ∩ Fn ∈ T for every

i ∈ I and n ∈ N then E ∩Xi ∩G =
⋃

n∈NE ∩Xi ∩Fn ∩G belongs to Σ̂ for every i, so E ∩G ∈ Σ̂ and E ∈ T.
(iv) If E ∈ T, then of course

∑

i∈I,n∈N ν(E ∩Xi ∩ Fn) = supJ⊆I×N is finite

∑

(i,n)∈J ν(E ∩Xi ∩ Fn) ≤ νE.

So if
∑

i∈I,n∈N ν(E ∩ Xi ∩ Fn) = ∞ it is surely equal to νE. If the sum is finite, then K = {i : i ∈

I, ν(E ∩ Xi) > 0} must be countable. But for i ∈ I \ K,
∫

E∩Xi
fdµ = 0, so f = 0 µ-a.e. on E ∩ Xi,

that is, µ̂(E ∩ G ∩ Xi) = 0. Because 〈Xi〉i∈I is a decomposition for µ̂, µ̂(E ∩ G ∩
⋃

i∈I\K Xi) = 0 and

ν(E ∩
⋃

i∈I\K Xi) = 0. But this means that

νE =
∑

i∈K ν(E ∩Xi) =
∑

i∈K,n∈N ν(E ∩Xi ∩ Fn) =
∑

i∈I,n∈N ν(E ∩Xi ∩ Fn).

As E is arbitrary, 〈Xi ∩ Fn〉i∈I,n∈N is a decomposition for ν. QQQ So ν is strictly localizable.

(e) If µ is σ-finite, then in (d) we can take I to be countable, so that I ×N also is countable, and ν will
be σ-finite.

(f) If µ is atomless, so is µ̂ (212Gd). If E ∈ T and νE > 0, then µ̂(E ∩ G) > 0, so there is an F ∈ Σ̂
such that F ⊆ E ∩G and neither F nor E ∩G \ F is µ̂-negligible. But in this case both νF =

∫

F
fdµ and

ν(E \ F ) =
∫

E\F
fdµ must be greater than 0 (122Rc). As E is arbitrary, ν is atomless.

*234O For localizable measures, there is a straightforward description of the associated indefinite-integral
measures.

Theorem Let (X,Σ, µ) be a localizable measure space. Then a measure ν, with domain T ⊇ Σ, is an
indefinite-integral measure over µ iff (α) ν is semi-finite and zero on µ-negligible sets (β) ν is the completion
of its restriction to Σ (γ) whenever νE > 0 there is an F ⊆ E such that F ∈ Σ, µF <∞ and νF > 0.

proof (a) If ν is an indefinite-integral measure over ν, then by 234Na, 234Kb and 234Lb it is semi-finite,
zero on µ-negligible sets and the completion of its restriction to Σ. Now suppose that E ∈ T and νE > 0.
Then there is an E0 ∈ Σ such that E0 ⊆ E and νE0 = νE, by 234Lb. If f : X → R is a Σ-measurable
Radon-Nikodým derivative of ν (234Ka), and G = {x : f(x) > 0}, then µ(G ∩ E0) > 0; because µ is
semi-finite, there is an F ∈ Σ such that F ⊆ G ∩ E0 and 0 < µF <∞, in which case νF > 0.

(b) So now suppose that ν satisfies the conditions.

(i) Set E = {E : E ∈ Σ, νE < ∞}. For each E ∈ E , consider νE : Σ → R, setting νEG = ν(G ∩ E)
for every G ∈ Σ. Then νE is countably additive and truly continuous with respect to µ. PPP νE is countably
additive, just as in 231De. Because ν is zero on µ-negligible sets, νE must be absolutely continuous with
respect to µ, by 232Ba. Since νE clearly satisfies condition (γ) of 232Bb, it must be truly continuous. QQQ

By 232E, there is a µ-integrable function fE such that νEG =
∫

G
fEdµ for every G ∈ Σ, and we may

suppose that fE is Σ-measurable (232He). Because νE is non-negative, fE ≥ 0 µ-almost everywhere.
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(ii) If E, F ∈ E then fE = fF µ-a.e. on E ∩ F , because
∫

G
fEdµ = νG =

∫

G
fF dµ

whenever G ∈ Σ and G ⊆ E ∩ F . Because (X,Σ, µ) is localizable, there is a measurable f : X → R such
that fE = f µ-a.e. on E for every E ∈ E (213N). Because every fE is non-negative almost everywhere, we
may suppose that f is non-negative, since surely fE = f ∨ 0 µ-a.e. on E for every E ∈ E .

(iii) Let ν ′ be the indefinite-integral measure defined by f . If E ∈ E then

νE =
∫

E
fEdµ =

∫

E
fdµ = ν ′E.

For E ∈ Σ \ E , we have

ν ′E ≥ sup{ν ′F : F ∈ E , F ⊆ E} = sup{νF : F ∈ E , F ⊆ E} = νE = ∞

because ν is semi-finite. Thus ν ′ and ν agree on Σ. But since each is the completion of its restriction to Σ,
they must be equal.

234P Ordering measures There are many ways in which one measure can dominate another. Here I
will describe one of the simplest.

Definition Let µ, ν be two measures on a set X. I will say that µ ≤ ν if µE is defined, and µE ≤ νE,
whenever ν measures E.

234Q Proposition Let X be a set, and write M for the set of all measures on X.
(a) Defining ≤ as in 234P, (M,≤) is a partially ordered set.
(b) If µ, ν ∈ M, then µ ≤ ν iff there is a λ ∈ M such that µ+ λ = ν.
(c) If µ ≤ ν in M and f is a [−∞,∞]-valued function, defined on a subset of X, such that

∫

fdν is defined
in [−∞,∞], then

∫

fdµ is defined; if f is non-negative,
∫

fdµ ≤
∫

fdν.

proof (a) Of course µ ≤ µ for every µ ∈ M. If µ ≤ ν and ν ≤ λ in M, then domλ ⊆ dom ν ⊆ domµ,
and µE ≤ νE ≤ λE whenever λ measures E. If µ ≤ ν and ν ≤ µ then domµ ⊆ dom ν ⊆ domµ and
µE ≤ νE ≤ µE for every E in their common domain, so µ = ν.

(b)(i) If µ+ λ = ν, then the definitions in 234G and 234P make it plain that µ ≤ ν.

(ii)(ααα) In the reverse direction, if µ ≤ ν, write T for the domain of ν. Define λ : T → [0,∞] by setting

λG = sup{νF − µF : F ∈ T, F ⊆ G, µF <∞}

for G ∈ T. Then λ ∈ M. PPP Of course domλ = T is a σ-algebra, and λ∅ = 0. Suppose that 〈Gn〉n∈N is a
disjoint sequence in T with union G. If F ∈ T, F ⊆ G and µF <∞, then

νF − µF =

∞
∑

n=0

ν(F ∩Gn)−
∞
∑

n=0

µ(F ∩Gn)

=

∞
∑

n=0

ν(F ∩Gn)− µ(F ∩Gn) ≤
∞
∑

n=0

λGn;

as F is arbitrary, λG ≤
∑∞

n=0 λGn. If γ <
∑∞

n=0 λGn, there are an m ∈ N such that γ <
∑m

n=0 λGn, and
F0, . . . , Fm such that Fn ∈ T, Fn ⊆ Gn and µFn < ∞ for every n ≤ m, while

∑m
n=0 νFn − µFn ≥ γ. Set

F =
⋃

n≤m Fn; then F ∈ T, F ⊆ G and µF <∞, so

λG ≥ νF − µF =
∑m

n=0 νFn − µFn ≥ γ.

As γ is arbitrary, λG ≥
∑∞

n=0 λGn; as 〈Gn〉n∈N is arbitrary, λ is countably additive. QQQ

(βββ) Now µ + λ = ν. PPP The domain of µ + λ is domµ ∩ domλ = T = dom ν. Take G ∈ T. If
µG = ∞, then νG = ∞ = (µ+ λ)G. Otherwise,

(µ+ λ)G ≥ µG+ νG− µG = νG.

So if νG = ∞ we shall certainly have νG = (µ+ λ)G. Finally, if νG <∞ then
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(µ+ λ)G = µG+ sup{νF − µF : F ∈ T, F ⊆ G}

= sup{νF + µ(G \ F ) : F ∈ T, F ⊆ G}

≤ sup{νF + ν(G \ F ) : F ∈ T, F ⊆ G} = νG,

so again we have equality. QQQ
Thus we have an appropriate expression of ν as a sum of measures.

(c)(i) If f is non-negative, put (b) and 234Hc together.

(ii) In general, if
∫

fdν is defined, so are both
∫

f+dν and
∫

f−dν, and at most one is infinite; so
∫

f+dµ and
∫

f−dµ are defined and at most one is infinite.

234X Basic exercises (a) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : X → Y an inverse-
measure-preserving function. Let A ⊆ X be a set of full outer measure in X. Show that φ[A] has full outer
measure in Y , and that φ↾A is inverse-measure-preserving for the subspace measures on A and φ[A].

(b) Let (X,Σ, µ) be a measure space, Y a set and φ : X → Y a function. Show that if µ is point-supported,
so is the image measure µφ−1.

(c) Give an example of a probability space (X,Σ, µ), a set Y , and a function φ : X → Y such that the
completion of the image measure µφ−1 is not the image of the completion of µ. (Hint : #(X) = 3.)

(d) Let X, Y be sets, φ : X → Y a function and 〈µi〉i∈I a family of measures on X with sum µ. Writing
µiφ

−1, µφ−1 for the image measures on Y , show that µφ−1 =
∑

i∈I µiφ
−1.

(e) Let X be a set. (i) Show that if 〈µi〉i∈I is a countable family of σ-finite measures on X, and
µ =

∑

i∈I µi is semi-finite, then µ is σ-finite. (ii) Show that if 〈µi〉i∈I is a family of purely atomic measures
on X, and µ =

∑

i∈I µi is semi-finite, then µ is purely atomic. (iii) Show that if 〈µi〉i∈I is any family of
point-supported measures on X, then

∑

i∈I µi is point-supported.

>>>(f) Let X be a set, and write M for the set of all measures on X. For µ ∈ M and α ∈ [0,∞[, define
αµ by saying that if α > 0 then (αµ)(E) = αµE for E ∈ domµ, while if α = 0 then (αµ)(E) = 0 for
every E ⊆ X. (i) Show that αµ ∈ M for all α ∈ [0,∞[ and µ ∈ M. (ii) Show that (α + β)µ = αµ + βµ,
α(βµ) = (αβ)µ, α(µ+ ν) = αµ+ αν for all α, β ∈ [0,∞[ and µ, ν ∈ M.

(g) Let X be a set, and 〈µi〉i∈I a family of complete measures on X with sum µ. Show that a [−∞,∞]-
valued function f defined on a subset of X is µ-integrable iff it is µi-integrable for every i ∈ I and
∑

i∈I

∫

|f |dµi is finite.

(h) Let µ be Lebesgue measure on [0, 1], and set f(x) = 1
x
for x > 0. Let ν be the associated indefinite-

integral measure. Show that the domain of ν is equal to the domain of µ. Show that for every δ ∈
]

0, 12
]

there is a measurable set E such that µE = δ but νE = 1
δ
.

(i) Let (X,Σ, µ) be a measure space. (i) Show that if ν1 and ν2 are indefinite-integral measures over
µ, so is ν1 + ν2. (ii) Show that if 〈νi〉i∈I is a countable family of indefinite-integral measures over µ, and
ν =

∑

i∈I νi is semi-finite, then ν is an indefinite-integral measure over µ.

(j) Let (X,Σ, µ) be a measure space, and ν an indefinite-integral measure over µ. Show that if µ is purely
atomic, so is ν.

(k) Let µ be a point-supported measure. Show that any indefinite-integral measure over µ is point-
supported.

(l) Let X be a set, and M the set of measures on X, with the partial ordering defined in 234P. Show that
(i) M has greatest and least members (to be described); (ii) if 〈µi〉i∈I and 〈νi〉i∈I are families in M such
that µi ≤ νi for every i, then

∑

i∈I µi ≤
∑

i∈I νi; (iii) if we define scalar multiplication as in 234Xf, then
αµ ≤ µ whenever µ ∈ M and α ∈ [0, 1]; (iv) writing µ̂ for the completion of µ, µ̂ ≤ µ and µ̂ ≤ ν̂ whenever
µ, ν ∈ M and µ ≤ ν; (v) writing µ̃ for the c.l.d. version of µ, µ̃ ≤ µ for every µ ∈ M; (vi) every subset of M
has a least upper bound in M (cf. 112Yd); (vii) every subset of M has a greatest lower bound in M.
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(m) Write out an elementary direct proof of 234Qc not depending on 234Qb.

(n) Let (X,Σ, µ) and (Y,T, ν) be measure spaces and φ : X → Y an inverse-measure-preserving function.
Show that if µ is σ-finite and purely atomic then ν is purely atomic.

234Y Further exercises (a) Write ν for Lebesgue measure on Y = [0, 1], and T for its domain. Let
A ⊆ [0, 1] be a set such that ν∗A = ν∗([0, 1] \ A) = 1, and set X = [0, 1] ∪ {x + 1 : x ∈ A} ∪ {x + 2 : x ∈
[0, 1] \ A}. Let µLX be the subspace measure induced on X by Lebesgue measure, and set µE = 1

3µLXE
for E ∈ Σ = domµLX . Define φ : X → Y by writing φ(x) = x if x ∈ [0, 1], φ(x) = x − 1 if x ∈ X ∩ ]1, 2]
and φ(x) = x− 2 if x ∈ X ∩ ]2, 3]. Show that ν is the image measure µφ−1, but that ν∗A > µ∗φ−1[A].

(b) Look for interesting examples of probability spaces (X,Σ, µ) and (Y,T, ν) for which there are functions
φ : X → Y such that φ[E] ∈ T and νφ[E] = µE for every E ∈ Σ. (Hint : 254K, 343J.)

(c) Let µ be two-dimensional Lebesgue measure on the unit square [0, 1]2, and let φ : [0, 1]2 → [0, 1]
be the projection onto the first coordinate, so that φ(ξ1, ξ2) = ξ1 for ξ1, ξ2 ∈ [0, 1]. Show that the image
measure µφ−1 is Lebesgue one-dimensional measure on [0, 1].

(d) In 234F, show that the image measure µφ−1 extends ν, and is equal to ν if and only if F ∈ T for
every F ⊆ Y \ φ[X].

(e) Let (Y,T, ν) be a complete measure space, X a set and φ : X → Y a surjection. Set

Σ = {E : E ⊆ X, φ[E] ∈ T, ν(φ[E] ∩ φ[X \ E]) = 0}, µE = νφ[E] for E ∈ T.

Show that µ is the completion of the measure constructed by the process of 234F.

(f) Let X be a set, and M the set of measures on X. Show that M, with addition as defined for two
measures by the formulae of 234G, is a commutative semigroup with identity; describe the identity.

(g) Give an example of a set X, probability measures µ1, µ2 on X and a set A ⊆ X such that A is both
µ1-negligible and µ2-negligible, but is not µ-negligible, where µ = µ1 + µ2.

(h) In 214O, show that if we set νE = supI∈I µ
∗(E ∩ I) for every E ∈ Σ, then ν is a measure, while

µ = ν + λ.

(i) Let (X,Σ, µ) be an atomless semi-finite measure space and ν an indefinite-integral measure over µ.
Show that the following are equiveridical: (i) for every ǫ > 0 there is a δ > 0 such that νE ≤ ǫ whenever
µE ≤ δ (ii) ν has a Radon-Nikodým derivative expressible as the sum of a bounded function and an integrable
function.

(j) Let (X,Σ, µ) be a measure space and ν an indefinite-integral measure over µ, with Radon-Nikodým
derivative f . Show that the c.l.d. version of ν is the indefinite-integral measure defined by f over the c.l.d.
version of µ.

(k) Let (X,Σ, µ) be a semi-finite measure space which is not localizable. Show that there is a measure
ν : Σ → [0,∞] such that νE ≤ µE for every E ∈ Σ but there is no measurable function f such that
νE =

∫

E
fdµ for every E ∈ Σ.

(l) Let (X,Σ, µ) be a localizable measure space with locally determined negligible sets. Show that a
measure ν, with domain T ⊇ Σ, is an indefinite-integral measure over µ iff (α) ν is complete and semi-finite
and zero on µ-negligible sets (β) whenever νE > 0 there is an F ⊆ E such that F ∈ Σ and µF < ∞ and
νF > 0.

(m) Give an example of a localizable measure space (X,Σ, µ) and a complete semi-finite measure ν on
X, defined on a σ-algebra T ⊇ Σ, zero on µ-negligible sets, and such that whenever νE > 0 there is an
F ⊆ E such that F ∈ Σ and µF <∞ and νF > 0, but ν is not an indefinite-integral measure over µ. (Hint :
216Yb.)
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34 The Radon-Nikodým theorem 234Yn

(n) Let (X,Σ, µ) be a localizable measure space, and ν a complete localizable measure on X, with domain
T ⊇ Σ, which is the completion of its restriction to Σ. Show that if we set ν1F = sup{ν(F ∩ E) : E ∈ Σ,
µE < ∞} for every F ∈ T, then ν1 is an indefinite-integral measure over µ, and there is an H ∈ Σ such
that ν1F = ν(F ∩H) for every F ∈ T.

(o) Let X be a set, and Msf the set of semi-finite measures on X. For µ, ν ∈ Msf say that µ 4 ν if
dom ν ⊆ domµ, µF ≤ νF for every F ∈ dom ν, and whenever E ∈ domµ and µE > 0 there is an F ∈ dom ν
such that F ⊆ E and 0 < µF < ∞. (i) Show that (Msf,4) is a partially ordered set. (ii) Show that if
A ⊆ Msf is a non-empty set with an upper bound in Msf, then it has a least upper bound λ defined by saying
that domλ =

⋂

µ∈A domµ and, for E ∈ domλ,

λE = sup{
n
∑

i=0

µiFi : µ0, . . . , µn ∈ A, 〈Fi〉i≤n is a partition of E,

Fi ∈ domλ for every i ≤ n}

= sup{
n
∑

i=0

µiFi : µ0, . . . , µn ∈ A, F0, . . . , Fn are disjoint,

Fi ∈ domµi and Fi ⊆ E for every i ≤ n}.

(iii) Suppose that µ, ν ∈ Msf have completions µ̂, ν̂ and c.l.d. versions µ̃, ν̃. Show that µ̃ 4 µ̂ 4 µ. Show
that if µ 4 ν then µ̂ 4 ν̂ and µ̃ 4 ν̃.

234 Notes and comments One of the striking features of measure theory, compared with other comparably
abstract branches of pure mathematics, is the relative unimportance of any notion of ‘morphism’. The theory
of groups, for instance, is dominated by the concept of ‘homomorphism’, and general topology gives a similar
place to ‘continuous function’. In my view, the nearest equivalent in measure theory is the idea of ‘inverse-
measure-preserving function’ (234A). I mean in Volumes 3 and 4 to explore this concept more thoroughly.
In this volume I will content myself with signalling such functions when they arise, and with the basic facts
listed in 234B.

Naturally linked with the idea of inverse-measure-preserving function is the construction of ‘image mea-
sures’ (234C). These appear everywhere in the subject, starting with the not-quite-elementary 234Yc. They
are of such importance that it is natural to explore variations, as in 234F and 234Yb, but in my view none
are of comparable significance.

Nearly half the section is taken up with ‘indefinite-integral measures’. I have taken this part very carefully
because the ideas I wish to express here, in so far as they extend the work of §232, rely critically on the
details of the formulation in 234I, and it is easy to make a false step once we have left the relatively sheltered
context of complete σ-finite measures. I believe that if we take a little trouble at this point we can develop
a theory (234K-234N) which will offer a smooth path to later applications; to see what I have in mind, you
can refer to the entries under ‘indefinite-integral measure’ in the index. For the moment I mention only a
kind of Radon-Nikodým theorem for localizable measures (234O).

The partial ordering described in 234P-234Q is only one of many which can be considered, and for some
purposes it seems unsatisfactory. The most important examples will appear in Chapter 41 of Volume 4, and
have a variety of special features for which it might be worth setting out further abstractions. However the
version here has the merit of simplicity and supports at least some of the relevant ideas (234Xl). For an
alternative notion, see 234Yo.

Version of 30.3.03/20.8.08

235 Measurable transformations

I turn now to a topic which is separate from the Radon-Nikodým theorem, but which seems to fit better
here than in either of the next two chapters. I seek to give results which will generalize the basic formula of
calculus

c© 1994 D. H. Fremlin
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∫

g(y)dy =
∫

g(φ(x))φ′(x)dx

in the context of a general transformation φ between measure spaces. The principal results are I suppose
235A/235E, which are very similar expressions of the basic idea, and 235J, which gives a general criterion
for a stronger result. A formulation from a different direction is in 235R.

235A I start with the basic result, which is already sufficient for a large proportion of the applications
I have in mind.

Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : Dφ → Y , J : DJ → [0,∞[ functions
defined on conegligible subsets Dφ, DJ of X such that

∫

J × χ(φ−1[F ])dµ exists = νF

whenever F ∈ T and νF <∞. Then
∫

φ−1[H]
J × gφ dµ exists =

∫

H
g dν

for every ν-integrable function g taking values in [−∞,∞] and every H ∈ T, provided that we interpret
(J × gφ)(x) as 0 when J(x) = 0 and g(φ(x)) is undefined. Consequently, interpreting J × fφ in the same
way,

∫

fdν ≤
∫

J × fφ dµ ≤
∫

J × fφ dµ ≤
∫

fdν

for every [−∞,∞]-valued function f defined almost everywhere in Y .

proof (a) If g is a simple function, say g =
∑n

i=0 aiχFi where νFi <∞ for each i, then
∫

J × gφ dµ =
∑n

i=0 ai
∫

J × χ(φ−1[Fi]) dµ =
∑n

i=0 aiνFi =
∫

g dν.

(b) If νF = 0 then
∫

J × χ(φ−1[F ]) = 0 so J = 0 a.e. on φ−1[F ]. So if g is defined ν-a.e., J = 0 µ-a.e.
on X \ dom(gφ) = (X \ Dφ) ∪ φ

−1[Y \ dom g], and, on the convention proposed, J × gφ is defined µ-a.e.
Moreover, if limn→∞ gn = g ν-a.e., then limn→∞ J × gnφ = J × gφ µ-a.e. So if 〈gn〉n∈N is a non-decreasing
sequence of simple functions converging almost everywhere to g, 〈J × gnφ〉n∈N will be a non-decreasing
sequence of integrable functions converging almost everywhere to J × gφ; by B.Levi’s theorem,

∫

J × gφ dµ exists = limn→∞

∫

J × gnφ dµ = limn→∞

∫

gndν =
∫

g dν.

(c) If g = g+ − g−, where g+ and g− are ν-integrable functions, then
∫

J × gφ dµ =
∫

J × g+φ dµ−
∫

J × g−φ dµ =
∫

g+dν −
∫

g−dν =
∫

g dν.

(d) This deals with the case H = Y . For the general case, we have

∫

H

g dν =

∫

(g × χH)dν

(131Fa)

=

∫

J × (g × χH)φ dµ =

∫

J × gφ× χ(φ−1[H])dµ =

∫

φ−1[H]

J × gφ dµ

by 214F.

(e) For the upper and lower integrals, I note first that if F is ν-negligible then
∫

J × χ(φ−1[F ])dµ = 0,
so that J = 0 µ-a.e. on φ−1[F ]. It follows that if f and g are [−∞,∞]-valued functions on subsets of Y and

f ≤a.e. g, then J × fφ ≤a.e. J × gφ. Now if
∫

fdν = ∞, we surely have
∫

J × fφ dµ ≤
∫

fdν. Otherwise,

∫

fdν = inf{

∫

g dν : g is ν − integrable and f ≤a.e. g}

= inf{

∫

J × gφ dµ : g is ν-integrable and f ≤a.e. g}

≤ inf{

∫

h dµ : h is µ-integrable and J × fφ ≤a.e. h} =

∫

J × fφ dµ.
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Similarly, or applying this argument to −f , we have
∫

J × fφ dµ ≤
∫

f dν.

235B Remarks (a) Note the particular convention

0× undefined = 0

which I am applying to the interpretation of J × gφ. This is the first of a number of technical points
which will concern us in this section. The point is that if g is defined ν-almost everywhere, then for any
extension of g to a function g1 : Y → R we shall, on this convention, have J × gφ = J × g1φ except on
{x : J(x) > 0, φ(x) ∈ Y \ dom g}, which is negligible; so that

∫

J × gφ dµ =
∫

J × g1φ dµ =
∫

g1dν =
∫

g dν

if g and g1 are integrable. Thus the convention is appropriate here, and while it adds a phrase to the
statements of many of the results of this section, it makes their application smoother. (But I ought to insist
that I am using this as a local convention only, and the ordinary rule 0× undefined = undefined will stand
elsewhere in this treatise unless explicitly overruled.)

(b) I have had to take care in the formulation of this theorem to distinguish between the hypothesis
∫

J(x)χ(φ−1[F ])(x)µ(dx) exists = νF whenever νF <∞

and the perhaps more elegant alternative
∫

φ−1[F ]
J(x)µ(dx) exists = νF whenever νF <∞,

which is not quite adequate for the theorem. (See 235Q below.) Recall that by
∫

A
f I mean

∫

(f↾A)dµA,

where µA is the subspace measure on A (214D). It is possible for
∫

A
(f↾A)dµA to be defined even when

∫

f × χAdµ is not; for instance, take µ to be Lebesgue measure on [0, 1], A any non-measurable subset of
[0, 1], and f the constant function with value 1; then

∫

A
f = µ∗A, but f ×χA = χA is not µ-integrable. It is

however the case that if
∫

f ×χAdµ is defined, then so is
∫

A
f , and the two are equal; this is a consequence

of 214F. While 235P shows that in most of the cases relevant to the present volume the distinction can be
passed over, it is important to avoid assuming that φ−1[F ] is measurable for every F ∈ T. A simple example
is the following. Set X = Y = [0, 1]. Let µ be Lebesgue measure on [0, 1], and define ν by setting

T = {F : F ⊆ [0, 1], F ∩ [0, 12 ] is Lebesgue measurable},

νF = 2µ(F ∩ [0, 12 ]) for every F ∈ T.

Set φ(x) = x for every x ∈ [0, 1]. Then we have

νF =
∫

F
J dµ =

∫

J × χ(φ−1[F ])dµ

for every F ∈ T, where J(x) = 2 for x ∈ [0, 12 ] and J(x) = 0 for x ∈
]

1
2 , 1

]

. But of course there are subsets

F of [ 12 , 1] which are not Lebesgue measurable (see 134D), and such an F necessarily belongs to T, even

though φ−1[F ] does not belong to the domain Σ of µ.
The point here is that if νF0 = 0 then we expect to have J = 0 on φ−1[F0], and it is of no importance

whether φ−1[F ] is measurable for F ⊆ F0.

235C Theorem 235A is concerned with integration, and accordingly the hypothesis
∫

J×χ(φ−1[F ])dµ =
νF looks only at sets F of finite measure. If we wish to consider measurability of non-integrable functions,
we need a slightly stronger hypothesis. I approach this version more gently, with a couple of lemmas.

Lemma Let Σ, T be σ-algebras of subsets of X and Y respectively. Suppose that D ⊆ X and that
φ : D → Y is a function such that φ−1[F ] ∈ ΣD, the subspace σ-algebra, for every F ∈ T. Then gφ is
Σ-measurable for every [−∞,∞]-valued T-measurable function g defined on a subset of Y .

proof Set C = dom g and B = dom gφ = φ−1[C]. If a ∈ R, then there is an F ∈ T such that {y : g(y) ≤
a} = F ∩ C. Now there is an E ∈ Σ such that φ−1[F ] = E ∩D. So

{x : gφ(x) ≤ a} = B ∩ E ∈ ΣB .

As a is arbitrary, gφ is Σ-measurable.
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235D Some of the results below are easier when we can move freely between measure spaces and their
completions (212C). The next lemma is what we need.

Lemma Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with completions (X, Σ̂, µ̂) and (Y, T̂, ν̂). Let φ :
Dφ → Y , J : DJ → [0,∞[ be functions defined on conegligible subsets of X.

(a) If
∫

J × χ(φ−1[F ])dµ = νF whenever F ∈ T and νF < ∞, then
∫

J × χ(φ−1[F ])dµ̂ = ν̂F whenever

F ∈ T̂ and ν̂F <∞.
(b) If

∫

J × χ(φ−1[F ])dµ = νF whenever F ∈ T, then
∫

J × χ(φ−1[F ])dµ̂ = ν̂F whenever F ∈ T̂.

proof Both rely on the fact that either hypothesis is enough to ensure that
∫

J×χ(φ−1[F ])dµ = 0 whenever
νF = 0. Accordingly, if F is ν-negligible, so that there is an F ′ ∈ T such that F ⊆ F ′ and νF ′ = 0, we shall
have

∫

J × χ(φ−1[F ])dµ =
∫

J × χ(φ−1[F ′])dµ = 0.

But now, given any F ∈ T̂, there is an F0 ∈ T such that F0 ⊆ F and ν̂(F \ F0) = 0, so that

∫

J × χ(φ−1[F ])dµ̂ =

∫

J × χ(φ−1[F ])dµ

=

∫

J × χ(φ−1[F0])dµ+

∫

J × χ(φ−1[F \ F0])dµ

= νF0 = ν̂F,

provided (for part (a)) that ν̂F <∞.

Remark Thus if we have the hypotheses of any of the principal results of this section valid for a pair of
non-complete measure spaces, we can expect to be able to draw some conclusion by applying the result to
the completions of the given spaces.

235E Now I come to the alternative version of 235A.

Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : Dφ → Y , J : DJ → [0,∞[ two functions
defined on conegligible subsets of X such that

∫

J × χ(φ−1[F ])dµ = νF

for every F ∈ T, allowing ∞ as a value of the integral.
(a) J × gφ is µ-virtually measurable for every ν-virtually measurable function g defined on a subset of Y .
(b) Let g be a ν-virtually measurable [−∞,∞]-valued function defined on a conegligible subset of Y .

Then
∫

J × gφ dµ =
∫

g dν whenever either integral is defined in [−∞,∞], if we interpret (J × gφ)(x) as 0
when J(x) = 0 and g(φ(x)) is undefined.

proof Let (X, Σ̂, µ̂) and (Y, T̂, ν̂) be the completions of (X,Σ, µ) and (Y,T, ν). By 235D,
∫

J × χ(φ−1[F ])dµ̂ = ν̂F

for every F ∈ T̂. Recalling that a real-valued function is µ-virtually measurable iff it is Σ̂-measurable
(212Fa), and that

∫

fdµ =
∫

fdµ̂ if either is defined in [−∞,∞] (212Fb), the conclusions we are seeking are

(a)′ J × gφ is Σ̂-measurable for every T̂-measurable function g defined on a subset of Y ;

(b)′
∫

J × gφ dµ̂ =
∫

g dν̂ whenever g is a T̂-measurable function defined almost everywhere
in Y and either integral is defined in [−∞,∞].

(a) When I write
∫

J × χDφdµ =
∫

J × χ(φ−1[Y ])dµ = νY ,

which is part of the hypothesis of this theorem, I mean to imply that J × χDφ is µ-virtually measurable,

that is, is Σ̂-measurable. Because Dφ is conegligible, it follows that J is Σ̂-measurable, and its domain DJ ,

being conegligible, also belongs to Σ̂. Set G = {x : x ∈ DJ , J(x) > 0} ∈ Σ̂. Then for any set A ⊆ X, J×χA

is Σ̂-measurable iff A ∩G ∈ Σ̂. So the hypothesis is just that G ∩ φ−1[F ] ∈ Σ̂ for every F ∈ T̂.
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Now let g be a [−∞,∞]-valued function, defined on a subset C of Y , which is T̂-measurable. Applying

235C to φ↾G, we see that gφ↾G is Σ̂-measurable, so (J ×gφ)↾G is Σ̂-measurable. On the other hand, J ×gφ

is zero almost everywhere in X \G, so (because G ∈ Σ̂) J × gφ is Σ̂-measurable, as required.

(b)(i) Suppose first that g ≥ 0. Then J × gφ ≥ 0, so (a) tells us that
∫

J × gφ is defined in [0,∞].

(ααα) If
∫

g dν̂ <∞ then
∫

J × gφ dµ̂ =
∫

g dν̂ by 235A.

(βββ) If there is some ǫ > 0 such that ν̂H = ∞, where H = {y : g(y) ≥ ǫ}, then
∫

J × gφ dµ̂ ≥ ǫ
∫

J × χ(φ−1[H])dµ̂ = ǫν̂H = ∞,

so
∫

J × gφ dµ̂ = ∞ =
∫

g dν̂.

(γγγ) Otherwise,

∫

J × gφ dµ̂ ≥ sup{

∫

J × hφ dµ̂ : h is ν̂-integrable, 0 ≤ h ≤ g}

= sup{

∫

h dν̂ : h is ν̂-integrable, 0 ≤ h ≤ g} =

∫

g dν̂ = ∞,

so once again
∫

J × φ dµ̂ =
∫

g dν̂.

(ii) For general real-valued g, apply (i) to g+ and g− where g+ = 1
2 (|g|+ g), g− = 1

2 (|g| − g); the point
is that (J × gφ)+ = J × g+φ and (J × gφ)− = J × g−φ, so that

∫

J × gφ =
∫

J × g+φ−
∫

J × g−φ =
∫

g+ −
∫

g− =
∫

g

if either side is defined in [−∞,∞].

235F Remarks (a) Of course there are two special cases of this theorem which between them carry all
its content: the case J = 1 a.e. and the case in which X = Y and φ is the identity function. If J = χX we
are very close to 235G below, and if φ is the identity function we are close to the indefinite-integral measures
of §234.

(b) As in 235A, we can strengthen the conclusion of (b) in 235E to
∫

φ−1[F ]
J × gφ dµ =

∫

F
g dν

whenever F ∈ T and
∫

F
g dν is defined in [−∞,∞].

235G Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces and φ : X → Y an inverse-measure-
preserving function. Then

(a) if g is a ν-virtually measurable [−∞,∞]-valued function defined on a subset of Y , gφ is µ-virtually
measurable;

(b) if g is a ν-virtually measurable [−∞,∞]-valued function defined on a conegligible subset of Y ,
∫

gφ dµ =
∫

g dν if either integral is defined in [−∞,∞];
(c) if g is a ν-virtually measurable [−∞,∞]-valued function defined on a conegligible subset of Y , and

F ∈ T, then
∫

φ−1[F ]
gφ dµ =

∫

F
g dν if either integral is defined in [−∞,∞].

proof (a) This follows immediately from 234Ba and 235C; taking Σ̂, T̂ to be the domains of the completions

of µ, ν respectively, φ−1[F ] ∈ Σ̂ for every F ∈ T̂, so if g is T̂-measurable then gφ will be Σ̂-measurable.

(b) Apply 235E with J = χX; we have
∫

J × χ(φ−1[F ])dµ = µφ−1[F ] = νF

for every F ∈ T, so
∫

gφ =
∫

J × gφ =
∫

g

if either integral is defined in [−∞,∞].

(c) Apply (b) to g × χF .
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235H The image measure catastrophe Applications of 235A would run much more smoothly if we
could say

‘
∫

g dν exists and is equal to
∫

J ×gφ dµ for every g : Y → R such that J ×gφ is µ-integrable’.

Unhappily there is no hope of a universally applicable result in this direction. Suppose, for instance, that
ν is Lebesgue measure on Y = [0, 1], that X ⊆ [0, 1] is a non-Lebesgue-measurable set of outer measure 1
(134D), that µ is the subspace measure νX on X, and that φ(x) = x for x ∈ X. Then

µφ−1F = ν∗(X ∩ F ) = νF

for every Lebesgue measurable set F ⊆ Y , so we can take J = χX and the hypotheses of 235A and 235E
will be satisfied. But if we write g = χX : [0, 1] → {0, 1}, then

∫

gφ dµ is defined even though
∫

g dν is not.
The point here is that there is a set A ⊆ Y such that (in the language of 235A/235E) φ−1[A] ∈ Σ but

A /∈ T̂. This is the image measure catastrophe. The search for contexts in which we can be sure that
it does not occur will be one of the motive themes of Volume 4. For the moment, I will offer some general
remarks (235I-235J), and describe one of the important cases in which the problem does not arise (235K).

235I Lemma Let Σ, T be σ-algebras of subsets of X, Y respectively, and φ a function from a subset D
of X to Y . Suppose that G ⊆ X and that

T = {F : F ⊆ Y, G ∩ φ−1[F ] ∈ Σ}.

Then a real-valued function g, defined on a member of T, is T-measurable iff χG× gφ is Σ-measurable.

proof Because surely Y ∈ T, the hypothesis implies that G ∩D = G ∩ φ−1[Y ] belongs to Σ.
Let g : C → R be a function, where C ∈ T. Set B = dom(gφ) = φ−1[C], and for a ∈ R set Fa = {y :

g(y) ≥ a},

Ea = G ∩ φ−1[Fa] = {x : x ∈ G ∩B, gφ(x) ≥ a}.

Note that G ∩B ∈ Σ because C ∈ T.

(i) If g is T-measurable, then Fa ∈ T and Ea ∈ Σ for every a. Now

G ∩ {x : x ∈ B, gφ(x) ≥ a} = G ∩ φ−1[Fa] = Ea,

so {x : x ∈ B, (χG× gφ)(x) ≥ a} is either Ea or Ea ∪ (B \G), and in either case is relatively Σ-measurable
in B. As a is arbitrary, χG× gφ is Σ-measurable.

(ii) If χG× gφ is Σ-measurable, then, for any a ∈ R,

Ea = {x : x ∈ G ∩B, (χG× gφ)(x) ≥ a} ∈ Σ

because G ∩B ∈ Σ and χG× gφ is Σ-measurable. So Fa ∈ T. As a is arbitrary, g is T-measurable.

235J Theorem Let (X,Σ, µ) and (Y,T, ν) be complete measure spaces. Let φ : Dφ → Y , J : DJ → [0,∞[
be functions defined on conegligible subsets of X, and set G = {x : x ∈ DJ , J(x) > 0}. Suppose that

T = {F : F ⊆ Y, G ∩ φ−1[F ] ∈ Σ},

νF =
∫

J × χ(φ−1[F ])dµ for every F ∈ T.

Then, for any real-valued function g defined on a subset of Y ,
∫

J × gφ dµ =
∫

g dν whenever either integral
is defined in [−∞,∞], provided that we interpret (J × gφ)(x) as 0 when J(x) = 0 and g(φ(x)) is undefined.

proof If g is T-measurable and defined almost everywhere, this is a consequence of 235E. So I have to show
that if J × gφ is measurable and defined almost everywhere, so is g. Set W = Y \ dom g. Then J × gφ is
undefined on G∩ φ−1[W ], because gφ is undefined there and we cannot take advantage of the escape clause
available when J = 0; so G ∩ φ−1[W ] must be negligible, therefore measurable, and W ∈ T. Next,

νW =
∫

J × χ(φ−1[W ]) = 0

because J × χ(φ−1[W ]) can be non-zero only on the negligible set G ∩ φ−1[W ]. So g is defined almost
everywhere.
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Note that the hypothesis surely implies that J × χDφ = J × χ(φ−1[Y ]) is measurable, so that J is
measurable (because Dφ is conegligible) and G ∈ Σ. Writing K(x) = 1/J(x) for x ∈ G, 0 for x ∈ X \ G,
the function K : X → R is measurable, and

χG× gφ = K × J × gφ

is measurable. So 235I tells us that g must be measurable, and we’re done.

Remark When J = χX, the hypothesis of this theorem becomes

T = {F : F ⊆ Y, φ−1[F ] ∈ Σ}, νF = µφ−1[F ] for every F ∈ T;

that is, ν is the image measure µφ−1 as defined in 234D.

235K Corollary Let (X,Σ, µ) be a complete measure space, and J a non-negative measurable function
defined on a conegligible subset of X. Let ν be the associated indefinite-integral measure, and T its domain.
Then for any real-valued function g defined on a subset of X, g is T-measurable iff J × g is Σ-measurable,
and

∫

g dν =
∫

J × g dµ if either integral is defined in [−∞,∞], provided that we interpret (J × g)(x) as 0
when J(x) = 0 and g(x) is undefined.

proof Put 235J, taking Y = X and φ the identity function, together with 234Ld.

235L Applying the Radon-Nikodým theorem In order to use 235A-235J effectively, we need to be
able to find suitable functions J . This can be difficult – some very special examples will take up most of
Chapter 26 below. But there are many circumstances in which we can be sure that such J exist, even if we do
not know what they are. A minimal requirement is that if νF <∞ and µ∗φ−1[F ] = 0 then νF = 0, because
∫

J × χ(φ−1[F ])dµ will be zero for any J . A sufficient condition, in the special case of indefinite-integral
measures, is in 234O. Another is the following.

235M Theorem Let (X,Σ, µ) be a σ-finite measure space, (Y,T, ν) a semi-finite measure space, and
φ : D → Y a function such that

(i) D is a conegligible subset of X,
(ii) φ−1[F ] ∈ Σ for every F ∈ T;
(iii) µφ−1[F ] > 0 whenever F ∈ T and νF > 0.

Then there is a Σ-measurable function J : X → [0,∞[ such that
∫

J × χφ−1[F ] dµ = νF for every F ∈ T.

proof (a) To begin with (down to the end of (c) below) let us suppose that D = X and that ν is totally
finite.

Set T̃ = {φ−1[F ] : F ∈ T} ⊆ Σ. Then T̃ is a σ-algebra of subsets of X. PPP (i)

∅ = φ−1[∅] ∈ T̃.

(ii) If E ∈ T̃, take F ∈ T such that E = φ−1[F ], so that

X \ E = φ−1[Y \ F ] ∈ T̃.

(iii) If 〈En〉n∈N is any sequence in T̃, then for each n ∈ N choose Fn ∈ T such that En = φ−1[Fn]; then
⋃

n∈NEn = φ−1[
⋃

n∈N Fn] ∈ T̃. QQQ

Next, we have a totally finite measure ν̃ : T̃ → [0, νY ] given by setting

ν̃(φ−1[F ]) = νF for every F ∈ T.

PPP (i) If F , F ′ ∈ T and φ−1[F ] = φ−1[F ′], then φ−1[F△F ′] = ∅, so µ(φ−1[F△F ′]) = 0 and ν(F△F ′) = 0;
consequently νF = νF ′. This shows that ν̃ is well-defined. (ii) Now

ν̃∅ = ν̃(φ−1[∅]) = ν∅ = 0.

(iii) If 〈En〉n∈N is a disjoint sequence in T̃, let 〈Fn〉n∈N be a sequence in T such that En = φ−1[Fn] for each
n; set F ′

n = Fn \
⋃

m<n Fm for each n; then En = φ−1[F ′
n] for each n, so

ν̃(
⋃

n∈NEn) = ν̃(φ−1[
⋃

n∈N F
′
n]) = ν(

⋃

n∈N F
′
n) =

∑∞
n=0 νF

′
n =

∑∞
n=0 ν̃En. QQQ
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Finally, observe that if ν̃E > 0 then µE > 0, because E = φ−1[F ] where νF > 0.

(b) By 215B(ix) there is a Σ-measurable function h : X → ]0,∞[ such that
∫

h dµ is finite. Define

µ̃ : T̃ → [0,∞[ by setting µ̃E =
∫

E
h dµ for every E ∈ T̃; then µ̃ is a totally finite measure. If E ∈ T̃

and µ̃E = 0, then (because h is strictly positive) µE = 0 and ν̃E = 0. Accordingly we may apply the

Radon-Nikodým theorem to µ̃ and ν̃ to see that there is a T̃-measurable function g : X → R such that
∫

E
g dµ̃ = ν̃E for every E ∈ T̃. Because ν̃ is non-negative, we may suppose that g ≥ 0.

(c) Applying 235A to µ, µ̃, h and the identity function from X to itself, we see that
∫

E
g × h dµ =

∫

E
g dµ̃ = ν̃E

for every E ∈ T̃, that is, that
∫

J × χ(φ−1[F ])dµ = νF

for every F ∈ T, writing J = g × h.

(d) This completes the proof when ν is totally finite and D = X. For the general case, if Y = ∅ then

µX = 0 and the result is trivial. Otherwise, let φ̂ be any extension of φ to a function from X to Y which is

constant on X \D; then φ̂−1[F ] ∈ Σ for every F ∈ T, because D = φ−1[Y ] ∈ Σ and φ̂−1[F ] is always either
φ−1[F ] or (X \ D) ∪ φ−1[F ]. Now ν must be σ-finite. PPP Use the criterion of 215B(ii). If F is a disjoint

family in {F : F ∈ T, 0 < νF < ∞}, then E = {φ̂−1[F ] : F ∈ F} is a disjoint family in {E : µE > 0}, so E
and F are countable. QQQ

Let 〈Yn〉n∈N be a partition of Y into sets of finite ν-measure, and for each n ∈ N set νnF = ν(F ∩Yn) for
every F ∈ T. Then νn is a totally finite measure on Y , and if νnF > 0 then νF > 0 so

µφ̂−1[F ] = µφ−1[F ] > 0.

Accordingly µ, φ̂ and νn satisfy the assumptions of the theorem together with those of (a) above, and there
is a Σ-measurable function Jn : X → [0,∞[ such that

νnF =
∫

Jn × χ(φ−1[F ])dµ

for every F ∈ T. Now set J =
∑∞

n=0 Jn × χ(φ−1[Yn]), so that J : X → [0,∞[ is Σ-measurable. If F ∈ T,
then

∫

J × χ(φ−1[F ])dµ =

∞
∑

n=0

∫

Jn × χ(φ−1[Yn])× χ(φ−1[F ])dµ

=
∞
∑

n=0

∫

Jn × χ(φ−1[F ∩ Yn])dµ =
∞
∑

n=0

ν(F ∩ Yn) = νF,

as required.

235N Remark Theorem 235M can fail if µ is only strictly localizable rather than σ-finite. PPP Let X = Y
be an uncountable set, Σ = PX, µ counting measure on X (112Bd), T the countable-cocountable σ-algebra
of Y , ν the countable-cocountable measure on Y (211R), φ : X → Y the identity map. Then φ−1[F ] ∈ Σ
and µφ−1[F ] > 0 whenever νF > 0. But if J is any µ-integrable function on X, then F = {x : J(x) 6= 0} is
countable and

ν(Y \ F ) = 1 6= 0 =
∫

φ−1[Y \F ]
J dµ. QQQ

*235O There are some simplifications in the case of σ-finite spaces; in particular, 235A and 235E become
conflated. I will give an adaptation of the hypotheses of 235A which may be used in the σ-finite case. First
a lemma.

Lemma Let (X,Σ, µ) be a measure space and f a non-negative integrable function on X. If A ⊆ X is such
that

∫

A
f +

∫

X\A
f =

∫

f , then f × χA is integrable.

proof By 214Eb, there are µ-integrable functions f1, f2 such that f1 extends f↾A, f2 extends f↾X \A, and
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∫

E
f1 =

∫

E∩A
f ,

∫

E
f2 =

∫

E\A
f

for every E ∈ Σ. Because f is non-negative,
∫

E
f1 and

∫

E
f2 are non-negative for every E ∈ Σ, and f1, f2

are non-negative a.e. Accordingly we have f ×χA ≤a.e. f1 and f ×χ(X \A) ≤a.e. f2, so that f ≤a.e. f1+ f2.
But also

∫

f1 + f2 =
∫

X
f1 +

∫

X
f2 =

∫

A
f +

∫

X\A
f =

∫

f ,

so f =a.e. f1 + f2. Accordingly

f1 =a.e. f − f2 ≤a.e. f − f × χ(X \A) = f × χA ≤a.e. f1

and f × χA =a.e. f1 is integrable.

*235P Proposition Let (X,Σ, µ) be a complete measure space and (Y,T, ν) a complete σ-finite measure
space. Suppose that φ : Dφ → Y , J : DJ → [0,∞[ are functions defined on conegligible subsets Dφ, DJ of
X such that

∫

φ−1[F ]
J dµ exists and is equal to νF whenever F ∈ T and νF <∞.

(a) J × gφ is Σ-measurable for every T-measurable real-valued function g defined on a subset of Y .
(b) If g is a T-measurable real-valued function defined almost everywhere in Y , then

∫

J×gφ dµ =
∫

g dν
whenever either integral is defined in [−∞,∞], interpreting (J × gφ)(x) as 0 when J(x) = 0, g(φ(x)) is
undefined.

proof The point is that the hypotheses of 235E are satisfied. To see this, let us write ΣC = {E∩C : E ∈ Σ}
and µC = µ∗↾ΣC for the subspace measure on C, for each C ⊆ X. Let 〈Yn〉n∈N be a non-decreasing sequence
of sets with union Y and with νYn <∞ for every n ∈ N, starting from Y0 = ∅.

(i) Take any F ∈ T with νF <∞, and set Fn = F ∪ Yn for each n ∈ N; write Cn = φ−1[Fn].
Fix n for the moment. Then our hypothesis implies that

∫

C0

J dµ+
∫

Cn\C0

J dµ = νF + ν(Fn \ F ) = νFn =
∫

Cn

J dµ.

If we regard the subspace measures on C0 and Cn \C0 as derived from the measure µCn
of Cn (214Ce), then

235O tells us that J × χC0 is µCn
-integrable, and there is a µ-integrable function hn such that hn extends

(J × χC0)↾Cn.
Let E be a µ-conegligible set, included in the domain Dφ of φ, such that hn↾E is Σ-measurable for every

n. Because 〈Cn〉n∈N is a non-decreasing sequence with union φ−1[
⋃

n∈N Fn] = Dφ,

(J × χC0)(x) = limn→∞ hn(x)

for every x ∈ E, and (J × χC0)↾E is measurable. At the same time, we know that there is a µ-integrable h
extending J↾C0, and 0 ≤a.e. J × χC0 ≤a.e. |h|. Accordingly J × χC0 is integrable, and (using 214F)

∫

J × χφ−1[F ] dµ =
∫

J × χC0 dµ =
∫

C0

J↾C0 dµC0
= νF .

(ii) This deals with F of finite measure. For general F ∈ T,
∫

J × χ(φ−1[F ]) dµ = limn→∞

∫

J × χ(φ−1[F ∩ Yn]) dµ = limn→∞ ν(F ∩ Yn) = νF .

So the hypotheses of 235E are satisfied, and the result follows at once.

*235Q I remarked in 235Bb that a difficulty can arise in 235A, for general measure spaces, if we speak
of

∫

φ−1[F ]
J dµ in the hypothesis, in place of

∫

J × χ(φ−1[F ])dµ. Here is an example.

Example Set X = Y = [0, 2]. Write ΣL for the algebra of Lebesgue measurable subsets of R, and µL for
Lebesgue measure; write µc for counting measure on R. Set

Σ = T = {E : E ⊆ [0, 2], E ∩ [0, 1[ ∈ ΣL};

of course this is a σ-algebra of subsets of [0, 2]. For E ∈ Σ = T, set

µE = νE = µL(E ∩ [0, 1[) + µc(E ∩ [1, 2]);

then µ is a complete measure – in effect, it is the direct sum of Lebesgue measure on [0, 1[ and counting
measure on [1, 2] (see 214L). It is easy to see that
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µ∗B = µ∗
L(B ∩ [0, 1[) + µc(B ∩ [1, 2])

for every B ⊆ [0, 2]. Let A ⊆ [0, 1[ be a non-Lebesgue-measurable set such that µ∗
L(E \A) = µLE for every

Lebesgue measurable E ⊆ [0, 1[ (see 134D). Define φ : [0, 2] → [0, 2] by setting φ(x) = x + 1 if x ∈ A,
φ(x) = x if x ∈ [0, 2] \A.

If F ∈ Σ, then µ∗(φ−1[F ]) = µF . PPP (i) If F ∩ [1, 2] is finite, then µF = µL(F ∩ [0, 1]) + #(F ∩ [1, 2]).
Now

φ−1[F ] = (F ∩ [0, 1[ \A) ∪ (F ∩ [1, 2]) ∪ {x : x ∈ A, x+ 1 ∈ F};

as the last set is finite, therefore µ-negligible,

µ∗(φ−1[F ]) = µ∗
L(F ∩ [0, 1[ \A) + #(F ∩ [1, 2]) = µL(F ∩ [0, 1[) + #(F ∩ [1, 2]) = µF .

(ii) If F ∩ [1, 2] is infinite, so is φ−1[F ] ∩ [1, 2], so

µ∗(φ−1[F ]) = ∞ = µF . QQQ

This means that if we set J(x) = 1 for every x ∈ [0, 2],
∫

φ−1[F ]
J dµ = µφ−1[F ](φ

−1[F ]) = µ∗(φ−1[F ]) = µF

for every F ∈ Σ, and φ, J satisfy the amended hypotheses for 235A. But if we set g = χ [0, 1[, then g is
µ-integrable, with

∫

g dµ = 1, while

J(x)g(φ(x)) = 1 if x ∈ [0, 1] \A, 0 otherwise,

so, because A /∈ Σ, J × gφ is not measurable, and therefore (since µ is complete) not µ-integrable.

235R Reversing the burden Throughout the work above, I have been using the formula
∫

J × gφ =
∫

g,

as being the natural extension of the formula
∫

g =
∫

gφ× φ′

of ordinary advanced calculus. But we can also move the ‘derivative’ J to the other side of the equation, as
follows.

Theorem Let (X,Σ, µ), (Y,T, ν) be measure spaces and φ : X → Y , J : Y → [0,∞[ functions such that
∫

F
J dν and µφ−1[F ] are defined in [0,∞] and equal for every F ∈ T. Then

∫

gφ dµ =
∫

J × g dν whenever
g is ν-virtually measurable and defined ν-almost everywhere and either integral is defined in [−∞,∞].

proof Let ν1 be the indefinite-integral measure over ν defined by J , and µ̂ the completion of µ. Then
φ is inverse-measure-preserving for µ̂ and ν1. PPP If F ∈ T, then ν1F =

∫

F
J dν = µφ−1[F ]; that is, φ is

inverse-measure-preserving for µ and ν1↾T. Since ν1 is the completion of ν1↾T (234Lb), φ is inverse-measure-
preserving for µ and ν1 (234Ba). QQQ

Of course we can also regard ν1 as being an indefinite-integral measure over the completion ν̂ of ν (212Fb).
So if g is ν-virtually measurable and defined ν-almost everywhere,

∫

J × g dν =
∫

J × g dν̂ =
∫

g dν1 =
∫

gφ dµ̂ =
∫

gφ dµ

if any of the five integrals is defined in [−∞,∞], by 235K, 235Gb and 212Fb again.

235X Basic exercises (a) Explain what 235A tells us when X = Y , T = Σ, φ is the identity function
and νE = αµE for every E ∈ Σ.

(b) Let (X,Σ, µ) be a measure space, J an integrable non-negative real-valued function on X, and
φ : Dφ → R a measurable function, where Dφ is a conegligible subset of X. Set

g(a) =
∫

{x:φ(x)≤a}
J

for a ∈ R, and let µg be the Lebesgue-Stieltjes measure associated with g. Show that
∫

J × fφ dµ =
∫

fdµg

for every µg-integrable real function f .
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(c) Let Σ, T and Λ be σ-algebras of subsets of X, Y and Z respectively. Let us say that a function
φ : A → Y , where A ⊆ X, is (Σ,T)-measurable if φ−1[F ] ∈ ΣA, the subspace σ-algebra of A, for every
F ∈ T. Suppose that A ⊆ X, B ⊆ Y , φ : A→ Y is (Σ,T)-measurable and ψ : B → Z is (T,Λ)-measurable.
Show that ψφ is (Σ,Λ)-measurable. Deduce 235C.

(d) Let (X,Σ, µ) be a measure space and (Y,T, ν) a semi-finite measure space. Let φ : Dφ → Y and
J : DJ → [0,∞[ be functions defined on conegligible subsets Dφ, DJ of X such that

∫

J × χ(φ−1[F ])dµ
exists = νF whenever F ∈ T and νF < ∞. Let g be a T-measurable real-valued function, defined on a
conegligible subset of Y . Show that J × gφ is µ-integrable iff g is ν-integrable, and the integrals are then
equal, provided we interpret (J × gφ)(x) as 0 when J(x) = 0 and g(φ(x)) is undefined.

(e) Let (X,Σ, µ) be a measure space and E ∈ Σ. Define a measure µ E on X by setting (µ E)(F ) =
µ(E ∩ F ) whenever F ⊆ X is such that F ∩ E ∈ Σ. Show that, for any function f from a subset of X to
[−∞,∞],

∫

fd(µ E) =
∫

E
fdµ if either is defined in [−∞,∞].

>>>(f) Let g : R → R be a non-decreasing function which is absolutely continuous on every closed bounded
interval, and µg the associated Lebesgue-Stieltjes measure (114Xa, 225Xd). Write µ for Lebesgue measure
on R, and let f : R → R be a function. Show that

∫

f × g′ dµ =
∫

f dµg in the sense that if one of the
integrals exists, finite or infinite, so does the other, and they are then equal.

(g) Let g : R → R be a non-decreasing function and J a non-negative real-valued µg-integrable function,
where µg is the Lebesgue-Stieltjes measure defined from g. Set h(x) =

∫

]−∞,x]
J dµg for each x ∈ R, and let

µh be the Lebesgue-Stieltjes measure associated with h. Show that, for any f : R → R,
∫

f×J dµg =
∫

fdµh,
in the sense that if one of the integrals is defined in [−∞,∞] so is the other, and they are then equal.

>>>(h) Let X be a set and λ, µ, ν three measures on X such that µ is an indefinite-integral measure over
λ, with Radon-Nikodým derivative f , and ν is an indefinite-integral measure over µ, with Radon-Nikodým
derivative g. Show that ν is an indefinite-integral measure over λ, and that f × g is a Radon-Nikodým
derivative of ν with respect to λ, provided we interpret (f ×g)(x) as 0 when f(x) = 0 and g(x) is undefined.

(i) In 235M, if ν is not semi-finite, show that we can still find a J such that
∫

φ−1[F ]
J dµ = νF for every

set F of finite measure. (Hint : use the ‘semi-finite version’ of ν, as described in 213Xc.)

(j) Let (X,Σ, µ) be a σ-finite measure space, and T a σ-subalgebra of Σ. Let ν : T → R be a countably
additive functional such that νF = 0 whenever F ∈ T and µF = 0. Show that there is a µ-integrable
function f such that

∫

F
fdµ = νF for every F ∈ T. (Hint : use the method of 235M, applied to the positive

and negative parts of ν.)

(k) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with completions (X, Σ̂, µ̂) and (Y, T̂, ν̂). Let φ : Dφ →
Y , J : DJ → [0,∞[ be functions defined on conegligible subsets of X. Show that if

∫

φ−1[F ]
J dµ = νF

whenever F ∈ T and νF <∞, then
∫

φ−1[F ]
J dµ = νF whenever F ∈ T̂ and ν̂F <∞. Hence, or otherwise,

show that 235Pb is valid for non-complete spaces (X,Σ, µ) and (Y,T, ν).

(l) Let (X,Σ, µ) be a complete measure space, Y a set, φ : X → Y a function and ν = µφ−1 the
corresponding image measure on Y . Let ν1 be an indefinite-integral measure over ν. Show that there is an
indefinite-integral measure µ1 over µ such that ν1 is the image measure µ1φ

−1.

(m) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : X → Y an inverse-measure-preserving function.
Let ν1 be an indefinite-integral measure over ν. Show that there is an indefinite-integral measure µ1 over µ
such that φ is inverse-measure-preserving for µ1 and ν1.

(n) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : X → Y an inverse-measure-preserving function.

Show that
∫

hφ dµ ≤
∫

h dν for every real-valued function h defined almost everywhere in Y . (Compare
234Bf.)
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235Y Further exercises (a) Write T for the algebra of Borel subsets of Y = [0, 1], and ν for the
restriction of Lebesgue measure to T. Let A ⊆ [0, 1] be a set such that both A and [0, 1] \A have Lebesgue
outer measure 1, and set X = A ∪ [1, 2]. Let Σ be the algebra of relatively Borel subsets of X, and set
µE = µA(A ∩E) for E ∈ Σ, where µA is the subspace measure induced on A by Lebesgue measure. Define
φ : X → Y by setting φ(x) = x if x ∈ A, x− 1 if x ∈ X \ A. Show that ν is the image measure µφ−1, but
that, setting g = χ([0, 1] \A), gφ is µ-integrable while g is not ν-integrable.

(b) Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let f be a non-negative µ-integrable
function with

∫

fdµ = 1, so that its indefinite-integral measure ν is a probability measure. Let g be a
ν-integrable real-valued function and set h = f × g, intepreting h(x) as 0 if f(x) = 0 and g(x) is undefined.
Let f1, h1 be conditional expectations of f , h on T with respect to the measure µ, and set g1 = h1/f1,
interpreting g1(x) as 0 if h1(x) = 0 and f1(x) is either 0 or undefined. Show that g1 is a conditional
expectation of g on T with respect to the measure ν.

235 Notes and comments I see that I have taken up a great deal of space in this section with technicalities;
the hypotheses of the theorems vary erratically, with completeness, in particular, being invoked at apparently
arbitrary intervals, and ideas repeat themselves in a haphazard pattern. There is nothing deep, and most
of the work consists in laboriously verifying details. The trouble with this topic is that it is useful. The
results here are abstract expressions of integration-by-substitution; they have applications all over measure
theory. I cannot therefore content myself with theorems which will elegantly express the underlying ideas,
but must seek formulations which I can quote in later arguments.

I hope that the examples in 235Bb, 235H, 235N, 235Q, 234Ya and 235Ya will go some way to persuade
you that there are real traps for the unwary, and that the careful verifications written out at such length
are necessary. On the other hand, it is happily the case that in simple contexts, in which the measures µ,
ν are σ-finite and the transformations φ are Borel isomorphisms, no insuperable difficulties arise, and in
particular the image measure catastrophe does not trouble us. But for further work in this direction I refer
you to the applications in §263, §265 and §271, and to Volume 4.
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Version of 20.8.08

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

§234 Section §234 has been rewritten, with a good deal of new material. The former paragraphs 234A-
234G, referred to in the 2002 and 2004 editions of Volume 3 and the 2003 and 2006 editions of Volume 4,
are now 234I-234O.

§235 Section §235 has been re-organized, with some material moved to §234. Specifically, 235H, 235I,
235J, 235L, 235M, 235T and 235Xe, referred to in the 2002 and 2004 editions of Volume 3 and the 2003 and
2006 editions of Volume 4, are now dealt with in 234B, 235G, 235H, 235J, 235K, 235R and 234A.

c© 2008 D. H. Fremlin
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