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Chapter 13

Complements

In this chapter I collect a number of results which do not lie in the direct line of the argument from 111A
(the definition of ‘σ-algebra’) to 123C (Lebesgue’s Dominated Convergence Theorem), but which nevertheless
demand inclusion in this volume, being both relatively elementary, essential for further developments and
necessary to a proper comprehension of what has already been done. The longest section is §134, dealing
with a few of the elementary special properties of Lebesgue measure; in particular, its translation-invariance,
the existence of non-measurable sets and functions, and the Cantor set. The other sections are comparatively
lightweight. §131 discusses (measurable) subspaces and the interpretation of the formula

∫
E
f , generalizing

the idea of an integral
∫ b

a
f of a function over an interval. §132 introduces the outer measure associated with

a measure, a kind of inverse of Carathéodory’s construction of a measure from an outer measure. §§133 and
135 lay out suitable conventions for dealing with ‘infinity’ and complex numbers (separately! they don’t mix
well) as values either of integrands or of integrals; at the same time I mention ‘upper’ and ‘lower’ integrals.
Finally, in §136, I give some theorems on σ-algebras of sets, describing how they can (in some of the most
important cases) be generated by relatively restricted operations.

Version of 18.3.05

131 Measurable subspaces

Very commonly we wish to integrate a function over a subset of a measure space; for instance, to form

an integral
∫ b

a
f(x)dx, where a < b in R. As often as not, we wish to do this when the function is partly or

wholly undefined outside the subset, as in such expressions as
∫ 1

0
lnx dx. The natural framework in which

to perform such operations is that of ‘subspace measures’. If (X,Σ, µ) is a measure space and H ∈ Σ, there
is a natural subspace measure µH on H, which I describe in this section. I begin with the definition of this
subspace measure (131A-131C), with a description of integration with respect to it (131E-131H); this gives
a solid foundation for the concept of ‘integration over a (measurable) subset’ (131D).

131A Proposition Let (X,Σ, µ) be a measure space, and H ∈ Σ. Set ΣH = {E : E ∈ Σ, E ⊆ H} and
let µH be the restriction of µ to ΣH . Then (H,ΣH , µH) is a measure space.

131B Definition If (X,Σ, µ) is any measure space and H ∈ Σ, then µH , as defined in 131A, is the
subspace measure on H.

When X = Rr, where r ≥ 1, and µ is Lebesgue measure on Rr, I will call a subspace measure µH

Lebesgue measure on H.

131C Lemma Let (X,Σ, µ) be a measure space, H ∈ Σ, and µH the subspace measure on H, with
domain ΣH . Then

(a) for any A ⊆ H, A is µH -negligible iff it is µ-negligible;
(b) if G ∈ ΣH then (µH)G, the subspace measure on G when G is regarded as a measurable subset of H,

is identical to µG, the subspace measure on G when G is regarded as a measurable subset of X.

131D Integration over subsets: Definition Let (X,Σ, µ) be a measure space, H ∈ Σ and f a real-
valued function defined on a subset of X. By

∫
H
f (or

∫
H
f(x)µ(dx), etc.) I shall mean

∫
(f↾H)dµH , if this

exists.
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2 Complements 131E

131E Proposition Let (X,Σ, µ) be a measure space, H ∈ Σ, and f a real-valued function defined on a

subset dom f of H. Set f̃(x) = f(x) if x ∈ dom f , 0 if x ∈ X \H. Then
∫
fdµH =

∫
f̃dµ if either is defined

in R.

131F Corollary Let (X,Σ, µ) be a measure space and f a real-valued function defined on a subset dom f
of X.

(a) IfH ∈ Σ and f is defined almost everywhere inX, then f↾H is µH -integrable iff f×χH is µ-integrable,
and in this case

∫
H
f =

∫
f × χH.

(b) If f is µ-integrable, then f ≥ 0 a.e. iff
∫
H
f ≥ 0 for every H ∈ Σ.

(c) If f is µ-integrable, then f = 0 a.e. iff
∫
H
f = 0 for every H ∈ Σ.

131G Corollary Let (X,Σ, µ) be a measure space and H ∈ Σ a conegligible set. If f is any real-valued
function defined on a subset of X,

∫
H
f =

∫
f if either is defined.

131H Corollary Let (X,Σ, µ) be a measure space and f , g two µ-integrable real-valued functions.
(a) If

∫
H
f ≥

∫
H
g for every H ∈ Σ then f ≥ g a.e.

(b) If
∫
H
f =

∫
H
g for every H ∈ Σ then f = g a.e.

Version of 6.4.05

132 Outer measures from measures

The next topic I wish to mention is a simple construction with applications everywhere in measure theory.
With any measure there is associated, in a straightforward way, a standard outer measure (132A-132B). If
we start with Lebesgue measure we just return to Lebesgue outer measure (132C). I take the opportunity
to introduce the idea of ‘measurable envelope’ (132D-132E).

132A Proposition Let (X,Σ, µ) be a measure space. Define µ∗ : PX → [0,∞] by writing

µ∗A = inf{µE : E ∈ Σ, A ⊆ E}

for every A ⊆ X. Then
(a) for every A ⊆ X there is an E ∈ Σ such that A ⊆ E and µ∗A = µE;
(b) µ∗ is an outer measure on X;
(c) µ∗E = µE for every E ∈ Σ;
(d) a set A ⊆ X is µ-negligible iff µ∗A = 0;
(e) µ∗(

⋃
n∈N

An) = limn→∞ µ∗An for every non-decreasing sequence 〈An〉n∈N of subsets of X;
(f) µ∗A = µ∗(A ∩ F ) + µ∗(A \ F ) whenever A ⊆ X and F ∈ Σ.

132B Definition If (X,Σ, µ) is a measure space, I will call µ∗, as defined in 132A, the outer measure
defined from µ.

132C Proposition If θ is Lebesgue outer measure on Rr and µ is Lebesgue measure, then µ∗, as defined
in 132A, is equal to θ.

132D Measurable envelopes If (X,Σ, µ) is a measure space and A ⊆ X, a measurable envelope
(or measurable cover) of A is a set E ∈ Σ such that A ⊆ E and µ(F ∩E) = µ∗(F ∩A) for every F ∈ Σ.

132E Lemma Let (X,Σ, µ) be a measure space.
(a) If A ⊆ E ∈ Σ, then E is a measurable envelope of A iff µF = 0 whenever F ∈ Σ and F ⊆ E \A.
(b) If A ⊆ E ∈ Σ and µE < ∞ then E is a measurable envelope of A iff µE = µ∗A.
(c) If E is a measurable envelope of A and H ∈ Σ, then E ∩H is a measurable envelope of A ∩H.
(d) Let 〈An〉n∈N be a sequence of subsets of X. Suppose that each An has a measurable envelope En.

Then
⋃

n∈N
En is a measurable envelope of

⋃
n∈N

An.
(e) If A ⊆ X can be covered by a sequence of sets of finite measure, then A has a measurable envelope.
(f) In particular, if µ is Lebesgue measure on Rr, then every subset of Rr has a measurable envelope for

µ.

Measure Theory (abridged version)



133D Wider concepts of integration 3

132F Full outer measure If (X,Σ, µ) is a measure space, a set A ⊆ X is of full outer measure or
thick if X is a measurable envelope of A.

Version of 29.3.10

133 Wider concepts of integration

There are various contexts in which it is useful to be able to assign a value to the integral of a function
which is not quite covered by the basic definition in 122M. In this section I offer suggestions concerning the
assignment of the values ±∞ to integrals of real-valued functions (133A), the integration of complex-valued
functions (133C-133H) and upper and lower integrals (133I-133L). In §135 below I will discuss a further
elaboration of the ideas of Chapter 12.

133A Infinite integrals It is normal to restrict the phrase ‘f is integrable’ to functions f to which
a finite integral

∫
f can be assigned. But for non-negative functions it is sometimes convenient to write

‘
∫
f = ∞’ if, in some sense, the only way in which f fails to be integrable is that the integral is too large;

that is, f is defined almost everywhere, is µ-virtually measurable, and either

{x : x ∈ dom f, f(x) ≥ ǫ}

includes a set of infinite measure for some ǫ > 0, or

sup{
∫
h : h is simple, h ≤a.e. f} = ∞.

Under this rule, ∫
f1 + f2 =

∫
f1 +

∫
f2,

∫
cf = c

∫
f

whenever c ∈ [0,∞[ and f1, f2, f are non-negative functions for which
∫
f1,

∫
f2,

∫
f are defined in [0,∞].

We can therefore say that ∫
f1 − f2 =

∫
f1 −

∫
f2

whenever f1, f2 are real-valued functions such that
∫
f1,

∫
f2 are defined in [0,∞] and are not both infinite.

We still have the rules that∫
f + g =

∫
f +

∫
g,

∫
(cf) = c

∫
f ,

∫
|f | ≥ |

∫
f |

at least when the right-hand-sides can be interpreted, allowing 0 ·∞ = 0, but not allowing any interpretation
of ∞−∞; and

∫
f ≤

∫
g whenever both integrals are defined and f ≤a.e. g.

Setting f+(x) = max(f(x), 0), f−(x) = max(−f(x), 0) for x ∈ dom f , then
∫
f = ∞ ⇐⇒

∫
f+ = ∞ and f− is integrable,

∫
f = −∞ ⇐⇒ f+ is integrable and

∫
f− = ∞.

133B Functions with exceptional values It is also convenient to allow as ‘integrable’ functions f
which take occasional values which are not real. For such a function I will write

∫
f =

∫
f̃ if

∫
f̃ is defined,

where

dom f̃ = {x : x ∈ dom f, f(x) ∈ R}, f̃(x) = f(x) for x ∈ dom f̃ .

133D Definitions (a) Let X be a set and Σ a σ-algebra of subsets of X. If D ⊆ X and f : D → C is a
function, then we say that f is measurable if its real and imaginary parts Re f , Im f are measurable.

(b) Let (X,Σ, µ) be a measure space. If f is a complex-valued function defined on a conegligible subset
of X, we say that f is integrable if its real and imaginary parts are integrable, and then∫

f =
∫
Re f + i

∫
Im f .

c© 1994 D. H. Fremlin
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4 Complements 133D

(c) Let (X,Σ, µ) be a measure space, H ∈ Σ and f a complex-valued function defined on a subset of X.
Then

∫
H
f is

∫
(f↾H)dµH if this is defined in the sense of (b), taking the subspace measure µH to be that

of 131A-131B.

133E Lemma (a) If X is a set, Σ is a σ-algebra of subsets of X, and f and g are measurable complex-
valued functions with domains dom f , dom g ⊆ X, then

(i) f + g : dom f ∩ dom g → C is measurable;
(ii) cf : dom f → C is measurable, for every c ∈ C;
(iii) f × g : dom f ∩ dom g → C is measurable;
(iv) f/g : {x : x ∈ dom f ∩ dom g, g(x) 6= 0} → C is measurable;
(v) |f | : dom f → R is measurable.

(b) If 〈fn〉n∈N is a sequence of measurable complex-valued functions defined on subsets of X, then f =
limn→∞ fn is measurable, if we take dom f to be

{x : x ∈
⋃

n∈N

⋂

m≥n

dom fm, lim
n→∞

fn(x) exists in C}

= dom( lim
n→∞

Re fn) ∩ dom( lim
n→∞

Im fn).

133F Proposition Let (X,Σ, µ) be a measure space.
(a) If f and g are integrable complex-valued functions defined on conegligible subsets of X, then f + g

and cf are integrable,
∫
f + g =

∫
f +

∫
g and

∫
cf = c

∫
f , for every c ∈ C.

(b) If f is a complex-valued function defined on a conegligible subset of X, then f is integrable iff |f | is
integrable and f is µ-virtually measurable.

133G Lebesgue’s Dominated Convergence Theorem Let (X,Σ, µ) be a measure space and 〈fn〉n∈N

a sequence of integrable complex-valued functions onX such that f(x) = limn→∞ fn(x) exists in C for almost
every x ∈ X. Suppose moreover that there is a real-valued integrable function g on X such that |fn| ≤a.e. g
for each n. Then f is integrable and limn→∞

∫
fn exists and is equal to

∫
f .

133H Corollary Let (X,Σ, µ) be a measure space and ]a, b[ a non-empty open interval in R. Let
f : X × ]a, b[ → C be a function such that

(i) the integral F (t) =
∫
f(x, t)dx is defined for every t ∈ ]a, b[;

(ii) the partial derivative ∂f
∂t

of f with respect to the second variable is defined everywhere in
X × ]a, b[;

(iii) there is an integrable function g : X → [0,∞[ such that |∂f
∂t
(x, t)| ≤ g(x) for every x ∈ X,

t ∈ ]a, b[.

Then the derivative F ′(t) and the integral
∫

∂f
∂t
(x, t)dx exist for every t ∈ ]a, b[, and are equal.

133I Upper and lower integrals Let (X,Σ, µ) be a measure space and f a real-valued function defined
almost everywhere in X. Its upper integral is

∫
f = inf{

∫
g :

∫
g is defined in the sense of 133A and f ≤a.e. g},

allowing ∞ for inf{∞} or inf ∅ and −∞ for inf R. Similarly, the lower integral of f is
∫
f = sup{

∫
g :

∫
g is defined, f ≥a.e. g},

allowing −∞ for sup{−∞} or sup ∅ and ∞ for supR.

133J Proposition Let (X,Σ, µ) be a measure space.
(a) Let f be a real-valued function defined almost everywhere in X.

(i) If
∫
f is finite, then there is an integrable g such that f ≤a.e. g and

∫
g =

∫
f . In this case,

{x : x ∈ dom f ∩ dom g, g(x) ≤ f(x) + g0(x)}

Measure Theory (abridged version)



134A More on Lebesgue measure 5

has full outer measure for every measurable function g0 : X → ]0,∞[.
(ii) If

∫
f is finite, then there is an integrable h such that h ≤a.e. f and

∫
h =

∫
f . In this case,

{x : x ∈ dom f ∩ domh, f(x) ≤ h(x) + h0(x)}

has full outer measure for every measurable function h0 : X → ]0,∞[.
(b) For any real-valued functions f , g defined on conegligible subsets of X and any c ≥ 0,

(i)
∫
f ≤

∫
f ,

(ii)
∫
f + g ≤

∫
f +

∫
g,

(iii)
∫
cf = c

∫
f ,

(iv)
∫
(−f) = −

∫
f ,

(v)
∫
f + g ≥

∫
f +

∫
g,

(vi)
∫
cf = c

∫
f

whenever the right-hand-sides do not involve adding ∞ to −∞.

(c) If f ≤a.e. g then
∫
f ≤

∫
g and

∫
f ≤

∫
g.

(d) A real-valued function f defined almost everywhere in X is integrable iff
∫
f =

∫
f = a ∈ R,

and in this case
∫
f = a.

(e) µ∗A =
∫
χA for every A ⊆ X.

133K Convergence theorems for upper integrals: Proposition Let (X,Σ, µ) be a measure space,
and 〈fn〉n∈N a sequence of real-valued functions defined almost everywhere in X.

(a) If, for each n, fn ≤a.e. fn+1, and −∞ < supn∈N

∫
fn < ∞, then f(x) = supn∈N fn(x) is defined in R

for almost every x ∈ X, and
∫
f = supn∈N

∫
fn.

(b) If, for each n, fn ≥ 0 a.e., and lim infn→∞

∫
fn < ∞, then f(x) = lim infn→∞ fn(x) is defined in R

for almost every x ∈ X, and
∫
f ≤ lim infn→∞

∫
fn.

*133L Proposition Let (X,Σ, µ) be a measure space and f a real-valued function defined almost
everywhere in X. Suppose that h1, h2 are non-negative virtually measurable functions defined almost
everywhere in X. Then

∫
f × (h1 + h2) =

∫
f × h1 +

∫
f × h2,

where here, for once, we can interpret ∞+ (−∞) or (−∞) +∞ as ∞ if called for on the right-hand side.

Version of 7.1.04

134 More on Lebesgue measure

The special properties of Lebesgue measure will take up a substantial proportion of this treatise. In this
section I present a miscellany of relatively easy basic results. In 134A-134F, r will be a fixed integer greater
than or equal to 1, µ will be Lebesgue measure on Rr and µ∗ will be Lebesgue outer measure; when I say
that a set or a function is ‘measurable’, then it is to be understood that (unless otherwise stated) this means
‘measurable with respect to the σ-algebra of Lebesgue measurable sets’, while ‘negligible’ means ‘negligible
for Lebesgue measure’. Most of the results will be expressed in terms adapted to the multi-dimensional case;
but if you are primarily interested in the real line, you will miss none of the ideas if you read the whole
section as if r = 1.

134A Proposition Both Lebesgue outer measure and Lebesgue measure are translation-invariant; that
is, setting A+ x = {a+ x : a ∈ A} for A ⊆ Rr, x ∈ Rr, we have

(a) µ∗(A+ x) = µ∗A for every A ⊆ Rr, x ∈ Rr;
(b) whenever E ⊆ Rr is measurable and x ∈ Rr, then E + x is measurable, with µ(E + x) = µE.

D.H.Fremlin



6 Complements 134B

134B Theorem Not every subset of Rr is Lebesgue measurable.

*134D Proposition There is a set C ⊆ Rr such that F ∩ C is not measurable for any measurable set
F of non-zero measure; so that both C and its complement have full outer measure in Rr.

134F Proposition (a) If A ⊆ Rr is any set, then

µ∗A = inf{µG : G is open, G ⊇ A} = min{µH : H is Borel, H ⊇ A}.

(b) If E ⊆ Rr is measurable, then

µE = sup{µF : F is closed and bounded, F ⊆ E},

and there are Borel sets H1, H2 such that H1 ⊆ E ⊆ H2 and

µ(H2 \H1) = µ(H2 \ E) = µ(E \H1) = 0.

(c) If A ⊆ Rr is any set, then A has a measurable envelope which is a Borel set.

(d) If f is a Lebesgue measurable real-valued function defined on a subset of Rr, then there is a conegligible
Borel set H ⊆ Rr such that f↾H is Borel measurable.

134G The Cantor set(a) The ‘Cantor set’ C ⊆ [0, 1] is defined as the intersection of a sequence 〈Cn〉n∈N

of sets, constructed as follows. C0 = [0, 1]. Given that Cn consists of 2n disjoint closed intervals each of
length 3−n, take each of these intervals and delete the middle third to produce two closed intervals each of
length 3−n−1; take Cn+1 to be the union of the 2n+1 closed intervals so formed, and continue. Observe that
µCn = ( 2

3
)n for each n.

The Cantor set is C =
⋂

n∈N
Cn. Its measure is

µC = limn→∞ µCn = limn→∞(
2

3
)n = 0.

(b) Each Cn can also be described as the set of real numbers expressible as
∑∞

j=1
3−jǫj where every ǫj is

either 0, 1 or 2, and ǫj 6= 1 for j ≤ n. Consequently C itself is the set of numbers expressible as
∑∞

j=1
3−jǫj

where every ǫj is either 0 or 2; that is, the set of numbers between 0 and 1 expressible in ternary form
without 1’s. The expression in each case will be unique, so we have a bijection φ : {0, 1}N → C defined by
writing

φ(z) =
2

3

∑∞

j=0
3−jz(j)

for every z ∈ {0, 1}N.

134H The Cantor function(a) For each n ∈ N define a function fn : [0, 1] → [0, 1] by setting

fn(x) = (
3

2
)nµ(Cn ∩ [0, x])

for each x ∈ [0, 1]. fn is a polygonal function, with fn(0) = 0, fn(1) = 1; fn is constant on each of the
2n − 1 open intervals composing [0, 1] \ Cn, and rises with slope ( 3

2
)n on each of the 2n closed intervals

composing Cn.

〈fn〉n∈N is uniformly convergent to a function f : [0, 1] → [0, 1], and f will be continuous. f is the Cantor
function or Devil’s Staircase.

Measure Theory (abridged version)



134Jc More on Lebesgue measure 7

0 1

1

The Cantor function

(b) Because every fn is non-decreasing, so is f . f ′ is zero almost everywhere in [0, 1]. f : [0, 1] → [0, 1]
is surjective.

(c) Let φ : {0, 1}N → C be the function described in 134Gb. Then f(φ(z)) = 1

2

∑∞

j=0
2−jz(j) for every

z ∈ {0, 1}N. f [C] = [0, 1].

134I The Cantor function modified(a) Consider the formula

g(x) =
1

2
(x+ f(x)),

where f is the Cantor function, as defined in 134H; this defines a continuous function g : [0, 1] → [0, 1]
which is strictly increasing and has g(0) = 0, g(1) = 1; g is bijective, and its inverse g−1 : [0, 1] → [0, 1] is
continuous. g[C] is a closed set and µg[C] = 1

2
.

(b) By 134D there is a set D ⊆ R such that

µ∗(g[C] ∩D) = µ∗(g[C] \D) = µg[C] =
1

2
;

set A = g[C] ∩D. A cannot be measurable. However, g−1[A] ⊆ C must be measurable. This means that
if we set h = χ(g−1[A]) : [0, 1] → R, then h is measurable; but hg−1 is not.

Thus the composition of a measurable function with a continuous function need not be
measurable.

134J More examples(a) Let 〈qn〉n∈N be a sequence running over Q, and for each n ∈ N set

In = ]qn − 2−n, qn + 2−n[,

Gn =
⋃

k≥n Ik.

Then Gn is an open set of measure at most
∑∞

k=n 2 · 2−k = 4 · 2−n, and it contains all but finitely many
points of Q, so is dense. Set Fn = R \Gn; then Fn is closed, µ(R \Fn) ≤ 4/2n, but Fn does not include any
non-trivial interval. 〈Fn〉n∈N is non-decreasing.

(b) There is a measurable set E ⊆ R such that µ(I ∩ E) > 0 and µ(I \ E) > 0 for every non-trivial
interval I ⊆ R.

(c) E and its complement are measurable sets which are ‘essentially’ dense in that they meet every
non-empty open interval in a set of positive measure, so that E \A is dense for every negligible set A.

D.H.Fremlin



8 Complements *134K

*134K Riemann integration If f : [a, b] → R is Riemann integrable, it is Lebesgue integrable, with
the same integral.

*134L Proposition If a < b in R, a bounded function f : [a, b] → R is Riemann integrable iff it is
continuous almost everywhere in [a, b].

Version of 14.9.04/14.7.07

135 The extended real line

It is often convenient to allow ‘∞’ into our formulae, and in the context of measure theory the appropriate
manipulations are sufficiently consistent for it to be possible to develop a theory of the extended real line,
the set [−∞,∞] = R ∪ {−∞,∞}, sometimes written R. I give a brief account without full proofs, as I
hope that by the time this material becomes necessary to the arguments I use it will all appear thoroughly
elementary.

135A The algebraic structure of [−∞,∞] (a) If we write

a+∞ = ∞+ a = ∞, a+ (−∞) = (−∞) + a = −∞

for every a ∈ R, and

∞+∞ = ∞, (−∞) + (−∞) = −∞,

but refuse to define ∞ + (−∞) or (−∞) +∞, we obtain a partially-defined binary operation on [−∞,∞],
extending ordinary addition on R. This is associative in the sense that

if u, v, w ∈ [−∞,∞] and one of u+ (v + w), (u+ v) + w is defined, so is the other, and they
are then equal,

and commutative in the sense that

if u, v ∈ [−∞,∞] and one of u+ v, v + u is defined, so is the other, and they are then equal.

It has an identity 0 such that u+ 0 = 0 + u = u for every u ∈ [−∞,∞]; but ∞ and −∞ lack inverses.

(b) If we define

a · ∞ = ∞ · a = ∞, a · (−∞) = (−∞) · a = −∞

for real a > 0,

a · ∞ = ∞ · a = −∞, a · (−∞) = (−∞) · a = ∞

for real a < 0,

∞ ·∞ = (−∞) · (−∞) = ∞, (−∞) · ∞ = ∞ · (−∞) = −∞,

0 · ∞ = ∞ · 0 = 0 · (−∞) = (−∞) · 0 = 0

then we obtain a binary operation on [−∞,∞] extending ordinary multiplication on R, which is associative
and commutative and has an identity 1; 0, ∞ and −∞ lack inverses.

(c) We have a distributive law:

if u, v, w ∈ [−∞,∞] and both u(v + w) and uv + uw are defined, then they are equal.

(d) While ∞ and −∞ do not have inverses in the semigroup ([−∞,∞], ·), there seems no harm in writing
a/∞ = a/(−∞) = 0 for every a ∈ R.

135B The order structure of [−∞,∞] (a) If we write

−∞ ≤ u ≤ ∞ for every u ∈ [−∞,∞],

we obtain a relation on [−∞,∞], extending the usual ordering of R, which is a total ordering, that is,

for any u, v, w ∈ [−∞,∞], if u ≤ v and v ≤ w then u ≤ w,
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u ≤ u for every u ∈ [−∞,∞],

for any u, v ∈ [−∞,∞], if u ≤ v and v ≤ u then u = v,

for any u, v ∈ [−∞,∞], either u ≤ v or v ≤ u.

Moreover, every subset of [−∞,∞] has a supremum and an infimum, if we write sup ∅ = −∞, inf ∅ = ∞.

(b) The ordering is ‘translation-invariant’ in the weak sense that

if u, v, w ∈ [−∞,∞] and v ≤ w and u+ v, u+ w are both defined, then u+ v ≤ u+ w.

It is preserved by non-negative multiplications in the sense that

if u, v, w ∈ [−∞,∞] and 0 ≤ u and v ≤ w, then uv ≤ uw,

while it is reversed by non-positive multiplications in the sense that

if u, v, w ∈ [−∞,∞] and u ≤ 0 and v ≤ w, then uw ≤ uv.

135C The Borel structure of [−∞,∞] We say that a set E ⊆ [−∞,∞] is a Borel set in [−∞,∞]
if E ∩ R is a Borel subset of R. It is easy to check that the family of such sets is a σ-algebra of subsets of
[−∞,∞].

135D Convergent sequences in [−∞,∞] We can say that a sequence 〈un〉n∈N in [−∞,∞] converges
to u ∈ [−∞,∞] if

whenever v < u there is an n0 ∈ N such that v ≤ un for every n ≥ n0, and whenever u < v
there is an n0 ∈ N such that un ≤ v for every n ≥ n0;

alternatively,

either u ∈ R and for every δ > 0 there is an n0 ∈ N such that un ∈ [u − δ, u + δ] for every
n ≥ n0

or u = −∞ and for every a ∈ R there is an n0 ∈ N such that un ≤ a for every n ≥ n0

or u = ∞ and for every a ∈ R there is an n0 ∈ N such that un ≥ a for every n ≥ n0.

135E Measurable functions Let X be any set and Σ a σ-algebra of subsets of X.

(a) Let D be a subset of X and ΣD the subspace σ-algebra (121A). For any function f : D → [−∞,∞],
the following are equiveridical:

(i) {x : f(x) < u} ∈ ΣD for every u ∈ [−∞,∞];
(ii) {x : f(x) ≤ u} ∈ ΣD for every u ∈ [−∞,∞];
(iii) {x : f(x) > u} ∈ ΣD for every u ∈ [−∞,∞];
(iv) {x : f(x) ≥ u} ∈ ΣD for every u ∈ [−∞,∞];
(v) {x : f(x) ≤ q} ∈ ΣD for every q ∈ Q.

(b) We may therefore say that a function taking values in [−∞,∞] is measurable if it satisfies these
equivalent conditions.

(c) Note that if f : D → [−∞,∞] is Σ-measurable, then

E∞(f) = f−1[{∞}] = {x : f(x) ≥ ∞}, E−∞(f) = f−1[{−∞}] = {x : f(x) ≤ −∞}

must belong to ΣD, while fR = f↾D \ (E∞(f) ∪ E−∞(f)), the ‘real-valued part of f ’, is measurable in the
sense of 121C.

(d) Conversely, if E∞ and E−∞ belong to ΣD, and fR : D \ (E∞ ∪ E−∞) → R is measurable, then
f : D → [−∞,∞] will be measurable, where f(x) = ∞ if x ∈ E∞, f(x) = −∞ if x ∈ E−∞ and f(x) = fR(x)
for other x ∈ D.

(e) It follows that if f , g are measurable functions from subsets of X to [−∞,∞], then f + g, f × g and
f/g are measurable.

(f) We can say that a function h from a subset D of [−∞,∞] to [−∞,∞] is Borel measurable if it is
measurable with respect to the Borel σ-algebra of [−∞,∞]. Now if X is a set, Σ is a σ-algebra of subsets
of X, f is a measurable function from a subset of X to [−∞,∞] and h is a Borel measurable function from
a subset of [−∞,∞] to [−∞,∞], then hf is measurable.
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(g) Let X be a set and Σ a σ-algebra of subsets of X. Let 〈fn〉n∈N be a sequence of measurable functions
from subsets of X to [−∞,∞]. Then limn→∞ fn, supn∈N fn and infn∈N fn are measurable, if we take their
domains to be

{x : x ∈
⋃

n∈N

⋂
m≥n dom fm, limn→∞ fn(x) exists in [−∞,∞]},

⋂
n∈N

dom fn.

135F [−∞,∞]-valued integrable functions (a) We are surely not going to admit a function as
‘integrable’ unless it is finite almost everywhere, and for such functions the remarks in 133B are already
adequate.

(b) However, it is possible to make a consistent extension of the idea of an infinite integral, elaborating
slightly the ideas of 133A. If (X,Σ, µ) is a measure space and f is a function, defined almost everywhere
in X, taking values in [0,∞], and virtually measurable (that is, such that f↾E is measurable for some
conegligible set E), then we can safely write ‘

∫
f = ∞’ whenever f is not integrable. We shall find that

for such functions we have
∫
f + g =

∫
f +

∫
g and

∫
cf = c

∫
f for every c ∈ [0,∞], using the definitions

given above for addition and multiplication on [0,∞]. Consequently, as in 122M-122O, we can say that
for a general virtually measurable function f , defined almost everywhere in X, taking values in [−∞,∞],∫
f =

∫
f1 −

∫
f2 whenever f is expressible as a difference f1 − f2 of non-negative functions such that

∫
f1

and
∫
f2 are both defined and not both infinite. Now we have the basic formulae

∫
f + g =

∫
f +

∫
g,

∫
cf = c

∫
f ,

∫
|f | ≥ |

∫
f |

whenever the right-hand-sides are defined, and
∫
f ≤

∫
g whenever f ≤a.e. g and both integrals are defined.∫

f can be finite, on this definition, only when f is finite almost everywhere.

135G Proposition Let (X,Σ, µ) be a measure space, and 〈fn〉n∈N a sequence of [−∞,∞]-valued func-
tions defined almost everywhere in X which have integrals defined in [−∞,∞].

(a) If fn ≤a.e. fn+1 for every n and −∞ < supn∈N

∫
fn, then

∫
supn∈N fn = supn∈N

∫
fn.

(b) If, for each n, fn ≥ 0 a.e., then
∫
lim infn→∞ fn ≤ lim infn→∞

∫
fn.

135H Upper and lower integrals again (a) To handle functions taking values in [−∞,∞] we need
to adapt the definitions in 133I. Let (X,Σ, µ) be a measure space and f a [−∞,∞]-valued function defined
almost everywhere in X. Its upper integral is

∫
f = inf{

∫
g :

∫
g is defined in the sense of 135F and f ≤a.e. g},

allowing ∞ for inf{∞} and −∞ for inf ]−∞,∞] or inf[−∞,∞]. Similarly, the lower integral of f is
∫
f = sup{

∫
g :

∫
g is defined, f ≥a.e. g}.

With this modification, all the results of 133J are valid for functions taking values in [−∞,∞] rather than
in R.

(b) Let (X,Σ, µ) be a measure space, and 〈fn〉n∈N a sequence of [−∞,∞]-valued functions defined almost
everywhere in X.

(i) If fn ≤a.e. fn+1 for every n and supn∈N

∫
fn > −∞, then

∫
supn∈N fn = supn∈N

∫
fn.

(ii) If, for each n, fn ≥ 0 a.e., then
∫
lim infn→∞ fn ≤ lim infn→∞

∫
fn.

135I Subspace measures: Proposition Let (X,Σ, µ) be a measure space, and H ∈ Σ; write ΣH for
the subspace σ-algebra on H and µH for the subspace measure. For any [−∞,∞]-valued function f defined

on a subset of H, write f̃ for the extension of f defined by saying that f̃(x) = f(x) if x ∈ dom f , 0 if
x ∈ X \H.

(a) Suppose that f is a [−∞,∞]-valued function defined on a subset of H.

(i) dom f is µH -conegligible iff dom f̃ is µ-conegligible.
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(ii) f is µH -virtually measurable iff f̃ is µ-virtually measurable.

(iii)
∫
H
fdµH =

∫
X
f̃dµ if either is defined in [−∞,∞].

(b) Suppose that h is a [−∞,∞]-valued function defined almost everywhere in X. Then
∫
H
(h↾H)dµH =∫

h× χH dµ if either is defined in [−∞,∞].
(c) If h is a [−∞,∞]-valued function and

∫
X
h dµ is defined in [−∞,∞], then

∫
H
(h↾H)dµH is defined in

[−∞,∞].
(d) Suppose that h is a [−∞,∞]-valued function defined almost everywhere in X. Then

∫
H
(h↾H)dµH =

∫
X
h× χHdµ.

Version of 22.6.05

*136 The Monotone Class Theorem

For the final section of this volume, I present two theorems on σ-algebras, with some simple corollaries.
They are here because I find no natural home for them in Volume 2. While they (especially 136B) are part
of the basic technique of measure theory, and have many and widespread applications, they are not central
to the particular approach I have chosen, and can if you wish be left on one side until they come to be
needed.

136A Lemma Let X be a set, and A a family of subsets of X. Then the following are equiveridical:

(i) X ∈ A, B \ A ∈ A whenever A, B ∈ A and A ⊆ B, and
⋃

n∈N
An ∈ A whenever 〈An〉n∈N

is a non-decreasing sequence in A;
(ii) ∅ ∈ A, X \ A ∈ A for every A ∈ A, and

⋃
n∈N

An ∈ A whenever 〈An〉n∈N is a disjoint
sequence in A.

Definition If A ⊆ PX satisfies the conditions of (i) and/or (ii) above, it is called a Dynkin class of subsets
of X.

136B Monotone Class Theorem Let X be a set and A a Dynkin class of subsets of X. Suppose that
I ⊆ A is such that I ∩ J ∈ I for all I, J ∈ I. Then A includes the σ-algebra of subsets of X generated by
I.

136C Corollary Let X be a set, and µ, ν two measures defined on X with domains Σ, T respectively.
Suppose that µX = νX < ∞, and that I ⊆ Σ∩T is a family of sets such that µI = νI for every I ∈ I and
I ∩ J ∈ I for all I, J ∈ I. Then µE = νE for every E in the σ-algebra of subsets of X generated by I.

136D Corollary Let µ, ν be two measures on Rr, where r ≥ 1, both defined, and agreeing, on all
intervals of the form

]−∞, a] = {x : x ≤ a} = {(ξ1, . . . , ξr) : ξi ≤ αi for every i ≤ r}

for a = (α1, . . . , αr) ∈ Rr. Suppose further that µRr < ∞. Then µ and ν agree on all the Borel subsets of
Rr.

136E Algebras of sets: Definition Let X be a set. A family E ⊆ PX is an algebra or field of subsets
of X if

(i) ∅ ∈ E ;
(ii) for every E ∈ E , its complement X \ E belongs to E ;
(iii) for every E, F ∈ E , E ∪ F ∈ E .

136F Remarks (b) If E is an algebra of subsets of X, then

E ∩ F , E \ F ,

c© 2000 D. H. Fremlin
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E0 ∪ E1 ∪ . . . ∪ En, E0 ∩ E1 ∩ . . . ∩ En

belong to E for all E, F , E0, . . . , En ∈ E .

(c) A σ-algebra of subsets of X is an algebra of subsets of X.

136G Theorem Let X be a set and E an algebra of subsets of X. Suppose that A ⊆ PX is a family of
sets such that

(α)
⋃

n∈N
An ∈ A for every non-decreasing sequence 〈An〉n∈N in A,

(β)
⋂

n∈N
An ∈ A for every non-increasing sequence 〈An〉n∈N in A,

(γ) E ⊆ A.

Then A includes the σ-algebra of subsets of X generated by E .

*136H Proposition Let (X,Σ, µ) be a measure space such that µX < ∞, and E a subalgebra of Σ;
let Σ′ be the σ-algebra of subsets of X generated by E . If F ∈ Σ′ and ǫ > 0, there is an E ∈ E such that
µ(E ∩ F ) ≤ ǫ.
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Version of 9.4.05

Concordance for Chapter 13

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

132E Measurable envelopes Parts (d) and (e) of 132E in the 2000 and 2001 editions, referred to in
the 2001 edition of Volume 2 and the 2002 edition of Volume 3, are now parts (e) and (f).

132G Pull-back measures Proposition 132G, referred to in the 2006 edition of Volume 4, has been
moved to 234F.
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