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Chapter 12

Integration

If you look along the appropriate shelf of your college’s library, you will see that the words ‘measure’ and
‘integration’ go together like Siamese twins. The linkage is both more complex and more intimate than any
simple explanation can describe. But if we say that one of the concepts on which integration is based is
that of ‘area under a curve’, then it is clear that any method of determining ‘areas’ ought to correspond to
a method of integrating functions; and this has from the beginning been an essential part of the Lebesgue
theory. For a literal description of the integral of a non-negative function in terms of the area of its ordinate
set, I think it best to wait until Chapter 25 in Volume 2. In the present chapter I seek to give a concise
description of the standard integral of a real-valued function on a general measure space, with the half-dozen
most important theorems concerning this integral.

The construction bristles with technical difficulties at every step, and you will find it easy to understand
why it was not done before 1901. What may be less clear is why it was ever done at all. So perhaps you
should immediately read the statements of 123A-123D below. It is the case (some of the details will appear,
rather late, in §436 in Volume 4) that any theory of integration powerful enough to have theorems of this
kind must essentially encompass all the ideas of this chapter, and nearly all the ideas of the last.

Version of 21.12.03

121 Measurable functions

In this section, I take a step back to develop ideas relating to σ-algebras of sets, following §111; there will
be no mention of ‘measures’ here, except in the exercises. The aim is to establish the concept of ‘measurable
function’ (121C) and a variety of associated techniques. The best single example of a σ-algebra to bear in
mind when reading this chapter is probably the σ-algebra of Borel subsets of R (111G); the σ-algebra of
Lebesgue measurable subsets of R (114E) is a good second.

Throughout the exposition here (starting with 121A) I seek to deal with functions which are not defined
on the whole of the space X under consideration. I believe that there are compelling reasons for facing up
to such functions at an early stage (see 121G); but undeniably they add to the technical difficulties, and it
would be fair to read through the chapter once with the mental reservation that all functions are taken to
be defined everywhere, before returning to deal with the general case.

121A Lemma Let X be a set and Σ a σ-algebra of subsets of X. Let D be any subset of X and write

ΣD = {E ∩D : E ∈ Σ}.

Then ΣD is a σ-algebra of subsets of D.

proof (i) ∅ = ∅ ∩D ∈ ΣD because ∅ ∈ Σ.

(ii) If F ∈ ΣD, there is an E ∈ Σ such that F = E ∩ D; now D \ F = (X \ E) ∩ D ∈ ΣD because
X \ E ∈ Σ.

(iii) If 〈Fn〉n∈N is any sequence in ΣD, then for each n ∈ N we may choose an En ∈ Σ such that
Fn = En ∩D; now

⋃

n∈N Fn = (
⋃

n∈NEn) ∩D ∈ ΣD because
⋃

n∈NEn ∈ Σ.

Notation I will call ΣD the subspace σ-algebra of subsets of D, and I will say that its members are
relatively measurable in D. ΣD is also sometimes called the trace of Σ on D.
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2 Integration 121B

121B Proposition Let X be a set, Σ a σ-algebra of subsets of X, and D a subset of X. Write ΣD

for the subspace σ-algebra of subsets of D. Then for any function f : D → R the following assertions are
equiveridical, that is, if one of them is true so are all the others:

(i) {x : f(x) < a} ∈ ΣD for every a ∈ R;
(ii) {x : f(x) ≤ a} ∈ ΣD for every a ∈ R;
(iii) {x : f(x) > a} ∈ ΣD for every a ∈ R;
(iv) {x : f(x) ≥ a} ∈ ΣD for every a ∈ R.

proof (i)⇒(ii) Assume (i), and let a ∈ R. Then

{x : f(x) ≤ a} =
⋂

n∈N{x : f(x) < a+ 2−n} ∈ ΣD

because {x : f(x) < a + 2−n} ∈ ΣD for every n and ΣD is closed under countable intersections (111Dd).
Because a is arbitrary, (ii) is true.

(ii)⇒(iii) Assume (ii), and let a ∈ R. Then

{x : f(x) > a} = D \ {x : f(x) ≤ a} ∈ ΣD

because {x : f(x) ≤ a} ∈ ΣD and ΣD is closed under complementation. Because a is arbitrary, (iii) is true.

(iii)⇒(iv) Assume (iii), and let a ∈ R. Then

{x : f(x) ≥ a} =
⋂

n∈N{x : f(x) > a− 2−n} ∈ ΣD

because {x : f(x) > a− 2−n} ∈ ΣD for every n and ΣD is closed under countable intersections. Because a
is arbitrary, (iv) is true.

(iv)⇒(i) Assume (iv), and let a ∈ R. Then

{x : f(x) < a} = D \ {x : f(x) ≥ a} ∈ ΣD

because {x : f(x) ≥ a} ∈ ΣD and ΣD is closed under complementation. Because a is arbitrary, (i) is true.

121C Definition Let X be a set, Σ a σ-algebra of subsets of X, and D a subset of X. A function
f : D → R is called measurable (or Σ-measurable) if it satisfies any, or equivalently all, of the conditions
(i)-(iv) of 121B.

IfX is R or Rr, and Σ is its Borel σ-algebra (111G), a Σ-measurable function is calledBorel measurable.
If X is R or Rr, and Σ is the σ-algebra of Lebesgue measurable sets (114E, 115E), a Σ-measurable function
is called Lebesgue measurable.

Remark Naturally the principal case here is when D = X. However, partially-defined functions are so
common, and so important, in analysis (consider, for instance, the real function ln sin) that it seems worth
while, from the beginning, to establish techniques for handling them efficiently.

Many authors develop a theory of ‘extended real numbers’ at this point, working with [−∞,∞] = R ∪
{−∞,∞}, and defining measurability for functions taking values in this set. I outline such a theory in §135
below.

121D Proposition Let X be Rr for some r ≥ 1, D a subset of X, and g : D → R a function.
(a) If g is Borel measurable it is Lebesgue measurable.
(b) If g is continuous it is Borel measurable.
(c) If r = 1 and g is monotonic it is Borel measurable.

proof (a) This is immediate from the definitions in 121C, if we recall that the Borel σ-algebra is included
in the Lebesgue σ-algebra (114G, 115G).

(b) Take a ∈ R. Set

G = {G : G ⊆ Rr is open, g(x) < a ∀ x ∈ G ∩D},

G0 =
⋃

G = {x : ∃ G ∈ G, x ∈ G}.

Then G0 is a union of open sets, therefore open (1A2Bd). Next,
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121E Measurable functions 3

{x : g(x) < a} = G0 ∩D.

PPP (i) If g(x) < a, then (because g is continuous) there is a δ > 0 such that |g(y)−g(x)| < a−g(x) whenever
y ∈ D and ‖y − x‖ < δ. But {y : ‖y − x‖ < δ} is open (1A2D), so belongs to G and is included in G0, and
x ∈ G0 ∩D. (ii) If x ∈ G0 ∩D, then there is a G ∈ G such that x ∈ G; now g(y) < a for every y ∈ G ∩D,
so, in particular, g(x) < a. QQQ

Finally, G0, being open, is a Borel set. As a is arbitrary, g is Borel measurable.

(c) Suppose first that g is non-decreasing. Let a ∈ R and write E = {x : g(x) < a}. If E = D or E = ∅
then of course it is the intersection of D with a Borel set. Otherwise, E is non-empty and bounded above
in R, so has a supremum c ∈ R. Now E must be either D ∩ ]−∞, c[ or D ∩ ]−∞, c], according to whether
c ∈ E or not, and in either case is the intersection of D with a Borel set (see 114G).

Similarly, if g is non-increasing, {x : g(x) > a} will again be the intersection of D with either ∅ or R or
]−∞, c] or ]−∞, c[ for some c. So in this case 121B(iii) will be satisfied.

Remark I see that in part (b) of the above proof I use some basic facts about open sets in Rr. These are
covered in detail in §1A2. If they are new to you it would probably be sensible to rehearse the arguments
with r = 1, so that D ⊆ R, before embracing the general case.

121E Theorem Let X be a set and Σ a σ-algebra of subsets of X. Let f and g be real-valued functions
defined on domains dom f , dom g ⊆ X.

(a) If f is constant it is measurable.
(b) If f and g are measurable, so is f + g, where (f + g)(x) = f(x) + g(x) for x ∈ dom f ∩ dom g.
(c) If f is measurable and c ∈ R, then cf is measurable, where (cf)(x) = c · f(x) for x ∈ dom f .
(d) If f and g are measurable, so is f × g, where (f × g)(x) = f(x)× g(x) for x ∈ dom f ∩ dom g.
(e) If f and g are measurable, so is f/g, where (f/g)(x) = f(x)/g(x) when x ∈ dom f ∩ dom g and

g(x) 6= 0.
(f) If f is measurable and E ⊆ R is a Borel set, then there is an F ∈ Σ such that f−1[E] = {x : f(x) ∈ E}

is equal to F ∩ dom f .
(g) If f is measurable and h is a Borel measurable function from a subset domh of R to R, then hf is

measurable, where (hf)(x) = h(f(x)) for x ∈ dom(hf) = {y : y ∈ dom f, f(y) ∈ domh}.
(h) If f is measurable and A is any set, then f↾A is measurable, where dom(f↾A) = A ∩ dom f and

(f↾A)(x) = f(x) for x ∈ A ∩ dom f .

proof For any D ⊆ X write ΣD for the subspace σ-algebra of subsets of D.

(a) If f(x) = c for every x ∈ dom f , then {x : f(x) < a} = dom f if c < a, ∅ otherwise, and in either case
belongs to Σdom f .

(b) Write D = dom(f + g) = dom f ∩dom g. If a ∈ R then set K = {(q, q′) : q, q′ ∈ Q, q+ q′ ≤ a}. Then
K is a subset of Q×Q, so is countable (111Fb, 1A1E). For q ∈ Q choose sets Fq, Gq ∈ Σ such that

{x : f(x) < q} = Fq ∩ dom f , {x : g(x) < q} = Gq ∩ dom g.

For each (q, q′) ∈ K, the set

Eqq′ = {x : f(x) < q, g(x) < q′} = Fq ∩Gq′ ∩D

belongs to ΣD. Finally, if (f + g)(x) < a, then we can find q ∈ ]f(x), a− g(x)[, q′ ∈ ]g(x), a− q], so that
(q, q′) ∈ K and x ∈ Eqq′ ; while if (q, q′) ∈ K and x ∈ Eqq′ , then (f + g)(x) < q + q′ ≤ a. Thus

{x : (f + g)(x) < a} =
⋃

(q,q′)∈K Eqq′ ∈ ΣD

by 111Fa. As a is arbitrary, f + g is measurable.

(c) Write D = dom f . Let a ∈ R. If c > 0, then

{x : cf(x) < a} = {x : f(x) <
a

c
} ∈ ΣD.

If c < 0, then

{x : cf(x) < a} = {x : f(x) >
a

c
} ∈ ΣD.
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4 Integration 121E

While if c = 0, then {x : cf(x) < a} is either D or ∅, as in (a) above, so belongs to ΣD. As a is arbitrary,
cf is measurable.

(d) Write D = dom(f × g) = dom f ∩ dom g. Let a ∈ R. Let K be

{(q1, q2, q3, q4) : q1, . . . , q4 ∈ Q, uv < a whenever u ∈ ]q1, q2[ , v ∈ ]q3, q4[}.

Then K is countable. For q ∈ Q choose sets Fq, F
′
q, Gq, G

′
q ∈ Σ such that

{x : f(x) < q} = Fq ∩ dom f , {x : f(x) > q} = F ′
q ∩ dom f ,

{x : g(x) < q} = Gq ∩ dom g, {x : g(x) > q} = G′
q ∩ dom g.

For (q1, q2, q3, q4) ∈ K set

Eq1q2q3q4 = {x : f(x) ∈ ]q1, q2[ , g(x) ∈ ]q3, q4[}

= D ∩ F ′
q1 ∩ Fq2 ∩G

′
q3 ∩Gq4 ∈ ΣD;

then E =
⋃

(q1,q2,q3,q4)∈K Eq1q2q3q4 ∈ ΣD.

Now E = {x : (f × g)(x) < a}. PPP (i) If (f × g)(x) < a, set u = f(x), v = g(x). Set

η = min(1,
a−uv

1+|u|+|v|
) > 0.

Take q1, . . . , q4 ∈ Q such that

u− η ≤ q1 < u < q2 ≤ u+ η, v − η ≤ q3 < v < q4 ≤ v + η.

If u′ ∈ ]q1, q2[, v
′ ∈ ]q3, q4[, then |u′ − u| < η and |v′ − v| < η, so

u′v′ − uv = (u′ − u)(v′ − v) + (u′ − u)v + u(v′ − v)

< η2 + η|v|+ |u|η ≤ η(1 + |u|+ |v|) ≤ a− uv,

and u′v′ < a. Accordingly (q1, q2, q3, q4) ∈ K. Also x ∈ Eq1q2q3q4 , so x ∈ E. Thus {x : (f × g)(x) < a} ⊆ E.
(ii) On the other hand, if x ∈ E, there are q1, . . . , q4 such that (q1, q2, q3, q4) ∈ K and x ∈ Eq1q2q3q4 , so that
f(x) ∈ ]q1, q2[ and g(x) ∈ ]q3, q4[ and f(x)g(x) < a. So E ⊆ {x : (f × g)(x) < a}. QQQ

Thus {x : (f × g)(x) < a} ∈ ΣD. As a is arbitrary, f × g is measurable.

(e) In view of (d), it will be enough to show that 1/g is measurable. Now if a > 0, {x : 1/g(x) < a} =
{x : g(x) > 1/a} ∪ {x : g(x) < 0}; if a < 0, then {x : 1/g(x) < a} = {x : 1/a < g(x) < 0}; and if a = 0, then
{x : 1/g(x) < a} = {x : g(x) < 0}. And all of these belong to Σdom1/g.

(f) Write D = dom f and consider the set

T = {E : E ⊆ R, f−1[E] ∈ ΣD}.

Then T is a σ-algebra of subsets of R. PPP (i) f−1[∅] = ∅ ∈ ΣD, so ∅ ∈ T. (ii) If E ∈ T, then f−1[R \ E] =
D\f−1[E] ∈ ΣD so R\E ∈ T. (iii) If 〈En〉n∈N is a sequence in T, then f−1[

⋃

n∈NEn] =
⋃

n∈N f
−1[En] ∈ ΣD

because ΣD is a σ-algebra, so
⋃

n∈NEn ∈ T. QQQ
Next, T contains all sets of the form Ha = ]−∞, a[ for a ∈ R, by the definition of measurability of f .

The result follows by arguments already used in 114G above. First, all open subsets of R belong to T. PPP
Let G ⊆ R be open. Let K ⊆ Q×Q be the set of pairs (q, q′) of rational numbers such that [q, q′[ ⊆ G. K
is countable. Also, every [q, q′[ belongs to T, being Hq′ \Hq. So G

′ =
⋃

(q,q′)∈K [q, q′[ ∈ T.

By the definition of K, G′ ⊆ G. On the other hand, if x ∈ G, there is a δ > 0 such that ]x− δ, x+ δ[ ⊆ G.
Now there are rational numbers q ∈ ]x− δ, x] and q′ ∈ ]x, x+ δ], so that (q, q′) ∈ K and x ∈ [q, q′[ ⊆ G′. As
x is arbitrary, G = G′ and G ∈ T. QQQ

Finally, T is a σ-algebra of subsets of R including the family of open sets, so must contain every Borel
set, by the definition of Borel set (111G).

(g) If a ∈ R, then {y : h(y) < a} is of the form E ∩ domh, where E is a Borel subset of R. Next, f−1[E]
is of the form F ∩ dom f , where F ∈ Σ, by (f) above. So

{x : (hf)(x) < a} = F ∩ domhf ∈ Σdomhf .

Measure Theory



121G Measurable functions 5

As a is arbitrary, hf is measurable.

(h) The point is that ΣA∩dom f = {E ∩A : E ∈ Σdom f}. So if a ∈ R,

{x : (f↾A)(x) < a} = A ∩ {x : f(x) < a} ∈ Σdom(f↾A).

Remarks Of course part (c) of this theorem is just a matter of putting (a) and (d) together, while (e) is a
consequence of (d), (g) and the fact that continuous functions are Borel measurable (121Db).

I hope you will recognise the technique in the proof of part (d) as a version of arguments which may be
used to prove that the limit of a product is the product of the limits, or that the product of continuous
functions is continuous. In fact (b) and (d) here, as well as the theorems on sums and products of limits, are
consequences of the fact that addition and multiplication are continuous functions. In 121K I give a general
result which may be used to exploit such facts.

Really, part (f) here is the essence of the concept of ‘measurable’ real-valued function. The point of
the definition in 121B-121C is that the Borel σ-algebra of R can be generated by any of the families
{]−∞, a[ : a ∈ R}, {]−∞, a] : a ∈ R}, . . . . (See 121Yc(ii).) There are many routes covering this territory in
rather fewer words than I have used, at the cost of slightly greater abstraction.

121F Theorem Let X be a set and Σ a σ-algebra of subsets of X. Let 〈fn〉n∈N be a sequence of
Σ-measurable real-valued functions with domains included in X.

(a) Define a function limn→∞ fn by writing

(limn→∞ fn)(x) = limn→∞ fn(x)

for all those x ∈
⋃

n∈N

⋂

m≥n dom fm for which the limit exists in R. Then limn→∞ fn is Σ-measurable.

(b) Define a function supn∈N fn by writing

(supn∈N fn)(x) = supn∈N fn(x)

for all those x ∈
⋂

n∈N dom fn for which the supremum exists in R. Then supn∈N fn is Σ-measurable.
(c) Define a function infn∈N fn by writing

(infn∈N fn)(x) = infn∈N fn(x)

for all those x ∈
⋂

n∈N dom fn for which the infimum exists in R. Then infn∈N fn is Σ-measurable.
(d) Define a function lim supn→∞ fn by writing

(lim supn→∞ fn)(x) = lim supn→∞ fn(x)

for all those x ∈
⋃

n∈N

⋂

m≥n dom fm for which the lim sup exists in R. Then lim supn→∞ fn is Σ-measurable.

(e) Define a function lim infn→∞ fn by writing

(lim infn→∞ fn)(x) = lim infn→∞ fn(x)

for all those x ∈
⋃

n∈N

⋂

m≥n dom fm for which the lim inf exists in R. Then lim infn∈N fn is Σ-measurable.

proof For n ∈ N, a ∈ R choose Hn(a) ∈ Σ such that {x : fn(x) ≤ a} = Hn(a) ∩ dom fn. The proofs are
now a matter of observing the following facts:

(a) {x : (limn→∞ fn)(x) ≤ a} = dom(limn→∞ fn) ∩
⋂

k∈N

⋃

n∈N

⋂

m≥nHm(a+ 2−k);

(b) {x : (supn∈N fn)(x) ≤ a} = dom(supn∈N fn) ∩
⋂

n∈NHn(a);

(c) infn∈N fn = − supn∈N(−fn);

(d) lim supn→∞ fn = limn→∞ supm∈N fm+n;

(e) lim infn→∞ fn = − lim supn→∞(−fn).

121G Remarks It is at this point that we first encounter clearly the problem of functions which are not
defined everywhere. (The quotient f/g of 121Ee also need not be defined everywhere on the common domain
of f and g, but it is less important and more easily dealt with.) The whole point of the theory of measure
and integration, since Lebesgue, is that we can deal with limits of sequences of functions; and the set on
which limn→∞ fn(x) exists can be decidedly irregular, even for apparently well-behaved functions fn. (If

D.H.Fremlin



6 Integration 121G

you have encountered the theory of Fourier series, then an appropriate example to think of is the sequence of
partial sums fn(x) =

1
2a0+

∑n
k=1(ak cos kx+ bk sin kx) of a Fourier series in which

∑∞

k=1 |ak|+ |bk| = ∞, so
that the series is not uniformly absolutely summable, but may be conditionally summable at certain points.)

I have tried to make it clear what domains I mean to attach to the functions supn∈N fn, limn→∞ fn,
etc. The guiding principle is that they should be the set of all x ∈ X for which the defining formulae
supn∈N fn(x), limn→∞ fn(x) can be interpreted as real numbers. (As I noted in 121C, I am for the time
being avoiding ‘∞’ as a value of a function, though it gives little difficulty, and some formulae are more
naturally interpreted by allowing it.) But in the case of lim, lim sup, lim inf it should be noted that I am
using the restrictive definition, that limn→∞ an can be regarded as existing only when there is some n ∈ N

such that am is defined for every m ≥ n. There are occasions when it would be more natural to admit the
limit when we know only that am is defined for infinitely many m; but such a convention could make 121Fa
false, unless care was taken.

As in 111E-111F, we can use the ideas of parts (b), (c) here to discuss functions of the form supk∈K fk,
infk∈K fk for any family 〈fk〉k∈K of measurable functions indexed by a non-empty countable set K.

In this theorem and the last, the functions f , g, fn have been permitted to have arbitrary domains, and
consequently there is nothing that can be said about the domains of the constructed functions. However, it
is of course the case that if the original functions have measurable domains, so do the functions constructed
from them by the rules I propose. I spell out the details in the next proposition.

121H Proposition Let X be a set and Σ a σ-algebra of subsets of X; let f , g and fn, for n ∈ N, be
Σ-measurable real-valued functions whose domains belong to Σ. Then all the functions

f + g, f × g, f/g,

supn∈N fn, infn∈N fn, limn→∞ fn, lim supn→∞ fn, lim infn→∞ fn

have domains belonging to Σ. Moreover, if h is a Borel measurable real-valued function defined on a Borel
subset of R, then domhf ∈ Σ.

proof For the first two, we have dom(f + g) = dom(f × g) = dom f ∩ dom g. Next, if E is a Borel subset
of R, there is an H ∈ Σ such that f−1[E] = H ∩ dom f ; so f−1[E] ∈ Σ. Thus

domhf = f−1[domh] ∈ Σ.

Setting h(a) = 1/a for a ∈ R \ {0}, we see that dom(1/f) ∈ Σ. (domh = R \ {0} is a Borel set because it is
open.) Similarly, dom(1/g) and dom(f/g) = dom f ∩ dom(1/g) belong to Σ.

Now for the infinite combinations. Set Hn(a) = {x : x ∈ dom fn, fn(x) < a} for n ∈ N, a ∈ R; as just
explained, every Hn(a) belongs to Σ. Now

dom(supn∈N fn) =
⋃

m∈N

⋂

n∈NHn(m) ∈ Σ.

Next, |fm−fn| is measurable, with domain in Σ, for allm, n ∈ N (applying the results above to −fn = −1·fn,
fm − fn = fm + (−fn) and |fm − fn| = | | ◦ (fm − fn)), so

Gmnk = {x : x ∈ dom fm ∩ dom fn, |fm(x)− fn(x)| ≤ 2−k} ∈ Σ

for all m, n, k ∈ N. Accordingly

dom(limn→∞ fn) = {x :∃ n, 〈fm(x)〉m≥n is Cauchy} =
⋂

k∈N

⋃

n∈N

⋂

m≥nGmnk ∈ Σ.

Manipulating the above results as in (c), (d) and (e) of the proof of 121F, we easily complete the proof.

Remark Note the use of the General Principle of Convergence in the proof above. I am not sure whether
this will strike you as ‘natural’, and there are alternative methods; but the formula

{x : limn→∞ fn(x) exists in R} = {x : 〈fn(x)〉n∈N is Cauchy}

is one worth storing in your long-term memory.

*121I I end this section with two results which can be safely passed by on first reading, but which you
will need at some point to master if you wish to go farther into measure theory than the present chapter,
as both are essential parts of the concept of ‘measurable function’.

Measure Theory



*121J Measurable functions 7

Proposition Let X be a set and Σ a σ-algebra of subsets of X. Let D be a subset of X and f : D → R a
function. Then f is measurable iff there is a measurable function h : X → R extending f .

proof (a) If h : X → R is measurable and f = h↾D, then f is measurable by 121Eh.

(b) Now suppose that f is measurable.

(i) For each q ∈ Q, the set Dq = {x : x ∈ D, f(x) ≤ q} belongs to the subspace σ-algebra ΣD, that is,
there is an Eq ∈ Σ such that Dq = Eq ∩D. Set

F = X \
⋃

q∈QEq,

G =
⋂

n∈N

⋃

q∈Q,q≤−nEq;

then both F and G belong to Σ, and are disjoint from D. PPP If x ∈ D, there is a q ∈ Q such that f(x) ≤ q,
so that x ∈ Eq and x /∈ F . Also there is an n ∈ N such that f(x) > −n, so that x /∈ Eq′ for q

′ ≤ −n and
x /∈ G. QQQ

Set H = X \ (F ∪G) ∈ Σ. For x ∈ H,

{q : q ∈ Q, x ∈ Eq}

is non-empty and bounded below, so we may set

h(x) = inf{q : x ∈ Eq};

for x ∈ F ∪G, set h(x) = 0. This defines h : X → R.

(ii) h(x) = f(x) for x ∈ D. PPP As remarked above, x ∈ H. If q ∈ Q and x ∈ Eq, then f(x) ≤ q;
consequently h(x) ≥ f(x). On the other hand, given ǫ > 0, there is a q ∈ Q ∩ [f(x), f(x) + ǫ], and now
x ∈ Eq, so h(x) ≤ q ≤ f(x) + ǫ; as ǫ is arbitrary, h(x) ≤ f(x). QQQ

(iii) h is measurable. PPP If a > 0 then

{x : h(x) < a} = (H ∩
⋃

q<aEq) ∪ (F ∪G) ∈ Σ,

while if a ≤ 0

{x : h(x) < a} = H ∩
⋃

q<aEq ∈ Σ. QQQ

This completes the proof.

*121J The next proposition may illuminate 121E, as well as being indispensable for the work of Volume
2. I start with a useful description of the Borel sets of Rr.

Lemma Let r ≥ 1 be an integer, and write J for the family of subsets of Rr of the form {x : ξi ≤ α} where
i ≤ r, α ∈ R, writing x = (ξ1, . . . , ξr), as in §115. Then the σ-algebra of subsets of Rr generated by J is
precisely the σ-algebra B of Borel subsets of Rr.

proof (a) All the sets in J are closed, so must belong to B; writing Σ for the σ-algebra generated by J ,
we must have Σ ⊆ B.

(b) The next step is to observe that all half-open intervals of the form

]a, b] = {x : αi < ξi ≤ βi ∀ i ≤ r}

belong to Σ; this is because

]a, b] =
⋂

i≤r({x : ξi ≤ βi} \ {x : ξi ≤ αi}).

It follows that all open sets belong to Σ. PPP (Compare the proof of 121Ef.) Let G ⊆ Rr be an open set.
Let I be the set of all intervals of the form ]q, q′] which are included in G, where q, q′ ∈ Qr. Then I is a
countable subset of Σ, so (because Σ is a σ-algebra)

⋃

I ∈ Σ. By the definition of I,
⋃

I ⊆ G. But also, if
x ∈ G, there is a δ > 0 such that the open ball U(x, δ) with centre x and radius δ is included in G (1A2A).
Now, for each i ≤ r, we can find rational numbers αi, βi such that

ξi −
δ

r
≤ αi < ξi ≤ βi < ξi +

δ

r
,

D.H.Fremlin



8 Integration *121J

so that

x ∈ ]a, b] ⊆ U(x, δ) ⊆ G

and x ∈ ]a, b] ∈ I. Thus x ∈
⋃

I. As x is arbitrary, G ⊆
⋃

I and G =
⋃

I ∈ Σ. QQQ

(c) Thus Σ is a σ-algebra of sets containing every open set, and must include B, the smallest such
σ-algebra.

Remark Compare the proof of 115G.

*121K Proposition Let X be a set and Σ a σ-algebra of subsets of X. Let r ≥ 1 be an integer,
and f1, . . . , fr measurable functions defined on subsets of X. Set D =

⋂

i≤r dom fi and for x ∈ D set

f(x) = (f1(x), . . . , fr(x)) ∈ Rr. Then
(a) for any Borel set E ⊆ Rr, f−1[E] belongs to the subspace σ-algebra ΣD;
(b) if h is a Borel measurable function from a subset domh of Rr to R, then the composition hf is

measurable.

proof (a)(i) Consider the set

T = {E : E ⊆ Rr, f−1[E] ∈ ΣD}.

Then T is a σ-algebra of subsets of Rr. PPP (Compare 121Ef.) (ααα) f−1[∅] = ∅ ∈ ΣD, so ∅ ∈ T. (βββ) If
E ∈ T, then f−1[Rr \ E] = D \ f−1[E] ∈ ΣD so Rr \ E ∈ T. (γγγ) If 〈En〉n∈N is a sequence in T, then
f−1[

⋃

n∈NEn] =
⋃

n∈N f
−1[En] ∈ ΣD because ΣD is a σ-algebra, so

⋃

n∈NEn ∈ T. QQQ

(ii) Next, for any i ≤ r and α ∈ R, J = {x : ξi ≤ α} belongs to T, because

f−1[J ] = {x : x ∈ D, fi(x) ≤ α} ∈ ΣD.

So T includes the family J of 121J and therefore includes the σ-algebra B generated by J , that is, contains
every Borel subset of Rr.

(b) Now the rest follows by the argument of 121Eg. If a ∈ R, then {y : y ∈ domh, h(y) < a} is of the
form E ∩ domh, where E is a Borel subset of Rr, so {x : x ∈ dom(hf), (hf)(x) < a} = f−1[E] ∩ dom(hf)
belongs to Σdomhf .

121X Basic exercises >>>(a) Let X be a set, Σ a σ-algebra of subsets of X, and D ⊆ X. Let 〈Dn〉n∈N be
a partition of D into relatively measurable sets and 〈fn〉n∈N a sequence of measurable real-valued functions
such that Dn ⊆ dom fn for each n. Define f : D → R by setting f(x) = fn(x) whenever n ∈ N, x ∈ Dn.
Show that f is measurable.

(b) Let X be a set and Σ a σ-algebra of subsets of X. If f and g are measurable real-valued functions
defined on subsets of X, show that f+, f−, f ∧ g and f ∨ g are measurable, where

f+(x) = max(f(x), 0) for x ∈ dom f ,

f−(x) = max(−f(x), 0) for x ∈ dom f ,

(f ∨ g)(x) = max(f(x), g(x)) for x ∈ dom f ∩ dom g,

(f ∧ g)(x) = min(f(x), g(x)) for x ∈ dom f ∩ dom g.

>>>(c) Let (X,Σ, µ) be a measure space. Write L
0 for the set of real-valued functions f such that (α)

dom f is a conegligible subset of X (β) there is a conegligible set E ⊆ X such that f↾E is measurable. (i)
Show that the set E of clause (β) in the last sentence may be taken to belong to Σ and be included in
dom f . (ii) Show that if f , g ∈ L

0 and c ∈ R, then f + g, cf , f × g, |f |, f+, f−, f ∧ g, f ∨ g all belong to
L

0. (iii) Show that if f , g ∈ L
0 and g 6= 0 a.e. then f/g ∈ L

0. (iv) Show that if 〈fn〉n∈N is a sequence in L
0

then the functions

limn→∞ fn, supn∈N fn, infn∈N fn, lim supn→∞ fn, lim infn→∞ fn

belong to L
0 whenever they are defined almost everywhere as real-valued functions. (v) Show that if f ∈ L

0

and h : R → R is Borel measurable then hf ∈ L
0.

Measure Theory



121Ye Measurable functions 9

>>>(d) Consider the following four families of subsets of R:

A1 = {]−∞, a[ : a ∈ R}, A2 = {]−∞, a] : a ∈ R},

A3 = {]a,∞[ : a ∈ R}, A4 = {[a,∞[ : a ∈ R}.

Show that for each j the σ-algebra of subsets of R generated by Aj is the σ-algebra of Borel sets.

(e) Let D be any subset of Rr, where r ≥ 1. Write TD for the set {G ∩D : G ⊆ Rr is open}. (i) Show
that TD satisfies the properties of open sets listed in 1A2B. (ii) Let B be the σ-algebra of Borel sets in Rr,
and B(D) the subspace σ-algebra on D. Show that B(D) is just the σ-algebra of subsets of D generated
by TD. (Hint : (α) observe that TD ⊆ B(D) (β) consider {E : E ⊆ Rr, E ∩ D belongs to the σ-algebra
generated by TD}.)

(f) Let (X,Σ, µ) be a measure space and define L
0 as in 121Xc. Show that if f1, . . . , fr belong to L

0

and h : Rr → R is Borel measurable then h(f1, . . . , fr) belongs to L
0.

121Y Further exercises (a) Let X and Y be sets, Σ a σ-algebra of subsets of X, φ : X → Y a function
and g a real-valued function defined on a subset of Y . Set T = {F : F ⊆ Y, φ−1[F ] ∈ Σ}; then T is a
σ-algebra of subsets of Y (see 111Xc). (i) Show that if g is T-measurable then gφ is Σ-measurable. (ii) Give
an example in which gφ is Σ-measurable but g is not T-measurable. (iii) Show that if gφ is Σ-measurable
and either φ is injective or dom(gφ) ∈ Σ or φ[X] ⊆ dom g, then g is T-measurable.1

(b) Let X and Y be sets, T a σ-algebra of subsets of Y and φ : X → Y a function. Set Σ = {φ−1[F ] :
F ∈ T}, as in 111Xd. Show that a function f : X → R is Σ-measurable iff there is a T-measurable function
g : Y → R such that f = gφ.

(c) Let X and Y be sets and Σ, T σ-algebras of subsets of X, Y respectively. I say that a function
φ : X → Y is (Σ,T)-measurable if φ−1[F ] ∈ Σ for every F ∈ T. (i) Show that if Σ, T, Υ are σ-algebras of
subsets of X, Y , Z respectively, and φ : X → Y is (Σ,T)-measurable, ψ : Y → Z is (T,Υ)-measurable, then
ψφ : X → Z is (Σ,Υ)-measurable. (ii) Suppose that A ⊆ T is such that T is the σ-algebra of subsets of Y
generated by A (111Gb). Show that φ : X → Y is (Σ,T)-measurable iff φ−1[A] ∈ Σ for every A ∈ A. (iii)
For r ≥ 1, write Br for the σ-algebra of Borel subsets of Rr. Show that if X is any set and Σ is a σ-algebra
of subsets of X, then a function f : X → Rr is (Σ,Br)-measurable iff πif : X → R is (Σ,B1)-measurable for
every i ≤ r, writing πi(x) = ξi for i ≤ r, x = (ξ1, . . . , ξr) ∈ Rr. (iv) Rewrite these ideas for partially-defined
functions.

(d) Let X be a set and Σ a σ-algebra of subsets of X. For r ≥ 1, D ⊆ X say that a function φ : D → Rr

is measurable if φ−1[G] is relatively measurable in D for every open set G ⊆ Rr. If X = Rs and Σ is
the σ-algebra Bs of Borel subsets of Rs, say that φ is Borel measurable. (i) Show that φ is measurable
in this sense iff all its coordinate functions φi : D → R are measurable in the sense of 121C, taking
φ(x) = (φi(x), . . . , φr(x)) for x ∈ D. (In particular, this definition agrees with 121C when r = 1.) (ii)
Show that φ : D → Rr is measurable iff it is (Σ,Br)-measurable in the sense of 121Yc. (iii) Show that if
φ : D → Rr is measurable and ψ : E → Rs is Borel measurable, where E ⊆ Rr, then ψφ : φ−1[E] → Rs is
measurable. (iv) Show that any continuous function from a subset of Rs to Rr is Borel measurable.

(e) Let X be a set and θ an outer measure on X; let µ be the measure defined from θ by Carathéodory’s
method, and Σ its domain. Suppose that f : X → R is a function such that

θ{x : x ∈ A, f(x) ≤ a}+ θ{x : x ∈ A, f(x) ≥ b} ≤ θA

whenever A ⊆ X and a < b in R. Show that f is Σ-measurable. (Hint : suppose that a ∈ R and θA < ∞.
Set

Bk = {x : x ∈ A, a+
1

2k+2
≤ f(x) ≤ a+

1

2k+1
},

1I am grateful to P.Wallace Thompson for pointing out the error in the original version of this exercise.
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10 Integration 121Ye

B′
k = {x : x ∈ A, a+

1

2k+3
≤ f(x) ≤ a+

1

2k+2
}

for k ∈ N. Show that
∑∞

k=0 θBk ≤ θA, and check a similar result for B′
k. Hence show that

θ{x : x ∈ A, f(x) > a} = limk→∞ θ{x : x ∈ A, f(x) ≥ a+
1

k
}.)

121 Notes and comments I find myself offering no fewer than three definitions of ‘measurable function’,
in 121C, 121Yc and 121Yd. It is in fact the last which is probably the most important and the best guide
to further ideas. Nevertheless, the overwhelming majority of applications refer to real-valued functions, and
the four equivalent conditions of 121B are the most natural and most convenient to use. The fact that they
all coincide with the condition of 121Yd corresponds to the fact that they are all of the form

f−1[E] ∈ ΣD for every E ∈ A

where A is a family of subsets of R generating the Borel σ-algebra (121Xd, 121Yc(ii)).
The class of measurable functions may well be the widest you have yet seen, not counting the family of all

real-valued functions; all easily describable functions between subsets of R are measurable. Not only is the
space of measurable functions closed under addition and multiplication and composition with continuous
functions (121E), but any natural operation acting on a sequence of measurable functions will produce a
measurable function (121F, 121Xb, 121Xa). It is not however the case that the composition of two Lebesgue
measurable functions from R to itself is always Lebesgue measurable; I offer a counter-example in 134Ib.
The point here is that a function is called ‘measurable’ if it is (Σ,B)-measurable, in the language of 121Yc,
where B is the σ-algebra of Borel sets. Such a function can well fail to be (Σ,Σ)-measurable, if Σ properly
includes B, so the natural argument for compositions (121Yc(i)) fails. Nevertheless, for reasons which I will
hint at in §134, non-Lebesgue-measurable functions are hard to come by, and only in the most rarefied kinds
of real analysis do they appear in any natural way. You may therefore approach the question of whether
a particular function is Lebesgue measurable with reasonable confidence that it is, and that the proof is
merely a challenge to your technique.

You will observe that the results of 121E are mostly covered by 121I-121K, which also include large parts
of 114G and 115G; and that 121Kb is covered by 121Yd(iii). You can count yourself as having mastered
this part of the subject when you find my exposition tediously repetitive. Of course, in order to deduce
121Ed from 121K, for instance, you have to know that multiplication, regarded as a function from R2 to R,
is continuous, therefore Borel measurable; the proof of this is embedded in the proof I give of 121Ed (look
at the formula for η half way through).

Version of 4.1.04

122 Definition of the integral

I set out the definition of ordinary integration for real-valued functions defined on an arbitrary measure
space, with its most basic properties.

122A Definitions Let (X,Σ, µ) be a measure space.

(a) For any set A ⊆ X, I write χA for the indicator function or characteristic function of A, the
function from X to {0, 1} given by setting χA(x) = 1 if x ∈ A, 0 if x ∈ X \ A. (Of course this notation
depends on it being understood which is the ‘universal’ set X under consideration; perhaps I should call
it the ‘indicator function of A as a subset of X’.) Observe that χA is Σ-measurable, in the sense of 121C
above, iff A ∈ Σ (because A = {x : χA(x) > 0}).

(b) Now a simple function on X is a function of the form
∑n

i=0 aiχEi, where E0, . . . , En are measurable
sets of finite measure and a0, . . . , an belong to R. Warning! Some authors allow arbitrary sets Ei, so that
a simple function on X is any function taking only finitely many values.

122B Lemma Let (X,Σ, µ) be a measure space.

Measure Theory
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(a) Every simple function on X is measurable.
(b) If f , g : X → R are simple functions, so is f + g.
(c) If f : X → R is a simple function and c ∈ R, then cf : X → R is a simple function.
(d) The constant zero function is simple.

proof (a) comes from the facts that χE is measurable for measurable E, and that sums and scalar multiples
of measurable functions are measurable (121Eb-121Ec). (b)-(d) are trivial.

122C Lemma Let (X,Σ, µ) be a measure space.
(a) If E0, . . . , En are measurable sets of finite measure, there are disjoint measurable sets G0, . . . , Gm of

finite measure such that each Ei is expressible as a union of some of the Gj .
(b) If f : X → R is a simple function, it is expressible in the form

∑m
j=0 bjχGj where G0, . . . , Gm are

disjoint measurable sets of finite measure.
(c) If E0, . . . , En are measurable sets of finite measure, and a0, . . . , an ∈ R are such that

∑n
i=0 aiχEi(x) ≥

0 for every x ∈ X, then
∑n

i=0 aiµEi ≥ 0.

proof (a) Set m = 2n+1 − 2, and enumerate the non-empty subsets of {0, . . . , n} as I0, . . . , Im. For each
j ≤ m, set

Gj =
⋂

i∈Ij
Ei \

⋃

i≤n,i/∈Ij
Ei.

Then every Gj is a measurable set, being obtained from finitely many measurable sets by the operations
∪, ∩ and \, and has finite measure, because Ij 6= ∅ and Gj ⊆ Ei if i ∈ Ij . Moreover, the Gj are disjoint,
for if i ∈ Ij \ Ik then Gj ⊆ Ei and Gk ∩ Ei = ∅. Finally, if k ≤ n and x ∈ Ek, there is a j ≤ m such that
Ij = {i : i ≤ n, x ∈ Ei}, and in this case x ∈ Gj ⊆ Ek; thus Ek is the union of those Gj which it includes.

(b) Express f as
∑n

i=0 aiχEi where E0, . . . , En are measurable sets of finite measure and a0, . . . , an are
real numbers. Let G0, . . . , Gm be disjoint measurable sets of finite measure such that every Ei is expressible
as a union of appropriate Gj . Set cij = 1 if Gj ⊆ Ei, 0 otherwise, so that, because the Gj are disjoint,
χEi =

∑m
j=0 cijχGj for each i. Then

f =
∑n

i=0 aiχEi =
∑n

i=0

∑m
j=0 aicijχGj =

∑m
j=0 bjχGj ,

setting bj =
∑n

i=0 aicij for each j ≤ m.

(c) Set f =
∑n

i=0 aiχEi, and take Gj , cij , bj as in (b). Then bjµGj ≥ 0 for every j. PPP If Gj = ∅, this is
trivial. Otherwise, let x ∈ Gj ; then

0 ≤ f(x) =
∑n

i=0 biχGi(x) = bjχGj(x) = bj ,

so again bjµGj ≥ 0. QQQ Next, because the Gj are disjoint,

µEi =
∑m

j=0 cijµGj

for each i, so
∑n

i=0 aiµEi =
∑n

i=0

∑m
j=0 aicijµGj =

∑m
j=0 bjµGj ≥ 0,

as required.

122D Corollary Let (X,Σ, µ) be a measure space. If
∑m

i=0 aiχEi =
∑n

j=0 bjχFj ,

where all the Ei and Fj are measurable sets of finite measure and the ai, bj are real numbers, then
∑m

i=0 aiµEi =
∑n

j=0 bjµFj .

proof Apply 122Cc to
∑m

i=0 aiχEi+
∑n

j=0(−bj)χFj to see that
∑m

i=0 aiµEi−
∑n

j=0 bjµFj ≥ 0; now reverse
the roles of the two sums to get the opposite inequality.

122E Definition Let (X,Σ, µ) be a measure space. Then we may define the integral
∫

f of f , for
simple functions f : X → R, by saying that

∫

f =
∑m

i=0 aiµEi whenever f =
∑m

i=0 aiχEi and every Ei is a
measurable set of finite measure; 122D promises us that it won’t matter which representation of f we pick
on for the calculation.
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122F Proposition Let (X,Σ, µ) be a measure space.
(a) If f , g : X → R are simple functions, then f + g is a simple function and

∫

f + g =
∫

f +
∫

g.
(b) If f is a simple function and c ∈ R, then cf is a simple function and

∫

cf = c
∫

f .
(c) If f , g are simple functions and f(x) ≤ g(x) for every x ∈ X, then

∫

f ≤
∫

g.

proof (a) and (b) are immediate from the formula given for
∫

f in 122E. As for (c), observe that g − f is
a non-negative simple function, so that

∫

g − f ≥ 0, by 122Cc; but this means that
∫

g −
∫

f ≥ 0.

122G Lemma Let (X,Σ, µ) be a measure space. If 〈fn〉n∈N is a sequence of simple functions which
is non-decreasing (in the sense that fn(x) ≤ fn+1(x) for every n ∈ N, x ∈ X) and f is a simple function
such that f(x) ≤ supn∈N fn(x) for almost every x ∈ X (allowing supn∈N fn(x) = ∞ in this formula), then
∫

f ≤ supn∈N

∫

fn.

proof Note that f − f0 is a simple function, so H = {x : (f − f0)(x) 6= 0} is a finite union of sets of finite
measure, and µH < ∞; also f − f0 is bounded, so there is an M ≥ 0 such that (f − f0)(x) ≤ M for every
x ∈ X.

Let ǫ > 0. For each n ∈ N, set Hn = {x : (f − fn)(x) ≥ ǫ}. Then each Hn is measurable (by 121E), and
〈Hn〉n∈N is a non-increasing sequence of sets with intersection

⋂

n∈NHn = {x : f(x) ≥ ǫ+ supn∈N fn(x)} ⊆ {x : f(x) > supn∈N fn(x)}.

Because f(x) ≤ supn∈N fn(x) for almost every x, {x : f(x) > supn∈N fn(x)} and
⋂

n∈NHn are negligible.
Also µH0 <∞, because H0 ⊆ H. Consequently

limn→∞ µHn = µ(
⋂

n∈NHn) = 0

(112Cf). Let n be so large that µHn ≤ ǫ.
Consider the simple function g = fn + ǫχH +MχHn. Then f ≤ g, so

∫

f ≤
∫

g =
∫

fn + ǫµH +MµHn ≤
∫

fn + ǫ(M + µH).

As ǫ is arbitrary,
∫

f ≤ supn∈N

∫

fn.

122H Definition Let (X,Σ, µ) be a measure space. For the rest of this section, I will write U for the
set of functions f such that

(i) the domain of f is a conegligible subset of X and f(x) ∈ [0,∞[ for each x ∈ dom f ,
(ii) there is a non-decreasing sequence 〈fn〉n∈N of non-negative simple functions such that supn∈N

∫

fn <
∞ and limn→∞ fn(x) = f(x) for almost every x ∈ X.

122I Lemma If f and 〈fn〉n∈N are as in 122H, then

supn∈N

∫

fn = sup{
∫

g : g is a simple function and g ≤a.e. f}.

proof Of course

supn∈N

∫

fn ≤ sup{
∫

g : g is a simple function and g ≤a.e. f}

because fn ≤a.e. f for each n. On the other hand, if g is a simple function and g ≤a.e. f , then g(x) ≤
supn∈N fn(x) for almost every x, so

∫

g ≤ supn∈N

∫

fn by 122G. Thus

supn∈N

∫

fn ≥ sup{
∫

g : g is a simple function and g ≤a.e. f},

as required.

122J Lemma Let (X,Σ, µ) be a measure space, and define U as in 122H.
(a) If f is a function defined on a conegligible subset of X and taking values in [0,∞[, then f ∈ U iff

there is a conegligible measurable set E ⊆ dom f such that

(α) f↾E is measurable,
(β) for every ǫ > 0, µ{x : x ∈ E, f(x) ≥ ǫ} <∞,
(γ) sup{

∫

g : g is a simple function, g ≤a.e. f} <∞.

Measure Theory
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(b) Suppose that f ∈ U and that h is a function defined on a conegligible subset of X and taking values
in [0,∞[. Suppose that h ≤a.e. f and there is a conegligible F ⊆ X such that h↾F is measurable. Then
h ∈ U .

proof (a)(i) Suppose that f ∈ U . Then there is a non-decreasing sequence 〈fn〉n∈N of non-negative simple
functions such that f =a.e. limn→∞ fn and supn∈N

∫

fn = c < ∞. The set {x : f(x) = limn→∞ fn(x)} is
conegligible, so includes a measurable conegligible set E say. Now f↾E = (limn→∞ fn)↾E is measurable,
by 121Fa and 121Eh; thus (α) is satisfied. Next, given ǫ > 0, set Hn = {x : x ∈ E, fn(x) ≥ 1

2ǫ}; then

fn ≥ 1
2ǫχHn, so

1

2
ǫµHn =

∫

1
2ǫχHn ≤

∫

fn ≤ c,

for each n. Now 〈Hn〉n∈N is non-decreasing, so

µ(
⋃

n∈NHn) = supn∈N µHn ≤ 2c/ǫ,

by 112Ce. Accordingly

µ{x : x ∈ E, f(x) ≥ ǫ} ≤ µ(
⋃

n∈NHn) ≤ 2c/ǫ <∞.

As ǫ is arbitrary, (β) is satisfied. Finally, (γ) is satisfied by 122I.

(ii) Now suppose that the conditions (α)-(γ) are satisfied. Take an appropriate conegligible E ∈ Σ,
and for each n ∈ N define fn : X → R by setting

fn(x) = 2−nk if x ∈ E, 0 ≤ k < 4n, 2−nk ≤ f(x) < 2−n(k + 1),

= 0 if x ∈ X \ E,

= 2n if x ∈ E and f(x) ≥ 2n.

Then fn is a non-negative simple function, being expressible as

fn =
∑4n

k=1 2
−nχ{x : x ∈ E, f(x) ≥ 2−nk};

all the sets {x : x ∈ E, f(x) ≥ 2−nk} being measurable (because f↾E is measurable) and of finite measure,
by (β). Also it is easy to see that 〈fn〉n∈N is a non-decreasing sequence which converges to f at every point
of E, so that f =a.e. limn→∞ fn. Finally,

limn→∞

∫

fn = supn∈N

∫

fn ≤ sup{
∫

g : g ≤ f is simple} <∞,

by (γ). So f ∈ U .

(b) Let E be a set as in (a). The sets E, F and {x : h(x) ≤ f(x)} are all conegligible, so there is a
conegligible measurable set E′ included in their intersection. Now E′ ⊆ domh, h↾E′ is measurable,

µ{x : x ∈ E′, h(x) ≥ ǫ} ≤ µ{x : x ∈ E, f(x) ≥ ǫ} <∞

for every ǫ > 0, and

sup{
∫

g : g is simple, g ≤a.e. h} ≤ sup{
∫

g : g is simple, g ≤a.e. f} <∞.

So h ∈ U .

122K Definition Let (X,Σ, µ) be a measure space, and define U as in 122H. For f ∈ U , set
∫

f = sup{
∫

g : g is a simple function and g ≤a.e. f}.

By 122I, we see that
∫

f = limn→∞

∫

fn whenever 〈fn〉n∈N is a non-decreasing sequence of simple functions
converging to f almost everywhere; in particular, if f ∈ U is itself a simple function, then

∫

f , as defined
here, agrees with the original definition of

∫

f in 122E, since we may take fn = f for every n.

122L Lemma Let (X,Σ, µ) be a measure space.
(a) If f , g ∈ U then f + g ∈ U and

∫

f + g =
∫

f +
∫

g.
(b) If f ∈ U and c ≥ 0 then cf ∈ U and

∫

cf = c
∫

f .
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(c) If f , g ∈ U and f ≤a.e. g then
∫

f ≤
∫

g.
(d) If f ∈ U and g is a function with domain a conegligible subset of X, taking values in [0,∞[, and equal

to f almost everywhere, then g ∈ U and
∫

g =
∫

f .
(e) If f1, g1, f2, g2 ∈ U and f1 − f2 = g1 − g2, then

∫

f1 −
∫

f2 =
∫

g1 −
∫

g2.

proof (a) We know that there are non-decreasing sequences 〈fn〉n∈N, 〈gn〉n∈N of non-negative simple func-
tions such that f =a.e. limn→∞ fn, g =a.e. limn→∞ gn, supn∈N

∫

fn < ∞ and supn∈N

∫

gn < ∞. Now
〈fn + gn〉n∈N is a non-decreasing sequence of simple functions converging to f + g a.e., and

supn∈N

∫

fn + gn = limn→∞

∫

fn + gn = limn→∞

∫

fn + limn→∞

∫

gn =
∫

f +
∫

g.

Accordingly f + g ∈ U , and also, as remarked in 122K,
∫

f + g = limn→∞

∫

fn + gn =
∫

f +
∫

g.

(b) We know that there is a non-decreasing sequence 〈fn〉n∈N of non-negative simple functions such that
f =a.e. limn→∞ fn and supn∈N

∫

fn < ∞. Now 〈cfn〉n∈N is a non-decreasing sequence of simple functions
converging to cf a.e., and

supn∈N

∫

cfn = limn→∞

∫

cfn = c limn→∞

∫

fn = c
∫

f .

Accordingly cf ∈ U , and also, as remarked in 122K,
∫

cf = limn→∞

∫

cfn = c
∫

f .

(c) This is obvious from 122K.

(d) If 〈fn〉n∈N is a non-decreasing sequence of simple functions converging to f a.e., then it also converges
to g a.e.; so g ∈ U and

∫

g = limn→∞

∫

fn =
∫

f .

(e) By (a), f1 + g2 and f2 + g1 both belong to U . Also, they are equal at any point at which all four
functions are defined, which is almost everywhere. So

∫

f1 +
∫

g2 =
∫

f1 + g2 =
∫

f2 + g1 =
∫

f2 +
∫

g1,

using (a) and (d). Shifting
∫

g2 and
∫

f2 across the equation, we have the result.

122M Definition Let (X,Σ, µ) be a measure space. Define U as in 122H. A real-valued function f is
integrable, or integrable over X, or µ-integrable over X, if it is expressible as f1− f2 with f1, f2 ∈ U ,
and in this case its integral is

∫

f =
∫

f1 −
∫

f2.

122N Remarks (a) We see from 122Le that the integral
∫

f is uniquely defined by the formula in 122M.
Secondly, if f ∈ U , then f = f − 0 is integrable, and the integral here agrees with that defined in 122K.
Finally, if f is a simple function, then it can be expressed as f1 − f2 where f1, f2 are non-negative simple
functions (if f =

∑n
i=0 aiχEi, where each Ei is measurable and of finite measure, set

f1 =
∑n

i=0 a
+
i χEi, f2 =

∑n
i=0 a

−
i χEi,

writing a+i = max(ai, 0), a
−
i = max(−ai, 0)); so that

∫

f =
∫

f1 −
∫

f2 =
∑n

i=0 aiµEi,

and the definition of 122M is consistent with the definition of 122E.

(b) Alternative notations which I will use for
∫

f are
∫

X
f ,

∫

fdµ,
∫

f(x)µ(dx),
∫

f(x)dx,
∫

X
f(x)µ(dx),

etc., according to which aspects of the context seem due for emphasis.
When µ is Lebesgue measure on R or Rr we say that

∫

f is the Lebesgue integral of f , and that f is
Lebesgue integrable if this is defined.

Measure Theory
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(c) Note that when I say, in 122M, that ‘f can be expressed as f1 − f2’, I mean to interpret f1 − f2
according to the rules set out in 121E, so that dom f must be dom(f1−f2) = dom f1∩dom f2, and is surely
conegligible.

122O Theorem Let (X,Σ, µ) be a measure space.
(a) If f and g are integrable over X then f + g is integrable and

∫

f + g =
∫

f +
∫

g.
(b) If f is integrable over X and c ∈ R then cf is integrable and

∫

cf = c
∫

f .
(c) If f is integrable over X and f ≥ 0 a.e. then

∫

f ≥ 0.
(d) If f and g are integrable over X and f ≤a.e. g then

∫

f ≤
∫

g.

proof (a) Express f as f1 − f2 and g as g1 − g2 where f1, f2, g1 and g2 belong to U , as defined in 122H.
Then f + g = (f1 + g1)− (f2 + g2) is integrable because U is closed under addition (122La), and

∫

f + g =
∫

f1 + g1 −
∫

f2 + g2 =
∫

f1 +
∫

g1 −
∫

f2 −
∫

g2 =
∫

f +
∫

g.

(b) Express f as f1 − f2 where f1, f2 belong to U . If c ≥ 0 then cf = cf1 − cf2 is integrable because U
is closed under multiplication by non-negative scalars (122Lb), and

∫

cf =
∫

cf1 −
∫

cf2 = c
∫

f1 − c
∫

f2 = c
∫

f .

If c = −1 then −f = f2 − f1 is integrable and
∫

(−f) =
∫

f2 −
∫

f1 = −
∫

f .

Putting these together we get the result for c < 0.

(c) Express f as f1 − f2 where f1, f2 ∈ U . Then f2 ≤a.e. f1, so
∫

f2 ≤
∫

f1 (122Lc), and
∫

f ≥ 0.

(d) Apply (c) to g − f .

122P Theorem Let (X,Σ, µ) be a measure space and f a real-valued function defined on a conegligible
subset of X. Then the following are equiveridical:

(i) f is integrable;
(ii) |f | ∈ U , as defined in 122H, and there is a conegligible set E ⊆ X such that f↾E is measurable;
(iii) there are a g ∈ U and a conegligible set E ⊆ X such that |f | ≤a.e. g and f↾E is measurable.

proof (i)⇒(iii) Suppose that f is integrable. Let f1, f2 ∈ U be such that f = f1 − f2. Then there are
conegligible sets E1, E2 such that f1↾E1 and f2↾E2 are measurable; set E = E1 ∩ E2, so that E also is a
conegligible set. Now f↾E = f1↾E−f2↾E is measurable. Next, f1+f2 ∈ U (122La) and |f |(x) ≤ f1(x)+f2(x)
for every x ∈ dom f , so we may take g = f1 + f2.

(iii)⇒(ii) If f↾E is measurable, so is |f |↾E = |f↾E| (121Eg); so if g ∈ U and |f | ≤a.e. g, then |f | ∈ U by
122Jb.

(ii)⇒(i) Suppose that f satisfies the conditions of (ii). Set f+ = 1
2 (|f | + f) and f− = 1

2 (|f | − f). Of
course |f |↾E, f+↾E and f−↾E are all measurable. Also 0 ≤ f+(x) ≤ |f |(x) and 0 ≤ f−(x) ≤ |f |(x) for
every x ∈ dom f , while |f | ∈ U by hypothesis, so f+ and f− belong to U by 122Jb. Finally, f = f+ − f−,
so f is integrable.

122Q Remark The condition ‘there is a conegligible set E such that f↾E is measurable’ recurs so often
that I think it worth having a phrase for it; I will call such functions virtually measurable, or µ-virtually
measurable if it seems necessary to specify the measure.

122R Corollary Let (X,Σ, µ) be a measure space.
(a) A non-negative real-valued function, defined on a subset of X, is integrable iff it belongs to U , as

defined in 122H.
(b) If f is integrable over X and h is a real-valued function, defined on a conegligible subset of X and

equal to f almost everywhere, then h is integrable, with
∫

h =
∫

f .
(c) If f is integrable over X, f ≥ 0 a.e. and

∫

f ≤ 0, then f = 0 a.e.
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(d) If f and g are integrable over X, f ≤a.e. g and
∫

g ≤
∫

f , then f =a.e. g.
(e) If f is integrable over X, so is |f |, and |

∫

f | ≤
∫

|f |.

proof (a) If f is integrable then f = |f | ∈ U , by 122P(ii). If f ∈ U then f = f − 0 is integrable, by 122M.

(b) Let E, F be conegligible sets such that f↾E is measurable and h↾F = f↾F ; then E∩F is conegligible
and h↾(E ∩ F ) = (f↾E)↾F is measurable. Next, there is a g ∈ U such that |f | ≤a.e. g, and of course
|h| ≤a.e. g. So h is integrable by 122P(iii). By 122Od, applied to f and h and then to h and f ,

∫

h =
∫

f .

(c) ??? Suppose, if possible, otherwise. Let E ⊆ X be a conegligible set such that f↾E is measurable
(122P(ii)), and E′ ⊆ E ∩ dom f a conegligible measurable set. Then F = {x : x ∈ E′, f(x) > 0} must be
non-negligible. Set Fk = {x : x ∈ E′, f(x) ≥ 2−k} for each k ∈ N, so that F =

⋃

k∈N Fk and there is a k

such that µFk > 0. But consider g = 2−kχFk. Because f ≥ 0 a.e. and f ≥ 2−k on Fk, f ≥a.e. g, so that

0 < 2−kµFk =
∫

g ≤
∫

f ,

by 122Od; which is impossible. XXX

(d) Apply (c) to g − f .

(e) By (i)⇒(ii) of 122P, |f | is integrable. Now f+ = 1
2 (|f |+ f) and f− = 1

2 (|f | − f) are both integrable
and non-negative, so have non-negative integrals, and

|
∫

f | = |
∫

f+ −
∫

f−| ≤
∫

f+ +
∫

f− =
∫

|f |.

122X Basic exercises (a) Let (X,Σ, µ) be a measure space. (i) Show that if f : X → R is simple so is
|f |, setting |f |(x) = |f(x)| for x ∈ dom f = X. (ii) Show that if f , g : X → R are simple functions so are
f ∨ g and f ∧ g, as defined in 121Xb.

>>>(b) Let (X,Σ, µ) be a measure space and f a real-valued function which is integrable over X. Show that
for every ǫ > 0 there is a simple function g : X → R such that

∫

|f − g| ≤ ǫ. (Hint : consider non-negative
f first.)

(c) Let (X,Σ, µ) be a measure space, and write L
1 for the set of all real-valued functions which are

integrable over X. Let Φ ⊆ L
1 be such that

(i) χE ∈ Φ whenever E ∈ Σ and µE <∞;
(ii) f + g ∈ Φ for all f , g ∈ Φ;
(iii) cf ∈ Φ whenever c ∈ R, f ∈ Φ;
(iv) f ∈ Φ whenever f ∈ L

1 is such that there is a non-decreasing sequence 〈fn〉n∈N in Φ for
which limn→∞ fn = f almost everywhere.

Show that Φ = L
1.

>>>(d) Let µ be counting measure on N (112Bd). Show that a function f : N → R (that is, a sequence
〈f(n)〉n∈N) is µ-integrable iff it is absolutely summable, and in this case

∫

fdµ =
∫

N
f(n)µ(dn) =

∑∞

n=0 f(n).

>>>(e) Let (X,Σ, µ) be a measure space and f , g two virtually measurable real-valued functions defined
on subsets of X. (i) Show that f + g, f × g and f/g, defined as in 121E, are all virtually measurable. (ii)
Show that if h is a Borel measurable real-valued function defined on any subset of R, then the composition
hf is virtually measurable.

>>>(f) Let (X,Σ, µ) be a measure space and 〈fn〉n∈N a sequence of virtually measurable real-valued func-
tions defined on subsets ofX. Show that limn→∞ fn, supn∈N fn, infn∈N fn, lim supn→∞ fn and lim infn→∞ fn,
defined as in 121F, are virtually measurable.

>>>(g) Let (X,Σ, µ) be a measure space and f , g real-valued functions which are integrable over X. Show
that f ∧ g and f ∨ g, as defined in 121Xb, are integrable.

Measure Theory
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>>>(h) Let (X,Σ, µ) be a measure space, f a real-valued function which is integrable over X, and g a
bounded real-valued virtually measurable function defined on a conegligible subset of X. Show that f × g,
defined as in 121Ed, is integrable.

(i) Let X be a set, Σ a σ-algebra of subsets of X, and µ1, µ2 two measures with domain Σ. Set
µE = µ1E + µ2E for E ∈ Σ. Show that for any real-valued function f defined on a subset of X,

∫

fdµ =
∫

fdµ1 +
∫

fdµ2 in the sense that if one side is defined as a real number so is the other, and they are then
equal. (Hint : (α) Check that a subset of X is µ-conegligible iff it is µi-conegligible for both i. (β) Check
the result for simple functions f . (γ) Now consider general non-negative f .)

122Y Further exercises (a) Let (X,Σ, µ) be a ‘complete’ measure space, that is, one in which all
negligible sets are measurable (see, for instance, 113Xa). Show that if f is a virtually measurable real-valued
function defined on a subset of X, then f is measurable. Use this fact to find appropriate simplifications of
122J and 122P for such spaces (X,Σ, µ).

(b) Write L
1 for the set of all Lebesgue integrable real-valued functions on R. Let Φ ⊆ L

1 be such that

(i) χI ∈ Φ whenever I is a bounded half-open interval in R;
(ii) f + g ∈ Φ for all f , g ∈ Φ;
(iii) cf ∈ Φ whenever c ∈ R, f ∈ Φ;
(iv) f ∈ Φ whenever f ∈ L

1 is such that there is a non-decreasing sequence 〈fn〉n∈N in Φ for
which limn→∞ fn = f almost everywhere.

Show that Φ = L
1. (Hint : show that (α) χE ∈ Φ whenever E is expressible as the union of finitely many

half-open intervals (β) χE ∈ Φ whenever E has finite measure and is expressible as the union of a sequence
of half-open intervals (γ) χE ∈ Φ whenever E is measurable and has finite measure.)

(c) Let X be any set, and let µ be counting measure on X. Let f : X → R be a function; set
f+(x) = max(0, f(x)), f−(x) = max(0,−f(x)) for x ∈ X. Show that the following are equiveridical: (i)
∫

fdµ exists in R, and is equal to s; (ii) for every ǫ > 0 there is a finite K ⊆ X such that |s−
∑

i∈I f(i)| ≤ ǫ
whenever I ⊆ X is a finite set including K (iii)

∑

x∈X f+(x) and
∑

x∈X f−(x), defined as in 112Bd, are
finite, and s =

∑

x∈X f+(x)−
∑

x∈X f−(x).

(d) Let (X,Σ, µ) be a measure space. Let us say that a function g : X → R is quasi-simple if it is
expressible as

∑∞

i=0 aiχGi, where 〈Gi〉i∈N is a partition of X into measurable sets, 〈ai〉i∈N is a sequence in
R, and

∑∞

i=0 |ai|µGi < ∞, counting 0 · ∞ as 0, so that there can be Gi of infinite measure provided that
the corresponding ai are zero.

(i) Show that if g and h are quasi-simple functions so are g + h, |g| and cg, for any c ∈ R. (Hint : for
g + h you will need 111F(b-ii) or its equivalent.)

(ii) Show from first principles (I mean, without using anything later than 122F in this chapter) that
if g =

∑∞

i=0 aiχGi and h =
∑∞

i=0 biχHi are quasi-simple functions, and g ≤a.e. h, then
∑∞

i=0 aiµGi ≤
∑∞

i=0 biµHi.
(iii) Hence show that we have a functional I defined by saying that I(g) =

∑∞

i=0 aiµGi whenever g is
a quasi-simple function represented as

∑∞

i=0 aiχGi.
(iv) Show that if g and h are quasi-simple functions and c ∈ R, then I(g + h) = I(g) + I(h) and

I(cg) = cI(g), and that I(g) ≤ I(h) if g ≤a.e. h.
(v) Show that if g is a quasi-simple function then g is integrable and

∫

g = I(g). (I do now allow you
to use 122G-122R.)

(vi) Show that a real-valued function f , defined on a conegligible subset of X, is integrable iff for every
ǫ > 0 there are quasi-simple functions g, h such that g ≤a.e. f ≤a.e. h and I(h)− I(g) ≤ ǫ.

(e) Let µ be Lebesgue measure on R. Let us say (for this exercise only) that a real-valued function g
with dom g ⊆ R is ‘pseudo-simple’ if it is expressible as

∑∞

i=0 aiχJi, where 〈Ji〉i∈N is a sequence of bounded
half-open intervals (not necessarily disjoint) and

∑∞

i=0 |ai|µJi <∞. (Interpret the infinite sum
∑∞

i=0 aiχJi
as in 121F, so that

dom(
∑∞

i=0 aiχJi) = {x : limn→∞

∑n
i=0 ai(χJi)(x) exists in R}.)
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(i) Show that if g, h are pseudo-simple functions so are g + h and cg, for any c ∈ R.
(ii) Show that if g is a pseudo-simple function then g is integrable.
(iii) Show that a real-valued function f , defined on a conegligible subset of R, is integrable iff for every

ǫ > 0 there are pseudo-simple functions g, h such that g ≤a.e. f ≤a.e. h and
∫

h− g dµ ≤ ǫ. (Hint : Take Φ
to be the set of integrable functions with this property, and show that it satisfies the conditions of 122Yb.)

(f) Repeat 122Yb and 122Ye for Lebesgue measure on Rr, where r > 1.

(g) Let (X,Σ, µ) be a measure space, and assume that there is at least one partition of X into infinitely
many non-empty measurable sets. Let f : X → R be a function, and a ∈ R. Show that the following are
equiveridical:

(i) f is integrable, with
∫

f = a;
(ii) for every ǫ > 0 there is a partition 〈En〉n∈N of X into non-empty measurable sets such that

∑∞

n=0 |f(tn)|µEn <∞, |a−
∑∞

n=0 f(tn)µEn| ≤ ǫ

whenever 〈tn〉n∈N is a sequence such that tn ∈ En ∩ dom f for every n. (As usual, take 0 · ∞ = 0 in these
formulae.) (Hint : use 122Yd.)

(h) Find a re-formulation of (g) which covers the case of measure spaces which can not be partitioned
into sequences of non-empty measurable sets.

(i) Let X be a set, Σ a σ-algebra of subsets of X, and 〈µn〉n∈N a sequence of measures with domain Σ.
Set µE =

∑∞

n=0 µnE for E ∈ Σ. (i) Show that µ is a measure. (ii) Show that for any real-valued function
f defined on a subset of X, f is µ-integrable iff it is µn-integrable for every n and

∑∞

n=0

∫

|f |dµn is finite,
and that then

∫

fdµ =
∑∞

n=0

∫

fdµn.

(j) Let X be a set, Σ a σ-algebra of subsets of X, and 〈µi〉i∈I a family of measures with domain Σ. Set
µE =

∑

i∈I µiE for E ∈ Σ. (i) Show that µ is a measure. (ii) Show that for any Σ-measurable function

f : X → R, f is µ-integrable iff it is µi-integrable for every i and
∑

i∈I

∫

|f |dµi is finite.

122 Notes and comments Just as in §121, some extra technical problems are caused by my insistence on
trying to integrate (i) functions which are not defined on the whole of the measure space under consideration
(ii) functions which are not, strictly speaking, measurable, but are only measurable on some conegligible set.
There is nothing in the present section to justify either of these elaborations. In the next section, however,
we shall be looking at the limits of sequences of functions, and these limits need not be defined at every
point; and the examples in which the limits are not everywhere defined are not in any sense pathological,
but are central to the most important applications of the theory.

The question of integrating not-quite-measurable functions is more disputable. I will discuss this point
further after formally introducing ‘complete’ measure spaces in Chapter 21. For the moment, I will say only
that I think it is worth taking the trouble to have a formalisation which integrates as many functions as is
reasonably possible; the original point of the Lebesgue integral being, in part, that it enables us to integrate
more functions than its predecessors.

The definition of ‘integration’ here proceeds in three distinguishable stages: (i) integration of simple
functions (122A-122G); (ii) integration of non-negative functions (122H-122L); (iii) integration of general
real-valued functions (122M-122R). I have taken each stage slowly, passing to non-negative integrable func-
tions only when I have a full set of the requisite lemmas on simple functions, for instance. There are, of
course, innumerable alternative routes; see, for instance, 122Yd, which offers a definition using two steps
rather than three. I prefer the longer, gentler climb partly because (to my eye) it gives a clearer view of the
ideas and partly because it corresponds to an almost canonical method of proving properties of integrable
functions: we prove them first for simple functions, then for non-negative integrable functions, then for
general integrable functions. (The hint I give for 122Yb conforms to this philosophy. See also 122Xc; but I
do not give this as a formally expressed theorem, because the exact order of proof varies from case to case,
and I think it is best remembered as a method of attack rather than as a specific result to apply.)

You have a right to feel that this section has been singularly abstract, and gives very little idea of which
of your favourite functions are likely to be integrable, let alone what the integrals are. I hope that Chapter
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13 will provide some help in this direction, though I have to say that for really useful methods for calculating
integrals we must wait for Chapters 22, 25 and 26 in the next volume. If you want to know the true centre of
the arguments of this section, I would myself locate it in 122G, 122H and 122K. The point is that the ideas
of 122A-122F apply to a much wider class of structures (X,Σ, µ), because they involve only operations on
finitely many members of Σ at a time; there is no mention of sequences of sets. The key that makes all the
rest possible is 122G, which is founded on 112Cf. And after 122G-122K, the rest of the section, although by
no means elementary, really is no more than a careful series of checks to ensure that the functional defined
in 122K behaves as we expect it to.

Many of the results of this section (including the key one, 122G) will be superseded by stronger results in
the following section. But I should remark on Lemma 122Ja, which will periodically recur as a most useful
criterion for integrability of non-negative functions (see 122Ra).

There is another point about the standard integral as defined here. It is an ‘absolute’ integral, meaning
that if f is integrable so is |f | (122P). This means that although the Lebesgue integral extends the ‘proper’
Riemann integral (see 134K below), there are functions with finite ‘improper’ Riemann integrals which
are not Lebesgue integrable; a typical example is f(x) = sin x

x , where lima→∞

∫ a

0
f exists in R, while

lima→∞

∫ a

0
|f | = ∞, so that f is not integrable, in the sense defined here, over the whole interval ]0,∞[.

(For full proofs of these assertions, see 283D and 282Xm in Volume 2.) If you have encountered the theory of
‘absolutely’ and ‘conditionally’ summable series, you will be aware that the latter can exhibit very confusing
behaviour, and will appreciate that restricting the notion of ‘integrable’ to mean ‘absolutely integrable’ is a
great convenience.

Indeed, it is more than just a convenience; it is necessary to make the definition work at the level of
abstraction used in this chapter. Consider the example of counting measure µ on N (112Bd, 122Xd). The
structure (N,PN, µ) is invariant under permutations; that is, µ(π[A]) = µA for every A ⊆ N and every
permutation π : N → N. Consequently, any definition of integration which depends only on the structure
(N,PN, µ) must also be invariant under permutations, that is,

∫

f(π(n))µ(dn) =
∫

f(n)µ(dn)

for any integrable function f and any permutation π. But of course (as I hope you have been told) a series
〈f(n)〉n∈N such that

∑∞

n=0 f(π(n)) =
∑∞

n=0 f(n) ∈ R for any permutation π must be absolutely summable.
Thus if we are to define an integral on an abstract measure space (X,Σ, µ) in terms depending only on Σ
and µ, we are nearly inevitably forced to define an absolute integral.

Naturally there are important contexts in which this restriction is an embarrassment, and in which some
kind of ‘improper’ integral seems appropriate. A typical one is the theory of Fourier transforms, in which we
find ourselves looking at lima→∞

∫ a

−a
f in place of

∫∞

−∞
f (see §283). A vast number of more or less abstract

forms of improper integral have been proposed; many are interesting and some are important; but none
rivals the ‘standard’ integral as described in this chapter. (For an attempt at a systematic examination of
a particular class of such improper integrals, see Chapter 48 in Volume 4.)

Much less work has been done on the integration of non-measurable functions – to speak more exactly, of
functions which are not equal almost everywhere to a measurable integrable function. I am sure that this is
simply because there are too few important problems to show us which way to turn. In 134C below I mention
the question of whether there is any non-measurable real-valued function on R. The standard answer is ‘yes’,
but no such function can possibly arise as a result of any ordinary construction. Consequently the majority
of questions concerning non-measurable functions appear in very special contexts, and so far I have seen
none which gives any useful hint of what a generally appropriate extension of the notion of ‘integrability’
might be.

Version of 18.11.04

123 The convergence theorems

The great labour we have gone through so far has not yet been justified by any theorems powerful enough
to make it worth while. We come now to the heart of the modern theory of integration, the ‘convergence
theorems’, describing conditions under which we can integrate the limit of a sequence of integrable functions.
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123A B.Levi’s theorem Let (X,Σ, µ) be a measure space and 〈fn〉n∈N a sequence of real-valued func-
tions, all integrable over X, such that (i) fn ≤a.e. fn+1 for every n ∈ N (ii) supn∈N

∫

fn < ∞. Then
f = limn→∞ fn is integrable, and

∫

f = limn→∞

∫

fn.

Remarks I ought to repeat at once the conventions I am following here. Each of the functions fn is taken to
be defined on a conegligible set dom fn ⊆ X, as in 122Nc, and the limit function f is taken to have domain

{x : x ∈
⋃

n∈N

⋂

m≥n dom fm, limn→∞ fn(x) is defined in R},

as in 121Fa. You would miss no important idea if you supposed that every fn was defined everywhere on X;
but the statement ‘f is integrable’ includes the assertion ‘f is defined, as a real number, almost everywhere’,
and this is an essential part of the theorem.

proof (a) Let us first deal with the case in which f0 = 0 a.e. Write c = supn∈N

∫

fn = limn→∞

∫

fn (noting
that, by 122Od, 〈

∫

fn〉n∈N is a non-decreasing sequence).

(i) All the sets dom fn, {x : f0(x) = 0}, {x : fn(x) ≤ fn+1(x)} are conegligible, so their intersection
F also is. For each n ∈ N there is a conegligible set En such that fn↾En is measurable (122P); let E∗ be a
measurable conegligible set included in the conegligible set F ∩

⋂

n∈NEn.

(ii) For a > 0 and n ∈ N set Hn(a) = {x : x ∈ E∗, fn(x) ≥ a}; then Hn(a) is measurable because
fn↾En is measurable and E∗ is a measurable subset of En. Also aχHn(a) ≤ fn everywhere on E∗, so

aµHn(a) =
∫

aχHn(a) ≤
∫

fn ≤ c.

Because fn(x) ≤ fn+1(x) for every x ∈ E∗, Hn(a) ⊆ Hn+1(a) for every n ∈ N, and writing H(a) =
⋃

n∈NHn(a), we have

µH(a) = limn→∞ µHn(a) ≤
c

a

(112Ce). In particular, µH(a) <∞ for every a. Furthermore,

µ(
⋂

k≥1H(k)) ≤ infk≥1 µH(k) ≤ infk≥1
c

k
= 0.

Set E = E∗ \
⋂

k≥1H(k); then E is conegligible.

(iii) If x ∈ E, there is some k such that x /∈ H(k), that is, x /∈
⋃

n∈NHn(k), that is, fn(x) < k for every
n; moreover, 〈fn(x)〉n∈N is a non-decreasing sequence, so f(x) = limn→∞ fn(x) = supn∈N fn(x) is defined
in R. Thus the limit function f is defined almost everywhere. Because every fn↾E is measurable (121Eh),
so is f↾E = limn→∞ fn↾E (121Fa). If ǫ > 0 then {x : x ∈ E, f(x) ≥ ǫ} is included in H( 12ǫ), so has finite
measure.

(iv) Now suppose that g is a simple function and that g ≤a.e. f . As in the proof of 122G, H = {x :
g(x) 6= 0} has finite measure, and g is bounded above by M say.

Let ǫ > 0. For each n ∈ N set Gn = {x : x ∈ E, (g − fn)(x) ≥ ǫ}. Then each Gn is measurable, and
〈Gn〉n∈N is a non-increasing sequence with intersection

{x : x ∈ E, g(x) ≥ ǫ+ supn∈N fn(x)} ⊆ {x : g(x) > f(x)},

which is negligible. Also µG0 < ∞ because G0 ⊆ H. Consequently limn→∞ µGn = 0 (112Cf). Let n be
such that µGn ≤ ǫ. Then, for any x ∈ E,

g(x) ≤ fn(x) + ǫχH(x) +MχGn(x),

so

g ≤a.e. fn +MχGn + ǫχH

and
∫

g ≤
∫

fn +MµGn + ǫµH ≤ c+ ǫ(M + µH).2

As ǫ is arbitrary,
∫

g ≤ c.

2I am grateful to P.Wallace Thompson for noticing a fault at this stage in previous editions.
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(v) Accordingly, f↾E (which is non-negative) satisfies the conditions of Lemma 122Ja, and is integrable.
Moreover, its integral is at most c, by Definition 122K. Because f =a.e. f↾E, f also is integrable, with the
same integral (122Rb). On the other hand, f ≥a.e. fn for each n, so

∫

f ≥ supn∈N

∫

fn = c, by 122Od.
This completes the proof when f0 = 0 a.e.

(b) For the general case, consider the sequence 〈f ′n〉n∈N = 〈fn − f0〉n∈N. By (a), f ′ = limn→∞ f ′n is
integrable, and

∫

f ′ = limn→∞

∫

f ′n; now limn→∞ fn =a.e. f
′+f0, so is integrable, with integral

∫

f ′+
∫

f0 =
limn→∞

∫

fn.

Remark You may have observed, without surprise, that the argument of (a-iv) in the proof here repeats
that used for the special case 122G.

123B Fatou’s Lemma Let (X,Σ, µ) be a measure space, and 〈fn〉n∈N a sequence of real-valued functions,
all integrable over X. Suppose that every fn is non-negative a.e., and that lim infn→∞

∫

fn < ∞. Then
lim infn→∞ fn is integrable, and

∫

lim infn→∞ fn ≤ lim infn→∞

∫

fn.

Remark Once again, this theorem includes the assertion that lim infn→∞ fn(x) is defined in R for almost
every x ∈ X.

proof Set c = lim infn→∞

∫

fn and f = lim infn→∞ fn. For each n ∈ N, let En be a conegligible set such that
f ′n = fn↾En is measurable and non-negative. Set gn = infm≥n f

′
m; then each gn is measurable (121Fc), non-

negative and defined on the conegligible set
⋂

m≥nEm, and gn ≤a.e. fn; by 122Re and 122Ra, |fn| belongs

to U , as defined in 122H, while |gn| ≤a.e. |fn|, so gn is integrable (122P) with
∫

gn ≤ infm≥n

∫

fm ≤ c. Next,
gn(x) ≤ gn+1(x) for every x ∈ dom gn, so 〈gn〉n∈N satisfies the conditions of B.Levi’s theorem (123A), and
g = limn→∞ gn is integrable, with

∫

g = limn→∞

∫

gn ≤ c. Finally, because every f ′n is equal to fn almost
everywhere, g = lim infn→∞ f ′n =a.e. f , and

∫

f exists, equal to
∫

g ≤ c.

123C Lebesgue’s Dominated Convergence Theorem Let (X,Σ, µ) be a measure space and 〈fn〉n∈N

a sequence of real-valued functions, all integrable over X, such that f(x) = limn→∞ fn(x) exists in R for
almost every x ∈ X. Suppose moreover that there is an integrable function g such that |fn| ≤a.e. g for every
n. Then f is integrable, and limn→∞

∫

fn exists and is equal to
∫

f .

proof Consider f̃n = fn + g for each n ∈ N. Then 0 ≤ f̃n ≤ 2g a.e. for each n, so c̃ = lim infn→∞

∫

f̃n
exists in R, and f̃ = lim infn→∞ f̃n is integrable, with

∫

f̃ ≤ c̃, by Fatou’s Lemma (123B). But observe that

f =a.e. f̃ − g, since f(x) = f̃(x)− g(x) at least whenever f(x) and g(x) are both defined, so f is integrable,
with

∫

f =
∫

f̃ −
∫

g ≤ lim infn→∞

∫

f̃n −
∫

g = lim infn→∞

∫

fn.

Similarly, considering 〈−fn〉n∈N,
∫

(−f) ≤ lim infn→∞

∫

(−fn),

that is,
∫

f ≥ lim supn→∞

∫

fn.

So limn→∞

∫

fn exists and is equal to
∫

f .

Remark We have at last reached the point where the technical problems associated with partially-defined
functions are reducing, or rather, are being covered efficiently by the conventions I am using concerning the
interpretation of such formulae as ‘lim sup’.

123D To try to show the power of these theorems, I give a result here which is one of the standard
applications of the theory.

Corollary Let (X,Σ, µ) be a measure space and ]a, b[ a non-empty open interval in R. Let f : X× ]a, b[ → R

be a function such that

(i) the integral F (t) =
∫

f(x, t)dx is defined for every t ∈ ]a, b[;
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(ii) the partial derivative ∂f
∂t of f with respect to the second variable is defined everywhere in

X × ]a, b[;

(iii) there is an integrable function g : X → [0,∞[ such that |∂f∂t (x, t)| ≤ g(x) for every x ∈ X
and t ∈ ]a, b[.

Then the derivative F ′(t) and the integral
∫

∂f
∂t (x, t)dx exist for every t ∈ ]a, b[, and are equal.

proof (a) Let t be any point of ]a, b[, and 〈tn〉n∈N any sequence in ]a, b[ \ {t} converging to t. Consider

F (tn)−F (t)

tn−t
=
∫ f(x,tn)−f(x,t)

tn−t
µ(dx)

for each n. (This step uses 122O.) If we set

fn(x) =
f(x,tn)−f(x,t)

tn−t
,

for x ∈ X, then we see from the Mean Value Theorem that there is a τ (depending, of course, on both

n and x), lying between tn and t, such that fn(x) = ∂f
∂t (x, τ), so that |fn(x)| ≤ g(x). At the same

time, limn→∞ fn(x) = ∂f
∂t (x, t) for every x. So Lebesgue’s Dominated Convergence Theorem tells us that

∫

∂f
∂t (x, t)dx exists and is equal to

limn→∞

∫

fn(x)dx = limn→∞
F (tn)−F (t)

tn−t
.

(b) Because 〈tn〉n∈N is arbitrary,

lims→t
F (s)−F (t)

s−t
=
∫ ∂f

∂t
(x, t)dx,

as claimed.

Remark In the next volume I offer a variation on this theorem, with both hypotheses and conclusion
weakened (252Ye).

123X Basic exercises >>>(a) Let (X,Σ, µ) be a measure space, and 〈fn〉n∈N a sequence of real-valued
functions, all integrable over X, such that

∑∞

n=0

∫

|fn| is finite. Show that f(x) =
∑∞

n=0 fn(x) is defined in
R for almost every x ∈ X, and that

∫

f =
∑∞

n=0

∫

fn. (Hint : consider first the case in which every fn is
non-negative.)

(b) Let (X,Σ, µ) be a measure space. Suppose that T is any subset of R, and 〈ft〉t∈T a family of functions,
all integrable over X, such that, for any t ∈ T ,

ft(x) = lims∈T,s→t fs(x)

for almost every x ∈ X. Suppose moreover that there is an integrable function g such that |ft| ≤a.e. g for
every t ∈ T . Show that t 7→

∫

ft : T → R is continuous.

>>>(c) Let f be a real-valued function defined everywhere on [0,∞[, endowed with Lebesgue measure. Its
(real) Laplace transform is the function F defined by

F (s) =
∫∞

0
e−sxf(x)dx

for all those real numbers s for which the integral is defined.

(i) Show that if s ∈ domF and s′ ≥ s then s′ ∈ domF (because e−s′xesx ≤ 1 for all x). (How do you

know that x 7→ e−s′xesx is measurable?)
(ii) Show that F is differentiable on the interior of its domain. (Hint : note that if a0 ∈ domF and

a0 < a < b then there is some M such that xe−sx|f(x)| ≤Me−a0x|f(x)| whenever x ∈ [0,∞[, s ∈ [a, b].)
(iii) Show that if F is defined anywhere then lims→∞ F (s) = 0. (Hint : use Lebesgue’s Dominated

Convergence Theorem to show that limn→∞ F (sn) = 0 whenever limn→∞ sn = ∞.)
(iv) Show that if f , g have Laplace transforms F , G then the Laplace transform of f + g is F +G, at

least on domF ∩ domG.
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(d) Let (X,Σ, µ) be a measure space and 〈fn〉n∈N a sequence of real-valued functions, all integrable over
X, such that there is an integrable function g such that |fn| ≤a.e. g for every n. Show that lim supn→∞ fn
is integrable and that

∫

lim supn→∞ fn ≥ lim supn→∞

∫

fn.

123Y Further exercises (a) Let (X,Σ, µ) be a measure space, Y any set and φ : X → Y any function;
let µφ−1 be the image measure on Y (112Xf). Show that if h : Y → R is µφ−1-integrable then hφ is
µ-integrable, and the integrals are then equal.

(b) Explain how to adapt 123Xc to the case in which f is undefined on a negligible subset of R.

(c) Let (X,Σ, µ) be a measure space and a < b in R. Let f : X × ]a, b[ → [0,∞[ be a function such
that

∫

f(x, t)dx is defined for every t ∈ ]a, b[ and t 7→ f(x, t) is continuous for every x ∈ X. Suppose that
c ∈ ]a, b[ is such that lim inft→c

∫

f(x, t)dx < ∞. Show that
∫

lim inft→c f(x, t)dx is defined and less than
or equal to lim inft→c

∫

f(x, t)dx.

(d) Show that there is a function f : R2 → {0, 1} such that (i) the Lebesgue integral
∫

f(x, t)dx is defined
and equal to 1 for every t 6= 0 (ii) the function x 7→ lim inft→0 f(x, t) is not Lebesgue measurable. (Remark :
you will of course have to start your construction from a non-measurable subset of R; see 134B for such a
set.)

(e) Let (Y,T, ν) be a measure space. Let X be a set, Σ a σ-algebra of subsets of X, and 〈µy〉y∈Y a family
of measures on X such that µyX is finite for every y and µE =

∫

µyE ν(dy) is defined for every E ∈ Σ. (i)
Show that µ : Σ → [0,∞[ is a measure. (ii) Show that if f : X → [0,∞[ is a Σ-measurable function, then f
is µ-integrable iff it is µy-integrable for almost every y ∈ Y and

∫ (∫

fdµy

)

ν(dy) is defined, and that this is

then
∫

fdµ.

(f) Let (X,Σ, µ) be a measure space, and 〈fn〉n∈N a sequence of virtually measurable real-valued functions
all defined almost everywhere in X. Suppose that

∑∞

n=0

∫

|fn(x)− 1|µ(dx) <∞. Show that
∏∞

n=0 fn(x) is
defined in R for almost every x ∈ X.

123 Notes and comments I hope that 123D and its special case 123Xc will help you to believe that the
theory here has useful applications.

All the theorems of this section can be thought of as ‘exchange of limit’ theorems, setting out conditions
under which

lim
n→∞

∫

fn =

∫

lim
n→∞

fn,

or

∂

∂t

∫

f dx =

∫

∂f

∂t
dx.

Even for functions which are accessible to much more primitive methods of integration (e.g., the Riemann
integral), theorems of this type can involve laborious validation of inequalities. The power of Lebesgue’s
integral is that it gives general theorems which cover a reasonable proportion of the important cases which
arise in practice. (I have to admit, however, that nothing is more typical of applied analysis than its need for
special results which are related to, but not derivable from, the standard general theorems.) For instance, in
123Xc, the fact that the range of integration is the unbounded interval [0,∞[ adds no difficulty. Of course
this is connected with the fact that we consider only integrals of functions with integrable absolute values.

The limits used in 123A-123C are all limits of sequences; it is of course part of the essence of measure
theory that we expect to be able to handle countable families of sets or functions, but that anything larger is
alarming. Nevertheless, there are many contexts in which we can take other types of limit. I describe some
in 123D, 123Xb and 123Xc(iii). The point is that in such limits as limt→u φ(t), where u ∈ [−∞,∞], we shall
have limt→u φ(t) = a iff limn→∞ φ(tn) = a whenever 〈tn〉n∈N converges to u; so that when seeking a limit
limt→u

∫

ft, for some family 〈ft〉t∈T of functions, it will be sufficient if we can find limn→∞

∫

ftn for enough
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sequences 〈tn〉n∈N. This type of argument will be effective for any of the standard limits limt↑a, limt↓a,
limt→a, limt→∞, limt→−∞ of basic calculus, and can be used in conjunction either with B.Levi’s theorem
or with Lebesgue’s theorem. I should perhaps remark that a difficulty arises with a similar extension of
Fatou’s lemma (123Yc-123Yd).

Measure Theory



References 25

Version of 21.12.03

Concordance for Chapter 12

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

121Yb (Σ,T)-measurable functions Exercise 121Yb in the 2000 and 2001 editions, referred to in the
2001 and 2003 editions of Volume 2, has been moved to 121Yc.

Version of 31.5.03
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