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SATURATING ULTRAFILTERS ON N
D. H, FREMLIN AND P. I. NYIKOS

Abstract. We discoss saturating ultrafilters on N, relating them to other types of non-
principal ultrafilter. (a) There is an (e, c}-saturating ultrafilter on N iff 2* < ¢ for everyd < ¢
and there is no cover of R by fewer than ¢ nowhere dense sets. (b) Assume Martin's axiom.
Then, for any cardinal «, a nonprincipal ultrafilter on N is {w, x}-saturating iff it is almost
w-good. In particular, (i) p(x)-point ultrafilters are {w,x)-saturating, and (i) the set of
(w, k)}-saturating ultrafilters is invariant under homeomorphisms of AN\N, (c) It is relatively
consistent with ZFC to suppose that there is a Ramsey p(c}-point ulirafilter which is not
{w, c)-saturating.

1. Introduction. We must begin by recalling the definitions used in the abstract.
Let & be a nonprincipal ultrafilter on N, and « a cardinal. Write 4 =* B to mean
that 4\ B is finite.

(i) We say that & is (w, x)-saturating if for every family # of subsets of N x N
such that #(%) < x and =, [ (%] (the projection of ()% onto the first coordinate)
belongs to & for every nonempty finite B’ = 4, there is a function f: N — N such
thatm [ f n B] = {i: (i, f(i)} € B} belongs to & for every B & #. (The name “(w, k)
saturating” is chosen because of certain properties of ultrapowers defined from such
ultrafiliers; see [4, §6.1], and [10, A3D]. But in this paper it will simplify matters to
work exclusively from the definition just given.)

(il) & is almost k-good if whenever A < x and I — 4;: [A]°® —+ # is a function
from the set of finite subsets of i to &, there is a family (F:)z<; in & such that

zer Fz €% A, for every nonempty finite 7 = 4. (# would be "k-good” in the sense
of [4, p. 307] if we could conclude *[\.; F; < A, for every nonempty finite I < 1)

{iii) & is <x-OK if whenever 4 < x and {4,),.x is a sequence in &, there is
a family (F..; in & such that (.. F =*A, whenever n>1 and [ e[1]"
(See [14] or [17, §4.17.)

(iv) & is a p{x)-point ultrafilter if whenever o € & and #(&) < « there is an
Fe& such that F =* 4 for every 4 € & & is a p-point ultrafilter if it is a p(w,)-
point ultrafilter. # is a weak p-point ultrafilter if it is not a cluster point, for the
topology of AN, of any sequence of distinct nonprincipal ultrafilters.

(v) & is Ramsey (or “selective”™) if whenever r € N and % is a finite cover of [N"
there are an F e & and an S € & such that [F]" < S (see [5, §9]).
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It has been known almost from the beginning that Martin’s axiom implies the
existence of many p(c)-point ultrafilters [3], many Ramsey ultrafitters [3], [2],
and many (w, ¢)-saturating ultrafilters [9]. In [10] the first author unified these
arpuments (using ideas from [12]) to show that if Martin’s axiom is true there are
2¢(w, c)-saturating Ramsey p(c)-point ultrafilters. It seems, however, that no attempt
has been made to integrate classes of saturating ultrafilters into the elaborate hier-
archy of types of ultrafilter that has been explored in the last fifteen or twenty years
(see [17]). In this paper we show that there is a variety of nontrivial relationships,
at least in the presence of special axioms.

The first problem is the question of determining precisely when (e, x)-saturating
ultrafilters exist. It is not hard to check that every nonprincipal ultrafilter is (o, @, )-
saturating (see [4, Theorem 6.1.1]) and that no ultrafilter on N can be (@, c")-
saturating (see Proposition 3(a) below), so we are concerned only with the case
w, < & < ¢. (In particular, we have nothing interesting to say if the continuum
hypothesis is true.) In Theorem 6 we deal with the case k = ¢; the case w; <k <¢
remains problematic.

Now for relationships between the types of ultrafilter described above, It is easy
{o see that a p(k)-point ultrafilter is almost k-good, that an almost x-good ultrafilter
is <k-OK, that a p-point ultrafilter is a weak p-point ultrafilter, and that an @,-OK
(=“<w,-OK") ultrafilier is a weak p-point ultrafilter. (See [6] or [17, 43.1{a)])
We find that every (w, x)-saturating ultrafilter is <x-OK (Proposition 3(b)) and
that it is consistent to suppose that an ultrafilter is (w, «)-saturating iff it is almost
w-good (Theorem 9); in this case every p(i)-point ultrafilter will be (w, x)-saturating,
(We ought to say that throughout these remarks we are considering only non-
principal ultrafiliers on N.) On the other hand, if there is any {w, ¢)-saturating
ultrafilter, there is one which is not a p-point (Theorem 6); and it is also consistent
to suppose that there is a p(c)-point ultrafilter which is not an (w, ¢)-saturating
ultrafilter (Proposition 12}.

It will be convenient to use the following terminclogy from [10]. We write m for
the least cardinal such that MA(my} is false, p for the greatest cardinal such that
P(p) is true (see [81), and M guuupe fOr the least cardinal of any cover of the real -
line R by nowhere dense sets. (We choose this notation because it is also the least
cardinal for which MA(countable partially ordered sets, t e 15 false; see
[19].) Thus @; <M < P < Myguuante < 6 “m = ¢” is Martin’s axiom; “p = ¢ is “P”
or “P(0)” ar “Booth’s lemma™; and “M e = ¢~ is “B(c)” of [18] and [1], or
“MAC” of [21].

We write 2% = sup{2* 1 < x}. We shall systematically identily functions with
their graphs (cf. “n,[ f n B]” in (i) above).

2. We set out explicitly an elementary lemma that will simplify some of our
arguments.

LemMA. Suppose that « is a cardinal and that & is an (w, k)-saturating ultrafilter
on N. Let (K,),.n be a sequence of nonempty countable sets and write Z =
Unentin} x K,). Suppose that B = 2Z is such that m[(# ] eF for every non-
empty finite B = B. Then there is a function { € [1,.n K, such that [ f n Bl e &
for every B € 48.
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Proor. This is just a matter of recoding each K, as a subset of N, so that Z
becomes a subset of N x N, and we can apply the definition of 1(i).

3. PropPOSITION. Suppose that x is a cardinal and that & is an {(w, K}-saturating
nonprincipal ultrafilter on N. Then

(a) K= Meguntatyies

(b} # is <x-0K;

{c) 2" < ¢

{d) if F is a p(i)-point ultrafilter then k < p; and

(e} the totally ordered set NN/F has cofinality at least w.

ProoF. (a}) We need the following characterization m g, .- Eiven as Corollary
1.8 of [1]: 1M umane 19 the least cardinal of any set G = N such that forevery i e NN
there is a ¢ € G such that I n g is finite.

Given this, take a G = N™ such that #(G) = W,gumane and for every i1 € N™ there
isa g e Gsuch that i n g is finite. Let {L(n)),.x be a disioint sequence of subsets of
N such that #(L{(n)) = n for every n. For each n e N let K, be the countable set
[NL]=n Set Z = { J,en({n1} x K,). For g e G set

B,={mI)neNglLneleK,}<Z,

and consider # = {B,; g G|.
Il #' < % is a nonempty finite set, it is of the form {B,:g € J} for some finite
J = G Nowloranyn = #(J),

(m{glLnkged}e ) B,

ged
som (V2] 2 {n:n= #J)} e £
Suppose, if possible, that there were a function f & [ ],y K, such that ,[ /' » B]
e # forevery B ¢ #. Choose h: N — N such that whenever n € Nand /i’ € f{n) there
is an i & L(n) such that (i) = I'(i); this is possible because #( f(n)) < n = #{L(n)).
I g € G then

{n:3ie L{n), gliy = h(i)}
o{mglLimefim)} =m[f n Ble#

so g » i must be infinite. But this contradicts the choice of G.

So there is no such [, and & < #(#) < #(G) = Megunmpe By Lemma 2.

(b) Let {A,>,-~ be any sequence in & and 4 a cardinal less than x. There is a
family (i e  in NMN such that i, n h, is finite for all £ # n (because 4 < ¢). For
each reN set m(ry=min{{r} u{mr¢A,,,}) and K,=[NJ}="". Set Z =
Uren({r} x K,), and for & < 4 set B; = {{n,I):ne N, h:(n)e ! e K,}. Write # =
{B;: & < A}. Asin (a) we see that if 8’ < [#]% where k = 1, then

m[(8 |2 rreN,mryzkl= () A\eF
1=nzk
Sothereisa function [ € [,y K, suchthat F; = =, [/ n B:] € # florevery & < L. I
k= 1andJ e [2]* then thereisann = ksuch that (i) # h (i) wheneveri = nand ¢,
i are distinct members of J. I re (.., F\nthen (v, f () € ()eey Be. L& he(r) € f(r)
e K. forevery £ e Jisom(r) = #(f(1) = kandr € 4. Thus ﬂ;EJﬁ:\Ak < i is finite.
As Aand (A4, ),y are arbitrary, # is <#x-OK.



SATURATING ULTRAFILTERS ON N 711

{c) We need to know that there is a family {A4,);.. of subsets of N such that
Neer A pes A, s infinite for all disjoint finite subsets 1, J of ¢ [17, 3.1.2(b)]. Now
suppose that 4 < x. For each set M < 1 let 2, be the set

(Nx dEeMbu N x(N\4)ne \M}

Then we see that m, [ (4] = N e & for every nonempty finite &’ < 2. So there s
an [y e N™ such that @, [ fyy n B] e & for every Be &y, ie. f3'[A:] e # and
S IN\A4,] e F forall e M and y & A\ M. But this means that

M={5¢< A [if[A:]e F},

so that M — fi,: 24 — NV is injective, and 2* < «.

{d) Suppose that # is a p{x}-peint ultrafilter. Let .o/ be a nonempty family of
subsets of N such that #(«/) < r and ﬂ&/’ is infinite for every finite o/’ € .o/ We
seek an infinite C & N such that C =* 4 forevery 4 £ &/; we may of course suppose
that ./ is infinite, that x > w, and that N\n e & for every ne N. Set & = {N
x A: A e/}, s0that m [ @] = N € & for every nonempty finite &' < 4. Let [
e N¥besuchthatm [/ n B] = # forevery Be B, ie. fT'[A] € # forevery A e o/
Because % is a p{i)-point ultrafilter there is an F € & such that F &* f~![A4] for
every A € o/ Set C = f[F]; then C =* A for every 4 € &/ But also F is infinite and
F <* f71[N\n] for every n e N; so C is infinite. Thus we have a suitable C. As ./
is arbitrary, p = 1.

(e) Finally, suppose that D = NV/% and #(D) < x. Foreachd e D let f; e NV be
such that d = f3, the equivalence class of f; in NV/#. Consider # = {B;:d € D},
where

By ={{niyi> f(n)} €N xN.

Then, [{#'] = N e & for every nonempty finile #’ < 4, so thereisan fiN —+N
such that

i f{n) > fun)) =m[fnBleF
for every d € D. In this case f > f for every d € D, so D is not cofinal with NY/&.

4. ReMarKS. Of course () is just a simple special case of the fact that the model
NN/ of the first-order theory of totally ordered sets is x-saturated if & is (w, x)-
saturating; (c) also has a model-theoretic formulation in terms of incompatible
types.

It is a consequence of (¢) that if there is an (w, k)-saturating uitrafilter on N then
cf(N™), which is called © in [8] and [11], is greater than or equal to x; this was
observed also by B. Balcar, But as ntgupame < 0 (this follows immediately from
Bartoszynski's characterization of ni_,, . mentioned in the proof of 3{a)above, or
by direct methods, as in [11, 16{b)]), with strict inequality possible (add @, random
reals to a model of m = ¢ = w,; see [15]), our 3(a) is a sharper result. ‘

5. COROLLARY. (a) An (w,w,)-saturating witrafilter on N is a weak p-point
ultrafilter.

(b} Not every nonprincipal ultrafilter on N is (w, w,)-saturating.

ProoF. {a) By 3(b), it is w,-OK, therefore a weak p-point ultrafilter, as remarked
in §1. (b) Immediate from (a).
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6. THEOREM. If one of the following is true, so are the others:

(i) There is an (o, ¢)-saturating uitrafilter on N.

(") Mepuatable = 2<: =C

(i) There is an (w, ¢)-saturating ultrafilter on N which is not a p-point ultrafilter.

PRroOF. (a) (iii) = (i} is trivial, and (i) = (i} is covered by 3(a) and 3(c) zbove. So
we assume (ii) and seek to prove (iii).

(b) Our aim is to generate a filter & from an increasing family {(&;); - of filter
bases. Each step from &; to %, will seek to deal with some & < 2(N x N). In
order to ensure that & is not a p-point ultrafilter we shall require #; n . = ¢ for
every £ < ¢, where .# is an ideal of sets to be defined shortly; and in order to retain
control of the induction we require #(%;) < cforevery £ <c.

{c) Before starting we must set up the following. Let (4,),.x be a fixed partition
of N into infinite sets, and write

F ={A4: 4 = N,{n: 4 n A,is infinite} is finite},

so that # < #N. Let (%)¢.. enumerate [P(N x N)]1<5; such an enumeration
exists because 2°° = ¢,
(d) To start the induction, set

Ty = {N\ ) 4in EN},
so that &, is a filter base, #, N F = &, and #(FH) =w <

(e) To construct %, from &, consider two cases.

(i) If there are a finite #' € %; and an F € & such that F nm,[(\%'] € 7, set
Fery = F, and proceed.

(i) Otherwise, let W, be the set of quadruples (m,n, 4", F) such that m,n e N, &'
€ [B]°", Fe #and 4, n m,[[V#'] n F is infinite. For w = (m,n, &', F) € W set

G.={hheN m[hn 21N A4, nFLm}
= {h:Ji e A, » F\m such that (i, k(i) e (|%&'}-

Then each G, is a dense open set in the Polish space N™. Because N is homeo-
morphic to the set R\Q, which is comeagre in R, it cannot be covered by fewer
than it guuuee DOWhere dense sets; since #(W:) < max(w, #(%;), #(F)) <c =
Wgunubies there is an gz € (|{G,,: w e W}

Foreach &' € [#:]~°, set E(, #') = m;[h; n (\#']. We claim that F n E(£,4")
¢ s for every Fe%; and #'€[#]°". For given F and #' we know that
F nm[[\#'] ¢ 4 so that the sct

J={mneN,Fnmnf[[\#]n A,is infinite}

is infinite, and (m,n, @, F)e W for every meN and nelJ. So n,[h: n (2']
nA,nFgmformeNandneJ and E(E,#") n F n A,isinfinite forevery n € J,
so that E(§,#')n F ¢ %

It follows that we may set

Ferr ={FNECEB):B e[F]™, FeF
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and obtain a new filter base, including %, not meeting .% and of cardinal less than ¢,

(f) For nonzero limit ordinals £ < ¢ set &, = U,,< ¢ F,; Fis a filter base becauses
{&F,y<¢is an increasing family of filter bases, and has cardinal less than ¢ because
is regular, by Konig's theorem [13, 1.10.41] and the assumption that 2°° = ¢,

(g) Now consider # = | J;...%;. Thisis a filter base. In fact it is an ultrafilter. For
if A =Nthereisa ¢ < c¢such that &, = {4 x N}. Now the construction of {e) will
ensure that either A n Fe.# for some & & &;, or A = E({, B;) € %;..,; so that
either Ae & or A n Fe ¥ for some F e . The same is true for N\ 4, so in fact
either A € & or N\ A-e &, as required.

Of course & n f = @, while N\ 4, e & for every n e N. S0 % is not a p-point
ultrafilter.

Finally, & is (w,c)-saturating. For suppose that & e [#(N x N)]™* and that
m[(%'] € F for every nonempty finite &' = #. Then % = 4%, for some ¢ < ¢. As
Fnrn[(\8'] e F < PN\J for every &' € [#:]"" and F € F,, we must have used
the construction of {e~ii) at this £. Accordingly

a[h: " B]l=E¢E {BeF: & F
for every B € 2, = #. As # is arbitrary, ¥ is (w, ¢}-saturating,

7. Remark. K. Kunen has pointed out that (ii) above is also sufficient to prove
that there is an (e, ¢}-saturating ultrafilter which is a p-point ultrafilter,

8. We turn now to the characterization of (w, x)-saturating ultrafilters for x < m.,
Our first lemma may be of independent interest.

LemMA. Suppose that A < m and that I — A4;: [A]™° — PN is a decreasing fimction
(ie.that A, = A;whenever J € I). Then thereis a family (B;}:  ; of subsetsof N x N
such that A; A7, [(\ec; B:] is finite for every nonempty finite I A

ProoF. (a) Let P be the set of pairs (m, ), where m € N and f is a function from a
finite subset of A to [m x N]*%, Say that (m, ) < (n,g)if m < n, dom(J) = dom{g),
S(&) = gl&) N (m x N) for every £ e dom{ ), and

A, nv\m = nl[ﬂ g(?;'):I N r\m
ced

for every nonempty subset J of dom{ f'). It is easy to check that =< is a partial order
on P

(b) Now P is upwards-ccc. For suppose that {(m,, /;));«,, i5 any family in P.
There is an m € N such that A = {£: £ < wy, m; = m} is uncountable, there is an
uncountable B < 4 such that {dom(f;)};.5 is a 4-system with root I (say), and
there is a function /11 7 — [m x N1 such that C = {&: e B, fe{ I =h} is un-
countable. Now (m, f; U f,) is a common upper bound in P of (m;, £} and (m,, f})
forany , ne C.

(c) If & < 4 then Q: = {(m, f):(m, f) e P, { e dom(f)} is cofinal with P because
(m, )< (m, £ O{(& @} if £ ¢dom(f). Moreover, if neN, Q;, = {(m,f):(m,f) e
P, n < m} is cofinal with P. To see this, take any (m, f) e P\Q,. Set I = dom(f).
Let J— 1 %% - N be injective. Define g by saying that dom(g) = dom(f) and

g&=f&yu{lir):ieJelied; nn\m}
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for & e dom( f'}. Then (n,4) & Q. If J is a nonempty subset of I then

i [ﬂ !](f):l ~ o\

Zed
=liidK e Liedynn\m Ee KVEe ]

= A, nu\m

because 4, 2 Ay if J = K. This is what we need to know to see that (m, /) < (1, g)-

(d) Because 2 < mt there is an upwards-directed R £ P meeting every Q, and
every Q.. Set By = J{f({):(m, f)e R, ¢ edom{ f)}. Note that if {in,g) e R and
¢ edom(g) then g{&) = B; n (n x N); this is because g{<) = f(Z) n (1 x N} when-
ever (img) < (m, [)in P.

If I = 7 is a nonempty finite set, then because R is upwards-directed and meets
every @ there is an (m, f) e R such that I = dom( f). Now suppose that i = m.
There is an {#n,g) € R 1 @}, such that (m, /') < (n,g). In this case B: n {n x N) =
g(&) for every £ € 1, so that

) ien,l:ﬂB{l@fenl[ﬂg(é)]@ie.‘l,
Zel iel

by the definition of the order of P. This shows that 4; A m[()zc; B;] = m s finite,

as required.

9., THEOREM. If 1 < m then a nonprincipal ultrafilter # on N is {w, k)-saturating
iff it is almost k-good.

PrOOF. (1) Suppose that & is (e, x)-saturating and that / — A [A]™" =+ F s a
function, where A < x. Set 47 = [);c, A, for each [ & [2]™%, so that { i— Aj: [A]"
— # is a decreasing function. By Lemma 8 there is a family (B:);.; in (N x N)
such that 4y A 7, [ (ees B:] is finite for every nonempty finite / < 1. Because # is
(e, x)-saturating, there is an f:N — N such that . = 0, [ f 0 B:]e F for every
& < k. But now

<

() FA\A; = Tfl[ﬂ B:]\A}
Sel el
is finite for every nonempty finite / < i As I — A, is arbitrary, # is aimost x-good.

{(b) Suppose that # is almost «-good.

{i) Let {Be)c<; be a family of subsets of N x N, where 4 < x, such that A, =
ﬁ1[ﬂ55135] € 7 for every nonempty finite I = 2. Becanse & is almost x-good,
there is a family {£:); <, in & such that (\;., F; &* 4, for every nonempty finite
F =R

(ii) Let P be the set of triples (m, D, I) such that me N, D = m x N, each vertical
section of D has at most two members, [ is a finite subset of 2, and [\ x F\dx & m
forevery nonempty subset K of L Saythat(m, D, ) < (n, E,J)ifm<n, DS E 1< J
and

7, I:E ~n N B;} = gﬂ[\"ﬁ: ~o\m

Zek

for all nonempty K < L It is easy to check that < is a partial order on P.
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(iti) P is upwards-ccc. For suppose that § € P is uncountable. Then there must be
distinct members of S with the same first two coordinates; suppose that (m, D, I and
{m, D,J) both belong to §. Take n = nrsuch that ﬂgex FAA, = nforevery nonempty
finite K = 1w J, Fori e n\m set

K;={:felieF}, Ki={&feliekl]

Choose r; € N such that (i,r) ﬂ{Bgz & e K;}; this is possible because if K, #
then (\eer, FAT [ e, B:] € m, s0 iem[{)zck, Be]. Similarly there is an r} such
that (i,77) € (}{B:: £ € Ki}. Now set

E=Du{i,rym=<i<n}u{{ir)m<i<nl

It is easy to see that (n, £, I v J)is a common upper bound for (m, D, I} and (m, D, J)
in P. As 5 is arbitrary, P is upwards-ccc.
(iv) Foreach £ < A and n € N the sets

Q:={{m, D, Iy:¢el}, 0, = {(m,D,Iy:m > n}

are cofinal with P; the argument follows that of (ii1) just above. As A < m there is an
upwards-directed R < P meeting every 0, and every @,. Set H = | J{D: (m,D,])
€ R}. Then vertical sections of H all have at most two members, so there are two
functions fq, k, € N¥ such that H < fi; u ;.

(v) Suppose, if possible, that there are &, < 4 such that =, [hy m B;] ¢ # and
w[hy n B, ] ¢ F Then n,[H n B: n B,] ¢ #. Because R is upwards-directed and
meets both @, and Q,, there is an (m, D, 1) = R such that £ and » both belong to I.
Now F; n F, € # so there is an { = m such that

ie kn FAm[H n B; n B].

Because R also meets @, there is an (n,E,J)eR such that i <n and

{m, D, 1) < (n, E, J). But in this case
ieFnFEnimem[EnBnBlem[HnB:nB]

by the definition of the order < on P. So there can be no such ¢ and 1.
{vi) Accordingly, either = [hy n B;]le FVE <4, or m[h n B e FVE< A
Since {B;)¢.; is arbitrary, this shows that & is (o, x}-saturating.

10. Remarks. Theorem 6.1.8 of [4] shows that a nonprincipal k-good ultrafilter
is (w, }-saturating, and indeed much more. But there are no w,-good nonprincipal
vltrafilters on N [4, Exercise 6.1.37.

Note that the partial orders of Lemma 8 and Theorem 9 above are both in well-
recognised special classes of ccc partial order. That of Lemma B satisfies Knaster’s
condition [ 10, 11A], while that of Theorem 9 is g-linked [10, BID], Consequently
Theorem 9 remains true if we replace m by the cardinal g of [10, 11D].

11. CoroLLARY. Suppose that k < m.

(a) Every p(k)-point ultrafilter on N is (o, k)-saturating.

{b) If & is an (w,x)-saturating ultrafilter on N and @: fN\N = fN\N is a
homeomorphism, then o(F) is (o, K)-saturating.
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PrOOF. (a) We need only remember that p(i)-point ultrafilters are almost k-good,
as remarked in §1.

(b) The point is that the property of being “almost x-good™ is a topological one.
We could say that a point x of a topological space X is “i-good” if forevery 2 < x
and for every function I+ Uy: [A]5 -~ 9¥(x), where $(x) is the filter of neighbour-
hoods of x, there is a family {V):<,; in M(x) such that Neer Ve & U for every
nonempty finite / < A. Now a nonprincipal ultrafilter on N is almost x-good in
the sense of 1(ii) iff it is x-good when regarded as a point in the topological space
BNAN. So our result follows from Theorem 9 at once.

12. PropOSITION. It is relatively consistent with ZFC to suppose that there is a
Ramsey p(c)-point ultrafilter on N which is not (w, ¢}-saturating.

ProoF. (a) We use the following construction due to P. Dordal [7]. Let M be a
countable transitive model of ZFC + GCH. In M, let P be a ccc partially ordered set
forcing m = ¢ = w, [13, VIIL6.3], and let Q be Fn(w;, 2, @, ), the set of functions
f € w; x {0,1} with countable domains, ordered in reverse. Take G P x Q to
bea (P x Q)-generic filter over M; then G = G, x G,, where G, is a P-generic filter
over M and G, is a Q-generic filter over M [13, VIIL1.3].

The facts we need (mostly given in [7], and readily proved by techniques in {13])
are as follows:

{«) M, M[G,] and M[G] have the same cardinals.

(f) M[G,]FE"m=c=w,"

(v) N n M[G] = ?N n M[G,].

(8) M[G]E "2¥' = w;".

{(b) Now we argue as follows. Start in M[G,]. Because m = ¢ = w, there are a
Ramsey p(w,)-point ultrafilter # on N and a family {F.);<,, in & such that {F:
& < e} is a base for # and F\F, is finite whenever < £ < w,.

Move to M[G] = M[G,]. Because N n M[G] = M[G,], # is still a Ramsey
ultrafilter on N when examined in M[G]. What is more, it is still a p(c,)-point. For
suppose that (A4:>: .., € M[G]is a family in . (Recall that ", " and “w,” have the
same interpretations in M[G] and M[G,], by fact (a) of (a) above.) Then for each
£ < w, there is an a(f) < w, such that A; 2 F,). Take y = sup;c,,, 2(£) < w;;
then F, € # and F)\A, is finite for every &< wy.

On the other hand, in M[G], ¢ = w, {because N N M[G] = PN n M[G,])
and 2¢! = @y > . So & cannot be (o, ¢)-saturating, by 3(c).

Thus M[G]= “there is a Ramsey p{c)-point ultrafilter which is not {(w,}-
satarating”.

13. CoNncLUDING REMARKS. (a) In [10, 26Ma], the question was raised: is every
Ramsey p(c)-point ultrafilter {w, c)-saturating? This question is shown to be un-
decidable in ZFC by 11(a) and 12 above. But the point of the question was that
the preceding Theorem 26E of [10] had referred, under the assumption that p = ¢,
to {w, ¢)-saturating Ramsey p{c)-point uitrafilters; and if p = ¢ implies that Ramsey
p(c)-point ultrafilters are (, ¢)-saturating, there is a misleading redundancy. If we
assume that p = ¢ > m, which is the relevant context, the question remains open. In
fact, as remarked in §10, we are interested in the case p = ¢ > M, yjpeq. Another way
of putting the remaining question is: can the conclusion of 11(a) be reached using a
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g-centered partially ordered set in place of the o-linked partially ordered set of
Theorem 97 because by Bell's theorem p = m,_opereq [10, 14C].

{b) Some further questions arise naturally from the results above. For instance, is
the set of (e, k)-saturating vltrafilters always topologically invariant in AN\N? It is
surely topologically invariant in AN (because autohomeomorphisms of N always
arise from bijections from N to N); but that is not the same thing, There are models
of set theory in which all antohomeomorphisms of SIN\N are derived from functions
from N to itself (see [20, Chapter 1V]), and in these the set of (w, x)-saturating
ultrafiltersis always topologically invariant, asitis if ¥ < m({Corollary 11(b) above).
But J. Steprans reports that in any model obtained by adding w, Cohen reals to a
model of ZFC + GCH the set of (o, ¢)-saturating ultrafilters is not topologically
invariant.

{c}) Can Theorem 6 be refined to give a general description of those cardinals x for
which there is some (w, k}-saturating ultrafilter on N? We surely need £ < M0
and 2°* < ¢, by Proposition 3; but there seems no reason to believe that these will be
enough in general. We are inclined to suppose, for instance, that there need not be an
{to, m)-saturating ultrafilter, if @, <m <«

14. Acknowledgements. The partially ordered set P of Theorem 9 is based on a
method due to H. Woodin; P. Komjath independently used a similar device. (The
point is that if we try to work with finite functions instead of the sets D, we find
ourselves with a partially ordered set which is not ccc.) We should also like to thank
B. Balcar, P. Dordal, K. Kunen and J. Steprans for helpful remarks.
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