Explorations in Bootstrapping Guided Search

8th Language and Computation Day

Deirdre Lungley
dmlung@essex.ac.uk

October 8, 2009
Explorations in Bootstrapping Guided Search

Research Contribution

1. Automatically acquire a domain model for a document collection
Research Contribution

1. Automatically acquire a domain model for a document collection
2. Allow for user adaptation through the incorporation of log data
Explorations in Bootstrapping Guided Search

Research Contribution

1. Automatically acquire a domain model for a document collection
2. Allow for user adaptation through the incorporation of log data
3. Provide an insight into the different nature of general search, e.g., WWW search versus intranet search
Explorations in Bootstrapping Guided Search

Methodology

- Formal Concept Analysis (FCA) lattice based domain model
 - Navigational qualities
 - Coatoms provide initial query refinement suggestions
Methodology

- Formal Concept Analysis (FCA) lattice based domain model
 - Navigational qualities
 - Coatoms provide initial query refinement suggestions
- Deriving lattice document descriptors (index terms)
 - Lattice structure dependant on good document descriptors
 - Use combination of NLP and mining of query logs
Explorations in Bootstrapping Guided Search

Methodology

- Formal Concept Analysis (FCA) lattice based domain model
 - Navigational qualities
 - Coatoms provide initial query refinement suggestions
- Deriving lattice document descriptors (index terms)
 - Lattice structure dependant on good document descriptors
 - Use combination of NLP and mining of query logs
 - NLP techniques:
 - Noun phrase terms which occur in at least 2 contexts are included.
 - Also extract terms which co-occur with query term(s)
Explorations in Bootstrapping Guided Search

Methodology

- Formal Concept Analysis (FCA) lattice based domain model
 - Navigational qualities
 - Coatoms provide initial query refinement suggestions
- Deriving lattice document descriptors (index terms)
 - Lattice structure dependant on good document descriptors
 - Use combination of NLP and mining of query logs
 - NLP techniques:
 - Noun phrase terms which occur in at least 2 contexts are included.
 - Also extract terms which co-occur with query term(s)
 - Query log mining:
 - Machine learning through relative relevance
 - Learn the URLs relevant to a query term(s)
 - Attach query term(s) to these URLs
Explorations in Bootstrapping Guided Search

Early Interactive Intranet Experiment\(^1\)

- Simulate log data transactions for some frequent queries

Explorations in Bootstrapping Guided Search

Early Interactive Intranet Experiment¹

- Simulate log data transactions for some frequent queries
- Evaluate generated query refinement suggestions over two baselines:
 - Lattice based solely on text processing of documents
 - Frequent terms

Deirdre Lungley
Explorations in Bootstrapping Guided Search

Early Interactive Intranet Experiment

- Simulate log data transactions for some frequent queries
- Evaluate generated query refinement suggestions over two baselines:
 - Lattice based solely on text processing of documents
 - Frequent terms
- Results:

<table>
<thead>
<tr>
<th>% suggestions judged relevant</th>
<th>Adapted Lattice</th>
<th>B1: Unadapted Lattice</th>
<th>B2: Frequent Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>73%</td>
<td></td>
<td>32%</td>
<td>42%</td>
</tr>
</tbody>
</table>

Explorations in Bootstrapping Guided Search

Early Interactive Intranet Experiment¹

- Simulate log data transactions for some frequent queries
- Evaluate generated query refinement suggestions over two baselines:
 - Lattice based solely on text processing of documents
 - Frequent terms
- Results:

<table>
<thead>
<tr>
<th></th>
<th>Adapted Lattice</th>
<th>B1: Unadapted Lattice</th>
<th>B2: Frequent Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>% suggestions</td>
<td>73%</td>
<td>32%</td>
<td>42%</td>
</tr>
<tr>
<td>judged relevant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results confirm our assumption that users would prefer query refinement suggestions learnt from user queries over content generated terms

Explorations in Bootstrapping Guided Search

World Wide Web Bootstrapping Experiment

- MSN Search Asset Data Collection
- 15 million queries and related clicks
Explorations in Bootstrapping Guided Search

World Wide Web Bootstrapping Experiment

- MSN Search Asset Data Collection
- 15 million queries and related clicks
- TREC topics, 1 low frequency, 3 medium and 6 high

Deirdre Lungley
Explorations in Bootstrapping Guided Search

World Wide Web Bootstrapping Experiment

- MSN Search Asset Data Collection
- 15 million queries and related clicks
- TREC topics, 1 low frequency, 3 medium and 6 high
- Results of UK evaluation:

<table>
<thead>
<tr>
<th></th>
<th>Adapted Lattice</th>
<th>B1: Unadapted Lattice</th>
<th>B2: Noun Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>% suggestions</td>
<td>61%</td>
<td>63%</td>
<td>59%</td>
</tr>
<tr>
<td>judged relevant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deirdre Lungley
Explanations in Bootstrapping Guided Search

World Wide Web Bootstrapping Experiment
- MSN Search Asset Data Collection
- 15 million queries and related clicks
- TREC topics, 1 low frequency, 3 medium and 6 high
- Results of UK evaluation:

<table>
<thead>
<tr>
<th></th>
<th>Adapted Lattice</th>
<th>B1: Unadapted Lattice</th>
<th>B2: Noun Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>% suggestions judged relevant</td>
<td>61%</td>
<td>63%</td>
<td>59%</td>
</tr>
</tbody>
</table>

- Results of Mechanical Turk evaluation:

<table>
<thead>
<tr>
<th></th>
<th>Adapted Lattice</th>
<th>B1: Unadapted Lattice</th>
<th>B2: Noun Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>% suggestions judged relevant</td>
<td>67%</td>
<td>69%</td>
<td>64%</td>
</tr>
</tbody>
</table>
Observations

- Can we say deriving suggestions from logs works better on intranet data?
Observations

- Can we say deriving suggestions from logs works better on intranet data? Influencing factors:
 - Limitation to simple term pair evaluation - WWW requires more context
 - Temporal dimension - log data dated May 2006
Observations

- Can we say deriving suggestions from logs works better on intranet data? Influencing factors:
 - Limitation to simple term pair evaluation - WWW requires more context
 - Temporal dimension - log data dated May 2006

- Can we say deriving suggestions from historic queries works better than from historic queries and clicks?
Observations

- Can we say deriving suggestions from logs works better on intranet data? Influencing factors:
 - Limitation to simple term pair evaluation - WWW requires more context
 - Temporal dimension - log data dated May 2006

- Can we say deriving suggestions from historic queries works better than from historic queries and clicks? Useful since:
 - Query data more readily available
 - Sensitive nature of click data
Observations

- Can we say deriving suggestions from logs works better on intranet data? Influencing factors:
 - Limitation to simple term pair evaluation - WWW requires more context
 - Temporal dimension - log data dated May 2006

- Can we say deriving suggestions from historic queries works better than from historic queries and clicks? Useful since:
 - Query data more readily available
 - Sensitive nature of click data

- Suggests evaluation of query-only adaptation
 - Intranet experiment
 - Adapt relative relevance learning
 - Highly dependant on good precision (P@1/P@2/P@5)
 - Nutch (VSM) to Lucene (BM25F)
Explorations in Bootstrapping Guided Search

Deriving query suggestions from Intranet Query Logs using MLE

Research Questions:
- Usefulness of dialogue log component
- Suitability of Web derived suggestions for domain-specific search
- General Web user perception of "usefulness" of extracted suggestions
Explorations in Bootstrapping Guided Search

Deriving query suggestions from Intranet Query Logs using MLE

- Research Questions:
 - Usefulness of dialogue log component
 - Suitability of Web derived suggestions for domain-specific search
 - General Web user perception of "usefulness" of extracted suggestions

- Query bigram MLE – $\max P(q_{n+1}|q)$ over (q, q_{n+1})
Explorations in Bootstrapping Guided Search

Deriving query suggestions from Intranet Query Logs using MLE

- Research Questions:
 - Usefulness of dialogue log component
 - Suitability of Web derived suggestions for domain-specific search
 - General Web user perception of “usefulness” of extracted suggestions

- Query bigram MLE – \(\max P(q_{n+1}|q) \) over \((q, q_{n+1})\)

- Experimental setup:
 - Suggestions generated for top 25 most frequently submitted queries
 - 67 participants for both evaluations
Explorations in Bootstrapping Guided Search

Deriving query suggestions from Intranet Query Logs using MLE

- **Research Questions:**
 - Usefulness of dialogue log component
 - Suitability of Web derived suggestions for domain-specific search
 - General Web user perception of "usefulness" of extracted suggestions

- **Query bigram MLE** – \(\max P(q_{n+1}|q) \) over \((q, q_{n+1})\)

- **Experimental setup:**
 - Suggestions generated for top 25 most frequently submitted queries
 - 67 participants for both evaluations

<table>
<thead>
<tr>
<th>Method</th>
<th>Relevant – Local</th>
<th>Relevant – MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE-Session</td>
<td>71.0%</td>
<td>63.6%</td>
</tr>
<tr>
<td>MLE-Discourse</td>
<td>75.7%</td>
<td>68.9%</td>
</tr>
<tr>
<td>MLE-Discourse-Add</td>
<td>72.1%</td>
<td>63.6%</td>
</tr>
<tr>
<td>MLE-Discourse-Replace</td>
<td>75.2%</td>
<td>73.1%</td>
</tr>
<tr>
<td>Baseline-Snippets</td>
<td>54.9%</td>
<td>51.3%</td>
</tr>
<tr>
<td>Baseline-Google</td>
<td>35.6%</td>
<td>58.3%</td>
</tr>
</tbody>
</table>
Explorations in Bootstrapping Guided Search

Going Forward

- Revisit lattice document descriptors
 - Move from "Related searches" to "concepts"
 - Conceptual representation to map a specific URL into some space
 - Latent Semantic Analysis (LSA) kernel
Questions?
Automade: Automatically Maintained Domain Knowledge

Calendar of the University of Essex
- Driving and Parking of Vehicles within...http://www.essex.ac.uk/academic/docs/vehicles.html
- Rules Governing the Driving and Parking of Vehicles within...http://www.essex.ac.uk/academic/docs/vehicles.html
- Academic Regulations, Rules Governing the Driving and Parking of Vehicles within...http://www.essex.ac.uk/academic/docs/vehicles.html
- Communications Office at the University of Essex - Organizing an event...http://www.essex.ac.uk/communications/events.html
- Information on Car Parking...http://www.essex.ac.uk/personnel/news/default.htm
- Travel Information - Getting around once you've arrived...http://www.essex.ac.uk/students/travel/gettingaround.html
- Parking on campus...http://www.essex.ac.uk/academics/docs/campus.html
- Car Parking Information...http://www.essex.ac.uk/personnel/news/default.htm
- Car Parking Information...http://www.essex.ac.uk/personnel/news/default.htm
- University of Essex, University Campus...http://www.essex.ac.uk/academics/docs/campus.html
- University of Essex, University Campus...http://www.essex.ac.uk/academics/docs/campus.html

Figure: Automade - UoE Intranet