Postscript to FREMLIN 89

1. I note first that Problems 5.15(a) and 5.15(b) have been solved, negatively, by M.Talagrand (TA-LAGRAND 08; see FREMLIN 12, §394). Concerning 5.15(c), I find that I don't know whether Talagrand's example satisfies the σ -bounded chain condition.

2. In 6.2(e) on p. 958 of FREMLIN 89 I say that 'if a Boolean algebra A satisfies the countable chain condition and $\gamma_{\omega}^*(A) > \omega_1$ then $\gamma_{\omega}^*(A) = \gamma_{\omega}(A)$ ', without giving a proof. I expect the argument I had in mind was essentially as follows. Let A be a Boolean algebra. Repeating the definitions in 6.1, set

$$\gamma_{\omega}(A) = \min\{|X| : X \subseteq A^+ \text{ and there is no countable } D \subseteq A^+$$

such that every member of X includes a member of D},

$$\gamma^*_{\omega}(A) = \min\{|X| : X \subseteq A^+ \text{ and there is no countable } D \subseteq A^+$$

such that $x = \sum \{ d \in D : d \le x \}$ for every $x \in X \}$.

Suppose that $\gamma_{\omega}^{*}(A) > \omega_{1}$ and that $X \subseteq A$ and $\#(X) < \gamma_{\omega}(A)$. Choose a non-decreasing family $\langle D_{\xi} \rangle_{\xi < \omega_{1}}$ inductively, as follows. $D_{0} = \{1\}$. Given $\xi < \omega_{1}$ such that D_{ξ} has been defined, set

$$E_{x\xi} = \{y : y \in A^+, y \le x, y \cdot d = 0 \text{ whenever } d \in D_{\xi} \text{ and } d \le x\}$$

for $x \in X$, and $X_{\xi} = \{x : x \in X, E_{x\xi} \neq \emptyset\}$; choose $z_{x\xi} \in E_{x\xi}$ for $x \in X_{\xi}$; take a countable $D'_{\xi} \subseteq A^+$ such that every $z_{x\xi}$ includes a member of D'_{ξ} , and set $D_{\xi+1} = D_{\xi} \cup D'_{\xi}$. For non-zero countable limit ordinals ξ , set $D_{\xi} = \bigcup_{\eta < \xi} D_{\eta}$.

This construction ensures that every D_{ξ} is a countable subset of A^+ . Set $D^* = \bigcup_{\xi < \omega_1} D_{\xi}$, so that $D^* \subseteq A^+$ and $|D| \le \omega_1$. Now $x = \sup\{d : d \in D^*, d \le x\}$ for every $x \in X$. For if $x \in X$ is such that x is not the supremum of $\{d : d \in D^*, d \le x\}$, then $E_{x\xi}$ is never empty, and $z_{x\xi}$ is defined for every $\xi < \omega_1$; but in this case $\{z_{x\xi} : \xi < \omega_1\}$ is a disjoint family in A^+ , which is impossible.

At the same time, because $\gamma_{\omega}^*(A) > \omega_1 \ge |D^*|$, there is a countable set $D \subseteq A^+$ such that $z = \sup\{d : d \in D, d \le z\}$ for every $z \in D^*$. And now $x = \sup\{d : d \in D, d \le x\}$ for every $x \in X$. As X is arbitrary, $\gamma_{\omega}(A) \le \gamma_{\omega}^*(A)$; but the reverse inequality is trivial, as noted in FREMLIN 89.

3. If A satisfies the countable chain condition and $\gamma_{\omega}(A) > \mathfrak{c}$ then $\pi(A) \leq \omega$. **P?** Otherwise, choose a non-decreasing family $\langle D_{\xi} \rangle_{\xi < \omega_1}$ of subsets of A^+ of size at most \mathfrak{c} , as follows. Start with $D_0 = \emptyset$. Given D_{ξ} , where $\xi < \omega_1, D_{\xi+1} \supseteq D_{\xi}$ is to be a set of size at most \mathfrak{c} such that (i) whenever $C \subseteq D_{\xi}$ is countable and has a non-zero lower bound in A, then it has a lower bound in $D_{\xi+1}$ (ii) whenever $C \subseteq D_{\xi}$ is countable, there is an element of $D_{\xi+1}$ not including any member of C; this is possible as D_{ξ} has at most \mathfrak{c} countable subsets. At limit ordinals $\xi \leq \omega_1$, set $D_{\xi} = \bigcup_{\eta < \xi} D_{\eta}$. At the end of the induction, $\#(D_{\omega_1}) \leq \mathfrak{c} < \gamma_{\omega}(A)$ so there is a countable set $C \subseteq A^+$ such that every member of D_{ω_1} includes a member of C. Because A satisfies the countable chain condition, there is for each $c \in C$ a countable set $E_c \subseteq D_{\omega_1}$ with the same lower bounds as $\{d : c \leq d \in D_{\omega_1}\}$. Now there is a $\xi < \omega_1$ such that $\bigcup_{c \in C} E_c \subseteq D_{\xi}$, and there is a $c \in D_{\xi+1}$ which is a lower bound for E_c . Next, $C' = \{c' : c \in C\}$ is a countable subset of $D_{\xi+1}$, so there is a $d \in D_{\xi+2}$ not including any member of C'. However, there is a $c \in C$ such that $d \in E_c$ and $c' \leq d$, which is impossible. **XQ**

4. So if the continuum hypothesis is true, $\gamma_{\omega}(A) = \gamma_{\omega}^*(A)$ for every Boolean algebra A satisfying the countable chain condition. (If $\gamma_{\omega}^*(A) > \omega_1$ use §2, and if $\gamma_{\omega}(A) > \omega_1$ then §3 tells us that $\pi(A) = \omega$ so $\gamma_{\omega}^* = \infty$.)

5. I still don't know whether $\gamma_{\omega}^*(A) = \gamma_{\omega}(A)$ whenever A is a Boolean algebra satisfying the countable chain condition if the continuum hypothesis is false.

Acknowledgement I am grateful to Francesco Parente for reminding me about these questions, and for checking the first version of this note.

References

Fremlin D.H. [89] 'Measure algebras', pp. 876-980 in MONK 89.

Fremlin D.H. [12] Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, 2012 (http://www.lulu. com/shop/david-fremlin/measure-theory-3-i/hardcover/product-20575027.html, http://www.lulu. com/shop/david-fremlin/measure-theory-3-ii/hardcover/product-20598433.html, or https://www1. essex.ac.uk/maths/people/fremlin/mt.htm).

Monk J.D. [89] (ed.) Handbook of Boolean Algebra. North-Holland, 1989.

Talagrand M. [08] 'Maharam's problem', Annals of Math. 168 (2008) 981-1009.