
Version of 30.9.02

In this introductory volume I set out, at a level which I hope will be suitable for students with no prior
knowledge of the Lebesgue (or even Riemann) integral and with only a basic (but thorough) preparation in
the techniques of ǫ-δ analysis, the theory of measure and integration up to the convergence theorems (§123).
I add a third chapter (Chapter 13) of miscellaneous additional results, mostly chosen as being relatively
elementary material necessary for topics treated in Volume 2 which does not have a natural place there.

The title of this volume is a little more emphatic than I should care to try to justify au pied de la lettre. I
would certainly characterize the construction of Lebesgue measure on R (§114), the definition of the integral
on an abstract measure space (§122) and the convergence theorems (§123) as indispensable. But a teacher
who wishes to press on to further topics will find that much of Chapter 13 can be set aside for a while. I say
‘teacher’ rather than ‘student’ here, because if you are studying on your own I think you should aim to go
slower than the text requires rather than faster; in my view, these ideas are genuinely difficult, and I think
you should take the time to get as much practice at relatively elementary levels as you can.

Perhaps this is a suitable moment at which to set down some general thoughts on the teaching of measure
theory. I have been teaching analysis for over thirty years now, and one of the few constants over that
period has been the feeling, almost universal among teachers of analysis, that we are not serving most
of our students well. We have all encountered students who are not stupid – who are indeed quite good
at mathematics – but who seem to have a disproportionate difficulty with rigorous analysis. They are
so exhausted and demoralised by the technical problems that they cannot make sense or use even of the
knowledge they achieve. The natural reaction to this is to try to make courses shorter and easier. But I
think that this makes it even more likely that at the end of the semester your students will be stranded in
thorn-bushes half way up the mountain. Specifically, with Lebesgue measure, you are in danger of spending
twenty hours teaching them how to integrate the indicator function of the rationals. This is not what the
subject is for. Lebesgue’s own presentations of the subject (Lebesgue 1904, Lebesgue 1918) emphasize
the convergence theorems and the Fundamental Theorem of Calculus. I have put the former in Volume 1
and the latter in Volume 2, but it does seem to me that unless your students themselves want to know when
one can expect to be able to interchange a limit and an integral, or which functions are indefinite integrals,
or what the completions of C([0, 1]) under the norms ‖ ‖1, ‖ ‖2 look like, then it is going to be very difficult
for them to make anything of this material; and if you really cannot reach the point of explaining at least
a couple of these matters in terms which they can appreciate, then it may not be worth starting. I would
myself choose rather to omit a good many proofs than to come to the theorems for which the subject was
created so late in the course that two thirds of my class have already given up before they are covered.

Of course I and others have followed that road too, with no better results (though usually with happier
students) than we obtain by dotting every i and crossing every t in the proofs. Nearly every time I am
consulted by a non-specialist who wants to be told a theorem which will solve his problem, I am reminded
that pure mathematics in general, and analysis in particular, does not lie in the theorems but in the proofs.
In so far as I have been successful in answering such questions, it has usually been by making a trifling
adjustment to a standard argument to produce a non-standard theorem. The ideas are in the details. You
have not understood Carathéodory’s construction (§113) until you can, at the very least, reliably reproduce
the argument which shows that it works. In the end, there is no alternative to going over every step of the
ground, and while I have occasionally been ruthless in cutting out topics which seem to me to be marginal,
I have tried to make sure – at the expense, frequently, of pedantry – that every necessary idea is signalled.

Faced, therefore, with any particular class, I believe that a teacher must compromise between scope and
completeness. Exactly which compromises are most appropriate will depend on factors which it would be
a waste of time for me to guess at. This volume is supposed to be a possible text on which to base a
course; but I hope that no lecturer will set her class to read it at so many pages a week. My primary
aim is to provide a concise and coherent basis on which to erect the structure of the later volumes. This
involves me in pursuing, at more than one point, approaches which take slightly more difficult paths for the
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sake of developing a more refined technique. (Perhaps the most salient of these is my insistence that an
integrable function need not be defined everywhere on the underlying measure space; see §§121-122.) It is
the responsibility of the individual teacher to decide for herself whether such refinements are appropriate to
the needs of her students, and, if not, to show them what translations are needed.

The above paragraphs are directed at teachers who are, supposedly, competent in the subject – certainly
past the level treated in this volume – and who have access to some of the many excellent books already
available, so that if they take the trouble to think out their aims, they should be able to choose which
elements of my presentation are suitable. But I must also consider the position of a student who is setting
out to learn this material on his own. I trust that you have understood from what I have already written
that you should not be afraid to look ahead. You could, indeed, do worse than go to Volume 2, and take one
of the wonderful theorems there – the Fundamental Theorem of Calculus (§222), for instance, or, if you are
very ambitious, the strong law of large numbers (§273) – and use the index and the cross-references to try to
extract a proof from first principles. If you are successful you will have every right to congratulate yourself.
In the periods in which success seems elusive, however, you should be working systematically through the
‘basic exercises’ in the sections which seem to be relevant; and if all else fails, start again at the beginning.
Mathematics is a difficult subject, that is why it is worth doing, and almost every section here contains
some essential idea which you could not expect to find alone.

Measure Theory (abridged version)
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Version of 4.1.04

Chapter 11

Measure spaces

In this chapter I set out the fundamental concept of ‘measure space’, that is, a set in which some (not, as a
rule, all) subsets may be assigned a ‘measure’, which you may wish to interpret as area, or mass, or volume,
or thermal capacity, or indeed almost anything which you would expect to be additive – I mean, that the
measure of the union of two disjoint sets should be the sum of their measures. The actual definition (in 112A)
is not obvious, and depends essentially on certain technical features which make a preparatory section (§111)
advisable. Furthermore, even with the definition well in hand, the original and most important examples
of measures, Lebesgue measure on Euclidean space, remain elusive. I therefore devote a section (§113) to
a method of constructing measures, before turning to the details of the arguments needed for Lebesgue
measure in §§114-115. Thus the structure of the chapter is three sections of general theory followed by two
(which are closely similar) on particular examples. I should say that the general theory is essentially easier;
but it does rely on facility with certain manipulations of families of sets which may be new to you.

At some point I ought to comment on my arrangement of the material, and it may be helpful if I do
so before you start work on this chapter. One of the many fundamental questions which any author on
the subject must decide, is whether to begin with ‘general’ measure theory or with ‘Lebesgue’ measure and
integration. The point is that Lebesgue measure is rather more than just the most important example of a
measure space. It is so close to the heart of the subject that the great majority of the ideas of the elementary
theory can be fully realised in theorems about Lebesgue measure. Looking ahead to Volume 2, I find that,
with the exception of Chapter 21 – which is specifically devoted to extending your ideas of what measure
spaces can be – only Chapter 27 and the second half of Chapter 25 really need the general theory to make
sense, while Chapters 22, 26 and 28 are specifically about Lebesgue measure. Volume 3 is another matter,
but even there more than half the mathematical content can be expressed in terms of Lebesgue measure. If
you take the view, as I certainly do when it suits my argument, that the business of pure mathematics is to
express and extend the logical capacity of the human mind, and that the actual theorems we work through
are merely vehicles for the ideas, then you can correctly point out that all the really important things in
the present volume can be done without going to the trouble of formulating a general theory of abstract
measure spaces; and that by studying the relatively concrete example of Lebesgue measure on r-dimensional
Euclidean space you can avoid a variety of irrelevant distractions.

If you are quite sure, as a teacher, that none of your pupils will wish to go beyond the elementary theory,
there is something to be said for this view. I believe, however, that it becomes untenable if you wish to
prepare any of your students for more advanced ideas. The difficulty is that, with the best will in the
world, anyone who has worked through the full theory of Lebesgue measure, and then comes to the theory
of abstract measure spaces, is likely to go through it too fast, and at the end find himself uncertain about
just which ninety per cent of the facts he knows are generally applicable. I believe it is safer to keep the
special properties of Lebesgue measure clearly labelled as such from the beginning.

It is of course the besetting sin of mathematics teachers at this level, to teach a class of twenty in a manner
appropriate to perhaps two of them. But in the present case my own judgement is that very few students
who are ready for the course at all will have any difficulty with the extra level of abstraction involved in ‘Let
(X,Σ, µ) be a measure space, . . . ’. I do assume knowledge of elementary linear algebra, and the grammar,
at least, of arbitrary measure spaces is no worse than the grammar of arbitrary linear spaces. Moreover,
the Lebesgue theory already involves statements of the form ‘if E is a Lebesgue measurable set, . . . ’, and
in my experience students who can cope with quantification over subsets of the reals are not deterred by
quantification over sets of sets (which anyway is necessary for any elementary description of the σ-algebra
of Borel sets). So I believe that here, at least, the extra generality of the ‘professional’ approach is not an
obstacle to the amateur.

I have written all this here, rather than later in the chapter, because I do wish to give you the choice.
And if your choice is to learn the Lebesgue theory first, and leave the general theory to later, this is how to
do it. You should read

paragraphs 114A-114C
114D, with 113A-113B and 112Ba, 112Bc
114E, with 113C-113D, 111A, 112A, 112Bb
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4 Measure spaces Chap. 11 intro.

114F
114G, with 111G and 111C-111F,

and then continue with Chapter 12. At some point, of course, you should look at the exercises for §§112-113;
but, as in Chapters 12-13, you will do so by translating ‘Let (X,Σ, µ) be a measure space’ into ‘Let µ be
Lebesgue measure on R, and Σ the σ-algebra of Lebesgue measurable sets’. Similarly, when you look at
111X-111Y, you will take Σ to be either the σ-algebra of Lebesgue measurable sets or the σ-algebra of Borel
subsets of R.

Version of 26.1.05

111 σ-algebras

In the introduction to this chapter I remarked that a measure space is ‘a set in which some (not, as a rule,
all) subsets may be assigned a measure’. All ordinary concepts of ‘length’ or ‘area’ or ‘volume’ apply only
to reasonably regular sets. Modern measure theory is remarkably powerful in that an extraordinary variety
of sets are regular enough to be measured; but we must still expect some limitation, and when studying
any measure a proper understanding of the class of sets which it measures will be central to our work. The
basic definition here is that of ‘σ-algebra of sets’; all measures in the standard theory are defined on such
collections. I therefore begin with a statement of the definition, and a brief discussion of the properties, of
these classes.

111A Definition Let X be a set. A σ-algebra of subsets of X is a family Σ of subsets of X such that
(i) ∅ ∈ Σ;
(ii) for every E ∈ Σ, its complement X \ E in X belongs to Σ;
(iii) for every sequence 〈En〉n∈N in Σ, its union

⋃

n∈N
En belongs to Σ.

111D Elementary properties of σ-algebras If Σ is a σ-algebra of subsets of X, then it has the
following properties.

(a) E ∪ F ∈ Σ for all E, F ∈ Σ.

(b) E ∩ F ∈ Σ for all E, F ∈ Σ.

(c) E \ F ∈ Σ for all E, F ∈ Σ.

(d) Now suppose that 〈En〉n∈N is a sequence in Σ, and consider

⋂

n∈N

En = {x : x ∈ En ∀ n ∈ N}

= E0 ∩ E1 ∩ E2 ∩ . . .

= X \
⋃

n∈N

(X \ En);

this also belongs to Σ.

111F Countable sets (a) A set K is countable if either it is empty or there is a surjection from N onto
K. In this case, if Σ is a σ-algebra of sets and 〈Ek〉k∈K is a family in Σ indexed by K, then

⋃

k∈K Ek ∈ Σ.

(b)(i) If K is countable and L ⊆ K, then L is countable.

(ii) The Cartesian product N× N = {(m,n) : m, n ∈ N} is countable.

(iii) It follows that if K and L are countable sets, so is K × L.

(iv) If K1, K2, . . . ,Kr are countable sets, so is K1× . . .×Kr. In particular, Qr×Qr will be countable,
for any integer r ≥ 1.

Measure Theory (abridged version)



112Bd Measure spaces 5

(c) If Σ is a σ-algebra of sets, K is a non-empty countable set, and 〈Ek〉k∈K is a family in Σ, then
⋂

k∈K Ek = {x : x ∈ Ek ∀ k ∈ K}

belongs to Σ.

111G Borel sets (a) Let X be a set, and let S be any non-empty family of σ-algebras of subsets of X.
Then

⋂

S = {E : E ∈ Σ for every Σ ∈ S},

the intersection of all the σ-algebras belonging to S, is a σ-algebra of subsets of X.

(b) Now let A be any family of subsets of X. Consider

S = {Σ : Σ is a σ-algebra of subsets of X, A ⊆ Σ}.

ΣA =
⋂

S is a σ-algebra of subsets of X; it is the smallest σ-algebra of subsets of X including A.
We say that ΣA is the σ-algebra of subsets of X generated by A.

Examples (i) For any X, the σ-algebra of subsets of X generated by ∅ is {∅, X}.

(ii) The σ-algebra of subsets of N generated by {{n} : n ∈ N} is PN.

(c)(i) We say that a set G ⊆ R is open if for every x ∈ G there is a δ > 0 such that the open interval
]x− δ, x+ δ[ is included in G.

(ii) Similarly, for any r ≥ 1, we say that a set G ⊆ Rr is open in Rr if for every x ∈ G there is a δ > 0

such that {y : ‖y − x‖ < δ} ⊆ G, where for z = (ζ1, . . . , ζr) ∈ Rr I write ‖z‖ =
√

∑r

i=1
|ζi|2.

(d) Now the Borel sets of R, or of Rr, are just the members of the σ-algebra of subsets of R or Rr

generated by the family of open sets of R or Rr; the σ-algebra itself is called the Borel σ-algebra in each
case.

Version of 20.2.05/20.8.08

112 Measure spaces

We are now, I hope, ready for the second major definition, the definition on which all the work of this
treatise is based.

112A Definition A measure space is a triple (X,Σ, µ) where
(i) X is a set;
(ii) Σ is a σ-algebra of subsets of X;
(iii) µ : Σ → [0,∞] is a function such that

(α) µ∅ = 0;
(β) if 〈En〉n∈N is a disjoint sequence in Σ, then µ(

⋃

n∈N
En) =

∑∞

n=0
µEn.

In this context, members of Σ are called measurable sets, and µ is called a measure on X.

112B Remarks (c) In interpreting clause (iii-β) of the definition above, we need to assign values to
sums

∑∞

n=0
un for arbitrary sequences 〈un〉n∈N in [0,∞]. If one of the um is itself infinite,

∑∞

n=0
un = ∞.

If all the um are finite, then the sequence 〈
∑n

m=0
um〉n∈N of partial sums is monotonic non-decreasing, and

either has a finite limit
∑∞

n=0
un ∈ R, or diverges to ∞; in which case we again interpret

∑∞

n=0
un as ∞.

(d) Let X be any set, and let h : X → [0,∞] be any function. For every E ⊆ X write µE =
∑

x∈E h(x).
To interpret this sum, note that there is no difficulty for finite sets E (taking

∑

x∈∅
h(x) = 0), while for

infinite sets E we can take
∑

x∈E h(x) = sup{
∑

x∈I h(x) : I ⊆ E is finite}, because every h(x) is non-
negative. Now (X,PX,µ) is a measure space.

I will call measures of this kind point-supported.

D.H.Fremlin



6 Measure spaces 112Bd

Two particular cases recur often enough to be worth giving names to. If h(x) = 1 for every x, then µE

is just the number of points of E if E is finite, and is ∞ if E is infinite. I will call this counting measure
on X. If x0 ∈ X, we can set h(x0) = 1 and h(x) = 0 for x ∈ X \ {x0}; then µE is 1 if x0 ∈ E, and 0 for
other E. I will call this the Dirac measure on X concentrated at x0. Another simple example is with
X = N, h(n) = 2−n−1 for every n; then µX = 1

2
+ 1

4
+ . . . = 1.

(e) If (X,Σ, µ) is a measure space I may say that ‘µ measures E’ or ‘E is measured by µ’ to mean
that µE is defined.

112C Elementary properties of measure spaces Let (X,Σ, µ) be a measure space.
(a) If E, F ∈ Σ and E ∩ F = ∅ then µ(E ∪ F ) = µE + µF .
(b) If E, F ∈ Σ and E ⊆ F then µE ≤ µF .
(c) µ(E ∪ F ) ≤ µE + µF for any E, F ∈ Σ.
(d) If 〈En〉n∈N is any sequence in Σ, then µ(

⋃

n∈N
En) ≤

∑∞

n=0
µEn.

(e) If 〈En〉n∈N is a non-decreasing sequence in Σ (that is, En ⊆ En+1 for every n ∈ N) then

µ(
⋃

n∈N
En) = limn→∞ µEn = supn∈N µEn.

(f) If 〈En〉n∈N is a non-increasing sequence in Σ (that is, En+1 ⊆ En for every n ∈ N), and if some µEn

is finite, then

µ(
⋂

n∈N
En) = limn→∞ µEn = infn∈N µEn.

112D Negligible sets Let (X,Σ, µ) be any measure space.

(a) A set A ⊆ X is negligible (or null) if there is a set E ∈ Σ such that A ⊆ E and µE = 0. (If there
seems to be a possibility of doubt about which measure is involved, I will write µ-negligible.)

(b) Let N be the family of negligible subsets of X. Then (i) ∅ ∈ N (ii) if A ⊆ B ∈ N then A ∈ N (iii)
if 〈An〉n∈N is any sequence in N ,

⋃

n∈N
An ∈ N .

I will call N the null ideal of the measure µ. (A family of sets satisfying the conditions (i)-(iii) here is
called a σ-ideal of sets.)

(c) A set A ⊆ X is conegligible if X \A is negligible. Note that (i) X is conegligible (ii) if A ⊆ B ⊆ X

and A is conegligible then B is conegligible (iii) if 〈An〉n∈N is a sequence of conegligible sets, then
⋂

n∈N
An

is conegligible.

(d) If P (x) is some assertion applicable to members x of the set X, we say that

‘P (x) for almost every x ∈ X’

or

‘P (x) a.e. (x)’

or

‘P almost everywhere’, ‘P a.e.’

or

‘P (x) for µ-almost every x’, ‘P (x)µ-a.e.(x)’, ‘P µ-a.e.’,

to mean that

{x : x ∈ X, P (x)}

is conegligible in X. Thus if f : X → R is a function, ‘f > 0 a.e.’ means that {x : f(x) ≤ 0} is negligible.

(g) When f and g are real-valued functions defined on conegligible subsets of a measure space, I will
write f =a.e. g, f ≤a.e. g or f ≥a.e. g to mean, respectively,

Measure Theory (abridged version)



114C Lebesgue measure on R 7

f = g a.e., that is, {x : x ∈ dom(f) ∩ dom(g), f(x) = g(x)} is conegligible,

f ≤ g a.e., that is, {x : x ∈ dom(f) ∩ dom(g), f(x) ≤ g(x)} is conegligible,

f ≥ g a.e., that is, {x : x ∈ dom(f) ∩ dom(g), f(x) ≥ g(x)} is conegligible.

Version of 6.4.05

113 Outer measures and Carathéodory’s construction

I introduce the most important method of constructing measures.

113A Outer measures: Definition Let X be a set. An outer measure on X is a function θ : PX →
[0,∞] such that

(i) θ∅ = 0,
(ii) if A ⊆ B ⊆ X then θA ≤ θB,
(iii) for every sequence 〈An〉n∈N of subsets of X, θ(

⋃

n∈N
An) ≤

∑∞

n=0
θAn.

113C Carathéodory’s Method: Theorem Let X be a set and θ an outer measure on X. Set

Σ = {E : E ⊆ X, θA = θ(A ∩ E) + θ(A \ E) for every A ⊆ X}.

Then Σ is a σ-algebra of subsets of X. Define µ : Σ → [0,∞] by writing µE = θE for E ∈ Σ; then (X,Σ, µ)
is a measure space.

113D Remark Note that in this construction

Σ = {E : E ⊆ X, θ(A ∩ E) + θ(A \ E) ≤ θA whenever A ⊆ X and θA < ∞}.

Version of 14.6.05

114 Lebesgue measure on R

Following the very abstract ideas of §§111-113, we have an urgent need for a non-trivial example of a
measure space. By far the most important example is the real line with Lebesgue measure, and I now
proceed to a description of this measure (114A-114E), with a few of its basic properties.

The principal ideas of this section are repeated in §115, and if you have encountered Lebesgue measure
before, or feel confident in your ability to deal with two- and three-dimensional spaces at the same time as
doing some difficult analysis, you could go directly to that section, turning back to this one only when a
specific reference is given.

114A Definitions (a) For the purposes of this section, a half-open interval in R is a set of the form
[a, b[ = {x : a ≤ x < b}, where a, b ∈ R.

(b) We define the length λI of a half-open interval I by setting

λ∅ = 0, λ [a, b[ = b− a if a < b.

114B Lemma If I ⊆ R is a half-open interval and 〈Ij〉j∈N is a sequence of half-open intervals covering
I, then λI ≤

∑∞

j=0
λIj .

114C Definition Now define θ : PR → [0,∞] by writing

c© 1999 D. H. Fremlin
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8 Measure spaces 114C

θA = inf{
∞
∑

j=0

λIj : 〈Ij〉j∈N is a sequence of half-open intervals

such that A ⊆
⋃

j∈N

Ij}.

θ is called Lebesgue outer measure on R.

114D Proposition (a) θ is an outer measure on R.
(b) θI = λI for every half-open interval I ⊆ R.

114E Definition Because Lebesgue outer measure is an outer measure, we may use it to construct a
measure µ, using Carathéodory’s method. This measure is Lebesgue measure on R. The sets E measured
by µ are called Lebesgue measurable.

Sets which are negligible for µ are called Lebesgue negligible.

114F Lemma Let x ∈ R. Then Hx = ]−∞, x[ is Lebesgue measurable for every x ∈ R.

114G Proposition All Borel subsets of R are Lebesgue measurable; in particular, all open sets, and all
sets of the following classes, together with countable unions of them:

(i) open intervals ]a, b[, ]−∞, b[, ]a,∞[, ]−∞,∞[, where a < b ∈ R;
(ii) closed intervals [a, b], where a ≤ b ∈ R;
(iii) half-open intervals [a, b[, ]a, b], ]−∞, b], [a,∞[, where a < b in R.

We have the following formula for the measures of such sets, writing µ for Lebesgue measure:

µ ]a, b[ = µ[a, b] = µ [a, b[ = µ ]a, b] = b− a

whenever a ≤ b in R, while all the unbounded intervals have infinite measure. It follows that every countable
subset of R is measurable and of zero measure.

Version of 21.7.05

115 Lebesgue measure on Rr

Following the very abstract ideas of §§111-113, there is an urgent need for non-trivial examples of measure
spaces. By far the most important examples are the Euclidean spaces Rr with Lebesgue measure, and I
now proceed to a definition of these measures (115A-115E), with a few of their basic properties. Except
at one point (in the proof of the fundamental lemma 115B) this section does not rely essentially on §114;
but nevertheless most students encountering Lebesgue measure for the first time will find it easier to work
through the one-dimensional case carefully before embarking on the multi-dimensional case.

115A Definitions (a) For practically the whole of this section (the exception is the proof of Lemma
115B) r will denote a fixed integer greater than or equal to 1. I will use Roman letters a, b, c, d, x, y to
denote members of Rr, and Greek letters for their coordinates, so that a = (α1, . . . , αr), b = (β1, . . . , βr),
x = (ξ1, . . . , ξr).

(b) For the purposes of this section, a half-open interval in Rr is a set of the form [a, b[ = {x : αi ≤
ξi < βi ∀ i ≤ r}, where a, b ∈ Rr. Observe that I allow βi ≤ αi in this formula; if this happens for any i,
then [a, b[ = ∅.

(c) If I = [a, b[ ⊆ Rr is a half-open interval, then either I = ∅ or

αi = inf{ξi : x ∈ I}, βi = sup{ξi : x ∈ I}

for every i ≤ r; in the latter case, the expression of I as a half-open interval is unique. We may therefore
define the r-dimensional volume λI of a half-open interval I by setting

λ∅ = 0, λ [a, b[ =
∏r

i=1
βi − αi if αi < βi for every i.

Measure Theory (abridged version)
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115B Lemma If I ⊆ Rr is a half-open interval and 〈Ij〉j∈N is a sequence of half-open intervals covering
I, then λI ≤

∑∞

j=0
λIj .

115C Definition Now, and for the rest of this section, define θ : P(Rr) → [0,∞] by writing

θA = inf{
∞
∑

j=0

λIj : 〈Ij〉j∈N is a sequence of half-open intervals

such that A ⊆
⋃

j∈N

Ij}.

This function θ is called Lebesgue outer measure on Rr; the phrase is justified by (a) of the next
proposition.

115D Proposition (a) θ is an outer measure on Rr.
(b) θI = λI for every half-open interval I ⊆ Rr.

115E Definition Because Lebesgue outer measure is an outer measure, we may use it to construct a
measure µ, using Carathéodory’s method. This measure is Lebesgue measure on Rr. The sets E for
which µE is defined are called Lebesgue measurable.

Sets which are negligible for µ are called Lebesgue negligible.

115F Lemma If i ≤ r and ξ ∈ R, then Hiξ = {y : ηi < ξ} is Lebesgue measurable.

115G Proposition All Borel subsets of Rr are Lebesgue measurable; in particular, all open sets, and
all sets of the following classes, together with countable unions of them:

open intervals ]a, b[ = {x : x ∈ Rr, αi < ξi < βi ∀ i ≤ r}, where αi, βi ∈ R ∪ {−∞,∞} for
each i ≤ r;

closed intervals [a, b] = {x : x ∈ Rr, αi ≤ ξi ≤ βi ∀ i ≤ r}, where αi, βi ∈ R ∪ {−∞,∞} for
each i ≤ r.

We have the following formula for the measures of such sets, writing µ for Lebesgue measure:

µ ]a, b[ = µ[a, b] =
∏r

i=1
βi − αi

whenever a ≤ b in Rr. Consequently every countable subset of Rr is measurable and of zero measure.

D.H.Fremlin



10 Concordance

Version of 19.11.15

Concordance for Chapter 11

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

112E-112F Image measures These paragraphs, referred to in the 2001 and 2003 editions of Volume 2,
and the 2003 and 2006 editions of Volume 4, have been moved to 234C-234D in Volume 2.

112Ya Sums of measures This material, referred to in the 2001 and 2003 editions of Volume 2, has
been moved to 234G in Volume 2.
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